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Preface

This lecture notes is devoted to draw the whole picture of the numer-
ical analysis II, which is suitable for the student at the fourth year of
under-graduation study. Here is the information of the course.
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Please note that, it’s not allowed to copy any part of this notes without
an explicit permission from the persons who prepared it.
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Chapter 1

Initial- Value Problems

1.1 Introduction

It’s well known that many differential equation, specially the nonlinear
type, has no analytical solution, therefore the numerical methods arise
for such cases.

In the current chapter, we will present some of those methods for the
ordinary differential equation of order one that has the following form:

y = j—i = f(z,y), y(a) = yo, and z € [a,b]. (1.1)

Equation (1.1), that has a given initial value, is well known as an
Initial value problem. In this equation the function f(x,y) in the
right hand side has to be continuous function in its domain. Before
we present the numerical methods for such type of equation, we shall
present some preliminaries that has to be verified from the mathemat-
ical analysis point of view.

Definition 1.1.1 — Lipschitz condition. A function f(z,y) is said to
be Lipschitz in the variable y at a region I with I = {(z,y),a <
x < b,c <y <d},if there exist a constant L > 0 such that

|f(z,y1) — f(z,y2)| < Llyr —y2| Ve <y <y < d.
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Theorem 1.1.1 — Existence and uniqueness of the solution . The
initial value problem

y' = f(z,y) on [a,b],y(z0) = yo
has a unique solution in the interval [a, b] if
1. f(z,y) in continuous with respect to x,y
2. the function f in Lipschitz in the variable y.

The initial value problem

y/ = f(x,y),y(xo) =Y

has a unique solution if f(x,y) is differentiable with respect to y,
and |fy(z,y)| < L in the region I = {(z,y),a <z < b,c <y < d}.

m Example 1.1 Verify that the following initial value problem

/

V= ty).  y0)=1

2
has a unique solution. n
Solution.
fla,y) = 5(x+y)
fyla,y) = 3 (1.2)

f (zoy1) = f ()| < |fy(z,y) (v1 — 12)| = 5 |v1 — vol

this means that f(z,y) verifies the Lipschitz condition and it is a
polynomial of order one, thus it’s a continuous in x, y. Therefore, this
initial value problem has a unique solution. |

Second order differential equation: The second order dif-
ferential equation with two initial conditions can be converted
to two equations from the first order, for instance,

y// o CL‘yl o CL‘2y2 _ {E3

y(0) = 1,4'(0) =2



1.2 THE NUMERICAL SOLUTION FOR THE INITIAL
VALUE PROBLEM

using ¥’ = z, then, we can rewritten that equation in the
following system

y ==z
2 =xz +xy + 23
y(0) = 1,2(0) = 2

equivalent to the following form,
v\ _ z y(0) \ _ (1
2 ) T \zztaz+a23 )7\ 20) )\ 2

This remark could be generalized to n order differential equation with
n initial conditions in the form

any™ + an_1y"Y + - + agy = g()
y(m)(o) = y(()m)7m = 071727"' , o — 1

where, a,,a1,...,a, are functions of z,y only. The resulting system
will be n equations from the first order as

Y' = F(z,Y),Y(0) =Y,

1.2 The numerical solution for the initial value
problem

Using the different numerical method, we are able to find an approxi-
mate value for the function y(x) at the points x1, o, x3, ..., x, which
divided the interval [a, b] into equal partitions. During this course, we
will present the numerical methods for solving a system of first order
differential equation as well as the higher order system of Ordinary
Differential Equations(ODEs).

The known methods that is used to solve the ODEs could be classified
into two main type, namely

e One-step methods

e Multi-step methods
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In the one-step methods, the value of the function at a point is de-
termined using only it’s value at the previous point. On the other
hand, for the multi-step methods it is calculated using the value of
the function at many points that which are known from the previous
steps.

Some of those methods(one-step methods)that used to solve the first
order ODEs are:

e Picard method
e Taylor method

e Runge-Kutta method

1.3 Single-step methods or One-step methods

As its mentioned above, in those method the value of the functions is
estimated at a point using only its value at the previous point, thus
using only one value to estimate the value of the function at another
point.

1.3.1 Picard method

One of the one-step method that is used to solve the ODEs of first
order and this method depends on the integration of the function as
we will see later.

Let ¢ = f(x,y) with the initial condition is y(x¢) = yo and we need
to find the value of the function at xg + h i.e. y(xzo + h) such that

y/ = f(x,y), y({L’o) =%Yo (13)

integrating the above equation from zg to x, we have

[t [ s

Y =10 +/x f(z,y)da (1.4)



1.3 SINGLE-STEP METHODS OR ONE-STEP
METHODS

then, the first approximation y; for y can be obtained by substitut-
ing yo instead of y in the right hand side of the last equation, i.e.,

Y1 = Yo + /z f(ﬂfayo)d% (15)

the second approximation ¥, can be obtained also by substituting y;
instead of y in the right hand side of equation (1.4), i.e.,

Yo = yo + /x f(z,y1)dz, (1.6)

continuing with a similar way, then we cab obtained the following
repeated relations

s = (eo) + [ " f (@ (@), (L.7)

and this repeated relation can be stopped whenever the following con-
dition holds

[Yn+1 — yn| <, (1.8)

where, € is a small positive constant.

m Example 1.2 Using Picard method, find an approximate value of y
at £ = 0.2 if
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Solution.

s = (o) + [ " f (g (2))da
~ylan)+ [ (@)

xX
:1—i—/(az—yn)daj, n=0,1,2,...
Lo

T $2
yl(m):1+/ (x—Dde=1—2+ —
0

2
T 2 3
y2(1’):1+/ [a:—(l—x—l—x—)}dx:l—x—i-xz—x—
; 2 6
T 1’3 .’E3 .%'4
-1 [—1— 2——]d a2 -4
y3(z) +/0 r—(1-z+a 6) x Tt - =+ o
T 3 $4
y4(x):1+/0 [x—(l—x—FxQ—?—Fﬂ)}dx
2t 2P
-1 — 2_ T 4z 2
T T3 T T 10
3 .4 5 6
y5(x):1—:c+x2—x—+$——£+i

3 12 60 720

at £ = 0.2, we have
Yo = 1, y1 = 0.2, yo = 0.83867, ys = 0.83740,

ys = 0.83746,  y5 = 0.83746,

thus,
y(0.2) = 0.83746



1.3 SINGLE-STEP METHODS OR ONE-STEP
METHODS

m Example 1.3 Using Picard method, find the solution of the following
initial value problem

(Note that, the analytical solution is y(x) = ) n

Solution.

s = (e0) + [ foyn())da

T
= Yo +/ Yndx
ZTo

yl(x)zl—l—/ dr=1+=x
0

2

yg(a:):l—i-/ (1+x)dx:1+x+%
0

m Example 1.4 Using Picard method, find the solution of the following
initial value problem

then, find y(0.1),y(0.2), y(1)
(Note that, the analytical solution is y(z) = —In [1 — ﬁ]) "
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Solution.
xX
Yn+1 = y(z0) +/ f(@, yn(2))dz
xX o
=1 —|-/ relrdx
o
:0+/ xe¥rdz, n=20,1,2,...
0
T :E2
yi(z) = 0+/ zeldr = —
0 2
yo(z) =0 +/ [m(eT)}dx =ez2 —1
0
z2
ylz) =e=z —1
y(0.1) = 0.0050125
y(0.1) = 0.0202013

y(1) = 0.6487213

m Example 1.5 Using Picard method, find an approximate value for y
at £ =0.1,0.2,0.3 assuming that

dy
o + xy, y(0)



1.3 SINGLE-STEP METHODS OR ONE-STEP
METHODS

Solution. we use the repeated relations for the Picard which are

Yn+1 = Yo +/ f($7yn($))d$

y1(w) = yo + /m f(z,y0)dr =1+ /x(l + zyo)dzx

o
2

r x
:1+/ (1+17)d$:1+1'+?
0

Ya2(r) = yo + /w fz,y1)dx

=1 -l-/ (1+ zy;)dx
0

:1+/Oac [1+:c(1+:c+x22)}dx

2 23 2t

:1 — —_— E—
ot S+

y3(w) = yo + /w f(z,y2)dx

x
:1+/ (14 zy2)dx
0
x xQ 1.3 (L‘4
:1+/ L+a(ire+ T+ 5+ 5)|de
0 2 "3y

332 CC3 554 $5 356
~1 r T T
R T N TR

ya(w) = yo + /x f(z,y3)dx

=1 +/ (14 zy3)dx
0

x 1‘2 $3 334 :C5 :CG
—1 (14201 S+ T+ T+ +T)]a
+/O +x(+x+2+3+8+15—|—48)x

R A G A S AR
= €T _— _— _— —_— _— —_— —_—
2 "3 T8 1548 120 284

- First, in order to obtain the solution at z = 0.1, we put x = 0.1 in
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the above relations, then we have
y1 = 1.105, yo = 1.1053458, ys = 1.3551897, yg = 1.355192

- Similarly, in order to obtain the solution at x = 0.2, we put x = 0.2
in the above relations, then we have

yr =1.22,  y, = 1.2228667,  y3 = 1.2228804,  y4 = 1.2228895

thus, y(0.2) = 1.223
- Also, in order to obtain the solution at z = 0.3, we put z = 0.3 in
the above relations, then we have

y1 = 1.345, y2 = 1.35550125, y3 = 1.3551897, ya = 1.355192

thus, y(0.3) = 1.355 |

(Disadvantage of this method) Due to the integration that
exist in this method it is considered non practical method.
Also, it might be difficult to perform a programming code for
it.

