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WHERE PDEs
COME FROM

After thinking about the meaning of a partial differential equation, we will
flex our mathematical muscles by solving a few of them. Then we will see
how naturally they arise in the physical sciences. The physics will motivate
the formulation of boundary conditions and initial conditions.

1.1 WHAT IS A PARTIAL DIFFERENTIAL EQUATION?

The key defining property of a partial differential equation (PDE) is that there
is more than one independent variable x, y, . . . . There is a dependent variable
that is an unknown function of these variables u(x, y, . . . ). We will often
denote its derivatives by subscripts; thus ∂u/∂x = ux , and so on. A PDE is an
identity that relates the independent variables, the dependent variable u, and
the partial derivatives of u. It can be written as

F(x, y, u(x, y), ux (x, y), uy(x, y)) = F(x, y, u, ux , uy) = 0. (1)

This is the most general PDE in two independent variables of first order. The
order of an equation is the highest derivative that appears. The most general
second-order PDE in two independent variables is

F(x, y, u, ux , uy, uxx , uxy, uyy) = 0. (2)

A solution of a PDE is a function u(x, y, . . . ) that satisfies the equation
identically, at least in some region of the x, y, . . . variables.

When solving an ordinary differential equation (ODE), one sometimes
reverses the roles of the independent and the dependent variables—for in-

stance, for the separable ODE
du

dx
= u3. For PDEs, the distinction between

the independent variables and the dependent variable (the unknown) is always
maintained.
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2 CHAPTER 1 WHERE PDEs COME FROM

Some examples of PDEs (all of which occur in physical theory) are:

1. ux + uy = 0 (transport)
2. ux + yuy = 0 (transport)
3. ux + uuy = 0 (shock wave)
4. uxx + uyy = 0 (Laplace’s equation)

5. utt − uxx + u3 = 0 (wave with interaction)
6. ut + uux + uxxx = 0 (dispersive wave)
7. utt + uxxxx = 0 (vibrating bar)

8. ut − iuxx = 0 (i = √−1) (quantum mechanics)

Each of these has two independent variables, written either as x and y or
as x and t. Examples 1 to 3 have order one; 4, 5, and 8 have order two; 6 has
order three; and 7 has order four. Examples 3, 5, and 6 are distinguished from
the others in that they are not “linear.” We shall now explain this concept.

Linearity means the following. Write the equation in the form lu = 0,
wherel is an operator. That is, if v is any function,lv is a new function. For
instance, l = ∂/∂x is the operator that takes v into its partial derivative vx .
In Example 2, the operator l is l = ∂/∂x + y∂/∂y. (lu = ux + yuy.) The
definition we want for linearity is

l(u + v) = lu + lv l(cu) = clu (3)

for any functions u, v and any constant c. Whenever (3) holds (for all choices
of u, v, and c), l is called linear operator. The equation

lu = 0 (4)

is called linear if l is a linear operator. Equation (4) is called a homogeneous
linear equation. The equation

lu = g, (5)

where g �= 0 is a given function of the independent variables, is called an
inhomogeneous linear equation. For instance, the equation

(cos xy2)ux − y2uy = tan(x2 + y2) (6)

is an inhomogeneous linear equation.
As you can easily verify, five of the eight equations above are linear

as well as homogeneous. Example 5, on the other hand, is not linear because
although (u + v)xx = uxx + vxx and (u + v)t t = utt + vt t satisfy property (3),
the cubic term does not:

(u + v)3 = u3 + 3u2v + 3uv2 + v3 �= u3 + v3.
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The advantage of linearity for the equation lu = 0 is that if u and v are
both solutions, so is (u + v). If u1, . . . , un are all solutions, so is any linear
combination

c1u1(x) + · · · + cnun(x) =
n∑

j=1

c j uj (x) (cj = constants).

(This is sometimes called the superposition principle.) Another consequence
of linearity is that if you add a homogeneous solution [a solution of (4)] to an
inhomogeneous solution [a solution of (5)], you get an inhomogeneous solu-
tion. (Why?) The mathematical structure that deals with linear combinations
and linear operators is the vector space. Exercises 5–10 are review problems
on vector spaces.

We’ll study, almost exclusively, linear systems with constant coefficients.
Recall that for ODEs you get linear combinations. The coefficients are the
arbitrary constants. For an ODE of order m, you get m arbitrary constants.

Let’s look at some PDEs.

Example 1.

Find all u(x, y) satisfying the equation uxx = 0. Well, we can integrate
once to get ux = constant. But that’s not really right since there’s another
variable y. What we really get is ux(x, y) = f (y), where f (y) is arbitrary.
Do it again to get u(x, y) = f (y)x + g(y). This is the solution formula.
Note that there are two arbitrary functions in the solution. We see this
as well in the next two examples. �

Example 2.

Solve the PDE uxx + u = 0. Again, it’s really an ODE with an extra
variable y. We know how to solve the ODE, so the solution is

u = f (y) cos x + g(y) sin x,

where again f (y) and g(y) are two arbitrary functions of y. You can easily
check this formula by differentiating twice to verify that uxx = −u. �

Example 3.

Solve the PDE uxy = 0. This isn’t too hard either. First let’s integrate in
x, regarding y as fixed. So we get

uy(x, y) = f (y).

Next let’s integrate in y regarding x as fixed. We get the solution

u(x, y) = F(y) + G(x),

where F ′ = f. �
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Moral A PDE has arbitrary functions in its solution. In these examples the
arbitrary functions are functions of one variable that combine to produce a
function u(x, y) of two variables which is only partly arbitrary.

A function of two variables contains immensely more information than
a function of only one variable. Geometrically, it is obvious that a surface
{u = f (x, y)}, the graph of a function of two variables, is a much more com-
plicated object than a curve {u = f (x)}, the graph of a function of one variable.

To illustrate this, we can ask how a computer would record a function
u = f (x). Suppose that we choose 100 points to describe it using equally spaced
values of x : x1, x2, x3, . . . , x100. We could write them down in a column, and
next to each xj we could write the corresponding value uj = f (xj ). Now how
about a function u = f (x, y)? Suppose that we choose 100 equally spaced
values of x and also of y: x1, x2, x3, . . . ,x100 and y1, y2, y3, . . . , y100. Each
pair xi , y j provides a value uij = f (xi , y j ), so there will be 1002 = 10,000
lines of the form

xi y j uij

required to describe the function! (If we had a prearranged system, we would
need to record only the values uij.) A function of three variables described
discretely by 100 values in each variable would require a million numbers!

To understand this book what do you have to know from calculus? Cer-
tainly all the basic facts about partial derivatives and multiple integrals. For
a brief discussion of such topics, see the Appendix. Here are a few things to
keep in mind, some of which may be new to you.

1. Derivatives are local. For instance, to calculate the derivative
(∂u/∂x)(x0, t0) at a particular point, you need to know just the values
of u(x, t0) for x near x0, since the derivative is the limit as x → x0.

2. Mixed derivatives are equal: uxy = uyx . (We assume throughout this book,
unless stated otherwise, that all derivatives exist and are continuous.)

3. The chain rule is used frequently in PDEs; for instance,

∂

∂x
[ f (g(x, t))] = f ′(g(x, t)) · ∂g

∂x
(x, t).

4. For the integrals of derivatives, the reader should learn or review Green’s
theorem and the divergence theorem. (See the end of Section A.3 in the
Appendix.)

5. Derivatives of integrals like I (t) = ∫ b(t)
a(t) f (x, t) dx (see Section A.3).

6. Jacobians (change of variable in a double integral) (see Section A.1).
7. Infinite series of functions and their differentiation (see Section A.2).
8. Directional derivatives (see Section A.1).
9. We’ll often reduce PDEs to ODEs, so we must know how to solve simple

ODEs. But we won’t need to know anything about tricky ODEs.
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EXERCISES

1. Verify the linearity and nonlinearity of the eight examples of PDEs given
in the text, by checking whether or not equations (3) are valid.

2. Which of the following operators are linear?
(a) lu = ux + xuy
(b) lu = ux + uuy

(c) lu = ux + u2
y

(d) lu = ux + uy + 1
(e) lu = √

1 + x2 (cos y)ux + uyxy − [arctan(x/y)]u
3. For each of the following equations, state the order and whether it

is nonlinear, linear inhomogeneous, or linear homogeneous; provide
reasons.
(a) ut − uxx + 1 = 0
(b) ut − uxx + xu = 0
(c) ut − uxxt + uux = 0
(d) utt − uxx + x2 = 0
(e) iut − uxx + u/x = 0
(f) ux (1 + u2

x )
−1/2 + uy(1 + u2

y)
−1/2 = 0

(g) ux + eyuy = 0
(h) ut + uxxxx + √

1 + u = 0
4. Show that the difference of two solutions of an inhomogeneous linear

equation lu = g with the same g is a solution of the homogeneous
equation lu = 0.

5. Which of the following collections of 3-vectors [a, b, c] are vector
spaces? Provide reasons.
(a) The vectors with b = 0.
(b) The vectors with b = 1.
(c) The vectors with ab = 0.
(d) All the linear combinations of the two vectors [1, 1, 0] and [2, 0, 1].
(e) All the vectors such that c − a = 2b.

6. Are the three vectors [1, 2, 3], [−2, 0, 1], and [1, 10, 17] linearly depen-
dent or independent? Do they span all vectors or not?

7. Are the functions 1 + x, 1 − x, and 1 + x + x2 linearly dependent or
independent? Why?

8. Find a vector that, together with the vectors [1, 1, 1] and [1, 2, 1], forms
a basis of R

3.
9. Show that the functions (c1 + c2 sin2x + c3 cos2x) form a vector space.

Find a basis of it. What is its dimension?
10. Show that the solutions of the differential equation u′′′ − 3u′′ + 4u = 0

form a vector space. Find a basis of it.
11. Verify that u(x, y) = f (x)g(y) is a solution of the PDE uuxy = ux uy for

all pairs of (differentiable) functions f and g of one variable.
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12. Verify by direct substitution that

un(x, y) = sin nx sinh ny

is a solution of uxx + uyy = 0 for every n > 0.

1.2 FIRST-ORDER LINEAR EQUATIONS

We begin our study of PDEs by solving some simple ones. The solution is
quite geometric in spirit.

The simplest possible PDE is ∂u/∂x = 0 [where u = u(x, y)]. Its general
solution is u = f (y), where f is any function of one variable. For instance,
u = y2 − y and u = ey cos y are two solutions. Because the solutions don’t
depend on x, they are constant on the lines y = constant in the xy plane.

THE CONSTANT COEFFICIENT EQUATION

Let us solve

aux + buy = 0, (1)

where a and b are constants not both zero.

Geometric Method The quantity aux + buy is the directional derivative of
u in the direction of the vector V = (a, b) = ai + bj. It must always be zero.
This means that u(x, y) must be constant in the direction of V. The vector
(b, −a) is orthogonal to V. The lines parallel to V (see Figure 1) have the
equations bx – ay = constant. (They are called the characteristic lines.) The
solution is constant on each such line. Therefore, u(x, y) depends on bx – ay
only. Thus the solution is

u(x, y) = f (bx − ay), (2)

where f is any function of one variable. Let’s explain this conclusion more
explicitly. On the line bx – ay = c, the solution u has a constant value. Call

Figure 1
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Figure 2

this value f (c). Then u(x, y) = f (c) = f (bx − ay). Since c is arbitrary, we
have formula (2) for all values of x and y. In xyu space the solution defines
a surface that is made up of parallel horizontal straight lines like a sheet of
corrugated iron.

Coordinate Method Change variables (or “make a change of coordinates”;
Figure 2) to

x ′ = ax + by y′ = bx − ay. (3)

Replace all x and y derivatives by x′ and y′ derivatives. By the chain rule,

ux = ∂u

∂x
= ∂u

∂x ′
∂x ′

∂x
+ ∂u

∂y′
∂y′

∂x
= aux ′ + buy′

and

uy = ∂u

∂y
= ∂u

∂y′
∂y′

∂y
+ ∂u

∂x ′
∂x ′

∂y
= bux ′ − auy′ .

Hence aux + buy = a(aux ′ + buy′) + b(bux ′ − auy′) = (a2 + b2)ux ′ . So,
since a2 + b2 �= 0, the equation takes the form ux ′ = 0 in the new (primed)
variables. Thus the solution is u = f (y′) = f (bx − ay), with f an arbitrary
function of one variable. This is exactly the same answer as before!

Example 1.

Solve the PDE 4ux − 3uy = 0, together with the auxiliary condition
that u(0, y) = y3. By (2) we have u(x, y) = f (−3x − 4y). This is
the general solution of the PDE. Setting x = 0 yields the equation
y3 = f (−4y). Letting w = −4y yields f (w) = −w3/64. Therefore,
u(x, y) = (3x + 4y)3/64.

Solutions can usually be checked much easier than they
can be derived. We check this solution by simple differen-
tiation: ux = 9(3x + 4y)2/64 and uy = 12(3x + 4y)2/64 so that
4ux − 3uy = 0. Furthermore, u(0, y) = (3 · 0 + 4y)3/64 = y3. �
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THE VARIABLE COEFFICIENT EQUATION

The equation

ux + yuy = 0 (4)

is linear and homogeneous but has a variable coefficient (y). We shall illustrate
for equation (4) how to use the geometric method somewhat like Example 1.

The PDE (4) itself asserts that the directional derivative in the direction
of the vector (1, y) is zero. The curves in the xy plane with (1, y) as tangent
vectors have slopes y (see Figure 3). Their equations are

dy

dx
= y

1
(5)

This ODE has the solutions
y = Cex . (6)

These curves are called the characteristic curves of the PDE (4). As C is
changed, the curves fill out the xy plane perfectly without intersecting. On
each of the curves u(x, y) is a constant because

d

dx
u(x, Cex ) = ∂u

∂x
+ Cex ∂u

∂y
= ux + yuy = 0.

Thus u(x,Cex ) = u(0, Ce0) = u(0, C) is independent of x. Putting y = Cex

and C = e−x y, we have

u(x, y) = u(0, e−xy).

It follows that

u(x, y) = f (e−xy) (7)

is the general solution of this PDE, where again f is an arbitrary function
of only a single variable. This is easily checked by differentiation using
the chain rule (see Exercise 4). Geometrically, the “picture” of the solution
u(x, y) is that it is constant on each characteristic curve in Figure 3.

Figure 3
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Example 2.

Find the solution of (4) that satisfies the auxiliary condition u(0, y) = y3.
Indeed, putting x = 0 in (7), we get y3 = f (e−0 y), so that f (y) = y3.
Therefore, u(x, y) = (e−x y)3 = e−3x y3. �

Example 3.

Solve the PDE

ux + 2xy2uy = 0. (8)

The characteristic curves satisfy the ODE dy/dx = 2xy2/1 = 2xy2.
To solve the ODE, we separate variables: dy/y2 = 2x dx ; hence
−1/y = x2 − C , so that

y = (C − x2)
−1

. (9)

These curves are the characteristics. Again, u(x, y) is a constant on each
such curve. (Check it by writing it out.) So u(x, y) = f (C), where f is an
arbitrary function. Therefore, the general solution of (8) is obtained by
solving (9) for C. That is,

u(x, y) = f

(
x2 + 1

y

)
. (10)

Again this is easily checked by differentiation, using the chain
rule: ux = 2x · f ′(x2 + 1/y) and uy = −(1/y2) · f ′(x2 + 1/y), whence
ux + 2xy2uy = 0. �

In summary, the geometric method works nicely for any PDE of the form
a(x, y)ux + b(x, y)uy = 0. It reduces the solution of the PDE to the solution
of the ODE dy/dx = b(x, y)/a(x, y). If the ODE can be solved, so can the
PDE. Every solution of the PDE is constant on the solution curves of the ODE.

Moral Solutions of PDEs generally depend on arbitrary functions (instead
of arbitrary constants). You need an auxiliary condition if you want to deter-
mine a unique solution. Such conditions are usually called initial or boundary
conditions. We shall encounter these conditions throughout the book.

EXERCISES

1. Solve the first-order equation 2ut + 3ux = 0 with the auxiliary condition
u = sin x when t = 0.

2. Solve the equation 3uy + uxy = 0. (Hint : Let v = uy.)
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3. Solve the equation (1 + x2)ux + uy = 0. Sketch some of the character-
istic curves.

4. Check that (7) indeed solves (4).
5. Solve the equation xux + yuy = 0.
6. Solve the equation

√
1 − x2ux + uy = 0 with the condition u(0, y) = y.

7. (a) Solve the equation yux + xuy = 0 with u(0, y) = e−y2
.

(b) In which region of the xy plane is the solution uniquely determined?
8. Solve aux + buy + cu = 0.
9. Solve the equation ux + uy = 1.

10. Solve ux + uy + u = ex+2y with u(x, 0) = 0.
11. Solve aux + buy = f (x, y), where f (x, y) is a given function. If a �= 0,

write the solution in the form

u(x, y) = (a2 + b2)
−1/2

∫
L

f ds + g(bx − ay),

where g is an arbitrary function of one variable, L is the characteristic
line segment from the y axis to the point (x, y), and the integral is a line
integral. (Hint: Use the coordinate method.)

12. Show that the new coordinate axes defined by (3) are orthogonal.
13. Use the coordinate method to solve the equation

ux + 2uy + (2x − y)u = 2x2 + 3xy − 2y2.

1.3 FLOWS, VIBRATIONS, AND DIFFUSIONS

The subject of PDEs was practically a branch of physics until the twentieth
century. In this section we present a series of examples of PDEs as they occur
in physics. They provide the basic motivation for all the PDE problems we
study in the rest of the book. We shall see that most often in physical problems
the independent variables are those of space x, y, z, and time t.

Example 1. Simple Transport
Consider a fluid, water, say, flowing at a constant rate c along a horizontal
pipe of fixed cross section in the positive x direction. A substance, say
a pollutant, is suspended in the water. Let u(x, t) be its concentration in
grams/centimeter at time t. Then

ut + cux = 0. (1)

(That is, the rate of change ut of concentration is proportional to the
gradient ux. Diffusion is assumed to be negligible.) Solving this equation
as in Section 1.2, we find that the concentration is a function of (x – ct)
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Figure 1

only. This means that the substance is transported to the right at a fixed
speed c. Each individual particle moves to the right at speed c; that
is, in the xt plane, it moves precisely along a characteristic line (see
Figure 1). �

Derivation of Equation (1). The amount of pollutant in the interval
[0, b] at the time t is M = ∫ b

0 u(x, t) dx , in grams, say. At the later time t + h,
the same molecules of pollutant have moved to the right by c · h centimeters.
Hence

M =
∫ b

0
u(x, t)dx =

∫ b+ch

ch
u(x, t + h) dx .

Differentiating with respect to b, we get

u(b, t) = u(b + ch, t + h).

Differentiating with respect to h and putting h = 0, we get

0 = cux (b, t) + ut (b, t),

which is equation (1). �

Example 2. Vibrating String
Consider a flexible, elastic homogenous string or thread of length l,
which undergoes relatively small transverse vibrations. For instance, it
could be a guitar string or a plucked violin string. At a given instant
t, the string might look as shown in Figure 2. Assume that it remains
in a plane. Let u(x, t) be its displacement from equilibrium position at
time t and position x. Because the string is perfectly flexible, the tension
(force) is directed tangentially along the string (Figure 3). Let T(x, t) be
the magnitude of this tension vector. Let ρ be the density (mass per unit
length) of the string. It is a constant because the string is homogeneous.
We shall write down Newton’s law for the part of the string between
any two points at x = x0 and x = x1. The slope of the string at x1 is

Figure 2
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Figure 3

ux(x1, t). Newton’s law F = ma in its longitudinal (x) and transverse (u)
components is

T√
1 + u2

x

∣∣∣∣
x1

x0

= 0 (longitudinal)

T ux√
1 + u2

x

∣∣∣∣
x1

x0

=
∫ x1

x0

ρutt dx (transverse)

The right sides are the components of the mass times the acceleration
integrated over the piece of string. Since we have assumed that the
motion is purely transverse, there is no longitudinal motion.

Now we also assume that the motion is small—more specifically,
that |ux | is quite small. Then

√
1 + u2

x may be replaced by 1. This is
justified by the Taylor expansion, actually the binomial expansion,√

1 + u2
x = 1 + 1

2 u2
x + · · ·

where the dots represent higher powers of ux. If ux is small, it makes
sense to drop the even smaller quantity u2

x and its higher powers. With
the square roots replaced by 1, the first equation then says that T is
constant along the string. Let us assume that T is independent of t as
well as x. The second equation, differentiated, says that

(Tux )x = ρutt .

That is,

utt = c2uxx where c =
√

T

ρ
. (2)

This is the wave equation. At this point it is not clear why c is defined
in this manner, but shortly we’ll see that c is the wave speed. �
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There are many variations of this equation:

(i) If significant air resistance r is present, we have an extra term pro-
portional to the speed ut, thus:

utt − c2uxx + rut = 0 where r > 0. (3)

(ii) If there is a transverse elastic force, we have an extra term propor-
tional to the displacement u, as in a coiled spring, thus:

utt − c2uxx + ku = 0 where k > 0. (4)

(iii) If there is an externally applied force, it appears as an extra term,
thus:

utt − c2uxx = f (x, t), (5)

which makes the equation inhomogeneous.

Our derivation of the wave equation has been quick but not too precise. A
much more careful derivation can be made, which makes precise the physical
and mathematical assumptions [We, Chap. 1].

The same wave equation or a variation of it describes many other wavelike
phenomena, such as the vibrations of an elastic bar, the sound waves in a pipe,
and the long water waves in a straight canal. Another example is the equation
for the electrical current in a transmission line,

uxx = CLutt + (CR + GL)ut + GRu,

where C is the capacitance per unit length, G the leakage resistance per unit
length, R the resistance per unit length, and L the self-inductance per unit
length.

Example 3. Vibrating Drumhead
The two-dimensional version of a string is an elastic, flexible, homo-
geneous drumhead, that is, a membrane stretched over a frame. Say
the frame lies in the xy plane (see Figure 4), u(x, y, t) is the vertical

Figure 4
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displacement, and there is no horizontal motion. The horizontal com-
ponents of Newton’s law again give constant tension T . Let D be any
domain in the xy plane, say a circle or a rectangle. Let bdy D be its
boundary curve. We use reasoning similar to the one-dimensional case.
The vertical component gives (approximately)

F =
∫

bdy D
T

∂u

∂n
ds =

∫∫
D

ρutt dx dy = ma,

where the left side is the total force acting on the piece D of the mem-
brane, and where ∂u/∂n = n · ∇u is the directional derivative in the
outward normal direction, n being the unit outward normal vector on
bdy D. By Green’s theorem (see Section A.3 in the Appendix), this can
be rewritten as ∫∫

D

∇ · (T ∇u) dx dy =
∫∫

D

ρutt dx dy.

Since D is arbitrary, we deduce from the second vanishing theorem in
Section A.1 that ρutt = ∇ · (T ∇u). Since T is constant, we get

utt = c2∇ · (∇u) ≡ c2(uxx + uyy), (6)

where c = √
T/ρ as before and ∇ · (∇u) = div grad u = uxx + uyy is

known as the two-dimensional laplacian. Equation (6) is the two-
dimensional wave equation. �

The pattern is now clear. Simple three-dimensional vibrations obey the
equation

utt = c2(uxx + uyy + uzz). (7)

The operator l = ∂2/∂x2 + ∂2/∂y2 + ∂/∂z2 is called the three-dimensional
laplacian operator, usually denoted by � or ∇2. Physical examples described
by the three-dimensional wave equation or a variation of it include the vi-
brations of an elastic solid, sound waves in air, electromagnetic waves (light,
radar, etc.), linearized supersonic airflow, free mesons in nuclear physics, and
seismic waves propagating through the earth.

Example 4. Diffusion
Let us imagine a motionless liquid filling a straight tube or pipe and
a chemical substance, say a dye, which is diffusing through the liquid.
Simple diffusion is characterized by the following law. [It is not to
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Figure 5

be confused with convection (transport), which refers to currents in
the liquid.] The dye moves from regions of higher concentration to
regions of lower concentration. The rate of motion is proportional to the
concentration gradient. (This is known as Fick’s law of diffusion.) Let
u(x, t) be the concentration (mass per unit length) of the dye at position
x of the pipe at time t.

In the section of pipe from x0 to x1 (see Figure 5), the mass of dye is

M(t) =
∫ x1

x0

u(x, t) dx, so
dM

dt
=

∫ x1

x0

ut (x, t) dx .

The mass in this section of pipe cannot change except by flowing in or
out of its ends. By Fick’s law,

dM

dt
= flow in − flow out = kux (x1, t) − kux (x0, t),

where k is a proportionality constant. Therefore, those two expressions
are equal: ∫ x1

x0

ut (x, t) dx = kux (x1, t) − kux (x0, t).

