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1. Fundamental Concepts

In this chapter, we will review some concepts without elaborating on
the proofs.

1.1 Binary Relation
Definition 1.1.1 A Cartesian product of two sets A and B is the set
of all possible ordered pairs (a,b), where a ∈ A and b ∈ B such that

A×B = {(a,b) : a ∈ A∧b ∈ B}.

Definition 1.1.2 If R ⊆ A×B and A = B, the binary relation R is
called a homogeneous binary relation defined on the set A.

Let R ⊆ A×B be a binary relation defined on a pair of sets A and B.
The set of all a ∈ A such that aRb for at least one b ∈ B is called the
domain of the binary relation R. The set of all b ∈ B such that aRb for
at least one a ∈ A is called the codomain (also referred to as image or
range) of the binary relation R.
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� Example 1.1 The relation "greater than", denoted by >, on the set
A = {1,2,3}. The Cartesian square of the set A is given by

A2 = {(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)}

We find all pairs (a,b) where a > b. This yields:

R1 = {(2,1),(3,1),(3,2)}

�

1.2 Equivalence Relation
Definition 1.2.1 A relation R on a set A is called reflexive if aRa for
every a ∈ A.

Definition 1.2.2 A relation R on a set A is called Symmetric if when-
ever aRb, then every bRa.

Definition 1.2.3 A relation R on a set A is called Transitive if when-
ever aRb, and bRc, then every aRc.

Definition 1.2.4 A relation R on a set A is called an equivalence
relation on A when R is
(1)Reflexive,
(2) Symmetric,
(3) Transitive.

� Example 1.2 The relation = on the set R is undoubtedly the most
familiar equivalence relation for.
(i) R is reflexive, i.e.,

∀a ∈ R⇒ a = a⇒ aRa.

(ii) R is Symmetric, i.e.,
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∀aRb⇒ a = b⇒ b = a⇒ bRa.

(iii) R is Transitive, i.e.,

∀aRb and bRc⇒ a = b∧b = c⇒ b = c⇒ bRc.

�

Definition 1.2.5 Let A be a set and R be an equivalence relation on
A. If a ∈ A, the elements b ∈ A satisfying bRa constitute a subset,
cl[a], of A, called an equivalence set or equivalence class. i.e.,

cl[a] = {b : b ∈ A,aRb}.

� Example 1.3 Let R = {(a,a),(b,b),(c,c)} be equivalence relation
on A = {a,b,c}, then

cl[a] = {a},

cl[b] = {b}

and

cl[c] = {c}.

�

� Example 1.4 Consider the relation of congruence "mod n" on Z, and
let a ∈ Z. The congruence class of a is defined by

{x ∈ Z : x = a+ kn, k ∈ Z}.

On the other hand, the equivalence class of a is, by definition,

{x ∈ Z : x≡ a, mod n}.
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Since x≡ a, mod n if and only if x = a+kn for some k ∈ Z, these two
subsets coincide; that is, the equivalence class cl[a] is the congruence
class. �

Proposition 1.2.1 If R =≡ is an equivalence relation on a set A , then
x≡ y if and only if cl[x] = cl[y].

Proof. Assume that x≡ y. If z ∈ cl[x], then z≡ x, and so transitivity
gives z≡ y; hence cl[x]⊂ cl[y]. By symmetry, y≡ x, and this gives the
reverse inclusion cl[y]⊂ cl[x]. Thus, cl[x] = cl[y].
Conversely, if cl[x] = cl[y], then x ∈ cl[x], by reflexivity, and so x ∈
cl[x] = cl[y]. Therefore, x≡ y. �

Proposition 1.2.2 Suppose that R =≡ is an equivalence relation on a
set A and if cl[x]∩ cl[y] = φ , then cl[x] = cl[y].

Theorem 1.2.3 An equivalence relation R on a set A effects a partition
of A, and conversely, a partition of A defines an equivalence relation
on A.

1.3 Mapping or Functions
Definition 1.3.1 Let X and Y be (not necessarily distinct) sets. A
function (mapping) f from X to Y , denoted by

f : X → Y ,

is a subset f ⊂ X ×Y such that, for each a ∈ X , there is a unique
b ∈ Y with (a,b) ∈ f .

For each a ∈ X , the unique element b ∈ Y for which (a,b) ∈ f is
called the value of f at a, and b is denoted by f (a). Thus, f consists
of all those points in X ×Y of the form (a, f (a)). If f : X → Y , call
X the domain of f , call Y the target (or codomain) of f , and define
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the image (or range) of f , denoted by im f , to be the subset of Y
consisting of all the values of f .

Definition 1.3.2 Functions f : X → Y and g : A→ B are equal if
X = A, Y = B, and the subsets f ⊂ X×Y and g⊂ A×B are equal.

Definition 1.3.3 If f : X → Y is a function, and if A ⊂ X , then the
restriction of f to A is the function f pA: X → Y defined by ( f pA
)(a) = f (a) for all a ∈ A.

Proposition 1.3.1 Let f : X→Y and g : A→ B be functions, then f = g
if and only if X = A, Y = B, and f (a) = g(b) for all a ∈ A.

Definition 1.3.4 A function f : X →Y is injective (or one-to-one) if,
whenever

∀x,y ∈ X , f (x) = f (y)⇒ x = y.

or

∀x,y ∈ X , x 6= y⇒ f (x) 6= f (y).

Definition 1.3.5 A function f : X → Y is surjective (or onto) if

im f = Y .

Thus, f is surjective if, for each y∈Y , there is some x∈X (probably
depending on y) with y = f (x).

Definition 1.3.6 If f : A→ B and g : B→C are mappings (the target
of f is the domain of g), then their composite, denoted by g ◦ f ,
is the function A→ C given by g ◦ f : x→ g( f (x)); that is, first
evaluate f on x and then evaluate g on f (x).

Proposition 1.3.2 Composition of mappings is associative: if

f : X → Y , g : Y → Z and h : Z→W ,
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are mappings, then

h◦ (g◦ f ) = (h◦g)◦ f .

Definition 1.3.7 A mapping f : X → Y is bijective (or is a one-one
correspondence) if it is both injective and surjective.

Definition 1.3.8 A map f : X → Y has an inverse if there exists a
map g : Y → X with both composites g◦ f and f ◦g being identity
maps.

Proposition 1.3.3 If f : X → Y and g : Y → X are maps such that (g◦
f )(x) = e(x) = x, then f is injective and g is surjective.

Proposition 1.3.4 A function f : X→Y has an inverse g : Y → X if and
only if it is a bijection.

Proposition 1.3.5 Let X and Y be sets, and let f : X →Y be a mapping.
(i) If A⊂ B are subsets of X , then f (A)⊂ f (B), and if C ⊂ D are

subsets of Y , then f−1(C)⊂ f−1(D).
(ii) If C⊂Y , then f f−1(C)⊂C; if f is a surjection, then f f−1(C) =

C.
(iii) If A⊂ X , then A⊂ f−1 f (A).

1.4 Binary Operation
Definition 1.4.1 A binary operation ∗ on a set G is a function map-
ping G×G into G. For each (a,b) ∈ G×G, we will denote the
element ∗((a,b)) of G by a∗b i.e.,

∗ : G×G→ G,.

(a,b)→ a∗b.



2. Groups

Group theory is a branch of mathematics and abstract algebra that
analyses the algebraic structures known as groups. Other well-known
algebraic structures, such as rings, fields, and vector spaces, can also
be regarded as groups with additional operations and axioms. Groups
appear frequently in mathematics, and group theory’s approaches have
affected many aspects of algebra. Linear algebraic groups and Lie
groups are two aspects of group theory that have advanced to the point
where they have become separate subject areas.

The history of group theory, which is a branch of mathematics
that studies groups in all of their forms, has unfolded in several par-
allel strands. The theory of algebraic equations, number theory, and
geometry are the three historical roots of group theory. Early re-
searchers in the field of group theory included Joseph Louis Lagrange
(1736−1813), Niels Henrik Abel(1802−1829), and Évariste Galois
(1811−1832).
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Why is group theory important?
Group theory is the study of symmetry in general. When working with
an ostensibly symmetric object, group theory can aid in the analysis.
Anything that remains invariant under some modifications is referred
to as symmetric. This can be applied to geometric figures (a circle
is highly symmetric and invariant under any rotation), but it can also
be applied to more abstract objects such as functions: x2 + y2 + z2 is
invariant under any rearrangement of x,y, and z, and the trigonometric
functions sin(t) and cos(t) are invariant when t is replaced with t +2.

Without group theory, modern particle physics would not exist; in
fact, group theory predicted the existence of many elementary particles
long before they were discovered experimentally.

Molecules and crystals have diverse symmetries that influence their
structure and behavior. As a result, group theory is an important tool
in various branches of chemistry.

With group theory, traditional algebraic problems have been solved.
Mathematicians discovered analogues of the quadratic formula for
roots of generic polynomials of degree 3 and 4 throughout the Re-
naissance. The cubic and quartic formulas, like the quadratic formula,
express the roots of all polynomials of degree 3 and 4 in terms of
polynomial coefficients and root extractions (square roots, cube roots,
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and fourth roots). The search for a quadratic formula equivalent for
the roots of all polynomials of degree 5 or above proved fruitless. The
failure to establish such broad formulas was explained in the 19th

century by Evariste Galois’ discovery of subtle algebraic symmetry in
the roots of a polynomial.

The mathematics of public-key cryptography uses a lot of group
theory. Different cryptosystems use different groups, such as the group
of units in modular arithmetic and the group of rational points on
elliptic curves over a finite field.

2.1 Definitions and Examples
Definition 2.1.1 Let G be a non empty set, together with a binary
operation ?, then the couple (G,?) is said to be a semi-group if
(i) a? (b? c) = (a?b)? c for all a,b,c ∈ G.

Semi-group = binary operation + associative law.

� Example 2.1 Each of the following sets with the usual definition of
addition and multiplication of numbers are a semi-group:

1. N the set of all natural numbers.
2. Z the set of all integer numbers.
3. Q the set of all rational numbers.
4. R the set of all real numbers.
5. C the set of all complex numbers.

�

Definition 2.1.2 Let G be a non empty set, together with a binary
operation ?, then the couple (G,?) is said to be a monoid if it
satisfies the following axioms
(i) a? (b? c) = (a?b)? c for all a,b,c ∈ G.

(ii) ∃ e ∈ G such that a? e = e?a = a for all a ∈ G.
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A monoid is a semigroup with an identity.

� Example 2.2 Each of the following sets with the usual definition of
addition and multiplication of numbers are a semi-group:

1. Z the set of all integer numbers.
2. Q the set of all rational numbers.
3. R the set of all real numbers.
4. C the set of all complex numbers.

�

Definition 2.1.3 Let G be a non empty set, together with a binary
operation ?, then the couple (G,?) is said to be a group if it satisfies
the following axioms
(i) a? (b? c) = (a?b)? c for all a,b,c ∈ G.

(ii) ∃ e ∈ G such that a? e = e?a = a for all a ∈ G.

(iii) ∀ a∈G∃a−1 ∈G such that a?a−1 = a−1?a = e for all e∈G.

A group is a monoid such that each a ∈ G has an inverse a−1 ∈ G.

If we define a binary algebraic structure as a set with a binary
operation on it, then we have the following schematic:

Binary algebraic structure ⊇ Semi group ⊇Monoid ⊇ Group

Definition 2.1.4 A group (G,?) is called a commutative or abelian
group if
(i) a?b = b?a for all a,b,c ∈ G.

� Example 2.3 Each of the following sets with the usual definition of
addition and multiplication of numbers are a semi-group:

1. Q∗ =Q−{0}.
2. R∗ = R−{0}.
3. C∗ = C−{0}.
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�

� Example 2.4 Show that (Z5,⊕5) is abelian group?
Solution:
We represent (Z5,⊕5) by the following table:

⊕5 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Table 2.1: (Z5,⊕5)

From the above table, we find:
(i) ⊕5 is a binary operation on Z5.
(ii) Associative law holds in general for the two operations ⊕n and

⊗n on Z5. So ⊕5 is associative on Z5.
(iii) 0 is the identity.
(iv)

The element 0 1 2 3 4

The inverse 4 3 2 1 0

(v) ⊕5 is commutative.
Thus, (Z5,⊕5) is abelian group �

� Example 2.5 (Zn,⊕n) is abelian group where Zn = {0,1, ...,n−1}. �
� Example 2.6 Show that (G,×) is abelian group where G= {3n : n ∈ Z}
and × the usual multiplication?
Solution:
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(i) Let 3n, 3m ∈ G, then 3n×3m = 3n+m ∈ G ∀m,n ∈ Z.
(ii) Let 3n, 3m, 3u ∈ G, then

3n× (3m×3u) = 3n×3m+u

= 3n+m+u

= 3n+m×3u

= (3n×3m)×3u,

where n,m,u ∈ Z.
(iii) The identity is 30 = 1.
(iv) ∀ 3n ∈ G∃ 3−n ∈ G such that 3n×3−n = 3−n×3n = 30.

(v) Let 3n, 3m ∈ G, then

3n×3m = 3n+m

= 3m+n

= 3m×3n.

�

� Example 2.7 Show that (F(A),◦) is not abelian group where F(A)
is the set of all 1-1 corresponding mappings from A to A and ◦ the
composition of mappings?
Solution: It easy to show that. �

2.2 Properties
Let (G,?) be a group, then the following properties are satisfied
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(1) The identity element e is unique.

proof:
Let e1,e2 be two identities in G, then

e1 ? e2 = e1 = e2.

(2) The inverse element a−1 is unique.

proof:
Let b,c be two inverses of a in G, then

b = b? e = b? (a? c) = (b?a)? c = e? c = c.

(3) (a−1)−1 = a.

proof:
For a−1 ?a = a?a−1 = e.

(4) an = a?a? .... ?a.
(5) a−n = a−1 ?a−1 ? .... ?a−1.

Theorem 2.2.1 Let (G,?) be a group, then the cancellation law hold
i.e.;

a? x = a? y⇒ x = y.

x?a = y?a⇒ x = y.