1.3.2 Taylor serious method

This method depends in the derivatives of the function. Suppose that
y(z) is a solution for equation (1.1), then y(x) can be written using
Taylor expansion around the point x = xq as follows

(z — $0)2 " (x — x0)"

5 Yot Sy + R

y(x) =yo + (x — @0)y) + p

where,
(v — mo)" (n+1)(77)
(n+1)! ’

putting A = (x — z¢) then we can rewrite y(z) as

Rn+1 = ne (‘730’:13)

/ h? 1" h" (n)
y(x) = yo + hyy + oY T Yo+ B (1.9)



1.3 SINGLE-STEP METHODS OR ONE-STEP
METHODS

with

hn+1
(n+1)!
Now, in order to obtain the solution we have to determine the following
derivatives

y" (@), n e (x0,20 +h)

Rn+1 =

y'(20),y" (20), y" (o)

that can by performed as

y'(z) = fz,y) = f'(@,y)

fo(z,y) + fy(z, )y (1.10)
= felz,y) + fy(z, ) f

similarly, for all the other higher order derivatives. thus all the deriva-

tives is going to be a function of f(x,y) and the derivatives of f(z,y).

Now, from (1.10) into (1.9) we have

y(xo + h) yo+hf0+ (fx"‘fyf) (z0,90)

h3
?(f:m: + Qfxy + fyyf2 + fl‘fy + fy2f)(ff07y0) +..

and the error in this case takes the following form

(1.11)

ptly (nt1)(n)
(n+1)!

The following are the needed steps for performing the current method:

Error = , 0<n<h

e First: to obtain y(z1), we have to compute the following deriva-
tives; y'(x0), 4" (z0),y" (o), ... such that
-y is f(z,y) from the ODE,
- " can be obtained by by performing the derivative of vy’ with
respect to z,
-y"" can be obtained by by performing the derivative of y” with
respect to & and so on - This should be done each time with

substituting x with x¢ , thus we can write the following

2 3
///

h h
yl—y0+hyo+ yo+ TR

Doing so means that we have calculated y(z1) (x1 = o + h).

11
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e Second: to obtain y(z2), we have to compute the following deriva-
tives; y'(z1),y"(x1),y" (x1),.... Therefore, we can write the
following such that

2 3

h h
Y2 = y(wz)—y1+hy1+ ,y1+3, /1”+..-

where, xo =21+ h

e Third: to obtain y(z3), we have to compute the following deriva-
tives; ' (z2),y"(x2),y" (x2),.... Therefore, we can write the
following such that

2 3
"

. h h
vs = y(ws) = yo + hys + Srys + 598’ 4
where, x3 =22+ h

e Finally: we can easily repeat the above steps several times till we
obtain a value for y,, = y(z,,) at the pointsn = 0,1,2,3,...,z, =
xg + nh, and we have

/ h2 " h’3 n
Yn = Y(@n) = Y1+ M1+ St + Gr¥na oo

m Example 1.6 Using Taylor method to find the solution of the follow-
ing ODEs;

dy
— = — 0)=1 h=0.2
oy =y w0 =1
|
Solution. It’s easily to write
y=y(x) y(0) =1
M=ﬂ y)=z-y y'(0)= -1
=1- "(0) =2
y' y'(0) (1.12)

y'
Y

y" M’ Y (0) =2
ey



1.3 SINGLE-STEP METHODS OR ONE-STEP
METHODS

then, substituting from (1.12) in the following relations

h? h3
y1 = y(z1) =yo+hy6+§y6’+§y6”+---
leads to
0.2)2 0.2)3
y(0.2) = y1 =1+ (0.2)(~1) + <(2,))(2) 1 3,) (~2)
: ' 1.13
(0.2)4 5 (0.2)5 ) (1.13)
+ 1 (2) + = (=2)+ ...
thus, y(0.2) = y; = 0.83746 [ |

m Example 1.7 Find the solution of the following ODE

dy
I z+y, y(0)

then, find y(0.1),y(0.2). n
Solution.

y=ylx), Y@=z+y, y' =1+,

b " v v

(1.14)
y'(z)=y",  yU=y", Y=y ...

First: In order to calculate y(0.1), we plug in & = 0.1 in the right hand
side of relations (1.14), then

y(0)=2, Y 0)=0+2, ' (0)=1+2=3,

. | (1.15)
y'(0)=3,  y*(0) =3, y’(0) =3,...
thus,
2 3 4 5
y(r) = 1 = gorthy/ 0+ g/ (O)+ ooy O+ 2y O+ 5y (0) .,
h:xl—xoz().l—():().l
2 3 4 5

n=01) = 2400+ G @)+ ) O ) O )

y1 =y(0.1) = 2.2

13
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Second: in order to calculate y(0.2), we plug in x = 0.2 in the right
hand side of relations (1.14), then

y(0.1) =22,  4(0.1)=0.1+22,  5'(0.1)=1+23=3.3,

y"(0.1) =33,  ¢"(0.1) = 3.3, y“(0.1) =3.3,. ..
(1.16)
thus,
/ h2 " h3 " h4 v h5 (
y(x2) = y2 = y(er)+hy (21)+ 5y (@) +5ry7 (@) + 4y @)+ oy @)+
hzl‘Q—l‘l =02-0.1=0.1
(0.1)2 (0.1)3 (0.1)% (0.1)5
yo = y(0.2) = 2.2+(0.1)(2.3)+ o1 (3.3)+ 3 (3.3)+ 1 (3.3)+ = (3.3)
y2 = y(0.2) = 2.21551275
[ |
m Example 1.8 Using Taylor method, find the solution for the following
ODE J
Y 2 2
= = 0) =1.
k()
]
f(:E?y) :$2+y27 Zo = 07 Yo = 1>
y =y(), y(0) =1,
y = f(z,y) =2 +y° y(0)=1 (1.17)
y" =2z + 2yy/ y"(0) =2
y/// =924 ny” + 2<y/)2 y///(o) -8
then using
2
T —x
9(@) = o+ (& — a0}y (20) + TPy ) 1

we conclude that 3
y(z) = 1+x+x2+§x3



1.3 SINGLE-STEP METHODS OR ONE-STEP
METHODS

® (Disadvantage of this method) It is clear that this method
is non practical method due to the various differentiations that
one have to compute during the solution. There for we present

here some other methods that we can practically deal with.

1.3.3 Normal Euler method

This method is driven from Taylor method assuming that h << 1 in
the Taylor expansion. Assuming so leads to the possibility of taking
only three terms in the Taylor expansion, thus,

2
y(z) = y(vo+h) = y(ﬂfo)+hy/($o)+%y"(§), g <& <wo+h (1.18)

The third term in the above equation represents the error in the
method and it becomes very small whenever h is small enough, thus,

y" ()
2

Error = F = = O(h?) (1.19)

Equation (1.18) represents the solution at a point z = x¢ + h with
the given solution at x = xg i.e., y(zg) is given as an initial value.
Similarly, we can find the solution at © = xg + 2h and repeating this
steps we can find also the solution at * = x¢9 + (n — 1)h. Thus, the
normal Euler can take the following form;

Yn+l = Yn + hy% + O(hQ)

Also, since
y;L = f(xﬂJ yn)v

then, Euler formula can be rewritten as

2
_

Yn+1l = Yn + hf(xnvyn)7 E= 2 Yy (5)7 Ty < €< Ln+1 (1'20)
m Example 1.9 Find the solution of the following ODE
d
di’ =24y, y(0)=1,in the interval [0,0.1] taking h = 0.02.
T

15
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Solution. Using the repeated relations (1.20)
Ynt1 = Yn + W f (T, yn)
9(0.02) = y1 = yo + hf(z0,90) = 1+ (0.02)(0 + 1) = 1.02
y(0.04) = y2 = y1 + hf(x1,z1) = 1.02 4 (0.02)(0.02 + 1.02) = 1.0408
y(0.06) = y3 = ya+hf(z2, x2) = 1.0408+(0.02)(0.0441.0408) = 1.0624
y(0.08) = y4 = y3 + hf(xs3, x3) = 1.0048

y(0.1) = y5 = yg + hf (x4, 24) = 1.1081

The analytical solution for the ODE in the previous example
at x = 0.1 is 1.1103, hence the numerical error is

EF =1.1103 — 1.1081 = 0.0022

1.3.4 A modified Euler method

The modified Euler method is driven also from Taylor serious with an
extra term compare to the normal Euler method, i.e.,

2

h
Yn+1 = Yn + h’y’;]/ + ?yg (1-21)

Since, y/ = W (from the usual definition of the first derivative
of a function). Substituting in (1.21) for the value of y/!, we have

h2 / o
Yntl = Yn + hyprimen + ? <w>
1 1
=Yn + h(% + §ZJ;L+1 - 51/;1) (1.22)

h
=Yn + 5(% + Yni1)
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Hence, the final form of the modified Euler method is

MY + Yni1)

5 : (1.23)

Yn+l = Yn +
where, y; = f(nayn)7 y;H-l = f(xn—l-layn—l-l)

® Determining y;, , ;, that appears in the right hand side of equa-

tion (1.23), depends on the value of y,, 41, that is still unknown,

therefore the steps of for solving such case using the modiﬁed
Euler method are

e Determine y,+1, using the normal Euler method.

e Use the previous value to compute the value of y, | such
that

y;b+1 = f($n+1ayn+1)

e Substitute for the values of y,,y;,, ¥, in the right hand
side of equation (1.23) in order to obtain a value for ¥, 11
which is now obtained by the modified Euler method,
thus,this method is called Predictor Corrector method,
ie.,

ng) = 1Yo —+ hy(l) =Y + hf (x07y0)
c P
Ui =0+ 5o+ ) = w0+ 5 £ (@o,90) +  (w1.317))]

m Example 1.10 Find the numerical solution of the following ODEs

dy

- 0) =1
o =2 +y, y(0)

at x = 0.2, considering h = (.1, using the modified Euler method. =

Solution.

