
Chapter 1 
Introduction 

Although all electromagnetic phenomena can be studied in empty 
space, an important part of any introductory course on electricity 
and magnetism is a proper understanding of the nature of matter. 
We shall therefore discuss dielectric behaviour in the chapter on 
electrostatics, conduction in metal wires in that on magneto­
statics, and magnetism in matter (whether para-, dia- or ferro­
magnetism) in the chapter on magnetism. In this first chapter the 
nature of matter is summarised. 

All matter is composed of elementary particles, some charged 
positively (protons), some charged negatively (electrons) and 
some without charge (neutrons). The forces between these 
particles are of three different sorts, - gravitational, electrical 
and nuclear - which differ enormously in their strength and 
range. 

The gravitational force was made famous by Newton in 
his studies of the planets and expressed by him in 1665 in the 
inverse square law of force between two masses m 1 and m2 

F: - Gmlm2 
G - r2 [l.l ] 

where r is the distance between m 1 and m2 and G is the gravi­
tational constant. The electrical force will be familiar as the 
law Coulomb found in 1785 for the force between electrical 
charges. This is another inverse square law of force. If r is 
now the distance between the charges ql and q2, and K is an 
electrical constant 

[1.2] 
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The third type of force between the elementary particles that 
constitute matter is a comparatively recent discovery. In 1932 
Chadwick found that the nuclei of atoms and molecules con­
tained not only protons but new particles - neutrons - and 
so there had to be a third type of force, the nuclear force, that 
held these particles together in the nucleus. 

This nuclear force, composed of both weak and strong inter­
actions, is exceedingly short range, falling off as r-2 exp (-r/ro), 
where ro is about 10-15 m. In contrast the gravitational and 
electrical forces are comparatively long range (Fig. 1.1). It is 

Long 
Ronge 

Fig. 1.1 Short-range and long·range forces. 

r 

obvious from the motion of the planets round the sun that gravit­
ational forces are long range. It is not so obvious that electrical 
forces are similarly long range because electrical charges are usually 
screened by other charges of opposite sign at comparatively short 
range, so that the overall effect at long range is negligible. 

Although both the gravitational and electrical force obey an 
inverse square law, their size differs enormously. For the proton­
electron pair which comprises the hydrogen atom, the electrical 
force FE is about 1039 or one thousand million million million 
million million million times as strong as the gravitational force 
FG , as can be easily shown from equations [1.1] and [1.2] and a 
knowledge of the constants. So we can nearly always neglect 
gravitational effects in the presence of electrical forces. The 
exception is experiments like Millikan's oil drop, where the 
enormous mass of the earth acts on the oil drop with a force 
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comparable to the electrical one exerted on the tiny charge of the 
oil drop as it moves between the charged plates. 

The gravitational and electrical forces also differ in one other 
important respect: the gravitational force between particles of 
ordinary matter is always attractive, whereas the electrical force 
is repulsive (positive) between like charges and attractive (negative) 
between unlike charges. The net result is that large masses have 
large gravitational attractions for one another, but normally have 
negligible electrical forces between them. 

The paradox is that although all matter is held together by 
electrical forces, of the interatomic or intermolecular or chemical­
bond types, which are immensely strong forces, large objects are 
electrically neutral to a very high degree. The electrical balance 
between the number of protons and electrons is extraordinarily 
precise in all ordinary objects. To see how exact this balance is, 
Feynman has calculated that the repulsive force between two 
people standing at arm's length from each other who each had 1% 
more electrons than protons in their bodies would be enormous -
enough in fact to repel a weight equal to that of the entire earth! 
So matter is electrically neutral because it has a perfect charge 
balance and this gives solids great stiffness and strength. 

The study of electrical forces, electromagnetism, begins 
with Coulomb's law, equation [1.2]. All matter is held to­
gether by the electromagnetic interactions between atoms, 
between molecules and between cells, although the forces holding 
molecules and cells together are more complicated than the 
simple Coulomb interaction. The studies of condensed state 
physics, of chemistry and of biology are thus all dependent on an 
understanding of electromagnetism. This text develops the 
subject from Coulomb's law to Maxwell's equations, which 
summarise all the properties of the electromagnetic fields, in free 
space and matter. But if you ask why does the strong electrical 
attraction between a proton and an electron result in such com­
paratively large atoms rather than form a small electron-proton 
pair, you will not find the answer in Maxwell's equations alone. 
The study of electrical forces between particles at atomic or 
subatomic distances requires a new physics, quantum mechanics, 
which is the subject of the first book in the series. 

Introduction 3 



Chapter 2 
Electrostatics 

Electric charge has been known since the Greeks first rubbed 
amber and noticed that it then attracted small objects. little 
further progress was made until the eighteenth century when 
du Fay showed that there were two sorts of charge. One sort 
followed the rubbing of an amber rod with wool, the other a glass 
rod with silk. It was Benjamin Franklin who arbitrarily named the 
latter a positive charge and the original amber one a negative 
charge. He also showed that the total charge in a rubbing 
experiment was constant. 

2.1 Coulomb's law 

In 1785 Coulomb succeeded in discovering the fundamentai law 
of electrostatics. A brilliant experimenter, he was able to invent 
and build a highly sensitive torsion balance with which he could 
measure precisely the relative force of repulsion between two 
light, insulating, pith balls when charged similarly and placed at 
different distances apart. He showed that this electrostatic force: 
1. acts along the line joining the particles; 
2. is proportional to the size of each charge; and 
3. decreases inversely as the square of the distance apart. 
It is therefore a long-range force (Fig. 1.l) and is given by the 
vector equation for the force FI on charge ql due to charge q2: 

F - Kqlq2 A 

1 - -2--rI2 
r l 2 

[2.1 ] 
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Fig. 2.1 Electrostatic forces between electric charges. 

and rl2 is a unit vector drawn to 1 from 2 (Fig. 2.1) given by 
rl .Jrl 2. Fig. 2.1 shows that Newton's laws must apply and the 
force F2 on charge q2 due to ql is F2 = -Fl. When both charges 
have the same sign, the force acts positively, that is the charges 
are repelled, while between a negative and a positive charge the 
force acts negatively and the charges are attracted. 

For historical reasons the constant of proportionality K in 
equation [2.1] is not one, but is defined as: 

K = _1_ = 1O-7c2 

41T fo 
[2.2] 

where fo is the electric constant (permittivity of free space) and 
c is the velocity of light. The constant has to be determined from 
experiment. A recent value of c = 2.997925 X 108 m S-1 is 
accurate to better than 1 in 106 , but for use in problems can be 
taken as 3.0 X 108 m S-I. On the same basis K = 9 X 109 N m2 C 2 , 

using the SI unit coulomb (C) for electric charge. 
It is important to note that we have written in equation [2.1] 

Coulomb's law for charges in a vacuum; we have not mentioned 
the effects of a dielectric or other medium. 

Principle of superposition 

The only other basic law in electrostatics is the principle of 
superposition of electric forces. The principle states that if more 
than one force acts on a charge, then all the forces on that charge 
can be added vectorially into a single force. Thus for the total 
force on a charge ql due to charges q2 at r12, q3 at rl 3, etc., we 
have: 
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[2.3] 

That the electric force between two small particles can be 
enormous is readily seen by estimating the force produced in 
Rutherford's scattering experiment when an alpha particle 
(~He nucleus) makes a direct approach to a gold e~Au) nucleus. 
The distance of closest approach is 2 X 10-14 m and so the 
maximum electrostatic repulsion is, from equations [2.1] and 
[2.2]: 

2e X 7ge 9 X 109 X 2 X 7ge2 N 
4 X 10-28 • 

Since the charge on the proton, e = 1.6 X 1O-19 C, the force on a 
single nucleus is about 100 newtons and a very strong force. 

Electric field 

The electric forces due to a distribution of electric charges, and 
particularly those due to a uniform distribution of charge, are 
best described in terms of an electric field vector, E, defined as 
the electric force per unit charge at a point. It can be visualised as 
the total force on a positive test charge, q at r h which is then al­
lowed to become vanishingly small so as not to disturb the electric 
field. Using equation [2.3] we have: 

E(I) = Lim FI = _1_ ~ !J.L rlj. 
q-+O q 47T€o ~ r~j 

J 

[2.4] 

This vector equation is a shorthand version of three much longer 
equations, which are nevertheless needed when a particular case 
has to be worked out. 
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Fig. 2.2 The x-component Ex of electric field vector E. 

For each coordinate plane there is a component of E(l) such as 
the x-component Ex = E cosO shown in Fig. 2.2. These 
components are therefore, for a charge q2 at (X2Y2Z~· 

_ ....!1l:... (XI -X2) 
Ex(XIYIZD - 2 2 2 312 41T€o {(XI-X2) +(vI-Y2) +(ZI-Z2) } . , 

E (X Y Z ) - q2 (vI -Y2) 
y I I I - 41T€o{(XI- X2)2+(vI-Y2)2+(ZI-Z2)2} 312, 

E (X Y z) = -.!b.... (zJ -Z2) 
z I I I 41T€o {(xl- x2i+ (v1-Y2)2+ (ZI-Z2)2} 3/2· 

Just writing out equation [2.4] in this way for Cartesian 
coordinates shows how useful vector equations are in saving time 
and space in print. 

In a similar way we can write a vector equation for a charge 
distribution, using the notation shown in Fig. 2.3, where 

p(xyz)--~~ 

E( I) 

Fig. 2.3 The electric field E (1) at point 1 due to a distribution of charge. 

p (X, y, z) is the charge density, which produces a charge pdT in a 
small volume dT. From equation [2.4] the electric field at point 
I is now: 
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E(1) fall [2.5] 

space 

where r2 is the variable and the integral Idr stands for III dx dy dz 
in Cartesian coordinates and similar triple integrals for other co­
ordinate systems. To apply this equation one must again evaluate 
each component, for example: 

Ey(XIYIZI) 

space 

The equations [2.4] and [2.5] show, in principle, how all 
electrostatic fields can be obtained. Until the charges move there 
is no more to electricity: it is just Coulomb's law and the 
principle of superposition. In practice there are some clever tricks 
to avoid such horrible calculations that are only fit for com­
puters. Remember too that, whatever happens, electric charge 
is always conserved in toto, since it depends ultimately on the sta­
bility of the electrons and protons in the universe. (Recent 
theories of elementary particles and of cosmology imply that the 
proton is not absolutely stable, but has a half-life - 1031 years.) 

2.2 Gauss's law 

Gauss's law is about electric flux. The idea of the flux of a vector 
field arises from the flow of a fluid. We need a measure of the 
field lines (lines of force) coming out of a surface. We know that 
if we tilt the surface it has a maximum 'flow' when it is normal to 
the field lines and minimum (zero) when it is parallel to them 
(Fig. 2.4). If we describe the size of the surface by dS and its 
orientation by its unit normal vector Ii, then the flux of the 
vector E from the element dS is defined as E .ndS. This is 
commonly abbreviated to E.dS, where dS = lidS is a vector along 
the outward normal for outgoing nux. For a point charge q at 
the origin using equation [2.4] we have therefore: 

E.dS = 4~ r.dS. 
nEor 

[2.6] 
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Fig. 2.4 Electric flux through various surfaces: (a) maximum for dS normal 
to E; (b) minimum for dS in plane of E; (c) flux of E is scalar product 
E.dS. 
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Fig. 2.5 Elementary surface area on a sphere around a point charge q. 

