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Introduction: 

 Why Do We Need Quantum Mechanics? 

Just over 100 years ago, in the 1890’s, physics looked in pretty good shape. The 

beautiful mathematical development of Newton’s mechanics, coupled with 

increasingly sophisticated technology, predicted the movements of the solar 

system to incredible accuracy, apart from a tiny discrepancy in the orbit of 

Mercury. It had been less than a hundred years since it was realized that an 

electric current could exert a force on a magnet, but that discovery had led to 

power stations, electric trains, and a network of telegraph wires across land and 

under the oceans. It had also been only a hundred years since it had been 

established that light was a wave, and only forty years since Maxwell’s realization 

that the waves in a light signal were electric and magnetic fields, satisfying a wave 

equation he was able to derive purely by considering electric and magnetic field 

phenomena. In particular, he was able to predict the speed of light by measuring 

the electrostatic attractive forces between charges and the magnetic forces 

between currents. 

At about the same time, in the 1860’s, Maxwell and Boltzmann gave a brilliant 

account of the properties of gases by assuming that they were made up of weakly 

interacting molecules flying about in a container, bouncing off the sides, with a 

statistical distribution of energies so that the probability of a molecule having 

energy   was proportional to           , kk being a universal constant known 

as Boltzmann’s constant. Boltzmann generalized this result from a box of gas to 

any system. For example, a solid can be envisioned classically as a lattice of balls 

(the atoms) connected by springs, which can sustain oscillations in many ways, 

each such mode can be thought of as a simple harmonic oscillator, with 

reasonable approximations concerning the properties of the springs, etc. 

Boltzmann’s work leads to the conclusion that each such mode of oscillation, or 

degree of freedom, would at temperature   have average energy   , made up 

of       potential energy,       kinetic energy. Notice that this average energy 

is independent of the strength of the springs, or the masses! All modes of 

vibration, which will vibrate at very different rates, contain the same energy at 
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the same temperature. This equal sharing is called the Equipartition of Energy. It 

is not difficult to check this for a one-dimensional classical harmonic oscillator, 

averaging the energy by integrating over all displacements and momenta 

(independently) with the weighting factor           ,  (which of course needs 

to be normalized). The result doesn’t depend on the spring constant or the mass. 

Boltzmann’s result gave an excellent account of the specific heats of a wide range 

of materials over a wide temperature range, but there were some exceptions, for 

example hydrogen gas at low temperatures, and even solids at low enough 

temperatures. Still, it was generally felt these problems could be handled within 

the existing framework, just as the slightly odd behavior of Mercury was likely 

caused by a small planet, named Vulcan, closer to the sun, and so very hard to 

observe. 

 What was Wrong with Classical Mechanics? 

Basically, classical statistical mechanics wasn’t making sense... 

Maxwell and Boltzmann evolved the equipartition theorem: a physical system can 

have many states (gas with particles having different velocities, or springs in 

different states of compression). 

At nonzero temperature, energy will flow around in the system, it will constantly 

move from one state to another. So, what is the probability that at any instant it 

is in a particular state with energy  ? 

M&B proves it was proportional to             This proportionality factor is 

also correct for any subsystem of the system: for example, a single molecule. 

Notice this means if a system is a set of oscillators, different masses on different 

strength springs, for example, then in thermal equilibrium each oscillator has on 

average the same energy as all the others. For three-dimensional oscillators in 

thermal equilibrium, the average energy of each oscillator is    , where   is 

Boltzmann’s constant. 
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 Black Body Radiation 

Now put this together with Maxwell’s discovery that light is an electromagnetic 

wave: inside a hot oven, Maxwell’s equations can be solved yielding standing 

wave solutions, and the set of different wavelengths allowed standing waves 

amount to an infinite series of oscillators, with no upper limit on the frequencies 

on going far into the ultraviolet. Therefore, from the classical equipartition 

theorem, an oven at thermal equilibrium at a definite temperature should contain 

an infinite amount of energy—of order    in each of an infinite number of 

modes—and if you let radiation out through a tiny hole in the side, you should see 

radiation of all frequencies. 

This is not, of course, what is observed: as an oven is warmed, it emits infrared, 

then red, then yellow light, etc. This means that the higher frequency oscillators 

(blue, etc.) are in fact not excited at low temperatures: equipartition is not true. 

Planck showed that the experimentally observed intensity/frequency curve was 

exactly reproduced if it was assumed that the radiation was quantized: light of 

frequency   could only be emitted in quanta—now photons—having 

energy   ,   being Planck’s constant. This was the beginning of quantum 

mechanics. 

 The Photoelectric Effect 

Einstein showed the same quantization of electromagnetic radiation explained 

the photoelectric effect: a photon of energy    knocks an electron out of a metal, 

it takes a certain work   to get it out, the rest of the photon energy goes to the 

kinetic energy of the electron, for the fastest electrons emitted (those that come 

right from the surface, so encountering no further resistance). Plotting the 

maximum electron kinetic energy as a function of incident light frequency 

confirms the hypothesis, giving the same value for   as that needed to explain 

radiation from an oven. (It had previously been assumed that more intense light 

would increase the kinetic energy—this turned out not to be the case.) 
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 The Bohr Atom 

Bohr put together this quantization of light energy with Rutherford’s discovery 

that the atom had a nucleus, with electrons somehow orbiting around it: for the 

hydrogen atom, light emitted when the atom is thermally excited has a particular 

pattern, the observed emitted wavelengths are given by 

                 

with           RHRH is now called the Rydberg constant.) Bohr realized these 

were photons having energy equal to the energy difference between two allowed 

orbits of the electron circling the nucleus (the proton),         , leading to 

the conclusion that the allowed levels must be: 

          
  

How could the quantum    restricting allowed radiation energies also restrict the 

allowed electron orbits? Bohr realized there must be a connection—

because   has the dimensions of angular momentum! What if the electron were 

only allowed to be in circular orbits of angular momentum    , with   an 

integer? Bohr did the math for orbits under an inverse square law and found that 

the observed spectra were in fact correctly accounted for by taking       . 

But then he realized he did not even need the experimental results to find KK: 

quantum mechanics must agree with classical mechanics in the regime where we 

know experimentally that classical mechanics (including Maxwell’s equations) is 

correct, that is, for systems of macroscopic size. Consider a negative charge 

orbiting around a fixed positive charge at a radius of 10 cm., the charges being 

such that the speed is of order meters per second (we don’t want relativistic 

effects making things more complicated). Then from classical E&M, the charge 

will radiate at the orbital frequency. Now imagine this is a hydrogen atom, in a 

perfect vacuum, in a high state of excitation. It must be radiating at this same 

frequency. But Bohr’s theory can’t just be right for small orbits, so the radiation 

must satisfy         . The spacing between adjacent levels will vary slowly 

for these large orbits, so   times the orbital frequency must be the energy 

difference between adjacent levels. Now, that energy difference depends on the 
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allowed angular momentum step between the adjacent levels: that is, on  . 

Reconciling these two expressions for the radiation frequency gives       . 

This classical limit argument, then, predicts the Rydberg constant in terms of 

already known quantities: 

   
    

    
    

      

 What’s right about the Bohr atom? 

 It gives the Balmer series spectra. 

 The first orbit size is close to the observed size of the atom: and remember 

there are no adjustable parameters, the classical limit argument 

determines the spectra and the size. 

 What’s wrong with the Bohr atom? 

No explanation for why angular momentum should be quantized. (This was solved 

by de Broglie a little later.) 

Why don’t the circling electrons radiate, as predicted classically? Well, the fact 

that radiation is quantized means the classical picture of an accelerating charge 

smoothly emitting radiation cannot work if the energies involved are of 

order   times the frequencies involved. 

The lowest state has nonzero angular momentum. This is a defect of the model, 

corrected in the truly quantum model (Schrödinger’s equation). 

In an inverse square field, orbits are in general elliptical. 

This was at first a puzzle: why should there be only circular orbits allowed? In fact, 

the model does allow elliptical orbits, and they do not show up in the Balmer 

series because, as proved by Sommerfeld, if the allowed elliptical orbits have the 

same allowed angular momenta as Bohr’s orbits, they have the same set of 

energies. This is a special property of the inverse square force. 
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 De Broglie Waves 

The first explanation of why only certain angular momenta is allowed for the 

circling electron was given by de Broglie: just as photons act like particles (definite 

energy and momentum), but undoubtedly are wave like, being light, so particles 

like electrons perhaps have wave like properties. For photons, the relationship 

between wavelength and momentum is     λ. Assuming this is also true of 

electrons, and that the allowed circular orbits are standing waves, Bohr’s angular 

momentum quantization follows. 

 The Nature of Matter 

By the 1890’s and early 1900’s, most scientists believed in the existence of atoms. 

Not all—the distinguished German chemist Ostwald did not, for example. But 

nobody had a clear picture of even a hydrogen atom. The electron had just been 

discovered, and it was believed that the hydrogen atom had a single electron. It 

was suggested that maybe the electron went in circles around a central charge, 

but nobody believed that because Maxwell had established that accelerating 

charges radiate, so it was assumed that a circling electron would rapidly loose 

energy, spiral into the center, and the atom would collapse. Instead, it was 

thought, the hydrogen atom (which was of course electrically neutral) was a ball 

of positively charged jelly with an electron inside, which would oscillate when 

heated, and emit radiation. Rough calculations, based on the accepted size of the 

atom, suggested that the radiation would be in the visible range, but no-one 

could remotely reproduce the known spectrum of hydrogen. 

The big breakthrough came in 1909, when Rutherford tried to map the 

distribution of positive charge in a heavy atom (gold) by scattering alpha particles 

from it. To his amazement, he found the positive charge was all concentrated in a 

tiny nucleus, with a radius of order one ten-thousandth that of the atom. This 

meant that after all the electrons must be going in planetary orbits, and the 

Maxwell’s equations prediction of radiation did not apply, just as it did not always 

apply in blackbody radiation. 
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1: The Dawn of the Quantum Theory 

"With the recognition that there is no logical reason why Newtonian and classical 

principles should be valid outside the domains in which they have been 

experimentally verified has come the realization that departures from these 

principles are indeed necessary. Such departures find their expression through 

the introduction of new mathematical formalisms, new schemes of axioms and 

rules of manipulation, into the methods of theoretical physics." - P. A. M. Dirac, 

1.1 Blackbody Radiation Cannot Be Explained Classically: 

 Learning Objectives 

One experimental phenomenon that could not be adequately explained by 

classical physics was blackbody radiation. Objectives for this section include  

 Be familiar with black-body radiators 

 Apply Stefan-Boltzmann’s Law to estimate total light output from a radiator 

 Apply Wien’s Displacement Law to estimate the peak wavelength (or 

frequency) of the output from a black body radiator 

  Understand the Rayleigh-Jeans Law and how it fails to properly model 

black-body radiation 

All normal matter at temperatures above absolute zero emits electromagnetic 

radiation, which represents a conversion of a body's internal thermal energy into 

electromagnetic energy and is therefore called thermal radiation. Conversely, all 

normal matter absorbs electromagnetic radiation to some degree. An object that 

absorbs ALL radiation falling on it, at all wavelengths, is called a blackbody. When 

a blackbody is at a uniform temperature, its emission has a characteristic 

frequency distribution that depends on the temperature. This emission is 

called blackbody radiation. 

A room temperature blackbody appears black, as most of the energy it radiates is 

infra-red and cannot be perceived by the human eye. Because the human eye 

cannot perceive light waves at lower frequencies, a black body, viewed in the dark 

at the lowest just faintly visible temperature, subjectively appears grey, even 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory
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though its objective physical spectrum peaks in the infrared range. When it 

becomes a little hotter, it appears dull red. As its temperature increases further it 

becomes yellow, white, and ultimately blue-white. 

 
Figure 1.1: Blackbody Radiation. When heated, all objects emit electromagnetic radiation 
whose wavelength (and color) depends on the temperature of the object. A relatively low-
temperature object, such as a horseshoe forged by a blacksmith, appears red, whereas a 
higher-temperature object, such as the surface of the sun, appears yellow or white. Images 
used with permission from Wikipedia. 

Blackbody radiation has a characteristic, continuous frequency spectrum that 

experimentally depends only on the body's temperature. In fact, we can be much 

more precise: 

A body emits radiation at a given temperature and frequency exactly as well as it 
absorbs the same radiation. 

This statement was proved by Gustav Kirchhoff: the essential point is that if 

we instead suppose a particular body can absorb better than it emits, then in a 

room full of objects all at the same temperature, it will absorb radiation from the 

other bodies better than it radiates energy back to them. This means it will get 

hotter, and the rest of the room will grow colder, contradicting the second law of 

thermodynamics. Thus, a body must emit radiation exactly as well as it absorbs 

the same radiation at a given temperature and frequency in order to not violate 

the second law of thermodynamics. 

Anybody at any temperature above absolute zero will radiate to some extent, the 

intensity and frequency distribution of the radiation depending on the detailed 

structure of the body. To begin analyzing heat radiation, we need to be specific 

about the body doing the radiating: the simplest possible case is an idealized body 

which is a perfect absorber, and therefore also (from the above argument) a 
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perfect emitter. So how do we construct a perfect absorber in the laboratory? In 

1859 Kirchhoff had a good idea: a small hole in the side of a large box is an 

excellent absorber, since any radiation that goes through the hole bounces 

around inside, a lot getting absorbed on each bounce, and has little chance of 

ever getting out again. So, we can do this in reverse: have an oven with a tiny hole 

in the side, and presumably the radiation coming out the hole is as good a 

representation of a perfect emitter as we’re going to find (Figure 1.1.2). 
 

