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Chapter 1

Introduction
What is the thermodynamics? What is the statistical mechanics?

1.1 Thermodynamics: phenomenological theory® of the
macroscopic properties of system at certain equilibrium state.
This theory describes the system in terms of a few experimentally
measurable parameters like - Volume V , Pressure P,
Temperature T, Density p,...etc.

1.2 statistical mechanics: They belong to a branch of mechanics
which explains the laws of thermodynamics on mechanical
principles.

But before we venture deeply into this subject, it is useful to begin by
considering what is meant by "equilibrium" and the energetics
associated with removing macroscopic systems from equilibrium.
This is the subject of thermodynamics. While students may be
somewhat familiar with this subject, we take this point as our
beginning because of its central importance to statistical mechanics.

1.3 Thermodynamic variables: The properties of a macroscopic
system can be classified as either extensive or intensive.

e Extensive quantities: quantities proportional to the amount of
matter present. Suppose we have a system and we double it. That

1 Phenomenological theory means that it does not provide the microscopic origin
of a phenomenon



means that we double the volume V, double the number of particles
N, double the internal energy U, and double the entropy S. Quantities
such asV, N, U and S which are additive are called extensive.

e Intensive quantities: quantities independent of the amount of
matter present. the variables which arise from differentiating the
entropy, such as temperature 1/T = dS/0E and pressure p = T dS/0V
and chemical potential u = TdS/ON involve the ratio of two extensive
guantities and so do not change as we scale the system: they are
called intensive quantities.
1.4 Thermodynamic limit: Consider a material body that consists of
N atoms in a volume V . The limit
N> oo
Voo
But N/V = fixed
this is called the thermodynamic limit, in which the system is

translationary invariant. In the thermodynamic limit we use
intensive quantities. Instead of V we use the specific volume v =
V/N orthedensityn = N/V.

1.5 Thermodynamic state is a state specified by a number of
thermodynamic variables, which are assumed to be either
extensive (proportional to N) or intensive (independent of N).
Usually we consider generic systems described by the three
variables P, V, and T. For magnetic systems we consider such
variables as M (magnetization) and H (magnetic field).

1.6 The zeroth law of thermodynamics,

"If each of two systems is in thermal equilibrium with a third, then
they are also in thermal equilibrium with each other".

This implies the existence of a property called temperature. Two
systems that are in thermal equilibrium with each other must have
the same temperature.

1.7 Thermal equilibrium and thermodynamic transformations



Thermal equilibrium: from our experience we know that a
macroscopic system generally relaxes to a stationary state after
a short time. This stationary state is called a state of thermal
equilibrium.

1.8 Equation of state: if a system is in thermal equilibrium, the
thermodynamic variables are not independent of one another,
but constrained by the so-called equation of state of the form:

f(P,V,T) =0 (1.1

where fis a characteristic function of the system under study.
Example: the equation of state of a classical ideal gas (a real gas
in the limit of low density and high temperature) is

f(P,V,T) = PV — NkgT (1.2)
where T is the ideal gas temperature measured in Kelvin (K), and
ks = 1.381x10 2 J/K is the Boltzmann constant, and N is the
number of particles. The equation of state of the ideal gas leaves
two independent variables out of the original three.

1.8.1 Geometrical representation of the equation of state: The
equation of state of the ideal gas can be represented by a surface
in the state space spanned by P, V, and T (see Fig. 1). All
equilibrium states must be on this surface. f is a continuous,
differentiable function, except at some special points.

Equation of

P

state surface
Irreversible

path

Reversible
path

Fig. 1: The state space in thermodynamics

1.9 Thermodynamic transformation: a change in the external
conditions changes the equilibrium state of the system. This



transformation of the equilibrium state is called a thermodynamic

transformation or process. For example, application of external

pressure causes the volume of the body to decrease. The initial
and final _states are equilibrium _states. Thermodynamic

transformations are classified as:

1) quasi-static transformation (process): the transformation
proceeds sufficiently slowly ( a mathematically infinitesimal
paths) so that the system can be considered to remain in
equilibrium.

2) reversible transformation (process): quasi-static

transformation is usually reversible, that is, the system will

trace the transformation in reverse, when the external change
is reversed. A reversible transformation can be represented by
a continuous path on the equation of state surface, as
illustrated in Fig.1.

3) irreversible transformation (process): an irreversible
transformation cannot be retraced by reversing the external
conditions. Such a transformation cannot be represented by a
path in the equation-of-state space ( see fig.1). An example of
an irreversible transformation is mixing of two gases by
removing the separation wall
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Fig. 2: Mixing of two gases as an example of an irreversible
thermodynamic transformation. An example of irreversible process.

1.10 Mechanical work
Mechanical work is defined as an energy transfer either into or
out of the system, through the change of an external parameter.

Work is the only energy which is transferred to the system
through external macroscopic forces.



Example: The mechanical work performed on a gas due to an

infinitesimal volume change (reversible transformation) is

dW = PdV (1.3)

Along a finite path reversible path A — B, the work done is given by

B
AW = f Pav (1.4)
A

Which depend on the path connecting A to B. This is the area

underneath the path in PV diagram.

Cycle process: When the path is closed cycle, the work done in one

cycle is the area enclosed, as shown in fig. 3.

The work done along irreversible path is generally not [ PdV . For

example, the free expansion of a gas into vacuum,
the system does not perform work on any external
agent, so AW = 0.

Note:
e Mechanical work is positive when it is
performed on the system.
e dW is not an exact differential, i.e.,
W (P,V ) does not define any state property.

P

v

Figure 3: Cycle process.

Not always, ¢ PdV # 0

1.11 Heat transfer: Heat is a uniquely thermodynamic process. Heat

can be defined as follows;

1) From the atomic point of view (statistical mechanics view):
it represents a transfer of energy because of temperature

difference.

If a system absorbs an amount of heat AQ, its temperature rises

proportionally by an amount AT
AQ = CAT (1.5).




The proportionality constant C is called heat capacity of the substance.
It is an extensive quantity.
specific heat c: is the intensive heat capacity per particle C/N , per
mole C/n, or per unit volume C/V.
The fact that heat is a form of energy was established experimentally,
by observing that one can increase the temperature of a body by AT
either by transferring heat to the body or performing work on it. The
unit of heat is calorie:

lcal = 4.184] (1.6)

the heat absorbed by a body and the work done by a body are path
dependence (not state functions). We can speak of the amount of heat
absorbed in a process, but the "heat of the body" , like the "work of a
body", is meaningless.

Since the heat absorbed by a body depends on the path of
transformation, one can define
various heat transfer processes:

e T = const (isothermal process),

e P = const (isobaric process),

¢ VV = const (isochoric process),

e AQ = 0 (Adiabatic process).

A corresponding subscript is used to distinguish the various types of
paths. For example, Cv for heat capacity at constant volume, Cp for
heat capacity at constant pressure.

Other thermodynamic coefficients that measure the linear response of
the system to an external source are

- compressibility

o 14p .
N 1.7)

- the coefficient of thermal expansion

1AV

“Tvar

(1.8)



10

Reminder: our convention is that

6Q > 0 when heat is transferred to the system

SW > 0 when work is done on the system with ;
SW = —PdV (1.9)

1.12: Classical Ideal Gas: is a gas in the limit of low density and
high temperature.
The equation of state is given by the ideal gas law

PV = NkgT (1.10)
Where T is the ideal gas temperature, measured in kelvins
(K), and
kg
=138 x 10723 J/K (1.11) (Boltzmann constant)

According to the second law of thermodynamics, T > 0, and
T = 0 is called the absolute zero so T is called the absolute
temperature.

The heat capacity of an idela gas is given as
3

These properties is established experimentally, and can be derived
theoretically, as we will see, in statistical mechanics.
Thermodynamics does not assume the concept of atoms, instead of
the number of atoms, we can use the number of grams moles n , the
two are related through,

nR = Nkg (1.13)
R =8.31J/mol.K (1.14) ( Gas constant)

The ration R /kg is Avogadro's number N,, the number of atoms per
mole:
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R
Ny = - =6.022 X 10%° (1.15)
B

1.12: Internal energy: Internal energy is a measure of the total

energy of the system. If it were possible, we could measure the
position and velocity of every particle of the system and calculate the
total energy by summing up the individual kinetic and potential

energies.
N N N
1 2 - 1 - =
U=E=§zpi +Z¢(ri)+§zv(ri—r,-) (1.16)
i=1 i=1 ij

where ¢ (7;) is the external potential and V(¥; — 1;) is the potential of

interaction between particles (i.e, Coulomb interaction potential

between charged particles).

1.13: The First Law of thermodynamics

For a closed system, the first law of thermodynamic is given as

AU=Q+W (1.17)
In words it say that" the change in the internal energy of a closed
system is equal to the energy transferred to the system as a heat
plus the work done on the system?".

In differential for it given as

dU =dQ + dwW (1.18)
Where dW = —PdV

2 Here dQ and dW ,unlike dU, are path dependence; that is, there are no such functions as @ (p. V) and
W (p.V) that depend only on the state of the system. The quantities dQ and dW are called inexact
differentials and are usually represented by the symbols dQ and dW. For our purposes, we can treat
them simply as infinitesimally small energy transfers.
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1.13: Heat equations: The internal energy is an exact differential
state function . Since the constraint imposed by the equation of
state reduces the number of independent variables to two, we
may consider the internal energy to be a function of any two of
the variables. Then, under infinitesimal increments of the
variables, we will have for dU:

oU au
_ (9 U (1.19)
dU(P,T) = (BP)TdP+ (8T)PdT
au aUu
dU(v,T) = (—3V)Tdv+ (BT)VdT

The partial derivative, such as (Z—Z) , are thermodynamic coefficient
v

to be taken from experiments.
The heat absorbed by the system can be obtained from the first law

as
dQ = dU + PdV (1.20)
Then
= (30) 4 [(3), A}
dQ = (2—2)1‘ dP + (E;Z)Pdr+ Pav (1.21)
o= [(), e (),

In the second of these equations, there are three variables, we can
change it to two variables by rewrite V as a function of P and T, so
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iAY Vv
V= |(—) dP+(—=) dT
(aP)T " (BT)P 422

The second equation then becomes:

_[rev av (U + PV) (1.23
dQ“[(aP)T”(aPud”( aT ),,‘” )

Now, We define the state function enthalpy
H=U+PV
So, the heat equations in dQ can be summarize as follow,

al aUu
0= (8P>vd” KE?)P”] v
_[(Y a7 o (124
w0=|(35),+7(5), ]+ (57)

aU alu
a- (), A (),

The heat capacities at constant V and P can then be expressed as
derivatives of state functions:

CV:(?E)
aT /
c A(BH)
PT\eT ),

Problem (): knowing that:dU = dQ — PdV, H=U+PV, C,= (z—f)v,

d . .
Cp = (f) . apply the internal energy U as a function of state
P

U(p,v), U(P,T), and U(V,T) to show that

CV:(EE)
aT /
c A(BH)
Pm\er /),

1.14: Application to Ideal Gas
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Joule performed a classical experiment on free expansion
consisting on the following:

A thermally isolated ideal gas was allowed to expand freely
into an isolated chamber, which had been initially empty (Fig.
4). After a new equilibrium state was established, the final

temperature was be the same as initial temperature.

Insulating walls .
Hole with stopper

;‘S«k’wﬁ%l Vacuum
e

Ideal gas

Before

Figure 3: Free expansion of ideal gas

From this experiment we have the following conclousion :

« AW =0 (since the gas pushes into a vacuum)
* AQ =0 (since the temperature was unchanged)
* AU =0 (by the first law)
Choosing V, T as independent variables, we conclude U(V,,T) =
UV, T), thatis, U is independent of V:
U=U(T)
Note: U is proportional to the number of particles N, which has been

kept constant for this experiment.
Now we can express the heat capacity at constant volume as a total

derivative

3U dU
Cv=|—) ==
aT ), ~ dT
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Assuming that C,, is constant, we can integrate the above to get U(T)
as

U(T):/Cvde CyT

Where the constant of integration has been set to zero by defining U =
QatT =0

Also, Cp is given as

(BH) (B(U +PV))
CP = —_— = _—
AT /), 8T »

_ dU | 3(NksT)
dr 3T
= Cy + Nkp
but fromeq. (), Cy = %NkB
Then Cp =2 Nkg + Nkg =2 Nkg

e Adiabatic Process
An adiabatic process happens without heat transfer:
Setting dQ = 0, in the first law of thermodynamic, we have dU =
—PdV. Since dU = Cy,dT, we obtain
CydT +PdV =10
Using the equation of state PV = NkgT, then
PV

T =
Nk
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_ d(PV) _ PdV+ VdP

dT
Nkg Nkg
Thus
Cy (PdV 4 VdP) + NkgPdV =0
Cy VdP + (Cy + Nkg)PdV =10
Cy VdP + CpPdV =1
or
dP dv
F +y ? =0
where
re Cy

Assuming that y is a constant, we obtain through an integration
InP = —y InV + constant
or
PV” = constant
Using the equation of state, we can rewrite this in the equivalent form

TV?Y ! = constant

Since y > 1, an adiabatic path has a steeper slope than an
isotherm in a P - IV diagram
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p.! v adiabatic PVY = const

\
\S

\\1/_ 1sotherm PV = const

~

V

Figure 4: An adiabatic line has steeper slope than isothermal

Q. Prove that the slope of the adiabatic path is steeper than the slope
of isothermal path in a P — V diagram.

Chapter 2

Entropy and Second Law of Thermodynamics

2.1 Carnot Cycle:

Now, it's well known that U is a state function. In a cyclic
transformation, the final state is the same as the initial state, and
therefore

AU =0 (2.1)
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A reversible cyclic process can be represented by a closed loop in the
PV diagram, Fig. 2.1

P

V

Figure: 2.1 Reversible cyclic process. The shaded area
of the loop is the total work done by the
system in one cycle.

