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We have all seen the strange device, known as a
Van De Graaff Generator, that makes your hair
stand on end. The device looks like a big
aluminum ball mounted on a pedestal, and has
the effect pictured on the right. Have you ever
wondered what this device is, how it works, why
it was invented, Surely it wasn't invented to make
children's hair stand on end... Or have you ever
shuffled your feet across the carpet on a dry
winter day and gotten the shock of your life when
you touched something metal? Have you ever
wondered about static electricity and static cling?
If any of these guestions have ever crossed your
mind, then here we will be amazingly interesting
as we discuss Van de Graaff generators and static
electricity in general.

1.1 Understanding Static Electricity

To understand the Van de Graaff generator and how it works, you need to
understand static electricity. Almost all of us are familiar with static
electricity because we can see and feel it in the winter. On dry winter days,
static electricity can build up in our bodies and cause a spark to jump from
our bodies to pieces of metal or other people's bodies. We can see, feel and
hear the sound of the spark when it jumps.

In science class you may have also done some experiments with static
electricity. For example, if you rub a glass rod with a silk cloth or if you rub
a piece of amber with wool, the glass and amber will develop a static charge
that can attract small bits of paper or plastic.

To understand what is happening when your body or a glass rod develops a
static charge, you need to think about the atoms that make up everything we
can see. All matter is made up of atoms, which are themselves made up of
charged particles. Atoms have a nucleus consisting of neutrons and protons.
They also have a surrounding "shell™ which is made up electrons. Typically
matter is neutrally charged, meaning that the number of electrons and
protons are the same. If an atom has more electrons than protons, it is
negatively charged. Likewise, if it has more protons than electrons, it is
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positively charged. Some atoms hold on to their electrons more tightly than
others do. How strongly matter holds on to its electrons determines its place
in the Triboelectric Series. If a material is more apt to give up electrons
when in contact with another material, it is more positive on the
Triboelectric Series. If a material is more to "capture” electrons when in
contact with another material, it is more negative on the Triboelectric
Series.

The following table shows you the Triboelectric Series for many materials
you find around the house. Positive items in the series are at the top, and
negative items are at the bottom:

Human Hands (usually too moist though) (very positive)
Rabbit Fur

Glass

Human Hair

Nylon

Wool

Fur

Lead

Silk

Aluminum

Paper

Cotton

Steel (neutral)

Wood

Amber

Hard Rubber

Nickel, Copper

Brass, Silver

Gold, Platinum
Polyester

Styrene (Styrofoam)
Saran Wrap
Polyurethane
Polyethylene (like scotch tape)
Polypropylene

Vinyl (PVC)

Silicon

Teflon (very negative)

The relative position of two substances in the Triboelectric series tells you
how they will act when brought into contact. Glass rubbed by silk causes a
charge separation because they are several positions apart in the table. The
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same applies for amber and wool. The farther the separation in the table, the
greater the effect.

When two non-conducting materials come into contact with each other, a
chemical bond, known as adhesion, is formed between the two materials.
Depending on the triboelectric properties of the materials, one material may
"capture™ some of the electrons from the other material. If the two materials
are now separated from each other, a charge imbalance will occur. The
material that captured the electron is now negatively charged and the
material that lost an electron is now positively charged. This charge
imbalance is where "static electricity” comes from. The term "static"
electricity is deceptive, because it implies "no motion”, when in reality it is
very common and necessary for charge imbalances to flow. The spark you
feel when you touch a doorknob is an example of such flow.

You may wonder why you don't
see sparks every time you lift a
piece of paper from your desk.
The amount of charge is
dependent on the materials
involved and the amount of
surface area that is connecting
them. Many surfaces, when
viewed with a magnifying device,
appear rough or jagged. If these
surfaces were flattened to allow
for more surface contact to occur,
the charge (voltage) would most definitely increase. Another important
factor in electrostatics is humidity. If it is very humid, the charge imbalance
will not remain for a useful amount of time. Remember that humidity is the
measure of moisture in the air. If the humidity is high, the moisture coats the
surface of the material providing a low-resistance path for electron flow.
This path allows the charges to "recombine” and thus neutralize the charge
imbalance. Likewise, if it is very dry, a charge can build up to extraordinary
levels, up to tens of thousands of volts!

Think about the shock you get on a dry winter day. Depending on the type
of sole your shoes have and the material of the floor you walk on, you can
build up enough voltage to cause the charge to jump to the doorknob, thus
leaving you neutral. You may remember the old "Static Cling" commercial.
Clothes in the dryer build up an electrostatic charge. The dryer provides a
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low moisture environment that rotates, allowing the clothes to continually
contact and separate from each other. The charge can easily be high enough
to cause the material to attract and "stick" to oppositely charged surfaces
(your body or other clothes in this case). One method you could use to
remove the "static" would be to lightly mist the clothes with some water.
Here again, the water allows the charge to leak away, thus leaving the
material neutral.

It should be noted that when dirt is in the air, the air will break down much
more easily in an electric field. This means that the dirt allows the air to

Y
3 s r."

/
5

become ionized more easily. lonized air is
actually air that has been stripped of its ‘
electrons. When this occurs, it is said to be QY
plasma, which is a pretty good conductor. - v
Generally speaking, adding impurities to air .
improves its conductivity. You should now
realize that having impurities in the air has
the same effect as having moisture in the air.
Neither condition is at all desirable for
electrostatics. The presence of these
impurities in the air, usually means that they
are also on the materials you are using. The
air conditions are a good gauge for your
material conditions, the materials will generally break down like air, only
much sooner.

[Note: Do not make the mistake of thinking that electrostatic charges are
caused by friction. Many assume this to be true. Rubbing a balloon on your
head or dragging your feet on the carpet will build up a charge.
Electrostatics and friction are related in that they both are products of
adhesion as discussed above. Rubbing materials together can increase the
electrostatic charge because more surface area is being contacted, but
friction itself has nothing to do with the electrostatic charge]

For further information see appendix A (Understanding the Van de Graaff
generator)
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1.2 Properties of electrostatic

1.2.1 Electric charge

If a rod of ebonite is rubbed with fur, or a fountain pen with a coat-sleeve, it
gains the power to attract light bodies, such as pieces of paper or tin foil.
The discovery that a body could be made attractive by rubbing is attributed
to Thales (640-548 B.C). He seems to have been led to it through the
Greeks’ practice of spinning silk with an amber spindle; the rubbing of the
spindle cause the silk to be attracted to it. The Greek world of amber is
electron, and a body made attractive by rubbing is said to be electrified or
charged. The branch of electricity is called Electrostatics.

1.2.2 Conductor and insulator
Aladl 28 s 16 oA s Thales e LSl 4y o<l Jlae 8 Lo salal) paiill (e JulE
Odleall (e g 58 (ol i (g STyl 43Sy ¢y pad) Aad 5 s S (e Bl ey Gillbert
om0 o8 L danins alaa) e g il 138 o o i @lly g canall o Gulasl Fia
oall sl Cagall ddaud g aiad oSy sl (5 s aalind of @i (1700) ale 100
LA e Al S psne 05K o Dyl (S
G A oy y ) sl e JES o oSey RSl Ll o aag olad Bae ey
AUl dand 5 Gl 3 e waal Joe 13 V) Ll iy o s il Al s (= Y)
Ol sall a aludl 2D ) Ay 5eS)) Lpaal 53 o Crand o) ) (8 Sl s Lol
.Semiconductors <D sall oLl 5 Insulators J 3 sall s Conductors

Valence

Empt: Empt:
Band B mpty

Empt
EQI EQI mpty
=
Conduction (Empty) 'm 'm
: Filled Filled
Band || 1] ][] Fined {] 1111 m m

Conductor Insulator Semiconductor

Figure 1.1
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Jolsad) (8 Laim e ld s sl 4S ) 3 s CBla sall (8 43 5eS)) Aanlll ()5S0 dule ddiay

Saie Al la
Gl gise e e ge il Ll @l Sy solid dlall o sall 8 asl 1.1 <A 8 ey
Energy Bands e 4k a3 ) dewie clysindl 028 .Energy level saxs. 4l
Al aa e Ole s la g Ll Sl Gl el an g of oSe Y A A s G Clild)
Conduction Band Jus sl 4a s s AY) 5 Valence Band 5K 4 jay G yay Laaas|
e Floesl) duasill dpals adany (Energy Gap Eg — (e ad)l Gn E 18 e
232 0585 Al salall Gla WLy AS jall (e Anlll (SaE s Juagill da a8 2) 54l
L 0o 4l uial) o aUS Jolsall alsall G Lain bl dlia ga (65 Apaldl)
Y ling Jsm sl Ao ja ) SIS Aa s o 05 S0 (5 iy (S5 Lol Blas a5
ALY 23 i aal Yle ¢ sSen L5 Energy Gap Eg le cility s 5S35l
Jua il da a5 Lead s Semiconductor et J)lsall 3 clia sall (p Jas s Al aa 63
A sy G e 050 pebiiey Ul Ll spladl S daja e b le s Ay
Jua il de s ) a0 Absorbing thermal energy 4 ) s 48l luis)

1.2.3 Positive and negative charge
Gl dlls Gosla e S LAl e Gilide (e 5l of ) (S oladl Al s
A<l 5 Lalia AT Bl Ly 5 13 . jle Jasi ety o pal) (e Gald Al 0 a1 (e
O Gl O ol coSlaa oladl (b ot Cage ald Glaall BL e Liad sl
& jaty Coga Glaall Glad) ld o gaall dda) 5y 4l 23 Sandd) (e (Ble cu i .Repel
Attract glilaty Ll ol elaudill sl sl

Like charge repel one another and unlike charges attract one another as
shown in figure 1.1 where a suspended rubber rod is negatively charged is
attracted to the glass rod. But another negatively charged rubber rod will
repel the suspended rubber rod.
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L]

Rubber /v Rubber

Figure 1.2
Unlike charges attract one another and like charge repel one another

il Negative eladll e o< Al dadll Franklin  (SeY) alladl e s
coalas Adhaall bl 5 Al Aglinall cliadll of s

1.2.4 Charge is conserved
Slo sl Msal o3 Normal dsbeie dpalal) Alall 3 Ll a3 sall &aall 5 ki)
Aall sa WS (o)) cllall ddee k81 AY) ) asly (e Jim Linl) (g 4y laiie cilaeS
ol maay Wiy sl e Aamse Al i sl gl uall Zlasl ol
Taliadly s Le 130 5 L5 e baa szl (e IS (05 el iy U g
.Conservation of electric charge 4=l e

1.2.5 Charge and Matter
G e o sl dale dimy o a0 Sl (LM S e Al Aslid) s
Sl sistly sl b Slaeall sias  ljeS Dpadall Slasall G A8l S
RUAEPR NP
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23 5 cdun sall 3 gil) Dl S pe Ay 4 Ul Al afias 5 A Gl e LS
lpany pe A Ly 5 ) gl o LSy LATOM 53 (6S5 Ge Ayl a5
ool A sl ) ALY A e Gilat 8 Lal o clial) B s
AL dlall o sl () sSal el )

P 5 Aiadl) dad Cum (e b A Apulu) b Sl (ailiad gy S (1) Jsaal

Particle  Symbol Charge Mass
Proton p 1.6x10°C  1.67x107'K

Neutron n 0 1.67x102'K
Electron e -1.6x10°C  1.67x10°'K

Table 1.1

Candl lgnny o 315l lisSa Jay i Al s sl a AT le g llin of Ui o5 f com
(0550 oA G il (o B Aaud g 31l cndl WY s Ay all gl A
Aol byl ) e (A s sl 028 (e X
1.2.6 Charge is Quantized
sl Jumiie g el Ll oL silud) slie) S Franklin's  allal) age
Lnal o o Cun e 5okl oda g o) gall A Akl GLES) ey oS e
o8 Ly sl sl o AL iy S e a3 e 5oke el
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Coulomb’s law

2.1 Coulomb’s Law

2.2 Calculation of the electric force

2.2.1 Electric force between two electric charges

2.2.2 Electric force between more than two electric charges

2.3 Problems

Coulomb’s law

aslss (sile
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2.1 Coulomb’s Law % il;z%ension

In 1785, Coulomb established the fundamental law of
electric force between two stationary, charged | -
particles. Experiments show that an electric force has [
the following properties:
(1) The force is inversely proportional to the square
of separation, r?, between the two charged particles.

1

F “7 (2.1)

(2) The force is proportional to the product of charge
g: and the charge g on the particles.
Focq,0, (2.2)

(3) The force is attractive if the charges are of opposite sign and repulsive
if the charges have the same sign.

We can conclude that

Eo G
r2
SF =K B (23)

where K is the coulomb constant = 9 x 10° N.m?/C?,

The above equation is called Coulomb’s law, which is used to calculate the
force between electric charges. In that equation F is measured in Newton
(N), g is measured in unit of coulomb (C) and r in meter (m).

The constant K can be written as

K = 1
4re,

where ¢, is known as the Permittivity constant of free space.
&, =8.85x 10" C*/N.m’

Ke 1 - L 9x10°Nm?/C?
dre, 4rx8.85x10
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2.2 Calculation of the electric force

saed Cpme w5 A0 e o g Al Aad e dad L0 (e 30l (8 Ay e o s

Bl @l e 5 fisall A oSl 5 sl by (JBad) Juss e O e Lind o cilind
—: A0 ol hadl) i

2.2.1 Electric force between two electric charges

Aall A e il 4y o< ol 58l Glua s o pall g Jadh (i 3sa 5 Alla b

558 o Alliall 5 il Cum Al ol A g L) dgilitne ciliad Jua Figure 2.2(a)Jsall b
.Repulsive force sl

ql qz Ll g,
.. @ @0 0@
F12 F21 Flz le

Figure 2.2(a) Figure 2.2(b)

il ‘;s 3 yi%all 3 g8l Q}é 2 Al 01 LA_;X\ 4aadl s Adaliiall 3 g8l Hlage caluad
08 e 3l Hlie cundy Q2 o AL st 8 S5 Fyp S O Al Aa g
FALINFPPS

F, =K bl _ Fa ;\J\ﬁ“
rZ
Fo=-F, lalasl
oladVl 3 liSleia y laid) 8 by sluie o4 8l) of (o
858 Abalaal) 5 gl Cum cpmaline Giad Jie Al Figure 2.2(b) Jsall 4 Jlall el

Ot s 05855 ARl < hadll i aiis Lagl Ly LAttractive force caila
Lad sl 3 (iSlaia s il

Fio=-Fx
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DA
g Example 2.1

Calculate the value of two equal charges if they repel one another with
a force of 0.1N when situated 50cm apart in a vacuum.

N

¥ Solution
F — qqu
r2
Since 1=02
0.1= M

(0.5)°
q=1.7x10°C = 1.7uC

0.IN (5 st Aaliall 5 il Jant il Al Aad o o3a g

2.2.2 Electric force between more than two electric charges
Gl Claa el pind e S ae Jalaill Als 3
9y 5 550l The resultant electric forces 4l iy <))
& 88l s2a (i Figure 2.3 J&ll A LS g s e
Lnl) e Alid) il weal AL weall oy Fy
o sl

r
Fi=Fp+Fa+Fy,+Fp (2.4)

—: A0 ) ghadl) i Fy olad g Lah bl

JLal e gp disidll ae dalid) s 8l cilgaie 2a (1
Op dandll o o &geadly cilindl) 3L e Sllyg
Al sl 3l 48 el L6

Figure 2.3

Rl oo lum A g 1Y) Lol se il of Cun Y qu&0p ol 336 (2
G dindll e 5 fisall 5 5l oladl sa Fp asiall o505 Leghy sl ol Laal) slsial e 5 O
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saaiy 0u&Og Oiincdll 38 by 3 o e auliy Astiall Jshag O Al das
ViS5 Frg sim 5 Fa 5580 olad

3%l 5 sl Canns WY (fp & O3 & (g linl) s Aoliiall Ay e (5 ) Jags n (3
Q1 =

=1 S sl 58 B (msmioas e S5l Clgatia jlade Clual (4

Fo = K %%
r2
Fiz = K %Y
r2
Fu=K G %
r2

Gl Jee a8 JSA) o mals o WS S Fp (o sl o2 Aliaas (55 (5
b LS (5 e ) leaial s 2k paiis Gl (i

Fix = Frox + Fiax + Frax

Fiy = Fioy + Fray + Fuay

Fi= J(F) +(F)? (2.5)
lealaily o
F
O=tant 2.6
Fx (20)

G Lo Glo Bl e g5 A AR cilgatia BaeS G oS 5 (Y < sl o3 o
o S
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™

In figure 2.4, two equal positive charges q=2x10°C interact with a third

charge Q=4x10°C. Find the magnitude and direction of the resultant
forceon Q

Example 2.2

N o Figure 2.4

¥ " Solution
sl Jlsie Claal a8 ol ki Q Al e 5 5i5al) Gl o sl Alana ooy
i Glanis Qlisbii O1&02 it o Ly Q Al e A US g i
5l ey e b iy slasia (i) 0l Q Al e AdLusal

qQ o (4x107°)(2x107%)
Fqu = Kr—2 = 9)(10 (05) 5

= 0.29N = Fy,

P GRS ye ) 8 Al Aatie Julay
0.4
F, = Fcos@ = 0.29( 9_5\ =

0.3
F, =—Fsing = —0.29(%} = -0.17N

Ll Al didaills Foga (25 Qs G2 otiandll (g Aalisal) 5 58 sl Sy Sl
Sl b llaies 1l 8 olislie Y S e of
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D> F, =2x0.23=046N
> F, =0

k_\A}AX‘X J}Mo\;}\gﬂ‘.@&\jo46N @M\B)ﬁ.‘\ )\-\SA u}ﬁ \.\@.\}

™

In figure 2.5 what is the resultant force on the charge in the lower left
corner of the square? Assume that g=1x10" C and a = 5cm

Example 2.3

q -q

_2q

Figure 2.5

™

For simplicity we number the charges as shown in figure 2.5, then we
determine the direction of the electric forces acted on the charge in the
lower left corner of the square q;

Solution

r
Fo=Fy+Fs+ Fy

2
Fp,=K ;leq
299
F; =K
1 2a2
292
F,=K —izq
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ol sl e Clea die clindl) 3L e Gyl Lleal Wl La LaY
o GRS NRIEP
F12=0.072 N,
F13=0.036 N,
F14=0.144 N
Glaad Gl 5 ccalide 5 sl Jae dad (Y 5 pdlee O (5 gl pan i ¥ Ll Lia LaaY
e gl sl pda e a8 Y A ol Jlaig XY Cptalatia () sae (i Aland)
zuad F13 55l
Fisx=F13s8in45=0.025N &
F13y = F13 cos 45 =0.025 N

Fx = Fi3x + F14=0.025 + 0.144 = 0.169 N
Fy=Fi3y - F1=0.025-0.072 = -0.047 N

Al y s slad) 85 sl A e ol o e Jan Al 5 LaY)

The resultant force equals q2 3
-q
F.=J(F)+(F) =0175N
The direction with respect to the Xx-axis
equals 1 4
F 2 -2
O=tan' * _ 1550 | ||::X !
F, Y
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™

A charge Q is fixed at each of two opposite corners of a square as shown
in figure 2.6. A charge g is placed at each of the other two corners. (a)
If the resultant electrical force on Q is Zero, how are Q and q related.

Example 2.4

\ 4
Fam 1 ? .9
1 -
CP— O
Fi Y
a

Figure 2.6

™

ald ¢ iall 3 glue (5 ,AY) Glindll 3ags Q Lndl) o Ay <) sl Aliana 58 S
Olia (1) a8, Q L) ie olat¥) & AuSlaia s o) 8 3y sluiie (5 58l @l () 65 o) g
O S dmse (3) 5(1) Qs (4) 5(2) ol K Gl i lld Giagy s

(1) Lail) e 3 el 5 sl

Solution

dagyl la G Bl Frg sl asie dilad o L(2.6) IS8 e ol clalad) aass
6 sl agiliana (585 o (a5 colial JSEN 8 rim se 58 LS cBaalatia 5 8 ilgaia
Al 1 & ) Aliane SIS 5 |y (5 bt Y] LS al Alians i€ 13 | jia

FX=OZ> F12-F13X=0
then
F1, = F13 cos 45
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F,3c0s0 1 F -q
< Q 12 .
Fi
a
gO—
a 3 O
Qa_,QQ 1 Q .
K==K==x=_" = = =
2 2& 2 1T
Fy:O:> F13y-F14:0 —VQZZ\/ZC]

Fi3 sin 45 = Fi4

28 2 a2 242

O A g jia o5kt Q Lo sl Alians Jead AN Q5 Q o D) 4 o2
O 6l Q 5Ll Sl 5L

Q=-2.2 ¢
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Coulomb’s Law

DA
g Example 2.5

Two fixed charges, 1uC and -3uC are separated by 10cm as shown in
figure 2.7 (a) where may a third charge be located so that no force acts
on it? (b) is the equilibrium stable or unstable for the third charge?

3 1

Fa Fz
— @
d 10Cm - >

Figure 2.7

™A
§ Solution

53all A 5eSl (5 sl Aliana (55 Cumy BB A g (S O 58 Vgl e sl
Ladll g s of BaY) equilibrium o5 gms B 058 o @l i sk lede
sl ol S O g 4l 138 B (s (QIY) A B i Yl laiag
O iy AAB Aiail Gl Lo pall s Biahy sy oladV) b AuSlate s laiall 8 A gliie
o LS Q3 fone ind g Gl ana) Bl e cillsy il ¢ g
el 55l (5 sl oladl aaaiy an )

Fa1=Fz

a0 _ ) G

2 2
ISl ,32

1x10-6  3x107°
d? (d +10)

0 G aa 51 Alalaall 538 Jas
(b) This equilibrium is unstable!! Why!!
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™

Two charges are located on the positive x-axis of a coordinate system,
as shown in figure 2.8. Charge q;=2nC is 2cm from the origin, and
charge g,=-3nC is 4cm from the origin. What is the total force exerted
by these two charges on a charge q;=5nC located at the origin?

Example 2.6

Fa g Fg 02 01
— o> @ ®

4— 2cm —»-

«— Acm ———

Figure 2.8

™

The total force on qz is the vector sum of the forces due to q; and
individually.

Solution

_(9x10°)(2x107°)(5x10°°)

F. = —2.25x10™*N
. (0.02)?

_ (9x10°)(3x107° )(5x10°°)

. = 0.84x107* N
(0.04)

F32

s LS Lealasl s Fap ok il s 46y Oy dindl) o 55 Leild dum po Qg Ll of G
Faz laliie iilat 556 g Al e i3 Lalh Glla gp Zindl) Wl (JSAN b i se
IS ALY eally lbon (e P dleasall 5 58 ol Juilly

Fo=Fy+Fy
4 4 4
S F3=084%x10 -2.25x10 =-1.41x10 N

The total force is directed to the left, with magnitude 1.41x10N.
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2.3 Problems

2.1) Two protons in a molecule are
separated by a distance of 3.8x10
m. Find the electrostatic force
exerted by one proton on the other.

2.2) A 6.7uC charge is located 5m
from a -8.4uC charge. Find the
electrostatic force exerted by one
on the other.

2.3) Two fixed charges, +1.0x10°C
and -3.0x10°C, are 10cm apart. (a)
Where may a third charge be
located so that no force acts on it?
(b) Is the equilibrium of this third
charge stable or unstable?

2.4) Each of two small spheres is
charged positively, the combined
charge being 5.0x10°C. If each
sphere is repelled from the other by
a force of 1.0N when the spheres
are 2.0m apart, how is the total
charge distributed between the
spheres?

2.5) A certain charge Q is to be
divided into two parts, q and Q-g.
What is the relationship of Q to q if
the two parts, placed a given
distance apart, are to have a
maximum Coulomb repulsion?

2.6) A 1.3uC charge is located on
the x-axis at x=-0.5m, 3.2uC charge
is located on the x-axis at x=1.5m,
and 2.5uC charge is located at the

origin. Find the net force on the
2.5uC charge.

2.7) A point charge gi= -4.3uC is
located on the y-axis at y=0.18m, a
charge g,=1.6uC is located at the
origin, and a charge q3=3.7uC is
located on the x-axis at x=-0.18m.
Find the resultant force on the
charge q;.

2.8) Three point charges of 2uC,
7uC, and —4uC are located at the
corners of an equilateral triangle as
shown in the figure 2.9. Calculate
the net electric force on 7uC
charge.

e

0.5m

60°

2uC —4C
Figure 2.9

2.9) Two free point charges +q and
+4q are a distance lcm apart. A
third charge is so placed that the
entire system is in equilibrium.
Find the location, magnitude and
sign of the third charge. Is the
equilibrium stable?
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at the corners of a square of sides a
as shown in the figure 2.10. Find
the resultant force on the positive
charge +q.

-q _q

+q a _q

Figure 2.10

2.11) Three point charges lie along

the y-axis. A charge q;=-9uC is at
y=6.0m, and a charge g,=-8uC is at
y=-4.0m. Where must a third
positive charge, gz, be placed such
that the resultant force on it is zero?

2.12) A charge qg; of +3.4uC is

located at x=+2m, y=+2m and a
second charge (@,=+t2.7uC is
located at x=-4m, y=-4m. Where
must a third charge (g;>0) be
placed such that the resultant force
on gz will be zero?

2.10) Four point charges are situated 2.13) Two similar conducting balls of

mass m are hung from silk threads
of length | and carry similar
charges g as shown in the figure
2.11. Assume that 6 is so small
that tan® can be replaced by siné.
Show that

| T

\272’6‘0mg)

where X is the separation between
the balls (b) If 1=120cm, m=10g
and x=5cm, what is q?

Figure 2.11
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Lectures in General Physics

Electric field

3.1 The Electric Field

3.2 Definition of the electric field

3.3 The direction of E

3.4 Calculating E due to a charged particle

3.5 Tofind E for a group of point charge

3.6 Electric field lines

3.7 Motion of charge particles in a uniform electric field
3.8 Solution of some selected problems

3.9 The electric dipole in electric field

3.10 Problems
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Electric field
=S Jlaall

cliadl) of Ladll o (AU gl Jlaal) aggha JBaL aghin Juail) 13 B
AT ah el G5 Ay el Aadlly bl Sl s (sgSh Jlaally (A eS)
088 Of Ala B Lo o s Jlaad) il Gajaia iS4 6 6

AS e D Al 3 IS ) e s gl Aili¥) Aoyl
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Lectures in General Physics

3.1 The Electric Field

The gravitational field g at a point in space was defined to be equal to the
gravitational force F acting on a test mass m, divided by the test mass

g =—— 3.1)
m

o

In the same manner, an electric field at a point in space can be defined in
term of electric force acting on a test charge g, placed at that point.

3.2 Definition of the electric field

Trhe electric field vector E at a point in space is defined as the electric force

F acting on a positive test charge placed at that point divided by the
magnitude of the test charge qo

roF
E=__ (3.2)

d,
The electric field has a unit of N/C

WS 0o dinill (ye r 5 Jladll Gy ol Jlas 8 E oSl Jladl) of L sy
e s gm0 Ak A e S Jlae dlln 05 85 31 IS b nse
Jiaall Glual dly g 18 (& Al & xie o Al iy oSy Qo Hndl) a5

e 3 i5all A 5ell (5 ) YA (e e

Figure 3.1
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3.3 The direction of E

If Qis +ve the electric field at point pin space is radially outward from Qas
shown in figure 3.2(a).

If Qis -ve the electric field at point p in space is radially inward toward Q
as shown in figure 3.2(b).