Proof. Let a,x,y ∈ G, then
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a? x = a? y ⇒ a−1 ? (a? x) = a−1 ? (a? y)
⇒
(
a−1 ?a

)
? x =

(
a−1 ?a

)
? y

⇒ e? x = e? y
⇒ x = y.

Similarly, for x?a = y?a⇒ x = y. �

(6) The equations

a? x = b,

y?a = b,

have unique solutions

x = a−1 ?b,

y = b?a−1,

respectively.

proof:
For the equation a? x = b.
L.H.S = a? x = a? (a−1 ?b) = (a?a−1)?b = e?b = b,
so x = a−1 ?b is a solution.
Now, we prove the uniqueness. Let x1, x2 be two solutions of the
equation a? x = b, then

a? x1 = b, a? x2 = b,

this lead to

a? x1 = a? x2,

so, x1 = x2 by cancellation law.
Similarly, for the equation y?a = b has solution y = b?a−1.
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� Example 2.8 Find a solution of the equation 2x = 3 in a group
(Z5,⊕5).
Solution
Since

2⊕5 x = 3⇒ x = 2−1⊕5 3

= 3⊕5 3

= 1.

�

� Example 2.9 Find a solution of the equation 5x = −2 in a group
(Z,?), where a?b = a+b−3 ∀a,b ∈ Z.
Solution
Since

5? x =−2⇒ x = 5−1 ? (−2)

= (6−5)? (−2)

= 1? (−2)

= 1+(−2)−3

=−4.

�

(7) (a?b)−1 = b−1 ?a−1 ∀a,b ∈ G.

proof:
Let a,b ∈ G, then

(a?b)?
(

b−1 ?a−1
)
= a?

(
b?
(

b−1 ?a−1
))

= a?
((

b?b−1
)
?a−1

)
= a?

(
e?a−1

)
= a?a−1 = e.

Thus, (a?b)−1 = b−1 ?a−1∀a,b ∈ G.
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� Example 2.10 The Klein 4-group is an Abelian group.
Let G = {e, i, j,k}, then (G,?) is a group where i ? j = k = j ? i and
i? i = e = j ? j = k ? k.

� Example 2.11 The Quaternion Group.
Let G = {±1,±i,± j,±k}. Define product on G by usual multiplica-
tion together with

i2 = j2 = k2 =−1, i j =− ji = k
jk =−k j = i
ki =−ik = j

then G forms a group, but G is not abelian as i j 6= ji.

� Example 2.12 The General Linear Group.
The set of all matrices of order n×n over real number with non-zero
determinant forms a non abelian group under matrix multiplication.
This group called general linear group of n×n, i.e.,

GL(n,R) = {A : A ∈Mn×n,det(A) 6= 0}.

� Example 2.13 The Special Linear Group.
The set of all matrices of order n×n over real number with determinant
1 forms a group under matrix multiplication. This group called special
linear group of n×n, i.e.,

SL(n,R) = {A : A ∈Mn×n,det(A) = 1}.

Definition 2.2.1 Let (G,?) be a group, then the order of a group
means the number of its distinct elements, and denoted |G| or o(G).

R We say that G is a finite group if its order is finite; otherwise, it is an
infinite group.



2.2 Properties 23

� Example 2.14 If G = Z6, then | G |= 6, and therefore G is a finite
group. On the other hand, Q is an infinite group. �

Definition 2.2.2 The order of an element g in a group G is the small-
est positive integer n such that

gn = e or ng = e.

If no such integer exists, we say that g has infinite order. The order
of an element g is denoted by |g|.

� Example 2.15 Consider Z10 under addition modulo 10. Find |0|, |2|,
|5|, |6| and |7|?
Solution:
Since

0⊕10 0 = 0,

so |0|= 1.
Since

2.2 = 2⊕10 2 = 4,

3.2 = 2⊕10 2⊕10 2 = 6,

4.2 = 2⊕10 2⊕10 2⊕10 2 = 8,

5.2 = 2⊕10 2⊕10 2⊕10 2⊕10 2 = 0,

so |2|= 5.
Similar computations show that |5|= 2, |6|= 5 and |7|= 10. �
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2.3 Relation between semi group and group
Theorem 2.3.1 A semi group G is a group iff the equations

a? x = b,

y?a = b,

have a solution for all a,b ∈ G.

Proof. The first direction. Let G be a group, the the equations a? x =
b,y?a = b, have a solution (by property (6) ).
The other direction. Let G be a semi group and the equations

a? x = b,

y?a = b,

have a solution. (ii) Since a? x = b has solutions in G, then a? x = a
has solutions in G this means there exists an identity element e ∈ G
such that a? e = e?a = a.
(iii) a? x = b has solutions in G, then a? x = e has solutions in G this
means there exists an inverse element a−1 ∈ G such that a ? a−1 =

a−1 ?a = e. Thus, G is a group. �

Theorem 2.3.2 A finite semi group G is a group iff the cancelation
laws hold.

Proof. The first direction. If G is a group, then the cancelation law
hold.
The other direction. Let G = {a1,a2, . . . ,an} be a finite semi group
in which cancellation laws hold. Let a ∈ G be any element, then by
closure property aa1,aa2, . . . ,aan are all in G. Suppose any two of
these elements are equal say, aai = aa j for some i 6= j then ai = a j by
cancellation. But ai 6= a j as i 6= j. Hence no two of aa1,aa2, . . . ,aan

can be equal. These being n in number, will be distinct members of
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G (Note o(G) = n). Thus if b ∈ G be any element then b = aai for
some i i.e., for a,b ∈ G the equation ax = b has a solution (x = ai) in
G. Similarly, the equation ya = b will have a solution in G. G being a
semi-group, associativity holds in G. Hence G is a group. �
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2.4 Exercise
Exercise 2.1 1. If G is a group in which (ab)n = anbn for three

consecutive integers n and any a, b in G, then show that G is
abelian.

2. Suppose (ab)n = anbn for all a,b ∈ G where n > 1 is a fixed
integer. Show that
(i)(ab)n−1 = bn−1an−1.
(ii) anbn−1 = bn−1an.
(iii)

(
aba−1.b−1)n(n−1)

= e for all a,b ∈ G
3. Which of the following is group? Give reasons for your asser-

tion.
(i) G = {±1,±i}, where i =

√
−1 under multiplication.

(ii) G = set of rational numbers under composition ∗ defined
by a∗b = ab

2 ,a b ∈ G.
(iii) G =

{
1,w,w2} where w is cube root of unity under mul-

tiplication.

(iv) Set of all matrices of the form
[

cosθ sinθ

−sinθ cosθ

]
,θ ∈ R,

under matrix multiplication.
(v) Set of all 2×2 matrices over integers under matrix multi-
plication.
(vi) G = {2,4,6,8} under multiplication modulo 10.
(vii) G= {(a,b) | a,b∈Z} under ∗ defined by (a,b)∗(c,d) =
(ac+bd,ad +bc).

4. Suppose the table below is a group table. Fill in the blank
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entries.
e a b c d

e e − − − −
a − b − − e
b − c d e −
c − d − a b
d − − − − −

5. Prove that in a group, (ab)2 = a2b2 if and only if ab = ba.
6. Prove that in a group, (ab)−2 = b−2a−2 if and only if ab = ba.
7. In the group Z12, find |a|, |b|, and |a+b| for each case.

(i) a = 6, b = 2.
(ii) a = 3, b = 8.
(iii) a = 5, b = 4.

�





3. Subgroups

Definition 3.0.1 A non-empty subset H of a group G is said to be a
subgroup of G, if H itself is a group w.r.t. the same binary operation
in G and we denoted by H ≤ G.

R If H ≤ G and K ≤ H, then K ≤ G.

If G is a group with identity element e then the subsets {e} and G are
trivially subgroups of G and we call them the trivial subgroups (or
improper subgroups). All other subgroups will be called non-trivial
(or proper subgroups).

� Example 3.1 The set ZE of all even integers forms a subgroup w.r.t.
addition in the additive group of all integers. �

� Example 3.2 Let (G= {±1,±i},×) be a group and let (H = {±1},×),
(K = {±i},×), then H ≤ G but K � G. �
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3.1 Subgroup Tests
It is not necessary to directly check the group axioms when deciding
whether or not a subset H of a group G is a subgroup of G. The
following three theorems show that a subset of a group is a subgroup
using basic tests.

Theorem 3.1.1 A non empty subset H of a group G is a subgroup of
G if and only if
(i) a,b ∈ H⇒ ab ∈ H.
(ii) a ∈ H⇒ a−1 ∈ H.

Proof. The first direction. Let H be a subgroup of G then by definition
it follows that (i) and (ii) hold.
The other direction. Suppose that the given conditions hold in H, then
• Closure holds in H by (i).
• Let a,b,c ∈H⇒ a,b,c ∈G⇒ a(bc) = (ab)c Hence associativ-

ity holds in H.
• For any a ∈ H,a−1 ∈ H and so by (i)

aa−1 ∈ H⇒ e ∈ H

thus H has identity.
• Inverse of each element of H is in H by (ii).

Hence H satisfies all conditions in the definition of a group and thus it
forms a group and therefore a subgroup of G. �

� Example 3.3 Let G be an abelian group with identity e and H,K ≤G.
Show that HK{hk | h ∈ H,k ∈ K} is a subgroup of G
Solution:
To prove HK ≤ G we apply Theorem 3.1.1.
Since e = ee ∈ HK. So HK is non empty subset.
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Assume that a, b ∈ HK such that a = h1k1 and a = h2k2. Now, we
must show that ab ∈ HK.

ab = h1k1h2k2

= (h1h2)(k1k2) ∈ HK.

Also, we show that a−1 ∈ HK

a−1 = (h1k1)
−1

= k−1
1 h−1

1

= h−1
1 k−1

1 ∈ HK,

Therefore, by Theorem 3.1.1, HK ≤ G. �

Theorem 3.1.2 A non empty subset H of a group G is a subgroup of
G if and only if a,b ∈ H ⇒ ab−1 ∈ H.

Proof. The first direction. Suppose that H is a subgroup of G then,
a,b ∈ H⇒ ab−1 ∈ H
The other direction. Assume that the given condition hold in H.
• Associativity holds in H follows as in previous theorem.
• Let a ∈ H be any element (H 6= ϕ) then

a, a ∈ H⇒ aa−1 ∈ H⇒ e ∈ H.

So H has identity.
• For any a ∈ H, as e ∈ H

ea−1 ∈ H⇒ a−1 ∈ H

i.e., H has inverse of each element.
• For any

a,b ∈ H, a,b−1 ∈ H⇒ a
(

b−1
)−1
∈ H

⇒ ab ∈ H
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i.e., H is closed under multiplication.
Hence, H is a group w.r.t. multiplication in G. �

� Example 3.4 Let G be an abelian group with identity e. Show that
H = {x ∈ G | x2 = e} is a subgroup of G
Solution:
To prove H ≤ G we apply Theorem 3.1.2.
Since every element in H has the property x2 = e. So, e2 = e i.e., H is
non empty subset.
Now, we assume that a, b ∈ H⇒ a2 = e, b2 = e, and we must show
that (ab−1)2 = e.

(ab−1)2 = ab−1ab−1

= a2(b−1)2

= a2(b2)−1

= ee−1 = e.

Therefore, ab−1 ∈ H, by Theorem 3.1.2, H ≤ G. �

� Example 3.5 Let G be the group of nonzero real numbers under
multiplication, is the following subgroup of G
(i) H = {x ∈ G | x = 1 or x is irrational }
(ii) K = {x ∈ G | x≥ 1}.
Solution:
(i) H is not a subgroup of G, since

√
2 ∈ H but

√
2 ·
√

2 = 2 /∈ H.

(ii) K is not a subgroup, since 2 ∈ K but 2−1 /∈ K. �

Theorem 3.1.3 A non empty finite subset H of a group G is a sub-
group of G if and only if H is closed under multiplication.

Proof. The first direction. Let H be a subgroup of G then it is closed
under multiplication by definition, so there is nothing to prove.
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The other direction. Suppose that H be a finite subset s.t.,

a,b ∈ H⇒ ab ∈ H

Now,

a,b,c ∈ H⇒ a,b,c ∈ G

⇒ a(bc) = (ab)c

So, associativity holds in H, and therefore H is a semi-group.
Again, trivially the cancellation laws hold in H (as they hold in G ) and
thus H is a finite semi-group in which cancellation laws hold. Hence
H forms a group. �

Definition 3.1.1 Let G be a group, then

Z(G) = {x : x ∈ G, gx = xg ∀ g ∈ G}

is called center of G.

Theorem 3.1.4 Z(G)≤ G.

Proof. Suppose that Z(G) be the centre of the group G. Then Z(G) 6=
ϕ as e ∈ Z(G).

Let x,y ∈ Z(G)⇒ xg = gx, yg = gy ∀g ∈ G, then

g−1x−1 = x−1g−1, g−1y−1 = y−1g−1

Now, we show xy−1 ∈ Z(G).
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Since
g
(

xy−1
)
= (gx)y−1

= (xg)y−1

= (xg)y−1
(

g−1g
)

= xg
(

y−1g−1
)

g

= xg
(

g−1y−1
)

g

= x
(

gg−1
)

y−1g

=
(

xy−1
)

g for all g ∈ G

⇒ xy−1 ∈ Z(G)

Hence Z(G) is a subgroup. �

R G is abelian iff Z(G) = G.

Definition 3.1.2 Let G be a group and for any element a ∈ G. The
subset

N(a) = {x ∈ G | xa = ax}

is called normalize or centralizer of a in G.

It is easy to see that normalize is a subgroup of G.

� Example 3.6 Let G be the group of all 2×2 non singular matrices
over the reals. Find center of G?

Solution:

Let
[

a b
c d

]
∈ Z(G) , then it should commute with all elements of

G. In particular, we should have[
a b
c d

][
0 1
1 0

]
=

[
0 1
1 0

][
a b
c d

]



3.1 Subgroup Tests 35

this lead to b = c,a = d.
Also [

a b
c d

][
1 0
1 1

]
=

[
1 0
1 1

][
a b
c d

]
gives [

a+b b
c+d d

]
=

[
a b
a+ c b+d

]
this leads to a+b = a,b = c = 0

Hence any element
[

a b
c d

]
of Z(G) we writ it in this form

[
a 0
0 a

]
.