The area of the loop is the total work done by the system in one cycle.
Since AU = 0, it is also equal the heat absorbed.

|AW| = |AQ| - (2-2)
A Carnot cycle a reversible cycle bounded by two isotherms and two
adiabatic lines, see figure 2.2.

Pressure P &
Ta.

2

> FIGURE 7-1
Volume ¥ Carnot cycle of a real gas.

Figure: 2.2 Carnot cycle on the PV diagram of ideal gas.

With the condition T;, > T} , the system absorbs heat |Qy| along
the isotherm Ty and rejects heat |Q, | along T, , with |Qy| > |Q,].
Using the first law of thermodynamics, the net work output is

W =|Qu| —1Ql (2.3)
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The efficiency of the Carnot engine is defined as

w 10,
= —=1-_“% 2.4
7= on 1041 24

Which is 100% if there is no waste heat, that is, |Q,| = 0 . But, this is
impossible , according to the second law of thermodynamics.
The Carnot engine is represented by the schematic diagram shown

in fig. 2.3
KHigh-u:mperalurc rescrvoir)

|On

<
*

R —1—» Wl

197

r
Low-temperature reservoir

Figure 2.3 Schematic representation of Carnot engine.

The importance of Carnot's cycle originates from the fact that it is not
only to be interpreted as an idealized limiting case of real cycles, but
that it will make some principle ideas ( such as entropy) clear to us.

The Carnot cycle is performed in four successive reversible steps,
as illustrate in PV diagram in figure 2.2.

To compute |Q,| and |Qy| ,we need only to consider the isothermal
processes. For any infinitesimal reversible process of an ideal gas, the
first law of thermodynamic can be written as;

dQ = C,dT + PdV
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e Applying this equation to the isothermal process 2 = 3, the
heat absorbed is

V3

104l = | Pav

Sirnilarly, for the isothermal process 4-1
| | = I :

Q nRT;In
L L 1,4

Therefore

Inﬁ

|Qxl :T_Hj ...... (2-5)
QI TLI A
A
4

Since the process 1 — 2 is adiabatic, we may write, for any
infinitesimal portion

—CydT = PdV.
Or
nRT
—CVdT = TdV

Integrating from 1 — 2, we get



21

1 c dT _1 4
nR ) VT T MY,
Ty
Similarly, for the adiabatic process 3 — 4,
Ty
1 c dT _ 1 A
wR ] VT T MY,
Th
TH
1 c dT l Vs
R ) VT MY,
Ty
Therefore
Vi V3
In—=In—
727
[0} o (2 . 6)
LR
",
Combining eq.(2.5) and eq.(2.6 ) obtain
T,
1Qul =2.02n
|QL| TL
Then with eq.(2.4)
T,
=1-—
n Ty
2.4 Entropy
From eq.( 2.7 ), then
1Qul _ Tu
QLI T
or
Qn Ty
0, = T, = QuT, = —0Q.Ty

So actually, during this reversible process we have
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5 (@) o f0
=0 -

- (2.8) (reversible process)

Let us consider the following theorem stated by Clausius:

= "In an arbitrary cyclic process F, the following inequality
holds:

dQ
i <0 (29)

where the equality holds for P reversible.”

. d . dqQ . . .
Since gﬁTQ = 0 for reversible process, then ?Q is exact differential.

This implies that there a state function S called entropy whose
differential is given as

dQ
ds = —

The entropy is defined up to an additive constant. The difference

between entropies of any two states A and B is
B

aqQ
SB_SA:JT

A

+» THE INCREASE OF ENTROPY PRINCIPLE

Consider a cycle that is made up of two processes: process 1-2, which
is arbitrary (reversible or irreversible), and process 2-1, which is
internally reversible, as shown in Figure 2—4.



23

2

Process 1-2
(reversible or\’.— -

irreversible)  ,*

AN Process 2-1
(internally
reversible)

Figure 2-4: A cycle composed of a reversible and an irreversible
process.

From the Clausius inequality,

Or

28 1780
[ o0, [ ((Q) =0
T / T int rev

“1 ¥2

The second integral in the previous relation is recognized as the
entropy change S; — S,. Therefore,

7

+5 —-5=0
T 1 2

J|
Which can be regards as

d
S, =S, > TQ (2.10)

It can also be expressed as

6Q
ds z - (2.11)
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where the equality holds for an internally reversible process and the

inequality for an irreversible process.

We may conclude from these equations that:

- In the limiting case of a reversible process, these two quantities
become equal.

dQ
ds = —

- The entropy change of a closed system during an irreversible
process is greater than the integral of dQ/T evaluated for that
process.

dq
dS>T

This means that, the entropy change of a closed system during an
irreversible process is always greater than the entropy transfer. That
is, some entropy is generated or created during an irreversible
process, and this generation is due entirely to the presence of
irreversibilities. The entropy generated during a process is called
entropy generation and is denoted by Sg.,. Noting that the
difference between the entropy change of a closed system and the
entropy transfer is equal to entropy generation,

2 5Q
ASsystem =5-5= J T + Sgen
1

Now, for an isolated system (or simply an adiabatic closed system),
the heat transfer is
zero, and Eq. 2.10 reduces to

ASisolated =0 (2-12)
This means that the entropy of an isolated system never decreases
and remains constant during a reversible transformation.

Note:
i) The joint system of a system and its environment is called”
universe”. Defined in this
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way, the” universe” is an isolated system and, therefore, its entropy

never decreases.

However, the entropy of a non-isolated system may decrease at the

expense of the
system’s environment.

ii) Since the entropy is a state function, S(B) — S(A) is independent
of the path,
regardless whether it is reversible or irreversible. For an irreversible
path, the entropy

of the environment changes, whereas for a reversible one it does not.

iii) Remember that the entropy difference
B

aqQ
SA_SB:[T
A

only when the path is reversible; otherwise, the difference is larger
than the integral

Example Problem ( ): The heat capacity at constant volume of a
number of substances can
be represented empirically by an equation of the form
Cy =a+ bT +CT?
where a, b, and c are constants. Calculate the change in internal
energy and the change in entropy when the temperature changes
fromT;toT, at constant volume.
Solution
At constant volume, we have dU = dQ = C ydT then
AU = [7CydT = [;*(a+ bT +cT?)dT . Thus,
AU = (aT +bT?/2 +

cT*/2)I7

T T

AS=S—S = | Cy/TAT = ainT +bT +cT%2| "
4T 1

2.5 The Second Law of Thermodynamics
Definition by Clausius:




26

” There is no thermodynamic transformation whose sole effect is to
deliver heat from a reservoir of lower temperature to a reservoir of
higher temperature.”

Summary: heat does not flow upwards.

Definition by Kelvin:

“There is no thermodynamic transformation whose sole effect is to
extract heat from a reservoir and convert it entirely to work”.
Summary: a perpetuum mobile of second type does not exist.

2.5 Entropy of Ideal Gas
As we have seen, the first law for a closed PVT system is given in
differential form as
dU =dQ —dW = dQ — PdV
Now for reversible process we have

dQ
ds = — = dQ = Tds

Combining the two equations we get

dU =TdS — PdVv

This is the central equation in thermodynamic . It is in fact the

fundamental equation for closed PVT systems and for PVT systems
of fixed composition, and all other property relations are derived
from it.
For the special case of an ideal gas, we have ; dU = CydT so the
last equation becomes
CydT =TdS — PdV
Or
dT P
dS = CV ? + 7 dV
However by the ideal gas law P/T = Nkg/V,and C, = 3/2 Nkg
we get
dT av

3
dS = Nky—+ Nk~
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This equation prove that the entropy of an ideal gas is a function of
Tand V,i.e.
S =SV, T)y. If we integrate the last equation the starting from T,
and V, with entropy S, we find

3 T %4

S(W,T) =S,(V,T) + =Nkgin—+ Nkgln—
2 T, I’
= Cy + NkgIn(VT3/2)

Where the constants includes V, and T, is absorbed by the constant
Co-
Since the entropy is an extensive quantity, it has to be proportional
to the particle number N. This can not exist unless C, somehow
contain aterm NkgIn N. As we shall see, this is supplied by quantum
effects, through " correct Boltzmann counting".
Looking forward, let us here quote Sackur —Tetrode equation for the
absolute entropy:

5
S = Nkg [E - In(n/13)]
Which will be derived further. Hence n = N/V and A is the thermal
wavelength , the wavelength of a particle with energy kzT:
A =./2nh/mkgT
Where h is the reduced Planck's constant. It is interesting to note
that this quantum constant appears even in high-temperature
macroscopic physics.

2.6 Condition for equilibrium
The first law of thermodynamic states that AU = AQ — PdV. Using
Clausius' theorem AQ < TAS , we have;

AU < TAS — AW
Therefore, when AS = AW =0

Then, AU <0

“This means that, for thermally and mechanically isolated system, the
internal energy will tend to have the lowest possible value”.
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e Maxwell equation from the internal energy U
For infinitesimal reversible changes we have
dU =TdS — PdV
Then the natural variables of U are S and V. If the function
U(S,V) is known, we can obtain all thermodynamic properties
through the formula;

p (6U)
— \av/s

T_<6U>
~\as/y

We emphasize that these equations holds for all infinitesimal
changes of U(S, V) within the field of equilibrium states.Thes
second equation is concidered as the real definition of
temperature.
If the second partial derivatives of U are continuous, as we shall
assume to be the case for thermodynamic functions, the order of
partial differentiation does notmatter and we obtain

(6)(6U)_ 02U _(6)(6U)_ 2%U
ov/\as) ovas \as/\ov/) asav

But
02U oT
ovas (W)S
And
02U oP
asav (E)V
Then,

).~ ),

The last equation is the first Maxwell relation, dervied from U

2.7 Helmholtz Free Energy
Remember that up to now we have four thermodynamic variables,
P,V,T,S. In the laboratory it is difficult to manipulate S,V, but far
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easier to change V/,T. The question know is "what is the equilibrium
condition at constant, T ?
The answer as follow,
From the inequality AU < TAS — AW. If T is kept constant we can
rewrite it as

AW < —-A(U-TS)

If AW =0,
Then
(U-TS)<0
This motivates us to define Helmholtz Free energy or simply free
energy
F=U-TS
Then
AW < —A(F)

If AW = 0, then A(F) < 0. The equilibrium condition for a
mechanically isolated body at constant temperature is that the free
energy be minimum.

e Maxwell equation from Helmholtz free energy
For infinitesimal reversible transformations we have
dF = dU —TdS — SdT
dU =TdS — PdV
Then
dF = —=8dT — PdV
Then knowing F(V,T), then all thermodynamic properties can be
obtained through Maxwell relations

b <6F>
- \av/;

g (aF)
- \aT/y

and from the formula for Helmholtz Free energy, F = U — TS =
TdS — PdV — TS , and assuming the natural variablesof F are T
and V, we have,
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The last equation is the second Maxwell relation, dervied from F

2.8 Gibbs Potential
We have seen that the thermodynamic properties of a system can
be obtained from the function U(S,T) or from F(V,T) . Let us now
consider G(P,T);
G=F+PV
e Maxwell equation from Gibbs free energy
dG = dF + PdV +VdP
dG = dF + PdV +VdP
dG = —=SdT — PdV + PdV + VdP
dG = —=SdT +VdP

. (66) - (0G)
—\aT/p’ ~ \oP/;

and from the formula for the Gibbs free energy,
G=F+PV=U-TS+PV
And assuming the natural variables of G are Tand P, we have,

Then

), -,

The last equation is the third Maxwell relation, dervied from G

2.8 Enthalpy
We have seen the functions U(S,T) or from F(V,T), G(P,T). Let
us now consider H(S, P)
H=U+PV

e Maxwell equation from Enthalpy
dH =dU + PdV + VdP
dH =TdS — PdV + PdV + VdP
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dH =TdS +VdP

T_(OH) V_(GH)
~\as/p -~ \aP/g

&), - (),

The last equation is the fourth Maxwell relation, dervied from H

2.9 Using Maxwell Relations
We can summarize basic functions (Potentials) and its inter-relations
as follow;

AU=Q+W
F=U-TS
G=F+PV
H=U+PV
The differential forms are as follow
Ues,v): dU =TdS — PdV
F(V,T): dF = —SdT — PdV
G(P,T): dG = =SdT + VdP
H(S,P): dH =TdS +VdP

Each function is expressed in terms of its natural variables. When
these variables are held fixed, the corresponding function is at a
minimum in thermal equilibrium.

Figure 2.6 Summarize the Maxwell relations.

A
A% T F
U G
S H P
Figure 2.6:

Mnemonic diagram summarizing the Maxwell relations. Each quantity
atthe center of arow or column is flanked by its natural variables, The partial derivative
with respect to one variable, with the other kept fixed, is arrived at by following the
diagonal line originating from that variable. Attach a minus sign if you go against the
aITow.