P E
® , — @ . —
Figure 3.2 (a) Figure 3.2 (b)

dSall 8 LS Akail) ez Al sladl A ge Al L dkai v Jladl ol oS
Aatl) ) Akl e Jsaal oladl 8 Al Aiad) Lo ddas die Jlaall oladl 5555 <3.2(3)
.3.2(b) Jsa LS

3.4 Calculating E due to a charged particle

Consider Fig. 3.2(a) above, the magnitude of force acting on q, is given by
Coulomb’s law

Fo 1 Q%
Are, I?
e- "
Qo
1 Q
E= = 33
Arg, r? 33)
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3.5 To find E for a group of point charge

To find the magnitude and direction of the electric field due to several
charged particles as shown in figure 3.3 use the following steps

. el el Jlaall alad 3l il o 5 (
sie san o Aind JS oS Jlaall olasl 253 (2)

Ky lavie Jlaadl dlase alay )yl Al

D kil e bl Jladl oladl 558 p Akl

Sala Jlaall olatl Sy s dun s dindll il 13

bl LS Al Al cls 13 Al )

(2) 8 il
ALY maall g K el sl 58 (3)
ol ilgaid
Figure 3.3
r
E, =E,+E, +E; +E, + e (34)

al;ﬁ\‘éj%ﬁé}@&d&h\;&;k&d@d\&k@hwytg& \3‘\(4)
Y s X o
.y)M\Q\%S‘)A}bJA‘;CX‘)‘M\QL!S‘)AcA;:‘(S)
Ex = Eix + Eox + Eax +Eax

Ey = E1y + Eoy + Eay +E4y

E:,/EXZ+E§ o P alal die el Jlaall dad (<5 (6)

. E
O=tan™ Z  , Jadieladl o (7)

X
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™

Find the electric field at point p in figure 3.4 due to the charges shown.

Example 3.1

3 (®-8uC
50cm
+2uC =2 [ +12}1C
# 50cm : 50cm
‘@ « * = @
1 EZ p 1 2
Figure 3.4
A
} Solution
r

Ex=E;-E; = -36x10°N/C
E, = E3 = 28.8x10°N/C

Ep = V(36x10%)%+(28.8x10%)? = 46.1N/C
0 = 141°

Figure 3.5 Shows the resultant electric field
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™

Find the electric field due to electric dipole along x-axis at point p,
which is a distance r from the origin, then assume r>>a

Example 3.2

The electric dipole is positive charge and negative charge of equal
magnitude placed a distance 2a apart as shown in figure 3.6

Figure 3.6

™

oo Ul By el 5 gp Ll e sl By cllaall dlians s p adaill die SN Jladl)
o gi O diad)

Solution

r

E, =E.+E,
Obsbuia GY sl \a\ Ol sl liincall g o lagal) ity a3l e e P Adadll o Cus
Bally a3 Sl e

1 g1
Are, az+r?

E: =

- E,

Aaie Jlaal) dlag) o) yall Al 5 Al G b & Aloaldl) dilaall of L Loy

odlef JKal 8 LS 58 5o ) Jlaad) anie Jlas
Ex = E; sind - E;, sind
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Ey = E; cosO + E; cosO = 2E; cosO

Ep = 2E; cosO
Er = ! g coséd
Adrme, a2+r?
from the Figure

a

cosf = ——

N@+ 1
E 1 q a
’ Are, az+r? Jg+r2

2a

E, = - (3.5)

) A, (r2 + &)

The direction of the electric field in the -ve y-axis.

The quantity 2aq is called the electric dipole momentum (P) and has a
direction from the -ve charge to the +ve charge
(b) when r>>a

E- 2
e, rd

(3.6)

3saall e dadl g ddaws xie electric dipole e sl el Jladdl o o Lae oy
4l 5 electric dipole momentum slail (e & 4aaladl o & il G Caaiall
1 5 dilid) Gl ae Lo iy Jlall ola electric dipole e samall ddaall

ah paa g Ak Alla 8 4ke ST ()5S Adlisal) e Jlanall Gl

www.hazemsakeek.com


http://www.hazemsakeek.com/

Lectures in General Physics

3.6 Electric field lines
The electric lines are a convenient way to visualize the electric filed
patterns. The relation between the electric field lines and the electric
field vector is this:

(1) The tangent to a line of force at any point gives the direction of E at
that point.

(2) The lines of force are drawn so that the number of lines per unit
cross-sectional area is proportional to the magnitude of E .

Some examples of electric line of force

:w,: \\\\////
A

>

y v ¥

Electric field lines due to +ve Electric field lines due to -ve
charge charge
< =+ > o E o
< + > ol
< + > +| |-
< + > + _
—— +|——
< _=_ » + e e B
< + > + -
< i > + _
Electric field lines due to +ve Electric field lines due two
line charge surface charge

Figure 3.7 shows some examples of electric line of force
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Notice that the rule of drawing the line of force:-

(1) The lines must begin on positive charges and terminates on negative
charges.

(2) The number of lines drawn is proportional to the magnitude of the
charge.

(3) No two electric field lines can cross.

3.7 Motion of charge particles in a uniform electric field

If we are given a field E, what forces will act on a charge placed in it?

We start with special case of a point charge in uniform electric field E.
The electric field will exert a force on a charged particle is given by

F=qE
The force will produce acceleration
a=F/m
where m is the mass of the particle. Then we can write
F=qE=ma
The acceleration of the particle is therefore given by

a=gE/m 3.7

If the charge is positive, the acceleration will be in the direction of the
electric field. If the charge is negative, the acceleration will be in the
direction opposite the electric field.

One of the practical applications of this subject is a device called the
(Oscilloscope) See appendix A (Cathode Ray Oscilloscope) for further
information.
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3.8 Solution of some selected problems
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3.8 Solution of some selected problems

™

Example 3.3 - E -
A positive point charge g of mass m is + o
released from rest in a uniform electric + B
. r. . | v=o v 5 |
field E directed along the x-axis as shown FEDD B
in figure 3.8, describe its motion. + B
+ ol
+ — | __
+ — | __
i Solution
Figure 3.8

The acceleration is given by
a=qE/m

Since the motion of the particle in one dimension, then we can apply the
equations of kinematics in one dimension

X-Xo= Vot+ ¥2 at® Vavot+at  vi=vel + 2a(X-Xo)
Taking x,=0and vy =0

x =Y at’ = (qE/2m) t?

v=at=(qE/m) t

vZ =2ax = (2qE/m)x (3.7)
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™

In the above example suppose that a negative charged particle is
projected horizontally into the uniform field with an initial velocity v,
as shown in figure 3.9.

Example 3.4

(T ]
V. A
© 00| ——_ ‘
A A A A he X
Xx.Y) \\
E ©
++++++++\V
Figure 3.9
DA
} Solution

Since the direction of electric field E in the y direction, and the charge is
negative, then the acceleration of charge is in the direction of -y.

a=-qE/m

The motion of the charge is in two dimension with constant acceleration,
With Vo = Vo & Vyo = 0

The components of velocity after time t are given by
Vy =V, =constant
vy =at=-(qE/m) t

The coordinate of the charge after time t are given by
X = Vot
y=%at’=-1/2 (QE/m) £

Eliminating t we get

Qe >

y= X (3.8)

2mv?

we see that y is proportional to x*>. Hence, the trajectory is parabola.
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™

Find the electric field due to electric dipole shown in figure 3.10 along
x-axis at point p which is a distance r from the origin. then assume
r>>a

™

Example 3.5

Solution
r +( 1
E, =E,+E,
2a |-
Ei=K__9 "R
(x + a)’ i
q b
Er=K__9 to
(x—a)’ »
X
_ q q F
E,=K - i
P (x-ay (x+a)’ |
Eg R !
_ dax v
When x>>a then Figure 3.10
N (3.9)
B dre, X3 '

o Lo Jlaall ity Gum 28 Aball (e 158 ST X )5S Latie 2l ey Loy
ALl S
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™

What is the electric field in the lower left corner of the square as shown
in figure 3.11? Assume that q = 1x10’C and a = 5cm.

Example 3.6

‘‘‘‘‘‘

Solution

First we assign number to the charges (1, 2, 3, 4) and then determine the
direction of the electric field at the point p due to the charges.

-+

Sy aT

_ 1 a

2 dre, 282
1 2q

E, = _
Ane, @

Evaluate the value of E;, E;, & E3 E, £

c Figure 3.11
E; =3.6x10° N/C,

E,=1.8 x 10° N/C,
E;=7.2 x 10° N/C

Since the resultant electric field is the vector additions of all the fields i.e.

r
E, =E;+E, + E;

We find the vector E, need analysis to two components
Eox = E2 c0s45 Ejy = E; sind5

E, = E3 - E,c0845 = 7.2x10° - 1.8 x 10° cos45 = 6 x 10° N/C
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Ey = -E; - E;5ind5 = -3.6x10° - 1.8 x 10° sin45 = - 4.8 x 10° N/C
E=JE' +E, =7.7x10° N/C

1 Ey 0
0 = tan =-386

Ex

™

In figure 3.12 shown, locate the point at which the electric field is zero?
Assume a = 50cm

Example 3.7

™

Solution

v s .4

|
i

et

Figure 3.12

To locate the points at which the electric field is zero (E=0), we shall try all
the possibilities, assume the points S, V, P and find the direction of E; and
E, at each point due to the charges g; and q.

The resultant electric field is zero only when E; and E, are equal in
magnitude and opposite in direction.

At the point S E; in the same direction of E; therefore E cannot be zero in
between the two charges.
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At the point V the direction of E; is opposite to the direction of E;, but the
magnitude could not be equal (can you find the reason?)

At the point P the direction of E; and E; are in opposite to each other and
the magnitude can be equal

E1:E2

1 2q _ 1 5¢q
4z, (05+d)? 4w, @ )
d =30cm

s 058 Jladl baie ey A dkdl) 6 Giglind) sl Al 8 4 La LaY

R0 pxl UR UM 2 &
Sles ol saa) 7 A o< gl 5 LYl b galia sl calS 1Y) Wl giaal)
o ey ndl) e il s Legin Jual 51 Jasl)
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™

A charged cord ball of mass 1g is suspended
on a light string in the presence of a uniform
electric field as in figure 3.13. When
E=(3i+5j) x10°N/C, the ball is in equilibrium

at 0=37°. Find (a) the charge on the ball and
(b) the tension in the string.

™

el Bl olb dua e Ay Bdie 380 ) Gam

Sl Jlaall oladl b 4 saiall 5,80 e 5 jigal

Example 3.8

Solution

Gl ase gl )3 Ala 8 Laddl 580 G LS
SO i 0P8 Gulthy . ha sSia S (e B 5l
Y s X S e Je YF=ma

Ex = 3x10°N/C E, = 5jx10°N/C
2XF=T+qE+F¢=0
YFx=0Ex—Tsin37=0
2Fy=qEy+ Tcos37-mg=0

Substitute T from equation (1) into equation (2)

—

e BT

L tan37) ( tan 37J

Figure 3.13

mg

@)
@

mg_ _/ (1x105° JO8) . ~1.00x10° €

To find the tension we substitute for g in equation (1)

T= 9 5 a4y10°N
sin 37
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3.9 The electric dipole in electric field

If an electric dipole placed in an external electric field E as shown in figure
3.14, then a torque will act to align it with the direction of the field.

0— qE
A R
_qE<_O >
Figure 3.14
r
7 =PxE (3.10)
Tt =PEsing (3.11)

where P is the electric dipole momentum, 6 the angle between P and E

13 5 stuall bgbue #1533¥) S Laie equilibrium o) 3 s 4 Glasl) AW o &
(0=0, 1) sS Lovie (3iahy

@L@i E o—e

>

Figure 3.15 (ii) Figure 3.15 (i)

O3 aas b dipole 3V ¢ J& 0 0= Lexie 3.15(1) JS&) & moa gall aasll b
Laiss ¢ 00= o sl ) s s 4l 5 i Byl s 3 13) 439 stable equilibrium i
e 2 OV 3 gy G dipole 3V o) J 3.15(0) S b g sall gl B
e sdipole 3 s o e Jaxd s als piaa 4al ) Y unstable equilibrium

0=7 Gads 00= sl Y
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3.10 Problems

3.1) The electric force on a point
charge of 4.0uC at some point is
6.9x10“N in the positive x
direction. What is the value of the
electric field at that point?

3.2) What are the magnitude and
direction of the electric field that
will balance the weight of (a) an
electron and (b) a proton?
(Use the data in Table 1.)

3.3) A point charge of -5.2uC is
located at the origin. Find the
electric field (a) on the x-axis at
x=3 m, (b) on the y-axis at y=-4m,
(c) at the point with coordinates
X=2m, y=2m.

3.4) What is the magnitude of a
point charge chosen so that the
electric field 50cm away has the

magnitude 2.0N/C?
3.5) Two point charges of
magnitude  +2.0x10°C  and

+8.5x10'C are 12cm apart. (a)
What electric field does each
produce at the site of the other? (b)
What force acts on each?

3.6) An electron and a proton are
each placed at rest in an external
electric field of 520N/C. Calculate
the speed of each particle after
48nanoseconds.

3.7) The electrons in a particle beam
each have a Kinetic energy of
1.6x10"J. What are the magnitude
and direction of the electric field
that will stop these electrons in a
distance of 10cm?

3.8) A particle having a charge of -
2.0x10°C is acted on by a
downward electric force of 3.0x10°
°N in a uniform electric field. (a)
What is the strength of the electric
field? (b) What is the magnitude
and direction of the electric force
exerted on a proton placed in this
field? (c) What is the gravitational
force on the proton? (d) What is the
ratio of the electric to the
gravitational forces in this case?

3.9) Find the total electric field
along the line of the two charges
shown in figure 3.16 at the point
midway between them.

—4.7uC +9uC
© . ®

3 m

Figure 3.16

3.10) What is the magnitude and
direction of an electric field that
will balance the weight of (a) an
electron and (b) a proton?
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3.11) Three charges are arranged in +q a -2q
an equilateral triangle as shown in o @
figure 3.17. What is the direction
of the force on +q? a . a
+
. o . o
q +2q
a a
Figure 3.19
+Q a 3.14) Two point charges are a
_ distance d apart (Figure 3.20). Plot
Figure 3.17 E(x), assuming x=0 at the left-hand

charge. Consider both positive and

312) In figure 3.18 locate the pOint at negative values of x. Plot E as
which the electric field is zero and positive if E points to the r|ght and
also the point at which the electric negative if E points to the left.

potential is zero. Take g=1uC and Assume q.=+1.0x10°°C,
a=50cm. ,=+3.0x10°°C, and d=10cm.
5q +2q _‘|< .......... d--e i P
® ® a %
. S IR ]
Figure 3.20
Figure 3.18 3.15) Calculate E (direction and
magnitude) at point P in Figure
3.21.
3.13) What is E in magnitude and +q
direction at the center of the square )
shown in figure 3.19? Assume that P,7
a

g=1uC and a=5cm.

+2q *q

Figure 3.21

Dr. Hazem Falah Sakeek



Electric Field

3.16) Charges +q and -2q are fixed a
distance d apart as shown in figure
3.22.  Find the electric field at
points A, B, and C.

<« d redralra g

ForTyod

A M g A c
Figure 3.22

3.17) A uniform electric field exists
in a region between two oppositely
charged plates. An electron is

released from rest at the surface of
the negatively charged plate and
strikes the surface of the opposite
plate, 2.0cm away, in a time
1.5x10%s. (a) What is the speed of
the electron as it strikes the second
plate? (b) What is the magnitude of
the electric field E?
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Electric Flux

4.1 The Electric Flux due to an Electric Field
4.2 The Electric Flux due to a point charge
4.3 Gaussian surface

4.4 Gauss’s Law
4.5 Gauss’s law and Coulomb’s law
4.6 Conductors in electrostatic equilibrium

4.7 Applications of Gauss’s law
4.8 Solution of some selected problems

4.9 Problems
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Electric Flux
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4.1 The Electric Flux due to an Electric Field

We have already shown how electric field can be described by lines of
force. A line of force is an imaginary line drawn in such a way that its
direction at any point is the same as the direction of the field at that point.
Field lines never intersect, since only one line can pass through a single
point.

The Electric flux (®) is a measure of the number of electric field lines
penetrating some surface of area A

Case one:

The electric flux for a plan surface perpendicular to a uniform electric
field (figure 4.1)

To calculate the electric flux we recall
that the number of lines per unit area is
proportional to the magnitude of the
electric field. Therefore, the number of
lines penetrating the surface of area A is

Area = A

-

\d |‘V |

—* E
proportional to the product EA. The =
product of the electric filed E and the —
surface area A perpendicular to the field <4
is called the electric flux ®.

Figure 4.1

®=EA (4.1)

The electric flux @ has a unit of N.m?/C.
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Case Two
The electric flux for a plan surface make an angle &to a uniform electric
field (figure 4.2)

Note that the number of lines
that cross-area is equal to the

number that cross the projected %
area A’, which is perpendicular

to the field. From the figure we
see that the two area are related y

by A'=Acosé. The flux is given 7

by:

~ ||

®=E.A"=E AcosO A =Acos

(]

®=EA Figure 4.2

Where 6 is the angle between
the electric field E and the

normal to the surface A.

\sojgjezoéidw\gclgw@zd\o,sﬁum@kw\s@\wsﬂsj

A asidl of s 1Y .0 = 90 Lexic (5f Jlaall L3l se ol )5 Laic (5 jium ad
.ZAM\)\&AQ;)HM}L}&M\‘_A:L&\Agaw}z}hmuéhﬁ

Case Three
In general the electric field is nonuniform over the surface (figure 4.3)

The flux is calculated by integrating the normal dA
component of the field over the surface in
guestion.

D = § EA (4.2)

The net flux through the surface is proportional
to the net number of lines penetrating the
surface

Figure 4.3
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Ll clS 1)) mdasd) (e 3 Al b ghadldl sae T net number of lines - 2 saaiall
(Al anl) € 1)) dandl ) A08)al) T gladl) dae - (R s

g1 Example 4.1

What is electric flux @ for closed cylinder of radius R immersed in a
uniform electric field as shown in figure 4.4?

dA

\4

v

Figure 4.4

™

Solution
el J<all 8 daim sall DA mhau) e asla o 5l Gl

O = fE.dA - fE.dA+ fE.dAJr(fE.dA
2) )

1)

- ;f E cos180dA + f E cos 90dA + j E cos 0dA
() (2 )
Since E is constant then

d=-EA+0+EA=2zero

Exercise

Calculate the total flux for a cube immersed in uniform electric field £.
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4.2 The Electric Flux due to a point charge

To calculate the electric flux due to a point E
charge we consider an imaginary closed

spherical surface with the point charge in the DA
center figure 4.5, this surface is called gaussian 4
surface. Then the flux is given by
®=fE.dA = EfdAcos®  (6=0)
o=—9—[dA = ——4x
Are,r? Are,r?
Figure 4.5
o= 4.3) J
&o

Note that the net flux through a spherical gaussian surface is proportional to
the charge q inside the surface.

4.3 Gaussian surface

Consider several closed surfaces as shown in
figure 4.6 surrounding a charge Q as in the
figure below. The flux that passes through
surfaces Si, S; and Sz all has a value g/ e,.
Therefore we conclude that the net flux through
any closed surface is independent of the shape of Figure 4.6
the surface.

Consider a point charge located outside a closed /

surface as shown in figure 4.7. We can see that o

P . i Q
the number of electric field lines entering the
surface equal the number leaving the surface.

Therefore the net electric flux in this case is
zero, because the surface surrounds no electric _
charge. Figure 4.7
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A
} Example 4.2

In figure 4.8 two equal and opposite charges of
20Q and -2Q what is the flux @ for the surfaces
S1, Sy, S3 and Sa.

™

Solution
For S; the flux ® = zero

For S, the flux ® = zero
For S3 the flux @ = +2Q/ ¢,
For S4 the flux @ =-2Q/ ¢,

Figure 4.8

4.4 Gauss’s Law

Gauss law is a very powerful theorem, which
relates any charge distribution to the resulting
electric field at any point in the vicinity of the
charge. As we saw the electric field lines
means that each charge g must have g/e, flux
lines coming from it. This is the basis for an
important equation referred to as Gauss’s
law. Note the following facts:

1. If there are charges qs, 02, Js, Qs inside
a closed (gaussian) surface, the total
number of flux lines coming from these
charges will be

(Qu+ 02+ 0zt ....... +Qn)/€o

DdA

Figure 4.9

(4.4)
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2. Trhe'number of flux lines coming out of a closed surface is the integral of
E.dA over the surface, ﬁE.dA

We can equate both equations to get Gauss law which state that the net
electric flux through a closed gaussian surface is equal to the net charge
inside the surface divided by &,
rr qin
fE'dA —— Gauss’s law (4.5)
&

o

where qin is the total charge inside the gaussian surface.

Gauss’s law states that the net electric flux through any closed gaussian
surface is equal to the net electric charge inside the surface divided by
the permittivity.

4.5 Gauss’s law and Coulomb’s law

E
We can deduce Coulomb’s law from Gauss’s
law by assuming a point charge g, to find the DaA
electric field at point or points a distance r Y,
from the charge we imagine a spherical

gaussian surface of radius r and the charge q at
its center as shown in figure 4.10.

rr qin

fE.dAzg—

o

qin
§ EcosOdA="  Because E s
€o
constant for all points on the sphere, it can be factored from the inside of the
integral sign, then

E§dA=ql - EA= o E@m?)=n

o o So
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Ny |
4dre, r?

(4.6)

Now put a second point charge q, at the point, which E is calculated. The
magnitude of the electric force that acts on it F = Eq,

Lpo_ 1 g
4re, I1?

4.6 Conductors in electrostatic equilibrium

A good electrical conductor, such as copper, contains charges (electrons)
that are free to move within the material. When there is no net motion of
charges within the conductor, the conductor is in electrostatic equilibrium.

Conductor in electrostatic equilibrium has the following properties:

1. Any excess charge on an isolated conductor must reside entirely on its
surface. (Explain why?) The answer is when an excess charge is placed
on a conductor, it will set-up electric field inside the conductor. These
fields act on the charge carriers of the conductor (electrons) and cause
them to move i.e. current flow inside the conductor. These currents
redistribute the excess charge on the surface in such away that the
internal electric fields reduced to become zero and the currents stop, and

the electrostatic conditions restore.

2. The electric field is zero everywhere inside the conductor. (Explain

why?) Same reason as above

In figure 4.11 it shows a conducting slab
in an external electric field E. The
charges induced on the surface of the slab
produce an electric field, which opposes
the external field, giving a resultant field
of zero in the conductor.

W

+
+
+
+
—> | |+
+
+
+
4,

-

Figure 4.11
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Steps which should be followed in solving problems

. The gaussian surface should be chosen to have the same symmetry
as the charge distribution.

. The dimensions of the surface must be such that the surface
includes the point where the electric field is to be calculated.

. From the symmetry of the charge distribution, determine the
direction of the electric field and the surface area vector dA over
the region of the gaussian surface.

.Write £.dA as E dA cos® and divide the surface into separate
regions if necessary.

. The total charge enclosed by the gaussian surface is dg = Ja’q,
which is represented in terms of the charge density ( dg = Ldx for
line of charge, dg = cdA for a surface of charge, dg = pavfor a
volume of charge).




Electric Flux

4.7 Applications of Gauss’s law

u\ L“‘@JJ"M \M}cw\wd‘a.m@)}.ﬂejc@w;hu}buhmhhﬁjw
.ML@J\ Jalasl) UMJSLL\AGAESM&_}L\SX\

LS (i el (e Ailue 205 Adas die o 5eS)) dlaall Claa Bl 1) JE Qs e
s o a5 dlaaie 4y phy de jse i) Allall sda 3 L 412 O3 b
alic ) Gl s A8 038 Jie Jaly A(C/M) ) sil) ABESy any 5 aliiie din )

(p) 4ot vie ¢ 3l AE Jlaal) cavns s dX Leie DS Jsha b yiaaa

dE
0
r
X
Figure 4.12
dqg Adx
dE =K =K
r?+x? ré+x?
b A Al I A el olat) 8 5 5S5 Alanal) 5 5 AEY) LSl G aas lall g
Yy ol
dE, = dE cos0 E, = jdEy = Icos odE
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o 24 7 dx

E :2‘[cosﬁdE IC059r2+X
0

ol LS X il 5 X el e om smil) (S mntigl) JSEN (30
x=ytand =  dx=ysec’0 do

Are, 2

A
E= e Icos@de o
° Jalsall agas ) 4l
A
E=
27e,r

G il Jaaial) a3l Alla 8 ol sS sl aladinly Jall 4 sen cilaaY ol elzy
Oe Al da Lg )5 YA o3a JL&\;;SJAJ\JM @A Gasla sl Gyt
kel

Gauss’s law can be used to calculate the electric field if the symmetry of
the charge distribution is high. Here we concentrate in three different
ways of charge distribution

1 2 &
Charge distribution | Linear | Surface | Volume
Charge density A c p
Unit C/m C/m* | C/m®
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A linear charge distribution
In figure 4.13 calculate the electric field at a distance r from a uniform
positive line charge of infinite length whose charge per unit length is

A=constant.
E

i

| L |
Figure 4.13

The electric field E is perpendicular to the line of charge and directed
outward. Therefore for symmetry we select a cylindrical gaussian surface
of radius r and length L.

The electric field is constant in magnitude and perpendicular to the surface.

The flux through the end of the gaussian cylinder is zero since E is parallel
to the surface.

The total charge inside the gaussian surface is AL.
Applying pagss |&_W we get

fE.dA: —
60
E§dA: AL
&
E2arl = 2k
&
A
LEBE=TT 4.7
27E N 4.7
08 Gy L) Ula st Al il Gl e Jumnias sl 008 plasiuly adf L Jaadl

el i oy 0 15
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A surface charge distribution
In figure 4.4 calculate the electric field due to non-conducting, infinite plane
with uniform charge per unit area c.

T AR
e T

Sy
oy
+ &
&
<\;
AV

Figure 4.14

The electric field E is constant in magnitude and perpendicular to the plane
charge and directed outward for both surfaces of the plane. Therefore for
symmetry we select a cylindrical gaussian surface with its axis is
perpendicular to the plane, each end of the gaussian surface has area A and
are equidistance from the plane.

The flux through the end of the gaussian cylinder is EA since E is
perpendicular to the surface.

The total electric flux from both ends of the gaussian surface will be 2EA.
Applying Gauss law we get

rr qin

fE.dA:g—

o

2EA:0_A

~EB=7" (4.8)
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An insulated conductor.
sale Jaly Jlad) ded o8 My daid Jum gl mhans e g Al of Gl U S
5 51 S sl 718 Jlanall a5 ¢l a5 5l Jom sl

(4.9)
SO mhandl Al 4 Joall e Cina 5l Juasall Alla 3 Jlaall of Lia LY
8 Ly cJumsall e mlandl Alls b cpundand) e 530 Jlaall aglad o @lldg o) sl

Jeasall Alla b s lal) phadl oz 533 Jlaall Jaghas

Conductor

Figure 4.15

Ladll o Cua g Al s sla (ol s ) o 1aa3 4,15 o3lef g sall JS)
Gidy @l AN bl jiall Gglee (ol (6 Wiy )il phadl e s
A jia (s sl Juan gl Jala dinll (Y @l g Joasall
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A volume charge distribution

In figure 4.16 shows an insulating sphere of radius a has a uniform charge
density p and a total charge Q.

1) Find the electric field at point outside the sphere (r>a)

2) Find the electric field at point inside the sphere (r<a)

For r>a

Figure 4.16

We select a spherical gaussian surface of radius r, concentric with the
charge sphere where r>a. The electric field E is perpendicular to the
gaussian surface as shown in figure 4.16. Applying Gauss law we get

rrog,
E.dA= .
E§A= E(4nr?) e,
&
e_ Q
~E= > (forr>a) (4.10)
dre,r

Note that the result is identical to appoint charge.
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For r<a

Figure 4.17

We select a spherical gaussian surface of radius r, concentric with the
charge sphere where r<a. The electric field E is perpendicular to the
gaussian sgrfgce as shown in figure 4.17. Applying Gauss law we get

fE.dAzg—

o

It is important at this point to see that the charge inside the gaussian surface
of volume V' is less than the total charge Q. To calculate the charge q;n, we
use qin=pV", where \V"=4/3nr’. Therefore,

Qin =pV " =p(4/3nr) (4.11)
E A_ E 2 _ qin
§; =E@m)="
4 803
=ar
4 p 4.12)
E= 2~ 2 = r
dre,r dre,r 3&,
since P =
873’
E=— (forr<a) (4.13)
dre,a

12

Note that the electric field when
r<ais proportional to r, and when
r>a the electric field is proportional
to 1/r%.