Differentiating with respect to x1, we get

ut = kuxx . (8)

This is the diffusion equation.
In three dimensions we have∫∫∫

D

ut dx dy dz =
∫∫
bdy D

k(n · ∇u) d S,

where D is any solid domain and bdy D is its bounding surface. By the
divergence theorem (using the arbitrariness of D as in Example 3), we
get the three-dimensional diffusion equation

ut = k(uxx + uyy + uzz) = k �u. (9)

If there is an external source (or a “sink”) of the dye, and if the rate
k of diffusion is a variable, we get the more general inhomogeneous
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equation

ut = ∇ · (k ∇u) + f (x, t).

The same equation describes the conduction of heat, brownian motion,
diffusion models of population dynamics, and many other phenomena.

�

Example 5. Heat Flow
We let u(x, y, z, t) be the temperature and let H(t) be the amount of heat
(in calories, say) contained in a region D. Then

H (t) =
∫∫∫

D

cρu dx dy dz,

where c is the “specific heat” of the material and ρ is its density (mass
per unit volume). The change in heat is

dH

dt
=

∫∫∫
D

cρut dx dy dz.

Fourier’s law says that heat flows from hot to cold regions proportion-
ately to the temperature gradient. But heat cannot be lost from D except
by leaving it through the boundary. This is the law of conservation of
energy. Therefore, the change of heat energy in D also equals the heat
flux across the boundary,

dH

dt
=

∫∫
bdy D

κ(n · ∇u) dS,

where κ is a proportionality factor (the “heat conductivity”). By the
divergence theorem,∫∫∫

D

cρ
∂u

∂t
dx dy dz =

∫∫∫
D

∇ · (κ ∇u) dx dy dz

and we get the heat equation

cρ
∂u

∂t
= ∇ · (κ ∇u). (10)

If c,ρ, andκ are constants, it is exactly the same as the diffusion equation!
�

Example 6. Stationary Waves and Diffusions
Consider any of the four preceding examples in a situation where the
physical state does not change with time. Then ut = utt = 0. So both
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the wave and the diffusion equations reduce to

�u = uxx + uyy + uzz = 0. (11)

This is called the Laplace equation. Its solutions are called harmonic
functions. For example, consider a hot object that is constantly heated
in an oven. The heat is not expected to be evenly distributed throughout
the oven. The temperature of the object eventually reaches a steady (or
equilibrium) state. This is a harmonic function u(x, y, z). (Of course, if
the heat were being supplied evenly in all directions, the steady state
would be u ≡ constant.) In the one-dimensional case (e.g., a laterally
insulated thin rod that exchanges heat with its environment only through
its ends), we would have u a function of x only. So the Laplace equation
would reduce simply to uxx = 0. Hence u = c1x + c2. The two- and
three-dimensional cases are much more interesting (see Chapter 6 for
the solutions). �

Example 7. The Hydrogen Atom
This is an electron moving around a proton. Let m be the mass of the
electron, e its charge, and h Planck’s constant divided by 2π . Let the
origin of coordinates (x, y, z) be at the proton and let r = (x2 + y2 + z2)1/2

be the spherical coordinate. Then the motion of the electron is given by
a “wave function” u(x, y, z, t) which satisfies Schrödinger’s equation

−ihut = h2

2m
�u + e2

r
u (12)

in all of space −∞ < x,y,z < +∞. Furthermore, we are supposed to
have

∫∫∫ |u|2dx dy dz = 1 (integral over all space). Note that i = √−1
and u is complex-valued. The coefficient function e2/r is called the po-
tential. For any other atom with a single electron, such as a helium ion,
e2 is replaced by Ze2, where Z is the atomic number. �

What does this mean physically? In quantum mechanics quantities cannot
be measured exactly but only with a certain probability. The wave function
u(x, y, z, t) represents a possible state of the electron. If D is any region in xyz
space, then ∫∫∫

D

|u|2 dx dy dz

is the probability of finding the electron in the region D at the time t. The
expected z coordinate of the position of the electron at the time t is the value
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of the integral

∫∫∫
z|u(x, y, z, t)|2 dx dy dz;

similarly for the x and y coordinates. The expected z coordinate of the mo-
mentum is ∫∫∫

−ih
∂u

∂z
(x, y, z, t) · ū(x, y, z, t) dx dy dz,

where ū is the complex conjugate of u. All other observable quantities are
given by operators A, which act on functions. The expected value of the
observable A equals

∫∫∫
Au(x, y, z, t) · ū(x, y, z, t) dx dy dz.

Thus the position is given by the operator Au = xu, where x = x i + yj + zk,
and the momentum is given by the operator Au = −ih∇u.

Schrödinger’s equation is most easily regarded simply as an axiom that
leads to the correct physical conclusions, rather than as an equation that can
be derived from simpler principles. It explains why atoms are stable and don’t
collapse. It explains the energy levels of the electron in the hydrogen atom
observed by Bohr. In principle, elaborations of it explain the structure of all
atoms and molecules and so all of chemistry! With many particles, the wave
function u depends on time t and all the coordinates of all the particles and so
is a function of a large number of variables. The Schrödinger equation then
becomes

−ihut =
n∑

i=1

h2

2mi
(uxi xi + uyi yi + uzi zi ) + V (x1, . . . , zn)u

for n particles, where the potential function V depends on all the 3n coor-
dinates. Except for the hydrogen and helium atoms (the latter having two
electrons), the mathematical analysis is impossible to carry out completely
and cannot be calculated even with the help of the modern computer. Nev-
ertheless, with the use of various approximations, many of the facts about
more complicated atoms and the chemical binding of molecules can be
understood. �

This has been a brief introduction to the sources of PDEs in physical
problems. Many realistic situations lead to much more complicated PDEs.
See Chapter 13 for some additional examples.



1.3 FLOWS, VIBRATIONS, AND DIFFUSIONS 19

EXERCISES

1. Carefully derive the equation of a string in a medium in which the resis-
tance is proportional to the velocity.

2. A flexible chain of length l is hanging from one end x = 0 but oscillates
horizontally. Let the x axis point downward and the u axis point to the
right. Assume that the force of gravity at each point of the chain equals the
weight of the part of the chain below the point and is directed tangentially
along the chain. Assume that the oscillations are small. Find the PDE
satisfied by the chain.

3. On the sides of a thin rod, heat exchange takes place (obeying New-
ton’s law of cooling—flux proportional to temperature difference) with
a medium of constant temperature T0. What is the equation satisfied by
the temperature u(x, t), neglecting its variation across the rod?

4. Suppose that some particles which are suspended in a liquid medium
would be pulled down at the constant velocity V > 0 by gravity in the
absence of diffusion. Taking account of the diffusion, find the equation
for the concentration of particles. Assume homogeneity in the horizontal
directions x and y. Let the z axis point upwards.

5. Derive the equation of one-dimensional diffusion in a medium that is
moving along the x axis to the right at constant speed V .

6. Consider heat flow in a long circular cylinder where the temperature
depends only on t and on the distance r to the axis of the cylinder. Here
r =

√
x2 + y2 is the cylindrical coordinate. From the three-dimensional

heat equation derive the equation ut = k(urr + ur/r ).
7. Solve Exercise 6 in a ball except that the temperature depends

only on the spherical coordinate
√

x2 + y2 + z2. Derive the equation
ut = k(urr + 2ur/r ).

8. For the hydrogen atom, if
∫ |u|2 dx = 1 at t = 0, show that the same is

true at all later times. (Hint: Differentiate the integral with respect to t,
taking care about the solution being complex valued. Assume that u and
∇u → 0 fast enough as |x| → ∞.)

9. This is an exercise on the divergence theorem

∫∫∫
D

∇ · F dx =
∫∫
bdy D

F · n d S,

valid for any bounded domain D in space with boundary surface
bdy D and unit outward normal vector n. If you never learned it,
see Section A.3. It is crucial that D be bounded As an exercise,
verify it in the following case by calculating both sides separately:
F = r2x, x = x i + yj + zk, r2 = x2 + y2 + z2, and D = the ball of ra-
dius a and center at the origin.
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10. If f(x) is continuous and |f(x)| ≤ 1/(|x|3 + 1) for all x, show that∫∫∫
all space

∇ · f dx = 0.

(Hint: Take D to be a large ball, apply the divergence theorem, and let
its radius tend to infinity.)

11. If curl v = 0 in all of three-dimensional space, show that there exists a
scalar function φ(x, y, z) such that v = grad φ.

1.4 INITIAL AND BOUNDARY CONDITIONS

Because PDEs typically have so many solutions, as we saw in Section 1.2,
we single out one solution by imposing auxiliary conditions. We attempt to
formulate the conditions so as to specify a unique solution. These conditions
are motivated by the physics and they come in two varieties, initial conditions
and boundary conditions.

An initial condition specifies the physical state at a particular time t0. For
the diffusion equation the initial condition is

u(x, t0) = φ(x), (1)

where φ(x) = φ(x, y, z) is a given function. For a diffusing substance, φ(x)
is the initial concentration. For heat flow, φ(x) is the initial temperature. For
the Schrödinger equation, too, (1) is the usual initial condition.

For the wave equation there is a pair of initial conditions

u(x, t0) = φ(x) and
∂u

∂t
(x, t0) = ψ(x), (2)

where φ(x) is the initial position and ψ(x) is the initial velocity. It is clear on
physical grounds that both of them must be specified in order to determine
the position u(x, t) at later times. (We shall also prove this mathematically.)

�

In each physical problem we have seen that there is a domain D in which
the PDE is valid. For the vibrating string, D is the interval 0 < x < l, so
the boundary of D consists only of the two points x = 0 and x = l. For the
drumhead, the domain is a plane region and its boundary is a closed curve.
For the diffusing chemical substance, D is the container holding the liquid, so
its boundary is a surface S = bdy D. For the hydrogen atom, the domain is all
of space, so it has no boundary.

It is clear, again from our physical intuition, that it is necessary to specify
some boundary condition if the solution is to be determined. The three most
important kinds of boundary conditions are:

(D) u is specified (“Dirichlet condition”)
(N) the normal derivative ∂u/∂n is specified (“Neumann condition”)
(R) ∂u/∂n + au is specified (“Robin condition”)
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Figure 1

where a is a given function of x, y, z, and t. Each is to hold for all t and for x =
(x, y, z) belonging to bdy D. Usually, we write (D), (N), and (R) as equations.
For instance, (N) is written as the equation

∂u

∂n
= g(x, t) (3)

where g is a given function that could be called the boundary datum. Any
of these boundary conditions is called homogeneous if the specified function
g(x, t) vanishes (equals zero). Otherwise, it is called inhomogenous. As usual,
n = (n1, n2, n3) denotes the unit normal vector on bdy D, which points out-
ward from D (see Figure 1). Also, ∂u/∂n ≡ n · ∇u denotes the directional
derivative of u in the outward normal direction.

In one-dimensional problems where D is just an interval 0 < x < l, the
boundary consists of just the two endpoints, and these boundary conditions
take the simple form

(D) u(0, t) = g(t) and u(l, t) = h(t)

(N)
∂u

∂x
(0, t) = g(t) and

∂u

∂x
(l, t) = h(t)

and similarly for the Robin condition. �

Following are some illustrations of physical problems corresponding to
these boundary conditions.

THE VIBRATING STRING

If the string is held fixed at both ends, as for a violin string, we have the
homogeneous Dirichlet conditions u(0, t) = u(l, t) = 0.

Imagine, on the other hand, that one end of the string is free to move
transversally without any resistance (say, along a frictionless track); then
there is no tension T at that end, so ux = 0. This is a Neumann condition.

Third, the Robin condition would be the correct one if one were to imagine
that an end of the string were free to move along a track but were attached to
a coiled spring or rubber band (obeying Hooke’s law) which tended to pull it
back to equilibrium position. In that case the string would exchange some of
its energy with the coiled spring.

Finally, if an end of the string were simply moved in a specified way, we
would have an inhomogeneous Dirichlet condition at that end.
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DIFFUSION

If the diffusing substance is enclosed in a container D so that none can escape
or enter, then the concentration gradient in the normal direction must vanish,
by Fick’s law (see Exercise 2). Thus ∂u/∂n = 0 on S = bdy D, which is the
Neumann condition.

If, on the other hand, the container is permeable and is so constructed that
any substance that escapes to the boundary of the container is immediately
washed away, then we have u = 0 on S.

HEAT

Heat conduction is described by the diffusion equation with u(x, t) = temper-
ature. If the object D through which the heat is flowing is perfectly insulated,
then no heat flows across the boundary and we have the Neumann condition
∂u/∂n = 0 (see Exercise 2).

On the other hand, if the object were immersed in a large reservoir of
specified temperature g(t) and there were perfect thermal conduction, then
we’d have the Dirichlet condition u = g(t) on bdy D.

Suppose that we had a uniform rod insulated along its length 0 ≤ x ≤ l,
whose end at x = l were immersed in the reservoir of temperature g(t). If heat
were exchanged between the end and the reservoir so as to obey Newton’s
law of cooling, then

∂u

∂x
(l, t) = −a[u(l, t) − g(t)],

where a > 0. Heat from the hot rod radiates into the cool reservoir. This is an
inhomogeneous Robin condition.

LIGHT

Light is an electromagnetic field and as such is described by Maxwell’s equa-
tions (see Chapter 13). Each component of the electric and magnetic field
satisfies the wave equation. It is through the boundary conditions that the
various components are related to each other. (They are “coupled.”) Imagine,
for example, light reflecting off a ball with a mirrored surface. This is a scat-
tering problem. The domain D where the light is propagating is the exterior
of the ball. Certain boundary conditions then are satisfied by the electromag-
netic field components. When polarization effects are not being studied, some
scientists use the wave equation with homogeneous Dirichlet or Neumann
conditions as a considerably simplified model of such a situation.

SOUND

Our ears detect small disturbances in the air. The disturbances are described
by the equations of gas dynamics, which form a system of nonlinear equations
with velocity v and density ρ as the unknowns. But small disturbances are
described quite well by the so-called linearized equations, which are a lot



1.4 INITIAL AND BOUNDARY CONDITIONS 23

simpler; namely,

∂v
∂t

+ c2
0

ρ0
grad ρ = 0 (4)

∂ρ

∂t
+ ρ0 div v = 0 (5)

(four scalar equations altogether). Here ρ0 is the density and c0 is the speed
of sound in still air.

Assume now that the curl of v is zero; this means that there are no sound
“eddies” and the velocity v is irrotational. It follows that ρ and all three
components of v satisfy the wave equation:

∂2v
∂t2

= c2
0 �v and

∂2ρ

∂t2
= c2

0 �ρ. (6)

The interested reader will find a derivation of these equations in Section 13.2.
Now if we are describing sound propagation in a closed, sound-insulated

room D with rigid walls, say a concert hall, then the air molecules at the wall
can only move parallel to the boundary, so that no sound can travel in a normal
direction to the boundary. So v · n = 0 on bdy D. Since curl v = 0, there is
a standard fact in vector calculus (Exercise 1.3.11) which says that there is
a “potential” function ψ such that v = −grad ψ . The potential also satisfies
the wave equation ∂2ψ/∂t2 = c2

0 �ψ , and the boundary condition for it is
−v · n = n · grad ψ = 0 or Neumann’s condition for ψ .

At an open window of the room D, the atmospheric pressure is a constant
and there is no difference of pressure across the window. The pressure p is
proportional to the density ρ, for small disturbances of the air. Thus ρ is a
constant at the window, which means that ρ satisfies the Dirichlet boundary
condition ρ = ρ0.

At a soft wall, such as an elastic membrane covering an open window, the
pressure difference p − p0 across the membrane is proportional to the normal
velocity v · n, namely

p − p0 = Z v · n,

where Z is called the acoustic impedance of the wall. (A rigid wall has a very
large impedance and an open window has zero impedance.) Now p − p0 is in
turn proportional to ρ − ρ0 for small disturbances. Thus the system of four
equations (4),(5) satisfies the boundary condition

v · n = a(ρ − ρ0),

where a is a constant proportional to 1/Z. (See [MI] for further discussion.)
�

A different kind of boundary condition in the case of the wave equation
is

∂u

∂n
+ b

∂u

∂t
= 0. (7)
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Figure 2

This condition means that energy is radiated to (b > 0) or absorbed from
(b < 0) the exterior through the boundary. For instance, a vibrating string
whose ends are immersed in a viscous liquid would satisfy (7) with b > 0
since energy is radiated to the liquid.

CONDITIONS AT INFINITY

In case the domain D is unbounded, the physics usually provides conditions
at infinity. These can be tricky. An example is Schrödinger’s equation, where
the domain D is all of space, and we require that f |u|2 dx = 1. The finiteness
of this integral means, in effect, that u “vanishes at infinity.”

A second example is afforded by the scattering of acoustic or electro-
magnetic waves. If we want to study sound or light waves that are radiating
outward (to infinity), the appropriate condition at infinity is “Sommerfeld’s
outgoing radiation condition”

lim
r→∞r

(
∂u

∂r
− ∂u

∂t

)
= 0, (8)

where r = |x| is the spherical coordinate. (In a given mathematical context
this limit would be made more precise.) (See Section 13.3.)

JUMP CONDITIONS

These occur when the domain D has two parts, D = D1 ∪ D2 (see Figure 2),
with different physical properties. An example is heat conduction, where D1
and D2 consist of two different materials (see Exercise 6).

EXERCISES

1. By trial and error, find a solution of the diffusion equation ut = uxx with
the initial condition u(x, 0) = x2.

2. (a) Show that the temperature of a metal rod, insulated at the end x = 0,
satisfies the boundary condition ∂u/∂x = 0. (Use Fourier’s law.)

(b) Do the same for the diffusion of gas along a tube that is closed off at
the end x = 0. (Use Fick’s law.)
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(c) Show that the three-dimensional version of (a) (insulated solid) or (b)
(impermeable container) leads to the boundary condition ∂u/∂n = 0.

3. A homogeneous body occupying the solid region D is completely insu-
lated. Its initial temperature is f (x). Find the steady-state temperature that
it reaches after a long time. (Hint: No heat is gained or lost.)

4. A rod occupying the interval 0 ≤ x ≤ l is subject to the heat source
f (x) = 0 for 0 < x < l

2 , and f (x) = H for l
2 < x < l where H > 0. The

rod has physical constants c = ρ = κ = 1, and its ends are kept at zero
temperature.
(a) Find the steady-state temperature of the rod.
(b) Which point is the hottest, and what is the temperature there?

5. In Exercise 1.3.4, find the boundary condition if the particles lie above an
impermeable horizontal plane z = a.

6. Two homogeneous rods have the same cross section, specific heat c, and
density ρ but different heat conductivities κ1 and κ2 and lengths L1 and
L2. Let k j = κ j/cρ be their diffusion constants. They are welded together
so that the temperature u and the heat flux κux at the weld are continuous.
The left-hand rod has its left end maintained at temperature zero. The
right-hand rod has its right end maintained at temperature T degrees.
(a) Find the equilibrium temperature distribution in the composite rod.
(b) Sketch it as a function of x in case k1 = 2, k2 = 1, L1 = 3, L2 = 2,

and T = 10. (This exercise requires a lot of elementary algebra, but
it’s worth it.)

7. In linearized gas dynamics (sound), verify the following.
(a) If curl v = 0 at t = 0, then curl v = 0 at all later times.
(b) Each component of v and ρ satifies the wave equation.

1.5 WELL-POSED PROBLEMS

Well-posed problems consist of a PDE in a domain together with a set of
initial and/or boundary conditions (or other auxiliary conditions) that enjoy
the following fundamental properties:

(i) Existence: There exists at least one solution u(x, t) satisfying all
these conditions.

(ii) Uniqueness: There is at most one solution.
(iii) Stability: The unique solution u(x, t) depends in a stable manner on

the data of the problem. This means that if the data are changed a
little, the corresponding solution changes only a little.

For a physical problem modeled by a PDE, the scientist normally tries to
formulate physically realistic auxiliary conditions which all together make a
well-posed problem. The mathematician tries to prove that a given problem
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is or is not well-posed. If too few auxiliary conditions are imposed, then
there may be more than one solution (nonuniqueness) and the problem is
called underdetermined. If, on the other hand, there are too many auxiliary
conditions, there may be no solution at all (nonexistence) and the problem is
called overdetermined.

The stability property (iii) is normally required in models of physical
problems. This is because you could never measure the data with mathemat-
ical precision but only up to some number of decimal places. You cannot
distinguish a set of data from a tiny perturbation of it. The solution ought not
be significantly affected by such tiny perturbations, so it should change very
little.

Let us take an example. We know that a vibrating string with an external
force, whose ends are moved in a specified way, satisfies the problem

T utt − ρuxx = f (x, t)
u(x, 0) = φ(x) ut (x, 0) = ψ(x)
u(0, t) = g(t) u(L , t) = h(t)

(1)

for 0 < x < L. The data for this problem consist of the five functions
f (x, t), φ(x), ψ(x), g(t), and h(t). Existence and uniqueness would mean
that there is exactly one solution u(x, t) for arbitrary (differentiable) func-
tions f, φ, ψ, g, h. Stability would mean that if any of these five functions are
slightly perturbed, then u is also changed only slightly. To make this precise
requires a definition of the “nearness” of functions. Mathematically, this re-
quires the concept of a “distance”, “metric”, “norm”, or “topology” in function
space and will be discussed in the context of specific examples (see Sections
2.3, 3.4, or 5.5). Problem (1) is indeed well-posed if we make the appropriate
choice of “nearness.”

As a second example, consider the diffusion equation. Given an initial
condition u(x, 0) = f (x), we expect a unique solution, in fact, well-posedness,
for t> 0. But consider the backwards problem! Given f (x), find u(x, t) for t < 0.
What past behavior could have led up to the concentration f (x) at time 0? Any
chemist knows that diffusion is a smoothing process since the concentration
of a substance tends to flatten out. Going backward (“antidiffusion”), the
situation becomes more and more chaotic. Therefore, you would not expect
well-posedness of the backward-in-time problem for the diffusion equation.

As a third example, consider solving a matrix equation instead of a PDE:
namely, Au = b, where A is an m × n matrix and b is a given m-vector. The
“data” of this problem comprise the vector b. If m > n, there are more rows
than columns and the system is overdetermined. This means that no solution
can exist for certain vectors b; that is, you don’t necessarily have existence. If,
on the other hand, n > m, there are more columns than rows and the system
is underdetermined. This means that there are lots of solutions for certain
vectors b; that is, you can’t have uniqueness.

Now suppose that m = n but A is a singular matrix; that is, det A = 0
or A has no inverse. Then the problem is still ill-posed (neither existence nor
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uniqueness). It is also unstable. To illustrate the instability further, consider a
nonsingular matrix A with one very small eigenvalue. The solution is unique
but if b is slightly perturbed, then the error will be greatly magnified in the
solution u. Such a matrix, in the context of scientific computation, is called
ill-conditioned. The ill-conditioning comes from the instability of the matrix
equation with a singular matrix.

As a fourth example, consider Laplace’s equation uxx + uyy = 0 in the
region D = {−∞ < x < ∞, 0 < y < ∞}. It is not a well-posed problem to
specify both u and uy on the boundary of D, for the following reason. It has
the solutions

un(x, y) = 1

n
e−√

nsin nx sinh ny. (2)

Notice that they have boundary data un(x, 0) = 0 and ∂un/∂y(x, 0) =
e−√

n sin nx , which tends to zero as n → ∞. But for y �= 0 the solutions
un(x, y) do not tend to zero as n → ∞. Thus the stability condition (iii) is
violated.

EXERCISES

1. Consider the problem

d2u

dx2
+ u = 0

u(0) = 0 and u(L) = 0,

consisting of an ODE and a pair of boundary conditions. Clearly, the
function u(x) ≡ 0 is a solution. Is this solution unique, or not? Does the
answer depend on L?

2. Consider the problem

u′′(x) + u′(x) = f (x)

u′(0) = u(0) = 1
2 [u′(l) + u(l)],

with f (x) a given function.
(a) Is the solution unique? Explain.
(b) Does a solution necessarily exist, or is there a condition that f (x)

must satisfy for existence? Explain.
3. Solve the boundary problem u′′ = 0 for 0 < x < 1 with u′(0) + ku(0) = 0

and u′(1) ± ku(1) = 0. Do the + and − cases separately. What is special
about the case k = 2?

4. Consider the Neumann problem

�u = f (x, y, z) in D
∂u

∂n
= 0 on bdy D.
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(a) What can we surely add to any solution to get another solution? So
we don’t have uniqueness.

