Programming Fundamentals

C++

Contents

1
Chapter 1: Programming Logic and Techniques--------------=====-------
15
Chapter 2: Introduction to CH++ ===-—====mmmmmm e
27
Chapter 3: CH+ Concepts —---====-==mmmmmm oo
_ 64
Chapter 4: Manipulators & Control Structures ------------=---==---------
. 96
Chapter 5: FUNCHIONS === mmm oo oo e
. . . 127
Chapter 6: Derived Data Types (Arrays, Pointers, Functions) ---------
156

Chapter 7: Strings i CH+ =m—m-mmm e

[Chapter 1 }

CHAPTER 1.
ProGgramming Logic ANd
TechNiQuUES

CONTENTS

1.1 Whal is an Algorithm?

1.2, Characteristics of an Algorithm:
1.3. Algorithm Designing Tools

1.4. Designing a program

1.5 Program Testing:

1.1 What is an Algorithm?

Algorithm is an effective method to obtain step by step
solution of problems. Knowledge of algorithms forms the
foundation to study programming languages. Before starting
with programming let us understand algorithms i.e, how to
write algorithms, characteristics of algorithms, algorithm
designing tools and conversion of algorithms to programs.

An algorithm is defined as the finite set of steps followed
in order to solve the given problem.

For Example:

Algorithm To find the average score of a
student, for the three test marks .

Step 1: Read the three test marks; say S1, 52, 53
Step 2: SUM = S1+52+83

Step 3: Average = SUM / 3

Step 4: Display Average

Step 5: Stop

2 Introduction to C++ Programming

Algorithm to find the largest of three numbers

Step 1: Read the three numbers say A, B, C.

Step 2: If (A>B) and (B>C) then A is the largest number,
go to step 4.

Step 3: If (B>A) and (A>C) then B is the largest else C
is the largest number.

Step 4: Stop.

One can convert these algorithms to programming
statements by learning any programming language.

1.2. Characteristics of an Algorithm:
(1) Input

An algorithm must be provided with any number of
input/data values. (in some cases no external input is needed)
(2) Output

An Algorithm must produce at least one output.

(3) Definiteness

Each step of the algorithm must be clear and distinct
which ensures that the statement must be unambiguous.

For Example let us go through the following algorithm
to divide two numbers

Algorithm:

Step 1: Read the two numbers say a, b
Step 2: ¢ = ab

Step 3: Print c

Step 4: Stop

Step 2 of this algorithm is not clear, as there will no
output(infinite output] if b=0. Since the system doesn't

Programming Logic and Techniques 3

provide such an answer, care must be taken while writing an
algorithm.

The above algorithm can be rectified as follows

Step 1: Read the two numbers say a, b
Step 2: If (b=0) then
Print “denominator value is 0"
And go to step 5
Step 3: c = ab
Step 4: Print ¢
Step 5: Stop

(4) Finiteness

The algorithm must terminate after a finite number of
steps. Let us illustrate this point with the help of an example.

Algorithm:

Step 1: Leta =9

Step 2: If (a>10) then go to step 5
Step 3: X = Y*Z

Step 4: Print X and go to step 2

Step 5: Stop

Here we notice that in the algorithm, nowhere the value
of “a" is changed, which controls the flow of the algorithm
and hence algorithm never terminates, Such statements must
be avoided. The finiteness property assures the unambiguity
in the flow.

(5) Effectiveness

It must be possible in practice, to carry out each step
manually (using paper and pencil). The statements must be
feasible. Thus algorithm even though is definite, should also
be practical.

q Introduction to C++ Programming

If one takes care of above mentioned characteristics
while writing algorithm, then we can be sure of the results, for
any kind of inputs.

1.3. Algorithm Designing Tools

Algorithm must be designed in such a way that it follows
the pure top-down approach. This will ensure the straight line
execution of the algorithm. An algorithm can be expressed
or designed in many ways. One can make use of any language
to specify steps involved in solving a particular problem but
simple and precise language could be adopted. Two famous
ways of writing algorithm are making use of flowcharts and
pseudocode (Structured English).

Let us understand designing of algorithms with the help
flowchart and pseudocode language.

1.3.1. Flowchart :

Flowchart is a diagrammatic way of representing, the
steps to be followed for solving the given problem.

Flowchart provides visualization of the steps involved.
Since it is in the form of a diagram one can understand the
flow very easily. Here are some diagrammatic symbols to
design a flowchart.

Symbol Purpose

[i START/STOP

ASSIGNMENT STATEMENTS,
EXPRESSIONS etc.

[~ | senam

Programming Logic and Techniques | - 5

? DECISION MAKING

Q CONNECTOR

—p FLOW INDICATOR

Example on Flowcharts:

o A flowchart to multiply two numbers say a and b and
store the result in product & Display the “product”

[Start]

Read nu mbers
aandb

Pmduct = a%bh

Print "the result is"
Product
[Stop J

6 Introduction to C++ Programming

=

. Flow chart to find factorial of a number ‘n'.

Start

Head the
number n

% b 4
Initialize fact = 1 Print “factarial
I = of 0is 1"

fact="fact*]
:

i=i+1

<< >

Print “ factorial of
number is * fact

Programming Logic and Techniques 7y

e Flowchart to calculate the pay by using the formula
pay=rate*hours.

| Start |

'
/ input hours /

Introduction to C++ Programming

Flowchart to find the average of 10 numbers .

I

Sum = 0

i

i=1

l Yes
/ Input X /

l

Sum = X + Sum

l

i=i+1

"4

avg = sum/10

I
/ Print avg /

Programming Logic and Techniques 9

Another way of designing algorithms is by using
pseudocode.

1.3.2. Pseudocode

Pseudocode is an artificial and informal language that
helps the programmers to develop algorithms. Psedocode
designs the algorithm in text based format. It allows
programmers to focus on the logic of the algorithm without
being distracted by details of the language syntax. [t narrates
steps of the algorithm more precisely.

Following are some keywords used to indicate input,
output, and other operations

Input - READ, GET

Output - PRINT, DISPLAY

Compute - CALCULATE, DETERMINE
Initialize - SET, INT

Add one - INCREMENT

Conditions & Loops

IF-THEN ELSE
Repetitive execution
WHILE

CASE

REPEAT UNTIL
FOR

Let us go through some pseudocodes

Pseudocode to obtain sum of two numbers

BEGIN
INPUT XY
DETERMINE SUM=X+Y

10

Introduction to C++ Programming

PRINT SUM
END

Pseudocode to obtain average of three numbers

1.4.

BEGIN

DISPLAY “input 3 nos”
INPUT X,Y,Z

DETERMINE SUM=X+Y+Z
DETERMINE AVG=SUM/3
PRINT “average is " AVG
END

Designing a program

A program is a set of instructions that are grouped

together to accomplish a task or tasks. The instructions consist
of task like reading and writing memory, arithmetic operations,
and comparisons.

Aim of a particular Program is to obtain solution to a

given problem.

We can design a program by going through the following

first four major steps:

a. ANALYSE THE PROBLEM

b. DESIGN A SOLUTION/PROGRAM
c. CODE/ENTER THE PROGRAM

d. TEST THE PROGRAM

e. EVALUATE THE SOLUTION
ANALYSE THE PROBLEM

When we analyze a problem, we think about the

requirements of the program and how the program can be
solved.

Programming Logic and Techniques 11

b. DESIGN A SOLUTION/PROGRAM

This is the stage where we decide how our program
will work to meet the decisions made during analysis.

Program design does not require the use of a computer.
We can design program using pencil and paper.

This is the stage where algorithms are designed.
c. CODE/ENTER THE PROGRAM

Here we enter the program into the machine by making
use of suitable programming Language.

d. TEST THE PROGRAM

This part deals with testing of programs for various inputs
and making necessary changes if required.

Testing cannot show that a program produces the correct
output for all possible inputs, because there are typically an
infinite number of possible inputs. But testing can reveal syntax
errors, run-time problems and logical mistakes.

e. EVALUATE THE SOLUTION

Thus, finally program can be implemented to obtain
desired results.

Here are some more points to be considered while
designing a program.

° Use of procedures.

. Choice of variable names

® Documentation of programs
. Debugging programs

. Testing.

i _ Introduction to C++ Programming

Use of procedures:

Procedure is a part of code used to carry out
independent task. Separate procedures could be written to
carry out different task and then can be combined and linked
with the main procedure. This will help in making the algorithm
and eventually programs readable and modular (divided into

modules).
Choice of Variables:

We can make program more meaningful and easier to
understand by choosing appropriate variable and constant
names. For example, if wish to store age of two different
people we can define variables agel, age2 to store their ages.
The main advantage of choosing correct variables is that the
program becomes self explanatory.

Dﬁ:umentatlun of Program:

Brief and accurate comments can be included at the
beginning of each procedure/ function. Program (Algorithms)
should be documented, so that it can be used easily by other
people unfamiliar with the working and input requirements of
the program. Thus documentation will specify what response
it requires from the user during execution.

Debugging the Program:

It is expected that one should carry out number of tests
during implementation of algorithm, to ensure that program is
behaving correctly according to its specifications. The program
may have some logical errors, which may not be detected
during compilation. To detect such type of errors we may
print computed values at various steps involved in algorithm.
We should always manually execute the program by hand
before ever attempting to execute it on machine.

Programming Logic and Techniques 13

1.5 Program Testing:

The program should be tested against many possible
inputs. Some of the things we might check are whether the
program solves the smallest possible problem, whether it may
not be possible or necessary to write programs that handle all
input conditions, all the time. Whenever possible, program
should be accompanied by input and output sections.

Here are some desirable characteristics of a program
® Integrity: Refers to the accuracy of program.
. Clarity: Refers to the overall readability of a program,
with emphasis on its underlying logic.

