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Main topics

* |Introduction & Definition:
* Mechanical principles:

- Force

- Stress and Strain

- Stress-Strain Diagram

- Mohr Diagram for Stress

- Mohr Diagram for Strain

- Methods of stress measurement

- Determination and representation of strain
- Finite homogenous strain measurement




Main topics

e Structural analyses and scales of observation:
* Some guidelines for structural interpretation:
* Rheology:

- Strain rate

- Rheologic relationships (elastic, viscous,
visco-elastic, elastico-viscous, linear, nonlinear
behavior).




Main topics

 Brittle structures (joints & faults):
- Brittle deformation processes
- Origin and interpretation of joints and faults

- Mechanics of joints, normal, reverse and
strik-slip faults

- Fault system and paleostress
* Ductile structures (folds):

- Ductile deformation processes and
microstructures




Main topics

- Flow laws

- Deformation of microstructures

- Deformation-mechanism maps

- Mechanics of folds

- Fold system

- Kinematic models of folds

- Office techniques used in studying folds

e Dating of structural events (paleontology,
unconformities, radiogenic dating, tectonism
and sedimentation).




Main topics

e Stereographic Projection:

- Projection of linear structures

- Projection of planner structures

- Azimuthal projection

- Types of stereographic nets:
1- Wulff net
2- Equal area Net
3- Polar Net

- Projection of dip, strike, bearing and
pole.

 References:




Introduction & Definitions

 Structural geology, branch of geology that deals
with:
— Form, arrangement and internal architecture of
rocks

— (Structural Analyses) Description, representation,
and analysis of structures from the small to
moderate scale

— Reconstruction of the motions of rocks

 Structural geology provides information about the
conditions during regional deformation using
structures and its analysis.




Introduction & Definitions

Geotectonics vs. Structural Geology

Both are concerned with the reconstruction of the
motions that shape the outer layers of earth

Both deal with motion and deformation in the Earth’s
crust and upper mantle

Tectonic events at all scales produce deformation
structures

These two disciplines are closely related and
Interdependent




Introduction & Definitions

» Structural Geology: Study of deformation in
rocks at scales ranging from submicroscopic
to regional (micro-, meso-, and macro-scale).

» Geotectonics: Study of the origin and geologic
evolution (history of motion and deformation) of
large areas (regional to global) of the Earth’s
lithosphere (e.g., origin of continents; building
of mountain belts; formation of ocean floor).




Introduction & Definitions

» Many tectonic problems are approached by
studying structures at outcrop scale, and
smaller (microscopic) or larger (100’s to
1000’s of km) scales.

» Systematically observe/record the patterns of
rock structures and analyses (e.g., fault, fold,

foliation, fracture).
This gives the geometry of the structures.




Introduction & Definitions

We use geometric, mechanical, and kinematic
models to understand deformation on all scales
(micro, meso, macro).

Geometric model: 3D interpretation of the
distribution and orientation of features within the
earth crust.

Kinematic model: Specific history of motion that
could have carried the system from an undeformed
to its deformed state (or from one configuration to
another).

— Plate tectonic modadel is a kinematic model/




Introduction & Definitions

Mechanical model: Based on laws of
continuum mechanics.

Study of rock deformation under applied —
forces (laboratory work).

Model of driving forces of plate tectonic
based on the mechanics of convection In the
mantle 1s a mechanical model.




Introduction & Definitions

Structural analyses: including
* Descriptive:

— Recognize, describe structures by measuring their
locations, geometries and orientations

— Break a structure into structural elements - physical &
geometric

 Kinematic:

— Interprets deformational movements that formed the
structures

o Translation, Rotation, Distortion, Dilation
« Dynamic:

— Interprets forces and stresses from interpreted
deformational movements of structures




Mechanical principles

* Force:

Force is an explicitly definable vector quantity that
changes or tends to produce a change in the motion
of a body.

* A property or action that changes or tends to
change the state of rest or velocity or direction of
an object in a straight line

* In the absence of force, a body moves at constant
velocity, or it stays at rest

* Force is a vector quantity; i.e., has magnitude,
direction




Fundamental Quantities & Units of Rocks

* Mass: Dimension: [M] Unit: g orkg
 Length: Dimension: [L] Unit: cmorm
e Time: Dimension: [T] Unit: s

Velocity, v = distance/time = 8x/dt

(Change in distance per time)
v =[L/T] or [LT1] units: m/s or cm/s

Acceleration (due to gravity): g = velocity/time

* Acceleration is change in velocity per time (6v/6t).
g = [LT1]/[T] = LT, units: ms 2

Force: F=mass. acceleration
* F=mg F=[M][LT?]
* units: newton: N =kgms?