(b) Use the divergence theorem and the PDE to show that∫∫∫
D

f (x, y, z) dx dy dz = 0

is a necessary condition for the Neumann problem to have a solution.
(c) Can you give a physical interpretation of part (a) and/or (b) for either

heat flow or diffusion?
5. Consider the equation

ux + yuy = 0

with the boundary condition u(x, 0) = φ(x).
(a) For φ(x) ≡ x , show that no solution exists.
(b) For φ(x) ≡ 1, show that there are many solutions.

6. Solve the equation ux + 2xy2uy = 0.

1.6 TYPES OF SECOND-ORDER EQUATIONS

In this section we show how the Laplace, wave, and diffusion equations
are in some sense typical among all second-order PDEs. However, these
three equations are quite different from each other. It is natural that the
Laplace equation uxx + uyy = 0 and the wave equation uxx − uyy = 0 should
have very different properties. After all, the algebraic equation x2 + y2 = 1
represents a circle, whereas the equation x2 − y2 = 1 represents a hyperbola.
The parabola is somehow in between.

In general, let’s consider the PDE

a11uxx + 2a12uxy + a22uyy + a1ux + a2uy + a0u = 0. (1)

This is a linear equation of order two in two variables with six real constant
coefficients. (The factor 2 is introduced for convenience.)

Theorem 1. By a linear transformation of the independent variables, the
equation can be reduced to one of three forms, as follows.

(i) Elliptic case: If a2
12 < a11a22, it is reducible to

uxx + uyy + · · · = 0

(where · · · denotes terms of order 1 or 0).
(ii) Hyperbolic case: If a2

12 > a11a22, it is reducible to

uxx − uyy + · · · = 0.
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(iii) Parabolic case: If a2
12 = a11a22, it is reducible to

uxx + · · · = 0

(unless a11 = a12 = a22 = 0).

The proof is easy and is just like the analysis of conic sections in analytic
geometry as either ellipses, hyperbolas, or parabolas. For simplicity, let’s
suppose that a11 = 1 and a1 = a2 = a0 = 0. By completing the square, we
can then write (1) as

(∂x + a12∂y)2u + (
a22 − a2

12

)
∂2

y u = 0 (2)

(where we use the operator notation ∂x = ∂/∂x, ∂2
y = ∂2/∂y2, etc.). In the el-

liptic case, a2
12 < a22. Let b = (a22 − a2

12)
1/2

> 0. Introduce the new variables
ξ and η by

x = ξ, y = a12ξ + bη. (3)

Then ∂ξ = 1 · ∂x + a12∂y, ∂η = 0 · ∂x + b∂y , so that the equation becomes

∂2
ξ u + ∂2

ηu = 0, (4)

which is Laplace’s. The procedure is similar in the other cases. �

Example 1.

Classify each of the equations
(a) uxx − 5uxy = 0.
(b) 4uxx − 12uxy + 9uyy + uy = 0.
(c) 4uxx + 6uxy + 9uyy = 0.

Indeed, we check the sign of the “discriminant” d = a2
12 − a11a22. For

(a) we have d = (−5/2)2 − (1)(0) = 25/4 > 0, so it is hyperbolic.
For (b), we have d = (−6)2 − (4)(9) = 36 − 36 = 0, so it is parabolic.
For (c), we have d = 32 − (4)(9) = 9 − 36 < 0, so it is elliptic. �

The same analysis can be done in any number of variables, using a bit of
linear algebra. Suppose that there are n variables, denoted x1, x2 . . . , xn , and
the equation is

n∑
i, j=1

aijuxi x j +
n∑

i=1

ai uxi + a0u = 0, (5)

with real constants aij, ai , and a0. Since the mixed derivatives are equal, we
may as well assume that aij = aji. Let x = (x1, . . . , xn). Consider any linear
change of independent variables:

(ξ1, . . . , ξn) = ξ = Bx,

where B is an n × n matrix. That is,

ξk =
∑

m

bkm xm . (6)
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Convert to the new variables using the chain rule:

∂

∂xi
=

∑
k

∂ξk

∂xi

∂

∂ξk

and

uxi x j =
(∑

k

bki
∂

∂ξk

)(∑
l

bl j
∂

∂ξl

)
u.

Therefore the PDE is converted to∑
i, j

aijuxi x j =
∑
k,l

(∑
i, j

bki aijbl j

)
uξkξl . (7)

(Watch out that on the left side u is considered as a function of x, whereas on
the right side it is considered as a function of ξ.) So you get a second-order
equation in the new variables ξ, but with the new coefficient matrix given
within the parentheses. That is, the new matrix is

BAtB,

where A = (aij) is the original coefficient matrix, the matrix B = (bij) defines
the transformation, and tB = (bji) is its transpose.

Now a theorem of linear algebra says that for any symmetric real matrix
A, there is a rotation B (an orthogonal matrix with determinant 1) such that
BAtB is the diagonal matrix

BAtB = D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d1

d2

·
·

·
dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

The real numbers d1, . . . , dn are the eigenvalues of A. Finally, a change of
scale would convert D into a diagonal matrix with each of the d’s equal to
+1, −1, or 0. (This is what we did, in effect, early in this section for the case
n = 2.)

Thus any PDE of the form (5) can be converted by means of a linear
change of variables into a PDE with a diagonal coefficient matrix.

Definition. The PDE (5) is called elliptic if all the eigenvalues
d1, . . . , dn are positive or all are negative. [This is equivalent to saying that the
original coefficient matrix A (or −A) is positive definite.] The PDE is called
hyperbolic if none of the d1, . . . , dn vanish and one of them has the opposite
sign from the (n − 1) others. If none vanish, but at least two of them are
positive and at least two are negative, it is called ultrahyperbolic. If exactly



1.6 TYPES OF SECOND-ORDER EQUATIONS 31

one of the eigenvalues is zero and all the others have the same sign, the PDE
is called parabolic.

Ultrahyperbolic equations occur quite rarely in physics and mathematics,
so we shall not discuss them further. Just as each of the three conic sections
has quite distinct properties (boundedness, shape, asymptotes), so do each of
the three main types of PDEs. �

More generally, if the coefficients are variable, that is, the aij are functions
of x, the equation may be elliptic in one region and hyperbolic in another.

Example 2.

Find the regions in the xy plane where the equation

yuxx − 2uxy + xuyy = 0

is elliptic, hyperbolic, or parabolic. Indeed, d = (−1)2 − (y)(x) =
1 − xy. So the equation is parabolic on the hyperbola (xy = 1), elliptic
in the two convex regions (xy > 1), and hyperbolic in the connected
region (xy < 1). �

If the equation is nonlinear, the regions of ellipticity (and so on) may
depend on which solution we are considering. Sometimes nonlinear transfor-
mations, instead of linear transformations such as B above, are important. But
this is a complicated subject that is poorly understood.

EXERCISES

1. What is the type of each of the following equations?
(a) uxx − uxy + 2uy + uyy − 3uyx + 4u = 0.
(b) 9uxx + 6uxy + uyy + ux = 0.

2. Find the regions in the xy plane where the equation

(1 + x)uxx + 2xyuxy − y2uyy = 0

is elliptic, hyperbolic, or parabolic. Sketch them.
3. Among all the equations of the form (1), show that the only ones that

are unchanged under all rotations (rotationally invariant) have the form
a(uxx + uyy) + bu = 0.

4. What is the type of the equation

uxx − 4uxy + 4uyy = 0?

Show by direct substitution that u(x, y) = f (y + 2x) + xg(y + 2x) is a
solution for arbitrary functions f and g.

5. Reduce the elliptic equation

uxx + 3uyy − 2ux + 24uy + 5u = 0
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to the form vxx + vyy + cv = 0 by a change of dependent variable
u = veαx+βy and then a change of scale y′ = γ y.

6. Consider the equation 3uy + uxy = 0.
(a) What is its type?
(b) Find the general solution. (Hint: Substitute v = uy .)
(c) With the auxiliary conditions u(x, 0) = e−3x and uy(x, 0) = 0, does

a solution exist? Is it unique?



2

WAVES AND
DIFFUSIONS

In this chapter we study the wave and diffusion equations on the whole real line
−∞ < x < +∞. Real physical situations are usually on finite intervals. We
are justified in taking x on the whole real line for two reasons. Physically
speaking, if you are sitting far away from the boundary, it will take a certain
time for the boundary to have a substantial effect on you, and until that time
the solutions we obtain in this chapter are valid. Mathematically speaking,
the absence of a boundary is a big simplification. The most fundamental
properties of the PDEs can be found most easily without the complications of
boundary conditions. That is the purpose of this chapter. We begin with the
wave equation.

2.1 THE WAVE EQUATION

We write the wave equation as

utt = c2uxx for −∞ < x < +∞. (1)

(Physically, you can imagine a very long string.) This is the simplest second-
order equation. The reason is that the operator factors nicely:

utt − c2uxx =
(

∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
u = 0. (2)

This means that, starting from a function u(x, t), you compute ut + cux , call
the result v, then you compute vt − cvx , and you ought to get the zero function.
The general solution is

u(x, t) = f (x + ct) + g(x − ct) (3)

33
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where f and g are two arbitrary (twice differentiable) functions of a single
variable.

Proof. Because of (2), if we let v = ut + cux , we must have vt − cvx = 0.
Thus we have two first-order equations

vt − cvx = 0 (4a)

and

ut + cux = v. (4b)

These two first-order equations are equivalent to (1) itself. Let’s solve them
one at a time. As we know from Section 1.2, equation (4a) has the solution
v(x, t) = h(x + ct) , where h is any function.

So we must solve the other equation, which now takes the form

ut + cux = h(x + ct) (4c)

for the unknown function u(x, t). It is easy to check directly by differentiation
that one solution is u(x, t) = f (x + ct), where f ′(s) = h(s)/2c. [A prime (′)
denotes the derivative of a function of one variable.] To the solution f (x + ct)
we can add g(x − ct) to get another solution (since the equation is linear).
The most general solution of (4b) in fact turns out to be a particular solution
plus any solution of the homogeneous equation; that is,

u(x, t) = f (x + ct) + g(x − ct),

as asserted by the theorem. The complete justification is left to be worked out
in Exercise 4.

A different method to derive the solution formula (3) is to introduce the
characteristic coordinates

ξ = x + ct η = x − ct .

By the chain rule, we have ∂x = ∂ξ + ∂η and ∂t = c∂ξ + c∂η. Therefore,
∂t − c∂x = −2c∂η and ∂t + c∂x = 2c∂ξ . So equation (1) takes the form

(∂t − c∂x )(∂t + c∂x )u = (−2c∂ξ )(2c∂η)u = 0,

which means that uξη = 0 since c �= 0. The solution of this transformed equa-
tion is

u = f (ξ ) + g(η)

(see Section 1.1), which agrees exactly with the previous answer (3). �

The wave equation has a nice simple geometry. There are two families
of characteristic lines, x ± ct = constant, as indicated in Figure 1. The most
general solution is the sum of two functions. One, g(x − ct), is a wave of
arbitrary shape traveling to the right at speed c. The other, f (x + ct), is another
shape traveling to the left at speed c. A “movie” of g(x − ct) is sketched in
Figure 1 of Section 1.3.
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Figure 1

INITIAL VALUE PROBLEM

The initial-value problem is to solve the wave equation

utt = c2uxx for −∞ < x < +∞ (1)

with the initial conditions

u(x, 0) = φ(x) ut (x, 0) = ψ(x), (5)

where φ and ψ are arbitrary functions of x. There is one, and only one, solution
of this problem. For instance, if φ(x) = sin x and ψ(x) = 0, then u(x, t) = sin x
cos ct.

The solution of (1),(5) is easily found from the general formula (3). First,
setting t = 0 in (3), we get

φ(x) = f (x) + g(x). (6)

Then, using the chain rule, we differentiate (3) with respect to t and put t = 0
to get

ψ(x) = c f ′(x) − cg′(x). (7)

Let’s regard (6) and (7) as two equations for the two unknown functions
f and g. To solve them, it is convenient temporarily to change the name of
the variable to some neutral name; we change the name of x to s. Now we
differentiate (6) and divide (7) by c to get

φ′ = f ′ + g′ and
1

c
ψ = f ′ − g′.

Adding and subtracting the last pair of equations gives us

f ′ = 1

2

(
φ′ + ψ

c

)
and g′ = 1

2

(
φ′ − ψ

c

)
.

Integrating, we get

f (s) = 1

2
φ(s) + 1

2c

∫ s

0
ψ + A
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and

g(s) = 1

2
φ(s) − 1

2c

∫ s

0
ψ + B,

where A and B are constants. Because of (6), we have A + B = 0. This tells
us what f and g are in the general formula (3). Substituting s = x + ct into
the formula for f and s = x − ct into that of g, we get

u(x, t) = 1

2
φ(x + ct) + 1

2c

∫ x+ct

0
ψ + 1

2
φ(x − ct) − 1

2c

∫ x−ct

0
ψ.

This simplifies to

u(x, t) = 1

2
[φ(x + ct) + φ(x − ct)] + 1

2c

∫ x+ct

x−ct
ψ(s) ds. (8)

This is the solution formula for the initial-value problem, due to
d’Alembert in 1746. Assuming φ to have a continuous second derivative
(written φ ∈ C2) and ψ to have a continuous first derivative (ψ ∈ C1), we
see from (8) that u itself has continuous second partial derivatives in x and t
(u ∈ C2). Then (8) is a bona fide solution of (1) and (5). You may check this
directly by differentiation and by setting t = 0.

Example 1.

For φ(x) ≡ 0 and ψ(x) = cos x , the solution is u(x, t) = (1/2c)
[sin(x + ct) − sin(x − ct)] = (1/c) cos x sin ct . Checking this result
directly, we have utt = −c cos x sin ct, uxx = −(1/c) cos x sin ct, so that
utt = c2uxx. The initial condition is easily checked. �

Example 2. The Plucked String
For a vibrating string the speed is c = √

T/ρ. Consider an infinitely
long string with initial position

φ(x) =
⎧⎨
⎩b − b|x |

a
for |x | < a

0 for |x | > a
(9)

and initial velocity ψ(x) ≡ 0 for all x. This is a “three-finger” pluck, with
all three fingers removed at once. A “movie” of this solution u(x, t) =
1
2 [φ(x + ct) + φ(x − ct)] is shown in Figure 2. (Even though this solu-
tion is not twice differentiable, it can be shown to be a “weak” solution,
as discussed later in Section 12.1.)

Each of these pictures is the sum of two triangle functions, one
moving to the right and one to the left, as is clear graphically. To write
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down the formulas that correspond to the pictures requires a lot more
work. The formulas depend on the relationships among the five numbers
0, ±a, x ± ct. For instance, let t = a/2c. Then x ± ct = x ± a/2. First, if
x < −3a/2, then x ± a/2 < −a and u(x, t) ≡ 0. Second, if −3a/2 <
x < −a/2, then

u(x, t) = 1

2
φ

(
x + 1

2
a

)
= 1

2

(
b − b|x + 1

2a|
a

)
= 3b

4
+ bx

2a
.

Third, if |x| < a/2, then

u(x, t) = 1

2

[
φ

(
x + 1

2
a

)
+ φ

(
x − 1

2
a

)]

= 1

2

[
b − b

(
x + 1

2a
)

a
+ b − b

(
1
2a − x

)
a

]

= 1

2
b

and so on [see Figure 2]. �

Figure 2
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EXERCISES

1. Solve utt = c2uxx , u(x, 0) = ex , ut (x, 0) = sin x .

2. Solve utt = c2uxx , u(x, 0) = log(1 + x2), ut (x, 0) = 4 + x .

3. The midpoint of a piano string of tension T , density ρ, and length l is hit
by a hammer whose head diameter is 2a. A flea is sitting at a distance
l/4 from one end. (Assume that a < l/4; otherwise, poor flea!) How long
does it take for the disturbance to reach the flea?

4. Justify the conclusion at the beginning of Section 2.1 that every solution
of the wave equation has the form f (x + ct) + g(x − ct).

5. (The hammer blow) Let φ(x) ≡ 0 and ψ(x) = 1 for |x | < a and
ψ(x) = 0 for |x | ≥ a. Sketch the string profile (u versus x) at each of
the successive instants t = a/2c, a/c, 3a/2c, 2a/c, and 5a/c. [Hint:
Calculate

u(x, t) = 1

2c

∫ x+ct

x−ct
ψ(s) ds = 1

2c
{length of (x− ct, x + ct) ∩ (−a, a)}.

Then u(x, a/2c) = (1/2c) {length of (x − a/2, x + a/2) ∩ (−a, a)}.
This takes on different values for |x | < a/2, for a/2 < x < 3a/2, and
for x > 3a/2. Continue in this manner for each case.]

6. In Exercise 5, find the greatest displacement, maxx u(x, t), as a function
of t.

7. If both φ and ψ are odd functions of x, show that the solution u(x, t) of
the wave equation is also odd in x for all t.

8. A spherical wave is a solution of the three-dimensional wave equation
of the form u(r, t), where r is the distance to the origin (the spherical
coordinate). The wave equation takes the form

utt = c2

(
urr + 2

r
ur

)
(“spherical wave equation”).

(a) Change variables v = ru to get the equation for v: vt t = c2vrr .
(b) Solve for v using (3) and thereby solve the spherical wave equat-

ion.
(c) Use (8) to solve it with initial conditions u(r, 0) = φ(r ),

ut (r, 0) = ψ(r ), taking both φ(r) and ψ(r) to be even functions
of r.

9. Solve uxx − 3uxt − 4utt = 0, u(x, 0) = x2, ut (x, 0) = ex . (Hint: Fac-
tor the operator as we did for the wave equation.)

10. Solve uxx + uxt − 20utt = 0, u(x, 0) = φ(x), ut (x, 0) = ψ(x).
11. Find the general solution of 3utt + 10uxt + 3uxx = sin(x + t).
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Figure 1

2.2 CAUSALITY AND ENERGY

CAUSALITY

We have just learned that the effect of an initial position φ(x) is a pair of waves
traveling in either direction at speed c and at half the original amplitude. The
effect of an initial velocity ψ is a wave spreading out at speed ≤c in both
directions (see Exercise 2.1.5 for an example). So part of the wave may lag
behind (if there is an initial velocity), but no part goes faster than speed c.
The last assertion is called the principle of causality. It can be visualized in
the xt plane in Figure 1.

An initial condition (position or velocity or both) at the point (x0, 0)
can affect the solution for t > 0 only in the shaded sector, which is called
the domain of influence of the point (x0, 0). As a consequence, if φ and ψ
vanish for |x | > R, then u(x, t) = 0 for |x | > R + ct . In words, the domain
of influence of an interval (|x | ≤ R) is a sector (|x | ≤ R + ct).

An “inverse” way to express causality is the following. Fix a point (x, t)
for t > 0 (see Figure 2). How is the number u(x, t) synthesized from the initial
data φ, ψ? It depends only on the values of φ at the two points x ± ct , and
it depends only on the values of ψ within the interval [x − ct, x + ct]. We
therefore say that the interval (x − ct, x + ct) is the interval of dependence
of the point (x, t) on t = 0. Sometimes we call the entire shaded triangle �
the domain of dependence or the past history of the point (x, t). The domain
of dependence is bounded by the pair of characteristic lines that pass through
(x, t).

Figure 2
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ENERGY

Imagine an infinite string with constants ρ and T . Then ρutt = T uxx for
−∞ < x < +∞. From physics we know that the kinetic energy is 1

2 mv2,
which in our case takes the form KE = 1

2ρ
∫

u2
t dx . This integral, and the

following ones, are evaluated from −∞ to +∞. To be sure that the integral
converges, we assume that φ(x) and ψ(x) vanish outside an interval {|x | ≤ R}.
As mentioned above, u(x, t) [and therefore ut(x, t)] vanish for |x | > R + ct .
Differentiating the kinetic energy, we can pass the derivative under the integral
sign (see Section A.3) to get

dKE

dt
= ρ

∫
ut utt dx .

Then we substitute the PDE ρutt = T uxx and integrate by parts to get

dKE

dt
= T

∫
ut uxx dx = Tut ux − T

∫
utx ux dx .

The term Tutux is evaluated at x = ±∞ and so it vanishes. But the final term
is a pure derivative since utx ux = ( 1

2 u2
x )

t
. Therefore,

dKE

dt
= − d

dt

∫
1

2
Tu2

x dx .

Let PE = 1
2 T

∫
u2

x dx and let E = KE + PE. Then dKE/dt = −dPE/dt , or
dE/dt = 0. Thus

E = 1
2

∫ +∞

−∞

(
ρu2

t + Tu2
x

)
dx (1)

is a constant independent of t. This is the law of conservation of energy.
In physics courses we learn that PE has the interpretation of the potential

energy. The only thing we need mathematically is the total energy E. The
conservation of energy is one of the most basic facts about the wave equation.
Sometimes the definition of E is modified by a constant factor, but that does
not affect its conservation. Notice that the energy is necessarily positive. The
energy can also be used to derive causality (as will be done in Section 9.1).

Example 1.

The plucked string, Example 2 of Section 2.1, has the energy

E = 1

2
T
∫

φ2
x dx = 1

2
T

(
b

a

)2

2a = Tb2

a
. �

In electromagnetic theory the equations are Maxwell’s. Each component
of the electric and magnetic fields satisfies the (three-dimensional) wave equa-
tion, where c is the speed of light. The principle of causality, discussed above,
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is the cornerstone of the theory of relativity. It means that a signal located at
the position x0 at the instant t0 cannot move faster than the speed of light. The
domain of influence of (x0, t0) consists of all the points that can be reached by
a signal of speed c starting from the point x0 at the time t0. It turns out that the
solutions of the three-dimensional wave equation always travel at speeds ex-
actly equal to c and never slower. Therefore, the causality principle is sharper
in three dimensions than in one. This sharp form is called Huygens’s principle
(see Chapter 9).

Flatland is an imaginary two-dimensional world. You can think of yourself
as a waterbug confined to the surface of a pond. You wouldn’t want to live there
because Huygens’s principle is not valid in two dimensions (see Section 9.2).
Each sound you make would automatically mix with the “echoes” of your
previous sounds. And each view would be mixed fuzzily with the previous
views. Three is the best of all possible dimensions.

EXERCISES

1. Use the energy conservation of the wave equation to prove that the only
solution with φ ≡ 0 and ψ ≡ 0 is u ≡ 0. (Hint: Use the first vanishing
theorem in Section A.1.)

2. For a solution u(x, t) of the wave equation with ρ = T = c = 1, the energy
density is defined as e = 1

2 (u2
t + u2

x ) and the momentum density as p =
utux.
(a) Show that ∂e/∂t = ∂p/∂x and ∂p/∂t = ∂e/∂x .
(b) Show that both e(x, t) and p(x, t) also satisfy the wave equation.

3. Show that the wave equation has the following invariance properties.
(a) Any translate u(x − y, t), where y is fixed, is also a solution.
(b) Any derivative, say ux, of a solution is also a solution.
(c) The dilated function u(ax, at) is also a solution, for any constant a.

4. If u(x, t) satisfies the wave equation utt = uxx, prove the identity

u(x + h, t + k) + u(x − h, t − k) = u(x + k, t + h) + u(x − k, t − h)

for all x, t, h, and k. Sketch the quadrilateral Q whose vertices are the
arguments in the identity.

5. For the damped string, equation (1.3.3), show that the energy decreases.
6. Prove that, among all possible dimensions, only in three dimensions can

one have distortionless spherical wave propagation with attenuation. This
means the following. A spherical wave in n-dimensional space satisfies
the PDE

utt = c2

(
urr + n − 1

r
ur

)
,

where r is the spherical coordinate. Consider such a wave that has
the special form u(r, t) = α(r ) f (t − β(r )), where α(r) is called the
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attenuation and β(r) the delay. The question is whether such solutions
exist for “arbitrary” functions f.
(a) Plug the special form into the PDE to get an ODE for f .
(b) Set the coefficients of f ′′, f ′, and f equal to zero.
(c) Solve the ODEs to see that n = 1 or n = 3 (unless u ≡ 0).
(d) If n = 1, show that α(r) is a constant (so that “there is no attenuation”).

(T. Morley, American Mathematical Monthly, Vol. 27, pp. 69–71, 1985)

2.3 THE DIFFUSION EQUATION

In this section we begin a study of the one-dimensional diffusion equation

ut = kuxx . (1)

Diffusions are very different from waves, and this is reflected in the mathe-
matical properties of the equations. Because (1) is harder to solve than the
wave equation, we begin this section with a general discussion of some of the
properties of diffusions. We begin with the maximum principle, from which
we’ll deduce the uniqueness of an initial-boundary problem. We postpone un-
til the next section the derivation of the solution formula for (1) on the whole
real line.

Maximum Principle. If u(x, t) satisfies the diffusion equation in a rectangle
(say, 0 ≤ x ≤ l, 0 ≤ t ≤ T ) in space-time, then the maximum value of u(x, t)
is assumed either initially (t = 0) or on the lateral sides (x = 0 or x = l) (see
Figure 1).

