

Qualitative Analysis

The practical book for:

General Chemistry (I) course

For 1st year University Students.

Prepared by:

Dr. Ibrahim A. I. Hassan

Department of Chemistry, Faculty of Science, South Valley University, 83523 Qena, Egypt.

Email: I.Hassan@bath.edu

COPYRIGHT

Attention is drawn to the fact that copyright of this book rests with its author. A copy of this book has been supplied on condition that anyone who consults it is understood to recognize that its copyright rests with the author and they must not copy it or use material from it except as permitted by law or with the consent of the author.

Dr. Ibrahim A. I. Hassan

Qualitative Analysis

A practical book

INTRODUCTION

Chemical analysis can be either qualitative or quantitative in character. In qualitative analysis we want to know elements or characteristic chemical species are present. Although it might be possible to gain some idea of how much of each component is present. The major point of the qualitative analysis is simply to determine whether the component of interest is present at a level above the minimum required for detection. On the other hand, in a quantitative analysis we are interested in the relative amounts of the components present.

This book is about qualitative and quantitative inorganic analysis. It contains the background theory as well as experimental procedures that the student will need to carry out a laboratory program of chemical analysis.

Cations and their analyses are discussed group by group and the same on dealing with anions. A systematic concise procedure for detection of each group anions and cations is summarized in a specific table followed by tables prepared for student practice for each cation or anion.

A simple systematic part for quantitative analysis is also included in this book.

Some important analyses are described for student. By doing so this book slows student to observe descriptive chemical reacts and to test principles spelled out in the pages of their textbooks. In

3

addition, students are challenged to apply their knowledge in the laboratory.

Word or	Abbreviation	Word or sentence	Abbreviation
sentence			
Ammonium	Amm.	Equivalent weight	Eq.wt.
Bolling point	S.P.	Example	ex.
Cubic	c.c.	And so on	etc.
centimeter	Cm.	Gram	gm.
Concentrated	Conc.	That is to say	i.e.
Concentration	Concn.	Insoluble	Insol.
Compound	cpd.	Molecular weight	Mol.wt.
Conical flask	C.F.	Melting point	M.P.
Dilute	dil.	Potassium	Pot.
Different	diff.	Solution	Soln.
Precipitate	ppt.	Sodium	Sod.
to precipitate	pptate.	Test tube	Т.Т.
precipitation	pptn.	Volume	Vol.
Saturates	Sat.	Excess	XSS.
Soluble	sol.	Round Bottom Flask	R.B.F
Heat	Δ	Flat Bottom Flask	F.B.F

ABBREVIATIONS OF COMMON USE

CHEMICAL ANALYSIS

Chemical analysis is divided into two main classes:

I) Qualitative analysis:

This type of analysis involves the investigation and identify cation of substances in its simplest or complicate forms. In this connection, the constituent element or group of elements, and the way in which these elements are combined to form the substance, are identified.

II) Quantitative Analysis:

The object of quantitative analysis is to determine the actual amounts of the constituents of a compound, and the amount of material dissolved in solution.

Depending upon the tools used, or the procedures followed to perform the analysis, it can be classified into 3 main classes:

- A. **Volumetric analysis**, i.e. determination of the constituents by titration.
- B. Gravimetric analysis: i.e. determination of the constituents by precipitation.
- C. **Instrumental analysis**: i.e. determination of the constituents by the used of instruments and apparatus.

QUALITATIVE ANALYSIS

Radicals:

When an acid e.g. HCl is made to react with a base, e.g NaOH. a salt, NaCl and water are formed according to the following equation:

$HCl + NaOH \rightarrow NaCl + H_2O$

acid + base \rightarrow salt + water

The part of the salt, which is derived from the base, Na, is called the "basic radical", whereas the other part, which is derived from the acid, is termed " acidic radical".

Analysis of a simple salt:

Dealing with a simple salt, the various stops enquired for its identification can be gathered as follows:

- 1. Preliminary tests.
- 2. Analysis for acidic radicals.
- 3. Analysis for basic radicals.

1) preliminary Tests:

These tests are usually termed "Dry Tests" since they are carried out on the material in its dry state. These tests cannot be considered as final and conclusive, but however they furnish valuable indication of the presence of certain acid and basic radicals. The preliminary tests include:

A. <u>Physical properties:</u>

This involves the examination of the physical properties of the salt such as color, crystalline form and solubility of the substance is checked with the following solvents in the same order as cited:

- 1. Water; cold then hot.
- 2. Dil. HCl; cold then hot.
- 3. Conc. HCl; cold then hot.
- 4. Dil. HNO₃; cold then hot.
- 5. Conc. HNO_3 ; cold then hot.
- 6. Aqua Regie: 3 vols. conc. HCl + 1 vol. conc. HNO₃
- 7. Effect of Heat:

When a small amount of the solid is heated in a hard dry test tube, some changes may occur which can throw some light on the identity of the salt. These changes may include:

1. Decomposition e.g. copper carbonate

 $CuCO_3 \xrightarrow{\Delta} CuO (black) + CO_2$

- 2. Change of color, e.g. Zinc oxide is colored white, but when heated it becomes yellow and upon cooling it returns white again.
- 3. Loss of water of crystallization, e.g. Copper sulphate

$$\begin{array}{ccc} \mathbf{CuSO_4.5} \ \mathbf{H_2O} \xrightarrow[-5H_2O]{}{2} & \mathbf{CuSO_4} \xrightarrow[+5H_2O]{}{}{} & \mathbf{CuSO_4} \ \mathbf{.5} \ \mathbf{H_2O} \\ \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & &$$

4. **Sublimation**: Some compounds e.g ammonium chloride transforms directly from the solid state to the vapor state.

B. Flame Test

It was found that some metals give characteristic colors to the flame when their volatile compound e.g. chloride are heated on a platinum wire in the oxidizing zone of the flame.

In this experiment: A clean Pt wire (or glass rode) is dipped into a conc. HCl then in the dry substance and heated in the flame. Different colors are produced by different basic radicals:

Copper: Green	Calcium: Brick red
Strontium: Crimson red	Barium: Apple green
Sodium: Golden yellow	Potassium: Pale violet.

ACIDIC RADICALS

Our study is restricted here to only fourteen acidic radicals of the most famous ones. They can be classified towards: dil. HCl and hot conc. H_2SO_4 as follows:

I- Dil. HCl group	II- Hot conc.	III- Miscellaneous	
	H ₂ SO ₄ group	group	
Carbonate CO ₃ ⁻²	Chloride Cl ⁻	Sulphate SO ₄ ⁻²	
Blicabonate HCO ₃	Bromides Br	Borate $B_4O_7^{-2}$	
Sulphide S ⁻²	Iodides I ⁻	Arsenate AsO ₄ ⁻³	
Sulphite SO ₃ ⁻²	Nitrates NO ₃ ⁻	Phosphate PO ₄ ⁻³	
Thiosulphate S ₂ O ₃ ⁻²			
Nitrites NO ₂ ⁻			

It is to be noted that all radicals of one group reacts with the so called " Group Reagent " which is dil. HCl in the first group and hot conc. H_2SO_4 in the second group to give off characteristic gases and vapors. The radicals in the miscellaneous group do not react with either dil. HCl or conc. H_2SO_4

1. Dilute Hydrochloric acid Group

This group includes radicals of unstable acids which upon reaction with dil. HCI decompose readily giving off characteristic gases as illustrated by the equations:

 $Na_{2}CO_{3} + 2 HCl \rightarrow 2 NaCl + CO_{2} + H_{2}O$ $NaHCO_{3} + HCl \rightarrow NaCl + CO_{2} + H_{2}O$ $Na_{2}S + 2 HCl \rightarrow 2 NaCl + H_{2}S$ $Na_{2}SO_{3} + 2 HCl \rightarrow 2 NaCl + SO_{2} + H_{2}O$

