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Preface

This lecture notes is devoted to draw the whole picture of the numer-
ical analysis II, which is suitable for the student at the fourth year of
under-graduation study. Here is the information of the course.

Please note that, it’s not allowed to copy any part of this notes without
an explicit permission from the persons who prepared it.
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Chapter 1

Initial-Value Problems

1.1 Introduction

It’s well known that many differential equation, specially the nonlinear
type, has no analytical solution, therefore the numerical methods arise
for such cases.
In the current chapter, we will present some of those methods for the
ordinary differential equation of order one that has the following form:

y′ =
dy

dx
= f(x, y), y(a) = y0, and x ∈ [a, b]. (1.1)

Equation (1.1), that has a given initial value, is well known as an
Initial value problem. In this equation the function f(x, y) in the
right hand side has to be continuous function in its domain. Before
we present the numerical methods for such type of equation, we shall
present some preliminaries that has to be verified from the mathemat-
ical analysis point of view.

Definition 1.1.1 — Lipschitz condition. A function f(x, y) is said to
be Lipschitz in the variable y at a region I with I = {(x, y), a ≤
x ≤ b, c ≤ y ≤ d}, if there exist a constant L > 0 such that

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2| ∀c ≤ y1 ≤ y2 ≤ d.

1



2 INITIAL-VALUE PROBLEMS

Theorem 1.1.1 — Existence and uniqueness of the solution . The
initial value problem

y′ = f(x, y) on [a, b], y(xo) = y0

has a unique solution in the interval [a, b] if

1. f(x, y) in continuous with respect to x, y

2. the function f in Lipschitz in the variable y.

The initial value problem

y′ = f(x, y), y(xo) = y0

has a unique solution if f(x, y) is differentiable with respect to y,
and |fy(x, y)| ≤ L in the region I = {(x, y), a ≤ x ≤ b, c ≤ y ≤ d}.

� Example 1.1 Verify that the following initial value problem

y′ =
1

2
(x+ y), y(0) = 1

has a unique solution. �

Solution.

f(x, y) = 1
2(x+ y)

fy(x, y) = 1
2

|f (x, y1)− f (x, y2)| ≤ |fy(x, y) (y1 − y2)| = 1
2 |y1 − y2|

(1.2)

this means that f(x, y) verifies the Lipschitz condition and it is a
polynomial of order one, thus it’s a continuous in x, y. Therefore, this
initial value problem has a unique solution. �

R Second order differential equation: The second order dif-
ferential equation with two initial conditions can be converted
to two equations from the first order, for instance,

y′′ − xy′ − x2y2 = x3

y(0) = 1, y′(0) = 2
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using y′ = z, then, we can rewritten that equation in the
following system

y′ = z
z′ = xz + x2y2 + x3

y(0) = 1, z(0) = 2

equivalent to the following form,(
y′

z′

)
=

(
z

xz + xz + x3

)
,

(
y(0)
z(0)

)
=

(
1
2

)

This remark could be generalized to n order differential equation with
n initial conditions in the form

any
(n) + an−1y

(n−1) + · · ·+ a0y = g(x)

y(m)(0) = y
(m)
0 ,m = 0, 1, 2, · · · , n− 1

where, ao, a1, . . . , an are functions of x, y only. The resulting system
will be n equations from the first order as

Y ′ = F (x, Y ), Y (0) = Y0

1.2 The numerical solution for the initial value
problem

Using the different numerical method, we are able to find an approxi-
mate value for the function y(x) at the points x1, x2, x3, . . . , xn which
divided the interval [a, b] into equal partitions. During this course, we
will present the numerical methods for solving a system of first order
differential equation as well as the higher order system of Ordinary
Differential Equations(ODEs).
The known methods that is used to solve the ODEs could be classified
into two main type, namely

• One-step methods

• Multi-step methods
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In the one-step methods, the value of the function at a point is de-
termined using only it’s value at the previous point. On the other
hand, for the multi-step methods it is calculated using the value of
the function at many points that which are known from the previous
steps.
Some of those methods(one-step methods)that used to solve the first
order ODEs are:

• Picard method

• Taylor method

• Runge-Kutta method

1.3 Single-step methods or One-step methods

As its mentioned above, in those method the value of the functions is
estimated at a point using only its value at the previous point, thus
using only one value to estimate the value of the function at another
point.

1.3.1 Picard method

One of the one-step method that is used to solve the ODEs of first
order and this method depends on the integration of the function as
we will see later.
Let y′ = f(x, y) with the initial condition is y(x0) = y0 and we need
to find the value of the function at x0 + h i.e. y(x0 + h) such that

y′ = f(x, y), y(x0) = y0 (1.3)

integrating the above equation from x0 to x, we have∫ x

x0

dy

dx
dx =

∫ x

x0

f(x, y)dx

y = y0 +

∫ x

xo

f(x, y)dx (1.4)



1.3 SINGLE-STEP METHODS OR ONE-STEP
METHODS 5

then, the first approximation y1 for y can be obtained by substitut-
ing y0 instead of y in the right hand side of the last equation, i.e.,

y1 = y0 +

∫ x

xo

f(x, y0)dx, (1.5)

the second approximation y2, can be obtained also by substituting y1
instead of y in the right hand side of equation (1.4), i.e.,

y2 = y0 +

∫ x

xo

f(x, y1)dx, (1.6)

continuing with a similar way, then we cab obtained the following
repeated relations

yn+1 = y(x0) +

∫ x

xo

f(x, yn(x))dx, (1.7)

and this repeated relation can be stopped whenever the following con-
dition holds

|yn+1 − yn| ≤ ε, (1.8)

where, ε is a small positive constant.

� Example 1.2 Using Picard method, find an approximate value of y
at x = 0.2 if

y′ = x− y, y(0) = 1

�
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Solution.

yn+1 = y(x0) +

∫ x

xo

f(x, yn(x))dx

= y(x0) +

∫ x

xo

(x− yn))dx

= 1 +

∫ x

xo

(x− yn)dx, n = 0, 1, 2, . . .

y1(x) = 1 +

∫ x

0
(x− 1)dx = 1− x+

x2

2

y2(x) = 1 +

∫ x

0

[
x−

(
1− x+

x2

2

)]
dx = 1− x+ x2 − x3

6

y3(x) = 1 +

∫ x

0

[
x−

(
1− x+ x2 − x3

6

)]
dx = 1− x+ x2 − x3

3
+
x4

24

y4(x) = 1 +

∫ x

0

[
x−

(
1− x+ x2 − x3

3
+
x4

24

)]
dx

= 1− x+ x2 − x3

3
+
x4

12
− x5

120

y5(x) = 1− x+ x2 − x3

3
+
x4

12
− x5

60
+

x6

720

at x = 0.2, we have

y0 = 1, y1 = 0.2, y2 = 0.83867, y3 = 0.83740,

y4 = 0.83746, y5 = 0.83746,

thus,
y(0.2) = 0.83746

�
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� Example 1.3 Using Picard method, find the solution of the following
initial value problem

y′ = y, y(0) = 1,

(Note that, the analytical solution is y(x) = ex) �

Solution.

yn+1 = y(x0) +

∫ x

xo

f(x, yn(x))dx

= y0 +

∫ x

xo

yndx

y1(x) = 1 +

∫ x

0
dx = 1 + x

y2(x) = 1 +

∫ x

0
(1 + x)dx = 1 + x+

x2

2

. . . . . . . . . . . .

yn(x) = 1 + x+
x2

2
+ · · ·+ xn

n!

�

� Example 1.4 Using Picard method, find the solution of the following
initial value problem

dy

dx
= xey, y(0) = 0,

then, find y(0.1), y(0.2), y(1)

(Note that, the analytical solution is y(x) = − ln
[
1− x2

2

]
) �
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Solution.

yn+1 = y(x0) +

∫ x

xo

f(x, yn(x))dx

= y0 +

∫ x

0
xeyndx

= 0 +

∫ x

0
xeyndx, n = 0, 1, 2, . . .

y1(x) = 0 +

∫ x

0
xe0dx =

x2

2

y2(x) = 0 +

∫ x

0

[
x
(
e

x2

2
)]
dx = e

x2

2 − 1

y(x) = e
x2

2 − 1

y(0.1) = 0.0050125

y(0.1) = 0.0202013

y(1) = 0.6487213

�

� Example 1.5 Using Picard method, find an approximate value for y
at x = 0.1, 0.2, 0.3 assuming that

dy

dx
= 1 + xy, y(0) = 1

�
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Solution. we use the repeated relations for the Picard which are

yn+1 = y0 +

∫ x

xo

f(x, yn(x))dx

y1(x) = y0 +

∫ x

x0

f(x, y0)dx = 1 +

∫ x

x0

(1 + xy0)dx

= 1 +

∫ x

0
(1 + x)dx = 1 + x+

x2

2

y2(x) = y0 +

∫ x

x0

f(x, y1)dx

= 1 +

∫ x

0
(1 + xy1)dx

= 1 +

∫ x

0

[
1 + x

(
1 + x+

x2

2

)]
dx

= 1 + x+
x2

2
+
x3

3
+
x4

8

y3(x) = y0 +

∫ x

x0

f(x, y2)dx

= 1 +

∫ x

0
(1 + xy2)dx

= 1 +

∫ x

0

[
1 + x

(
1 + x+

x2

2
+
x3

3
+
x4

8

)]
dx

= 1 + x+
x2

2
+
x3

3
+
x4

8
+
x5

15
+
x6

48

y4(x) = y0 +

∫ x

x0

f(x, y3)dx

= 1 +

∫ x

0
(1 + xy3)dx

= 1 +

∫ x

0

[
1 + x

(
1 + x+

x2

2
+
x3

3
+
x4

8
+
x5

15
+
x6

48

)]
dx

= 1 + x+
x2

2
+
x3

3
+
x4

8
+
x5

15
+
x6

48
+

x7

120
+

x8

284

- First, in order to obtain the solution at x = 0.1, we put x = 0.1 in
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the above relations, then we have

y1 = 1.105, y2 = 1.1053458, y3 = 1.3551897, y4 = 1.355192

- Similarly, in order to obtain the solution at x = 0.2, we put x = 0.2
in the above relations, then we have

y1 = 1.22, y2 = 1.2228667, y3 = 1.2228894, y4 = 1.2228895

thus, y(0.2) = 1.223
- Also, in order to obtain the solution at x = 0.3, we put x = 0.3 in
the above relations, then we have

y1 = 1.345, y2 = 1.35550125, y3 = 1.3551897, y4 = 1.355192

thus, y(0.3) = 1.355 �

R (Disadvantage of this method) Due to the integration that
exist in this method it is considered non practical method.
Also, it might be difficult to perform a programming code for
it.

1.3.2 Taylor serious method

This method depends in the derivatives of the function. Suppose that
y(x) is a solution for equation (1.1), then y(x) can be written using
Taylor expansion around the point x = x0 as follows

y(x) = y0 + (x− x0)y′0 +
(x− x0)2

2!
y′′0 + · · ·+ (x− x0)n

n!
y
(n)
0 +Rn+1

where,

Rn+1 =
(x− x0)n+1

(n+ 1)!
y(n+1)(η), η ∈ (x0, x)

putting h = (x− x0) then we can rewrite y(x) as

y(x) = y0 + hy′0 +
h2

2!
y′′0 + · · ·+ hn

n!
y
(n)
0 +Rn+1 (1.9)
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with

Rn+1 =
hn+1

(n+ 1)!
y(n+1)(η), η ∈ (x0, x0 + h)

Now, in order to obtain the solution we have to determine the following
derivatives

y′(x0), y
′′(x0), y

′′′(x0)

that can by performed as

y′(x) = f(x, y)⇒ y′′(x) = f ′(x, y)

= fx(x, y) + fy(x, y)y′

= fx(x, y) + fy(x, y)f

(1.10)

similarly, for all the other higher order derivatives. thus all the deriva-
tives is going to be a function of f(x, y) and the derivatives of f(x, y).
Now, from (1.10) into (1.9), we have

y(x0 + h) =y0 + hf0 +
h2

2!
(fx + fyf)(x0,y0)+

h3

3!
(fxx + 2fxy + fyyf

2 + fxfy + f2y f)(x0,y0) + . . .

(1.11)

and the error in this case takes the following form

Error =
hn+1y(n+1)(η)

(n+ 1)!
, 0 < η < h

The following are the needed steps for performing the current method:

• First: to obtain y(x1), we have to compute the following deriva-
tives; y′(x0), y′′(x0), y′′′(x0), . . . such that
- y′ is f(x, y) from the ODE,
- y′′ can be obtained by by performing the derivative of y′ with
respect to x,
-y′′′ can be obtained by by performing the derivative of y′′ with
respect to x and so on - This should be done each time with
substituting x with x0 , thus we can write the following

y1 = y0 + hy′0 +
h2

2!
y′′0 +

h3

3!
y′′′0 + . . .

Doing so means that we have calculated y(x1) (x1 = x0 + h).
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• Second: to obtain y(x2), we have to compute the following deriva-
tives; y′(x1), y′′(x1), y′′′(x1), . . . . Therefore, we can write the
following such that

y2 = y(x2) = y1 + hy′1 +
h2

2!
y′′1 +

h3

3!
y′′′1 + . . .

where, x2 = x1 + h

• Third: to obtain y(x3), we have to compute the following deriva-
tives; y′(x2), y′′(x2), y′′′(x2), . . . . Therefore, we can write the
following such that

y3 = y(x3) = y2 + hy′2 +
h2

2!
y′′2 +

h3

3!
y′′′2 + . . .

where, x3 = x2 + h

• Finally: we can easily repeat the above steps several times till we
obtain a value for yn = y(xn) at the points n = 0, 1, 2, 3, . . . , xn =
x0 + nh, and we have

yn = y(xn) = yn−1 + hy′n−1 +
h2

2!
y′′n−1 +

h3

3!
y′′′n−1 + . . .

� Example 1.6 Using Taylor method to find the solution of the follow-
ing ODEs;

dy

dx
= x− y, y(0) = 1, h = 0.2

�

Solution. It’s easily to write;

y = y(x) y(0) = 1

y′ = f(x, y) = x− y y′(0) = −1

y′′ = 1− y′ y′′(0) = 2

y′′′ = −y′′ y′′′(0) = −2

yiv = −y′′′ yiv(0) = 2

yv = −yive yv(0) = −2

(1.12)
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then, substituting from (1.12) in the following relations

y1 = y(x1) = y0 + hy′0 +
h2

2!
y′′0 +

h3

3!
y′′′0 + . . .

leads to

y(0.2) = y1 =1 + (0.2)(−1) +
((0.2)2)

2!
(2) +

(0.2)3

3!
(−2)

+
(0.2)4

4!
(2) +

(0.2)5

5!
(−2) + . . .

(1.13)

thus, y(0.2) = y1 = 0.83746 �

� Example 1.7 Find the solution of the following ODE

dy

dx
= x+ y, y(0) = 2

then, find y(0.1), y(0.2). �

Solution.

y = y(x), y′(x) = x+ y, y′′ = 1 + y′,

y′′′(x) = y′′, yiv = y′′′, yv = yiv, . . .
(1.14)

First: In order to calculate y(0.1), we plug in x = 0.1 in the right hand
side of relations (1.14), then

y(0) = 2, y′(0) = 0 + 2, y′′(0) = 1 + 2 = 3,

y′′′(0) = 3, yiv(0) = 3, yv(0) = 3, . . .
(1.15)

thus,

y(x1) = y1 = y0+hy
′(0)+

h2

2!
y′′(0)+

h3

3!
y′′′(0)+

h4

4!
yiv(0)+

h5

5!
yv(0)+. . . ,

h = x1 − x0 = 0.1− 0 = 0.1

y1 = y(0.1) = 2+(0.1)(2)+
(0.1)2

2!
(3)+

(0.1)3

3!
(3)+

(0.1)4

4!
(3)+

(0.1)5

5!
(3)

y1 = y(0.1) = 2.2
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Second: in order to calculate y(0.2), we plug in x = 0.2 in the right
hand side of relations (1.14), then

y(0.1) = 2.2, y′(0.1) = 0.1 + 2.2, y′′(0.1) = 1 + 2.3 = 3.3,

y′′′(0.1) = 3.3, yiv(0.1) = 3.3, yv(0.1) = 3.3, . . .

(1.16)

thus,

y(x2) = y2 = y(x1)+hy
′(x1)+

h2

2!
y′′(x1)+

h3

3!
y′′′(x1)+

h4

4!
yiv(x1)+

h5

5!
yv(x1)+. . . ,

h = x2 − x1 = 0.2− 0.1 = 0.1

y2 = y(0.2) = 2.2+(0.1)(2.3)+
(0.1)2

2!
(3.3)+

(0.1)3

3!
(3.3)+

(0.1)4

4!
(3.3)+

(0.1)5

5!
(3.3)

y2 = y(0.2) = 2.21551275

�

� Example 1.8 Using Taylor method, find the solution for the following
ODE

dy

dx
= x2 + y2, y(0) = 1.

�

f(x, y) = x2 + y2, x0 = 0, y0 = 1,

y = y(x), y(0) = 1,

y′ = f(x, y) = x2 + y2 y′(0) = 1

y′′ = 2x+ 2yy′ y′′(0) = 2

y′′′ = 2 + 2yy′′ + 2(y′)2 y′′′(0) = 8

(1.17)

then using

y(x) = y0 + (x− x0)y′(xo) +
(x− x0)2

2!
y′′(x0) + . . . ,

we conclude that
y(x) = 1 + x+ x2 +

8

3!
x3
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R (Disadvantage of this method) It is clear that this method
is non practical method due to the various differentiations that
one have to compute during the solution. There for we present
here some other methods that we can practically deal with.

1.3.3 Normal Euler method

This method is driven from Taylor method assuming that h << 1 in
the Taylor expansion. Assuming so leads to the possibility of taking
only three terms in the Taylor expansion, thus,

y(x) = y(x0+h) = y(x0)+hy′(x0)+
h2

2!
y′′(ξ), x0 < ξ < x0+h (1.18)

The third term in the above equation represents the error in the
method and it becomes very small whenever h is small enough, thus,

Error = E =
y′′(ξ)h2

2
= O(h2) (1.19)

Equation (1.18) represents the solution at a point x = x0 + h with
the given solution at x = x0 i.e., y(x0) is given as an initial value.
Similarly, we can find the solution at x = x0 + 2h and repeating this
steps we can find also the solution at x = x0 + (n − 1)h. Thus, the
normal Euler can take the following form;

yn+1 = yn + hy′n +O(h2)

Also, since
y′n = f(xn, yn),

then, Euler formula can be rewritten as

yn+1 = yn + hf(xn, yn), E =
h2

2
y′′(ξ), xn < ξ < xn+1 (1.20)

� Example 1.9 Find the solution of the following ODE

dy

dx
= x+ y, y(0) = 1, in the interval [0, 0.1] taking h = 0.02.