In other words, elements of the centre Z(G) are the 2×2 scalar matri-
ces of G

Theorem 3.1.5 Let H ≤G and K ≤G. Then H∩K ≤G , but H∪Kis
not necessary to be subgroup of G.

Proof. We prove the first part of this theorem and the next example
shows the last part.
Now, we show H ∩K ≤ G

Let a,b ∈ H ∩K⇒ a,b ∈ H ∧a,b ∈ K

⇒ ab−1 ∈ H ∧ab−1 ∈ K

⇒ ab−1 ∈ H ∩K

⇒ H ∩K ≤ G.

�

� Example 3.7 Prove that union of two subgroups may not be a sub-
group.
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Solution:
Suppose that (Z,+) is the group of integers and let H={2n | n∈Z},

K = {3n | n ∈ Z}, then it is easy to show H and H subgroups of Z.
Indeed

2n−2m = 2(n−m) ∈ H

Now H ∪K is not a subgroup as 2,3 ∈H ∪K but 2−3 =−1 /∈H ∪K.
�

The next theorem obvious the union of two subgroups may be a sub-
group.

Theorem 3.1.6 Union of two subgroups is a subgroup iff one of them
is contained in the other.

Proof. The first direction. Let H,K be two subgroups of a group G
and suppose H ⊆ K then H ∪K = K which is a subgroup of G.

The other direction. Let H,K be two subgroups of G such that
H∪K is also a subgroup of G. We show one of them must be contained
in the other. Suppose it is not true, i.e.,

H * K⇒ ∃ x ∈ H and x /∈ K,

K * H⇒ ∃ y ∈ K and y /∈ H,

then x,y ∈ H ∪K and since H ∪K is a subgroup,

xy ∈ H ∪K⇒ xy ∈ H or xy ∈ K

If xy ∈ H, then as x ∈ H, x−1(xy) ∈ H⇒ y ∈ H, which is not true.
Also, if xy ∈ K, then as y ∈ K, (xy)y−1 ∈ K⇒ x ∈ K which is not true.
i.e., either way we land up with a contradiction. Hence our supposition
that H * K and K * H is wrong.
Thus, one of the two is contained in the other. �
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3.2 Exercise
Exercise 3.1 1. Show that A= {0,2,4}≤Z6 under addition mod-

ulo 6.
2. Prove that if a is the only element of order 2 in a group, then

a lies in the center of the group.
3. Complete the statement “A group element x is its own inverse

if and only if |x|= .....

4. Let G be a group, and let a ∈ G. Prove that N(a) = N(a−1).

�





4. Cyclic Groups

Cyclic groups are the most fundamental type of group; we’ve already
seen instances like Zn. Cyclic groups are useful because their entire
structure can be defined easily.

In this chapter, we define and classify all cyclic groups and to
understand their subgroup structure.

4.1 Definitions and Examples
Definition 4.1.1 Let G be a group and a ∈ G, then the cyclic sub-
group generated by a is the set of all powers of a in G, and we
write

< a >= {an : n ∈ Z}.

The group G is cyclic iff there exists an a ∈ G such that G =< a >.

� Example 4.1 The set Zn = {0,1, ...,n−1} for n≥ 1 is a cyclic group
under addition modulo n. Again, 1 and −1 = n−1 are generators. �

� Example 4.2 Show that Z8 =< 1 >=< 3 >=< 5 >=< 7 >.
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Solution:
We note that

< 3 >= {3,3+3,3+3+3,3+3+3+3, ....}
= {3,6,1,4,7,2,5,0}.

Thus, Z8 =< 3 > . Similarly, we find Z8 =< 1 >=< 5 >=< 7 >. �

Theorem 4.1.1 Let G be a group and a ∈ G, then 〈a〉 ≤ G.

Proof. Since e = a0 ∈ 〈a〉. Let am,an ∈ 〈a〉, then

aman = am+n ∈ 〈a〉.

Finally, if am ∈ 〈a〉, then (am)−1 = a−m ∈ 〈a〉. Therefore, 〈a〉≤G. �

Theorem 4.1.2 Every subgroup of a cyclic group is cyclic.

Proof. Suppose that G = 〈a〉, and H ≤ G. If H = {e}, then H = 〈e〉,
and we are done.
Now, we assume that H is not the trivial subgroup, then H contains
am, for some m ∈ Z+. If m < 0, then H also contains (am)−1 = a−m,
so H contains a positive power of a. Let n be the smallest positive
integer such that an ∈ H. We claim that H = 〈an〉 . Surely H contains
every power of an, so 〈an〉 ≤ H. But suppose ak ∈ H. Then write
k = nq+ r, with q,r ∈ Z and 0 ≤ r < n. Now, H contains ak and
(an)−q, and therefore ak (an)−q = ak−nq = ar. But n is the smallest
positive integer such that an ∈ H. As r < n, we can only have r = 0.
Thus, ak = (an)q ∈ 〈an〉 . That is, H ≤ (an), proving the claim. �

� Example 4.3 The integers Z form a cyclic group under addition,
where Z=< 1 >=<−1 >. The subgroup generated by 2 is the group
of even numbers under addition:

< 2 >= {2m : m ∈ Z}= 2Z⊆ Z.
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�

R The generator of a cyclic group is not unique.

4.2 Classification of Cyclic Groups
Theorem 4.2.1 A cyclic group is abelian group.

Proof. Let G =< a > and x,y ∈ G, then x = an, y = am ∀n,m ∈ Z+.
Now,

xy = anam

= an+m

= am+n

= aman

= yx.
�

R The converse is false for example the Klein 4-group is abelian but not
cyclic.

Theorem 4.2.2 Let G be a group, and let a ∈ G, then
(i) If | a |= ∞, then ai = a j iff i = j.
(ii) If | a |= n, then < a >= {e,a,a2, ....,an−1} and ai = a j iff

n | i− j.

Proof. (i) If | a |= ∞, then there no nonzero n such that an 6= e. Since

ai = a j⇔ ai− j = e

⇔ ai− j = a0

⇔ i− j = 0

⇔ i = j.
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(ii) Suppose that | a |= n and we prove that < a>= {e,a,a2, ....,an−1}.
Suppose that ak ∈< a >, by the division algorithm,

k = qn+ r with 0≤ r < n,

then

ak = aqn+r

= aqnar

= (an)qar

= (e)qar

= ear

= ar,

so ak ∈{e,a,a2, ....,an−1}. This proves that < a>= {e,a,a2, ....,an−1}.
Next, Let ai = a j and prove that n | i− j.

Now, since ai = a j⇒ ai− j = e. Again, by the division algorithm,

i− j = qn+ r with 0≤ r < n,

then
ai− j = aqn+r

e = aqnar

= (an)qar

= (e)qar

= ear

= ar,

since | a |= n such that an is the identity, we must have r = 0, thus
n | i− j.
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Conversely, if i− j = nq, then

ai− j = aqn

= (an)q

= (e)q

= e,

thus ai = a j. �

Corollary 4.2.3 Let G be a group and a ∈ G, then | a |=|< a >|

Corollary 4.2.4 Let G be a group and a ∈ G with | a |= n. If ak = e,
then n | k.

Proof. Suppose that
ak = e = a0,

then this lead to n | k by Theorem 4.2.2. �

Corollary 4.2.5 Let G be a finite group. If a,b ∈ G with ab = ba,
then | ab | divides | a || b |.

Proof. Suppose that | a |= m and | b |= n, then

(ab)mn = (am)n(bn)m

= (e)n(e)m

= e,

So by Corollary 4.2.4 and Theorem 4.2.2, we have the required. �

Theorem 4.2.6 Let G be a group and a ∈ G with | a |= n, k ∈ Z+,
then
(i) < ak >=< agcd(n,k) >,
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(ii) | ak |= n
gcd(n,k)

.

Proof. (i) Suppose that d = gcd(n,k) and let k = dr. Since ak =

(ad)r, this lead to < ak >⊆< agcd(n,k) >.
By the gcd theorem, we have d = ns+ kt. So

ad = ans+kt

= ansakt

= (an)s(ak)t

= (e)s(ak)t

= (e)(ak)t

= (ak)t ∈< ak > .

This lead to < agcd(n,k) >⊆< ak >.
Therefore, < ak >=< agcd(n,k) >.

(ii) First, we prove that
| ad |= n

d
,

for any d | n.
Since (ad)

n
d = an = e, this lead to | ad |≤ n

d .

On the other hand, let i ∈ Z+ and i < n
d , then (ad)i 6= e. Thus,

| ad |= n
d
.

Now, suppose that d = gcd(n,k) to obtain

| ak |=|< ak >|
=|< agcd(n,k) >|
=| agcd(n,k) |

=
n

gcd(n,k)
,
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which is a required.
�

� Example 4.4 Let G be a group and a ∈ G. For | a |= 30, find the
following

1. < a26 >, | a26 |.
2. < a18 >, | a18 |.
3. < a17 > and | a17 |.

Solution:

1. Since gcd(30,26) = 2, we have

< a26 >=< a2 >

= {e,a2,a4,a6, ...,a28}.

Also, | a26 |=| a2 |= 30
2

= 15.
2. Since gcd(30,18) = 6, we have

< a18 >=< a6 >

= {e,a6,a12,a18,a24}.

Also, | a18 |=| a6 |= 30
6

= 5.

3. Since gcd(30,17) = 1, we have

< a17 >=< a1 >

= {e,a1,a2, ...,a29}.

Also, | a17 |=| a1 |= 30
1

= 30.
�
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Corollary 4.2.7 Let G be a finite cyclic group and a ∈ G, then

| a | | | G | .

Corollary 4.2.8 Let | a |= n, then
(i) < ai >=< a j > iff gcd(n, i) = gcd(n, j).
(ii) | ai |=| a j | iff gcd(n, i) = gcd(n, j).

Corollary 4.2.9 Let | a |= n, then
(i) < a >=< a j > iff 1 = gcd(n, j).
(ii) | a |=| a j | iff 1 = gcd(n, j).

Corollary 4.2.10 Let k ∈ Zn, then < k >= Zn iff gcd(n,k) = 1.

4.3 Classification of Subgroups of Cyclic Groups

In this section, we how many subgroups of a finite cyclic group and
how to find them.

Theorem 4.3.1 Let |< a >|= n, | H |= m where H ≤< a >, then
m | n; and, for each k | n, the group < a > has exactly one subgroup
of order k—namely, < a

n
k >.

Proof. Assume that |< a >|= n and H is any subgroup of < a >. So,
we write H =< am >, where m is the least positive integer such that
am ∈ H. Since e = an, we have n = mq these lead to m | n.
Finally, let k ∈ Z+ with k | n. Since |< a

n
k >|= n

gcd(n, n
k)

= k. Now,
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let H =< am >≤< a > and | H |= k, then m = gcd(n,m) and

k =|< am >|
=|< agcd(n,m) >|

=
n

gcd(n,m)

=
n
m
,

thus, m =
n
k

and H =< a
n
k >. �

� Example 4.5 Find all subgroup of a cyclic group < a > where a has
order 30?
Solution: We assume that < am >≤< a > where m | 30. By the
Theorem 4.3.1 we find if k | 30, the subgroup of k is < a

30
k >. So the

list of subgroup of < a > is

< a >=
{

e,a,a2, . . . ,a29
}
, |< a >|= 30,

< a2 >=
{

e,a2,a4, . . . ,a28
}
, |< a2 >|= 15,

< a3 >=
{

e,a3,a6, . . . ,a27
}
, |< a2 >|= 10,

< a5 >=
{

e,a5,a10,a15,a20,a25
}
, |< a5 >|= 6,

< a6 >=
{

e,a6,a12,a18,a24
}
, |< a6 >|= 5,

< a10 >=
{

e,a10,a20
}
, |< a6 >|= 3,

< a15 >=
{

e,a15
}
, |< a15 >|= 2,

< a30 >= {e}, |< a30 >|= 1.

�
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Corollary 4.3.2 For k ∈ Z+ and k | n, the set <
n
k
> is the unique

and only subgroup of Zn of order k.

� Example 4.6 Find the generator of subgroup of order 9 in Z36?
Solution:
Since

36
9

= 4 is one generator.
Now, we find the other. The Corollary 4.2.9 show that the all el-
ement of Z36 can written in the form 4i where gcd(9, i) = 1 i.e.,
i = {1,2,4,5,7,8}. The list of subgroup of order 9 is

< (a4)1 >=< (a4)2 >=< (a4)5 >=< (a4)7 >=< (a4)8 > .

�

4.4 Euler Phi
Leonhard Euler introduced the function in 1763 which called Euler
Phi. In number theory, Euler phi φ(n) counts the positive integers up
to a given integer n that are relatively prime to n.

φ(n) = the number of k such that gcd(n,k) = 1, where 1≤ k ≤ n.
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� Example 4.7 φ(1) = 1. �

� Example 4.8 φ(6) = 2.
For 1,5 < 6 and gcd(1,6) = gcd(5,6) = 1. �

� Example 4.9 φ(10) = 4.
For 1,3,7,9< 10 and gcd(1,10)= gcd(3,10)= gcd(7,10)= gcd(9,10)=
1 �

R (i) φ(p) = p−1 if p is a prime.
(ii) φ(mn) = φ(m)φ(n) if m,n relative prime.

Theorem 4.4.1 Let d ∈ Z+ and d | n. The number of elements of
order d in a cyclic group of order n is φ(d).

Proof. Since the group has exactly one subgroup of order d— call it
< a >. Then every element of order d also generates the subgroup
< a > and an element ak generates < a > if and only if gcd(k,d) = 1.
The number of such elements is precisely φ(d). �

R Notice that for a finite cyclic group of order n, the number of elements
of order d for any divisor d of n depends only on d.