0.8

E 10N/C

0.4

1.0 2.0 3.0
r10%m
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4.8 Solution of some selected problems

Gusla (38 aladiad s 3 Jileeal) e Y
S Jlad) alay
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4.8 Solution of some selected problems

o
" Example 4.3

If the net flux through a gaussian surface is zero, which of the following
statements are true?

1) There are no charges inside the surface.

2) The net charge inside the surface is zero.

3) The electric field is zero everywhere on the surface.

4) The number of electric field lines entering the surface equals the

number leaving the surface.

W
Solution

Statements (b) and (d) are true. Statement (a) is not necessarily true since
Gauss' Law says that the net flux through the closed surface equals the net
charge inside the surface divided by &,. For example, you could have an
electric dipole inside the surface. Although the net flux may be zero, we
cannot conclude that the electric field is zero in that region.

\} Example 4.4

A spherical gaussian surface surrounds a point charge g. Describe what
happens to the: flux through the surface if

1) The charge is tripled,

2) The volume of the sphere is doubled,

3) The shape of the surface is changed to that of a cube,

4) The charge is moved to another position inside the surface;

Solution

1) If the charge is tripled, the flux through the surface is tripled, since the
net flux is proportional to the charge inside the surface

2) The flux remains unchanged when the volume changes, since it still
surrounds the same amount of charge.

3) The flux does not change when the shape of the closed surface changes.
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4) The flux through the closed surface remains unchanged as the charge
inside the surface is moved to another position. All of these conclusions
are arrived at through an understanding of Gauss' Law.

Example 4.5

A solid conducting sphere of
radius a has a net charge +2Q. A
conducting spherical shell of
inner radius b and outer radius ¢
is concentric with the solid sphere
and has a net charge —Q as shown
in figure 4.18. Using Gauss’s law
find the electric field in the
regions labeled 1, 2, 3, 4 and find
the charge distribution on the
spherical shell.

+2Q

OGO NO!

Figure 4.18

»
Solution

Ghlie die Sl Jlall el Glld ¢ 5 S il Lgd 0 KU e Ll o355 of Jaadls
T o ki Canal JSAll (55 S Gusla o o (i i Liild dabide

Region (1) r<a

To find the E inside the solid sphere of radius a we construct a gaussian
surface of radius r < a

E = 0 since no charge inside the gaussian surface.

Reqgion (2)a<r<b

we constryct p spa_erical gaussian surface of radius r
in

fE.dAzé—

o

Dr. Hazem Falah Sakeek
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o5 2Q Ldalal) dlia gl 5 SU dind o Gusls han J3135 ) seanall Dinil) o L Laa
s Jaall 50=0 o Gusla o e anjlay HUaEY) Caliaif olal 8 Jlal) Lo slat

) e i)
Eanr?= 22
80
L E= ! @ a<r<b
4re, r?

Region (A r>c¢

we construct a spherical gaussian surface of radius r > c, the total net charge
inside the gaussian surface is q = 2Q + (-Q) = +Q Therefore Gauss’s law

gives rr G,
f EdA=—
E 4nr® = 3

~E= 1 Q

4re, r?

r=c

Region 3)b>r<c

Ny laf dlase B S 5080 (Y e 058 of cang Bkl o2 3 el Jladl

ol -Q Wl o isies 13 a5 5 o cans DISC osla b Jals 3 dia

Gy Ay 5 )8 8l o )] o) 5 Aol hand) o Al a5 55 A (A A58 Bl
Dl 8 Ayl ol i) el e diad Gally <8 il -Q Alasdl S

Jsadl liare 8 LS adl Cun s -2Q Gl 3, 8 L dallay dalal 5,80 o Al
O i s S 58l s A el e o s -Q & sl 5l e 20 dua

+Q oS
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™

M

Example 4.6

A long straight wire is surrounded by a hollow cylinder whose axis
coincides with that wire as shown in figure 4.19. The solid wire has a
charge per unit length of +A, and the hollow cylinder has a net charge
per unit length of +2A. Use Gauss law to find (a) the charge per unit
length on the inner and outer surfaces of the hollow cylinder and (b) the
electric field outside the hollow cylinder, a distance r from the axis.

PN

Solution

(a) Use a cylindrical Gaussian surface S; within

the conducting cylinder where E=0

r
Thus I
oE.dA

r:qin:0

&

o

and the charge per unit length on the inner surface

must be equal to

Ninner = -A
Also Ainner T Aouter = 24
thUS }Louter = 3}\,

(b) For a gaussian surface S,

conducting cylinder
rr

Gy
JEdA=—
60
1
E@2nrL)= — (A-A+3M)L
80
Lpo-34
27E,r

P
R e

outside the

~_ |

Figure 4.19
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Example 4.7

Consder a long cylindrical charge distribution of radius R with a
uniform charge density p. Find the electric field at distance r from the
axis where r<R.

DA
} Solution

If we choose a cilindrical gaussian surface of length L and radius r, Its

volume is 7rL, and it enclses a charge prr’L. By applying Gauss’s law we
get,

rroog ,ozzr2 L
§ EdA=_"pecomes E§dA —
Eo &,

p;zrzL

QfdA = 2rL therefore EQarL) = “—

Thus
E= *Zﬂ radially outward from the cylinder axis
&o

Notice that the electric field will increase as p increases, and also the
electric field is proportional to r for r<R. For thr region outside the cylinder
(r>R), the electric field will decrese as r increases.
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\ Example 4.8

Two large non-conducting sheets of +ve charge face each other as
shown in figure 4.20. What is E at points (i) to the left of the sheets (ii)
between them and (iii) to the right of

+C +G
the sheets? T ]
-+ i
A + +
\ Solution E L Bk i
We know previously that for each sheet, B +
the magnitude of the field at any point E i
is E, Bl E, @ E,
+ -+
o % 2
E=7, + .
© =t mn
(@ At point to the left of the two 1 2
parallel sheets
E=-E; +(-Ep) =-2E Figure 4.20
nE=-9
&o

(b) At point between the two sheets
E=E; + (-Ep) = zero

(c) At point to the right of the two parallel sheets
E=E;+E;=2E

o
LE=7
€o
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4.9 Problems

4.1) An electric field of intensity 4.5) Four closed surfaces, S,
3.5x103N/C is applied the x-axis. through S, together with the
Calculate the electric flux through a charges -2Q, +Q, and -Q are

rectangular plane 0.35m wide and
0.70m long if (a) the plane is
parallel to the yz plane, (b) the
plane is parallel to the xy plane,
and (c) the plane contains the y axis
and its normal makes an angle of
40° with the x axis.

4.2) A point charge of +5uC is
located at the center of a sphere
with a radius of 12cm. What is the
electric flux through the surface of
this sphere?

4.3) (a) Two charges of 8uC and -
5uC are inside a cube of sides
0.45m. What is the total electric
flux through the cube? (b) Repeat
(@) if the same two charges are
inside a spherical shell of radius O.
45 m.

4.4) The electric field everywhere
on the surface of a hollow sphere
of radius 0.75m is measured to be
equal to 8.90x10°N/C and points
radially toward the center of the
sphere. (a) What is the net charge
within the surface? (b) What can
you conclude about charge inside
the nature and distribution of the
charge inside the sphere?

sketched in figure 4.21. Find the
electric flux through each surface.

Figure 4.21

4.6) A conducting spherical shell of

radius 15cm carries a net charge of

-6.4uC uniformly distributed on its
surface. Find the electric field at
points (a) just outside the shell and
(b) inside the shell.

4.7) A long, straight metal rod has a

radius of 5cm and a charge per unit
length of 30nC/m. Find the electric
field at the following distances
from the axis of the rod: (a) 3cm,
(b) 10cm, (c) 100cm.
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4.8) A square plate of copper of
sides 50cm is placed in an extended
electric field of 8x10*N/C directed
perpendicular to the plate. Find (a)
the charge density of each face of
the plate and (b) the total charge on
each face.

4.9) A solid copper sphere 15cm in
radius has a total charge of 40nC.
Find the electric field at the
following distances measured from
the center of the sphere: (a) 12cm,
(b) 17cm, (c) 75cm. (d) How would
your answers change if the sphere
were hollow?

4.10) A solid conducting sphere of
radius 2cm has a positive charge of
+8uC. A conducting spherical
shell d inner radius 4cm and outer
radius 5cm is concentric with the
solid sphere and has a net charge of
-4uC. (a) Find the electric field at
the following distances from the
center of this charge configuration:
(@) r=1cm, (b) r=3cm, (c) r=4.5cm,
and (d) r=7cm.

4.11) A non-conducting sphere of
radius a is placed at the center of a
spherical conducting shell of inner
radius b and outer radius c, A
charge +Q is distributed uniformly
through the inner sphere (charge
density pC/m?) as shown in figure
4.22. The outer shell carries -Q.
Find E(r) (i) within the sphere
(r<a) (ii) between the sphere and
the shell (a<r<b) (iii) inside the
shell (b<r<c) and (iv) out side the

4.14) A

shell and (v) What is the charge
appear on the inner and outer
surfaces of the shell?

Figure 4.22

4.12) A solid sphere of radius 40cm

has a total positive charge of 26uC
uniformly distributed throughout its
volume. Calculate the electric field
intensity at the following distances
from the center of the sphere: (a) 0
cm, (b) 10cm, (c) 40cm, (d) 60 cm.

4.13) An insulating sphere is 8cm in

diameter, and carries a +5.7uC
charge  uniformly  distributed
throughout its interior volume.
Calculate the charge enclosed by a
concentric spherical surface with
the following radii: (a) r=2cm and
(b) r=6cm.

long conducting cylinder
(length 1) carry a total charge +q is
surrounded by a conducting
cylindrical shell of total charge -2q
as shown in figure 4.23. Use
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Gauss’s law to find (i) the electric 4.16) A large plane sheet of charge

field at points outside the
conducting shell and inside the
conducting  shell, (i)  the
distribution of the charge on the
conducting shell, and (iii) the
electric field in the region between
the cylinder and the cylindrical
shell?

Figure 4.23

4.15) Consider a thin spherical shell

of radius 14cm with a total charge
of 32uC distributed uniformly on
its surface. Find the electric field
for the following distances from the
center of the charge distribution:
(@) r=10cm and (b) r =20cm.

has a charge per unit area of
9.0nC/m? Find the electric field
intensity just above the surface of
the sheet, measured from the sheet's
midpoint.

4.17) Two large metal plates face

each other and carry charges with
surface density +c and -o
respectively, on their inner surfaces
as shown in figure 4.24. What is E
at points (i) to the left of the sheets
(if) between them and (iii) to the
right of the sheets?

7 z

e el o s e e

> -

Figure 4.24
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Electric Potential

5.1 Definition of electric potential difference
5.2 The Equipotential surfaces

5.3 Electric Potential and Electric Field

5.4 Potential difference due to a point charge
5.5 The potential due to a point charge

5.6 The potential due to a point charge

5.7 Electric Potential Energy

5.8 Calculation of E from V

5.9 Problems
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The Electric Potential

EIOA A el El S A 56l Al e Ll (Se S AR J il Ll
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Lt e Juaie 58 el Jlaal) alag) ki Uiga) 5 () Aanaly ) Claadl) (pa I
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(1) apass S

&5 (Lase) Lmola St o Jss s (i V) o 358 h i) ) M 4SS s a8 2ic
s Al ) Joahy Gige Jaudll 135 Y1 Apdlal) Aae da anal) ol et Ay
Adlesall ol 3L ala 35 028 puasll Adldas L pm Y 5 M sl (e 45 €A e genall 4 St
a4l M aval) o Jodud) Jrill 5506 01513 sl Jrill 213 jam aalally 43V B
e s Amidid) o gl) Ay Bhlid) ) dedi el gl ddla <3 3laliall (o
el e e il 3 5

(2) st Jia
D51 S LS e U Gipa JS8 e k) i

[T il e ST B ALl die k) g5 el ) 38l 5
“""i» bl 8 S ) siall b 13 Glaly A ddaiil) e aua gl

A ] B A e o A AL sl B B o
L . A iall Ugla A&B (bl (a5l illa

Figure 5.1

(3) aplast Jla
A&B kil (f (m i dus Ayl G ol pallall Lls dglie Al el
1) L 5.2 0S5 8 LS JEal s o Q e Lind e gl 0 568 Jlae 8 lass 5e
L QX5 A V) Apdlall Alae Jlae A M anadl 3 ,k00) (o Llial diad @l <l
Cogas Qo Al old Q L) (e il Baga e (Gbad) Jlid) & B ki) xie k)
O O ias A I B e gl o T Ak Y Rl e By 8 ALE (e 8
plddie (oS g ) Bhlie ) adije (0568 g I3 Bhlie e O a3 (g Al
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E 4l oeS dlae (& ofiedl g A&B (ihais G (206D agall (38 cay et (S @l
dad ey jail (OE) 4w el sl s (Fex) dnols 558 dand o Josdaall Jadl) Cluss
(s g el yaall o) o 35 Al 8 il 0588 Gy B A e G i)

o

<_® % B
“/IN

Figure 5.2

* >

B b ciliag L 1) Wl i 13gd 1.5VOIt Lgnadad (G agad) (58 4 Uy lilia il 1))
b G LS L pabiial) sgal) ) adipal) agad) e @ atin A gal) cliadl) Gld Ay S
el O ) (3 ey i cliadl) AS e paiuduy U Aasl) 3 gaial) b Alla

hall | glusa 4
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5.1 Definition of electric potential difference

We define the potential difference between two points A and B as the work
done by an external agent in moving a test charge g, from Ato B i.e.

Vg-Va=Wag/ qo (5.1)

The unit of the potential difference is (Joule/Coulomb) which is known as

Volt (V)

Notice
Since the work may be (a) positive i.e Vg > Va

(b) negative i.e Vg < Vp

(c) zeroi.e Vg = Va

You should remember that the work equals

W=F,.l =F,cosédl

If 0<0<90= cos0 is+ve and therefore the W is +ve

[ ]
If 90 < 0 < 180 = cos 0 is -ve and therefore W is -ve

[}
If © = 90 between F¢y and | = therefore W is zero

[ ]
The potential difference is independent on the path between A and B. Since

the work (Wag) done to move a test charge g, from A to B is independent on
the path, otherwise the work is not a scalar quantity. (see example 5.2)
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5.2 The Equipotential surfaces

As the electric field can be represented graphically by lines of force, the
potential distribution in an electric field may be represented graphically by
equipotential surfaces.

The equipotential surface is a surface such that the potential has the same
value at all points on the surface. i.e. Vg -Va = zero for any two points on
one surface.

The work is required to move a test charge between any two points on an
equipotential surface is zero. (Explain why?)

In all cases the equipotential surfaces are at right angles to the lines of force
and thus to E. (Explain why?)

A\

A\

Y

A J

Figure 5.3 (a) Figure 5.3 (b)

Figure 5.3 shows the equipotential surfaces (dashed lines) and the electric
field lines (bold lines), (a) for uniform electric field and (b) for electric
field due to a positive charge.
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5.3 Electric Potential and Electric Field

The potential difference between two points A and B in a Uniform electric
field E can be found as follow,

Assume that a positive test charge g, is moved by an external agent from A
to B in uniform electric field as shown in figure 5.4.

The test charge q, is affected by electric

force of g.E in the downward direction. To B
move the charge from A to B an external x
force F of the same magnitude to the
electric force but in the opposite direction. ‘
The work W done by the external agent is: : F
di
d qlb

Wag = Fd = qud (52) a.E

The potential difference Vg-Va is
A
W
Ve-Va=""2 _gg (5.3) E
% Figure 5.4

This equation shows the relation between the potential difference and the
electric field for a special case (uniform electric field). Note that E has a
new unit (V/m). hence,

Volt Newton

Meter  Coulomb
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If the test charge g, is moved along a curved path from A to B as shown in
figure 5.5. The electric field exerts a force q.E on the charge. To keep the
charge moving without accelerating, an external agent must apply a force F
equal to -g.E.

If the test charge moves distance dI
along the path from A to B, the work
done is F.dl. The total work is given

by,
Br r Br r
Wi :7[F.d| = —qoiE-dl (5.4)

The potential difference Vg-Va is,

W Br r
Ve -Va=_" =—[Edl (55)
A

0

Figure 5.5

dl Zal3Y) aaie oladl 4tey lusall a3 Al 4 B A (e JalSil agaa of L LaaY
c? S Jlaall 4aiia g dal Y dndiie (5 ) seanall 4550 30 2 6 Ayl 3l (5SS

If the point A is taken to infinity then VA=0 the potential V at point B is,

Br r
Vs =—[ Edl (5.6)

This equation gives the general relation between the potential and the
electric field.
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\} Example 5.1

Derive the potential difference between points A and B in uniform
electric field using the general case.

™

Solution

Br r B B
V, -V, = —'[\E.dl = —./[Ec05180 di =7[Edl (5.7)

E is uniform (constant) and the integration over the path A to B is d,
therefore

B

Vg =V, = E./[dl = Ed (5.8)

DA f
‘."H“ B C
\) Example 5.2 5 d?qc .
In figure 5.6 the test charge moved o q;’}/
from A to B along the path shown.
Calculate the potential difference d st
between A and B. /
L
A
E
Figure 5.6
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™

Solution

Ve-Va=(Ve-Vc)+(Vc-Va)

For the path AC the angle 0 is 135°,

C rr C E I8
RV _ “dl=—
Ve -V, = '/[E.dl = J;Ecosl?,S ﬁldl

The length of the line AC is V2 d

E
Ve =V, _E(ﬁd) = Ed

For the path CB the work is zero and E is perpendicular to the path
therefore, Vc-Va =0

Vs =V, =V, -V, = Ed

The Electron Volt Unit

A widely used unit of energy in atomic physics is the electron volt (eV).
ELECTRON VOLT, unit of energy, used by physicists to express the
energy of ions and subatomic particles that have been accelerated in particle
accelerators. One electron volt is equal to the amount of energy gained by
an electron traveling through an electrical potential difference of 1 V; this is
equivalent to 1.60207 x 10 *J. Electron volts are commonly expressed as
million electron volts (MeV) and billion electron volts (BeV or GeV).
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5.4 Potential difference due to a point charge

Assume two points A and B near to a positive charge g as shown in figure
5.7. To calculate the potential difference Vg-Va We assume a test charge go
is moved without acceleration from A to B.

<

V\\ v
@ E B F d qf A
A |

g,
S

Figure 5.7

In the figure above the electric field E is directed to the right and dl to the

left.
rr

E.dl = Ecos180°dl = —Edl (5.10)

However when we move a distance dl to the left, we are moving in a
direction of decreasing r. Thus

r r
dl =-dr (5.11)
Therefore
-EdI=Edr (5.12)
Br r r
"V =V, =—[Edl = [Edr (5.13)
A fa
Substitute for E
1 g
E=——— 5.14
Q dre, r? ( )
We get
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q 2dr g (1 1}
.'.VB—VA:—4ﬂ_—.§ _[1;2:4% - (5.15)

(2N o B A

Lol g1l 6 ol o oSl agall Bob alag) sty sl 1 of L LY

o [REE

5.5 The potential due to a point charge

If we choose A at infinity then V=0 (i.e. ra = o) this lead to the potential
at distance r from a charge q is given by

v="119 (516 )
dre, r

This equation shows that the P07
equipotential surfaces for a charge <—+—— @ e
are spheres concentric with the Vo
charge as shown in figure 5.8.

¥

Figure 5.8

oy g 5eSH 2l Lei cRilual) o je pe LS anliiy Zind] o je)) Jlaal) of s
i) ga e
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5.6 The potential due to a point charge

ol Gl e ST S ind e s A 5 sl Slad ol Vi plasialy (S
S 2gall alay Dl ALEN vie sas o Riad JS e (o8 aeSl seall (gl

Lfi Laie

V=V +Vo+Vz+ ... +V, (5.17)

V=DV an (5.18)
li " 452‘0 n n
Oy L U aen en Y (vl 35 LaY) 335 g Al dad e Gim sl e
) e ol 5 5LEY) 3383 Can oS Jlaal) 8 Jai US LS Lalad) laas

DA
1 Example 5.3

What must the magnitude of an isolated positive charge be for the
electric potential at 10 cm from the charge to be +100V?

™

Solution
v=_14d

dre, v

. q=Vdze,r? =100x 47 x8.9x10 % x0.1=1.1x10°C
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\ Example 5.4

What is the potential at the center of the square shown in figure 5.9?
Assume that 1= +1 x10°C, g,= -2x10°C, g3=+3x10°C, q,=+2x10°C,
and a=1m.

X Solution V
q +q +q +q a a
AV ) A S S B
LA, r

The distance r for each charge from P is 0.71m Qa a as
9x10°(1-2+3+2)x10°® Figure 5.9
Vo= =500V
0.71

\ Example 5.5

Calculate the electric potential due to an electric dipole as shown in
figure 5.10.

.P
2a rd
Figure 5.10
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™

Solution

V=2 Vy=Vi+V,

(9 q) r-n

v=Kl _-_|=Kq
\n ) An
When r>>2a,
Iy - 11 = 2acos0 and  rin=r}
V= Kg 2acosf _ K pcosd (5.19)

r.2 r2

where p is the dipole momentum

Note that V = 0 when 6=90° but V has the maximum positive value when
0=0° and V has the maximum negative value when 6=180".
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5.7 Electric Potential Energy

The definition of the electric potential energy of a system of charges is the
work required to bring them from infinity to that configuration.

To workout the electric potential energy for a system of charges, assume a
charge g at infinity and at rest as shown in figure 5.11. If g, is moved from
infinity to a distance r from another charge q;, then the work required is
given by

W=V(Q; 0 o
1
Qv = q_l . Py
dre, ¥ g
p
Substitute for V in the equation of work
1 Figure 5.11
u=w__ - 49 (5.20)
Are, T,
U = - (5.21)
Are,x

To calculate the potential energy for systems containing more than two
charges we compute the potential energy for every pair of charges
separately and to add the results algebraically.

_ N -didi
U= 5.22
Z 47[80 Fij ( )

sl A8l ola) o) jal) e senall clS 1Y) (S cdadd e Al 8 Baday J Y1 3l
Crftiand JS g A3 kel AL aa g3 Cam JBY  l pasis iins e AST Ll e
IS (b Ol s,lay) aaliy 2adll Gad o g ol (L bien peni & oaa o
B e
If the total electric potential energy of a system of charges is positive this

correspond to a repulsive electric forces, but if the total electric potential
energy is negative this correspond to attractive electric forces. (explain

why?)
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V?ﬁ -4q
Example 5.6

Three charges are held fixed as

shown in figure 5.12. What is the

potential energy? Assume that a a

g=1 x10”C and a=10cm.

v +1qg a +2q

Solution Figure 5.12
U=Upp+U3+Uzs

U= ' Ta)-a) | (+a)(+20) | (-4a)(+2q) ]

47zgo||_ a a a |J
2
u-_ 109"
dre, a
9 —7\2
Ly 9000y s

0.1

Jotsall Jadl) O an 132 5 Adla A< ABUal Ao o Jaads
U3 Cra gifiaad - Liagl calbar S A85La cilia ) el e Jliall
O Al 8 Lal a3 98 & cilia &) ¢y Adalal) 5 981 o
O Ataliial) B o8N o) ian 13 LB Asa g AIS) A BUAY) (0 583

AL g A cliadl
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5.8 Calculation of E from V

As we have learned that both the electric field and the electric potential can
be used to evaluate the electric effects. Also we have showed how to
calculate the electric potential from the electric field now we determine the
electric field from the electric potential by the following relation.

£__ dv
dl
New unit for the electric field is volt/meter (v/m)

(5.23)

JalSiy Junlis aDle a6 dally e dlaall o Apaly )l A o LaY
O S8 e ) alay) Jealidl) ddae bials oSar (el 2l Lidle 13 L
.equipotential surfaces sgall 4 sbuie mhand e 4 sae 25680 Jlaal) Lo shas

™

Calculate the electric field for a point charge g, using the equation
19
V =

dre, r

Example 5.7

™

Solution

E=—f',;,/r d( 1 q)

dr\4zns, r)

En;:{i}u;_&
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5.9 Solution of some selected problems

£ 30 5a i ) ilenal) Gand ¥ gla (o sricu g
RS Jlaalls S 2
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\ Example 5.8

Two charges of 2uC and -6uC are

located at positions (0,0) m and (0,3) m, 6@(0.3)
respectively as shown in figure 5.13. (i)

Find the total electric potential due to

these charges at point (4,0) m.

(i) How much work is required to +2.(0,0) (4,0)
bring a 3uC charge from oo to the point b
P?

Figure 5.13

(ili) What is the potential energy for
the three charges?

™

Solution
Vp =Vi+\V,
1

V = |_(11+ qz |

4re, ||_I’1 r U

d 2x107% 6x10°°] 3
V=9><10| |=463><10 volt
L 4 5

(ii) the work required is given by
W=g3V,=3x10°x-6.3x10°=-18.9x107]J

The -ve sign means that work is done by the charge for the movement from
oo to P.

(iii) The potential energy is given by
U=Up+Up+Uxs

[(2x107 ®)(=6x10" %) (2x10" ®)(3x10™ ®) (-6x10 °)(3x10™ °)]

U=k
I 3 * 4 * 5 I

.U =-55x10"2 Joule
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\} Example 5.9

A particle having a charge qg=3x10°C moves from point a to point b
along a straight line, a total distance d=0.5m. The electric field is
uniform along this line, in the direction from a to b, with magnitude
E=200N/C. Determine the force on g, the work done on it by the
electric field, and the potential difference V,-Vp.

A

" Solution

The force is in the same direction as the electric field since the charge is
positive; the magnitude of the force is given by

F =qE = 3x10°® x 200 = 600x10°N
The work done by this force is
W =Fd = 600x10°° x 0.5 = 300x10™®J
The potential difference is the work per unit charge, which is
Va-Vp = W/ig = 100V
Or
Va-Vp = Ed = 200 x 0.5 = 100V

Example 5.10
Point charge of +12x10°C and
-12x10°C are placed 10cm part as 10cm 10cm
shown in figure 5.14. Compute the
potential at point a, b, and c. b a
Compute the potential energy of a a | ey
point charge +4x10°C if it placed at <« *®M e 6em . dam
points a, b, and c.

Figure 5.14
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™

We need to use the following equation at each point to calculate the
potential,

v=>Vv __1 4
no 47[80eri

Solution

o[12x10°  —12x107° )
V, =9x10 | + | = —900V
L 0.06 004 )

o(12x107°  —12x107°)
V, =9x10 | + | =—1930V
| 004 014 )

o12x107°  —12x107°)
V, =9x10 | +
\

Y
0.1 0.14 )

We need to use the following equation at each point to calculate the
potential energy,

U=gqV
Ua = qVa = 4x10°°%(-900) = -36x107
Up = qVp = 4x10x1930 = +77x10J

Ue=qVe=4x10°x0=0
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™A
Example 5.11

A charge q is distributed throughout a nonconducting spherical volume
of radius R. (a) Show that the potential at a distance r from the center
where r <R, is given by
_qBR*-r?)
8re, R®

™

uu@\@ﬁumuu}.uub)ua AA.Jas.ams:‘dm}A.“ e USS\J;\;;PJ\J;_N

Solution

A ddaail) 5 ALVl B paa e
Vs -V, = —j Edl
Jilse e Al Al g alad LS Ly 5,80 2 s oadhide e dlaall o Cum
coesla o #B
.
Eout— q 2 Ein— q 3
dre,r dre,R

Va-Ve=(Va-Vg)+ (Vs - V)
Va—V, =—[Edl - [E,.dl

dl = -dr Laf (<15 c05180= -1 of 51 180° o dl & E gy isl 31 of Jasds
47rgOR3 Are,r?
q [r?] q [11 q@BR*-r?
- ] + — — = - @
dze, R 2 )" ame, 1|7 e RP

L) gllaall ga g A ddatill dic agall o lda g

q
V= Alall o3 b 2eall i3 S0 gl o A S 1Y
dre,R i

ARG R CN BV VAN Py
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DA
Example 5.12

For the charge configuration shown in figure 5.15, Show that V(r) for
the points on the vertical axis, assuming r >> a, is given by

v= 1 Iq | 2aq]
Are, |Lr r2 |J

Solution
Vp =Vi+Vo+V;
q q q r
V= + -
Are,(r—a) A4re,r 4me,(r+a)
0 +q
q(r+a)—g(r—a) q a
dre, (rz2 — a2 dre,r
( ) — O g
2aq L4 a
Arg,r2(1-azlr?)  Arxe,r Q -q
when r>>a then a%/r? <<1
VI (1—a2/r2y L4 9 Figure 5.15
A7g,r2 dre,r
B S T s ol Ll ) g cppand) @l Al cp il Sl (S
1L+x)"=1+nx when x<<1
2aq q
V= (1+a2/ry) +
4re,r? Are,r

13 Apily 82/1° Jlea) oSy s
2v= 1 lag, 2aq]
Are, |Lr r2 U
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™
Example 5.13

Derive an expression for the work
required to put the four charges together
as indicated in figure 5.16.