In fact, there is a stronger version of the maximum principle which asserts
that the maximum cannot be assumed anywhere inside the rectangle but only
on the bottom or the lateral sides (unless u is a constant). The corners are
allowed.

The minimum value has the same property; it too can be attained only on
the bottom or the lateral sides. To prove the minimum principle, just apply
the maximum principle to [−u(x, t)].

These principles have a natural interpretation in terms of diffusion or heat
flow. If you have a rod with no internal heat source, the hottest spot and the

Figure 1
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coldest spot can occur only initially or at one of the two ends of the rod. Thus
a hot spot at time zero will cool off (unless heat is fed into the rod at an end).
You can burn one of its ends but the maximum temperature will always be
at the hot end, so that it will be cooler away from that end. Similarly, if you
have a substance diffusing along a tube, its highest concentration can occur
only initially or at one of the ends of the tube.

If we draw a “movie” of the solution, the maximum drops down while the
minimum comes up. So the differential equation tends to smooth the solution
out. (This is very different from the behavior of the wave equation!)

Proof of the Maximum Principle. We’ll prove only the weaker version.
(Surprisingly, its strong form is much more difficult to prove.) For the strong
version, see [PW]. The idea of the proof is to use the fact, from calculus, that
at an interior maximum the first derivatives vanish and the second derivatives
satisfy inequalities such as uxx ≤ 0. If we knew that uxx �= 0 at the maximum
(which we do not), then we’d have uxx < 0 as well as ut = 0, so that ut �= kuxx .
This contradiction would show that the maximum could only be somewhere
on the boundary of the rectangle. However, because uxx could in fact be
equal to zero, we need to play a mathematical game to make the argument
work.

So let M denote the maximum value of u(x, t) on the three sides t = 0,
x = 0, and x = l. (Recall that any continuous function on any bounded closed
set is bounded and assumes its maximum on that set.) We must show that
u(x, t) ≤ M throughout the rectangle R.

Let ε be a positive constant and let v(x, t) = u(x, t) + εx2. Our goal
is to show that v(x, t) ≤ M + εl2 throughout R. Once this is accomplished,
we’ll have u(x, t) ≤ M + ε(l2 − x2). This conclusion is true for any ε > 0.
Therefore, u(x, t) ≤ M throughout R, which is what we are trying to prove.

Now from the definition of v, it is clear that v(x, t) ≤ M + εl2 on t = 0,
on x = 0, and on x = l. This function v satisfies

vt − kvxx = ut − k(u + εx2)xx = ut − kuxx − 2εk = −2εk < 0, (2)

which is the “diffusion inequality.” Now suppose that v(x, t) attains its maxi-
mum at an interior point (x0, t0). That is, 0 < x0 < l, 0 < t0 < T . By ordinary
calculus, we know that vt = 0 and vxx ≤ 0 at (x0, t0). This contradicts the
diffusion inequality (2). So there can’t be an interior maximum. Suppose now
that v(x, t) has a maximum (in the closed rectangle) at a point on the top edge
{t0 = T and 0 < x < l}. Then vx (x0, t0) = 0 and vxx(x0, t0) ≤ 0, as before.
Furthermore, because v(x0, t0) is bigger than v(x0, t0 − δ), we have

vt (x0, t0) = lim
v(x0, t0) − v(x0, t0 − δ)

δ
≥ 0

as δ → 0 through positive values. (This is not an equality because the maxi-
mum is only “one-sided” in the variable t.) We again reach a contradiction to
the diffusion inequality.
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But v(x, t) does have a maximum somewhere in the closed rectangle
0 ≤ x ≤ l, 0 ≤ t ≤ T . This maximum must be on the bottom or sides. There-
fore v(x, t) ≤ M + εl2 throughout R. This proves the maximum principle (in
its weaker version).

UNIQUENESS

The maximum principle can be used to give a proof of uniqueness for the
Dirichlet problem for the diffusion equation. That is, there is at most one
solution of

ut − kuxx = f (x, t) for 0 < x < l and t > 0
u(x, 0) = φ(x)
u(0, t) = g(t) u(l, t) = h(t)

(3)

for four given functions f , φ, g, and h. Uniqueness means that any solution
is determined completely by its initial and boundary conditions. Indeed, let
u1(x, t) and u2(x, t) be two solutions of (3). Let w = u1 − u2 be their differ-
ence. Then wt − kwxx = 0, w(x, 0) = 0, w(0, t) = 0, w(l, t) = 0. Let T >
0. By the maximum principle, w(x, t) has its maximum for the rectangle on its
bottom or sides—exactly where it vanishes. So w(x, t) ≤ 0. The same type
of argument for the minimum shows that w(x, t) ≥ 0. Therefore, w(x, t) ≡ 0,
so that u1(x, t) ≡ u2(x, t) for all t ≥ 0.

Here is a second proof of uniqueness for problem (3), by a very different
technique, the energy method. Multiplying the equation for w = u1 − u2 by
w itself, we can write

0 = 0 · w = (wt − kwxx)(w) = (
1
2 w2

)
t
+ (−kwx w)x + kw2

x .

(Verify this by carrying out the derivatives on the right side.) Upon integrating
over the interval 0 < x < l, we get

0 =
∫ l

0

(
1
2 w2

)
t
dx − kwx w

∣∣∣∣
x=l

x=0

+ k
∫ l

0
w2

x dx .

Because of the boundary conditions (w = 0 at x = 0, l),

d

dt

∫ l

0

1

2
[w(x, t)]2 dx = −k

∫ l

0
[wx (x, t)]2 dx ≤ 0,

where the time derivative has been pulled out of the x integral (see Section
A.3). Therefore,

∫
w2 dx is decreasing, so∫ l

0
[w(x, t)]2 dx ≤

∫ l

0
[w(x, 0)]2 dx (4)

for t ≥ 0. The right side of (4) vanishes because the initial conditions of u
and v are the same, so that

∫
[w(x, t)]2 dx = 0 for all t > 0. So w ≡ 0 and

u1 ≡ u2 for all t ≥ 0.
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STABILITY

This is the third ingredient of well-posedness (see Section 1.5). It means
that the initial and boundary conditions are correctly formulated. The energy
method leads to the following form of stability of problem (3), in case h = g
= f = 0. Let u1(x, 0) = φ1(x) and u2(x, 0) = φ2(x). Then w = u1 − u2 is the
solution with the initial datum φ1 − φ2. So from (4) we have∫ l

0
[u1(x, t) − u2(x, t)]2 dx ≤

∫ l

0
[φ1(x) − φ2(x)]2 dx . (5)

On the right side is a quantity that measures the nearness of the initial data for
two solutions, and on the left we measure the nearness of the solutions at any
later time. Thus, if we start nearby (at t = 0), we stay nearby. This is exactly
the meaning of stability in the “square integral” sense (see Sections 1.5 and
5.4).

The maximum principle also proves the stability, but with a different way
to measure nearness. Consider two solutions of (3) in a rectangle. We then
have w ≡ u1 − u2 = 0 on the lateral sides of the rectangle and w = φ1 − φ2
on the bottom. The maximum principle asserts that throughout the rectangle

u1(x, t) − u2(x, t) ≤ max|φ1 − φ2|.
The “minimum” principle says that

u1(x, t) − u2(x, t) ≥ − max|φ1 − φ2|.
Therefore,

max
0≤x≤l

|u1(x, t) − u2(x, t)| ≤ max
0≤x≤l

|φ1(x) − φ2(x)|, (6)

valid for all t > 0. Equation (6) is in the same spirit as (5), but with a quite
different method of measuring the nearness of functions. It is called stability
in the “uniform” sense.

EXERCISES

1. Consider the solution 1 − x2 − 2kt of the diffusion equation. Find
the locations of its maximum and its minimum in the closed rectangle
{0 ≤ x ≤ 1, 0 ≤ t ≤ T }.

2. Consider a solution of the diffusion equation ut = uxx in {0 ≤ x ≤ l,
0 ≤ t < ∞}.
(a) Let M(T) = the maximum of u(x, t) in the closed rectangle {0 ≤ x

≤ l, 0 ≤ t ≤ T }. Does M(T) increase or decrease as a function of T?
(b) Let m(T) = the minimum of u(x, t) in the closed rectangle {0 ≤ x ≤ l,

0 ≤ t ≤ T }. Does m(T) increase or decrease as a function of T?
3. Consider the diffusion equation ut = uxx in the interval (0, 1) with u(0, t) =

u(1, t) = 0 and u(x, 0) = 1 − x2. Note that this initial function does not
satisfy the boundary condition at the left end, but that the solution will
satisfy it for all t > 0.
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(a) Show that u(x, t) > 0 at all interior points 0 < x < 1, 0 < t < ∞.
(b) For each t > 0, let μ(t) = the maximum of u(x, t) over 0 ≤ x ≤ 1.

Show that μ(t) is a decreasing (i.e., nonincreasing) function of t.
(Hint: Let the maximum occur at the point X(t), so that μ(t) =
u(X(t), t). Differentiate μ(t), assuming that X(t) is differentiable.)

(c) Draw a rough sketch of what you think the solution looks like (u
versus x) at a few times. (If you have appropriate software available,
compute it.)

4. Consider the diffusion equation ut = uxx in {0 < x < 1, 0 < t < ∞} with
u(0, t) = u(1, t) = 0 and u(x, 0) = 4x(1 − x).
(a) Show that 0 < u(x, t) < 1 for all t > 0 and 0 < x < 1.
(b) Show that u(x, t) = u(1 − x, t) for all t ≥ 0 and 0 ≤ x ≤ 1.
(c) Use the energy method to show that

∫ 1
0 u2 dx is a strictly decreasing

function of t.
5. The purpose of this exercise is to show that the maximum principle is not

true for the equation ut = xuxx, which has a variable coefficient.
(a) Verify that u = −2xt − x2 is a solution. Find the location of its

maximum in the closed rectangle {−2 ≤ x ≤ 2, 0 ≤ t ≤ 1}.
(b) Where precisely does our proof of the maximum principle break

down for this equation?
6. Prove the comparison principle for the diffusion equation: If u and v are

two solutions, and if u ≤ v for t = 0, for x = 0, and for x = l, then u ≤ v
for 0 ≤ t < ∞, 0 ≤ x ≤ l.

7. (a) More generally, if ut − kuxx = f, vt − kvxx = g, f ≤ g, and u ≤ v
at x = 0, x = l and t = 0, prove that u ≤ v for 0 ≤ x ≤ l, 0 ≤ t < ∞.

(b) If vt − vxx ≥ sin x for 0 ≤ x ≤ π, 0 < t < ∞, and if v(0, t) ≥ 0,
v(π, t) ≥ 0 and v(x, 0) ≥ sin x , use part (a) to show that v(x, t) ≥
(1 − e−t ) sin x .

8. Consider the diffusion equation on (0, l) with the Robin boundary condi-
tions ux (0, t) − a0u(0, t) = 0 and ux (l, t) + alu(l, t) = 0. If a0 > 0 and
al > 0, use the energy method to show that the endpoints contribute to
the decrease of

∫ l
0 u2(x, t) dx . (This is interpreted to mean that part of

the “energy” is lost at the boundary, so we call the boundary conditions
“radiating” or “dissipative.”)

2.4 DIFFUSION ON THE WHOLE LINE

Our purpose in this section is to solve the problem

ut = kuxx (−∞ < x < ∞, 0 < t < ∞) (1)
u(x, 0) = φ(x). (2)
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As with the wave equation, the problem on the infinite line has a certain
“purity”, which makes it easier to solve than the finite-interval problem. (The
effects of boundaries will be discussed in the next several chapters.) Also as
with the wave equation, we will end up with an explicit formula. But it will
be derived by a method very different from the methods used before. (The
characteristics for the diffusion equation are just the lines t = constant and
play no major role in the analysis.) Because the solution of (1) is not easy to
derive, we first set the stage by making some general comments.

Our method is to solve it for a particular φ(x) and then build the general
solution from this particular one. We’ll use five basic invariance properties
of the diffusion equation (1).

(a) The translate u(x − y, t) of any solution u(x, t) is another solution,
for any fixed y.

(b) Any derivative (ux or ut or uxx, etc.) of a solution is again a solution.
(c) A linear combination of solutions of (1) is again a solution of (1).

(This is just linearity.)
(d) An integral of solutions is again a solution. Thus if S(x, t) is a solution

of (1), then so is S(x − y, t) and so is

v(x, t) =
∫ ∞

−∞
S(x − y, t)g(y) dy

for any function g(y), as long as this improper integral converges
appropriately. (We’ll worry about convergence later.) In fact, (d) is
just a limiting form of (c).

(e) If u(x, t) is a solution of (1), so is the dilated function
u(

√
a x, at), for any a > 0. Prove this by the chain rule:

Let v(x, t) = u(
√

a x, at). Then vt = [∂(at)/∂t]ut = aut and vx =
[∂(

√
a x)/∂x]ux = √

a ux and vxx = √
a · √

a uxx = a uxx.

Our goal is to find a particular solution of (1) and then to construct all the
other solutions using property (d). The particular solution we will look for is
the one, denoted Q(x, t), which satisfies the special initial condition

Q(x, 0) = 1 for x > 0 Q(x, 0) = 0 for x < 0. (3)

The reason for this choice is that this initial condition does not change under
dilation. We’ll find Q in three steps.

Step 1 We’ll look for Q(x, t) of the special form

Q(x, t) = g(p) where p = x√
4kt

(4)
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and g is a function of only one variable (to be determined). (The
√

4k factor
is included only to simplify a later formula.)

Why do we expect Q to have this special form? Because property (e) says
that equation (1) doesn’t “see” the dilation x → √

a x, t → at . Clearly, (3)
doesn’t change at all under the dilation. So Q(x, t), which is defined by condi-
tions (1) and (3), ought not see the dilation either. How could that happen? In
only one way: if Q depends on x and t solely through the combination x/

√
t .

For the dilation takes x/
√

t into
√

ax/
√

at = x/
√

t . Thus let p = x/
√

4kt
and look for Q which satisfies (1) and (3) and has the form (4).
Step 2 Using (4), we convert (1) into an ODE for g by use of the chain rule:

Qt = dg

dp

∂p

∂t
= − 1

2t

x√
4kt

g′(p)

Qx = dg

dp

∂p

∂x
= 1√

4kt
g′(p)

Qxx = d Qx

dp

∂p

∂x
= 1

4kt
g′′(p)

0 = Qt − k Qxx = 1

t

[
−1

2
pg′(p) − 1

4
g′′(p)

]
.

Thus

g′′ + 2pg′ = 0.

This ODE is easily solved using the integrating factor exp
∫

2p dp = exp(p2).
We get g′(p) = c1 exp(−p2) and

Q(x, t) = g(p) = c1

∫
e−p2

dp + c2.

Step 3 We find a completely explicit formula for Q. We’ve just shown that

Q(x, t) = c1

∫ x/
√

4kt

0
e−p2

dp + c2.

This formula is valid only for t > 0. Now use (3), expressed as a limit as
follows.

If x > 0, 1 = lim
t↘0

Q = c1

∫ +∞

0
e−p2

dp + c2 = c1

√
π

2
+ c2.

If x < 0, 0 = lim
t↘0

Q = c1

∫ −∞

0
e−p2

dp + c2 = −c1

√
π

2
+ c2.
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See Exercise 6. Here lim
t↘0

means limit from the right. This determines the

coefficients c1 = 1/
√

π and c2 = 1
2 . Therefore, Q is the function

Q(x, t) = 1

2
+ 1√

π

∫ x/
√

4kt

0
e−p2

dp (5)

for t > 0. Notice that it does indeed satisfy (1), (3), and (4).
Step 4 Having found Q, we now define S = ∂Q/∂x. (The explicit formula
for S will be written below.) By property (b), S is also a solution of (1). Given
any function φ, we also define

u(x, t) =
∫ ∞

−∞
S(x − y, t)φ(y) dy for t > 0. (6)

By property (d), u is another solution of (1). We claim that u is the unique
solution of (1), (2). To verify the validity of (2), we write

u(x, t) =
∫ ∞

−∞

∂ Q

∂x
(x − y, t)φ(y) dy

= −
∫ ∞

−∞

∂

∂y
[Q(x − y, t)]φ(y) dy

= +
∫ ∞

−∞
Q(x − y, t)φ′(y) dy − Q(x − y, t)φ(y)

∣∣∣∣
y=+∞

y=−∞

upon integrating by parts. We assume these limits vanish. In particular, let’s
temporarily assume that φ(y) itself equals zero for |y| large. Therefore,

u(x, 0) =
∫ ∞

−∞
Q(x − y, 0)φ′(y) dy

=
∫ x

−∞
φ′(y) dy = φ

∣∣∣∣
x

−∞
= φ(x)

because of the initial condition for Q and the assumption that φ(−∞) = 0.
This is the initial condition (2). We conclude that (6) is our solution formula,
where

S = ∂ Q

∂x
= 1

2
√

πkt
e−x2/4kt for t > 0. (7)

That is,

u(x, t) = 1√
4πkt

∫ ∞

−∞
e−(x−y)2/4ktφ(y) dy. (8)
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Figure 1

S(x, t) is known as the source function, Green’s function, fundamental solution,
gaussian, or propagator of the diffusion equation, or simply the diffusion
kernel. It gives the solution of (1),(2) with any initial datum φ. The formula
only gives the solution for t > 0. When t = 0 it makes no sense. �

The source function S(x, t) is defined for all real x and for all t > 0. S(x, t)
is positive and is even in x [S(−x, t) = S(x, t)]. It looks like Figure 1 for
various values of t. For large t, it is very spread out. For small t, it is a very
tall thin spike (a “delta function”) of height (4πkt)−1/2. The area under its
graph is ∫ ∞

−∞
S(x, t) dx = 1√

π

∫ ∞

−∞
e−q2

dq = 1

by substituting q = x/
√

4kt , dq = (dx)/
√

4kt (see Exercise 7). Now look
more carefully at the sketch of S(x, t) for a very small t. If we cut out the tall
spike, the rest of S(x, t) is very small. Thus

max
|x |>δ

S(x, t) → 0 as t → 0 (9)

Notice that the value of the solution u(x, t) given by (6) is a kind of
weighted average of the initial values around the point x. Indeed, we can
write

u(x, t) =
∫ ∞

−∞
S(x − y, t)φ(y) dy �

∑
t

S(x − yi , t)φ(yi )�yi
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approximately. This is the average of the solutions S(x − yi, t) with the weights
φ(yi). For very small t, the source function is a spike so that the formula
exaggerates the values of φ near x. For any t > 0 the solution is a spread-out
version of the initial values at t = 0.

Here’s the physical interpretation. Consider diffusion. S(x − y, t) repre-
sents the result of a unit mass (say, 1 gram) of substance located at time zero
exactly at the position y which is diffusing (spreading out) as time advances.
For any initial distribution of concentration, the amount of substance initially
in the interval �y spreads out in time and contributes approximately the term
S(x − yi , t)φ(yi )�yi . All these contributions are added up to get the whole
distribution of matter. Now consider heat flow. S(x − y, t) represents the result
of a “hot spot” at y at time 0. The hot spot is cooling off and spreading its heat
along the rod.

Another physical interpretation is brownian motion, where particles
move randomly in space. For simplicity, we assume that the motion is one-
dimensional; that is, the particles move along a tube. Then the probability that
a particle which begins at position x ends up in the interval (a, b) at time t is
precisely

∫ b
a S(x − y, t) dy for some constant k, where S is defined in (7). In

other words, if we let u(x, t) be the probability density (probability per unit
length) and if the initial probability density is φ(x), then the probability at
all later times is given by formula (6). That is, u(x, t) satisfies the diffusion
equation.

It is usually impossible to evaluate integral (8) completely in terms of
elementary functions. Answers to particular problems, that is, to particular
initial data φ(x), are sometimes expressible in terms of the error function of
statistics,

erf(x) = 2√
π

∫ x

0
e−p2

dp. (10)

Notice that erf(0) = 0. By Exercise 6, lim
x→+∞ erf(x) = 1.

Example 1.

From (5) we can write Q(x, t) in terms of erf as

Q(x, t) = 1

2
+ 1

2
erf

(
x√
4kt

)
. �

Example 2.

Solve the diffusion equation with the initial condition u(x, 0) = e−x . To
do so, we simply plug this into the general formula (8):

u(x, t) = 1√
4πkt

∫ ∞

−∞
e−(x−y)2/4kt e−ydy.
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This is one of the few fortunate examples that can be integrated. The
exponent is

− x2 − 2xy + y2 + 4kty

4kt
.

Completing the square in the y variable, it is

− (y + 2kt − x)2

4kt
+ kt − x .

We let p = (y + 2kt − x)/
√

4kt so that dp = dy/
√

4kt . Then

u(x, t) = ekt−x
∫ ∞

−∞
e−p2 dp√

π
= ekt−x .

By the maximum principle, a solution in a bounded interval can-
not grow in time. However, this particular solution grows, rather than
decays, in time. The reason is that the left side of the rod is initially
very hot [u(x, 0) → +∞ as x → −∞] and the heat gradually diffuses
throughout the rod. �

EXERCISES

1. Solve the diffusion equation with the initial condition

φ(x) = 1 for |x | < l and φ(x) = 0 for |x | > l.

Write your answer in terms of erf(x).
2. Do the same for φ(x) = 1 for x > 0 and φ(x) = 3 for x < 0.
3. Use (8) to solve the diffusion equation if φ(x) = e3x . (You may also use

Exercises 6 and 7 below.)
4. Solve the diffusion equation if φ(x) = e−x for x > 0 and φ(x) = 0 for

x < 0.
5. Prove properties (a) to (e) of the diffusion equation (1).
6. Compute

∫ ∞
0 e−x2

dx . (Hint: This is a function that cannot be integrated
by formula. So use the following trick. Transform the double integral∫ ∞

0 e−x2
dx · ∫ ∞

0 e−y2
dy into polar coordinates and you’ll end up with a

function that can be integrated easily.)
7. Use Exercise 6 to show that

∫ ∞
−∞ e−p2

dp = √
π . Then substitute

p = x/
√

4kt to show that∫ ∞

−∞
S(x, t) dx = 1.

8. Show that for any fixed δ > 0 (no matter how small),

max
δ≤|x |<∞

S(x, t) → 0 as t → 0.
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[This means that the tail of S(x, t) is “uniformly small”.]
9. Solve the diffusion equation ut = kuxx with the initial condition

u(x, 0) = x2 by the following special method. First show that uxxx
satisfies the diffusion equation with zero initial condition. There-
fore, by uniqueness, uxxx ≡ 0. Integrating this result thrice, obtain
u(x, t) = A(t)x2 + B(t)x + C(t). Finally, it’s easy to solve for A, B,
and C by plugging into the original problem.

10. (a) Solve Exercise 9 using the general formula discussed in the
text. This expresses u(x, t) as a certain integral. Substitute p =
(x − y)/

√
4kt in this integral.

(b) Since the solution is unique, the resulting formula must agree with
the answer to Exercise 9. Deduce the value of∫ ∞

−∞
p2e−p2

dp.

11. (a) Consider the diffusion equation on the whole line with the usual
initial condition u(x, 0) = φ(x). If φ(x) is an odd function, show
that the solution u(x, t) is also an odd function of x. (Hint: Consider
u(−x, t) + u(x, t) and use the uniqueness.)

(b) Show that the same is true if “odd” is replaced by “even.”
(c) Show that the analogous statements are true for the wave equation.

12. The purpose of this exercise is to calculate Q(x, t) approximately for
large t. Recall that Q(x, t) is the temperature of an infinite rod that is
initially at temperature 1 for x > 0, and 0 for x < 0.
(a) Express Q(x, t) in terms of erf.
(b) Find the Taylor series of erf(x) around x = 0. (Hint: Expand ez,

substitute z = −y2, and integrate term by term.)
(c) Use the first two nonzero terms in this Taylor expansion to find an

approximate formula for Q(x, t).
(d) Why is this formula a good approximation for x fixed and t large?

13. Prove from first principles that Q(x, t) must have the form (4), as follows.
(a) Assuming uniqueness show that Q(x, t) = Q(

√
a x, at). This

identity is valid for all a > 0, all t > 0, and all x.
(b) Choose a = 1/(4kt).

14. Let φ(x) be a continuous function such that |φ(x)| ≤ Ceax2
. Show that

formula (8) for the solution of the diffusion equation makes sense for 0
< t < 1/(4ak), but not necessarily for larger t.

15. Prove the uniqueness of the diffusion problem with Neumann boundary
conditions:

ut − kuxx = f (x, t) for 0 < x < l, t > 0 u(x, 0) = φ(x)
ux (0, t) = g(t) ux (l, t) = h(t)

by the energy method.
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16. Solve the diffusion equation with constant dissipation:

ut − kuxx + bu = 0 for −∞ < x < ∞ with u(x, 0) = φ(x),

where b > 0 is a constant. (Hint: Make the change of variables u(x, t) =
e−btv(x, t).)