� Example 4.10 Let d = 8. Find the number of elements of order 8?
Solution:
Since φ(8) = 4, for (1,3,5,7 < 8). Thus, the number of elements

of order 8 is 4. �

Corollary 4.4.2 In a finite group, the number of elements of order d
is a multiple of φ(d).
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4.5 Exercise
Exercise 4.1 1. Find the generators of the cyclic group G =<

a > of orders 7, 10 and 21.
2. Let G =< a > be cyclic group. Then prove that G =< a−1 >.
3. Every element of a cyclic group generates the group. Prove

that.
4. Prove Corollary 4.4.2.
5. Complete the statement: |a|= |a2| if and only if |a|....
6. Complete the statement: |a2|= |a12| if and only if . . . .
7. Let a be a group element and |a|= ∞. Complete the following

statement: |ai|= |a j| if and only if ....
�



5. Permutation Groups

The permutation group, often known as the symmetric group, is made
up of all possible permutations of n objects. An invertible function
from a set to itself is called a permutation. Sn is the most common
abbreviation for the group. It is a central object of study in group
theory since it is a group of order n!.

Definition 5.0.1 Let S = {1,2, ...,n} be a finite group. A 1−1 cor-
responding from S to S is said to be permutation of degree n. If
α ∈ Sn, then we can write it in this form

α =

(
1 2 3 . . . .. n

α(1) α(2) α(3) . . . . α(n)

)
(Sn,◦) is called symmetric group of order n and this group non
abelian when n≥ 3.

Definition 5.0.2 Composition of permutations expressed in array
notation is carried out from right to left by going from top to bottom,
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then again from top to bottom.
� Example 5.1 Let S3 be the set of all one-to-one functions from
{1,2,3} to itself. Then S3, under function composition, is a group with
six elements. The six elements are

ε =

(
1 2 3
1 2 3

)
, α =

(
1 2 3
2 3 1

)
, α

2 =

(
1 2 3
3 1 2

)

β =

(
1 2 3
1 3 2

)
, αβ =

(
1 2 3
2 1 3

)
, α

2
β =

(
1 2 3
3 2 1

)

Note that βα =

(
1 2 3
3 2 1

)
= α2β 6= αβ , so that S3 is non-Abelian.

�

Cycle Notion

There is another notation commonly used to specify permutations.
It’s known as cycle notation, and it was originally used in 1815 by
the brilliant French mathematician Cauchy. When cycle notation
is employed, certain important aspects of the permutation may be
easily computed, which has theoretical advantages.
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As an example of cycle notation. Let α be a permutations in a set S6
where

α =

(
1 2 3 4 5 6
2 1 4 6 5 3

)
This assignment of values could be presented schematically as follows.

Although mathematically satisfactory, such diagrams are cumbersome.
Instead, we leave out the arrows and simply write

α = (1 2)(3 4 6)(5) = (1 2)(3 4 6).

In general, (a1 a2 ... an) is a cycle of length n or an n-cycle.

� Example 5.2 Let α,β ,γ be a permutations of a set S4, where

α =

(
1 2 3 4
3 2 1 4

)
,

β =

(
1 2 3 4
4 1 2 3

)
,

γ =

(
1 2 3 4
3 4 1 2

)
then
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1. Write α,β ,γ in a cycle notion?
2. Find α ◦β?
3. Find α−1?

Solution:
1.

α =

(
1 2 3 4
3 2 1 4

)
=

(
2 3 4 1
2 1 4 3

)
=

(
3 4 1 2
1 4 3 2

)
=

(
4 1 2 3
4 3 2 1

)
= (13)(2)(4)

= (13),

β =

(
1 2 3 4
4 1 2 3

)
=
(

1 4 3 2
)
,

γ =

(
1 2 3 4
3 4 1 2

)
=
(

1 3
)
(24).

2. The composition of the two permutations α,β is defined as
follow:

α ◦β =

(
1 2 3 4
3 2 1 4

)
◦
(

1 2 3 4
4 1 2 3

)
=

(
1 2 3 4
4 3 2 1

)
=
(

1 4)(2 3
)
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3. The inverse of a permutation β is defined as follow:

β
−1 =

(
4 1 2 3
1 2 3 4

)
=

(
1 2 3 4
2 3 4 1

)
=
(

1 2 3 4
)

�

and the permutation I =
(

1 2 3 4
1 2 3 4

)
is the identity.

Definition 5.0.3 We say that there is an inversion in a permutation

α =

(
1 2 3 . . . .. n

α(1) α(2) α(3) . . . .. α(n)

)
,

if for i < j we have: α(i)−α( j)
i− j < 0 or, in other words, when a bigger

number precedes a smaller number in α , and the total number of
inversions in α is denoted by Vα

Definition 5.0.4 A permutation is called even (odd) permutation if
the number of its inversions is even (odd).

R The group of even permutations of n symbols is denoted by An and is
called the alternating group of degree n.

� Example 5.3 Find the number of inversions in a permutation define
as follows:

1. α =

(
1 2 3 4
3 2 1 4

)
.

2. β =

(
1 2 3 4
4 1 2 3

)
.

3. γ =

(
1 2 3 4
3 4 1 2

)
.

4. ρ =

(
1 2 3 4 5 6 7 8
4 5 2 8 3 6 1 7

)
.
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Solution:
1. Vα = 2+1+0+0 = 3 (odd), so it is odd.
2. Vβ = 3+0+0+0 = 3 (odd), so it is odd.
3. Vγ = 2+2+0+0 = 4 (even), so it is even.
4. Vρ = 3+3+1+4+1+1+0+0 = 13 (odd).

�

R
1. The identity permutation is an even permutation.
2. The composition of two even (odd) permutations is even permu-

tation, while the composition of two permutations one of them
even and the other odd is odd permutation

3. A group Sn has an equal number of even and odd permutations.

5.1 Properties of Permutations
In this section, we will study the properties of permutations.

Theorem 5.1.1 Every permutation of a finite set can be written as a
cycle or a product of disjoint cycles.

Proof. Suppose that α ∈ Sn, and for any a1 ∈ S. Let

a2 = α(a1),

a3 = α(a2) = α
2(a1),

:

etc, until
a1 = α

m(a1),

for some m≤ n. Thus, (a1 a2 ... am) is a cycle of α .
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If m < n, then we choose any element b1 ∈ S such that b1 is not in
the first cycle, and let

b2 = α(b1),

b3 = α(b2) = α
2(b1),

:

etc, until
b1 = α

k(b1),

for some k ≤ n. Now, we have a second cycle (b1 b2 ... bk) is a cycle
of α .

If α i(a1) = α j(b1) for some i, j, then α i− j(a1) = b1 and this lead
to b1 ∈ (a1 a2 ... am) which gives contradiction.

If m+k < n, then we continue as above until there are no elements
left. Thus

α = (a1 a2 ... am)(b1 b2 ... bk)....(c1 c2 ... cs).

�

Theorem 5.1.2 If the pair of cycles α = (a1 a2 ... am) and β =

(b1 b2 ... bn) have no entries in common, then αβ = βα .

Proof. Assume that α and β are permutations of S where

S = {a1,a2, . . . ,am,b1,b2, . . . ,bn,c1,c2, . . . ,ck} .

Now, we show that αβ (x) = βα(x)∀x ∈ S.
If x = ai for some i, since β fixes all a elements,

(αβ )(ai) = α (β (ai)) = α (ai) = ai+1,

with am+1 = a1 and

(βα)(ai) = β (α (ai)) = β (ai+1) = ai+1,
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therefore αβ = βα on the a elements. A similar argument shows
αβ = βα on the b elements. Since α and β both fix the c elements,

(αβ )(ci) = α (β (ci)) = α (ci) = ci,

and
(βα)(ci) = β (α (ci)) = β (ci) = ci.

Thus αβ (x) = βα(x)∀x ∈ S. �

� Example 5.4 In S6,

β =
(

1 3
)
=

(
1 2 3 4 5 6
3 2 1 4 5 6

)
and

γ =
(

2 5 6
)
=

(
1 2 3 4 5 6
1 5 3 4 6 2

)
then we find

α = βγ = γβ =
(

1 3
)(

2 5 6
)
=
(

2 5 6
)
(13)

since the cycles are disjoint. �

� Example 5.5 In S8, let α = (1382)(47)(56) and β = (283)(476).
Then

βα = (283)(476)(1382)(47)(56) 6= (12)(4 6 5).

This means αβ 6= βα �

� Example 5.6 In S8, let α =
(

14)(263)(587) and β = (18)(26)(35)(47).
Then

αβ =
(

1 7
)(

2 3 8 4 5
)

and
βα =

(
1 7 3 5

)
(48).

�
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� Example 5.7 Find Z(S3)?
Solution:
Since

S3 = {I,(12),(13),(23),(123),(132)},

and
Z(S3) = {α ∈ S3 : αβ = βα ∀ β ∈ S3},

Then
Z(S3) = {I}.

�

The next theorem is an powerful tool for calculating the orders of
permutations and the number of permutations of a particular order.

Theorem 5.1.3 The order of a permutation of a finite set written in
disjoint cycle form is the least common multiple of the lengths of
the cycles.

� Example 5.8 Find the order of:
(i) (1 3 2)(4 5).
(ii) (1 4 3 2)(5 6).
(iii) (1 2 3)(4 5 6)(7 8).
(iv) (1 2 3)(1 4 5).
Solution:
(i) Since l.c.m(3,2) = 6, then | (1 3 2)(4 5) |= 6.
(ii) Since l.c.m(4,2) = 4, then | (1 4 3 2)(5 6) |= 4.
(iii) Since l.c.m(3,3,2) = 6, then | (1 2 3)(4 5 6)(7 8) |= 6.
(iv) Since (1 2 3)(1 4 5) = (1 4 5 3 2), then | (1 4 5 3 2) |= 5. �

� Example 5.9 In S7, find the list of disjoint and distinct cycles?
Solution:
Since | S7 |= 7! = 5040. Now we need only consider the possible
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disjoint cycle structures of the elements of S7. For convenience, we
denote an n-cycle by (n). Then, arranging all possible disjoint cycle
structures of elements of S7 according to longest cycle lengths left to
right, we have

cycle order

(7) 7
(6)(1) 6
(5)(2) 10

(5)(1)(1) 5
(4)(3) 12

(4)(2)(1) 8
(4)(1)(1)(1) 4
(3)(3)(1) 3
(3)(2)(2) 6

(3)(2)(1)(1) 6
(3)(1)(1)(1)(1) 3
(2)(2)(2)(1) 2

(2)(2)(1)(1)(1) 2
(2)(1)(1)(1)(1)(1) 2

(1)(1)(1)(1)(1)(1)(1) 1

Theorem 5.1.4 Every permutation in Sn, n > 1, is a product of 2-
cycles or transpositions.

Proof. Since

(1) = (12)(21),

thus (1) is a product of 2 -cycles. By Theorem 5.1.1, for any α ∈ Sn



5.1 Properties of Permutations 61

we can write

α =
(

a1 a2 · · · ak
)(

b1 b2 · · · bt
)
· · ·
(

c1 c2 · · · cs
)

Then

α = (a1ak)(a1ak−1) · · ·(a1a2)(b1bt)(b1bt−1) · · ·(b1b2) · · ·
(c1cs)(c1cs−1) · · ·(c1c2)

�

� Example 5.10 (12345) = (54)(53)(52)(51).
(12345) = (54)(52)(21)(25)(23)(13). �

Lemma 5.1 If I = β1β2...βr where the β s are 2-cycles, then r is even.

Theorem 5.1.5 If α ∈ Sn and α = β1β2...βr = γ1γ2...γs where the β ’s
and γ’s are 2-cycles, then r and s are both even or both odd.

Theorem 5.1.6 The set of even permutations in Sn forms a subgroup
of Sn.

Proof. Suppose that α,β ∈ Sn are both even, then αβ is also even
since it is an even number of 2-cycles followed by an even number
of 2-cycles. Since multiplication is closed for even permutations, we
have a subgroup by the previous theorem. �
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5.2 Exercises
Exercise 5.1 1. Let

α =

[
1 2 3 4 5 6
2 1 3 5 4 6

]
and β =

[
1 2 3 4 5 6
6 1 2 4 3 5

]
Compute each of the following.
a. α−1

b. βα

c. αβ

2. Let

α =

[
1 2 3 4 5 6 7 8
2 3 4 5 1 7 8 6

]
and

β =

[
1 2 3 4 5 6 7 8
1 3 8 7 6 5 2 4

]
. Write α,β , and αβ as
a. products of disjoint cycles;
b. products of 2 -cycles.
3. Write each of the following permutations as a product of disjoint,
cycles.
a. (1235)(413)
b. (13256)(23)(46512)
c. (12)(13)(23)(142)
4. Find the order of each of the following permutations.
a. (14)
b. (147)
c. (14762)
d. (a1a2 · · ·ak) �



6. Lagrange’s Theorem

The order of a subgroup must divide the order of the group, according
to Lagrange’s Theorem, one of the most significant results in finite
group theory. This theorem is a useful tool for analyzing finite groups
since it tells us what kind of subgroups we should expect a finite group
to have. The concept of a coset is important to understand Lagranges’
Theorem.

Definition 6.0.1 Let H ≤ G and a,b ∈ G, we say a is congruent to b
mod H if ab−1 ∈ H, and we write a≡ b mod H.

It is easy to prove that this relation is an equivalence relation. For any
a ∈ G, the equivalence class of a, we define as follow

cl(a) = {x ∈ G | x≡ a mod H}.

Definition 6.0.2 Let H be a subgroup of G and let a ∈ G be any
element. Then Ha = {ha | h ∈ H} is called a right coset of H in G.

� Example 6.1 Let H = {0,3,6} ≤ Z9 under addition. Then the cosets
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of H in Z9 are

0+H = {0,3,6}= 3+H = 6+H,

1+H = {1,4,7}= 4+H = 7+H,

2+H = {2,5,8}= 5+H = 8+H.