Fundamental Quantities & Units of Rocks

* Two of the more common units of force are the dyne
(d) and newton (N)

* The units of a newton are kgm/s? while those for a
dyne are gcm/s?

* A newton is the force required to impart an
acceleration of one meter per second per second to a
body of one kilogram mass

 Adyneis the force required to accelerate one gram of
mass at one centimeter per second per second

F = (mass)(acceleration) or
F=ma orF=mg F=[M][LT?]
newton: N=kgms ™

dyne: grcms? 1N=10°dyne




Natural Forces

* Gravitational force
— Acts over large distances and is always attractive

— Oce?‘n tides are due to attraction between Moon &
Eart

 Thermally-induced forces
— e.g., due to convection cells in the mantle.
— Produce horizontal forces (move the plates)




Natural Forces

Fig. 2-6. Torsion. A rod (A) or plate (B) is subjected to torsion
when the ends are twisted in opposite directions.

i s
—|] =
Tension Compression Couple
e
= A B c

i i couple.
ig. 2-5. Arrows reptesenting tension, compression, and a p



Resolution of forces

forces. A. Force F resolved Into

Figure 5.2 Resolution of
{ 2. B. Two forces F1 and F2

two components 71 anc
represented by resultant F (see text).
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Natural Forces

Forces applied on a body do either or both of the
following:

— Change the velocity of the body

— Result in a shape change of the body

A given force applied by a sharp object (e.g., needle)
has a different effect than a similar force applied by a
dull object (e.g., peg). Why?

We need another measure called stress which reflect
these effects




Stress

Stress is a pair of equal and opposite forces acting on unite

area of a body.

Types of Stress

Tension: Stress acts _| to and away from a plane

— pulls the rock apart

— forms special fractures called joint

— may lead to increase in volume

Compression: stress acts
— squeezes rocks
— may decrease volume

to and toward a plane

Shear: acts parallel to a surface

— leads to change in shape




Stress

e Stress (o) is the force per unit area that exists within a specified
plane in a material.

o=F/A where

F= Force (compression or tensile) (N)

A= Area (m?)

o= N/ m?=also known as Pascal (1 N/m?=1 Pa).
o = [MLT?] / [L?]=[ML -1T-?]

o =kg m's? pascal (Pa) = N/m?
 1bar=10°Pa ~ 1atmosphere =0.1 MPa
 1kb =1000 bar =108 Pa =100 Mpa
* 1Gpa = 10° Pa=1000 Mpa =10 kb
* 1 Mpa is equivalent to 1 N/mm?

* P at core-mantle boundary is ~ 136 Gpa (at 2900 km)
e P at the center of Earth (6371 km) is 364 Gpa




Normal stress and shear stress

A force acting on unit area of a surface can be
resolved into a normal stress acting perpendicular
to the surface and a shear stress acting parallel to
the surface.

Figure 5.3 A. Normal stress ¢ perpendicular to the plane
and shear stress 7 parallel to the plane produced by opposed
forces F acting on a plane (in two dimensions). B. In three
dimensions, shear stress 7 can be further resolved into 7, and
7, at right angles giving three stresses, all mutually at right
angles, resulting from the forces F.

Figure 5.4 Normal and shear stresses at a fault plane (A)
and a bedding plane during flexural slip folding (B) produced
by resolving opposed compressive forces F.
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Stress at a point

Many planes can pass through a point in a rock body

Force (F) across any of these planes can be resolved into two
components: Shear stress: F_, & normal stress: F, where:

F.=Fsin®© F,=Fcos@
tan0@ =F/F,
Smaller 8 means smaller F,
Note that if 6 =0, F.=0 and all force is F,,

F

0




Stress at a point

— The state of stress at a point is anisotropic:

 Stress varies on different planes with different
orientation




Stress at a point

* The stress state at point cannot be described by a single
vector, why because a point represents the intersection
of an infinite number of planes, and without knowing
which plane you are talking about, you can not define
the stress vector:

There are three tools for that:
1- stress ellipsoid
2- three principal stress axes

3- stress tensor (Some physical quantities require nine
numbers for their full specification (in 3D))




Stress at a point

1- stress ellipsoid

Stress Ellipse

Figure 3.3 (a) A point represents the intersection of an infinite number of
planes. The stresses on these planes describe an ellipse in the two-
dimensional case. In three dimensions this generates the stress ellipsoid
(b), defined by three mutually perpendicular principal stress axes

(1 = 09 = 03).