 $Na_2S_2O_3 + 2 HCl \rightarrow 2 NaCl + SO_2 + S + H_2O$

 $2 \text{ NaNO}_3 + 2 \text{ HCl} \rightarrow 2 \text{ NaCl} + 2 \text{ NO} + \text{H}_2\text{O}$

 $2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{ NO}_2$

Experiment	Carbonate	Biocarbonate	Sulphide	Sulphite	Thiosulphate	Nitrite
	Na ₂ CO ₃	e.g.NaHCO ₃	e.g Na ₂ S	e.g. Na ₂ SO ₃	e.g. $Na_2S_2O_3$	NO ₂ ⁻
solid +	Effervescence	As	Evolution	Evolution	As sulphite	Red-brown
dil. HCl	& evolution of	carbonate	of H ₂ S gas	of SO ₂ gas	but soln.	fumes due
heat if	CO ₂ which		detected by	detected by	becomes	to
necessary	detected by		its bad	its	turbid due to	combination
	rendering		odor and	suffocating	sepn. of	of NO and
	lime water		blackening	odor &	colloidal	O ₂ of air&
	turbid		a lead	rendering an	Sulphur	turns blue
			acetate	acid		
			paper	chromate		
				paper green		
2) Slon. +	white ppt of	As carbonate	Black ppt.	White ppt. of	White ppt.	White ppt.
AgNO ₃	Ag ₂ CO ₃ sol. in	but on	of Ag ₂ S sol.	Ag ₂ SO ₃ sol.	Ag ₂ SO ₃ sol.	from conc.
	dil. HNO ₃	heating	in hot dil.	in xss. of	in xss.	solns.
			HNO ₃	sulphite and	AgNO ₃ . It	
				in NH ₄ OH	turns yellow,	
					orange then	
					black Ag ₂ S	
3) Slon. +	White ppt. of	As carbonate		White ppt. of	White ppt.	
BaCl ₂	BaCO ₃ sol. in	but on		BaSO ₃ sol. in	from conc.	
soln.	dil. HCl and	heating		dil. HCl and	solns.	
	HNO ₃			HNO ₃		

Experiment	Observation & results	
i- Carbonates & Biocarbonate:		
1) Soln.+ HgCl ₂ soln.	Reddish brawn ppt. of basic mercuric	
2) Soln. + HgSO ₄ soln.	carbonate HgCO ₃	
ii-Sulphides:		
1) Soln. + NaOH soln. + sodium nitropruoside	Purple coloration due to form of a comp.	
Na ₂ Fe(CN) ₅ NO	structured as: Na ₄ Fe (CN) ₅ NO.	
2) Soln. + lead acetate $Pb(C_2H_3O_2)_2$	Black ppt. sol. in hot dil. NHO ₃	
iii- Sulphites. Thiosulpates and Nitrites:		
(Reducing properties)		
1) One drop of KMO ₄ + dil H ₂ SO ₄ soln.	Decolorization due to form. Of MnSO ₄ .	
2) One drop of K ₂ Cr ₂ O ₂ + dil H ₂ SO ₄ soln.	Development of green color due to Cr ⁺³	
3) One drop of I_2 + dil H_2SO_4 soln.	decolorization due to form of iodide	
iv-Nitrites: (Oxidizing properties)		
1) Ferrous sulphate (FeSO ₄) soln. + dil. H_2SO_4 soln.	Brown color due to formation of Fe(NO)SO.	
2)1ml. pot. Thiocyanate (KCNS)+1ml dil. H_2SO_4 soln.	Blood red color which discharges on boiling.	
v- Sulphites and Thiosulphates		
Soln. + Ferric chloride Soln. (FeCl ₃)		
1) Thiosulphate	Dark violet color disappears on warming or	
	standing	
2) Sulphite	Red color suffering no changes on standing.	

Experiment	Observation	Result
Solid + dil. HCl		
Soln. + AgNO ₃		
soln.		
Soln.+ BaCl ₂ soln.		
Soln.+ HgCl ₂ soln.		
Soln. + HgSO ₄ soln.		
Physical Prop.		

Detection of Carbonate CO₃⁻²

Experiment	Observation	Result
Solid + dil. HCl		
Soln. + AgNO ₃ soln.		
Soln. + NaOH soln.		
Sod. Nitophrouside		
Soln. + lead acetate		
Physical Prop:		

Detection of the Sulphide S⁻²

Experiment	Observation	Result
Solid + dil. HCl		
Soln.+ AgNO ₃ soln.		
Soln. + BaCl ₂ soln.		
Soln. + drop of		
KMnO ₄ + dil.		
H_2SO_4		
Soln. + drop of		
$K_2Cr_2O_2$ Soln. + dil.		
H_2SO_4		
Soln. + drop of I_2		
Soln. + dil. H ₂ SO ₄		
Physical Prop. :		

Detection of the Sulphite SO₃⁻²

Experiment	Observation	Result
Solid + dil. HCl		
(Heat gently)		
Soln.+ AgNO ₃ soln.		
Soln. + drop of		
$KMnO_4$ soln. + dil.		
H_2SO_4		
Soln.+ drop of		
$K_2Cr_2O_7$ soln. + dil.		
H_2SO_4		
Soln. + FeSO ₄ soln.		
+ dil. H ₂ SO ₄		
Soln. + 1ml. KCNS		
soln. +1 ml. dil.		
H_2SO_4		
Physical Prop. :		

Detection of the Thiosulphate $S_2O_3^{-2}$

Experiment	Observation	Result
Solid + dil. HCl		
Soln.+ AgNO ₃ soln.		
Soln.+BaCl ₂ soln.		
Soln. + drop of		
KMnO ₄ + dil.		
H_2SO_4		
Soln.+ drop of		
$K_2Cr_2O_7$ soln. + dil.		
H_2SO_4		
Solp + drop of L		
soln \pm dil H-SO		
112504		
Physical Pron :		

Detection of the nitrite radical NO₂⁻

II-Concentrated Sulphuric Acid Group:

The group includes radicals belonging to acids such stronger than those of the previous group, and therefore they are not affected by dil. HCl. When the salt is treated with conc. H_2SO_4 , the corresponding acids are liberated which may further decompose as following:

$NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl$

$$\begin{split} \text{KBr} + \text{H}_2\text{SO}_4 &\rightarrow \text{KHSO}_4 + \text{HBr}; \\ & 2 \text{ HBr} + \text{H}_2\text{SO}_4 \Rightarrow \text{Br}_2 + \text{SO}_2 + 2\text{H}_2\text{O} \\ \text{KI} + \text{H}_2\text{SO}_4 &\rightarrow \text{K} \text{ HSO}_4 + \text{HI}; \\ & 2 \text{ HI} + \text{H}_2\text{SO}_4 \Rightarrow \text{I}_2 + \text{SO}_2 + 2\text{H}_2\text{O} \\ \text{NaNO}_3 &+ \text{H}_2\text{SO}_4 \Rightarrow \text{NaHSO}_4 + \text{HNO}_3; \\ & 4 \text{ HNO}_3 \Rightarrow 4 \text{ NO}_2 + \text{O}_2 + 2\text{H}_2\text{O} \end{split}$$

	Chloride e.g.	Bromide e.g. NaBr	Iodide	Nitrate
Experiment	NaCl		e.g. KI	e.g.NaN
				O ₃
Solid +	Evolution of	Evolution of red	Evolution of	Red
conc.	HCl gas	brown vapors of Br ₂	vapors	brown
H_2SO_4	detected by	and HBr and soln.	of I ₂ detected	vap. of
heat	rendering blue	becomes	by turning	NO ₂ after
	litmus paper	orange	starch paper	long
	red		blue.	heating
2 Solid +	Evolution of	Evolution of Br ₂ gas	Same as	
H_2O_2+	Cl ₂ gas	detected by its red	above	
conc.	detected by its	brown color and		
H_2SO_4 heat	yellow green	bleaching		
	color and	action on		
	bleaching	litmus and		
	action on	turning		
	litmus paper	starch paper		
		yellow		
3 Soln.+	White crudy	Pale yellow curdy	Yellow curdy	
AgNO ₃	ppt.	ppt. sol. in	ppt. insol. in	
soln.	sol. in	conc.	both	
	NH ₄ OH and	NH_4OH and	NH ₄ OH and	
	insol. in dil.	insol. in dil. HNO3	NaOH	
Soln., lead	White ppt.	White cryst. ppt. in	Yellow ppt.	
acetate soln.	of PbCl ₂ sol.	boiling water	of PbI ₂ sol.	
	in boiling		in boiling	
	water		water	

(A) General Tests for Hot Conc. H_2SO_4 group.