�

� Example 6.2 Let H ≤ S3, where H = {(1),(123),(132)}. Then the
left cosets of H are

(1) H = (123)H = (132)H = {(1),(123),(132)}
(12)H = (13)H = (23)H = {(12),(13),(23)}

Also, the right cosets of H are exactly the same as the left cosets:

H(1) = H(123) = H(132) = {(1),(123),(132)}
H(12) = H(13) = H(23) = {(12),(13),(23)}

�

R It is not always the case that a left coset is the same as a right coset.

Next example explain the above remark.

� Example 6.3 Let K ≤ S3, where K = {(1),(12)}. Then the left cosets
of K are

(1)K = (12)K = {(1),(12)}
(13)K = (123)K = {(13),(123)}
(23)K = (132)K = {(23),(132)}

however, the right cosets of K are

K(1) = K(12) = {(1),(12)}
K(13) = K(132) = {(13),(132)}
K(23) = K(123) = {(23),(123)}

�
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Now, the next theorem show that any right coset of H in G is an
equivalence class.

Theorem 6.0.1 Ha = {x ∈ G | x≡ a mod H}= cl(a) for any a ∈ G.

Proof. Let x ∈ Ha, then x = ha for some h ∈ H this lead to

⇒ xa−1 = h
⇒ xa−1 ∈ H
⇒ x≡ a mod H
⇒ x ∈ cl(a),

thus, Ha⊆ cl(a).
Also, let x ∈ cl(a), then

x≡ a mod H⇒xa−1 ∈ H

⇒xa−1 = h for some h ∈ H

⇒x = ha ∈ Ha

thus, cl(a)⊆ Ha, therefore, Ha = cl(a) �

Now, we show the properties of cosets
Lemma 6.1 Let H ≤ G and a,b ∈ G. Then the following are satisfied.
1. a ∈ aH.
2. aH = H iff a ∈ H.
3. (ab)H = a(bH) and H(ab) = (Ha)b.
4. aH = bH iff a ∈ bH.
5. aH = bH or aH ∩BH =∅.
6. aH = bH iff a−1b ∈ H.
7. | aH |=| bH |.
8. aH = Ha iff H = aHa−1.
9. aH ≤ G iff a ∈ H.
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Proof. 1. Since a = ae this lead to a ∈ aH.
2. (⇒) Suppose that aH = H. Then

a = ae ∈ aH = H.

(⇐) Assume that a ∈ H then

aH ⊆ H → (1)

Since a ∈ H and h ∈ H, we know that

a−1h ∈ H.

Thus,
h = eh

=
(

aa−1
)

h

= a
(

a−1h
)
∈ aH.

So
H ⊆ aH → (2)

From (1) and (2), we have H = aH.
3. This follows directly from

(ab)h = a(bh),

and
h(ab) = (ha)b.

4. (⇒) Suppose that aH = bH, then

a = ae ∈ aH = bH.
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(⇐) If a ∈ bH we have a = bh where h ∈ H, and therefore

aH = (bh)H

= b(hH)

= bH.

5. Property 5 follows directly from property 4 , for if there is an
element c in aH ∩bH, then cH = aH and cH = bH.
6. Since aH = bH if and only if H = a−1bH.
7. Exercises.
8. Note that aH = Ha if and only if

(aH)a−1 = (Ha)a−1

= H
(

aa−1
)

= H,

that is, if and only if aHa−1 = H.
9. (⇒) If aH is a subgroup, then it contains the identity e. Thus,

aH ∩ eH 6= /0,

and, by property 5 , we have aH = eH = H. Thus, from property 2,
we have a ∈ H.

(⇐) If a ∈ H, then, again by. property 2,aH = H. �

6.1 Lagrange’s Theorem.
In this section, we show the Lagrange’s Theorem.

Theorem 6.1.1 If G is a finite group and H is a subgroup of G then
| H | divides | G | .
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Proof. Let | G |= n. For any element in G, we can define a right coset
of H in G, the number of distinct right cosets of H in G is less than or
equal to n. Using the properties of equivalence classes we know

G = Ha1∪Ha2∪ . . .∪Har,

and this lead to

| G |=| Ha1 |+ | Ha2 |+ . . .+ | Har |

Finally, since |Hai|= |H| for each i, we have |G|= r|H|. �

Definition 6.1.1 Let G be a group and H ≤G, then the index of H in
G is the number of distinct right (left) cosets of H in G and denoted
by [G : H].

R By Lagrang’s therorem we find

[G : H] =
| G |
| H |

Corollary 6.1.2 Let G be a finite group, for each element a∈G, then

| a | | | G |.

Corollary 6.1.3 A group of prime order is cyclic.

Proof. Assume that G has prime order and let e 6= a ∈ G, then

|< a >| | | G |

with |< a >|6= 1. Thus, |< a >|=| G | and the corollary follows. �
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Corollary 6.1.4 Let G be a finite group, and let a∈G. Then, a|G|= e.

Proof. By Corollary 6.1.2 we find

| G |= m | a | ∀m ∈ Z+

then
a|G| = am|a| = em = e.

�

Now, we show the Fermat’s Theorem.

Theorem 6.1.5 For any integer a and prime p.

ap ≡ a mod p

Proof. If (a, p) = 1, then by Euler’s theorem

aφ(p) = 1 mod p

⇒ ap−1 ≡ 1 mod p as φ(p) = p−1

⇒ ap ≡ a mod p

If (a, p) = p, then p|a⇒ p|ap

∴ p | ap−a
⇒ ap ≡ a mod p

(Note (a, p) = 1 or p as 1 and p are only divisors of p �

Definition 6.1.2 Let H,K ≤ G, then we define

Hk = {hk : h ∈ H ∧ k ∈ K}
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Theorem 6.1.6 HK ≤ G iff HK = KH.

Theorem 6.1.7 If H and K are finite subgroups of a group G, then

| HK |= | H || K |
| H ∩K |

Proof. Let D = H∩K then D is a subgroup of K and as in the proof of
Lagrange’s theorem, ∃ a decomposition of K into disjoint right cosets
of D in K and

K = Dk1∪Dk2∪ . . .∪Dkt

so t =
| K |
| D |

Again, HK = H
(⋃t

i=1 Dκi
)

and since D⊆ H,HD = H.

Thus

HK =
t⋃

i=1

Hk1 = Hk1∪Hk2∪ . . .∪Hkt .

Now no two of Hk1,Hk2, . . . ,Hkt can be equal as if Hki = Hk j for
some i, j then

kik−1
j ∈ H⇒ kik−1

j ∈ H ∩K

⇒ kik−1
j ∈ D

⇒ Dki = Dk j,

which is not true.

| HK |=| Hk1 |+ | Hk2 |+ . . .+ | Hkp |
=| H |+ | H |+ . . .+ | H |
= t | H |

=
| H | · | K |
| H ∩K |

,

which proves the result. �
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Lemma 6.2 If H and K are subgroups of a finite group G such that

| H |>
√
| G |,

| K |>
√
| G |,

then
| H ∩K |> 1.

Proof. We have
| G | ≥| HK |

=
| H || K |
| H ∩K |

>

√
| G | ·

√
| G |

| H ∩K |

=
| G |
| H ∩K |

⇒| H ∩K |> 1

�

� Example 6.4 Let G = S3, and suppose H = {I,(12)} ,K = {I,(13)},
then | H |=| K |= 2 and

| HK |= 2×2
1

= 4

Since 4 - 6 =| G |,HK is not a subgroup of G. �
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6.2 Exercises
Exercise 6.1 1. Find all cosets of the subgroup 4Z of Z.
2. Find all cosets of the subgroup 4Z of 2Z.
3. Find all cosets of the subgroup 〈2〉 of Z12.
4. Find all cosets of the subgroup 〈4〉 of Z12.
5. Find all cosets of the subgroup {18} of Z36.
6. Mark each of the following true or false.
a. Every subgroup of every group has left cosets (.....).
b. The number of left cosets of a subgroup of a finite group divides
the order of the group (.....).
c. Every group of prime order is abelian (.....).
d. One cannot have left cosets of a finite subgroup of an infinite
group (.....).
e. A subgroup of a group is a left coset of itself (.....).
f. Only subgroups of finite groups can have left cosets (.....).
g. An is of index 2 in Sn for n > 1 (.....).
h. The theorem of Lagrange is a nice result (.....).
i. Every finite group contains an element of every order that divides
the order of the group (.....).
j. Every finite cyclic group contains an element of every order that
divides the order of the group (.....).
�



7. Normal Subgroups

A normal subgroup is one that is invariant under conjugation by mem-
bers of the group it belongs to. Normal subgroups are useful because
they may be used to create quotient groups for a given group. Further-
more, the kernels of group homomorphisms with domain G are the
normal subgroups of G.

Definition 7.0.1 A subgroup N of a group G is called a normal
subgroup (invariant or self conjugate subgroup) of G if

Na = aN, ∀ a ∈ G

We use the notation HEG to convey that H is normal in G.

R G and {e} are clearly normal subgroups of G, and they are known as
the trivial normal subgroups.

R Subgroups of abelian groups are always normal.
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Definition 7.0.2 A group G 6= {e} is called a simple group if the
only normal subgroups of G are {e} and G.

R Any group of prime order is simple. Also, this group has no subgroups
except {e} and G.

R If H is a normal subgroup of G and K is a subgroup of G s.t., H ⊆
K ⊆ G then H is normal in K.

R If G is abelian, all its subgroups will be normal.

� Example 7.1 Show that H = {1,−1} is a normal subgroup of the
Quaternion group G ?

Solution:
Since Ha = {a,−a}= aH for any a ∈ G, then HEG. �

� Example 7.2 The center Z(G) of a group is always normal. �

The two theorems that follow provide comparable criteria for a sub-
group of a group to be normal. As a result, any of these might be used
to define a normal subgroup.

Theorem 7.0.1 A subgroup H ≤ G of a group G is normal in G iff
g−1Hg = H for all g ∈ G.

Proof. Suppose that H is a normal in G then

Hg = gH⇒ g−1Hg = g−1(gH)

=
(

g−1g
)

H = H. for all g ∈ G.
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Conversely, let g−1Hg = H for all g ∈ G. Then

g
(

g−1Hg
)
= gH⇒

(
gg−1

)
Hg = gH

⇒ Hg = gH

Hence H is normal.
�

Theorem 7.0.2 A subgroup H of a group G is normal in G iff g−1hg
∈ H for all h ∈ H,g ∈ G

Proof. Suppose that H is a normal in G, then

Hg = gH for all g ∈ G

Let h ∈ H,g ∈ G be any elements, then

hg ∈ Hg = gH

⇒hg = gh for some h ∈ H

⇒g−1hg = h ∈ H.

This establishes the claim.
Conversely, let g ∈ G be any element, then

g−1hg ∈ H for all h ∈ H

⇒g
(

g−1hg
)
∈ gH for all h ∈ H

⇒hg ∈ gH

⇒Hg⊂ gH.
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Taking b = g−1, we note, as b ∈ G

b−1hb ∈ H, h ∈ H

⇒ghg−1 ∈ H

⇒
(

ghg−1
)

g ∈ Hg

⇒gh ∈ Hg

⇒gH ⊆ Hg

Hence Hg = gH, showing H is normal. �

� Example 7.3 The group SL(2,R) of 2× 2 is a normal subgroup of
GL(2,R). Verify that?
Solution:
Let x ∈ GL(2,R) = G,h ∈ SL(2,R) = H, and note that

det(x−1hx) = (detx)−1(deth)(detx)

= (detx)−1(detx)

= 1.

So, x−1hx ∈ H. �

7.1 Quotient Group
Let NEG, then the cosets of N in G form a group G/N under the
operation (aN)(bN) = abN. This group is called the quotient or factor
group of G and N.

Theorem 7.1.1 Let NEG, then the cosets of N in G form a group
G/N of order [G : N]

Proof. Let Na,Nb ∈ G/N, then

NaNb = Nab ∈ G/N.
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Let Na,Nb,Nc ∈ G/N, then

Na(NbNc) = Na(Nbc)

= Na(bc)

= N(ab)c

= NabNc

= (NaNb)Nc.

There exists Ne ∈ G/N will act as identity of G/N.
For any Na ∈ G/N there exists Na−1 will be the inverse of Na.
Thus G/N forms a group. The order of G/N is, of course, the number
of cosets of N in G. �

R It is easy to see that if G is abelian then so would be any of its quotient
groups as

NaNb = Nab

= Nba

= NbNa.

R The elements in a factor group are sets of elements in the original group.

� Example 7.4 Let 4Z = {0,±4,±8, . . .}. Find Z/4Z.
Solution:

Firstly, we must determine the left cosets of 4Z in Z. If k ∈ Z, then

k = 4q+ r,

where 0≤ r < 4; and, therefore,

k+4Z = r+4q+4Z

= r+4Z.
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Thus, the following four cosets:

0+4Z = 4Z = {0,±4,±8, . . .}
1+4Z = {1,5,9, . . . ,−3,−7,−11, . . .}
2+4Z = {2,6,10, . . . ,−2,−6,−10, . . .}
3+4Z = {3,7,11, . . . ,−1,−5,−9, . . .},

and there are no others. Its Cayley table is

0+4Z 1+4Z 2+4Z 3+4Z
0+4Z 0+4Z 1+4Z 2+4Z 3+4Z
1+4Z 1+4Z 2+4Z 3+4Z 0+4Z
2+4Z 2+4Z 3+4Z 0+4Z 1+4Z
3+4Z 3+4Z 0+4Z 1+4Z 2+4Z

�

� Example 7.5 Let G = Z18 and let H = 〈6〉= {0,6,12}. Find G/H.

Solution:
G/H = {0+H,1+H,2+H,3+H,4+H,5+H}. �

Theorem 7.1.2 Let G is a finite group and NEG, then

| G/N |= | G |
| N |

Proof. Since G is finite, using Lagrange’s theorem

| G |
| N |

= number of distinct right cosets of N in G

=| G/N | .

�
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Theorem 7.1.3 Every quotient group of a cyclic group is cyclic.

Proof. Let G =< a > be a cyclic group. Then G is abelian, so every
subgroup of G is normal. Suppose that H ≤ G. Now we show G/H is
a cyclic. In fact we claim G/H is generated by Ha. Let Hx ∈ G/H be
any element. Then x ∈ G =< a >, i.e., x will be some power of a Let

x = am.