2.10 Chemical Potential

So far we have kept the number of particles N constant in thermodynamic transfor-
mations. When N does change, the first law is generalized to the form
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where p is called the chemical potential, the energy needed to add one particle to a
thermally and mechanically isolated system. For a gas-liquid system we have

dU =T1dS — PdV + ndN

The change in free energy is given by

dF = —=SdT — PdV + udN
which gives the Maxwell relation

(G

“ 7 \oN/rp

Similarly, for processes at constant P and T, we consider the change in the Gibbs
potentiai:

dG = —SdT — VdP + udN

(3G
"N s

and obtain

CHAPTER 3

The statistical approach

3.1 Introduction
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Given certain information about a substance (e.g., equation of state,

heat _capacity), thermodynamics allows us to derive various other
quantities. What is the missing in this way is the bridge between the
macroscopic level of thermodynamics and the mechanical (classical or
quantum) description at the atomic level.

Since the number of particles in a macroscopic system is huge (~
1023 particles in a cubic centimeter), one cannot expect an exact
solution of the equations of motion. Not only because one would
need a supercomputer to deal with 1023 coupled equation, but also
because it is not at all clear how useful it would be to deal with the
large amount of data resulting out of these equations.

Therefore, in statistical physics we will be dealing with average
quantities and probability predictions. For example, the pressure of
a gas is due to the collisions of the molecules with a surface, whereas,
temperature is directly given by the mean kinetic energy of the
particles. Fluctuations around the average value are also possible
within the statistical physics, but for large numbers of particles, N >
oo, these fluctuations will become less and less important. In order to
make rigorous predictions, the statistical physics needs to have the
limit N = oo,

We can distinguish the following branches of statistical physics.
e C(lassical statistical physics: the microscopic equations of
motion of the particles are given by classical mechanics.
e Quantum statistical physics: the microscopic equations of
motion of the particles
are given by quantum mechanics.
e Statistical physics in equilibrium: the macroscopic variables
are time-independent
and the macroscopic world can be described in terms of microscopic
average values,
distribution functions or probabilities.
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e Statistical physics in non-equilibrium: the macroscopic
variables are time dependent
.In this case, the microscopic treatment is more complicated.
In this course, we will restrict ourselves to classical and quantum
statistical physics in equilibrium.
3.2 Phase Space
How we classify the state of a system of N-particle?
3.2.1: I'-space (one point with 6N- components in 6N —dimensional
space)

In classical mechanics, a state of a particle at any instant of time is
specified by its momentum P and position T. The six components of
these vector quantities span the phase space (the space of all
coordinates and momenta) of one particle. For N particles, the total
number of degrees is 6N, and the total phase space is 6N-
dimensional. The motion of the particle is governed by the
Hamiltonian

N2
H(P:T)=Z$+EZU(TL'—7}') (3.1)
i=1

i+j
Where U(r) is_the interatomic potential

The point in this space is given as;

(@, 7) = (P1, P2, D3 wov o y P3N T T2, T3, e e 3N) (3.2)

The set (p,r) can now be understood as a point in 6N —dimensional
space which is called I' —space, or classical phase space. The point in
this phase space is called representative point and corresponds to one
microstate of motion of the whole system at particular time. As time
evolves, the representative point traces out a trajectory. It never
intersects itself, because the solution of the equations of motion is
unique. If H does not depend explicitly on time, in which case energy
is a conserved quantity, all trajectories in phase space lie on an energy
surface which is a hypersurface in I' —space defined by

H(p,v) = E (3.3)
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A symbolic representation of I' —space is shown in figure (3.1a).

—_
P
P Energy surface b ®e
e®g Ve olg e
‘......‘I 0.:'.:
a ®|le® .
o Je, %
ae®® DL
U Iy .'_0'1 .
e o'
/ .:....D - °l*
y . \
7 \ \
Locus of
representative point Cell volume = At
I'-space u-space
(6 N—dimensional) (Six-dimensional)
Figure 3.1

3.2.2: p—space ( N- points with 6- components in 6 -dimensional
space )

Another way to specify the state of the system is to describe each
atom separately
( one-particle phase space). The motion of each atom is described by
momentum and position (p,7), which span a 6-dimensional phase
space called the u-space ( N- points phase space). The overall system
is represented by N ~ 10° points (number of atoms in the dilute
limit), as illustrated schematically in figure (3.1b)

3.4 Microstates and Macrostates
A microstate; is g state that specifies the parameters of all the

particles of the system. In a system of N particles, we know the

position and momentum of each particle. One microstate can be
described by either one point with one point of 6N-components in I" —
space or N-points with 6 —components in u-space.

A macrostate; is a state that describes the system as whole. For

example, a system with a fixed pressure, volume and temperature is
in a particular macrostate. There are many different possible
microstates that can give rise to a particular macrostate.

3.4.1 Number of microstates 2
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Consider a system of two particles A and B that can both exist in one
of two energy levels, E; and E,. The macrostate of this system can be
defined by the total energy of the system.

Macrostate ()E;+E; 2)E; +E, 3)E;+E>
Microstate A(E}),B(Ey) jggggz A(E3),B(E>)
Q 1 2 1

Therefore if both energy levels, E; and E; are equally likely, the system
has a 50% chance of being in macrostate (2) and a 25% chance each
of being in macrostates (1) and (3).

However, in general not every energy level is equally likely so the
most likely macrostate is also governed by the probability of energy
level occupation.

This leads on to the concept of the partition function, Z, for a system,

which we will cover later.

3.5 Ergodic Hypothesis
Given a sufficiently long time, the representative point of an isolated

system will come arbitrarily close to any given point on the energy

surface.

Essentially, this means that for an isolated system in equilibrium, all

accessible
microstates are equally likely. This is the “assumption of equal a priori

probability” .This means that, “There is no preferred microstate”.

This is the fundamental assumption of statistical physics. It is very
difficult to prove that a system will even visit every allowed point
much less prove that all are equally probable. In the absence of a
mathematical proof, we use the postulate of equal probabilities as a
working hypothesis (that happens to be well supported by
experiments and numerical simulations).

3.6 Distribution function:
After establishing the space that describe the atoms, we seek

distribution function f(p,7,t) which describe the statistical
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properties of the entire system, rather than the behavior of the
individual atoms.

3.6.1 f(p, 7, t) in u-space
Divide the u-space into cells which are 6—-dimensional volume
element

At = Ap,Ap, Ap,AxAyAz (3.4)

Each cell is distinguished on a microscopic level, but is infinitesimal on
a macroscopic scale. We assume that a cell contains a large number
of atoms. From a macroscopic view, particles in the ith cell have the
same energy &;.

Definition: The number of particles, n; ,in cell i at time t;, is called the
occupation number.

Definition: The distribution function, f(p,7,t), is defined as the
occupation number per unit volume:

G0 =5 (3.5)
= f(p, 7, At =n (3.6)

Since there are N-atoms with total energy, E , we have the

zni =N 3.7)

i

zniei =E (3.8)

i
The phase-space unit volume At is so arbitrary. Sometimes, this leads

conditions;

to the appearing undetermined constant, as in the expression for
entropy, as we shall see later. In quantum mechanics determines the
unit volume is found to be h3, where h is planck's constant.

In the thermodynamic limit (N — oo,V — ), f(p,7,t) is assumed

to be a continuous function, and one also can write
At - d3p d3r
So (3.6) and (3.7) can be rewritten as;
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jd3p d3r f(p, 7, t) =N (3.9)
p?
d3p &3r f(p, 7, t) =—=E 3.10
f pdrfprt)o— (3.10)
If the density is uniform , then f(p,7,t) is independent of 7 . We
denote it by f(p, t)

3 (3 t) =
[errao=5 @

2
[eeol= 61w
" 2m vV

Thus, it is possible to find the state of a system once we know the
distribution function. The distribution function that we have defined,
f(p,7,t), evolves in time following the microscopic equations of
motion. When thermal equilibrium is reached, f(p,7,t) should
acquire a time-independent form f(p, 7).

Our aim is to find the equilibrium distribution, and to deduce from it
the thermodynamics of the system

3.7 Entropy in statistical physics

As we mentioned before, there are many different possible
microstates that can give rise to a particular macrostate. Then the
states with the largest value of (2 are those that are most likely occurs.
However, the states with the largest value () are also with most
disorder-simply because there are so many microstates to give one

macrostate. This means that there must be relationship between (2
and the entropy S of a system.
Therefore if
(2 tends to a maximum,
Then,
S tends to a maximum.

3.7.1 The Boltzmann-Planck entropy formula
The Boltzmann-Planck equation for entropy is written,
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where Q is is the number of possible microstates corresponding to a

given macrostate., or the number of arrangements , or the multiplicity

of the state of the system. The states with the largest value of Q. will
be the ones most likely to occur. This equation is carved on
Boltzmann’s tombstone in Vienna. The reason why we use logarithms
is because for two systems with entropy Si, S2; the total entropy is S1+
S>. However, looking in terms of the microstates of the systems, £,
{),; the total number of microstates is 2,(2,; . This is reconciled with
logarithms.

3.7.2 Entropy and information theory

Entropy can be thought of as a measure of information. For a
macrostate with only one microstate (highly ordered), e.g. all
particles are stationary, the entropy is a minimum. The macrostate
with the most microstates available (highly disordered) has maximum
entropy and is the most likely state.

Consider a system with a number of possible states, i = 1,2,3, ...,r
And there is a probability P; that the system is in state i

Let’s measure the state of this system a very large number of times,
N. The number of times we get the state i (number of microstates
belong to the state i) is

n; = NPl (314‘)
The total number of microstates of this system is;
N!
Qy==——— (3.15)
" Applying this to the Boltzmann-Planck equation gives us,
SN == kBanN
N!
Sy = kgln ( )
NTEET I n, I ng! .y

= kgInN! — In(n,!n,!'ns!....n,.1
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= kg |NInN — Znilnni
i
The entropy of a single system is related to the entropy of the
ensemble as;

S k
S = WN = WB NInN —znilnni

i
= kg |InN — 2 PInP;| =
i

= —ky Z PInP,  (3.16) (forlargei)
[

3.8 Statistical Ensemble
To measure a physical guantity in statistical mechanics we take the

average over a suitably chosen collection of systems called statistical
ensemble.
The statistical ensemble; is an infinite collection of identical copies

(replica) of the system, with identical specifications e.q. volume,

temperature, chemistry, number of particles...etc.

The ensemble represents the microstate of the system while each
individual replica represents one of the possible microstates.

System Ensemble

i 1 2 3 n

This collection of systems is characterized by a density function
p(p,r,t) in '-space. From eq. (3.5), this is defined as;

p(p,r, t)dpdr
= Number of system copies in the vloume element dpdr at time t

Where each system copy in this space is characterized by the point
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(p,r‘) = (plpr'p3 ...... ,p3N,T'1,T'2,T'3, ...... T3N) (317)
And the volume element in this space is given as:

dpdr = d3Npd3N r (3.18)
The probability of finding the system in dpdr at time t is given as;

P
number of microstates ( systems) in the volume (dp dr) at time t

total number of microstates

~ _ p(p,r, t)dpdr

~ [, )dpdr
This can also be expressed as a probability density (i.e., probability

(3.19)

per unit phase-space volume),
p__ P _ PO
dpdr [ p(p,r,t)dpdr

The probability for the system to be in certain microstate is

(3.20)

P = 3.21
J p(p, 7, t)dpdr (.21
The ensemble average of a physical quantity O(p, ) is:
dpdrp(p,r,t)0(p,r
(0>:f pdrp(p,,£)0(p, 1) (3.22)
[ p(p, 7, t)dpdr

It is important to keep in mind that members of the ensemble are
mental copies of the system and do not interact with each other.
There are several different ensembles that we might encounter. The
type of ensemble is governed by the measurable parameters.

isolated system system in contact system in contact with heat
with a heat bath bath and a particle reservoir
\\\\\\\\\\\\\\\\\\\\Y

§
N

Ll

AUNNNNENNNNNNNNNNNNR ANNNNNNNNENNNNNNNNNNN

E, V, N fixed T, V. N fixed T. V. p fixed
S = ks InQ(E,V.N) E fluctuates E and N fluctuate
F=-ky T InZ(T,V.N) Q=-kgT InZ(T,V.pn)
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1. Micro-canonical ensemble: jsolated system, the total internal

energy, U, and number of particles, N, is well defined.

2. Canonical ensemble: systems in thermal equilibrium, the

temperature, T, and number of particles, N, is well defined.

3. Grand canonical ensemble: systems in thermal and chemical

contact, the temperature, T, and chemical potential, u, is well
defined.

3.8.1 Microcanonical Ensemble

A simple example
There are 3 (distinquishable, independent and identical) particles A, B

and C. They are allowed to occupy 4 different energy states: ¢, = 0,

&, & =2& andéez =35

(e.g. harmonic oscillator).

The total energy of the system amounts to 3¢;.

The occupation numbers are no, n1, Nz and ns.

Now we are going to try to find the number of macro-states by which

the system can be realized.

3 3
Macro-state ng ny n, ns N = Z n; | E= Z n;&;
i=1 i=1
[ 2 0 0 1 3 3&1
1 1 1 1 0 3 3,
11 0 3 0 0 3 3&,

We see that there are only 3 possible macro-states for the system.

The next question is then: How many micro-states are possible to

realize each macro-state?

Note: We recall/realize that exchange of particles in the same micro-

state doesn’t generate a new micro-state!