17. Solve the diffusion equation with variable dissipation:

ut − kuxx + bt2u = 0 for −∞ < x < ∞ with u(x, 0) = φ(x),

where b > 0 is a constant. (Hint: The solutions of the ODE
wt + bt2w = 0 are Ce−bt3/3. So make the change of variables
u(x, t) = e−bt3/3v(x, t) and derive an equation for v.)

18. Solve the heat equation with convection:

ut − kuxx + V ux = 0 for −∞ < x < ∞ with u(x, 0) = φ(x),

where V is a constant. (Hint: Go to a moving frame of reference by
substituting y = x − Vt.)

19. (a) Show that S2(x, y, t) = S(x, t)S(y, t) satisfies the diffusion equa-
tion St = k(Sxx + Syy).

(b) Deduce that S2(x, y, t) is the source function for two-dimensional
diffusions.

2.5 COMPARISON OF WAVES AND DIFFUSIONS

We have seen that the basic property of waves is that information gets trans-
ported in both directions at a finite speed. The basic property of diffusions
is that the initial disturbance gets spread out in a smooth fashion and grad-
ually disappears. The fundamental properties of these two equations can be
summarized in the following table.

Property Waves Diffusions
(i) Speed of propagation? Finite (≤c) Infinite

(ii) Singularities for t > 0? Transported
along
characteristics
(speed = c)

Lost immediately

(iii) Well-posed for t > 0? Yes Yes (at least for bounded solutions)

(iv) Well-posed for t < 0? Yes No

(v) Maximum principle No Yes

(vi) Behavior as t → +∞? Energy is
constant so does
not decay

Decays to zero (if φ integrable)

(vii) Information Transported Lost gradually
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For the wave equation we have seen most of these properties already. That
there is no maximum principle is easy to see. Generally speaking, the wave
equation just moves information along the characteristic lines. In more than
one dimension we’ll see that it spreads information in expanding circles or
spheres.

For the diffusion equation we discuss property (ii), that singularities are
immediately lost, in Section 3.5. The solution is differentiable to all orders
even if the initial data are not. Properties (iii), (v), and (vi) have been shown
already. The fact that information is gradually lost [property (vii)] is clear
from the graph of a typical solution, for instance, from S(x, t).

As for property (i) for the diffusion equation, notice from formula (2.4.8)
that the value of u(x, t) depends on the values of the initial datum φ(y) for
all y, where −∞ < y < ∞. Conversely, the value of φ at a point x0 has an
immediate effect everywhere (for t > 0), even though most of its effect is
only for a short time near x0. Therefore, the speed of propagation is infinite.
Exercise 2(b) shows that solutions of the diffusion equation can travel at
any speed. This is in stark contrast to the wave equation (and all hyperbolic
equations).

As for (iv), there are several ways to see that the diffusion equation is not
well-posed for t < 0 (“backward in time”). One way is the following. Let

un(x, t) = 1

n
sin nx e−n2kt . (1)

You can check that this satisfies the diffusion equation for all x, t. Also,
un(x, 0) = n−1 sin nx → 0 uniformly as n → ∞. But consider any t < 0, say
t = −1. Then un(x, −1) = n−1 sin nx e+kn2 → ±∞ uniformly as n → ∞
except for a few x. Thus un is close to the zero solution at time t = 0 but not
at time t = −1. This violates the stability, in the uniform sense at least.

Another way is to let u(x, t) = S(x, t + 1). This is a solu-
tion of the diffusion equation ut = kuxx for t > −1, −∞ < x < ∞. But
u(0, t) → ∞ as t ↘ −1, as we saw above. So we cannot solve backwards
in time with the perfectly nice-looking initial data (4πk)−1e−x2/4.

Besides, any physicist knows that heat flow, brownian motion, and so on,
are irreversible processes. Going backward leads to chaos.

EXERCISES

1. Show that there is no maximum principle for the wave equation.
2. Consider a traveling wave u(x, t) = f (x − at) where f is a given function

of one variable.
(a) If it is a solution of the wave equation, show that the speed must be

a = ±c (unless f is a linear function).
(b) If it is a solution of the diffusion equation, find f and show that the

speed a is arbitrary.
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3. Let u satisfy the diffusion equation ut = 1
2 uxx. Let

v(x, t) = 1√
t
ex2/2tv

(
x

t
,

1

t

)
.

Show that v satisfies the “backward” diffusion equation vt = − 1
2vxx

for t > 0.
4. Here is a direct relationship between the wave and diffusion equations.

Let u(x, t) solve the wave equation on the whole line with bounded second
derivatives. Let

v(x, t) = c√
4πkt

∫ ∞

−∞
e−s2c2/4kt u (x, s) ds.

(a) Show that v(x, t) solves the diffusion equation!
(b) Show that limt→0 v(x, t) = u(x, 0).

(Hint: (a) Write the formula as v(x, t) = ∫ ∞
−∞ H (s, t)u(x, s) ds, where

H(x, t) solves the diffusion equation with constant k/c2 for t > 0. Then
differentiate v(x, t) using Section A.3. (b) Use the fact that H(s, t) is
essentially the source function of the diffusion equation with the spatial
variable s.)



3

REFLECTIONS AND
SOURCES

In this chapter we solve the simplest reflection problems, when there is only a
single point of reflection at one end of a semi-infinite line. In Chapter 4 we shall
begin a systematic study of more complicated reflection problems. In Sections
3.3 and 3.4 we solve problems with sources: that is, the inhomogeneous wave
and diffusion equations. Finally, in Section 3.5 we analyze the solution of the
diffusion equation more carefully.

3.1 DIFFUSION ON THE HALF-LINE

Let’s take the domain to be D = the half-line (0, ∞) and take the Dirichlet
boundary condition at the single endpoint x = 0. So the problem is

vt − kvxx = 0 in {0 < x < ∞, 0 < t < ∞},
v(x, 0) = φ(x) for t = 0
v(0, t) = 0 for x = 0

(1)

The PDE is supposed to be satisfied in the open region {0 < x < ∞,
0 < t < ∞}. If it exists, we know that the solution v(x, t) of this problem
is unique because of our discussion in Section 2.3. It can be interpreted, for
instance, as the temperature in a very long rod with one end immersed in a
reservoir of temperature zero and with insulated sides.

We are looking for a solution formula analogous to (2.4.8). In fact, we
shall reduce our new problem to our old one. Our method uses the idea of an
odd function. Any function ψ(x) that satisfies ψ(−x) ≡ −ψ(+x) is called
an odd function. Its graph y = ψ(x) is symmetric with respect to the origin

57
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Figure 1

(see Figure 1). Automatically (by putting x = 0 in the definition), ψ(0) = 0.
For a detailed discussion of odd and even functions, see Section 5.2.

Now the initial datum φ(x) of our problem is defined only for x ≥ 0. Let
φodd be the unique odd extension of φ to the whole line. That is,

φodd(x) =

⎧⎪⎨
⎪⎩

φ(x) for x > 0
−φ(−x) for x < 0

0 for x = 0.

(2)

The extension concept too is discussed in Section 5.2.
Let u(x, t) be the solution of

ut − kuxx = 0
u(x, 0) = φodd(x)

(3)

for the whole line −∞ < x < ∞, 0 < t < ∞. According to Section 2.3, it is
given by the formula

u(x, t) =
∫ ∞

−∞
S(x − y, t)φodd(y)dy. (4)

Its “restriction,”

v(x, t) = u(x, t) for x > 0, (5)

will be the unique solution of our new problem (1). There is no difference at
all between v and u except that the negative values of x are not considered
when discussing v.

Why is v(x, t) the solution of (1)? Notice first that u(x, t) must also be an
odd function of x (see Exercise 2.4.11). That is, u(−x, t) = −u(x, t). Putting
x = 0, it is clear that u(0, t) = 0. So the boundary condition v(0, t) = 0 is
automatically satisfied! Furthermore, v solves the PDE as well as the initial
condition for x > 0, simply because it is equal to u for x > 0 and u satisfies
the same PDE for all x and the same initial condition for x > 0.

The explicit formula for v(x, t) is easily deduced from (4) and (5). From
(4) and (2) we have

u(x, t) =
∫ ∞

0
S(x − y, t)φ(y)dy−

∫ 0

−∞
S(x − y, t)φ(−y)dy.
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Changing the variable −y to +y in the second integral, we get

u(x, t) =
∫ ∞

0
[S(x − y, t) − S(x + y, t)] φ(y) dy.

(Notice the change in the limits of integration.) Hence for 0 < x < ∞,
0 < t < ∞, we have

v(x, t) = 1√
4πkt

∫ ∞

0
[e−(x−y)2/4kt − e−(x+y)2/4kt ] φ(y) dy. (6)

This is the complete solution formula for (1).
We have just carried out the method of odd extensions or reflection method,

so called because the graph of φodd(x) is the reflection of the graph of φ(x)
across the origin.

Example 1.

Solve (1) with φ(x) ≡ 1. The solution is given by formula (6). This case
can be simplified as follows. Let p = (x − y)/

√
4kt in the first integral

and q = (x + y)/
√

4kt in the second integral. Then

u(x, t) =
∫ x/

√
4kt

−∞
e−p2

dp/
√

π −
∫ +∞

x/
√

4kt
e−q2

dq/
√

π

=
[

1

2
+ 1

2
erf

(
x√
4kt

)]
−

[
1

2
− 1

2
erf

(
x√
4kt

)]

= erf

(
x√
4kt

)
. �

Now let’s play the same game with the Neumann problem

wt − kwxx = 0 for 0 < x < ∞, 0 < t < ∞
w(x, 0) = φ(x)

wx (0, t) = 0.

(7)

In this case the reflection method is to use even, rather than odd, extensions.
An even function is a function ψ such that ψ(−x) = +ψ(x). If ψ is an even
function, then differentiation shows that its derivative is an odd function. So
automatically its slope at the origin is zero: ψ ′(0) = 0. If φ(x) is defined only
on the half-line, its even extension is defined to be

φeven(x) =
{

φ(x) for x ≥ 0

+φ(−x) for x ≤ 0
(8)
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By the same reasoning as we used above, we end up with an explicit formula
for w(x, t). It is

w(x, t) = 1√
4πkt

∫ ∞

0
[e−(x−y)2/4kt + e−(x+y)2/4kt ] φ(y) dy. (9)

This is carried out in Exercise 3. Notice that the only difference between (6)
and (9) is a single minus sign!

Example 2.

Solve (7) with φ(x) = 1. This is the same as Example 1 except for the
single sign. So we can copy from that example:

u(x, t) =
[

1

2
+ 1

2
erf

( x

4kt

)]
+

[
1

2
− 1

2
erf

( x

4kt

)]
= 1.

(That was stupid: We could have guessed it!) �

EXERCISES

1. Solve ut = kuxx; u(x, 0) = e−x ; u(0, t) = 0 on the half-line 0 < x < ∞.
2. Solve ut = kuxx; u(x, 0) = 0; u(0, t) = 1 on the half-line 0 < x < ∞.
3. Derive the solution formula for the half-line Neumann prob-

lem wt − kwxx = 0 for 0 < x < ∞, 0 < t < ∞; wx (0, t) = 0; w(x, 0) =
φ(x).

4. Consider the following problem with a Robin boundary condition:

DE: ut = kuxx on the half-line 0 < x < ∞
(and 0 < t < ∞)

IC: u(x, 0) = x for t = 0 and 0 < x < ∞
BC: ux (0, t) − 2u(0, t) = 0 for x = 0.

(∗)

The purpose of this exercise is to verify the solution formula for (∗). Let
f (x) = x for x > 0, let f (x) = x + 1 − e2x for x < 0, and let

v(x, t) = 1√
4πkt

∫ ∞

−∞
e−(x−y)2/4kt f (y)dy.

(a) What PDE and initial condition does v(x, t) satisfy for
−∞ < x < ∞?

(b) Let w = vx − 2v. What PDE and initial condition does w(x, t) satisfy
for −∞ < x < ∞?

(c) Show that f ′(x) − 2 f (x) is an odd function (for x �= 0).
(d) Use Exercise 2.4.11 to show that w is an odd function of x.
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(e) Deduce that v(x, t) satisfies (∗) for x > 0. Assuming uniqueness,
deduce that the solution of (∗) is given by

u(x, t) = 1√
4πkt

∫ ∞

−∞
e−(x−y)2/4kt f (y)dy.

5. (a) Use the method of Exercise 4 to solve the Robin problem:

DE: ut = kuxx on the half-line 0 < x < ∞
(and 0 < t < ∞)

IC: u(x, 0) = x for t = 0 and 0 < x < ∞
BC: ux (0, t) − hu(0, t) = 0 for x = 0,

where h is a constant.
(b) Generalize the method to the case of general initial data φ(x).

3.2 REFLECTIONS OF WAVES

Now we try the same kind of problem for the wave equation as we did in
Section 3.1 for the diffusion equation. We again begin with the Dirichlet
problem on the half-line (0, ∞). Thus the problem is

DE : vt t − c2vxx = 0 for 0 < x < ∞
and −∞ < t < ∞

IC : v(x, 0) = φ(x), vt (x, 0) = ψ(x) for t = 0
and 0 < x < ∞

BC : v(0, t) = 0 for x = 0
and −∞ < t < ∞.

(1)

The reflection method is carried out in the same way as in Section 3.1. Con-
sider the odd extensions of both of the initial functions to the whole line,
φodd(x) and ψodd(x). Let u(x, t) be the solution of the initial-value problem on
(−∞, ∞) with the initial data φodd and ψodd. Then u(x, t) is once again an odd
function of x (see Exercise 2.1.7). Therefore, u(0, t) = 0, so that the boundary
condition is satisfied automatically. Define v(x, t) = u(x, t) for 0 < x < ∞
[the restriction of u to the half-line]. Then v(x, t) is precisely the solution we
are looking for. From the formula in Section 2.1, we have for x ≥ 0,

v(x, t) = u(x, t) = 1

2
[φodd(x + ct) + φodd(x − ct)] + 1

2c

∫ x+ct

x−ct
ψodd(y)dy.

Let’s “unwind” this formula, recalling the meaning of the odd extensions.
First we notice that for x > c|t | only positive arguments occur in the formula,



62 CHAPTER 3 REFLECTIONS AND SOURCES

Figure 1

so that u(x, t) is given by the usual formula:

v(x, t) = 1

2
[φ(x + ct) + φ(x − ct)] + 1

2c

∫ x+ct

x−ct
ψ(y) dy

for x > c|t |.
(2)

But in the other region 0 < x < c|t |, we have φodd(x − ct) = −φ(ct − x),
and so on, so that

v(x, t) = 1

2
[φ(x +ct)−φ(ct − x)]+ 1

2c

∫ x+ct

0
ψ(y)dy + 1

2c

∫ 0

x−ct
[−ψ(−y)]dy.

Notice the switch in signs! In the last term we change variables y → −y to
get 1/2c

∫ ct+x
ct−x ψ(y)dy. Therefore,

v(x, t) = 1

2
[φ(ct + x) − φ(ct − x)] + 1

2c

∫ ct+x

ct−x
ψ(y) dy (3)

for 0 < x < c|t |. The complete solution is given by the pair of formulas (2)
and (3). The two regions are sketched in Figure 1 for t > 0.

Graphically, the result can be interpreted as follows. Draw the backward
characteristics from the point (x, t). In case (x, t) is in the region x < ct, one of
the characteristics hits the t axis (x = 0) before it hits the x axis, as indicated
in Figure 2. The formula (3) shows that the reflection induces a change of

Figure 2



3.2 REFLECTIONS OF WAVES 63

sign. The value of v(x, t) now depends on the values of φ at the pair of points
ct ± x and on the values of ψ in the short interval between these points. Note
that the other values of ψ have canceled out. The shaded area D in Figure 2
is called the domain of dependence of the point (x, t).

The case of the Neumann problem is left as an exercise.

THE FINITE INTERVAL

Now let’s consider the guitar string with fixed ends:

vt t = c2vxx v(x, 0) = φ(x) vt (x, 0) = ψ(x) for 0 < x < l,
(4)

v(0, t) = v(l, t) = 0.

This problem is much more difficult because a typical wave will bounce back
and forth an infinite number of times. Nevertheless, let’s use the method of
reflection. This is a bit tricky, so you are invited to skip the rest of this section
if you wish.

The initial data φ(x) and ψ(x) are now given only for 0 < x < l. We extend
them to the whole line to be “odd” with respect to both x = 0 and x = l:

φext(−x) = −φext(x) and φext(2l − x) = −φext(x).

The simplest way to do this is to define

φext(x) =

⎧⎪⎨
⎪⎩

φ(x) for 0 < x < l
−φ(−x) for −l < x < 0
extended to be of period 2l.

See Figure 3 for an example. And see Section 5.2 for further discussion.
“Period 2l” means that φext(x + 2l) = φext(x) for all x. We do exactly the
same for ψ(x) (defined for 0 < x < l) to get ψext(x) defined for −∞ < x <
∞.

Now let u(x, t) be the solution of the infinite line problem with the extended
initial data. Let v be the restriction of u to the interval (0, l). Thus v(x, t) is

Figure 3
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Figure 4

given by the formula

v(x, t) = 1

2
φext(x + ct) + 1

2
φext(x − ct) + 1

2c

∫ x+ct

x−ct
ψext(s)ds (5)

for 0 ≤ x ≤ l. This simple formula contains all the information we need. But
to see it explicitly we must unwind the definitions of φext and ψext. This will
give a resulting formula which appears quite complicated because it includes
a precise description of all the reflections of the wave at both of the boundary
points x = 0 and x = l.

The way to understand the explicit result we are about to get is by draw-
ing a space-time diagram (Figure 4). From the point (x, t), we draw the two
characteristic lines and reflect them each time they hit the boundary. We keep
track of the change of sign at each reflection. We illustrate the result in Figure
4 for the case of a typical point (x, t). We also illustrate in Figure 5 the def-
inition of the extended function φext(x). (The same picture is valid for ψext.)
For instance, for the point (x, t) as drawn in Figures 4 and 5, we have

φext(x + ct) = −φ(4l − x − ct) and φext(x − ct) = +φ(x − ct + 2l).

The minus coefficient on −φ(−x − ct + 4l) comes from the odd number of
reflections (= 3). The plus coefficient on φ(x − ct + 2l) comes from the even

Figure 5
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number of reflections (= 2). Therefore, the general formula (5) reduces to

v(x, t) = 1

2
φ(x − ct + 2l) − 1

2
φ(4l − x − ct)

+ 1

2c

[∫ −l

x−ct
ψ(y + 2l) dy +

∫ 0

−l
−ψ(−y) dy

+
∫ 1

0
ψ(y) dy +

∫ 2l

l
−ψ(−y + 2l) dy

+
∫ 3l

2l
ψ(y − 2l) dy +

∫ x+ct

3l
−ψ(−y + 4l) dy

]
But notice that there is an exact cancellation of the four middle integrals, as
we see by changing y → −y and y − 2l → −y + 2l. So, changing variables
in the two remaining integrals, the formula simplifies to

v(x, t) = 1

2
φ(x − ct + 2l) − 1

2
φ(4l − x − ct)

+ 1

2c

∫ l

x−ct+2l
ψ(s) ds + 1

2c

∫ 4l−x−ct

l
ψ(s) ds.

Therefore, we end up with the formula

v(x, t) = 1

2
φ(x − ct + 2l) − 1

2
φ(4l − x − ct) +

∫ 4l−x−ct

x−ct+2l
ψ(s)

ds

2c
(6)

at the point (x, t) illustrated, which has three reflections on one end and two
on the other. Formula (6) is valid only for such points.

Figure 6
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The solution formula at any other point (x, t) is characterized by the num-
ber of reflections at each end (x = 0, l). This divides the space-time picture
into diamond-shaped regions as illustrated in Figure 6. Within each diamond
the solution v(x, t) is given by a different formula. Further examples may be
found in the exercises.

The formulas explain in detail how the solution looks. However, the
method is impossible to generalize to two- or three-dimensional problems,
nor does it work for the diffusion equation at all. Also, it is very complicated!
Therefore, in Chapter 4 we shall introduce a completely different method
(Fourier’s) for solving problems on a finite interval.

EXERCISES

1. Solve the Neumann problem for the wave equation on the half-line 0 <
x < ∞.

2. The longitudinal vibrations of a semi-infinite flexible rod satisfy the
wave equation utt = c2uxx for x > 0. Assume that the end x = 0 is free
(ux = 0); it is initially at rest but has a constant initial velocity V for
a < x < 2a and has zero initial velocity elsewhere. Plot u versus x at the
times t = 0, a/c, 3a/2c, 2a/c, and 3a/c.

3. A wave f (x + ct) travels along a semi-infinite string (0 < x < ∞) for
t < 0. Find the vibrations u(x, t) of the string for t > 0 if the end x = 0
is fixed.

4. Repeat Exercise 3 if the end is free.
5. Solve utt = 4uxx for 0 < x < ∞, u(0, t) = 0, u(x, 0) ≡ 1, ut (x, 0) ≡ 0

using the reflection method. This solution has a singularity; find its lo-
cation.

6. Solve utt = c2uxx in 0 < x < ∞, 0 ≤ t < ∞, u(x, 0) = 0, ut (x, 0) =V ,

ut (0, t) + aux (0, t) = 0,

where V , a, and c are positive constants and a > c.
7. (a) Show that φodd(x) = (sign x)φ(|x|).

(b) Show thatφext(x)=φodd(x−2l[x/2l]), where [·] denotes the greatest
integer function.

(c) Show that

φext(x) =

⎧⎪⎨
⎪⎩

φ
(

x −
[ x

l

]
l
)

if
[ x

l

]
even

−φ
(
−x −

[ x

l

]
l − l

)
if
[ x

l

]
odd.

8. For the wave equation in a finite interval (0, l) with Dirichlet conditions,
explain the solution formula within each diamond-shaped region.
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9. (a) Find u( 2
3 , 2) if utt = uxx in 0 < x < 1, u(x, 0) = x2(1 − x),

ut (x, 0) = (1 − x)2, u(0, t) = u(1, t) = 0.
(b) Find u( 1

4 ,
7
2 ).

10. Solve utt = 9uxx in 0 < x < π/2, u(x, 0) = cos x, ut (x, 0) = 0,
ux (0, t) = 0, u(π/2, t) = 0.

11. Solve utt = c2uxx in 0 < x < l, u(x, 0) = 0, ut (x, 0) = x, u(0, t) =
u(l, t) = 0.

3.3 DIFFUSION WITH A SOURCE

In this section we solve the inhomogeneous diffusion equation on the whole
line,

ut − kuxx = f (x, t) (−∞ < x < ∞, 0 < t < ∞)
u(x, 0) = φ(x)

(1)

with f (x, t) and φ(x) arbitrary given functions. For instance, if u(x, t) represents
the temperature of a rod, then φ(x) is the initial temperature distribution and
f (x, t) is a source (or sink) of heat provided to the rod at later times.

We will show that the solution of (1) is

u(x, t) =
∫ ∞

−∞
S(x − y, t)φ(y) dy

+
∫ t

0

∫ ∞

−∞
S(x − y, t − s) f (y, s) dy ds. (2)

Notice that there is the usual term involving the initial data φ and another term
involving the source f . Both terms involve the source function S.

Let’s begin by explaining where (2) comes from. Later we will actually
prove the validity of the formula. (If a strictly mathematical proof is satisfac-
tory to you, this paragraph and the next two can be skipped.) Our explanation
is an analogy. The simplest analogy is the ODE

du

dt
+ Au(t) = f (t), u(0) = φ, (3)

where A is a constant. Using the integrating factor etA, the solution is

u(t) = e−tAφ +
∫ t

0
e(s−t)A f (s) ds. (4)

A more elaborate analogy is the following. Let’s suppose that φ is an
n-vector, u(t) is an n-vector function of time, and A is a fixed n × n matrix.
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Then (3) is a coupled system of n linear ODEs. In case f (t) ≡ 0, the solution
of (3) is given as u(t) = S(t)φ, where S(t) is the matrix S(t) = e−tA. So in case
f (t) �= 0, an integrating factor for (3) is S(−t) = etA. Now we multiply (3) on
the left by this integrating factor to get

d

dt
[S(−t)u(t)] = S(−t)

du

dt
+ S(−t)Au(t) = S(−t) f (t).