�
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Solution. Using the repeated relations (1.20)

yn+1 = yn + hf(xn, yn)

y(0.02) = y1 = y0 + hf(x0, y0) = 1 + (0.02)(0 + 1) = 1.02

y(0.04) = y2 = y1 + hf(x1, x1) = 1.02 + (0.02)(0.02 + 1.02) = 1.0408

y(0.06) = y3 = y2+hf(x2, x2) = 1.0408+(0.02)(0.04+1.0408) = 1.0624

y(0.08) = y4 = y3 + hf(x3, x3) = 1.0048

y(0.1) = y5 = y4 + hf(x4, x4) = 1.1081

�

R The analytical solution for the ODE in the previous example
at x = 0.1 is 1.1103, hence the numerical error is

E = 1.1103− 1.1081 = 0.0022

1.3.4 A modified Euler method

The modified Euler method is driven also from Taylor serious with an
extra term compare to the normal Euler method, i.e.,

yn+1 = yn + hy′n +
h2

2
y′′n (1.21)

Since, y′′n =
y′n+1−y′n

h (from the usual definition of the first derivative
of a function). Substituting in (1.21) for the value of y′′n, we have

yn+1 = yn + hyprimen +
h2

2

(y′n+1 − y′n
h

)
= yn + h

(
y′n +

1

2
y′n+1 −

1

2
y′n

)
= yn +

h

2
(y′n + y′n+1)

(1.22)
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Hence, the final form of the modified Euler method is

yn+1 = yn +
h(y′n + y′n+1)

2
, (1.23)

where, y′n = f(n, yn), y′n+1 = f(xn+1, yn+1)

R Determining y′n+1, that appears in the right hand side of equa-
tion (1.23), depends on the value of yn+1, that is still unknown,
therefore, the steps of for solving such case using the modified
Euler method are

• Determine yn+1, using the normal Euler method.
• Use the previous value to compute the value of y′n+1 such

that
y′n+1 = f(xn+1, yn+1)

• Substitute for the values of yn, y′n, y′n+1 in the right hand
side of equation (1.23) in order to obtain a value for yn+1

which is now obtained by the modified Euler method,
thus,this method is called Predictor Corrector method,
i.e.,

y
(P )
1 = y0 + hy′0 = y0 + hf (x0, y0)

y
(C)
1 = y0 + h

2 (y′0 + y′1) = y0 + h
2

[
f (x0, y0) + f

(
x1, y

(P )
1

)]
� Example 1.10 Find the numerical solution of the following ODEs

dy

dx
= x2 + y, y(0) = 1

at x = 0.2, considering h = 0.1, using the modified Euler method. �

Solution.

y
(P )
1 = y0 + hf (x0, y0) = 1 + (0.1)(0 + 1) = 1.1

y
(C)
1 = y0 +

h

2

[
f (x0, y0) + f

(
x1, y

(P )
1

)]
= 1 +

0.1

2

{
(0 + 1) +

[
(0.1)2 + 1.1

]}
= 1.1055

y(0.1) = 1.1055
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y
(P )
2 = y1 + hf

(
x1, y

(C)
1

)
= 1.1055 + (0.1)

[
(0.1)2 + 1.1055

]
= 1.22605

y
(C)
2 = y1 +

h

2

[
f (x1, y1) + f

(
x2, y

(P )
2

)]
= 1.1055 +

0.1

2

{[
(0.1)2 + 1.1055

]
+
[
(0.2)2 + 1.22605

]}
= 1.224577

y
(C)
2 = 1.224577

�

� Example 1.11 Using the modified Euler method, find the solution of
the following ODEs

dy

dx
= x+ y, y(0) = 1

at x = 0.04, considering h = 0.02. �

Solution.

y
(P )
1 = y0 + hf (x0, y0) = 1 + (0.02)(0 + 1) = 1.02

y
(C)
1 = y0 +

h

2

[
f (x0, y0) + f

(
x1, y

(P )
1

)]
= 1 +

0.02

2
{(0 + 1) + [(0.02) + 1.02]} = 1.0204

y(0.02) = 1.0204
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y
(P )
2 = y1 + hf

(
x1, y

(C)
1

)
= 1.0204 + 0.02(0.02 + 1.0204) = 1.041208

= 1.041208

y
(C)
2 = y1 +

h

2

[
f (x1, y1) + f

(
x2, y

(P )
2

)]
= 1.0204 +

0.02

2
{[(0.02) + 1.0204] + [(0.04) + 1.041208]}

= 1.0416

y
(C)
2 = 1.0416

�

� Example 1.12 Use the modified Euler method to find the solution of
the following ODEs

y′ = x+ y, y(0) = 2

for obtaining the value of y(0.2) using the step size h = 0.025. �

Solution. First, obtaining yn+1, which means y(0.2), using the mod-
ified Euler method. we apply the following repeated relations

yn+1 = yn + hf (xn, yn)
y(0.025) = y1 = y0 + hf (x0, y0)

= 2 + (0.025)[(0)(4)] = 2
y(0.05) = y2 = y1 + hf (x1, y1)

= 2 + (0.025)[(0)(4)] = 2
y(0.075) = y3 = y2 + hf (x2, y2)

= 2 + (0.025)[(0)(4)] = 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
y(0.100) = y(0.125) = y(0.150) = y(0.175) = y(0.200) = 2
yn+1 = y(0.2) = 2,

y′n+1 = − (xn+1)
(
y2n+1

)
= −(0.2)(4) = −0.8

(1.24)
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Now, we use the relation of the modified Euler equation, that is

yn+1 = yn +
h(y′n+y′n+1)

2 , yn = y(0.175) = 2
y′n = −(0.175)(4) = −0.700

yn+1 = y(0.2) = −0.7 + 0.025(−0.7−0.8)
2 = −0.7187

�

1.3.5 Runge-Kutta method

It’s one of the most important methods for solving the differential
equations, which can be driven using Taylor expansion and the order
of this method depends on how many terms are considered from the
Taylor expansion, thus we have the following types of the method

Runge-Kutta method of second order (RK2)

It is used to obtain the solution of a differential equation of the form

dy

dx
= f(x, y), y(x0) = y0, (1.25)

and it can be driven as follows; assume

yn+1 = yn + ak1 + bk2,

k1 = hf(xn, yn),

k2 = hf(xn + αh, yn + βk1),

(1.26)

where, a, b, α, β are constants that can be determined with the follow-
ing way;
-Using the Taylor expansion for eq. (1.25) at a point xn, we have

yn+1 = yn + hf(xn, yn) +
h2

2!
f ′(xn, yn) +O(h3), (1.27)

where,

f ′(xn, yn) =
dfn
dx

=
(
fx + fy

dy

dx

)
n

= (fx + fyf)n
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Now, substituting in the above equation about the value of f ′(xn, yn),
we have

yn+1 = yn + hf(xn, yn) +
h2

2!
(fx + fyf)n +O(h3), (1.28)

the term k2 which is used in RK2 can be rewritten in the following
form (using Taylor expansion for a two variable function)

k2 = hf (xn + αh, yn + βk1)

= hf (xn, yn) + αh2fx (xn, yn) + βhk1fy (xn, yn)

= h (fn + αhfx + βk1fy)n = h (fn + αhfx + βhfyf)n ( since k1 = hf)

Substituting in (1.25) for the value of k2, we have

yn+1 = yn + ahf (xn, yn) + bh (f + αhfx + βhfy)n ,

which can be rewritten as,

yn+1 = yn + (a+ b)hf (xn, yn) + h2 (αbfx + βbffy)n ,

Thus,

a+ b = 1, αb =
1

2
, βb =

1

2

This equation has three relations in four variables, therefore the solu-
tion of is infinite number in which one can pick any value for one of
the variables to get the other three variables. Also, this equation can
be rewritten in the following form

b(α− β) = 0, b 6= 0 =⇒ α− β = 0 =⇒ α = β

Now,

• choose α = β = 1
2 , leads to a = 0, b = 1, which is incorrect as

we should have (a 6= 0).

• choose α = β = 1, leads to a = b = 1
2
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then substituting for the values of a, b, α, β,then we achieve to our goal
i.e.,

yn+1 = yn + ak1 + bk2, with
k1 = hf(xn, yn),

k2 = hf(xn + αh, yn + βk1),

(1.29)

that is RK2.

� Example 1.13 Use RK2 method to find the solution of the following
ODEs

dy

dx
= x2 + y2, y(2) = −1

at x = 2.3 using the step size h = 0.1. �

Solution.
f(x, y) = x2 + y2

y1 = y0 +
k1 + k2

2
,

k1 = hf(x0, y0) = hf(2,−1) = (0.1)(4 + 1) = 0.5

k2 = hf(x0+h, y0+k1) = hf(2+0.1,−1+0.5) = hf(2.1,−0.5) = 0.466

y1 = −1 +
1

2
(0.5 + 0.466) = −0.517

y2 = y1 +
k1 + k2

2
,

k1 = hf (x1, y1)

= hf (x1, y1) = hf1 = hf(2.1,−0.517)

= (0.1)
[
(2.1)2 + (−0.517)2

]
= 0.468,

k2 = hf(x1 + h, y1 + k1)

= (0.1)
[
(2.2)2 + (−0.049)2

]
= 0.484
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y2 = −0.517 +
1

2
(0.468 + 0.484) = −0.041

y3 = y2 +
k1 + k2

2
k1 = hf(x2, y2) = hf2 = hf(2.2,−0.041)

= (0.1)
[
(2.2)2 + (−0.041)2

]
= 0.484,

k2 = hf(2.2 + 0.1,−0.041 + 0.484) = hf(2.3, 0.443)

= (0.1)
[
(2.3)2 + (0.443)2

]
= 0.548

y3 = −0.041 +
1

2
(0.484 + 0.548) = 0.475

�

� Example 1.14 Let
dy

dx
= x2 − y, y(0) = 1

find y(0.1), y(0.2) using RK2. �

Solution.
f(x, y) = x2 − y

x0 = 0, y0 = 1 =⇒ f(x0, y0) = −1,

Now, the RK2 method is

k1 = hf(x0, y0) = ()0.1(0− 1) = −0.1

k2 = hf(x0 +h, y0 +k1) = hf(0.1, 0.9) = (0.1)((0.1)2− 0.9) = −0.089

K =
1

2
(k1 + k2) =

1

2
(−0.1 + 0.089) = −0.0945

y1 = y(0.1) = y0 +K = 1− 0.0945 = 0.9055

For computing y(0.2) we take (x1, y1) = (0.1, 0.9055) instead of (x0, y0),
then we repeat the method again

k1 = hf (x1, y1)

= h(x21 − y1) = (0.1)
[
(0.1)2 − 0.905

]
= −0.08955,

k2 = hf(x0 + h, y0 + k1)

= (0.1)
[
(0.2)2 − 0.81595

]
= 0.077595
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K = 1
2 (k1 + k2) = 1

2(−0.08955− 0.077595) = −0.0835725
y2 = y(0.2) = y1 + k = 0.9055− 0.0835725 = 0.821975

�

Rung-Kutta of fourth order (RK4)

This method is considered one of the most popular method as its is
more accurate compare to the Rung-Kutta of second order method.
This ,method could be driven in a similar way to that of RK2 increas-
ing. It takes the following form

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4),

where,

k1 = hf(xn, yn),
k2 = hf(xn + 1

2h, yn + 1
2k1),

k3 = hf(xn + 1
2h, yn + 1

2k2),
k4 = hf(xn + h, yn + k3),

� Example 1.15 Use the RK4 in order to solve the following ODE

dy

dx
= x+ y, y(0) = 1

at x = 0.1, using,h = 0.1. �
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Solution.

k1 = hf (xn, yn) = hf(0, 1) = 0.1(0 + 1) = 0.1

k2 = hf

(
xn +

1

2
h, yn +

1

2
k1

)

= hf

(
0 +

0.1

2
, 1 +

0.1

2

)
= hf(0.05, 1.05)

= 0.1(0.05 + 1.05) = 0.11

k3 = hf

(
xn +

1

2
h, yn +

1

2
k2

)
= 0.1

= 0.1 0.05 + 1.055 = 0.11050

k4 = hf (xn + h, yn + k3)

= 0.1f(0.1, 1.11050) = 0.12105

yn+1 =yn +
1

6
k1 + 2k2 + 2k3 + k4

y(0.1) = 1.0 +
1

6
(0.1) + 0.22 + 0.221 + 0.1205

= 1.11034

(1.30)

�

� Example 1.16 From the following ODE

dy

dx
= x2 − y, y(0) = 1

find y(0.1), y(0.2), using RK4. �
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Solution.

k1 = hf (xn, yn) = hf(0, 1) = 0.1(0− 1) = −0.1

k2 = hf

(
xn +

1

2
h, yn +

1

2
k1

)

= hf (0.05, 0.98)

= 0.1(0.052 − 0.95) = 0.09475

k3 = hf

(
xn +

1

2
h, yn +

1

2
k2

)

= 0.1f(0.052, 0.952625) = −0.0950125

k4 = hf (xn + h, yn + k3)

= 0.1f(0.12 − 0.0950125) = 0.0894987

K =
1

6
k1 + 2k1 + 2k2 + k3

=
1

6
[−0.1 + 2− 0.09475

+ 2− 0.0950125− 0.0894987]

=− 0.0948372

y1 = y(0.1) = yo +K = 1− 0.0948372 = 0.9051627.

Now, to compute y(0.2) we take (x1, y1) = (0.1, 0.9051627) instead
of (x0, y0) and repeat the method to get the following
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k1 = hf (x1, y1) = hf(0.1, 0.9051627)

= 0.1
[
0.12 − 0.9051627

]
= −0.0895162

k2 = hf

(
x1 +

h

2
, y1 +

k1
2

)
= hf(0.15, 0.8604046)

= 0.1
[
0.152 − 0.8604046

]
= −0.837904

k3 = hf

(
x1 +

h

2
, y1 +

k2
2

)
= hf(0.15, 0.8632674)

= 0.1
[
0.152 − 0.8632674

]
= −0.0840767

k4 = hf x1 + h, y1 + k3 = hf(0.2, 0.8210859)

= 0.1
[
0.22 − 0.8210859

]
= −0.0781085

K =
1

6
k1 + 2k1 + 2k2 + k3

=
1

6
[−0.0895162 + 2− 0.0837904

+ 2− 0.0840767− 0.0781085]

= −0.0838931

y2 = y(0.2) = y1 +K

= 0.9051627− 0.0838931

= 0.08212695

�

� Example 1.17 Suppose we have the following ODE

dy

dx
= x2 − y, y(0) = 1,

find y(0.1), y(0.2), using RK2. �
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Solution.

k1 = hf (x0, y0) = 0.1[0− 1] = −0.1

k2 = hf (x0 + h, y0 + k1)

= hf0.1, 0.9 = 0.1
[
0.12 − 0.9

]
= −0.089

K =
1

2
k1 + k2 =

1

2
− 0.1 + 0.089 = −0.0945

y1 = y(0.1) = y0 + k = 1− 0.0945 = 0.9055

Then, to compute y(0.2), we take (x1, y1) = (0.1, 0.9055) instead of
(x0, y0) and repeat the method to get the following

k1 = hf (x1, y1) = hx21 − y1

= 0.1
[
0.12 − 0.905

]
= −0.08955

k2 = hf (x0 + h, y0 + k1)

= hf0.2, 0.81595 = 0.1
[
0.22 − 0.81595

]
= −0.077595

K =
1

2
k1 + k2 =

1

2
− 0.08955− 0.077595 = −0.0835725

y2 = y(0.2) = y1 + k = 0.9055− 0.0835725 = 0.821975

�

� Example 1.18 Use RK2 to solve the following ODE

dy

dx
= y − x, y(0) = 2,

at x = 0.2, using h = 0.1. �
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Solution.

k1 = hf (x0, y0) = hf(0, 2)

= 0.2[2− 0] = 0.4

k2 = hf

(
x0 +

h

2
, y0 +

k1
2

)
= hf(0.1, 2.2)

= 0.2[2.2− 0.1] = 0.42

k3 =hf

(
x0 +

h

2
, y0 +

k2
2

)
= hf(0.1, 2.21)

=0.2[2.21− 0.1] = 0.422

k4 =hf x0 + h, y0 + k3 = hf(0.2, 2.422)

=0.2[2.422− 0.2] = 0.4644

y(0.2) = y0 +
1

6
k1 + 2k2 + 2k3 + k4

= 2 + [0.4 + 20.42 + 20.422 + 0.4644]

= 2.4247266

�

Exercise 1.1 Use RK4 to find the values of y(0.1), y(0.2), y(0.3) of the
following ODE

dy

dx
= xy + y2, y(0) = 1,





Chapter 2

Numerical solution for
systems of ordinary
differential equation

2.1 Solving differential systems of first order

The general form of system of ordinary differential equation from the
first order is

y′1 =f1 (x, y1, y2, · · · , yn)

y′2 =f2 (x, y1, y2, · · · , yn)

...
...

y′n = fn (x, y1, y2, · · · , yn)

with,
y1(x0) = α1, y2(x0) = α2, . . . , yn(x0) = αn


(2.1)

All the methods mentioned in the previous chapter for solving an
equation from the initial value problem type can be used to solve
system of ordinary differential equation as in (2.1). We are going to
show how those methods can be extended to solve a system of ODEs.
During our discussion, we are going to focus our attention to a system
of two equations and in order to make the picture more clear we will

31
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use alternative notations as;

y′ = f(x, y, z), z′ = φ(x, y, z)

be a system formed of two equations with the following two initial
conditions

y(x0) = y0, z(x0) = z0

2.1.1 Picard method

Suppose 
y′ = f(x, y, z)
z′ = φ(x, y, z)
with the initial condition
y(x0) = y0, z(x0) = z0

(2.2)

the first approximation y1, z1 can be obtained in a similar way to that
of the one differential equation, i.e.,

y1 = y0 +
∫ x
x0
f (x, y0, z0) dx

z1 = z0 +
∫ x
x0
φ (x, y0, z0) dx,

the second approximation is

y2 = y0 +
∫ x
x0
f (x, y1, z1) dx

z2 = z0 +
∫ x
x0
φ (x, y1, z1) dx

and, so on

� Example 2.1 Use Picard method to find an approximate vale for y, z
to solve

dy

dx
= z,

dz

dx
= x3(y + z)

with the initial conditions y(0) = 1, z(0) = 1
2 . �

Solution. Since,

dy
dx = f(x, y, z) = z
dz
dx = φ(x, y, z) = x3(y + z)
y = y0 +

∫ x
x0
f(x, y, z)dx

z = z0 +
∫ x
x0
φ(x, y, z)dx
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The first approximation is

y1 = y0 +
∫ x
x0
f (x, y0, z0) dx = 1 +

∫ x
0 (1/2)dx = 1 + x

2

z1 = z0 +
∫ x
x0
φ (x, y0, z0) dx = 1

2 +
∫ x
0 x

3
(
1 + 1

2

)
dx

= 1
2 + 3x4

8 ,

the second approximation is

y2 = y0 +

∫ x

x0

f (x, y1, z1) dx = 1 +

∫ x

0

(
1

2
+

3x4

8

)
dx

= 1 +
x

2
+

3x4

40

z2 = z0 +

∫ x

x0

φ (x, y1, z1) dx =
1

2
+

∫ x

0
x3
(

1 +
x

2
+

1

2
+

3x4

8

)
dx

=
1

2
+

3x4

8
+
x5

10
+

3x8

64
,

and, the third approximation is

y3 = y0 +

∫ x

x0

f (x, y2, z2) dx = 1 +

∫ x

0

(
1

2
+

3x4

8
+
x5

10
+

3x8

64

)
dx

= 1 +
x

2
+

3x4

40
+
x6

60
+

x9

192

z3 = z0 +

∫ x

x0

φ (x, y2, z2) dx

=
1

2
+

∫ x

0
x3
(

1 +
x

2
+

1

2
+

3x4

8
+
x5

10
+

3x8

64

)
dx

=
1

2
+

3x4

8
+
x5

10
+

3x8

64
+

7x9

360
+
x12

256

therefore, at x = 0.1 we have

y1 = 1.05, y2 = 1.500008, y3 = 1.500008
z1 = 0.5000375, z2 = 0.5000385, z3 = 0.5000385

�
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2.1.2 Taylor method

Let y(x), z(x) be the solution of the system (2.1), then by Taylor
expansion of y(x), z(x) around the point x = x0, we have

y1 = y0 + hy′0 + h2

2! y
′′
0 + h3

3! y
′′′
0 + · · ·

z1 = z0 + hz′0 + h2

2! z
′′
0 + h3

3! z
′′′
0 + · · ·

(2.3)

in order to obtain the solution, we have to determine the values of
y′0, y

′′
0 , y
′′′
0 , . . . , also the values of z′0, z′′0 , z′′′0 , . . . , which can be done by

differentiating y′ = f(x, y, z), z′ = φ(x, y, z) with respect to x, then
substituting in (2.3), we have y1, z1 in the first step.
Similarly, in the second step we have

y2 = y1 + hy′1 + h2

2! y
′′
1 + h3

3! y
′′′
1 + · · ·

z2 = z1 + hz′1 + h2

2! z
′′
1 + h3

3! z
′′′
1 + · · ·

(2.4)

where, y1, z1 and all its derivatives we obtained n the previous step.
Repeating this, we will be able to obtain the values for the other steps

� Example 2.2 Using Taylor method, find the solution for
dy
dx = x+ z, y(0) = 2
dz
dx = x− y2, z(0) = 1

at the point x = 0.2 with h = 0.1. �

Solution. Since,
y′ = x+ z, y(0) = 2

z′ = x− y2, z(0) = 1

we can evaluate the following derivatives

y′ = x+ z
y′′ = 1 + z′

y′′′ = z′′

z′ = x− y2
z′′ = 1− 2yy′

z′′′ = −2
[
yy′′ + y′2

]
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then, we use Taylor series to obtain y1, z1 as

y1 = y0 + hy′0 + h2

2! y
′′
0 + h3

3! y
′′′
0 + · · ·

z1 = z0 + hz′0 + h2

2! z
′′
0 + h3

3! z
′′′
0 + · · ·

at
x0 = 0, y0 = 2, z0 = 1, h = 0.1

we get,

y′0 = x0 + z0 = 1, z′0 = x0 − y20 = −4
y′′0 = 1 + z′0 = 1− 4 = −3, z′′0 = 1− 2y0y

′
0 = 1− 2(2)(1) = −3

y′′′0 = z′′0 = −3, z′′′0 = −2
[
y0y
′′
0 + y′20

]
= −2

[
2(−3) + 12

]
= 10

substituting with those values in the Taylor series we get

y1 = 2 + (0.1)(1) +
(0.1)2

2!
(−3) +

(0.1)3

3!
(−3) + · · ·

= 2 + 0.1− 0.015− 0.0005 = 2.0845

z1 = 1 + (0.1)(−4) +
(0.1)2

2!
(−3) +

(0.1)3

3!
(10) + · · ·

= 1− 0.4− 0.015 + 0.001667 = 0.5867

y(0.1) = 2.0845

z(0.1) = 0.5867

Similarly, for obtaining y(0.2), z(0.2), we can write

y2 = y1 + hy′1 + h2

2! y
′′
1 + h3

3! y
′′′
1 + · · ·

z2 = z1 + hz′1 + h2

2! z
′′
1 + h3

3! z
′′′
1 + · · ·

at,
x1 = 0.1, y1 = 2.0845, z1 = 0.5867

we get,

y′1 = x1 + z1 = 0.06867, z′1 = x1 − y21 = −4.2451403
y′′1 = 1 + z′1 = −3.2451403, z′′1 = 1− 2y1y

′
1 = −1.8628523

y′′′1 = z′′1 = −1.8628523, z′′′1 = −2
[
y1y
′′
1 + y′21

]
= 12.585876



36 NUMERICAL SOLUTION FOR SYSTEMS OF
ORDINARY DIFFERENTIAL EQUATION

thus,

y2 = 2.0845 + (0.1)(0.6867) +
(0.1)2

2!
(−3.2451403)

+
(0.1)3

3!
(−1.8628523) + · · ·

= 2.1366338

z2 = 0.5867 + (0.1)(−4.2451403) +
(0.1)2

2!
(−1.8628523)