Stress at a point

2- three principal stress axes

In order to consider the state of sterss at apoint
in three dimensional space we must imagine
the effect of a system of forces on an
infinitesimal (vanishingly small) cube. The
system of forces can be resolved into a single
force F which acts at the centre of the cube.




2- three principal stress axes
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Figure 5.5 Stress components for an infinitesimal cube acted
on by opposed compressive forces F (see text).
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Figure 3.4 Resolution of stress into components perpendicular (three
normal stresses, o) and components parallel (six shear stresses. o) to the
three faces of an infinitesimally small cube, relative to the reference system

Xy, and z.




2- three principal stress axes
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Figure 5.6 The stress axial cross (principal stress axes
0, = 0, = 063)—see text.

Gq
l Wooden plank
A
~ Block of wax
or clay
Trace of
plane P~ O3

B Wooden plank

(b)
Figure 3.5 The normal and shear stresses on a plane in a stressed body
as a function of the principal stresses. An illustration from the late

So, we have learned that the stress ellipsoid is defined
by nine components. Mathematically this is described by a

nineteenth-century fracture experiments of Daubrée using wax is shown in 3 X 3 matrix (a second-rank tensor), but geologists like to
(a). For our classroom experiment, a block of clay is squeezed between two “use an ellipsoid because it is easy to visualize. However,
pldniks: Gt Wootk () - 4B 1a. e af Imaginary, planie Pin.urbotirlnt for any mathematical operation we are better off using ten-
makes an angle 6 with 1. The two-dimensional case shown is sufficient to

describe the experiment, because o equals o3 (atmospheric pressure). i "'Eor O,pe”;“;’(’)l;’ to which we will return later in this chapter
(section 3.10).




2- three principal stress axes
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2- three principal stress axes

* Directions of maximum shear stress in a plane:

Tan o=

cos 02/ cos 01. cos 02* e L
[cos2 62-(1- cos2 03)
03- 6l/ 62- 63]

Figure 5.9 Shear stress on a plane inclined at angles 6, 0,
and f/; to the principal stress axes. The shear direction is
shown by the arrow and makes an angle « with the strike of
the plane.




3-stress tensor

Some physical quantities require nine numbers
for their full specification (in 3D).

e Second rank tensor (3*3=9) Components

O-11 012 0-13
0-21 022 0-23
031 032 0-33




Mohr Circle

In 2D space (e.g., on the ¢,0,, 0,0,, or 6,0,
plane), the normal stress (6,.) and the shear
stress (o), could be given by equations (1)
and (2) in the next slides

Note: The equations are given here in the
6,0, plane, where G, is greater than o,

If we were dealing with the 6,0, plane, then
the two principal stresses would be ¢, and

G;




Normal Stress

The normal stress, G,..
o= (0,+0,)/2 + (6,-6,)/2 cos20 (1)

* In parametric form the equation becomes:
G,=C+rCOsSw
Where

* c¢=(0,+0,)/2 is the center, which lies on the
normal stress axis (x axis)

* r=(0,-0,)/2is the radius
° wW=20




Sign Conventions

G, is compressive when it is “+”, i.e., when ¢ >0
G, is tensile when itis “*-", i.e., when 6 <0

o = (0,+0,)/2+(0,-G,)/2 cos20

NOTE:

O is the angle from o, to the normal to the plane!

G,=G, at 0 =0° (a maximum)
G,=0G, at 0 =90° (2 minimum)

There is no shear stress on the three principal planes
(perpendicular to the principal stresses)




Resolved Normal and Shear Stress

o) |




Shear Stress

The shear stress
o, = (0,-G,)/2 sin20 (2)
* In parametric form the equation becomes:
G, = I SinW where w =20

c. > 0 represents left-lateral shear

o, <0 represents right-lateral shear

. =0at 0 =0°0r90° or 180°(a min)

o, =(0,—0,)/2 at 0 =4+45° (maximum shear stress)
* The maximum o is 1/2 the differential stress




Construction of the Mohr Circle in 2D

Plot the normal stress, G,, vs. shear stress, o,
on a graph paper using arbitrary scale (e.g.,
mm scale!)