Energy state

Macro-state |

Macro-state 11

Macro-state 111

&3

Al B ] C

- - [
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&, - - AlA|B| B Cc |C -
&4 - - B|C|A]| C A |B ABC
&o B|AC|AB|C|B|C| A B |A _
C
No. of micro-states 3 6 1

Hence macro-state Il has the highest number of microstates, or
number of arrangements  (often written as W for German
»Wahrscheinlichkeit” = probability) , ;; = 6, in this example.

e Generalization
Inspired from this example we want to generalize this for N particles.
For single occupation n; = 1 it can be directly concluded that the
highest number of microstates is given by all permutations, or 1 =N!
However, if we consider cases in which the occupation number can
eventually become larger than 1 (n; > 1) we are overestimating by
this method. This is because the permutation of particles in each
individual micro-state doesn’t generate a new micro-state. Hence, we
need the following correction:
N!

Ay =————
N
ny!nyin,!..

Note: The meaning of this equation can easily be checked on the
previous example

!
macro-state I: Q= 3__6_ 3V
200000t 2
3! 6
macro-state II: OQp=—--=—=6V
reneae 1
3! 6
macro-state I1I: OQm = =—=1v
ororstol 6

We also know that in equilibrium the Boltzmann (entropy) equation
tells us that the most probable is realized (for maximum entropy), or
(eq. 3.13)

S = kBanmax
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Additionally we can establish the following constraints:

3
N = z n; (total number of particles) (3.23)
i=1

n;g;  (total energy) (3.24)

3
E =

=1
our goal is summarized in eq. (3.20): We have to find the maximum
number of microstates
N! )
Oy = m — maximum (3.25)
To simplify this task, we notice that when () has a maximum, In ()

also must have a maximum (because the logarithm is a monotonic
function). This enables us to use Stirling’s approximation:

InN! = NInN — N (3.26)

Hence, eq. [3.1.5] becomes:

r—1
N!
InO=ln——— =N - | [n1  (327)
i=o 1! L
=0
r—1
= NInN — N — Z(nilnni —n;) (3.28)
i=0

Note: we will later see that for realistic conditions the last step
(applying Stirling’s formula to nj, hence n; = large) is satisfied.

r—1 r—1
InQ = NInN — N —Znilnni +Zni (3.29
i=0 i=0

r—1
InQ=NInN—-N- ) n;lnn; + N
i=0



45

r—1
= NInN — z n;lnn; (3.30)
i=0

The maximum number of microstates then gives,

(alnﬂ) =0 (3.31)

671i NE

Rather than differentiating with respect to the occupation numbers
ni (eN), it is instructive to consider small changes (symbol §) of the
occupation number. Then;

5(InQ) = ém (3.32)

Hence eq. [3.28] become

r—1
5(InQ) = S(NInN) — 6 2 nnn,  (3.33)

1=0

r—1
5(InQ) = 0 — 52 nnn,  (3.34)
i=0

r—1
_5(InQ) = 52 nnn; = (3.35)
i=0
r—1 r—1
—5(InQ) = z n;6lnn; + Z Inn; én; (3.36)
i=0 i=0

r—1

6ni r—1
_5(InQ) = z m=t z Inn; 6n;  (3.37)
- i -

1=0 1=0
r—1 r—1

_5(InQ) = Z 5n; + z Inm; 6n; =0  (3.38)
i=0 i=0
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Equation [3.38] can be combined with the constant boundary

conditions in egs. [3.23] and [3.24], to give

r—1 r—1
D —63nQ) = z 5n; + Z Inn; 6n;
i=0 i=0

= (maximun)

= (constant)

i —6E= Z £:6m,;

= (constant)
The easiest way to solve such an equation system or to combine the
conditions is the method of undetermined Lagrange Multipliers. This

Z on; + Z Inn; on; + AZ on; + ,BZ &on,;

=0 (339

gives

z Sn;[1+Inn; + A+ Be;] = 0 (3.40)

where A and f are the (yet) undetermined multipliers. The first term
(6ni) in [3.40] can be chosen arbitrarily to be any number as long as
the last two are chosen to fulfil i) and iii) in the conditions above. But
generally the following condition must hold:

1+Inn;+A1+ 6 =0 (3.41)
Inn; =—-(A1+1) — B¢
n; = exp[—(4 + 1)]exp[—P¢]
putting
C=exp[—(1 + 1)]
Then
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n; = Cexp[—pP¢g] (3.42)

The constant C can be determined by plugging n; into the constraints

(3.23);
Zni =N = Cz exp[—Be] (3.43)

B N
a Y. exp[—f&]

Where }; exp[—p¢;] is called partition function Z. Hence

C

(3.44)

N .
n;i(e, B) = 7€ Bei (3.45 )
This is Boltzmann distribution. This function corresponds to the most
probable macrostate. Later we will see that 8 =ﬁ . At fixed
B

temperature and total particle number, this function tells us the
number of particles in the energy state ¢; , i.e. how the energy is
distributed amongst the particles.

Chapter 4:

Canonical Ensemble

A far better alternative appears to be to speak of a fixed
temperature T of the system — a parameter that is not only directly
observable (by placing a “thermometer” in contact with the system)
but also controllable (by keeping the system in contact with an
appropriate “heat reservoir”). However, in most cases the properties

of such reservoir do not interest us, all one needs is that it should have
an infinitely large heat capacity, so that, with energy exchange
between the system and the reservoir, an overall constant
temperature can be maintained.
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4.1 Traditional approach

Consider an isolated system divided into two subsystems a
"large " one regarded as a heat reservoir, and a "small" one on which
is the canonical ensemble we focus our attention, as shown in Figure
(4.1).

Syarem of interest
Fa

2 Heat reservodr

Figure (4.1) We study the small system 1 which is a part of a large

system. The rest of the system 2 acts as a heat reservoir for system 1.

The system 1 is characterized by (E;,V;, N;) and system 2 ( the heat
reservoir) is characterized by (E,, V,, N,). The total Hamiltonian is

H(py,11,02,12) = Hi(py, 1) +
H,(py,72) (4.1)

Also the two systems satisfy the following.

N =N; +N,
E = Ei,E,
E, > E;
N, > N,

(4.2)

The phase space volume occupied by system 2 is given by

I (E,) = sz(pz,rz)SEdezdrz (4.3)
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The probability that system 1 is in dp,dr; is proportional to dp;dr;
and I, (E — E;). Dependence on T, comes by the virtue that, the
larger I, then the larger number of microstates available to the

reservoir, to have the macrostate E,, which means the larger the

system 1 to be in the corresponding energy value E; ) , so

porobability (P) that 1 is in dp,dr, is given as

P x dpldrlrz (Ez) (4‘4)

At the same time the probability P proportional to the number of
microstates in dp,dr;. This gives a definition for the distribution
function (the occupation number per unit volume) of system 1 where;

P < dp,dr(E;) « pi(pg,mi)dpidry (4.5)

Then;

= const X pl (pl,T‘l)dpldT‘l (4‘6)

Since E; < E, we can expand (4.6) around the value E, = E — E; . Itis
convenient to expand the logarithm of I, which can be expressed
in terms of the entropy of system 2:

05,(E)
kBln I—'z(E_El) :SZ(E_El) :SZ(E)_El aE + -
E
~ S,(E) — T (4.7)
Where T is the temperature of the heat reservoir. Hence
[=5:®)] (g
LL(E —E;)) =~ elks e(-BE1) (4.8)

Where S =kLT . Substituting eq.(4.8) in eq.(4.5), we get the
B

probability for the system 1 to be in dpdr as a function of E ;

1
P(E,) « dp,dry e[ESZ(E)] e(=BE1) (4.9)
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Here the probability decreases with increasing E; . So, we can
normalize P to 1, so that fP(El) =1, then

,fP(El) = Cf dpldme[%szm] e(=FE1) =1

Then;
1
1
[ dpldrle[ESZ(E)] e(-BE1)
So, equation(4.9) could be written as
1
dp1dr1e[ESZ(E)] e(=AE1)

C =

P(E,) = T (4.10)

fdple kp~2 e(=BE1)
78]

The term elkB 2 is constant and can be omitted from numerator and

denominator, them eq. (4.10) becomes

dp, dr,e("FED)
f dpl drle(_ﬁEl)

P(E) = (4.11)

Since we will refer only to the small system from now on, the subscript 1 is

unnecessary, and will be omitted. Then;

dpdre®”"?

(4.12)

Now the canonical distribution function p;(p,,11) of eq. (4.6) (see
eq.(3.11)) could be written as;

p(E) = e=HD) (4.13)
Using the Hamiltonian form this becomes
p(p,r) = e-PH®M) (4.14)

Where; 8 = 1/kgT
This is the canonical ensemble, appropriate for a system of a fixed number

of particles, in contact with a heat reservoir of temperature, T .
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Schematic representation of the microcanonical and canonical ensemble
are given in figure 4.2 .

Heat reservoir T

Fixed
Nand E Flxed N
Micracananical Canonical

Figure 4.2

4.1.1 The Partition function

The volume in ' — space occupied by the canonical ensemble (or the total
number of microstates with a norm factor h®") is called the partition
function.

d3N d3Nr
Zy = fﬁe—ﬁfl(nﬂ (4.15)3

Where we have introduced a constant h, of the dimension of momentum X

distance, in order to make ZN dimensionless. The factor 1/N! appears, in
accordance with the rule of "correct Boltzmann counting." It takes into
account Factor N! arises from the fact that particles are indistinquishable.

These constants are of no importance for the equation of state. Without this
constant we face Gibbs paradox.

4.2 Information approach
In the canonical ensemble, the number of particles is constant but the

energy can change. Consider a system of N particles. Let p; be the

probability that the system has energy E;. We require the constriant
that the system has an average energy,

3 In this equation we notice that e FH®7) is the density function p(E) = exp(—BH) , then
dividing this function by h3V, gives the number of microstate ............ 8y gall Jaisi o)) )
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2 pE. =(EY=E  (4.16)

Also require normalization.

Z P =1 (4.17)

The entropy is S = =)}, kp;In p;. If we maximise the entropy subject
to these constraints, we want to maximize the function

Z kpllnp1+)tz (p;— 1)
—ﬁZ(plE ) (418)

. )
Taking the derivative F and setting to zero,
i

—klnp; —-k+A1—BE;=0 (4.19)
Di = e/‘t_ke_.BEi
= Ce PEi (4.20)

To find C, we use the constraints.

z D; :Z Ce_ﬁEi =1
i i

>C =075
Y e PEi

Call
Z=Y,;e BEi (4.21)

the partition function of the canonical ensemble.
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Hence, the distribution of the canonical ensemble is

1
=7 e PE1 (4.22)

Although this has the same form as the microcanonical ensemble,
this distribution has different meaning, it is the probability for the
system to be in energy E; whereas in the microcanonical ensemble,
it's the number of particles with energy E;

4.3 Connection with Thermodynamics

Let’'s see how we get thermodynamics from this. If p, is the
probability of finding the system in some energy E,,, then we can find
the average energy to be

Z E e_ﬁzn
(E) = PnEn = % (4.23)
Upon inspection, this can be written nicely as*
d
(Ey=——=—InZ=U (4.24)

op

Physically, the expectation value of the energy is the internal energy.

4.3.1 Energy Fluctuation
Consider now the variance in the energy.
(AE)? = (E?) — (E)? (4.25)
If you expand these out, it turns out that you can write this nicely as
2

(AE)? = aa—ﬁzlnz (4.26)

1
But we know that the heat capacity is defined as g—:. Using ﬂ = P then
B
(AE)? = kgT2C,  (4.27)
This equation tells us the system’s ability to absorb/dissipate energy is
related to its energy fluctuations. Note that
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AE 1
E~NandC,~N=> = ~—= (428).

As N — oo in the thermodynamic limit, the enerqgy fluctuation goes to

zero and the canonical and microcanonical ensembles coincide. Since
the system we are normally looking at have large N, we can consider
ourselves in the thermodynamic limit.

4.3.2 Helmholtz Free energy
This will finally be shown. Lets substitute the distribution into the
entropy of eq. (3. 16). We get

1 1
S = —kz Ze‘ﬁEiln (Ze‘ﬁEi>

t
1
= —kz ~ e P(=BE; ~In 2)
i
— kBU + kiIn Z

1 1
>U=—S—-=InZ 4.29

We connect this with the expression from thermodynamics,
U=TS+A (4.30)
Equating (4.30 and 4.29), we get

1
= — 431
B=rg (43D
And also
A=—kTInZ (4.32)

It is now possible to derive thermodynamic quantities from the
Maxwell relations involving the free energy.

4.3.3: The Ideal Gas

For the ideal gas, the Hamiltonian is
2

H=y, f—m (4.33)

Therefore, the partition function becomes
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d3di3Nq 2
Z =j WQ—B(ELPi/Zm) (4.34)

where the N! comes from correct Boltzmann counting (all particles
are indistinguishable) and the k is some arbritrary constant to
nondimensionalise Z. The integral is straightforward, and goes as
follow;

Now we calculate the partition function Zy, for ideal gas

dgNT'dng ~
ZN = fWe BH (435)

d3NT‘d3N B N 512
Zy = J—pe Flizs 2m  (4.36)

h3N N!
VN (rdp _op2\Y
- =By
Iy = < e zm> (4.37)
In the last expression we factorized the integral over p;.Now we use
the integral
+o0
j dxe™ =ym  (4.38)
With
p* 4
2 = S dx
kaBT A/ kaBT
dp
= (4.39)
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h

5\ 3N — 1%
f(d—pe_ﬁg_m> =—2n;lkBT J dxe ™"

\J2mmkgT
= (4.40)

Substituting in eq. (4.28), then

3N
|4 (,/ 2mmkgT

= - ) (4.41)

With the thermal wavelength, A;

h
J2mmkgT

So we can rewrite eq. (4.32) as;

1 /v\"

Helmholtz free energy of an ideal gas
14 Computing the Helmholtz Free Energy, —kTIln Z = A,

B AN

1 /(v\"
1 AW
= ~kpT | In— + In (ﬁ) (4.45)

|4
= —kgT <—NlnN + N + Nlng> (4.46)

ZN=

Aep = (4.42)
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%4
= —NkgT|In—=+ 1 4.47
(i +1) -

3

NA3
= —NkpT(=ln—=+1)  (447)

A= —kT(In(nA3) — 1) (4.48)

wheren = %and Stirling's apprcximation has been used. The

entropy can abo be found using thermodynamic relation § =

)
ar/y’

S = —Nk 1(/13)+T (_3) U TS o1 (449
- nin n/13n 2 2mmkT (4.49)

which simplifies nicely to
S =Nk E —In (n/13)] (Sackur-Tetrode equation)

(4.50)

. L1 . -
If we didn't have the original ~ Boltzmann factor in the partition

function, we would get Gibb's Paradox. We need to use a
semiclassical interpretation that all particles are indistinguishable.