 
 

Figure 1.1.2: Blackbody radiator is any object that is a perfect emitter and a perfect absorber of 

radiation. (CC BY-NC; Ümit Kaya) 

By the 1890’s, experimental techniques had improved sufficiently that it was 

possible to make fairly precise measurements of the energy distribution of 

blackbody radiation. In 1895, at the University of Berlin, Wien and Lummer 

punched a small hole in the side of an otherwise completely closed oven and 

began to measure the radiation coming out. The beam coming out of the hole 

was passed through a diffraction grating, which sent the different 

wavelengths/frequencies in different directions, all towards a screen. A detector 

was moved up and down along the screen to find how much radiant energy was 

being emitted in each frequency range. They found a radiation 

intensity/frequency curve close to the distributions in Figure 1.1.3. 
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Figure 1.1.3: Graphic representation of spectral distribution of blackbody radiation at different 
temperatures. The Stefan-Boltzmann’s Law is observed as the increase in the emission amplitude with 
increasing temperature and the Wien’s Displacement Law is observed as the shift to smaller wavelength 
with increasing temperature. (CC-BY 4.0; OpenStax) 

By measuring the blackbody emission curves at different temperatures 

(Figure 1.1.3), they were also able to construct two important phenomenological 

Laws (i.e., formulated from experimental observations, not from basic principles 

of nature): Stefan-Boltzmann’s Law and Wien’s Displacement Law. 

 Not all radiators are blackbody radiators 

The radiation of a blackbody radiator is produced by the thermal activity of the 

material, not the nature of the material, nor how it got thermally excited. Some 

examples of blackbodies include incandescent light bulbs, stars, and hot stove 

tops. The emission appears as a continuous spectrum (Figure 1.1.3) with multiple 

coexisting colors. However, not every radiator is a blackbody radiator. For 

example, the emission of a fluorescence bulb is not one. The following spectrum 

show the distribution of light from a fluoresce light tube and is a mixture of 

discrete bands at different wavelengths of light in contrast to the continuous 

spectra in Figure 1.1.3 for blackbody radiators. 
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Fluorescent lighting spectrum with emission peaks. Graph of Intensity (counts) vs. Wavelength (nm) in 

the visible spectrum. (CC BY-NC; Ümit Kaya). 

Fluorescent light bulbs contain a mixture of inert gases (usually argon and neon) together with a drop of 

mercury at low pressure. A different mix of visible colors blend to produce a light that appears to us 

white with different shadings. 

 

 The Stefan-Boltzmann Law 

The first quantitative conjecture based on experimental observations was 

the Stefan-Boltzmann Law (1879) which states the total power (i.e., integrated 

over all emitting frequencies in Figure 1.1.3) radiated from one square meter of 

black surface goes as the fourth power of the absolute temperature (Figure 1.1.4): 

                                                                                                                                     

where 

   is the total amount of radiation emitted by an object per square meter 

(        ) 

 σ is a constant called the Stefan-Boltzman constant 

(                        

   is the absolute temperature of the object (in  ) 

The Stefan-Boltzmann Law is easily observed by comparing the integrated value 

(i.e., under the curves) of the experimental black-body radiation distribution in 

Figure 1.1.3 at different temperatures. In 1884, Boltzmann derived this    
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behavior from theory by applying classical thermodynamic reasoning to a box 

filled with electromagnetic radiation, using Maxwell’s equations to relate 

pressure to energy density. That is, the tiny amount of energy coming out of the 

hole (Figure 1.1.2) would of course have the same temperature dependence as 

the radiation intensity inside. 

 

Figure 1.1.4: Graph of a function of total emitted energy of a blackbody proportional to the fourth 
power of its thermodynamic temperature T according to the Stefan–Boltzmann law. (CC BY-SA 
4.0; Nicoguaro) 
 

 Example 1.1.1 

The sun’s surface temperature is 5700 K. 

a. How much power is radiated by the sun? 

b. Given that the distance to earth is about 200 sun radii, what is the 

maximum power possible from a one square kilometer solar energy 

installation? 

 Solution 

(a) First, we calculate the area of the sun followed by the flux (power). The sun 

has a radius of 6.96×108m 

The area of the sun is A=4πR2. 

https://commons.wikimedia.org/wiki/User:Nicoguaro
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                                               =             

The power radiated from the sun (via Stefan-Boltzmann Law) is P=σT4. 

                                                                                 

                                                                 

This value is per square meter. 

(b) To calculate the total power radiated by the sun is thus: 

                                                           

 Wien’s Displacement Law 

The second phenomenological observation from experiment was Wien’s 

Displacement Law. Wien's law identifies the dominant (peak) wavelength, or 

color, of light coming from a body at a given temperature. As the oven 

temperature varies, so does the frequency at which the emitted radiation is most 

intense (Figure 1.1.3). In fact, that frequency is directly proportional to the 

absolute temperature: 

                                                                                                                                    

where the proportionality constant is                . 

Wien himself deduced this law theoretically in 1893, following Boltzmann’s 

thermodynamic reasoning. It had previously been observed, at least semi-

quantitatively, by an American astronomer, Langley. This upward shift 

in      with   is familiar to everyone—when an iron is heated in a fire 

(Figure 1.1.1), the first visible radiation (at around 900  ) is deep red, the lowest 

frequency visible light. Further increase in T causes the color to change to orange 

then yellow, and finally blue at very high temperatures (10,000 K or more) for 

which the peak in radiation intensity has moved beyond the visible into the 

ultraviolet. 
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Another representation of Wien's Law (Equation 1.1.2) in terms of the peak 
wavelength of light is 

                                                                                                                                 

where   is the absolute temperature in kelvin and b is a constant of 

proportionality called Wien's displacement constant, equal to             , 

or more conveniently to obtain wavelength in micrometers,               

This is an inverse relationship between wavelength and temperature. So, the 

higher the temperature, the shorter or smaller the wavelength of the thermal 

radiation. The lower the temperature, the longer or larger the wavelength of the 

thermal radiation. For visible radiation, hot objects emit bluer light than cool 

objects. 

 Example 1.1.2 

If surface body temperature is 90 °F. 

a. How much radiant energy in Wm−2 would your body emit? 

b. What is the peak wavelength of emitted radiation? 

c. What is the total radiant energy emitted by your body in Watts? Note: The 

average adult human male has a body surface area of about 1.9 m2 and the 

average body surface area for a woman is about 1.6 m2. 

 Solution 

(a) 90 °F is 305  . We use Stefan-Boltzmann Law (Equation 1.1.1) The total 

amount of radiation emitted will be       . 

                         = (5.67×10−8Watts m−2K−4) (305K)4 

                                         = 491 W m−2 

b) The peak wavelength of emitted radiation is found using Wien's Law: 

                                 ×10−3m K/T 

                              =2.898×10−3m K/305K 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.01%3A_Blackbody_Radiation_Cannot_Be_Explained_Classically#mjx-eqn-Eq2
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.01%3A_Blackbody_Radiation_Cannot_Be_Explained_Classically#mjx-eqn-Eq1
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                              =9.5×10−6 m=9.5 μm 

c) The total radiant energy density in Watts is: 

                        Energymale= (491 W m−2) (1.9 m2) =933 W 

                        Energyfemale= (491 W m−2) (1.6 m2) =786 W 

 Example 1.1.3: The Temperature of the Sun 

For example, if the Sun has a surface temperature of 5700 K, what is the 

wavelength of maximum intensity of solar radiation? 

 Solution 

If we substitute 5700 K for T in Equation 1.1.3, we have 

                                            =5.1×10−7 m 

Knowing that violet light has a wavelength of about 4.0×10−7 meters, yellow 

about 5.6×10−7 meters, and red about 6.6×10−7 meters, what can we say about 

the color of the Sun's peak radiation? The peak wavelength of the Sun's radiation 

is at a slightly shorter wavelength than yellow, so it is a slightly greenish yellow. 

To see this greenish tinge to the Sun, you would have to look at it from space. It 

turns out that the Earth's atmosphere scatters some of the shorter waves of 

sunlight, which shifts its peak wavelength to pure yellow. 

Remember that thermal radiation always spans a wide range of wavelengths 

(Figure 1.1.2) and Equation 1.1.3 only specifies the single wavelength that is 

the peak of the spectrum. So, although the Sun appears yellowish-white, when 

you disperse sunlight with a prism you see radiation with all the colors of the 

rainbow. Yellow just represents a characteristic wavelength of the emission. 

 Exercise 1.1.1 

a. At what wavelength does the sun emit most of its radiation if it has a 

temperature of 5,778 K? 

b. At what wavelength does the earth emit most of its radiation if it has a 

temperature of 288 K? 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.01%3A_Blackbody_Radiation_Cannot_Be_Explained_Classically#mjx-eqn-Eq2a
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.01%3A_Blackbody_Radiation_Cannot_Be_Explained_Classically#mjx-eqn-Eq2a


18 
 

Answer a) 500 nm 

Answer b)10.0 microns 

 The Rayleigh-Jeans Law: 

Lord Rayleigh and J. H. Jeans developed an equation which explained blackbody 

radiation at low frequencies. The equation which seemed to express blackbody 

radiation was built upon all the known assumptions of physics at the time. The big 

assumption which Rayleigh and Jean implied was that infinitesimal amounts of 

energy were continuously added to the system when the frequency was increased. 

Classical physics assumed that energy emitted by atomic oscillations could have 

any continuous value. This was true for anything that had been studied up until 

that point, including things like acceleration, position, or energy. Their 

resulting Rayleigh-Jeans Law was 

                                                                                                                        

                                                              
                                                               

Experimental data performed on the black box showed slightly different results 

than what was expected by the Rayleigh-Jeans law (Figure 1.1.5). The law had 

been studied and widely accepted by many physicists of the day, but the 

experimental results did not lie, something was different between what was 

theorized and what happens. The experimental results showed a bell type of 

curve, but according to the Rayleigh-Jeans law the frequency diverged as it 

neared the ultraviolet region (Equation 1.1.5). Ehrenfest later dubbed this the 

"ultraviolet catastrophe". 

It is important to emphasizing that Equation 1.1.5 is a classical result: the only 

inputs are classical dynamics and Maxwell’s electromagnetic theory. The 

charge e of the oscillator does not appear: the result is independent of the 

coupling strength between the oscillator and the radiation, the coupling only 

must be strong enough to ensure thermal equilibrium. The derivation of the law 

can be found here. 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.01%3A_Blackbody_Radiation_Cannot_Be_Explained_Classically#mjx-eqn-Eq3
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.01%3A_Blackbody_Radiation_Cannot_Be_Explained_Classically#mjx-eqn-Eq3
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Figure 1.1.5: Relationship between the temperature of an object and the spectrum of 
blackbody radiation it emits. At relatively low temperatures, most radiation is emitted at 
wavelengths longer than 700 nm, which is in the infrared portion of the spectrum. The dull red 
glow of the hot metalwork in Figure 1.1.5 is due to the small amount of radiation emitted at 
wavelengths less than 700 nm, which the eye can detect. As the temperature of the object 
increases, the maximum intensity shifts to shorter wavelengths, successively resulting in 
orange, yellow, and finally white light. At high temperatures, all wavelengths of visible light are 
emitted with approximately equal intensities. (CC BY-SA-NC; anonymous) 

 
 Differential vs. Integral Representation of the Distribution: 

Radiation is understood as a continuous distribution of amplitude vs. wavelength 

or, equivalently, amplitude vs. frequency (Figure 1.1.5). According to Rayleigh-

Jeans law, the intensity at a specific frequency ν and temperature is 

              
         

However, in practice, we are more interested in frequency intervals. An exact 

frequency is the limit of a sequence of smaller and smaller intervals. If we make 
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the assumption that, for a sufficiently small interval,        does not vary, we get 

your definition for the differential         in Equation 1.1.5: 

The assumption is fair due to the continuity of         This is the approximation 

of an integral on a very small interval    by the height of a point inside this 

interval (       
       ) times its length (  ). So, if we sum an infinite amount 

of small intervals like the one above we get an integral. The total radiation 

between    and    will be: 

∫            ∫             ∫            
       

        
            

Observe that        is quadratic in  . 

 Example 1.1.4: the ultraviolet catastrophe 

What is the total spectral radiance of a radiator that follows the Rayleigh-Jeans 

law for its emission spectrum? 

 Solution 

The total spectral radiance         is the combined emission over all possible 

wavelengths (or equivalently, frequencies), which is an integral over the relevant 

distribution (Equation 1.1.5 for the Rayleigh-Jeans Law). 

                                 ∫   
 

 
 ∫        

        

 
   

but the integral 

∫     

 

 

 

does not converge. Worse, it is infinite, 

               
   

∫    
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Hence, the classically derived Rayleigh-Jeans law predicts that the radiance of a 

blackbody is infinite. Since radiance is power per angle and unit area, this also 

implies that the total power and hence the energy a blackbody emitter gives off is 

infinite, which is patently absurd. This is called the ultraviolet catastrophe 

because the absurd prediction is caused by the classical law not predicting the 

behavior at high frequencies/small wavelengths correctly (Figure 1.1.5). 
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1.2 Quantum Hypothesis Used for Blackbody Radiation Law 

 Learning Objectives 

 To understand how energy is quantized in blackbody radiation 

By the late 19th century, many physicists thought their discipline was well on the 

way to explaining most natural phenomena. They could calculate the motions of 

material objects using Newton’s laws of classical mechanics, and they could 

describe the properties of radiant energy using mathematical relationships known 

as Maxwell’s equations, developed in 1873 by James Clerk Maxwell, a Scottish 

physicist. The universe appeared to be a simple and orderly place, containing 

matter, which consisted of particles that had mass and whose location and 

motion could be accurately described, and electromagnetic radiation, which was 

viewed as having no mass and whose exact position in space could not be fixed. 

Thus, matter and energy were considered distinct and unrelated phenomena. 

Soon, however, scientists began to look more closely at a few inconvenient 

phenomena that could not be explained by the theories available at the time. 