. Simplicity: The clarity and accuracy of a program are
usually enhanced by keeping the things as simple as
possible, consistent with the overall program objectives.

] Efficiency: It is concerned with execution speed and
efficient memory utilization.

. Modularity: Many program can be decomposed into
a independent procedures or modules.

® Generality: Program must be as general as possible.
(viz. rather than keeping fixed values for variables, it is
better to take it as an input during execution).

REVIEW QUESTIONS
1. Define an algorithm and state its characteristics.
2. Write a note on algorithm designing tools.

3. Explain the use of Flowcharts in designing of algorithms
and symbols used in flowcharts.

What do you mean by a Pseudocode?
Write a note on designing of a program.

Explain the use of following while designing a program

14

Introduction to C++ Programming

a
b

C.
d.

E-I

Use of procedures.

Choice of variables
Documentation of programs
Debugging programs
Testing.

What are the desirable characteristics of a program?

Write algorithms & Draw flowchart for the following.

To obtain hypotenuse of the right angle triangle if
remaining two sides are provided.

To obtain simple interest if principal (P), rate of
interest (R) and no. of years (N) is provided.(Simple
interest =(P*R*N}/100)

To obtain compound interest if principal (P), rate of
interest (R) and no. of years (N) is provided.
(Compound interest Amount after n years =
P(l + r)™ whre r=R/100)

To convert temperature in centigrade to Fahrenheit
and vice versa.

To obtain greatest of three numbers.
To obtain roots of a guadratic equation,

To swap values of two variables.
o

[Chapter 2 }

Introduction te C++ 15

CHAPTER 2
INTROductioNn 10 C+ +

CONTENTS
2.1. Introduction to programming

2.2. THE ORIGIN OF C++

2.3. Structure of a simple C++ program

24. Compiling and running C++ programs
2.5. Pitfall and Tips to Programming

21. Introduction to programming

“Programming” is the process of writing instructions in
any computer programming language, to get the task done by
a computer.

C++ is a very common programming language, and a
good language to start learning basic concepts with, but you
need to figure out what you find most useful. To do that, you
will have to try different programming languages over the time
and see which ones fit best for vou; which language structure
makes sense, which one seems to be able to accomplish the
goals you want etc.

Writing the program is the process of breaking out your
instructions step by step and instructing the compiler or
interpreter to do those things in the proper programming
language.

Your first step is to figure out exactly what you want
your program to do, step by step. It is helpful to write this out
on paper (Writing an algorithm). Once you gain more
experience you will start to see the value in doing this.

Once you have your steps figured out, you will want to
write your program in the language you have chosen. Whatever
programming language you choose, it will have specific word
and styles to do different things. Much like we use words and
punctuation every day, so do programs.

16 Introduction to C++ Programming

2.2. THE ORIGIN OF C++

C++ an object oriented programming language & was
developed by Bjarne Stroustrup starting in 1979 at AT & T
Bell Laboratories as an enhancement to the C programming
language and originally named C with Classes. It was renamed
C++ in 1983, where ++ is an increment operator in C &
C++.

The C programming language was developed at AT&T
for the purpose of writing the UNIX operating system. C was
developed with the primary goal of operating efficiency. Bjarne
Stroustrup developed C++ in order to add object oriented
constructs to the C language. C+ + can also be considered as
a combination of C along with object oriented features of
Simula67(General object oriented language).

C++ is also a traditional procedural language with
some additional constructs. A well written C+ + program will
reflect elements of both object oriented programming style
and classic procedural programming. C++ is actually an
extensible language since we can define new types in such a
way that they act just like the predefined types which are part
of the standard language. C+ + is designed for large scale
software development.

C++ is regarded as a “middle-level” language, as it
comprises combination of both high-level and low-level
language features.

Note:- Programming languages can be classified into the
following types

1. Machine language - Machine languages are the
only languages understood by computers. While easily
understood by computers, machine languages are
almost impossible for humans to use because they
consist entirely of numbers.

2. Assembly language - Assembly languages have the
same structure and set of commands as machine

Introduction to C++ 17

languages, but they enable a programmer to use names
instead of numbers.

3. High level Language - A programming language
such as C, FORTRAN, or Pascal that enables a
programmer to write programs that are more or less
independent of a particular type of a computer. Such
languages are considered high-level because they are
closer to human languages.

Machine language or an assembly language both are
Low-level languages since they are closer to the
hardware.

Some of the applications of C++ includes systems
software, application software, device drivers, embedded
software, high-performance server and client applications and
entertainment software.

C++ is also used for hardware design.

The C++ language began as enhancements to C, first
adding classes, then virtual functions, operator overloading,
multiple inheritance, templates, and exception handling among
other features.

2.3. Structure of a simple C++ program

// simple program in C++

#include <iostream.h>

int main ()

{

cout << “Welcome to NIRMALA COLLEGE®;
return 0;

}

Output: Welcome to NIRMALA COLLEGE

18 Introduction to C++ Programming

// simple program in C+ +

This is a comment line. lines beginning with two slash
signs (//} are used to comment on the program or a part of
the program. In the above program the line is a brief
description of our program .

#include <iostream.h>

Lines beginning with a hash sign (#) are directives for
the preprocessor. In this case the directive
#include<iostream.h> tells the preprocessor to include the
header file iostream which is a standard file. This specific file
(iostream) includes the declarations of the basic standard input-
output library in C++, and is included because functions(cout)
from this file is used in the program.

int main ()

This line corresponds to the beginning of the definition
of the main function. The main() function is the point where
programs execution begins. Every C+ + program must have a
main().

cout << “Welcome to NIRMALA COLLEGE":

cout represents the standard output stream in C+ + and
the meaning of the entire statement is to print (Welcome to

NIRMALA COLLEGE) into the standard output stream (which
usually is the screen).

return 0;

The return statement causes the main function to finish.
This is the most usual way to end a C++ console program.
Every function in C++ must return a value, thus return 0O:
returns 0 to the integer function main().

Introduction to C++ 19

#include < >¢——1 Inclusion of header files

l{nt WEME [L——* Execution begins

44— Set of instruction to be included

return 0;
) 4— Returning value to the function

Thus after writing the program it can be saved with a proper extension
Turbo C++uses an extension .cpp for C++,

2.4, Compiling and running C++ programs

Let us understand compiling and debugging with the
help of Turbo C++ & Borland C+ +.

Turbo C++ & Borland C++ provides an integrated
development environment (IDE) under MS DOS. This IDE

provides us with an editor and several menus on the menu

bar.
File menu helps in creating and saving source files.
Source file can be compiled by using compile option.

Program once compiled can be executed with run
option.

(It is also possible to directly use run option which causes
program to compile, link & run. But it is good programming
practice to compile a program before running it.)

Introduction to C++ Programming

AT S S

——— NOMAMERD .CPF

The close hox

Ths witic b The title bar

Window #{up 10 9) The zoom hox

File Dt

EIET T

The cursor

The edit
window

of the cursor

Flielp F2sfam F

m#hi{]'[ﬂ

Line # : Culumn f=

Tipen AlT-FF Compile i Mace Flﬂm

b= Scroll bars

HEHams
= =

The status bar

' Drag any of the four comers
to make the window larger
or smaller.

Introduction to C++ 21

Unix AT&T C+ + & Visual C+ + are the other systems
which can be used to compile and run C++ programs.

2.5. Pitfall and Tips to Programming

Here are some pitfalls and basic things to be taken care
of in any programming langauge. Some of the tips are
specifically with respect to concepts covered in remaining
chapters and could be understood well after going through
those concepts .

1. Plan and be organised :

When planning a program it is always better to plan
ahead rather than jump straight into it. It is a good idea to
write down the functions of the program in the order you
need to code them, in little ‘blocks’. Even “draw” it if it helps.
When actually coding it, use comments. Doing these little
things could save your valuable programming time and helps
make the code look a little more explanatory and professional.

2. Write it out on paper

Think before you code and write the entire idea or the
logic of solving a particular problem on paper; doing so would
prevent lots of logical errors. This technigue also works when
you are not able to figure out why the logic is not working.

3. Indent your Program

Always indent your program for readability. It is a good
practice and useful to debug your program. Good indentation
makes it easy to see that your closing braces are correctly
aligned and help you scan through your code quickly by giving
visual clues about where the program flow changes.

4. Always use Comments

Make comments in your code often. Not only does it
help people who are trying to help you understand it more,
when you come back later, you'll be able to pick up where
you left off and edit much faster.

22 Introduction to C++ Programming

For example:
int agel; /*holds age of first employee®/

Use either // or /* depending on your compiler and
language

5. Always write if statements with braces.

By putting braces around every block of code you write,
you ensure that future edits won't introduce bizarre bugs.

" ii—

If you have a one-line if statement:
if (<condition>)

execute () ;
yvou should still surround
execute(); with braces:
if (<condition>)
{

execute() ;

}

Now, if you go back and add a second instruction
if (<condition>)
{

executel) ;

execute () ;
)

You don't have to worry about putting in the braces,
and you know that you won't forget to put them in.

6. Restrict goto
Some very simple programming languages allow you to

control the flow of your program with the goto keyword, You
simply place a label somewhere in your program, and then

Introduction to C+ + 23

can can jump to that point in your code anytime you like by
following goto with that keyword. Like so:

goto myLabel

myLabel :
/* code %f

In these simple and limited programming languages, goto
may be used quite commonly, and this feature is included in
C/C++ too. It is however, considered as extremely
bad programming practice.

The reason for this is simply that there are better
alternatives. C and C++ provide more advanced control
structures like various types of functions and loops, which not
only make it easy to code a certain behavior, but safer. goto
is still sometimes used for customized control, like breaking
out of heavily nested loops.