Gas law

. . 9A
Lets also use the thermodynamic relation, P = — Pt

= PV = NkT

which is the familiar equation of state.
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4.4 Equipartition of Energy
The average energy is

E=—Zinz=2Nkr
T YT

The 3 comes from the lambda Z = % (;—2) which is directly related

to the degrees of freedom that the particle has. Every degree of

freedom contributes %kT to the system. It is also easy to see that

0E 3

=——=2=N
aT, 2 k

Cy

This shows that the heat capacity does not depend on temperature.

Chapter 5:
Grand canonical ensemble

5.1: Chemical Potential
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So far we kept the number of particles constant, when N does
change change, the first law is generalized to the form:

dU = dQ + dW +udN  (5.1)

Definition: u is called the chemical potential, the energy needs to add one
particle to a thermally and mechanically isolated system.

dU =TdS — PdV +udN (5.2)
We can define Helmholtz free energy as
F(V,T,N)=U—-Ts—uN (5.3)
Then
dF = =SdT —PdV —N (5.4)
This gives the thermodynamic functions as;

S=- (g—i)m (5.5)

p=-— <Z_£)w (5.6)
P

(E)F) .7)
H=—\ .

O/ ry

Similarly, we can write the change in Gibbs free energy as;

dG = —SdT + VdP + udN  (5.8)

Then

=), e

5.2 Grand Canonical Ensemble

- In microcanonical ensemble, we considered isolated system ( everything
is constant).

- In canonical ensemble we considered closed system. It is built in the
microcanonical ensemble by relaxing the restriction of fixed energy ( the
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system can exchange energy with the surrounding reservoir, at fixed
temperature.

The grand canonical ensemble consider an open system ( the system can
exchange both energy and matter with reservoir).

Heat reservoir T

N; » N, (5.10) I
E, »E, (5.11)

N;+N, =N (5.12)

E,+E,=E (5.13) |

Particle reservoir yt

So our constraints are given by the average value of energy and particle

ZPJEJ=E
i

ZpJ'Nj:N
i

where E,N denote the average. p; is the probability to find the system in

number which are

the jth state ie with energy E; and particle number N; . The probabilities are
S
j

S =—kg Z pjlnp;
J

We want to maximize S. This is done with Lagrange multipliers and it works

normalized

The entropy S is given as

out to be
e_ﬁE]'I'ﬁ“'N]

pj = 3 o—BE;+BuN;

where the Lagrange multipliers can be found from
TdS = dU + PdV — udN
We define the partition function of the grand canonical ensemble to be
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Zgy = z e~ BEj+BuN; — z eﬂ“NZ(V, T, Nj)
Jj N

=Y ZVZ(V,T,N))
N

z = ePH s the fugacity. Then we can write the grand partition function as
N=oo

i = Z zZNZy (5.16)

N=0
Where Zy is the canonical partition function. The canonical partition
function depends on N] which is a particular number of particles for a
given state. So the grand canonical partition function is a weighted sum of
the canonical ensemble partition function.

5.3 Thermodynamics

By averaging the canonical ensemble over the number of particles, we get
the ensemble average over grand canonical ensemble. For example the
internal energy is given as

_ Y Enz"Zy

5.17
S eV 7y (5:17)

Ey is the average energy in the canonical ensemble.

Zy = Z e PE;j

In terms of Z,- we can write . So

_ YEvz"Zy

5.18
S eV 7y (5.18)

0
WZZN 1 o7

U=-— - _ i
Y.z3NZy B

(5.19)
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The average number of particles is (which | will denote N, | should
technically use N but more on that later)

Yy NePNz 1 9
= = = — BuN
N=(N) =S _,BZ(’)M(E efunz)

10 g
= —=—1In
Bou
- 0 _020 _p. 0
Noting thata—# =opaz Pz 5
0
N=z—InZ (5.20)

0z

We can also find what the variance in the particle number is.
(AN)? =(N?) —(N)?

This works out nicely to be

AN)? = i il Z
( )_Zazzazn

2

0
= (kT)Z a—luzll’l Z

Dividing by V2 gives the number density fluctuation,

) (kT)2 0?
(An) = VZ a—luzll’lz (521)
We see that AV 1 Therefore, for N - oo, the number
Ny JeNy ’ ’

fluctuations go to zero. The three ensembles coincide in the
thermodynamic of infinite volume and infinite particle number. This
is why | don't bother with writing N and denote it N.

e Helmholtz free energy and the Grand partition
function
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In the canonical ensemble, we were able to connect the Helmholtz
Potential with the partition function. It is also possible to do it with the
grand canonical partition function. Define the grand canonical potential to
be,

O =F—-TS—uN
Recalling the Helmholtz Free Energy,
®=F—uN

The grand canonical partition function in terms of the Helmholtz
free energy is,

N=oo
Zgr = Z eBuNe_.BF
N=0
This suggests that
® = —kTInZg,, (5.22)

This connects the potential with the grand canonical partition
function. From the thermodynamic definition,

dd = —SdT — PdV — Ndu

We can then derive thermodynamic relations from this. One of them
is

0P 0
(W)T‘# =—pP=—-—= _kBT Wlnzgr (523)

5.4 Ideal gas in Grand Canonical ensemble

N=oo
Zgr = Z zZNZ N (5.24)
N=0

But
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dpdr
_ —BH(p,r)
ZN = f !the pr (525)

then

dpdr Npl
Z"’Wf e PEmeT (520

We have seen before in canonical ensemble that the
integral is given by

So,
N=oo0 N
Z — Z eﬁﬂNi<K>
gr N\ A3
N=0 T
1 <er3“V>N
7 = -
gr | 3
N=0 A

But this is the definition of the exponential function. Then

ePry
Zgr = exp( JE ) (5.27)
T

The average particle number is

vol9, Z_eﬁﬂv
~“Bou " FE

This gives an expression for the chemical potential.
A3N
U= kT In 7 (529)

Now take the grand canonical potential,

(5.28)
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— — B l
P kTIn Zg, kTerP*

AS
oD
== (W) Tru

The pressure is

With equation (5.28) this gives

3

P = kTN —
Va3

= PV = NkT (5.30)

which is the familiar equation of state.

Chapter 6

Interacting Gas

So far we have considered an ideal gas in which the particles do not interact.
The ideal gas is a good starting point as an approximation to interacting gas.
We expect that when the interactions become negligible, the ideal gas
equation holds. So we consider the ideal gas equation and look at how we
can correct it for an interacting gas.

The most general equation of state is the virial expansion
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kZ;T = 4 By(D) (g)z + B4(T) (gf 4 (6°1)

B;(T) is known as the virial coefficients.

Our goal is to compute the virial coefficients starting from a knowledge of
the underlying potential energy U(r) between two neutral atoms
separated by a distance r. This potential has two important features:

e An attractive 1/7° force. This arises from induced dipole of the
particles ( Van der Walls interaction).

e Repulsive force at short distances, arising from the Pauli
exclusion principle that prevents two atoms from occupying
the same space.

One very common potential that is often used to model the force
between atoms is the
Lennard-Jones potential which looks like

U(r)~ (’;—")12 - (%)6 .(6-2)

The exponent 12 is chosen only for convenience: it simples certain
calculations because 12 = 2 X 6
Equation (5.28) could be written as;

U(r)~ (7;—0)6 ((7;—0)6 - 1) .. (6-3)

Forr <1, = U(r) > 0 (the repulsive potential dominates ), and for
r>1y, = U(r) <0 (the attractive potential dominates).
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However, although this is a nice

Tt
model, it is not easy to compute . We o
replace it with a simple form of the

potential incorporates a hard core

repulsion, in which the particles are r

simply forbidden from closer than a fixed —

distance ( see the figure) ; /
o0 ifr<0 |
6 6-
—U, (%) if r >, (

Ulr) =

4)

6.1 Computing the partition function:

Then the Hamiltonian of the system is

2
H=yN I +%is;U(r;) (6-5) Tij =1~ T

i=1ym

The restriction i > j on the final sum ensures that we sum over
each pair of particles exactly once. Inserting into the canonical
partition function ,

Z(N,V,T) =

N!h3Nfd3Np d3Ny e—BH

N';NJd3Np€_ﬁpi2/2mfd3NT€_BE">J’U(r”) (6.7)

The momentum integral has been done before and is just a Gaussian, then

Z(N,V,T) =

3N,. ,—B s U(ry
NN f d3Ny e=BLixjU(ry)) (6.8)
The second integral is not as easy, the interactions mean that the
integrals don't factor in any obvious way. We could try Taylor
expansion, but this doesn’t work since as r;; - 0, U(rij) — o0 50 this

would not converge. Instead, define

f(r)=e PV _1 (6.9)
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Which is known as the Mayer f function. This is a nicer expansion
parameter because;

r—-o = f(r) -0, r-0 =frr)->-1

We define
fy=f(ry) = 2w = 14| {145 (610)
>k
Then taking the arithmetic sum out of the exponential to give a geometric
sum and replacing with f, then

1
ZWNV,T) = 3= j 3Ny n(1 + fix) (6.11)
' j>k
1 3N
=N'/13de r 1+ijk+z zf,-kflm+--- (6.12)
' >k >k I>m

The first integral gives VN . Ignoring quadratic terms, the second term
works out such that the partition function looks like,
N

A 1+£fd3rf(r) ’ (6.13)
N! A3N 2V '

The Helmholtz free energy is,

Z(N,V,T) =

VN
F = —kBTan = —kBTan
N
— NkgTlIn <1 + ﬁf d3r f(r)) (6.14)

Now we want to find out how to integrate the f function. Using the
potential mentioned above,

fd3rf(r) = fr0d3r(—1) + foodg’r (eﬁuo(rﬂ/r)6 —1) (6.15)
0 0

We assume 8 < 1 for high temperature. Then we can use Taylor expand,
then

o ©
ePUo/M® = 1 4 U, (70) (5-41)

Then
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To 41U, e
3 — _ 2 0
J.d rf(r) = 471.[; drrs+ kBTfr drr4 (6.16)
To —4nrd
—471.[ drr? = °
0 3
And
4l f‘” vy AnUyrg
kgT J. 1% 3kgT
So
To 47U ré
—411] drr? + OJ dr—04_
0 kgT ro r
4mtrg U
= —=1 6.17
3 (kBT ) (6.17)
then
Amrd [ U
3 0
= — 1 -4
]d rf(r) = (kBT ) (5-43)
Then eq.( 5. ) becomes
N
F = _kBTInZ _kBTInN|A3N
NkTin| 14— 47”0( v 1) (6.18)
g2 2w\ "3 T '

We can use the free energy to compute the pressure of the gas.

Expanding the logarithmas In(1 + x) = x we get,
N

NIA3N

N | Y 47"0((] 1) (6.19)
Bi\2v\ 3 \kgT '

F = —kgTInZ = —kgTIn ———=
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=— {NkBTInV — kpTN1 A3V

NKLT N 47tr03<U 1)
BiV2v\ 3 \kgT

po aF
v
3 NkBT+NkBT N 47rr03< U 1) 620
B 1% vz \ 2\ 3 \kgT (6.20)
_ NkgT . N 47Tr03< U 1) (621)
% 2V\ 3 \kpT '
PV . N 47tr03< U 1) (6.22)
NkgT 2V\ 3 \kgT '
Yo N(“ b) (6.23)
NkgT ~~ V \kgT '
_2mrgU
a= 3
_27‘[7‘03

=— (6.24)

It is actually slightly more useful to write this in the form kzT =
... .We can multiply
through by kgT then, rearranging we have

er=L(p (1+Nb)—1 p (V b) (6.25)
BX TN V2 % - vz | \N '

Van der Walls equation of state valid at low %and high T

6.2 Cluster Expansion:

In deriving the Van Der Walls equation of state, higher order terms were
neglected. It is possible to compute the higher order terms to get the
correct terms. This will not be done here.
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Chapter 7
Magnetism

Consider N fixed magnetic dipoles with magnetic moment . Let B be an
external magnetic field. Then the interaction Hamiltonian is,

N
H=-> B
=1

N
= —ubB Z cos b
=1

We choose our coordinate system so the z-axis aligns with the magnetic
field. The partition function looks like
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.\.’

- ™ 2w
Z = H/ {_f[’}j [ fan f_,.—.f,uBm:-;G,
0 J0

i=1"

This integrates to

sinh(FpB) N
Z=|4n——
( _{3 1 B )

The magnetization is the expectation value of the z component.