(B) Special Tests for Hot Conc. H₂SO₄ group.

Experiment	Observation & Results
(i) Bromides & Iodides:	
Soln. Chlorine water	
Bromide	Solution becomes pale orange.
Iodide	Solution becomes yellow brown
Reactn. mix + few mls. chloroform	
(CHCl ₃)	
Bromide	Chloroform layer is colored red brown.
Iodide	Chloroform layer is colored violet.
(ii) Iodides	
1-Soln.+ HgCl ₂ soln.	A scarlet red ppt. of Hgl ₂ sol. in xss. soln.
2-Soln. + CuSO ₄ soln.	A ppt. of cuprous iodide Cu_2I_2 colored
	dirty brown due to liberation of I_2
3. Reactn. mix. + Na ₂ SO ₃ soln.	Disappearance of brown color of iodine.
(iii) Nitrates:	
1-Brown Ring Test:	
$soln. + cold sat. FeSO_4 soln. + 2 ml.$	A brown ring is formed at the interface
Conc. H_2SO_4 , drop by drop to form	due to the formation of the compound
a separate layer.	Fe(NO)SO ₄
2- Ammonia Test	
soln. + Zinc dust (Al) + NaOH,	Ammonia gas (NH ₃) evolves which is
Heat.	detected by its odor and by turning a red
	litmus paper blue

Experiment	Observation	Result
Solid + conc. H_2SO_4		
heat.		
Solid+MnO ₂ +conc.		
H ₂ SO ₄ heat.		
Soln. +AgNO ₃ soln.		
Soln.+ lead acetate		
soln.		
Physical Prop.:		

Detection of the Chloride Radical (Cl⁻)

Experiment	Observation	Result
Solid +conc. H ₂ SO ₄		
heat.		
Solid + MnO_2 +		
conc. H_2SO_4 heat.		
Soln. $+$ AgNO ₃ soln.		
Soln.+ lead acetate		
soln.		
Soln. + chlorine		
water.		
reaction mixture of		
$5 \pm \text{few ml's of}$		
chloroform		
Physical Prop.:		
J		

Detection of the Bromide Radical (Br)

Observation	Result
	Observation

Detection of the Iodide Radical (**I**[•])

Experiment	Observation	Result
1. Solid + conc.		
H ₂ SO ₄ heat.		
2. Soln. + $AgNO_3$		
Soln.		
3. Brown ring test:		
Soln. + saturated $F_{0}SO$ solve + 2 mil		
$FeSO_4$ soln. + 2 ml. conc. H_2SO_4 drop by		
drop without		
shaking.		
4. Ammonia test:		
Soln. + Zn(or Al) +		
NaOH heat.		
Physical Prop.:		

Detection of the Nitrate Radical (NO₃⁻)

III Miscellaneous Group

This group includes the remaining acid radicals which are not affected by either dil. HCl or hot $conc.H_2SO_4$

Experiment	Sluphate	Borate	Phosphate	
	e.g Na ₂ SO ₄	e.g. Na ₂ B ₄ O ₇	e.g.Na ₂ HPO ₄	
1. Soln. +	Sluphate	White ppt.	Yellow ppt. of	
AgNO ₃ soln.	e.g.	AgBO ₃ sol. in	Ag ₃ PO ₄ sol. in	
	Na_2SO_4	NH ₄ OH and	NH₄OH and	
		acetic acid	dil. HNO ₃	
2. Soln. + BaCl ₂	White ppt.	White ppt.	White ppt. of	
	of BaSO ₄	of $Ba_3(BO_3)_2$	BaHPO ₄ From	
	from Conc.	from conc.	neutral soln.	
	solns. only	solns. sol. in	sol. in dil.	
		xss. BaCl ₂	mineral acids	
		and dil. HCl	and acetic	
		and HNO ₃	acid.	
3.			White ppt. of	
Soln.+Magnesia			HgNH ₄ PO ₄	
mixture (MgCl ₂			sol. in acetic	
+NH ₄ Cl+H ₄ OH)			acid and in	
			mineral acids	

(A) General Tests:

Experiment	Observation & Results
i- Sulphate:	
Soln. + acetate soln.	White ppt. of PbSO ₄ sol. In
	Amm. acetate.
ii- Borate:	
1) Soln. + one drop of ph.ph.	Pink color which is decolorized
	by dil. glycerol. The color
	appears on heating and
	disappears on cooling.
2) Conc. soln. conc. HCl.	White ppt. of boric acid H ₃ BO ₄
iii- Phosphate:	
1) Soln. + amm. molybdate	
+ 2 ml. conc. HNO_3	Cream yellow ppt. sol. in dil.
	HCl. But insol. in acetic acid
2) Soln. FeCl ₃ soln.	

B) Special Tests:

Experiment	Observation	Result
1. Soln. + AgNO ₃		
soln.		
2. Soln.+ $BaCl_2$		
som.		
3. Soln. + lead		
acetate soln.		
4. $\operatorname{Soln} + \operatorname{SrCl}_2 \operatorname{soln}$.		
Physical Prop.:		

Detection of the Sulphate Radical (SO₄⁻²)

Experiment	Observation	Result
1. Soln. $+$ AgNO ₃		
soln.		
2. Soln. + One drop		
of ph.ph. and		
heating.		
3. Conc. soln. +		
conc. HCl.		
Physical Prop. :		

Detection of the Borate Radical (B₄O₇)⁻⁻

Experiment	Observation	Result
1. Soln. + $AgNO_3$		
soln.		
2. Soln. + Magnesia		
mix. (Mg+NH ₃ Cl+		
NH ₄ OH).		
3. Soln. + amm.		
Molybdate+ 2 ml.		
conc. HNO ₃ .		
4. Soln. +FeCl ₃ soln.		
Physical Prop.:		

Detection of the Phosphate Radical (HPO₄⁻⁻)

General Scheme for identification of the Acid Radical carry on the following experiments in the given order, to define the group to which the radical belongs:

1-Test for the presence of dil. HCI group:

Solid + dil	. HCl,	heat if	necessary,	characteristic	of	gases:
-------------	--------	---------	------------	----------------	----	--------

Observation	Conclusion	Confirm tests
a) Effervescence &	Gas is CO ₂ &	(1) If the salt is insol. So the radical
evolution of a gas	radical may be	is carbonate without any
that causes turbidity	carbonate or	confirmation.
for lime water.	bicarbonate.	(2) +ve result on cold: carbonate.
		(3) +ve result after heating:
		bicarbonate.
		* BaCl₃ White ppt. sol. in dil.
		HC1.
		* HgCI ₂ Red brown ppt.
		* AgNO ₃ White ppt. sol. in dil.
		HC1
b) A gas of bad	Gas is H ₂ S &	$AgNO_3 \rightarrow Black ppt.$
odor & blackens a	radical may be	HaOH + sod. nitropresside violet
lead acetate paper.	sulphide	color.
		CdSO ₄ canary yellow ppt.
c) A gas of	Gas is SO ₂ &	* AgNO ₃ White ppt.
suffocating odor and	radical may be	Acid I ₂ Decolor
turns and acid	sulphite	BaCl ₂ White ppt. sol. in dil.
dichromate paper		HCl
green.		
d) A gas as in (c) but	Gas is SO ₂ &	AgNO ₃ White ppt yellow
soln. becomes turbid	turbidity is S	black.
(white yellow).	& the radical	I ₂ Decolor.
	may be	FeCl ₃ Violet color, vanishes
	thiosulphate.	gradually
e) A gas that	Gas is NO and	* AgNO ₃ - White pp.
becomes red brown	the radical may	Acid I_2 Decolor.
at mouth of tube &	be nitrite.	FeSO₄ + acid Brown color.
soln. becomes blue.		