" =yo+hf (zo,50) =1+ (0.1)(0+1) = 1.1

yg(J) = Yo + g [f (z0,50) + f (”m’ygp))]

=1+ O—; {(04+1) + [(0.1)* + 1.1]} = 1.1055
y(0.1) = 1.1055
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) =y +nf (xh y@)
= 1.1055 + (0.1) [(0.1)* + 1.1055]

= 1.22605
h
ySC) =Y + 5 |:f (331,?/1) + f (:UQ)yéP))]
= 1.1055 + 02—1 {[(0.1)* + 1.1055] + [(0.2)* + 1.22605] }
= 1.224577

O = 1.224577

m Example 1.11 Using the modified Euler method, find the solution of
the following ODEs

dy
- _ 0) =1
ik A ()
at x = 0.04, considering h = 0.02. L]
Solution.
" = yo+ hf (x0,50) = 1+ (0.02)(0 + 1) = 1.02
c h P
yg ) =7Yo + 5 f(x()?y()) + f (xhyg )>]

=1+ % {(0+1) +[(0.02) 4+ 1.02]} = 1.0204

4(0.02) = 1.0204
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yép) =y +hf (:61, y@)

= 1.0204 + 0.02(0.02 + 1.0204) = 1.041208
= 1.041208

h [f (r1,91) + f <$2,yép)>}

2
= 1.0204 + & {1(0.02) + 1.0204] + [(0.04) + 1.041208]}

c
yé )=y1+

= 1.0416
y$9 = 1.0416

m Example 1.12 Use the modified Euler method to find the solution of
the following ODEs

Y =z+y, y(0) =2

for obtaining the value of y(0.2) using the step size h = 0.025. ]

Solution. First, obtaining y,1, which means y(0.2), using the mod-
ified Euler method. we apply the following repeated relations

Ynt1 = Yn + hf (wm yn)
y(0.025) = y1 = yo + hf (z0, Yo )
=2+ (0.025)[(0)(4)]
y(0.05) = y2 = y1 + hf (z1,
=24 (0.025)[(0)(4)
y(0.075) = y3 = yo + hf (z2
—24 (0.025)[(0)(4)

y(0.100) = y(0.125) = y(0.150) = y(0.175) = 4(0.200) = 2
Yn+1 = y(0.2) =
Yo = — (@ar1) (¥241) = —(0.2)(4) = —0.8

)
y1)
]

(1.24)
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Now, we use the relation of the modified Euler equation, that is

(vt
Yn+1l = Yn + w, Yn = y(0175) =2
4) = —0.700
Yni1 = y(0.2) = —0.7 4 200708 _ g 7187

<
S~
I
|
—~
=]
—_
~
Ot
SN—
—~

1.3.5 Runge-Kutta method

It’s one of the most important methods for solving the differential
equations, which can be driven using Taylor expansion and the order
of this method depends on how many terms are considered from the
Taylor expansion, thus we have the following types of the method

Runge-Kutta method of second order (RK2)

It is used to obtain the solution of a differential equation of the form

Y = Fa), ylwo) = . (1.25)

and it can be driven as follows; assume

Yn+l = Yn + aky + bka,
kl - hf(l"nﬁyn)? (126)
k2 = hf(a:n + ahvyn + Bkl),

where, a, b, o, 5 are constants that can be determined with the follow-

ing way;

-Using the Taylor expansion for eq. (1.25) at a point z,,, we have
Yn+1l = Yn + hf(xmyn) + af/(xmyn) + O(h )7 (127)

where,

dfn d
Pawm) =T = (ot 1, 9) = (ht gy
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Now, substituting in the above equation about the value of f/(x,,y,),
we have

2
Ynt1 = Yn + hf(Zn, Yn) +%(fz+fyf)n+0(h3)a (1.28)

the term ko which is used in RK2 can be rewritten in the following
form (using Taylor expansion for a two variable function)

ko = hf (mn + ah, Yn + /Bkl)
= hf (xna yn) + ahgfx (':Una yn) + Bhklfy (wn;yn)
= B (fo + alfy + Bkify), = h(fn+ahfe + Bhfyf), (since ki = hf)

Substituting in (1.25) for the value of ko, we have

Yn+l = Yn + ahf (l‘n, yn) +bh (f +ahfy + ﬁhfy)n )

which can be rewritten as,

Yn+1 = Yn + (@ +D)Rf (Tn, yn) + h? (abfy + ﬂbffy)n )

Thus,

1 1
a+ , Q,ﬂ 5

This equation has three relations in four variables, therefore the solu-
tion of is infinite number in which one can pick any value for one of
the variables to get the other three variables. Also, this equation can
be rewritten in the following form

ba—pB)=0,0#0 = a—-F=0 = a=0
Now,

e choose a = 3 = %, leads to @ = 0,b = 1, which is incorrect as
we should have (a # 0).

° Choosea:ﬁzl,leadstoa:b:%
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then substituting for the values of a, b, «, 3,then we achieve to our goal
ie.,
Un+1 = Yn + aky + bka, with
k1= hf(Tn,yn), (1.29)
k2 = hf(xn + Ckh,yn + 6k71)7

that is RK2.
m Example 1.13 Use RK2 method to find the solution of the following
ODEs

dy 2 2

LA 2) — —1

Fak A e
at x = 2.3 using the step size h = 0.1. ]
Solution.

flz,y) =2+ ¢

k1 + ko
2 )

Y1 = Yo +
ki1 = hf(xo,y0) = hf(2,—-1) =(0.1)(4+1) =0.5
ky = hf(zo+h,yo+k1) = hf(2+0.1,—-140.5) = hf(2.1,-0.5) = 0.466
1
yr=—1+4 5(0.5 +0.466) = —0.517

k1 + ko
2 )

Y2 =+

ki =hf (z1,91)
= hf (SL‘l,yl) == hfl == hf(21, —0517)

= (0.0)[(2.1) + (~0.517)] = 0.468,
ko =hf(xy+ h,y1 + k1)
= (0.1)[(2:2) + (~0.049)?] = 0.484
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1
y2 = —0.517 4 5(0.468 +0.484) = —0.041

k1 + ko
Yz = Y2 + 5

ki = hf(zo, ) = hfs = hf(2.2, —0.041)
= (0.1) [(2.2)2 + (—0.041)2] = 0.484,

ky = hf(2.2+ 0.1, —0.041 + 0.484) = hf(2.3,0.443)
= (0.1) [(2.3)2 + (0.443)2] = 0.548

1
y3 = —0.041 + 5(0.484 +0.548) = 0.475

|
m Example 1.14 Let
dy 2
A — =1
o = =4 y(0)
find y(0.1),y(0.2) using RK2. "

Solution.
fla,y) =2 —y

o = 0:?/0 =1= f(x()ay()) = _17

Now, the RK2 method is
ki = hf(zo,y0) = ()0.1(0 — 1) = 0.1

ko = hf(xo+h,yo+k1) = hf(0.1,0.9) = (0.1)((0.1)* —0.9) = —0.089

1 1

K= 5(1{:1 + ko) = 5(—0.1 +0.089) = —0.0945
y1 =y(0.1) =yo+ K =1—0.0945 = 0.9055

For computing y(0.2) we take (z1,y1) = (0.1,0.9055) instead of (zo, yo),
then we repeat the method again

ki = hf (z1,91)

= h(z? —y) = (0.1) [(0.1)2 - 0.905} — —0.08955,
ko = hf(xo+ h,yo+ k1)

— (0.1)[(0.2)? - 0.81595} — 0.077595
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K = (k1 + ko) = $(—0.08955 — 0.077595) = —0.0835725
y2 = y(0.2) = y1 + k = 0.9055 — 0.0835725 = 0.821975

Rung-Kutta of fourth order (RK4)

This method is considered one of the most popular method as its is
more accurate compare to the Rung-Kutta of second order method.
This ,method could be driven in a similar way to that of RK2 increas-
ing. It takes the following form

1
Yn+l = Yn + é(kl + 2ko + 2k3 + k4)7

where,

k1= hf(-%'n, yn);

k= hf(an + 5h, yn + 3k1),
k3 - hf(l'n + %h,yn + %kQ)a
ky = hf(xn + hyyn + k3)7

m Example 1.15 Use the RK4 in order to solve the following ODE

dy
A =1
o=y, y(0)

at £ = 0.1, using,h = 0.1. [
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Solution.

Fy = hf (2 9n) = hF(0,1) = 0.1(0+1) = 0.1
ko = hf (2n+ Shyn + —k
2 = n 9 y Yn 9 1

0.1 0.1
—hf (0+2,1+2>

= hf(0.05,1.05)

— 0.1(0.05 + 1.05) = 0.11
1 1
o= (0 + 3o+ ko)

0.1 (1.30)
=0.1 0.05+1.055 =0.11050
k4 = hf (xn + h>yn + k3)

=0.1£(0.1,1.11050) = 0.12105

1
Yn+1 =Yn + gk‘l + 2ko + 2ks + k4

1
y(01) = 1.0+ £(0.1) +0.22 +0.221 +0.1205

=1.11034

m Example 1.16 From the following ODE

dy 2
_— = — = ]_
=8 Y y(0)

find y(0.1), y(0.2), using RK4. "
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Solution.
k1= hf (zn,yn) = hf(0,1) = 0.1(0 = 1) = =0.1
by = hf (20 hoyo + ok
2= Ln 2 » YUn 9 1
= hf (0.05,0.98)
= 0.1(0.05% — 0.95) = 0.09475
ks = hf (o0 + Shoyn + ok
3= n 92 » Yn 2 2

= 0.1f(0.052, 0.952625) = —0.0950125
ks = hf (mn + hyyn + k3)

= 0.1£(0.12 — 0.0950125) = 0.0894987

1
K :Ekl + 2k1 + 2ko + k3

1
:6[—0.1 + 2 —0.09475

+2 —0.0950125 — 0.0894987]
= —0.0948372

y1 =y(0.1) =y, + K =1 —0.0948372 = 0.9051627.