If your program does indeed require the use of goto,
you should probably be redesigning the whole program to fix
it properly instead of using a quick fix like goto.

If in doubt, don't use goto.

7. Use Appropriate Variables

While programming, we have to take care about the
variables. We need to give appropriate name for the variables
to avoid confusion!

8. Take advantage of array indices

When operating on two arrays with the same index and
operation, the switch statement can usually be avoided.

Consider the general switch statement that assigns and
tallies all the occurrences of array[i] to count[i]:

24 Introduction to C++ Programming

switch (array([il) |
case 1: count[l]++;
break;
case 2: count[2]++;
break;
case 3: count[3]++;
break;
s
case n: count[n] ++;
break;
3
)
This can be shortened to the single statement:
count[arrayli]] + +;
9. Beware of loop invariants

Be aware of loop invariants and how they can affect
code efficiency. An example:

If you have code within a loop that uses non-varying
variables:

for{i = 0; 1 < 100; i++)
{
total = i + x + y;
printf (\~%d\", total):;
}

As you can see, x and vy are not variables within the
loop and so it is much more efficient to code the loop as
follows:

e

Introduction to C+ + 25

total = x + y;

for (1 = 0; 1 < 100; i++)
(

total += i;

)

This is because the loop does one less addition on each
loop cycle.

10. Clean up after cin
It's a good idea to follow cin with cin.get() or cin.ignore()
because cin can leave a terminating character in the stream,

which could cause small problems with your code. For
example:

#include<iostream>
int main{()
(
int age;
std::cout<<"Enter your age: *;
std: :cin>>age;
std: :cout<<"You entered “<<age<<std::endl:
std::cin.get () ;
return 0;

)

That code exits right after printing the age. The program
‘skips’ right over where it should ‘pause’ for the user to press
Enter. This is bad because the user never gets to see what is
being written to the screen after they enter the age. The code,
however, works as intended:

26 Introduction to C++ Programming

11. Code Optimization Tips

e If you've got a lot of if / else statements, try to put the
one most likely to be met first,

. Use a++ and a-- instead of a+=1 and a-=1

12. While Doing calculations

® Remember when doing calculations in C++, that
multiplication and division takes priority above addition
and subtraction.

e Adding brackets according to these rules, makes it to

understand, and is a neater way to code.

Remember that when you use the cout statement, do

not use quotes around an arithmetic expressions, it will simply
display the whole line.

13.
14.
15.

L s

Reuse the code
Avoid usage of temporary variables.

Avoid memory wastage.

REVIEW QUESTIONS
What is the difference between C & C++ ?
“C++ is a middle level language”, Explain ?
Write a note on types of programming languages.
Explain the parts of a simple c++ program.
What is the use of #include <iostream.h>.

Write a note on pitfalls and tips to programming.
g O d

[Chapter 3 }

L Conmts Z

CHAPTER 3.
C++ Conceprs
CONTENTS
3.1. Variables
3.2. Identifiers
3.3. Keywords
3.4. CONSTANTS .

3.5. Dala types in C++

3.6. Operators in C++

3.7. Operators precedence

3.8. Declaration of variables

3.9. Initialization of variables

3.10. Type casting

3.11. Preprocessor directives

3.12. Defined constants or symbolic constants (#define)
3.13. Declared constants (const)

3.14. Namespaces

3.15. Reference Varable

3.16. Input and oulput statements in C++
3.17. Escape Sequences

3.18. Indenting programs

3.19. Comments in C++

3.20. Local & Global variables

3.1. Variables

Variable can be defined as a portion of memory used to
store a determined value. Variable names are names given to
locations in the memory. These locations can contain integer,
real or character constants. We do a number of calculations

28 Introduction to C+ + Programming

in computer and the computed values are stored in some
memory spaces.

Since the value stored in each location may change,
the name given to these locations are called as ‘variable
names .

Each variable needs an identifier (variable name) that
distinguishes it from the others.

3.2. ldentifiers

A valid identifier is a sequence of one or mere letters,
digits or underscore character (_).

Here are some rules to define an identifier,

1. Neither spaces nor punctuation marks or symbols are
allowed while defining an identifier.

2. Only letters, digits and single underscore characters are
valid.

Identifiers should not begin with a digit.

Keywords (for eg. If , else, for etc.) are reseved and
cannot be used as identifiers.

5. Uppercase and lowercase letters are distinct.

6. C++ does not set a maximum length for an identifier

but some compilers treat only first 'n' characters
significant.

7. Variable name can be arbitrarily long but most
implementations recognizes 31 characters (ANSI
standards also recognizes 31 characters).

Here are some valid and invalid variable names.
Valid variable names :

n , sam, sha e, ma2009 , Mumbai
Invalid variable names :

3sam (should start with a letter)

C++ Concepts 29

mu®*m (special character * is not allowed)

seat no (blank space is not allowed)

3.3. Keywords

Keywords are predefined reserved identifiers that have
special meaning. They cannot be used as identifiers in our
program. All the keywords should be in lower case letters,

Some of the keywords in C++ are:

auto, bool, break, case, catch, char, class, const,
const_cast, continue, default, delete,do, double, dynamic_cast,
else, enum, explicit, export, extern, false, float, for, friend,
goto,if, inline, int, long, mutable, namespace, new, operator,
private, protected, public, register,reinterpret cast, return,
short, signed, sizeof, static, static cast, struct, switch,
template,this, throw, true, try, typedef, typeid, typename, union,
unsigned, using, virtual, void.

Note : C++ is a “case sensitive” programming language.
That means the identifier written in capital letters is not
equivalent to another one with the same name but written
in small letters. Thus, for example, the AGE variable is not
the same as the age variable or the Age variable. These are
three different variable identifiers.

3.4. CONSTANTS

A 'constant’ is an entity that does not change. Constant
refers to fixed value which remains unaffected during execution
of the program.

Constants:

There are mainly three types of constants. Namely:
Numeric constants (integer & real), character constants
(single character constants) and string constants.

Numeric constants:- Numeric constant are positive
or negative numbers .

K Introduction to C+ + Programming

There are four types of numeric constants: integer
constant, floating point constant, hex constant & octal
constant.

Integer constants

This are numerical constants that identify integer decimal
values. Integer constant do not contain decimal points.

integer

Integer constant | short integer(short)

long integer(long)

Here are some valid integer constants
1776
707
-273

Short integer constants:- These are integer constants
with maximum size of 16 bits. Short integer constants fall in
the range of -32,768 to 32767(-2'5 to 2!5-1).

long integer constants:- These are integer constants

with size of 32 bits. Short integer constants fall in the range
of -2,147 483,648 to 2,147,483,647 (-23! to 2%1.1).

Hex constants: - Constants which represent
hexadecimal numbers (integer numbers with base 16 & are
expressed in digits 0-9 and letters a-f) are called as hex
constants. Hexadecimal constants begin with Ox or 0X .

octal constant Short octal

long octal

Example: 0x1C // Hexadecimal representation for
decimal 28

Octal constants: - Constants which represent octal
numbers (integer numbers with base 8 & are expressed in
digits 0-7) are called as octal constants. octal constants begin
with 0.

C++ Concepts 31

Hex constant Short hexadecimal

long hexadecimal
Example: 034 // Octal representation for decimal 28

More examples of Hex and Octal constants
//0Octal Constants

012

0204

// Hexadecimal Constants

Oxa or 0OxA

0x84

Floating Point constants :- These are numbers with
decimals and/or exponents. They can include either a decimal
point or an e character or both a decimal point and an e
character.

In exponential form, the Floating Point Numbers
are represented as two parts. The part lving before the ‘e’ is
the ‘mantissa’, and the one following ‘e’ is the ‘exponent’.

For e.g. 3.2e4 (this denotes the no. 3.2x10%) in this case
3.2 is the mantissa and 4 is the exponent

Here are some valid floating point constants,
3.14159

6.02e2* (this is same as 6.02 x 10)
1.6e1? (this is same as 1.6x 107)

The default type for floating point constants is double.
If we explicitly want to express a float or long double numerical
constant, we can use the f or | suffixes respectively:

3.14159L // long double
6.02e23f [/ float

32 Introduction to C+ + Programming

Single precision{float) Size of 4 bytes

Floating point constant | Double precision(double) | Size of 8 bytes

Long double Size of 12 or 16 bytes

Note:- Space, comma, and characters other than digits
are not allowed in Numeric constants.

Character constants:- A character constant is an
alphabet, a single digit or a single special symbol enclosed
within single inverted commas.

The maximum length of a character constant can be 1
character.

1 byte of memory is available to hold single character
constant.

Ex: B, T, #
String constants :- String constant is a sequence of
alphanumeric (letters and numbers) characters enclosed in

double quotation marks whose maximum length is 255
characters.

Following are the examples of valid string constants.

® “Nirmala”
° “Rs 2500.00"
2 *University of Mumbai”

Following are the examples of invalid string constants.

. Nirmala - Characters are not enclosed in double
quotation marks.

. “information technology - Closing double quotation mark
Is missing

. ‘Hello’ - Characters are not enclosed in double quotation
marks.

C++ Concepts 33

3.5. Data types in C++

When we declare variable, we actually create a memory
location in computer's memory. Now each variable may not
require same amount of memory space. The space occupied
by variables in memory depends on the data type of the
variable.

Following are fundamental data types in C++, with
range of values and size.