Calculate:
— Center c = (0,+0,)/2
— Radiusr = (0,-0,)/2

Note: Diameter is the differential stress (G-
c,)

The circle intersects the o, (x-axis) at the two
principal stresses (o, and ,)




Construction of the Mohr Circle

Multiply the physical angle 0 by 2

The angle 20 is from the co, line to any point on the
circle

+20 (CCW) angles are read above the x-axis
-20 (CW) angles below the x-axis, from the o, axis

The 6,and o, of a point on the circle represent the
normal and shear stresses on the plane with the
given 20 angle

NOTE: The axes of the Mohr circle have no
geographic significance!




Mohr Circle for Stress
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Mohr Circle in 3D

Mohr Circle for Stress in 3D
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Maximum & Minimum Normal Stresses

The normal stress:
o= (0,+0,)/2 + (6,-6,)/2 cos20

NOTE: 0 (in physical space) is the angle from G, to the normal
to the plane B

When 0 = 0° then cos260=1 and ¢ =(c,+0,)/2 + (0,-0,)/2
which reduces to a maximum value:
o = (o,+0,+0,-0,)/2 2 6,=20,/2 2 6, =0,

When 0 =90° then cos20 =-1 and o =(0,+0,)/2 - (0,-0,)/2
which reduces to a minimum
o= (o,+0,-0,+0,)/2 2 6,=20,/2 2 6,=0,




Special States of Stress - Uniaxial Stress

* Uniaxial Stress (compression or tension)

— One principal stress (o, or o3) is non-zero, and
the other two are equal to zero

* Uniaxial compression

Compressive stress in one direction: 6, > 6,=6;=0

la O 1]
o 0 0]
]0 O 0|

 The Mohr circle is tangent to the ordinate at the
origin (i.e., 0,=0,= 0) on the + (compressive) side




Special States of Stress

O'S O'S (0]
n n n
General Tension Uniaxial Tension General Tension &
Compression

Gs Gs Gs

General Compression  Uniaxial Compression Pure Shear




Uniaxial Tension

Tension in one direction:
0=0,=0, >0,

|10 O O]
|10 0 O]
|0 O-al

* The Mohr circle is tangent to the ordinate at
the origin on the - (i.e., tensile) side




Special States of Stress - Axial Stress

Axial (confined) compression: 6, >6,=6,>0

a
0
0

Axial extension (extension): ¢, =0, >G,;>0

a
0
0

The Mohr circle for both of these cases are to the
right of the origin (non-tangent)

0
b
0

0
a
0

0
0
b

0
0
b




Special States of Stress - Biaxial Stress

e Biaxial Stress:

— Two of the principal stresses are non-zero and the other
IS zero

* Pure Shear:
G, = -05 and is non-zero (equal in magnitude but opposite in
sign)
o, =0 (i.e., it is a biaxial state)

— The normal stress on planes of maximum shear is zero
(pure shear!)

| a 0 0 |
| O 0) 0 |
| 0 0 -a|

 The Mohr circle is symmetric w.r.t. the ordinate (center is at
the origin)



Special States of Stress

O'S O'S (0]
n n n
General Tension Uniaxial Tension General Tension &
Compression

Gs Gs Gs

General Compression  Uniaxial Compression Pure Shear



Special States of Stress - Triaxial Stress

Triaxial Stress:
— 0, 0,, and 6; have non-zero values
— 0, >0, >063and can be tensile or compressive

Is the most general state in nature

a @0 0
O b 0
0 0 C

The Mohr circle has three distinct circles




Triaxial Stress

Mohr Circle for Stress in 3D
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Two-dimensional cases: General Stress

* General Compression
— Both principal stresses are compressive
* iscommon in earth)

* General Tension
— Both principal stresses are tensile
— Possible at shallow depths in earth




Isotropic Stress

The 3D, isotropic stresses are equal in magnitude
in all directions (as radii of a sphere)

Magnitude = the mean of the principal stresses
O = (01+0,+03)/3 = (0,,+0,,+033)/3

P = 5,= 0,= 6; when principal stresses are equal

i.e., it is an invariant (does not depend on a
Sﬁecific coordinate system). No need to know
the principal stress; we can use any!