Integrating from 0 to t, we get

S(−t)u(t) − φ =
∫ t

0
S(−s) f (s) ds.

Multiplying this by S(t), we end up with the solution formula

u(t) = S(t)φ +
∫ t

0
S(t − s) f (s) ds. (5)

The first term in (5) represents the solution of the homogeneous equation,
the second the effect of the source f(t). For a single equation, of course, (5)
reduces to (4). �

Now let’s return to the original diffusion problem (1). There is an analogy
between (2) and (5) which we now explain. The solution of (1) will have two
terms. The first one will be the solution of the homogeneous problem, already
solved in Section 2.4, namely∫ ∞

−∞
S(x − y, t)φ(y) dy = (s(t)φ)(x). (6)

S(x − y, t) is the source function given by the formula (2.4.7). Here we are
usings(t) to denote the source operator, which transforms any function φ to
the new function given by the integral in (6). (Remember: Operators transform
functions into functions.) We can now guess what the whole solution to (1)
must be. In analogy to formula (5), we guess that the solution of (1) is

u(t) = s(t)φ +
∫ t

0
s(t − s) f (s) ds. (7)

Formula (7) is exactly the same as (2):

u(x, t) =
∫ ∞

−∞
S(x − y, t)φ(y) dy

+
∫ t

0

∫ ∞

−∞
S(x − y, t − s) f (y, s) dy ds. (2)

The method we have just used to find formula (2) is the operator method.

Proof of (2). All we have to do is verify that the function u(x, t), which
is defined by (2), in fact satisfies the PDE and IC (1). Since the solution of
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(1) is unique, we would then know that u(x, t) is that unique solution. For
simplicity, we may as well let φ ≡ 0, since we understand the φ term already.

We first verify the PDE. Differentiating (2), assuming φ ≡ 0 and using
the rule for differentiating integrals in Section A.3, we have

∂u

∂t
= ∂

∂t

∫ t

0

∫ ∞

−∞
S(x − y, t − s) f (y, s) dy ds

=
∫ t

0

∫ ∞

−∞

∂S

∂t
(x − y, t − s) f (y, s) dy ds

+ lim
s→t

∫ ∞

−∞
S(x − y, t − s) f (y, s) dy,

taking special care due to the singularity of S(x − y, t − s) at t − s = 0. Using
the fact that S(x − y, t − s) satisfies the diffusion equation, we get

∂u

∂t
=

∫ t

0

∫ ∞

−∞
k
∂2S

∂x2
(x − y, t − s) f (y, s) dy ds

+ lim
ε→0

∫ ∞

−∞
S(x − y, ε) f (y, t) dy.

Pulling the spatial derivative outside the integral and using the initial condition
satisfied by S, we get

∂u

∂t
= k

∂2

∂x2

∫ t

0

∫ ∞

−∞
S(x − y, t − s) f (y, s) dy ds + f (x, t)

= k
∂2u

∂x2 + f (x, t).

This identity is exactly the PDE (1). Second, we verify the initial condition.
Letting t → 0, the first term in (2) tends to φ(x) because of the initial condition
of S. The second term is an integral from 0 to 0. Therefore,

lim
t→0

u(x, t) = φ(x) +
∫ 0

0
· · · = φ(x).

This proves that (2) is the unique solution. �

Remembering that S(x, t) is the gaussian distribution (2.4.7), the formula
(2) takes the explicit form

u(x, t) =
∫ t

0

∫ ∞

−∞
S(x − y, t − s) f (y, s) dy ds

=
∫ t

0

∫ ∞

−∞

1√
4πk(t − s)

e−(x−y)2/4k(t−s) f (y, s) dy ds. (8)

in the case that φ ≡ 0.
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SOURCE ON A HALF-LINE

For inhomogeneous diffusion on the half-line we can use the method of re-
flection just as in Section 3.1 (see Exercise 1).

Now consider the more complicated problem of a boundary source h(t)
on the half-line; that is,

vt − kvxx = f (x, t) for 0 < x < ∞, 0 < t < ∞
v(0, t) = h(t) (9)
v(x, 0) = φ(x).

We may use the following subtraction device to reduce (9) to a simpler prob-
lem. Let V (x, t) = v(x, t) − h(t). Then V(x, t) will satisfy

Vt − kVxx = f (x, t) − h′(t) for 0 < x < ∞, 0 < t < ∞
V (0, t) = 0 (10)
V (x, 0) = φ(x) − h(0).

To verify (10), just subtract! This new problem has a homogeneous boundary
condition to which we can apply the method of reflection. Once we find V ,
we recover v by v(x, t) = V (x, t) + h(t). This simple subtraction device is
often used to reduce one linear problem to another.

The domain of independent variables (x, t) in this case is a quarter-plane
with specified conditions on both of its half-lines. If they do not agree at
the corner [i.e., if φ(0) �= h(0)], then the solution is discontinuous there (but
continuous everywhere else). This is physically sensible. Think for instance,
of suddenly at t = 0 sticking a hot iron bar into a cold bath.

For the inhomogeneous Neumann problem on the half-line,

wt − kwxx = f (x, t) for 0 < x < ∞, 0 < t < ∞
wx(0, t) = h(t) (11)
w(x, 0) = φ(x),

we would subtract off the function xh(t). That is, W(x, t) = w(x, t) − xh(t).
Differentiation implies that Wx(0, t) = 0. Some of these problems are worked
out in the exercises.

EXERCISES

1. Solve the inhomogeneous diffusion equation on the half-line with Dirich-
let boundary condition:

ut − kuxx = f (x, t) (0 < x < ∞, 0 < t < ∞)
u(0, t) = 0 u(x, 0) = φ(x)

using the method of reflection.
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2. Solve the completely inhomogeneous diffusion problem on the half-line

vt − kvxx = f (x, t) for 0 < x < ∞, 0 < t < ∞
v(0, t) = h(t) v(x, 0) = φ(x),

by carrying out the subtraction method begun in the text.
3. Solve the inhomogeneous Neumann diffusion problem on the half-line

wt − kwxx = 0 for 0 < x < ∞, 0 < t < ∞
wx (0, t) = h(t) w(x, 0) = φ(x),

by the subtraction method indicated in the text.

3.4 WAVES WITH A SOURCE

The purpose of this section is to solve

utt − c2uxx = f (x, t) (1)

on the whole line, together with the usual initial conditions

u(x, 0) = φ(x)
ut (x, 0) = ψ(x)

(2)

where f (x, t) is a given function. For instance, f (x, t) could be interpreted as
an external force acting on an infinitely long vibrating string.

Because L = ∂2
t − c2∂2

x is a linear operator, the solution will be the sum
of three terms, one for φ, one for ψ , and one for f . The first two terms are
given already in Section 2.1 and we must find the third term. We’ll derive the
following formula.

Theorem 1. The unique solution of (1),(2) is

u(x, t) = 1

2
[φ(x + ct) + φ(x − ct)] + 1

2c

∫ x+ct

x−ct
ψ + 1

2c

∫∫
�

f (3)

where � is the characteristic triangle (see Figure 1).
The double integral in (3) is equal to the iterated integral∫ t

0

∫ x+c(t−s)

x−c(t−s)
f (y, s) dy ds.

We will give three different derivations of this formula! But first, let’s note
what the formula says. It says that the effect of a force f on u(x, t) is obtained
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Figure 1

by simply integrating f over the past history of the point (x, t) back to the
initial time t = 0. This is yet another example of the causality principle.

WELL-POSEDNESS

We first show that the problem (1),(2) is well-posed in the sense of Sec-
tion 1.5. The well-posedness has three ingredients, as follows. Existence
is clear, given that the formula (3) itself is an explicit solution. If φ has a
continuous second derivative, ψ has a continuous first derivative, and f is
continuous, then the formula (3) yields a function u with continuous second
partials that satisfies the equation. Uniqueness means that there are no other
solutions of (1),(2). This will follow from any one of the derivations given
below.

Third, we claim that the problem (1),(2) is stable in the sense of Section
1.5. This means that if the data (φ, ψ , f ) change a little, then u also changes
only a little. To make this precise, we need a way to measure the “nearness”
of functions, that is, a metric or norm on function spaces. We will illustrate
this concept using the uniform norms:

‖w‖ = max−∞<x<∞ |w(x)|

and

‖w‖T = max
−∞<x<∞, 0≤t≤T

|w(x, t)|.

Here T is fixed. Suppose that u1(x, t) is the solution with data
(φ1(x), ψ1(x), f1(x, t)) and u2(x, t) is the solution with data
(φ2(x), ψ2(x), f2(x, t)) (six given functions). We have the same formula (3)
satisfied by u1 and by u2 except for the different data. We subtract the two
formulas. We let u = u1 − u2. Since the area of � equals ct2, we have from
(3) the inequality

|u(x, t)| ≤ max|φ| + 1

2c
· max|ψ | · 2ct + 1

2c
· max| f | · ct2

= max|φ| + t · max|ψ | + t2

2
· max| f |.
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Therefore,

‖u1 − u2‖T ≤ ‖φ1 − φ2‖ + T ‖ψ1 − ψ2‖ + T 2

2
‖ f1 − f2‖T . (4)

So if ||φ1 − φ2|| < δ, ||ψ1 − ψ2|| < δ, and || f1 − f2||T < δ, where δ is small,
then

‖u1 − u2‖T < δ(1 + T + T 2) ≤ ε

provided that δ ≤ ε/(1 + T + T 2). Since ε is arbitrarily small, this argument
proves the well-posedness of the problem (1),(2) with respect to the uniform
norm.

PROOF OF THEOREM 1

Method of Characteristic Coordinates We introduce the usual character-
istic coordinates ξ = x + ct, η = x − ct , (see Figure 2). As in Section 2.1,
we have

Lu ≡ utt − c2uxx = −4c2uξη = f

(
ξ + η

2
,
ξ − η

2c

)
.

We integrate this equation with respect to η, leaving ξ as a constant. Thus
uξ = −(1/4c2)

∫ η f dη. Then we integrate with respect to ξ to get

u = − 1

4c2

∫ ξ ∫ η

f dη dξ (5)

The lower limits of integration here are arbitrary: They correspond to constants
of integration. The calculation is much easier to understand if we fix a point
P0 with coordinates x0, t0 and

ξ0 = x0 + ct0 η0 = x0 − ct0.

Figure 2
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Figure 3

We evaluate (5) at P0 and make a particular choice of the lower limits. Thus

u(P0) = − 1

4c2

∫ ξ0

η0

∫ η0

ξ

f

(
ξ + η

2
,
ξ − η

2c

)
dη dξ

= + 1

4c2

∫ ξ0

η0

∫ ξ

η0

f

(
ξ + η

2
,
ξ − η

2c

)
dη dξ

(6)

is a particular solution. As Figure 3 indicates, η now represents a variable
going along a line segment to the base η = ξ of the triangle � from the left-
hand edge η = η0, while ξ runs from the left-hand corner to the right-hand
edge. Thus we have integrated over the whole triangle �.

The iterated integral, however, is not exactly the double integral over �
because the coordinate axes are not orthogonal. The original axes (x and t) are
orthogonal, so we make a change of variables back to x and t. This amounts
to substituting back

x = ξ + η

2
t = ξ − η

2c
. (7)

A little square in Figure 4 goes into a parallelogram in Figure 5. The change
in its area is measured by the jacobian determinant J (see Section A.1). Since

Figure 4
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Figure 5

our change of variable is a linear transformation, the jacobian is just the
determinant of its coefficient matrix:

J =

∣∣∣∣∣∣∣det

⎛
⎜⎝

∂ξ

∂x

∂ξ

∂t
∂η

∂x

∂η

∂t

⎞
⎟⎠
∣∣∣∣∣∣∣ =

∣∣∣∣∣det

(
1 c
1 −c

)∣∣∣∣∣ = 2c.

Thus dη dξ = J dx dt = 2c dx dt. Therefore, the rule for changing vari-
ables in a multiple integral (the jacobian theorem) then gives

u(P0) = 1

4c2

∫∫
�

f (x, t)J dx dt. (8)

This is precisely Theorem 1. The formula can also be written as the iterated
integral in x and t:

u(x0, t0) = 1

2c

∫ t0

0

∫ x0+c(t0−t)

x0−c(t0−t)
f (x, t) dx dt, (9)

integrating first over the horizontal line segments in Figure 5 and then verti-
cally.

A variant of the method of characteristic coordinates is to write (1) as the
system of two equations

ut + cux = v vt − cvx = f,

the first equation being the definition of v, as in Section 2.1. If we first solve
the second equation, then v is a line integral of f over a characteristic line
segment x + ct = constant. The first equation then gives u(x, t) by sweeping
out these line segments over the characteristic triangle �. To carry out this
variant is a little tricky, however, and we leave it as an exercise.
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Figure 6

Method Using Green’s Theorem In this method we integrate f over the
past history triangle �. Thus∫∫

�

f dx dt =
∫∫

�

(utt − c2uxx) dx dt . (10)

But Green’s theorem says that∫∫
�

(Px − Qt ) dx dt =
∫

bdy
P dt + Q dx

for any functions P and Q, where the line integral on the boundary is taken
counterclockwise (see Section A.3). Thus we get∫∫

�

f dx dt =
∫

L0+L1+L2

(−c2ux dt − ut dx). (11)

This is the sum of three line integrals over straight line segments (see Figure
6). We evaluate each piece separately. On L0, dt = 0 and ut (x, 0) = ψ(x),
so that ∫

L0

= −
∫ x0+ct0

x0−ct0

ψ(x) dx .

On L1, x + ct = x0 + ct0, so that dx + c dt = 0, whence −c2ux dt−
ut dx = cux dx + cut dt = c du. (We’re in luck!) Thus∫

L1

= c
∫

L1

du = cu(x0, t0) − cφ(x0 + ct0).

In the same way,∫
L2

= −c
∫

L2

du = −cφ(x0 − ct0) + cu(x0, t0).

Adding these three results, we get∫∫
�

f dx dt = 2cu(x0, t0)− c[φ(x0 + ct0) + φ(x0 −ct0)]−
∫ x0+ct0

x0−ct0

ψ(x) dx .
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Thus

u(x0, t0) = 1

2c

∫∫
�

f dx dt + 1

2
[φ(x0 + ct0) + φ(x0 − ct0)]

+ 1

2c

∫ x0+ct0

x0−ct0

ψ(x) dx,

(12)

which is the same as before.

Operator Method This is how we solved the diffusion equation with a
source. Let’s try it out on the wave equation. The ODE analog is the equation,

d2u

dt2
+ A2u(t) = f (t), u(0) = φ,

du

dt
(0) = ψ. (13)

We could think of A2 as a positive constant (or even a positive square matrix.)
The solution of (13) is

u(t) = S′(t)φ + S(t)ψ +
∫ t

0
S(t − s) f (s) ds, (14)

where

S(t) = A−1 sin tA and S′(t) = cos tA. (15)

The key to understanding formula (14) is that S(t)ψ is the solution of problem
(13) in the case that φ = 0 and f = 0.

Let’s return to the PDE

utt − c2uxx = f (x, t) u(x, 0) = φ(x) ut (x, 0) = ψ(x). (16)

The basic operator ought to be given by the ψ term. That is,

s(t)ψ = 1

2c

∫ x+ct

x−ct
ψ(y) dy = v(x, t), (17)

where v(x, t) solves vt t − c2vxx = 0, v(x, 0) = 0, vt (x, 0) = ψ(x). s(t) is
the source operator. By (14) we would expect the φ term to be (∂/∂t)s(t)φ.
In fact,

∂

∂t
s(t)φ = ∂

∂t

1

2c

∫ x+ct

x−ct
φ(y) dy

= 1

2c
[cφ(x + ct) − (−c)φ(x − ct)] ,

in agreement with our old formula (2.1.8)! So we must be on the right track.
Let’s now take the f term; that is, φ = ψ = 0. By analogy with the last

term in (14), the solution ought to be

u(t) =
∫ t

0
s(t − s) f (s) ds.
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That is, using (17),

u(x, t) =
∫ t

0

[
1

2c

∫ x+c(t−s)

x−c(t−s)
f (y, s) dy

]
ds = 1

2c

∫∫
�

f dx dt.

This is once again the same result!
The moral of the operator method is that if you can solve the homogeneous

equation, you can also solve the inhomogeneous equation. This is sometimes
known as Duhamel’s principle.

SOURCE ON A HALF-LINE

The solution of the general inhomogeneous problem on a half-line

DE: vt t − c2vxx = f (x, t) in 0 < x < ∞
IC: v(x, 0) = φ(x) vt (x, 0) = ψ(x)

BC: v(0, t) = h(t)

(18)

is the sum of four terms, one for each data function φ, ψ , f , and h. For x >
ct > 0, the solution has precisely the same form as in (3), with the backward
triangle � as the domain of dependence. For 0 < x < ct, however, it is given
by

v(x, t) = φ term + ψ term + h
(

t − x
c

)
+ 1

2c

∫∫
D

f (19)

where t − x/c is the reflection point and D is the shaded region in Figure
3.2.2. The only caveat is that the given conditions had better coincide at the
origin. That is, we require that φ(0) = h(0) and ψ(0) = h′(0). If this were
not assumed, there would be a singularity on the characteristic line emanating
from the corner.

Let’s derive the boundary term h(t − x/c) for x < ct. To accomplish
this, it is convenient to assume that φ = ψ = f = 0. We shall derive
the solution from scratch using the fact that v(x, t) must take the form
v(x, t) = j(x + ct) + g(x − ct). From the initial conditions (φ = ψ = 0),
we find that j(s) = g(s) = 0 for s > 0. From the boundary condition we have
h(t) = v(0, t) = g(−ct) for t > 0. Thus g(s) = h(−s/c) for s<0. Therefore, if
x< ct, t >0, we have v(x, t) = 0 + h(−[x − ct]/c) = h(t − x/c).

FINITE INTERVAL

For a finite interval (0, l) with inhomogeneous boundary conditions v(0, t) =
h(t), v(l, t) = k(t), we get the whole series of terms

v(x, t) = h
(

t − x

c

)
− h

(
t + x − 2l

c

)
+ h

(
t − x + 2l

c

)
+ · · ·

+ k

(
t + x − l

c

)
− k

(
t − x + l

c

)
+ k

(
t + x − 3l

c

)
+ · · ·

(see Exercise 15 and Figure 3.2.4).
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EXERCISES

1. Solve utt = c2uxx + xt, u(x, 0) = 0, ut (x, 0) = 0.

2. Solve utt = c2uxx + eax , u(x, 0) = 0, ut (x, 0) = 0.

3. Solve utt = c2uxx + cos x, u(x, 0) = sin x, ut (x, 0) = 1 + x .

4. Show that the solution of the inhomogeneous wave equation

utt = c2uxx + f, u(x, 0) = φ(x), ut (x, 0) = ψ(x),

is the sum of three terms, one each for f , φ, and ψ .
5. Let f (x, t) be any function and let u(x, t) = (1/2c)

∫∫
�

f , where � is the
triangle of dependence. Verify directly by differentiation that

utt = c2uxx + f and u(x, 0) ≡ ut (x, 0) ≡ 0.

(Hint: Begin by writing the formula as the iterated integral

u(x, t) = 1

2c

∫ t

0

∫ x+ct−cs

x−ct+cs
f (y, s) dy ds

and differentiate with care using the rule in the Appendix. This exercise
is not easy.)

6. Derive the formula for the inhomogeneous wave equation in yet another
way.
(a) Write it as the system

ut + cux = v, vt − cvx = f.

(b) Solve the first equation for u in terms of v as

u(x, t) =
∫ t

0
v(x − ct + cs, s) ds.

(c) Similarly, solve the second equation for v in terms of f .
(d) Substitute part (c) into part (b) and write as an iterated integral.

7. Let A be a positive-definite n × n matrix. Let

S(t) =
∞∑

m=0

(−1)m A2mt2m+1

(2m + 1)!
.

(a) Show that this series of matrices converges uniformly for bounded
t and its sum S(t) solves the problem S′′(t) + A2S(t) = 0, S(0) =
0, S′(0) = I, where I is the identity matrix. Therefore, it makes
sense to denote S(t) as A−1 sin tA and to denote its derivative S′(t)
as cos(tA).

(b) Show that the solution of (13) is (14).
8. Show that the source operator for the wave equation solves the problem

st t − c2sxx = 0, s(0) = 0, st (0) = I,

where I is the identity operator.
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9. Let u(t) = ∫ t
0 s(t − s) f (s) ds. Using only Exercise 8, show that u solves

the inhomogeneous wave equation with zero initial data.
10. Use any method to show that u = 1/(2c)

∫∫
D f solves the inhomoge-

neous wave equation on the half-line with zero initial and boundary
data, where D is the domain of dependence for the half-line.

11. Show by direct substitution that u(x, t) = h(t − x/c) for x < ct and
u(x, t) = 0 for x ≥ ct solves the wave equation on the half-line (0, ∞)
with zero initial data and boundary condition u(0, t) = h(t).

12. Derive the solution of the fully inhomogeneous wave equation on the
half-line

vt t − c2vxx = f (x, t) in 0 < x < ∞
v(x, 0) = φ(x), vt (x, 0) = ψ(x)

v(0, t) = h(t),

by means of the method using Green’s theorem. (Hint: Integrate over
the domain of dependence.)

13. Solve utt = c2uxx for 0 < x < ∞,
u(0, t) = t2, u(x, 0) = x, ut (x, 0) = 0.

14. Solve the homogeneous wave equation on the half-line (0, ∞) with zero
initial data and with the Neumann boundary condition ux (0, t) = k(t).
Use any method you wish.

15. Derive the solution of the wave equation in a finite interval with inho-
mogeneous boundary conditions v(0, t) = h(t), v(l, t) = k(t), and with
φ = ψ = f = 0.

3.5 DIFFUSION REVISITED

In this section we make a careful mathematical analysis of the solution of
the diffusion equation that we found in Section 2.4. (On the other hand, the
formula for the solution of the wave equation is so much simpler that it doesn’t
require a special justification.)

The solution formula for the diffusion equation is an example of a con-
volution, the convolution of φ with S (at a fixed t). It is

u(x, t) =
∫ ∞

−∞
S(x − y, t) φ(y) dy =

∫ ∞

−∞
S(z, t) φ(x − z) dz, (1)

where S(z, t) = 1/
√

4πkt e−z2/4kt . If we introduce the variable p = z/
√

kt,
it takes the equivalent form

u(x, t) = 1√
4π

∫ ∞

−∞
e−p2

/
4φ(x − p

√
kt) dp. (2)

Now we are prepared to state a precise theorem.
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Theorem 1. Let φ(x) be a bounded continuous function for −∞ < x <
∞. Then the formula (2) defines an infinitely differentiable function u(x, t)
for −∞ < x < ∞, 0 < t < ∞, which satisfies the equation ut = kuxx and
limt↘0 u(x, t) = φ(x) for each x.

Proof. The integral converges easily because

|u(x, t)| ≤ 1√
4π

(max|φ|)
∫ ∞

−∞
e−p2

/
4 dp = max|φ|.

(This inequality is related to the maximum principle.) Thus the integral con-
verges uniformly and absolutely. Let us show that ∂u/∂x exists. It equals∫

(∂S/∂x)(x − y, t)φ(y) dy provided that this new integral also converges
absolutely. Now∫ ∞

−∞

∂S

∂x
(x − y, t)φ(y) dy = − 1√

4πkt

∫ ∞

−∞

x − y

2kt
e−(x−y)2

/
4ktφ(y) dy

= c√
t

∫ ∞

−∞
pe−p2

/
4φ(x − p

√
kt) dp

≤ c√
t

(max |φ|)
∫ ∞

−∞
|p| e−p2

/
4 dp,

where c is a constant. The last integral is finite. So this integral also converges
uniformly and absolutely. Therefore, ux = ∂u/∂x exists and is given by this
formula. All derivatives of all orders (ut , uxt , uxx, utt , . . .) work the same way
because each differentiation brings down a power of p so that we end up
with convergent integrals like

∫
pne−p2/4 dp. So u(x, t) is differentiable to all

orders. Since S(x, t) satisfies the diffusion equation for t > 0, so does u(x, t).
It remains to prove the initial condition. It has to be understood in a

limiting sense because the formula itself has meaning only for t > 0. Because
the integral of S is 1, we have

u(x, t) − φ(x) =
∫ ∞

−∞
S(x − y, t) [φ(y) − φ(x)] dy

= 1√
4π

∫ ∞

−∞
e−p2

/
4[φ(x − p

√
kt) − φ(x)] dp.

For fixed x we must show that this tends to zero as t → 0. The idea is that for
p
√

t small, the continuity of φ makes the integral small; while for p
√

t not
small, p is large and the exponential factor is small.

To carry out this idea, let ε > 0. Let δ > 0 be so small that

max
|y−x |≤δ

|φ(y) − φ(x)| <
ε

2
.
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This can be done because φ is continuous at x. We break up the integral into
the part where |p| < δ/

√
kt and the part where |p| ≥ δ/

√
kt . The first part is∣∣∣∣

∫
|p|<δ/

√
kt

∣∣∣∣ ≤
(

1√
4π

∫
e−p2

/
4dp

)
· max

|y−x |≤δ
|φ(y) − φ(x)|

< 1 · ε

2
= ε

2
.