The simplest way to evaluate this vector equation is to draw a 
sphere of radius r round the point charge and use spherical polar 
coordinates Cr, 8, 1/1), as in Fig. 2.5. The elementary area dS = 
r sin 8 dl/l. rd 8 and so the flux due to q through dS is: 

-4 q 1 r.dS = 4 q sin8dl/ld8 
~€or ~€o 

since rand dS are parallel. Thus for an inverse square law of 
force, the flux from a point charge is independent of the distance 
r of the sphere from the point charge. The total flux through the 
sphere is: 

J. E.dS = f 4 q sin 8d8dl/l 
S S ~€o 
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where the integral is taken over the surface S of the sphere. This 
is easily evaluated: 

1T 21T 

i E .dS = 4 q J sin OdO f dl/l = s..... [2.7] 
s Treo 0 0 eo 

Of course a sphere is a particularly symmetrical surface to have 
chosen to find the total electric flux. Does it have to be so 
symmetrical to get such a simple answer? To find out we must 
evaluate equation [2.6] for a surface of arbitrary shape (Fig. 2.7) 
and this is best done by using the concept of a solid angle dQ 
(Fig. 2.6). For any surface area dS whose normal dS makes an 

dS 

o 
dJ2 dS cos 8 

Fig. 2.6 Solid angle dS1 for cone of base dS. 

E dSs 

8s 

Es~~~==~~~~~~~ 

dS 

E 

Fig. 2.7 Arbitrary surface around a point charge q. 

angle 0 with the radius vector r from an arbitrary point 0, the 
solid angle dQ is dQ = dS cos 0/r2. We can therefore write 
equation [2.6] as 
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E .dS = q dO/41TEo 

and use this expression for the electric flux through dS to evaluate 
the total flux through the arbitrary surface S. 

We first divide S into two parts: SI that does enclose q; and S2 
that doesn't. Then for S 1 we must compute the Is, dO. Since q is 

a point charge, any surface SI that completely encloses q will 
subtend the same solid angle at q as the sphere S3. Therefore: 

The flux through S 1 = 4 q i dO = !1... 
1TEo S3 Eo 

For the surface S2 that does not enclose q, any flux cone must 
cut the surface twice, once on entry (e .g. at A) and once on exit 
(e.g. at B). The total flux flowing out of the surface bounded by 
A, B and the cone in between is therefore EB .dSB - EA"dSA. But 

by the inverse square law for electric fields and 

dSBcos8B _ r B2 dO 
dSAcos8A - rA 2 dO 

by definition of solid angles. The flux EA"dSA that flows into this 
region is thus exactly the same as the flux EB .dSB that flows out 
of the region and the net flux for the surface S2: 

i E.dS = o. 
s. 

It follows, then, that the total flux for any surface surrounding q is 

f. E.dS = 9.... 
s Eo 

[2.8] 

exactly as obtained from the sphere in equation [2.7]. 
By the principle of superposition the flux due to two charges 

q I an d q 2 is jus t : 

L E1.dS + Is E2·dS = €~ (ql + q2) 
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and it follows that the flux due to any charge distribution is: 

f E .dS = ~ 1 pdT. 
S Eo V 

[2.9] 

where V is the volume enclosed by S. 
This is Gauss s law: the total flux out of any closed surface is 

equal to the total charge enclosed by it divided by the electric 
constant, Eo. 

Applications of Gauss's Law 

Gauss's law is particularly use!pl for finding the electric field due 
to a symmetrical distribution of charge. In each case the Gaussian 
surface is chosen to suit the symmetry of the problem, as will be 
seen from three examples. 
I. E for a sphere of charge 

Suppose we have a sphere of uniform charge density Po, 
then 

r - 4 3 Q = 1 pdT - 3 1Ta Po, 
T 

as illustrated in Fig. 2.8, is its total charge. 
We first draw an imaginary Gaussian surface S of radius R 

through the point P, where we wish to find E. Since the charge 
is uniformly distributed throughout Q, by symmetry E is 
everywhere radial from Q. 

E 

E 

E 

Sphere af charge E 

E 

E 

Gaussian 
surface 
S 

Fig. 2.8 Electric field of a sphere of charge. 
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Applying Gauss's law we obtain: 

! E.dS= Q. 
s eo 

Hence E .41TR2 

or E 

This is exactly the same as the field due to a point charge Qat 
the centre of the sphere of charge, a resul t that is quite hard to 
prove without Gauss's law. 

:2. E far a line charge 
To find the electric field at a point distance r from an infinite 
line charge A em -1, we note the cylindrical symmetry of the 
problem and draw a Gaussian cylindrical surface S (Fig. 2.9) 

E 
E 

. ____ ~GaUSSian surface 5 

'. E ----
~E;:::~!----_-j/Gvt:.~r Line charge 

---- \ / 
-----~ 

E E Fig. 2.9 Electric field from a line charge. 

of radius r and of length 1 m. The 
everywhere radial by symmetry and 
along the line. Applying Gauss's law: 

J E.dS = f E.dS + J E.dS 
S cylindrical end 

surface faces 

Hence 21TrE + 0 

or E 

3. E for a plane sheet of charge 

electric vectors will be 
the same at all points 

To find the electric field near a plane sheet of charge a em -2, 

we first note that E must be everywhere normal to the sheet 
and that the field E1 on one side must be the same size as the 
field E2 on the other side (Fig. 2.1 0). By symmetry our 
Gaussian surface S is a rectangular box whose sides parallel to 
the sheet of area A contain all the flux that the charges are 
producing. By Gauss's law: 
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Uniform plane of charge 

Gaussian surface 5 

area A 

Fig. 2.10 Electric field from a sheet of charge. 

Here both these integrals refer to outward fluxes, so: 

or 

EA +EA 

E 

2.3 Electric potential 

aA/EO 

a/2Eo· 

The electrostatic field, like the gravitational field, is a conservative 
field. The concept of potential energy used in gravitational 
problems can therefore be applied to electrical problems. In 
mechanics the work done, dW, on a particle travelling a distance 
ds along a path ab by an applied force F (Fig. 2.11) is given by 
the component of F acting in the direction s times ds, 

d W = F cos 8 ds. 

ds b 

a 

Fig. 2.11 Force F acting on a particle as it moves along the path abo 

The total work done over the path ab is then 

W = r (Fcos8)ds = r F.ds 
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where ds is a vector element of the line from a to b. In electro· 
statics the particle becomes a test charge moving quasi·statically 
(with zero velocity) from a to b and the applied force must 
overcome the electric forces acting on the test charge. In Fig. 2.12 

Fig. 2.12 Electric force Ep and external force -Ep acting on test charge 
at P, used in calculating the work done on taking unit charge from a to b. 

the electric force on the test charge at P is Ep and so the external, 
applied force to move the charge quasi-statically is -Ep. It is this 
force that is needed to calculate the external work done against 
the electric field due to the point charge q. 

Therefore the work done on unit charge in taking it from a 
to b is 

Lb -E.ds. 

Using the definition of E in equation [2.41 and noting that 
r.ds = dr. this integral becomes: 

-q r b I -q (I I ) 
41T€o Ja i3. dr = 41T€o ra - rb . 

Referring to Fig. 2.12 we can see that this amount of work would 
also be done if the charge was just moved radially from a' to b. 
Equally it would be the same if it was moved first along the radial 
path aa", then along the circular path a"b' and finally along the 
radial path b' b, since E is always normal to a circular path about 
q and therefore no work is done along a circular path. 
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It thus follows that the f: E .ds is the same along any arbitrary 

path which can always be considered as the zero sum of normal 
components along circular paths and the work done by the 
tangential components along radial paths. If the path is a closed 
loop C (a to b and back to a) then clearly the integral is zero: 

f, E .ds = O. [2.10] 
.C 

This is the circulation law for the electrostatic field and is a 
characteristic of conservative fields that have spherical symmetry 
and of forces that are radial f(r).1t does not have to be an inverse 
square law force to have zero circulation. 

When the path is not closed, the work done depends only on 
the end points and is independent of the path taken (Fig. 2.12). 
The work done on unit charge can therefore be represented as the 
difference between two electric potentials ¢(b) and ¢(a), by 
analogy with mechanical potential energy: 

-r E.ds = ¢(b)-¢(a). [2.11 ] 

To obtain an absolute value for the electric potential, we must 
specify its zero. This is taken for convenience to be at an infinite 
distance from the source q so that 

- J~ E.ds = ¢(r) [2.12] 

defines the potential ¢(r) at any point of distance r from q. 
Using equation [2.4] for E, we obtain 

¢(r) = ~(l) 
41T€O r 

for a point charge q at the origin. 
Electric potentials can be superimposed like electric fields and 

so for a distribution of charges we obtain similar equations to 
[2.4] and [2.5], namely: 
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__ 1_ ~ !Ii 
</>(1) 47r€o L..., rli 

i 

and </>(1) = _1 r 
47r€o JalI 

space 

[2.13] 

[2.14] 

It is important to remember that electric potentials are the 
work done on unit charges and therefore measured in volts, not 
joules like potential energy. The volt is defined by: the work done 
is 1 joule when a charge of 1 coulomb is moved through a 
potential difference of 1 volt. 

The calculation of electric fields can often be achieved more 
simply from electric potentials than from equations [2.4] and 
[2.5]. To do this we must invert equation [2.11] to obtain a 
differential equation. For two points distance bM apart, by the 
definition of electric potential, the work done on moving charge 
through fj,x is 

fj,W = </>(x + bM,y,z)-</>(xyz) 

= ~! fj,x. 

But the work done against the electric field E is 

x+l'!.x 
fj,W = - f E .ds = -ExbM. 

x 

3</> HenceE = --. 
x 3x 

Similarly, for movements along fj,y and & we find: 

E - - 3</> and E = _ 3</> 
y - 3y Z 3z ' 

h E ( 3</> • + 3</> . + 3</> k) so t at = - - I - J -
3x 3y 3z 

[2.15] 

where (i, j, k) are unit vectors along the Cartesian axes Ox, Oy, Oz. 
In vector calculus the gradient of a scalar field Q(xyz) that is 

continuously differentiable is defined as the vector 
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an an an 
grad n - ax i + ay j + 3z k [2.16] 

Comparing equations [2.15] and [2.16] we see that the electro­
static field E is just minus the gradient of the electric potential cf>: 

E = -grad cf> [2.17] 

It follows that electric fields have the convenient unit of volts per 
metre, as well as the more fundamental one of newtons per 
coulomb from equation [2.4]. 

Conductors 

A metal may be considered as a conductor containing many 'free' 
electrons which can move about inside but not easily escape from 
the surface. Inside a metal there is perfect charge balance between 
the positive ions and the negative electrons and, on a macroscopic 
scale, the net charge density is zero. By Gauss's law the electric 
field Ei inside a Gaussian surface that coincides with the surface 
of a metallic conductor (Fig. 2.13(a)) must therefore also be zero. 

(a) 

E, =0 /1' 7<: / "-
v/ 

Gausslan­
surface 
5 

(b) 

Section 
area 
A 

Fig. 2.13 (a) Electric field inside a conductor is zero. (b) Outside a charged 
conductor it depends on the charge density at the surface a em-'. 

By equation [2.17] the gradient of the electric potential at the 
surface, grad cf>, must be zero and so the surface of a conductor is 
an equipotential surface and the interior of the conductor is an 
equipotential region (cf> = constant). 

When a conductor is charged the excess charges stay on the 
surface, where they are not completely free. They then produce 
an external field Eo just outside the surface (Fig. 2.13(b )), whose 
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value can be obtained from the cylindrical Gaussian surface S of 
cross-sectional area A and cylindrical axis normal to the surface. 
Clearly 

is E .dS = EoA + 0 = 
Eo 

aA 

and Eo = a/Eo. [2.18] 

This is just twice the field for a sheet of charge (section 2.2) 
because the internal electrons have produced zero internal field 
when the 'sheet of charge' is no longer isolated, but on a 
conductor. A similar result is seen if we consider two uniformly 
charged, parallel, conducting plates. In Fig. 2.14 the large 

Eo=O 

+ + + -f----.:+--!...I-+:---+:....----:--j-.:.---:-+-- Surface density + CT 

d +E,1 
-1----"-+---=t-------+"''----;_ Surface density - CT 

Eo=O 

Fig. 2.14 Electric field between two charged plates. 

Gaussian surface encloses a total charge of zero and so the 
external field Eo = O. On the other hand the internal field Ei , 

whether obtained from the positively charged plate, or the 
negatively charged plate, is just Ei = a/Eo. 