Leads to dilation (+e, & -e ); but no shape change

e=(v-v,)/v,= o6v/v, [nodimension]
v' and v_ are final and original volumes




Stress in Liquids

Fluids (liquids/gases) are stressed equally in all
directions (e.g. magma); e.g.:

Hydrostatic, Lithostatic, Atmospheric pressure

All of these are pressure due to the column of
water, rock, or air, respectively:

P =pgz
z is thickness

p is density
g is the acceleration due to gravity




Mean Stress and deviatoric stress

e Stresses that act on a body may result in its
deformation, we can subdivided the total stress
into two convenient components, the mean stress
and deviatoric stress, which are responsible for
different types of deformation.

o total = o m + o dev

Mean stress called liquid, hydrostatic, lithostatic
stress (pressure) =P

P= at at a point is the weight of overlying rock
column =p.g.h

p=27/00ka/m3 & 0g=9.8m/s2 & h=3000m
P=80 MP = 800 bars
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Figure 5.10 Effects of hydrostatic and deviatoric stresses
(shown in two dimensions). A. Hydrostatic stress I causes a
volume change. B. Deviatoric stresses a,-F and o,-P cause a
shape change.
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Stress trajectories and stress fields

* By connecting the orientation of stress vector
at several points in a body, we obtain lines
that show the variation in orientation of that
vector within the body. These lines are called
stress trajectories.

* Principlal stress trajectories represent the
orientation of the stress field ( homogenous &
heterogenous) in a body.
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Figure 5.11 Stress trajectorics. The diagram sh
subjected to a variable horizontal stress oy app

ows theoretical stress trajectories (colour) in a rectangular block of crust
lied to the sides of the block and a uniform vertical gravitational stress ay.

The intermediate principal stress 65 is perpendicular to the plane of the diagram. The stress axial cross at any point A can be

found by interpolation. After Hafner, W., Bull. geol. Soc. Am. 62, 373-398, 1951.

Figure 3.10 Theoretical stress trajectories of o1 (full lines) and o3
{dashed lines) in a block that is pushed from the left resisted by frictional
forces at its base (a). Using the predicted angle between maximum principal
stress {(o4) and fault surface of around 30° {Coulomb failure criterion;
Chapter 6), we can draw the orientation of faults, as shown in (b). |




Methods of stress measurment

e 1- present-Day stress (see the table)

e 2- Paleostress ( analysis of fault and fractur
data) & Microstructural analysis.




Table 3.3 Common Stress Measurement Techniques

Bore-hole breakouts

Hydrofracture

Strain release

Fault-plane solutions

After drilling, the shape of a bore hole changes in response to stresses in the host rock. Specifically, the hole
becomes elliptical, with the long axis of the ellipse paralle! to minimum horizontal principal stress.

If water is pumped under sufficient pressure into a well that is sealed off, the host rock will fracture. These fractures
will be parallel to the maximum principal stress, because the water pressure necessary to open the fractures is equal
to the minimum principal stress.

A strain gauge, consisting of tiny electrical resistors in a thin plastic sheet, is glued to the bottom of a bore hole. The
hole is drilled deeper with a hollow drill bit (called overcoring), thereby separating the core to which the strain gauge
is connected from the wall of the hole. The inner core expands (elastic relaxation), which is measured by the strain
gauge. The direction of maximum elongation is parallel to the direction of maximum compressive stress. and its
magnitude is proportional to stress via Hooke's law (see Chapter 5).

From records of the first motion on seismographs around the world, we can divide the world into two sectors of
compression and two sectors of tension. These zones are separated by the orientation of two perpendicular planes.
One of these planes is the fault plane on which the earthquake occurred. From the distribution of compressive and
tensile sectors, the sense of slip on the fault can also be determined. Seismologists assume that the bisector of the
two planes in the tensile sector represents the minimum principal stress, and that in the compressive field the
bisector is taken to be parallel to the maximum compressive stress.
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Figure 3.11 World stress map showing orientations of the maximum horizontal stress superimposed on topography. On the next page, the generalized
pattern shows stress trajectories for individual plates. An inward pointing arrow set reflects reverse faulting; an outward pointing arrow set reflects normal
faulting; double sets indicate strike-slip faulting.
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Rock Deformation

Collective displacements of points in a body
relative to an external reference frame

Deformation describes the transformations
from some initial to some final geometry

Deformation of a rock body occurs in
response to a force




Deformation ...

Deformation involves any one, or a
combination, of the following four

components:

Ways that rocks respond to stress:
Rigid Body Translation

Rigid Body Rotation

Distortion or Strain

N

Dilation




Deformation Components

 The components of deformation are divided into
rigid and non-rigid body deformation

* With rigid body deformation the position and
orientation of points in a rock body relative to an
internal reference frame are not changed

* With non-rigid body deformation, the position and
orientation of points within a rock body are changed

relative to both an internal and external reference
frame




dilatation
(volume change)

P sl
N

distortion
(shape change)

rotation
total strain

Figure 6.1 The nature of strain: dilatation, distortion and
rotation.