1 w 2 ) .
1y = —pcost; ao; de; e~ PrBcosts
/ /

Z Jo Jo

It might be possible to compute this but this is tedious so recognize that
we can rewrite this as
1 0
) = 7B 957
Recall the Z computed earlier. The magnetization is the total
magnetization of N particles,

M, = N{p.) = Nul(SpB)
where L is the Langevin function. For the high temperature limit, Taylor

expanding and ignoring higher order terms gives

N2
M, =
C o 3kT

This is the Curie Law.

Chapter 8

Quantum statistical mechanics



We now move into a quantum framework. In classical mechanics, the microstates are
described by momentum and position and in quantum mechanics, the microstates are
described by wavefunctions. Consider a system with N particles. Each particle is described
by a wavefunction ¢4, @ = 1,..., N. Observables correspond to a Hermitian operator O.
The expectation value of O in state |¢,) s,

(0)a = (¥a|Ol¥a)

Define the average expectation value to be,

Now consider an orthonormal basis of the Hilbert space {|@,)},=12,.. We can express
the states as a linear combination.

This gives,

Define iy = 4 3, ¢a*ch, and Oy = (94/0|0,). Then,
(0) - Z pmnonm

Pmn can be interpreted as matrix elements of an operator p such that p,, = (0,,]pld,). p
is called the density operator/matrix.
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p is equivalent to p = 3 |¢,) (¥| where p, can be thought of as the probability for the
system to be in th. This can be seen by getting the matrix elements of p,

(Gmlpldn) =D (Gmlta) (Walon) = Y chen”

Expressing in terms of a basis, it will look like

p=D > it cnldm)@al = DD lcalP16u)(@ul = D puldu)(enl

a T

(that may be slightly wrong, if it is just take the last bit as a definition) Interpret p, as
the probability to be in the state ¢,.

Finally,
(0) = Z<om [Pl @0 ) (Dn| Oldm)

n,m

- Z(ommo‘@m)

m

— Tx(p0)
Properties of p
1. Trp=1
2. p=pt

3. p20

The proof will be left as an exercise for the reader. (I've always wanted to do that) They're
pretty trivial anyway.

8.1 Time Evolution of the Density Operator

Choose an orthonormal basis {¢,} that are eigenfunctions of the Hamiltonian of our
system. Then we have,
H On = Ly

Our wavefunction can be expressed in terms of the basis as
ba(t) =) ca(t)n
n
Then the time dependent Schrodinger equation is,

L d e
1551%@) = Hu,(t)
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Putting in ¢, (¢) in terms of the basis,

D ihén(t)dn =Y ihca(t)Ho,

Z %ﬁ(’i{t)qﬁn = Z iﬁcﬁ(t)Enén

We project out the kth component by taking (¢, -).
iha(t) = Evci(t)

and the complex conjugate is
—ihéy () = Epci™(t)

Now lets consider the derivative of the density matrix.

Pmn = % Z Ci*(,‘?n

T o1 sax _a a* .a
= hpmn = z.ﬁﬁ Xﬂ:[cn o+ el ]
We computed the values for ¢ above. This gives,

1
ihpmn = Xﬂ:[—Enci*cfn + Epc®*cd ]

1 aA*
= (Em - Eﬂ)ﬁ ch Cm
- (Em - En)pmn
Denoting pmn = (@m, pdn) to be the matrix element,
= iW(Gm; pon) = (Em — Ep)(dm, pdn)
= (Em‘.ﬁ'ma P@n) - (ﬁf’ma PEnQN)
= {H“.ﬁ'ma P‘.ﬁn) - (ﬁbma PH‘.ﬁn)
= {ﬁf’m.‘ HP@n) - (ﬁf’ma PH‘.ﬁn)
= (ém, [H, p¢n)
Since this holds for arbitrary basis and m, n,
ihp = [H, p]
This is a very important result. What this says that if we want (O) to be time

independent at equilibrium, then p must also be time independent since (O} = Tr(pO).
Therefore, [H, p] = 0.
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8.2 Partition Functions

We want to find expressions for p in our ensembles. Recall the derivations for the canonical
ensemble. When we were deriving the probability for the system to be in the E, th state, we
did not use classical mechanics so the derivation should also work for quantum mechanics.
Therefore, the probability to be in the E,th state is,

1
—AEn
n —e
P A

But we have from earlier,

P="> Pnltn) (6l
oLy

1 s
P = Eze JH|on){¢n|

$n) (On|

Since ¢, is complete,

e~ BH
P= Ty epn
Similarly, the density operator looks like
e—[ﬁH —piN)

P= Ty (e BH—R))

where N is the particle number operator and denote @ = Tr {e_(ﬁH _“"Q)). Also the fugacity
is given by z = e,

Since we have the expectation of an operator to be (O) = Tr(pO), in the canonical
ensemble,

(0) = 5 Tx(0)

For the internal energy, this is,

Y —8H
7! aﬁm(H ™)
1 a a

7" 95)% = "%

The free energy is identified by

F=—-kThz
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And thermodynamics falls from the usual thermodynamic relations like P = —%

In the grand canonical ensemble, we have
- = a
N)y=N=:z—1
(%)= N =22 1nQ

F=Np—kThhQ
PV =kTInQ

The grand canonical potential is

Q=—kThhQ

So nothing too special and pretty similar to the classical case. Most of the things derived
above in the classical case can be applied here like how the energy and number fluctuations
are negligible in the thermodynamic limit.
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Chapter 9

Identical Particles
There are two types of particles, bosons and fermions which are either

symmetric or antisymmetric under particle exchange. This gives rise to the

Pauli exclusion principle for fermions. Let us define the occupation
number n; to be the number of particles in the system to be in the ith
state where this state contains all of the particle’s properties like
momentum, position and spin. While | use i to denote a state that has
complete information, at times | may switch to denote a state by p, A
where A is the polarization state e.g. spin. We have

0,1 for fermions
n; =
0,1.2,... for bosons

We then have a set of occupation numbers of a system {n;}. Also, there is a
constraint that the sum is the total number of particles in the system.

Zni=N

i

And if €; is the energy of the ith state, then the total energy must be the

total sum
Z n;€; = E

i

Now consider the grand canonical partition function,

Zy = ZZNZN = ZZZN e PLem
N N n;

9.1 Bose-Einstein Distribution

For bosons,n; = 0,1,2,....Using Y g x™ = P
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1
Zgr = H 1— ZeBe
l

This only converges of course if | Ze P& | <1 which is valid but we will
discuss the physics of this later.

Having computed the partition function, we can get

PV
ﬁ = angr

= —Z In(1— Ze Fe)
i

The average particle number is

InZ

0
(NYy=2 ar

9z
Ze_ﬁei
- Lu1 — ZePBe

L

Then

1
(N} = Zz—leﬁﬁ 1
L

9.2 Fermi-Dirac Distribution

For fermions,n; = 0,1 Using Y-, x" = i
Z; = Z [ZePe]™ = z; = 1+ ZeFe

n;=0,1

Z

= ]_[(1 + zehe)

1

PV
ﬁ = angr
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= Z ln(l — Ze‘ﬁei)
i
The average number of particles is

0
(N) = Zﬁangr

Ze Be;
Zl Ze~Pei

Then
Wy= s
- LaZlePei 41
L

9.3 Expected Occupation Numbers

Consider the expectation value of the occupation number.

(i) = Tr(pi;) = %ﬁ:\'(n‘ ;e ~PHN)

Using Hy = ), i€,
OHy .

=n;

(f).'ﬁg

Therefore,
R 1 N .
f;) = — o ~T . N
(i) Q; (—5 ¢ T (e7))
_—-10
T BQ e

10

Q

|
o

Therefore,

The average total number of particles is just the sum of the average occupation numbers

which of course makes sense.

To summarize, we call
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Ay} = { 1 } {a = +1 fermions}

Z-1eBei + q) \ a = —1 bosons

the Bose-Einstein/Fermi-Dirac distribution function. It tells us the average
number of particles that occupy the state i
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Chapter 10

Ideal Quantum Gas

10.1 Density of States

Consider an ideal gas in a cubic box with volume V = L3. Due to the
boundary conditions, the momenta must satisfy,

_h27rn
P=h=7
2T
:>Apl :hT

Suppose now we have a distribution function f(p). Taking the large

volume limit V' — oo, where I/ is the volume in P space, then
8p.Apy0p, Y FB) > [ d*pf(®)
p

since the LHS becomes a Riemann sum in the limit.

> £® = (@ednyon) " [ o)
p

> f®) - [ @pre
p

To change this to an integral over the magnitude of p, use spherical
coordinates and integrate over all angles to get a factor of 4,

4V [ 5
ER dpp“f(p)
0
It is often more useful to integrate over the energies. Use the fact that

V2me = p. Then we get,
2V 3

e 1
F(Zm)zf d3eezf (e)
0
The quantity;
1
2

2nV 3
g(€) =55 (2m)z €

is referred to as the density of states. The quantity g(€)de measures

the number of states within energy €, € + de.
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Let’s find the equation of state. This is given by,

4 _ —
7= o=pV) = ﬁf d®pY,[Fin (1 F ze~#%)]
14

= ﬁgmlaémfooopzdp (T—ln (1F ze"BEP))

where g, is the number of polarization states (such as spin). This is due
to degeneracy that may arise. It's very important for fermions since only

one fermion can occupy one state.
Sticking in our density of states stuff,

= +—(2m)8 zgpmf dee'/?In (1 F zeF¢)

Integrating by parts gives

le

2 21

= 3 9poi 73 (2m)? (10.1.1)

371+ 1
Similarly, since the expression for the average particle number from

N = Z !
B z7le=Be+1

Changing this to an integral and working it out gives,
1

above is,

N 2T 3 [® €2
v gpolﬁ (2m)2 jo dEm (10.1.2)
Finally, lets compute the internal energy.
8
U= —%ln Zgr

We have

In Zg, +gpolV (2m)3/2f dee'/?In (1 F ze~Fe)

So
e3/2
U= Npol V (2m)3/2 J de m
3
U=2PV

This is a result that can also be computed classically.
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Chapter 11

Fermi Gas

So far we have some general expressions for both distributions. Lets now
examine the Fermi-Dirac distribution. Examples of Fermi gases are
electrons in a metal. Recall the thermal wavelength,

AP = ( h? _)3/2
2emkT
ow recall the significance of A+ in QM:
So we can infer that
Ar~ minimum size of quantum wavepackets describing atoms in a
quantum ideal gas.
As shown in the figure , the classical picture of atoms as billiard balls with

well-defined trajectories only makes sense If;

21
Ar L the average interparticle distance ry~ (ﬁ) =
Where n = N/V is the density of particles. Then the classical condition

can be stated as;

1
AT K To"‘ﬁ ) that iS (AT K To)

= (A;n® < 1) (classical regime)

Figure 1
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This inequality is violated at low T or high density. Then the quantum

regime become more significant at temperatures lower than the

degeneracy temperature T corresponding to.

Arn3~1 (Onsetof quantum ef fect)
When this condition is fulfilled, the wave functions of different particles
begin to overlap
and the system has to be treated according to quantum mechanics.
The condition
Arnd =1

Or

2mh? \*/?
n(kaT> =1 (6.5)

defines a linein the T — n plane that sets the division between the
classical and the

quantum regimes, as indicated in figure (2).

Classical
region n\3=1
-
T ‘\ _ P

/ Quantum
/ region

n

Figure 2
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The degeneracy temperature Ty, is then given as;

2mh?
kT, = 2/3
Blo ( m >n

T, can have very different values, depending on the physical system
under study, as indicated in

table 6.1. For example, at room temperature, a gas at STP can be
described classically , whereas electrons in a metal are in the extreme
quantum region. Liquid helium has a degeneracy temperature in
between. At 2.17 it makes a transition to a quantum phase that exhibits

superfluidity.

Table 3: Examples of quantum degeneracy temperatures

System Density (cm?) Tp (K)
H, gas 2 x 10%° 5x 1072
Liquid “He 2 x 10% 2
Electrons in metal 10?2 10

For a Fermi-Dirac system, we have from equation (10.1.2)

1

N 2 3 (% €2

V=gwlﬁ<2m>2fo R |
1

N 2n 5 % °°d €2

e s

To solve this integral, change variable = = e so dz = Jde.
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1
de X2

N 21 %J‘”

vV Ipol A3 (1)3/2 B o (8)3/2 z-leX + 1
N 2 @ 1

— = gpol—.l_3f dxx/?ze™*

|74 pl 0

\/— 1+ 3ze™*

Expend in powers of z assuming that |ze™*| < 1,

N 2 o c
— = gpol—l‘3f dzzl/zze‘xz: (—z)ke k"
V VP 0 =

Recall the definition of the gamma function, I'(n) = foooodtt"_le_t.
We define,

x" dx

—_ 1 *
fn(2) = F(n)j;, z7le* +1

It can be shown that,

[o's] — © k
1 f "Ly :z (_1)k_1z_
rm)J, z7te*+1 ] kn

Therefore, uting the fact that I’ (;) = g

N -3
V = gpoll f3/2(Z)

Now equation (10.1.1) can be analysed in the same way to give

PV |74
T gpolFfS/Z(Z)
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We can obtain an equation of state then from the two expressions.