2-Test for the presence of hot conc. H_2SO_4 group

Solid + conc. H_2SO_4 , heat mildly then strongly characteristic of gases.

Observation	Conclusion	Confirm tests
a) Evolution of a	Gas is HCl &	*AgNO ₃ White cruddy
gas that turns blue	the radical	ppt.
litmus paper into	may be Cl⁻	*Pb(Ac) ₂ White ppt. sol.
red.		in boiling water.
		*Hg(NO ₂) ₂ White silky
		ppt.
b) Evolution of red	Gases are Br ₂	*AgNO ₃ Pale yellow ppt.
brown fumes &	& the radical	*Pb(Ac) ₂ White ppt. sol.
soln. becomes red	may be	in boiling H ₂ O
color	bromide	* MnO_4 + conc. H_2SO_4
		red brown fumes.
c) Evolution of	Gas are I ₂ &	*AgNO ₃ yellow ppt.
violet fumes which	The radical	*HgCl ₂ Scarlet red ppt.
turns starch paper	may be	sol. in the xss iodide
to blue color	iodide.	*CuSO ₄ Dirty white ppt.
		clarifies with $S_2O_3^{-2}$
d) Evolution of red	Gases are	*Brown ring test + ve.
brown fumes after	NO_2 & the	*Zn(NaOH)heatNH ₃ gas.
long heating.	radical may	*Cu +conc. H ₂ SO ₄ Red
	be nitrate	Brown fumes

3-Tests for the pressure of the miscellaneous group:

(A) Soln. + AgNO₃ \rightarrow ppt.

(B) Soln. +BaCl₂ \rightarrow ppt.

Conclusion May be Sulphate: * (A) Soln. + AgNO₃ \rightarrow White ppt. * Soln. + $(Pb(Ac)_2$ -- White ppt from conc. soln. * (B) Soln. + BaCl₂ \rightarrow White ppt. insol. in HCl May be Borate: * (A) Soln. + AgNO₃ \rightarrow White ppt. sol. in NH₄OH & acetic Acid * Soln. + HgCl₂----- Red brown ppt. *(B) Soln. + BaCl₂ \rightarrow White ppt. sol. in xss. BaCl₂ & HCl *Soln. + Conc. HCl -----White crystals. May be Phosphate: *(A) Soln. + AgNO₃ \rightarrow Yellow ppt. sol. in NH₄OH & Acids. * *Soln. + FeCl₃ -- Cream yellow ppt. *(B) Soln. +BaCl₂ \rightarrow White ppt. sol in acids. * Soln. + Mg mix-----White ppt * Soln. + Amm. moilybdate + conc.HNO₃ --- Yellow ppt.

Unknown No. ()

Experiment	Observation	Result
Physical Prop. :		

BASIC RADICALS

The famous basic radicals can be classified into six groups according to their behavior towards certain reagent. The "Group reagent" which will precipitate down any one of the members of a given group when present in solution. The following table includes this classification.

It is to be noted that most of the tests for basic radicals are carried out in solution. If the substance is insoluble in water, its solubility will be tried with the previously mentioned solvents in the given order.

The use of these solvents changes only the acid radical and has no effect on the basic radical or the salt under test.

Analytical Group

Group	Reagent	Metals	Cations
Ι	dil. HCl	Sliver	Ag^+
		(Hg)Mercurous	$\mathrm{Hg_2}^{+2}$
		Lead	Pb ⁺⁺
II	H ₂ S (Acidic medium) HCl	(Hg) Mercuric	Hg ⁺²
		Copper	Cu^{++}
		Bismuth	BI^{+++}
		Cadmium	Cd^{+2}
III	$[NH_4Cl + NH_4OH]$	Iron	$\mathrm{Fe}^{+2},\mathrm{Fe}^{+3}$
		Aluminum	Al^{+3}
		Chromium	Cr ⁺³
IV	$(NH_4)_2S + [NH_4Cl+NH_4OH]$	Zinc	Zn ⁺²
		Manganese	Mn^{+2}
		Nickel	Ni ⁺²
		Cobalt	Co^{+2}
V	(NH ₄) ₂ CO ₃ +	Calcium	Ca ⁺²
	[NH ₄ Cl+NH ₄ OH]	Barium	Ba ⁺²
		Strontium	Sr^{+2}
VI	No specific reagent	Magnesium	Mg ⁺²
		Potassium	\mathbf{K}^+
		Sodium	Na ⁺
		Ammonium	$\mathrm{NH_4}^+$

(dil. HCl group)

It includes basic radicals for silver (Ag^+) , Mercurous (Hg_2^{2+}) , and lead (Pb^{++}) . The group reagent is dil. HCl which forms ppt. of the corresponding chlorides.

Tests	Silver e.g.AgNO ₃	Lead e.g Pb(NO ₃) ₂	Mercurous e.g. Hg ₂ (NO ₃) ₂
1) Soln. +	White curdy ppt. of	White ppt. of PbCl ₂	White ppt. of
dil HCl	AgCl sol. in NH ₄ OH	from cold conc.	Hg ₂ Cl ₂ insol. in
acid.	and $Na_2S_2O_3$ but insol.	solns. sol. in hot	cold dil. acids but
	in dil. HNO ₃	water and separates	sol. in aqua Regia
		on cooling.	(3HCl:1HNO ₃)conc.
2) Soln.	Black ppt. of Ag ₂ S	Black ppt. of PbS sol.	Immediate black
+H ₂ S soln.	insol. in HN ₄ OH but	in hot dil. HNO ₃	ppt. of Hg ₂ S.
	sol. in HNO ₃		
3) Soln. +	Yellow ppt. of AgI	Yellow ppt. of PbI ₂	Yellowish green
KI soln.	insol. in both NH ₄ OH	sol. in boiling water	ppt. of Hg ₂ I ₂ sol. in
	& dil. HNO ₃	and separates on	xss KI.
		cooling in golden	
		yellow plates.	
4) Soln +	Brown-red ppt. of	Yellow ppt. of	Brown ppt. of
K ₂ CrO ₄	Ag ₂ CrO ₄ sol. in dil.	PbCrO ₄ insol. in	Hg ₂ CrO ₄ on cold
soln.	HNO ₃ & HN ₄ OH but	acetic acid but sol. in	which becomes red
	insol. in dil. acetic	Hydroxides & HNO ₃	on boiling.
	acid		
5) Soln. +	Brown ppt. of Ag ₂ O	White ppt. of	Black ppt. of Hg ₂ O
NaOH	insol. in xss. NaOH	Pb(OH) ₂ sol. in xss.	insol. in xss NaOH
soln.	but sol. in xss.	NaOH	
	NH ₄ OH		

Experiment	Observation and results
i-Sliver: 1) Soln. +2 drops	White ppt. sol. in xss. $Na_2S_2O_3$,
$Na_2S_2O_3$	it turns yellow, orange then
	black.
2) Soln. + sod. phosphate	White ppt. of AgOH sol. in Xss
	KOH to Form K Ag (OH) ₂ .
ii-Lead: soln. + dil.H ₂ SO ₄	White ppt. of PbSO ₄
iii- Mercurous mercury:	
1) Soln. + pot. Nitrate soln.	Yellow ppt. sol. in HNO ₃ and
	NH ₄ OH
2)Soln.+stannous chloride soln.	Dark grey ppt. of metallic Hg