Rigid Body Rotation

Rotation is a rigid body deformation that changes the
configuration of points relative to some external
reference frame in a way best described by rotation
about some axis

Spin of the body around an axis

Particles within the body do not change relative
position
No translation or strain is involved

Particle lines rotate relative to an external coordinate
system

— Examples
e Rotation of a car
e Rotation of a fault block




Clockwise Rotation about the z-axis




Rigid Body Translation

A rigid body deformation involving movement of the body
from one place to another, i.e., change in position

— Particles within the body do not change relative position
— No rotation or strain are involved

— Particle lines do not rotate relative to an external
coordinate system

— Displacement vectors are straight lines
— e.g., passengers in a car, movement of a fault block

During pure translation, a body of rock is displaced in such a
way that all points within a body move along parallel paths
relative to some external reference frame




Translation Parallel to the Y axis




Strain or Distortion

* Distortion is a non-rigid body operation that involves the
change in the spacing of points within a body of rock in such
a way that the overall shape of the body is altered with or

without a change in volume

* Changes of points in body relative to each other

— Particle lines may rotate relative to an external coordinate
system
— Translation and spin are both zero

— Example: squeezing a paste

* Inrocks we deal with processes that lead to both movement
and distortion




Strain or Distortion

Z




Dilation

* Dilation is a non-rigid body operation involving a
change in volume

* Pure dilation:
— The overall shape remains the same

— Internal points of reference spread apart (+e,) or
pack closer (-e,) together

— Line lengths between points become uniformly
longer or shorter




Dilation




General Deformation

During deformation one or more of the four
components of deformation may be zero

If, for example, during deformation the rock body
undergoes no distortion or no volume change, then
deformation consists of either a rigid-body
translation, a rigid-body rotation, or includes
components of both translation and rotation

In contrast, if volume change, translation, and
rotation are all zero, then deformation consists of a
non-rigid body distortion or strain




Strain vs. Deformation

Though commonly confused with each other, strain is
only synonymous with deformation if there has been
distortion without any volume change, translation, or
rotation

Strain represents only one of four possible
components involved in the overall deformation of a
rock body where it has been transformed from its
original position, size, and shape to some new location
and configuration

Strain describes the changes of points in a body relative
to each other, or, in other words, the distortions of a
body.




Homogeneous vs. Inhomogeneous Strain

 Mathematical treatments of strain commonly
assume homogeneous rather than
heterogeneous distortions or strains

 However, any heterogeneously strained rock
body can be subdivided into small areas that
exhibit the characteristics of homogeneous
strain (these areas are called domain)




Figure 6.3 Domains of homogencous (H) and inhomo-
geneous (/) strain in a folded layer (see text).




Homogeneous Strain

* Positions of points with respect to some
reference point in a strained domain are a
linear function of their position with respect
to the same reference point before strain

* The directions of the lines may change

* In other words, in homogeneous
deformation, originally straight lines remain
straight after deformation

— also called affine deformation




Homogeneous Strain

Homogeneous strain affects non-rigid rock
bodies in a regular, uniform manner

During homogeneous strain parallel lines
before strain remain parallel after strain, as a
result cubes or squares are distorted into
prisms and parallelograms respectively, while
spheres and circles are transformed into
ellipsoids and ellipses respectively

For these generalizations to hold true, the
strain must be systematic and uniform across
the body that has been deformed




Homogeneous Deformation

* Originally straight lines remain straight

* Originally parallel lines remain parallel

e Circles (spheres) become ellipses (ellipsoids)




Homogeneous Strain




Inhomogeneous Strain

Heterogeneous strain affects non-rigid bodies in an
irregular, non-uniform manner and is sometimes
referred to as non-homogeneous or
inhomogeneous strain

During heterogeneous strain, parallel lines before
strain are not parallel after strain

Circles and squares or their three-dimensional
counter parts, cubes and spheres, are distorted into
complex forms




Heterogeneous or Inhomogeneous strain

Leads to distorted complex forms -




RAIN 37

B inhomogeneous strain
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Figure 6.2 Homogencous (A) and inhomogeneous (B) strain
(see text).