Name Description Size Range
char | Character or small integer.| 1byte | signed: -128 to
127unsigned:
0 to 255
short int Short Integer. 2bytes | signed: -32768
(short) to 32767
unsigned:
0 to 65535
int Integer. 4bytes signed:
2147483648 to
2147483647
unsigned: 0 to
4294967295
long int Long integer. dbytes signed: -
{long) 2147483648 to
' 2147483647
unsigned: 0 to
4294967295
bool | Boolean value. It can take| 1byte true or false
one of two values:
true or false.
float Floating point number. | 4bytes +/- 3.4e*"#
(~7 digits)
double | Double precision floating | Bbytes +/- 1.7 3%
point number. (~15 digits)
leng Long double precision | Bbytes +/- 1.7e*" %8
double floating point number. (~15 digits}
wchar _t Wide character. 2 or 4 | 1 wide character
bytes

3 Introduction to C+ + Programming

3.6. Operators in C+ +

An operator is a symbol which helps the user to
command the computer to do a certain mathematical or logical
manipulation.

C++ has a rich set of operators which can be classified
as

Arithmetic operators
Relational Operators
Logical Operators
Assignment Operators

Increments and Decrement Operators

2 L R

Conditional Operators

7. Some special operators in C+ +(comma, sizeof(),
scope, New and delete operators)

8. Bitwise operators
3.6.1. Arithmetic operators

The five arithmetical operations supported by the C+ +
language are:

Operator Meaning
+ Addition or Unary Plus

- Subtraction or Unary Minus

Multiplication
/ Division
% Modulus Operator

Here are some examples of arithmetic operators
X+y

X-V

-X + vy

C++ Concepts 35

a*bh+c
-a*b
here a, b, ¢, x, v are known as operands.

% - Modulo is the operation that gives the remainder of
division of two values.

For example, a = 17% 3;

the variable a will contain the value 2, since 2 is the
remainder from dividing 17 by 3.

3.6.2. Relational Operators

Often it is required to compare the relationship between
operands and bring out a decision and program accordingly.
This is when the relational operator come into picture. C
supports the following relational operators.

Operator Meaning
< is less than
<= is less than or equal to
> is greater than
= is greater than or equal to
== is equal to
|= is not equal to

A simple relational expression contains only one
relational operator and takes the following form.

expl relational operator exp2

Where expl and exp2 are expressions, which may be
simple constants, variables or combination of them. Given
below is a list of examples of relational expressions and

evaluated values.
6.5 <= 25 TRUE
-65 > 0 FALSE

36 Introduction to C+ + Programming

10 < 7 + 5 TRUE

Relational expressions are used in decision making
statements of C++ such as if, while and for statements to
decide the course of action of a running program.

3.6.3. Logical Operators

C+ + has the following logical operators, they compare
& evaluate logical expressions.

Operator Meaning
& & Logical AND
| | Logical OR
! Logical NOT

Logical AND (&&)

This operator is used to evaluate 2 conditions or
expressions with relational operators simultaneously, If both
the expressions to the left and to the right of the logical operator
is true then the whole compound expression is true.

Truth table for && OPERATOR

a b a && b
frue true true
true | false false
false true false
false | false false

Example

a>bé&&x==10

The expression to the left is a > b and that on the right
is x == 10 the whole expression is true only if both

expressions are true i.e., if a is greater than b and x is equal
to 10.

C++ Concepts 37

Logical OR (]|}

The logical OR is used to combine 2 expressions or the
condition evaluates to true if any one of the 2 expressions is
true.

Truth table for || OPERATOR

a b allb
true true true
true false true
false | true true
false | false false

Example

a<m]||a<n

The expression evaluates to true if any one of them is
true or if both of them are true. It evaluates to true if a is less
than either m or n and when a is less than both m and n.

Logical NOT (!)

The logical not operator takes single expression and
evaluates to true if the expression is false and evaluates to
false if the expression is true. In other words it just reverses
the value of the expression.

For example

| (x = y) the NOT expression evaluates to true only if
the value of x is neither greater than or equal to y

3.6.4. Assignment Operators (=, +=, -=, "=, /=,
%=, >>=, <<=, &=, =, |=)

The Assignment Operator evaluates an expression on
the right of the expression and substitutes it to the value or
variable on the left of the expression.

33 Introduction to C+ + Programming

Example
x=a+b

When we want to modify the value of a variable by
performing an operation on the value currently stored in that
variable we can make use of compound assignment operators.

a += b expression is equivalentto a =a + b
a *= b expression is equivalentto a=a*b

a /= b expression is equivalentto a = a /b and so
on.

// compound assignment operators
#include <iostream.h>

main ()

{

int a, b=3;

a = b;

a+=2; // equivalent to a=a+2
cout << a;

return 0;

]
Ouput : 5

3.6.5. Unary operators (Increment and Decrement
Operators)

The increment and decrement operators are the unary
operators which are very useful in C language. They are
extensively used in for and while loops. The syntax of the
operators is given below

1. ++ variable rame
2. variable name+ +
3. — —variable name

4. variable name- -

C+ + Concepts 39

The increment operator ++ adds the value 1 to the
current value of operand and the decrement operator — -
subtracts the value 1 from the current value of operand.
+ +variable name and variable name+ + mean the same thing
when they form statements independently, they behave
differently when they are used in expression on the right hand
side of an assignment statement.

Consider the following

m = 5;

y = ++m; |(prefix)

In this case the value of y and m would be 6

Suppose if we rewrite the above statement as

m = 5;

y = m++; (post fix)

Then the value of y will be 5 and that of m will
be 6. A prefix operator first adds 1 to the operand and then
the result is assigned to the variable on the left. On the other

hand, a postfix operator first assigns the value to the variable
on the left and then increments the operand.

For example:

int a,b;
a=3:
cout<<a<<*\n’;

cout<<a++<<'\n’;

= W

coukt<<a<<'\n‘;

LN

cout<<++a<< in’ -
cout<<a<<'\n’; !
cout<<a—- =-<<'Yyn’; &

cout<<a<<'\n’; +

collt<<— - a<<c*\n"; P |

40 Introduction to C+ + Programming

consider a=3,b=4

let c=a+b++ , here a will be 3 and b will be 4 . Thus
c will be 7 , after this execution b will be incremented by 1
and will be assigned 5.

After execution values of a=3, b=5 & ¢=7

let d=-— -a+b+ +, here a will be 2(decremented by one
before using) and b will be 5. Thus d will be 6, after this
execution b will be incremented by 1 and will be assigned 6.

After execution values of a=2, b=6, ¢c=7 & d=6

let d=a+ +-b- —, here a will be 2 and b will be 6. Thus
d will be -4 , after this execution a will be incremented by 1
and will be assigned 3 and b will be decremented by one and
will be assigned 5.

After execution values of a=3, b=5, ¢c=7 & d=-4

3.6.6. Conditional or Ternary Operator

The conditional operator consists of 2 symbols the
question mark (?7) and the colon (:) . Conditional operators
acts on three expressions and therefore is also called as
ternary operator.

The syntax for a ternary operator is as follows
expl ? exp2 : exp3
The ternary operator works as follows

expl is evaluated first. If the expression is true then
exp2 is evaluated & its value becomes the value of the
expression. If expl is false, exp3 is evaluated and its value
becomes the value of the expression. Note that only one of
the expression is evaluated.

C++ Concepts 4]

For example

Here are some examples of conditional operator
T7==5? 4 : 3 // returns 3, since 7 is not equal to 5.
7==5+2 ? 4 : 3 J/ returns 4, since 7 is equal to 5+2.

5>3 ? a : b // returns the value of a, since 5 is greater
than 3.

a>b ? a : b // returns whichever is greater, a or b.

Il condition is true the expression will return resultl, if
it is not it will return result2.

// conditional operator
#include <iostream.h>
int main ()

(

int a,b,c;

a=2;

b=T;

c = (a»b) ? a : bj

COUL =< 3
return 0;
}

Output: 7

3.6.7. Special operators
(a) Comma operator (,)

The comma operator (,) is used to separate two or more
expressions that are included where only one expression is
expected. When the set of expressions has to be evaluated for
a value, only the rightmost expression is considered.

42 Introduction to C+ + Programming

For example:
a = (b=3, b+2);

Would first assign the value 3 to b, and then assign b+ 2
to variable a. So, at the end, variable a would contain the
value 5 while variable b would contain value 3.

(b) sizeof()

This operator accepts one parameter, which can be
either a type or a variable and returns the size in bytes of tha
type or cbject: '

a = sizeof (char);

This will assign the value 1 to a because char is a one-
byte long type.

The value returned by sizeof is a constant, so it is always
determined before program execution.

(c) scope operator (::)
2 is used as the scope resolution operator in C++ .
With scope resolution operator we can define a class member

function. Scope resolution operator is used to differentiate
between members of base class with similar name.

(d) New & delete operators

Memory allocations and deallocations in C+ + is carried
out by using New & delete operators.

3.6.8. Bitwise operators

C++ provides operators to work with the individual
bits. Bitwise operators are used in bitwise logical decision
making.

C++ Concepts

Operator

Name

Description

a&b

alb

a”™b

X< <p

X=>2>p

and

or

xar

not

left shift

right shift

Returns 1 if both bits are 1. 3 & 5
which is same as (011)&(101) After
the operation we obtain (001) i.e. 1

1 if either bitis 1. 3 | 5 which is same
as (011) | (101) After the operation
we obtain (111) i.e. 7

Returns 1 if both bits are different. 3 ™
5 which is same as (011) ~(101) After
the operation we obtain (110) i.e. 6
This unary operator inverts the bits. For
Example: x=23 (0001 0111)~x will
be 132(1110 1000)

Shifts the bits of x value to left by p
positions. X< <3 this will shift the bits
of x to left by 3 positions.For Example:
x=23 (0001 0111)x< <3resultant bit
pattern after this operation is 1011
1000

Shifts the bits of x value to right by p
positions. X> >3 this will shift the bits
of x to right by 3 positions.For
Example: x=23 (0001

0111)x> >3resultant bit pattern after
this operation is 0000 0010

3.7. Operators precedence

Operator precedence deals with order of executions of
operators when more than one operators are involved.