One experimental phenomenon that could not be adequately explained by 

classical physics was blackbody radiation (Figure 1.2.1). Attempts to explain or 

calculate this spectral distribution from classical theory were complete failures. A 

theory developed by Rayleigh and Jeans predicted that the intensity should go to 

infinity at short wavelengths. Since the intensity drops to zero at short 

wavelengths, the Rayleigh-Jeans result was called the ultraviolet 

catastrophe (Figure 1.2.1dashed line). There was no agreement between theory 

and experiment in the ultraviolet region of the blackbody spectrum. 

https://phys.libretexts.org/TextMaps/General_Physics_TextMaps/Map%3A_University_Physics_(OpenStax)/Map%3A_University_Physics_II_(OpenStax)/16%3A_Electromagnetic_Waves/16.1%3A_Maxwell%E2%80%99s_Equations_and_Electromagnetic_Waves
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Figure 1.2.1: Relationship between the temperature of an object and the spectrum of 

blackbody radiation it emits. At relatively low temperatures, most radiation is emitted at 

wavelengths longer than 700 nm, which is in the infrared portion of the spectrum. As the 

temperature of the object increases, the maximum intensity shifts to shorter wavelengths, 

successively resulting in orange, yellow, and finally white light. At high temperatures, all 

wavelengths of visible light are emitted with approximately equal intensities. The white light 

spectrum shown for an object at 6000 K closely approximates the spectrum of light emitted by 

the sun. Note the sharp decrease in the intensity of radiation emitted at wavelengths below 

400 nm, which constituted the ultraviolet catastrophe. The classical prediction fails to fit the 

experimental curves entirely and does not have a maximum intensity. (CC BY-SA-NC; 

anonymous by request). 

 

 Quantizing Electrons in the Radiator 

In 1900, the German physicist Max Planck (1858–1947) explained the ultraviolet 

catastrophe by proposing that the energy of electromagnetic waves 

is quantized rather than continuous. This means that for each temperature, there 

is a maximum intensity of radiation that is emitted in a blackbody object, 

corresponding to the peaks in Figure 1.2.1, so the intensity does not follow a 

smooth curve as the temperature increases, as predicted by classical physics. 
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Thus, energy could be gained or lost only in integral multiples of some smallest 

unit of energy, a quantum (the smallest possible unit of energy). Energy can be 

gained or lost only in integral multiples of a quantum. 

 Quantization 

Although quantization may seem to be an unfamiliar concept, we encounter it 

frequently in quantum mechanics (hence the name). For example, US money is 

integral multiples of pennies. Similarly, musical instruments like a piano or a 

trumpet can produce only certain musical notes, such as C or F sharp. Because 

these instruments cannot produce a continuous range of frequencies, their 

frequencies are quantized. It is also like going up and down a hill using discrete 

stair steps rather than being able to move up and down a continuous slope. Your 

potential energy takes on discrete values as you move from step to step. Even 

electrical charge is quantized: an ion may have a charge of −1 or −2, but not −1.33 

electron charges. 

 
A continuous vs. a quantized (gravitationaly) potential energy system. In the continuous case 

(left) a system can have any potential energy, but in the quantized case (right), a system can 

only have certain values (other values are not allowed). (CC BY-NC; Ümit Kaya) 

 

Planck's quantization of energy is described by his famous equation: 

                                                                                                                                       

where the proportionality constant   is called Planck’s constant, one of the most 

accurately known fundamental constants in science 
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However, for our purposes, its value to four significant figures is sufficient: 

                     

As the frequency of electromagnetic radiation increases, the magnitude of the 

associated quantum of radiant energy increases. By assuming that energy can be 

emitted by an object only in integral multiples of   , Planck devised an equation 

that fit the experimental data shown in Figure 1.2.1. We can understand Planck’s 

explanation of the ultraviolet catastrophe qualitatively as follows: At low 

temperatures, radiation with only relatively low frequencies is emitted, 

corresponding to low-energy quanta. As the temperature of an object increases, 

there is an increased probability of emitting radiation with higher frequencies, 

corresponding to higher-energy quanta. At any temperature, however, it is simply 

more probable for an object to lose energy by emitting many lower-energy 

quanta than a single very high-energy quantum that corresponds to ultraviolet 

radiation. The result is a maximum in the plot of intensity of emitted radiation 

versus wavelength, as shown in Figure 1.2.1, and a shift in the position of the 

maximum to lower wavelength (higher frequency) with increasing temperature. 

At the time he proposed his radical hypothesis, Planck could not 

explain why energies should be quantized. Initially, his hypothesis explained only 

one set of experimental data—blackbody radiation. If quantization were observed 

for many different phenomena, then quantization would become a law. In time, a 

theory might be developed to explain that law. As things turned out, Planck’s 

hypothesis was the seed from which modern physics grew. 

Max Planck explains the spectral distribution of blackbody radiation as result from 

oscillations of electrons. Similarly, oscillations of electrons in an antenna produce 

radio waves. Max Planck concentrated on modeling the oscillating charges that 

must exist in the oven walls, radiating heat inwards and—in thermodynamic 

equilibrium—themselves being driven by the radiation field. He found he could 

account for the observed curve if he required these oscillators not to radiate 

energy continuously, as the classical theory would demand, but they 
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could only loss or gain energy in chunks, called quanta, of size   , for an oscillator 

of frequency   (Equation 1.2.1). 

With that assumption, Planck calculated the following formula for the radiation 

energy density inside the oven: 

                                                                                                                          

                                                           
 

              
                                          

with 
           

                     

                 

         

                     

                                   

Planck's radiation energy density (Equation 1.2.3) can also be expressed in terms 
of wavelength  . 

                                               
 

              
                                         

Planck's equation (Equation 1.2.4) gave an excellent agreement with the 

experimental observations for all temperatures (Figure 1.2.2). 

 
Figure 1.2.2: The Sun is an excellent approximation of a blackbody. Its effective temperature is 

~5777 K. (CC-SA-BY 3.0; Sch). 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.02%3A_Quantum_Hypothesis_Used_for_Blackbody_Radiation_Law#mjx-eqn-Eq1.2.1
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https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.02%3A_Quantum_Hypothesis_Used_for_Blackbody_Radiation_Law#mjx-eqn-Eq2b
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 Max Planck (1858–1947) 

Planck made many substantial contributions to theoretical physics, but his fame 

as a physicist rest primarily on his role as the originator of quantum theory. In 

addition to being a physicist, Planck was a gifted pianist, who at one time 

considered music as a career. During the 1930s, Planck felt it was his duty to 

remain in Germany, despite his open opposition to the policies of the Nazi 

government. 

 
(left) The German physicist Max Planck had a major influence on the early 

development of quantum mechanics, being the first to recognize that energy is 

sometimes quantized. Planck also made important contributions to special 

relativity and classical physics. (Public Domain; Library of Congress via Wikimedia) 

(left) The society's logo features Minerva, the Roman goddess of wisdom. (Fair 

use) 

One of his sons was executed in 1944 for his part in an unsuccessful attempt to 

assassinate Hitler and bombing during the last weeks of World War II destroyed 

Planck’s home. After WWII, the major German scientific research organization 

was renamed the Max Planck Society. 

 Exercise 1.2.1 

Use Equation 1.2.4 to show that the units of          are      as expected for 

an energy density. 

The near perfect agreement of this formula with precise experiments (e.g., 

Figure 1.2.3), and the consequent necessity of energy quantization, was the most 

https://en.wikipedia.org/wiki/Max_Planck#/media/File:Max_Planck_1933.jpg
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important advance in physics in the century. His blackbody curve was completely 

accepted as the correct one: more and more accurate experiments confirmed it 

time and again, yet the radical nature of the quantum assumption did not sink in. 

Planck was not to upset—he didn’t believe it either, he saw it as a technical fix 

that (he hoped) would eventually prove unnecessary. 

Part of the problem was that Planck’s route to the formula was long, difficult, and 
implausible—he even made contradictory assumptions at different stages, as 
Einstein pointed out later. However, the result was correct anyway! 

The mathematics implied that the energy given off by a blackbody was not 

continuous, but given off at certain specific wavelengths, in regular increments. If 

Planck assumed that the energy of blackbody radiation was in the form 

      

Where,   is an integer, then he could explain what the mathematics represented. 

This was indeed difficult for Planck to accept, because at the time, there was no 

reason to presume that the energy should only be radiated at specific 

frequencies. Nothing in Maxwell’s laws suggested such a thing. It was as if the 

vibrations of a mass on the end of a spring could only occur at specific energies. 

Imagine the mass slowly coming to rest due to friction, but not in a continuous 

manner. Instead, the mass jumps from one fixed quantity of energy to another 

without passing through the intermediate energies. 

To use a different analogy, it is as if what we had always imagined as smooth 

inclined planes were, in fact, a series of closely spaced steps that only presented 

the illusion of continuity. 

 

 Summary 

The agreement between Planck’s theory and the experimental observation 

provided strong evidence that the energy of electron motion in matter is 

quantized. In the next two sections, we will see that the energy carried by light 

also is quantized in units of   . These packets of energy are called “photons.” 
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1.3 Photoelectric Effect Explained with Quantum Hypothesis 

 Learning Objectives 

 To be familiar with the photoelectron effect for bulk materials 

 Understand how the photoelectron kinetic energy and intensity vary as a 

function of incident light wavelength 

 Understand how the photoelectron kinetic energy and intensity vary as a 

function of incident light intensity 

 Describe what a workfunction is and relate it to ionization energy 

 Describe the photoelectric effect with Einstein's quantized photon model of 

light 

Nature, it seemed, was quantized (non-continuous, or discrete). If this was so, 

how could Maxwell’s equations correctly predict the result of the blackbody 

radiator? Planck spent a good deal of time attempting to reconcile the behavior of 

electromagnetic waves with the discrete nature of the blackbody radiation, to no 

avail. It was not until 1905, with yet another paper published by Albert Einstein, 

that the wave nature of light was expanded to include the particle interpretation 

of light which adequately explained Planck’s equation. 

The photoelectric effect was first documented in 1887 by the German physicist 

Heinrich Hertz and is therefore sometimes referred to as the Hertz effect. While 

working with a spark-gap transmitter (a primitive radio-broadcasting device), 

Hertz discovered that upon absorption of certain frequencies of light, substances 

would give off a visible spark. In 1899, this spark was identified as light-excited 

electrons (called photoelectrons) leaving the metal's surface by J.J. Thomson 

(Figure 1.3.1). 
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Figure 1.3.1: The photoelectric effect involves irradiating a metal surface with photons of 

sufficiently high energy to cause the electrons to be ejected from the metal. (CC BY-SA-NC; 

anonymous) 

The classical picture underlying the photoelectron effect was that the atoms in 

the metal contained electrons, that were shaken and caused to vibrate by the 

oscillating electric field of the incident radiation. Eventually some of them would 

be shaken loose and would be ejected from the cathode. It is worthwhile 

considering carefully how the number and speed of electrons emitted would be 

expected to vary with the intensity and color of the incident radiation along with 

the time needed to observe the photoelectrons. 

 Increasing the intensity of radiation would shake the electrons more 

violently, so one would expect more to be emitted, and they would shoot 

out at greater speed, on average. 

 Increasing the frequency of the radiation would shake the electrons faster, 

so it might cause the electrons to come out faster. For very dim light, it 

would take some time for an electron to work up to a sufficient amplitude 

of vibration to shake loose. 

 Lenard's Experimental Results (Intensity Dependence) 

In 1902, Hertz's student, Philipp Lenard, studied how the energy of the emitted 

photoelectrons varied with the intensity of the light. He used a carbon arc light 

and could increase the intensity a thousand-fold. The ejected electrons hit 



31 
 

another metal plate, the collector, which was connected to the cathode by a wire 

with a sensitive ammeter, to measure the current produced by the illumination 

(Figure 1.3.21.3.2). To measure the energy of the ejected electrons, Lenard 

charged the collector plate negatively, to repel the electrons coming towards it. 

Thus, only electrons ejected with enough kinetic energy to get up this potential 

hill would contribute to the current. 

 

Figure 1.3.2: Lenard's photoelectric experiment. (left) High light intensity increase photocurrent 

(number of collected photoelectrons). (right) Low light intensity has reduced photocurrent. 

However, the kinetic energy of the ejected electrons is independent of incident light intensity. 

(CC BY-NC; Ümit Kaya) 

Lenard discovered that there was a well-defined minimum voltage that stopped 

any electrons getting through (     ). To Lenard's surprise, he found 

that       did not depend at all on the intensity of the light! Doubling the light 

intensity doubled the number of electrons emitted but did not affect 

the kinetic energies of the emitted electrons. The more powerful oscillating field 

ejected more electrons, but the maximum individual energy of the ejected 

electrons was the same as for the weaker field (Figure 1.3.2). 

 Millikan's Experimental Results (Wavelength Dependence) 

The American experimental physicist Robert Millikan followed up on Lenard's 

experiments and using a powerful arc lamp, he was able to generate sufficient 

light intensity to separate out the colors and check the photoelectric effect using 

light of different colors. He found that the maximum energy of the ejected 
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electrons did depend on the color - the shorter wavelength, higher frequency light 

ejects photoelectrons with greater kinetic energy (Figures 1.3.3). 

  

Figure 1.3.3: Millikan's photoelectric experiment. (left) Incident high-energy blue light. The 

battery represents the potential Lenard used to charge the collector plate negatively, which 

would be a variable voltage source. Since the electrons ejected by the blue light are getting to 

the collector plate, the potential supplied by the battery is less than      , for blue light. 

(right) Indicent low-energy red light. Since the electrons ejected by the red light are not getting 

to the collector plate, the potential supplied by the battery exceeds       for red light. (CC BY-

NC; Ümit Kaya) 

As shown in Figure 1.3.4, just the opposite behavior from classical is observed 

from Lenard's and Millikan's experiments. The intensity affects the number of 

electrons, and the frequency affects the kinetic energy of the emitted electrons. 