Then
Hx = Ham = Haa . . . . . .a (m times )

= HaHa . . . ..Ha (m times )

= (Ha)m,

so any element Hx of G/H is a power of Ha⇒ Ha generates G/H or
that G/H is cyclic.

�

Theorem 7.1.4 Let G be a group such that G/Z(G) is cyclic, then G
is abelian.

Proof. Assume that Z(G) = N. Then G/N is cyclic. Suppose it is
generated by Ng. Let a,b ∈ G and Na,Nb ∈ G/N such that Na =

(Ng)n,Nb = (Ng)m for some n,m. Then

Na = Ngn⇒ ag−n ∈ N.

Nb = Ngm⇒ bg−m ∈ N.

We put
ag−n = x⇒ a = xgn,

bg−m = y⇒ b = ygm,



80 Chapter 7. Normal Subgroups

for some x,y ∈ N. Now,

ab = (xgn)(ygm) = x(gny)gm

= x(ygn)gm as y ∈ N = Z(G)

= xygngm

= xygn+m.

Similarly,

ba = (ygm)(xgn) = y(gmx)gn = y(xgm)gn

= (yx)gm+n.

i.e., ab = ba as xy = yx ∀ x,y ∈ Z(G). Thus, G is abelian. �
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7.2 Exercise
Exercise 7.1 1. Show that every subgroup of a cyclic group is nor-
mal.
2. Show that intersection of two normal subgroups is a normal
subgroup.
4. If H and N are two subgroups of G such that N is normal in
G then show that H ∩N is a normal subgroup of H. Show by an
example that H ∩N may not be normal in G.
5. Every subgroup of an abelian group is normal. Prove that con-
verse is not true. (Consider Quaternion group).
6. Prove that center of a group is a normal subgroup. �





8. Homomorphis- Isomorphism

A structure-preserving map between two algebraic structures of the
same type is called a homomorphism. The concept "homomorphism"
first appears in 1892, given by (attributed to ) the German mathemati-
cian Felix Klein (1849–1925).

Definition 8.0.1 Let (G,?) and (Q,◦) be two groups. A mapping f
is called Homomorphis if

f (a?b) = f (a)◦ f (b) ∀a,b ∈ G

� Example 8.1 Let G be a group and g∈G. Show that a map φ :Z→G
by φ(n) = gn is a group homomorphism?
Solution:

Let m,n ∈ Z, then φ

φ(m+n) = g(m+n)

= gm+gn

= φ(m)+φ(n)

Therefore, φ is a group homomorphism. �
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Definition 8.0.2 (i) An onto homomorphism is called epimorphism.
(ii) A one-one homomorphism is called monomorphism.
(iii) A homomorphism from a group G to itself is called an endo-

morphism of G.
(iv) A one-one and onto homomorphism is called isomorphism.
(v) An isomorphism from a group G to itself is called automor-

phism of G.

� Example 8.2 Let (Z,+) and (E,+) be the groups of integers and
even integers. Define a map f : Z→ E, s.t.,

f (x) = 2x for all x ∈ Z

then f is well defined as

x = y⇒ 2x = 2y

⇒ f (x) = f (y)

that f is 1−1 is clear by taking the steps backwards.
f is a homomorphism for

f (x+ y) = 2(x+ y)

= 2x+2y

= f (x)+ f (y).

Also f is onto as any even integer 2x would have x as its pre-image.
Hence f is an isomorphism. �

� Example 8.3 Let G be a group and NEG. Define a map

f : G→ G/N s.t.

f (x) = Nx, x ∈ G
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then f is clearly well defined. Again

f (xy) = Nxy

= NxNy

= f (x) f (y)

shows f is a homomorphism. It is sometimes called the natural (or
canonical) homomorphism. �

8.1 Properties of Subgroups Under Homomorphisms

Theorem 8.1.1 Let f : G→ G′ be a homomorphism, then
(i) f (e) = e′.
(ii) f

(
x−1)= ( f (x))−1.

(iii) f (xn) = [ f (x)]n,n an integer,
where e,e′ are identity elements of G and G′ respectively.

Proof. (i) Since

e · e = e⇒ f (e · e) = f (e)

⇒ f (e) · f (e) = f (e)

⇒ f (e) · f (e) = f (e) · e′

⇒ f (e) = e′ (cancellation)

(ii) Also, since

xx−1 = e = x−1x⇒ f
(

xx−1
)
= f (e) = f

(
x−1x

)
⇒ f (x) f

(
x−1
)
= e′ = f

(
x−1
)

f (x)

⇒ ( f (x))−1 = f
(

x−1
)
.
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(iii) Let n be an integer number, then

f (xn) = f (xx . . . . . .x)

(n times )

= f (x) f (x) . . . .. f (x) (n times )

= ( f (x))n.

�

Definition 8.1.1 Let f : G→ G′ be a homomorphism. The Kernel of
f , (denoted by Ker f ) is defined by

Ker f = {x ∈ G | f (x) = e′},

where e′ is identity of G′

Theorem 8.1.2 Let f : G→G′ be a homomorphism, then Ker f EG.

Proof. Since f (e) = e′,e ∈ Ker f , thus Ker f 6= ϕ. Let

x,y ∈ Ker f ⇒ f (x) = e′, f (y) = e′

Now

f
(

xy−1
)
= f (x) f

(
y−1
)

= f (x)( f (y))−1

= e′ · e′−1

= e′

⇒ xy−1 Ker f .

Hence Ker f ≤ G.
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Again, for any g ∈ G,x ∈ Ker f

f
(

g−1xg
)
= f

(
g−1
)

f (x) f (g)

= ( f (g))−1 f (x) f (g)

= ( f (g))−1e′ f (g)

= ( f (g))−1 f (g) = e′

⇒ g−1xg ∈ Ker f .

So Ker f EG. �

Theorem 8.1.3 A homomorphism f : G→ G′ is 1-1 iff Ker f = {e}.

Theorem 8.1.4 Let f be a homomorphism from a group G to a group
Ḡ and let g be an element of G. Then
1. If |g| is finite, then | f (g)| divides |g|.
2. Ker f ≤ G.

3. f (a) = f (b) if and only if aKer f = bKer f .
4. If f (g) = ḡ, then f (g) = {x ∈ G : f (x) = ḡ}= gKer f .

Proof. 1. Let |g|= n, then gn = e.
Now

e = f (e)

= f (gn)

= ( f (g))n.

Thus, | f (g)| divides |g|.
2. Exercise.
3. First assume that f (a) = f (b). Then

e =( f (b))−1 f (a)

= f (b−1) f (a)

= f (b−1a),
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thus b−1a ∈ Ker f and since ker f EG, this argument completes
the proof.

4. Exercise.
�

Theorem 8.1.5 Let f be a homomorphism from a group G to a group
Ḡ and let H ≤G. Then
1. f (H) = { f (h) | h ∈ H} ≤ Ḡ.
2. If H is cyclic, then f (H) is cyclic.
3. If H is Abelian, then f (H) is Abelian.
4. If H is normal in G, then f (H) is normal in f (G).
5. If |Ker f |= n, then f is an n-to- 1 mapping from G onto f (G).
6. If |H|= n, then | f (H)| divides n.
7. If K̄ is a subgroup of Ḡ, then f−1(K̄) = {k ∈ G | f (k) ∈ K̄} is a
subgroup of G.
8. If K̄ is a normal subgroup of Ḡ, then f−1(K̄) = {k∈G | f (k)∈ K̄}
is a normal subgroup of G.
9. If f is onto and Ker f = {e}, then f is an isomorphism from G to
Ḡ.

Proof. 1. Since e ∈ H, then we have f (e) ∈ f (H), so that f (H) is
not empty..
Let x,y ∈ f (H), then x = f (h1) and y = f (h2) and this lead to

xy−1 = f (h1)( f (h2))
−1

= f (h1) f (h2)
−1

= f (h1h−1
2 ) ∈ f (H).

So, f (H)≤ Ḡ.

2. Exercises.
3. Exercises.
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4. Assume f (h) ∈ f (H) and f (g) ∈ f (G). Then

f (g) f (h) f (g)−1 = f
(

ghg−1
)
∈ f (H),

since H is normal in G.
5. Exercises.
6. Exercises.
7. Clearly, e ∈ f−1(K̄), so that f−1(K̄) is not empty.

Suppose that k1,k2 ∈ f−1(K̄). Then, by the definition of f−1(K̄),
we know that f (k1) , f (k2) ∈ K̄. Thus,

f (k2)
−1 ∈ K̄

and
f
(

k1k−1
2

)
= f (k1) f (k2)

−1 ∈ K̄.

So, by the definition of f−1(K̄), we have

k1k−1
2 ∈ f−1(K̄).

8. Exercises.
9. Exercises.

�

� Example 8.4 Define f : Z12→ Z12 by f (x) = 3x. Verify that f is a
homomorphism and Find Ker f ?
Solution:
Since

f (x⊕12 y) = 3((x⊕12 y))

= 3x⊕12 3y

= f (x)⊕12 f (y).

So f is homomorphism.
Since the solution of

f (x) = 0,
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in Z12 is Ker f i.e., Ker f = {0,4,8}.
We apply some properties of the previous theorems:
By property 5 of Theorem 8.1.5 that f is a 3-to-1 mapping. Since
f (2) = 6, we have by property 4 of Theorem 8.1.4 that f−1(6) = 2⊕12
Ker f = {2,6,10}. Also that < 2 > is cyclic and f (< 2 >) = {0,6}
is cyclic. Moreover, |2|= 6 and | f (2)|= |6|= 2, so | f (2)| divides |2|
in agreement with property 1 of Theorem 8.1.4. Letting K̄ = {0,6},
we see that the subgroup f−1(K̄) = {0,2,4,6,8,10}. This verifies
property 7 of Theorem 8.1.5 in this particular case. �

� Example 8.5 The mapping f : S3→ Z2 define by

f (α) =

{
1 if αis odd
0 if αis even

is homomorphism. Verify that? �
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8.2 The isomorphism theorems

Now, we show the fundamental theorem of group homomorphism.

Theorem 8.2.1 If f : G→ G′ be an onto homomorphism with K =

Ker f , then
G/K ∼= G′.

In other words, every homomorphic image of a group G is isomor-
phic to a quotient group of G.

Proof. Firstly, we define a map ϕ : G/K→ G′, s.t.

ϕ(Ka) = f (a), a ∈ G

Now, we show ϕ is an isomorphism.
Since ϕ is well defined as follows

Ka = Kb⇒ab−1 ∈ K = Ker f

⇒ f
(

ab−1
)
= e′

⇒ f (a)( f (b))−1 = e′

⇒ f (a) = f (b)

⇒ϕ(Ka) = ϕ(Kb)

The next step, we will prove that ϕ is 1−1?
Since

ϕ(KaKb) = ϕ(Kab)

= f (ab)

= f (a) f (b)

= ϕ(Ka)ϕ(Kb).
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So ϕ is a homomorphism. To check that ϕ is onto, let g′ ∈ G′ be any
element. Since f : G→ G′ is onto, ∃g ∈ G,s.t.

f (g) = g′

ϕ(Kg) = f (g) = g′

Showing there by that Kg is the required pre-image of g′ under ϕ .
Hence ϕ is an isomorphism.

�

The second theorem of isomorphism shown in the following.

Theorem 8.2.2 Let H, K ≤G, where HEG, then

HK
H
∼=

K
H ∩K

Proof. Since H∩KEK and as H ⊆HK ⊆G,H will be normal in HK.
Firstly, we define a map

f : K→ HK
H

s.t. f (k) = Hk

this map well define for

k1 = k2⇒ Hk1 = Hk2

⇒ f (k1) = f (k2) .

Also, this mapping is homomorphism

f (k1k2) = Hk1k2

= Hk1Hk2

= f (k1) f (k2) .

That f is onto by using Fundamental theorem, we find

HK
H
∼=

K
Ker f

.
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Since
k ∈ Ker f ⇔ f (k) = H

⇔ Hk = H

⇔ k ∈ H

⇔ k ∈ H ∩K (k ∈ K as Ker f ⊆ K)

We find Ker f = H ∩K and our theorem is proved. �

Now, we show the third theorem of isomorphism.

Theorem 8.2.3 If H, KEG such that H ⊆ K, then

G
K
∼=

G/H
K/H

Proof. Obvious
K
H
E

G
H

and, therefore, we can talk of G/H
K/H . �

Firstly, we define a map

f :
G
H
→ G

K
s.t., f (Ha) = Ka, a ∈ G

Now, we prove f is well defined as

Ha = Hb⇒ ab−1 ∈ H ⊂ K

⇒ Ka = Kb

⇒ f (Ha) = f (Hb).

Also, f is a homomorphism as

f (HaHb) = f (Hab)

= Kab

= KaKb

= f (Ha) f (Hb).
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The mapping f is onto by Using Fundamental theorem of group ho-
momorphism as follow

G
K
∼=

G/H
Ker f

We claim Ker f = K
H . The element of Ker f will be some element of

G
H .
Now

Ha ∈ Ker f ⇔ f (Ha) = K (identity of G/K)

⇔ Ka = K

⇔ a ∈ K

⇔ Ha ∈ K
H

Hence we find
G
K
∼=

G/H
K/H

which proves our result.
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8.3 Exercises
Exercise 8.1 1- A homomorphism f : G→G′ is 1-1 iff Ker f = {e}.
Prove that.
2- Let f be a homomorphism from a group G to a group Ḡ and let g
be an element of G. Then
(i) f (a) = f (b) if and only if aKer f = bKer f .
(ii) If f (g) = ḡ, then f (g) = {x ∈G : f (x) = ḡ}= gKer f . 3- Which
of the following maps are homomorphisms? If the map is a homo-
morphism, what is the kernel?
(a) φ : R∗→ GL2(R) defined by

φ(a) =
(

1 0
0 a

)
(b) φ : R→ GL2(R) defined by

φ(a) =
(

1 0
a 1

)
(c) φ : GL2(R)→ R defined by

φ

((
a b
c d

))
= a+d

(d) φ : GL2(R)→ R∗ defined by

φ

((
a b
c d

))
= ad−bc
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(e) φ :M2(R)→ R defined by

φ

((
a b
c d

))
= b

whereM2(R) is the additive group of 2×2 matrices with entries in
R. �



9. Direct product, direct sum

Definition 9.0.1 Let G1 and G2 be two groups, then G1×G2 denote
the set of all ordered pairs with first component coming from the
group G1 and second component coming from the group G2 :

G1×G2 = {(x1,x2) | x1 ∈ G1,x2 ∈ G2} .