An interesting question is: can the inner surface of a hollow 
conductor be charged? In Fig. 2.15 if there is a surface density 
of charge a inside the cavity then there is an electric field in the 
cavity and for the closed path C through P and Q: 

ClOsed path C 

Fig. 2.15 Can the inner surface of a hollow conductor be charged? 
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fc E.ds *- O. 

But this would violate the circulation law (equation [2.10]) and 
so E inside a cavity must be zero and it is impossible to charge 
the inside of a hollow conductor. This important principle is the 
basis of electrostatic screening (the Faraday cage). 

2.4 Electrostatic energy 

Electric energy is stored in capacitors, for example in parallel 
plate capacitors (Fig. 2.14). From equation [2.11] we see that the 
potential difference V between the plates, for a uniform field Ei 
between the plates distance d apart is: 

Ei.d = rp+ - rp_ = V. 

But Ei = alEo and for a uniform distribution of charge, a = Q/A, 
where Q is the total charge on the plates of area A. 

Hence V = C:A) Q, or Vex: Q. 

The proportionality between V and Q is always found for two 
oppositely charged conductors, since it arises from the principle 
of superposition: doubling the charges doubles the field and 
doubles the work done. By convention, we define capacitance by: 

Q = CV 

and so for the parallel plate capacitor the capacitance is 

C = EoA/d. [2.19] 

The unit of capacitance is the farad (after Faraday) and is a 
coulomb per volt. It is a very large unit and typical small 
capacitors· are in microfarad (J.LF) for use at low frequencies and 
in picofarad (pF) for radio frequencies. When capacitors are in 
parallel they are all at the same potential (Fig. 2.16(a)) and so 
C = ~ Ci , but when they are in series they each carry the same 

I 

charge (Fig. 2.l6(b)) and then l/C= ~ l/Ci . 
I 
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T 101 jq2 CI C2 

~1-0+01~ V 
TC I TC2 1 I I 

I I 
_v_ 

(a) (b) 

Fig. 2.16 Capacitors connected (a) in parallel and (b) in series. 

The work done in charging a capacitor is equal to the energy U 
stored in it and so: 

rQ _ 1 iQ _ Q2 _ 1 2 
U = Jo VdQ - C 0 QdQ - 2C - lCV . [2.20] 

For the parallel plate capacitor, neglecting end-effects, the 
energy is: 

U = Q2 = (aA)2 
2C 2(EoAjd) 

The energy density u in this electrostatic field is the total 
energy U divided by the volume Ad and so 

0 2 1 
u = - = -Eo1f2 

2Eo 2 
[2.21] 

since E = a/Eo between the plates. This expression for the energy 
density was derived from a specific example, the parallel plate 
capacitor, but it contains only the electric field E and the electric 
constant Eo. [t is, in fact, quite general, as can be seen from 
Fig. 2.17. There an electric field is described by a number of 
equipotentials CP!. CP2, ... and we can imagine any small volume dr 
in that field as a tiny parallel plate capacitor ABeD, since a 

CPI 

CP2 Equipatentials 

Volume d, 

Fig. 2.11 Equipotentials in an electric field. 
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conducting plate is an equipotential surface. Therefore quite 
generally 

[2.22] 

The idea that the electrostatic energy is stored in the electric 
field is an important one and enables the energy to be computed 
without knowing anything about the distribution of electric 
charge. It is even more important in discussing the energy of radio 
waves. Clearly radio stations transmit electromagnetic energy in 
the waves we receive at our aerials, but they do not transmit 
electric charges over long distances. The energy is stored, and 
travels, in the electromagnetic field of the wave. 

There is one point of difficulty in calculating electric fields. 
The energy of a charged sphere of radius a (problem 2) is 
!Q2/(41TEoa) and so the self-energy of a point charge (a--+O) would 
be infinite! Obviously the idea of stored energy in an electrostatic 
field is not consistent with the presence of point charges: either 
the electron has a finite size or we cannot extend our concept to 
elementary charged particles. To avoid this real difficulty we 
compute the energy only of the electrostatic fields between the 
charges, and omit their self-energy. Thus we can write equation 
[2.22] more generally as: 

U = ~ Eo L E. E dr. [2.23] 

Electric stress 

The limit to the energy that can be stored in a particular capacitor 
depends on the maximum electric field E that its insulation will 
withstand before it breaks down under the electric stress. 
Typically the insulation strength is about 108 V m-l so that a large 
capacitor of internal volume 0.1 m3 would hold a maximum of 
!to.lOl6 .0.1 =::0 5kJ. This is small compared with the IOMJ of 
chemical energy in 1 kg of common salt and very small compared 
with the 50 TJ of nuclear energy in I kg of uranium. 

Still larger capacitors cannot easily be built because of the 
enormous mechanical stresses they are subjected to when charged. 
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Fig. 2.18 Work is done in separating charged capacitor plates. 

This can be seen by applying the principle of virtual work to 
charged capacitor plates (Fig. 2.18). If F is the attractive force 
between the plates, then the external work done 6.U increasing 
the separation by 6.x must equal the change in electrostatic 
energy for constant Q. Using equations [2.19] and [2.20], 

6. U = - F 6.x = ! Q2 6. (1.) = Q26.x 
2 C 2EoA 

or F = -Q2/2 EoA. 

But the charge Q = aA and the electric field is E = a/Eo, so that 
the stress is: 

This is the same as the energy density (equation [2.21]) and so 
for E = 108 Ym-1 , the mechanical stress is ~ 50 kN m-2 or about 
5 tonne weight per square metre. 

2.5 Dielectrics 

Dielectric materials -like glass, paper and plastics - are electrical 
insulators. They have no free charges and do not conduct 
electricity, but they do influence electric fields. Faraday 
discovered that inserting an insulator between the plates of a 
parallel plate capacitor increased its capacitance. We define the 
dielectric constant (or relative permittivity) Er of an insulator 
from Faraday's experiment as the ratio of the capacitances when 
the capacitor is completely filled by the insulator to when it is 
empty: 

[2.24 ] 
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For commercial dielectrics the material is normally of uniform 
composition and when used in low electric fields is a linear, 
isotropic, homogeneous medium characterised by a single 
constant €r. Typical values of €r are air = 1.0006, polythene = 
23, glass = 6, barium titanate ceramic = 3000. In designing 
capacitors, transformers, coaxial cables, etc., €r is an important 
factor influencing the design. 

Physically there is a great deal to investigate in the dielectric 
behaviour of gases, liquids and, especially, solids, where €r can be 
an anisotropic parameter described by an appropriate tensor. 
The dielectric 'constant' will also vary with temperature, with the 
frequency of an electromagnetic field and will become nonlinear 
in high electric fields. It is only in its familiar usage in low­
frequency, low-field capacitors that it can be treated as a simple 
constant. 

Polarisation 

What happens when a slab of dielectric is inserted into a parallel 
plate capacitor (Fig. 2.l9)? We know that the capacitance 

Fig. 2.19 Electric fields in a capacitor with and without a dielectric. 

C = Q/V increases from Faraday's experiment and so, if the 
charge Q on the plates has not leaked away, the potential V must 
have been reduced. Ignoring end-effects there is a uniform electric 
field E = V/d, so the electric field in the presence of the dielectric 
Ed must be less than that originally present, Eo. We can explain 
this by postulating an induced surface charge ap on each side of 
the dielectric slab, providing the charges are of opposite sign to 
those inducing them from the respective capacitor plates. If these 
free charges have surface density at, then 
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E = af - ap < af = Eo 
d eo eo 

[2.25] 

using the expression E = a/eo, which depends only on Gauss's 
law. This process is called polarisation of the dielectric and occurs 
only in the presence of the electric field (the part of the dielectric 
outside the capacitor plates is not polarised - Fig. 2.19). 

Atom 
E=O 

Polarised atom 
E'FO 

Fig. 2.20 Polarisation of an atom gives it a dipole moment p. 

One way in which a neutral atom can acquire a dipole moment 
is shown in Fig. 2.20. The spherical electron cloud of the neutral 
atom is distorted by the applied electric field E and this distorted 
charge distribution is equivalent, by the principle of super­
position, to the original spherical distribution plus a dipole 
distribution whose dipole moment is 

p = qs [2.26 ] 

where s is the distance vector from -q to +q of the dipole. 
If a polarised dielectric consists of N such dipoles per unit 

volume, then we define its polarisation Pas: 

P = Np = )' P;lT 
........., 

i 

where T is the total volume. The SI unit of dipole moment is the 
coulomb-metre and that of polarisation coulomb per square 
metre. Going back to Fig. 2.19, we see that the surface charge on 
the dielectric is ap coulombs per square metre. If we assume this 
is due to N electrons per unit volume being displaced upwards a 
distance fi at each surface of area A', then the total charge is 

apA' = NefiA' 
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or op = Neo. 

But Neo is 'just Np and so P = op and equation [2.25] becomes 

of-P 
E =--

d Eo 

From this equation it is clear that EoEd and P have the same 
dimensions. We define electric susceptibility Xe , a dimensionless 
quantity, as the ratio: 

Xe = P/EoEd' 

Knowing Xe for our dielectric material we therefore obtain the 
reduced electric field Ed as 

E - Of (_1_) 
d - e;;- 1 + Xe . [2.27] 

The capacitance of the capacitor is inversely proportional to the 
potential and so to the electric field. Using equations [2.24], 
[2.25] and [2.27] we therefore obtain 

Eo 
Er = IF = ( 1 + Xe)· 

d 
[2.28] 

Measurement of the electric susceptibility Xe of matter at low 
frequencies is thus a measurement of the dielectric constant Er , 

which at optical frequencies can be shown to be the square of the 
refractive index (see the sequel to this text, Electromagnetism). 

Electric displacement 

For all electrostatic systems we have the fundamental equation 
(equation [2.9]), Gauss's law: 

f E .dS = 1- J, pdT 
S Eo V 

where V is the volume enclosed by the surface S. 
When dielectrics are present, the charge density p will be the 

sum of any polarisation charges of density Pp and any free charges 
of density Pf' Therefore 
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€o L E.dS = Iv PfdT + t ppdT. [2.29] 

We have seen (Fig. 2.19) that in a parallel plate capacitor, 
when the polarisation P is normal to the surface of the dielectric, 
its magnitude is just the surface density of charge op displaced 
from inside the dielectric. At the ends of the dielectric slab where 
P is tangential to the surface the surface density of charge is zero. 
It is the normal component of P that produces a surface charge, 
so that for an arbitrary surface S inside a dielectric (Fig. 2.21) 

Fig. 2.21 Non-uniform polarisation of a dielectric. 

the charge dqp displaced across a surface element dS is P .dS. A non­
uniform polarisation at the surface S therefore produces a total 
displacement of charge qp across S given by: 

qp = Is P.dS 

Since the dielectric is electrically neutral this is compensated 
by a volume density of charge -Pp such that 

Iv - Pp dT = -qp. 

Hence the flux of P is given by a type of Gauss's law for polarised 
dielectrics: 

Is P .dS = - Iv ppdT. 

Combining this with equation [2.29], we have: 

Is (€o E + P).dS = Iv pfdT 

and define the electric displacement, D, as 

D = €o E + P = €o (1 + Xe) E [230] 

Electrostatics 27 



so that Gauss's law can also be written: 

f. D.dS = i p'fdT. 
S V 

[2.31] 

The flux of 0 thus depends solely on the free charges and this can 
be very useful, for example, in microwave physics. 

However if we use this equation and, from [2.28] and [2.30], 
write 

[2.32] 

then we must remember that for many materials €r is not just a 
number. As we have emphasised before, P (and hence D) is not 
proportional to E for nonlinear materials and, in any case, Xe 
(and so €r) can vary with frequency, temperature, crystal 
direction, etc. This is one reason why €r is often referred to as the 
relative permittivity rather than the dielectric constant of a 
dielectric. 