™
§ Solution

The work required to put these charges
together is equal to the total electric potential
energy.

U=Up+Up+ U+ Up+Uxu+ Uy

U = 1 |__ q2 N q2 qz ~ qz q2

+q a -q
® L
a a
@ @
-q a +q
Figure 5.16
o |

— 1 + _
47ng| a J2a a a 23 aJ

1
U= {—4q2Jr 202 |

a \/EaJ

dre,

U - 1[1me+mﬂF—am2
4re, J2a ] g,a

The minus sign indicates that there is attractive force between the charges

In Example 5.13 assume that if all the charges are positive, prove that
the work required to put the four charges together is

U ! 541¢2
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dre, ¢,a
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\ Example 5.14

In the rectangle shown in figure 5.17, q; = -5x10°C and g, = 2x10°C
calculate the work required to move a charge gs = 3x10°C from B to A
along the diagonal of the rectangle.

i .- 15cm A

& 5cm

. 0
Figure 5.17

™

from the equation Vg-Va=Was/ Qo

Solution

VA:V1+V2 & VB=V1+V2

v 4 [-5x107° 2x107°] =6x10*°V

A= +
4zg,| 0.5 005 |
vy 4 [-5x107° 2x107°] =-7.8x10'V
B = +
4re,| 0.05 015 |

Wea = (Va-Va) 03

=(6 x 10* +7.8 x 10%) 3 x 10° = 0.414 Joule
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\} Example 5.15

Two large parallel conducting plates are 10 cm a part and carry equal
but opposite charges on their facing surfaces as shown in figure 5.18.
An electron placed midway between the two plates experiences a force
of 1.6 x 10™ N.

What is the potential difference between the plates?

DA —
X’!H\‘

Solution E
V -V =Ed
B A

Gased)) ol b oo eSls s daall Glea Se | [T

s e

F=eE=E=Fle D E—
10cm

V -V =10000 x 0.1 = 1000 volt Figure 5.18

B A
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5.10 Problems

5.1) What potential difference is
needed to stop an electron with an
initial speed of 4.2x10°m/s?

5.2) An ion accelerated through a
potential  difference of 115V
experiences an increase in potential
energy of 7.37x10™Y7J. Calculate the
charge on the ion.

5.3) How much energy is gained by
a charge of 75 uC moving through
a potential difference of 90V?

5.4) An infinite charged sheet has a

urface charge density ¢ of 1.0x10°
" C/m% How far apart are the
equipotential surfaces ~ whose

potentials differ by 5.0 V?

5.5) At what distance from a point
charge of 8uC would the potential
equal 3.6x10%V/?

5.6) At a distance r away from a
point charge q, the electrical
potential is V=400V and the
magnitude of the electric field is
E=150N/C. Determine the value of
gandr.

5.7) Calculate the wvalue of the
electric potential at point P due to
the charge configuration shown in
Figure 5.19. Use the values

0:=5uC, =-10uC, a=0.4m, and
b=0.5m.

b —|

g,

®
a |<—b—>| 4
Figure 5.19

5.8) Two point charges are located
n Figur 2 her

as 3 OV& IQ- |g€ ea50 gt)mW gn
b =0.90m. Calculate the value of
the electrical potential at points Py,

and P,. Which point is at the
higher potential?

y
'
a
qz/:\ b a X
o .
b
P,
Figure 5.20
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5.9) Consider a point charge with 5.12) In figure 5.22 prove that the

q=1.5x10°C. What is the radius of
an equipotential surface having a
potential of 30V?

5.10) Two large parallel conducting
plates are 10cm apart and carry
equal and opposite charges on their
facing surfaces. An electron placed
midway between the two plates
experiences a force of 1.6x10%N.
What is the potential difference
between the plates?

5.11) A point charge has q=1.0x10"
°C. Consider point A which is 2m
distance and point B which is 1m
distance as shown in the figure
5.21(a). (a) What is the potential
difference Va-Vg? (b) Repeat if

points A and B are located
differently as shown in figure
5.21(b).
B A
— (O °
q
Figure 5.21(a)
B
A
a

Figure 5.21(b)

work required to put four charges
together on the corner of a square
of radius a is given by (w=-
0.210% &, a).

+q -q

-q a +q
Figure 5.22

5.13) Two charges q=+2x10°C are

fixed in space a distance d=2cm)
apart, as shown in figure 5.23 (a)
What is the electric potential at
point C? (b) You bring a third
charge =2.0x10°C very slowly
from infinity to C. How much
work must you do? (c) What is the
potential energy U of the
configuration when the third charge
is in place?

C
[ ]
1/2d
o 1/2d 1/2d
q O q
Figure 5.23
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charge q=+5uC are located at the
corners of a 30cm by 40cm
rectangle. Calculate the electric
potential energy stored in this
charge configuration.

5.14) Four equal point charges of 5.15) Two point charges, Q;=+5nC

and Q,=-3nC, are separated by
35cm. (a) What is the potential
energy of the pair? What is the
significance of the algebraic sign of
your answer? (b) What is the
electric potential at a point midway
between the charges?
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Multiple Choice Questions

Part 1
Principles of Electrostatic

Coulomb’s Law
Electric Field
Gauss’s Law

Electric Potential Difference

Attempt the following question after the
completion of part 1
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Multiple choice question for part 1

[1] Two small beads having positive charges 3 and 1 are fixed on the
opposite ends of a horizontal insulating rod, extending from the origin to the
point x=d. As in Figure 1, a third small, charged bead is free to slide on the
rod. At what position is the third bead in equilibrium?

+3q +q
o o
: d :
Figure 1

a. x=0.366d

b. x=0.634d

c. x=0.900d

d x=237d

[2] Two identical conducting small spheres are placed with their centers
0.300m apart. One is given a charge of 12.0nC and the other one a charge of
18.0nC. (a) Find the electrostatic force exerted on one sphere by the other.
(b) The spheres are connected by a conducting wire. After equilibrium has
occurred, find the electrostatic force between the two.

(a) 2.16 x 10 N attraction; (b) 0 N repulsion

(a) 6.47 x 10° N repulsion; (b) 2.70 x 10" N attraction
() 2.16 x 10™ N attraction; (b) 8.99 x 10 N repulsion
(a) 6.47 x 10° N attraction; (b) 2.25 x 10” N repulsion

o0 o

[3] An electron is projected at an angle of 40.0° above the horizontal at a
speed of 5.20 x 10° m/s in a region where the electric field is E = 3 50 j N/C.
Neglect gravity and find (a) the time it takes the electron to return to its
maximum height, (h) the maximum height it reaches and (c) its horizontal
displacement when it reaches its maximum height.

() 1.09 x 10 s; (b) 0.909 mm; (c) 2.17 m
(a) 1.69 x 10 s; (b) 2.20 mm; (c) 4.40 m
() 1.09 x 10 s; (b) 4.34 mm; (c) 0.909 m
() 1.30 x 10®s; (b) 1.29 mm; (c) 2.17 m

o0 o

[4] Two identical metal blocks resting on a frictionless horizontal surface are
connected by a light metal spring for which the spring constant is k 175 N/m
and the unscratched length is 0.350 m as in Figure 2a.
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k k
[m Awwwn—{m] [mAAAAAAM]
I | |
a b
Figure 2

A charge Q is slowly placed on the system causing the spring to stretch to an
equilibrium length of 0.460 m as in Figure 2b. Determine the value of Q,
assuming that all the charge resides in the blocks and that the blocks can be
treated as point charges.

a.64.8 uC
b. 32.4 uC
c.85.1uC
d. 42.6 uC

[5] A small plastic ball 1.00 g in mass is suspended by a 24.0 cm long string
in a uniform electric field as shown in Figure P23.52.

y

-~~~ E=1.5x10% NIC

X 23° -
24cm

-

) W ——

T

———

m=1g
Figure 3

If the ball is in equilibrium when the string makes a 23.0° angle with the
vertical, what is the net charge on the ball?

a. 36.1 uC
b. 15.4 uC
C.6.53C
d.2.77 uC

[6] An object having a net charge of 24.0 uC is placed in a uniform electric
field of 6 10 N/C directed vertically. What is the mass of the object if it
"floats™ in the field?
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a.0.386 g
b. 0.669 g
c.259¢
d.1.49¢

[7] Four identical point charges (q = +14.0 uC) are located on the corners of
a rectangle as shown in Figure 4.
q q

L

Figure 4

q

The dimensions of the rectangle are L = 55.0 cm and W= 13.0 cm.
Calculate the magnitude and direction of the net electric force exerted on the
charge at the lower left corner by the other three charges. (Call the lower left
corner of the rectangle the origin.)

106 mN @ 264°
758 mN @ 13.3°
7.58 mN @ 84.0°
106 mN @ 193°

o0 o

[8] An electron and proton are each placed at rest in an electric field of 720
N/C. Calculate the speed of each particle 44.0 ns after being released.

a.  Ve=127x10°m/S, v, =6.90 x 10° m/s
b. Vve=556x10°m/S, v,= 3.04 x 10°

C.  Ve.=127x10"m/S, v,=6.90x 10" m/s
d  ve=3.04x10°m/S, v,=5.56x10°m/s

[9] Three point charges are arranged as shown in Figure 5.
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3nC 0.250 m 4 nC

0.175m
-2nC

Figure 5

@ Find the vector electric field that the 4.00 nC and -2.00 nC charges
together create at the origin. (b) Find the vector force on the 3.00 nC charge.

a. (a) (0.144i - 0.103 j) KN/C; (b) (0.432i - 0.308]) uN
b. (a) (-0.575i - 0.587j ) kN/C; (b) (-1.73i- 1.76j) uN

c. (a) (-0.144i - 0.103j) KN/C; (b) (-0.432i - 0.308j) uN
d. (a) (-0.575i + 0.587j) kN/C; (b) (-1.73i + 1.76j) uN

[10] Two 1.00 uC point charges are located on the x axis. One is at x = 0.60
m, and the other is at x = -0.60 m. (a) Determine the electric field on the y
axis at x = 0.90 m. (b) Calculate the electric force on a -5.00 uC charge
placed on the y axis aty = 0.90 m.

a. () (8.52 x 10% +1.28 x 10%)N/C; (b) (-4.62 x 102 — 6.39 x 10%))N

b. (a) 8.52 x 10% N/C; (b) -4.26 x 10 N
c. (a) 1.28 x 10% N/C; (b) -6.39 x 10 N
d. (a) -7.68 x 10°N/C; (b) 3.84 x 103 N

[11] A 14.0uC charge located at the origin of a cartesian coordinate system
is surrounded by a nonconducting hollow sphere of radius 6.00 cm. A drill
with a radius of 0.800 mm is aligned along the z-axis, and a hole is drilled
in the sphere. Calculate the electric flux through the hole.

a. 176 Nm?%C
b.4.22 Nm?/C
c. 0 Nm?%C

d. 70.3 Nm?/C

[12] An electric field of intensity 2.50 kN/C is applied along the x-axis.
Calculate the electric flux through a rectangular plane 0.450 m wide and
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0.800 m long if (a) the plane is parallel to the yz plane; (b) the plane is
parallel to the xy plane; (c) the.plane contains the y-axis and its normal
makes an angle of 30.0° with the x-axis.

(2) 900 Nm?/C; (b) 0 Nm?/C; (c) 779 Nm%C
(a) 0 Nm?%/C; (b) 900 Nm?/C; (c) 779 Nm%/C
(2) 0 Nm?/C; (b) 900 Nm?/C; (c) 450 Nm%C
(2) 900 Nm?/C; (b) 0 Nm?/C; (c) 450 Nm*/C

coow

[13] A conducting spherical shell of radius 13.0 cm carries a net charge of -
7.40 uC uniformly distributed on its surface. Find the electric field at
points (a) just outside the shell and (b) inside the shell.

(@) (-7.88 mN/C)r;  (b) (-7.88 mN/C)r
(@) (7.88 mN/C)r; (b) (0 mN/C)r

@) (-3.94 mN/C)r;  (b) (0 mN/C)r

(@) (3.94 mN/C)r; (b) (3.94 mN/C)r

coow

[14] A point charge of 0.0562 uC is inside a pyramid. Determine the total
electric flux through the surface of the pyramid.

a.1.27 x 10° Nm?%C?
b.6.35 x 10° Nm?/C?
c. 0 Nm?/C?

d. 3.18 x 10* Nm?/C?

[15] A large flat sheet of charge has a charge per unit area of 7.00 uC/m?®.
Find the electric field intensity just above the surface of the sheet, measured
from its midpoint.

7.91 x 10° N/C up
1.98 x 10° N/C up
3.95 x 10° N/C up
1.58 x 10° N/C up

o0 o

[16] The electric field on the surface of an irregularly shaped conductor
varies from 60.0 KN/C to 24.0 KN/C. Calculate the local surface charge
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density at the point on the surface where the radius of curvature of the
surface is (a) greatest and (b) smallest.

0.531 uC/m?  (b) 0.212, pC/m?
.06, uC/m*  (b) 0.425 pC/m?
0.425, uC/m?: (b) 1.06pC/m?

0.212 uC/m?  (b) 0.531 uC/m?

o0 o

[17] A square plate of copper with 50.0 cm sides has no net charge and is
placed in a region of uniform electric field of 80.0 kN/C directed
perpendicular to the plate. Find (a) the charge density of each face of the
plate and (b) the total charge on each face.

a. (@) o =+0.708 uC/m%  (b) Q =+ 0.0885 pC
b. (@) o =+1.42 uC/m%  (b) Q =+ 0.354 uC
c.(@) o=+0.708 uC/m* (b)) Q=+0.177 uC
d. () o =+142uC/m% (b)) Q =+0.177 uC

[18] The following charges are located inside a submarine: 5.00uC, -9.00uC,
27.0uC and -84.0uC. (a) Calculate the net electric flux through the
submarine. (b) Is the number of electric field lines leaving the submarine
greater than, equal to, or less than the number entering it?

(a) 1.41 x 10’ Nm%C; (b) greater than
(a) -6.89 x 10° Nm?%C; (b) less than
(a) -6.89 x 10° Nm%/C; (b) equal to
() 1.41 x 10 Nm?/C; (b) equal to

o0 o

[19] A solid sphere of radius 40.0 cm has a total positive charge of 26.0uC
uniformly distributed throughout its volume. Calculate the magnitude of the
electric field at 90.0 cm.

a. (2.89 x 10° N/C)r
b. (3.29 x 10° N/C)r
c.0ON/C

d. (1.46 x 10° N/C)r
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[20] A charge of 190 uC is at the center of a cube of side 85.0 cm long. (a)
Find the total flux through each face of the cube. (b) Find the flux through
the whole surface of the cube.

(a) 3.58 x 10° Nm%C; (b) 2.15 x 10" Nm?/C
() 4.10 x 10" Nm%/C; (b) 4.10 x 10" Nm?/C
(a) 1.29 x 10 Nm%C; (b) 2.15 x 10" Nm?/C
(a) 6.83 x 10° Nm?/C; (b) 4.10 x 10" Nm?/C

o0 o

[21] A 30.0 cm diameter loop is rotated in a uniform electric field until the
position of maximum electric flux is found. The flux in this position is
found to be 3.20 x 105 Nm2/C. What is the electric field strength?

3.40 x 10° N/C
4.53 x 10° N/C
1.13 x 10°N/C
1.70 x 10° N/C

o0 ow

[22] Consider a thin spherical shell of radius 22.0 cm with a total charge of
34.0uC distributed uniformly on its surface. Find the magnitude of the
electric field (a) 15.0 cm and (b) 30.0 cm from the center of the charge
distribution.

a. (a)6.32x10°N/C;  (b)3.40 x 10° N/C
b. (a)0N/C; (b) 6.32 x 10° N/C
c. (a)1.36x10"N/C;  (b)3.40 x 10° N/C
d.  (a) ON/C; (b) 3.40 x 10° N/C

[23] A long, straight metal rod has a radius of 5.00 cm and a charge per unit
length of 30.0 nC/m. Find the electric field 100.0 cm from the axis of the
rod, where distances area measured perpendicular to the rod.

(1.08 x 10* N/C)r
(2.70 x 10° N/C)r
(5.39 x 10° N/C)r
(0 N/C)r

oo ow
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[24] A solid conducting sphere of radius 2.00 cm has a charge of 8.00 uC. A
conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm
is concentric with the solid sphere and has a charge of -4.00 uC. Find the
electric field at r = 7.00 cm from the center of this charge configuration.

(2.20 x 10" N/C)r
(4.32 x 10" N/C)r
(7.34 x 10° N/C)r
(1.44 x 10" N/C)r

o0 o

[25] The electric field everywhere on the surface of a thin spherical shell of
radius 0.650 m is measured to be equal to 790 N/C and points radially
toward the center of the sphere. (a) What is the net charge within the sphere's
surface? (b) What can you conclude about the nature and distribution of the
charge inside the spherical shell?

a.  (a) 3.71x10°°C; (b) The charge is negative, its distribution is
spherically symmetric.

b.  (a) 3.71 x 10® C; (b) The charge is positive, its distribution
IS uncertain.

c.  (a)1.93x10™ C; (b) The charge is positive, its distribution is
spherically symmetric.

d.  (a) 1.93x10™ C; (b) The charge is negative, its distribution
iS uncertain.

[26] Four identical point charges (q = +16.0 uC) are located on the corners
of a rectangle, as shown in Figure 6.

q q

Figure 6
The dimensions of the rectangle are L 70.0 cm and W= 30.0 cm. Calculate
the electric potential energy of the charge at the lower left corner due to the
other three charges.

a.14.9]
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b.7.94]
c.14.0J
d.34.2)

[27] The three charges in Figure 7 are at the vertices of an isosceles triangle.

4 cm

- -q
Figure 7

Calculate the electric potential at the midpoint of the base, taking g=7.00 uC.
a.-14.2 mV
b.11.0 mV
c.14.2 mV
d.-11.0mV

[28] An insulating rod having a linear charge density = 40.0 uC/m and linear
mass density 0.100 kg/m is released from rest in a uniform electric field
E=100 V/m directed perpendicular to the rod (Fig. 8).
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————— > ———=>
-———-> -——->
E ----> —mmm o
————— > —-————>
-———-> -——->
-2 -————>
Figure 8

(@) Determine the speed of the rod after it has traveled 2.00 m. (b)
How does your answer to part (a) change if the electric field is not
perpendicular to the rod?

(a) 0.200 m/s; (b) decreases
(a) 0.400 m/s; (b) the same
(a) 0.400 m/s; (b) decreases
(a) 0.200 m/s; (b) increases

oo oe

[29] A spherical conductor has a radius of 14.0 cm and a charge of 26.0uC.
Calculate the electric field and the electric potential at r = 50.0 cm from the
center.

9.35 x 10° N/C, 1.67 mV
1.19 x 10" N/C, 0.468 mV
9.35 x 10° N/C, 0.468 mV
1.19 x 10" N/C, 1.67 mV

o0 o

[30] How many electrons should be removed from an initially unchanged
spherical conductor of radius 0.200 m to produce a potential of 6.50 kV at
the surface?

a.  1.81x10%
b. 2.38 x 10%
c. 9.04x 10"
d.  1.06x 10"

[31] An ion accelerated through a potential difference of 125 V experiences
an increase in kinetic energy of 9.37 x 10" J. Calculate the charge on the
ion.
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a  133x10%cC

b. 7.50x10%°C
c. 1.17x10%cC
d. 1.60x10%°C

[32] How much work is done (by a battery, generator, or some other source
of electrical energy) in moving Avagadro's number of electrons from an
initial point where the electric potential is 9.00 V to a point where the
potential is -5.00 V? (The potential in each case is measured relative to a
common reference point.)

a. 0.482 MJ
b. 0.385 MJ
c.1.35MJ

d. 0.867 MJ

[33] At a certain distance from a point charge, the magnitude of the electric
field is 600 V/m and the electric potential is -4.00 kV. (a) What is the
distance to the charge? (b) What is the magnitude of the charge?

(@ 0.150 m;  (b) 0.445 uC
(@ 0.150 m;  (b)-1.50 uC
(@) 6.67 m; (b) 2.97 uC

(@) 6.67 m; (b) -2.97 uC

o0 o

[34] An electron moving parallel to the x-axis has an initial speed of 3.70 x
10° m/s at the origin. Its speed is reduced to 1.40 x 10° m/s at the point x =
2.00 cm. Calculate the potential difference between the origin and that
point. Which point is at the higher potential?

a.  -38.9V, the origin
b. 195V, x

c. 389V,x

d.

-19.5V, the origin
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Solution of the multiple choice questions

Q. No.
18

Answer

o

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Q. No. Answer
1 b
2 c
3 a
4 d
5 d
6 d
7 a
8 b
9 b
10 c
11 d
12 a
13 c
14 b
15 c
16 d
17 c

33

34
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Capacitors and Capacitance

6.1 Capacitor
6.2 Definition of capacitance
6.3 Calculation of capacitance

6.3.1 Parallel plate capacitor
6.3.2 Cylindrical capacitor
6.3.3 Spherical capacitor

6.4 Combination of capacitors

6.4.1 Capacitors in parallel
6.4.2 Capacitors in series

4.5 Energy stored in a charged capacitor (in electric field)
6.6 Capacitor with dielectric

6.7 problems
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6.1 Capacitor

Insulator
A capacitor consists of two conductors separated by
an insulator Figure 6.1. The capacitance of the +q -q
capacitor depends on the geometry of the
conductors and on the material separating the
charged conductors, called dielectric that is an
insulating material. The two conductors carry equal \/
and opposite charge +q and -g. Conductor
o ) Figure 6.1
6.2 Definition of capacitance
The capacitance C of a capacitor is defined
) Electric field
as the ratio of the magnitude of the charge Capac'tor\+ )
on either conductor to the magnitude of the $| |E
potential difference between them as shown Il E
in Figure 6.2.
q
C=_ 6.1 1[ififo]r
v (6.1) Il
Battery
The capacitance C has a unit of C/v, which Fiqure 6.2
is called farad F g '
F=ChN
The farad is very big unit and hence we use submultiples of farad
1uF = 10°F
1nF = 10°%F
1pF = 10™F

The capacitor in the circuit is represented by the symbol shown in Figure

5 o

Figure 6.3
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6.3 Calculation of capacitance

The most common type of capacitors are:-
e Parallel-plate capacitor
e Cylindrical capacitor
e Spherical capacitor

We are going to calculate the capacitance of parallel plate capacitor using
the information we learned in the previous chapters and make use of the
equation (6.1).

6.3.1 Parallel plate capacitor

Two parallel plates of equal area A are separated by distance d as shown in
figure 6.4 bellow. One plate charged with +q, the other -q.

B S R R S S N S S S S S S A +q

T
dI V’ h i
~._Gaussian

% 7 | . q surface

Figure 6.4

The capacitance is given by C = E
Vv

First we need to evaluate the electric field E to workout the potential V.
Using gauss law to find E, the charge per unit area on either plate is

o= gA (6.2)
nE=9- 9 (6.3), (4.9)
g EA

The potential difference between the plates is equal to Ed, therefore

VoEd=9 (6.4)
A

The capacitance is given by
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C=

4- ¢ (6.5)
vV  qgdls, A

>

&
nC=_2 6.6
] (6.6)

Notice that the capacitance of the parallel plates capacitor is depends on the
geometrical dimensions of the capacitor.

The capacitance is proportional to the area of the plates and inversely
proportional to distance between the plates.

das O Cua el Luaigd) Ala) P e KA drs Clus e WSS (6.6) Alslaal
sl oy Biloaall e Lo 5 ) (e S il A Lunall e Ll i S

DA
Example 6.1

An air-filled capacitor consists of two plates, each with an area of
7.6cm?, separated by a distance of 1.8mm. If a 20V potential difference

is applied to these plates, calculate,

(a) the electric field between the plates,
(b) the surface charge density,

(c) the capacitance, and

(d) the charge on each plate.
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Solution

»
\ 20

E = _
a - =
@) d 1.8x10°3

(b) o =¢&,E =(8.85x107?)(1.11x10%) =9.83x10°° C In?

=1.11x10*V m

gA  (8.85x1077)(7.6x107")
d 1.8x107°

(d) g=CV =(3.74x107?)(20) = 7.48x10°*'C

(c) C= =3.74x10 ¥F
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6.3.2 Cylindrical capacitor

In the same way we can calculate the capacitance of cylindrical capacitor,
the result is as follow

_ 27e,l
In(5)a)

Where | is the length of the cylinder, a is the radius of the inside cylinder,
and b the radius of the outer shell cylinder.

(6.7)

6.3.3 Spherical Capacitor

In the same way we can calculate the capacitance of spherical capacitor, the
result is as follow

_4reyab
b-a

Where a is the radius of the inside sphere, and b is the radius of the outer
shell sphere.

\ Example 6.2

An air-filled spherical capacitor is constructed with inner and outer
shell radii of 7 and 14cm, respectively. Calculate,
(a) The capacitance of the device,
(b) What potential difference between the spheres will result in a
charge of 4uC on each conductor?

C (6.8)

™

Solution
4 -12
(@) C - zgozb _ (47[><8.8?O><11:) O)g;;)?)(o.m 15610 F
q 4x10° 5
(b) V :E:W: 256)(10 \Y
. X
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6.4 Combination of capacitors

Some times the electric circuit consist of more than two capacitors, which
are, connected either in parallel or in series the equivalent capacitance is
evaluated as follow

6.4.1 Capacitors in parallel:

In parallel connection the capacitors are connected as shown in figure 6.5
below where the above plates are connected together with the positive
terminal of the battery, and the bottom plates are connected to the negative
terminal of the battery.

d, d, gds
Vi
J C, G, G,
Figure 6.5

In this case the potential different across each capacitor is equal to the
voltage of the battery V

i.e. V=V1=V,=V3
The charge on each capacitor is
a,=C,\Vy; 0 = C2\/2; 0; = C3V3
The total charge is
GlEical) Juagi Al 3
=0+, +0Qs Ao 0 g sl e
q=(C,+C, +Cy)V S S e gl
; ) g A U glasa
QC = v Loy £ Aiadd) W
i S dau
The Equivalent capacitance is
C=C+GC +C (6.9)
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6.4.2 Capacitors in series:

In series connection the capacitors are connected as shown in figure 6.6
below where the above plates are connected together with the positive

V, V, V,
| C, | |c2 | C,
-qtl+q -gll+q -qgqll+q
< >
V
Figure 6.6
In this case the magnitude of the charge must be the same on each plate with

opposite sign
I.e. 0=01=02=03

The potential across each capacitor is

Vi=q/C;; V, =q/C,; V, =q/C,
The total potential V is equal the sum of the potential across each capacitor
V=V, +V, +V,
( 1 1 1 \ GlEial) Jrag U A
V=d c+c +c_| Laal) ol s e
NIV ISy i IS (Ao g 55
q 1 Bha L) o gl iy ol aia
C:\TZL+L+1_ B3R £ sara L .4
Cy Cy Cs é"uﬁ e g u_‘; -\Gé-“
The Equivalent capacitance is Al g i
1 1
1=+ ] (6.10)
c G G G
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Example 6.3

Find the equivalent capacitance between points a and b for the group of

capacitors shown in figure 6.7 . C;=1uF, C,=2uF, C3=3uF, C4=4puF,
Cs=buF, and Ce=6uF.