(B) Special tests for dil. HCl Group
Detection of Silver \mathbf{Ag}^{+}

Experiment	Observation	Result
1) Soln. + dil. HCl		
2) Soln.+ H ₂ S soln.		
3) Soln. + KI soln.		
4)Soln.+K ₂ CrO ₄ soln.		
5) Soln.+ NaOH soln.		
6) Soln. + 2 drops of $Na_2S_2O_3$ soln.		
7) Soln. + sod. phosphate soln.		
Physical Prop.:		

Experiment	Observation	Result
1) Soln. + dil. HC1		
2) Soln. + H_2S soln.		
3) Soln. +KI soln.		
4)Soln.+K ₂ CrO ₄		
soln.		
5) Soln.+ NaOH		
som.		
6) Sola + dil USO		
$0, 50111. + 011. 11_2 + 0.04$		
Dhusical Drop :		
r nysicai riop.:		

Detection of Lead (Pb⁺⁺)

Experiment	Observation	Result
1) Soln.+ dil. HCl		
2) Soln. + H_2S soln.		
2) Soln + KL soln		
$5) \text{ Som.} + \mathbf{KI} \text{ som.}$		
4)Soln.+K ₂ CrO ₄		
soln.		
5)Soln. + NaOH		
som.		
6) Soln.+ KNO ₃ soln.		
7) Soln. + stannous		
chloride soln.		
Physical Prop.:		

Detection of Mercurous (Hg₂⁺⁺)

Group II (H₂S Group)

The group includes metal cations which are precipitated as Sulphides by H_2S hot HCl-acidified solution. The members of the group are classified into two subgroups according to the solubility of their sulphides in hot yellow ammonium sulphide as follows:-

1) Subgroup (II A) or Copper Group: It contains mercuric mercury, bismuth, copper and cadmium whose sulphides are insol. in hot yellow amm. sulphide.

2) Subgroup (II B) or Arsenics Group: It contains arsenic antimony and tin, the sulphides of which are soluble in hot yellow amm. sulphide, Experimental details are omitted.

Group (II A) Copper Group

The reaction of the members of the copper group with the group reagent which consists of dil. HCl and H_2S to form insol. Sulphides is represented by the following equations:-

$HgCl_2 + H_2S \rightarrow HgS + 2HCl (black).$

 $Bi(NO_3)_3 + H_2S \rightarrow Bi_2S_3 + 3 \text{ HNO}_3 \text{ (brown)}$ $CuSO_4 + H_2S \rightarrow CuS + H_2SO_4 \text{ (black)}.$ $CdSO_4 + H_2S \rightarrow CdS + H_2SO_4 \text{ (yellow)}$

Tests	Mercuric	Bismuth	Copper	Cadmium
	e.g.HgCl ₂	e.g.	e.g.CuSO ₄	e.g.CdSO ₄
		Bi(NO ₃) ₃		
1) Soln. +	White ppt. at	Brown ppt.	Black ppt. of	Yellow ppt.
HCl dil.	first of	of Bi_2S_3	CuS insol. in	of CdS insol.
(till	$Hg_3Cl_2S_2$	insol. In	yellow amm.	in yellow
Acidic)	which changes	yellow amm.	sulphide but	amm.
Warm +	to yellow	Sulphide but	sol. in dil.	sulphide but
H_2S	brown and	sol. in hot	$HNO_3 +$	sol. in hot
	finally black	dil. HNO ₃	KCN soln.	dil. HNO ₃
	(HgS)			
2) Soln. +	Red-brown	White ppt. of	Blue ppt. of	White ppt.
NaOH	ppt. of the	Bi(OH) ₃	Cu(OH) ₂	of Cd(OH) ₂
soln.	basic chloride	sol. in dill	changes to	
	that changes	mineral acids	black ppt. of	
	to yellow HgO		CuO on	
			heating	
3) Soln. +	White ppt.	White basic	A pale blue	White pp. of
NH ₄ OH	of amino	slat insol. in	ppt. of the	Cd(OH) ₂
soln.	mercuric	xss. NH ₄ OH	basic salt	sol. in xss.
	chloride to		sol. in xss.	NH ₄ OH
	yellow HgO		NH ₄ OH to	
			give a deep	
			blue color.	
4) Soln. +	Scarlet red	Dark brown	White ppt.	
KI soln.	ppt. of HgI ₂	ppt. of BiI ₃	of Cu ₂ I ₂	
	sol. in xss. KI	sol. in xss.	together with	
	to form	KI to give a	a brown	
	K ₂ HgI ₄	yellow soln.	solution due	
		upon	to liberation	
		dilution, the	of I ₂	
		brown ppt.		
		reform.		

(A) General Tests for gr. II A

Experiment	Results and observations
i- Mercuric Hg:	
1-Soln. + Sn Cl ₂ soln.	White ppt. of HgCl ₂ which changes
	to grey-black ppt. with xss. of SnCl ₂
2-Soln. + (NH ₄) ₂ CO ₃ soln.	Red-brown ppt. of basic carbonate.
ii- Bismuth:	
1-Soln. + xss. water	A white ppt. of the basic salt
	Bi(OH) ₃ , sol. in dil mineral acids, but
	insol. in tartaric acid soln. (contrary
	to Sb). and in solutions of alkali
	hydroxides (contrary to Sb).
2-Soln.+ sod. Stannite Na ₂ (SnO ₂)	Black ppt. of finely divided Bi.
(Stannous Chloride +xss. NaOH)	
iii-Copper:	
1-Slon. + pot. Ferrocyanide	Red brown ppt. of cupric
$K_2Fe(CN)_6$	ferrocyanide $Cu_2Fe(CN)_6$ insol. in dil
	acids but sol. in as NH ₄ OH to a blue
2-Soln.+ KCN	soln.yellow ppt. of Cu(CN) ₂ which
	decomposes to white $Cu_2(CN)_2$ that
	dissolves. In xss. KCN to form
iv-Cadmium	$K_3Cu(CN)_4.$
1-Soln. +KCN	white ppt. of $Cd(CN)$ + sol. in xss.
	KCN, on passing H_2S in the resulting
	solution, a yellow ppt. of CdS forms
	(contrary to Cu).
$2-\text{Soln.} + \text{K}_2\text{Fe}(\text{CN})_6$	White ppt. of cadmium
	ferrocyancide.

(B) Special Tests for gr.(IIA)

Experiment	Observation	Result
Physical Prop. :		

GROUP III

Ammonium Hydroxide Group

Members of this group are Ferrous Iron, Ferric Iron, Chromium and Aluminum, The group reagent is composite consists of NH₄Cl and NH₄OH that form insoluble hydroxides as illustrated by the following equations:

$$\begin{split} & \text{FeSO}_4 + 2 \text{ NH}_4\text{OH} \rightarrow \text{Fe}(\text{OH})_2 + (\text{NH}_4)_2\text{SO}_4 \text{ (dirty green)} \\ & \text{FeCl}_3 + 3 \text{ NH}_4\text{OH} \rightarrow \text{Fe}(\text{OH})_3 + 3\text{NH}_4\text{Cl (red-brown)} \\ & \text{Al}_2(\text{SO}_4)_3 + 6 \text{ NH}_4\text{OH} \rightarrow \text{Al}(\text{OH})_3 + 3(\text{NH}_4)_2\text{SO}_4 \text{ (white)} \\ & \text{CrCl}_3 + 3\text{NH}_4\text{OH} \rightarrow \text{Cr}(\text{OH})_3 + 3\text{NH}_4\text{Cl (dirty green)} \end{split}$$