Boundary conditions 

What happens to the electric field when it crosses the boundary 
between two dielectrics of permittivities €l = €r (1 )€o and €2 = 
€r (2)€o? To find out we apply Gauss's law as given in equation 
[2.31] and the circulation law, equation [2.10], to the electric 
vectors 0 and E shown in Fig. 2.22. 

For the flux into and out of the Gaussian cylinder of cross­
section dS and negligible height we have: 

D1.dS I + D2 .dS2 = 0 

Fig. 2.22 Boundary conditions for the electric vectors 0 and E crossing 
between two dielectrics of permittivities €, and €2. 
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since there are no free charges in dielectrics. Hence only the 
normal component Dn of each electric displacement contri­
butes and 

[2.33] 

Applying the circulation law to the electric fields Eland E2 
crossing the closed loop ofiength Sl + S2, we have: 

f E.ds = E1.s! + E2.S2 = o. 
c 

Since we can con tract the loop to be as near as we wish to the 
surface, only the tangential component Et of each electric field 
contributes and 

[2.34 ] 

At the boundary we therefore have continuity for Dn and Et . 

When it is valid to use equation [2.32] we can write [2.33] and 
[2.34] as: 

€rIE! COS OI 

EI sinOI 

€r2E2COS02 

E2sin02' 

We therefore get refraction of 0 and E at the boundary with the 
relation 

[2.35] 

Energy density 

For a vacuum parallel plate capacitor we showed that the energy 
stored in it is (equation [2.l9]): 

U = lcv2 2 . 

With a dielectric completely filling it, the capacitance is increased 
by a factor €r (equation [2.24]) and the electric field is reduced 
by €r (equation [2.28]). Hence the energy stored is: 

U = ~ er :oA) (Ed)2 
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where E is the reduced field. Therefore the energy density is: 

1 I 
u = "2 E, Eo£l = "2 DE, 

where equation [2.32] applies. As with the energy density in the 
vacuum (Fig. 2.17), the energy density still resides in the electric 
field. The difference is that equation [2.23] now becomes in 
general: 

U = 1 L D.E dr. [2.36] 

We can apply the principle of virtual work to the force 
between two capacitance plates (charged conductors) in a 
dielectric liquid (Fig. 2.18, with a dielectric present) and find 

_ -oU _ _ Q2 ~ (1-) 
F - ax - 2 ax c . 

The dielectric increases C by a factor E, and so decreases F by 
liE,. However this only leads to a revised Coulomb's law 
(compare equation [2.3]) in certain cases: 

I LqlqjA FI = --- 2 rlj. 
41T Er Eo 'Ij 

j 

It is limited to dielectrics which are isotropic, homogeneous, 
linear and have a constant relative permittivity E,. In practice this 
limits it to fluids over a narrow range of temperature and pressure, 
whereas the vacuum version of Coulomb's law is always true for 
stationary charges. 
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Chapter 5 
Electromagnetism 

So far we have been able to consider electric fields and magnetic 
fields separately, through imposing the conditions that these 
fields and any currents shall be in steady states with aE/at, 
aB/at and oj/at all zero. In this chapter we move from steady 
currents to varying currents, from steady electric fields to 
induced electric fields, from stationary to moving circuits. 
Electric and magnetic effects become intimately connected in the 
study of electromagnetism, which has already been introduced in 
the elec~romagnetic force equation [4.9]: 

F = qE +qv X B. 

We first develop the concepts contained in Faraday's law and 
then apply it to a variety of examples. 

5.1 Faraday'slaw 

In a series of experiments in 1831-2 Faraday showed conclusively 
that electricity from batteries and magnetism from iron magnets 
were not separate phenomena but intimately related. He dis­
covered that voltages can be generated in a circuit in three 
different ways: 
1. by moving the circuit in a magnetic field; 
2. by moving a magnet near the circuit; and 
3. by changing the current in an adjacent circuit. 

Consider the simple system shown in Fig. 5.1: a solenoid 
producing an axial field B which passes through a current loop 
connected to a galvanometer (current detector). The galvanometer 
needle kicks if: 
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Fig. 5.1 A solenoid produces a magnetic field B. which is sensed by a 
current loop and a galvanometer G. 

1. the solenoid is moved backwards and forwards; 
2. the current loop is moved; 
3. the current in the solenoid is switched on or off without 

moving any circuits. 
The needle only moves when there is a current in the loop, i.e. 
when there is a net force on the electrons in the wire in one 
direction along it. There may be several different forces acting 
on different parts of the loop but what moves the needle is the 
net force integrated around the complete circuit. This is the 
electromotive force (e.m.f.) 

& = f ~.dl = fE.dl [5.1 ] 

where F is the force on charge q and the integral is taken round 
the loop. The definition of & is therefore the tangential force per 
unit charge in the wire integrated over the complete circuit. 

We can illustrate this definition by considering the work done 
by a battery of e.m.f. & driving a charge q around a circuit 
(Fig. 5.2). The work done by the battery is &q, while that done on 
the charge in moving a distance dl is F .dl. Therefore 

F 

Fig. 5.2 A battery of e.m.f. 8. drives a charge q around a circuit. 
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8,q f F.dl 

and 8, = {b ~ .dl = Jab E .dl 

where E = F/q is the electric field or force per unit charge. The SI 
units for 8, and E are obviously not the same: e.mJ. is measured 
in volts, electric field in volts per metre. 

Motional e.m.f.s 

The concept of electromotive force generated by the motion of 
circuits is best understood by considering some examples. 
I . Metal rod in a uniform field 

In Fig. 5.3 a metal rod AB of length L is placed on the y-axis 
and moved along Ox in the uniform magnetic field B in the 
z-direction. By the Lorentz force law, each electron in the wire 

:B 
I 

Z 

Fig. 5.3 A metal rod moves in a uniform magnetic field. 

experiences a force F = -ev X B and so the free electrons tend 
to move towards A. This produces a distribution of excess 
negative charge, which by Gauss's law is equivalent to an 
electric field E and so a net force -eE on each electron. 
Therefore 

E = v X B. [5.2] 

From equation [5.1] the total e.mJ. across the rod will be: 

8,AB = J: E.dy = vxBzL. 
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This em.f. is due to the electric field E induced in the rod by 
its motion through the operation of the Lorentz force law. 

2. Metal rod on rails in a uniform field 
In Fig. 5.4 the same metal rod AB is mounted on metal rails so 
that a circuit ABCD of variable size is formed as the rod moves. 

x---v-++-+---;.,.~ 

....­
E 

B 

/Y 
A /' D 

L 
~ 

Fig. 5.4 A metal rod moving in a uniform magnetic field generates a 
current in a circuit. 

The electrons now drift from B to A and go round DeB to 
form a conventional current I in the opposite direction. The 
em.f. generated by the rod moving is unchanged, but it now 
produces a current: 

I = vxBzL 
R 

where R is the total resistance of the circuit ABCD. 
3. Current loop in a uniform field 

In Fig. 5.5 a square current loop abcd is moving into and out 
of a uniform magnetic field B. If the sides of the loop are 
parallel to Ox and Oy and B is in the z direction, then motion 

x-:!'" 

B 

Fig. 5.5 A current loop moves in a uniform magnetic field. 
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at velocity v along Ox will produce an e.mJ. 8, along ab as it 
enters the field. This will generate a current 1= vxBzljr, where 
I is the length ab and r is the resistance of the loop, until the 
side cd enters the field. Then an e.mJ. 8, will be generated in 
dc and this will exactly cancel that in ab giving zero current. 
Finally as it emerges from the field there will only be the 
emJ. 8, in dc and this will generate I in the opposite direction 
in the loop. 

The source of this electrical energy is the mechanical work 
done in moving the coil. It is dissipated in the loop as heat, 
which by Joule's law is [2 r watts. The mechanical work can 
equally well be done by moving the magnetic field across a 
stationary loop: it is essentially a relative motion effect. 
An observer on the coil in this case would see a moving 
magnetic field B(t) and would ascribe the current to a moving 
electric field E(t). In terms of magnetic flux, at any instant the 
flux through the coil 

<I> = Bzlx 

and so: 

[ 5.3] 

This equation is an expression of the 'flux rule' found 
experimentally by Faraday: an emJ. is induced in a circuit 
whenever the flux through it changes from any cause. The 
direction of the e.m.f. was established by Lenz and is known 
as Lenz's law: the current induced tends to oppose the change 
of flux through the circuit. The combination of the flux rule 
and Lenz's law is known as Faraday's law: the e.m J. induced 
in a circuit is equal to the negative rate of change of the 
magnetic flux through that circuit. That is: 

8, = f E .dl = - ~~. [5.4] 

F rom the definition of magnetic flux this can be written: 

f E.dl = - :t L B.dS. [5.5] 
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Here the direction of the vectors dS are given by the right­
hand screw rule for the circulation around S in the line integral. 

Clearly the induced electric field in equation [5.5] is not an 
electrostatic field, for which the circulation law gives i E .dl = 
0, but arises from the Lorentz force qv X B in the case of 
motional e.m.f.s and from dB/dt when the magnetic field is 
varying. These can be different phenomena, although both are 
represented by Faraday's law. It is therefore important to 
distinguish between them. 

Motional and transformer e.m.f.s 

We can summarise the results on motional e.m.fs by 

fE.dl = f(vXB).dl [5.6] 

where v is the relative motion of a circuit with respect to the 
frame (usually the laboratory frame) in which B is fixed. We say 
that the circuit, which must not be changing in its shape or 
composition, is cutting the magnetic flux. This is true whether 
B is a steady magnetic field or a time-varying magnetic field. 

The transformer e.m.fs arise when there is no motion and 
E and B are fixed in the same coordinate system, so that: 

[5.7] 

where the induced field E is due solely to the time variation of 
the magnetic field B and is therefore zero for a steady field. The 
time derivative now refers to each elementary area separately and 
so is a partial derivative. Now there is no longer any flux cutting 
and so there is no need to restrict the line integral to a circuit. 
It can be any contour in space and equation [5.7] becomes: 

fc E.ds = - 5s ~~ .dS. [5.8] 

Combining this with Stokes's theorem (equation [3.6]), we 
obtain the differential form of Faraday's law: 

curl E = aB 
at· 
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This is always true, giving as its time-independent limit the 
circulation law of the electrostatic field, curl E = O. Equation 
[S.9] and the electromagnetic force equation [4.9] are the two 
fundamental equations of electromagnetism. 

5.2 Applications of Faraday's law 

We will now illustrate the usefulness of Faraday's law, as 
expressed in equations [S.4], [S.6] and [S.8]. 

Betatron 

The betatron is a circular electron accelerator (Fig. S.6) with the 
electrons circulating in a vacuum chamber placed in a powerful, 

(0) (b) 

Fig. 5.6 The betatron. Ca) Vertical section through the magnet NS and 
vacuum chamber C. Cb) Top view of central section of the vacuum chamber. 

non-uniform magnetic field produced by shaped pole-pieces. The 
electrons are accelerated by increasing the magnetic field, which 
generates an e.m.f. in the vacuum given by: 

& = fc E .ds = - Is ~~ .dS. [S.10] 

If we assume the electrons are injectea into an orbit radius R for 
which the mean field is ii, then equation [S.l 0] becomes: 
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or 

21rRE = - dB 1rR2 
dt' 

RdB 
2 dt' 

E= 

The e.m.f. generated opposes the increasing magnetic flux and so 
its direction is clockwise when viewed from above the magnet 
(Fig. 5 .6(b)) and therefore the electron motion is anticlockwise 
when driven by the force -eE. The rate of change of momentum 
p of the electron is therefore: 

dp 
dt 

eR dB 
-eE = --

2 dt' 

But we have already seen (equation [4.10]) that the 
momentum of an electron in a circular orbit is: 

p = eRBR 

where BR in this case is the magnetic field at radius R. Clearly BR 
must vary in time so that: 

dp _ eRdBR _ eR ctJj 
dt -d"t- 2 dt 

that is BR must increase so that it is always equal to Hi if the 
electrons are to be confined to their orbit as they accelerate. This 
is the principle of the betatron, which can accelerate electrons up 
to energies of many Me V, when they begin to radiate significantly. 