G

c. ]

I

J_”_%i C, C,

C,
: | C: h | :
[J (i)

Figure 6.7

® o

} Solution

First the capacitor C3 and Cg are connected in series so that the equivalent
capacitance Cg iS

1 11
_ = +_;=C =24F
c, 6 3 “
Second C; and Cs are connected in parallel
Ck|:1+5:6u|:

The circuit become as shown below

» o

e

6
. [ .
k il ! (i)
Continue with the same way to reduce the circuit for the capacitor C, and
Coe to get Cyr=4pF

N

(
[ S—

L X0}
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—®

(iii)

Capacitors Cing and Cy, are connected in series the result is Cyn=2uF, The
circuit become as shown below

el

b

ﬂ |ﬁ (iv)Cap

acitors Cp, and Cy are connected in parallel the result is

V) |

Ceq=8IF.
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Example 6.4

In the above example 6.3 determine the potential difference across each
capacitor and the charge on each capacitor if the total charge on all the
six capacitors is 384puC.

%
} Solution

First consider the equivalent capacitor Ceq to find the potential between
points aand b (Vap)

_Qu 384
Vy = g = =48y

Second notice that the potential V=V, since the two capacitors between k
and | are in parallel, the potential across the capacitors C; and Cs = 48V.

V=48V and Q1:C1V1:48},LC

And for C5
V5:48V and Q5:C5V5:240},I.C

For the circuit (iv) notice that Vimn=Vap=48V, and
Qmh=CmhVmn=2x28=96uC

Since the two capacitors shown in the circuit (iii) between points m and h
are in series, each will have the same charge as that of the equivalent
capacitor, i.e.

th:Qgh:th:96MC
Qng 96

=M T4V
Vmg Cmg 4

Qn 96
V,, = C, " 4" 24V

Therefore for Cy4, V4=24 and Q,=96uC

In the circuit (ii) the two capacitor between points g and h are in parallel so
the potential difference across each is 24V.
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Therefore for C,, V,=24V and Q,=C,V,=48uC
Also in circuit (ii) the potential difference
Vge=Vgh=24V
And
Que=CyeVye=2x24=48uC

The two capacitors shown in circuit (i) between points d and a are in series,
and therefore the charge on each is equal to Qge.

Therefore for Cg, Qs=48uC

Q
V=" _gv
CG

For C;, Q3:48MC and V3:Q3/03:16V

The results can be summarized as follow:

; Potential Charge
Capacitor .

Difference (V) | (uC)
Cy 48 48
C, 24 48
Cs 16 48
Cqy 24 96
Cs 48 240
Cs 8 48
Ceq 48 384
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4.5 Energy stored in a charged capacitor (in electric field)

If the capacitor is connected to a power supply such as battery, charge will
be transferred from the battery to the plates of the capacitor. This is a
charging process of the capacitor which mean that the battery perform a
work to store energy between the plates of the capacitor.

Consider uncharged capacitor is connected to a battery as shown in figure
6.8, at start the potential across the plates is zero and the charge is zero as

well.

[0
Ii

Figure 6.8

If the switch S is closed then the charging process will start and the potential
across the capacitor will rise to reach the value equal the potential of the
battery V in time t (called charging time).

G o pd o dad) B s a S (ad Ales yaded S gutiall (8] g
) g AL bsbse

Suppose that at a time t a charge q(t) has been transferred from the battery
to capacitor. The potential difference V(t) across the capacitor will be
q(t)/C. For the battery to transferred another amount of charge dq it will
perform a work dwW

dW =Vdq :%dq (6.11)

The total work required to put a total charge Q on the capacitor is
2

e q
wzjdwzjogdq=z (6.12)

Using the equation g=CV
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2

W=U=_"_ 6.13
o (6.13)
2 1
u 19 _lov-Zcv? (6.14)
2Cc 2 2

The energy per unit volume u (energy density) in parallel plate capacitor is
the total energy stored U divided by the volume between the plates Ad

U 1cy?
u=_— _,% (6.15)
Ad Ad
. g A
For parallel plate capacitor C= %
d
& (VY
U=—2|_ (6.16)
2 \d
1
u :EgOEZ (6.17)

Therefore the electric energy density is proportional with square of the
electric field.

Alal) aladialy Wie ) Say GBS A gl Cp A A A uest ABUY o Ua JaaY
Jsanal) aaal) B ABlal) ABUS ¢ glodi A0S ABUaY LU ABUa)) ABUS PIA o o U A
Liial) A

b A Al sy padsall 1R Glsis Gladag (6.17)&(6.14) A, lilslaal
S ) B ) i)
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\ Example 6.5

Three capacitors of 8uF, 10uF and 14uF are connected to a battery of
12V. How much energy does the battery supply if the capacitors are
connected (a) in series and (b) in parallel?

\ Solution
(a) For series combination

c c c c

1 1 1 1

=+ + =

C 8 10 14
This gives

C=337pF
Then the energy U is

u-="1eve

2

U =1/2 (3.37x10°) (12)*= 2.43x10™
(b) For parallel combination

C=C, +C,+C,

C=8+10+14=32uF
The energy U is

U = 1/2 (32x10°®) (12)? = 2.3x10J
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DA
 g1n Example 6.6

A capacitor C; is charged to a
potential difference V.. This V, —
charging battery is then removed
and the capacitor is connected as
shown in figu_re 6.9 to an Figure 6.9
uncharged capacitor C,,

alln
||
A

(@) What is the final potential difference V; across the
combination?

(b) What is the stored energy before and after the switch S is

closed?
M

Solution
(@) The original charge q, is shared between the two capacitors since they
are connected in parallel. Thus

0o =01+
g=CV
C\V, =C\V; +C,V;

Vi =V
f o Clcl

+C,

(b) The initial stored energy is U,
U =1CV?

o 2 1o

The final stored energy Ug=U;+U,

2
_1 2 1 2 VoCl
U, = 2C1Vf * 2C2Vf =3(C +C2)(C_+_(.,L)

Y

Notice that U is less than U, (Explain why)
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™

Example 6.7 CZI I
Consider the circuit shown in figure 6.10 where J
C1=6uF, C,=3uF, and V=20V. C; is first charged S

by closing switch S;. S; is then opened, and the

charged capacitor C; is connected to the ﬁl I

uncharged capacitor C, by closing the switch S,.

Calculate the initial charge acquired by C; and A

the final charge on each of the two capacitors. v
i

DA |
§ Solution Figure 6.10
When S; is closed, the charge on C; will be
Q1=C1V1=6uF [120V=120uC

When S; is opened and S; is closed, the total charge will remain constant
and be distributed among the two capacitors,

Q:=120uC-Q,

The potential across the two capacitors will be equal,

va2_Q
C, G
120uF - Q, _ Q.
6uF 3uF
Therefore,
Q2 =40uC

Q:=1201.C-40pC=80uC
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DA
 g1n Example 6.8 12
Consider the circuit shown in figure J_ i C 1
y :

6.11 where Ci=4uF, C,=6uF, Cs=2uF,

and V=35V. C; is first charged by T CIT C I
3

closing switch S to point 1. S is then -
connected to point 2 in the circuit. ‘

(a) Calculate the initial charge Figure 6.11
acquired by C;,

(b) Calculate the final charge on each of the three capacitors.

(c) Calculate the potential difference across each capacitor after
the switch is connected to point 2.
™M
} Solution

When switch S is connected to point 1, the potential difference on C; is
35V. Hence the charge Q; is given by

Q1 = C1xV=4x35 =140uC

When switch S is connected to point 2, the charge on C; will be distributed
among the three capacitors. Notice that C, and C3 are connected in series,
therefore

C'C, C, 6 2 6
C'=154F

We know that the charges are distributed equally on capacitor connected in
series, but the charges are distributed with respect to their capacitance when
they are connected in parallel. Therefore,

140
= x4=1018
23 4+15 He

But the charge Q' on the capacitor C' is
Q' =140-101.8=38.2uC
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Since C; and C, are connected in series then
Q,=Q3= Q'=38.2uC

To find the potential difference on each capacitor we use the relation
V=Q/C

Then,
V,1=25.45V
V,=6.37V
V3=19.1V
\i Example 6.9

Consider the circuit shown in figure 6.12 where Ci=6uF, C,=4uF,
Cs=12puF, and V=12V.

C

A e,

L
IV

Figure 6.12

(a) Calculate the equivalent capacitance,
(b) Calculate the potential difference across each capacitor.

(c) Calculate the charge on each of the three capacitors.
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M
g Solution
C, and Cj3 are connected in parallel, therefore
C' =C,+C3=4+12=16pF

Now C’ is connected in series with C,, therefore the equivalent capacitance
[

1_u

1.1
6 16 48

1_1.1
C C' ¢

C = 4.36uF

The total charge Q =CV =4.36x12 = 52.36uC

The charge will be equally distributed on the capacitor C; and C’
Q:1=Q" =Q=52.36pC

But Q' = C'V’, therefore
V' =52.36/16=3.27 volts

The potential difference on C; is
V,=12-3.27=8.73volts

The potential difference on both C, and C3 is equivalent to V' since they
are connected in parallel.

V, = V3 =3.27volts
Qz = C2V2 = 1308“(:
Q3=C3V3=39.24uC
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Example 6.9

Four capacitors are connected as shown in Figure 6.13. (a) Find the
equivalent capacitance between points a and b. (b) Calculate the charge
on each capacitor if Vop=15V.

15uF 3uF
AFIE
a . | |
|
[
6uF
Figure 6.13

} Solution

(a) We simplify the circuit as shown in the figure from (a) to (c).

2.5uF

4 | 24uF 2.5uF  24uF 5.96uF
a « b a ‘ | a b
'—l hd o‘l I—l>| I—- .4| |7.

||
[
6uF

(@) (b) ©

Firs the 15uF and 3uF in series are equivalent to
. =2.5uF
(1/15) + (1/3)

Next 2.5uF combines in parallel with 6uF, creating an equivalent
capacitance of 8.5uF.

The 8.5uF and 20uF are in series, equivalent to
1
(1/8.5) + (1/ 20)

= 5.96.F
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(b) We find the charge and the voltage across each capacitor by working
backwards through solution figures (c) through (a).

For the 5.96uF capacitor we have

Q=CV =5.96x15=89.5.C

In figure (b) we have, for the 8.5uF capacitor,

Q895
* C 85

AV =10.5V

and for the 20uF in figure (b) and (a) Q2 =89.5uC
~Q 895
® c 20

AV =447V

Next (a) is equivalent to (b), so AV,, =4.47V and AV,, =10.5V

Thus for the 2.5uF and 6uF capacitors AV =10.5V
Q,5 =CV =2.5x10.5=26.3uC

Qs =CV =6x10.5= 63.2,C

Therefore
Q15 =26.3uC Q3 =26.3uC
For the potential difference across the capacitors Ci5 and Cs are
AV = 8: 263 _175v
L c 15
AV = g: 263 =8.77V
s ¢ 3
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6.6 Capacitor with dielectric

A dielectric is a non-conducting material, such as rubber, glass or paper.
Experimentally it was found that the capacitance of a capacitor increased
when a dielectric material was inserted in the space between the plates. The
ratio of the capacitance with the dielectric to that without it called the
dielectric constant « of the material.

C

K=_ (6.18)
C

In figure 6.14 below two similar capacitors, one of them is filled with
dielectric material, and both are connected in parallel to a battery of
potential V. It was found that the charge on the capacitor with dielectric is
larger than the on the air filled capacitor, therefore the Cy>C,, since the
potential V is the same on both capacitors.

o

Figure 6.14

If the experiment repeated in different way by placing the same charge Q,
on both capacitors as shown in figure 6.15. Experimentally it was shown
that Vy<V, by a factor of 1/k.

——

Figure 6.15

V=2 (6.19)

Since the charge Q, on the capacitors does not change, then
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C:QOZ Qo IK& (620)

For a parallel plate capacitor with dielectric we can write the capacitance.

e A
C=x_" (6.21)
d
Example 6.10

A parallel plate capacitor of area A and separation d is connected to a
battery to charge the capacitor to potential difference V,. Calculate the
stored energy before and after introducing a dielectric material.

DA
} Solution

The energy stored before introducing the dielectric material,
U =icv?

0 2 o o

The energy stored after introducing the dielectric material,

VO
C =«C, and VvV =

d

3
V) u
U=1CV2=14C (70\ _ o

e

Therefore, the energy is less by a factor of 1/k.
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\ Example 6.11

A Parallel plate capacitor of area 0.64cm®. When the plates are in
vacuum, the capacitance of the capacitor is 4.9pF.

(a) Calculate the value of the capacitance if the space between the
plates is filled with nylon (k=3.4).

(b) What is the maximum potential difference that can be applied
to the plates without causing discharge (Emac=14x10°V/m)?

S

X Solution
(@ C=xC, =3.4x4.9=16.7pF

(®)  Vmax=Emaxxd

To evaluate d we use the equation

d= %" 885x10"x6.4x10°

— =1.16x10" m
C, 4.9x10
Vinax = 1x10°%1.16x107=1.62x10% V
DA
\ Example 6.12 ‘
A parallel-plate capacitor has a 39y
capacitance C, in the absence of 234 d
dielectric. A slab of dielectric material of -
dielectric constant k and thickness d/3 is i
inserted between the plates as shown in |
Figure 6.16. What is the new capacitance
when the dielectric is present? Figure 6.16
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™

We can assume that two parallel plate capacitor are connected in series as
shown in figure 6.17,

Solution

c _K{;‘OA and c — g A
T > 243
1 1 1 _ dB ,2d3
C C, C, «x&A &A

1 d (1,0 ¢ (142 Figure 6.17
C 3gAlK J 380AL K J

c Jzi’iﬂi&é = C Jz?}’iﬂ Co
N/ N/
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6.7 Problems

6.1) Two capacitors, C;=2uF and
C,=16uF, are connected in parallel.
What is the value of the equivalent
capacitance of the combination?

6.2) Calculate the equivalent
capacitance of the two capacitors in
the previous exercise if they are
connected in series.

6.3) A 100pF capacitor is charged to
a potential difference of 50V, the
charging battery then being
disconnected. The capacitor is then
connected in parallel with a second
(initially uncharged) capacitor. If
the measured potential difference

drops to 35V, what is the
capacitance  of  this  second
capacitor?

6.4) A parallel-plate capacitor has
circular plates of 8.0cm radius and
1.0mm separation. What charge
will appear on the plates if a
potential difference of 100V is
applied?

6.5) In figure 6.18 the battery
supplies 12V. (a) Find the charge
on each capacitor when switch S; is
closed, and (b) when later switch S,
is also closed. Assume C;=1pF,
Co=2uF, C3=3uF, and Cy=4pF.

1 C
|
[RSE
T 4
v
Figure 6.18

6.6) A parallel plate capacitor has a
plate of area A and separation d,
and is charged to a potential
difference V. The charging battery
is then disconnected and the plates
are pulled apart until their
separation is 2d. Derive expression
in term of A, d, and V for, the new
potential difference, the initial and
final stored energy, and the work
required to separate the plates.

6.7) A 6.0uF capacitor is connected
in series with a 4.0uF capacitor and
a potential difference of 200 V is
applied across the pair. (a) What is
the charge on each capacitor? (b)
What is the potential difference
across each capacitor?

6.8) Repeat the previous problem
for the same two capacitors
connected in parallel.

6.9) Show that the plates of a
parallel-plate capacitor attract each
other with a force given by
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2

F=_d
26, A

Calculate the total stored energy in
the system.

6.10) A parallel-plate air capacitor 6.14) A 16pF parallel-plate capacitor

having area A (40cm?) and spacing
d (1.0 mm) is charged to a potential
V (600V). Find (a) the capacitance,
(b) the magnitude of the charge on
each plate, (c) the stored energy,
(d) the electric field between the
plates and (e) the energy density
between the plates.

6.11) How many 1uF capacitors

would need to be connected in
parallel in order to store a charge
1C with potential of 300V across
the capacitors?

6.12) In figure 6.19 (a)&(b) find the

equivalent capacitance of the
combination. Assume  that
C1=10uF, C,=5pF, and Cs=4puF.

VJ_ C‘J_
[ ez o

Figure 6.19(a)

el ol

v[ _%_lj_

Figure6.19(b)

6.13) Two capacitors (2.0uF and

4.0uF) are connected in parallel
across a 300V potential difference.

6.15) The

6.17) Evaluate the

is charged by a 10V battery. If
each plate of the capacitor has an
area of 5cm? what is the energy
stored in the capacitor? What is the
energy density (energy per unit
volume) in the electric field of the
capacitor if the plates are separated
by air?

energy density in a
parallel-plate capacitor is given as
2.1 x10°)/m®. What is the value of
the electric field in the region
between the plates?

6.16) (a) Determine the equivalent

capacitance for the capacitors
shown in figure 6.20. (b) If they
are connected to 12V Dbattery,
calculate the potential difference
across each capacitor and the
charge on each capacitor

3uF  6MuF

I

e

Figure 6.20

effective
capacitance of the configuration
shown in Figure 6.21. Each of the
capacitors is identical and has
capacitance C.
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6.20) (a)

(i |C| |C

Figure 6.21

6.18) A parallel plate capacitor is

constructed using a dielectric
material whose dielectric constant
is 3 an whose dielectric strength is
2x10®V/m The desired capacitance
is 0.25uF, and the capacitor must
withstand a maximum potential
difference of 4000V. Find the
maximum area of the capacitor
plate.

6.19) In figure 6.19(b) find (a) the

charge, (b) the potential difference,
(c) the stored energy for each
capacitor. With V=100V.

Figure 6.22 shows a
network of capacitors between the
terminals a and b. Reduce this
network to a single equivalent
capacitor. (b) Determine the charge
on the 4uF and 8uF capacitors
when the capacitors are fully
charged by a 12V  Dbattery
connected to the terminals. (c)
Determine the potential difference
across each capacitor.

6.21) A

4uF 6uUF

24UF
8uF 2uF

Figure 6.22

uniform  electric  field
E=3000V/m exists within a certain
region. What volume of space
would contain an energy equal to
107J? Express your answer in
cubic meters and in litters.

6.22) A capacitor is constructed from

two square metal plates of side
length L and separated by a
distance d (Figure 6.23). One half
of the space between the plates (top
to bottom) is filled with
polystyrene (k=2.56), and the other
half is filled with neoprene rubber
(x=6.7). Calculate the capacitance
of the device, taking L=2cm and
d=0.75mm. (Hint: The capacitor
can be considered as two capacitors
connected in parallel.)
d
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6.23) A parallel plate capacitor is
constructed using three different
dielectric materials, as shown in
figure 6.24. (a) Find an expression
for the capacitance in terms of the
plate area A and k3, k2, and k3. (b)
Calculate the capacitance using the
value A=lcm? d=2mm, 1;=4.9, Figure 6.24
K2=5.6, and K3=2.1.
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Current and Resistance

d_aglial) g Ll

1 by ALl Lin il Alaiall 4y gl a) ) (yany A8l guadl) b Ui
Gan S L o A n Ala 8 4 el clindd) e ) 30 S i Juadl
3 B On a1 Ay g€l 5308 a el e Auleal) Lia B aba
Sead o) gy s AY) ALY (e W g gl g Ay U] (e L A4S clind
oA 13 By can el Ll culil) LAl Laag oSl LAY (e (e O

Cenll) L e S

www.hazemsakeek.com


http://www.hazemsakeek.com/

Lectures in General Physics

7.1 Current and current density

oS Cun el S e 3 jlas (e aball seal) 8 El Gl Juadll 8 L s
il 2 4l e AL clinally G sall by Jestial) 7 ) e s gl i)
(B adl o A B e Jlae 058 ) el 3y ) lall Gl calally

Ailaddl P 50 C Al L e

c_

\
Jie eS8 dage b o A peS jlay (o aba 256 e B8 Gubaly Lia i
oeS) Ll Jie saaa Ak e jalsh e Gagaiing LA Aahis dabee aladll e @l

e sladll

Conductor Electric field

N >

A

®—> ®—> @ —>
®—> @ —> ©—

[ ——

at
I|I|I

Battery

Figure 7.1

As shown in figure 7.1 above the electric field produces electric force
(F=qE), this force leads the free charge in the conductor to move in one
direction with an average velocity called drift velocity.

The current is defined by the net charge flowing across the area A per unit
time. Thus if a net charge AQ flow across a certain area in time interval At,
the average current l,, across this area is

| _AQ
av E

In general the current | is

(7.1)
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_dQ
dt

Current is a scalar quantity and has a unit of C/t, which is called ampere.

(7.2)

s a olad) gag @Mad) Ll sladly A ,eSh 50l @ oS Ll oladl sasy
BN e qalld) alall) ) can gall Qs (e 0S5 M) g B lAN) B A gal) cilia)

7.2 Definition of current in terms of the drift velocity

Consider figure 7.1 shown above. Suppose there are n positive charge
particle per unit volume moves in the direction of the field from the left to
the right, all move in drift velocity v. In time At each particle moves
distance vAt the shaded area in the figure, The volume of the shaded area in
the figure is equal nAvAt, the charge AQ flowing across the end of the
cylinder in time At is

AQ = ngvAAt (7.3)
where q is the charge of each particle.
Then the current | is

A
| = _Q = ngvA (7.4)
At

7.3 Definition of the current density

The current per unit cross-section area is called the current density J.
r

I
J=—=n 7.5
A= nav (7.5)

The current density is a vector quantity.
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%
Example 7.1

A copper conductor of square cross section 1mm? on a side carries a
constant current of 20A. The density of free electrons is 8 x10°® electron
per cubic meter. Find the current density and the drift velocity.

™M
§ Solution

The current density is
3=1 —10x10° A/
A

The drift velocity is
J 20x10° 3

V=__ = — - ~16x10 m/s
ng (8x107)(1.6x107)

This drift velocity is very small compare with the velocity of propagation
of current pulse, which is 3 x10°m/s. The smaller value of the adrift
velocity is aue to the collisions with atoms in the conauctor.
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7.4 Resistance and resistivity (Ohm’s Law)

The resistance R of a conductor is defined as the ratio V/I, where V is the
potential difference across the conductor and 1 is the current flowing in it.
Thus if the same potential difference V is applied to two conductors A and
B, and a smaller current I flows in A, then the resistance of A is grater than
B, therefore we write,

Vv
R:T' Ohm’s law (7.6)

This equation is known as Ohm’s law, which show that a linear relationship
between the potential difference and the current flowing in the conductor.
Any conductor shows the lineal behavior its resistance is called ohmic
resistance.

The resistance R has a unit of volt/ampere (v/A), which is called Ohm ( Q2).
From the above equation, it also follows that
V=IR and l=_
R
The resistance in the circuit is drown using this symbol

—AAA— A SV

Fixed resistor Variable resistor Potential divider

Each material has different resistance; therefore it is better to use the
resistivity p, it is defined from

_E
P= 37 (7.8)
The resistivity has unit of Q.m
The inverse of resistivity is known as the conductivity o,

o=— (7.9
P
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7.5 Evaluation of the resistance of a conductor

Consider a cylindrical conductor as shown in figure 7.2, of cross-sectional
area A and length | , carrying a current 1. If a potential difference V is
connected to the ends the conductor, the electric field and the current
density will have the values

E
—_—
1 L |
Figure 7.2
Vv
E=_ (7.10)
L
and
3= b
A
The resistivity p is
E
p=—=Y1 (7.12)
J /A
But the V/I is the resistance R this leads to,
L
R=p~ (7.12)

A

Therefore, the resistance R is proportional to the length | of the conductor
and inversely proportional the cross-sectional area A of it.

Notice that the resistance of a conaductor depends on the geometry of the
conauctor, and the resistivity of the conaductor depends only on the
electronic structure of the material.
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\ Example 7.2

Calculate the resistance of a piece of aluminum that is 20cm long and
has a cross-sectional area of 10“m? What is the resistance of a piece of
glass with the same dimensions? pa=2.82x10°Q.m, pgiass=10"°Q2.m.

W
Solution

The resistance of aluminum (04
R =p- =2.82><10‘8| ' |

Al
A )

=2.82x107°Q

The resistance fqlass (01
R =p- =10 "~ '=102Q

glass | |
AL (I

Notice that the resistance of aluminum is much smaller than glass.

\} Example 7.3

A 0.90V potential difference is maintained across a 1.5m length of
tungsten wire that has a cross-sectional area of 0.60mm?. What is the
current in the wire?

™

Solution
From Ohm’s law
V L
I=_ where R=p—
R A
therefore,

| _VA _ (090)(6.0 x107") _

6.43A
ol (5.6x107°)(15)
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™A
Example 7.4

(a) Calculate the resistance per unit length of a 22 nichrome wire of
radius 0.321mm. (b) If a potential difference of 10V is maintained cross
alm length of nichrome wire, what is the current in the wire.
pnichromes:1-5X10-GQ-m-

A
§ Solution

(@) The cross sectional area of the wire is
A=nr?=7(0.321x107)? = 3.24x10'm?
The resistance per unit length is R/L

R_P_15x0° 0
= 46%m
L A 324x10

(b) The current in the wire is
vV 10
= =2.2A

= =" =
R 46
Nichrome wire is often used for heating elements in electric heater, toaster and irons, since
its resistance is 100 times higher than the copper wire.

Material Resistivity (2.m)

........ 1 Silver  1.59x10°®
......... 2  Copper  i1l7x10°®
3 God  i244x10°®
4 Auminum | 2.82x10°
5 Tungesten | 5.6x10°
. 6 Ion | 10x10%
7 Platinum  i11x10°®
8 leed | 20x10°®
9  Nichrome | 150x107
. 10 Carbon 3.5¢10°
11 Germanium 0.46
. 12 Silicon 640

13  Glass 10110

Table (7.1) Resistivity of various materials at 20°C
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7.6 Electrical Energy and Power
| —

The current can flow in circuit when a
battery is connected to an electrical device
through conducting wire as shown in
figure 7.3. If the positive terminal of the
battery is connected to a and the negative
terminal of the battery is connected to b of
the device. A charge dq moves through
the device from a to b. The battery
perform a work dW = dq Vap. This work
is by the battery is energy dU transferred I

to the device in time dt therefore, Figure 7.3

Alayeg
i

dU=dW=dq Va =1 dt Vg (7.13)
The rate of electric energy (dU/dt) is an electric power (P).

du
P=—=1V 7.14
dt ab ( )

Suppose a resistor replaces the electric device, the electric power is

P=1°R (7.15)
pP="_ (7.16)

The unit of power is (Joule/sec) which is known as watt (W).
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\ Example 7.5

An electric heater is constructed by applying a potential difference of
110volt to a nichrome wire of total resistance 8Q. Find the current
carried by the wire and the power rating of the heater.

W
Solution

SinceV=1IR
V110

R 8
The power P is

P = I°R = (13.8)*x8=1520W

o =13.8A

\ Example 7.6

A light bulb is rated at 120v/75W. The bulb is powered by a 120v. Find
the current in the bulb and its resistance.

™

Solution
P=IV
sl = E = E =0.625A
vV 120
The resistance is
V
R="_-120 190

I 0.625
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7.7 Combination of Resistors

Some times the electric circuit consist of more than two resistors, which are,
connected either in parallel or in series the equivalent resistance is evaluated
as follow:

7.7.1 Resistors in Series:
The figure 7.4 shows three resistor in series, carrying a current .

R, R, R,

A B C D
PN NN AN AN
N R R >
VAB VBC VCD
}‘ #\

VAD
Figure 7.4

For a series connection of resistors, the current is the same in each
resistor.

If Vap is the potential deference across the whole resistors, the electric
energy supplied to the system per second is IVap. This is equal to the
electric energy dissipated per second in all the resistors.