From these sketches, we see that 

 the kinetic energy of the electrons is linearly proportional to the frequency 

of the incident radiation above a threshold value of    (no current is 

observed below   ), and the kinetic energy is independent of the intensity 

of the radiation, and 

 the number of electrons (i.e., the electric current) is proportional to the 

intensity and independent of the frequency of the incident radiation above 

the threshold value of    (i.e., no current is observed below   ). 
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Figure 1.3.4: Schematic drawings showing the characteristics of the photoelectric effect from 

Lenard's and Millikan's experiments. (A) The kinetic energy of any single emitted electron 

increases linearly with frequency above some threshold value (B) The electron kinetic energy is 

independent of the light intensity above the threshold frequency and zero below. (C) The 

number of electrons emitted per second (i.e., the electric current) is independent of light 

frequency above the threshold frequency and zero below. (D) The number of electrons 

increases linearly with the light intensity. (CC BY-NC; Ümit Kaya) 

 

 Classical Theory does not Describe Experiment 

Classical theory predicts that energy carried by light is proportional to its 

amplitude independent of its frequency, and this fails to correctly explain the 

observed wavelength dependence in Lenard's and Millikan's observations. 

As with most of the experimental results we discuss in this text, the behavior 

described above is a simplification of the true experimental results observed in 

the laboratory. A more complex description involves a greater introduction of 

more complex physics and instrumentation, which will be ignored for now. 

 

 Einstein's Quantum Picture 

In 1905 Einstein gave a very simple interpretation of Lenard's results and 

borrowed Planck's hypothesis about the quantized energy from his blackbody 

research and assumed that the incoming radiation should be thought of as quanta 

of energy   , with   the frequency. In photoemission, one such quantum is 

absorbed by one electron. If the electron is some distance into the material of the 

cathode, some energy will be lost as it moves towards the surface. There will 

always be some electrostatic cost as the electron leaves the surface, which is the 
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workfunction,  . The most energetic electrons emitted will be those very close to 

the surface, and they will leave the cathode with kinetic energy 

                                                                                                                              

On cranking up the negative voltage on the collector plate until the current just 

stops, that is, to      , the highest kinetic energy electrons (   ) must have had 

energy        upon leaving the cathode. Thus, 

                                                                                                                             

Thus, Einstein's theory makes a very definite quantitative prediction: if the 

frequency of the incident light is varied, and       plotted as a function of 

frequency, the slope of the line should be     (Figure 1.3.4A). It is also clear that 

there is a minimum light frequency for a given metal   , that for which the 

quantum of energy is equal to   (Equation 1.3.1). Light below that frequency, no 

matter how bright, will not eject electrons. 

According to both Planck and Einstein, the energy of light is proportional to its 
frequency rather than its amplitude, there will be a minimum frequency    needed 
to eject an electron with no residual energy. 

Since every photon of sufficient energy excites only one electron, increasing the 

light's intensity (i.e., the number of photons/sec) only increases the number of 

released electrons and not their kinetic energy. In addition, no time is necessary 

for the atom to be heated to a critical temperature and therefore the release of 

the electron is nearly instantaneous upon absorption of the light. Finally, because 

the photons must be above a certain energy to satisfy the work function, a 

threshold frequency exists below which no photoelectrons are observed. This 

frequency is measured in units of Hertz (1/second) in honor of the discoverer of 

the photoelectric effect. 

Einstein's Equation 1.3.1 explains the properties of the photoelectric effect 

quantitatively. A strange implication of this experiment is that light can behave as 

a kind of massless "particle" now known as a photon whose energy      can be 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.03%3A_Photoelectric_Effect_Explained_with_Quantum_Hypothesis#mjx-eqn-Eq1
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transferred to an actual particle (an electron), imparting kinetic energy to it, just 

as in an elastic collision between to massive particles such as billiard balls. 

Robert Millikan initially did not accept Einstein's theory, which he saw as an attack 

on the wave theory of light, and worked for ten years until 1916, on the 

photoelectric effect. He even devised techniques for scraping clean the metal 

surfaces inside the vacuum tube. For all his efforts he found disappointing results: 

he confirmed Einstein's theory after ten years. In what he writes in his paper, 

Millikan is still desperately struggling to avoid this conclusion. However, by the 

time of his Nobel Prize acceptance speech, he has changed his mind rather 

drastically! 

Einstein's simple explanation (Equation 1.3.1) completely accounted for the 

observed phenomena in Lenard's and Millikan's experiments (Figure 1.3.4) and 

began an investigation into the field we now call quantum mechanics. This new 

field seeks to provide a quantum explanation for classical mechanics and create a 

more unified theory of physics and thermodynamics. The study of the 

photoelectric effect has also lead to the creation of new field of photoelectron 

spectroscopy. Einstein's theory of the photoelectron presented a completely 

different way to measure Planck's constant than from black-body radiation. 

 The Workfunction ( ) 

The workfunction is an intrinsic property of the metal. While the workfunctions 

and ionization energies appear as similar concepts, they are independent. The 

workfunction of a metal is the minimum amount of energy ( ) necessary to 

remove an electron from the surface of the bulk (solid) metal (sometimes referred 

to as binding energy). 
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The workfunction is qualitatively like ionization energy (IE), which is the amount 

of energy required to remove an electron from an atom or molecule in 

the gaseous state. 

               

                                                                  

However, these two energies differ in magnitude (Table 1.3.11.3.1). For instance, 

copper has a workfunction of about 4.7 eV, but has a higher ionization energy of 

7.7 eV. Generally, the ionization energies for metals are greater than the 

corresponding workfunctions (i.e., the electrons are less tightly bound in bulk 

metal). 

 Example 1.3.1: Calcium 

a. What is the energy in joules and electron volts of a photon of 420-nm violet 

light? 

b. What is the maximum kinetic energy of electrons ejected from calcium by 

420-nm violet light, given that the workfunction for calcium metal is 2.71 

eV? 

 Strategy 

To solve part (a), note that the energy of a photon is given by     . For part 

(b), once the energy of the photon is calculated, it is a straightforward application 

of Equation 1.3.1 to find the ejected electron’s maximum kinetic energy, 

since   is given. 

Solution for (a) Photon energy is given by 

     

Since we are given the wavelength rather than the frequency, we solve the 

familiar relationship      for the frequency, yielding 

      

Combining these two equations gives the useful relationship 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.03%3A_Photoelectric_Effect_Explained_with_Quantum_Hypothesis#mjx-eqn-Eq1
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Now substituting known values yields 

                                         

             

Converting to eV, the energy of the photon is 

                                 

          

Solution for (b) 

Finding the kinetic energy of the ejected electron is now a simple application of 

Equation 1.3.1 Substituting the photon energy and binding energy yields 

         

                 

           

 Discussion 

The energy of this 420-nm photon of violet light is a tiny fraction of a joule, and so 

it is no wonder that a single photon would be difficult for us to sense directly—

humans are more attuned to energies on the order of joules. But looking at the 

energy in electron volts, we can see that this photon has enough energy to affect 

atoms and molecules. A DNA molecule can be broken with about 1 eV of energy, 

for example, and typical atomic and molecular energies are on the order of eV, so 

that the UV photon in this example could have biological effects. 

The ejected electron (called a photoelectron) has a rather low energy, and it 

would not travel far, except in a vacuum. The electron would be stopped by a 

retarding potential of 0.26 eV. In fact, if the photon wavelength were longer and 

its energy less than 2.71 eV, then the formula would give a negative kinetic 

energy, an impossibility. This simply means that the 420-nm photons with their 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.03%3A_Photoelectric_Effect_Explained_with_Quantum_Hypothesis#mjx-eqn-Eq1
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2.96-eV energy are not much above the frequency threshold. You can show for 

yourself that the threshold wavelength is 459 nm (blue light). This means that if 

calcium metal is used in a light meter, the meter will be insensitive to 

wavelengths longer than those of blue light. Such a light meter would be 

insensitive to red light, for example. 

 Exercise 1.3.1: Silver 

What is the longest-wavelength electromagnetic radiation that can eject a 

photoelectron from silver? Is this in the visible range? 

 Answer 

Given that the workfunction is 4.72 eV from Table 1.3.1, then only photons with 

wavelengths lower than 263 nm will induce photoelectrons (calculated via   

  ). This is ultraviolet and not in the visible range. 

 Exercise 1.3.2 

Why is the workfunction of an element generally lower than the ionization energy 

of that element? 

 Answer 

The workfunction of a metal refers to the minimum energy required to extract an 

electron from the surface of a (bulk) metal by the absorption a photon of light. 

The workfunction will vary from metal to metal. In contrast, ionization energy is 

the energy needed to detach electrons from atoms and varies with each 

particular atom, with the valence electrons require less energy to extract than 

core electrons (i.e., from lower shells) that are more closely bound to the nuclei. 

The electrons in the metal lattice there less bound (i.e., free to move within the 

metal) and removing one of these electrons is much easier than removing an 

electron from an atom because the metallic bond of the bulk metal reduces their 

binding energy. As we will show in subsequent chapters, the more delocalized a 

particle is, the lower its energy. 
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 Summary 

Although Hertz discovered the photoelectron in 1887, it was not until 1905 that a 

theory was proposed that explained the effect completely. The theory was 

proposed by Einstein, and it made the claim that electromagnetic radiation had to 

be thought of as a series of particles, called photons, which collide with the 

electrons on the surface and emit them. This theory ran contrary to the belief that 

electromagnetic radiation was a wave and thus it was not recognized as correct 

until 1916 when Robert Millikan experimentally confirmed the theory 

The photoelectric effect is the process in which electromagnetic radiation ejects 

electrons from a material. Einstein proposed photons to be quanta of 

electromagnetic radiation having energy      is the frequency of the radiation. 

All electromagnetic radiation is composed of photons. As Einstein explained, all 

characteristics of the photoelectric effect are due to the interaction of individual 

photons with individual electrons. The maximum kinetic energy     of ejected 

electrons (photoelectrons) is given by         , where    is the photon 

energy and   is the workfunction (or binding energy) of the electron to the 

particular material. 

 Conceptual Questions 

1. Is visible light the only type of electromagnetic radiation that can cause the 

photoelectric effect? 

2. Which aspects of the photoelectric effect cannot be explained without 

photons? Which can be explained without photons? Are the latter 

inconsistent with the existence of photons? 

3. Is the photoelectric effect a direct consequence of the wave character of 

electromagnetic radiation or of the particle character of electromagnetic 

radiation? Explain briefly. 

4. Insulators (nonmetals) have a higher    than metals, and it is more difficult 

for photons to eject electrons from insulators. Discuss how this relates to 

the free charges in metals that make them good conductors. 
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5. If you pick up and shake a piece of metal that has electrons in it free to 

move as a current, no electrons fall out. Yet if you heat the metal, electrons 

can be boiled off. Explain both facts as they relate to the amount and 

distribution of energy involved with shaking the object as compared with 

heating it. 

1.4: Matter Has Wavelike Properties 

 Learning Objectives 

 To introduce the wave-particle duality of light extends to matter 

The next real advance in understanding the atom came from an unlikely quarter - 

a student prince in Paris. Prince Louis de Broglie was a member of an illustrious 

family, prominent in politics and the military since the 1600's. Louis began his 

university studies with history, but his elder brother Maurice studied x-rays in his 

own laboratory, and Louis became interested in physics. After World War I, de 

Broglie focused his attention on Einstein's two major achievements, the theory of 

special relativity and the quantization of light waves. He wondered if there could 

be some connection between them. Perhaps the quantum of radiation really 

should be thought of as a particle. De Broglie suggested that if waves (photons) 

could behave as particles, as demonstrated by the photoelectric effect, then the 

converse, namely that particles could behave as waves, should be true. He 

associated a wavelength   to a particle with momentum pp using Planck's 

constant as the constant of proportionality: 

                                                                                                                                      

which is called the de Broglie wavelength. The fact that particles can behave as 

waves but also as particles, depending on which experiment you perform on 

them, is known as the particle-wave duality. 

 Deriving the de Broglie Wavelength 

From the discussion of the photoelectric effect, we have the first part of the 

particle-wave duality, namely, that electromagnetic waves can behave like 

particles. These particles are known as photons, and they move at the speed of 
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light. Any particle that moves at or near the speed of light has kinetic energy given 

by Einstein's special theory of relatively. In general, a particle of mass mm and 

momentum pp has an energy 

                                           √                                                                           

Note that if    , this reduces to the famous rest-energy expression      . 

However, photons are massless particles (technically rest-massless) that always 

have a finite momentum p. In this case, Equation 1.4.2 becomes 

      

From Planck's hypothesis, one quantum of electromagnetic radiation has energy 

     Thus, equating these two expressions for the kinetic energy of a photon, 

we have 

           

Solving for the wavelength λ gives Equation 1.6.1: 

                                                                                                                          

Where,   is the velocity of the particle. Hence, de Broglie argued that if particles 

can behave as waves, then a relationship like this, which pertains particularly to 

waves, should also apply to particles. 

Equation 1.4.3 allows us to associate a wavelength   to a particle with 

momentum  . As the momentum increases, the wavelength decreases. In both 

cases, this means the energy becomes larger. i.e., short wavelengths and high 

momenta correspond to high energies. 

It is a common feature of quantum mechanics that particles and waves with short 

wavelengths correspond to high energies and vice versa. 

Having decided that the photon might well be a particle with a rest mass, even if 

very small, it dawned on de Broglie that in other respects it might not be too 

different from other particles, especially the very light electron. In particular, may 

be the electron also had an associated wave. The obvious objection was that if 
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the electron was wavelike, why had no diffraction or interference effects been 

observed? But there was an answer. If de Broglie's relation between momentum 

and wavelength also held for electrons, the wavelength was sufficiently short that 

these effects would be easy to miss. As de Broglie himself pointed out, the wave 

nature of light is not very evident in everyday life. As the next section will 

demonstrate, the validity of de Broglie’s proposal was confirmed by electron 

diffraction experiments of G.P. Thomson in 1926 and of C. Davisson and L. H. 

Germer in 1927. In these experiments it was found that electrons were scattered 

from atoms in a crystal and that these scattered electrons produced an 

interference pattern. These diffraction patterns are characteristic of wave-like 

behavior and are exhibited by both electrons (i.e., matter) and electromagnetic 

radiation (i.e., light). 

 Example 1.4.1: Electron Waves 

Calculate the de Broglie wavelength for an electron with a kinetic energy of 1000 

eV. 