+
(0.1)3

3!
(12.585876) + · · ·

= 0.1549693

�

2.1.3 Runge-kutta method

Let,
dy

dx
= f1(x, y, z),

dz

dx
= f2(x, y, z)

with the initial conditions

y(x0) = y0, z(x0) = z0

The solution of the previous system using RK2, takes the following
form

yn+1 = yn + 1
2 (k1 + k2)

zn+1 = zn + 1
2 (l1 + l2)

where,

k1 = hf1(x, y, z), l1 = hf2(x, y, z)
k2 = hf1 (x+ h, y + k1, z + l1) , l2 = hf2 (x+ h, y + k1, z + l1)

The solution of the previous system using RK4, takes the following
form

yn+1 = yn + 1
6 (k1 + 2k2 + 2k3 + k4)

zn+1 = zn + 1
6 (l1 + 2l2 + 2l3 + l4)
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where,

k1 = hf(x, y, z), l = hf2(x, y, z)

k2 = hf1

(
x+ h

2 , y + k1
2 , z + l1

2

)
l2 = hf2

(
x+ h

2 , y + k1
2 , z + l1

2

)
k3 = hf1

(
x+ h

2 , y + k2
2 , z + l2

2

)
,

l3 = hf2

(
x+ h

2 , y + k2
2 , z + l2

2

)
k4 = hf1 (x+ h, y + k3, z + l3)

l4 = hf2 (x+ h, y + k3, z + l3)

� Example 2.3 Using Rung-Kutta 4th find the solution for

dy
dx = yz + x, y(0) = 1

dz
dx = xz + y, z(0) = −1

and then find y(0.2), z(0.2) �

Solution. since

f1(x, y, z) = yz + x, f2(x, y, z) = xz + y

x0 = 0, y0 = 1, z0 = −1

k1 = hf1 (x0, y0, z0) = (0.1)[(1)(−1) + 0] = −0.1

l1 = hf2 (x0, y0, z0) = (0.1)[(0)(−1) + 1] = 0.1
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k2 = hf1

(
x0 +

h

2
, y0 +

k1
2
, z0 +

l1
2

)
= hf1(0.05, 0.95,−0.95)

= (0.1)[(0.95)(−0.95) + 0.05] = −0.08525

l2 = hf2

(
x0 +

h

2
, y0 +

k1
2
, z0 +

l1
2

)
= hf2(0.05, 0.95,−0.95)

= (0.1)[(0.05)(−0.95) + 0.95] = 0.09025

k3 = hf1

(
x0 +

h

2
, y0 +

k2
2
, z0 +

l2
2

)
= hf1(0.05, 0.957375,−0.954875)

= (0.1)[(0.957375)(−0.954875) + 0.05] = −0.0864173

l3 = hf2

(
x0 +

h

2
, y0 +

k2
2
, z0 +

l2
2

)
=hf2(0.05, 0.957375,−0.954875)

=(0.1)[(0.05)(−0.954875) + 0.957375] = −0.0909631

k4 = hf1 (x+ h, y + k3, z + l3)

= hf1(0.1, 0.9135827,−0.9090369)

= (0.1)[(0.9135827)(−0.9090369) + 0.1]

= −0.073048

l4 = hf2 (x+ h, y + k3, z + l3)

= hf2(0.1, 0.9135827,−0.9090369)

= (0.1)[(0.1)(−0.9090369) + 0.9135827]

= 0.822679

k =
1

6
(k1 + 2k2 + 2k3 + k4)

=
1

6
[0.1 + 2(−0.08525) + 2(−0.0864173)− 0.073048]

= −0.0860637
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l =
1

6
(l1 + 2l2 + 2l3 + l4)

=
1

6
[0.1 + 2(0.09025) + 2(0.0909631)− 0.0822679]

= −0.0907823

y1 = y(0.1) = y0 + k = 1− 0.0860637 = 0.9139363

z1 = z(0.1) = z0 + l = −1 + 0.0907823 = −0.9092176

x1 = 0.1, y1 = 0.9139363, z1 = −0.9092176

and, to get y(0.2), z(0.2), we perform the following

k1 = hf1 (x1, y1, z1) = h (y1z1 + x1) = −0.0730966

l1 = hf2 (x1, y1, z1) = h (x1z1 + y1) = −0.08230145

k2 = hf1

(
x1 +

h

2
, y1 +

k1
2
, z1 +

l1
2

)
= hf1(0.15, 0.877388,−0.8680669)

= (0.1)[(0.877388)(−0.8680669) + 0.15] = −0.0611631

l2 = hf2

(
x1 +

h

2
, y1 +

k1
2
, z1 +

l1
2

)
= hf2(0.15, 0.877388,−0.8680669)

= (0.1)[(0.15)(−0.8680669) + 0.877388] = 0.0747177
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k3 = hf1

(
x1 +

h

2
, y1 +

k2
2
, z1 +

l2
2

)
= hf1(0.15, 0.8833547,−0.8718587)

= (0.1)[(0.8833547)(−0.8718587) + 0.15] = −0.062016

l3 = hf2

(
x1 +

h

2
, y1 +

k2
2
, z1 +

l2
2

)
= hf2(0.15, 0.8833547,−0.8718587)

= (0.1)[(0.15)(−0.8718587) + 0.8833547] = 0.0750851

k4 = hf1 (x+ h, y + k3, z + l3)

= hf1(0.2, 0.8519203,−0.8341324)

= (0.1)[(0.8519203)(−0.8341324) + 0.2]

= −0.0510614

l4 = hf2 (x+ h, y + k3, z + l3)

= hf2(0.2, 0.8519203,−0.8341324)

= (0.1)[(0.2)(−0.8341324) + 0.8519203]

= 0.0685093

k =
1

6
(k1 + 2k2 + 2k3 + k4)

=
1

6
[−0.0730966 + 2(−0.0611631)

+ 2(−0.062016)− 0.0510614]

= −0.0617527
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l =
1

6
(l1 + 2l2 + 2l3 + l4)

=
1

6
[0.08230145 + 2(−0.0747177)

+ 2(0.0750851) + 0.0685093]

= 0.0750693

y2 = y(0.2) = y1 + k = 0.9139363− 0.0617527

= 0.8521836

z2 = z(0.2) = z1 + l = −0.9092176 + 0.0750693

= −0.8341482

�

2.2 Ordinary differential equation of higher or-
der

The generalized form of ordinary differential equation of n order is

y(n) = f(x, y, y′, y′′, y′′′, . . . , y(n−1)) (2.5)

and the initial values are

y(x0) = α0, y
′(x0) = α1, y

′′(x0) = α2, . . . , y
(n−1)(x0) = αn−1.

This equation could be solved after converting it into a system of
ordinary differential equation of first order that had been discussed
before.
In order to convert equation (2.5) into a system of ordinary differential
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equation of first order, we let

y1 = y,

y2 = y′

y3 = y′′

...

yn = y(n−1),

(2.6)

differentiating this system, we have

y′1 = y′ = y2,

y′2 = y′′ = y3

y′3 = y′′′ = y4
...

y′n = y(n) = f(x, y1, y2, y3, y4, . . . , yn),

(2.7)

This means that high order differential equation has been converted
into a system of first order. Here, it will be enough to solve a second
order differential equation using the previous mentioned methods.

2.2.1 Picard method for solving a second order differ-
ential equation

Consider the second order ordinary differential equation

y′′ = f(x, y, y′) (2.8)

with the initial conditions

y(x0) = y0 = α0, y
′(x0) = α1

we write this equation in a form of system of first order which can be
done by letting

y′ = z, z′ = y′′ = f(x, y, z)
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� Example 2.4 Using Picard method, find the solution of the following
second order differential equation

y′′ + 2xy′ + y = 0
y(0) = 0.5, y′(0) = 0.1

(2.9)

at x = 0.1. �

Solution. let

y′ = z ⇒ y′′ = z′ =
dz

dx

thus, eq. (2.9) reads

dz

dx
+ 2xz + y = 0 ⇒ dz

dx
= −(2xz + y)

This means that eq. (2.9) can be rewritten in the follow system form

y′ = z,
z′ = −(2xz + y)

with the following initial conditions

y(0) = y0 = 0.5, z(0) = z0 = 0.1

let

y′ = f(x, y, z) = z, z′ = φ(x, y, z) = −(2xz + y)

Using Picard method, we get

y = yo +
∫ x
x0
f(x, y, z)dx

z = z0 +
∫ x
x0
φ(x, y, z)dx
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The first approximation reads

y1 = y0 +

∫ x

x0

f (x, y0, z0) dx

= 0.5 +

∫ x

x0

z0dx = 0.5 +

∫ x

x0

(0.1)dx

= 0.5 + (0.1)x

z1 = z0 +

∫ x

x0

φ (x, y0, z0) dx

= 0.1−
∫ x

x0

(2xz0 + y0) dx = 0.1−
∫ x

x0

(0.2x+ 0.5)dx

= 0.1− (0.5)x− (0.1)x2

the second approximation is

y2 = y0 +

∫ x

x0

f (x, y1, z1) dx

= 0.5 +

∫ x

x0

z1dx = 0.5 +

∫ x

x0

(
0.1− (0.5)x− (0.1)x2

)
dx

= 0.5 + (0.1)x− (0.5)x2

2
− (0.1)x3

3

z2 = z0 +

∫ x

x0

φ (x, y1, z1) dx

= 0.1−
∫ x

x0

(2xz1 + y1) dx

= 0.1−
∫ x

x0

[(
2x
(
0.1− 0.5x− 0.1x2

)
+ (0.5 + 0.1x)

]
dx

= 0.1− (0.5)x− (0.3)x2

2
− (2.5)x3

6
+

(0.2)x4

4
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and, the third approximation is

y3 = y0 +

∫ x

x0

f (x, y2, z2) dx

= 0.5 +

∫ x

x0

z2dx = 0.5 +

∫ x

x0

[
0.1− 0.5x+

0.3

2
x2 − 2.5

6
x3 +

0.1

4
x4
]
dx

= 0.5 + (0.1)x− (0.5)x2

2
− (0.1)x3

3
+
x4

12
+

(0.1)x5

10

z3 = z0 +

∫ x

x0

φ (x, y2, z2) dx

= 0.1−
∫ x

x0

(2xz2 + y2) dx

= 0.1− (0.5)x− (0.3)x2

2
− (2.5)x3

6
+

(0.2)x4

4
+

2x5

15
+

(0.1)x6

6

Now, at x = 0.1, we have

y1 = 0.51, y2 = 0.50746667, y3 = 0.50745933,

Thus, y(0.1) = 0.5075. �

2.2.2 Taylor method

Suppose we have the following second order differential equation

y′′ = f(x, y, y′)

with the initial conditions

y(x0) = y0 = α0, y
′(x0) = α1

this equation can be converted into

y′ = z,
z′ = f(x, y, z)⇒ y′′ = z′ = f(x, y, z)

with the initial conditions

y(x0) = y0, y
′(x0) = z0
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Now, using Taylor expansion for the last two equation, we have

z1 = z0 + hz′0 + h2

2! z
′′
0 + h3

3! z
′′′
0 + . . .

y1 = y0 + hy′0 + h2

2! y
′′
0 + h3

3! y
′′′
0 + . . .

= y0 + hz0 + h2

2! z
′
0 + h3

3! z
′′
0 + . . .

where, z′0, z′′0 , z′′′0 can be obtained be differentiating the second equa-
tion of the system.
With a similar way, we can get the second approximation of y2, z2 as

z2 = z1 + hz′1 + h2

2! z
′′
1 + h3

3! z
′′′
1 + · · ·

y2 = y1 + hy′1 + h2

2! y
′′
1 + h3

3! y
′′′
1 + · · ·

= y1 + hz1 + h2

2! z
′
1 + h3

3! z
′′
1 + · · ·

where, y1, z1 are know at this stage from the previous iterations. Fi-
nally, using the same manner, we can get approximate values for the
other intervals.

� Example 2.5 Using Taylor expansion at x = 0.1, 0.2, find the solu-
tion of the following second order differential equation

y′′ − x(y′)2 + y2 = 0
y(0) = 1, y′(0) = 0

(2.10)

at x = 0.1. �

Solution. Putting
y′ = z ⇒ y′′ = z′

Therefore, the differential equation takes the following form{
y′ = z
z′ = xz2 − y2 (2.11)

with the initial conditions

y(0) = y0 = 1
z(0) = z0 = 0

(2.12)
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Using Taylor expansion

z1 = z0 + hz′0 +
h2

2!
z′′0 +

h3

3!
z′′′0 + · · ·

y1 = y0 + hy′0 +
h2

2!
y′′0 +

h3

3!
y′′′0 +

h4

4!
yiv0 + · · ·

from the first equation, we have

z′ = xz2 − y2, y′′ = z′

z′′ = z2 + 2xzz′ − 2yy′, y′′′ = z′′

z′′′ = 2zz′ + 2
[
xPz′ + x

(
z′
)2

+ zz′
]

− 2
[
yy′′ +

(
y′
)2]

, yiv = z′′′

thus,

z′0 = x0z
2
0 − y20 = (0)(0)2 − (1)2 = −1

z′′0 = z20 + 2x0z0z
′
0 − 2y0y

′
0

= (0)2 + 2(0)(0)(−1)− 2(1)(0) = 0

z′′′0 = 2z0z
′
0 + 2

[
x0z0z

′
0 + x0

(
z′0
)2

+ z0z
′
0

]
− 2

[
y0y
′′
0 +

(
y′0
)2]

= 2(0)(−1) + 2
[
(0)(0)(−1) + (0)(−1)2 + (0)(−1)

]
− 2

[
(1)(−1) + (0)2

]
= 2

substituting into the two equations of the system, we get

z1 = 0 + (0.1)(−1) +
(0.1)2

2!
(0) +

(0.1)3

3!
(2) + · · ·

= −0.0997

y1 = y(0.1) = 1 + (0.1)(0) +
(0.1)2

2!
(−1) +

(0.1)3

3!
(0) +

(0.1)4

4!
(2) + · · ·

= 0.9950083 ≈ 0.995
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y2 = y(0.2) = y1 + hy′1 +
h2

2!
y′1 +

h3

3!
y′′′1 +

h4

4!
yiv1 + · · ·

=y1 + hz1 +
h2

2!
z′1 +

h3

3!
z′′1 +

h4

4!
z′′′1 + · · ·

thus,

y1 = 0.995, z1 = −0.0997

z′1 = x1z
2
1 − y21 = (0.1)(−0.0997)− (0.995)2

= −0.9890309

z′′1 = z21 + 2x1z1z
′
1 − 2y1y

′
1 = −0.1687416

(2.13)

then,

y2 = 0.995 +
(0.1)

1!
(−0.0997) +

(0.1)2

2!
(−0.9890309)

+
(0.1)3

3!
(−0.1687416) + · · · = 0.9801129 ≈ 0.9801

z2 = z1 +
h

1!
z′1 +

h2

2!
z′′1 +

h3

3!
z′′′1 + · · ·

= −0.0997 +
(0.1)

1!
(−0.0997) +

(0.1)2

2!
(−0.9890309)

+
(0.1)3

3!
(−0.1687416) = −0.1145871

�

2.2.3 Runge-Kutta

Suppose we have the following second order differential equation

y′′ = f(x, y, y′)

with the initial conditions

y(x0) = y0 = α0, y
′(x0) = α1

let
y′ = z ⇒ y′′ = z′
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this equation now is converted into two equations from the first order
as

y′ = z = f1(x, y, z)
y′′ = z′ = f2(x, y, z)
y(x0) = y0, z(x0) = z0

that can be solved numerically using Rung-Kutta method.

� Example 2.6 Using Runge-Kutta of fourth order method (RK4), find
the solution of the following second order differential equation

y′′ = xy′ − y
y(0) = 3, y′(0) = 0

(2.14)

at x = 0.1. �

Solution. Suppose

y′ = z = f1(x, y, z)
z′ = xz − y = f2(x, y, z)
y(0) = 3, z(0) = 0

here,
x0 = 0, y0 = 3, z0 = 0

Using RK4

k1 = hf1 (x0, y0, z0) = h (z0) = (0.1)(0) = 0

l1 = hf2 (x0, y0, z0) = h (x0z0 − y0)

= (0.1)[(0)(0)− 3] = −0.3

k2 = hf1

(
x0 +

h

2
, y0 +

k1
2
, z0 +

l1
2

)
= hf1(0.05, 3,−0.15)

= (0.1)(−0.15) = −0.015

l2 = hf2

(
x0 +

h

2
, y0 +

k1
2
, z0 +

l1
2

)
= hf2(0.05, 3,−0.15)

= (0.1)[(0.05)(−0.15)− 3] = 0.030075
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k3 = hf1

(
x0 +

h

2
, y0 +

k2
2
, z0 +

l2
2

)
= hf1(0.05, 2.9925,−0.150375)

= (0.1)(−0.150375) = −0.0150375

l3 = hf2

(
x0 +

h

2
, y0 +

k2
2
, z0 +

l2
2

)
= hf2(0.05, 2.9925,−0.150375)

= (0.1)[(0.05)(−0.150375)− 2.9925] = −0.03000018

k4 = hf1 (x+ h, y + k3, z + l3)

= hf1(0.1, 2.9849624,−0.3000018)

= (0.1)(−0.3000018) = −0.03000018

l4 = hf2 (x+ h, y + k3, z + l3)

= hf2(0.1, 2.9849624,−0.3000018)

= (0.1)[(0.1)(−0.3000018)− 2.9849624]

= −0.3014962

=
1

6
(k1 + 2k2 + 2k3 + k4)

=
1

6
[0 + 2(−0.015) + 2(−0.0150375)− 0.03000018]

= −0.0150125

l =
1

6
(l1 + 2l2 + 2l3 + l4)

=
1

6
[−0.3 + 2(−0.30075) + 2(−0.3000018)− 0.3014962]

= −0.3004999

y1 = y(0.1) = y0 + k = 3− 0.0150125 = 2.9849875

z1 = z(0.1) = z0 + l = 0− 0.3004999 = −0.3004999

�



Chapter 3

Multi-step methods

3.1 Introduction

In the previous chapters, we have studied the one-step methods which
require the information of the solution at only one point, say; x =
x0, to obtain the value of the solution at x = xn+1. On the other
hand, the multi-step methods require the information of the solution
at many points to obtain the final solution and those methods need the
computation of y(x), y′(x) at the points x0, x1, x2, . . . , xn. Moreover,
they depend on the integration of the differential equation.

3.2 Adam’s Bashforth method

This method is used to solve the differential equation of the following
form

y′ = f(x, y), y(x0) = y0 (3.1)

by integrating the two sides of the above equation from xn to xn+1,
we have ∫ xn+1

xn

dy =

∫ xn+1

xn

f(x, y)dx

or,

yn+1 = yn +

∫ xn+1

xn

f(x, y)dx

51
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in order to perform the integration of the right hand side of the above
equation, we approximate the function f(x, y) in the form of a poly-
nomial of second order using the Newton backward difference form,
i.e.,

yn+1 = yn +

∫ xn+1

xn

[
fn + q∇fn +

q(q + 1)

2!
∇2fn

+
q(q + 1)(q + 2)

3!
∇3fn + . . .

]
dx

using the following change of variables

x = xn + qh⇒ dx = hdq

x = xn ⇒ q = 0,

x = xn+1 ⇒ q = 1, (since xn+1 − xn = h)

then the previous integration reads

yn+1 = yn + h

∫ 1

0

[
fn + q∇fn +

q(q + 1)

2!
∇2fn

+
q(q + 1)(q + 2)

3!
∇3fn + . . .

]
dq

yn+1 = yn + h
[
qfn +

q

2
∇fn +

(q3/3) + (q2/2)

2!
∇2fn

]1
0

from which, we get

yn+1 = yn + h
[
fn +

1

2
∇fn +

5

12
∇2fn]

then, substituting for ∇fn,∇2fn, we have

∇fn = fn − fn−1
∇2fn = fn − 2fn−1 + fn−2
yn+1 = yn + h

[
fn + 1

2 (fn − fn−1) + 5
12 (fn − 2fn−1 + fn−2)

]
yn+1 = yn + h

12 (23fn − 16fn−1 + 5fn−2) , n ≥ 2

this equation represents the Adam’s Bashforth method for solving a
differential equation of first order at a certain point.
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� Example 3.1 Using Adam’s Bashforth method, find the solution of
the following differential equation

y′ = y2, y(0) = 1, h = 0.1 (3.2)

then, find y(0.3). �

Solution. The Adam’s Bashforth method of order three is

yn+1 = yn +
h

12
(23fn − 16fn−1 + 5fn−2), n ≥ 2

this means that we need to know the value of the function at three
constituting points, one of those needed values can be obtained from
the initial condition while the other two values can be computed using
one of the one-step methods.
In this example, we choose the Taylor method as a one-step method,
i.e.,

yn+1 = yn + hy′n +
h2

2!
y′′n +

h3

3!
y′′′n + . . .

where,

y′n = −y2n

y′′n = −2yny
′
n = −2yn

(
−y2n

)
= 2y3n

y′′n = 6y2ny
′
n = 6y2n

(
−y2n

)
= −6y4n

∴ yn+1 = yn + h
(
−y2n

)
+ h2

2!

(
2y3n
)

+ h3

3!