The second part is∣∣∣∣
∫

|p|≥δ/
√

kt

∣∣∣∣ ≤ 1√
4π

· 2(max |φ|) ·
∫

|p|≥δ/
√

kt
e−p2/4dp <

ε

2

by choosing t sufficiently small, since the integral
∫ ∞
−∞ e−p2/4 dp converges

and δ is fixed. (That is, the “tails”
∫
|p|≥N e−p2/4 dp are as small as we wish if

N = δ/
√

kt is large enough.) Therefore,

|u(x, t) − φ(x)| < 1
2ε + 1

2ε = ε

provided that t is small enough. This means exactly that u(x, t) → φ(x) as
t → 0. �

Corollary. The solution has all derivatives of all orders for t > 0, even if φ
is not differentiable. We can say therefore that all solutions become smooth
as soon as diffusion takes effect. There are no singularities, in sharp contrast
to the wave equation.

Proof. We use formula (1)

u(x, t) =
∫ ∞

−∞
S(x − y, t)φ(y) dy

together with the rule for differentiation under an integral sign, Theorem 2 in
Section A.3.

Piecewise Continuous Initial Data. Notice that the continuity of φ(x) was
used in only one part of the proof. With an appropriate change we can allow
φ(x) to have a jump discontinuity. [Consider, for instance, the initial data for
Q(x, t).]

A function φ(x) is said to have a jump at x0 if both the limit of φ(x)
as x → x0 from the right exists [denoted φ(x0+)] and the limit from the left
[denoted φ(x0 −)] exists but these two limits are not equal. A function is called
piecewise continuous if in each finite interval it has only a finite number of
jumps and it is continuous at all other points. This concept is discussed in
more detail in Section 5.2.
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Theorem 2. Let φ(x) be a bounded function that is piecewise continuous.
Then (1) is an infinitely differentiable solution for t > 0 and

lim
t↘0

u(x, t) = 1
2 [φ(x+) + φ(x−)]

for all x. At every point of continuity this limit equals φ(x).

Proof. The idea is the same as before. The only difference is to split the
integrals into p > 0 and p < 0. We need to show that

1√
4π

∫ ±∞

0
e−p2/4φ(x +

√
kt p) dp → ±1

2
φ (x±).

The details are left as an exercise. �

EXERCISES

1. Prove that if φ is any piecewise continuous function, then

1√
4π

∫ ±∞

0
e−p2/4φ(x +

√
kt p) dp → ±1

2
φ (x±) as t ↘0.

2. Use Exercise 1 to prove Theorem 2.



4

BOUNDARY
PROBLEMS

In this chapter we finally come to the physically realistic case of a finite
interval 0 < x < l. The methods we introduce will frequently be used in the
rest of this book.

4.1 SEPARATION OF VARIABLES, THE
DIRICHLET CONDITION

We first consider the homogeneous Dirichlet conditions for the wave equation:

utt = c2uxx for 0 < x < l (1)
u(0, t) = 0 = u(l, t) (2)

with some initial conditions

u(x, 0) = φ(x) ut (x, 0) = ψ(x). (3)

The method we shall use consists of building up the general solution as a linear
combination of special ones that are easy to find. (Once before, in Section
2.4, we followed this program, but with different building blocks.)

A separated solution is a solution of (1) and (2) of the form

u(x, t) = X (x)T (t). (4)

(It is important to distinguish between the independent variable written as a
lowercase letter and the function written as a capital letter.) Our first goal is
to look for as many separated solutions as possible.

84
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Plugging the form (4) into the wave equation (1), we get

X (x)T ′′(t) = c2 X ′′(x)T (t)

or, dividing by −c2 XT ,

− T ′′

c2T
= − X ′′

X
= λ.

This defines a quantity λ, which must be a constant. (Proof: ∂λ/∂x = 0 and
∂λ/∂t = 0, so λ is a constant. Alternatively, we can argue that λ doesn’t
depend on x because of the first expression and doesn’t depend on t because
of the second expression, so that it doesn’t depend on any variable.) We will
show at the end of this section that λ > 0. (This is the reason for introducing
the minus signs the way we did.)

So let λ = β2, where β > 0. Then the equations above are a pair of
separate (!) ordinary differential equations for X(x) and T(t):

X ′′ + β2 X = 0 and T ′′ + c2β2T = 0. (5)

These ODEs are easy to solve. The solutions have the form

X (x) = C cos βx + D sin βx (6)

T (t) = A cos βct + B sin βct, (7)

where A, B, C, and D are constants.
The second step is to impose the boundary conditions (2) on the separated

solution. They simply require that X(0) = 0 = X(l). Thus

0 = X (0) = C and 0 = X (l) = D sin βl.

Surely we are not interested in the obvious solution C = D = 0. So we must
have βl = nπ , a root of the sine function. That is,

λn =
(nπ

l

)2
, Xn(x) = sin

nπx

l
(n = 1, 2, 3, . . .) (8)

are distinct solutions. Each sine function may be multiplied by an arbitrary
constant.

Therefore, there are an infinite (!) number of separated solutions of (1)
and (2), one for each n. They are

un(x, t) =
(

An cos
nπct

l
+ Bn sin

nπct

l

)
sin

nπx

l

(n = 1, 2, 3, . . . ), where An and Bn are arbitrary constants. The sum of solutions
is again a solution, so any finite sum

u(x, t) =
∑

n

(
An cos

nπct

l
+ Bn sin

nπct

l

)
sin

nπx

l
(9)

is also a solution of (1) and (2).
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Formula (9) solves (3) as well as (1) and (2), provided that

φ(x) =
∑

n

An sin
nπx

l
(10)

and

ψ(x) =
∑

n

nπc

l
Bn sin

nπx

l
. (11)

Thus for any initial data of this form, the problem (1), (2), and (3) has a simple
explicit solution.

But such data (10) and (11) clearly are very special. So let’s try (following
Fourier in 1827) to take infinite sums. Then we ask what kind of data pairs
φ(x), ψ(x) can be expanded as in (10), (11) for some choice of coefficients An,
Bn? This question was the source of great disputes for half a century around
1800, but the final result of the disputes was very simple: Practically any (!)
function φ(x) on the interval (0, l) can be expanded in an infinite series (10).
We will show this in Chapter 5. It will have to involve technical questions
of convergence and differentiability of infinite series like (9). The series in
(10) is called a Fourier sine series on (0, l). But for the time being let’s not
worry about these mathematical points. Let’s just forge ahead to see what
their implications are.

First of all, (11) is the same kind of series for ψ(x) as (10) is for φ(x).
What we’ve shown is simply that if (10), (11) are true, then the infinite series
(9) ought to be the solution of the whole problem (1), (2), (3).

A sketch of the first few functions sin(πx/ l), sin(2πx/ l), . . . is shown
in Figure 1. The functions cos(nπct/ l) and sin(nπct/ l) which describe the

Figure 1
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behavior in time have a similar form. The coefficients of t inside the sines
and cosines, namely nπc/ l, are called the frequencies. (In some texts, the
frequency is defined as nc/2l.)

If we return to the violin string that originally led us to the problem (1),
(2), (3), we find that the frequencies are

nπ
√

T

l
√

ρ
for n = 1, 2, 3, . . . (12)

The “fundamental” note of the string is the smallest of these, π
√

T /(l
√

ρ). The
“overtones” are exactly the double, the triple, and so on, of the fundamental!
The discovery by Euler in 1749 that the musical notes have such a simple
mathematical description created a sensation. It took over half a century to
resolve the ensuing controversy over the relationship between the infinite
series (9) and d’Alembert’s solution in Section 2.1. �

The analogous problem for diffusion is

DE: ut = kuxx (0 < x < l, 0 < t < ∞) (13)
BC: u(0, t) = u(l, t) = 0 (14)
lC: u(x, 0) = φ(x). (15)

To solve it, we separate the variables u = T(t)X(x) as before. This time we get

T ′

kT
= X ′′

X
= −λ = constant.

Therefore, T(t) satisfies the equation T ′ = −λkT , whose solution is T (t) =
Ae−λkt . Furthermore,

−X ′′ = λX in 0 < x < l with X (0) = X (l) = 0. (16)

This is precisely the same problem for X(x) as before and so has the same
solutions. Because of the form of T(t),

u(x, t) =
∞∑

n=1

Ane−(nπ/ l)2kt sin
nπx

l
(17)

is the solution of (13)–(15) provided that

φ(x) =
∞∑

n=1

An sin
nπx

l
. (18)

Once again, our solution is expressible for each t as a Fourier sine series in x
provided that the initial data are.
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For example, consider the diffusion of a substance in a tube of length l.
Each end of the tube opens up into a very large empty vessel. So the concen-
tration u(x, t) at each end is essentially zero. Given an initial concentration
φ(x) in the tube, the concentration at all later times is given by formula (17).
Notice that as t → ∞, each term in (17) goes to zero. Thus the substance
gradually empties out into the two vessels and less and less remains in the
tube. �

The numbers λn = (nπ/l)2 are called eigenvalues and the functions
Xn(x) = sin(nπx/ l) are called eigenfunctions. The reason for this termi-
nology is as follows. They satisfy the conditions

− d2

dx2
X = λX, X (0) = X (l) = 0. (19)

This is an ODE with conditions at two points. Let A denote the operator
−d2/dx2, which acts on the functions that satisfy the Dirichlet boundary con-
ditions. The differential equation has the form AX = λX . An eigenfunction
is a solution X �≡ 0 of this equation and an eigenvalue is a number λ for which
there exists a solution X �≡ 0.

This situation is analogous to the more familiar case of an N × N matrix
A. A vector X that satisfies AX = λX with X �≡ 0 is called an eigenvector and
λ is called an eigenvalue. For an N × N matrix there are at most N eigenvalues.
But for the differential operator that we are interested in, there are an infinite
number of eigenvalues π2/ l2, 4π2/ l2, 9π2/ l2, . . . . Thus you might say that
we are dealing with infinite-dimensional linear algebra!

In physics and engineering the eigenfunctions are called normal modes
because they are the natural shapes of solutions that persist for all time.

Why are all the eigenvalues of this problem positive? We assumed this in
the discussion above, but now let’s prove it. First, couldλ=0 be an eigenvalue?
This would mean that X ′′ = 0, so that X (x) = C + Dx . But X (0) = X (l) = 0
implies that C = D = 0, so that X (x) ≡ 0. Therefore, zero is not an eigen-
value.

Next, could there be negative eigenvalues? If λ < 0, let’s write it as
λ = −γ 2. Then X ′′ = γ 2 X , so that X (x) = C cosh γ x + D sinh γ x . Then
0 = X (0) = C and 0 = X (l) = D sinh γ l. Hence D = 0 since sinh γ l �= 0.

Finally, let λ be any complex number. Let γ be either one of the two square
roots of −λ; the other one is −γ . Then

X (x) = Ceγ x + De−γ x ,

where we are using the complex exponential function (see Section 5.2).
The boundary conditions yield 0 = X (0) = C + D and 0 = Ceγ l + De−γ l .
Therefore e2γ l = 1. By a well-known property of the complex exponential
function, this implies that Re(γ ) = 0 and 2l Im(γ ) = 2πn for some integer n.
Hence γ = nπ i/ l and λ = −γ 2 = n2π2/ l2, which is real and positive. Thus
the only eigenvalues λ of our problem (16) are positive numbers; in fact, they
are (π/ l)2, (2π/ l)2, . . . .
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EXERCISES

1. (a) Use the Fourier expansion to explain why the note produced by a
violin string rises sharply by one octave when the string is clamped
exactly at its midpoint.

(b) Explain why the note rises when the string is tightened.
2. Consider a metal rod (0 < x < l), insulated along its sides but not at its

ends, which is initially at temperature = 1. Suddenly both ends are plunged
into a bath of temperature = 0. Write the differential equation, boundary
conditions, and initial condition. Write the formula for the temperature
u(x, t) at later times. In this problem, assume the infinite series expansion

1 = 4

π

(
sin

πx

l
+ 1

3
sin

3πx

l
+ 1

5
sin

5πx

l
+ · · ·

)

3. A quantum-mechanical particle on the line with an infinite potential out-
side the interval (0, l) (“particle in a box”) is given by Schrödinger’s
equation ut = iuxx on (0, l) with Dirichlet conditions at the ends. Separate
the variables and use (8) to find its representation as a series.

4. Consider waves in a resistant medium that satisfy the problem

utt = c2uxx − rut for 0 < x < l
u = 0 at both ends

u(x, 0) = φ(x) ut (x, 0) = ψ(x),

where r is a constant, 0 < r < 2πc/ l. Write down the series expansion
of the solution.

5. Do the same for 2πc/ l < r < 4πc/ l.
6. Separate the variables for the equation tut = uxx + 2u with the boundary

conditions u(0, t) = u(π, t) = 0. Show that there are an infinite number
of solutions that satisfy the initial condition u(x, 0) = 0. So uniqueness
is false for this equation!

4.2 THE NEUMANN CONDITION

The same method works for both the Neumann and Robin boundary conditions
(BCs). In the former case, (4.1.2) is replaced by ux (0, t) = ux (l, t) = 0. Then
the eigenfunctions are the solutions X(x) of

−X ′′ = λX, X ′(0) = X ′(l) = 0, (1)

other than the trivial solution X (x) ≡ 0.
As before, let’s first search for the positive eigenvalues λ = β2 > 0. As

in (4.1.6), X (x) = C cos βx + D sin βx , so that

X ′(x) = −Cβ sin βx + Dβ cos βx .
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The boundary conditions (1) mean first that 0 = X ′(0) = Dβ, so that D = 0,
and second that

0 = X ′(l) = −Cβ sin βl.

Since we don’t want C = 0, we must have sin βl = 0. Thus β = π/ l, 2π/ l,
3π/ l, . . . . Therefore, we have the

Eigenvalues:
(π

l

)2
,

(
2π

l

)2

, · · · (2)

Eigenfunctions: Xn(x) = cos
nπx

l
(n = 1, 2, . . .) (3)

Next let’s check whether zero is an eigenvalue. Set λ = 0 in the ODE (1).
Then X ′′ = 0, so that X (x) = C + Dx and X ′(x) ≡ D. The Neumann bound-
ary conditions are both satisfied if D = 0. C can be any number. Therefore,
λ = 0 is an eigenvalue, and any constant function is its eigenfunction.

If λ < 0 or if λ is complex (nonreal), it can be shown directly, as in the
Dirichlet case, that there is no eigenfunction. (Another proof will be given in
Section 5.3.) Therefore, the list of all the eigenvalues is

λn =
(nπ

l

)2
for n = 0, 1, 2, 3, . . . . (4)

Note that n = 0 is included among them!
So, for instance, the diffusion equation with the Neumann BCs has the

solution

u(x, t) = 1

2
A0 +

∞∑
n=1

Ane−(nπ/ l)2kt cos
nπx

l
. (5)

This solution requires the initial data to have the “Fourier cosine expansion”

φ(x) = 1

2
A0 +

∞∑
n=1

An cos
nπx

l
. (6)

All the coefficients A0, A1, A2, . . . are just constants. The first term in (5) and
(6), which comes from the eigenvalue λ = 0, is written separately in the form
1
2 A0 just for later convenience. (The reader is asked to bear with this ridiculous
factor 1

2 until Section 5.1 when its convenience will become apparent.)
What is the behavior of u(x, t) as t → +∞? Since all but the first term in

(5) contains an exponentially decaying factor, the solution decays quite fast to
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the first term 1
2 A0, which is just a constant. Since these boundary conditions

correspond to insulation at both ends, this agrees perfectly with our intuition
of Section 2.5 that the solution “spreads out.” This is the eventual behavior
if we wait long enough. (To actually prove that the limit as t → ∞ is given
term by term in (5) requires the use of one of the convergence theorems in
Section A.2. We omit this verification here.)

Consider now the wave equation with the Neumann BCs. The eigenvalue
λ = 0 then leads to X(x) = constant and to the differential equation T ′′(t) =
λc2T (t) = 0, which has the solution T (t) = A + Bt . Therefore, the wave
equation with Neumann BCs has the solutions

u(x, t) = 1

2
A0 + 1

2
B0t

+
∞∑

n=1

(
An cos

nπct

l
+ Bn sin

nπct

l

)
cos

nπx

l
. (7)

(Again, the factor 1
2 will be justified later.) Then the initial data must satisfy

φ(x) = 1

2
A0 +

∞∑
n=1

An cos
nπx

l
(8)

and

ψ(x) = 1

2
B0 +

∞∑
n=1

nπc

l
Bn cos

nπx

l
. (9)

Equation (9) comes from first differentiating (7) with respect to t and then
setting t = 0. �

A “mixed” boundary condition would be Dirichlet at one end and Neu-
mann at the other. For instance, in case the BCs are u(0, t) = ux (l, t) = 0, the
eigenvalue problem is

−X ′′ = λX X (0) = X ′(l) = 0. (10)

The eigenvalues then turn out to be (n + 1
2 )

2
π2/ l2 and the eigenfunctions

sin[(n + 1
2 )πx/ l] for n = 0, 1, 2, . . . (see Exercises 1 and 2). For a discussion

of boundary conditions in the context of musical instruments, see [HJ].
For another example, consider the Schrödinger equation ut = iuxx in

(0, l) with the Neumann BCs ux (0, t) = ux (l, t) = 0 and initial condition
u(x, 0) = φ(x). Separation of variables leads to the equation

T ′

iT
= X ′′

X
= −λ = constant,
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so that T (t) = e−iλt and X(x) satisfies exactly the same problem (1) as before.
Therefore, the solution is

u(x, t) = 1

2
A0 +

∞∑
n=1

Ane−i(nπ/ l)2t cos
nπx

l
.

The initial condition requires the cosine expansion (6).

EXERCISES

1. Solve the diffusion problem ut = kuxx in 0 < x < l, with the mixed
boundary conditions u(0, t) = ux (l, t) = 0.

2. Consider the equation utt = c2uxx for 0 < x < l, with the boundary con-
ditions ux (0, t) = 0, u(l, t) = 0 (Neumann at the left, Dirichlet at the
right).
(a) Show that the eigenfunctions are cos[(n + 1

2 )πx/ l].
(b) Write the series expansion for a solution u(x, t).

3. Solve the Schrödinger equation ut = ikuxx for real k in the interval
0 < x < l with the boundary conditions ux (0, t) = 0, u(l, t) = 0.

4. Consider diffusion inside an enclosed circular tube. Let its length (circum-
ference) be 2l. Let x denote the arc length parameter where −l ≤ x ≤ l.
Then the concentration of the diffusing substance satisfies

ut = kuxx for − l ≤ x ≤ l

u(−l, t) = u(l, t) and ux (−l, t) = ux (l, t).

These are called periodic boundary conditions.
(a) Show that the eigenvalues are λ = (nπ/ l)2 for n = 0, 1, 2, 3, . . . .
(b) Show that the concentration is

u(x, t) = 1

2
A0 +

∞∑
n=1

(
An cos

nπx

l
+ Bn sin

nπx

l

)
e−n2π2kt/ l2

.

4.3 THE ROBIN CONDITION

We continue the method of separation of variables for the case of the Robin
condition. The Robin condition means that we are solving −X ′′ = λX with
the boundary conditions

X ′ − a0 X = 0 at x = 0 (1)
X ′ + al X = 0 at x = l. (2)

The two constants a0 and al should be considered as given.
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The physical reason they are written with opposite signs is that they
correspond to radiation of energy if a0 and al are positive, absorption of
energy if a0 and al are negative, and insulation if a0 = al = 0. This is the
interpretation for a heat problem: See the discussion in Section 1.4 or Exercise
2.3.8. For the case of the vibrating string, the interpretation is that the string
shares its energy with the endpoints if a0 and al are positive, whereas the
string gains some energy from the endpoints if a0 and al are negative: See
Exercise 11.

The mathematical reason for writing the constants in this way is that
the unit outward normal n for the interval 0 ≤ x ≤ l points to the left at
x = 0 (n = −1) and to the right at x = l (n = +1). Therefore, we expect that
the nature of the eigenfunctions might depend on the signs of the two constants
in opposite ways.

POSITIVE EIGENVALUES

Our task now is to solve the ODE −X ′′ = λX with the boundary conditions
(1), (2). First let’s look for the positive eigenvalues

λ = β2 > 0.

As usual, the solution of the ODE is

X (x) = C cos βx + D sin βx (3)

so that

X ′(x) ± aX (x) = (β D ± aC) cos βx + (−βC ± aD) sin βx .

At the left end x = 0 we require that

0 = X ′(0) − a0 X (0) = β D − a0C. (4)

So we can solve for D in terms of C. At the right end x = l we require that

0 = (β D + alC) cos βl + (−βC + al D) sin βl. (5)

Messy as they may look, equations (4) and (5) are easily solved since they are
equivalent to the matrix equation( −a0 β

al cos βl − β sin βl β cos βl + al sin βl

)(
C
D

)
=

( 0
0

)
. (6)

Therefore, substituting for D, we have

0 = (a0C + alC) cos βl +
(

−βC + ala0C

β

)
sin βl. (7)

We don’t want the trivial solution C = 0. We divide by C cos βl and multiply
by β to get

(
β2 − a0al

)
tan βl = (a0 + al)β. (8)
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Any root β > 0 of this “algebraic” equation would give us an eigenvalue
λ = β2.

What would be the corresponding eigenfunction? It would be the above
X(x) with the required relation between C and D, namely,

X (x) = C

(
cos βx + a0

β
sin βx

)
(9)

for any C �= 0. By the way, because we divided by cos βl, there is the excep-
tional case when cos βl = 0; it would mean by (7) that β = √

a0al .
Our next task is to solve (8) for β. This is not so easy, as there is no

simple formula. One way is to calculate the roots numerically, say by New-
ton’s method. Another way is by graphical analysis, which, instead of precise
numerical values, will provide a lot of qualitative information. This is what
we’ll do. It’s here where the nature of a0 and al come into play. Let us rewrite
the eigenvalue equation (8) as

tan βl = (a0 + al)β

β2 − a0al
. (10)

Our method is to sketch the graphs of the tangent function y = tan βl and the
rational function y = (a0 + al)β/(β2 − a0al) as functions of β > 0 and to
find their points of intersection. What the rational function looks like depends
on the constants a0 and al.

Case 1 In Figure 1 is pictured the case of radiation at both ends: a0 > 0 and
al > 0. Each of the points of intersection (for β > 0) provides an eigenvalue
λn = β2

n . The results depend very much on the a0 and al. The exceptional situ-
ation mentioned above, when cos βl = 0 and β = √

a0al , will occur when the
graphs of the tangent function and the rational function “intersect at infinity.”

No matter what they are, as long as they are both positive, the graph clearly
shows that

n2 π2

l2
< λn < (n + 1)2 π2

l2
(n = 0, 1, 2, 3, . . .) . (11)

Furthermore,

lim
n→∞ βn − n

π

l
= 0, (12)

which means that the larger eigenvalues get relatively closer and closer to
n2π2/l2 (see Exercise 19). You may compare this to the case a0 = al = 0, the
Neumann problem, where they are all exactly equal to n2π2/l2.
Case 2 The case of absorption at x = 0 and radiation at x = l, but more
radiation than absorption, is given by the conditions

a0 < 0, al > 0, a0 + al > 0. (13)
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Figure 1

Then the graph looks like Figure 2 or 3, depending on the relative sizes of
a0 and al. Once again we see that (11) and (12) hold, except that in Figure 2
there is no eigenvalue λ0 in the interval (0, π2/l2).

There is an eigenvalue in the interval (0, π2/l2) only if the rational curve
crosses the first branch of the tangent curve. Since the rational curve has
only a single maximum, this crossing can happen only if the slope of the
rational curve is greater than the slope of the tangent curve at the origin. Let’s

Figure 2
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Figure 3

calculate these two slopes. A direct calculation shows that the slope dy/dβ
of the rational curve at the origin is

a0 + al

−a0al
= al − |a0|

al |a0| > 0

because of (13). On the other hand, the slope of the tangent curve y = tan lβ
at the origin is l sec2(l0) = l. Thus we reach the following conclusion. In case

a0 + al > −a0all (14)

(which means “much more radiation than absorption”), the rational curve
will start out at the origin with a greater slope than the tangent curve and the
two graphs must intersect at a point in the interval (0, π/2l). Therefore, we
conclude that in Case 2 there is an eigenvalue 0 < λ0 < (π/2l)2 if and only
if (14) holds.

Other cases, for instance absorption at both ends, may be found in the
exercises, especially Exercise 8.