 Solution 

To calculate the de Broglie wavelength (Equation 1.4.3), the momentum of the 

particle must be established and requires knowledge of both the mass and 

velocity of the particle. The mass of an electron is 9.109383×10−28g and the 

velocity is obtained from the given kinetic energy of 1000 eV: 

                      

Solve for momentum 

  √     

convert to SI units 

  √                                              

expanding definition of joule into base SI units and cancel 

  √                                      
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 √                  

                 

Now substitute the momentum into the equation for de Broglie's wavelength 

(Equation 1.6.1) with Planck constant (                  ). After expanding 

expanding unites in Planks constant 

      

                                                                                

                         

 Exercise 1.4.1: Baseball Waves 

Calculate the de Broglie wavelength for a fast ball thrown at 100 miles per hour 

and weighing 4 ounces. Comment on whether the wave properties of baseballs 

could be experimentally observed. 

 Answer 

Following the unit conversions below, a 4 oz baseball has a mass of 0.11 kg. The 

velocity of a fast ball thrown at 100 miles per hour in m/s is 44.7 m/s. 

                             

                                             

The de Broglie wavelength of this fast ball is: 
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1.5: de Broglie Waves can be Experimentally Observed 

 Learning Objectives 

 To present the experimental evidence behind the wave-particle duality of 

matter 

The validity of de Broglie’s proposal was confirmed by electron diffraction 

experiments of G.P. Thomson in 1926 and of C. Davisson and L. H. Germer in 

1927. In these experiments it was found that electrons were scattered from 

atoms in a crystal and that these scattered electrons produced an interference 

pattern. The interference pattern was just like that produced when water waves 

pass through two holes in a barrier to generate separate wave fronts that 

combine and interfere with each other. These diffraction patterns are 

characteristic of wave-like behavior and are exhibited by both matter (e.g., 

electrons and neutrons) and electromagnetic radiation. Diffraction patterns are 

obtained if the wavelength is comparable to the spacing between scattering 

centers. 

Diffraction occurs when waves encounter obstacles whose size is comparable with 
its wavelength. 

Continuing with our analysis of experiments that lead to the new quantum 
theory, we now look at the phenomenon of electron diffraction. 

 Diffraction of Light (Light as a Wave) 

It is well-known that light has the ability to diffract around objects in its path, 

leading to an interference pattern that is particular to the object. This is, in fact, 

how holography works (the interference pattern is created by allowing the 

diffracted light to interfere with the original beam so that the hologram can be 

viewed by shining the original beam on the image). A simple illustration of light 

diffraction is the Young double slit experiment (Figure 1.5.1). 

https://phys.libretexts.org/TextBooks_and_TextMaps/University_Physics/Book%3A_University_Physics_(OpenStax)/Map%3A_University_Physics_III_-_Optics_and_Modern_Physics_(OpenStax)/3%3A_Interference/3.1%3A_Young's_Double-Slit_Interference
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Figure 1.5.1: Young double slit experiment. Two slits are illuminated by a plane light waves. (CC 
BY-NC; Ümit Kaya) 
 

Here, light as waves (pictured as waves in a plane parallel to the double slit 

apparatus) impinge on the two slits. Each slit then becomes a point source for 

spherical waves that subsequently interfere with each other, giving rise to the 

light and dark fringes on the screen at the right. 

Interference is a wave phenomenon in which two waves superimpose to form a 

resultant wave of greater or lower amplitude. It is the primary property used to 

identify wave behavior. 

 Diffraction of Electrons (Electrons as Waves) 

According to classical physics, electrons should behave like particles - they travel 

in straight lines and do not curve in flight unless acted on by an external agent, 

like a magnetic field. In this model, if we fire a beam of electrons through a 

double slit onto a detector, we should get two bands of "hits", much as you would 

get if you fired a machine gun at the side of a house with two windows - you 

would get two areas of bullet-marked wall inside, and the rest would be intact 

Figure 1.5.2 (left). 
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Figure 1.5.2: (left) classical model of electrons. (right) wave property of electrons. (CC BY-NC; 
Ümit Kaya) 

However, if the slits are made small enough and close enough together, we 

actually observe the electrons are diffracting through the slits and interfering with 

each other just like waves. This means that the electrons have wave-particle 

duality, just like photons, in agreement with de Broglie's hypothesis discussed 

previously. In this case, they must have properties like wavelength and frequency. 

We can deduce the properties from the behavior of the electrons as they pass 

through our diffraction grating. 

This was a pivotal result in the development of quantum mechanics. Just as the 

photoelectric effect demonstrated the particle nature of light, the Davisson–

Germer experiment showed the wave-nature of matter and completed the theory 

of wave-particle duality. For physicists this idea was important because it meant 

that not only could any particle exhibit wave characteristics, but that one could 

use wave equations to describe phenomena in matter if one used the de Broglie 

wavelength. 
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Figure 1.5.3: An image of an ant in a scanning electron microscope based on the wave 

properties of electrons. (Public Domain; United States Geological Survey, an agency of the 
United States Department of the Interior) 

An electron microscope uses a beam of accelerated electrons as a source of 

illumination. Since the wavelength of electrons can be up to 100,000 times 

shorter than that of visible light photons, electron microscopes have a higher 

resolving power than light microscopes and can reveal the structure of smaller 

objects. A transmission electron microscope can achieve better than 50 pm 

resolution and magnifications of up to about 10,000,000  whereas most light 

microscopes are limited by diffraction to about 200 nm resolution and useful 

magnifications below 2000  (Figure 1.5.3). 

 Is Matter a Particle or a Wave? 

An electron, indeed, any particle, is neither a particle nor a wave. Describing the 

electron as a particle is a mathematical model that works well in some 

circumstances while describing it as a wave is a different mathematical model 

that works well in other circumstances. When you choose to do some calculation 

of the electron's behavior that treats it either as a particle or as a wave, you're 

not saying the electron is a particle or is a wave: you're just choosing the 

mathematical model that makes it easiest to do the calculation. 

 

 Neutrons Diffraction (Neutrons as Waves) 



48 
 

Like all quantum particles, neutrons can also exhibit wave phenomena and if that 

wavelength is short enough, atoms or their nuclei can serve as diffraction 

obstacles. When a beam of neutrons emanating from a reactor is slowed down 

and selected properly by their speed, their wavelength lies near one angstrom 

(0.1 nanometer), the typical separation between atoms in a solid material. Such a 

beam can then be used to perform a diffraction experiment. Neutrons interact 

directly with the nucleus of the atom, and the contribution to the diffracted 

intensity depends on each isotope; for example, regular hydrogen and deuterium 

contribute differently. It is also often the case that light (low Z) atoms contribute 

strongly to the diffracted intensity even in the presence of large Z atoms. 

Example 1.7.1: Neutron Diffraction 

Neutrons have no electric charge, so they do not interact with the atomic 

electrons. Hence, they are very penetrating (e.g., typically 10 cm in lead). Neutron 

diffraction was proposed in 1934, to exploit de Broglie’s hypothesis about the 

wave nature of matter. Calculate the momentum and kinetic energy of a neutron 

whose wavelength is comparable to atomic spacing (          ). 

 Solution 

This is a simple use of de Broglie’s equation 

      

where we recognize that the wavelength of the neutron must be comparable to 

atomic spacing (let's assumed equal for convenience, so λ=1.8×10−10m). 

Rearranging the de Broglie wavelength relationship above to solve for momentum 

( ): 

      

                        

                   

The relationship for kinetic energy is 
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where v is the velocity of the particle. From the reference table of physical 

constants, the mass of a neutron is                  , so 

                                               

            

The neutrons released in nuclear fission are ‘fast’ neutrons, i.e., much more 

energetic than this. Their wavelengths be much smaller than atomic dimensions 

and will not be useful for neutron diffraction. We slow down these fast neutrons 

by introducing a "moderator", which is a material (e.g., graphite) that neutrons 

can penetrate, but will slow down appreciable. 
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1.6: The Heisenberg Uncertainty Principle 

 Learning Objectives 

 To understand that sometimes you cannot know everything about a 

quantum system as demonstrated by the Heisenberg uncertainly principle. 

In classical physics, studying the behavior of a physical system is often a simple 

task since several physical qualities can be measured simultaneously. However, 

this possibility is absent in the quantum world. In 1927 the German physicist 

Werner Heisenberg described such limitations as the Heisenberg Uncertainty 

Principle, or simply the Uncertainty Principle, stating that it is not possible to 

measure both the momentum and position of a particle simultaneously. 

The Heisenberg Uncertainty Principle is a fundamental theory in quantum 

mechanics that defines why a scientist cannot measure multiple quantum 

variables simultaneously. Until the dawn of quantum mechanics, it was held as a 

fact that all variables of an object could be known to exact precision 

simultaneously for a given moment. Newtonian physics placed no limits on how 

better procedures and techniques could reduce measurement uncertainty so that 

it was conceivable that with proper care and accuracy all information could be 

defined. Heisenberg made the bold proposition that there is a lower limit to this 

precision making our knowledge of a particle inherently uncertain. 

 Probability 

Matter and photons are waves, implying they are spread out over some distance. 

What is the position of a particle, such as an electron? Is it at the center of the 

wave? The answer lies in how you measure the position of an electron. 

Experiments show that you will find the electron at some definite location, unlike 

a wave. But if you set up exactly the same situation and measure it again, you will 

find the electron in a different location, often far outside any experimental 

uncertainty in your measurement. Repeated measurements will display a 

statistical distribution of locations that appears wavelike (Figure 1.6.1). 
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Figure 1.6.1: The building up of the diffraction pattern of electrons scattered from a crystal 

surface. Each electron arrives at a definite location, which cannot be precisely predicted. The 

overall distribution shown at the bottom can be predicted as the diffraction of waves having 

the de Broglie wavelength of the electrons. Image used with permission (CC BY; OpenStax). 

After de Broglie proposed the wave nature of matter, many physicists, including 

Schrödinger and Heisenberg, explored the consequences. The idea quickly 

emerged that, because of its wave character, a particle’s trajectory and 

destination cannot be precisely predicted for each particle individually. However, 

each particle goes to a definite place (Figure 1.6.1). After compiling enough data, 

you get a distribution related to the particle’s wavelength and diffraction pattern. 

There is a certain probability of finding the particle at a given location, and the 

overall pattern is called a probability distribution. Those who developed quantum 

mechanics devised equations that predicted the probability distribution in various 

circumstances. 

It is somewhat disquieting to think that you cannot predict exactly where an 

individual particle will go, or even follow it to its destination. Let us explore what 

happens if we try to follow a particle. Consider the double-slit patterns obtained 
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for electrons and photons in Figure 1.6.2. The interference patterns build up 

statistically as individual particles fall on the detector. This can be observed for 

photons or electrons—for now, let us concentrate on electrons. You might 

imagine that the electrons are interfering with one another as any waves do. To 

test this, you can lower the intensity until there is never more than one electron 

between the slits and the screen. The same interference pattern builds up! 

This implies that a particle’s probability distribution spans both slits, and the 

particles actually interfere with themselves. Does this also mean that the electron 

goes through both slits? An electron is a basic unit of matter that is not divisible. 

But it is a fair question, and so we should look to see if the electron traverses one 

slit or the other, or both. One possibility is to have coils around the slits that 

detect charges moving through them. What is observed is that an electron always 

goes through one slit or the other; it does not split to go through both. 

But there is a catch. If you determine that the electron went through one of the 

slits, you no longer get a double slit pattern—instead, you get single slit 

interference. There is no escape by using another method of determining which 

slit the electron went through. Knowing the particle went through one slit force a 

single-slit pattern. If you do not observe which slit the electron goes through, you 

obtain a double-slit pattern. How does knowing which slit the electron passed 

through change the pattern? The answer is fundamentally important 

measurement affects the system being observed. Information can be lost, and in 

some cases, it is impossible to measure two physical quantities simultaneously to 

exact precision. For example, you can measure the position of a moving electron 

by scattering light or other electrons from it. Those probes have momentum 

themselves, and by scattering from the electron, they change its momentum in a 

manner that loses information. There is a limit to absolute knowledge, even in 

principle. 

 Heisenberg’s Uncertainty Principle 

It is mathematically possible to express the uncertainty that, Heisenberg 

concluded, always exists if one attempts to measure the momentum and position 
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of particles. First, we must define the variable “ ” as the position of the particle 

and define “ ” as the momentum of the particle. The momentum of a photon of 

light is known to simply be its frequency, expressed by the ratio    , where h 

represents Planck’s constant and   represents the wavelength of the photon. The 

position of a photon of light is simply its wavelength ( ). To represent finite 

change in quantities, the Greek uppercase letter delta, or Δ, is placed in front of 

the quantity. Therefore, 

                                                                                                                                    

                                                                                                                                       

By substituting    for   into Equation 1.6.1, we derive 

                                                                                                                                  

or, 

                                                                                                                                                                            
                                                                               early form of uncertainty principle 

 A Common Trend in Quantum Systems 

Equation 1.6.4 can be derived by assuming the particle of interest is behaving as a 

particle, and not as a wave. Simply let                      (from De 

Broglie’s expression for the wavelength of a particle). Substituting in    for    in 

the second equation leads to Equation 1.6.4. 

Equation 1.6.4 was further refined by Heisenberg and his colleague Niels Bohr, 
and was eventually rewritten as 

                                                                                                                     

with                       
          

Equation 1.6.5 reveals that the more accurately a particle’s position is known (the 

smaller    is), the less accurately the momentum of the particle in the x direction 

(   ) is known. Mathematically, this occurs because the smaller    becomes, the 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.09%3A_The_Heisenberg_Uncertainty_Principle#mjx-eqn-1.9.1
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.09%3A_The_Heisenberg_Uncertainty_Principle#mjx-eqn-1.9.4
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.09%3A_The_Heisenberg_Uncertainty_Principle#mjx-eqn-1.9.4
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.09%3A_The_Heisenberg_Uncertainty_Principle#mjx-eqn-1.9.4
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.09%3A_The_Heisenberg_Uncertainty_Principle#mjx-eqn-1.9.5
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larger     must become in order to satisfy the inequality. However, the more 

accurately momentum is known the less accurately position is known 

(Figure 1.6.2). 