PV fop(z) _ Eia(-D)"'4n

NET f’*x l:::l :L-—l(_l}k_l 2113

- (25*2 23;2): +O(27)
Denote
= )
= = z
Vnpe 2//2
Writing out f explicitly givest,
d k 3
z z
_ _ k-
t=fp@ =) (DF S ==+ 0(5%)
k=1

We want z in tetans of pomets of t. Use an ansatz z = 3t + z,t2 +
o(t?),

t = [z1t + z,t2 + 0(t3)] — [ (31t + 222 + 0(t%)) ] + 0(z2)

23/2

We equate the coefficients on the LHS and RHS to find z4, z,, .... This
gives,

ettt o(t?)
zZ= 23/2

Plugging in L2 gi
ugging in —— gives,
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PV 1 1
1+( m>t+0(t2)

NKT ~ 23/2
3
Recalling that t = NAZ
dpol
PV 1 N2A3
—— =14+ ——=-—+0(t?)
NkT 4./29p01 %4

. NA3 C . .
Also, nobe that since t = , which is related to the conditions for

9pol

noticeable quantum effects, we see that for small t, get the classical
limit. Also, the correction to the classical ideal gas is positive. This
mesns the preasure due to the fermionic nature of particlen is
larger.

11.1 Fermi Gas at Zero Temperature

It has been sbown that a Fermi Gas at high temperature is just a
chssical ideal gas and quantum effects are negligible. Lets examuine
the properties when T — 0.

Consider the Fermi-Dirae distribution,

1
(ni) = eBle-w) 11
WhenT — 0, — . Henoe,
. 1 {O ife > pu
lim ————— = :
oo e8(e—1) 4 1 1 ife<u
=0(u—c¢)

where 8 is the Henvivide step function. Then,

N 21 ()
V= n,x? 7z (2m)?/2[ “de e/?0(u — €)

21
= Gpor 75 (2m)/2[ ; dee'/?
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21 2
_ 3/2 3/2
= Ypol W3 (2m) / §.u /

We also have for the pressure,

2 2T *©
P =2 15 @) | dec 0G0
0

2 21 2
P = §gpol ﬁ (Zm)z/z g:us/z

Dividing tav expressions gives,

Eliminate u to get,

2 12 2, VT
PV =GN 5 gpurd 7 2m)7]
1y 2RANTS dm TR
B ()
= 1om \3

This is the equation of state for T = 0. What it shows it that
pressure does not vanishatT = 0
We also see that

U~ N2/3

This means that the chemical potential can be quite large at T = 0.
Since the porticles we are dealing with are fermions, only one
particle can fill one state. Define u(T = 0) = € to be the Fermi
energy which is the energy of the highest occupied state ot T = 0. It
also means that it is the minimal energy of any new particle that is
added to the system.

11.2 Fermi Gas near Zero Temperature
We have examined the properties of a Fermi gas at zero
temperature. We now want to find how it behaves near zero. This
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can be done by Taylor expanding our integral. Lets obtain a general
form. Consider the integral of some function along with the Fermi-

AC)
I(,LL)=J;) mde‘

Dirac distribution,

Splitting integrals, Taylor expanding and doing some generally tricky
manipulation gives,

2T
1w = j def(©) + 2 Friuy + 08~

B?12
Lets get

€l/2

N
Vo z-lePe +1

= gy @) [ e

Call A = n .4 V2 (2m)3/2 for convenience. Then using the tesult
P E

above gives,

N =AU“ dee'/? + i—iel/2 +0(B~ 4)]
. ﬁ212d
:A[E’u3/2+ 1n _1/2+0(ﬁ 1/4)]
3 g1zt

I'm going to skip a be of things here since it's all maths and no
pbysics. We can use an ansatz method again to get u in posers of
2. Then we abo coanpute the integral for the grand canonical
potentinl Q = —kTln Q = —PV. An ansatz method is used agnin to
get u. Putting everytbing together gives the equation of state

5/2 2 1/2

= A ) o

| haven't done it yet but Im pretty sure for f — oo, gou can
monipulate this into the equation of state at zero temperature.
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11.3 Entropy

Recall from the definition of the grand canonical potential, the

G (69)
—\eT/y

2
T
S = ?Au(l)/zsz +0(T?)

entropy is

This works out to be

or

w? kT
S=—Nk—+ 0(T?)
3 er
Note that thin is in agreement with the third law of

thermodynamics.

11.4 Heat Capacity
The heat capacity is

dQ U as
C,=—2= = =T
dT v (IEJT) VN (‘tJT) V.N

w2 kT .
= Nk—— + O(T%

3 Ep

This is a divergence from classical mechanics and predicts that the heat

capacity goes to zero when the temperature does.
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Chapter 12

Bose Gas

We now lock at the Bose gas, The treatment is quite similar as the
Fermi gas. Start with the grand canonical potential and the average
particle number.

2 (® €?/?
—PV=.Q=—kT1nZgT=—§AL dEm
0 61/2
N=A de —————
fo o TePe + —1

with
A = V2132
= MV = AP

Lets define a function,

l—1

9(z) = F(l)f m

Which can be written as a geometrical series

1 (° 2
gi(z) = mj dxx'™1 (ze‘x Z (ze )"
0 n=0
1 Z JOO
- Zn dxxl—le—nx
F(l) n=1 0

The integral is just the gamma function.

- z
= 9(2) =Zn—
n=1

Note that this expansion converges only if 0 < z < 1 so it is not
defined for z > 1. This is iaportant later since it defines a critical
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temperature..
41

Note the relationship between the Riemann Zeta functioa wben z =
1(p=0),

[ee]

1
a) =Y —=¢W)

n=1

One thing we should know is that

3
9,/2(1) = <(E> ~ 2,612
and also that it is an increasing function.

So we can now rewrite the density in terms of this new function. The next
section examines what happens when we change the temperature of the
system and how we must change g to compensate.

12.1 Bose Einstein Condensation
We can write the density now as

N -3
7 = gpol/1 gB/Z(Z)

Suppose we want to keep the density % fixed whilst decreasing the

temperature (ie 1 ). Then g3 ,,(3) must increases so z must
increase. However, z can’t take value greater than 1. Denote this
temperature at 3 = 1 to be the critical teruperature T = T, This

. . R . _
can be solved pretty easily by recalling that A = T Settingz = 1

gives
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2/3
h? N

= 2mmk Vporl (%)

Now there's another problem that we run into. Suppose we go

(o

below the critical temperature. z can only go at most to 1 so g can
. N
no longer change. This means that " decreases when tbe

temperoture goes down which doesn't physically make sense. The
problem is to do with the change from a sum to an integml. The
contribution of the ground sitate € = 0 does not contribute to the
integral to we must explicitly sum it. Therefore, the correct
expression is,

ﬂ_gpol 4
V V 1-z

+ gpoM‘3g%(z) (12.1.1)

and denote

z
No = gpor 1-2,

For small z, thete is a negligible amount of particks in the ground

state. Homever, as the temperature begins to decrease, the number

diverges and a macroscopic amount of particles are in the ground

state. This is the phenomenon of Bose-Einstein condensation.

What's incredible is that once tbere are a buge number of particles
in the ground state, it's as if the particles merge into a colkctive
single state such that quantum effects are noticeable on the
macroscopic level.

We can also find the ratio of the perticles in the ground state to the
total number of particles. Some simple manipuhtion of (12.1.1)
leads to,
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N, T\?/?
v=1-(%)
N T.

Past the point T, corresponds to a phase thinsition.

12.2 Equation of State for T < T

Up until pow, the pressure has been completely ignoted. Well, it can
be written as

PV 3
T gpolV/1 95/2(2)

kT
FotT < T,

PV o (5
T = 917 (3)

and this includes careful integrating and summing of the ground

state. It's also handy to know that ¢ G) = 1.324

Rewrite the number density to get

N — N,
(2)

Then combining the two equations gives,

gpolV/l_3 =

_ 3/2
o ) (1)
3/2 3/2
v~ ~053(r)

This can aloo be written as
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PV 3/2
. ~ 051 N(—)
e~ 051N (3

The second last teo quantities can be interpreted as the number of
particles with € # 0. The pressure comes from particles with
nonzero momentum/energy.

12. 3 Equation of State for T > T .For T > T . we have

for T > T, we have

PV 3
*T = gpolV/1 95/2(2)

N N, 3
v = a + gpol/1 .93/2(2)

ForT > T, % — 0. Combining the two equations gives,

PV 295/2(2)
NkT 93/2(2)

Recall that

[\]

9(2) =§:n—

ForT — o0,z — 0. We can then expand and get,

PV 4o
NkT — (#)

So we get the classical ideal gas for high temperature. The term of
0(z) can be computed using an ansatz method by expanding in a

. NA3
power series of t = g3/,(z) = -
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12.4 Heat Capacity

We look at states where there is bo degeneracy, ie g, = 1. Recall

that
C ( 1)
v Ty n

Recall equation (10.1.3). For a Bose gas, we bave

2
EVkal_3g5/2(Z) (T>T)

%VKTA‘ZZ (;) (T<T,)

There are 3 straightforward computations then for each case of T

e Heat CapacitywhenT < T,

¢ - ;(3 vira 2 ))

15
Cy = TVk/l‘3 x T?/?

e Heat CapacitywhenT =T,

N
AtT =T, use v A73g5/2(1)

15 N{(5/2)

e Heat CapacitywhenT > T,

6< VKTA~ g5(z)>

Cv = 5T
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l:-}y;',;.f-g (3) 0z
dz JT

3 . [ 3 .
— 51:1-):-*9;;2(:) 1 —1 ET(—3)\" 45—_ 5/2(2) 51——1--1")\—-*
89s/2(2) _ 1
= =~ g3/2(3)
=1z g3/2(z) can be obtained from the series def|n|t|on. To find
dz/ dT, take

Most of the derivatives are easy enough.

N -3
7= A7 93/2(2)

Differeatinbe w.r.t T.
d
0= OTA 93/2 (2)
Using the product rule,

0z 3 93/2(2)
5> —==—z—
ST 2T g41/2 (2)

Therefore,

2
3 5z+4+0(z%) 3z+0(z%
2 2z4+0(z%) 2z+4+0(z?)

3 5 z) 3 z
c, _Nkl 95/2( ) 93/2( )
2932 (Z) 2 91/2 (2)

ForT - o0,z -0
3

which is the same as a classical ideal gas.

More importantly, plotting a graph of this shows a discontinuity of the
slope of the heat capacity. This is an example of a phase transition.
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Chapter 13
Heat Capacity of a Solid

13.1 Classical Heat Capacity of a Solid

Consider a solid which consists of atoms held in place that are
allowed to undergo small vibrations, so essentially this is a system of
N harmonic oscillation. The Hamiltonian is

H = z(_+k)

The canonical partition function is

7 — [{f!;\'p d-:!.-‘«'q {:—.iH

~ e PR L.
—8&= _—18kq?
= l[ :_'Ep/ dq e Pime 2“‘?]
o D0 of 30

These are Gaussian integrals.

1/2

(2mn> (271)1/2 N
‘[ B Bk l
The internal energy is

8 a 3N 3N
U=-o-InZ= (- - p)+0

3N
= — = 3NKT
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Therefore, the heat capacity is,
CV == 3Nk

This is the heat capacity predicted for a classical solid. While this is
true for high temperature, experiments show that the heat capacity
goes to zero as temperature goes to zero so clearly, we need a
guantum explanation.

13.2 Einstein Model

In quantum mechanics, a. harmonic oscillator's energy is quantized.
Therefore, the solid's energy should have the form,

3N

1
E:z (ni+§>ha)i

i=1

where n; is a quantum number, i = 1, ..., N. Interpret n; to be the
number of 'particles' with energy hw;. These particles are known as
phonons. Note that the number of particles is not conserved. This
meansthaty =0soz =1

Let’s compute the grand canonical partition function.

(o]
1
Zgy = Z zNa Z e FLiE (me+z)ner
Nq=0 {Tli}i=1,....,3N

Use N, to label the number of quanta or 'particles’, YN = Ny

Sincez =1,
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3N 1
e Pri=1 (nl +7)hw1
{n}i=1,..3n

3N
o B (it ho

g i=1

3N
1_[ z 6—32551 (ni+%)hwi

i=1 {n;}

1
_ 113N _—5Phw; —Bhw;
= |li=1€ 2 wlz;ﬁ:o(‘? Bhaoi)™

since the quantum number n; has no limit.

3N

1 1
_ | | —5Ptw;

i=1

The internal energy is

Then the heat capacity is,
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ou = ) ePhwi

We now make an assumption that all the particles vibrate at the
same angular frequency which is a feature of the Einstein model. Set

Wi = wW.
eﬁhw

:>Cb'=:3Nk(ﬁha022;?ﬁ5tf]35

This is the Einstein heat capacity.

Lets look at the limits

ForT — oo, — 0.

1+ phw + 0(B?)

Cy = 3Nk(Bhw)? -
<Bhw o) | 0(/33)>

1+ phw + 0(B?)
1+ 809 4 02

CV = 3Nk

= 3Nk(1 + fhw)(1 — phw + 0(B%)) + 0(B?)
= 3Nk + 0(B?)
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agreeing with the classical limit.

ForT - 0,5 — oo
eﬁhw

— —2Bh
CV = 3Nk(Bha))2e 2B wm

= 3Nk(Bhw)?e P (1 + 0(eF))

Since the exponential goes to zero much faster than 8 goes to
infinity,

Cy—0
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Chapter 14

Blackbody Radiation
The next section examines the properties of a gas consisting of
photons which gives rise to blackbody radiation.

14.1 Relativistic Bose Gas
Consider a system of N bceons with mass m. The relativistic energy
is,

€= \/pzcz + m2c*

We need to reconsider how we change a momentum integral to an
energy integral.