ZERO EIGENVALUE

In Exercise 2 it is shown that there is a zero eigenvalue if and only if

a0 + al = −a0all. (15)

Notice that (15) can happen only if a0 or al is negative and the interval has
exactly a certain length or else a0 = al = 0.

NEGATIVE EIGENVALUE

Now let’s investigate the possibility of a negative eigenvalue. This is a very
important question; see the discussion at the end of this section. To avoid
dealing with imaginary numbers, we set

λ = −γ 2 < 0
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and write the solution of the differential equation as

X (x) = C cosh γ x + D sinh γ x .

(An alternative form, which we used at the end of Section 4.1, is Aeγ x +
Be−γ x .) The boundary conditions, much as before, lead to the eigenvalue
equation

tanh γ l = − (a0 + al) γ

γ 2 + a0al
. (16)

(Verify it!) So we look for intersections of these two graphs [on the two sides
of (16)] for γ > 0. Any such point of intersection would provide a negative
eigenvalue λ = −γ 2 and a corresponding eigenfunction

X (x) = cosh γ x + a0

γ
sinh γ x . (17)

Several different cases are illustrated in Figure 4. Thus in Case 1, of radiation
at both ends, when a0 and al are both positive, there is no intersection and so
no negative eigenvalue.

Case 2, the situation with more radiation than absorption (a0 < 0, al > 0,
a0 + al > 0), is illustrated by the two solid (14) and dashed (18) curves.
There is either one intersection or none, depending on the slopes at the origin.
The slope of the tanh curve is l, while the slope of the rational curve is

Figure 4
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−(a0 + al)/(a0a1) > 0. If the last expression is smaller than l, there is an
intersection; otherwise, there isn’t. So our conclusion in Case 2 is as follows.

Let a0 < 0 and al > −a0. If

a0 + al < −a0all, (18)

then there exists exactly one negative eigenvalue, which we’ll call λ0 < 0. If
(14) holds, then there is no negative eigenvalue. Notice how the “missing”
positive eigenvalue λ0 in case (18) now makes its appearance as a nega-
tive eigenvalue! Furthermore, the zero eigenvalue is the borderline case (15);
therefore, we use the notation λ0 = 0 in the case of (15).

SUMMARY

We summarize the various cases as follows:

Case 1: Only positive eigenvalues.
Case 2 with (14): Only positive eigenvalues.
Case 2 with (15): Zero is an eigenvalue, all the rest are positive.
Case 2 with (18): One negative eigenvalue, all the rest are positive.

Exercise 8 provides a complete summary of all the other cases.
In any case, that is, for any values for a0 and al, there are no complex,

nonreal, eigenvalues. This fact can be shown directly as before but will also be
shown by a general, more satisfying, argument in Section 5.3. Furthermore,
there are always an infinite number of positive eigenvalues, as is clear from
(10). In fact, the tangent function has an infinite number of branches. The
rational function on the right side of (10) always goes from the origin to the β
axis as β → ∞ and so must cross each branch of the tangent except possibly
the first one.

For all these problems it is critically important to find all the eigenvalues.
If even one of them were missing, there would be initial data for which we
could not solve the diffusion or wave equations. This will become clearer in
Chapter 5. Exactly how we enumerate the eigenvalues, that is, whether we call
the first one λ0 or λ1 or λ5 or λ−2, is not important. It is convenient, however,
to number them in a consistent way. In the examples presented above we have
numbered them in a way that neatly exhibits their dependence on a0 and al.

What Is the Grand Conclusion for the Robin BCs? As before, we
have an expansion

u(x, t) =
∑

n

Tn(t)Xn(x), (19)
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where Xn(x) are the eigenfunctions and where

Tn(t) =
{

Ane−λnkt for diffusions
An cos(

√
λn ct) + Bn sin(

√
λn ct) for waves.

(20)

Example 1.

Let a0 < 0 < a0 + al < −a0all, which is Case 2 with (18). Then the
grand conclusion takes the following explicit form. As we showed above,
in this case there is exactly one negative eigenvalue λ0 = −γ 2

0 < 0 as
well as a sequence of positive ones λn = +β2

n > 0 for n = 1, 2, 3, . . . .
The complete solution of the diffusion problem

ut = kuxx for 0 < x < l, 0 < t < ∞
ux − a0u = 0 for x = 0, ux + alu = 0 for x = l

u = φ for t = 0

therefore is

u(x, t) = A0e+γ 2
0 kt

(
cosh γ0x + a0

γ0
sinh γ0x

)

+
∞∑

n=1

Ane−β2
n kt

(
cos βnx + a0

βn
sin βnx

)
. (21)

This conclusion (21) has the following physical interpretation if,
say, u(x, t) is the temperature in a rod of length l. We have taken the
case when energy is supplied at x = 0 (absorption of energy by the rod,
heat flux goes into the rod at its left end) and when energy is radiated
from the right end (the heat flux goes out). For a given length l and a
given radiation al > 0, there is a negative eigenvalue (λ0 = −γ 2

0 ) if and
only if the absorption is great enough [|a0| > al/(1 + all)]. Such a large
absorption coefficient allows the temperature to build up to large values,
as we see from the expansion (21). In fact, all the terms get smaller as
time goes on, except the first one, which grows exponentially due to the
factor e+γ 2

0 kt . So the rod gets hotter and hotter (unless A0 = 0, which
could only happen for very special initial data).

If, on the other hand, the absorption is relatively small [that is,
|a0| < al/(1 + all)], then all the eigenvalues are positive and the tem-
perature will remain bounded and will eventually decay to zero. Other
interpretations of this sort are left for the exercises. �

For the wave equation, a negative eigenvalue λ0 = −γ 2
0 would also

lead to exponential growth because the expansion for u(x, t) would
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contain the term

(A0eγ0ct + B0e−γ0ct )X0 (x).

This term comes from the usual equation −T ′′ = λc2T = −(γ0c)2T for the
temporal part of a separated solution (see Exercise 10).

EXERCISES

1. Find the eigenvalues graphically for the boundary conditions

X (0) = 0, X ′(l) + a X (l) = 0.

Assume that a �= 0.
2. Consider the eigenvalue problem with Robin BCs at both ends:

−X ′′ = λX
X ′(0) − a0 X (0) = 0, X ′(l) + al X (l) = 0.

(a) Show that λ = 0 is an eigenvalue if and only if a0 + al = −a0all.
(b) Find the eigenfunctions corresponding to the zero eigenvalue. (Hint:

First solve the ODE for X(x). The solutions are not sines or cosines.)
3. Derive the eigenvalue equation (16) for the negative eigenvalues

λ = −γ 2 and the formula (17) for the eigenfunctions.
4. Consider the Robin eigenvalue problem. If

a0 < 0, al < 0 and − a0 − al < a0all,

show that there are two negative eigenvalues. This case may be called
“substantial absorption at both ends.” (Hint: Show that the rational curve
y = −(a0 + al)γ /(γ 2 + a0al) has a single maximum and crosses the
line y = 1 in two places. Deduce that it crosses the tanh curve in two
places.)

5. In Exercise 4 (substantial absorption at both ends) show graphically that
there are an infinite number of positive eigenvalues. Show graphically
that they satisfy (11) and (12).

6. If a0 = al = a in the Robin problem, show that:
(a) There are no negative eigenvalues if a ≥ 0, there is one if

−2/ l < a < 0, and there are two if a < −2/ l.
(b) Zero is an eigenvalue if and only if a = 0 or a = −2/ l.

7. If a0 = al = a, show that as a → +∞, the eigenvalues tend to the eigen-
values of the Dirichlet problem. That is,

lim
a→∞

{
βn(a) − (n + 1) π

l

}
= 0,

where λn(a) = [βn(a)]2 is the (n + l)st eigenvalue.
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8. Consider again Robin BCs at both ends for arbitrary a0 and al.
(a) In the a0al plane sketch the hyperbola a0 + al = −a0all. Indicate

the asymptotes. For (a0, al) on this hyperbola, zero is an eigenvalue,
according to Exercise 2(a).

(b) Show that the hyperbola separates the whole plane into three re-
gions, depending on whether there are two, one, or no negative
eigenvalues.

(c) Label the directions of increasing absorption and radiation on each
axis. Label the point corresponding to Neumann BCs.

(d) Where in the plane do the Dirichlet BCs belong?
9. On the interval 0 ≤ x ≤ 1 of length one, consider the eigenvalue problem

−X ′′ = λX
X ′(0) + X (0) = 0 and X (1) = 0

(absorption at one end and zero at the other).
(a) Find an eigenfunction with eigenvalue zero. Call it X0(x).
(b) Find an equation for the positive eigenvalues λ = β2.
(c) Show graphically from part (b) that there are an infinite number of

positive eigenvalues.
(d) Is there a negative eigenvalue?

10. Solve the wave equation with Robin boundary conditions under the as-
sumption that (18) holds.

11. (a) Prove that the (total) energy is conserved for the wave equation with
Dirichlet BCs, where the energy is defined to be

E = 1
2

∫ l

0

(
c−2u2

t + u2
x

)
dx .

(Compare this definition with Section 2.2.)
(b) Do the same for the Neumann BCs.
(c) For the Robin BCs, show that

ER = 1
2

∫ l

0

(
c−2u2

t + u2
x

)
dx + 1

2al[u(l, t)]2 + 1
2a0[u(0, t)]2

is conserved. Thus, while the total energy ER is still a constant,
some of the internal energy is “lost” to the boundary if a0 and al are
positive and “gained” from the boundary if a0 and al are negative.

12. Consider the unusual eigenvalue problem

−vxx = λv for 0 < x < l

vx (0) = vx (l) = v(l) − v(0)

l
.

(a) Show that λ = 0 is a double eigenvalue.
(b) Get an equation for the positive eigenvalues λ > 0.
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(c) Letting γ = 1
2 l

√
λ, reduce the equation in part (b) to the equation

γ sin γ cos γ = sin2 γ.

(d) Use part (c) to find half of the eigenvalues explicitly and half of
them graphically.

(e) Assuming that all the eigenvalues are nonnegative, make a list of
all the eigenfunctions.

(f) Solve the problem ut = kuxx for 0 < x < l, with the BCs given
above, and with u(x, 0) = φ(x).

(g) Show that, as t → ∞, lim u(x, t) = A + Bx for some constants
A, B, assuming that you can take limits term by term.

13. Consider a string that is fixed at the end x = 0 and is free at the end x = l
except that a load (weight) of given mass is attached to the right end.
(a) Show that it satisfies the problem

utt = c2uxx for 0 < x < l

u(0, t) = 0 utt (l, t) = −kux (l, t)

for some constant k.
(b) What is the eigenvalue problem in this case?
(c) Find the equation for the positive eigenvalues and find the eigen-

functions.
14. Solve the eigenvalue problem x2u′′ + 3xu′ + λu = 0 for 1 < x < e,

with u(1) = u(e) = 0. Assume that λ > 1. (Hint: Look for solutions
of the form u = xm .)

15. Find the equation for the eigenvalues λ of the problem

(κ(x)X ′)′ + λρ(x)X = 0 for 0 < x < l with X (0) = X (l) = 0,

whereκ(x) = κ2
1 for x < a, κ(x) = κ2

2 for x > a, ρ(x) = ρ2
1 for x < a,

and ρ(x) = ρ2
2 for x > a. All these constants are positive and 0 < a < l.

16. Find the positive eigenvalues and the corresponding eigenfunctions of
the fourth-order operator +d4/dx4 with the four boundary conditions

X (0) = X (l) = X ′′(0) = X ′′(l) = 0.

17. Solve the fourth-order eigenvalue problem X ′′′′ = λX in 0 < x < l, with
the four boundary conditions

X (0) = X ′(0) = X (l) = X ′(l) = 0,

where λ > 0. (Hint: First solve the fourth-order ODE.)
18. A tuning fork may be regarded as a pair of vibrating flexible bars with

a certain degree of stiffness. Each such bar is clamped at one end and
is approximately modeled by the fourth-order PDE utt + c2uxxxx = 0.
It has initial conditions as for the wave equation. Let’s say that
on the end x = 0 it is clamped (fixed), meaning that it satisfies
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u(0, t) = ux (0, t) = 0. On the other end x = l it is free, meaning that it
satisfies uxx(l, t) = uxxx (l, t) = 0. Thus there are a total of four boundary
conditions, two at each end.
(a) Separate the time and space variables to get the eigenvalue problem

X ′′′′ = λX .
(b) Show that zero is not an eigenvalue.
(c) Assuming that all the eigenvalues are positive, write them as λ = β4

and find the equation for β.
(d) Find the frequencies of vibration.
(e) Compare your answer in part (d) with the overtones of the vibrating

string by looking at the ratio β2
2/β2

1 . Explain why you hear an almost
pure tone when you listen to a tuning fork.

19. Show that in Case 1 (radiation at both ends)

lim
n→∞

[
λn − n2π2

l2

]
= 2

l
(a0 + al) .
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FOURIER SERIES

Our first goal in this key chapter is to find the coefficients in a Fourier series. In
Section 5.3 we introduce the idea of orthogonality of functions and we show
how the different varieties of Fourier series can be treated in a unified fashion.
In Section 5.4 we state the basic completeness (convergence) theorems. Proofs
are given in Section 5.5. The final section is devoted to the treatment of
inhomogeneous boundary conditions. Joseph Fourier developed his ideas on
the convergence of trigonometric series while studying heat flow. His 1807
paper was rejected by other scientists as too imprecise and was not published
until 1822.

5.1 THE COEFFICIENTS

In Chapter 4 we have found Fourier series of several types. How do we find the
coefficients? Luckily, there is a very beautiful, conceptual formula for them.

Let us begin with the Fourier sine series

φ(x) =
∞∑

n=1

An sin
nπx

l
(1)

in the interval (0, l). [It turns out that this infinite series converges to φ(x)
for 0 < x < l, but let’s postpone further discussion of the delicate question of
convergence for the time being.] The first problem we tackle is to try to find
the coefficients An if φ(x) is a given function. The key observation is that the
sine functions have the wonderful property that

∫ l

0
sin

nπx

l
sin

mπx

l
dx = 0 if m �= n, (2)

104
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m and n being positive integers. This can be verified directly by integration.
[Historically, (1) was first discovered by a horrible expansion in Taylor series!]

Proof of (2). We use the trig identity

sin a sin b = 1
2 cos(a − b) − 1

2 cos(a + b).

Therefore, the integral equals

l

2(m − n)π
sin

(m − n)πx

l

∣∣∣∣
l

0

− [same with (m + n)]

if m �= n. This is a linear combination of sin(m ± n)π and sin 0, and so it
vanishes. �

The far-reaching implications of this observation are astounding. Let’s fix
m, multiply (1) by sin(mπx/ l), and integrate the series (1) term by term to
get ∫ l

0
φ(x) sin

mπx

l
dx =

∫ l

0

∞∑
n=1

An sin
nπx

l
sin

mπx

l
dx

=
∞∑

n=1

An

∫ l

0
sin

nπx

l
sin

mπx

l
dx .

All but one term in this sum vanishes, namely the one with n = m (n just being
a “dummy” index that takes on all integer values ≥1). Therefore, we are left
with the single term

Am

∫ l

0
sin2 mπx

l
dx, (3)

which equals 1
2 lAm by explicit integration. Therefore,

Am = 2

l

∫ l

0
φ(x) sin

mπx

l
dx . (4)

This is the famous formula for the Fourier coefficients in the series (1). That
is, if φ(x) has an expansion (1), then the coefficients must be given by (4).

These are the only possible coefficients in (1). However, the basic question
still remains whether (1) is in fact valid with these values of the coefficients.
This is a question of convergence, and we postpone it until Section 5.4.

APPLICATION TO DIFFUSIONS AND WAVES

Going back to the diffusion equation with Dirichlet boundary conditions, the
formula (4) provides the final ingredient in the solution formula for arbitrary
initial data φ(x).
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As for the wave equation with Dirichlet conditions, the initial data consist
of a pair of functions φ(x) and ψ(x) with expansions (4.1.10) and (4.1.11).
The coefficients Am in (4.1.9) are given by (4), while for the same reason the
coefficients Bm are given by the similar formula

mπc

l
Bm = 2

l

∫ l

0
ψ(x) sin

mπx

l
dx . (5)

FOURIER COSINE SERIES

Next let’s take the case of the cosine series, which corresponds to the Neumann
boundary conditions on (0, l). We write it as

φ(x) = 1

2
A0 +

∞∑
n=1

An cos
nπx

l
. (6)

Again we can verify the magical fact that

∫ l

0
cos

nπx

l
cos

mπx

l
dx = 0 if m �= n

where m and n are nonnegative integers. (Verify it!) By exactly the same
method as above, but with sines replaced by cosines, we get

∫ l

0
φ(x) cos

mπx

l
dx = Am

∫ l

0
cos2 mπx

l
dx = 1

2
lAm

if m �= 0. For the case m = 0, we have

∫ l

0
φ(x) · 1 dx = 1

2
A0

∫ l

0
12 dx = 1

2
lA0.

Therefore, for all nonnegative integers m, we have the formula for the coeffi-
cients of the cosine series

Am = 2

l

∫ l

0
φ(x) cos

mπx

l
dx . (7)

[This is the reason for putting the 1
2 in front of the constant term in (6).]
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FULL FOURIER SERIES

The full Fourier series, or simply the Fourier series, of φ(x) on the interval
−l < x < l, is defined as

φ(x) = 1

2
A0 +

∞∑
n=1

(
An cos

nπx

l
+ Bn sin

nπx

l

)
. (8)

Watch out: The interval is twice as long! The eigenfunctions now are all the
functions {1, cos(nπx/ l), sin(nπx/ l)}, where n = 1, 2, 3, . . . . Again we have
the same wonderful coincidence: Multiply any two different eigenfunctions
and integrate over the interval and you get zero! That is,

∫ l

−l
cos

nπx

l
sin

mπx

l
dx = 0 for all n, m

∫ l

−l
cos

nπx

l
cos

mπx

l
dx = 0 for n �= m

∫ l

−l
sin

nπx

l
sin

mπx

l
dx = 0 for n �= m

∫ l

−l
1 · cos

nπx

l
dx = 0 =

∫ l

−l
1 · sin

mπx

l
dx.

Therefore, the same procedure will work to find the coefficients. We also
calculate the integrals of the squares

∫ l

−l
cos2 nπx

l
dx = l =

∫ l

−l
sin2 nπx

l
dx and

∫ l

−l
12 dx = 2l.

(Verify these integrals too!) Then we end up with the formulas

An = 1

l

∫ l

−l
φ(x) cos

nπx

l
dx (n = 0, 1, 2, . . .) (9)

Bn = 1

l

∫ l

−l
φ(x) sin

nπx

l
dx (n = 1, 2, 3, . . .) (10)

for the coefficients of the full Fourier series. Note that these formulas are not
exactly the same as (4) and (7).
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Figure 1

Example 1.

Let φ(x) ≡ 1 in the interval [0, l]. It has a Fourier sine series with
coefficients

Am = 2

l

∫ l

0
sin

mπx

l
dx = − 2

mπ
cos

mπx

l

∣∣∣∣
l

0

= 2

mπ
(1 − cos mπ ) = 2

mπ
[1 − (−1)m].

Thus Am = 4/mπ if m is odd, and Am = 0 if m is even. Thus

1 = 4

π

(
sin

πx

l
+ 1

3
sin

3πx

l
+ 1

5
sin

5πx

l
+ · · ·

)
(11)

in (0, l). (The factor 4/π is pulled out just for notational convenience.)
See Figure 1 for a sketch of the first few partial sums. �

Example 2.

The same function φ(x) ≡ 1 has a Fourier cosine series with coefficients

Am = 2

l

∫ l

0
cos

mπx

l
dx = 2

mπ
sin

mπx

l

∣∣∣∣
l

0

= 2

mπ
(sin mπ − sin 0) = 0 for m �= 0.

So there is only one nonzero coefficient, namely, the one for m = 0. The
Fourier cosine series is therefore trivial:

1 = 1 + 0 cos
πx

l
+ 0 cos

2πx

l
+ · · · .
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This is perfectly natural since the sum 1 = 1 + 0 + 0 + 0 + · · · is ob-
vious and the Fourier cosine expansion is unique. �

Example 3.

Letφ(x)≡ x in the interval (0, l). Its Fourier sine series has the coefficients

Am = 2

l

∫ l

0
x sin

mπx

l
dx

= − 2x

mπ
cos

mπx

l
+ 2l

m2π2
sin

mπx

l

∣∣∣∣
l

0

= − 2l

mπ
cos mπ + 2l

m2π2
sin mπ = (−1)m+1 2l

mπ
.

Thus in (0, l) we have

x = 2l

π

(
sin

πx

l
− 1

2
sin

2πx

l
+ 1

3
sin

3πx

l
− · · ·

)
. (12)

�

Example 4.

Let φ(x) ≡ x in the interval [0, l]. Its Fourier cosine series has the
coefficients

A0 = 2

l

∫ l

0
x dx = l

Am = 2

l

∫ l

0
x cos

mπx

l
dx

= 2x

mπ
sin

mπx

l
+ 2l

m2π2
cos

mπx

l

∣∣∣∣
l

0

= 2l

mπ
sin mπ + 2l

m2π2
(cos mπ − 1) = 2l

m2π2
[(−1)m − 1]

= −4l

m2π2
for m odd, and 0 for m even.

Thus in (0, l) we have

x = l

2
− 4l

π2

(
cos

πx

l
+ 1

9
cos

3πx

l
+ 1

25
cos

5πx

l
+ · · ·

)
. (13)

�
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Example 5.

Let φ(x) ≡ x in the interval [−l, l]. Its full Fourier series has the coeffi-
cients

A0 = 1

l

∫ l

−l
x dx = 0

Am = 1

l

∫ l

−l
x cos

mπx

l
dx

= x

mπ
sin

mπx

l
+ l

m2π2
cos

mπx

l

∣∣∣∣
l

−l

= l

m2π2
(cos mπ − cos(−mπ )) = 0

Bm = 1

l

∫ l

−l
x sin

mπx

l
dx

= −x

mπ
cos

mπx

l
+ l

m2π2
sin

mπx

l

∣∣∣∣
l

−l

= −l

mπ
cos mπ + −l

mπ
cos(−mπ ) = (−1)m+1 2l

mπ
.

This gives us exactly the same series as (12), except that it is supposed
to be valid in (−l, l), which is not a surprising result because both sides
of (12) are odd. �

Example 6.

Solve the problem

utt = c2uxx

u(0, t) = u(l, t) = 0
u(x, 0) = x, ut (x, 0) = 0.

From Section 4.1 we know that u(x, t) has an expansion

u(x, t) =
∞∑

n=1

(
An cos

nπct

l
+ Bn sin

nπct

l

)
sin

nπx

l
.

Differentiating with respect to time yields

ut (x, t) =
∞∑

n=1

nπc

l

(
−An sin

nπct

l
+ Bn cos

nπct

l

)
sin

nπx

l
.
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Setting t = 0, we have

0 =
∞∑

n=1

nπc

l
Bn sin

nπx

l

so that all the Bn = 0. Setting t = 0 in the expansion of u(x, t), we have

x =
∞∑

n=1

An sin
nπx

l
.

This is exactly the series of Example 3. Therefore, the complete solution
is

u(x, t) = 2l

π

∞∑
n=1

(−1)n+1

n
sin

nπx

l
cos

nπct

l
. �

EXERCISES

1. In the expansion 1 = ∑
n odd (4/nπ ) sin nπ, valid for 0 < x < π, put

x = π/4 to calculate the sum(
1 − 1

5 + 1
9 − 1

13 + · · ·) + (
1
3 − 1

7 + 1
11 − 1

15 + · · ·)
= 1 + 1

3 − 1
5 − 1

7 + 1
9 + · · ·

(Hint: Since each of the series converges, they can be combined as
indicated. However, they cannot be arbitrarily rearranged because they
are only conditionally, not absolutely, convergent.)

2. Let φ(x) ≡ x2 for 0 ≤ x ≤ 1 = l.
(a) Calculate its Fourier sine series.
(b) Calculate its Fourier cosine series.

3. Consider the function φ(x) ≡ x on (0, l). On the same graph, sketch the
following functions.
(a) The sum of the first three (nonzero) terms of its Fourier sine series.
(b) The sum of the first three (nonzero) terms of its Fourier cosine

series.
4. Find the Fourier cosine series of the function |sin x | in the interval

(−π, π ). Use it to find the sums

∞∑
n=1

1

4n2 − 1
and

∞∑
n=1

(−1)n

4n2 − 1
.

5. Given the Fourier sine series of φ(x) ≡ x on (0, l). Assume that the series
can be integrated term by term, a fact that will be shown later.
(a) Find the Fourier cosine series of the function x2/2. Find the constant

of integration that will be the first term in the cosine series.