Faraday's disc 

A homopolar generator can be made from a disc rotating in a 
steady magnetic field, as first shown by Faraday. In Fig. 5.7 the 
circular disc of radius a rotates at a steady angular velocity w in a 
uniform field B. The simplest type of disc is an insulating one 
with a conducting ring round its circumference, a conducting axle 
RO and a radial conducting wire OP embedded in it. The circuit 
QROPQ is then completed by the brushes on the moving parts at 
Q and R. Since there is a steady field the only source of e.m.f. 
must be a motional e.m.f.-given by equation [5.6]: 

74 Electromagnetism 



I 

Fig. 5.7 Faraday's disc is a homopolar generator. 

& = fE.dl = f(yX B).dl. 

The circuit QRO is stationary in the frame of B and so the only 
contributions to the e.m.f. come from OP and PQ. For OP, 
y X B is along rand dl = dr, while v = rw, so that 

f(y X B).dl = foa rwBdr = ~a2wB. 

And for PQ, y X B is normal to dl at all points so that the contri­
bution to the integral is zero. Therefore & = !a2 wB is the e.m.f. 
driving a current along the circuit in the direction QR. 

In terms of Faraday's law (equation [5.4]), we must be careful 
to specify the flux being cut by the circuit. For the circuit in 
Fig. 5.7, the flux is cut as the radial wire OP sweeps round 
through angle PDQ. If this angle is B radians, then the flux cut = 
Brra2 (B/2rr) and Faraday's law gives: 

d<l> Ba2 dB 
& = dt -2 dt = -!a2 wB 

as before. 
When the whole disc is a conductor (exercise 4), very high 

currents can be generated in the small resistance of the disc and 
so several brushes are joined together to conduct the radial 
currents back to the axle. 

Mutual inductance 

A typical example of a transformer emJ. (equation [5.8]) is 
provided by a coil 1 producing a time-varying magnetic field 
within the turns of a second coil 2 fixed to it (Fig. 5.8(a». 
When the same B is parallel to the area S of each of N turns of 
a coil, the emJ. becomes: 
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Fig. 5.8 (a) A mutual inductance. (b) A self-inductance. 

d --(NBS) 
dt 

that is, it is the negative of the rate of change of the flux 
linkage N4> . 

Applying Ampere's law, 'B.ds = lloI, to each turn of coil 1 
in Fig. 5.8(a), the field inside is: 

BI = lloNlIdl 

and for a long solenoid, Bo outside is negligible. Therefore the 
flux linking coil 2 from coil 1 is: 

N24>2 I = N2B IS = lloNIN2SIdi 

where II is the only quantity varying with time. Hence the em.f. 
induced in coil 2 is: 

& = _(lloNIN2S)dll 
21 I dt· 

Clearly &21 is proportional to dli/dt. The constant of proportion­
ality, which depends only on the geometry of the coils, is called 
the mutual inductance, M. In particular M21 is the flux linking 
coil 2 due to unit current in coil 1 , that is: 

M21 = N24>21 
II 
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For two overwound coils there is clearly a reciprocal relation­
ship and the e.mJ. ~ 12 induced in coil 1 due to current 12 
varying is: 

~12 

where 

dI2 -M12 
dt 

__ NI <1>12 
MI2 

12 

[5.12] 

[5.13] 

F or this case it is obvious that M 12 = M 21 = M, a result which can 
be proved for any pair of coupled circuits (Neumann's theorem). 

Self-i nductance 

Faraday induction is not confined to pairs of circuits: we can 
have self-induction in a single coil. In Fig. 5.8(b) if we vary R 
then II changes. and so the flux <1>11 changes. This generates a 
self-em.f. given by: 

The self-inductance of a coil L is therefore the flux linkage in the 
coil per unit current in the coil, or 

L = NI <1>11 

II 
[5.14] 

and ~ = -L dI I 
dt . [5.15] 

The SI unit for both mutual and self-inductance is the henry, 
equivalent to 1 volt-second per ampere. Since M21 = Jl.oNIN2 Sjl, 
we note that an alternative, and commonly used, unit for the 
magnetic constant Jl.o is henry per metre, so that: 

Jl.o = 41T X 1O-7 H m-I 

an exact relationship. The self-inductance of a coil is 

L = Mil = Jl.o~S!1 

[5.16] 

[5.17] 
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and an inductance of 1 H requires a very large, air-cored solenoid 
(e.g. 7000 turns of diameter 0.1 m over a length 0.5 m). 
Commonly air-cored coils are in the range J-LH to mH and larger 
ones have cores of high permeability to enhance their value. At 
very high frequencies the 'skin effect' causes a small change inL, 
but for most purposes the self-inductance of an air-cored coil 
given by equation [5.15] is independent of frequency. 

Coupled circuits 

When two circuits are coupled, as in Fig. 5.9(a), the current in 1 
depends on both the battery VI and the e.m.f. induced in it by 
variations in the current in 2. From equation [5.12], 

&12 = -M dI2 - -M dI2 
12dt- dt 

where the negative sign means that if both II and 12 are positive 
(anticlockwise) currents, then & 12 will be opposed to VI when 
dI2 /dt is positive (increasing). If the polarity of VI is reversed, 
then II is negative and so &12 and VI act in the same direction for 
increasing dI 2/ dt. 

(0 l ( bl 

Fig. 5.9 (al Coupled circuits. (bl Series coupled inductances. 

The mutual inductance is reversed in sign if one of the coils is 
reversed, as can be seen more clearly in Fig. 5.9(b), where the 
total inductance will be: 

LABCD = LI +L2 + 2M [5.18] 

or LABCD = LI +L2 -2M 
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according to whether the currents in LI and L2 are both of the 
same, or of opposite, signs. So, in general, the e.m.f. in circuit 1 
of Fig. 5.9(a) is: 

V + M dI2 - L dII = I R 
1 - dt 1 dt 1 

where the e .m.f. 8, 11 from equation [5.15] has also been included. 
When the coils L 1 and L2 are coupled tightly together, for 

example by winding one on top of the other in a toroid, there is 
no leakage of magnetic flux and so: 

<1>12 = <1>22 and <1>21 = <1>11. 

But M = NI<I>I2 
12 I 

Therefore 

and M21 =N2 <1>21 
I 

MI2M21 = ~ = NIN2<1>22 <l>ldIJ2 

and, from equation [5.14] defining self-inductance, 

~ = LIL2 

or M = y'L1L 2 • [5.19] 

This is the maximum value of M for tight coupling. In general 
there is some flux leakage and 

M = ky'L 1L 2 [5.20] 

where 0';;;; k .;;;; 1 and k is the coupling coefficient. 

Magnetic energy 

A coil with a current flowing in it stores magnetic energy, an out­
standing example being a superconducting coil in its persistent 
mode. This energy is due to the rate of doing electrical work W 
by the induced e.m.f. 8, in the coil against the induced current I: 

d W = 8,J = _ LI dI . 
dt dt 

For a perfect (loss-less) coil, the total energy stored is therefore: 

u = -W = !LP. [5.21 ] 
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Introduction 

The theory of electrical networks or circuits has a very specific and 
useful purpose: it is to allow the calculation of the currents which 
will flow in the different components or branches of a particular 
network when one or more electrical signals, or sources of electrical 
energy, are applied to it. Of course, the motion of the electrical 
charges which make up the electrical currents takes place under the 
influence of either electrostatic or magnetic forces and will, therefore, 
strictly be determined by the basic laws of electricity and magnetism. 
Similarly, the effects which the moving charges cause as they pass 
along or are stored in conductors in different configurations will be 
governed by those same laws. However, for the purpose of electrical 
network theory, whether for constant (dc) or alternating (ac) currents, 
an attempt is made to simplify the analysis by expressing the various 
effects in terms of the properties of specific circuit elements such as 
resistors, capacitors or inductors. At the same time, the forces acting 
on the charges are expressed in terms of electromotive forces or 
electrical potentials while the movement of charges is described by 
reference to the electric currents. 

A summary of the main features of the currents, the potentials 
and the circuit components utilized in network theory are given 
below. A fuller treatment of the concepts will be found in E. R. 
Dobbs, Electricity and Magnetism, Routledge, London, 1984. 

1.1 ELECTRIC CURRENT 

When a charge dQ passes a given point in time dt, a current will 
flow in the direction of the charge given by 



2 Introduction 

1= dQ 
dt 

the convention being that the direction of current flow is the same 
as that of the motion of the positive charge. 

The SI unit of current-the ampere, A-is the fundamental 
electrical unit. 

The charge which passes the given point in a given time will be 

Q= fldt 
for which the SI unit is the coulomb, C, so that 1 C = 1 As. 

1.2 ELECTRICAL POTENTIAL AND EMF 

When an electrical current flows, charge moves from one position 
to another position where it has a lower energy. If the energy of one 
coulomb of charge flowing between the two positions changes by 
one joule, there is said to be a potential difference (or pd) between 
the two positions equal to .one volt (1 V). One volt is thus 1J C- 1. 

The pd between two points may be considered to be due to an 
electric field E acting between the points, E being the force, expressed 
in newtons per coulomb. The situation is illustrated in Fig. 1.1 where 
the field E acts at the position of the element of length ds, although 
not necessarily parallel to it. The pd between A and B will thus be 
the work done by the field acting on unit charge in moving it between 
those points, i.e. 

VAB = fE' dS 

Clearly the unit of the field will be V m - 1. 

If the potential of the earth is taken as zero and the potentials of 
the points A and B are taken to be VA and VB' i.e. the pds of those 

~ ~~ ~ 
o~------~I~I------~o 
A ds. B 

Fig. 1.1 Electric field acting between two points. 
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two points relative to the earth then, clearly, 

VAB = VA - VB 

In a circuit which forms a closed loop, the pd which drives the 
current will have to be supplied to the circuit by some electromotive 
force (or emf) which is given by the integral round the loop 

The source of this emf may be, for example, a thermocouple or a 
dynamo or a voltaic cell. Such a source is said to be an active 
component in a circuit while elements such as resistors, capacitors 
etc., are said to be passive. 

1.3 RESISTANCE AND CONDUCTANCE 

Ohm's law, which is obeyed in a wide range of situations and by 
most, though not all, materials states that the voltage or pd across 
a conductor (or resistor) is proportional to the current flowing 
through the conductor provided its temperature remains constant. 
If the pd is V and the current is I then 

V=IR 

where the constant of proportionality, R, is called the resistance of 
the conductor for which the SI unit is the ohm, 0, and 1 0 = 1 V A - 1. 

If Ohm's law had been written instead as I = Gv, then G would have 
been the conductance, equal to R -1, and its unit would have been 
the siemen, S, where 1 S = 1 0 - 1. 

When current I flows through the resistance R, each coulomb of 
charge will do work V = I R joules, and heating, known as Joule 
heating, will occur at the rate of VI watts. The power lost as heat 
is thus 

VI = I2R = V2/R watts 

If the temperature of the resistor changes from eo, at which the 
resistance is Ro, to a new value e, the resistance will change, 
approximately, to 

where ex, the temperature coefficient of resistance, is generally positive. 
For some special alloys, e.g. manganin and constantan, ex ~ O. For 
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large temperature changes, a polynomial in 8 - 80 will generally 
be needed to give an accurate description. In the case of semi­
conductors, e.g. germanium and silicon, the resistance usually falls 
with temperature. 

1.4 INTERNAL RESISTANCE 

Most voltage generators or sources of emf will have an intrinsic or 
internal resistance. This situation is illustrated in Fig. 1.2 where the 
emf of the generator is Vo and the internal resistance is Ro. Clearly, 
the pd between A and B is 

VAH = Vo-IRo 

and VAH = IR. If R-+ 00,1-+0 so that Vo is clearly given by VAH in 
the open-circuit condition. 