Tests	Ferrous	Ferric	Aluminum	Chromium
	e.g. FeSO ₄	e.g. FeCl ₃	e.g.AI ₂ (SO ₄) ₃	e.g. CrCl ₃
1) Soln. +	Dirty green	Red-brown	White	Grey green
$NH_4Cl +$	ppt. of	gelatinous	gelatinous	gelat. ppt. of
NH ₄ OH	Fe(OH) ₂	ppt. of	ppt. of	Cr(OH) ₃
till	insol. in	Fe(OH) ₃	Al(OH) ₃	slightly sol.
alkaline	alk.	insol. in alk.	slightly sol.	in
	Hydroxides	Hydroxides	in xss.	xss. NH ₄ OH
	but sol. in	but disol. in	NH ₄ OH	to give a
	dil. mineral	acids.		violet
	acids			soln. &
				reppt.
				on boiling.
2) Soln. +	Same as	Same as	White gelate.	Grey green
NaOH	above	above	ppt. Al(OH) ₃	ppt. sol. in
			sol. in xss.	acids & in
			NaOH to Sod.	xss. NaOH
			aluminate	to
			NaAlO ₂	give green
				soln. of
				NaCrO ₂
3) Soln +		Pale yellow	White	Green ppt.
NH ₂ HPO ₄		ppt. FePO ₄	gelate. ppt.	of CrPO ₄
		insol. in	of AlPO ₄	sol. in dil.
		acetic acid	insol. in acetic	mineral
		but sol. in	but sol. in	acids &
		mineral	mineral	insol. in
		acid & alk.	acids + alk.	acetic acid.
		solns.	solns.	

(A) General Tests for Gr. III

Experiment	Results and observations
1- Ferrous Iron	
1) Soln. + pot. Ferricycanide	
$K_3Fe(CN)_6$.	Deep blue ppt. (Turnbul's blue).
2) soln. + KCN	Yellowish white ppt. of ferrous
	cyanide sol. in xss. KCN to form
	a yellow soln. of K_4 Fe(CN) ₆ .
3) soln. + H_2S + NH_4OH	A black ppt. of FeS.
4) soln. + pot. Ferrocyanide	
K ₄ [Fe (CN) ₆]	NO ppt.
5) soln. + pot.thiocyanate KCNS	NO color.
ii- Ferric iron	
1) soln. $+K_3Fe(CN)_6$	An intense blue ppt. of Prussian
	blue.
2) soln. + KCNS	Blood red colour decolorized by
	HgCl ₂
3) soln. + (neutral) + $Na_2S_2O_3$	A violet, red colour that quickly
	disappears.
4) soln. + sod. acetate.	
iii- Aluminium:	
1) soln. + Na_2CO_3	White ppt. of $Al(OH)_3$ sol. in
	xss. of Na ₂ CO ₃
2) soln. (neutral) + xss. sod.	
acetate then boil	A voluminous ppt. of basic
	acetate $Al(Ac)_2$.
iv- Chromium	
soln. + xss. NaOH + small	
quantity of sod. peroxide.	A yellow solution.

(B) Special Tests for Gr. III

Observation	Result
	Observation

Experiment	Observation	Result
Physical Prop :		
r nysicar r top		

Experiment	Observation	Result
Physical Prop. :		

Experiment	Observation	Result
Physical Prop. :		

GROUP(IV) Ammonium Sulphide Group

This group contains divalent metal cations of Zinc, Manganese. Nickel and Cobalt. the group reagent consists of NH_4Cl , NH_4OH and $(NH_4)_2S$ or H_2S that forms insol. sulphide in alk. medium according to the following equations: -

 $ZnSO_4 + (NH_4)_2S \rightarrow ZnS + (NH)_2SO_4$ (white).

 $MnCl_2 + (NH_4)_2S \rightarrow MnS + 2 NH_4Cl$ (flesh).

 $Co(NH_3)_2 + (NH_4)_2S \rightarrow CoS + 2 NH_4NO_3$ (black).

 $NiCl_2 + (NH_4)_2S \rightarrow NiS + 2 NH_4Cl (black).$

Tests	Zinc	Manganese	Cobalt	Nickel
1) Soln. +	White ppt. of	Fleshy ppt.	Black ppt. of	Black ppt. of
$NH_4Cl +$	ZnS sol. in	of MnS,	CdS. sol. in	NiS sol. in
NH ₄ OH (till	dil. mineral	becomes	conc. HNO ₃	hot conc.
just alk.)	acids.	brown in air.	with	HNO ₃
$+ H_2S$			separation of	
			S.	
2) Soln.	White gelat.	White ppt. of	A blue ppt. is	Green ppt. of
+NaOH or	ppt. of	Mn(OH) ₂ .	formed on	Ni(OH) ₂
NH ₄ OH.	$Zn(OH)_2$ sol.	becomes	cold,	insol. in
	in xss. alk.	brown in air	whereas a	NaOH but
	forming	insol. in	pink ppt.	sol.in
	Na ₂ ZnO ₂ and	xss. alkail	which turns	NH ₄ OH and
	also sol. in		brown is	amm. slats to
	dil. acids.		formed with	form green-
			xss. alkali	blue solns.
			and heating.	
3) Soln. +	White ppt. of	White ppt. of	Red ppt. of	Apple green
Na ₂ CO ₃	basic	MnCO ₃	basic salt sol.	ppt. NiCO ₃
Or	carbonate		in xss.	sol. in xss.
$(NH_4)_2CO_3$	sol. in xss.		$(NH_4)_2CO_3$	$(NH_4)_2CO_3$
	$(NH_4)_2CO_3$			
4) slon. +	White ppt. of	Brown ppt.	Red-brown	Light green
KCN	Zn(CN) ₂ sol.	of Mn(CN) ₂	ppt. of	ppt. Ni(CN) ₂
	in xss. KCN	sol. in xss.	$Co(CN)_2$ sol.	sol. In xss.
		KCN to a	in xss. KCN	KCN to give
		brown soln.	to a brown	K ₂ Ni(CN) ₄
		that gives	soln. of	
		green ppt. on	K ₄ Co(CN) ₆	
		heating.		

(A) General Tests for Gr. IV

Experiment	Results and observations
i- Zinc	
1) Soln. + NH ₄ Cl sod. phosphate	White ppt. of Zn(NH ₄)PO ₄ sol. in
(Na ₂ HPO ₄)	NH ₄ OH and dil. acids.
2) soln. + pot. ferrocyanide	White ppt. of $Zn_2Fe(CN)_6$
ii- Manganese	
1) soln. + NH ₄ OH +	Fleshy ppt. of Mn(NH ₄)PO ₄
ferrocyanide.	
2) soln. + pot. Ferrocynide.	Brown ppt. of Mn ₂ Fe(CN) ₆
3) soln + lead peroxide + conc.	The supernatant liquid is colored
HNO_3 , boil, dil with H_2O ,	violet due to formation of MnO ₄
allow to stand and settle.	
iii- Cobalt:	
1) soln. + NH_4CNS	Blue solution due to form of
	$(NH_4)_2Co(CNS)_4.$
2) (soln. + (acetic) + xss. KNO_2	Yellow ppt. of K ₃ Co(NO ₂) ₆
3) soln. + pot. ferrocyanide	Brown-red ppt. of Co ₃ Fe(CN)6 insol.
	in dil. HC1
iv- Nickel	
1)soln. +NH ₄ OH till (alk.) +	Red ppt. of Nickel dimethyl
dimethyl glyxime (C ₄ H ₈ O ₂ H ₂)	glyoxime

(B) Special Tests for Gr. IV

Experiment	Observation	Result
Physical Prop. :		

GROUP V

Ammonium Carbonate Group

This group presents the only example where metals of the same group of periodic table form an independent group of basic radicals. It contains the divalent metal cations of calcium, strontium and barium which occupy group II A in the periodic table. The group reagent consists of NH_4Cl (avoid xss.), then NH_4OH till just alk., and $(NH_4)_2CO_3$ which form insol. Carbonates from hot (60° C) solutions.