 

Figure 1.6.2: The animation shows the relevant spreads in the uncertainty for position and 

momentum of light/photons (light wave's corresponding photon particle). From the result of de 

Broglie, we know that for a particle with known momentum, pp will have a precise value for its 

de Broglie wavelength can be determined (and hence a specific color of the light). 

 What is the Proper Definition of Uncertainty? 

Equation 1.6.5 relates the uncertainty of momentum and position. An immediate 

question that arises is if    represents the full range of possible   values or if it is 

half (e.g., ⟨ ⟩    ).    is the standard deviation and is a statistic measure of the 

spread of   values? The use of half the possible range is more accurate estimate 

of   . As we will demonstrated later, once we construct a wavefunction to 

describe the system, then both xx and    can be explicitly derived. However for 

now, Equation 1.6.5 will work. 

For example: If a problem argues a particle is trapped in a box of length, L, then 

the uncertainly of it position is ±L/2. So the value of    used in 

Equation 1.6.5 should be L/2, not L.   

 Example 1.6.1 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.09%3A_The_Heisenberg_Uncertainty_Principle#mjx-eqn-1.9.5
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.09%3A_The_Heisenberg_Uncertainty_Principle#mjx-eqn-1.9.5
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.09%3A_The_Heisenberg_Uncertainty_Principle#mjx-eqn-1.9.5
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An electron is confined to the size of a magnesium atom with a 150 pm radius. 
What is the minimum uncertainty in its velocity? 

 Solution 

The uncertainty principle (Equation 1.6.5): 

         

can be written 

         

and substituting        since the mass is not uncertain. 

          

the relevant parameters are mass of electron                       

uncertainty in position:                

             
                                                   

             

 Exercise 1.6.1 

What is the maximum uncertainty of velocity the electron described in 
Example 1.9.1? 

 Answer 

Infinity. There is no limit in the maximum uncertainty, just the minimum 
uncertainty. 

 Example 1.6.2 

The speed of a 1.0 g projectile is known to within     m/s. 

a. Calculate the minimum uncertainty in its position. 

b. What is the maximum uncertainty of its position? 

 Solution 

a) From Equation 1.6.5, the          with m=1.0 g. Solving for    to get 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.09%3A_The_Heisenberg_Uncertainty_Principle#mjx-eqn-1.9.5
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.09%3A_The_Heisenberg_Uncertainty_Principle#mjx-eqn-1.9.5
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This negligible for all intents and purpose as expected for any macroscopic object. 

b) Unlimited (or the size of the universe). The Heisenberg uncertainty 

principles does not quantify the maximum uncertainty. 

 Exercise 1.6.2 

Estimate the minimum uncertainty in the speed of an electron confined to a 

hydrogen atom within a diameter of 1×      ? 

 Answer 

We need to quantify the uncertainty of the electron in position. We can estimate 

that as ±5×10−10 m. Hence, substituting the relevant numbers into 

Equation 1.6.5 and solving for    we get 

                 

Notice that the uncertainty is significantly greater for the electron in a hydrogen 

atom than in the magnesium atom (Example 1.6.1) as expected since the 

magnesium atom is appreciably bigger. 

Heisenberg’s Uncertainty Principle not only helped shape the new school of 

thought known today as quantum mechanics, but it also helped discredit older 

theories. Most importantly, the Heisenberg Uncertainty Principle made it obvious 

that there was a fundamental error in the Bohr model of the atom. Since the 

position and momentum of a particle cannot be known simultaneously, Bohr’s 

theory that the electron traveled in a circular path of a fixed radius orbiting the 

nucleus was obsolete. Furthermore, Heisenberg’s uncertainty principle, when 

combined with other revolutionary theories in quantum mechanics, helped shape 

wave mechanics and the current scientific understanding of the atom. 

 Humor: Heisenberg and the Police 

Heisenberg get pulled over for speeding by the police. The officer asks him "Do you 
know how fast you were going?" 
Heisenberg replies, "No, but we know exactly where we are!" 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.09%3A_The_Heisenberg_Uncertainty_Principle#mjx-eqn-1.9.5
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The officer looks at him confused and says, "you were going 108 miles per hour!" 
Heisenberg throws his arms up and cries, "Great! Now we're lost!" 
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2.1: The One-Dimensional Wave Equation 

 Learning Objectives 

 To introduce the wave equation including time and position dependence 

In the most general sense, waves are particles or other media with wavelike 

properties and structure (presence of crests and troughs). 

Figure 2.1.1: A simple translational (transverse) wave. (CC BY-SA 4.0 International; And 1mu via 

Wikimedia Commons) 

The simplest wave is the (spatially) one-dimensional sine wave (Figure 2.1.1) with 

a varying amplitude AA described by the equation: 

                                                                                                             

Where, 

    is the maximum amplitude of the wave, maximum distance from the 

highest point of the disturbance in the medium (the crest) to the 

equilibrium point during one wave cycle. In Figure 2.1.1, this is the 

maximum vertical distance between the baseline and the wave. 

   is the space coordinate 

   is the time coordinate 

   is the wavenumber 

   is the angular frequency 
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   is the phase constant. 

One can categorize “waves” into two different groups: traveling 

waves and stationary waves. 

 Traveling Waves 

Traveling waves, such as ocean waves or electromagnetic radiation, are waves 

that “move,” meaning that they have a frequency and are propagated through 

time and space. Another way of describing this property of “wave movement” is 

in terms of energy transmission – a wave travels, or transmits energy, over a set 

distance. The most important kinds of traveling waves in everyday life are 

electromagnetic waves, sound waves, and perhaps water waves, depending on 

where you live. It is difficult to analyze waves spreading out in three dimensions, 

reflecting off objects, etc., so we begin with the simplest interesting examples of 

waves, those restricted to move along a line. Let’s start with a rope, like a 

clothesline, stretched between two hooks. You take one end off the hook, holding 

the rope, and, keeping it stretched fairly tight, wave your hand up and back once. 

If you, do it fast enough, you’ll see a single bump travel along the rope: 

 

Figure 2.1.2: A one-dimensional traveling wave at one instance of time    

This is the simplest example of a traveling wave. You can make waves of different 

shapes by moving your hand up and down in different patterns, for example an 

upward bump followed by a dip, or two bumps. You’ll find that the traveling 

wave keeps the same shape as it moves down the rope. Taking the rope to be 
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stretched tightly enough that we can take it to be horizontal, we’ll use its rest 

position as our x-axis (Figure 2.1.1). The y-axis is taken vertically upwards, and we 

only wave the rope in an up-and-down way, so actually        will be how far 

from the rope is from its rest position at   at time  : that is, Figure 2.1.2 shows 

where the rope is at a single time  . 

We can now express the observation that the wave “keeps the same shape” more 

precisely. Taking for convenience time t=0 to be the moment when the peak of 

the wave passes x=0, we graph here the rope’s position at       and some later 

times t as a movie (Figure 2.1.3). Denoting the first function by            , 

then the second               : it is the same function with the “same 

shape,” but just moved over by   , where v is the velocity of the wave. 

 

Figure 2.1.3: A one-dimensional traveling wave at as a function of time. Traveling waves 

propagate energy from one spot to another with a fixed velocity vv. (CC BY-NC-ND; Daniel A. 

Russell). 

To summarize: on sending a traveling wave down a rope by jerking the end up and 

down, from observation the wave travels at constant speed and keeps its shape, 

so the displacement y of the rope at any horizontal position at x at time t has the 

form 

                                                                                                                         

We are neglecting frictional effects—in a real rope, the bump gradually gets 

smaller as it moves along. 

 Standing Waves 

In contrast to traveling waves, standing waves, or stationary waves, remain in a 

constant position with crests and troughs in fixed intervals. One way of producing 

http://www.acs.psu.edu/drussell/
http://www.acs.psu.edu/drussell/
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a variety of standing waves is by plucking a melody on a set of guitar or violin 

strings. When placing one’s finger on a part of the string and then plucking it with 

another, one has created a standing wave. The solutions to this problem involve 

the string oscillating in a sine-wave pattern (Figure 2.1.4) with no vibration at the 

ends. There is also no vibration at a series of equally spaced points between the 

ends; these "quiet" places are nodes. The places of maximum oscillation 

are antinodes. 

Figure 2.1.4: Animation of standing wave in the stationary medium with marked wave nodes 

(red circles). (Public domain; Lucas VB). 

 Bound vs. Free particles and Traveling vs. Stationary Waves 

Traveling waves exhibit movement and propagate through time and space and 

stationary wave have crests and troughs at fixed intervals separated by nodes. 

"Free" particles like the photoelectron discussed in the photoelectron effect, 

exhibit traveling wave like properties. In contrast, electrons that are "bound" 

waves will exhibit stationary wave like properties. The latter was invoked for the 

Bohr atom for quantizing angular moment of an electron bound within a 

hydrogen atom. 

 The Wave Equation 

The mathematical description of the one-dimensional waves (both traveling and 

standing) can be expressed as 

                                                                                                                        

with   is the amplitude of the wave at position   and time  , and   is the velocity 

of the wave (Figure 2.1.2). 

https://human.libretexts.org/Textbook_Maps/Music/Understanding_Basic_Music_Theory_(OpenSTAX)/4%3A_The_Physical_Basis/4.2%3A_Standing_Waves_and_Musical_Instruments
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Equation 2.1.3 is called the classical wave equation in one dimension and is 

a linear partial differential equation. It tells us how the displacement u can change 

as a function of position and time and the function. The solutions to the wave 

equation (        are obtained by appropriate integration techniques. It may not 

be surprising that not all possible waves will satisfy Equation 2.1.3 and the waves 

that do must satisfy both the initial conditions and the boundary conditions, i.e. 

on how the wave is produced and what is happening on the ends of the string. 

For example, for a standing wave of string with length   held taut at two ends 

(Figure 2.1.3), the boundary conditions are 

                                                                                                                                    

and 

                                                                                                                                    

for all values of  . As expected, different system will have different boundary 

conditions and hence different solutions. 

 Summary 

Waves which exhibit movement and are propagated through time and space. The 

two basic types of waves are traveling and stationary. Both exhibit wavelike 

properties and structure (presence of crests and troughs) which can be 

mathematically described by a wavefunction or amplitude function. Both wave 

types display movement (up and down displacement), but in different ways. 

Traveling waves have crests and troughs which are constantly moving from one 

point to another as they travel over a length or distance. In this way, energy is 

transmitted along the length of a traveling wave. In contrast, standing waves have 

nodes at fixed positions; this means that the wave’s crests and troughs are also 

located at fixed intervals. Therefore, standing waves only experience vibrational 

movement (up and down displacement) on these set intervals - no movement or 

energy travels along the length of a standing wave. 

 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/02%3A_The_Classical_Wave_Equation/2.01%3A_The_One-Dimensional_Wave_Equation#mjx-eqn-2.1.1_1
http://mathwiki.ucdavis.edu/Analysis/Partial_differential_equations
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/02%3A_The_Classical_Wave_Equation/2.01%3A_The_One-Dimensional_Wave_Equation#mjx-eqn-2.1.1_1
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 The Schrödinger Equation and a Particle in a Box 

The particle in a box model provides one of the very few problems in quantum 

mechanics which can be solved analytically, without approximations. This means 

that the observable properties of the particle (such as its energy and position) are 

related to the mass of the particle and the width of the well by simple 

mathematical expressions. Due to its simplicity, the model allows insight into 

quantum effects without the need for complicated mathematics 

3.1: The Schrödinger Equation 

 Learning Objectives 

 To be introduced to the general properties of the Schrödinger equation and 

its solutions. 

De Broglie’s doctoral thesis, defended at the end of 1924, created a lot of 

excitement in European physics circles. Shortly after it was published in the fall of 

1925 Pieter Debye, Professor of Theoretical Physics at Zurich and Einstein's 

successor, suggested to Erwin Schrödinger that he give a seminar on de Broglie’s 

work. Schrödinger gave a polished presentation, but at the end Debye remarked 

that he considered the whole theory rather childish: why should a wave confine 

itself to a circle in space? It wasn’t as if the circle was a waving circular string, real 

waves in space diffracted and diffused, in fact they obeyed three-dimensional 

wave equations, and that was what was needed. This was a direct challenge to 

Schrödinger, who spent some weeks in the Swiss mountains working on the 

problem and constructing his equation. There is no rigorous derivation of 

Schrödinger’s equation from previously established theory, but it can be made 

very plausible by thinking about the connection between light waves and 

photons, and construction an analogous structure for de Broglie’s waves and 

electrons (and, later, other particles). 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box
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 The Schrödinger Equation: A Better Approach 

While the Bohr model is able to predict the allowed energies of any single-

electron atom or cation, it by no means, a general approach. Moreover, it relies 

heavily on classical ideas, clumsily grafting quantization onto an essentially 

classical picture, and therefore, provides no real insights into the true quantum 

nature of the atom. Any rule that might be capable of predicting the allowed 

energies of a quantum system must also account for the wave-particle duality and 

implicitly include a wave-like description for particles. Nonetheless, we will 

attempt a heuristic argument to make the result at least plausible. In classical 

electromagnetic theory, it follows from Maxwell's equations that each component 

of the electric and magnetic fields in vacuum is a solution of the 3-D wave 

equation for electromagnetic waves: 

                                                                                                

The wave equation in Equation 3.1.1 is the three-dimensional analog to the wave 

equation presented earlier (Equation 2.1.1) with the velocity fixed to the known 

speed of light: c. Instead of a partial derivative ∂2/∂x2 in one dimension, 

the Laplacian (or "del-squared") operator is introduced: 

                                                                                                                                      

Corresponding, the solution to this 3D equation wave equation is a function 

of four independent variables:         and   and is generally called 

the wavefunction  . 