IVap = IVag + IVac + IVep (7.17)
Hence

Vap=Vag+ Vec+ Vep (7.18)
The individual potential differences are

Vag=1IR1,  Vec=1IRy Vep= 1IR3

Therefore
Vap=IR1+ IR; + IR3 (719)
Vap =1 (R1 + R, + R3) (720)

The equivalent resistor is
R=Ri+R+Rs3 (721)
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7.7.2 Resistors in Parallel:

The figure 7.5 shows three resistor in parallel, between the points A and B,
A current | enter from point A and leave from point B, setting up a potential
difference Vag.

R,
|, —>
A R, B
—— l—> NN N>
L—>
~ VAB i
Figure 7.5

For a parallel connection of resistors, the potential difference is equal
across each resistor.

The current branches into Iy, I, I3, through the three resistors and,

I=11+1,+13 (722)
The current in each branch is given by
|1:VA_B’ 12:\“;‘3, 13=VA_B
Rl AZ A3
|( 1 1 1 \|
Sl =Vl —+ —+ — (7.23)
\R, R, Ry)

The equivalent resistance is

+ =+ = (7.24)
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Physical facts for the series and parallel

combination of resistors

No. Series combination Parallel combination

1 Current is the same through all Potential difference is the same
resistors through all resistors

5 Total potential difference = sum of ~ Total Current = sum of the
the individual potential difference individual current
Individual potential difference Individual current inversely

<IN directly proportional to the proportional to the individual
individual resistance resistance

4 Total resistance is greater than Total resistance is less than least

greatest individual resistance individual resistance

Notice that parallel resistors combine in the same way that series
capacitors combine, and vice versa.
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%
Example 7.6

Find the equivalent resistance for the circuit shown in figure 7.6.
R1=3Q, R,=6Q2, and R3=4Q.

Ro

Rs

R

AVAYAY
Figure 7.6

S
% Solution

Resistance R; and R, are connected in parallel therefore the circuit is
simplify as shown below

AW A — A

1 1 1
_— 4 —
R R, R,
1 1 1 3
—_— =t — = —
R 3 6 6
R =2Q

Then the resultant resistance of R;&R, (R") are connected in series with
resistance Rj

R=R’ +Rs=2+4=602

™
Example 7.7

Find the equivalent resistance for the circuit shown in figure 7.7.
R1=4Q, R,=3Q), R3=3Q), R4=5Q, and Rs=2.9Q2.
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R, R,
° AAYAY AYAAY
R,
RS
° AVAYAY
Figure 7.7

} Solution

Resistance R; and R, are connected in series therefore the circuit is simplify
as shown below

o NN o NN\
R
Rs Ri&R — R1&R,&R3 B . /\/\/\,
Rs Rs
—yy\ o

R" =R;+R,=4+3=7Q
Then the resultant resistance of R1&R;, (R") are connected in parallel with

resistance Rj
1 1 1 1 1 10

= _— —t —_—= —

R R R 7 3 21
R’ =210

The resultant resistance R for Rs&Rs& R’ are connected in series.

R=R + R+R=21+5+29=10Q > 3

™A

i Example 7.8 '1l '2l '3l
Three resistors are connected in
parallel as in shown in figure 7.8. A
potential difference of 18V s
maintained between points gand b

1|
nin
&
<
AYA%AY
A
NV
0
NV
w;U
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(a) find the current in each resistor. (b) Calculate the power dissipated
by each resistor and the total power dissipated by the three resistors.
(c) Calculate the equivalent resistance, and the from this result find the
total power dissipated.

} Solution

To find the current in each resistors, we make use of the fact that the
potential difference across each of them is equal to 18v, since they are
connected in parallel with the battery.

Applying V=IR to get the current flow in each resistor and then apply P =
IR to get the power dissipated in each resistor.

18
| =V ="=6A o  Pp,=1;?R=108W
R, 3
18
=L =""=3A P,z 1,2R,=54W
18
|3:l=_=2A =  P3=15°Rs=36W
Fs 9

The equivalent resistance Req is

1 1 1 1 11
Ry 3 6 9 18

Reg=1.6 Q
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7.8 Solution of some selected problems
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7.8 Solution of some selected problems

\} Example 7.9

Two wires A and B of circular cross section are made of the same metal
and have equal length, but the resistance of wire A is three times
greater than that of wire B. What is the ratio of their cross-sectional
area? How do their radii compare?

S
Solution

Since R=pL/A, the ratio of the resistance Ra/Rs=Aa/Ag. Hence, the ratio is
three times. That is, the area of wire B is three times that of B.

The radius of wire b is V3 times the radius of wire B.

\ Example 7.10

Two conductors of the same length and radius are connected across the
same potential difference. One conductor has twice the resistance of
the other. Which conductor will dissipate more power?

1
Solution

Since the power dissipated is given by P=V?/R, the conductor with the lower
resistance will dissipate more power.

Dr. Hazem Falah Sakeek



Current & Resistance

\ Example 7.11

Two light bulbs both operate from 110v, but one has power rating 25W
and the other of 100W. Which bulb has the higher resistance? Which
bulb carries the greater current?

W
Solution

Since P=V#R, and V is the same for each bulb, the 25W bulb would have
the higher resistance. Since P=IV, then the 100W bulb carries the greater
current.

\} Example 7.12

The current | in a conductor depends on time as 1=2t,-3t+7, where tis in
sec. What quantity of charge moves across a section through the
conductor during time interval t=2sec to t=4sec?

™

Solution

dQ
| =—; dOQ=Idt
dt Q
4

Q= [1dt :L(th —3t+7)dt

Q=[2t° -3t + 7] =33.3C
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\ Example 7.13

A 2.4m length of wire that is 0.031cm? in cross section has a measured
resistance of 0.24Q). Calculate the conductivity of the material.

1

K

Solution
L 1
R=p_ and p="= therefore
A o
L
o= = 24 —3.23x10° /Q.m

" RA (0.24)(3.1x10°°)

\ Example 7.14

A 0.9V potential difference is maintained across a 1.5m length of
tungsten wire that has cross-sectional area of 0.6mm? What is the
current in the wire?

™

Solution
From Ohm’s law,
V L
I=_ where R=p_ therefore
R A

VA 0.9x6x107

l=—=——%——=0643A
pL  56x107" x1.5

Dr. Hazem Falah Sakeek



Current & Resistance

\} Example 7.15

A resistor is constructed by forming a material of resistivity p into the
shape of a hollow cylinder of length L and inner and outer radii r, and
r, respectively as shown in figure 7.9. In use, a potential difference is
applied between the ends of the cylinder, producing a current parallel
to the axis. (a) Find a general expression for the resistance of such a
device in terms of L, p, ry, and r,. (b) Obtain a numerical value for R
when L=4cm, r,=0.5cm, rp=1.2cm, and p=3.5x10°Q.m.

@

L
Figure 7.9
X Solution
R= L:
@ Pty
b a
G R= A _  (35x10°)(0.04) =374x10'Q

2 =) z[(0.012)° - (0.008) ]
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\} Example 7.16

If a 55Q resistor is rated at 125W, what is the maximum allowed
voltage?

™

Solution
2
p-V"
R

=V =+ PR=+4125x55 =82.9V
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7.9 Problems

7.1) A current of 5A exists in a 10 Q
resistor for 4min. (a) How many
coulombs, and (b) how many
electrons pass through any cross
section of the resistor in this time?

7.2) A small but measurable current
of 1.0 x10™° A exists in a copper
wire whose diameter is 0.10in.
Calculate the electron drift speed.

7.3) A square aluminum rod is 1.0m
long and 5.0mm on edge. (a) What
is the resistance between its ends?
(b) What must be the diameter of a
circular 1.0m copper rod if its
resistance is to be the same?

7.4) A conductor of uniform radius
1.2cm carries a current of 3A
produced by an electric field of
120V/m. What is the resistivity of
the material?

7.5) If the current density in a
copper wire is equal to
5.8x10°A/m?, calculate the drift
velocity of the free electrons in this
wire.

7.6) A 2.4m length of wire that is
0.031cm? in cross section has a
measured resistance of 0.24Q.
Calculate the conductivity of the
material.

7.7) Aluminium and copper wires of
equal length are found to have the
same resistance. What is the ratio
of their radii?

7.8) What is the resistance of a
device that operates with a current
of 7A when the applied voltage is
110Vv?

7.9) A copper wire and an iron wire
of the same length have the same
potential difference applied to
them. (a) What must be the ratio of
their radii if the current is to be the
same? (b) Can the current density
be made the same by suitable
choices of the radii?

7.10) A 0.9V potential difference is

maintained across a 1.5m length of
tungsten wire that has a cross-
sectional area of 0.6mm?. What is
the current in the wire?

7.11) A wire with a resistance of

6.0Q2 is drawn out through a die so
that its new length is three times its
original length. Find the resistance
of the longer wire, assuming that
the resistivity and density of the
material are not changed during the
drawing process.

7.12) A wire of Nichrome (a nickel-

chromium alloy commonly used in
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heating elements) is 1.0 m long and 7.16) An electric heater operating at

1.0mm? in cross-sectional area. It
carries a current of 4.0A when a
2.0V potential difference is applied
between its ends. What is the
conductivity o, of Nichrome?

7.13) A copper wire and an iron wire

of equal length | and diameter d are
joined and a potential difference V
is applied between the ends of the
composite wire. Calculate (a) the
potential difference across each
wire.  Assume that  [=10m,
d=2.0mm, and V=100V. (b) Also
calculate the current density in each
wire, and (c) the electric field in
each wire.

7.14) Thermal energy is developed in

a resistor at a rate of 100W when
the current is 3.0A. What is the
resistance in ohms?

7.15) How much current is being

supplied by a 200V generator
delivering 100kW of power?

full power draws a current of 8A
from 110V circuit. (a) What is the
resistance of the heater? (b)
Assuming constant R, how much
current should the heater draw in
order to dissipate 750W?

7.17) A 500W heating unit is

designed to operate from a 115V
line. (@) By what percentage will its
heat output drop if the line voltage
drops to 110V? Assume no change
in resistance. (b) Taking the
variation of  resistance  with
temperature into account, would
the actual heat output drop be
larger or smaller than that
calculated in (a)?

7.18) A 1250W radiant heater is

constructed to operate at 115V. (a)
What will be the current in the
heater? (b) What is the resistance of
the heating coil?
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8.1 Electromotive Force

In any electrical circuit it must exist a device to provide energy to force the
charge to move in the circuit, this device could be battery or generator; in

general it is called electromotive force (emf) symbol (&). The

electromotive force are able to maintain a potential difference between two
points to which they are connected.

Then electromotive force (emf) (&) is defined as the work done per unit
charge.

dw
é: - E
The unit of & is joule/coulomb, which is volt.

(8.1)

The device acts as an emf source is drawn in the circuit as shown in the
figure below, with an arrow points in the direction which the positive charge
move in the external circuit. i.e. from the -ve terminal to the +ve terminal of
the battery

When we say that the battery is 1.5volts we mean that the emf of that battery
is 1.5volts and if we measure the potential difference across the battery we
must find it equal to 1.5volt.

A Dbattery provide energy through a chemical reaction, this chemical
reaction transfer to an electric energy which it can be used for mechanical
work Also it is possible to transfer the mechanical energy to electrical
energy and the electric energy can be used to charge the battery is chemical
reaction. This mean that the energy can transfer in different forms in
reversible process.

Chemical < Electrical < Mechanical

See appendix (A) for more information
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8.2 Finding the current in a simple circuit

Consider the circuit shown in figure
8.1(a) where a battery is connected to

. : ) 3 a LT b
a resistor R with connecting wires II VWV
assuming the wires has no resistance. o— |

- - . A
In the real situation the battery itself | Y
has some internal resistance r, hence it .
is drawn as shown in the rectangle box
g AN ¢

in the diagram. d

Assume a +ve charge will move from
point a along the loop abcd. In the
graphical representation figure 8.1(b) -
it shows how the potential changes as
the charge moves. ¢ tlr

When the charge cross the emf from
point a to b the potential increases to a

the value of emf &, but when it cross

the internal resistance r the potential a b ¢ q
decreases by value equal Ir. Between Figure 8.1(b)

the point b to c the potential stay

constant since the wire has no

resistance. From point ¢ to d the

potential decreases by IR to the same

value at point a.

The potential difference across the batter between point a and b is given by
Vp-Va= & -1Ir (8.2)

Note that the potential difference across points a and b is equal to the
potential difference between points cand d i.e.

Vp-Va = Vg-Ve = IR (8.3)
Combining the equations

IR=¢& -1Ir (8.4)
Or

E=IR+1Ir (8.5)
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Therefore the current | is
| = —— 8.6)
R+r

This equation shows that the current in simple circuit depends on the
resistors connected in series with the battery.

We can reach to the same answer using this rule

The algebraic sum of the changes in potential difference across each
element of the circuit in a complete loop is equal to zero.

By applying the previous rule on the circuit above starting at point a and
along the loop abcda

Here in the circuit we have three elements (one emf and two resistors r&R)
applying the rule we get,

+&-Ir-1IR=0 (8.7)

The +ve sine for & is because the change in potential from the left to the
right across the battery the potential increases, the -ve sign for the change in
potential across the resistors is due to the decrease of the potential as we
move in the direction abcda.

P (8.8)

R+r
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2

In figure 8.2 find the current flow in the branch if the potential
difference V,-V,=12v. Assume &,=10v, &,=25v, R1=3Q, and R,=5Q.

“1
[

Figure 8.2

Example 8.1

™

We must assume a direction of the current flow in the branch and suppose
that is from point b to point a.

Solution

To find the current in the branch we need to add all the algebraic changes in
the potential difference for the electrical element as we move from point a
to point b.

Vp-Va=+&1+IR1+ IRz - &

e agall 5 o e (paaiea @llyy b ddadll ) g ddadil) e jlesall U s Ll Us Jas
b kel ) g adadil) e disd ol el J ) Jadl) g V-V,

Solving for |

[~ Vo —Va) +(5-&) _ (12)+(25-10) _ 5471
R, +R,
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™

Find the potential difference V,-V,, for the branches shown in figure 8.3
& figure 8.4.

Example 8.2

™

Solution
10v 12v
—] —
o—p « o}
& &
Figure 8.3

To find the potential difference V.-V, we should add the algebraic change in
the potential difference for the two batteries as we move from point b to
point a.

VaVp=+&,- £,=12-10=2v

30v 15v Sv
1
“a Yy gl
Figure 8.4

VaVp=+E3+ E5- 1 =5+ 15-30=-10v

gl e omn S Ll o Gum g g Akadll e ef sga W b Akadll o) i 1
daul sy gl Alla A& (LS5 & A ladls 5 Faladl G 1A (il agall ) adi sl
.51 :‘:.Uuﬂ-.’n
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8.3 Kirchhoff’s Rules

A practical electrical circuit is usually complicated system of many
electrical elements. Kirchhoff extended Ohm’s law to such systems, and
gave two rules, which together enabled the current in any part of the circuit
to be calculated.

Statements of Kirchhoff’s Rules

(1) The algebraic sum of the currents entering any junction must equal the
sum of the currents leaving that junction.

Z l, =0 at the junction (8.9)

(2) The algebraic sum of the changes in potential difference across all of the
elements around any closed circuit loop must be zero.

ZAVi =0 forthe loop circuit  (8.10)

Note that the first Kirchhoff’s rule is for the current and the second for the
potential difference.

Applying the first rule on the junction shown below (figure 8.5)

> Junction

Figure 8.5

h=hL+1;
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Applying the second rule on the following cases

(1) If a resistor is traversed in the direction of the current, the change in
potential difference across the resistor is -IR.

>
— AN
a b
V.,V =IR

(2) If aresistor is traversed in the direction opposite the current, the change
in potential difference across the resistor is +IR.

<
a vV b
V,-V,=+IR

(3) If a source of emf is traversed in the direction of the emf (from - to + on
the terminal), the change in potential difference is +&.

(4) If a source of emf is traversed in the direction opposite the emf (from +
to - on the terminal), the change in potential difference is - &.

o e
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Hints for solution of problems using Kirchhoff’s rules
M) @) gladll) £ L) a9 ol Basd aladiu

(e Anie agan A Sl 5l 8 Ay jUay JSI emf 4 oS Axdlall 568l oladl s (1)
Ag Ul o gl adadl) ) albid) ladl

:LA}\AAM Jia @)@ﬁ\ b_)ih]\ _)m\.\s: (R _paic Xl é\.ﬁ)@ﬁ\ J\.ﬁ\ﬂ\ oladl 2as (2)
Jall U I asdpl Jacll Gubai (e oS a il sasa olad) il yiély
Dl 5 i) < jeda 13) Ll clagmaa (a yiball olail ¢y S Jlill s a8 531 gk (Slgdl
a\;ﬁm u,u“.aud\ D&Y\ (f ‘)1__3'.'\]‘ n\;ﬂ\ L.)Sjj MAAM J\:\ﬂ\ ;\A:é u\ﬁ ;\.\ﬂ.u
o= il

OS5 Camy Ay jgSI 5 y3lall & 53 g sall Baall die (ol €1 1Y) sacall (ki (3)
Al 3a8all (pe da LAY g Ao ge BaGal) e ALSIal col il 5 L)

L eSh 5 y3al ¢ il (e g 8 S daae (Bl jlese o Capdi S) AN sac ) (Gubai (4)
Gl U113 Ay 5eSU 3 yilall pualic (e yeaie JI e 2gall 358 A il e) yig
L sa

i S (4) 5(3) 0 shaall Gaalas (e ani Al dpualy 1) ¥ alaall Jai (5)
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8.4 Single-Loop Circuit

In a single-loop circuit there is no junctions and the current is the same in all
elements of the circuit, therefore we use only the second Kirchhoff rule.

™

Two battery are connected in opposite in a circuit contains two resistors
as shown in figure 8.6 the emf and the resistance are &,=6v, &,=12v,

R1=8Q, and R,=10 Q. (a) Find the current in the circuit. (b) What is
the power dissipated in each resistor?

Example 8.3

&
o—>
a mlk b
N —
1
A
R, § I Ilg R,
I
. mlN
d || c
o—>
)
Figure 8.6

™

From figure 8.6 the circuit is a single-loop circuit. We draw an arrow for
each emf in the circuit directed from the -ve to +ve terminal of the emf. If
we assume the current in the circuit is in the clockwise direction (abcda).

Solution

Applying the second Kirchhoff’s rule along arbitrary loop (abcda) we get
DAV, =0

Starting at point (a) to point (b) we find the direction of the loop is the same
as the direction of the emf therefore &, is +ve, and the direction of the loop
from point (b) to point (c) is the same with the direction of the current then
the change in potential difference is -ve and has the value -IR;. Complete
the loop with the same principle as discussed before we get;
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+&1-IR1- £,+1IR;=0
Solving for the current we get
| = §1—&2 :6—12__1A

R1+R2 8+10_ 3

The -ve sign of the current indicates that the correct direction of the current
IS opposite the assumed direction i.e. along the loop (adba)

The power dissipated in R; and Ry is
P; = IR, = 8/9W
P, = 1°R, = 10/9W
In this example the battery &, is being charged by the battery & .

™

Three resistors are connected in series with battery as shown in figure
8.7, apply second Kirchhoff’s rule to (a) Find the equivalent resistance
and (b) find the potential difference between the points a and b.

Example 8.4

R,

Figure 8.7

™

Applying second Kirchhoff’s rule in clockwise direction we get
-|R1-|R2-|R3+ 520

Solution

or

I:#
R, +R, +R;
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¢
Ql=
therefore,
R=Ri+Ry;+R3

This is the same result obtained in section 7.1.1

To find the potential difference between points a and b Vg, (=Va-Vy) we use
the second Kirchhoff’s rule along a direction starting from point (b) and
finish at point (a) through the resistors. We get

Vp+ IR =V,

Where R is the equivalent resistance for R;, R, and R3

Vab:Va'Vb:+|R

The +ve sign for the answer means that V, > V,

Substitute for the current I using the equation

e
R

we get

Van =&

This means that the potential difference between points a and b is equal to
the emf in the circuit (when the internal resistance of the battery is
neglected).

™

In the circuit shown in figure 8.8 let £, and &£, be 2v and 4v,
respectively; r; ,r; and R be 1Q, 2Q3, and 5Q, respectively. (a) What is

Example 8.5
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the current in the circuit? (b) What is the potential difference V,-V,, and
Va'Vc?

- | N i (e WL
AYAAY || . || VvV
o—p 4—0
& &

R
AVAVAY
I
Figure 8.8

™

Since the emf &, is larger than & ; then &, will control the direction of the
current in the circuit. Hence we assume the current direction is
counterclockwise as shown in figure 8.8. Applying the second Kirchhoff’s
rule in a loop clockwise starting at point a we get

Solution

-52"‘ |r2+ IR + |r1 +§1 =0
Solving the equation for the current we get

| = 2z _ 4-2 = +0.25A
R+r +r, 5+1+2

The +ve sign for the current indicates that the current direction is correct. If
we choose the opposite direction for the current we would get as a result
-0.25A.

The potential difference V4-Vy we apply second Kirchhoff’s rule starting at
point b to finishing at point a.

VarVp = - Irp +& 5 = (-0.25x2)+4=+3 5v
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Note that same result you would obtain if you apply the second Kirchhoff’s
rule to the other direction (the direction goes through R, ry, and & ;)

The potential difference V4-V we apply second Kirchhoff’s rule starting at
point c to finishing at point a.

Va-Vp = +& 1+ Irp = +2+4(-0.25x1) = +2.25v

Note that same result you would obtain if you apply the second Kirchhoff’s
rule to the other direction (the direction goes through R, r,, and &)
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8.5 Multi-Loop Circuit

Some circuits involving more than one current loop, such as the one shown
in figure 8.9. Here we have a circuit with three loops: a left inside loop, a
right inside loop, and an outside loop. There is no way to reduce this multi-
loop circuit into one involving a single battery and resistor.

R [ I
| |

d

Figure 8.9

In the circuit shown above there are two junctions b and d and three
branches connecting these junctions. These branches are bad, bcd, and bd.
The problem here is to find the currents in each branch.

A general method for solving multi-loop circuit problem is to apply
Kirchhoff’s rules.

You should always follow these steps:

(1) Assign the direction for the emf from the -ve to the +ve terminal of the
battery.

Figure 8.10

(2) Assign the direction of the currents in each branch assuming arbitrary
direction.
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Figure 8.11

After solving the equations the +ve sign of the current means that the
assumed direction is correct, and the -ve sign for the current means that the
opposite direction is the correct one.

(3) Chose one junction to apply the first Kirchhoff’s rule.

> 1,=0

At junction d current I; and I3 is approaching the junction and I, leaving the
junction therefore we get this equation

|1+|3-|2:0 (1)

(4) For the three branches circuit assume there are two single-loop circuits
and apply the second Kirchhoff’s rule on each loop.
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Figure 8.12
For loop a on the left side starting at point b we get
+&1- IR+ 13R3=0 (2
For loop b on the left side starting at point b we get

-13R3- 15R2- £,=0 3)

Equations (1), (2), and (3) can be solved to find the unknowns currents Iy, I,
and Is.

The current can be either positive or negative, depending on the
relative sizes of the emfand of the resistances.
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Example 8.6

In the circuit shown in figure 8.13, find the unknown current I,
resistance R, and emf &.

18v g
R | (o] Oo—
MlB Il
! |
b
SR S
_I> 6_A>
AVAVAY, NV
R a 20
Figure 8.13

™

At junction a we get this equation

Solution

I1+1-6=0
Therefore the current
I =5A
To determine R we apply the second Kirchhoff’s rule on the loop (a), we get
18-5R+1x2=0
R=4Q

To determine & we apply the second Kirchhoff’s rule on the loop (a), we
get

E+6x2+1x2=0

& =-14v
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R‘}& <12v

Example 8.7

|
In the circuit shown in figure 8.14, (a) Il <
find the current in the 2Q resistor, (b) the

potential difference between points a and C 1,
b. a

(Use the current as labeled in the figure
8.14). _

‘?ﬁ Figure 8.14

Solution
At junction a we get

ly= 15+ I3 @)
For the top loop

12 - 2xl3 - 4x1; =0 @)
For the bottom loop

8-6xl,+2x13=0 (3)
From equation (2)

,=3-1/21;3
From equation (2)

l,=4/3-1/3 13
Substituting these values in equation (1), we get

I3 = 0.909A the current in the resistor 2Q
The potential difference between points a and b

Va - Vp = I3xR = 0.909x2=1.82v Va>Vp
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™

In the circuit shown in figure 8.15, (a) find the current 14, I, and I3, (b)
the potential difference between points a and b. Use these values,
£1=10v, &,=6v, &3=4v, R1=6Q), R,=2Q), R3=1Q, and R4;=4Q.

Example 8.8

(Use the current as labeled in the figure below).

f §I L

Figure 8.15

™

For the junction at the top we get
ly+12-13=0 1)

Solution

For loop a on the left side we get
+&1-11R2- &5+ 1bR3- 1R =0
+10-2l;-6+1,-61;=0
+4-8l,+1,=0 @)

For loop b on the right side we get
-1bR3+&5- £+ 13R4=0
-1, +6-4-413=0
+2-15-413=0 ©)
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From equation (2)

4+1
Iy = TZ 4
From equation (3)
2-1
I3 = 2 2 (5) ®)
Substitute in equation (1) from equations (4)&(5) we get
4+1, +I2_2—|2 0
|2 =0

From equation (4)

|1 =0.5A

From equation (4)

13 =0.5A

The potential difference between points a and b we use the loop (a)
Vb-Va=-&1+ 11R2
Vb-Va=-&1+ IiR;

Vp - Vo= 10 - 0.5x6 = -7v (Vo < Va)
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™

Consider the circuit shown in Figure 8.16. Find (a) the current in the
20.0 Q resistor and (b) the potential difference between points a and b.

Example 8.9

100hm 25 VvV
. TMH}T i
tﬁ;ﬂ/\J
50hm

50hm 200hm

Figure 8.16

™

Turn the diagram ion figure 8.16 on its side, we
find that the 20Q2 and 5Q resistors are in series,
so the first reduction is as shown in (b). In
addition, since the 10Q, 5Q, and 25Q resistors
are then in parallel, we can solve for their
equivalent resistance as @

_ 1
R =71 [ = 2940
+ 7+

10 5 25

Solution ]

200hm

100hm 25 V
100hm
50hm
50hm

250hm

100hm 25 V
100hm
50hm

This is shown in figure (c), which in turn
reduces to the circuit shown in (d).

(b)
=

Next we work backwards through the diagrams, § g
applying 1=V/R and V=IR. The 12.94Q resistor - )

is connected across 25V, so the current through ©
the voltage source in every diagram is > .
%
=== % ~1.93A :

' (d)
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In figure (c), the current 1.93A goes through the 2.94Q equivalent resistor

to give a voltage drop of:
V =1IR =(1.93)(2.94) = 5.68V

From figure (b), we see that this voltage drop is the same across Vg, the

10Q) resistor, and the 5Q resistor.
Therfore

Since the current through the 20Q resistor is also the current through the

250
| = Vap/Rap = 5.68/25 = 0.227A

™

Example 8.10

Determine the current in each of the branches of the circuit shown in figure

8.17.

Figure 8.17

™

Solution

First we should define an arbitrary direction for the
current as shown in the figure below. h

l3=1,+ 1, @

A

h

By the voltage rule the left-hand loop

+11(8Q)-1,(5Q)-1,(1Q)-4V=0 )
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For the right-hand loop
AN H+15(5Q+10Q)+15(4Q)-12V=0 ?3)
Substitute for I3 from eqn. (1) into egns. (2)&(3)
811-61,-4=0 4)
4+61,+4(11+1,)-12=0 5)
Solving egn. (4) for I,

8l, -4
1, ==

Rearranging eqn. (5) we get

Substitute for 1, we get
11+3.331;-1.67=2
Then,
1,=0.846A
1,=0.462A

1;=1.31A
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8.6 RC Circuit

In the previous section we studied either circuits with resistors only or with
capacitors only, now we will deal with circuits contains both the resistors
and capacitors together, these circuits are time dependent circuit where the
current in the is varying with time.

In the circuit shown in figure 8.18 we have connected an emf with resistor R
and uncharged capacitor C using a switch S.