For example a mathematical expression involving +,-,*
J are executed using BODMAS (brackets of division,
multiplication, addition and subtraction) rule.

Operators are assigned a particular level (precedence),
and are executed according to these levels.

44 Introduction to C+ + Programming

Operator on higher level is executed first compared to
operator on lower level.

When operators of same level are encountered, then
operators are executed either from left ot right or right to left.

Their associativity indicates in what order operators of
equal precedence in an expression are applied.

Operator Description Associativity

Ol++ - Parentheses (function call) left-to-right
Brackets (array subscript)Postfix
increment/decrement
+4+ -+ - Prefix increment/decrement right-to-left
Unary plus/minus
* 4% Multiplication/division/modulus left-to-right
+ - Addition/subtraction left-to-right
<< »>> | Bitwise shift left, Bitwise shift right left-to-right
L L Relational less than/less than left-to-right
> = or equal toRelational greater than/

greater than or equal to
, Relational is equal to/is not equal to left-to-right
& & Logical AND left-to-right

Il
il
I

|| Logical OR left-to-right

T Ternary conditional right-to-left
=+4= Assignment right-to-left
== Addition/subtraction assignment

/= Multiplication/division assignment

For Example:

Assume x=3, y=7

If { a>b+3 && b<a-4) in these expression we have
operators >,<,+,-.&&

C++ Concepts

Order of execution will be

-+
-]

<

& &
3.8. Declaration of variables

Every variable used in the program should be declared
to the compiler. The declaration does two things.

1. Tells the compiler the variables name.
2. Specifies what type of data the variable will hold.

The general suntax of declaration is to write the specifier
of the desired data type (like int, float, etc.) followed by a
valid variable name (identifier).

datatype wvariable name;

We can also declare more than one variable of same
data type in a single declaration statement. In such case

variables are separated by commas.
datatype variable 1, variable 2,................,variable n;

A declaration statement must end with a semicolon.
Example:

int sum;
int number, salary;

double average, mean;

The integer data types char, short, long and int can be
either signed or unsigned depending on the range of numbers

needed to be represented.

46 Introduction to C++ Programming

Note: Signed types can represent both positive and
negative values, whereas unsigned types can only represent
positive values (and zero).

For example:

unsiaqned short int marks;
signed int temperature;

By default, most compiler assume the type to be signed,
therefore signed int temperature; is same as int temperature;

#include <iostream.h>

int main ()

(
// declaring variables:
int a, b;
int result;

// process:

a = 5;

h = 2;

a=a + 1;
result = a - b;

// print out the result:
cout << result;
// terminate the program:
return 0;

1

OQutput : 4

C++ Concepts 47

3.9. Initialization of variables

Variables can be assigned value during declaration this
is called initialization of variables. There are two ways to do
this in C+ +:

Syntax :
type identifier = initial_value ;

For example, if we want to declare an integer variable
intialized with a value 3 during declaration, it can be done as
follows:

int a = 3;

The other way to initialize a variable is known as
constructor initialization, is done by enclosing the initial value
between parentheses ().

type identifier (initial_value) ;
For example:

int a (3);
3.10. Type casting

We always declare a variable for data type before using
it in the program. In some situations we may need to convert
data type of the variable to obtain a particular result. This
can be achieved by type casting.

Type casting is the process of converting one data type
into another or converting an expression of a given type into
another.

Tupe casting can be carried out in two ways
1) Implicit Conversion

2) Explicit Conversion

a8 Introduction to C++ Programming

(i} Implicit Conversion

Implicit Conversion is also called as converting by
assignment operator or automatic conversion. In implicit
conversions value gets automatically converted to the specific
tvpe to which it is assigned.

For example:
int x;
float y;
X=Y;

Here the data type float namely variable v is converted
to int and is assigned to the integer variable x. (in this case
fractional part of v will be truncated and will be assigned
to y).

(ii) Explicit Conversion

Explicit conversion is done with the help of cast operator.
The cast operator is a technigue used to forcefully convert
one data type to the other. The whole process of conversion
is called casting.

SYNTAX :

(datatype) expression:
For example:
1, float x;
Xx= (. ant)} { 14.2/2 } ;

Here x will be assigned value 7 instead of 7.1. as the
expression will be casted by the cast operator,

2. char x:
int v;

y={int) x:

C++ Concepts 49

This forces the character variable x to be converted to
integer data type.

3.11. Preprocessor directives

Preprocessor directives are lines included in the code of
our programs that are not program statements but directives
for the preprocessor. These lines are always preceded by a
hash sign (#). The preprocessor is executed before the actual
compilation of code begins.

These preprocessor directives extend only across a single
line of code. No semicolon (:) is expected at the end of a
preprocessor directive.

The #include is a “preprocessor” directive that tells
the compiler to put code from the header into our program
before actually creating the executable. By including header
files, you can gain access to many different functions.

The concept of preprocessor directive

® Instructions are given to the compiler by making use of
preprocessor directive.

L] The preprocessor directive always begins with the #
sign.

e The preprocessor directive can be placed anywhere in
the program but most often they are included in the
beginning of the program.

. For example :- #include, #define, #else etc.

1) #include-this preprocessor directive instructs the
compiler to include a header file into the source code

file.
Example #include<iostream.h>

2) #define-this preprocessor directive instructs the compiler
to define a symbolic constant.

Example #define PI 3.14

a0 Introduction to C++ Programming

Header files in C++ (with respect to Turbo & Borland
C++ compilers)

. iostream.h - This standard header files contains a set of
general purpose functions for handling input and output
of data.

® iomanip.h - this header file is included to carry out
operations related to manipulator functions. (Manipulator
functions will be seen in detail in the next chapter.)

3.12. Defined constants or symbolic constants
(#define)

A symbolic constant value can be defined as a
preprocessor statement and used in the program as any other
constant value,

These values may appear anywhere in the program, but
must come before it is referenced in the program.

It is a standard practice to place them at the beginning
of the program,

You can define your own names for constants that you
use very often without having to resort to memory consuming
variables, simply by using the #define preprocessor directive.

SYNTAX

define symbolicname value of constant

When the preprocessor encounters this directive. it
replaces any occurrence of symbolic name in the rest of the
code by value of constant. This replacement can be an
expression, a statement, a block or simply anything. The
preprocessor does not understand C+ +, it simply replaces
any occurrence of symbolic name.

Valid examples of constant definitions are :
#define Pl 3.14159
#define NAME “MAHESH"

C++ Concepis 51

This defines two new constants: Pl and NAME. Once
they are defined, we can use them in the rest of the program.

// defined constants: calculate circumference
#include <iostream.h>
#define PI 3.141589
#define NEWLINE ‘\n’
int main ()
{
double r=5.0; // radius
double circle;
cirele = 2 % PI % r;
cout << circle;
cout << NEWLINE;

return 0;

)
OUTPUT : 31.4159

In fact the only thing that the compiler preprocessor
does when it encounters #define directives is, to literally
replace any occurrence of their identifier (in the previous
example, these were Pl and NEWLINE) by the code to which
they have been defined {3.14159 and “\n' respectively).

The #define directive is not a C+ + statement but a
directive for the preprocessor. Therefore it assumes the entire
line as the directive and does not require a semicolon (;) at
its end. If we append a semicolon character (:) at the end, it
will also be appended in all occurrences within the body of
the program that the preprocessor replaces.

52 Introduction to C+ + Programming

3.13. Declared constants (const)

With the const prefix we can declare constants with a
specific type in the same way as we would do with a variable:

const int width = 100;
const char tabulator = *‘\t':

Here, width and tabulator are two types of constants.
They are treated just like regular variables except that their
values cannot be modified after their definition.

3.14. Namespaces

Namespaces allow to group entities like classes, objects
and functions under a name. This way the global scope can
be divided in “sub-scopes”, each one with its own name.

The format of namespaces is:
namespace identifier

{

entities

}

Where identifier is any valid identifier and entities is
the set of classes, objects and functions that are included
within the namespace.

For example:
namespace myNamespace
{

int a, b:
)

In this case, the variables a and'b are normal variables
declared within a namespace called myNamespace. In order
to access these variables from outside the myNamespace
namespace we have to use the scope operator (::).

C++ Concepts 53

For example, to access the wvariables outside
myNamespace we can write:

myMNamespace::a
myNamespace::b
For Example :
// namespaces
#include <iostream>
using namespace std;
namespace first
{

int var = 5;
}

namespace second

(
double var = 3.1416;

}

int main () {
cout << first::var << endl;
cout << second::var << endl;

return 0;

}
OUTPUT :
5

3.1416

In this case, there are two global variables with the
same name: var. One is defined within the namespace first
and the other one in second.

e Introduction to C+ + Programming

using
The keyword ‘using’ is used to introduce a name from

a namespace into the declarative region.

The keyword ‘using’ can also be used as a directive to
infroduce an entire namespace.

Namespace std

All the files in the C+ + standard library declare all of
its entities within the std namespace. We can include the
using namespace std; statement in all programs that uses any
entity defined in iostream,

#include <iostream>

using namespace std:
3.15. Reference Variable

Reference is a simple reference datatype that is less
powerful but safer than the pointer type inherited from C.
C++ references allow us to create a second name for a
variable that we can use to read or modify the original data
stored in that variable.

Syntax

Declaring a variable as a reference could be done by
simply appending an ampersand to the type name, as follows

int& x=; // here x is a reference variable

. references do not require dereferencing in the way that
pointers do we can just treat them as normal variables.

. when we create a reference to a variable, we need not
do anything special to get the memory address. The
compiler does it for us.