We will attempt now to create an analogous equation for de Broglie's matter 

waves. Accordingly, let us consider an only 1-dimensional wave motion 

propagating in the x-direction. At a given instant of time, the form of a wave 

might be represented by a function such as 

                                                                                                                            

https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Map%3A_University_Physics_II_-_Thermodynamics%2C_Electricity%2C_and_Magnetism_(OpenStax)/16%3A_Electromagnetic_Waves/16.1%3A_Maxwell%E2%80%99s_Equations_and_Electromagnetic_Waves
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.01%3A_The_Schrodinger_Equation#mjx-eqn-3.1.1
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where      represents a sinusoidal function such as                      or 

some linear combination of these. The most suggestive form will turn out to be 

the complex exponential, which is related to the sine and cosine by Euler's 

formula 

                                                                                                                   

Each of the above is a periodic function, its value repeating every time its 

argument increases by   . This happens whenever x increases by one 

wavelength  . At a fixed point in space, the time-dependence of the wave has an 

analogous structure: 

                                                                                                                               

where   gives the number of cycles of the wave per unit time. Taking into account 

both   and   dependence, we consider a wavefunction of the form 

                                                    [           ]                                              

representing waves traveling from left to right. Now we make use of the Planck 

formula (    ) and de Broglie formulas (    ) to replace   and   by their 

particle analogs. This gives 

                                                   [          ]                                                 

Where, 

                                                                                                                                    

Since Planck's constant occurs in most formulas with the denominator   , 

the   symbol was introduced by Paul Dirac. Equation 3.1.5 represents in some 

way the wavelike nature of a particle with energy   and momentum  . The time 

derivative of Equation 3.1.7 gives 

                                                    [          ]                                      

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.01%3A_The_Schrodinger_Equation#mjx-eqn-3.1.5
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.01%3A_The_Schrodinger_Equation#mjx-eqn-3.1.7
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Thus from a simple comparison of Equations 3.1.7 and 3.1.9 

                                                                                                                            

or analogously differentiation of Equation 3.1.9 with respect to   

                                                                                                                         

and then the second derivative 

                                                                                                                       

The energy and momentum for a nonrelativistic free particle (i.e., all energy is 

kinetic with no potential energy involved) are related by 

                                                                                                                 

Substituting Equations 3.1.12 and 3.1.10 into Equation 3.1.13 shows 

that        satisfies the following partial differential equation 

                                                                                                                   

Equation 3.1.14 is the applicable differential equation describing the 

wavefunction of a free particle that is not bound by any external forces or 

equivalently not in a region where its potential energy        varies. 

For a particle with a non-zero potential energy     , the total energy   is then a 

sum of kinetics and potential energies 

                                                                                                                       

we postulate that Equation 3.1.3 for matter waves can be generalized to 

                                         [                    ]                 (3.1.16) 

time-dependent Schrödinger equation in 1D 

For matter waves in three dimensions, Equation 3.1.6 is then expanded 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.01%3A_The_Schrodinger_Equation#mjx-eqn-3.1.7
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.01%3A_The_Schrodinger_Equation#mjx-eqn-3.1.9
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.01%3A_The_Schrodinger_Equation#mjx-eqn-3.1.9
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.01%3A_The_Schrodinger_Equation#mjx-eqn-3.1.12
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.01%3A_The_Schrodinger_Equation#mjx-eqn-3.1.10
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.01%3A_The_Schrodinger_Equation#mjx-eqn-3.1.13
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.01%3A_The_Schrodinger_Equation#mjx-eqn-3.1.14
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.01%3A_The_Schrodinger_Equation#mjx-eqn-3.1.3
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.01%3A_The_Schrodinger_Equation#mjx-eqn-3.1.6
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                            (  ⃗  )     *             (  ⃗)+ (  ⃗  )                          

(3.1.17) 

time-dependent Schrödinger equation in 3D 

Here the potential energy and the wavefunctions Ψ depend on the three space 

coordinates          which we write for brevity as   ⃗. Notice that the potential 

energy is assumed to depend on position only and not time (i.e., particle motion). 

This is applicable for conservative forces that a potential energy 

function  (  ⃗) can be formulated. 

 The Laplacian Operator 

The three second derivatives in parentheses together are called the Laplacian 

 operator, or del-squared, 

       

                                                                                                       

with the del operator, 

                                      

  (  ⃗       ⃗       ⃗    )                                          

Remember from basic calculus that when the del operator is directly operates on 

a field (e.g.,          , it denotes the gradient (i.e., the locally steepest slope) of 

the field. The symbols with arrows in Equation 3.1.19 are unit vectors. 

Equation 3.1.17 is the time-dependent Schrödinger equation describing the 

wavefunction amplitude  (  ⃗  ) of matter waves associated with the particle 

within a specified potential  (  ⃗)  Its formulation in 1926 represents the start of 

modern quantum mechanics (Heisenberg in 1925 proposed another version 

known as matrix mechanics). 

https://phys.libretexts.org/TextMaps/General_Physics_TextMaps/Map%3A_University_Physics_(OpenStax)/Map%3A_University_Physics_I_(OpenStax)/8%3A_Potential_Energy_and_Conservation_of_Energy/8.2%3A_Conservative_and_Non-Conservative_Forces
https://math.libretexts.org/Bookshelves/Calculus/Supplemental_Modules_(Calculus)/Vector_Calculus/1%3A_Vector_Basics/2%3A_The_Gradient
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.01%3A_The_Schrodinger_Equation#mjx-eqn-3-21
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.01%3A_The_Schrodinger_Equation#mjx-eqn-3.1.17


69 
 

For conservative systems, the energy is a constant, and the time-dependent factor 

from Equation 3.1.7 can be separated from the space-only factor (via 

the Separation of Variables technique discussed in Section 2.2) 

                                      

 (  ⃗  )   (  ⃗)                                                              

where    ⃗   is a wavefunction dependent (or time-independent) wavefuction 

that only depends on space coordinates. Putting Equation 3.1.20 into 

Equation 3.1.17 and cancelling the exponential factors, we obtain the time-

independent Schrödinger equation: 

                          [              ⃗  ]   ⃗        ⃗                                          

 time-independent Schrödinger equation 

The overall form of the Equation 3.1.21 is not unusual or unexpected as it uses 

the principle of the conservation of energy. Most of our applications of quantum 

mechanics to chemistry will be based on this equation (with the exception of 

spectroscopy). The terms of the time-independent Schrödinger equation can then 

be interpreted as total energy of the system, equal to the system kinetic energy 

plus the system potential energy. In this respect, it is just the same as in classical 

physics. 

 Time Dependence to the Wavefunctions 

Notice that the wavefunctions used with the time-independent Schrödinger 

equation (i.e.,    ⃗   do not have explicit t dependences like the wavefunctions of 

time-dependent analog in Equation 3.1.17 (i.e.,    ⃗       That does not 

imply that there is no time dependence to the wavefunction. 

Equation 3.1.20 argues that the time-dependent (i.e., full spatial and temporal) 

wavefunction     ⃗      differs from the time-independent (i.e., spatial only) 

wavefunction    ⃗    by a "phase factor" of constant magnitude. Using the Euler 

relationship in Equation 3.1.4, the total wavefunction above can be expanded 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.01%3A_The_Schrodinger_Equation#mjx-eqn-3.1.7
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.01%3A_The_Schrodinger_Equation#mjx-eqn-3.1.18
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.01%3A_The_Schrodinger_Equation#mjx-eqn-3.1.17
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.01%3A_The_Schrodinger_Equation#mjx-eqn-3.1.19
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.01%3A_The_Schrodinger_Equation#mjx-eqn-3.1.17
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.01%3A_The_Schrodinger_Equation#mjx-eqn-3.1.18
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.01%3A_The_Schrodinger_Equation#mjx-eqn-3.1.4
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                                ⃗        ⃗                                                       

This means the total wavefunction has a complex behavior with a real part and an 

imaginary part. Moreover, using the trigonometry identity               

      Equation 3.1.22 can further simplified to 

                            ⃗       ⃗               ⃗                               

This shows that both the real and the imaginary components of the total 

wavefunction oscillate the imaginary part of the total wavefunction oscillates out 

of phase by     with respect to the real part. 

Note that while all wavefunctions have a time-dependence, that dependence may 

not impact in simple quantum problems as the next sections discuss and can 

often be ignored. 

Before we embark on this, however, let us pause to comment on the validity of 

quantum mechanics. Despite its weirdness, its abstractness, and its strange view 

of the universe as a place of randomness and unpredictability, quantum theory 

has been subject to intense experimental scrutiny. It has been found to agree 

with experiments to better than        for all cases studied so far. When the 

Schrödinger Equation is combined with a quantum description of the 

electromagnetic field, a theory known as quantum electrodynamics, the result is 

one of the most accurate theories of matter that has ever been put forth. Keeping 

this in mind, let us forge ahead in our discussion of the quantum universe and 

how to apply quantum theory to both model and real situations. 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.01%3A_The_Schrodinger_Equation#mjx-eqn-eq30
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3.2: Linear Operators in Quantum Mechanics 

 Learning Objectives 

 Classical-Mechanical quantities are represented by linear operators in 

Quantum Mechanics 

 Understand that "algebra" of scalars and functions do not always to 

operators (specifically the commutative property) 

The bracketed object in the time-independent Schrödinger Equation (in 1D) 

                             [              ⃗  ]   ⃗       ⃗                                          

is called an operator. An operator is a generalization of the concept of a function 

applied to a function. Whereas a function is a rule for turning one number into 

another, an operator is a rule for turning one function into another. For the time-

independent Schrödinger Equation, the operator of relevance is the Hamiltonian 

operator (often just called the Hamiltonian) and is the most ubiquitous 

operator in quantum mechanics. 

                                          ̂                ⃗                                                      

We often (but not always) indicate that an object is an operator by placing a 'hat' 

over it, e.g.,  ̂. So time-independent Schrödinger Equation can then be simplified 

from Equation 3.2.1 to 

                                           ̂    ⃗       ⃗                                                                    

Equation 3.2.3 says that the Hamiltonian operator operates on the wavefunction 

to produce the energy, which is a scalar (i.e., a number, a quantity 

and observable) times the wavefunction. Such an equation, where the operator, 

operating on a function, produces a constant times the function, is called an 

eigenvalue equation. The function is called an eigenfunction, and the resulting 

numerical value is called the eigenvalue. Eigen here is the German word meaning 

self or own. We will discuss this in detail in later Sections. 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.02%3A_Linear_Operators_in_Quantum_Mechanics#mjx-eqn-3.1.19
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.02%3A_Linear_Operators_in_Quantum_Mechanics#mjx-eqn-simple
https://math.libretexts.org/Bookshelves/Linear_Algebra/Map%3A_Linear_Algebra_(Waldron%2C_Cherney%2C_and_Denton)/12%3A_Eigenvalues_and_Eigenvectors/12.2%3A_The_Eigenvalue-Eigenvector_Equation
https://math.libretexts.org/Bookshelves/Linear_Algebra/Map%3A_Linear_Algebra_(Waldron%2C_Cherney%2C_and_Denton)/12%3A_Eigenvalues_and_Eigenvectors/12.2%3A_The_Eigenvalue-Eigenvector_Equation
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 Fundamental Properties of Operators 

Most properties of operators are straightforward, but they are summarized below 

for completeness. 

The sum and difference of two operators A^ and B^ are given by 

                                                                                                     

The product of two operators is defined by 

                                                   [   ]                                                                 

Two operators are equal if 

                                                                                                                                  

for all functions ff. The identity operator 1^ does nothing (or multiplies by 1) 

                                                                                                                                      

The  -th power of an operator A^  is defined as   successive applications of 

the operator, e.g. 

                                                                                                                             

The associative law holds for operators 

                                                                                                                   

The commutative law does not generally hold for operators. In general, but not 

always, 

                                                                                                                            

To help identify if the inequality in Equation 3.2.10 holds for any two specific 
operators, we define the commutator. 

 Definition: The Commutator 

It is convenient to define the commutator of A^ and B^ 

                                                [     ]                                                         

              commute, then 
                                                [     ]                                                                          

If the commutator is not zero, the order of operating matters and the operators 

are said to "not commute." Moreover, this property applies 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(McQuarrie_and_Simon)/03%3A_The_Schrodinger_Equation_and_a_Particle_in_a_Box/3.02%3A_Linear_Operators_in_Quantum_Mechanics#mjx-eqn-comlaw


73 
 

                                            [     ]   [     ]                                                          

 Linear Operators 

The action of an operator that turns the function      into the function g(x) is 

represented by 

                                                                                                                             

The most common kind of operator encountered are linear operators which 

satisfies the following two conditions: 

                                                                                                 
Condition A 

and 
                                                                                                                       

Condition B 

where 

    is a linear operator, 

   is a constant that can be a complex number         , and 
      and      are functions of   

If an operator fails to satisfy either Equations 3.2.15 or 3.2.16 then it is not a 
linear operator. 

 Example 3.2.1 

Is this operator              linear? 

 Solution 

To confirm is an operator is linear, both conditions in Equation 3.2.16 must be 

demonstrated. 

Condition A (Equation 3.2.15): 

                                  

From basic calculus, we know that we can use the sum rule for differentiation 
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Condition A is confirmed. Does Condition B (Equation 3.2.16) hold? 

                          

Also from basic calculus, this can be factored out of the derivative 

                                  

Yes. This operator is a linear operator (this is the linear momentum operator). 

 Exercise 3.2.1 

Confirm if the square root operator √f(x) linear or not? 

 Answer 

To confirm is an operator is linear, both conditions in 

Equations 3.2.15 and 3.2.16 must be demonstrated. Let's look first at Condition B. 

Does Condition B (Equation 3.2.16) hold? 

                

√            

Condition B does not hold; therefore, the square root operator is not linear. 

The most operators encountered in quantum mechanics are linear operators. 
 