R
a
o S AVAYAY,
— e
b I
+ —
é‘ I—_; C —
Figure 8.18

8.6.1 Charging a capacitor

When the switch S is connected to point (a) the battery will force charges to
move to the capacitor this called charging process of the capacitor. Note
that the current will not flow through the capacitor since there is no way for
the charge to jump from one plate to the other. However a positive charge
will accumulate on the plate connected with the positive terminal of the
battery. The same number of a negative charge will accumulate on the other
plate.

The current must stop after the capacitor will become fully charged and its
potential difference equals the emf.

o8y (a3l 5 e U GBle die alae dad 13 (5SSl of Alladl o3 b L Jaadls
el 8 G ¢S iy il ) ey o )l
To analyze this circuit let’s assume that in time dt a charge dq moves

through the resistor and the capacitor. Apply the first Kirchhoff’s rule in a
direction from the battery to the resistor to the capacitor we get,

éz..FQ_%:o (8.11)

Where IR is the potential difference across the resistor and g/C is the
potential difference across the capacitor.
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The current | and the charge g are varying with time. Substitute for

= da (8.12)
dt
d
¢-rM_9-¢ (8.13)
dt C

By solving the differential equation to find the g as a function of time we
get,

q=C¢(1-e"F%) (8.14)
The quantity C¢ is the maximum charge Q in the capacitor.

q=Q(1-e*F%) (8.15)

The current | is

1299 _ ¢ piRe (8.16)
t R
q A I(A)A
Q I,
0=CE
t(sec)r
Figure 8.19

Plots of the charge Q and the current | as a function of

time in the charging process
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Note that the quantity RC in the equation has a unit of time (sec). Therefore
it is called the time constant of the circuit.

Unit of RC is Ohm . Farad=Sec

Coulomb Amp.Sec  \olt Sec
- =0hm = =
Volt Volt Volt

Sec

Ohm.Faraa= Ohm.

8.6.2 Discharging a capacitor

When the switch S is connected to point (b) the battery is disconnected and
now the charged capacitor plays the role of emf. Therefore the capacitor
will force a charge g to move through the resistor R this called discharging
process of the capacitor.

Apply the first Kirchhoff’s rule in a direction from the resistor to the
capacitor we get,

r-3=0 (8.17)
C

The current | and the charge g are varying with time. Substitute for

= da (8.18)
dt
d
rRM+9-0 (8.19)
dt C

By solving the differential equation to find the g as a function of time we
getl

q=QetFe (8.20)

The current I during the discharging process is
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d
-H-_Q gthe (8.21)
d¢ RC

The -ve sign indicates that the direction of the current in the discharging
process is in the opposite direction of the charging process.

The quantity Q/RC is equal to the initial current I, (i.e. when t=0)

| =1 e"'Fe (8.22)

1 (A)A q4

t (sec), Q

t (sec)
Figure 8.20
Plots of the charge Q and the current | as a function of
time in the discharging process

In the end we found that charging and discharging process of the
capacitor is exponentially depends on the time constant (RC).
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™

Example 8.11
Consider an RC circuit in which the capacitor is being charged by a battery

connected in the circuit. In five time constants, what percentage of the final
charge is on the capacitor?

™

From equation (8.20)

q=Q(1-¢")
t=5RC

Solution

— 1_ e—t RC

=1-e%fCRC _1_¢° =993%

Ola ©Ol|a

™

Example 8.12

In figure 8.21 (a) find the time constant of the circuit and the charge on the
capacitor after the switch is closed. (b) find the current in the resistor R at a

time 10sec after the switch is closed. Assume R=1x10°Q , emf=30Vand
C=5x10"°uF.

Figure 8.21
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™

(a) The time constant = RC = (1x10°)(5x10°) = 5sec
The charge on the capacitor = Q = C& = (5x10°)(30) = 150 uC

Solution

(b) The current in charging of the capacitor is given by

| = ‘é/e—t IRC
R

30 _( (1x10° )1(05x10*6 ) ] -6
~e ' ) =4.06x10 A
1x10

™

Determine the potential difference Vy-V, for the circuit shown in figure 8.22

Example 8.13

. 12v
E.,‘ i +] - %Q
Solution
) _ 10Q av
The current is zero in the a b ¢ %Q
middle branch since e ° | NV
there is discontinuity at SQ§ av
the points a and b. o - %O
|
Applying the second I VVA—

Kirchhoff’s rule for the
outside loop we get,

+12-101-51-8-1/21-1/21=0
+4-161=0
| =4A

The potential difference Vy-V, is found by applying the second Kirchhoff’s
rule at point a and move across the upper branch to reach point b we get,

Vp-Va=+101-12 + 1/21 + 4
Vp-Va = -8 +10.51 = - 8 + (10.5x4) = 34volt

Figure 8.22
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The circuit has been connected as shown in figure 8.23 for a long time. (a)
What is the voltage across the capacitor? (b) If the battery is disconnected,
how long does it take for the capacitor to discharge to 1/10 of its initial
voltage? The capacitance C=1puF.

Example 8.14

C
10 8Q2
1oV ﬁ_— b i I a
40 2Q
d
Figure 8.23

™

After long time the capacitor would be fully charged and the current in the
branch ab equal zero.

Solution

The resistors in the left hand (1Q, and 4Q) are connected in series and
assume the current in this branch cbd is ;. The resistors in the right hand
(8Q2, and 2Q) are connected in series and assume the current in this branch
cad is I,.

The potential difference across the points ¢ and d is the same as the emf =
10volt. Therefore,

1:—10 =2A |2:_10 =1A
1+4 2+8
The total current,
=1L +1,=3A
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The potential difference across the capacitor Vp-V, is
Vp-Va=8l-11;=8x1-1x 2 =6volt

To find the answer of (b) we need to find the equivalent resistance,

Where R; is the equivalent resistance for (1Q2, and 4Q), and R; is the
equivalent resistance for (2€2, and 8Q2)

R=3.3Q
From equation 8.17
q — Qe—t RC
Divide by the capacitance C, therefore

-t |RC
etl

olFe)

a
C
v=Ve'FRe

\ _
Y _gtRe
\Y

The time for the capacitor to discharge to 1/10 of its initial voltage

1 _
& _gtRe

10
Lnl-Lnl0=-t/RC

t=Lnl10xRxC

t=7.7us
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8.7 Electrical Instruments
8.7.1 Ammeter and Voltmeter

A device called ammeter is used to measure the current flow in a circuit, the
ammeter must connected in series in the circuit so that the current to be
measured actually passes through the meter. In order that the ammeter will
not affect the current in the circuit it must has very small resistance.

A device called voltmeter is used to measure the potential difference
between two points, and its terminal must be connected to these points in
parallel.

Figure 8.24

In figure 8.24 shows an ammeter (A) measure the current | in the circuit.
Voltmeter (V), measure the potential difference across the resistor Ry, (Vc-
Vg). In order that the voltmeter will not affect the current in the circuit it
must has very large resistance.

Note that the ammeter is connected in series is the circuit and the voltmeter
is connected in parallel with the points to measure the potential difference
across them.

www.hazemsakeek.com


http://www.hazemsakeek.com/

Lectures in General Physics

8.7.2 The Wheatstone Bridge

This is a circuit consist of four resistors, emf, and galvanometer. ~ The
Wheatstone bridge circuit is used to measure unknown resistance. In figure
8.25 show three resistors R;, Ry, and Rz are known with R; is a variable
resistance and resistor Ry is the unknown one.

Figure 8.25

To find the resistance Ry the bridge is balanced by adjusting the variable
resistance Ry until the current between a and b is zero and the galvanometer
reads zero. At this condition the voltage across R; is equal the voltage
across R, and the same for Rz and Ry. Therefore,

I1R1=12R;

11R2 = 1Ry
Dividing the to equation and solving for Ry we get,
— RZ R3
R

This shows how unknown resistor can be determined using the Wheatstone
bridge.

R

X

(8.23)
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8.7.3 The potentiometer

This circuit is used to measure potential differences by comparison with a
slandered voltage source. The circuit is shown in figure 8.26 where the

working emf is &£, and the unknown emf is &,. The current flow in the

circuit is I in the left branch and I is the current in the right branch and I-1
is the current flow in the variable resistor. Apply second Kirchhoff’s rule
on the right branch abcd we get,

Xy
RX

Figure 8.26

-(I-I))Rx+& =0

When the variable resistance adjusted until the galvanometer reads zero, this
mean that 1,=0.

gleRx

In the next step the emf &, is replaced with standard emf &, and adjusted
the resistance until the galvanometer reads zero, therefore,

&= IRy

Where the current | remains the same, divide the two equations we get,
RX
£ =2 (8.24)

This shows how unknown emf can be determined using known emf.
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8.8 Problems

8.1) A battery with an emf of 12V
and internal resistance of 0.9Q is
connected across a load resistor R.
If the current in the circuit is 1.4A,
what is the value of R?

8.2) What power is dissipated in the
internal resistance of the battery in
the circuit described in Problem
8.1?

8.3) (a) What is the current in a
5.6Q2 resistor connected to a battery
with an 0.2Q internal resistance if
the terminal voltage of the battery
is 10V? (b) What is the emf of the
battery?

8.4) If the emf of a battery is 15V
and a current of 60A is measured
when the battery is shorted, what is
the internal resistance of the
battery?

8.5) The current in a loop circuit
that has a resistance of R; is 2A.
The current is reduced to 1.6A
when an additional resistor R,=3Q2
is added in series with R;. What is
the value of R,?

8.6) A battery has an emf of 15V.
The terminal voltage of the battery
is 11.6V when it is delivering 20W
of power to an external load
resistor R. (a) What is the value of

R? (b) What is the internal

resistance of the battery?

8.7) A certain battery has an open-
circuit voltage of 42V. A load
resistance of 12Q reduces the
terminal voltage to 35V. What is
the value of the internal resistance
of the battery?

8.8) Two circuit elements with fixed
resistances R; and R, are connected
in series with a 6V battery and a
switch. The battery has an internal
resistance of 5Q, R;= 32Q, and
R,=56Q. (a) What is the current
through R; when the switch is
closed? (b) What is the voltage
across R, when the switch is
closed?

8.9) The current in a simple series
circuit is 5.0A. When an additional
resistance of 2.0Q is inserted, the
current drops to 4.0 A. What was
the resistance of the original
circuit?

8.10) Three resistors (10Q2, 202, and

30Q) are connected in parallel.
The total current through this
network is 5A. (a) What is the
voltage drop across the network (b)
What is the current in each
resistor?
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8.11) (a) Find the
resistance between points a and b in
Figure 8.27. (b) A potential
difference of 34V is applied
between points a and b in Figure
28.28. Calculate the current in each
resistor.

Q
4Q 90

10Q

Figure 8.27
8.12) Evaluate  the  effective
resistance of the
identical resistors, each having
resistance R, shown in figure 8.28.

AN\

a R R b
———AA— AN ——
R R R
ANAAANNANN
Figure 8.28

8.13) Calculate the power dissipated
in each resistor in the circuit of
figure 8.29.

NV
18V == 30 =
’\/‘3\,
Figure 8.29

equivalent 8.14) Consider the circuit shown in

Figure 8.30. Find (a) the current in
the 20Q resistor and (b) the
potential difference between points
aandb.

12 24V
—«A%—ﬁ_—

a 12Q
- NN

[ e

%2%%

6Q
2 6Q

2 20Q

Figure 8.30

network of 8.15) (a) In Figure 8.31 what value

must R have if the current in the
circuit is to be 0.0010A? Take &
£1=2.0V, £,=3.0V, and
ri=r,=3.0Q. (b) What is the rate of
thermal energy transfer in R?

Figure 8.31

8.16) In Figure 8.32 (a) calculate the
potential difference between a and
c by considering a path that
contains R and &2,

www.hazemsakeek.com


http://www.hazemsakeek.com/

Lectures in General Physics

8.19) (a) Find the potential difference

| | between points a and b in the
R el ,Flgureaf‘l 2 (e GlRgithe
—
| 30 10V
Figure 8.32 . ’
5Q2 7Q
8.17) In Figure 8.33 find the current T W
in each resistor and the potential 01
difference between a and b. Put
£176.0V,  £,75.0V,  £374.0V, Figure 8.35

R;=100Q2 and R, =50Q.
8.20) Determine the current in each

& of the branches of the circuit shown
+“_ in figure 8.36.
R L
a | |
AR A
A%
Rl
Figure 8.33
8.18) (a) Find the three currents in Figure 8.36

Figure 8.34. (b) Find V. Assume

that R1=1.0Q2, R,-2.0Q2, £1=2.0 V, 8.21) Calculate the power dissipated
and £2=¢£3=4.0V. in each resistor in the circuit shown
in figure 8.37.

Figure 8.37

Figure 8.34
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8.22) Consider a series RC circuit for

which  R=1MQ, C=5uF, and
£=30V. Find (a) the time constant
of the circuit and (b) the maximum
charge on the capacitor after the
switch is closed. (c) If the switch
in the RC circuit is closed at t=0.
Find the current in the resistor R at
a time 10s after the switch is
closed.

8.23) At t=0, an unchanged capacitor

of capacitance C is connected
through a resistance R to a battery
of constant emf (Figure 8.38). (a)
How long does it take for the
capacitor to reach one half of its
final charge? (b) How long does it

take for the capacitor to become
fully charged?

Close att =0
o

emf == J_
v}

R

Cc

Figure 8.38

8.24) A 4MQ resistor and a 3uF

capacitor are connected in series
with a 12V power supply. (a) What
is the time constant for the circuit?
(b) Express the current in the
circuit and the charge on the
capacitor as a function of time.
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Part 2
Applications of Electrostatic

Capacitors and Capacitance
Current and Resistance
Direct Current Circuits

Attempt the following question after the
completion of part 2



Multiple choice question for part 2

[1] (@) How much charge is on a plate of a 4.00uF capacitor when it is
connected to a 12.0 V battery? (b) If this same capacitor is connected to a
1.50 V battery, what charge is stored?

a. (a) 3.00 uC; (b) 2.67 uC

b. (a) 3.00 puC; (b) 0.375 uC
c. (a) 0.333 uC: (b) 2.67 uC
d. (a) 48.00 uC; (b) 6.00 uC

[2] Calculate the equivalent capacitance between points aand b in Figure 1.
aa 3uF
) ||
il
W —— 3uF
JuF

=
1uF
Figure 1

Note that this is not a simple series or parallel combination. (Hint: Assume a
potential difference AV between points a and b. Write expressions for AV,
in terms of the charges and capacitances for the various possible pathways
from a to b, and require conservation of charge for those capacitor plates that
are connected to each other.)

a. 4.68 uF
b. 15.0 pF
c. 0.356 pF
d. 200 pF

[3] Two capacitors C; = 27.0 uF and C, = 7.00 uF, are connected in parallel
and charged with a 90.0 V power supply. (a) Calculate the total energy
stored in the two capacitors. (b) What potential difference would be required
across the same two capacitors connected in series in order that the
combinations store the same energy as in (a)?

a. (a) 0.0225 J: (b) 25.7 VV
b. (a) 0.0225 J; (b) 36.4 VV
c. (a) 0.138 J; (b) 223V

d. (a) 0.138 J; (b) 157 V/
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[4] Each capacitor in the combination shown in Figure 2 has a breakdown
voltage of 19.0V.

24uF 24uF
12uF 4:
24uF 24uF
Figure 2
What is the breakdown voltage of the combination?
a.57.0Vv
b.28.5V
c.95.0V
d.19.0V

[5] When a potential difference of 190 V is applied to the plates of a parallel
plate capacitor, the plates carry a surface charge density of 20.0 nC/cm?.
What is the spacing between the plates?

a. 8.41 um

b.0.119 um
. 0.429 pm
d.2.33 um

[6] A parallel plate capacitor is constructed using a dielectric material whose
dielectric constant is 4.00 and whose dielectric strength is 2.50 x 10° V/m.
The desired capacitance is 0.450uF, and the capacitor must withstand a
maximum potential difference of 4000V. Find the minimum area of the
capacitor plates.

a.3.25 m?

b. 0.203 m?
c. 0.795 m?
d. 0.814 m?
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[7] Find the equivalent capacitance between points a and b in the
combination of capacitors shown in Figure 3.

6UF |
a 7UF b
i
4R
Figure 3
a. 1.12 uF
b. 1.94 uF
c. 1.12 uF
d. 20.0 uF

[8] The inner conductor of a coaxial cable has a radius of 0.500 mm, and the
outer conductor's inside radius is 4.00 mm. The space between the
conductors is filled with polyethylene, which has a dielectric constant of
2.30 and a dielectric strength of 20.0 x 10° V/m. What is the maximum
potential difference that this cable can withstand?

a. 30.4 kv
b. 70.0 kV
c. 20.8 kv
d. 166 kV

[9] Two capacitors when connected in parallel give an equivalent
capacitance of 27.0 pF and give an equivalent capacitance of 4.00 pF when
connected in series. What is the capacitance of each capacitor?

a. 10.4 pF, 16.6 pF
b.9.76 pF, 44.2 pF
c.9.77 pF, 17.23 pF
d. 4.88 pF, 22.12 pF

[10] An isolated capacitor of unknown capacitance has been charged to a
potential difference of 100 V. When the charged capacitor is then connected
in parallel to an unchanged 10.0 pF capacitor, the voltage across the
combination is 30.0 V. Calculate the unknown capacitance.

a. 7.00 pF
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b. 2.31 uF
C. 4.29 uF
d. 13.0 pF

[11] Four capacitors are connected as shown in Figure 4.

19uF SuF

}_{

Figure 4

(a) Find the equivalent capacitance between points a and b. (b) Calculate the
charge on each capacitor if AVy =11.0V,

a. (a) 28.8 uF; (b) g1 = 1254, g5 = 330, s = 396, Qo4 = 317

b. (a) 7.04 uF; (b) qi10 = 30.8, g5 = 30.8, O = 46.7, Qo4 = 77.4
C. (a) 28.8 uF; (b) g19 = 1584, gs = 1584, gs = 396, g4 = 317
d. (a) 7.04 uF; (b) g19 = 148,05 = 38.9, s = 46.7, Qs = 77.4

[12] A 40.0uF spherical capacitor is composed of two metal spheres one
having a radius four times as large as the other. If the region between the
spheres is a vacuum, determine the volume of this region.

a.5.18 x 10*¥ m®
b. 1.46 x 102 m®
c.1.37 x 108 m®
d.5.26 x 10 m®

[13] A 18.0 m metal wire is cut into five equal pieces that are then connected
side by side to form a new wire the length of which is equal to one-fifth the
original length. What is the resistance of this new wire?

a.90.0Q
b. 3.60 Q
c.0.720 Q
d.19.0Q
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[14] A small sphere that carries a charge of 8.00 nC is whirled in a circle at
the end of an insulating string. The angular frequency of rotation is 100
nrad/s. What average current does the rotating rod represent?

a. 251 nA
b. 400 nA
c. 127 nA
d. 160 nA

[15] An aluminun wire with a cross sectional area of 4.00 x 10°® m? carries a
current of 5.00A. Find the drift speeds of the electrons in the wire. The
density of aluminum is 2.70 g/cm®. (Assume that one electron is supplied by
each atom.)

9.45 x 10 m/s
1.30 x 10 m/s
1.78 x 10" m/s
7.71 x 103 m/s

o0 o

[16] A 16.0 V battery is connected to a 100 Q resistor. Neglecting the
internal resistance of the battery, calculate the power dissipated in the
resistor.

a. 0.0625 W
b.1.60 W
c.16.0W
d.0.391 W

[17] An electric current is given by I(t) = 120.0 sin(l.10xt), where 1 is in
amperes and t is in seconds. What is the total charge carried by the current
fromt=0tot=1/220s?

a.0.347C
b.120C
c.415C
d.1.09C

[18] A resistor is constructed of a carbon rod that has a uniform cross
sectional area of 3.00mm When a potential difference of 19.0 V is applied
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across the ends of the rod, there is a current of 2.00 x 10° A in the rod. Find
(a) the resistance of the rod and (b) the rod's length.

a. (a) 1.05 kQ; (b) 998 mm
b. (a) 9.50 kQ; (b) 111 mm
c. (a) 9.50 kQ; (b) 814 mm
d. (a) 1.05 kQ; (b) 902 mm

[19] A copper cable is designed to carry a current of 500 A with a power loss
of 1.00 W/m. What is the required radius of this cable?

a. 3.68 cm
b. 6.76 cm
c.13.5cm
d. 7.36 cm

[20] In a certain stereo system, each speaker has a resistance of 6.00 Q. The
system is rated at 50.0 W in each channel, and each speaker circuit includes
a fuse rated at 2.00 A. Is the system adequately protected against overload?

a. yes
b. no
c. nfa
d. nfa

[21] Compute the cost per day of operating a lamp that draws 1.70 A from a
110 V line if the cost of electrical energy is $0.06kWh.

0.458 cents/day
45.8 cents/day
1.12 cents/day
26.9 cents/day

oo o

[22] Calculate the power dissipated in each resistor of the circuit of Figure 5.
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20hm

8v ! 30hm % jé 10hm

40hm

Figure 5

a.P,=142W,P,=284W,P;=133W, P =400 W
b.P, =162 W, P,=810W, P; =60.8 W, P; =20.3W
C.P,=142W,Ps=284W,P;=120W, P, =0.444 W
d.P, =162 W, P, =81.0 W, P3=20.3W, P, =60.8 W

[23] When two unknown resistors are connected in series with a battery, 225
W is dissipated with a total current of 7.00 A. For the same total current,
45.0 W is dissipated when the resistors are connected in parallel. Determine
the values of the two resistors.

a.  332Q,2400
b. 332Q,7.92Q
c. 1270Q,586Q
d 127Q,332Q

[24] A fully charged capacitor stores 14.0 J of energy. How much energy
remains when its charge has decreased to half its original value?

a.3.50J
b.7.00J
c.56.0J
d.14.0J
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[25] For the current shown in Figure 6, calculate (a) the current in the 1.00 Q
resistor and (b) the potential difference between the points a and b.

18V
60hm

——m—

10hm

b

6V
80hm

MA—

Figure 6

(a) 2.90 A; (b) -2.90 V
(a) 1.74 A; (b) -1.74 V
(a) 1.74 A; (b) 1L.74 V
(a) 2.90 A; (b) 2.90 V

o0 o

[26] Three 4.00 Q resistors are connected as in Figure 7.

40hm
40hm

40hm

Figure 7

Each can dissipate a maximum power of 34.0 W without being excessively
heated. Determine the maximum power the network can dissipate.

a. 434 W
b.22.7W
c.51.0 W
d. 102 W

[27] Consider the circuit shown in Figure 8.
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180hm 5V
MA

50hm 120hm

Figure 8

Find (a) the current in the 12.0 Q resistor and (b) the potential difference
between points a and b.

(a) 0.0554 A; (b) 0.665 V
(a) 0.294 A; (b) 5.00 V
(a) 0.250 A; (b) 4.25 V
(a) 0.0442 A; (b) 0.751 V

coow

[28] Two resistors connected in series have an equivalent resistance of 590
Q. When they are connected in parallel, their equivalent resistance is 125 Q.
Find the resistance of each resistor.

a. 327, 263Q
b. 327Q,202Q
c. 1800,4100Q
d 180(,5480Q
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Solution of the multiple choice questions

Q. No. Answer Q. No. Answer
1 d 15 b
2 d 16 c
3 c 17 a
4 b 18 c
5 a 19 a
6 b 20 a
7 c 21 d
8 c 22 a
9 d 23 d
10 c 24 a
11 b 25 b
12 a 26 c
13 c 27 d
14 b 28 c
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Optics
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2 CHAPTER 1. NATURE OF LIGHT

1.1 Light — Wave or stream of particles?

Answer: Yes! As we'll see below, there is experimental evidence for both interpretations, although
they seem contradictory.
1.1.1  What is a wave?

More familiar types of waves are sound, or waves on a surface of water. In both cases, there is a
perturbation with a periodic spatial pattern which propagates, or travels in space. In the case
of sound waves in air for example, the perturbed quantity is the pressure, which oscillates about
the mean atmospheric pressure. In the case of waves on a water surface, the perturbed quantity
is simply the height of the surface, which oscillates about its stationary level. Figure 1.1 shows
an example of a wave, captured at a certain instant in time. It is simpler to visualize a wave by
drawing the “wave fronts”, which are usually taken to be the crests of the wave. In the case of
Figure 1.1 the wave fronts are circular, as shown below the wave plot.
1.1.2 Evidence for wave properties of light

There are certain things that only waves can do, for example interfere. Ripples in a pond caused
by two pebbles dropped at the same time exhibit this nicely: Where two crests overlap, the waves
reinforce each other, but where a crest and a trough coincide, the two waves actually cancel. This
is illustrated in Figure 1.2. If light is a wave, two sources emitting waves in a synchronized fashion’
should produce a pattern of alternating bright and dark bands on a screen. Thomas Young tried
the experiment in the early 1800’s, and found the expected pattern.

The wave model of light has one serious drawback, though: Unlike other wave phenomena such as
sound, or surface waves, it wasn’t clear what the medium was that supported light waves. Giving
it a name — the “luminiferous aether” — didn’t help. James Clerk Maxwell’s (1831 - 1879) theory of
electromagnetism, however, showed that light was a wave in combined electric and magnetic fields,
which, being force fields, didn’t need a material medium.

8 www.hazemsakeek.com
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1.1.3 Evidence for light as a stream of particles

One of the earliest proponents of the idea that light was a stream of particles was Isaac Newton
himself. Although Young’s findings and others seemed to disprove that theory entirely, surprisingly
other experimental evidence appeared at the turn of the 20th. century which could only be explained
by the particle model of light! The photoelectric effect, where light striking a metal dislodges
electrons from the metal atoms which can then flow as a current earned Einstein the Nobel prize
for his explanation in terms of photons.

We are forced to accept that both interpretations of the phenomenon of light are true, although
they appear to be contradictory. One interpretation or the other will serve better in a particular
context. For our purposes, in understanding how optical instruments work, the wave theory of light 1is
entirely adequate.

1.2 Features of a wave

We’ll consider the simple case of a sine wave in 1 dimension, as shown in Figure 1.3. The distance
between successive wave fronts is the wavelength.

As the wave propagates, let us assume in the positive x direction, any point on the wave pattern
is displaced by dx in a time dt (see Figure 1.4). We can speak of the propagation speed of the
wave dx
v =
dt
As the wave propagates, so do the wavefronts. A stationary observer in the path of the wave
would see the perturbation oscillate in time, periodically in “cycles”. The duration of each cycle is
the period of the wave, and the number of cycles measured by the observer each second is the
frequencyz. There is a simple relation between the wavelength A, frequency f, and propagation
speed v of a wave:

v=fA (1.2)

Electromagnetic waves in vacuum always propagate with speed ¢ = 3.Q 108 m/s. In principle,
electromagnetic waves may have any wavelength, from zero to arbitrarily long. Only a very narrow
range of wavelengths, approximately 400 - 700 nm, are visible to the human eye. We perceive
wavelength as colour; the longest visible wavelengths are red, and the shortest are violet. Longer

(1.1)

2The SI unit of frequency is the Hertz (Hz), equivalent to s L.
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than visible wavelengths are infrared, microwave, and radio. Shorter than visible wavelengths are
ultraviolet, X rays, and gamma rays.
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Figure 1.1 A wave
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Wavelength

Perturbation

Figure 1.3: A sine wave
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dx
< =
]

Perturbation

Figure 1.4: Wave propagation
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2.1 Huygens’ Principle

In the 1670’s Christian Huygens proposed a mechanism for the propagation of light, nowadays
known as Huygens’ Principle:

All points on a wavefront act as sources of new waves, and the envelope of these sec- ondary
waves constitutes the new wavefront.

Huygens’ Principle states a very fundamental property of waves, which will be a useful tool to
explain certain wave phenomena, like refraction below.

2.2 Refraction

When light propagates in a transparent material medium, its speed is in general less than the
speed in vacuum c. An interesting consequence of this is that a light ray will change direction when
passing from one medium to another. Since the light ray appears to be “broken”, the phenomenon
is known as refraction.