(
−6y4n

)
+ · · ·

y1 = y0 − hy20 + h2y30 − h3y40

= 1− (0.1)(1)2 + (0.1)2(1)3 − (0.1)3(1)4 = 0.909

y′0 = −y21 ⇒ y′1 = −(0.909)2 = −0.826281

∴ f1 = −0.826281
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y2 = y1 − hy21 + h2y31 − h3y41
= 0.909− (0.1)(0.909)2 + (0.1)2(0.909)3 − (0.1)3(0.909)4

= 0.833200055

∴y′2 = −y22 ⇒ y′2 = −(0.833200055)2

= −0.69422233

∴f2 = −0.69422233

Now, using Adam’s Bashforth method, we have

y3 = y2 +
0.1

12
(23f2 − 16f1 + 5f0)

= 0.83300054 +
0.1

12
[23(−0.69422233)

− 16(−0.826281) + 5(−1)] = 0.7686449074

�

3.3 Adam’s Maulton method

This method is one of the multi-step method and its difference com-
pare to the Adam’s Bashforth method is that it is an implicit method
i.e., the expected method is corrected in the same step before moving
to the next step.
Consider the following differential equation

y′ = f(x, y), y(x0) = y0

Then, integrating the above equation from xn to xn+1 leads to

yn+1 = yn +

∫ xn+1

xn

f(x, y)dx

and, in order to integrate the right hand side of that equation, we ap-
proximate the function f(x, y) as a polynomial using Newton formula
of backward interpolation.

yn+1 = yn +

∫ xn+1

xn

[
fn+1 + q∇fn+1 +

q(q + 1)

2!
∇2fn+1

+
q(q + 1)(q + 2)

3!
∇3fn+1 + · · ·

]
dx
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Now, using the following relation

x = xn+1 + qh⇒ dx = hdq
x = xn ⇒ q = −1
x = xn+1 ⇒ q = 0, ( since xn+1 − xn = h)

we get,

yn+1 = yn + h

∫ 0

−1

[
fn+1 + q∇fn+1 +

q(q + 1)

2!
∇2fn+1

+
q(q + 1)(q + 2)

3!
∇3fn+1 + · · ·

]
dq

Performing the previous integration, we have

yn+1 = yn + h

[
qfn+1 +

q2

2
∇fn+1 +

(
q3/3

)
+
(
q2/2

)
2!

∇2fn+1

]0
−1

.

Substituting the valued of ∇fn+1,∇2fn+1

∇fn+1 = fn+1 − fn
∇2fn+1 = fn+1 − 2fn + fn−1

we get,

yn+1 = yn + h
[
fn+1 −

1

2
(fn+1 − fn)− 1

12
(fn+1 − 2fn + fn−1)

]
which concludes the following formula

yn+1 = yn +
h

12

[
5fn+1 + 8fn − fn−1

]
, n ≥ 1 (3.3)

that is the Adam’s Maulton method.

� Example 3.2 Using Adam’s Maulton method, find y(0.4) for the
following differential equation

y′ = x+ y, y(0) = 1, h = 0.1 (3.4)

�
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Solution. In order to determine y(0.4), using Adam’s Maulton method,
by eq. (3.3)

y4 = y3 +
h

12

[
5f4 + 8f3 − f2

]
and, to determine f4, it is required to use an explicit method; let’s
say Adam’s Bashforth method i.e.,

y4 = y3 +
h

12
(23f3 − 16f2 + 5f1)

also,

y3 = y2 +
h

12
(23f2 − 16f1 + 5f0)

the question now is to obtain f1 and f2, that can be obtained with
the help of one-step method, for instance, RK4

y1 = y0 + 1
6(k1 + 2k2 + 2k3 + k4)

k1 = hf(x0, y0) = h[x0 + y0] = (0.1)(1) = 0.1

k2 = hf
(
x0 + h

2 , y0 + k1
2

)
= (0.1)f(0.05, 1.05)

= (0.1)[0.05 + 1.05] = 0.11

k3 = hf
(
x0 + h

2 , y0 + k2
2

)
= hf(0.05, 1.055)

= (0.1)[0.05 + 1.055] = 0.11050
k4 = hf (x0 + h, y0 + k3) = hf(0.1, 1.1105)

= (0.1)[0.1 + 1.1105] = 0.12105
thus,

y1 =y0 +
1

6
(k1 + 2k2 + 2k3 + k4)

= 1.0 +
1

6
[0.1 + 0.22 + 0.221 + 0.12105]

= 1.11034

Similarly, we can use RK4 again to obtain y2 = 1.2428

y′ = f(x, y) = x+ y

f1 = x1 + y1 = 0.1 + 1.1034

= 1.21034
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substituting, f1, f2, we obtain the value of y3

y3 = y2 +
h

12
(23f2 − 16f1 + 5f0)

= 1.2428 +
0.1

12
[23(1.4428)− 16(1.21034) + 5(1)]

= 1.399624667

f3 = x3 + y3 = 0.3 + 1.399624667

= 1.699625

then, substituting for f3, y3 we have

y
(P )
4 = y3 +

h

12
(23f3 − 16f2 + 5f1)

= 1.39962447 +
0.1

12
[23(1.699635)− 16(1.4428) + 5(1.21034)]

= 1.583443599

f4 = x4 + y
(P )
4 = 0.4 + 1.583443899

= 1.98344

then, we have

y
(C)
4 = 1.399624667 +

0.1

12
[5(1.98344) + 8(1.699625)− 1.4425]

= 1.58385045

R We can obtain the value of y3, using RK4 instead of using
Adam’s Bashforth method.

�

3.4 Milne’s method

One of the multi-step method and it is different from the previous
methods in the following issues; (1) The expected value at a certain
step is corrected before moving to the next step and, (2) It’s required
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to know the values of the function f(x, y) at four constitutive points
i.e., we need to know y at xn, xn−1, xn−2, xn−3 to evaluate y at xn+1.
Consider the following differential equation

y′ = f(x, y), y(x0) = y0 (3.5)

integrating this equation from xn−3 to xn+1, we get∫ xn+1

xn−3

dy =

∫ xn+1

xn−3

f(x, y)dx

As in Adam’s method, we approximate f(x, y) by a polynomial of
second order using Newton formula for backward interpolation, then
we can write,

yn+1 − yn−3 =

∫ xn+1

xn−3

(
fn + q∇fn +

q(q + 1)

2!
∇2fn + E

)
where,

E =
q(q + 1)(q + 2)

3!
h3f (3)(ξ), xn−3 ≤ ξ ≤ xn+1

using the following relation

x = xn+1 + qh⇒ dx = hdq
x = xn−3 ⇒ q = −3
x = xn+1 ⇒ q = 1, ( since xn+1 − xn = h)

we get,

yn+1 = yn−3 + h

∫ 1

−3

[
fn + q∇fn +

q(q + 1)

2!
∇2fn+1 + E

]
dq

performing the integration for the variable q, we get

yn+1 = yn−3 + 4h
(
fn −∇fn +

2

3
∇2fn

)
+O(h5)

Substitution for the vales of ∇fn,∇2fn, we have

yn+1 = yn−3 +
4h

3

(
2fn − fn−1 + 2fn−2

)
+O(h5)
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Note that, the value of yn+1 obtained from the above equation is called
the predicted vale which denoted by y(P )

n+1 and in order to correct or
enhance this value, we may use Simpson rule for integration. Integrate
(3.5) from xn−1 to xn+1 and change the limits of the integration as
done before, we have

yn+1 = yn−1 + h

∫ 1

−1

[
fn + q∆fn +

q(q + 1)

2!
∆2fn + · · ·

]
dq

substituting for ∆fn and ∆2fn, we have

yn+1 = yn−1 +
h

3

(
fn−1 + 4fn + fn+1

)
+O(h5)

which is called the corrected value and is denoted by y(C)
n+1.

R For the purpose of applying the above method, it’s required
to know four values of the function and in case of they are not
known, we may use any method of the one-step methods.

� Example 3.3 let

dy

dx
=

1

x+ y
,

y(0) = 2, y(0.2) = 2.0933, y(0.4) = 2.1755, y(0.6) = 2.2493

find y(0.8) using Milne’s method. �

Solution.

y
(P )
n+1 = yn−3 +

4h

3

(
2y′n − y′n−1 + 2y′n−2

)
since,

x0 = 0, x1 = 0.2, x3 = 0.6, h = 0.2,

y0 = 2, y1 = 2.0933, y2 = 2.1755, y3 = 2.2493

Now, we have

y
(P )
4 = y0 +

4h

3

(
2y′3 − y′2 + 2y′1

)
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and,

y′1 =
1

x1 + y1
=

1

0.2 + 2.0933
= 0.4360528

y′2 =
1

x2 + y2
=

1

0.4 + 2.1755
= 0.3882741

y′3 =
1

x3 + y3
=

1

0.6 + 2.2493
= 0.3509633

thus,

y
(P )
4 = 2 +

4(0.2)

3
(2(0.3509633)− (0.3882741) + 2(0.4360528))

= 2.3162022

Now, for the corrected values, we have

y
(C)
n+1 = yn−1 +

h

3

(
y′n−1 + 4y′n + y′n+1

)
for the current case, we have n = 3 i.e.,

y
(C)
4 = y2 +

h

3

(
y′2 + 4y′3 + y′4

)
and,

y
(P )
4 = 2.3162022, x4 = 0.8

y′4 =
1

x4 + y
(P )
4

=
1

0.8 + 2.3162022
= 0.3209034

(3.6)

thus,

y
(C)
4 = 2.1755 +

0.2

3
[0.3882741 + 4(0.3509633) + 0.3209034]

= 2.3163687

∴ y(0.8) = y4 = 2.3164

�

� Example 3.4 Find the solution of the following differential

dy

dx
= (x+ y)y, y(0) = 1, h = 0.1 (3.7)

using Milne’s method to obtain y(0.4). compute y at x = 0.1, 0.2, 0.3
using RK4 �
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Solution. First, we compute y(0.1), y(0.2) y(0.3) using RK4, this
computations are left to the reader, which lead to

y(0.1) = 1.11689, y(0.2) = 1.27739, y(0.3) = 1.50412,

x0 = 0, y0 = 1
x1 = 0.1, y1 = 1.11689
x2 = 0.2, y2 = 1.27739
x3 = 0.3, y3 = 1.1.50412

(3.8)

Since,

y
(P )
4 = y0 +

4h

3

(
2y′3 − y′2 + 2y′1

)
and,

y′ = (x+ y)y
y′1 = (x1 + y1) y1 = (0.1 + 1.11689)(1.11689) = 1.3591323
y′2 = (x2 + y2) y2 = (0.2 + 1.27739)(1.27739) = 1.8872032
y′3 = (x3 + y3) y3 = (0.3 + 1.50412)(1.50412) = 2.713613

(3.9)

Thus,

y
(P )
4 = 1+

4(0.1)

3
(2(2.713613)− 1.8872032 + 2(1.3591323)) = 1.8344383

Now, the corrected value reads,

y
(C)
4 = y2 +

h

3

(
y′2 + 4y′3 + y′4

)
y′4 = (x4 + y

(P )
4 )y

(P )
4 = (0.4 + 1.8344383)(1.8344383) = 4.0989392

Thus,

y
(C)
4 = 1.27739+

(0.1)

3
(1.8872.32 + 4(2.713613) + 4.0989392) = 1.8387431

�

� Example 3.5 Find for the following differential equation

dy

dx
= (x+ y), y(0) = 1, h = 0.1 (3.10)

the value of y(0.5). �
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Solution. Since Milne’s method for the predicted value reads

y
(P )
n+1 = yn−3 +

4h

3

(
2y′n − y′n−1 + 2y′n−2

)
we have to determine the value of y at four points, so we use RK for
this purpose, and we have the following results,

x y y′ = f(x, y) = x+ y

0 yn−3 = 1 fn−3 = 1
0.1 yn−2 = 1.11 fn−2 = 1.210
0.2 yn−1 = 1.242 fn−1 = 1.442
0.3 yn = 1.399 fn = 1.699

Therefore,

y
(P )
4 = 1 +

4(0.1)

3
[2(1.699)− (1.442) + 2(1.210)] = 1.58364

Now, to compute y(C)
n+1 we need to find fn+1

fn+1 = f(xn+1, y
(P )
n+1) = f(0.4, 1.584) = 1.984

and since,

y
(C)
4 = y2 +

h

3
(y′2 + 4y′3 + y′4)

we have,

y
(C)
4 = 1.242 +

(0.1)

3
[1.984 + 4(1.699) + 1.442] = 1.58364

Note that, y(P )
n+1, y

(C)
n+1 have the same value i.e. there is no enhance-

ment in the value of y. Now, we have the values of f ready and we do
not have to use RK again. Thus,

y
(P )
n+1 = y(0.5) = 2.29742

y
(C)
n+1 = y(0.5) = 2.29742

�



Chapter 4

Boundary Value Problems

This chapter is devoted for the following items:

4.1 The Finite Difference Method for Linear
Problems

4.2 Solution of the Discretized Problem
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Boundary Value Problems 
The Finite Difference Method for Linear Problems 
 

In the previous chapters, we have considered the initial value problems for ordinary 

differential equations which has the following form   

𝑦′(𝑡) = 𝑓(𝑡, 𝑦)   , 𝑡 ≥ 𝑎  
𝑦(𝑎) = 𝛼……… 

In many problems, however, there will be conditions on the solution given at more than one 

point. For a single first order equation 𝑦′(𝑡) = 𝑓(𝑡, 𝑦) , data at one point completely 

determines the solution so that if conditions at more than one point are given, either higher 

order equations or systems of equations must be treated.  
-------------------------------------------------------- 

Consider the second-order equation 

𝑦′′(𝑡) = 𝑓(𝑡, 𝑦, 𝑦′), 0 ≤ 𝑡 ≤ 1                                                   (1) 
With the boundary conditions: 

𝑦(0) = 𝛼, 𝑦(1) = 𝛽                                                                                   (2) 

Equations (1) and (2) define a two-point boundary value problem.  
----------------------------- 

 

[MCQ]The problem:[𝑦′′(𝑡) = 𝑓(𝑡, 𝑦, 𝑦′), 0 ≤ 𝑡 ≤ 1 ] is… for ordinary differential 

equations. 

boundary value problem- initial value problems-… 

[MCQ]The problem:[𝑦′(𝑡) = 𝑓(𝑡, 𝑦)   , 𝑡 ≥ 𝑎, 𝑦(𝑎) = 𝛼, 𝑦(0) = 𝛼, 𝑦(1) = 𝛽 ] is… for 

ordinary differential equations. 

boundary value problem- initial value problems-… 

 

If the function f of Eq. (1) is nonlinear in either y(t) or y'(t), the boundary value problem is 

nonlinear. Nonlinear boundary value problems are more difficult to solve, and we shall not 

consider them.  
 

In this chapter we treat only linear problems, in which Eq. (1) may be written in the form  
𝑦′′(𝑡) = 𝑏(𝑡)𝑦′(𝑡) + 𝑐(𝑡)𝑦(𝑡) + 𝑑(𝑡), 0 ≤ 𝑡 ≤ 1                      (3) 
 

where b, c, and d are given functions of t. The boundary conditions that we consider first will 

be of form (2). Later, we shall treat other types of boundary conditions.  
 

Equations (3) and (2) define a linear two-point boundary-value problem for the unknown 

function y, and our task is to develop procedures to approximate the solution. We will assume 

that the problem has a unique solution that is at least two times continuously differentiable.  

We first consider the special case of (3) in which b(x) = 0, so we have the following 

example: 

Example 

Consider the following boundary value problem 

𝒚′′(𝒕) = 𝒄(𝒕)𝒚(𝒕) + 𝒅(𝒕), 𝟎 ≤ 𝒕 ≤ 𝟏                       

with the conditions,  

𝒚(𝟎) = 𝜶, 𝒚(𝟏) = 𝜷                                                                                   

Use finite difference approximation to obtain y'' (t).  

 Obtain the resulting tridaigonal system. Find the coefficient matrix when c(t)=0. 



 

Solution: 
 

We will assume that c(t) > 0 for 0 < t < 1; this is a sufficient condition for the problem (4), (2) to have a 

unique solution.  

 

To begin the numerical solution we divide the interval [0,1] into a number of equal subintervals of length h, 

as shown in Figure 3.1.  

 

To obtain numerical solution for this problem , we divide the interval [0,1] into n+1 sub-interval using the 

points 

𝑡𝑖 = 𝑡0 + 𝑖ℎ = 𝑖ℎ ; 𝑡0 = 0 , ℎ =  
1

𝑛+1
, i= 1,2,…..,n+1 

 

 
Figure 1: Grid Points 

 

 

Using difference method to approximate 𝒚′′(𝒕) 

𝒚′′(𝒕𝒊) =
𝒚(𝒕𝒊+𝟏)−2𝒚(𝒕𝒊)+𝒚(𝒕𝒊−𝟏)

ℎ2
                                                   (4) 

Where        𝑡𝑖+1 = 𝑡𝑖 + ℎ 
 

First , we write the given problem at        𝑡 = 𝑡𝑖 
𝑦′′(𝑡𝑖) = 𝑐(𝑡𝑖)𝑦(𝑡𝑖) + 𝑑(𝑡𝑖),         𝑖 = 1,2, … , 𝑛                                       (5) 

y(𝑡0) = y(0) = α               , y(𝑡𝑛+1) = y(1) = β                                                 (6) 

 

substituting from (4), Eq (5) becomes 

 
𝑦(𝑡𝑖+1) − 2𝑦(𝑡𝑖)+𝑦(𝑡𝑖−1)

ℎ2
 =  𝑐(𝑡𝑖)𝑦(𝑡𝑖) + 𝑑(𝑡𝑖)                                                (7) 

For simplicity , we write           𝑦(𝑡𝑖) =  𝑦𝑖 
𝒚𝒊+𝟏 − 𝟐𝒚𝒊 + 𝒚𝒊−𝟏

𝒉𝟐
 =  𝒄𝒊𝒚𝒊 + 𝒅𝒊           , 𝒊 = 𝟏, 𝟐,… , 𝒏       (𝟖) 

𝒚𝟎 = 𝜶, 𝒚𝒏+𝟏 = 𝜷                                                                                 (𝟗) 
 
 

For (8) multiplying on 𝒉𝟐  
𝒚𝒊+𝟏 − 𝟐𝒚𝒊 + 𝒚𝒊−𝟏   =  𝒉

𝟐𝒄𝒊𝒚𝒊 + 𝒉
𝟐𝒅𝒊        

 

𝒚𝒊+𝟏 − 𝟐𝒚𝒊 − 𝒉
𝟐𝒄𝒊𝒚𝒊 + 𝒚𝒊−𝟏   =  𝒉

𝟐𝒅𝒊      
 

This equation can be rearranged to have the following scheme for all he values of i 
 

 

 



 

 

 

 

𝒚𝒊+𝟏 − (𝟐 + 𝒉
𝟐𝒄𝒊)𝒚𝒊 + 𝒚𝒊−𝟏   =  𝒉

𝟐𝒅𝒊 ,      𝒊 = 𝟏, 𝟐,… , 𝒏                     (𝟏𝟎) 
 

𝒚𝟎 = 𝜶         , 𝒚𝒏+𝟏 = 𝜷                                                                                  (𝟗) 
 

𝒊 = 𝟏                          𝒚
𝟐
− (𝟐 + 𝒉

𝟐
𝒄𝟏)𝒚𝟏 + 𝒚𝟎   =  𝒉

𝟐
𝒅𝟏

 

𝒊 = 𝟐                            𝒚
𝟑
− (𝟐 + 𝒉𝟐𝒄𝟐)𝒚𝟐 + 𝒚𝟏   =  𝒉

𝟐𝒅𝟐
            .
            .

𝒊 = 𝒏 − 𝟏       𝒚
𝒏
− (𝟐 + 𝒉𝟐𝒄𝒏−𝟏)𝒚𝒏−𝟏 + 𝒚𝒏−𝟐   =  𝒉

𝟐𝒅𝒏−𝟏

𝒊 = 𝒏                    𝒚
𝒏+𝟏

− (𝟐 + 𝒉𝟐𝒄𝒏)𝒚𝒏 + 𝒚𝒏−𝟏   =  𝒉
𝟐𝒅𝒏 

         

}
 
 
 
 

 
 
 
 

             (𝟏𝟏) 

 

 

 𝒚
𝟐
− (𝟐 + 𝒉𝟐𝒄𝟏)𝒚𝟏 +𝜶  =  𝒉

𝟐𝒅𝟏
 

𝒚
𝟑
− (𝟐 + 𝒉𝟐𝒄𝟐)𝒚𝟐 + 𝒚𝟏   =  𝒉

𝟐𝒅𝟐
            .
            .

 𝒚
𝒏
− (𝟐 + 𝒉

𝟐
𝒄𝒏−𝟏)𝒚𝒏−𝟏 + 𝒚𝒏−𝟐   =  𝒉

𝟐
𝒅𝒏−𝟏

𝜷− (𝟐 + 𝒉𝟐𝒄𝒏)𝒚𝒏 + 𝒚𝒏−𝟏   =  𝒉
𝟐𝒅𝒏 

         

}
 
 
 
 

 
 
 
 

             (𝟏𝟐) 

 
 

 

 

 𝒚
𝟐
− (𝟐 + 𝒉𝟐𝒄𝟏)𝒚𝟏   =  𝒉

𝟐𝒅𝟏 −  𝜶
 

𝒚
𝟑
− (𝟐 + 𝒉𝟐𝒄𝟐)𝒚𝟐 + 𝒚𝟏   =  𝒉

𝟐𝒅𝟐
            .
            .

 𝒚
𝒏
− (𝟐 + 𝒉𝟐𝒄𝒏−𝟏)𝒚𝒏−𝟏 + 𝒚𝒏−𝟐   =  𝒉

𝟐𝒅𝒏−𝟏

− (𝟐 + 𝒉𝟐𝒄𝒏)𝒚𝒏 + 𝒚𝒏−𝟏   =  𝒉
𝟐𝒅𝒏 −  𝜷 

         

}
 
 
 
 

 
 
 
 

             (𝟏𝟑) 

                    In matrix form AY=B 

 

[
 
 
 
 
 
 
 
 
 
 −(𝟐 + 𝒉𝟐𝒄𝟐)                      𝟏                   𝟎        𝟎          𝟎       𝟎           𝟎       𝟎   

                    𝟏               −(𝟐 + 𝒉𝟐𝒄𝟐)        𝟎        𝟎          𝟎       𝟎           𝟎       𝟎     
.
.
.