 Hermitian Operators 

An important property of operators is suggested by considering the Hamiltonian 

 for the particle in a box: 

                                                                                                                 

Let f(x) and g(x) be arbitrary functions which obey the same boundary values as 
the eigenfunctions of H^ (e.g., they vanish at x=0 and x=a). Consider the integral 
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                       ∫             
 

 
         ∫              

 

 
                          

Now, using integration by parts, 

                    

∫              
 

 
  ∫              

 

 
           

                           

The boundary terms vanish by the assumed conditions on   and  . A second 

integration by parts transforms Equation 3.2.19 to 

                                    ∫             
 

 
                                                        

It follows therefore that 

                                ∫             
 

 
 ∫             

 

 
                                   

An obvious generalization for complex functions will read 

                                 ∫              
 

 
  ∫                

 

 
                   

In mathematical terminology, an operator A^ for which 

                                 ∫            ∫                                                          

for all functions f and g which obey specified boundary conditions is classified 

as Hermitian or self-adjoint. Evidently, the Hamiltonian is a Hermitian operator. It 

is postulated that all quantum-mechanical operators that represent dynamical 

variables are Hermitian. The term is also used for specific times of matrices in 

linear algebra courses. 

All quantum-mechanical operators that represent dynamical variables 

are Hermitian. 
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3.3: The Schrödinger Equation is an Eigenvalue Problem 

 Learning Objectives 

 To recognize that each quantum mechanical observable is determined by 

solve by an eigenvalue problem with different operators for 

different observable 

 Confirm if a specific wavefunction is an eigenfunction of a specific 

operation and extract the corresponding observable (the eigenvalue) 

 To recognize that the Schrödinger equation, just like all measurable, is also 

an eigenvalue problem with the eigenvalue ascribed to total energy 

 Identity and manipulate several common quantum mechanical operators 

As per the definition, an operator acting on a function gives another function, 

however a special case occurs when the generated function is proportional to the 

original  

                                                                                                                                    

This case can be expressed in terms of a equality by introducing a proportionality 

constant k 

                                                                                                                                  

Not all functions will solve an equation like in Equation 3.3.2 If a function does, 

then ψ is known as an eigenfunction and the constant k is called 

its eigenvalue (these terms are hybrids with German, the purely English 

equivalents being "characteristic function" and "characteristic value", 

respectively). Solving eigenvalue problems are discussed in most linear algebra 

courses. 

In quantum mechanics, every experimental measurable aa is the eigenvalue of a 

specific operator (A^): 

                                                                                                                                  

The aa eigenvalues represent the possible measured values of the A^ operator. 

Classically, aa would be allowed to vary continuously, but in quantum 

mechanics, aa typically has only a sub-set of allowed values (hence the quantum 
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aspect). Both time-dependent and time-independent Schrödinger equations are 

the best-known instances of an eigenvalue equations in quantum mechanics, with 

its eigenvalues corresponding to the allowed energy levels of the quantum 

system. 

                          [                ⃗  ]   ⃗       ⃗                                        

The object on the left that acts on ψ(x)ψ(x) is an example of an operator 

                               [                ⃗  ]                                                                  

In effect, what is says to do is "take the second derivative of       multiply the 

result by          and then add          to the result of that." Quantum 

mechanics involves many different types of operators. This one, however, plays a 

special role because it appears on the left side of the Schrödinger equation. It is 

called the Hamiltonian operator and is denoted as 

                                                        ⃗                                                     

Therefore, the time-dependent Schrödinger equation can be (and it more 

commonly) written as 

                                                                                                                 

and the time-independent Schrödinger equation 

                                                                                                                           

Note that the functional form of Equation 3.3.8  is the same as the general  

eigenvalue equation  in Equation 3.3.2 where the eigenvalues are the (allowed) 

total energies ( ). 

The Hamiltonian, named after the Irish mathematician Hamilton, comes from the 

formulation of Classical Mechanics that is based on the total energy,      , 

rather than Newton's second law,     . Equation 3.3.8 says that 

the Hamiltonian operator operates on the wavefunction to produce the energy E, 

which is a scalar (e.g., expressed in Joules) times the wavefunction. 
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 Correspondence Principle 

Note that    is derived from the classical energy            simply by 

replacing              This is an example of the Correspondence 

Principle initially proposed by Niels Bohr that states that the behavior of systems 

described by quantum theory reproduces classical physics in the limit of 

large quantum numbers. 

It is a general principle of Quantum Mechanics that there is an operator for every 

physical observable. A physical observable is anything that can be measured. If 

the wavefunction that describes a system is an eigenfunction of an operator, then 

the value of the associated observable is extracted from the eigenfunction by 

operating on the eigenfunction with the appropriate operator. The value of the 

observable for the system is then the eigenvalue, and the system is said to be in 

an eigenstate. Equation 3.3.8 states this principle mathematically for the case of 

energy as the observable. If the wavefunction is not the eigenfunction of the 

operation, then the measurement will give an eigenvalue (by definition), but not 

necessarily the same one for each measurement (this will be discussed in more 

detail in later section). 

 Common Operators 

Although we could theoretically come up with an infinite number of operators, in 
practice there are a few which are much more important than any others. 

 Linear Momentum: 

The linear momentum operator of a particle moving in one dimension 
(the  -direction) is 

                                                                                                                             

and can be generalized in three dimensions: 

                                                    ⃗                                                                           

 Position 
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The position operator of a particle moving in one dimension (the  -
direction) is 

                                                                                                                                      

and can be generalized in three dimensions: 

                                                   ⃗    ⃗                                                                            

where  ⃗           

 Kinetic Energy 

Classically, the kinetic energy of a particle moving in one dimension (the  -
direction), in terms of momentum, is 

                                                                                                                    

Quantum mechanically, the corresponding kinetic energy operator is 

                                                                                                    

and can be generalized in three dimensions: 

                                                                                                         

 Angular Momentum: 

Angular momentum requires a more complex discussion, but is the cross 

product of the position operator  ⃗   and the momentum operator    

                                  ⃗        ⃗                                                                             

 Hamiltonian: 

The Hamiltonian operator corresponds to the total energy of the system 
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and it represents the total energy of the particle of mass   in the 
potential     . The Hamiltonian in three dimensions is 

                                                          ⃗                                                 

 Total Energy: 

The energy operator from the time-dependent Schrödinger equation 

                                                                                                              

The right hand side of Equation 3.3.6 is the Hamiltonian Operator. In 

addition, determining system energies, the Hamiltonian operator dictates 

the time evolution of the wavefunction 

                                                                                                                

This aspect will be discussed in more detail elsewhere. 

 Eigenstate, Eigenvalues, Wavefunctions, Measurables and Observables 

In general, the wavefunction gives the "state of the system" for the system under 

discussion. It stores all the information available to the observer about the 

system. Often in discussions of quantum mechanics, the 

terms eigenstate and wavefunction are used interchangeably. The term 

eigenvalue is used to designate the value of measurable quantity associated with 

the wavefunction. 

 If you want to measure the energy of a particle, you have to operate on the 

wavefunction with the Hamiltonian operator (Equation 3.3.6). 

 If you want to measure the momentum of a particle, you have to operate 

on wavefunction with the momentum operator (Equation 3.3.9). 

 If you want to measure the position of a particle, you have to operate on 

wavefunction with the position operator (Equation 3.3.11). 

 If you want to measure the kinetic energy of a particle, you have to operate 

on wavefunction with the kinetic energy operator (Equation 3.3.14). 
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When discussing the eigenstates of the Hamiltonian (H^), the associated 

eigenvalues represent energies and within the context of the momentum 

operators, the associated eigenvalues refer to the momentum of the particle. 

However, not all wavefunctions ( ) are eigenstates of an operator ( ) – and if 

they are not, they can usually be written as superpositions of eigenstates. 

                                                                                                                                  

This will be discussed in more detail in later sections. 

While the wavefunction may not be the eigenstate of an observable, when that  

operator operates on that wavefunction, the wavefunction becomes an 

eigenstate of that observable and only eigenvalues can be observed. Another way 

to say this is that the wavefunction "collapses" into an eigenstate of the  

observable. Because quantum mechanical operators have different forms, their 

associated eigenstates are similarly often (i.e., most of the time) different. For 

example, when a wavefunction is an eigenstate of total energy, it will not be an 

eigenstate of momentum.  

If a wavefunction is an eigenstate of one operator, (e.g., momentum), that state is 

not necessarily an eigenstate of a different operator (e.g., energy), although not 

always.  

The wavefunction immediately after a measurement is an eigenstate of 

the operator associated with this measurement. What happens to the 

wavefunction after the measurement is a different topic. 

 Example 3.3.1 

Confirm that the following wavefunctions are eigenstates of linear momentum 

and kinetic energy (or neither or both): 

a.             

b.                  

 Strategy 
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This question is asking if the eigenvalue equation holds for the operators and 

these wavefunctions. This is just asking if these wavefunctions are solutions to 

Equation 3.3.2 using the operators in Equations 3.3.9 and 3.3.14, i.e., are these 

equations true: 

                                                                                                                              

                                                                                                                            

where    and    are the measurables (eigenvalues) for these operators. 

 Solution 

a. Let's evaluate the left side of the linear momentum eigenvalue problem 

(Equation 3.3.22) 

                                   

and compare to the right side of Equation 3.3.22 

             

These are not the same so this wavefunction is not an eigenstate of momentum. 

Let's look at the left side of the kinetic energy eigenvalue problem 

(Equation 3.3.23) 

                                                    

                       

and compare to the right side 

             

These are same, so this specific wavefunction is an eigenstate of kinetic energy. 

Moreover, the measured kinetic energy will be 

               

b. Let's look at the left side of Equation 3.3.22 for linear momentum 
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and the right side of Equation 3.3.22 

                                                                

These are the same so this wavefunction is an eigenstate of momentum with 

momentum      . 

Let's look at the left side of Equation 3.3.23 for kinetic energy 

                                                         

                     

and the right side 

                

These are same so this wavefunction is an eigenstate of kinetic energy. And the 

measured kinetic energy will be 

        

This wavefunction is an eigenstate of both momentum and kinetic energy. 

 Exercise 3.3.1 

Are              functions eigenstates of linear momentum and kinetic 

energy (or neither or both)? 

 Answer 

  is an eigenstate of linear momentum with an eigenvalue of     and also an 

eigenstate of kinetic energy with an eigenvalue of   . 
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3.4: Wavefunctions Have a Probabilistic Interpretation 

 Learning Objectives 

 To understand that wavefunctions can have probabilistic interpretations. 

 To calculate the probabilities directly from a wavefunctions 

For a single-particle system, the wavefunction    ⃗           ⃗   for the time-

independent case, represents the amplitude of the still vaguely defined matter 

waves. Since wavefunctions can in general be complex functions, the physical 

significance cannot be found from the function itself because the √−1 is not a 

property of the physical world. Rather, the physical significance is found in the 

product of the wavefunction and its complex conjugate, i.e., the absolute square 

of the wavefunction, which also is called the square of the modulus (also called 

absolute value). 

                                                    ⃗         ⃗       ⃗                                           

                                                                      ⃗                                                            

Where,  ⃗ is a vector         specifying a point in three-dimensional space. The 

square is used, rather than the modulus itself, just like the intensity of a light 

wave depends on the square of the electric field. 

Born proposed in 1926, the most commonly accepted interpretation of the 

wavefunction that the square of the modulus (Equation 3.4.2) is proportional to 

the probability density (probability per unit volume) that the electron is in the 

volume    located at   . Since the wavefunction represents the wave properties 

of matter, the probability amplitude        will also exhibit wave-like 

behavior. Probability density is the three-dimensional analog of the diffraction 

pattern that appears on the two-dimensional screen in the double-slit diffraction 

experiment for electrons. The idea that we can understand the world of atoms 

and molecules only in terms of probabilities is disturbing to some, who are 

seeking more satisfying descriptions through ongoing research. 
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The Born interpretation therefore calls the wavefunction the probability 

amplitude, the absolute square of the wavefunction is called the probability 

density, and the probability density times a volume element in three-dimensional 

space (  ) is the probability   

The probability that a single quantum particle moving in one spatial dimension 

will be found in a region   [   ] if a measurement of its location is performed is 

                                       [   ]  ∫           
 

 
                                                    

In three dimensions, Equation 3.4.3 is represented differently 

                                      [   ]  ∫      ⃗                                                          

This integration extends over a specified volume ( ) with the 

symbol    designating the appropriate volume element (including a Jacobian) of 

the coordinate system adopted: 

 Cartesian: 

                                                                                                                    

 Spherical: 

                                                                                                            

 Cylindrical: 

                                                                                                                   

For rectilinear Cartesian space, Equation 3.4.4 can be is expanded with dimension 
explicitly indicated 

                                        

    [   ]  ∫ ∫ ∫                       
  

  

  

  

  

  
         

where the limits of integration are selected to encompass the volume   of 
consideration. 
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The Born interpretation (Equation 3.4.2) of relating the wavefunction to 

probability forces certain demands on its mathematical behavior of 

wavefunctions and not any mathematical function can be a valid wavefunction. 

 Required Properties of Wavefunction 

 The wavefunction must be a single-valued function of all its coordinates 

since the probability density ought to be uniquely determined at each point 

in space. 

 The wavefunction should be both finite as an infinite probability has no 

meaning. 

 The wavefunction should be continuous everywhere, as expected for a 

physically meaningful probability density. 

The conditions that the wavefunction be single-valued, finite and continuous--in 

short, "well behaved"-- lead to restrictions on solutions of the Schrödinger 

equation such that only certain values of the energy and other dynamical 

variables are allowed. This is called quantization and is in the feature that 

gives quantum mechanics its name. 

It is important to note that this interpretation implies the wavefunction 

does not mean the particle is distributed over a large region as a sort of "charge 

cloud". The wavefunction is used to describe the electron motion that behaves 

like waves and satisfies a wave equation. This is akin to how a grade distribution 

in a large class does not represent a smearing of grades for a single student, but 

only makes sense when taking into account that the distribution is the result of 

many measurables (e.g., student performances). 
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