$CaCl_2 + (NH_4)_2CO_3 \rightarrow CaCO_3 + 2 NH_4Cl$

 $SrBr_2 + (NH_4)_2CO_3 \rightarrow SrCO_3 + 2 NH_4Br$

 $BaCl_2 + (NH_4)_2CO_3 \rightarrow BaCO_3 + 2 NH_4Cl$

Tests	Calcium	Strontium	Barium
1) Soln. +	White ppt. of	White ppt. of	White ppt. of
NH ₄ Cl (few)	CaCO ₃ sol. in	SrCO ₃ sol. in	BaCO ₃ sol. in dil.
+ NH ₄ OH (till	dil. acids.	dill. acids.	acid
just alk.) +			
$(NH_4)_2CO_3.$			
2) Soln. +	White ppt. of	White ppt. of	White ppt. of
Ca(OH) ₂ just	CaC_2O_4 insol.	SrC_2O_4 insol.	BaC ₂ O ₄ sol. in
alk.) + Amm.	in acetic & sol.	in acetic &	mineral acids.
oxalate.	in mineral	sol. in	
	acids.	mineral	
		acid.	
3) Soln. +	No ppt.	White ppt. of	Heavy white ppt.
CaSO ₄ soln.		SrSO ₄ insol.	of BaSO ₄ insol. in
		in $(NH_4)_2CO_3$	dil. acids.
4) slon. $+$ sod.	White ppt. sol.	Same as Ca.	Same as Ca
carbonate	in mineral acids		
	& acetic acid.		
5) soln. (conc.)	Yellow ppt. of	Yellow ppt.	Yellow ppt. from
$+ K_2 CrO_4$	CaCrO ₄ sol. in	sol. in acetic	neutral soln. insol.
	acetic acid.	acid.	in acetic acid
Flame test	Brickred	Crimson red	Apple green color
	color.	color	

(A) General Tests for Gr. V

(B) Special Tests for Group V

	Experiment	Observation & Result
Calcium:	$+ NH_4Cl + pot.$	A white ppt. is formed
Soln. (conc.)	Ferrocyanate	especially on standing

Experiment	Observation	Result
Physical Prop. :		

Experiment	Observation	Result
Physical Prop. :		

Experiment	Observation	Result
Physical Prop. :		

GROUP VI

The Alkali Group

This group contains those cations which are not ppted. by any of the previously mentioned group reagents. Those radicals are sodium (Na⁺), potassium (K⁺), ammonium (NH₄⁺) and Magnesium (Mg⁺⁺).

Experiment	Observation + Results	
i-Magnesium (Mg):		
1) soln. + NH ₄ Cl + NH ₄ OH +	White ppt. of Hg(NH ₄)PO ₄ sol. in acids.	
Na ₂ HPO ₄ .		
2) soln. + NaOH	White ppt. insol in xss. NaOH, sol. in	
	amm. salts.	
3) soln. + $(NH_3)_2CO_3$ or Na_2CO_3 .	White ppt. of heating sol. in amm. salts.	
ii- Ammonium (NH ₄ ⁺) :	Ammonia gas evolves detected by, odor	
1) solid t conc. NaOH, heat.	and turning red litmus blue.	
2) soln. + Nessler's reagent	Brown ppt. or brown-yellow	
K ₂ HgI ₄	coloration.	
3)soln. + sat. sod. Hydrogen	White ppt. of amm. acid tartarate.	
tartarate (or tartaric acid soln.)		
4) soln. + sod. Cobalti nitrite	Yellow ppt. of (NH ₄) ₃ Co(NO ₂) ₆ .	
Na ₃ [Co(NO ₂) ₆].		
5) soln. + few drops KI + one drop	A black ppt. of NaHI ₂ , is formed	
sat. sod. hypochlorite (NaOCl).		
6) Solid, heat.	Decompa., evolution of NH ₃ gas and	
	condentsation of white ppt. on colder	
	part of T.T.	

(B) Special Tests for Group (VI)

The Alkali Group

(continued)

Experiment	Results and observations	
iii- Potassium (K ⁺):		
1) soln. + NH ₃ Co (NO ₂) ₆	Yellow ppt. especially on	
	warming.	
2) soln. + sat. tartaric acid,	White ppt. from conc. solns.	
scratch.		
3) soln. + perchloric acid or	White crystalline ppt. of	
NaClO ₄ .	KClO ₄ .	
4) Carnot's test : one drop dil.	A yellow ppt. of pot. Bismuth	
Bismuth nitrated + 2 drops	Thiosulphate.	
dil. $Na_2S_2O_4 + 10$ ml alcohol +		
neutral soln.		
5) Flame test.	Pale violet color	
iv- Sodium:		
1) soln. +Na ₃ Co(HO ₂) ₆	No ppt.	
2) soln. + tartaric acid	No ppt.	
3) soln.+ pot. dihydrogen	White crystalline ppt. of sod.	
antimonite.	dihydrogen antimonite after	
	scratching	
4) flame test.	Golden yellow coloration.	

Experiment	Observation	Result
Physical Prop. :		

Experiment	Observation	Result
Physical Prop. :		

Experiment	Observation	Result
Physical Prop. :		

Some Important Remarks:

i-Dissolution:

1) Powder the solid and then try its solubility in the solvent scheme previously mentioned in the given order.

2) If the solid dissolves in dil. HCl then group I is absent.

3) If the substance dissolved in conc. HCl the soln. should be diluted with dil. HCl before adding the group reagent otherwise BiOCl.

4) If all reagents up to aqua-regia fail to dissolve the substance. The solid is fused some of its weight with dry Na_2CO_3 and extract the fused mass with a little boiling water and filter. Dissolve residue in dil. HNO₃ and test the resulting soln. for basic radical. The filtrate on the other hand can be sued for the detection of acid radicals.

5) A substance may dissolve on heating but reppts. on cooling as PbCl₂, so one must cool the solution before carrying out the tests. If any ppt. is formed on cooling, another solvent must bestride.

6) If a concentrated acid is used the solution must be diluted with water then cooled.

7) It is preferable in case of HNO_3 & aqua-regia to evaporate till dryness then dissolve residue in water (nitrates interfere with the identification of gr. II, by oxidizing H_2S into yellow-white colloidal S).

67

ii-Some difficulties

1) If there is a bismuth salt, a white ppt. may be formed on adding HCl and thus gr. I may be suspected. Once the ppt. dissolves in xss. water gr. is absent. Better add H_2S on the white ppt. if it does not turn black then gr. I is absent.

2) If a thiosulphate is present a white ppt. is formed sometime after adding HCl which soon turns yellow especially on warming due to separation of colloidal Sulphur which can be separated by boiling the soln. with a place of filter paper and filtering.

3) If a white ppt. is formed upon addition of dil. HCl as a reagent for gr. I, it will be either from gr. I, Bi from Gr. II ppt. disappears it is Bi or Sb. Then add H_2S , if it turns black it is from gr. (I) otherwise it is Bi or Sb.

4) If the concn. of dil. HCl used in gr. It is somewhat higher Cd may escape precipitation with the gr. regent in this case neutralization of the acidic soln. with NH_4OH causes appearance of the yellow ppt.

5) If the amount of NH_4Cl added in the reagent of gr III is not sufficient, members of the coming groups may precipitate. In this case add more NH_4Cl , if ppt. dissolves gr. III is absent; if not gr. III is present.

6) Solution must be quite alk. for identification of both gr. (IV) & (V).

68

7) Bicarbonates may give the carbonate tests on acid due to impurities of carbonates.

8)Testing for nitrates requires prolonged heating with conc. H_2SO_4 and adding a piece of Cu metal before ascertaining absence of nitrate.

9)Testing for miscellaneous group requires relatively concentrated solutions.

GENERAL SCHEME FOR IDENTIFICATION OF SIMPLE INORGANIC UNKNOWNS

A-Report on the physical properties as:

1) Color 2) Crystalline state

3) Solubility (Action on litmus).