Now, to compute y(0.2) we take (z1,y1) = (0.1,0.9051627) instead
of (zg,y0) and repeat the method to get the following
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ki = hf (z1,y1) = hf(0.1,0.9051627)

= 0.1 [0.1% — 0.9051627] = —0.0895162

hf (3:1 o+ > = hf(0.15,0.8604046)
[

0.1[0.15% — 0. 8604046] = —0.837904

hf a1+ ,y1+ >:hf(0.15,0.8632674)

0.1 [0.15% — 0.8632674] = —0.0840767
ks =hf x1+hy + ks = hf(0.2,0.8210859)

= 0.1 [0.2% — 0.8210859] = —0.0781085

1
= 6k1+2k1 + 2ko + k3

1
= 6[—0.0895162 + 2 —0.0837904

+2 — 0.0840767 — 0.0781085]
= —0.0838931

Y2 =9y(02) =y + K
= 0.9051627 — 0.0838931

= 0.08212695

m Example 1.17 Suppose we have the following ODE
dy
dx
find y(0.1), y(0.2), using RK2. "

:xQ_ya y(O) = 17
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Solution.
k1 = hf (zo,y0) = 0.1[0 — 1] = —0.1
ko = hf (w0 + h,yo + k1)

= hf0.1,0.9 =0.1[0.1> — 0.9]
= —0.089

1 1
K = ikl + ky = 5~ 0.1 4 0.089 = —0.0945

y1 =y(0.1) = yo + k = 1 — 0.0945 = 0.9055

Then, to compute y(0.2), we take (z1,y1) = (0.1,0.9055) instead of
(z0,y0) and repeat the method to get the following
ki = hf (z1,91) = hai —
= 0.1 [0.1%> — 0.905] = —0.08955
ke = hf (zo+ h,yo + k1)
— 1f0.2,0.81595 = 0.1[0.2% — 0.81595]
= —0.077595
K= %kl + ko = % — 0.08955 — 0.077595 = —0.0835725

y2 = y(0.2) = y1 + k = 0.9055 — 0.0835725 = 0.821975

m Example 1.18 Use RK2 to solve the following ODE

dy

A 0) =2
2y =Y r, y(0) =2,

at x = 0.2, using h = 0.1. L]
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Solution.
kl = hf (x07y0) = h’f(ov 2)

—0.2[2—0] =04

h k
ko = hf (m + 500 + 21> = hf(0.1,2.2)

=0.2[2.2 —0.1] = 0.42

2 2
=0.2[2.21 — 0.1] = 0.422

ko =hf x4 h,yo+ ks = hf(0.2,2.422)
=0.2[2.422 — 0.2] = 0.4644

h k
ks =hf <x0 + =, yo+ 2) = hf(0.1,2.21)

1
y(02) =Y+ Ekl + 2ko + 2ks + k4

=2+ [0.4 + 20.42 + 20.422 + 0.4644]
= 2.4247266

Exercise 1.1 Use RK4 to find the values of y(0.1), y(0.2), y(0.3) of the

following ODE

dy 2
_ = = 1
o =y +ys y(0) =1,






Chapter 2

Numerical solution for
systems of ordinary
differential equation

2.1 Solving differential systems of first order

The general form of system of ordinary differential equation from the
first order is

yll :fl (xvylay%"' 7yn)
yé :f2 (x>ylay27"' 72/71,)

Y = [ (T, 91,92, 1 Yn)
with,

yl(wo) = Oél,yz(l‘o) = Q2,.. -,yn(iﬂo) = Qnp )

All the methods mentioned in the previous chapter for solving an
equation from the initial value problem type can be used to solve
system of ordinary differential equation as in (2.1). We are going to
show how those methods can be extended to solve a system of ODEs.
During our discussion, we are going to focus our attention to a system

of two equations and in order to make the picture more clear we will
31
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use alternative notations as;

yl = f(:c,y, Z)7Z/ = (Z)(ﬂ?,y,Z)

be a system formed of two equations with the following two initial
conditions

y(xo) = yo, 2(x0) = 20

2.1.1 Picard method

Suppose
Y = f(z,y,2)
r_
¥ =ox,9,2) . (2.2)
with the initial condition

y(z0) = yo, 2(z0) = 20
the first approximation y1, z; can be obtained in a similar way to that
of the one differential equation, i.e.,

y1=yo+ [, f(x,0,20)dax
21 = 20 + f;; ¢($7y0720) dCC,

the second approximation is

y2 =yo + [, f(2,y1,21) dw
2 =20+ [ ¢(x,y1,21)da

and, so on

m Example 2.1 Use Picard method to find an approximate vale for y, z

to solve p p
@ _ ., & _ 3
gy =5 =Wt 2)
with the initial conditions y(0) = 1,2(0) = 1. .

Solution. Since,

dz :f(x,y,z) =z

% = ¢(‘Tayaz) = $3(y + Z)
Yy=1 + fgj; f(l’,y,Z)dl’
z=2z9+ ffo o(x,y, z)dx
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ORDER

The first approximation is

yi=vo+ [, f(x,90,20)de =1+ [{(1/2)dz =1+3%

21—z0+f$ (z, Y0, 20 dx—2+f ( )dx

P
3
2"’93

the second approximation is

x x 1 31,4
y2=y0+/ f(Iaylvzl)dle"’_/ <+>d$
20 0 2 8

1 v r 1 3zt
Z2 =20+ ¢(w,y1,Z1)dx—+/ P14+ +-+5 ) da
2 Jo 2 2 8

1 3z 2P 373:8

and, the third approximation is

* T /1 3t 25 328
= dr =1 — - R —\d
Ys yo+/ f(x,y2,22) dx +/O <2+ <t 64> T

n 3t n xP n 38 n Tx? + x12
2 8 10 64 360 256

therefore, at x = 0.1 we have

y1 = 1.05, y2 = 1.500008, y3 = 1.500008
z1 = 0.5000375, zg = 0.5000385, z3 = 0.5000385

33
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2.1.2 Taylor method

Let y(z),z(z) be the solution of the system (2.1), then by Taylor
expansion of y(z), z(z) around the point = = xg, we have

y1 = yo + hyh + Byl + Byl 4
(2.3)
=20+ hah+ B+ By
in order to obtain the solution, we have to determine the values of
Yo, Y6, Yo s - - - » also the values of z{, z(/, z(’, ..., which can be done by
differentiating vy = f(z,y,2),2 = ¢(x,y,z) with respect to x, then
substituting in (2.3), we have yi, 21 in the first step.
Similarly, in the second step we have

2 3
yo =y + hyl + Ly + By +
(2.4)
zQ:zl—i—hzi—i-%?zf—i—g—?zi”—i----
where, y1, 21 and all its derivatives we obtained n the previous step.
Repeating this, we will be able to obtain the values for the other steps

m Example 2.2 Using Taylor method, find the solution for

%:x—l—z,y(O):Q
g—;:x—yQ, 2(0) =1

at the point z = 0.2 with A = 0.1. L]
Solution. Since,

y=v+z2 y(0)=2

Z/::B_y27 Z(O):l

we can evaluate the following derivatives

y=x+z2

y// _ 1 + Z/

y/// _ Z//

2=z -y

2 =1-2yy

Z/// _ 2 [yy// _|_ y/Q]
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then, we use Taylor series to obtain y1, 21 as
y1 = yo + hyh + e + bl + -
21 :zo+hz6+g—?z8+g—?z”’+---
at
a:():(),yo:2, Zozl,h:().l
we get,
Yo = 7o + 20 = 1, 2p =10 — Yy = —4
=142 =1-4=-3, 2 =1-2yy)=1-2(2)(1) = -3
Y =z = -3, 2 = =2 [yoyy +y¢] = —2[2(-3)+1%] =10
substituting with those values in the Taylor series we get
0.1)2 0.1)3
y1 =24+ (0.1)(1) + ( 2‘) (—3)+ ( 3') (=3)+---
=2+0.1-0.015—-0.0005 = 2.0845
0.1)2 0.1)3
z1=1+(0.1)(—4) + (2')(—3) + (3')(10) + -

=1-10.4—0.015+ 0.001667 = 0.5867
y(0.1) = 2.0845
2(0.1) = 0.5867

Similarly, for obtaining y(0.2), 2(0.2), we can write

2 3
Yo = Y1+ hyy + Sruf + Gl £
29 =21+ hef + L2+ B 4
at,
Tr1 = 0.1, Y1 = 20845, Z1 = 0.5867

we get,

Yy = z1 + 21 = 0.06867, 2 = x — Yy} = —4.2451403
Yl =142 = —3.2451403, 2/ =1 —2y1y] = —1.8628523

"

Yy = 2 = —1.8628523, 2" = =2 [yiy! + y?] = 12.585876
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thus,
(0.1)2
yo = 2.0845 + (0.1)(0.6867) + 51 (—3.2451403)
0.1)3
+ (3')(—1.8628523) -
= 2.1366338
(0.1)2

79 = 0.5867 + (0.1)(—4.2451403) + 51 (—1.8628523)

0.1)3
+ (?)')(12.585876) 4

= 0.1549693

2.1.3 Runge-kutta method

Let,
d
ﬁ = fl(xay7 2)7

with the initial conditions

dz
% - f2($7y7 Z)

y(zo0) = yo, 2(z0) = 20

The solution of the previous system using RK2, takes the following

form .
Yn+l = Yn + 2 (kl + kQ)
Zn+1 = Zn + % (ll + lg)
where,
kl :hfl(xayaz)a ll :h’fZ(xvva)

kgzhfl(x+h,y+k1,z+l1), lgzhfg(x—l—h,y—i-kl,z—i-ll)

The solution of the previous system using RK4, takes the following

form
Ynt1 = Yn + = (k1 + 2ka + 2k3 + ks)