1.5 INDUCTANCE 

For two coils in proximity, a current flowing in one coil will cause 
a linkage of magnetic flux lines to the other. If a current 11 in the 
coil 1 causes a flux-linkage MIl to coil 2 then, by Neumann's 
theorem, a current 12 in coil 2 will cause a flux-linkage M I 2 to coil 
1. The quantity M is called the mutual inductance of the two coils. 
If the current in either coil changes at a rate dI/dt then, by Faraday's 
law, there will be an emf generated in the other coil of - M dI/dt. 
The SI unit of mutual inductance is the henry, Hand 1 H = 1 V s A -1 

(or 1 Wb A - 1). 
For a single coil, the passage of a current will cause a magnetic 

flux to link to the coil itself. If unit current causes a flux linkage L, 

r------l 
I Ro 

I 

: Vo f R 

I 

l __ Generoto~ _ J 
Fig. 1.2 Generator with internal resistance Ro. 
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then a change in the current at a rate dI/dt will generate a back emf 
in the coil given by 

dI 
Vback = -L­

dt 

L is called the self-inductance of the coil (or inductor) and will also 
have the same unit, the henry, as M above. 

Since a potential V = - Vback will be needed to drive the current 
I through the coil, work will be done by the potential, equal to 
I(LdI/dt)dt in time dt. As the current increases from zero to I, the 
work done will build up stored magnetic energy in the coil equal to 

W = I ILdI =!LI2 

When two coils of self-inductance L1 and L2 are coupled tightly so 
that all the flux from one circuit links with the other, it can be shown 
that the mutual inductance between them is 

(1.1) 

In general there will be flux leakage and then M = k (L1L2)1/2 where 
0::::; k ::::; 1 and k is called the coefficient of coupling. 

1.6 CAPACITANCE 

Any conductor raised to a potential V will store a charge Q which 
will increase proportionately with the potential. Thus it is possible 
to write Q = CV where C is the capacitance of the conductor. The 
SI unit for capacitance is the farad, F, where 1 F = 1 C V- 1. Similarly, 
if a capacitor is formed by placing two conductors in proximity, then 
the charge stored in the capacitor will be given by the same relation 
where V is the pd between the conductors and C is the capacitance 
of the capacitor so formed. Because the farad is a large unit, 
sub-multiples such as the microfarad, JlF (1 JlF = 10- 6 F), or the 
nanofarad, nF (1 nF = 10- 9 F), or 'the picofarad, pF (1 P F = 10- 12 F), 
are generally used. 

Since the current is dQ/dt and Q = CV, the work done in time dt 
in charging a capacitor will be V I dt = V(dQ/dt) dt = V dQ = V Cd V 
and the energy stored in the capacitor at the potential V will be 

W= f: VCdV=!CV2 
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Alternating current 
theory 

Alternating current, or ac, theory is concerned with the mathematical 
analysis of the steady-state behaviour of electrical circuits in which 
the currents and voltages vary periodically with time. The analysis 
is simplified by considering only sinusoidal variations, an approach 
which is not restrictive since any general periodic waveform can be 
represented as a sum of such quantities, i.e. a Fourier series. In this 
chapter, it is shown how the sinusoidal waveforms can be represented 
both graphically and mathematically and how, in consequence, the 
effect of various circuit elements can be expressed in terms of 
generalized impedances. 

4.1 GRAPHICAL REPRESENTATION OF 
AC VOLTAGES 

An ac voltage which varies sinusoidally with time can be represented 
by the equation 

V= Vosinwt (4.1) 

and can be represented graphically (Fig. 4.1(a)), where V is the 
instantaneous voltage or potential at time t, Vo is the peak or maximum 
value or amplitude of the voltage, and w is the angular frequency or 
pulsatance of the wave. 

The period T, the time for one complete cycle such that wT = 2n, 
is given by 

T=2n/w (4.2) 

The number of cycles or periods occurring in unit time is the 



v 

o wt 

31T w T 

wt 

(c) 

Fig. 4.1 (a) Representation of V = Vo sin wt. (b) Representation of V' 
V~ sin (wt + q,1. (c) Representation of V" = V + V' = V~ sin (wt + q,H). 
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frequency of the wave, f, and is given by 

f = T- 1 = w/2n (4.3) 

In SI units, pulsatance w is measured in radians per second or 
rad s -1 and the period T is quoted in seconds or, if appropriate, 
sUbmultiples of a second, e.g. milliseconds (ms) == 10- 3 s, micro­
second (IlS) == 10- 6 s and nanoseconds (ns) == 10- 9 s. Frequency f, 
which has dimensions s - 1, is quoted in hertz (Hz) or in multiples 
such as kilohertz (kHz) == 103 Hz, megahertz (MHz) == 106 Hz and 
gigahertz (GHz) == 109 Hz. 

A second voltage V', having the same frequency as Vbut a different 
phase and a peak value V~ (Fig. 4.1 (b)), can be represented 
mathematically by the equation 

V' = V~ sin (wt + <p') (4.4) 

where <p' is the phase difference between V and V'. The curve for V' 
is said to lead that for V by an angle <p', the lead being expressed 
by the positive value of <p' in (4.4). Conversely, V is said to lag behind, 
or simple lags V' by <p'. The phase angle is normally expressed in 
degrees, or multiples or fractions of n. 

4.2 GRAPHICAL ADDITION OF AC WAVEFORMS 

If the two voltages V and V' are applied simultaneously and in series 
to a circuit, the resultant voltage V" is the instantaneous sum of V 
and V'. The result of adding the two curves represented in Figs 4.1(a) 
and 4.1(b) is shown in Fig. 4.1(c) and it can be seen that V" (i) has 
a peak value V~, (ii) has the same frequency as its two components, 
V and V', and (iii) leads V by the angle <p" corresponding to the 
separation 0"0. Consequently, the resultant voltage V" can be 
expressed as 

V" = V' sin(wt + <p") (4.5) 

This method of obtaining the resultant V" of two voltages V and 
V' is clearly tedious, and is likely to be inaccurate unless the addition 
is made from digitized waveforms on a computer. 

4.3 ALGEBRAIC ADDITION OF AC VOLTAGES 
AND CURRENTS 

The instantaneous values of V, V' and V" in Fig. 4.1 at a time tare 
related by V" = V + V' or 
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V" = Vo sin rot + V~ sin (rot + 4") 
The expansion sin(rot + ell) = sin rot cos 4l + cos rot sin 4l gives 

V" = (Vo + V~ cos cP') sin rot + (V~ sin cP') cos rot 

Using the well-known result that (a sin 0 + b cos 0) = (a2 + b2)1/2 x 
sin (0 + b) where 15 = tan -1 (b/a), it is possible to write 

V" = V~ sin (rot + cP") (4.6) 

where 

(4.7) 
and 

,,1..11 -1 ( V~ sincP' ) 
'I' = tan 

Vo + V~ cos cP' 
(4.8) 

This method, although more accurate and simpler than the graphical 
summation, is only true when the waveforms are precisely sinu­
soidal-a rare occurrence in practice. 

If two sinusoidal currents 10 sin rot and I~ sin (rot + cP') were to be 
added together, the resultant 1" would have a form corresponding 
to (4.6) to (4.8) with the peak currents 10 and I~ replacing Vo and V~. 

4.4 PHASOR REPRESENTATION AND THE 
AOOmON OF AC VOLTAGES AND CURRENTS 

It is well known that a sinusoidal motion will be generated by the 
projection of a vector rotating about a point with constant angular 
frequency. Such a vector OA, oflength Vo, is shown in Fig. 4.2 rotating 
at angular frequency ro in an antic10ckwise sense: the projection OP 
can be taken to represent a voltage V = Vo sin rot. Expressed in this 
way, the vector OA is referred to as a phasor. 

If the two voltages V = Vo sin rot and V' = V~ sin (rot + cP') are both 
represented by phasors (Fig. 4.3), then the voltage V" is represented 
by the phasor which is the instantaneous vector sum of V and V' 
and is obtained by completing the parallelogram OACB. Since V 
and V' have the same angular frequency, ro, so will their resultant 
V". The rotating phasor diagram (Fig. 4.3) can be applied to both 
voltages and currents. 

When each phasor has the same frequency, only the resultant 
amplitude and phase are of interest, and these may be obtained from 
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v 

21T wt 

Fig. 4.2 Sine wave generated by the projection of a rotating phasor OA. 
(Conventionally, anti-clockwise rotation is assumed.) 

Fig. 4.3 Summation of phasors with OA == V, OB == V' and OC == V" such 
that OC = OA + OR. In the curves which are generated, curve A represents 
V = Vo sin wt, curve B, V' = Vo sin (wt + 4>'), and curve C, V" = V~ sin (wt + 4>"). 

the phasor diagram taken at an instant in time, i.e. the stationary 
phasor diagram. The simplest such diagram is shown in Fig. 4.4, from 
which the resultant phasors may be derived geometrically in terms of 

V~ = (V~ + V~2 + 2 Vo V~ cos 4>')1/2 

and 

,1..11 - 1 ( V~ sin 4>' ) 
'I' =tan 

Vo + V~ cos 4>' 

corresponding to (4.7) and (4.8). 
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r---------,,. C 

v 
Fig. 4.4 Stationary phasor diagram. 

The phasor method can be readily extended to the summation of 
several voltages or currents. Consider the voltages 

Vi = ViO sin (rot + cPi); i = 1,2,3,4, ... 

each with the same frequency but different amplitudes and phase. 
If the horizontal axis is taken to correspond to cP = 0 (Fig. 4.5) then 
the horizontal component of the resultant will be given by 

VHO = L ViO cos cPi 
i 

where the summation includes all of the terms. The vertical 
component corresponding to cP = nl2 will be 

Vvo = L ViO sin cPi 
i 

The amplitude of the resultant will be 

VRO = (V~o + V~O)1/2 (4.9) 

Fig. 4.5 Representation of several phasors. 
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while its phase angle will be 

lPR = tan -1 (Vvo) 
VHO 

(4.10) 

Inspection will show that (4.6)-(4.8) are a special case of this result. 

4.5 RESISTANCE, SELF-INDUCTANCE 
AND CAPACITANCE 

Consider a sinusoidally varying current I = 10 sin wt which flows in 
turn through a resistor, an inductor and a capacitor as shown in 
Fig. 4.6. The instantaneous voltages required to cause the current to 
flow through each element are given by the following. 

1. For the resistor (resistance R) 

VR = IR = IoRsinwt = VRO sin wt 

2. For the inductor (self-inductance L) 

dl 
VL=L­

dt 

= L~(Iosinwt) 
dt 

= IowL cos wt = IowL sin ( wt + ~) 

(4.11) 

= VLO sin ( wt +~) (4.12) 

3. For the capacitor (capacitance C) 

Vc=Q/C 

= f l dt = flo sin wt dt 
:'0--___ = _ locos wt =!..!!.. sin (wt _ '!!.) 

C C wC wC 2 

= Vcosin( wt-~) (4.13) 

From (4.11) it is seen that VR and I are in phase and are simply 
related by Ohm's law, VR = IR. Equation (4.12) shows that the 
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R L c 
I 

J-
Fig. 4.6 Series R, C, L circuit with I = 10 sin rot. 

voltage across the inductor leads the current by n/2 or 90° and that 
peak voltage is given by 

(4.14) 

where XL = wL is called the inductive reactance. Equation (4.13) 
shows that the voltage Vc across the capacitor lags the current by 
n/2 or 90° and the peak voltage is given by 

10 
Veo=-=IoXe 

wC 

where X e = l/wC is called the capacitive reactance. 

