Transition Elements

Third Year , Chemistry Group.

Group (III) elements:Sc...(3d¹4s², scandium),

 $Y...(4d 5s^2, Yttrium)$ and La $...(5d^16s^2, Lanthanum)$

General properties:

M= refer to any element of this group.

M= trivalent element, they are rare and tend to form the following products: M_2S_3 with S, MH_3 with hydrogen, MX_3 with halides MX_3 ,with oxygen hydroxide oxide or hydride of oxide {ScO(OH)} and {,Sc $_2$ O3.nH2O}, with K2SO4 double sulfite salt is formed{ La $_2$ (SO $_4$). K_2SO_4 as ex.}.

Finally, with neutral ligands the following complexes are formed: $[Sc(DMSO)_6]$ (CIO4)₃ and $[Sc(bipy)_3]$ (ScN)₃.

<u>Fourth Group</u>: Titanium (Ti, $3d^24s^2$), Zirconium (Zr, $4d^25s^2$), Hafnium (Hf, $5d^26s^2$).

Reactions of Ti element :Two ORES are known, ilmenite (FeTiO₃) and rutile (TiO₂). With dilute acides or bases at room temp.no reaction is

observed. With HCl and heat $TiCl_3$ is formed and with HNO₃ and heat TiO_2 is formed. With nonmetals stable and strong productes are formed e.g. $TiN, TiC, TiS, TiX_4, TiH_2$.

Extracting Ti element from rutile:

 $TiO_2 + C + Cl_2 \dots TiCl_4 + CO_2 (\dots Mg) \dots Ti + MgCl_2$

 $TiO_2 + C + I_2$ TiI_4 $Ti + 2I_2$

Reactions of Ti(+2): TiO +2 HX.....TiX2 + H2O

<u>TiX4 + Ti 2TiX2 ,</u>

2 TiX3TiX2 +TiX4

<u>TiO₂ +Ti ... 2 TiO Conclusion: Ti(+2) form oxide</u> and halides via reduction or self ox-red process.

<u>Reactions of Ti (+3): The halides and oxide of</u>
<u>Ti(+3)obtained via:</u>

 $\underline{Ti(+4)...zn/H+}$ $\underline{Ti(+3)}$ e.g. $TiCl_4 + H_2 --- TiCl_3$ then $TiCl_3$ produce[$Ti(H_2O)$] X_3 on dissolved in water. With OH- $Ti(OH)_3$ is formed.

 $TiO_2 + TiCl_4 ---- Ti_2O_3 + n H_2O$

Ti(+3) form complexes e.g. $[TiCl_5(H2O)]^{2-}$, $[TiF6]^{3-}$ and $[Ti(acac)_3]$.

<u>Reactions of Ti(+4):</u> $TiO_2 + C + Cl_2 --- TiCl_4$ (liquid, acid).

 $TiCl_4 + R_2O - TiCl_4 \cdot R_2O$

 $TiCl_4 + H_2O - TiO_2 + HCl$

Ti(+4)salt + heat ----- TiO_2

 $TiCl_4 + HF$ ---- TiF_4 or $[TiF_6]^{2-}$ also $TiBr^4$, Til_4 [, $TiCl_6$] $^{2-}$ [, $TiCl_5(H_2O)$]- are also formed.