Zntl = 2n + g (Ih + 2lg + 213 + 1y)
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where,

k1 = hf(xvyaz)a l= hfg(l',y, Z)

ko = hfy (m+g,y+%,z+%)

k4:hf1(x+h,y+k3,z+lg)

ly = hfo (x—i—h,y—i—kg,z—i—lg)
m Example 2.3 Using Rung-Kutta 4th find the solution for

Y =yzta,y0) =1

gi =zz+vy, 2(0)=-1

and then find y(0.2), 2(0.2) "

Solution. since
Ny, z)=yz+a, folz,y,z) =324y
o =0,90=1,20 = —1
B = Bfi (20,50, 20) = (01)[(1)(~1) + 0] = ~0.1

li = hfa (x0,90,20) = (0.-[(0)(=1) + 1] = 0.1
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h k l
ky = hfi (330 + 50 b0 + 51 20+ 21> = hf1(0.05,0.95, —0.95)

= (0.1)[(0.95)(—0.95) + 0.05] = —0.08525

h k l
Iy = hfs <:c0 + 500 + 51 20 + 21> = N f»(0.05,0.95, —0.95)

= (0.1)[(0.05)(—0.95) + 0.95] = 0.09025

- A
ks = hfi (900-1- 27y0+ 5 , 20 + 2)

= hf1(0.05,0.957375, —0.954875)
= (0.1)[(0.957375)(—0.954875) + 0.05] = —0.0864173

- h ke b
I3 ="hfs <96'0+ 5 Y0t ozt 2)

=hf2(0.05,0.957375, —0.954875)
=(0.1)[(0.05)(—0.954875) + 0.957375] = —0.0909631
ks =hfi(z+hy+ks z+13)

= hf1(0.1,0.9135827, —0.9090369)

— (0.1)[(0.9135827)(—0.9090369) + 0.1]

= —0.073048
la =hfo(x+h,y+ks z+13)

= hf2(0.1,0.9135827, —0.9090369)

— (0.1)[(0.1)(—0.9090369) + 0.9135827]

= 0.822679

1
k::g(k1+2k2+2k3+k4)

—_

= (0.1 +2(~0.08525) + 2(~0.0864173) — 0.073048]

= —0.0860637
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l=— (L + 2+ 23+ 1)

[ I

1
= 5[0.1+2(0.09025) + 2(0.0909631) — 0.0822679]

= —0.0907823
y1 =y(0.1) = yo + k=1 —0.0860637 = 0.9139363
21 =2(0.1) = 20 + 1 = —1+0.0907823 = —0.9092176

21 = 0.1,y, = 0.9139363, 2, — —0.9092176
and, to get y(0.2), 2(0.2), we perform the following

k1= hfi(x1,y1,21) = h(y121 + 1) = —0.0730966

= hfg (xl,yl, Zl) =h (xlzl + yl) = —0.08230145

- h kL
ko =hfi (131 tomt gt 2)
= hf1(0.15,0.877388, —0.8680669)

= (0.1)[(0.877388)(—0.8680669) + 0.15] = —0.0611631

B h kL
la = hfa (961-1- 2,:1/1-1- 5 21+ 2)

= hf»(0.15,0.877388, —0.8680669)

= (0.1)[(0.15)(—0.8680669) + 0.877388] = 0.0747177
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- h ke D
k3 = hfi (1131 + 5y + 504 + 2)

= hf1(0.15,0.8833547, —0.8718587)

= (0.1)[(0.8833547)(—0.8718587) + 0.15] = —0.062016

I3 ="hfs (1:1 + g,y1 + %,21 + l22>
= hf2(0.15,0.8833547, —0.8718587)
— (0.1)[(0.15)(—0.8718587) + 0.8833547] = 0.0750851
ks =hfi(x+h,y+ ks, z+13)
= hf1(0.2,0.8519203, —0.8341324)
— (0.1)](0.8519203)(—0.8341324) + 0.2]
= —0.0510614
ly="hfs(x+hy+ks,z+13)
— hfs(0.2,0.8519203, —0.8341324)

= (0.1)[(0.2)(—0.8341324) + 0.8519203]

= 0.0685093

_1
G

k (k1 + 2ko + 2k3 + k4)

1
= 6[—0.0730966 +2(—0.0611631)

+2(—0.062016) — 0.0510614]

= —0.0617527
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l=— (L +2lp+2l3+ 1)

D=

1
= [0.08230145 + 2(—0.0747177)

+2(0.0750851) + 0.0685093]
= 0.0750693

ya = y(0.2) = y1 + k = 0.9139363 — 0.0617527
= 0.8521836

20 = 2(0.2) = 21 + [ = —0.9092176 + 0.0750693

= —0.8341482

2.2 Ordinary differential equation of higher or-
der

The generalized form of ordinary differential equation of n order is

y™ = flz,y, v 0"y (2.5)

and the initial values are

y(zo) = ao, ¥ (x0) = a1,y (x0) = a2, ...,y V(x0) = 1.

This equation could be solved after converting it into a system of
ordinary differential equation of first order that had been discussed
before.

In order to convert equation (2.5) into a system of ordinary differential
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equation of first order, we let

=Y,
y2 =y
o
Y3 =Y (2.6)
yn =y,

differentiating this system, we have

yi = y/ = Y2,
Yo =9" =us3
r o
Y3 =Y =Ya (2.7)

y;l = y(n) = f(x7y1>y27y37y41 .. '7yn)>

This means that high order differential equation has been converted
into a system of first order. Here, it will be enough to solve a second
order differential equation using the previous mentioned methods.

2.2.1 Picard method for solving a second order differ-
ential equation

Consider the second order ordinary differential equation
y' = f(z,y,9) (2.8)
with the initial conditions
y(z0) = yo = a0,y (x0) = a1

we write this equation in a form of system of first order which can be
done by letting

y =z, 2=y = f(z,y,2)
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m Example 2.4 Using Picard method, find the solution of the following
second order differential equation

y' +22y +y=0
y(0) = 0.5, '(0) =0.1

at x = 0.1. -

Solution. let

thus, eq. (2.9) reads

dz dz
@+2xz+y—0 :>%——(2xz+y)

This means that eq. (2.9) can be rewritten in the follow system form

Yy ==z
V4

"= —(2z2 +y)
with the following initial conditions
y(0) =yo = 0.5,2(0) = 20 = 0.1

let

/

Yy :f(xvyaz) =%, z’:qb(x,y,z) :*(21‘Z+y)

Using Picard method, we get

y="Yo+ [, flz,y,2)dx
z=z20+ [, oy, 2)dx
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The first approximation reads

X
Y1 =y0+/ [ (x, 90, 20) dx
xo

:0.5+/ zodx:O.5+/ (0.1)dz

0 zo

= 0.5+ (0.1)z

xT
Z =Zo+/ ¢ (x, 90, 20) dx
xo

=0.1- / (2x20 + yo) dz = 0.1 — / (0.2x 4 0.5)dx

zo zo

= 0.1 - (0.5)z — (0.1)z>

the second approximation is

xT
Yo =y0+/ f(z,y1,21)de
xo

= 0.5+ /z zidz = 0.5 + /x (0.1 — (0.5)z — (0.1)2?) dz
(0.5)22  (0.1)a3

=0. 1)z — -
0.5+ (0.1)z . ;

X
29 = 2 +/ ¢ (x,y1,21) dz
zo

=0.1- / (2zz1 +y1) do

0

=0.1- /x [(22 (0.1 = 0.5z — 0.12%) + (0.5 + 0.12)] da
(0.3)x2  (2.5)z3  (0.2)z*

=0.1—(0.5)z — -
0.1— (0.5)z 5 T
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and, the third approximation is
xr
Y3 = Yo +/ f (%, y2, 22) dz
T

@ z 0.3 2.5 0.1
=05+ / 2odz = 0.5 +/ [0.1 — 050+ —g? — 258 4 Tt de
e} o 6 4

2
(0.5)x2  (0.1)z3 2  (0.1)a"

=0. 1)z — — —
0.5+ (0.1)x 5 3 +12+ 10

T
23 = 2p +/ ¢ (x,y2, 22) do
o

:O.l—/ (2z29 + y2) dx

0
(0.3)2%  (2.5)z%  (0.2)z*  22°  (0.1)a®
=0.1-(0.5)z — - At
01— (0:5)2 == 6 4 15 6

Now, at x = 0.1, we have
y1 = 0.51, yo = 0.50746667, y3 = 0.50745933,
Thus, y(0.1) = 0.5075. |

2.2.2 Taylor method

Suppose we have the following second order differential equation
y' = f(@,y.9)
with the initial conditions
y(z0) = yo = a0,y (x0) = a1

this equation can be converted into

2,

/
Yy
z’:f(w,y,z) :>y”:z/:f(x7yvz)

with the initial conditions

y(z0) = Yo,y (x0) = 20
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Now, using Taylor expansion for the last two equation, we have

B2 _im | h3 _m

21 = 20 + hag + G720 + Frag + -

2
i zyo+hy6+%2y6’+ 3,y6”+.--
:yo—&—hzo—i—%zé—i— 20+
where, 2, 2, 2(' can be obtained be differentiating the second equa-
tion of the system.
With a similar way, we can get the second approximation of ys, 2o as

h2 1 | k3 _m
?Zl‘i‘ 3,21 + -

"

2
y2=y1+hyit%yi’+ LT/
=y +ha + B+ B

z9 =21+ hz{ +

where, y1, 21 are know at this stage from the previous iterations. Fi-
nally, using the same manner, we can get approximate values for the
other intervals.