            

    
    𝟎        𝟎          𝟎       𝟎           𝟎       𝟎      −(𝟐 + 𝒉𝟐𝒄𝟐)                        𝟏             

    𝟎        𝟎          𝟎       𝟎           𝟎       𝟎                  𝟏                       −(𝟐 + 𝒉𝟐𝒄𝟐) ]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
𝒚𝟏
𝒚𝟐
.
.
.
 .
 .
 .

𝒚𝒏−𝟏
𝒚𝒏 ]

 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
𝒉𝟐𝒅𝟏 −  𝜶

𝒉𝟐𝒅𝟐 
.
.
.
.
.
.

𝒉𝟐𝒅𝒏−𝟏
𝒉𝟐𝒅𝒏 −  𝜷 ]

 
 
 
 
 
 
 
 
 
 

               (𝟏𝟒) 

 

 

 

The coefficient matrix A is tridiagonal Eq.4 is the resulting tridiagonal system which we must solve to 

obtain the numerical solution. 

 



 
 

[
 
 
 
 
 
 
 
 
 
 −(𝟐 + 𝒉𝟐𝒄𝟐)                      𝟏                   𝟎        𝟎          𝟎       𝟎           𝟎       𝟎   

                    𝟏               −(𝟐 + 𝒉𝟐𝒄𝟐)        𝟎        𝟎          𝟎       𝟎           𝟎       𝟎     
.
.
.

            

    
    𝟎        𝟎          𝟎       𝟎           𝟎       𝟎      −(𝟐 + 𝒉𝟐𝒄𝟐)                        𝟏             

    𝟎        𝟎          𝟎       𝟎           𝟎       𝟎                  𝟏                       −(𝟐 + 𝒉𝟐𝒄𝟐) ]
 
 
 
 
 
 
 
 
 

 

 

When c(t) = 0 in the given problem the the coefficient matrix A is  

 

 

𝐴 = 

[
 
 
 
 
 
   1 −2
−2    1

     
0 0
0 0

    
0 0
0 0

    
0 0
0 0

.

.

.
0 0
0 0

     
0 0
0 0

    
0 0
0 0

    
−2     1
1 −2]

 
 
 
 
 

 

 

 

 

 
 

[MCQ]The resulting algebraic system of applying difference methods in approximating BVP of ODE’s 

is  

Tridiagonal-diagonal-… 

 

 

Example 

Consider the boundary value problem 

𝒚′′(𝒕) = 𝟐 , 𝟎 ≤ 𝒕 ≤ 𝟏                           (1) 

With the conditions,  

𝒚(𝟎) = 𝟎, 𝒚(𝟏) = 𝟏                             (2) 



 

Use n=3 with difference approximation to y'' (t).   

Obtain the resulting tridaigonal system.  
 

Answer: 

               Consider the BVP   𝒚′′(𝒕) = 𝟐 , 𝟎 ≤ 𝒕 ≤ 𝟏                           (1) 

                                                 𝒚(𝟎) = 𝟎, 𝒚(𝟏) = 𝟏                             (2) 

𝑡𝑖 = 0 + 𝑖ℎ = 𝑖ℎ ;  ℎ =  
1

𝑛 + 1
 

With n=3➔ h = 
1

4
  : step between points  

----------------------------------------------------------------------------------------------- 

       𝑡0 = 0          𝑡1 =
1

4
                      𝑡2 =

1

2
                𝑡3 =

3

4
          𝑡4 = 1 

       𝑦0 = 0         𝑦1 =?                      𝑦2 =?               𝑦3 =?            𝑦4 = 1 

 

         0                    0.25                       0.5                      0.75                 1 

----------------------------------------------------------------------------------------------- 

 

                    𝑦′′(𝑡) = 2 
by integration  

                    𝑦′(𝑡) = 2∫𝑑𝑡 + 𝑐 = 2𝑡 + 𝑐 

by integration  

                  𝑦(𝑡) = 2∫ 𝑡𝑑𝑡 + 𝑐𝑡 + 𝑑 

 

𝑦(𝑡) = 𝑡2 + 𝑐𝑡 + 𝑑  
𝑦(0) = 0                      0 = 0 + 0 + d                d = 0 

𝑦(1) = 1                      1 = 1 + c                       c = 0 

 

Hence the exact solution  

𝑦(𝑡) = 𝑡2 

 

ℎ =   
𝑏 − 𝑎 

𝑛 + 1
= 
1 − 0

4
=   

1

4
 

 

   𝑦′′(𝑡) = 2 ➔𝑦′′(𝑡𝑖) =
𝑦(𝑡𝑖+1)−2𝑦(𝑡𝑖)+𝑦(𝑡𝑖−1)

ℎ2
                (3) 

𝑦(𝑡𝑖+1)−2𝑦(𝑡𝑖)+𝑦(𝑡𝑖−1)

ℎ2
= 2    , h = 

1

4
  

So  

    16 [𝑦(𝑡𝑖+1) − 2𝑦(𝑡𝑖) + 𝑦(𝑡𝑖−1)] = 2  

Subsitute in the given Eq.(1) , divide by 16 

yi+1 − 2yi + yi−1 = 
2

16
=  
1

8
 

yi+1 − 2yi + yi−1 =  
1

8
        ; i = 1, 2,3         (4)                       

The resulting tridiagonal system is  
 



𝑦2 − 2𝑦1                = 
1

8
                    (𝑖)

𝑦3 − 2𝑦2 + 𝑦1  =  
1

8
                   (𝑖𝑖)

1 − 2𝑦3 + 𝑦2         =  
1

8
                  (𝑖𝑖𝑖)}

 
 

 
 

 

        [
−2 1 0
1 −2 1
0 1 −2

] 

 

 
 

[MCQ]The resulting algebraic system of applying difference methods in approximating BVP of ODE’s 

is  

Tridiagonal-diagonal-… 

[MCQ]The resulting algebraic system of applying difference approximation to 𝑦′′(𝑡) and 

backward formula for 𝑦′(𝑡) for the BVP:𝒚′′(𝒕) = 𝟐 , 𝟎 ≤ 𝒕 ≤ 𝟏,  𝑦(0) = 0, 𝑦(1) = 1. with 

ℎ =
1

4
   is 

𝒂𝟏𝟑𝒚𝟑 + 𝒂𝟏𝟐𝒚𝟐 + 𝒂𝟏𝟏𝒚𝟏 = b1, 𝒂𝟐𝟑𝒚𝟑 + 𝒂𝟐𝟐𝒚𝟐 + 𝒂𝟐𝟏𝒚𝟏 = b2, 𝒂𝟑𝟑𝒚𝟑 + 𝒂𝟑𝟐𝒚𝟐 + 𝒂𝟑𝟏𝒚𝟏 = b3 

Answer the following 9 questions: 

 

1) 𝒂𝟏𝟑 = [𝟎, 𝟏, −𝟐,
𝟏

𝟖
]        (2)  𝒂𝟏𝟐 = [𝟎, 𝟏, −𝟐,

𝟏

𝟖
]    (3) 𝒂𝟏𝟏 = [𝟎, 𝟏, −𝟐,

𝟏

𝟖
] 

4) 𝒂𝟐𝟑 = [𝟎, 𝟏, −𝟐,
𝟏

𝟖
]        (5)  𝒂𝟐𝟐 = [𝟎, 𝟏, −𝟐,

𝟏

𝟖
]    (6) 𝒂𝟐𝟏 = [𝟎, 𝟏, −𝟐,

𝟏

𝟖
] 

7) 𝒂𝟑𝟑 = [𝟎, 𝟏, −𝟐,
𝟏

𝟖
]        (8)  𝒂𝟑𝟐 = [𝟎, 𝟏, −𝟐,

𝟏

𝟖
]    (9) 𝒂𝟑𝟏 = [𝟎, 𝟏, −𝟐,

𝟏

𝟖
] 

 

 

 

 

This is the resulting system of the equation which defines the unknowns 𝑦1, 𝑦2 and 𝑦3 

 

Solution of the Discretized Problem 

In the previous section we saw that the use of finite difference discretization of the two-point boundary value 

problem C.1.3) led to a system of linear  equations. The exact form of this system depends on the boundary 

conditions, but in all the cases we considered, except periodic boundary conditions, the system was of the 

tridiagonal form 

 
 



Gaussian Elimination  

We will solve the system (3.2.1) by the Gaussian elimination method. This  

method, along with several variants, will be considered in detail for general  

linear systems in the next chapter 

 

 

[Q] Use Gaussian Elimination method to 

 obtain  the numerical solution for the resulting 

 system of the previous problem 

𝑦2 − 2𝑦1                = 
1

8
                (𝑖)  

𝑦3 − 2𝑦2 + 𝑦1  =  
1

8
               (𝑖𝑖)  

1 − 2𝑦3 + 𝑦2         =  
1

8
               (𝑖𝑖𝑖) 

 

 

 

To solve this system 

 

  

2(i) + (ii)              Eliminating 𝑦2  

 

2(i)               2𝑦2 − 4𝑦1                = 
2

8
 

 

(ii)                𝑦3 − 2𝑦2 + 𝑦1  =    
1

8
   

 

                      𝑦3 − 3𝑦1                = 
3

8
                 (iv) 

 

(ii) + 2(iii)              Eliminating 𝑦2 

 

2(iii)               
16

8
− 4 𝑦3 + 2𝑦2                = 

2

8
 

  (ii)                       𝑦3 − 2𝑦2 + 𝑦1  =    
1

8
   

 

                       −3𝑦3 + 𝑦1                = 
−13

8
                    (v) 

 

-------------------------------------------------------------- 

   𝑦3 − 3𝑦1                     =  
3

8
                 (iv) 

−3𝑦3 + 𝑦1                = 
−13

8
                (v) 

------------------------------------------------------------- 

3(v) + (iv)              Eliminating 𝑦3 

 

3(v)               −9 𝑦3 + 3𝑦1     =  
−39

8
 

  (ii)                       𝑦3 − 3𝑦1    =     
3

8
   

 

                       −8𝑦3 = 
−36

8
 =  

18

4
= 

9

2
                

𝑦3 = 
−9

−2(8)
=  

9

16 
  

In (v) 



𝑦1 = 
−13

8
+ 3𝑦3  =  

−13

8
+ 3(

9

16
) = 

−26

16
+ 

27

16
=  

1

16
 

 

𝑦0 = 0 =  𝑦(𝑡0) = 𝑦(0) 

𝑦1 = 
1

16
 ≅  𝑦(𝑡1) = 𝑦 (

1

4
)  

𝑦2 = 
1

4
 ≅  𝑦(𝑡2) = 𝑦 (

1

2
) 

𝑦3 = 
9

16
 ≅  𝑦(𝑡3) = 𝑦 (

1

2
) 

𝑦4 =  1 =  𝑦(𝑡4) = 𝑦(1) 
Exact solution  

 

 

So    a= b = 0 

 

𝑦𝑒(𝑡) = 𝑡
2 

 

 

t 𝒚𝒂 𝒚𝒆 Error 

 

0 

 

0 

 

0 

 

0 

𝟏

𝟒
 𝑦1 = 

1

16
 

𝟏

16
 

0 

𝟏

𝟐
 𝑦2 = 

1

4
 

𝟏

𝟒
 

0 

    
𝟑

𝟒
 𝑦3 = 

9

16
 

9

16
 

0 

    

𝟏 1 1 0 

[MCQ]Consider the application of Gaussian Elimination method for solving the resulting 

algebraic system of applying difference approximation tocetain BVP: 

𝑦2 − 2𝑦1 = 
1

8
, 𝑦3 − 2𝑦2 + 𝑦1  =  

1

8
, 1 − 2𝑦3 + 𝑦2 = 

1

8
 . 

Answer the following 3 questions: 

1) 𝑦
1 
= [𝟎,

1

16
,
1

4
,
9

16
]        (2)  𝒚𝟐 = [𝟎,

1

16
,
1

4
,
9

16
]    (3) 𝒚𝟑 = [𝟎,

1

16
,
1

4
,
9

16
] 

 

 

--------------------------------------------------------------------------- 

Home Work 

[1] Consider the boundary value problem 

𝒚′′(𝒕) + 𝒚′(𝒕) = 𝟐(𝟏 + 𝒕) , 𝟎 ≤ 𝒕 ≤ 𝟏                           (1) 

With the conditions,  

𝒚(𝟎) = 𝟎, 𝒚(𝟏) = 𝟏                             (2) 

 

Use 𝒉 =
𝟏

𝟒
 with difference approximation to y'' (t) and forward formula for y'.  Obtain 

the resulting tridaigonal system. 



 

 

[1](b) Use Gaussian Elimination method to obtain  the numerical solution for the 

resulting system of the previous problem.   If you know that the exact solution is 𝐲(𝐭) =
𝐭𝟐 then obtain the numerical error. 

 

 

----------------------------------------------- 

[2a] Consider the boundary value problem 

𝒚′′(𝒕) + 𝒕𝒚′(𝒕) − 𝟐𝒚(𝒕) = 𝟐 

 

With the conditions,  

𝒚(𝟎) = 𝟎, 𝒚(𝟏) = 𝟏 

Use n=3 with difference approximation of y'' (t) and central difference approximation 

of  y' (t).  Obtain the resulting tridaigonal system.  
 

[2b] Use Gaussian Elimination method to obtain the numerical solution for the 

resulting system of the previous problem. If you know that the exact solution is 𝐲(𝐭) =
𝐭𝟐 then obtain the numerical error. 

 

[3a] Consider the boundary value problem 

𝒚′′(𝒕) + 𝟓𝒕𝒚′(𝒕) − 𝟑𝒚(𝒕) = 𝟕𝒕𝟐 + 𝟐 

 

With the conditions,  

𝒚(𝟎) = 𝟎, 𝒚(𝟏) = 𝟏 

Use n=3 with difference approximation to y'' (t) and y' (t).  Obtain the resulting 

tridaigonal system.  
 

[3b] Use Gaussian Elimination method to obtain  the numerical solution for the 

resulting system of the previous problem. If you know that the exact solution is 𝐲(𝐭) =
𝐭𝟐 then obtain the numerical error. 
--------------- 

Answer of [1a] 



\ 

 

backward formula 

𝒚𝒊
′ =

𝒚𝒊−𝒚𝒊−𝟏

𝒉
= 𝟒[𝒚𝒊 − 𝒚𝒊−𝟏]                                                                               (6) 

Inserting (5), (6) in (3), 

𝟏𝟔[𝒚𝒊+𝟏 − 𝟐𝒚𝒊 + 𝒚𝒊−𝟏] + 𝟒[𝒚𝒊 − 𝒚𝒊−𝟏] = 𝟐(𝟏 + 𝒕𝒊) 
𝟏𝟔𝒚𝒊+𝟏 − 𝟑𝟐𝒚𝒊 + 𝟏𝟔𝒚𝒊−𝟏 + 𝟒𝒚𝒊 − 𝟒𝒚𝒊−𝟏 = (𝟐 + 𝟐𝒕𝒊) 

𝟏𝟔𝒚𝒊+𝟏 + (𝟒𝒚𝒊 − 𝟑𝟐𝒚𝒊) + (𝟏𝟔𝒚𝒊−𝟏 − 𝟒𝒚𝒊−𝟏) = (𝟐 + 𝟐𝒕𝒊) 
 

 

𝟏𝟔𝒚𝒊+𝟏 − 𝟐𝟖𝒚𝒊 + 𝟏𝟐𝒚𝒊−𝟏 = 𝟐 + 𝟐𝒕𝒊     , 𝒊 = 𝟏, 𝟐, 𝟑                                 (7) 

𝒊 = 𝟏 ==> 𝟏𝟔𝒚𝟐 − 𝟐𝟖𝒚𝟏 + 𝟏𝟐𝒚𝟎 = 𝟐 + 𝟐𝒕𝟏 = 𝟐 + 𝟐 ∗
1

4
 

𝒊 = 𝟐 ==> 𝟏𝟔𝒚𝟑 − 𝟐𝟖𝒚𝟐 + 𝟏𝟐𝒚𝟏 = 𝟐 + 𝟐 ∗
2

4
 

𝒊 = 𝟑 ==> 𝟏𝟔𝒚𝟒 − 𝟐𝟖𝒚𝟑 + 𝟏𝟐𝒚𝟐 = 𝟐 + 𝟐 ∗
3

4
 

 

𝒚𝟎=0, 𝒚𝟒 = 𝟏 

𝟏𝟔𝒚𝟐 − 𝟐𝟖𝒚𝟏 = 𝟐 + 𝟐𝒕𝟏 = 𝟐
1

2
 

𝟏𝟔𝒚𝟑 − 𝟐𝟖𝒚𝟐 + 𝟏𝟐𝒚𝟏 = 𝟑 

−𝟐𝟖𝒚𝟑 + 𝟏𝟐𝒚𝟐 = 𝟑
1

2
− 𝟏𝟔 

the resulting tridaigonal system is 

𝟏𝟔𝒚𝟐 − 𝟐𝟖𝒚𝟏 =
5

2
 

𝟏𝟔𝒚𝟑 − 𝟐𝟖𝒚𝟐 + 𝟏𝟐𝒚𝟏 = 𝟑 

−𝟐𝟖𝒚𝟑 + 𝟏𝟐𝒚𝟐 = −
25

2
 

 



[MCQ]The resulting algebraic system of applying difference approximation to 𝑦′′(𝑡) and 

backward formula for 𝑦′(𝑡) for the BVP:𝑦′′(𝑡) + 𝑦′(𝑡) = 2(1 + 𝑡) , 0 ≤ 𝑡 ≤ 1,  𝑦(0) =

0, 𝑦(1) = 1. with ℎ =
1

4
   is 

𝒂𝟏𝟑𝒚𝟑 + 𝒂𝟏𝟐𝒚𝟐 + 𝒂𝟏𝟏𝒚𝟏 = b1, 𝒂𝟐𝟑𝒚𝟑 + 𝒂𝟐𝟐𝒚𝟐 + 𝒂𝟐𝟏𝒚𝟏 = b2, 𝒂𝟑𝟑𝒚𝟑 + 𝒂𝟑𝟐𝒚𝟐 + 𝒂𝟑𝟏𝒚𝟏 = b3 

Answer the following 9 questions: 

 

1) 𝒂𝟏𝟑 = [𝟎, 𝟏𝟔,−𝟐𝟖, 𝟏𝟐]        (2)  𝒂𝟏𝟐 = [𝟎, 𝟏𝟔,−𝟐𝟖, 𝟏𝟐]    (3) 𝒂𝟏𝟏 = [𝟎, 𝟏𝟔,−𝟐𝟖, 𝟏𝟐] 
4) 𝒂𝟐𝟑 = [𝟎, 𝟏𝟔,−𝟐𝟖, 𝟏𝟐]        (5)  𝒂𝟐𝟐 = [𝟎, 𝟏𝟔,−𝟐𝟖, 𝟏𝟐]    (6) 𝒂𝟐𝟏 = [𝟎, 𝟏𝟔,−𝟐𝟖, 𝟏𝟐] 
7) 𝒂𝟑𝟑 = [𝟎, 𝟏𝟔,−𝟐𝟖, 𝟏𝟐]        (8)  𝒂𝟑𝟐 = [𝟎, 𝟏𝟔,−𝟐𝟖, 𝟏𝟐]    (9) 𝒂𝟑𝟏 = [𝟎, 𝟏𝟔,−𝟐𝟖, 𝟏𝟐] 

 

 
 

Answer of [3a] 

 

 

 



 

 

 



 
 

Answer of [3b] 

 
 

 

 

 
 



Chapter 5

Theory of Approximation

In this Chapter, we will cover the following sections:

5.1 Best Approximation

5.2 Least Squares Approximation for continu-
ous functions

5.3 Discrete Least Squares Approximation

5.4 Weighted Least Squares Approximation

5.5 Orthogonal Polynomials

5.6 Trigonometric Polynomial Approximation

77



 

1. Best Approximation 

 

To obtain an efficiency, we want to find the ‘best’ possible approximation of a given degree n. 

Therefore, we introduce the following, 

( )
( )

( )
( )

( ) ( )
deg deg

min min maxn
p n p n a x b

f E p f x p x
   

 = = −
  

   (1) 

 

The number 𝜌𝑛(𝑓 ) will be the smallest possible uniform error, or minimax error, when 

approximating f (x) by polynomials of degree at most 𝑛. If there is a polynomial giving this smallest 

error, we denote it by mn(x); thus  

 

E(mn) = ρn(f )  (2) 

 

Example 

 Let f (x) = ex on [−1, 1]. In the following table, we give the values of E(tn), tn (x) the Taylor 

polynomial of degree 𝑛 for ex about x = 0, and E(mn). 