C++ Concepts 5

Example program
inkt X;
inté f= x;
// £ is now a reference to x so this sets x to 56
f= 56;

cout =< x <<endl;

OUTPUT : 56

3.16. Input and output statements in C++
Basic Input / Output

Using the standard input and output library, we will be
able to interact with the user by printing messages on the
screen and getting the user's input from the keyboard. The
standard C+ + library includes the header file iostream, where
the standard input and output stream objects are declared.

(a) cout

By default, the standard output device of a program is
screen, and the C++ stream object defined to access it is
cout. Thus cout is used to display an object onto the standard
output device.

cout is used alongwith with the insertion operator,
which is << (two “less than” signs).

The general syntax is ,

Cout<<variable l<<variable 2<<.....<<variable n;
Examples:

cout << "“Hello”; // prints Hello on screen

int x=3;

cout << x%; // prints number 3 on screen

56 Introduction to C+ + Programming

Notice that the sentence in the first instruction is
enclosed between double quotes (“) because it is a constant
string of characters. Whenever we want to use constant strings
of characters we must enclose them between double quotes
(") so that they can be clearly distinguished from wvariable
names.

Consider the following statements,
cout << *x*; // prints x
cout << x; // prints the content of x variable

The insertion operator (<<) may be used more than
once in a single statementas follows

cout << “welcome * << “to * << "Nirmala College”®:;

This statement will print the message welcome to Nirmala
College on the screen.

We can also use different data types in the same
statement as follows

Age=26;
cout << "Hello, I am * << Age << " years old";

It is important to notice that cout does not add a line
break after its output unless we explicitly indicate it,

therefore, the following statements:
cout << " gentencel”:

cout << " gentencel”;

will be shown on the screen one following the other
without any line break between them.

OUTPUT: sentencel sentence2

In order to perform a line break on the output we must
explicitly insert' a new-line character into cout. In C++ a
new-line character can be specified as \n (escape sequence):

C++ Concepts 57

cout << “ sentencel\n ";

cout << * sentence2\n sentenceli”;

This produces the following ocutput:
Sentencel

sentenced

sentencel

we can also use the endl manipulator.
For example:

cout << * sentencel” << endl;

cout << * sentence2”* << endl;

OUTPUT:

sentencel
sentence?

The endl manipulator produces a newline character,
exactly as the insertion of “\n' does, but it also has an

additional behavior when it is used with buffered
streams: the buffer is flushed.

Anyway, cout will be an unbuffered stream in most
cases.

(b) cin

The standard input device is usually the keyboard.
Handling the standard input in C++ is done by applying the

overloaded operator of extraction (>>) on the c¢in
stream.

The operator must be followed by the variable that will
store the data .

58 Introduction to C+ + Programming

For example:
int x;
cin >> X;

The first statement declares a variable x of type int, and
the second accepts input from cin (the keyboard) in order to
stuie it in this integer variable.

cin can only process the input from the keyboard once
the RETURN(Enter) key has been pressed.

f/ I/0 example

#include <iostream.h>

int main ()

{

int i;

cout << "“Please enter your age *;

cin »> i;

cout << *The value you entered is * << 1i;
cout << * and its double is * << i*2 << *\n*;
return 0;

}

Please enter your age: 25
The value you entered is 25 and its double is 50

The user of a program may insert a value which does
not match with the data type of the variable included with cin
and this may lead to errors in the program execution. So
when vnu use the data input provided by cin extractions you
will have to trust that the user of your program will be providing
input which matches with the data type which is requested.

C++ Concepts 5

We can also accept two or more than two values through
a single statement

cin >> a >> b:

In this cases the user must give two data, one for variable
a and another one for variable b that may be separated by
any valid blank separator i.e. a space, a tab character or a
newline.

3.17. Escape Sequences

Character combinations consisting of a backslash (\)
followed by a character are called “escape sequences”. An
escape sequence is regarded as a single character and is
therefore valid as a character constant. Escape sequences are
typically used to format output.

Escape sequence meaning
n newline
\r carriage return(Enter)
\t tab
\w vertical tab
\b backspace
\f form feed (page feed)
\a alert (beep)
\ single quote (')
g double quote (")
\? question mark (?)
\ backslash ()

3.18. Indenting programs

Always indent your program for readability. It is a good
practice and useful while debugging your program. Good
indentation makes it easy to see that your closing braces are
correctly aligned and help you scan through your code quickly
by giving visual clues about where the program flow changes.

60 Introduction to C+ + Programming

Moreover it brings clarity to the program and maintains existing

standard,

Example of an indented program

#include <iostream.h>
#include <conio.h>
void main()
{

clrscr();

long int numl,num2, rnum=0;

cin>>numl ;

num2=numl ;
do
{
rmum=rnum*10;
int digit=numl%10;
rnum+=digit;
numl/=10;
Jwhile(numl) ;

cout << *The integer you typed is
<< “." << andl:

cout << *"The reversed integer is ~
<< . " o2 endl:

getchi);

cout << “"Enter an integer : " << endl;

<< numl

<< Irnum

C++ Concepts 61

3.19. Comments in C++

Make comments in your code often. Not only does it
help people who are trying to help you understand it more,
when you come back later, you'll be able to pick up where
you left off and edit much faster.

A comment is text that the compiler ignores but that is
useful for programmers. The compiler treats them as white
space. You can use comments in testing to make certain lines
of code inactive.

A C++ comment is written in one of the following ways:

e The /* (slash, asterisk) characters, followed by any
sequence of characters (including new lines), followed
by the*/ characters. This syntax is the same as ANSI C.

® The // (two slashes) characters, followed by any sequence
of characters. A new line not immediately preceded by
a backslash terminates this form of comment. Therefore,
it is commonly called a “single-line comment.”

Example:

c=a+b; /*variable c will store sum of a and
b*/ or // variable ¢ will store sum of a and b

3.20. Local & Global variables

Local variables

Local variables must always be defined at the top of a
block. When a local variable is defined - it is not initalised by
the system, we must initalise it ourself. A local variable is
defined inside a block and is only visible from within the
block.

When execution of the block starts the wvariable is
available, and when the block ends the variable ‘dies’.

62 Introduction to C++ Programming

Global variables

C++ has enhanced the use of global variables. Global
variables are initalised by the system when we define them.
Global variabie is defined out of the block and is available
throughout the program.

#include <iostream.h>

using namaspace std;

| dinkt x)
char x1;

. char nl!n[ﬂﬁ]l.?'h
: Ry R

Global variables

void main()

{

ﬁlrncr[].

i int x = lﬂ]
float ¥y = 10.1;
uhur zZ = "a';

A i ".-
T “ﬁﬁﬁ:’ﬂ £ '.'..-*-’i
_‘.ﬁ-mm-,.:-a-.hm
crar—

Local varables

cout << "x = " << x << endl;
cout << "y = " << y << endl;
cout << "z = " << z << endl;
getch();

REVIEW QUESTIONS
1) What do you mean by identifiers and keywords?
2] Enlist rules of constructing identifiers (variables).
3} Explain the concept of preprocessor directive.

4) What do you mean by operators?

5) Write a note on increment and decrement operator with
example.

C++ Concepts 63

6)
7)
8)
9)

10}

11)

12)
13)

Explain the use of comma operatorin C+ +.
Write a note on constants in C++.
Explain the use of new and delete operators.

What are symbolic constants and hor are they defined
in C++.

What is the use of cin statement and how it can be
used to accept data of different types?

What is the use of cout statement ard how it can be
used to print the data of different types?

Explain namespaces with an example.

What is reference variable and how does it differ from
pointer.

Q Q Q

[Chapter 4 }

64 Introduction to C++ Programming

CHAPTER 4.

Manipulators & Conrtrol
STRUCTURES

CONTENTS |

4.1. Manipulators .
42. Control Statements

4.1. Manipulators

Manipulators are operators used in C++ for formatting
the output. The data is manipulated according to the desired
output. To use manipulator functions in our program we need
lo include header file <iomanip.h>

There are number of manipulators available in C+ +.
Some of the commonly used manipulators are as follows:

1) endl

The endl is an output manipulator & has the same
functionality as the “\n’ newline character.

For example:

cout << *Mumbai” << endl;

cout << "“University”®;

OUTPUT:
Mumbai

University

2) Setbase()

The setbase() manipulator is used to convert the base
of one numeric value into another base.

Manipulators & Control Structures b

The syntax is:
setbase (base)

In case of decimal, base is 10 whereas for hexadecimal
& octal it is 16 & B respectively.

A program to show the base of a numeric value
of a variable using set base manipulator functions.
include <« iostream. h>
¥ include <iomanip.h>

void main ()

{

int value ;

cout <<“Enter number*<<endl ;

cin »»>value

cout << *Decimal base=*<<setbase({l0)
<<yalue<<endl;

cout <<"Hexadecimal base="<<setbase(l6)
cevalue<<endl:
cout <<*"0Octal base=" <<gsetbase(B)<<value<<endl;

getchil);

}

We can also do the the base conversion by
using dec, hex and oct as follows,

include < iostream. h>

include <iomanip.h>

void main (void)

{

int value ;

cout <<“Enter number®<<endl ;

cin »>»»value ;
cout << " Decimal base=*<<dec<<value<<endl;

cout <<*Hexadecimal base="<<hex<<value<<endl;

66 Introduction to C++ Programming
cout <<*QOctal base=" <<oct<<value<<endl ;
getch();

}
3) Setw()

This manipulator sets the minimum field width on output.
The syntax is:
setw(x)

selw causes the number or string that follows it to be

printed within a field of x characters wide and x is the
argument sel in setw manipulator.

4)

#include <iostream.h>
#include <iomanip.h>

vold main{)

{

int x=12345;

cout<< setw(5)<< X << endl;
cout << setw(b6)<< x << endl;
cout << setw(7)<< x << endl;

)

The output of the above example is:
1 2|13 |4 156
1 2 | 3| &} B
1 2 | 3| 4] b

Setfill()

This is used after setw manipulator. If a value does not

entirely fill a field, then the character specified in the setfill
argument of the manipulator is used for filling the fields.