Measurement of Strain

* A component of deformation dealing with
shape and volume change

* Distance between some particles changes
* Angle between particle lines may change

* The quantity or magnitude of the strain is given
by several measures based on change in:

1- Length (longitudinal strain): e
2- Angle (angular or shear strain): y
3- Volume (volumetric strain): e,




1- Length (longitudinal strain): e

* Extension or Elongation, e: change in length per length
e= (|'-|o) / |o = A|/ |o [dimensionless]

* Where |’ and |, are the final & original lengths of a linear
object
— Note: Shortening is negative extension (i.e., e < 0)
— e.g., e =-0.2represents a shortening of 20%

Example:

* If a belemnite of an original length (l,) of 10 cm is now 12 cm

(i.e., 1'=12 cm), the longitudinal strain is positive, and
e =(12-10)/10 * 100% which gives an extension, e = 20%




Change in Length of an Original Line, |

Boudinage

Folding




Elongation or Extension

Before

e, =100%
ey, =-50%

S
S

4
Y

After

[

1 2 3 4
Al/l, S =1'/14

2 Stretch
0.5




Other Measures of Longitudinal Strain

- Stretch: s=1"/l_=1+e=vA [no dimension]

X=\/7»1=51
Y=\/7\,2=52
Z=\Ny=s,

These principal stretches represent the semi-length of the
principal axes of the strain ellipsoid. For Example:

Given |, =100 and |I" =200

Extension: e, = (I"-1,)/ I, = (200-100)/100 = 1 or 100%
Stretch: s, =1+e, =1’/l, =200/100 = 2

A =S.72=4

i.e., The line is stretched twice its original length!




Stretch



Other Measures of Longitudinal Strain

* Quadratic elongation:
A =s? =(1+e)?

— Example:

Given |, =100 and |’ =200, then A =s?2=4

* Reciprocal guadratic elongation:
A=1/A

— NOTE: Although A’ is used to construct the strain
Mohr circle, A can be determined from the circle!




Other Measures of Longitudinal Strain

* Extension:e =(1"-1.) /1, = 061/1,
* Natural (logarithmic) strain, e =2e; (1< 1 <1,)

1=1" 1l
e =2 81/1, or J1/1_ 481
1=1_ 1,

NOTE: |1/x 6x = 1n x
After integration, and substituting I’ and |, we get:
€=1ln 1’-1n 1_= 1n 17/1,
e=ln s = 1n(l+e)= 1ln (A)V2
e=%InA




2- Volumetric Strain (Dilation)

* Gives the change of volume compared with its
original volume

* Given the original volume is v_, and the final
volume is v’, then the volumetric stain, e_ is:

e, =(v'-v,)/v, = ov/v, [nodimension]




3- Shear Strain

Change in angle between
two originally perpendicular lines

Y =tan § = O0x/0y

Shear Strain




3- Shear Strain

* Shear strain (angular strain) Y = tan y

* A measure of change in angle between two lines which were
originally perpendicular. y Is also dimensionless!

* The small change in angle is angular shear or
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A extension e= (1=,

y B shear strain ¥ =tany

P(x,y)
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x

C the strain ellipse Y

Figure 6.4 Extension, shear strain and the strain ellipse. A. Extension ¢ = (I — I){ly. B. Shear strain 3 = tany. C. The strain
ellipse (see text for explanation).
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Progressive Strain

Any deformed rock has passed through a whole
series of deformed states before it finally reached its
final state of strain

We only see the final product of this progressive
deformation (finite state of strain)

Progressive strain is the summation of small
incremental distortion or infinitesimal strains




Progressive Strain

..-—9/
% ,,_,"") finite strain

unstrained

Figure 6.10 Progressive deformation. The finite strain is
achieved by adding successive strain increments to the initial
unstrained shape.




Incremental vs. Finite Strain

Incremental strains are the increments of distortion
that affect a body during deformation

Finite strain represents the total strain experienced
by a rock body

If the increments of strain are a constant volume
process, the overall mechanism of distortion is
termed plane strain (i.e., one of the principal
strains is zero; hence plane, which means 2D).




Strain Ellipse

Distortion during a homogeneous strain leads to
changes in the relative configuration of particles

— Material lines move to new positions

In this case, circles (spheres, in 3D) become ellipses
(ellipsoids), and in general, ellipses (ellipsoids) become
ellipses (ellipsoids).




Rotation of Lines




Figure 6.6 The strain ellipsoid: principal strain axes X, Y
and Z (sece text for explanation),




Strain Path

e Series of strain increments, from the original
state, that result in final, finite state of strain

* A final state of "finite" strain may be reached
by a variety of strain paths

* Finite strain is the final state; incremental
strains represent steps along the path




Strain Ellipse

It is always possible to find three originally mutually perpendicular
material lines in the undeformed state that remain mutually
perpendicular in the strained state.

These lines, in the deformed state, are parallel to the
principal axes of the strain ellipsoid, and are known as
the principal axes of strain

However, the length of the material lines parallel to the
principal strains have changed during strain!