 

Consider graphically how we can improve on the Taylor polynomial   1( ) 1p x x= +  

 
Linear Taylor approximations to ex 

Error in linear minimax approximation to ex 

x  ( )f x  1( )P x  Abs(error) 

-1.0 0.368 0.000 0.368 

-0.8 0.449 0.200 0.249 

-0.6 0.549 0.400 0.149 

-0.4 0.670 0.600 0.070 

-0.2 0.819 0.800 0.019 

0.0 1.000 1.000 0.000 

0.2 1.221 1.200 0.021 

0.4 1.492 1.400 0.092 

0.6 1.822 1.600 0.222 

0.8 2.226 1.800 0.426 

1.0 2.718 2.000 0.718 
 

A few look of the last column we see that: 

0

0.5

1

1.5

2

2.5

3

-1 -0.5 0 0.5 1

p(x)

f(x)



 2 

1
1 1

( ) ( ) ( ) 0.718max
x

E p f x p x
−  

= − =                            (*) 

When n=2,  
21

2 2
( ) 1p x x x= + +  

So, we have the following table: 

 

x  ( )f x  2 ( )P x
 Abs(error) 

-1.0 0.368 0.500 0.132 

-0.8 0.449 0.520 0.071 

-0.6 0.549 0.580 0.031 

-0.4 0.670 0.680 0.010 

-0.2 0.819 0.820 0.001 

0.0 1.000 1.000 0.000 

0.2 1.221 1.220 0.001 

0.4 1.492 1.480 0.012 

0.6 1.822 1.780 0.042 

0.8 2.226 2.120 0.106 

1.0 2.718 2.500 0.218 

A few look of the last column we see that: 

2
1 1

( ) ( ) ( ) 0.218max
x

E p f x p x
−  

= − =                (**) 

Using Eq. (*) and (**), we conclude 

   2 1 2
deg( ) 2 deg( ) 2

( ) ( ), ( ) 0.718,0.218 0.218min min
p p

f E p E p
 

= = =  

Hence the best approximation for the two cases is 
21

2 2
( ) 1p x x x= + +  

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+ ⋯

𝑥𝑛

𝑛!
 

 

 

 

Accuracy of the Minimax approximation. 

Example. 

Define the Minimax error bound. Then use it to bound the error when Minmax error measurement  is 

used  for f (x) = ex for  -1 ≤ x ≤ 1 for n ≥ 1.  Does the bound converge to zero as n →∞. 

Answer 

( )
( )

( )
( )

1

2 1

( 1)

1 !2
max

n

n

b a n
n n a x b

f f x
+

+

− +

+  
=                 (1) 

 

( )
( )

1

2 1

2

1 !2

n

nn n
f e

+

++
=             (*) 

( 1)!2
( ) 0lim lim n

e e
n n

n n

f
+

→ →

= = =  

So the bound converges to zero as n →∞ 

 [Homework] Find the n-order derivative for all common functions f (x). 
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2. Least Squares Approximation for continuous functions 

 

Another approach to approximating a function f (x) on an interval a ≤x≤ b is to seek an 

approximation p(x) with a small ‘average error’ over the interval of approximation. A convenient 

definition of the average error of the approximation is given by 

( ) ( ) ( )

1

221
;

b

a
E p f f x p x dx

b a

 
 −   − 

     (2a) 

This is also called the root-mean-square-error (denoted subsequently by RMSE) in the approximation 

of f (x) by p(x).  

 

To Approximate 𝑓(𝑥) we choose p(x) to minimize E(p,  f )  

( ) ( ) ( )
2

,
b

a
E p f Min f x p x dx= −       (2b) 

 

thus dispensing with the square root and multiplying fraction (although the minimums are generally 

different). The minimizing of (2a) is called the least squares approximation problem. 

 

Example 3 

Let f (x) = ex, let p(x) = α0 + α1x, where α0, α1 unknowns.   Approximate ( )f x over  1,1−  using 

LSA. 

Solution: 

 

To approximate f (x),  

( ) ( ) ( )
2

,
b

a
E p f Min f x p x dx= −       (2b) 

 

  ( )
21

0 1 0 1
1

, xg e x dx
−
  − −      (5) 

 

g is a function in the two variables α0, α1. 

 

 To find its minimum, solve the system 

0 1

0, 0
g g

 

 
= =

 
 

It is simpler to return to (5) to differentiate, obtaining 

  ( )
21

0 1 0 1
1

, xg e x dx
−
  − −      (5) 

( ) ( )
1 1

0 1 0 1
1 1

2 1 0 2 0x xe x dx e x x dx   
− −
   − − − = − − − =      

 

This simplifies to 

 
1 1

12 2 3
0 1 0 1

1
1 1

1 1 1
0, 0

2 2 3

x xe x x xe x x   
−

− −

   
− + = − − =   
   

  
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But 
x x xxe xe e= −   

( ) ( ) ( )
2 21 1

0 1

1
1 1 1 1 0

2
e e  −   − − + + − − =   

 

 

1 1
0 1

2
2 2

3
e e e − −= − =  

 

 

So                   
1

1 3 1.1036e −=  

Similarly,                                        

1

0 1.1752
2

e e


−−
=  

 

Using these values for α0 and α1, we denote the resulting linear approximation by 

1 0 1( ) 1.1752 1.1036p x x x = + = +  

It is called the best linear approximation to ex in the sense of least squares approximation.  

 

For the error, 

( )1
1 1
max 0.439x

x
e p x

−  
−  

 

 

 
The linear least squares approximation to ex 

 

 

THE GENERAL CASE 

 

[Q]Approximate f (x) on [0, 1], and let n≥ 0. Seek p(x) to minimize the least squares error.  

Answer: 

Write 

( ) 2 3
0 1 2 3 ... n

np x x x x x= + + + + +      

Then 

 
1

2

0 1

0

( , ,..., ) ( ) ( )ng f x p x dx= −  
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To find coefficients α0, α1, . . . , αn to minimize this integral. The integral g(α0, α1, . . . , αn) is a 

quadratic polynomial in the n + 1 variables α0, α1, . . . , αn. 

 

To minimize g(α0, α1, . . . , αn), use the conditions 

0, 0,1,...,
i

g
i n




= =


 

This yields a set of n+1 equations that must be satisfied by a minimizing set α0, α1, . . . , αn for g.  

 

Manipulating this set of conditions leads to a simultaneous linear system. 

 

 

To better understand the form of the linear system, consider the special case of [a, b] = [0, 1].  

( )
1

2
2 3

0 1 0 1 2 3

0

( , ,..., ) ( ) ... n
n ng f x x x x x dx        = − + + + + +

   

Differentiating g with respect to each αi, we obtain 

 

( )
1

2 3
0 1 2 3

0

2 ( ) ... ( 1) 0n
nf x x x x x dx     − + + + + + − =

   

( )
1

2 3
0 1 2 3

0

2 ( ) ... ( ) 0n
nf x x x x x x dx     − + + + + + − =

           (*) 

. 

. 

. 

( )
1

2 3
0 1 2 3

0

2 ( ) ... ( ) 0n n
nf x x x x x x dx     − + + + + + − =

   

Then the linear system is 

( )
1

0
0

, 0,1,...,
1

n
j i

j

x f x dx i n
i j



=

= =
+ +

                 (**) 

Which can be written as 

1 1n n n nA B  =  

 

 

Example 4 

Find least squares approximation from degree 2 for the function  

𝑓(𝑥) = 𝑠𝑖𝑛𝜋𝑥 

In the interval [0,1] then evaluate the uniform error 

 

Solution: We set   
2

0 1 2( )p x x x= + +              So using (*) we get 

( )
1

2
2

0 1 2 0 1 2

0

( , , ) ( )g f x x x dx      = − + +
 

 

( )
1

2
0 1 2

0

2 ( ) ( 1) 0f x x x dx   − + + − =
   
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( )
1

2
0 1 2

0

2 ( ) ( ) 0f x x x x dx   − + + − =
        (*) 

( )
1

2 2
0 1 2

0

2 ( ) ( ) 0f x x x x dx   − + + − =
 

 

So

 

 
1

2
0 1 2

0

2 sin( ) ( 1) 0x x x dx − − − − =       

1
2

0 1 2

0

2 sin( ) ( ) 0x x x x dx − − − − =       

1
2 2

0 1 2

0

2 sin( ) ( ) 0x x x x dx − − − − =       

Which become 
1

2
0 1 2

0

sin( ) 0x x x dx − − − =       

1
2 3

0 1 2

0

sin( ) 0x x x x x dx − − − =       

1
2 2 3 4

0 1 2

0

sin( ) 0x x x x x dx − − − =       

Or 

0 1 2

1
1

2 3

1 2 3
0

0

sin( )x x x x dx + + =
  
  

  

0 1 2

1
1

2 3 4

2 3 4
0

0

sin( )x x x x x dx + + =
  
  

  

0 1 2

1
1

3 4 5 2

3 4 5
0

0

sin( )x x x x x dx + + =
  
  

  

Then  

0 1 2

1

1 2 3

0

sin( )x dx+ + = 
  

  

0 1 2

1

2 3 4

0

sin( )x x dx
  

+ + =   

0 1 2

1

2

3 4 5

0

sin( )x x dx
  

+ + =   

 

evaluating integrals, we obtain 

( )
1

11 1 2

0

0

sin( ) cos( ) 1 1x dx x
  

 − −= = − − =  
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( ) ( )
1 1

1 11 1 1 1

0 0

0 0

sin( ) cos( ) cos( ) 1 0 sin( )x x dx x x x dx x
   

   − −= + = − − +   

( )1 1 10 0
  

= + − =  

( )

( )

2

2 3 3

1 1
12 21 2

0

0 0

1
11 2 1 1

0

0

1

1 2 1 1

0

41 2 1 2 1 2 2 1 4

sin( ) cos( ) cos( )

1 0 sin( ) sin( )

0 0 sin( )

x x dx x x x x dx

x x x dx

x dx

 

   

   


        

  

 



−

− −

−

−

= +

 
= − − + − 

 

 
= + − − 

 

 = + − = + − = − =    

 





 

So the linear system become 

0 1 2 2
1 2 3

  


+ + =  

0 1 2 1
2 3 4

  


+ + =  

2
0 1 2

3

4
3 4 5

   



−+ + =  

Solving them we get 

3

260
2 12 4.12251


  = − = −   

1 2 = −  

1 22
0 2 3

0.050465
 


 = − − = −  

Hence 
2

2 ( ) 0.050465 4.122251 4.122251P x x x= − + −  

We have the table 

 

x ( ) sin( )f x x=  2 ( )P x  Abs(error) 

0.0 0.000 -0.050 0.050 

0.2 0.588 0.609 0.021 

0.4 0.951 0.939 0.012 

0.6 0.951 0.939 0.012 

0.8 0.588 0.609 0.021 

1.0 0.000 -0.050 0.050 

The uniform error is 

2
0 1

( ) ( ) ( ) 0.050max
x

E p f x p x
 

= − =  

------------------------------------------------------------------------ 

 [Q]Find least squares approximation from degree 2 for the function 𝑓(𝑥) = 𝑒𝑥  In the interval [0,1] . 

------------------------------------------------------------------------ 
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Discrete Least Squares Approximation  

To approximate 𝑓(𝑥) by a polynomial 𝑃(𝑥) at some points 𝑥𝑖, 𝑖 = 1,2, … , 𝑚, we solve: 

Min ( )
2

1

m

i i

i

E f P x
=

= −    

 

[TF]The Discrete Least Squares Approximation formula for 

approximating 𝑓(𝑥) by a polynomial 𝑃(𝑥) at some points 𝑥𝑖, 𝑖 =

1,2, … , 𝑚 is Min ( )
2

1

m

i i

i

E f P x
=

= −     

 

------------------------------------------------------------------------ 

Example 

Use Least Squares Approximation method with polynomial of degree 3, to approximate solution for 

the BVP 

𝒚′′(𝒕) = 𝟐 , 𝟎 ≤ 𝒕 ≤ 𝟏                           (1) 

𝒚(𝟎) = 𝟎, 𝒚(𝟏) = 𝟏                             (2) 

Compare between the approximate solution and the exact solution (𝑦(𝑡) = 𝑡2). 

========================================== 

Answer: 

Let 

𝑦̃(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + 𝑎3𝑡3                                       (3) 

Using (2) 𝒚(𝟎) = 𝟎, 

0 = 𝑎0 

Again using (2) 𝒚(𝟏) = 𝟏     

1 = 𝑎1 + 𝑎2 + 𝑎3➔𝑎3 = 1 − 𝑎1 − 𝑎2 

Then the approximate solution (3) become 

𝑦̃(𝑡) = 𝑎1𝑡 + 𝑎2𝑡2 + (1 − 𝑎1 − 𝑎2)𝑡3                             (4) 

Differentiation of (4) twice, we have 

𝑦̃′(𝑡) = 𝑎1 + 2𝑎2𝑡 + 3(1 − 𝑎1 − 𝑎2)𝑡2                           (5) 

𝑦̃′′(𝑡) = 2𝑎2 + 6(1 − 𝑎1 − 𝑎2)𝑡                                       (6) 

We define the error in approximating the differential problem (1) 

 𝒚′′(𝒕) = 𝟐 

Is 

𝑅(𝑡) = 𝑦′′(𝑡) − 2                                 (7) 

R should be zero.  If not, and indeed in  the case of approximation R is often not zero. Minimizing R 

will reduce the error as can as we could. 
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Using (6), Eq. (7) becomes: 

𝑅(𝑡) = 2𝑎2 + 6(1 − 𝑎1 − 𝑎2)𝑡 − 2                                 (7) 

To Apply the LS rule , we evaluate 𝑅(𝑡) at 2 points inside the interval [0, 1], namely, 𝑡1 =
1

3
, 𝑡2 =

2

3
. 

So  

𝑅 (
1

3
) = 2𝑎2 + 6(1 − 𝑎1 − 𝑎2)

1

3
− 2,𝑅 (

2

3
) = 2𝑎2 + 6(1 − 𝑎1 − 𝑎2)

2

3
− 2 

Or  

𝑅 (
1

3
) = 2𝑎2 + 2(1 − 𝑎1 − 𝑎2) − 2,𝑅 (

2

3
) = 2𝑎2 + 4(1 − 𝑎1 − 𝑎2) − 2 

𝑅 (
1

3
) = 2(1 − 𝑎1) − 2,          𝑅 (

2

3
) = −2𝑎2 + 4(1 − 𝑎1) − 2 

 

 

Min 𝑔(𝑎1, 𝑎2) = 𝑅 (
1

3
)

2

+ 𝑅 (
2

3
)

2

= 

[2(1 − 𝑎1) − 2]2 + [−2𝑎2 + 4(1 − 𝑎1) − 2]2 

 
𝜕𝑔

𝜕𝑎1
= 0,

𝜕𝑔

𝜕𝑎2
= 0 

 

2[2(1 − 𝑎1) − 2] (−2) + 2[−2𝑎2 + 4(1 − 𝑎1) − 2] (−4) = 0 

0 + 2[−2𝑎2 + 4(1 − 𝑎1) − 2] (−2) = 0 

 

Home Work>>>>> 

Weighted Least Squares Approximation 

 

weight function 

The integrable function w(x) in an interval I is said to be weight function if w(x) ≥0 for some xI.   

w(x) must be nonzero positive value (w(x)>0) at least in some parts of I. 

 
 

Weighted Least Squares Approximation 

To approximate f (x) on I=[a, b]. we seek p(x) to minimize the least squares error. i.e. 

 
2

( ) ( ) ( ) ( )

b

a

Min E p w x f x p x dx= −  

Where w(x) is the weight function. 

 

An example of set of Polynomials: 

𝑃0(𝑥) = 1,   𝑃1(𝑥) = 𝑥, 𝑃2(𝑥) = 1 + 2𝑥 + 𝑥2 

 

Orthogonal Polynomials 
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Definition: 

The set of function  
0

n

k k =
 are said to be orthogonal with weight function 𝑤(𝑥) in [a, b] if  

∫ 𝑤(𝑥)𝜙𝑗(𝑥)𝜙𝑘(𝑥)

𝑏

𝑎

𝑑𝑥 = 𝛼𝑗𝛿𝑘𝑗 

Where the Kronecker function 𝛿𝑘𝑗 is defined by 

𝛿𝑘𝑗 = {
0, 𝑗 ≠ 𝑘
1, 𝑗 = 𝑘

 

 

Furthermore  
0

n

k k =
 are said to be orthonormal if they are orthogonal and  

1, 0,1,...,j j n = =  

 

Function representation 

 

Theorem 1: 

let f (x) is approximated by 

 𝑝𝑛(𝑥) = ∑ 𝑎𝑘𝜙𝑘(𝑥)𝑛
𝑘=0 ,                                 (1) 

where 𝜙𝑘(𝑥), 𝑘 = 01, … , 𝑛 , are orthogonal with weight function w(x) in[a, b].  

Then   𝑎𝑘(𝑥), 𝑘 = 01, … , 𝑛.  are defined by 

( ) ( ) ( )
1 b

j j
a

j

a w x f x x dx=  


 

Proof: The Least Squares Approximation with weight function 𝑤(𝑥) is 

 
2

( ) ( ) ( ) ( )

b

n

a

Min E p w x f x p x dx= −  

Using 

0

( ) ( )
k k

n

n
k

p x a x

=

= 
 

2

0

( ) ( ) ( ) ( )
k k

b n

ka

Min E p w x f x a x dx
=

 
= − 

 
   

The necessary conditions for E(p) to attain its minimum are 

( )
0, 0,1,...,

j

E p
j n

a


= =


 

( ) ( ) ( ) ( )
0

2 ( ) 0
nb

k k j
a

k

w x f x a x x dx
=

 
− − = 

 
   

( ) ( ) ( ) ( )
0

0
nb

k k j
a

k

w x f x a x x dx
=

 
− = 

 
   

( ) ( ) ( ) ( ) ( ) ( )
0

0
nb b

j k k j
a a

k

w x f x x dx w x a x x dx
=

− =     
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( ) ( ) ( ) ( ) ( ) ( )
0

nb b

j k k j
a a

k

w x f x x dx a w x x x dx
=

=    

Since  𝜙𝑘(𝑥), 𝑘 = 01, … , 𝑛 are orthogonal  

                ( ) ( ) ( )
b

j j j
a
w x f x x dx a=    

Hence 

( ) ( ) ( )
1 b

j j
a

j

a w x f x x dx=  


 

 

Examples of orthogonal polynomials: 

 

1-Legendre polynomials 

The usual notation for the kth -degree Legendre polynomial is 𝑃𝑘(𝑥) and corresponds to the 

normalization 𝑃𝑘 (1) = 1. 

In terms of the 𝑃𝑘(𝑥), the recurrence relation is 

𝑃𝑘+1(𝑥) =
(2𝑘 + 1)

(𝑘 + 1)
𝑥𝑃𝑘(𝑥) −

𝑘

(𝑘 + 1)
𝑃𝑘−1(𝑥),   𝑘 = 1,2, … 

𝑃0(𝑥) = 1 , 𝑃1(𝑥) = 𝑥  

 

To obtain the first 4 members of the polynomials  P𝑘 (𝑥), 
𝑃0(𝑥) = 1 , 𝑃1(𝑥) = 𝑥  

𝑘 = 1➔ 

𝑃2(𝑥) =
3

2
𝑥𝑃1(𝑥) −

1

2
𝑃0(𝑥) =

3

2
𝑥(𝑥) −

1

2
(1) =

3

2
𝑥2 −

1

2
   . 

𝑘 = 2➔  

𝑃3(𝑥) =
5

3
𝑥𝑃2(𝑥) −

2

3
𝑃1(𝑥) =

5

3
𝑥 [

3

2
𝑥2 −

1

2
] −

2

3
𝑥 =

5

2
𝑥3 −

3

2
𝑥 

𝑘 = 3➔ 

𝑃4(𝑥) =
7

4
𝑥𝑃3(𝑥) −

3

4
𝑃2(𝑥) =

7

4
𝑥 [

5

2
𝑥3 −

3

2
𝑥] −

3

4
[
3

2
𝑥2 −

1

2
 ] 

=
35

8
𝑥4 −

30

8
𝑥2 +

3

8
 

============ 

Thus 

𝑃0(𝑥) = 1 , 𝑃1(𝑥) = 𝑥, 𝑃2(𝑥) =
3

2
𝑥2 −

1

2
,    

𝑃3(𝑥) =
5

2
𝑥3 −

3

2
𝑥 , 𝑃4(𝑥) =

35

8
𝑥4 −

30

8
𝑥2 +

3

8
 , 

 

The Legendre polynomials are orthogonal with respect to the weight function 𝑤(𝑥) = 1: 

∫ 𝑃𝑗(𝑥)𝑃𝑘(𝑥)𝑑𝑥

1

−1

= {

0,   𝑗 ≠ 𝑘
2

2𝑗 + 1
= 𝛼𝑗 , 𝑗 = 𝑘

 

 

 

 

2-Chebyshev polynomials 

 



 12 

 

The Chebyshev polynomials are orthogonal with respect to the weight function 𝑤(𝑥) = (1 − 𝑥2)
−1

2 : 

 

 
Gram-Schmidt Process  

 

Theorem 1: Let {𝜓𝑘(𝑥)}𝑘=1
𝑛  are linearly independent functions, defined in the interval [𝑎, 𝑏]. Then, 

we can construct from it the orthogonal /orthonormal set of polynomials by: 

𝜙1(𝑥) = 𝑐11𝜓1(𝑥), 
𝜙2(𝑥) = 𝑐21𝜓1(𝑥) + 𝑐22𝜓2(𝑥),                         
𝜙3(𝑥) = 𝑐31𝜓1(𝑥) + 𝑐32𝜓2(𝑥) + 𝑐33𝜓3(𝑥), 
… 

Where, the constants {𝑐𝑖𝑗}
𝑖,𝑗=1

𝑛
can evaluated by applying the orthogonal/orthonormal property. 

 

Example: 

Consider the set of functions: 
{𝜓𝑘(𝑥)}𝑘=1

𝑛 = {1, 𝑥, 𝑥2, 𝑥3, … } 

defined in the interval [−1,1]. Construct from it an orthonormal set of polynomials {𝜙𝑘(𝑥)}𝑘=1
𝑛   with 

the weight function 𝑤(𝑥) = 1, making use of Gram-Schmidt Process. 