Define componentwise multiplication on G1×G2 by

(x1,x2)(y1,y2) = (x1y1,x2y2) .

Theorem 9.0.1 G1×G2 is a group under componentwise multiplica-
tion.

Proof. We need to check the three group axioms.
(G1) The proof of associativity of componentwise multiplication.
(G2) We claim that (e1,e2) is an identity element, where ei is the
identity element of Gi(i = 1,2). For (x1,x2) ∈ G1×G2, we have

(e1,e2)(x1,x2) = (e1x1,e2x2) = (x1,x2)
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and similarly (x1,x2)(e1,e2) = (x1,x2). Therefore, (e1,e2) is an iden-
tity element.
(G3) Let (x1,x2) ∈ G1×G2. We claim that

(
x−1

1 ,x−1
2

)
is an inverse

of (x1,x2). We have(
x−1

1 ,x−1
2

)
(x1,x2) =

(
x−1

1 x1,x−1
2 x2

)
= (e1,e2)

and similarly
(x1,x2)

(
x−1

1 ,x−1
2

)
= (e1,e2) .

Therefore,
(

x−1
1 ,x−1

2

)
is an inverse of (x1,x2).

�

R
• G1×G2 is the direct product of the groups G1 and G2.
• If the groups G1 and G2 are additive groups , then the direct

product is called the direct sum and it is denoted G1⊕G2. In this
case, the operation is denoted + and it is called componentwise
addition:

(x1,x2)+(y1,y2) = (x1 + y1,x2 + y2)



10. Ring

Definition 10.0.1 A ring is a set R with two binary operations, usually
denoted + and ., such that

1. (R,+) is an abelian group.
2. (R, .) is a semi-group.
3. For any a,b,c in R, a.(b+ c) = a.b+ a.c and (a+ b).c =

a.c+b.c.

Definition 10.0.2 A ring R is called a ring with unity (or sometimes
a unital ring) if there exists an element, denoted 1, which has the
property that a.1 = 1.a = a for all a ∈ R.

Definition 10.0.3 A ring R is called a commutative ring, if

a.b = b.a,

for all a,b ∈ R.

Definition 10.0.4 A ring R with identity 1 6= 0, is called a division
ring (or skew field) if every nonzero element a∈ R has a multiplica-
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tive inverse, i.e.,

∃ b ∈ R such that ab = ba = 1.

A commutative division ring is called afield.
� Example 10.1 1. The ring of integers Z, under the usual opera-

tions of addition and multiplication is a commutative ring with
identity (the integer 1 ).

2. Similarly, the rational numbers Q, the real numbers R, and the
complex numbers C, are commutative rings with identity (in
fact they are fields).

3. The quotient group Z/nZ is a commutative ring with identity (the
element 1) under the operations of addition and multiplication
of residue classes.

4. The set of all n×n matrices over real numbers is non commuta-
tive rings with identity I.

5. The set

M2×2 =

{(
2a 2b
2c 3d

)
: a,b,c,d ∈ R

}
is non commutative rings without identity I.

�

Proposition 10.0.1 Let R be a ring. Then
(1) 0a = a0 = 0 for all a ∈ R.
(2) (−a)b = a(−b) =−(ab) for all a,b ∈ R.
(3) (−a)(−b) = ab for all a,b ∈ R.
(4) If R has an identity 1, then the identity is unique and −a = (−1)a.

Proof. ( 1 ) Since 0a = (0+ 0)a = 0a+ 0a. The equality (−a)b =

−(ab) in (2) follows from ab+(−a)b = (a+(−a))b = 0b = 0. The
rest follow similarly. �



101

Definition 10.0.5 Let R be a ring.
(1) A nonzero element a of R is called a zero divisor if there is a
nonzero element b ∈ R such that either

ab = 0 or ba = 0.

(2) Assume R has an identity 1 6= 0. An element u of R is called a
unit in R if there is some v ∈ R such that uv = vu = 1. The set of
units in R is denoted Rx.

R The units in a ring R form a group under multiplication so Rx will be
referred to as the group of units of R.

Definition 10.0.6 A field is a commutative ring F with identity 1 6= 0
in which every nonzero element is a unit, i.e., Fx = F−{0}.

R A zero divisor can never be a unit.

� Example 10.2 The ring Z of integers has no zero divisors and its only
units are ±1, i.e., Zx = {±1} �

Definition 10.0.7 A commutative ring with identity 1 6= 0 is called
an integral domain if it has no zero divisors.

� Example 10.3 The ring of integers is an integral domain. �

� Example 10.4 The ring of Gaussian integers Z[i] = {a+bi | a,b∈ Z}
is an integral domain. �

� Example 10.5 The ring Z[
√

2] = {a+b
√

2 | a,b ∈ Z} is an integral
domain. �

� Example 10.6 The ring Zp of integers modulo a prime p is an integral
domain, also, is field. �



102 Chapter 10. Ring

� Example 10.7 The ring M2(Z) of 2×2 matrices over the integers is
not an integral domain. �

Theorem 10.0.2 Assume a,b and c are elements of any ring with a
not a zero divisor. If ab = ac, then either a = 0 or b = c. In particular,
if a,b, and c belong to an integral domain. If a 6= 0 and ab = ac,
then b = c.

Proof. If ab = ac then a(b− c) = 0 so either a = 0 or b− c = 0. The
second, from ab = ac, we have a(b− c) = 0. Since a 6= 0, we must
have b− c = 0 �

Theorem 10.0.3 A finite integral domain is a field.

Theorem 10.0.4 For every prime p, Zp, the ring of integers modulo
p is a field.

Proof. By using Theorem 10.0.3, we need only prove that Zp has no
zero divisors. So, suppose that a,b ∈ Zp and ab = 0. Then ab = pk for
some integer k. Since p is prime this lead to, p | a or p | b. Thus, in Zp

, a = 0 or b = 0. �

� Example 10.8 The ring of Gaussian integers modulo 3 define as
follows

Z3[i] = {a+bi | a,b ∈ Z3}
= {0,1,2, i,1+ i,2+ i,2i,1+2i,2+2i}.

Also, the table below is the multiplication table for the nonzero ele-
ments of Z3[i]. �
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1 2 i 1+ i 2+ i 2i 1+2i 2+2i
1 1 2 i 1+ i 2+ i 2i 1+2i 2+2i
2 2 1 2i 2+2i 1+2i i 2+ i 1+ i
i i 2i 2 2+ i 2+2i 1 1+ i 1+2i
1+ i 1+ i 2+2i 2+ i 2i 1 1+2i 2 i
2+ i 2+ i 1+2i 2+2i 1 i 1+ i 2i 2
2i 2i i 1 1+2i 1+ i 2 2+2i 2+ i
1+2i 1+2i 2+ i 1+ i 2 2i 2+2i i 1
2+2i 2+2i 1+ i 1+2i i 2 2+ i 1 2i

� Example 10.9 Let Q[
√

2] = {a+ b
√

2 | a,b ∈ Q}. It is easy to see
that Q[

√
2] is a ring. Viewed as an element of R, the multiplicative

inverse of any nonzero element of the form a+b
√

2 is simply 1/(a+
b
√

2). To verify that Q[
√

2] is a field, we must show that 1/(a+b
√

2)
can be written in the form c+d

√
2. In high school algebra, this process

is called "rationalizing the denominator." Specifically,

1
a+b

√
2
=

1
a+b

√
2

a−b
√

2
a−b

√
2
=

a
a2−2b2 −

b
a2−2b2

√
2

(Note that a+b
√

2 6= 0 guarantees that a−b
√

2 6= 0 ) �

Definition 10.0.8 A ring element a is called an idempotent if a2 = a.

(a) If a 6= 1 is an idempotent element of R, then a is a zero divisor.

By definition of an idempotent element, we have a2 = a.
It yields that

a(a−1) = a2−a = 0.

Since a 6= 1, the element a−1 is a nonzero element in the ring R. Thus
a is a zero divisor.
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(b) Suppose that R̄ is an integral domain. Determine all the idempo-
tent elements of R̄.

Suppose that a is an idempotent element in the integral domain R̄.
Thus, we have a2 = a.
It follows that we have

a(a−1) = a2−a = 0.

Since R̄ is an integral domain, there is no nonzero zero divisor.
Hence from the above equation yields that a = 0 or a−1 = 0.

Clearly, the elements 0 and 1 are idempotent. Thus, the idempotent
elements in the integral domain R̄ must be 0 and 1.

� Example 10.10 Find all idempotent elements in Z10?
Solution:
Since Z10 = {0,1,2,3,4,5,6,7,8,9}, then the idempotent elements
are 0, 1, 5 and 6. �

� Example 10.11 Find all idempotent elements in Z5?
Solution:
Since Z5 = {0,1,2,3,4}, then the idempotent elements are 0, and 1. �

Definition 10.0.9 Let a belong to a ring R with unity, then a is called
nilpotent when an = 0 for some positive integer n.

� Example 10.12 Find all nilpotent elements in Z4?
Solution:
Since Z4 = {0,1,2,3}, then the nilpotent element is 2, for

22 = 0.

�

Now, we show some properties of nilpotent element.
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Theorem 10.0.5 Let (R,+, .) be a commutative ring and let a,b ∈ R
be nilpotent. Then a+b is nilpotent.

Theorem 10.0.6 Let (R,+, .) be a commutative ring and let a ∈ R be
nilpotent. Then for all r ∈ R, r.a and a.r are nilpotent.

Proof. Let a ∈ R be nilpotent. Then there exists a positive integer
n ∈N such that an = 0. Let r ∈ R. Then since R is a commutative ring:

(r.a)n = rn.an

= rn.0

= 0,

and
(a.r)n = an.rn

= 0.rn

= 0.

So r.a and a.r are nilpotent. �

Theorem 10.0.7 Let (R,+, .) be a commutative ring and let u,a ∈ R.
If u is a unit and a is nilpotent, then u−a is a unit.

10.0.1 Subring
Definition 10.0.10 A subset S of a ring R is a subring of R if S is
itself a ring with the operations of R.

� Example 10.13 For n ∈ Z+, the set

nZ= {0,±n,±2n,±3n, ...}

is a subring of the integers Z. �
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Theorem 10.0.8 A nonempty subset S of a ring R is a subring if
(1) a−b ∈ S ∀ a,b ∈ S.
(2) ab ∈ S ∀ a,b ∈ S.

In the following example it easy to apply the above theorem to prove
it.

� Example 10.14 The set of Gaussian integers

Z[i] = {a+bi | a,b ∈ Z}

is a subring of the complex numbers C. �

� Example 10.15 The set{[
a 0
0 b

]
| a,b ∈ Z

}
of diagonal matrices is a subring of the ring of all 2×2 matrices over
Z. �

10.1 Characteristic of a Ring
Definition 10.1.1 The characteristic of a ring R is the least positive
integer n such that

nx = 0 ∀ x ∈ R.

If no such integer exists, we say that R has characteristic 0. The
characteristic of R is denoted by char R.

� Example 10.16 (1) char (C) = 0, char (R) = 0, char (Q) = 0 and
char (Z) = 0.
(2) char (Zn) = n since for all x in Zn we have nx = 0. �

� Example 10.17 Prove that R= {0,2,4,6,8} is a subring of <Z10,⊕10,⊗10 >

Find the characteristic of R.
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Solution: Firstly, we will be shown that R is a subring of <Z10,⊕10,⊗10 >

Given R = {0,2,4,6,8} and Z10 = {0,1,2,3,4,5,6,7,8,9} We find
that: (1) R is a nonempty subset of Z10.
(2) R is closed under inverse of addition and multiplication modulo
10.
Thus, R is subring of Z10.
Finally, we compute the characteristic of R.
Choose the positive integer n = 1. Take any x ∈ R, we got that 1x 6= 0.
Choose the positive integer n = 2. Take any x in R, we got that 2x 6= 0.
Choose the positive integer n = 3. Take any x ∈ R, we got that 3x 6= 0.
Choose the positive integer n = 4. Take any x ∈ R, we got that 4x 6= 0.
Choose the positive integer n = 5. Take any x ∈ R, we got that 5x = 0.
So, the least positive integer n = 5 such that nx = 0 for all x ∈ R.
Then we conclude that char R = 5. �

� Example 10.18 M2(Z) is the set of 2×2 matrices with integer entries
under matrix additon and multiplication. Find the characteristic of ring
M2(Z)?
Solution:
The elements of

M2(Z) =
{[

a b
c d

]
| a,b,c,d ∈ Z

}
Since there is no positive integer n such that nx = 0 for all x ∈M2(Z),
so the characteristic of ring M2(Z) is 0. �

Next, we show the characteristic of a ring with unity.