Huygens’ Principle explains this nicely. See Figure 2.1. A plane wavefront (dashed line) approaches
the interface between two media. At one end, a new wavefront propagates outwards reaching the
interface in a time t according to Huygens’ principle, so its radius is v;t. At the other end a new
wavefront is propagating into medium 2 more slowly, so that in the same time t it has reached a
radius v,t. Now consider the angle of incidence 6; and the angle of refraction 6, between the
incident wavefront and the interface, and between the refracted wavefront and the interface. From
the figure we see that

vt . .
sin =" and sin® _yt sin6 _ U 2.1

i = =

X xsin 6, )
This result is usually written in terms of the index of refraction of each medium, which is defined
as

n= 2.2

<o

so that
ny sin 6; = n, sin 6, (2.3)

a result which is known as Snell’s law.

ive indices c ater has an index of
ré’ﬂ"actlon of 1 33 dlamond s 1ndex of refractlon is hlg"lﬂwyﬂ?ﬂi‘@mﬁ”ﬁ@l‘é témpting to think that the
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2.2. REFRACTION

medium 1 (e.g. air)

medium 2 (e.g. glass)

Figure 2.1: Refraction
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index of refraction might be associated with the density of the material, but that is not the case.
The idea lingers in the term optical density, a property of a material that the index of refraction
measures.

2.3 Total internal reflection

One important consequence of Snell’s law of refraction is the phenomenon of total internal reflection. If
light is propagating from a more dense to a less dense medium (in the optical sense), i.e. ny > ny,
then sin 6, > sin 6;. Since sin 6 1< the largest angle of incidence for which refraction is still possible
is given by -

()
sin ;< (2.4
ny

For larger angles of incidence, the incident ray does not cross the interface, but is reflected back
instead. This is what makes optical fibres possible. Light propagates inside the fibre, which is
made of glass which has a higher refractive index than the air outside. Since the fibre is very
thin, the light beam inside strikes the interface at a large angle of incidence, large enough that it
is reflected back into the glass and is not lost outside. Thus fibres can guide light beams in any
desired direction with relatively low losses of radiant energy.

12 www.hazemsakeek.com
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3.1 Images

An optical system creates an image from an object. For example, a slide projector shows an
image of a slide on a screen. There are two types of images, real and virtual.

Since an extended object may be treated as a collection of point sources of light, we are specially
interested in the images of point objects.

3.1.1  Real images

The formation of a real image is shown schematically in Figure 3.1. A point object emits light rays

A
v L 4 screen

object .
- fman

projector

Figure 3.1: Formation of a real image

in all directions. Some are redirected by the optical elements in the projector so that they converge to
it i ] e 1 i concentrated there is
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3.1.2 Virtual images

The reflection from a plane mirror is a good example of a virtual image. See Figure 3.2. The rays
reflected by the mirror seem to come from a point behind the mirror. When those rays enter the

mirror
v

object

Figure 3.2: Virtual image formed by a plane mirror

eye of an observer or the objective of a camera, they will be seen as coming from a point. In that
sense, we see the image of the object, but there is of course nothing actually there. If we placed a
screen behind the mirror, nothing would be projected on it.

3.2 Curved mirrors

Curved mirrors are a key element of telescopes. They are usually parabolic in cross-section, for
reasons to be discussed below. A spherical mirror is a good approximation if the curvature is low.
A key property which is satisfied exactly by a parabolic mirror and approximately by a spherical
one is the ability to focus a beam of light parallel to the optical axis — the axis of symmetry of
the mirror — to a point, known as the mirror’s focal point (see Figure 3.3).

3.3 Ray tracing with mirrors

To locate an image formed by a curved mirror, particular auxiliary rays from the object may be
constructed. Consider the situation shown in Figure 3.4. Ray (1) from the object is parallel to the
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optical axis

Figure 3.3: Focal point of a curved mirror

optical axis, and therefore passes through the focal point F after reflection. Ray (2) passes through
F, and therefore is reflected parallel to the axis, according to the principle of reversibility of light.
Ray (3) is reflected at the vertex of the mirror, so the reflected ray is symmetrical to the incoming
ray with respect to the axis of the mirror. The image is formed at the intersection of the three
rays. In fact, to locate the image we only need to construct two of the three possible auxiliary rays:
Where they intersect is where the image is formed.

If we are dealing with an extended object, the whole image may be constructed this way. In the
present example we can characterize the image as real, inverted (as opposed to upright), and
enlarged (as opposed to reduced).

3.4 The mirror equation

The location of the image may be calculated from the position of the object and of the mirror’s
focal point by means of the mirror equation, which we shall derive shortly. These positions are
measured by the following coordinates, illustrated in Figure 3.4: the object distance p measured
along the axis from the vertex of the mirror, where the axis intersects the mirror; the image
distance i, and the focal length f, measured in the same way. By convention, we draw the
diggram so-that-the lightis-ineidentfrom the left e-counted as positive
t&@ards the left as indicated in the figure.
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Figure 3.4: Image formation by a curved mirror

Our mirror equation presupposes that the curvature of the mirror is very small, which is true if
the object is relatively small and close to the optical axis. In that case, we can draw the mirror as
approximately flat. The situation is depicted in Figure 3.5. The triangle& OPF and4 FQI are
similar (check this). This means that the following ratios are equal:

p=1f - 3
i-f
After some manipulation, this expression reduces to
1. 1 1
+7 = - = 232
p i f

Exercise 3.4.1 Derive equation (3.2) from equation (3.1).
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mirror

Y )
o

A
o)

Figure 3.5: Derivation of the mirror equation
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4.1 Introduction

Mirrors, which form images by reflection, are important components of telescopes; lenses, which
form images by refraction, are also important components of many optical systems, including
(refracting) telescopes. Next, we shall see how an image is formed as light rays from an object pass
through two interfaces, generally air/glass and glass/air. Our first task is to locate the image of a
point after passing through a single spherical interface.

4.2 Refraction at a spherical interface

We will restrict ourselves to those cases where the curvature of the interface is very small, so that
we can represent it as a flat surface (albeit with a finite radius of curvature!) as shown in Figure
4.1. In the figure, a point object at O emits a ray of light along the optical axis, and another ray

n1 n 2
normal

Y

Figure 4.1: Refraction at a spherical surface

of light which is refracted at the interface and intersects the first one to form an image at I. The
radius-of eurvatureof the interface is#-asusua —the-object-distance-to-thednterface is p and the
il%%ge distance is i, butnote the following important/¢4éggemsakeek.com
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The sign convention for refraction is different from the one for mirrors: object distances are
counted as positive when the object is in front of the interface, but image distances are
positive when the image is formed behind the interface. The radius of curvature follows the
same convention as the image distances.

In the case of Fig. 4.1, the surface is convex, so the centre of curvature C lies to the right, and r
is positive.

For the oblique ray, the incidence angle is 6 and the refracted angle is ¢. Then, by the exterior
angle theorem,6 PCO=6-aandé PIC=6-a- .

In the small angle approximation (see Appendix A), Snell’s law becomes

mo = e (4.1)
and we can also approximate the angles as follows:
X
a = _ (4.2)
p
0-a = X : X+ X (4.3)
r=0=p r
O-a-¢ = 4 X X (4.4)
and substituting 0 and @ in Snell’s law, we get after esnpelling-x 7 :
nhw m_mp .
P rt (4.5)
which can be rearranged more meaningfully to
nw I M~ (4.6)

p i r
If the light is passing from air of refractive index n; = 1 to glass of index n, = n, equation 4.6
becomes

=

S
|

—

+ = (4.7)
p ir

4.3 A lens

4.3.1 Locating the image

In a lens, there are two consecutive refractions, one from air to glass, and then from the glass back
into the air. Figure 4.2 shows the process. Applying eq. (4.6) to the first refraction, we get


http://www.bbc.co.uk/education/gcsebitesize/maths/shape_and_space_i_h/straight_lines_angles_and_polygons_rev.shtml
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Figure 4.2: Two consecutive refractions

M,y _Ipom (4.8
p ? 1
where 7y is the curvature radius of the first surface. The image formed after the first refraction is
the object of the second refraction, and its distance from the second surface is

pP°=L-7 (4.9)
so that the final image is formed at a distance i from the second surface given by
My _mom (4.10)
L- i) { 1)
In the thin lens approximation, L — 0 so that eq. (4.10) is reduced to
M _mTm (4.11)
i) { rn

To eliminate the intermediate image and arrive at a single relation between object and image
distances, add the two equations (4.8) and (4.11):

n n
m,om

l—

= (—n) ~ — (4.12)

22 p p www Hazertfsakeek com
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4.3.2 Thelensmaker’s equation

Almost always, of course, the outside medium is air — ny = 1 —, and the material of the lens is
glass, with a refractive index n, = n depending on the particular type of glass used. In this case,
eq.(4.12)
1

+Tl=(n—1) 14 (4.13)
p i " n

Notice that the right-hand side only depends on the characteristics of the lens: What it’s made of,
and the curvature radii of its surfaces. It has dimensions of (length)™"; and what is more, when the
object is at infinity, so that the incident rays are parallel to the axis, the image is formed at a
distance from the lens equal to the inverse of the right-hand side. All this indicates that we can
define a focal length for the lens

1 1 _1

=(n-1) — -7 (4.14)
7 g n

This is the lensmaker’s equation. It tells a lensmaker what curvature radii he should achieve

when he grinds a lens to obtain a desired focal length f, given that he’s working with a particular

type of glass of refractive index n.

4.3.3 The thin lens equation

When we substitute ffrom equation (4.14) in equation (4.12), we get the following very simple
recipe for locating the image formed by a lens:

1 1_1
+ = - = =415
p t f
We wil call this the thin-lens equation. It is identical to the mirror equation (3.2)! But beware:
The sign convention is not the same.

4.3.4 Converging and diverging lenses

If the focal length is positive, the image of an object at infinity is formed by rays converging at a
point behind the lens. Such a lens is called converging. On the other hand, if the focal length is
negative, the rays from an object at infinity diverge after passing through the lens, appearing to
come from a point somewhere in front of the lens. This is called a diverging lens.



24 CHAPTER 4. LENSES

@

\\]\\/
=

Figure 4.3: Ray tracing with a converging lens.

Exercise 4.3.1 Use the lensmaker’s equation to show that a converging lens is thicker in the
middle, and a diverging lens is thinner in the middle.

4.3.5 Ray tracing with lenses

For the purposes of ray tracing, every lens is said to have two focal points, a primary focal point
and a secondary focal point. A converging lens has its primary focal point on the side from
where the light is coming (usually drawn on the left), and the secondary focal point is symmetrically on
the other side of the lens. The opposite is true of a diverging lens.

As with mirrors, we can locate an image formed by a lens graphically, with the help of three

auxiliary rays (see Figures 4.3 and 4.4):

A ray parallel to the axis passes through (or appears to pass through) the secondary focal point
F,. (Ray 1 in the figures).

A ray, passing through (or when extended, appearing to pass through) the primary focal point
F, emerges from the lens parallel to the axis. (Ray 2 in the figures).

24 o A ray falling on the lens at its centre passes throughnrardeflectedoRay 3 in the figures).
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()

Figure 4.4: Ray tracing with a diverging lens.

4.3.6 Real and virtual images

In Figure 4.4 the image was formed at the intersection not of the light rays emerging from the lens,
but of their extension backwards. This means that the image is virtual: It cannot be projected on a
screen. In fact, the image is formed behind the lens, so if a screen were placed there, the light
would be blocked and would not be able to pass through the lens at all!

It is possible to tell whether an image is real or virtual from the thin-lens equation, without having
to locate it by ray tracing. In the case of Figure 4.4 the thin-lens equation is

+ . =- _ _ (4.16)

where we have emphasized that the focal length of the lens is negative by writing it as _ | fl Then
the position of the image is

= oA (4.17)
p+If

The image is virtual if and only if i is negative.

i - <
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>

; A\L ‘

Figure 4.5: Lateral magnification by a lens.

4.3.7 Lateral magnification

Figure 4.5 illustrates how an image may be located by ray tracing. The optical axis has been marked
off in units of the focal length f. Notice also that we have drawn a y axis, positive upwards. Clearly,
the image is larger than the object, and also inverted. We can also get this information directly
from the lateral magnification .
m= % 19

Yo
where y; is the height of the image and y, is the height of the object. These heights are measured
along the y axis, so in this case y, > 0 but y; < 0. In this way, the absolute value of m measures
how much bigger (or smaller) the image is compared with the object, and the sign of m tells us
whether the image is upright or inverted relative to the object.

It is evident from the figure, using ray ABC, that

m= - i (4.19)
p

Given the position of the object p, from the thin-lens equation we can calculate i, and hence also

the lateral magnification m. For example, in the case of the figure, if we let f=1, then p=3/2,

SO 2 1
3+i=1:)i=3=)m=—2 - (4.20)

wigch 1s confirmed by ray tracing.

www.hazemsakeek.com
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5.1 Single-lens systems

To see how the analytical tools developed in the previous chapter may be applied to the design of
some simple optical systems, we study first systems formed by a single lens. You may find it useful
to reproduce these examples using our virtual optical bench.

5.1.1 A magnifying glass
Angular size

What we perceive as the “size” of an object is the angle that it subtends in our field of vision. (See
Figure 5.1). Clearly, to increase the angular size of a small object in order to see it better, we need

Figure 5.1: Angular size

to bring it as close to the eye as possible. But there is a limit to how close we can bring it: Beyond a
certain distance, called the near-point distance, we can no longer focus the eye to create a
sharp image on the retina. A magnifying glass is a converging lens which creates an image of an
object very close to the eye at the near point, or slightly beyond it, so that the image may be seen
sharply in focus.

Since the image is formed behind the lens, it is a virtual image. A ray-tracing analysis of the
magnifying glass is shown in Figure 5.2. If the height of the original object is y, its angular size in
the small-angle approximation is essentially the same as the tangent of the angle,

6= 3 (5.1)

p
The eye is most relaxed when it is focused at infinity, so we want to form the image with the glass
as far away as possible. This means that p must be very slightly under the focal length f, so we
may write equation 5.1 as

628 -‘%www.hazemsakeek.com (5.2)
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Figure 5.2: Image formation by a magnifying glass

and this is also the angular size of the image.

If we were obliged to look at the object at the near point distance dy with the naked eye, its
angular size would be

= Yy (5.3)
so the angular magnification of the magnifying glass is
= dn
m = _ anv
o @ 7 (5.4)

Clearly, a magnifying glass should have a small focal length in comparison with dy, which is
normally estimated as 25 cm.

5.2 Compound optical systems

Many useful instruments consist of two or more lenses aligned on a common axis. In this section
we will discuss two-lens systems. The same ray-tracing techniques, and the same thin-lens formulas
may be applied, bearing in mind that the image formed by the first lens becomes an object for the
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second lens. Figure 5.3 shows such a system schematically. The first image is formed at a distance

L1 L2

Figure 5.3: A two-lens system

£ from the first lens L; given by

1,1_1 (5.5)

? 7 f

and as an object for the second lens, its object distance is p° = L . The final image is formed at

a distance ifrom the second lens, given by

1, 1_1
——+-=—(5.6)

-2 i f

Eliminating £ between these two equations, a single equation may be obtained relating i, p, and
the two focal lengths f; and f;.

A a DD

s a practical applicatio at E ve will discuss one particularinstrument here, the
rggracting telescope. www.hazemsakeek.com
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5.3 The refracting telescope

Although real refracting telescopes have complex lens combinations to correct the image, for the
purpose of understanding how they work it is sufficient to regard a telescope as consisting of two
elements, the objective and the eyepiece, or ocular.

Figure 5.4 shows how an image is formed by a telescope. The object is very distant, and the
objective forms an image of it at an image distance equal to its focal length. The eyepiece is set
up so that its focal point practically coincides with that of the objective, so that the intermediate
image will form an image at infinity as shown. But because the focal length of the eyepiece is
smaller, the angular size of the final image is larger than the angular size of the object.

To calculate the angular magnification of the telescope, mg = 6°/6, we note first that

h
0 — 6 BAD= tan & BAD=f—(5.7)

o
Here f; is the focal length of the objective, and h is the height of the image formed by the objective.
Notice how the sign conventions apply here: h is negative because the image is oriented downwards, so
0 = h/f, is also negative, since f;, > 0 for a converging lens. This is consistent with the convention

that angles are counted as positive going counterclockwise, so the angle 6° from the optical axis to
the light ray is negative.

As for &,
6°=6 BCD=tan6é BCD= _-h _ _ £ (5.8

e
Here f. is the focal length of the eyepiece. The minus sign is necessary to make 6 positive, because

h<0.

Now we can calculate the angular magnification as

¢ f
mo= 5=~ f 6(5.9)

The telescope forms an inverted image, which is sometimes undesirable. The spyglass, or terres-
trial telescope, is used to observe objects closer to the observer. It is a variation on the telescope
which produces an upright image. The essential difference is that the eyepiece is a diverging lens.
Figure 5.5 shows the paths of the rays in this case.

Notice that the intermediate image formed by the objective lens falls to the right of the eyepiece.
When this happens, this image is said to be a virtual object for the eyepiece. All this means is
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o
-t -
. . Obijective lens Intermediate image Eyepiece
From distant object at common focal
— point
0 B C
A h ©
D

To distant virtual image e

Figure 5.4: A refracting telescope.

that an image would be formed there if the eyepiece didn’t exist. For the purpose of calculation,
the object distance for the eyepiece is negative.

Remarkably, equations (5.7) and (5.8) still hold, so the angular magnification is still given by
equation (5.9). But, since f. <0, the angular magnification is positive, which means that the final
image is upright.

Exercise 5.3.1 Verify that equations (5.7) and (5.8) still hold even for the spyglass. Pay special
attention to the signs of the angles. Remember that in this case fe < O.

32 www.hazemsakeek.com


http://www.hazemsakeek.com/

5.3. THE REFRACTING TELESCOPE

To distant virtual image

Objective lens

From distant object

T 6

Eyepiece

33

D
image at common

-

e focal point
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6.1 'Wave phenomena

6.1.1 Introduction

Geometrical optics allows us to understand and even to design a wide variety of optical instru-
ments. Certain optical phenomena, however, can only be explained in terms of the wave properties
of light. In this chapter we focus on two such phenomena, interference and diffraction.

6.1.2 Interference

Thomas Young (1773 — 1829) performed a now classical experiment that showed up the wave
properties of light. By splitting up a light beam into two, he effectively created two very close,
coherent sources of light, emitting waves of identical wavelength and in step with each other. As
the wavefronts spread out in space, they combined with each other, producing interference. At
certain locations, the two waves would arrive in step and enhance each other; at certain other
locations, the waves would arrive exactly out of step and cancel each other. This simulation shows
interference produced in a “ripple tank” with surface waves in a liquid.

Location of interference maxima

We limit our analysis to the formation of interference patterns very far from the sources. Consider
the situation illustrated in Figure 6.1. Two rays meeting at a distant point with direction 6
with respect to the symmetry axis of the two sources, will interfere destructively or constructively
depending on the optical path difference (OPD in the figure). If OPD = mA, where m is a whole
number, then the waves from the two sources will arrive in step where they meet, and interfere
constructively, creating a bright point of light at that location. From the figure we see immediately
that the possible directions of interference maxima are given by

dsin 6= mA (6.1)

where m=0,+1,%2,....

6.1.3 Diffraction

o1 10 no nerhans is th eryve 1ocht and d hen 'htpassesthrough
a%@ngle slzt ThlS 1s because accorldng to Huygens prlmfi‘ﬁl'eﬂé@éﬁoff@ﬁﬁ%@ng the aperture acts as
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To point on distant screen

Figure 6.1: Two-slit interference

a new source of circular wave fronts, all of which will combien to produce an interference pattern
far away. (See Figure 6.2).

Location of diffraction minima from a single slit

Of all the countless point sources along the aperture, consider a particular pair: One point on the
edge of the aperture, and another exactly halfway across the aperture, as shown in Figure 6.3.
These will interfere destructively if the OPD = A/2. Similarly, all other pairs of points across the
aperture separated by a/2 will also interfere destructively. So the first dark fringe will be formed
in a direction given by

a . A

sinf=_(6.2)
2 2

or more simply
asin 6= 2 (6.3)
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Figure 6.2: Waves emerging from an aperture.

The next minimum is formed when pairs of sources separated by a/4 interfere destructively, i.e.
when

a . A
_sin6="(6.4)
4 2

that 1s, when
asin 6= 21 (6.5)

In general, diffraction minima may be found in the directions given by
asin 6=mi (6.6)

where m=%1,%2,....

Diffraction by a circular aperture

A slit will produce a diffraction pattern consisting of bright and dark fringes parallel to the slit.
Different shape ape es wi e accordingly different shape diffraction patterns. For example, a
BBular aperture central spot, $itrsrdsddsealtesfinting birght and dark

produces a very bright
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Figure 6.3: Formation of diffraction minima by a single slit.

rings. (See this image). A more complex calculation shows that the direction of the first dark ring,
which is practically the same as the edge of the central spot, is given by

A
sin 6= 1.227 (67)
d

Resolution of an optical instrument

Any optical instrument gathers light through an aperture, so a poitn source of light will be imaged
not as a point, but as a diffraction pattern, of which most is contained in the central spot. This
limits the resolution of the instrument, that is, the ability to distinguish sufficient detail. For
example, a telescope may not be able to distinguish two stars that are very close together, because
their diffraction patterns overlap. (See this image). Rayleigh’s criterion states that two points
may not be resolved if their angular separation is less than

1.224  _1.22A

= arcsin (6.8

R d d
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Thus the bigger the aperture of a telescope, the better is its resolving power. (Also, it gathers
more light so it is capable of registering fainter objects than a smaller instrument). Another good
example of the use of a large aperture to improve resolution is the unusually large eye of predatory
birds like eagles or owls.

6.1.4 Diffraction gratings

One of the most important applications of interference is spectrometry, based on the interference
pattern produced not by one or two, but by very many thin slits close together. Such devices
are called diffraction gratings. Interference maxima will be produced in the same directions as
with only two slits. Thus, if the separation between adjacent slits is d, the maxima will be in the
directions

dsin 6= mA (6.9

where m=0,1,2,....

The important feature of a diffraction grating is that the interference maxima will not be in the
form of broad bands but rather very thin, bright lines. We can show this by calculating the half-
width of the central maximum. (Figure 6.4 shows what we mean by half-width). The brightness
of the line drops to zero in the direction in which the N slits have an interference minimum. As N
1s usually a very large number, the situation is very similar to diffraction by a single slit of width
Nd. So the first interference minimum is in the direction A6, given by

(Nd) sin ABrw = A (6.10)

and in the small-angle approximation

Nd ( )
In general, for any order of interference m,
_ A
Athﬁcos 0d 6.12)

Spectrometry: Application of a diffraction grating

All atoms and molecules are capable of ernlttmg electromagnetlc radlatlon when they absorb en-
e. Thus the emission
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Intensity

D

Figure 6.4: The half-width of the central interference line produced by a diffraction grating.

The light emitted by a sample of a substance may be split up effectively by passing it through a
diffraction grating, since the direction of each interference maximum depends on wavelength. More
than one complete spectrum may be formed in principle, one for each order of interference.

An interesting variation on this theme is when a relatively cool gas is illuminated by light with a
broad continuous spectrum (such as the uppermost layers of a star). In this case, the gas absorbs
light at characteristic wavelengths, leaving dark lines in the resulting spectrum. Again, the chemical
composition of this gas is revealed by which wavelengths are absent from the original continuous
spectrum.

For example in astrophysics the chemical composition of distant objects may be revealed by spec-
trometry.

Dispersion and resolving power of a diffraction grating

We use a diffraction grating to measure the wavelength of a light emission by measuring the direction
in which a bright line is formed. In practice, an uncertainty in the direction of the bright line will
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result in an uncertainty in the wavelength. According to the error propagation formula,
@ A A 6.13
A= 56 (6.13)

Two properties of the grating contribute to AA. One is the dispersion of the grating,
do
= —.6.14
D= —, (6.14)

and the other is the minimum separation A6 between two lines that the grating can resolve. Now
we have seen that the interference maxima occur at angles 0 given by

dsin 6= mA (6.15)

where m=0,£1, %2, .......... Therefore m

D= —
dcos 6
Clearly to reduce the uncertainty AA we want a high value of the dispersion. A small d is helpful.

(6.16)

The other contribution to the uncertainty in A is that lines have a finite half-width. So if two
lines are very close in wavelength, so that their separation is less than their half-width, they will
overlap. To estimate the minimum AA that the instrument can resolve, we’ll substitute A6y
from equation (6.12):

ap= deos0d 4 (6.17)
m Ncos6d mN
The resolution of the grating is defined as
A
R= . =Nm — (6.18)

AA

The higher the resolution, the smaller the uncertainty AA. Increasing the number of slits will do
the trick.
6.2 Summary of formulas in this chapter

Two-slit interference: The directions of interference maxima are given by

dsin 6= mA (6.19)

vitere m = (U =5 - =57 dis the separation bétweenzgiiessliegk com
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Diffraction by a single slit: The directions of diffraction minima are given by
asin 6= mi (6.20)

where m==%1,£2,....cc.cccuenn. a 1s the width of the slit.

Diffraction by a circular aperture: The angular half-width of the central diffraction spot is

given by 1

sin 0=1.22_(g.21)
d

Rayleigh’s criterion: Two points on an object may be resolved by an optical instrument of
aperture diameter d in light of wavelength A if their angular separation is at least
1.224 _1.22A

6 =arcsin R P d (6.22)

Diffraction grating: A diffraction grating produces bright lines in directions 6 given again by

dsin 6= mA (6.23)

where m=0, £1,£2,....
The half-width of a line is

ABny (6.24)

where N is the number of slits in the grating.

The dispersion of the grating is
D= (6.25)

dcos 6

R= = Aécn (6.26)

AA

and the resolution is
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A.1  Small angle approximation

For small values of 6, the functions sin 6 and tan 6 take on particularly simple forms. Consider a
very “thin” right triangle, as shown in Figure A.1. Since a= h,

h
ol S
0
a
Figure A.1: A thin right triangle
sin @ =tan @ (A1)

Also, to a very good approximation the triangle resembles a circular wedge, with o replaced by the
arc s, so that o/h=s/h= 0 (if 01is measured in radians). Putting everything together,

O=sinB=tan O (A.2)
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48 APPENDIX B. DERIVATIONS FOR THE EXAM

B.1 Derivations for the Module 7 exam

1. Snell’s Law: Two transparent media (call them 1 and 2) are separated by a plane interface.
Waves travel in each medium with speed vy or v,. A plane wavefront propagating in medium
1 reaches the interface at an angle 6, and propagates into medium 2 at a different angle 6,
with respect to the interface. Show that

sin6; sin 6,
Uy %7

Answer: See Figure B.1. The line PR is part of the incident wave front, and QS is part of the
refracted wave front. In a time ¢, point P propagates to @ in medium 1. The distance PQ is vit. In
the same time, point R propagates inside medium 2 to another point S, a distance vt from R. In
fact, because Q and S are on the same wave front, S must be where it is shown in the figure. In
triangle PQR, we have that

S

Figure B.1: Derivation of the law of refraction.

sin 95 - (B. 1)

=l

and in triangle QRS,

48 sin 0 rwm%‘gazemsakeek.com (B.2)
X
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and therefore . sin B
sin 6;

r

(B.3)
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2. Mirror equation: Derive the mirror equation

1 1 1
+ = .
i p f
where iis the image distance, pis the object distance, and fis the focal length of the mirror.

Answer: See Section 3.4. Please note that all the steps must be completed
explicitly, includ- ing the notes say “after some algebraic manipulation...”.

3. Young's experiment: Light of wavelength A illuminates two thin
slits, separated by a distance d. On a distant screen an interference
pattern is produced. Define an axis from the slits to the central
maximum. Show that every other maximum lies in a direction at an
angle 6,, with respect to this axis, given by

dsin 6,,=mA

where m=0, £1,%+2,....
Answer: See section 6.1.2.

50

www.hazemsakeek.com


http://www.hazemsakeek.com/