Solution: 

The first three orthonormal of polynomials {𝜙𝑘(𝑥)}𝑘=1
3  are defined by 

𝜙1(𝑥) = 𝑐11, 
𝜙2(𝑥) = 𝑐21 + 𝑐22𝑥                         

𝜙3(𝑥) = 𝑐31 + 𝑐32𝑥 + 𝑐33𝑥2 

Where, the constants {𝑐𝑖𝑗}
𝑖,𝑗=1

𝑛
can evaluated by applying the orthonormal property. 

∫ 𝑤(𝑥)𝜙𝑗(𝑥)𝜙𝑘(𝑥)

1

−1

𝑑𝑥 = 𝛿𝑘𝑗 = {
0, 𝑗 ≠ 𝑘
1, 𝑗 = 𝑘

 

 

To obtain 𝑐11, we apply only the orthonormal property when 𝑗 = 𝑘 = 1: 

∫ 𝜙1(𝑥)𝜙1(𝑥)𝑑𝑥
1

−1
=1➔∫ (𝑐11)2𝑑𝑥

1

−1
= 1➔ 2(𝑐11)2 = 1 

So 𝑐11 = ±
1

√2
 , and thus 

𝜙1(𝑥) = 𝑐11 = ±
1

√2
 

  ---------------------------------------------------- 

Now, for the second polynomial 𝜙2(𝑥) = 𝑐21 + 𝑐22𝑥, we apply only the orthonormal property as 

follows: 

∫ 𝜙2(𝑥)𝜙2(𝑥)𝑑𝑥
1

−1
=1,            ∫ 𝜙1(𝑥)𝜙2(𝑥)𝑑𝑥

1

−1
=0 

∫ (𝑐21 + 𝑐22𝑥)2𝑑𝑥
1

−1
=1,            ±

1

√2
∫ (𝑐21 + 𝑐22𝑥)𝑑𝑥

1

−1
=0 
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The first integration gives 

∫ [(𝑐21)2 + 2𝑐21𝑐22𝑥 + (𝑐22)2𝑥2]𝑑𝑥
1

−1
=   

[(𝑐21)2𝑥 + 𝑐21𝑐22𝑥2 +
1

3
(𝑐22)2𝑥3]−1

1 = 2(𝑐21)2 + 0 +
2

3
(𝑐22)2 = 1  

The second integration gives 

∫ (𝑥𝑐21 +
1

2
𝑐22𝑥2) 𝑑𝑥

1

−1

= [𝑥𝑐21 +
1

2
𝑐22𝑥2]−1

1 = 2𝑐21 + 0 = 0 

This gives 𝑐21 = 0 and 𝑐22 = ±√
3

2
 . Thus 

𝜙2(𝑥) = ±√
3

2
𝑥 

  ---------------------------------------------------- 

Now, for the third polynomial 𝜙3(𝑥) = 𝑐31 + 𝑐32𝑥 + 𝑐33𝑥2, we apply only the orthonormal property 

as follows: 

∫ 𝜙3(𝑥)𝜙3(𝑥)𝑑𝑥
1

−1
=1,  ∫ 𝜙1(𝑥)𝜙3(𝑥)𝑑𝑥

1

−1
=0, ∫ 𝜙2(𝑥)𝜙3(𝑥)𝑑𝑥

1

−1
=0 

These integrations implies 

∫[𝑐31 + 𝑐32𝑥 + 𝑐33𝑥2]2𝑑𝑥

1

−1

= 1 

±
1

√2
∫ [𝑐31 + 𝑐32𝑥 + 𝑐33𝑥2]𝑑𝑥

1

−1
=0 

±√
3

2
∫ [𝑐31 + 𝑐32𝑥 + 𝑐33𝑥2]𝑑𝑥

1

−1
=0 

 

Solving these three equations the constants c31, c32, c33 can be obtained and so 𝜙3(𝑥) = 𝑐31 +
𝑐32𝑥 + 𝑐33𝑥2 is defined. 

(left for student as homework). 

 

----------------------- 

[HomeWork] Consider the set of functions: 

{𝜓𝑘(𝑥)}𝑘=1
𝑛 = {1, 𝑥, 𝑥2, 𝑥3, … } 

defined in the interval [0,1]. Construct from it an orthonormal set of polynomials {𝜙𝑘(𝑥)}𝑘=1
𝑛   with 

the weight function 𝑤(𝑥) = 1, making use of Gram-Schmidt Process. 

 

Gram-Schmidt Process(b) 

We can define an orthogonal set {𝜑𝑘}𝑘=0
𝑛 of polynomials with weight function 𝑤(𝑥)in[𝑎, 𝑏]as 

follows: 

𝜑0(𝑥) = 1, 𝜑1(𝑥) = 𝑥 − 𝐵1, 𝐵1 =
∫ 𝑥𝑤(𝑥)[𝜑0(𝑥)]2𝑏

𝑎

∫ 𝑤(𝑥)[𝜑0(𝑥)]2𝑏
𝑎

 , 

and the sequence 

, 

 

 

2

1

2

1

( ) ( )

( ) ( )

b

k

a

b

k

a

xw x x dx

k
w x x dx

B




−

−


=


,  

 

( ) 1 2( ) ( ) ( ), 2k k k k kx x B x C x k  − −= − − 

 

1 2

2

2

( ) ( ) ( )

( ) ( )

b

k k

a

b

k

a

xw x x x dx

k
w x x dx

C
 



− −

−


=


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Example(Home Work)  

(a)Use Gram-Schmidt Process to construct an orthogonal polynomial in [-1,1] with weight function 

( ) 1w x =  

(b) use the constructed polynomial in (a) to approximate f(x)=ex in[-1,1] 

Answer: 

(a) 

 

 

 

 

 

1 1
2 2

0

1 1

1 1
2 2

0

1 1

( ) ( ) 1

1
( ) ( ) 1

0

b

a

b

a

xw x x dx x dx x dx

w x x dx dx dx

B




− −

− −

  
= = = =

    

1 x =  

 

k=2 

2 2 1 2 0( ) ( ) ( )x B x C x  = − −  

 

 

 

 

1 1
2 2 3

1

1 1

1 1
2 2 2

1

1 1

( ) ( )

2
( ) ( )

0

b

a

b

a

xw x x dx x x dx x dx

w x x dx x dx x dx

B




− −

− −

  
= = = =

  

 

   

1
2

1 0 2
31

1
2 2

0

1

( ) ( ) ( )

1
2 2 3

( ) ( ) 1

b

a

b

a

xw x x x dx x dx

w x x dx dx

C
 



−

−

 
= = = =

 
 

3 34
3 3 315 5

0,B C x x= =  = −
 

 
4 2 5 36 3 10 5

4 57 35 9 21
, ,.....x x x x x= − + = − +   

 

(b)  

( ) ( ) ( )
0

n

n k k

k

f x P x a x
=

 =  

( ) ( ) ( )
1 b

k k
a

k

a w x x f x dx=  


 

And from orthogonal property, 
( ) ( )

2b

k k
a

w x x dx=      

 

0k =  

( ) ( )
1 12 1

0 0 11 1
1 1 2x dx dx x 

−− −
= = = = − − =     

( ) ( )
11 1

0 0
1 1 1

1 1 1

2 2 2

x xa x f x dx e dx e
− − −

= = =  
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1 11
1.1752

2
e e − = − =  

 

1k =  

( )
1

3
1 12 2

1 1
1 1

1

1 1 2

3 2 3 3

x
x dx x dx 

− −
−

 
= = = = − − =    

 
  

( ) ( )
11 1

1 1
1 1 1

3 3 3

2 2 2

x x xa x f x dx xe dx xe e
− − −

 = = = −   

( ) ( )1 1 13
3 1.1036

2
e e e e e− − − = − − − − = + = +

 
 

2k =  

( )
2

1 12 2
2 2

1 1

1

3
x dx x dx 

− −

 
= = −    

 
  

1 4 2

1

2 1

3 9
x x dx

−

 
= − + 

 
 

1

5 3

1

1 2 1 1 2 1 8

5 9 9 5 9 9 45
x x x

−

   
= − + = − − =   
   

 

0.1778=  

( )
1 1 2

2 2
1 1

2

1

2 1

1

1 45 1

8 3

45 7 45 2 14
2 0.5288

8 3 8 3 3

x

x
x x

a f x dx x e dx

e
x e xe e e


 − −

−

−

 
= = − 

 

   
= − − = − = −   

  

 
 

 

( ) ( ) ( ) ( )

( )

( ) ( )

0 0 1 1 2 2

0 1 2

2 1
3

2

1.1752 1.1036 0.528

1.1752 1 1.1036 0.528

0.192 1.1036 0.528

f x a x a x a x

x

x x

x x

  

  

  + +

= − −

= − − −

= − +

 

Home Work : 

Use Gram-Schmidt Process(b) to construct an orthogonal polynomial in [0,1] with weight function 

( ) 1w x =  

===================================== 
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Use Gram-Schmidt Process(b)  to construct an orthogonal polynomial in [-1,1] with weight function 

w(x)=?? 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 

[1]: Use Galerkin method with Legendre polynomial of degree 3, to approximate solution for the 

BVP 

𝒚′′(𝒕) = 𝟐 , −𝟏 ≤ 𝒕 ≤ 𝟏                           (1) 

𝒚(−𝟏) = 𝟏, 𝒚(𝟏) = 𝟏                             (2) 

Compare between the approximate solution and the exact solution(𝑦(𝑡) = 𝑡2). 

========================================== 

Answer: 

Let 

𝑦̃(𝑡) = 𝑎0𝑃0(𝑡) + 𝑎1𝑃1(𝑡) + 𝑎2𝑃2(𝑡) + 𝑎3𝑃3(𝑡)                              (3) 

Using (2) 𝒚(−𝟏) = 𝟏, 

0 = 𝑎0𝑃0(−𝟏) + 𝑎1𝑃1(−𝟏) + 𝑎2𝑃2(−𝟏) + 𝑎3𝑃3(−𝟏) 

𝑃0(𝑥) = 1 , 𝑃1(𝑥) = 𝑥, 𝑃2(𝑥) =
3

2
𝑥2 −

1

2
,  𝑃3(𝑥) =

5

2
𝑥3 −

3

2
𝑥  

𝑃0(−𝟏) = 1 , 𝑃1(−𝟏) = −1, 𝑃2(−𝟏) = 1,  𝑃3(−𝟏) = −1  

0 = 𝑎0 − 𝑎1 + 𝑎2 − 𝑎3 

𝑎3 = 𝑎0 − 𝑎1 + 𝑎2                          (4) 

Again using (2) 𝒚(𝟏) = 𝟏     

1 = 𝑎0𝑃0(1) + 𝑎1𝑃1(1) + 𝑎2𝑃2(1) + 𝑎3𝑃3(1) 

𝑃0(𝑥) = 1 , 𝑃1(𝑥) = 𝑥, 𝑃2(𝑥) =
3

2
𝑥2 −

1

2
,  𝑃3(𝑥) =

5

2
𝑥3 −

3

2
𝑥  

𝑃0(𝟏) = 1 , 𝑃1(𝟏) = 1, 𝑃2(𝟏) = 1,  𝑃3(𝟏) = 1  

1 = 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 

Using (4), 1 = 𝑎0 + 𝑎1 + 𝑎2 + 𝑎0 − 𝑎1 + 𝑎2 = 2𝑎0 + 2𝑎2 

 

𝑎2 =
1

2
− 𝑎0                            (5) 

 

Substituting from (4)-(5), then the approximate solution (3) become 

𝑦̃(𝑡) = 𝑎0𝑃0(𝑡) + 𝑎1𝑃1(𝑡) + [
1

2
− 𝑎0] 𝑃2(𝑡) + [𝑎0 − 𝑎1 + 𝑎2]𝑃3(𝑡)                          (6) 

 

 

Differentiation of (4) twice, we have 

𝑦′̃(𝑡) = 𝑎0𝑃′0(𝑡) + 𝑎1𝑃′1(𝑡) + [
1

2
− 𝑎0] 𝑃′2(𝑡) + [𝑎0 − 𝑎1 + 𝑎2]𝑃′3(𝑡) 

𝑃0(𝑥) = 1 , 𝑃1(𝑥) = 𝑥, 𝑃2(𝑥) =
3

2
𝑥2 −

1

2
,  𝑃3(𝑥) =

5

2
𝑥3 −

3

2
𝑥  

𝑃′0(𝑥) = 0 , 𝑃′1(𝑥) = 1, 𝑃′2(𝑥) = 3𝑥,  𝑃′3(𝑥) = 3(
5

2
)𝑥2 −

3

2
  

𝑃′1(𝑥) = 𝑃0(𝑥), 𝑃′2(𝑥) = 3𝑃1(𝑥),  𝑃′3(𝑥) = 5 (
3

2
) 𝑥2 −

5

2
+ 1 = 5𝑃2(𝑥) + 1 

𝑦̃′(𝑡) = 0 + 𝑎1𝑃0(𝑥) + [
1

2
− 𝑎0] 3𝑃1(𝑥) + [𝑎0 − 𝑎1 + 𝑎2][5𝑃2(𝑥) + 1] 
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𝑦̃′′(𝑡) = 𝑎1𝑃′0(𝑥) + 3 [
1

2
− 𝑎0] 𝑃′1(𝑥) + [𝑎0 − 𝑎1 + 𝑎2][5𝑃′2(𝑥) + 1] 

𝑦̃′′(𝑡) = 0 + 3 [
1

2
− 𝑎0] + [𝑎0 − 𝑎1 + 𝑎2][5(3)𝑃1(𝑥) + 1] 

𝑦̃′′(𝑡) = 3 [
1

2
− 𝑎0] + [𝑎0 − 𝑎1 + 𝑎2][15𝑃1(𝑥) + 1] 

𝑦̃′′(𝑡) = 3 [
1

2
− 𝑎0] + 15[𝑎0 − 𝑎1 + 𝑎2]𝑃1(𝑥) + [𝑎0 − 𝑎1 + 𝑎2] 

𝑦̃′′(𝑡) = 15[𝑎0 − 𝑎1 + 𝑎2]𝑃1(𝑥) + [−2𝑎0 − 𝑎1 + 𝑎2 +
3

2
] 

We define the error in approximating the differential problem (1) 

 𝒚′′(𝒕) = 𝟐 

Is 

𝑅(𝑡) = 𝑦′′(𝑡) − 2 = 15[𝑎0 − 𝑎1 + 𝑎2]𝑃1(𝑥) + [−2𝑎0 − 𝑎1 + 𝑎2 +
3

2
] − 2                                  

𝑅(𝑡) = 15[𝑎0 − 𝑎1 + 𝑎2]𝑃1(𝑥) + [−2𝑎0 − 𝑎1 + 𝑎2 −
1

2
] 

Galerkin method obtain the unknowns by 

∫ 𝑤(𝑡)𝑅(𝑡)
𝑏

𝑎

𝑃𝑗(𝑡)𝑑𝑡 = 0, 𝑗 = 0,1,2 

𝑤(𝑡) = 1  

∫ (15[𝑎0 − 𝑎1 + 𝑎2]𝑃1(𝑥) + [−2𝑎0 − 𝑎1 + 𝑎2 −
1

2
])

𝑏

𝑎

𝑃𝑗(𝑡)𝑑𝑡 = 0, 𝑗 = 0,1,2 

 

 

 

 

Trigonometric Polynomial Approximation 

Trigonometric Polynomial consists of all linear combination of the set  0 1 2 1, ,..., n   − , where 

 

( )0

1

2
x


= 

( )
1

cos foreach 1,2,...,k x kx k n


= = 

( )
1

sin 1,2,..., 1n k x kx for each k n


+ = = −     Which are orthonormal in , −   

Theorem: If  
𝑓(𝑥)  

If is approximated by trigonometric polynomial, by 
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إذا تم تقريب الدالة ظرية:ن ,f C    باستخدام تقريب كثيرات الحدود الثلاثية المثلثية −

( ) ( )
2 1

0

n

n k k

k

S x a x
−

=

= 
Then

 

 فإن 

( ) ( ) 0,1,...,2 1k ka f x x dx for each k n





−
= = − 

 مثال: 

Example: 

Consider that the function 

 إذا تم تقريب الدالة  

( ) forf x x x = −  
 

is approximated by trigonometric polynomial.  Obtain the unknown coefficients. 

 باستخدام تقريب كثيرات الحدود الثلاثية المثلثية أوجد صيغ المعاملات

Answer: 

0

0
0

2

0

1 1 1

2 2 2

2 2

2 2

a x dx xdx xdx

xdx

− −
= = − +

= =

  



 

 



  



 

 

= √2𝜋
3

2 

0

1 2
cos coska x kxdx x kxdx

 

 −
= =  

( )
2

2
1 1 , foreach 1,2,...,

k
k n

k
 = − − =
 

 

 :kbسوف نسميها nبعد الحد رقم   صيغ المعاملات

for 1,2,..., 1k n kb a k n+= = − 

( )
11 2

sin 1 foreach 1,2,.., 1
k

kb x kxdx k n
k









+

−
= = − = − 

 وبناءاً على ذلك فإن 

( )
( ) ( )

11

2
0 1

1 1 12
cos 2 sin

2

k kn n

n

k k

S x kx kx
kk





+−

= =

− − −
= + +  
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HomeWork 

 مثال: 

)أوجد  تقريب كثيرات الحدود الثلاثية المثلثية     )nS x  للدالة 

Consider that the function 

 إذا تم تقريب الدالة  

0 0
( )

1 0

if x
f x

if x





−  
= 

 
 

is approximated by trigonometric polynomial.  Obtain the unknown coefficients. 

 

 الحل:  

 

 إذا تم تقريب الدالة المعطاة باستخدام تقريب كثيرات الحدود الثلاثية المثلثية

( ) ( )
2 1 1

0

0 0 0

n n n

n k k k k k k

k k k

S x a x a a b  
− −

= = =

= = + +    

 حيث 

( )0

1

2
x


= 

( )
1

cos for each 1,2,...,k x kx k n


= = 

( )
1

sin foreach 1,2,..., 1n k x kx k n


+ = = − 

 فإن صيغ المعاملات تتعين من 

( ) ( ) , 0,1,...,2 1k ka f x x dx k n





−
= = − 

 ( فإن 1من تعريف الدالة )

( )

 

0

0
0

0

0

0

0

1 0

2 2 2

0
2 2

1 1
0cos cos

sin1 1
0 sin sin0 0

dx
a f x dx dx

x

kxdx kxdx

kx
k

k k

− −

−

= = +

= + =

= +

− −
= + = − =

  

 

 

 









  



 

 


 
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( )0

0

0

1
sin

1 1
0*sin 1*sin

b f x kxdx

kxdx kx

−

−

=

= +



 











 

 

 

( )

0

1 1
0 cos cos cos0

1 1
k

kx k
k

k

= + = −

− −
=




 



 

( )

1

0 0

0 0

1 11 1
sin

2 2

n n

n k k k k

k k

k

S a a b

n
kx

n n nk n

  
−

= =

= + +

 − −
 = +

 



 

 

( ) ( )1

0

1 1 1 11 1
sin sin

22

k
kn

k

n
kx kx

nk n kn

−

=

 − − − − = + = +    

 

Exercises 

[1] Test which of the following pairs of functions are orthogonal /orthonormal in the given interval: 

(a) sin 𝑥 , cos 𝑥 , [−1,1]. 
(b) 1, 𝑥, [−1,1]. 
[2] Test if the following set of functions are orthogonal /orthonormal in the given interval: 

(a) {sin
𝑚𝜋𝑥

𝜏
}

𝑚=1

𝑀

, [−1,1].  

(b) {1, 𝑥, 𝑥2, … },  , [−1,1].  
 

∫ 𝒄𝒐𝒔 (
𝑘𝜋𝑥

𝜏
) 𝒅𝒙 

𝝉

−𝝉

=
𝜏

𝑘𝜋
[𝒔𝒊𝒏 (

𝑘𝜋𝑥

𝜏
)]

−𝝉

𝝉

=
𝜏

𝑘𝜋
[𝒔𝒊𝒏 (

𝑘𝜋𝜏

𝜏
) − 𝒔𝒊𝒏 (−

𝑘𝜋𝜏

𝜏
)]  

=
𝜏

𝑘𝜋
[𝒔𝒊𝒏(𝑘𝜋) + 𝒔𝒊𝒏(𝑘𝜋)] =

𝜏

𝑘𝜋
[𝟎 + 𝟎] = 𝟎 

 

 [1] Test which of the following pairs of functions are orthogonal /orthonormal in the given interval: 

(a) sin 𝑥 , cos 𝑥 , [−1,1]. 
(b) 1, 𝑥, [−1,1]. 
[2] Test if the following set of functions are orthogonal /orthonormal in the given interval: 

(a) {sin
𝑚𝜋𝑥

𝜏
}

𝑚=1

𝑀

, [−1,1].  

(b) {1, 𝑥, 𝑥2, … },  , [−1,1].  
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∫ 𝒄𝒐𝒔 (
𝑘𝜋𝑥

𝜏
) 𝒅𝒙 

𝝉

−𝝉

=
𝜏

𝑘𝜋
[𝒔𝒊𝒏 (

𝑘𝜋𝑥

𝜏
)]

−𝝉

𝝉

=
𝜏

𝑘𝜋
[𝒔𝒊𝒏 (

𝑘𝜋𝜏

𝜏
) − 𝒔𝒊𝒏 (−

𝑘𝜋𝜏

𝜏
)]  

=
𝜏

𝑘𝜋
[𝒔𝒊𝒏(𝑘𝜋) + 𝒔𝒊𝒏(𝑘𝜋)] =

𝜏

𝑘𝜋
[𝟎 + 𝟎] = 𝟎 

[Exercise 1]The following recurrence relation generates the Legendre polynomials.  