The principal stretches: X>Y>2Z
The principal quadratic elongations A; > A, > A,




Principal Axes of Strain

=




Zones of Extension & Shortening




Strain Ratio

* We can think of the strain ellipse as the product of
strain acting on a unit circle

* A convenient representation of the shape of the
strain ellipse is the strain ratio

Rs = (1l+e;)/(1l+e;) = S,/S; = X/Z

* Itis equal to the length of the semi-long axis over
the length of the semi-short axis




Rotation of lines

* |f aline parallel to the radius of a unit circle,
makes a pre-deformation angle of 0 with
respect to the long axis of the strain ellipse
(X), it rotates to a new angle of 0" after strain

* The coordinates of the end point of the line

on the strain ellipse (x’, z') are the
coordinates before deformation (x, z) times

the principal stretches (S;, S;)
—X'=XxS=XVAl
—L =L xS=L VAl




Rotation of a Line During Strain

1

X, Z)
X', zf)
tan O = z/x tan 0' =z'/x'

Sl=x/ll=1'f‘1 2 x'=xvAl
Ss=u"l3=z'fz o z'=z7z/A3

The amount of rotation is (0-0").




Strain Ellipsoid

* 3D equivalent - the ellipsoid produced by
deformation of a unit sphere

* The strain ellipsoids vary from axially
symmetric elongated shapes —
cigars and footballs - to
axially shortened pancakes and cushions




Principal Axes of Strain

The ellipse has a semi-long axis and a semi-short axis that we
can designate X and Z, or sometimes X; and X;

Stretches are designated S; and S,

The shear strain along the strain axes is zero

These are the only directions in general that have zero
shear strain

So, in 2D, the principal axes are the only two directions that
remain perpendicular before and after an incremental or
uniaxial strain.

Note: they may not stay perpendicular at all the
intermediate stages of a finite non-coaxial strain




Nine quantities needed to define the homogeneous
strain matrix

e, €3] leg;
ey, €, |ey,

€3, €33 ey,




Rotational and Irrotational Strain

If the strain axes have the same orientation
in the deformed as in undeformed state we
describe the strain as a non-rotational (or
irrotational) strain

If the strain axes end up in a rotated
position, then the strain is rotational




Examples

* An example of a non-rotational strain is pure
shear - it's a pure strain with no dilation of
the area of the plane

* An example of a rotational strain is a simple
shear




Pure shear & Simple shear

O3 g ; X

l
Gy —> — >/z—> g 3 z

A pure shear

L

T 1 3
L g X W gt ; X
o @ Zg /

B simple shear

Figure 6.7 Purc shear and simple shear. In pure shear (A) or irrotational strain the positions of the strain axes X and Z do
not change during progressive deformation. In simple shear (B) or rotational strain the pesitions of strain axes X and Z rotate
in a clockwise manner during progressive deformation, :




Coaxial Strain

(0) (1) (2)



Non-coaxial Strain

Yi /Xi x1 X2 X3
(0) (1) (2) (3)



General Shear:
Combination of simple shear & pure shear

(a) Transtension (b) Transpression




Types of Homogeneous Strain at Constant
Volume

1. Axially symmetric extension

* Extension in one principal direction (A,) and
equal shortening in all directions at right

angles (A, and A,)
AM>h, =25 <1

* The strain ellipsoid is prolate spheroid or
cigar shaped




STRAI

C

Figure 6.8 Special types of homogencous strain. A. Axially
symmetric extension (X > Y = Z). This is a prolate uniaxial
ellipsoid. B. Axially symmetric shortening (X = Y = Z). This
isan oblate uniaxial ellipsoid. C. Planestrain (X = Y = 1> Z).
This is a triaxial ellipsoid where the intermediate axis is
unchanged.




Types of Homogeneous Strain at Constant
Volume ...

2. Axially symmetric shortening

* This involves shortening in one principal
direction (A3) and equal extension in all
directions at right angles (A, and A, ).

e Strain ellipsoid is oblate spheroid or
pancake-shaped




3- Plane Strain

The intermediate axis of the ellipsoid has the same
length as the diameter of the initial sphere, I.€.:

e,= 0,0ri,=(1l+e,)? =1

Shortening, A;= (1+e;) ¢ and
extension, A, = (1+e;,) ?, respectively, occur parallel
to the other two principal directions

The strain ellipsoid is a triaxial ellipsoid (i.e., it has
different semi-axes)

A>A, =154,




General Strain

* |nvolves extension or shortening in
each of the principal directions of strain

AM>A, > A, all#1
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