m Example 2.5 Using Taylor expansion at x = 0.1,0.2, find the solu-
tion of the following second order differential equation

o /N2 2 _
Y f%”*y 0 (2.10)

at x = 0.1. -

Solution. Putting
y/ == y// — Z/

Therefore, the differential equation takes the following form

/
=z
{020, (2.11)

with the initial conditions

(2.12)
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Using Taylor expansion

h? h3
21 :zo—l—hz(')—kazg—{—?zg'—k---
2 3 4
"

h h h* .
y1:y0+hy6+§yg+§yo T R

from the first equation, we have
2=y y'=z
2= 2% 4 2wz — 291/, Yy =z

/
zZ =Xz

=222 + 2 |aP2 4@ () 4 22|
-2 [yy” + (y’ﬂ : y=2"
thus,
2 = oz — Y3 = (0)(0)* — (1) = -1
2l = 22 + 2w0207) — 2yovlh
= (0)* +2(0)(0)(=1) — 2(1)(0) = 0
2 = 220% + 2 0702 + w0 ()" + 20%]
—2 [yoyé’ + (yé)g]
= 2(0)(=1) + 2 [(0)(0)(=1) + (0)(=1)* + (0)(~1)]
—2[(1)(~1) +(0)?] =2

substituting into the two equations of the system, we get

21 =04 (0.1)(=1) + '2! (0) + é! (2) +
= —0.0997
2 3 4
p=00) =1+ 00 + &)+ 0y B0y

= 0.9950083 ~ 0.995
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2 B3 4
y2 = y(0-2) = yi + hyy + Sron + 5ol e+
h2 h3 ht
=y1+ha+ 5 1+ 3 =2 + 7 1” + -
thus,

y1 = 0.995, 2 = —0.0997

2) =128 — y3 = (0.1)(—0.0997) — (0.995)>
= —0.9890309

2 =22 4 2w 212) — 2y1y) = —0.1687416

then,
0.1 0.1)2

Yo = 0.995 + (1)( 0.0997) + (0.1) (—0.9890309)

(0.1)3
+ 3 (—0.1687416) + - - - = 0.9801129 ~ 0.9801

h h? h3
zZo=12z1+ 21-|- £/+3' 24
1 1)2
= —0.0997 + %(—0.0997) + (02,) (—0.9890309)

0.1)3
+ ( 3,) (—0.1687416) = —0.1145871

2.2.3 Runge-Kutta

(2.13)

Suppose we have the following second order differential equation

y' = f(z,y,9)
with the initial conditions
y(xo) = yo = v,y (w0) = 1

let

y,:Z:>y,/:Z,



2.2 ORDINARY DIFFERENTIAL EQUATION OF
HIGHER ORDER

this equation now is converted into two equations from the first order
as

y = f (.CL’ Y,z )
y fg(l' Y,z )
y(z ) = 0, 2(z0) = 20

that can be solved numerically using Rung-Kutta method.

m Example 2.6 Using Runge-Kutta of fourth order method (RK4), find
the solution of the following second order differential equation

y'=ay —y
y(0) =3, ¥'(0) =0 (214)

at ¢ =0.1. [
Solution. Suppose

Y =z= fi(z,y,2)
-4 =Tz -y = f2(x,y,z)
y(0) =3,2(0) =0

here,
20 =0,90=3,20=0
Using RK4
k1 = hf1 (z0,v0,20) = h(20) = (0.1)(0) =0

li = hf2 (w0, Y0, 20) = h (z020 — Yo)
— (0.1)[(0)(0) — 3] = —0.3

h l
ko = hfi <x 520 + , 20 + 21) = hf1(0.05,3,—0.15)
(0.1)(—0.15) = —0.015
h A
lo="hfa|xo+ 500 + 0t )= hf2(0.05,3,—0.15)

= (0.1)[(0.05)(—0.15) — 3] = 0.030075

49
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h ko lo
ks = hfi <$0+2,yo+ 5 , 20 + 2>
= hf1(0.05,2.9925, —0.150375)
— (0.1)(—0.150375) = —0.0150375

2
= hf2(0.05,2.9925, —0.150375)
= (0.1)[(0.05)(—0.150375) — 2.9925] = —0.03000018
ks=hfi(x+hy+ks, z+13)
= hf1(0.1,2.9849624, —0.3000018)
— (0.1)(—0.3000018) = —0.03000018
la="hfo(x+h,y+ ks, z+13)
= hf2(0.1,2.9849624, —0.3000018)
= (0.1)[(0.1)(—0.3000018) — 2.9849624]
= —0.3014962

h ko [
I3 ="hfs <CE0+2,Z/0+ 20 + 2>

(k’l + 2ko + 2k3 + k4)

Ob\r—l

= 6[0 +2(—0.015) + 2(—0.0150375) — 0.03000018]

= —0.0150125

l= (l1 + 215 + 213 + l4)

>—*Cb\»—l

= 5[-03+2(~0.30075) + 2(~0.3000018) — 0.3014962]

= —0.3004999
y1 =y(0.1) = yo + k =3 — 0.0150125 = 2.9849875
= 2(0.1) = 29 + 1 = 0 — 0.3004999 = —0.3004999



Chapter 3

Multi-step methods

3.1 Introduction

In the previous chapters, we have studied the one-step methods which
require the information of the solution at only one point, say; = =
xp, to obtain the value of the solution at x = x,4+1. On the other
hand, the multi-step methods require the information of the solution
at many points to obtain the final solution and those methods need the
computation of y(z),y'(z) at the points xg, z1, 2, ..., x,. Moreover,
they depend on the integration of the differential equation.

3.2 Adam’s Bashforth method

This method is used to solve the differential equation of the following
form

y =f@y), ylx)=w (3.1)
by integrating the two sides of the above equation from z, to x,41,
we have
Tn+1 Tn+1
/ dy = / fz,y)dx
Tn Tn
or,

Tn+1
Yn+l = Yn + / f(ac,y)d:):
o 51
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in order to perform the integration of the right hand side of the above
equation, we approximate the function f(z,y) in the form of a poly-
nomial of second order using the Newton backward difference form,
ie.,

q+1)

2

Tn+1 (
Yn+1 :yn+/ [fn'f‘qvfn

N q(g+1)(g+2)

3l Vif,+ ... |dz

using the following change of variables

rT=x,=>q=0,

T =Tpy1 = q=1,(since zpy1 —xy = h)

then the previous integration reads

1
Q—i-l
Ynt1 =Yn +h 0 [fn+Qan ( )V2fn
+1 + 2
Q((];.(Q)V?’fwr...}dq
3 2
q #/3) + (¢?/2 1
por = ot hfafy+ Svg, + G @ g 1!
from which, we get
1 5 o
yn+1—yn+h[fn+§an+ﬁv fn]

then, substituting for V f,,, V2 f,, we have

vfn = fn - fnfl

Van = fon—2fn-1+ fn-2

Yt = Yo+ [ fo 5 (= fam1) + 5 (Fa = 2fa1 + fao2)]
Yn+1 = Yn + % (23fn —16fpn—1+5fn—2),n>2

this equation represents the Adam’s Bashforth method for solving a
differential equation of first order at a certain point.



3.2 ADAM’S BASHFORTH METHOD 53

m Example 3.1 Using Adam’s Bashforth method, find the solution of
the following differential equation

v =9 y(0)=1, h=0.1 (3.2)

then, find y(0.3). "

Solution. The Adam’s Bashforth method of order three is

h
Yn+l = Yn T+ E(QBfn - 16fn—1 + 5fn—2)7 n>2

this means that we need to know the value of the function at three
constituting points, one of those needed values can be obtained from
the initial condition while the other two values can be computed using
one of the one-step methods.

In this example, we choose the Taylor method as a one-step method,
ie.,

/ h? " h? "
yn-l-l:yn"i_hyn_'_gyn—’_?yn T+

where,

/

Yn =~V
Yn = —2ynYn, = —2yn (—va) = 2y
Y = 6yyl, = 6y2 (—y2) = —6y}
it = o+ 0 (—y2) + B (203) + B (—6yl) + -
y1 = yo — hyg + P2y — hy5
=1-(0.1)(1)2+ (0.1)2(1)3 — (0.1)3(1)* = 0.909
Yo = —yi = i = —(0.909)* = —0.826281
o fi = —0.826281
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Y2 = y1 — hyt + W2y — b3y
= 0.909 — (0.1)(0.909)* + (0.1)%(0.909)* — (0.1)*(0.909)*
= 0.833200055

Sy = —ys = yh = —(0.833200055)>
= —0.69422233

~.fo = —0.69422233

Now, using Adam’s Bashforth method, we have

0.1
=yt 5 (23f2 — 16 f1 + 5f0)

0.1
= 0.83300054 + ' [23(~0.69422233)
— 16(—0.826281) + 5(—1)] = 0.7686449074

3.3 Adam’s Maulton method

This method is one of the multi-step method and its difference com-
pare to the Adam’s Bashforth method is that it is an implicit method
i.e., the expected method is corrected in the same step before moving
to the next step.