The syntax is:

setfill(‘character’)

Manipulators & Control Structures 67

#include <iostream.h>

finclude <iomanip.h>

void main()

{

LA Xa:

X=123;

Y=456;

Cout<<setfill(*@");

cout << setw(5) << x<< setw(6) << y<< endl;

}
OUTPUT:

@2123@8E456
5) Setprecision()

The setprecision Manipulator is used with floating point
numbers. It is used to set the number of digits printed to the
right of the decimal point.

The syntax is:
setprecision(integer value)

Example Program

#include <iostream.h>

#include <iomanip.h>

#include <conio.h>

void main()

{

float x=5, y=3, 2;

2=X/Y;

cout << setprecision(l) << x << endl;

cout << setprecision(2) << x << endl;

cout << setprecision(3) << x << endl;getchl);

)

68 Introduction to C++ Programming

OUTPUT :
1.7
1.67
1.667

6) Ends

The Ends is a manipulator used to attach a null
terminating character (* \0 ') at the end of a string. The Ends
manipulator takes no argument.

A program to show how a null character is inserted
using Ends manipulator while displaying a string onto the
screen.

Example to explain Ends

include<iostream.h>
include<iomanip.h>
void main()

{

int number = 131 ;
cout<<' \ " '<< "number =" << number << ends:

cout<<' \ * ‘<c<ends ;

}
OUTPUT:

*number = 131~
7) Ws

The manipulator function ws stands for white space. It
is used to ignore the leading white space.

Manipulators & Control Structures

69

Example to explain Ws

include <iostream.h>
include <iomanip.h>
include <conio.h>
void main ()
{
char name[100];
cout<<"enter your name\n ‘' ;
cin>>ws ;
cin>>name ;
cout<<*Your name is= "<<name<<

getch();
1

OUTPUT :

enter your name
Mahesh

Your name 1is= Mahesh

8) Flush()

The flush member function is used to empty the stream
associated with the output. This function takes no input
parameters. For output on the screen, this is not necessary as

all output is flushed automatically.
// using Flush/()
include<iostream.h>
include<iomanip.h>

volid main()

{

70 Introduction to C++ Programming

cout << “Welcome to University of Mumbai~;

cout . flush({);

}

9) Precision

The precision member function is used to display the
floating point value as defined by the user,

SYNTAX

co' t.precision (int x)

x represents the number of decimal places to be
displayed.

Examplel:

cout.precision(3};

Example2:

& = 1.234567;
b = 44.65 ;

cout.precision (3)

=
L

cout<<" a = ‘ccace” \n "

cout<<* b = T<<h<<* \n ¥;
OUTPUT :

R = 1.235

b

4.2. Control Statements

44.650

Often in programming we come across situations where
we need to decide which part of the code should be executed
or code should is executed only if a particular condition is
satisfied.

Manipulators & Control Structures 71

In some programs it may be needed 1o repeat a part of
the code, jump from a particular instruction or execute code
if a particular condition is fulfilled or take decisions. In all
such cases we can make use of control structures provided
by C++.

While working with control structures we will be coming
across compound statements also called as blocks. Let us
understand what compound statements are.

A statement can be either a simple statement (a simple
instruction ending with a semicolon) or a compound statement
(several instructions grouped in a block), like the one just
described. In the case that we want the statement to be a
simple statement, we do not need to enclose it in braces {{}).
But in the case that we want the statement to be a compound
statement it must be enclosed between braces ({}), forming

a block.
4.2.1. Conditional Statements

® if statement

. if ... else statement

. switch - case Statement

if statement

if statement is a decision making statement.

] This statement controls flow of execution of statements.

° This statement informs compiler of performing certain
instructions only if a specified condition is met.

. Statement/s are executed only if the condition is true.
Syntax:-
if (condition)
single statement;

or

72 Introduction to C++ Programming

if (condition)

{

multiple statements;

)

Example:-
int 1;

cout <<*Type in an integer\n”;

cin >>1;

if (1 == 0)
{

cout<<"The number is zero”;

! Output:

if {1 > 0) Type in an integer

q [input provided by user)

{ The number is positive

cout<<*The number is positive*;

)
if (i < 0)
{
cout<<*The number is negative”®;
)

if ... else
if ... else statement is also a decision making
statement.

. This statement controls flow of execution of statements.

. This statement informs compiler of performing certain
instructions if a specified condition is true or false.

Manipulators & Control Structures 73

Thus we need to provide statements which should be
executed when condition is true as well as false.

The if .. else statement has the form:
if (condition)

statement];
else

statement2;
braces are used to include multiple statements.
if (condition)

d

Multiple statements;

Multiple statements;

}

The if...... else statement is a two way branching

statement. On execution the condition is evaluated and if the
condition is ‘true’ then set of statements before else is executed
and if condition is ‘false’ then the set of statements after else
are executed.

Example:-

int 1:;

cout<<*Ir=ert an integer\n®;
cin>>1

Lf (L = 0)

(

74 Introduction to C++ Programming
cout<<*number is positive!";
]
else
{
cout<<"number is negative or zZero!");
1
% Program to find the roots of a quadratic

equation.

finclude <iostream.h>
#include <conio.h>
#include <math.h>

int main()

(

clrscri);

float a,b.,c,d,rootl, rooktl;

cout << “*Enter the 3 coefficients a, b, c :* <<

endl ;
cinrza>>b>>c;
if (a==0) (

if (b==0)

cout << *Both a and b cannot be 0 in ax™~2 + bx
+ g2 = D% <€g Y\NO*;

else
{
d=-c/b;

cout << “The solution of the linear eqguation is
* < d << endl;

Manipulators & Control Structures 75

}
}
else
{
d=h*b-4*a*c;
if (d>0)
rootl={-b+sgrt(d))/(2*a};
root2=(-b-sqrt(d))/(2*%a);
cout << "The first root = * << rootl << endl:
cout << "The second root = " << root2 << endl;
}
getch():
return 0;
}
OUTPUT

Enter the 3 coefficients a, b, ¢ : 4 4 -3
The first root = 0.5

The second root = -1.5
Nesting of if......else statement

It is possible to insert an if....else statement inside
another if.... else statement this is called nesting and is used
in programs where we need to check multiple conditions.

Example of nested if.....else

#include <iostream.h>
#include <conio.h>
void main ()

{ int result;

76 Introduction to C++ Programming
cout<<*Enter your marks”;
cin>>»result; Output:-
if (result < 35) Type in exam result
76 (input from the user)
{ You got an A grade
cout<<*your result is fail*;
)
else
{
if (result <50)
(
cout<<*You have passed.”;
]
else
{
cout<<*You got an A grade.”;
1
}
}
%+ Program to enter the sale value and print the

agent’s commission based on the following criteria.

Sales Value Commission
<=10,000 5%
>=10,000 & <=25,000 10%
>25,000 20%

Manipulators & Control Structures

7

#include <iostream.h>
#include <conio.h>
void main()

{

clrsecri);
long int svalue;

float commission:

cout << “Enter the total sale value : * << endl:

cin>>»svalue:
if (svalue<=10000)
{

commission=svalue*5/100;

cout << *For a total sale value of Rs."

svalue << =, *:

cout << “the agent's commission is Rs.”

commission;
}
else if (svalue<=25000)

(

commission=svalue*10/100;

cout << “For a total sale value of Rs.*

svalue << *, *:

cout << *the agent's commission is ERs.

commission:
)
else if (svalue>25000)

{

commission=svalue*20/100;

cout << "For a total sale value of Rs.”*

svalue << *, =;

0

=g

=

<5

o o

78 Introduction to C++ Programming

cout << "“the agent's commission is Rs." <<
commission;

]
getchl):

)
ouTPUT

Fnter the total sale value : 26000
For a total sale value of Rs. 26000, the agent's
commission is Rs. 5200

Switch Statement

This statement is used to take a multi way decision.

Switch statement allows several conditions 1o be
evaluated within one statement rather than using series of
if.....else statements.

Only one variable(or an expression) is tested & all
branches depend on the value of that variable.

The variable must be an integral type (int, long, short or
char).

Each possible value of the variable can control a single
branch.

default case is used to specify instructions to be caried
out if variable doesn't match with any branch .

Manipulators & Control Structures 79

Syntax:-
switch (expression)
{
case labell:
block of statements:
break:
case labell:
block of statements;
break;
case labell:
block of statements;

break;

default:
default statement/s;

break;

Note :- break statement is used to make an exit out of the
block in which it is included.

80

Introduction to C++ Programming

Example 1:

int number;
number=2;
switch (number) OQutput:
{ you have entered two
cage 0 i

)

cout<<"you have entered zero\n”;
break;

case 1 :
cout<<*you have entered one ‘n*;
break;

case 2 :
cout<<*you have entered two ‘n";
break;

default

cout<<*you have entered a no. other than
B:l,2 \n";

break;

Example 2:

void main()

{

char x;

x:hki :

switchx)

case ‘a’' :

Manipulators & Control Structures 81

printf(*vowel \n*);
break;

case ‘e’
printf (*vowel \n*);
break;

case ‘1’
printf(*vowel \n*);

break; Output:

case ‘o' consonant

printf(*vowel \n*);
break;

case '‘uf
printf(*vowel \n”"});
break;

default :
printf (*consonant \n*);

break;

}

Note:-

. The case labels within switch statement must not be
floating point numbers.
Fnr‘ex-_am-]r:ble case ‘4.5" : is not allowed.

» The case labels within switch statement must not be a

string expression,

——

For example case “mumbai”: is not allowed.