(4.15) 

The various voltages for the series circuit can be represented on 
a voltage phasor diagram (Fig. 4.7(a)), in which the peak current is 
represented by the horizontal phasor 10 , The peak voltage across 
the resistor is in phase with the current and the phasor which 
represents it will therefore be parallel to 10 and have magnitude 
VRO = loR. However, the peak -voltage across the inductor leads the 
current by 90° and the phasor which represents it will be 90° 'ahead' 
of loin the phasor diagram and will have a magnitude of VLO = 10wL. 
Similarly, the phasor Veo of magnitude lo/wC which is in the negative 
sense relative to VLO will completely represent the peak voltage across 
the capacitor, since Veo lags 10 by 90°. Figure 4.7(b) illustrates how 

Veo 
(oj 

Fig. 4.7 Phasor diagram for R, C, L circuit. 
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the resultant peak voltage across the series combination of R, Land 
C can be determined by combining the total vector normal to 10 
namely VLO - Vco with the phasor parallel to 10 namely VRO: it is 
seen that the resultant Vo leads the current by the angle cJ>. 

Geometrically, 

Vo = [Vio + (VLO - Vco)2r/2 = Io[R2 + (wL -l/wC)2r/2 (4.16(a» 

and 

cJ> = tan -1 ( wL -Rl /WC ) 

whence the voltage V across the series combination is 

V = Vo sin(wt + cJ» 

= IolZlsin(wt + 4» 

where 

IZI = [ R2 + ( wL - wlc YJ/2 

(4.16(b)) 

(4.17) 

(4.18) 

I Z I is called the magnitude of the impedance of the series circuit and 
represents the ratio of the peak voltage to the peak current, i.e. 
IZI = Vo/lo. The reason for writing IZI will become apparent in 
section 4.6 below. 

Remembering that XL = roLand Xc = l/wC, (4.18) can be written 
as 

IZI = (R2 + X2)1/2 

while (4.16(b» becomes 

(4.19) 

(4.20) 

Equations (4.19) and (4.20) are general expressions for the impedance 
and phase angle of an ac circuit and in both equations X represents 
the total reactance of the circuit, i.e. X = XL - Xc. 

More complicated circuits can also be treated by phasor methods. 
As a general rule, however, the phasor diagram is best set up relative 
to that quantity-current or voltage-which is common to the 
elements of the circuit, i.e. the current for a series circuit, the voltage 
for a parallel circuit: in the latter case a current phasor diagram will 
result. 
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4.6 COMPLEX REPRESENTATION OF AC VOLTAGES 
AND CURRENTS-THE j NOTATION 

Treatment of ac circuits is greatly simplified by the use of complex 
numbers. Use is made of the two well-known results 

ej8 = cos (I + j sin (I 

and 

e±j,,/2=COS( ±~)+jSin( ±~)= ±j 

so that the operator j = j=1 is equivalent to .a positive or anti­
clockwise rotation of 90° and - j represents a negative or clockwise 

rotation of 90°. The usual notation for j=1, namely i, was replaced 
in network theory by j, to avoid confusion with currents. 

The function sin rot can be replaced by the imaginary part of ejwt 

and cos rot by the real part of ejwt. The mathematical treatment then 
proceeds as if ejwt were the actual time variation. 

The method is best illustrated by applying it to the series R, L, 
C circuit treated in section 4.5. Let the current in Fig. 4.6 be written as 

I = 10 ejror = I 0 (cos rot + j sin rot) 

The instantaneous total voltage will be 

(4.21) 

LdI fI dt 
V= VR + VL + Vc=IR+-+-- (4.22) 

dt C 

where f I dt = Q, the charge. Substituting for I from (4.21) gives 

. . I ejwt 
V= IoeJwtR + LIojroeJwt + _.0_ 

= (R+jroL+-. 1_)1 
JroC 

=ZI 

where Z is the complex impedance given by 

Z=R+j( roL- ro1c) 

JroC 

(4.23) 

and V and I are the complex voltage and current respectively. 
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R 

Fig. 4.8 Argand diagram showing the 'rotation' of the impedances due to 
Land C. 

In complex notation, the impedance due to the inductance is jwL 
and that due to the capacitance is l/jwC or - j/wC. On an Argand 
diagram, in which imaginary quantities are represented by 
coordinates at right angles to the real axis (Fig. 4.8), the inductive 
impedance is shown to lead R by 90° and the capacitive impedance 
to lag by the same amount. The lead or lag of 90° is represented in 
the corresponding impedance equation by the positive and negative 
sign of j, respectively. 

The total complex impedance given by (4.23) can be written as 

Z = IZlejq, 

whence 

[ ( 1 )2J1/2 (WL - l/WC) 
IZI= R2+ wL- wL and c/>=tan- 1 R 

which correspond to the values obtained in (4.18) and (4.16(b» by 
phasor methods. 

In a general circuit the impedance can be written 

Z=R+jX (4.24) 

so that IZI = (R2 + X2)1/2 and c/> = tan -l(X/R) as in (4.19) and (4.20), 
and X is the reactance of the circuit. Thus the time dependence of 
the voltage V is given by 

V = Z/ = IZI ejq)/oejwt = IZI/oej(wt+4» (4.25) 

and the phase angle c/> is derived from the impedance Z. If the actual 
current flowing is /0 sin wt = imaginary part(/oejwt) = Im(/oejwt) then 
V is the imaginary part of (4.25) and 

V = IZI/o sin(wt + c/» (4.26) 
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and Vo = IolZI as in (4.17). In (4.26), V represents the instantaneous 
voltage across the circuit. Similarly, if I = 10 cos rot = real part(loeiwt) = 
Re(Ioe iwt) then (4.25) gives 

v = IZIIo cos (rot + cp) 
with the same values for IZI and cp as above. 

(4.27) 

4.7 MANIPULATION OF COMPLEX IMPEDANCES 

If there are two complex quantities such as Z 1 = I Z llej</)1 and 
Z2 = IZ21ei 4>2 then 

Z lZ2 = (IZ l11Z21) ej(4)1 +4>2) (4.28) 

and 

Zl = (I Zll)ei(4>I-4>2) (4.29) 
Z2 IZ21 

(Thus IZlZ21 = IZlIIZ2,IZt/Z21 = IZll/lZ21 since lei4>1 = 1 always.) 
For convenience, the complex expression can be abbreviated so 

that 

(4.30) 

Suppose that a voltage V = Voei(wt+4>IJ, where Vo is a real quantity, 
is applied across an impedance Z = IZI ei<p2. The current through the 
impedance is given by 

V V. ei(wt+4>IJ V. 
1= - = 0 = ~ei(wt+4>I-<P2) (4.31) 

Z I Z I ei4>2 I Z I 

or 
(4.32) 

with 10 = Vo/IZI, a real quantity, and cP = CPl - CP2' 
Similarly, if the current through a circuit of impedance IZI ei4>2 is 

I oei(wt+4>IJ, then the voltage across the impedance is 

V= IoIZlei(wt+4>I+4>2) = Voej(wt+4» (4.33) 

Since the time variation eiwt is common to all terms, the current 
and voltage are often abbreviated into the form of (4.30) so that 

V = Voei4>1 = VON1 

and 
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and 

(4.34) 

4.8 MUTUAL INDUCTANCE IN AN AC CIRCUIT 

When the magnetic flux from a coil links with a second coil, a change 
of current in the first, or primary, coil will cause an emf to be induced 
in the secondary coil; the value of the induced emf will be determined 
by the laws of electromagnetic induction. For the present purposes, 
it is possible to consider two coils, 1 ° and 2° in Fig. 4.9, as forming 
a mutual inductance M. The emf generated in the secondary 2° is 
given by 

V2 = _M dIl 
dt 

where I 1 is the current in the primary 1°. If I 1 = I lOejW! then 

(4.35) 

(4.36) 

Since the coupling of the magnetic field between the two coils is 
reciprocal, the emf VI generated in the primary by an alternating 
current in the secondary will be given by Vl = - jroM 12, 

Clearly the action of the mutual inductance can be represented 
by an operator -jroM, where -j indicates a voltage lag of 90° 
behind the current I l' The peak secondary emf is roM 110 = V20• 

Fig. 4.9 Schematic diagram of a mutual inductance. 
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4.9 KIRCHHOFF'S LAWS IN AC CIRCUITS 

In ac circuits it is necessary to express voltages and currents in terms 
of their magnitude and phase difference and this can be achieved by 
expressing them as complex quantities. Thus, in order that the use of 
Kirchhoff's laws may be extended to ac circuits, it follows that they 
need to be stated in terms of complex quantities: 

1. current law- the algebraic sum of the complex currents at any 
node in a circuit is zero; 

2. voltage law-in any loop the algebraic sum of the complex 
potential differences across the impedances in the loop is equal 
to the algebraic sum of the complex emfs acting in that loop. 

4.10 COMPLEX IMPEDANCES IN 
SERIES AND PARALLEL 

The derivation of the total impedance due to a combination of 
complex impedances is entirely analogous to the dc case treated in 
section 2.3. 

4.10.1 Series circuit 

Suppose that a current I flows through three impedances Z1,Z2 and 
Z3 as shown in Fig. 4.10. The total voltage V will be the sum of the 
individual voltages across each impedance so that, by Kirchhoff's 
laws, 

(4.37) 

If the combination of impedances is to be equivalent to a single 
impedance Z then 

V=IZ (4.38) 

'··----v ----~., 
Fig.4.10 Current I flowing in turn through Zt,Z2 and Z3' 
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Thus from (4.37) and (4.38) 

Z=Zl+ Z 2+ Z 3 

The general case will be 

n 

4.10.2 In parallel 

(4.39) 

(4.40) 

If three impedances are connected in parallel (Fig. 4.11), a voltage 
V placed across them will generate currents 11,12 and 13 which, by 
Kirchhoff's laws, must in sum equal the total current 1 flowing into 
the circuit and must also satisfy the condition that V = 11 Z 1 = 1 2Z 2 = 
13Z 3• Thus 

V V V 
1=11 +12 +13=-+-+­

Zl Z2 Z3 
(4.41) 

If the parallel combination of impedances is to be equivalent to a 
single impedance Z then 

1= VIZ 

and, from (4.41) and (4.42), 

I 

1 1 1 1 
-=-+-+­
Z Zl Z2 Z3 

-v-
Fig. 4.11 Current divided between three parallel impedances. 

(4.42) 

(4.43) 
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The general case will, therefore, be 

~=L~ 
Z n Zn 

(4.44) 

4.11 ADMITTANCE OF AN AC CIRCUIT 

The reciprocal of the impedance Z of a circuit is defined as the 
admittance Y of the circuit; thus 

Y=ljZ 

and, by definition, the current and voltage are related by 

1= YV 

Since Z = R + jX 

y __ l __ R-jX 
- R+jX- R2+X2 

(4.45) 

(4.46) 

(4.47) 

The admittance Y can be expressed in terms of a conductance G 
and a susceptance B so that 

Y=G+jB (4.48) 

Hence, from (4.47) and (4.48) 

R -x 
G= and B= 2 2 (4.49) 

R2+X2 R +X 

(Note that only if X = o will G = IjRandonlyifR = o will B = -ljX.) 
It is generally more convenient to work in terms of admittances 

when a number of elements are connected in parallel and also when 
applying nodal analysis to a circuit. 

4.12 ROOT MEAN SQUARE VALVES OF 
AC QUANTITIES 

If, at a given instance, a current 1 flows in a resistor of resistance R, 
the instantaneous rate of energy loss due to Joule heating is 

p=12R 

If the current varies over a period of time, the mean power, p, 
dissipated can be expressed as 

p=12R=12R 
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where the bar indicates the mean value over the given period of time 

and 12 is called the mean square value of I. 
For the purpose of considering power dissipation, an effective 

current may be defined as Irms' the root mean square or rms current, 
where 

(4.50) 

Thus 

(4.51) 

Irms is the magnitude of the dc current which would produce the 
same average Joule heating as the varying current I. It is usual, 
therefore, to quote ac voltages and currents in terms of their rms 
values; so that when the emf of the mains supply is quoted as 240 V, 
it is understood that this is actually the rms value. 