Consider the following differential equation

y = flz,y),  ylxo) =wo

Then, integrating the above equation from z, to z,41 leads to

Tn+t+1
Yn+1l = Yn + / f($7y)d$
Tn

and, in order to integrate the right hand side of that equation, we ap-
proximate the function f(x,y) as a polynomial using Newton formula
of backward interpolation.

q(qg+1)

2' van—&—l

Tn+1
Yn+l = Yn + / |:fn+1 + qun+1 +
In

1 2
+—Q(Q+ 3)|(Q+ )V3fn+1—i—... da
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Now, using the following relation

T = Zp+1 + qh = dx = hdq
T=xp=>q=—1
T =Tpy1 = q=0,(since xpy1 —xy = h)

we get,

( 1)

Yntl = Yn + h/ [fn+1 +qV foi1 + =V fria

n q(¢+1)(g +2)

Performing the previous integration, we have

s (¢°/3) + (4/2)

qfn+1+ EvfnJrl + 51

0
Yntl =Yn +h V2fn+1] '
—1

Substituting the valued of V f,, 41, V2 fai1

Vi1 = fns1 — In
v2fn+1 = fn+1 - 2fn + fnfl

we get,

Yntl = Yn + h/|:fn+1 - %(fn—&—l — fn) — %(fn—i—l —2fn + fn—l)]

which concludes the following formula

h
Yn+l = Yn T+ ﬁ |:5fn+1 + 8fn - fn—l , n>1 (33)

that is the Adam’s Maulton method.

m Example 3.2 Using Adam’s Maulton method, find y(0.4) for the
following differential equation

v =z+vy, y(0)=1, h=0.1 (3.4)

95
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Solution. In order to determine y(0.4), using Adam’s Maulton method,
by eq. (3.3)

h
y4=y3+ﬁ[5f4+8f3—f2

and, to determine f4, it is required to use an explicit method; let’s
say Adam’s Bashforth method i.e.,

h
Y4 = Y3 + 5(23]% —16f2 + 5f1)

also,
h
Ys = yo + 5(23f2 —16f1 + 5fo)

the question now is to obtain f; and fs, that can be obtained with
the help of one-step method, for instance, RK4

y1 = yo + g (k1 + 2k + 2k3 + ka)

k1 = hf(zo,y0) = hlzo + yo] = (0.1)(1) = 0.1

ko = hf (xo + oy + %1) = (0.1)£(0.05,1.05)
= (0.1)[0.05 + 1.05] = 0.11

ks = hf (xo +h o+ %2) — hf(0.05,1.055)
= (0.1)[0.05 + 1.055] = 0.11050

ki=hf (l‘() + h,yo + k?g) = hf(O.l, 1.1105)
= (0.1)[0.1 + 1.1105] = 0.12105

thus,

1
Y1 =Yo + 6 (kl + 2ko + 2k3 + k4)

1
=10+ 6[0'1 +0.22 4+ 0.221 + 0.12105]
=1.11034

Similarly, we can use RK4 again to obtain y, = 1.2428

Yy =flz,y)=z+y
fi=a1+y1 =0.1+1.1034
—1.21034
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substituting, fi, fo, we obtain the value of ys3

h
Ys = Y2 + E (23f2 —16f1 + 5f0)
0.1
= 1.2428 + E[23(1.4428) — 16(1.21034) + 5(1)]
= 1.399624667
f3 = x3 4+ y3 = 0.3 + 1.399624667
= 1.699625

then, substituting for f3,y3 we have

h
yz(lp) =yt 5 (23f3 —16f2 +5/1)

0.1
= 1.30062447 + - [23(1.699635) — 16(1.4428) + 5(1.21034)]
= 1.583443599

fo=2a+ 7 = 0.4+ 1.583443899

= 1.98344
then, we have

0.1
i@ = 1.399624667 + < [5(1.98344) + 8(1.699625) — 1.4425]
— 1.58385045

We can obtain the value of y3, using RK4 instead of using
Adam’s Bashforth method.

3.4 Milne’s method

One of the multi-step method and it is different from the previous
methods in the following issues; (1) The expected value at a certain
step is corrected before moving to the next step and, (2) It’s required

o7
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to know the values of the function f(x,y) at four constitutive points
i.e., we need to know y at xn, Tn_1, Tn_2, Tn_3 to evaluate y at x,41.
Consider the following differential equation

y/ = f(xa y)v y($0) = Yo (35)

integrating this equation from x,_3 to x,41, we get

Tpn41 Tn+1
/ dy = / fla,y)da
Tn—3 Tn—3

As in Adam’s method, we approximate f(z,y) by a polynomial of
second order using Newton formula for backward interpolation, then
we can write,

Tn+1 + 1
Yn+1l — Yn-3 = / (fn+qvfn+ q(q2' )Van+E)
In—3 °

where,

q(¢+1)(g+2)

DD, mns <€ <ann

E =

using the following relation

T = Zp+1 + qgh = dx = hdq
T=Tp_3=>qg=—3
T =Zpy1 = q=1,(since r,41 — x, = h)

we get,

q(qg+1)

1
i =vna+ [ | avi,+ 1

v2fn+1 + E:| dq
performing the integration for the variable ¢, we get
2
Yokt = Yn-s + 4h(fo = Vfu + V2, + O(R)

Substitution for the vales of V£, V2f,, we have

4h
Ynt+l = Yn—3 + 3 <2fn — fo—1+ 2fn—2> + O(h°)
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Note that, the value of y,,41 obtained from the above equation is called
the predicted vale which denoted by yg‘:)l and in order to correct or
enhance this value, we may use Simpson rule for integration. Integrate
(3.5) from x,,—1 to x,41 and change the limits of the integration as

done before, we have

1
+1
yn+1=yn—1+h/ [fn+qun+(]((‘72')A2fn+..-]dq

substituting for Af, and A%f,, we have

h
Yntl = Yn—1 + 3 (fnfl +4fn + fn+1) + O(h®)

which is called the corrected value and is denoted by y,fl(_’;)l.

For the purpose of applying the above method, it’s required
to know four values of the function and in case of they are not
known, we may use any method of the one-step methods.

m Example 3.3 let
dy 1

dr x4y’
y(0) = 2, 5(0.2) = 2.0933, y(0.4) = 2.1755, y(0.6) = 2.2493

find y(0.8) using Milne’s method. "
Solution.
P 4h
yy(H_)l = Yn—3 T ? (21/;1 - y;z—l + 2yfn—2)
since,

o = 0, Il = 0.2, xr3 = 0.6, h = 0.2,
Yo = 2, y1 = 2.0933, yo = 2.1755, y3 = 2.2493

Now, we have

P 4h
v ):yo+§(2yé—yé+2yi)
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and,
o1 ! = 0.4360528
N T 02420933
1 1
- - = (.3882741
Y2 st uys 04421755
A S ! = 0.3509633
B s tus  0.6+22493
thus,
4(0.2
g =2+ (02) (2(0.3509633) — (0.3882741) + 2(0.4360528))
= 2.3162022
Now, for the corrected values, we have
o h
y7(z+)1 =Yn-1+ 3 (?J;z—l + 4y, + Z/;L+1)
for the current case, we have n = 3 i.e.,
o h
U =yo + g(yé+4yé +yﬁ;)
and,
y{) = 2.3162022, 24 = 0.8
1 1 (3.6)
| = = = 0.3209034
Aty 08423162022
thus,

2
gl =2.1755 + %[0.3882741 +4(0.3509633) + 0.3209034]

= 2.3163687
- y(0.8) = yq = 2.3164

|
m Example 3.4 Find the solution of the following differential
dy
=@ +y)y, y(0)=1, h=01 (3.7)

using Milne’s method to obtain y(0.4). compute y at x = 0.1,0.2,0.3

using RK4
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Solution. First, we compute y(0.1), y(0.2) y(0.3) using RK4, this
computations are left to the reader, which lead to

y(0.1) = 1.11689, 5(0.2) = 1.27739, 5(0.3) = 1.50412,

Zo = 07 Yo = 1
1 =0.1, y; =1.11689

r3 =0.3, y3 =1.1.50412
Since,
P 4h
yy = o+ 5 (205 — v +21)
and,
y = (z+y)y
vy = (z1+y1)y1 = (0.1 + 1.11689)(1.11689) = 1.3591323 (3.9)
yh = (x2+ y2) y2 = (0.2 4+ 1.27739)(1.27739) = 1.8872032 '
yh = (23 + y3) ys = (0.3 + 1.50412)(1.50412) = 2.713613
Thus,
(P) 4(0.1)

Yy = 1+T (2(2.713613) — 1.8872032 + 2(1.3591323)) = 1.8344383
Now, the corrected value reads,

o h
u$ =y + = (vh + A0 + 1)

3
vh = (s + uiD)yl?) = (0.4 + 1.8344383)(1.8344383) = 4.0989392

Thus,

yf) = 1.27739—1—(0:'31) (1.8872.32 + 4(2.713613) + 4.0989392) = 1.8387431
|
m Example 3.5 Find for the following differential equation
% =(z+y), y(0)=1, h=01 (3.10)

the value of y(0.5). "
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MULTI-STEP METHODS
Solution. Since Milne’s method for the predicted value reads

» Ah
y,(1+)1 =Yn—3+ 5 (2yn, — Yn_1 + 2y, _»)

we have to determine the value of y at four points, so we use RK for
this purpose, and we have the following results,

X |y Yy =flz,y) =r+y
0 Yn—3 = 1 fn—3 =1

0.1 | ypoo =111 | fo_o =1.210

0.2 | ypo1 = 1.242 | fo_q = 1.442

0.3 | y, = 1.399 n = 1.699

Therefore,

4(0.1
=14 (%) [2(1.699) — (1.442) + 2(1.210)] = 1.58364

Now, to compute yé(_’?l we need to find f,11

Furr = F@nrn, ) = £(0.4,1.584) = 1.984

and since,
c h
e =y + 3 (2 + 43+ ui)
we have,
(©) (0.1)

py” = 1.242 + 7 [1.984 + 4(1.699) + 1.442] = 1.58364

Note that, yg)r)l, yﬁgr)l have the same value i.e. there is no enhance-

ment in the value of y. Now, we have the values of f ready and we do
not have to use RK again. Thus,

) = (0.5) = 2.20742

) = y(0.5) = 2.29742



Chapter 4

Boundary Value Problems

This chapter is devoted for the following items:

4.1 The Finite Difference Method for Linear
Problems

4.2 Solution of the Discretized Problem
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Boundary Value Problems
The Finite Difference Method for Linear Problems

In the previous chapters, we have considered the initial value problems for ordinary
differential equations which has the following form

y®)=fty ,t=a

y(@) =a

In many problems, however, there will be conditions on the solution given at more than one
point. For a single first order equation y'(t) = f(t,y), data at one point completely
determines the solution so that if conditions at more than one point are given, either higher
order equations or systems of equations must be treated.

Consider the second-order equation

y'(®) =f(t,yy)0<st<1 )
With the boundary conditions:
y(0) =ay()=p )

Equations (1) and (2) define a two-point boundary value problem.