B-Identification of the Basic Radical:

Cary on the following ten tests in the given order

1-test for the presence of NH_4^+ Solid, NaOH soln. conc. heat

Conclusion	Confirm tests
Gas in NH ₃ & the basic radical	*Nessler's reag. yellow color or
may be ammonia.	ppt.
	*Na ₃ [Co(NO ₂) ₆] yellow Ppt.
	*KI + NaOCl Black ppt.
	Conclusion Gas in NH ₃ & the basic radical may be ammonia.

2-Test for the presence of group (I)

soln. (cold) dil. HCl-----Heavy white ppt.

Observation	Conclusion	Confirm tests
a- white ppt. sol. in NH ₄ OH	ppt. is AgCl and the radical	* H_2S black ppt. sol. in NHO ₃ and
& turn violet by heat.	may be Ag ⁺	insol. in NH ₄ OH.
		*KCN white ppt. sol. in xss. KCN.
		*K ₂ CrO ₄ (neutral)- red brown ppt.
b-white ppt. blackens with	ppt. is Hg_2Cl_2 and the radical	*H ₂ S black ppt. insol. In NHO ₃
	may be Hg_2^{+2}	* SnCl ₂ white ppt. turns grey with
		XSS.
c-white ppt. insol. in NH ₄ OH	ppt. is PbCl ₂ and the radical	H ₂ S black ppt. sol. in hot HNO ₃
	may be Pb ⁺⁺	K ₂ CrO ₄ yellow ppt. insol. in
		acetic and sol. in nitric
		NaOH white ppt. sol. in XSS

3-Test for group (IIA)

Soln.+ dil. HCl, hot to 60° C + H₂S -- Colored ppt. insol. in yellow (NH₄)₂S

Observation	Conclusion	Confirm tests on soln.
a) Black ppt. insol. in conc.	ppt. is HgS and radical may	*NaOH yellow or red ppt.
HNO ₃	be Hg ⁺⁺	*KIviolet ppt. sol. in xss. KI
		*Na ₂ CO ₃ red brown ppt.
b) Black ppt. sol. in conc.	ppt. is CuS and radical	*KIdirty white ppt.
HNO_3 to give a blue soln.	may be Cu ⁺⁺	*HN ₄ OHpale blue ppt. sol. in xss.
		$*NH_4OH + K_4Fe(CN)_6$ red brown ppt.
		insol. in acids and sol. in NH_4OH
c) Brown ppt. sol in conc.	ppt. is Bi_2S_3 & radical	*NaOH white ppt. that change to yellow
HNO ₃ colorless soln.	may be Bi ⁺³	on boiling.
		*H ₂ O formn. of white ppt.
		Na ₂ SnO ₂ black ppt.
d) Canarian yellow ppt. sol. in	ppt. is CdS & radical	NaOH white ppt. insol in xss.
conc. HNO ₃ to give a color-	may be Cd ⁺⁺	KCN- white ppt. sol. in xss.
less soln.		K_3 Fe(CN) ₆ white ppt.
Observation	Conclusion	Confirm tests
-----------------------------------	---	---
a) white gelat. ppt. sol. in NaOH	ppt. is Al(OH) ₃ + radical may be	*Na ₂ CO ₃ white ppt. sol. in xss.
	aluminum.	NaCO ₃
		*Na ₂ HPO ₄ white gelat. pp. sol. in
		acids & bases.
b) Dirty green ppt	ppt. is Fe(OH) ₂ and radical may be	*(NH ₄) ₂ S white ppt.
sol. in acids only	ferrous	*pot. Ferricyanide Blue ppt
		KCN yellow white ppt. sol. in xss.
		KCN
c) Dirty green ppt. sol.	ppt. is Cr(OH) ₃ & radical may be	KCNS No blood red coloration.
in acids and bases	chromium	*NaOH Grey green ppt. sol. in xss.
		Ha ₂ HPOgreen ppt. sol. In dil.
		Mineral acids.
		*xss. NaOH+ Na ₂ O ₂ yellow soln.
d) Red brown ppt.	ppt. is Fe(OH) ₃ & radical may be Fe ⁺³	Pot. Ferrocyanide Blue ppt.
		KCNSBlood red colour.
		Na ₂ HO ₄ cream yellow ppt. insol. in
		acetic.

4-Test for group (III) 1 ml. soln. + 2 ml. NH₄Cl +NH₄OH (till just alk.) ppt.

Observation	Conclusion	Confirm tests
a) white gelat. ppt. sol. in acids.	ppt. is ZnS & radical may be Zinc.	*NaOH white ppt. sol. in
		*KCHwhite ppt. sol. in XSS.
		*NHCI + Na ₂ HPO ₄ white ppt.
b) Fleshy ppt. sol. in acids only.	ppt. is MnS and radical may be	*NaOHwhite ppt. which changes to
	Manganese.	brown
		*KCNbrown ppt. sol. in XSS to brown
		soln
		*Pot. Ferrocyanide brown ppt.
c) Black ppt. insol.in acids soln. +	ppt. is NiS & radical may be Ni	* NaOH Apple green ppt. sol. in acid
dimethyl glyoxime + NH_4OH red		* KCN pale. green ppt. sol. in X
ppt.		*(NH ₄) ₂ CO ₃ apple green ppt. sol. in xss.
d) Black ppt. insol. in Acids. soln. +	ppt. is CoS & radical may be	*KCNS Blue soln.
NH ₄ OH+ dimethyl Glyoxime no	Cobalt	*Acetic acid + xss. KNO ₃ yellow ppt.
ppt.		*Acetic acid + xss. KNO ₂ yellow ppt.
		*KCN pale green ppt. sol. in xss. KCN

5- Test for group (IV) 1 ml. soln. +1 ml. NH₄OH (till alk.) + H₄S (xss.) ppt.

Observation	Conclusion	Confirm tests
a) white ppt. & brick red color	pp. is CaCO ₃ & radical may	*CaSO ₄ no ppt.
for flame.	be Calcium.	*K ₂ CrO ₄ yellow ppt. sol. in dil acetic
		$K_3Fe(CN)_6$ (NH ₄ Cl) white ppt. after
		time.
b) white ppt. & crimson red	ppt. lin SrCO ₃ & radical	*CaSO ₄ white ppt. form conc.
color for flame.	may be Strontium.	solutions
		K ₂ CrO ₄ yellow ppt. sol. in hot acetic
		* sod. phosphate -white ppt. sol. in acids.
c) white ppt. & apple green	ppt. is Ba CO3 & radical	*CaSO ₄ Immediate white ppt.
color for flame.	may be Barium.	*K ₂ CrO ₄ yellow ppt. insol. In acetic
		*Sod. phosphatewhite ppt. sol. in acids.

6- Test for group (V) 1 ml. soln. + 1 ml. NH₄Cl + NH₄OH(till alk.) + (NH₄)₂CO₃ white ppt.

7-Test for group (VI)

Mg^{++} soln. + NH_4Cl + NH_4OH (alk.) Na_2HPO_4 white ppt.

Conclusion	Confirm tests
ppt. is $Mg(NH_4)PO_4$ + radical may be Mg.	*NaOH white ppt. insol. in xss. NaOH sol. in
	amm. salts
	*Na ₂ CO ₃ white ppt., on heating

8-Test for \mathbf{K}^+

Carnot's test: One drop dil. $Bi(NO_3)_3 + 2 drops Na_2S_2O_3 + 10 ml alcohol + neutral soln... yellow$

ppt.

Conclusion	Confirm tests
ppt. is pot bismuth thiosulphate and radical may be	*Na ₃ Co(NO ₂) ₆ yellow ppt. on warning
Potassium.	*Sat. tartaric acid solnwhite ppt.
	*Perchloric acid white ppt.
	*flame test Pale violet.

9-Test for Na⁺

flame test ----- Golden yellow color

Conclusion	Confirm tests
Radical may be Na.	*NaCo(NO ₂) ₆ no ppt.
	*Tartaric acid no ppt.
	*Pot. Hydrogen antimonitewhite ppt.