P Gpoi _
ﬁz%f d3p(—ln(1—Ze Be))

_ 47Tppol ® —Be
=0 JO p?dp (—ln (1—ze ))

Use the fact that

1
de =
2\/pzc2 + m?2c*
Ve2 — m2ct

= p?dp = = ede

2pc?dp

Therefore, our relativistic expressions for the pressure and density
are,

P 4 «©
n j dee €2 — mzc4[—1n (1 — Ze‘ﬁe)]
mc?

7 = 9 Gy
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N A (7 1
— = —J de € \/€? —m?c*
mc?

V ngl (hC)3 m

14.2 Photon Gras
For photons, set m = 0. Then we get,
P 41
7 = Gpol e )3f dee?|—In (1 — ze~F¢)]
N 41 I €?
v = Ipolheys o € 1B 1

The first expression can be integrated by parts to give,
P Anp J‘x’ €3
kT ~ "P?3(hc)8 z-leBe — 1

One of the first things we need to note is that photons can be
created and destroyed without changing the free energy.

(E)wur=p=0=z=1

The energy of a photon is € = hw. We change vatiables to integrate
over w.de = hdw. So our expressions now look like.

47‘[ h* [ w?
PV = gpo| f dw

V ho? T
N Ar h3j°° p w?
v oI heyE ) Ve — 1

0Ok, so lets now look at the internal energy of the system which in
discrete formis,
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€k
v= z ()€ = Z z-lePex — 1
K

k

When V — oo, it is possible to change this to an energy integral and
then to a frequency integral. We find that

h (©® o3
U=V gpol J
2m2c3 ), efhe —1
Denote
h s
u(w’ T) _ Ypol

2m2c3 ePhw — 1

This is known as Plenck's Law for Radiation. It gives the distribution
of energy per frequency per unit volume.
By inspection, we get an equation of state

U=3P
Carrying out the integral,
U o
V= fo dou(w,T)
h w3

f (0]
= w—
m2c370 efho — 1

xZn—l _ (Zn)ZTan
e*—1

Bernoulli numbers and g,,,, = 2 for photons,

Using the fact that fooo dx where B,, are the

U n?(kT)*

V 15 (he)3
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This is related to the Stefan-Boltzmann Law which scales ~ T*. It
gives the energy density of the photons and we can derive the
Stefan-Boltzmann Law from it.

Consider the limit w — 0. Then Planck's formula looks like

0)2 + cee

u(w, T) ~ 2.3

This is the Rayleigh-Jean Law.

Consider the limit w — oo. Then Planck's formula looks like

w3e—ﬁhw

u(w, T) ~ 33

This is Wien's approximation.

Finally, we can find the maximum wy,,x of u(w, T) by diferentiating.
This gives,

hwpay = 2.822KT

This is Wien's Law.
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Chapter 15

Magnetic Systems

In @ magnetic system, the state variables that we are concerned with
are the temperature T, magnetic field B and the magnetisation M.
Like the earlier systems we considered, the magnetic system can
then be described by an equation of state,

f(M,B,T) =0

The work performed by the system is dW = —BdM. Hence, the first
law of thermodynamics for a magnetic system looks like

dU = dQ + BdM

15.1 Magnetic Susceptibility

Define the magnetic susceptibility to be

oM
AT = (E)B>T

B (OM)
XS - aB <

They can be interpreted as how magnetized something gets when
there is a magnetic field present.

15.2 An Example of Paramagnetism

Consider N fixed magnetic dipoles with magnetic moments y;. Each
particle's magnetic moment points in a certain direction. The
magnetic moment's direction can be described by the angles

(6;, ;). With no magnetic field, they point in random directions and
the weral magnetisation is 0 . Let there be a B field applied to the
system. The magnetic moments will try to align with the field to
minimise the potential. The Hamiltonian for the system is,
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Let the magnitude of each particle's magnetic moment be the same.
If we choose our coordinate system such that B = (0,0, B),

N
H = —z uBcos 6;
i=1

The distribution over the angles follows Maxwell-Boltzmann
statistics. The canonical partition function is,

N
nel]3 e
i=1

Summing over all configurations gives,

N 2 -
B 1_[ f dqbf df;sin Hl-eﬁlchos 9;

Integrating this gives,

Zy = (;u_nB sinh (ﬁ,uB))

N

Let us now compute the expectation value of the overall magnetic
moment.

1
=7 | dordpuerroese
If we express u in Cartesian coordinates, it is found that the x, y
components are 0 . This makes sense since the B field is in the z

direction so the alignment of the magnetic moments are random in
the x, y direction which will average to 0. Therefore,

1
(1) = ) = j d6;d¢ppucos 6;e~FHEeos 0

observe that this can be rewritten as,
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(W) = === Z;

B 3B

This is equivalent to the magnetisation of one particle. The total
magnetisation then is the sum of the magnetic moments,

,8 3B [ln ( sinh (ﬁ,uB))]

This works out to be,

1
M = Ny coth (BuB) - ﬁTH> = NuL(BuB)

where L(x) = coth (x) — % is the Langevin function. This is an

equation of state.
Oteerve what happens in the high temperature limit § — 0.

M —Nuﬁ%+0(T 3
Nu?B
= T_3
3kT +0( )

The susceptibility is

_ (aM) Nu L0
X1 =\38 ). " 3kT

Notice that magnetisation goes to 0 for high temperature. Also, the
susoeptibility is positive and non-zero even when the magnetic field
is turned off.
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15.3 Paramagnetism and Diamagnetism

We can classify a system into two classes. We call a system
paramagnetic if yr > 0 This means that the magnetisation is in the
direction of the applied magnetic field.

We call a system diamagnetic if yr < 0. This means that the
magnetisation oppoes the magnetic field. The next sections will
develop a simple model that exhibits diamagnetism.

15.4 Electron Moving in a Magnetic Field with no Spin

It can be shown that a charged particle moving in a magnetic field
with no spin does not exhibit magnetisation classically s o we look at
a quantum picture. The Hamiltonian for the particle is

H = %(p +§ A(q))2

with
B=VXA

Due to gauge invariance, we chocse A(q) = (—B,, 0,0) and this
gives the magnetic field pointing in the z direction. Then the
Hamiltonian becomes,

1 eB \? ) )
H=% (Px—TY) +py tp;

Solving the S-eqn gives,

2

~ Dz o1
€(Pzj) = ﬂ"‘ hwg (] +§)



113

B . .
where w, = % We refer to a state with quantum number j as a

Landau Level. The Landau Levels are degenerate due to the allowed
values of k,. (see Michael Fry) For example, for a particle in a box of
volume L3, the allowed values of k, are,

2mny

X Lx

. . eBL? . . . -
It is found the largest n, is % Since, n, is positive and is integers,

this is the number of degeneracies.

15.5 Landau Diamagnetism

Consider now N spinless electrons in a magnetic field and neglect
the interaction between them. The Hamiltonian is

N
e}
i=1

We wish to compute the magnetisation and susceptibility. Define

. . M
the magnetisation per unit volume M = 7 Then,

M = 76—3111 Zgr

Sinoe electrons are fermions, we use the Fermi-Dirac distribution.

Z

= 1_[ (14 ze=Fe)
A
A here is an index that is identified with p,,j,a wherea =1, ..., g is

a degeneracy factor.
Lets compute In Q.

InZ,, = 1_[ In (1 + ze‘/’)el)
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L (o]
In Zg = gﬁz 2 In (1 + ze Pérs)
J=0 pz
L @ _pe
:gEZf dp,In (1 + ze~Pe)
j=0 "7%

The % factor comes from the density of states stuff. The average

number of electrons is,

) 29L [© 1
N :zgangr :TZ)fo de—Z_leBE‘l'l
]:

where we recognise the integral is an even integral.

Consider the high temperature limit § — 0. For the particle number
to remain finite, z = 0. (not sure about this). Then the integral can
be expanded in powers of z.

In Zgr~2'gLZ] of dpzeBe

2 Lu —5.' e a g
E;' Z/ dp e T o Ahwo(i+1/2)

j=0

gLv H__uz ~Bhany, 2mm
‘ 3

g=0
gL:: By 1
)‘Am 1 — (.'_'ﬂ"""‘”
gLz 1
e : .ﬂlu,'”
JAHE SlIllll:T}
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2gLz _Sh, 1
= e 2 —
h 1—e~Plo

gLz 1

22 sinh (%)

Now expand the sinh since § = 0,

gL

In Zg = "

<1 = 57 (Bhwo)® + 0([?4))

Plugging in values for g and wy, gives,
Vz 1
angr = a3 (1 — ﬁ (,Bha)o)z
th

Therefore, the magnetisation density is,

M
_ kr( b 3 (eB)Z
~ O3\ 24(kT)20B \mc

2z eh
2445, kT \mc

So the susceptibility density is,

Xr OM  —z (eh)z
V 0B  3kTA3\2mc

This is an example of a diamagnetic system which has a negative
susoeptibility. What's essentially happening is that the magnetic
field causes circular orbits and according to Lenz's Law, an opposing
magnetic field must be created.
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15.6 De Haas-Van Alphen Effect

Consider the low temperature limit of Landau diamagnetism where
the system approaches its ground state. We also assume that
motion only occurs in the xy plane. The energy can be rewritten to
be

o1
€ = 2ugB (] +§)

R
where Bz = ze_mc is the Bohr magneton.

Rewrite the degeneracy as

9= B,

Nhc
where By = —

L2%e
If B > By, then g > N all the particles can fit into the ground state.
The energy of the ground state is E, = NugB.
However, if B < By, then some particles are forced into the next
state by the Pauli exclusion principle. Suppose B < B, and the levels
Jj and below are filled and the level j + 1 is partly filled and all higher

levels are empty. Then (not sure about this)

G+DHg<N<(+2)g
1 B 1

5> —<—<
j+2 By j+1
The energy of the system is,

1
E=g) e+ =(+Dgem
i=1
where N — (j + 1)g is the number of remaining particles. This gives,
E=N,Bx(2j+3-(+1({+2)x)

B
Where —
By
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To summarise, the energy per particle of the system is,

E {p‘.BB.‘l‘ ifx>1

N 7 \usBr(2j+3-(G+1)(+2)2) if 5 <z <

. . . -1 4 .
The magnetisation per unit area M = 77 75F is

Mo %g ifr>1
T \eBr(2i+3 - (1) +2)2) if 75 <z <

Something is really wrong so stop here.
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Chapter 16

Ferromagnetism

We now look at a different class of magnets called ferromagnets.
These are magnets that have magnetisation even when not in the
presence of a magnetic field. It is due to the electron's spin. It is
energetically favored to have parallel spin. In this model, we assume
that the spins can either point in the pceitive or negative direction in
the z direction (i.e. we measure S,, for convenience the z is
dropped). Consider a system of N particles. The Heisenberg model
has the Hamiltonian

N
1
H = _Ez JijSi5; —gﬂsz Si-B
Tj i=1

where B is the magnetic feld, S is the spin of the particle, g is the g -
factor. J;; = Ji; > 0 is a term that measures the interaction between
the spins of neighbouring particles. There is —] energy for parallel
spins and J energy for antiparallel spins.

Firstly, lets develop a bit of the framework we will be using later.
The spins follow the usual commutator relations for spin and the
spin for the i and j particle commute. This means we can find a
simultaenous diagonalised eigenstate for all the particles. The
partition function looks like

Z = T‘T'(E_JHJ - Z Z <L'I”ll---”i.\'|“_dH|L-'m]...mx>

1 1
my==x5 my==x5

We also have the Gibbe potential energy to be
G(T,B) = —kTln Z
The expectation value of the energy is,

(H) = %Tr (He™PH)
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~ 55 ,BG(T B)

The magnetiation is

N
“=gup Z Sa

j=1
N
Sfe=h

j=1

1
e ﬁH)

B

_ 1 (

~ Bz \aB«
a labels the coordinate x, y, z.
16.1 Non-Interacting Case

Lets now consider the case where | = 0 so the spins do not interact
with each other. However, the spins interact with the magnetic field.
Choose the coordinate system so that B points in the z-direction.
Then the Hamiltonian is

N
H = _Q.UBBZ i
i=1

Therefore, the partition function is,
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E E i BgugB%Y 5%,
U {1.‘"'1r111...??i-‘\f |!:3 ! 1_1'--1”1[”_”1‘-\{}
m1=:|:% mh.-:j;%
E E : J‘g,uBB 5y o I
{1,-'--1rn 1...07 | L’ﬂu LT >
m.1::|:§ rn_.~.,-::|:§
E E : ig;LEBZm,
my== 5 11t -.,r—:l:—
N
_ E E:’:ﬂggigﬂm
m::l:%

_ (E‘:l_,:’igy,ﬂﬂ + e—%:’:ﬂgugB)N

)

v - BoupB
= 2" cosh® {—QHE

Therefore the magnetisation is,

0 BgusB
M = kTﬁln Z = Motanh T
where M, = Nggm

16.2 Mean Field Approximation

In the mean field approximation, we assume that the spin has the form
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S; = (5;) + AS;
We treat AS; as a small approximation. So,
Si-S; = (S:)(S;) + AS(S;) + AS;(S;) + O(AS?)
The Hamiltonian becomes,
1
H=—3 ; Jij [(Sf> (S) + 2AS<SJ):| —gup Y _S:i-B
i#]

1

= =30 [8068 - 6+ 58)(8)] ~ann 3051 B
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