82

Introduction to C++ Programming

The case labels within switch statement must not be an
expression.

For example case ‘x+y ' : is not allowed.

Program to enter your choice and print the
message accordingly using switch case
statement

#include <iostream.h>
#include <conio.h>

int main{()

{

clrscri):

int choice;

cout << *1. Talk” << endl;
cout << *2. Eat* << endl;
cout << *3. Play” << endl;
cout << *4. Sleep” << endl;
cout << “Enter your choice : " << endl;
cin>>choice;

switchichoice)

{

case 1 : cout << “*¥You chose to talk...talking
too much is a bad habit.* << endl;

break;

case 2 : cout << "You chose to eat...eating
healthy foodstuff is good.” << endl;

break;

case 3 : cout << “You chose to play...playing
too much everyday is bad."” << endl;

break;

Manipulators & Control Structures 83

case 4 : cout << *You chose to sleep...sleeping
enough is a good habit.” << endl;

break;

default : cout << *You did not choose
anything...so exit this program.® << endl ;

}

getch() ;

)
OUTPUT

Enter your choice : 2

You chose to eat...eating healthy foodstuff is good.
4.2.2. Looping statements

Often in programming, it is necessary to repeat certain
instructions number of times or until a certain condition is
met. It is tedious to simply type a certain statement or group
of statements a large number of times.

The structures that enable computers to perform certain
repetitive tasks are called loops.

C++ gives you a choice of three types of loop, while,
do while and for.

e The while loop keeps repeating an action until an
associated test returns false. This is useful where the
programmer does not know in advance how many times
the loop will be traversed.

. The do while loop is similar, but the test occurs after the
loop body is executed. This ensures that the loop body
will run at least once.

&4 Introduction to C++ Programming

® The for loop is frequently used, usually where the loop
will be traversed a fixed number of times. It is very
flexible, and novice programmers should take care not
to abuse the power it offers.

For loop
Syntax:-
for(initialization; test; increment)
{
/*statements */
}

8 The initialization statement is executed exactly once
before the first evaluation of the test condition.

& It is used to assign an initial value to some variable.

® The initialization statement can also be used to declare
and initialize variables used in the loop.

. The test expression is evaluated each time before the
statements in the for loop executes.

® If the test expression is not true the loop is not executed
and execution continues normally from the statements
following the FOR loop.

. If the expression is true then the statements within the
braces of the loop is executed.

® After each iteration of the loop, the increment statement
is executed.

® The increment action can do other things, such as

decrement.

Manipulators & Control Structures &5

Example of for loop

o/P

for{i = 1; i <= 10; i++)
{

cout<<i;

}
12345678910

Program TO FIND factorial of a number n!
(=1 Xx2x3 x4 XeeeeorveevnnvareeeX (0=1) x 0)

#include<iostream.h>
#include<conio.h>
void main()
{
int p=1, i, nj;
cout<<*accept value of n*;
cin>>n;
f «(i=1; di<=n; 1i++}
\ = p*i;
cout<<®:actorial of "<<n<<* is"<<p;

getchi’

}

Program TO obtain S= 1x2 + 2x3 + 3x4 +
Ax5 +.covreeenrenn.+9Ix10.

#include<iostream.h>
#include<conio.h>
void main{()

(

86 Introduction to C++ Programming

int =0, 1i;
for(i=1; i<=9; i++)
5 = 5 + 1*({i+1l);
cout<<“sum is "<<g;
getch();
}

% TO FIND S= 1/2 + 3/4 + 5/6 + 7/8 +9/10

#include<iostream, h>
#include<conio.h>
void main()
{
float s=0, i;
for(i=1; i<=9; i=i+2)
5 = 8 + 1/(i+1);
cout<<®"sum 1s "<<s5; |
getch();
}

Nesting of For loop

It is possible to insert a for loop within another for loop.
This is called as nesting of loops.

The following program illustrates nesting of loops.

Manipulators & Control Structures 87

% Program to print the following pattern.

*

oW

£ o =

® ok % @

finclude<iostream.h>
#include<conio.h>
void main/()
{
InE. o
for(i=1; i<=4; 1i=1++)
{
fork=1; k<=i; k=k++)
[cbub<d<*®rs]
cout<<'‘\n’:
)
}

While loop

A while loop is the most basic type of loop. This loop
will run as long as the condition is true. While loop is used
when we are not certain that the loop will be executed.

Syntax:
while{condition])

{
Statement/s;

change in the intial condition;

]

88 Introduction to C++ Programming
Here is an example of a while loop.
int a=1; OQutput:
while(a<5) a ig. 4
{ a is 2
cout<<*a is \n"<<a; a is 3
a = a+l; a is 4
}
¢ Program TO FIND sum of Fibonacci series

starting at 1,1 i.e.
1+1+2+3+5+8+13+21+34+55.

#include<iostream.h>

#include<conio. h>

vold main|
{
int s

tn=tn

)

=2, In=1, sn=1,tn;

+ E0;

while(tn<=55)

€ = 5+ E£tn;

fn = 8n;

En = €tn;

tn = fn + s8n;

)

cout<<*sum is5 "<<g-

getch();

}

Manipulators & Control Structures 89

do.....while loop

Do while loop checks the condition after each run. As
a result, even if the condition is zero (false), it will run at least
once. We can use this loop structure when we are certain
about the test condition. Its functionality is exactly the same
as the while loop, except that condition in the do-while loop
is evaluated after the execution of statement instead before,
granting at least one execution of statement even if condition
is never fulfilled.

Syntax:

do
(

Statement/s;
change in the intial condition;

} while (condition);

Note:- the terminating semicolon.

Do....While and while loop are functionally almost
identical, with one important

difference: Do While loop is always guaranteed to
execute at least once, but while loop will not execute at all if
their condition is false on the first execution.

% Program TO CHECK WHETHER THE GIVEN
NUMBER IS A PALLINDROME or NOT.

#include<iostream.h>
#include<conio.h>
void main/()

{

int number, rem, rev=0, temp;

90 Introduction to C++ Programming

cout<<"* Enter the number:*;

cinyynumber ;
temp= number ;

{ rem=number%10;
rev=rev*10+digit;
number=number/10:
} while(number!=0);
if (temp == reverse)
cout<<"the number”<< temp<<*is a palindrome”;
else

cout<<*the number*<< temp<<*is not a palindrome”:

)

Comparison of for, while and do...while.

for while do......... while
for(initialization; test Initialization Initialization
condition; increrment)| while(test condition)| do
{ { {
Body of loop Body of loop Body of loop
} increment increment

b } while (test

condition);

Example:- Example:- Example:-
for{x= 1; x="1 = 1z
x <=5 n=u+1) while{ x == 5) do
{ { {
Yex®x; {Y=x*x; {Y=x%x;
cout<<¥Y<<'\n': cout<<¥Y<<n': |cout<s<¥Y<<n':
} x=x+1: x=x+1:

} } while(x <= 5);

Manipulators & Control Structures

91

Output
1

4

9

16

25

Output
1

4

9

16

25

Qutput

16
25

break statement:-

Keyword break allows to make an exit from a loop.
When break statement is encountered within a loop, execution
of the loop stops and statements following the loop are
executed. It can be used to end an infinite loop, or to force
it to end before its natural end.

Syntax of the statement is,

break:

within a loop it takes the following form,
whilef......)

-

break;

Exit from the loop ,
execution continues
with statements
following loop.

// break loop example

#include <iostream. h>

92 Introduction to C++ Programming

#include <conio.h>

void main ()

{
int nj;
for (n=10; n>0; n--)
{

coRt << N << %, *.
if (n==3)
{

cout << “*countdown stopped!*;

break;

return 0;

OUTPUT:
10, 9, B, 7, 6, 5, 4, 3, countdown stopped!
continue statement:-

Keywords continue skips a particular iteration and
continues with the next. When continue statement is
encountered within a loop, execution of that iteration is
skipped and loop continues with next iterations.

Syntax of the statement is,

continue;

within a loop it takes the following form,

Manipulators & Control Structures 93

—> while(......) |Exit from loop ,
T execution continues
with remaining iterations.

iiiiii

If (condition)

—— continue;

// Example of continue within a for loop
#include <iostream.h>

#include <conio.h>

void main ()

{

for {int n=10; n>0; n--)

if [n==5)
continue;

COUL << It << *, "

}

return 0;

)
OUTPUT:
10, 8; 8, 7. 8: 4 35 3, 1

goto statement:-

This is an unconditional control transfer statement i.e.

control is transferred during execution without any condition
check.

94 Introduction to C++ Programming

Syntax of the statement is,

goto label;

label:

Execution control is transferred when goto label
statement is encountered and is continued from label:

Statements between goto label and label are skipped.

label can be defined by using same rules as used while
defining variable names.

For example:
#include <iostream.h>

void main()

{

int a,b,c;

a=2;

Cal OUTPUT:

Gl value of ¢ is 5
goto sam;

cout<<*value of a is”<<a;
cout<<*value of b is”<<b;
sam:

cout<<*value of c is*<<c;

)

Note :- Generally goto statement is avoided in
programs.

Manipulators & Control Structures 95

ol

wn

10.

11.

REVIEW QUESTIONS

Explain nested if with an example.
What is the difference between = & =
Write a note on if...... else statement.

?

Explain the difference between switch case and if.....else
statements.

Write a note on looping in C++.

What is the use of break and continue statements and
how do they differ from each other.

Why is goto statement not necessary for structured
programming language in C+ +.

Write a program in C++ to find the sum 13-29+3%-
4. .t

Write a program in C+ + to generate the following series
1

21

321

4321

54321

Write a program in C++ to provide an input between
0-9 and print the string equivalent of the same.

Write a program in C+ + to accept a number and count
the no. of digits in the number.

Q Q Q