Theorem 10.1.1 Let R be a ring with unity 1.
(i)If 1 has infinite order under addition, then the characteristic of R
is 0.
(ii) If 1 has order n under addition, then the characteristic of R is n.
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Proof. If 1 has infinite order, then there is no positive integer n such
that n ·1 = 0, so R has characteristic 0. Now suppose that 1 has additive
order n. Then n · 1 = 0, and n is the least positive integer with this
property. So, for any x in R, we have

n · x = x+ x+ · · ·+ x(n summands )

= 1x+1x+ · · ·+1x(n summands )

= (1+1+ · · ·+1)x(n summands )

= (n ·1)x = 0x = 0

Thus, R has characteristic n. �

� Example 10.19 Let ring Z is the set of integer number under ordinary
additon and multiplication. Find the characteristic of ring Z.
Solution:
The elements of Z= {0,±1,±2,±3, . . .}. Since 1 is an identity, and
then we need to find the order of element 1 in ring Z. Here, the unity
element 1, has infinite order. So, by using the Theorem 10.1.1 (i), we
find that char (Z) = 0. �

� Example 10.20 Let set Z3[i] = {a+bi|a,b ∈ Z3} is a ring under ad-
dition and multiplication modulo 3. Prove that Z3[i] has a unity and
find the characteristic of Z3[i].
Solution:
Since Z3[i] = {a+bi|a,b ∈ Z3} is a ring under addition and multipli-
cation modulo 3 and

Z3[i] = {0,1,2, i,1+ i,2+ i,2i,1+2i,2+2i}

To prove that Z3[i] has a unity, we check from the multiplication
modulo 3 table for Z3[i] (Verify that).
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⊗3 0 1 2 i 1+ i 2+ i 2i 1+2i 2+2i
0 0 0 0 0 0 0 0 0 0
1 0 1 2 i 1+ i 2+ i 2i 1+2i 2+2i
2 ... ... ... ... ... ... ... ... ...
i ... ... ... ... ... ... ... ... ...
1+ i ... ... ... ... ... ... ... ... ...
2+ i ... ... ... ... ... ... ... ... ...
2i ... ... ... ... ... ... ... ... ...
1+2i ... ... ... ... ... ... ... ... ...
2+2i ... ... ... ... ... ... ... ... ...

We find the unity is 1. Now, we need to find the order of element 1 in
ring Z3[i]. Since

1.1 = 1,

2.1 = 2,

3.1 = 0,

we know that |1| = 3. By using the Theorem 10.1.1 3, we find that
char Z3[i] = 3. �

Next, we show the characteristic of an integral domain.

Theorem 10.1.2 The characteristic of an integral domain is 0 or
prime.

Proof. By Theorem 10.1.1, it suffices to show that if the additive order
of 1 is finite, it must be prime. Suppose that 1 has order n and that
n = st, where 1≤ s, t ≤ n. Then

0 = n ·1
= (st) ·1
= (s ·1)(t ·1).
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So, s · 1 = 0 or t · 1 = 0. Since n is the least positive integer with
the property that n · 1 = 0, we must have s = n or t = n. Thus, n is
prime. �

� Example 10.21 The ring Z7 of integer modulo a prime 7. Show that
Z7 is an integral domain, then find the characteristic of Z7.
Solution:
First, we check that Z7 is a commutative ring with unity from the
multiplication table of Z7.

⊗7 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

Since the multiplication modulo Z7 in the above table is symmetrical
to main diagonal, so the commutative property is satisfied. Also, the
unity is 1. Furthermore, we find that Z7 has no zero divisor, then Z7 is
an integral domain.
Now, we find the order of element 1 in ring Z7. Since

1⊗7 1 = 1,

2⊗7 1 = 2,

3⊗7 1 = 3,

4⊗7 1 = 4,

5⊗7 1 = 5,

6⊗7 1 = 6,

7⊗7 1 = 0,
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we know that |1|= 7. By using the Theorem 10.1.2, we find that char
Z7 = 7 is a prime number. �
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10.2 Exercises
Exercise 10.1 (1)Find a zero divisor inZ5[i] = {a+bi|a,b ∈ Z5}.
(2) Find an idempotent in Z5[i] = {a+bi|a,b ∈ Z5}.
(3) Find all units, zero divisors, idempotent s, and nilpotent elements
in Z9.
(4) List all zero divisors inZ20. Can you see a relationship between
the zero divisors of Z20 and the units of Z20?
(5) Show that every nonzero element of Zn is a unit or a zero divisor.
(6) Let (R,+, .) be a commutative ring and let a,b ∈ R be nilpotent.
Then a+b is nilpotent. Prove that. �



11. Ring Homomorphisms

Definition 11.0.1 Let R and S be rings, then a ring homomorphism
is a map φ : R→ S satisfying

φ(a+b) = φ(a)+φ(b)

φ(ab) = φ(a)φ(b)

for all a,b ∈ R.
If φ : R→ S is a one-to-one and onto homomorphism, then φ is
called an isomorphism of rings.

Definition 11.0.2 Let φ : R→ S be a ring homomorphism maps, then
we define the kernel of a ring homomorphism to be the set

kerφ = {r ∈ R : φ(r) = 0}

� Example 11.1 For any integer n we can define a ring homomorphism
φ : Z→ Zn by a 7→ a (mod n ). This is indeed a ring homomorphism,
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since
φ(a+b) = (a+b) (mod n)

= a (mod n)+b (mod n)

= φ(a)+φ(b)

and
φ(ab) = ab (mod n)

= a (mod n) ·b (mod n)

= φ(a)φ(b)

The kernel of the homomorphism φ is nZ. �

� Example 11.2 Let C[a,b] be the ring of continuous real-valued func-
tions on an interval [a,b]. For a fixed α ∈ [a,b], we can define a ring
homomorphism φα : C[a,b]→ R by φα( f ) = f (α). This is a ring
homomorphism since

φα( f +g) = ( f +g)(α) = f (α)+g(α) = φα( f )+φα(g)

φα( f g) = ( f g)(α) = f (α)g(α) = φα( f )φα(g)

Ring homomorphisms of the type φα are called evaluation homomor-
phisms. �

In the next proposition we will examine some fundamental proper-
ties of ring homomorphisms. The proof of the proposition is left as an
exercise.

Proposition 11.0.1 Let φ : R→ S be a ring homomorphism.
1. If R is a commutative ring, then φ(R) is a commutative ring.
2. φ(0) = 0.
3. Let 1R and 1S be the identities for R and S, respectively. If φ is onto,
then φ (1R) = 1S.
4. If R is a field and φ(R) 6= {0}, then φ(R) is a field.



12. Ideals and Factor Rings

Normal subgroups are important in group theory because they allow
us to create factor groups. The comparable ideas for rings—ideals and
factor rings—are introduced in this chapter.

Definition 12.0.1 A subring I of a ring R is called a (two-sided) ideal
of R (IER) if for every r ∈ R and every a ∈ I both ra and ar are in
I.

So, a subring I of a ring R is an ideal of R if

rI = {ra | a ∈ I} ⊆ I,

and
Ir = {ar | a ∈ I} ⊆ I,

for all r ∈ R.

R An ideal I of R is called a proper ideal of R if I is a proper subset of R.
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Theorem 12.0.1 A nonempty subset I of a ring R is an ideal of R if
1. a−b ∈ I for all a,b ∈ I.
2. ra ∈ I and ar ∈ I for all a ∈ I and r ∈ R.

� Example 12.1 For any positive integer n, the set nZ= {0,±n,±2n, ...}
is an ideal of Z. �

� Example 12.2 For any ring R both {0} and R are ideals of R. �

Definition 12.0.2 Let R be a commutative ring with unity and let
a ∈ R. The set

< a >= {ra : r ∈ R}

is an ideal of R called the principal ideal generated by a.

� Example 12.3 Let

R[x] = {cnxn + cn−1xn−1 + ...+ c1x+ c0 : cn,cn−1, ...,c1,c0 ∈ R}

be the set of all polynomials with real coefficients and let

A[x] = {anxn +an−1xn−1 + ...+a1x : an,an−1, ...,a1 ∈ R} ⊆ R[x].

Then A[x] is an ideal of R[x] and A =< x >. �

� Example 12.4 Let R be a commutative ring with unity and let a1,
a2, . . . ,an belong to R. Then

I = 〈a1,a2, . . . ,an〉= {r1a1 + r2a2 + ...+ rnan | ri ∈ R}

is an ideal of R called the ideal generated by a1, a2, . . . ,an. �

� Example 12.5 Let Z[x] denote the ring of all polynomials with integer
coefficients and let I be the subset of Z[x] of all polynomials with even
constant terms. Then I is an ideal of Z[x] and I = 〈x,2〉 �
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12.1 Factor Ring
Theorem 12.1.1 Let R be a ring and let A be a subring of R. The set
of cosets {r+A | r ∈ R} is a ring under the operations

(s+A)+(t +A) = s+ t +A,

and
(s+A)(t +A) = st +A,

if and only if AER.

Proof. Since the set of cosets forms a group under addition, Also,
it is trivial to check that the multiplication is associative and that
multiplication is distributive over addition. Thus, the proof boils
down to showing that multiplication is well-defined if and only if
AER. To do this, suppose that A is an ideal and let s+A = s′+A and
t +A = t ′+A. Then we must show that st +A = s′t ′+A. Well, by
definition, s = s′+a and t = t ′+b, where a, b ∈ A. Then

st =
(
s′+a

)(
t ′+b

)
= s′t ′+at ′+ s′b+ab,

and so
st +A = s′t ′+at ′+ s′b+ab+A = s′t ′+A

Thus, multiplication is well-defined when A is an ideal.
On the other hand, suppose that A is a subring of R that is not

an ideal of R. Then there exist elements a ∈ A and r ∈ R such that
ar /∈ A or ra /∈ A. For convenience, say ar /∈ A. Consider the elements
a+A = 0 +A and r+A. Clearly,

(a+A)(r+A) = ar+A,

but
(0+A) · (r+A) = 0 · r+A = A.
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Since ar+A 6= A, the multiplication is not well defined and the set of
cosets is not a ring. �

Definition 12.1.1 If R is a ring and I is a two-sided ideal, the quotient
ring of R mod I is the group of cosets R/I with the operations of
coset addition and coset multiplication.

Proposition 12.1.2 Let R be a ring, and let I be an ideal
(a) If R is a commutative ring, so is R/I.
(b) If R has a multiplicative identity 1 , then 1+ I is a multiplicative
identity for R/I. In this case, if r ∈ R is a unit, then so is r+ I, and
(r+ I)−1 = r−1 + I.

Proof. (a) Let r+ I,s+ I ∈ R/I. Since R is commutative,

(r+ I)(s+ I) = rs+ I = sr+ I = (s+ I)(r+ I)

Therefore, R/I is commutative.
(b) Suppose R has a multiplicative identity 1. Let r ∈ R. Then

(r+ I)(1+ I) = r ·1+ I = r+ I,

and
(1+ I)(r+ I) = 1 · r+ I = r+ I.

Therefore, 1+ I is the identity of R/I. If r ∈ R is a unit, then(
r−1 + I

)
(r+ I) = r−1r+ I = 1+ I,

and
(r+ I)

(
r−1 + I

)
= rr−1 + I = 1+ I.

Therefore, (r+ I)−1 = r−1 + I. �
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� Example 12.6 The set of even integers < 2 >= 2Z is an ideal in Z.
Form the quotient ring Z/2Z.
Now, we show the element of Z/2Z.
The two cosets a+2Z and b+2Z are the same exactly when a and b
differ by an even integer. Every even integer differs from 0 by an even
integer. Every odd integer differs from 1 by an even integer. So there
are really only two cosets

0+2Z= 2Z, 1+2Z

. Here are the addition and multiplication tables:

+ 0+2Z 1+2Z
0+2Z 0+2Z 1+2Z
1+2Z 1+2Z 0+2Z

× 0+2Z 1+2Z
0+2Z 0+2Z 0+2Z
1+2Z 0+2Z 1+2Z

It is essay to see that Z/2Z is isomorphic to Z2. �

R In general, Z/nZ is isomorphic to Zn, with addition and multiplication
mod n.

This remark gives a formal construction of Zn as the quotient ring
Z/nZ.

� Example 12.7 8Z∠4Z = {0+4Z,1+4Z,2+4Z,3+4Z}. �

� Example 12.8 2Z/6Z = {0+6Z,2+6Z,4+6Z}. �
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12.2 Maximal ideals
Definition 12.2.1 Let R be a ring and M be an proper ideal of R. Then
M is said to be a maximal ideal of R, if there is no other ideal N
between M and R. That means if,

for ideal N, M ⊆ N =⇒ (N = M or N = R)

� Example 12.9 Let p be a (positive) prime integer. Then, pZ is maxi-
mal ideal of Z.

Proof. Suppose N is an ideal of Z and pZ ⊆ N. Since N is a
subgroup of Z, there is a positive integer n such that N = nZ. Since
pZ⊆ N = nZ, we have p = nk. So, n = 1 or k = 1. So, N = nZ= Z
or N = pZ. �

Theorem 12.2.1 Let R be a commutative ring (with unity, as always)
and M be an ideal. Then M is maximal iff R/M is a field.

Corollary 12.2.2 A commutative ring R is a field if and only if it has
no nontrivial ideals.

12.3 Prime Ideal
Definition 12.3.1 Let R be a commutative ring and P 6= R be an ideal
R. Then, P is called a prime ideal

∀ a,b ∈ R, (ab ∈ P⇒ a ∈ P∨b ∈ P))

� Example 12.10 Let n be an integer greater than 1. Then, in the ring
of integers, the ideal nZ is prime if and only if n is prime �

� Example 12.11 In Z×Z the ideal Z×{0} and {0}×Z are prime
ideals. More generally, let R be an integral domain. In R×R the ideal
R×{0} and {0}×R are prime ideals.
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Proof. We give a proof of the later statement and proveR×{0} is a
prime ideal. First, it is easy to see R×{0} an ideal and R×{0} 6=×R.

Now suppose (a,b)(x,y) ∈ R×{0}. So, by = 0. Since R is an
integral domain, b = 0 of y = 0. So, (a,b) ∈ R×{0} or (x,y) ∈ R×
{0}. The proof is complete. �

Lemma 12.1 Let R be a commutative ring. Then, R is an integral
domain⇔{0} is a prime ideal.

Theorem 12.3.1 Let R be a commutative ring and P 6= R is an ideal
of R. Then,

P is a prime ideal ⇔ R/P is an integral domain

Corollary 12.3.2 Let R be a commutative ring. Then, any maximal
ideal is a prime ideal.

Proof. Let M be a maximal ideal. Then, R/M is a field. So, R/M is
an integral domain. So, M is a prime ideal

�
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fWish you all the best, Dr. Amr M. Elrawy
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