𝑃𝑘+1(𝑥) =
(2𝑘 + 1)

(𝑘 + 1)
𝑥𝑃𝑘(𝑥) −

𝑘

(𝑘 + 1)
𝑃𝑘−1(𝑥),   𝑘 = 1,2, … 

starting with  

𝑃0(𝑥) = 1 and 𝑃1(𝑥) = 𝑥 . 

(a) Obtain the first five members of the polynomials  P𝑘 (𝑥), 

(b) obtain the value of P4 (0.5). 

(c) if 𝑓(𝑥) = ∑ 𝛼𝑘P𝑘 (𝑥)4
𝑘=𝑜 , with 𝛼 = [1,0,0,1,0].  Obtain the expression for 𝑓(𝑥), and the value of 

𝑓(0.5). 

[Exercise 2]The following recurrence relation generates the Chebyshev polynomials.  

 
starting with  

 
(a) Obtain the first five members of the polynomials  T𝑘 (𝑥), 𝑘 = 0,1, … ,4 

(b) obtain the value of P4 (0.75). 

(c) if 𝑓(𝑥) = ∑ 𝛼𝑘T𝑘 (𝑥)4
𝑘=𝑜 , with 𝛼 = [0,1,1,0,1].  Obtain the expression for 𝑓(𝑥), and the value of 

𝑓(−0.5). 

 [Exercise 1]The following recurrence relation generates the Legendre polynomials.  

𝑃𝑘+1(𝑥) =
(2𝑘 + 1)

(𝑘 + 1)
𝑥𝑃𝑘(𝑥) −

𝑘

(𝑘 + 1)
𝑃𝑘−1(𝑥),   𝑘 = 1,2, … 

starting with  

𝑃0(𝑥) = 1 and 𝑃1(𝑥) = 𝑥 . 

(a) Obtain the first five members of the polynomials  P𝑘 (𝑥), 

(b) obtain the value of P4 (0.5). 

(c) if 𝑓(𝑥) = ∑ 𝛼𝑘P𝑘 (𝑥)4
𝑘=𝑜 , with 𝛼 = [1,0,0,1,0].  Obtain the expression for 𝑓(𝑥), and the value of 

𝑓(0.5). 

 

 [Exercise 2]The following recurrence relation generates the Chebyshev polynomials.  

 
starting with  

 
(a) Obtain the first five members of the polynomials  T𝑘 (𝑥), 𝑘 = 0,1, … ,4 

(b) obtain the value of P4 (0.75). 

(c) if 𝑓(𝑥) = ∑ 𝛼𝑘T𝑘 (𝑥)4
𝑘=𝑜 , with 𝛼 = [0,1,1,0,1].  Obtain the expression for 𝑓(𝑥), and the value of 

𝑓(−0.5). 

 

 



Chapter 6

Spline Interpolation

99



 

Spline Interpolation_( linear) 

 [Q11]  Obtain linear spline function that interpolate the given data:  𝑓(0) = 0 

, 𝑓(1) = 1   𝑓(2) = 2  and satisfies the conditions  𝑓′(0) = 1  ,    𝑓′(2) = 1 

Solution: 

Consider the data : {𝑥𝑖   , 𝑓(𝑥𝑖)}𝑖=0
𝑛  is given  

 

 

 

 

To obtain an interpolated function for this data, we construct , firstly the linear spline 

function . 

𝑠𝑗(𝑥) = 𝑎𝑗 + 𝑏𝑗(𝑥 − 𝑥𝑗)  , j=0,1.                                 (1) 

in each subinterval. 

                                                         𝑠0                     𝑠1     

                                              𝑥0                      𝑥1                          𝑥2 

 

𝑠0 = 𝑎0 + 𝑏0(𝑥 − 𝑥0) = 𝑎0 + 𝑏0𝑥         (2)     

Since 𝑥0 = 0, similarly, since 𝑥1 = 1, we have 

𝑠1(𝑥) = 𝑎1 + 𝑏1(𝑥 − 𝑥1) = 𝑎1 + 𝑏1(𝑥 − 1)    (3)   

we have 4 unknowns 𝑎0 , 𝑎1 , 𝑏0 , 𝑏1 to be determined 

Spline function must satisfy: 

𝑠𝑗(𝑥𝑗) = 𝑓(𝑥𝑗)                                (4)   

                    (                       3( و )2المعادلتين ) بالتطبيق في

𝑠0(𝑥0) = 𝑓(𝑥0) →   𝑎0 + 𝑏0𝑥0 = 0  →  𝑎0 = 0   

𝑠1(𝑥1) = 𝑓(𝑥1) →  𝑎1 + 𝑏1(𝑥1 − 1) = 1 →  𝑎1 = 1   

 

𝑓(𝑥) 𝑥𝑖  𝑖 

0 0 0 

1 1 1 

2 2 2 



𝑠𝑗+1(𝑥𝑗+1) = 𝑠𝑗(𝑥𝑗+1)                               (5) 

𝑠1(𝑥1) = 𝑠0(𝑥1)                    

Condition (5) is applied to ensure that the resulting spline function is continuous  

          

                𝑠0                    𝑠1 

         𝑥0               𝑥1                𝑥2 

𝑠1(𝑥1) = 𝑠0(𝑥1)                 

                    (                       3( و )2بالتطبيق في المعادلتين )

𝑠0 = 𝑎0 + 𝑏0𝑥         (2)        𝑠1(𝑥) = 𝑎1 + 𝑏1(𝑥 − 1)    (3)  ,  𝑥1 = 1 

 

𝑎0 +  𝑏0 = 𝑎1  

0 + 𝑏0 = 1 

𝑏0 = 1 

One more condition must be given for define spline interpolation that’s     

𝑠0
′(𝑥0) = 𝑓′(𝑥0)  , 𝑠1

′(𝑥2) = 𝑓′(𝑥2)          (6) 

From the given condition: 

𝑠0
′(0) = 1    ,   𝑠1

′(2) = 1 

 ( بعد التفاضل  3( و )2بالتعويض في )

Differentiation (2,3) 

𝑠0
′ = 𝑏0 = 1 , 𝑠1

′ =   𝑏1 = 1   

Hence the spline function that interpolate the given data is  

𝑠0 = 𝑎0 + 𝑏0(𝑥 − 𝑥0) = 𝑎0 + 𝑏0𝑥      𝑠1(𝑥) = 𝑎1 + 𝑏1(𝑥 − 𝑥1) = 𝑎1 + 𝑏1(𝑥 − 1)     

𝑠0(𝑥) = 𝑥  

𝑠1(𝑥) = 1 + (𝑥 − 1) = 𝑥   

Which can be written as:  

𝑠(𝑥) = {
𝑠0 = 𝑥 ,   0≤x≤1

𝑠1 = 𝑥,   1≤x≤2
  =➔           𝑠(𝑥) = {

𝑥 ,   0≤x≤1

𝑥,   1≤x≤2
 



The exact solution for this problem is : 

𝒇(𝒙) = 𝒙 

The resulting interpolation is equal the exact solution. 

𝒙 𝑠(𝑥) 𝒇(𝒙) Absolute error 

0.0  0.0  

0.2  0.2  

0.4  0.4  

    

    

    

2.0    

 

  

[Q12] Obtain quadratic spline function that interpolates the given data:  

 𝑓(0) = 0  ,    𝑓(1) = 1  ,   𝑓(2) = 2, 𝑓(3) = 3 and satisfies the condition   𝑓′(0) =

1  ,    𝑓′(3) = 1 

 

Solution : 

The spline function (quadratic) is  

𝑠𝑗(𝑥) = 𝑎𝑗 + 𝑏𝑗(𝑥 − 𝑥𝑗) + 𝑐𝑗(𝑥 − 𝑥𝑗)
2

       j = 0,1,2,            (1) 

                                 

                                                     𝑠0                         𝑠1                            𝑠2 

                                             0                          1                            2                          3 

𝑠𝑗(𝑥) = 𝑎𝑗 + 𝑏𝑗(𝑥 − 𝑥𝑗) + 𝑐𝑗(𝑥 − 𝑥𝑗)
2
 

𝑠0(𝑥) = 𝑎0 + 𝑏0𝑥 + 𝑐0𝑥2                   (2) 

𝑠1(𝑥) = 𝑎1 + 𝑏1(𝑥 − 𝑥1) +  𝑐1(𝑥 − 𝑥1)2        

𝑠1(𝑥) = 𝑎1 + 𝑏1(𝑥 − 1) + 𝑐1(𝑥 − 1)2           (3) 

𝑠2(𝑥) = 𝑎2 + 𝑏2(𝑥 − 𝑥2) +  𝑐2(𝑥 − 𝑥2)2        

𝑠2(𝑥) = 𝑎2 + 𝑏2(𝑥 − 2) + 𝑐2(𝑥 − 2)2           (4) 

The first condition spline function must satisfying  



𝑠𝑗(𝑥𝑗) = 𝑓(𝑥𝑗)                                 

𝑠0(𝑥0) = 𝑓(𝑥0)       

𝑠1(𝑥1) = 𝑓(𝑥1)       

𝑠2(𝑥2) = 𝑓(𝑥2) 

 ( 4و )( 3( و )2بالتطبيق في المعادلتين )

𝑠0(𝑥) =  𝑎0 + 𝑏0𝑥 + 𝑐0𝑥2,  𝑓(𝑥0) = 0 

𝑠0(𝑥0) = 𝑓(𝑥0)      (2) في بالتعويض    𝑎0 = 0   

𝑠1(𝑥) = 𝑎1 + 𝑏1(𝑥 − 1) + 𝑐1(𝑥 − 1)2   , 𝑓(𝑥1) = 1 

𝑠1(𝑥1) = 𝑓(𝑥1)      (3) في بالتعويض    𝑎1 = 1   

𝑠2(𝑥) = 𝑎2 + 𝑏2(𝑥 − 2) + 𝑐2(𝑥 − 2)2   , 𝑓(𝑥2) = 2 

𝑠2(𝑥2) = 𝑓(𝑥2)➔𝑎2 = 2 

The second condition to ensure continues spline function at entire points    

𝑠𝑗+1(𝑥𝑗+1) = 𝑠𝑗(𝑥𝑗+1)                     

                                                     𝑠0                         𝑠1                            𝑠2 

                                             0                          1                            2                          3 

 

𝑠1(𝑥1) = 𝑠0(𝑥1)              (5)     

𝑠1(1) = 𝑠0(1)                 

𝑠0(𝑥) = 𝑎0 + 𝑏0𝑥 + 𝑐0𝑥2            𝑠1(𝑥) = 𝑎1 + 𝑏1(𝑥 − 1) + 𝑐1(𝑥 − 1)2           

𝑎0 +  𝑏0 + 𝑐0 = 𝑎1  ➔  0 +  𝑏0 + 𝑐0 = 1  ➔  𝑏0 +  𝑐0 = 1       (6) 

 

𝑠1(2) = 𝑠2(2) 

𝑠1(𝑥) = 𝑎1 + 𝑏1(𝑥 − 1) + 𝑐1(𝑥 − 1)2   𝑠2(𝑥) = 𝑎2 + 𝑏2(𝑥 − 2) + 𝑐2(𝑥 − 2)2   ,  

𝑎1 + 𝑏1 + 𝑐1 = 𝑎2➔    1 + 𝑏1 + 𝑐1 = 2     ➔ 𝑏1 + 𝑐1 = 1 (7) 

The given condition is at the end points of the interval 

𝑓′(0) = 1,  So: 



𝑠0(𝑥) = 𝑎0 + 𝑏0𝑥 + 𝑐0𝑥2       ➔ 𝑠′0(𝑥) = 𝑏0  + 2𝑐0𝑥        ➔𝑠′0(0) = 1➔ 

𝑏0 = 1 

========== 

  𝑓′(3) = 1 

𝑠2(𝑥) = 𝑎2 + 𝑏2(𝑥 − 2) + 𝑐2(𝑥 − 2)2 

  𝑠2
′ = 𝑏2 + 2𝑐2(𝑥 − 2)  

        𝑠2
′(3)   = 𝑏2 +  2𝑐2(3 − 2) = 1   

         = 𝑏2 +  2𝑐2 = 1        (8) 

 (    6في ) 𝑏0بالتعويض من 

𝑏0 +  𝑐0 = 1    ==> 1 +  𝑐0 = 1       ➔ 𝑐0 = 0 

since the spline function is quadratic one more condition must be added to the linear 

spline case  

we must insure the continuity of first derivative of spline function at  

𝑠0
′(𝑥1) = 𝑠1

′(𝑥1) 

𝑠0
′ = 𝑏0 +  2𝑐0𝑥     , 𝑥 = 𝑥1 = 1 

𝑠1
′ = 𝑏1 +  2𝑐1(𝑥 − 1)     , 𝑥 = 𝑥1 = 1 

𝑏1 = 𝑏0 +  2𝑐1  

𝑏1 = 1 +  2𝑐1               (9) 

(7), (9) must be solved to obtain 𝑏1  , 𝑐1    

𝑏1 + 𝑐1 = 1 (7) 

So : 

2𝑏1 = 2  ⇒  𝑏1 = 1     

( 9بالتعويض في )  

1 = 1 +  2𝑐1   ⇒  𝑐1 = 0      

There are 4 more unknowns, and 1 more condition, that is 

𝑠1
′(𝑥2) = 𝑠2

′(𝑥2), 𝑥2 = 2 

𝑠1(𝑥) = 𝑎1 + 𝑏1(𝑥 − 1) + 𝑐1(𝑥 − 1)2    ➔ 𝑠′1(𝑥) = 𝑏1 + 2𝑐1(𝑥 − 1)  



𝑠′1(2) = 𝑏1 + 2𝑐1(2 − 1) = 𝑏1 + 2𝑐1  (*) 

𝑠2(𝑥) = 𝑎2 + 𝑏2(𝑥 − 2) + 𝑐2(𝑥 − 2)2  ➔𝑠′2(𝑥) = 𝑏2 + 2𝑐2(𝑥 − 2)  

𝑠′2(2) = 𝑏2 + 2𝑐2(2 − 2) = 𝑏2    (**) 

𝑠1
′(𝑥2) = 𝑠2

′(𝑥2), 𝑥2 = 2➔𝑏1 + 2𝑐1 = 𝑏2  ➔𝑏2 = 1 (9) 

Together with           𝑏2 +  2𝑐2 = 1        (7)➔ 𝑐2 = 0 

 

Hence the quadratic spline function that approximate the given data is  

𝑠0(𝑥) = 𝑎0 + 𝑏0𝑥 + 𝑐0𝑥2                   (2) 

𝑠1(𝑥) = 𝑎1 + 𝑏1(𝑥 − 1) + 𝑐1(𝑥 − 1)2           (3) 

𝑠2(𝑥) = 𝑎2 + 𝑏2(𝑥 − 2) + 𝑐2(𝑥 − 2)2           (4) 

 

            𝑠0(𝑥) = 𝑎0 + 𝑏0(𝑥)  + 𝑐0(𝑥)2 = 𝑥 

            𝑠1(𝑥) = 𝑎1 + 𝑏1(𝑥 − 1)  + 𝑐1(𝑥 − 1)2 = 1 + 𝑥 − 1 = 𝑥  

𝑠2(𝑥) = 𝑎2 + 𝑏2(𝑥 − 2) + 𝑐2(𝑥 − 2)2 = 2 + (𝑥 − 2) = 𝑥 

Which is the exact solution 

=========================================================== 

[HW_Q13] Obtain quadratic spline function that interpolate the given data:     

 𝑓(0) = 0  ,    𝑓(1) = 1  ,   𝑓(2) = 4   

And the additional condition    𝑓′(0) = 0  ,    𝑓′(3) = 6 

With the exact solution = 𝑥2 

 

=========================================================== 
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Eigen value Problem 

Use usual analytic solution to obtain all of the eigenvalues and the 

corresponding eigenvectors of the matrix , given by 

𝐴 = [
8 −2 −2

−2 4 −2
−2 −2 13

] 

Then Write the algorithm of your favorite numerical method to approximate 

the largest eigenvalue of the matrix and the corresponding eigenvectors. 

 

 

 

  



 

8 − 𝜆 − 2𝑥2 − 2𝑥3 = 0 

−2 − 2𝑥2 + (13 − 𝜆)𝑥3 = 0 

 

 

---------------------------------------------------------------------------- 

 

 

 



Definition  

If A is a square matrix n on n , the characteristic polynomial of A is defined by 

 

It is not difficult to show that p is an nth-degree polynomial and, consequently, 

has at most n distinct zeros, If 𝜆 is a zero of p, then, since det(A — 𝜆 I) = 0, 

Theorem 6.16 in Section 6.4 implies that the linear system defined by (A — 𝜆 

l)x = 0 has a solution with x ≠ 0.  

Definition  

if p is the characteristic polynomial of the matrix A, the zeros of p are 

eigenvalues, or characteristic values, of the matrix A. If 𝜆 is an eigenvalue of A 

and x ≠ 0 satisfies 

(A — 𝜆 l)x = 0, then x is an eigenvector, or characteristic vector, of A 

corresponding to 

the eigenvalue 𝜆. ■ 

Definition  

The spectral radius 𝜌 (A) of a matrix A is defined by 𝜌 (A) = max | 𝜆 |, where 𝜆 

is an eigenvalue of A. 

Example: 

𝐴 = [
8 −2 −2

−2 4 −2
−2 −2 13

] 

𝜆1 = 13.87, 𝜆2 = 8.62, 𝜆3 = 2.5 

𝜌(A) = max{13.87, 8.62, 2.5 }=13.87 

 

 

Theorem :  If A is an n x n matrix, then 

 



EXAMPLE 2 

If  𝐴 = [
1 1 0
1 2 1

−1 1 2
] Then obtain ||𝐴||2  

 

Definition 

 We call an nxn matrix A convergent if 

 

EXAMPLE 3 

Let 𝐴 = [

1

2
0

1

4

1

2

].   Is A is convergent matrix? 

𝐴𝐴 = [

1

2
0

1

4

1

2

] [

1

2
0

1

4

1

2

] = [

1

4
0

1

4

1

4

] 



 

 بتفاضل البسط وحده والمقام وحده مع الأخذ في الاعتبار أن  

xyإذا كانت  a= فإن xdy
a ln a

dx
= 

 

𝒍𝒊𝒎
𝒌 → ∞

𝒌

𝟐𝒌+𝟏
=

𝒍𝒊𝒎
𝒌 → ∞

𝟏

𝟐𝒌+𝟏𝒍𝒏(𝟐)
=

𝟏

∞
= 𝟎 

Theorem  

The following statements are equivalent. 

(i) A is a convergent matrix, 

(ii) 
𝒍𝒊𝒎

𝒌 → ∞
||𝑨𝒌|| = 𝟎, for all natural norms, 

(iv)  𝜌 (A) < 1. 

(V ) 
𝒍𝒊𝒎

𝒌 → ∞
𝑨𝒌𝑿 = 𝟎, for every 𝑿. 

 

 

 

 

  



Approximating Eigenvalues 

The Power Method 

The Power method is an iterative technique used to determine the dominant 

eigenvalue of a matrix—that is, the eigenvalue with the largest magnitude. By 

modifying the method slightly, it can also used to determine other eigenvalues. 

One useful feature of the Power method is that it produces not only an 

eigenvalue, but an associated eigenvector. In fact, the Power method is often 

applied to find an eigenvector for an eigenvalue that is determined by some 

other means. 

 The Eigen value problem is:   Find 𝜆 and X which satisfy: 

𝐴𝑋 = 𝜆𝑋Or 

|𝐴 − 𝜆𝐼|𝑋 = 0 

 

 

Example 2.1. The direct power method. 

 

Find the largest ,in absolute value, eigenvalue and the corresponding 

eigenvector of the matrix (to two digits of accuracy), given by 



𝐴 = [
8 −2 −2

−2 4 −2
−2 −2 13

] 

Answer 

 

 

 

 

𝐴𝑥(0) = 𝑦(1) 

𝑦(1) = 𝐴𝑥(0) 

 

𝑦(1) = [
4
0
9

] 

 

𝑦(1) = 𝜆(1)𝑥(1) 

1

𝜆(1)
𝑦(1) = 𝑥(1) 



 

 

 

 

 

 

Homework: 

The required answer is up to k=5 



HomeWork: The direct power method. 

 

Find the largest ,in absolute value, eigenvalue and the corresponding 

eigenvector of the matrix (to five iterations), given by 

𝐴 = [
−4 14 0
−5 13 0
−1 0 2

] 

 

 

 

… 

Answer:  

Find the largest eigenvalue and the corresponding eigenvector of the 

following matrix to two digits of accuracy. Take the first component be 

the unity component. 

𝐴 = [
−4 14 0
−5 13 0
−1 0 2

] 

 

 

Symmetric Power Method 

Example of symmetric matrix 

 

 

To approximate the dominant eigenvalue and an associated eigenvector of the n 

x n symmetric matrix A, given a nonzero vector x: 



INPUT dimension n; matrix A; vector x; tolerance TOL; maximum number of  

iterations N. 

OUTPUT approximate eigenvalue p.; approximate eigenvector x (with ||x||2 = 

1) or a message that the maximum number of iterations was exceeded. 

 

 

EXAMPLE 2 

The matrix 

 

 



 

The following gives an error bound for approximating the eigenvalues of a 

symmetric matrix. 

Theorem If A is an n x n symmetric matrix with eigenvalues 

  

for some real number X and vector x with ||x||2 = 1, then 

 

 

 

 

 

 