For a current I = 10 sin cot 

I;ms = 12 = I~ sin2 cot = tI~(1 - cos 2cot) 

Over a complete cycle, cos 2cot averages to zero so that 

or 

12 112 
rms=Io 

I rm• = 101 j2 and 10 = filrms 

Similarly, it follows that 

(4.52) 

Vrms = Vol j2 and Vo = J2Vrms (4.53) 

Thus a voltage of240 V (rms) will have a peak value of about 340 V. 
From (4.52) and (4.53), it follows that any relationship established 

between 10 and Vo will equally apply between Irms and Vrms ; for 
example, if Vo=IoIZI then Vrms=IrmsIZI. 

4.13 POWER IN AC CIRCutTS 

The current I which flows through an impedance, or a network of 
impedances, will generally not be in phase with the voltage V across 
it. This fact can be expressed by writing V = Vo sin cot and 
1= 10 sin (cot - ¢) where - nl2 ~ ¢ ~ n12. 

The instantaneous power generated in the impedance will 
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then be 

p = V I = Volo sin wt sin (wt - 4» 
= Vol o(sin2 wtcos 4> - sinwt cos wt sin 4» 
= t Vol o[(l- cos 2wt) cos 4> - sin 2wtsin 4>] (4.54) 

The component t Vol o(1- cos 2wt) cos 4> is never less than zero and 
is called the instantaneous active power: it represents the power 
transferred from the generator to the impedance or network at the 
given time t. The component - t Volo sin 2wt sin 4> can have either 
sign and is called the instantaneous reactive power and represents 
the continual interchange of power between the generator and the 
reactive part of the impedance or network; the time average of this 
term is zero. 

The average power supplied to the network or impedance over 
one cycle will be 

p = t Volo cos 4> = Vrm.I rms cos 4> (4.55) 
since 

(1- cos2wt) = 1 

The product Vrmslrms is called the apparent power S, and is measured 
in voltamperes (VA) to distinguish it from real power which is 
measured in watts. The quantity cos 4> is known as the power factor 
of the impedance or network and 0 ~ cos 4> ~ 1 giving cos 4> = 1 for a 
pure resistance, cos 4> = 0 for a pure reactance. 

For completeness, since the power factor does not indicate the 
sign of 4>, it is usual to state the power factor as either a lagging 
(4) > 0) or a leading (4) < 0) power factor. 

The reactive power Q, which is said to be in quadrature with the 
real or average power, is given by 

(4.56) 

and is measured in var (voltamperes reactive) or, in practical use, 
kvar. Since sin 4> can be positive or negative, it is usual to quote Q 
as a positive quantity and indicate its value in var (inductive) for 
4> > 0 and var (capacitive) for 4> < o. 

To summarize, the apparent power is 

S = Vrm.Irms = l;mslZI VA 

the average power is 

P = Vrm.I rms cos 4> = I;msR W 
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the reactive power is 

Q = Vrm.Irms sin ¢ = I;msX var 
and 

S2 = p 2 + Q2 

From (4.54) the power at an instant t can be written 

p = P(1 - cos 2wt) - Q sin 2wt 

and the frequency of p is twice that of V or I. 

41 

(4.57) 

(4.58) 

Figure 4.12(a) represents the variation of the current and voltage 
in a circuit such that the current lags the voltage by angle ¢. The 
corresponding instantaneous power p is shown in Fig. 4.12(b) and 
it should be noted that, when p is positive, energy is being transferred 
from the generator to the circuit and, when p is negative, energy is 
being returned from the circuit to the generator. 

Vorl V 

p=VI 

Average Power P 

Fig. 4.12 Instantaneous power p for voltage V = Vo sin wt and current 
1= Iosin(wt - 41). 
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4.14 COMPLEX POWER AND THE POWER TRIANGLE 

In order to express the power in a circuit in complex form, the dc 
equivalent voltage is written as 

V = Vrms ejq., 

and the current as 

where both Vrms and Irms are taken to be real. 
Because it is the difference in phase angle which determines the 

power factor, the complex power S' is obtained by using the complex 
conjugate of I, i.e. 

S' = VI* = V rmsejq., Irmse - jq.2 = Vrm.Irms eN> (4.59) 

where cP is the phase difference. From (4.59), the complex power S' 
becomes 

S' = Vrm.I rms cos cP + j VrmsI rms sin cP = P + jQ (4.60) 

where P and Q are, from (4.55) and (4.56), the average and reactive 
power respectively. Since I S' I = (P2 + Q2)1/2 = S, the complex power 
may be written as 

S' = SL!P. = Slpl - P2 (4.61) 

The components of the power may thus be represented diagram­
matically as in Fig. 4.13, where the figures ABC are said to be the 
power triangles. 

IM (S/) 
C A P B Re(S/) 

¢ 

Q Q 

~\ 
¢ ~-

Re(S I) 
/' 

A P B - IM (S/) 
C 

(0.) (b) 

Fig. 4.13 Representation of the complex power: (a) cos 4J lagging, Q 
inductive; (b) cos 4J leading, Q capacitive. 
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4.15 POWER USAGE: IMPROVEMENT 
OF THE POWER FACTOR 

Consider a supply voltage Vrms connected to a number of impedances 
connected in parallel as in Fig. 4.14. Each impedance can be regarded 
as representing, for example, the electrical network of a private or 
commercial consumer. 

The total complex power ST supplied by the source is 

which, from (4.59), becomes 

S~ = PI + jQl + P 2 + jQ2 + ... + P" + jQ" = PT + jQT (4.62) 

where PT is the total average power and QT is the total reactive power. 
The total apparent power ST = I S~ I is given by 

ST = (Pi + Qi)1/2 

while the total power factor is 

cos tPT = PT/QT 

(4.63) 

(4.64) 

(It is a simple matter to show that (4.62), (4.63) and (4.64) apply 
equally to impedances connected in series.) 

Equation (4.62) shows that the power triangles for the individual 
impedances or networks can be connected in sequence, as shown in 
Fig. 4.15, to form a total power triangle, ABC. The figure has been 
drawn for Ql and Q2 inductive, Q4 capacitive, whilst Q3 is zero 
indicating a purely resistive load. The total power triangle has 
AB = PT , BC = QT and AC = ST whilst iBAC = rPT corresponds to 
a total power factor cos rPT lagging. 

The suppliers of mains electricity rate their alternators, trans­
formers and power lines in terms of apparent power, kVA or MVA, 

f 

-----'---...&..--_ ...... - -----
Fig. 4.14 Power supplied to networks in parallel. 
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RellctlVIty 
Power, Q 
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Averllge 
~-:}~--L. __________ ...I.:-_~ Power, P 

Fig. 4.15 The total power triangle. 

rather than average power (kW or MW) and charge accordingly. 
Any consumer, therefore, who operates equipment which has a 
complex impedance as opposed to a pure resistance, is charged for 
more than the real energy consumed. Thus, from the point of view 
of both the supplier and the consumer, energy is wasted if the power 
factor differs from unity. 

Much electrical equipment has a reactive power component and, 
for most, this component is inductive. For large industrial users, 
there may be advantages in 'improving the power factor' by seeking 
to cancel out the reactive power by introducing a network with a 
Q of the opposite sign: in most cases this would mean introducing 
a bank of capacitors in parallel with the source of supply to reduce 
the inductive component. If QT could be made zero, the running 
costs to the consumer would be reduced, thus enabling some of the 
generating capabilities of the supplier to be made available to other 
customers. However, the installation of such a capacitor bank rests 
solely on the economic decision of the consumer, since he has to 
compare the cost of installation with the savings to be realized. 

4.16 IMPEDANCE MATCHING 

When a voltage generator which is connected to a load of impedance 
ZL has an internal impedance ZG' the power delivered to the load 
will depend on the relationship of ZG to ZL' When the power 
delivered is a maximum, the load is said to be matched. 

Consider the simplest case shown as in Fig. 4.16 and let 

ZG = RG + jX G and ZL = RL + jX L 
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A 

B 

Fig. 4.16 Generator with internal impedance ZG connected to a load Zv 

The rms current will be 

Irm• = Vrms = Vrms[(RG + Rd2 + (XG + Xd2r 1/2 

IZG+ZLI 

The average power dissipated in the load will be 

P = I;msRL = V;msRL[ (RG + Rd2 + (X G + X d 2] - 1 (4.65) 

It is possible to think of maximizing the power under three 
practical conditions: either XL is fixed and RL is variable, or RL and 
XL are both variable but their ratio is fixed, i.e. the phase angle 4JL of 
the load is fixed, or RL and XL are both independently variable. 

1. XL is fixed and RL is variable. 
From (4.65) 

dP V;ms[ (RG + Rd2 + (X G + X d 2] - V;msRL x 2(RG + Rd 

dRL [(RG + Rd + (XG + Xd]2 

For maximum transfer of power to the load dP /dRL = o. Therefore 

(RG + Rd2 + (XG + Xd2 - 2RL(RG + Rd = 0 

which is satisfied if 

RL = [Rb + (XG + Xd2r/2 

From (4.66), if XL = 0 then 

RL=IZGI 

(4.66) 

(4.67) 

2. RL and XL are both variable but their ratio XdRL is a constant; 
k = tan 4JL' where 4JL is the phase angle of the load. 
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Since XL = kRL, (4.65) becomes 

P = V;msRL[ (RG + Rd2 + (X G + kRd2J-1 

For maximum power dPjdRL = 0 which requires that 

(RG + Rd2 + (XG + kRL)2 - RL[2(RG + Rd + 2k(XG + kRdJ = 0 

and this condition is satisfied if 

(4.68) 

3. RL and XL are independently variable. 
It is obvious from (4.65) that, in terms of XL, the condition for 

maximum P is XL = - X G. This may be verified by putting 
(fJPjfJXdRL = O. 

The expression for the power reduces to an equivalent of the 
dc expression, (2.14). 

which gives a maximum when RL = RG. 

It is clear that the maximum power transferable from the 
generator under these conditions occurs when the load impedance 
satisfies the conditions RL = RG and XL = X G or 

ZL = Zri (4.69) 

i.e. the impedance of the load is equal to the complex conjugate 
of the impedance of the source. 

4.17 COMPLEX FREQUENCY-s NOTATION 

The analysis of electrical circuits can usefully be extended to the 
case where the voltage or current variation ejrot is replaced by est 
where 

s = jw + rr = j(w - jrr) 

which corresponds to a complex frequency, w - jrr. 
rr is the real part of s and is called the neper frequency: it is measured 

in nepers per second and corresponds to the exponential growth or 
decay in a signal such that, when rrt = 1 neper, the signal amplitude 
changes by a factor e. (Normally, rr < 0, corresponding to an 
exponential decay.) 
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Consider the voltage 

(4.70) 

where Veo is the complex amplitude of the voltage such that 
Veo = Vo ei4> and </> corresponds to a phase difference. Then 

V = Vo ei4> eOw + a)t = Vo eat ei(wt + 4» 

= Vo eat[ cos (rot + </» + j sin (rot + </>)] (4.71) 

Thus 

and 
Im(V) = Vo eat sin (rot + </» 

If </> = 0 (4.70) becomes 

Hence 

for s = 0, V = Vo i.e. a dc voltage 

(4.72) 

(4.73) 

(4.74) 

for s = (1, V = Vo eat i.e. an exponential voltage (usually 
(1 < 0 corresponding to a decay) 

for s = jro, V = Vo eiwt i.e. a sinusoidal voltage 

for s = jro + (1, V = Vo eow+a)t i.e. an exponentially varying 
sinusoidal voltage. 

Obviously it is also possible to express current in the same form, 
and the various ac equations may be generalized as follows: 

1. 

2. 

3. 

4. 

5. 

V= Veoe't and 1= leo est 

V=lR and l=GV 
d1 d 

V= L- = L-(l est) = sLl and 
dt dt eo 

Q f I dt f I eo est dt 
V=-=-= 

I 
and 

C C C sC 

Z(s) = V(s) and Y(s) = l(s) 
l(s) V(s) 

(4.75) 

(4.76) 
V 

1=- (4.77) 
sL 

l=sCV (4.78) 

(4.79) 

where Z(s) and Y(s) are the generalized impedance and admittance 
respectively. 