[MCQ]The problem:[y"' (t) = f(t,y,¥"),0 < t < 1] is... for ordinary differential
equations.

- initial value problems-...
[MCQ]The problem:[y’(t) = f(t,y) ,t =a,y(a) = a,y(0) =a,y(1) =p]is... for
ordinary differential equations.
boundary value problem-

If the function f of Eq. (1) is nonlinear in either y(t) or y'(t), the boundary value problem is
nonlinear. Nonlinear boundary value problems are more difficult to solve, and we shall not
consider them.

In this chapter we treat only linear problems, in which Eq. (1) may be written in the form
y'@®)=b@®)y' @)+ c@®)y®)+d@®),0<t<1 (3)

where b, ¢, and d are given functions of t. The boundary conditions that we consider first will
be of form (2). Later, we shall treat other types of boundary conditions.

Equations (3) and (2) define a linear two-point boundary-value problem for the unknown
function y, and our task is to develop procedures to approximate the solution. We will assume
that the problem has a unique solution that is at least two times continuously differentiable.
We first consider the special case of (3) in which b(x) = 0, so we have the following
example:

Example

Consider the following boundary value problem

y'@®) =c®)y®)+d(),0<t<1

with the conditions,

y(0) =a,y(1) =8

Use finite difference approximation to obtain y** (t).

Obtain the resulting tridaigonal system. Find the coefficient matrix when c(t)=0.



Solution:

We will assume that c(t) > 0 for 0 <t < 1; this is a sufficient condition for the problem (4), (2) to have a
unique solution.

To begin the numerical solution we divide the interval [0,1] into a number of equal subintervals of length h,
as shown in Figure 3.1.

To obtain numerical solution for this problem , we divide the interval [0,1] into n+1 sub-interval using the
points

ti=to+ih=ih;ty=0,h= —i=12,. .ntl
G
‘—‘_L/—\"\_/\_/? , ﬁ.
{o.:o 'L‘ £2 'éh‘| 'Ln 'Lh.(|= '

Figure 1: Grid Points

Using difference method to approximate y'' (t)

(tiy1) -2y () +y(ti-1)
y”(ti) _ Y€it1 }’hz Yy 1 (4)
Where tiyq1=t;+h
First , we write the given problemat  t=1¢;
y"(t:) = c(t)y(t) +d(ty), i=12,..,n (5)
y(t) =y(0) =« Y(t) =y(1) =B (6)

substituting from (4), Eq (5) becomes

Y(tiv1) — 2yt + y(ti—1)

nZ = c(t)y() +d(t) @)
For simplicity , we write y(t) =y
1 — 2V + Vi
Vi1 h};z Yic1 _ c;y; +d; i=12,.,n (8)
Yo=Q  Yn1 =P (9)

For (8) multiplying on h?
Yis1 — ZSA’i tYi-1 = hZCiJT'i + h?d;

Yir1 — 2y — thiy,- +yi.1 = hzdi

This equation can be rearranged to have the following scheme for all he values of i



— Yir1 — 2+ Ric)yi+yi.q = h®d;, i=12,..n (10)

1
| Yo=& | Y= B C))
— 1 Y, — (2 + hzcl) Y, = hzdl
— i=2 y3—(2+ hzcz)yz-%y1 =h2d2
' (€3 )
— i=n—-1| y - (2 + hzcn_l)yn_1 ty,., = hzdn_l
L i=n _.@— 2+ he)y, +y, , = h’d,
Y, — (2 + hzcl)y1 +a = hzdl
¥3— (2 + hzcz)y2 ty, = hzdz
: (12)
Vo~ (24 RPcnn)y, 1 +¥,, = Hduy
B- @2+ h*c))y, +y, , = h'd,
¥, —(2 + hzcl)y1 = hzdl -«
y;— (2 + hzcz)y2 ty, = h’d,
' (13)

Yo~ (Z + hzcn—l)yn_l + Vo2 = hzdn—l

- (2 + hzcn) Yot Vo, = h’d, — B
In matrix form AY=B

[ -2+ ki) 1 0 o o0 o0 0 0 ][y‘l h:z‘d_a
| 1 -2+ k%) 0 0 0 o 0 | 2
' ‘ an
| o 0 o 0 0 —(2+ h%c) || )
- ‘2 J Vn h2d
l 0 0 0 0 0 1 —(2+ h?c;) nIJ Ked, - B

The coefficient matrix A is tridiagonal Eq.4 is the resulting tridiagonal system which we must solve to
obtain the numerical solution.



[ —(2 + h%cy) 1 0 0 0 o 0 o
1 —(2+ h%c;) 0 0 0 o 0 0
0 0 0 0 0 0 —(2+ H?cy) 1
0 0 0 0 0 0 1 —(2 + h?%cy) |

When c(t) = 0 in the given problem the the coefficient matrix A is

1 -2 0 00 00O
-2 1 0 00 0O0O

o

0 0 O
0 0 O

This is an important matrix which arises in many contexts, as we shall see.
Matrices of the form (3.1.9) or (3.1.10) are called tridiagonal since only the
three main diagonals of the matrix have non-zero elements. Tridiagonal ma-
trices arise in a variety of applications in addition to the two-point boundary
value problems of this chapter.

[MCQ]The resulting algebraic system of applying difference methods in approximating BVP of ODE’s
is
Tridiagonal-diagonal-...

Example
Consider the boundary value problem
y'®=2,0<t<1 (1)

With the conditions,
y0)=0,y(1) =1 (2)



Use n=3 with difference approximation to y"" (t).
Obtain the resulting tridaigonal system.

Answer:
Consider the BVP y"(t) =2,0<t<1 (1)
y(0)=0y(1)=1 (2

t;=0+ih=ih; h=
B n+1
With n=3= h= 5 step between points

1 1 3
t0= tl—z t2=5 t3=z t4=1
Yo=0 =7 Y2 =7 y3 =7 ya=1
0 0.25 05 0.75 1
y'(t) =2

by integration
y’(t)zZJdt+c=2t+c
by integration
y(t) =2ftdt+ct+d

y() =t +ct+d
y(0)=0 —=> 0=0+0+dc—=>d=0
y(1)=1 ==> 1=1+c¢ =—> c¢=0

Hence the exact solution
y(t) = t?

Y(tir)-2y(t)+y(ti—1)
2

Y =23y"(t) =

)2Vt _ - 2
h 4

©)

So
16 [y(tip1) — 2y(t) +y(ti-)] =2
Subsitute in the given Eq.(1) , divide by 16
2 1

Yi+r = 2yi +¥io1 = =3

Yirr = 2¥i + Vi1 = ;i=1,2,3 ©))
The resulting tridiagonal system is

UDIHE:'



1 .
Y2~ 2y =3 ® ]
1 g
Y3=2y:+» =3 (i) }
1
1-2y;+y, =3 (iii)J
-2 1 0
[1 -2 1]
0o 1 =2
2
-}
bl’\;"’r\%
o D Z}
Mr‘ﬂ ’] 0"h/ — —__E_iol(q ,M‘
2”‘1/ (

[MCQ]The resulting algebraic system of applying difference methods in approximating BVP of ODE’s
is

-diagonal-...
[MCQ]The resulting algebraic system of applying difference approximation to y"' (t) and
backward formula for y'(t) for the BVP:y" ' (t) =2,0 <t <1, y(0) = 0,y(1) = 1. with
h= % is
@13Y3 + @12Y3 + @111 = by, @p3Y3 + Q2,¥; + @21Y1 = by, A33Y3 + A32Y2 + @311 = bs
Answer the following 9 questions:

Dap=[01-23 @ ap=[0"-23] @ay=[01 2]

8
Dap=[01,-23 6 ap=[01 21 ©an=[01,-2]
Nau=[01 3] () an=[01-23] ©an=[,1-2]]

This is the resulting system of the equation which defines the unknowns y,, y, and y;

Solution of the Discretized Problem

In the previous section we saw that the use of finite difference discretization of the two-point boundary value
problem C.1.3) led to a system of linear equations. The exact form of this system depends on the boundary
conditions, but in all the cases we considered, except periodic boundary conditions, the system was of the
tridiagonal form

a1y ai12 v1 d
21 @G22 Q23
asz ‘. ‘. E = : . (3.2-1)

On-1,n
Gp,n—1 Ann Un d,



Gaussian Elimination

We will solve the system (3.2.1) by the Gaussian elimination method. This
method, along with several variants, will be considered in detail for general
linear systems in the next chapter

[Q] Use Gaussian Elimination method to
obtain the numerical solution for the resulting
system of the previous problem

1
Y2 =20 = 3 (0]
1 g
Y3—2y;+ y1 = 8 @@
1
1-2y;+y, =3 (D)

To solve this system

2(i) + (if) ==>Eliminating y,

2(i) =—=> 2y, —4n =

(i) => y3 -2y, + y1 =

ya=3y =2 —— (V)

(ii) + 2(iii) ==> Eliminating y,

2(iii) ==> T — 4y; + 2y, =2
(i) => ¥3-20+n =,
-13
Bty = s (V)
3 .
Y3 =31 =3 (iv)
—-13
—3ys+ » = (v)

3(v) + (iv) ==> Eliminating y;

-39
(V) —>-9y;+3y; = e
.. 3
(i) =—> y3—3y; = s
—-36 18 9
= =TT

-9 9

3T 2@ 16
In (v)



-13 -13 9, _-26, 27 _ 1
Y1—T+3J/3 _T+3(E)_ 6 T 16

Yo =0= y(to) =y(0)

[

V1= 5 = yt) =yG)
1 1
2= = }’(tz)=Y(E)

e

ys = 1¢ = (ts) =y(%)

ya= 1= y(ty) =y()
Exact solution

So a=b=0
Ye(t) = t?
t YVa Ve Error
0 0 0 0
1 1 1 0
4 1= 16 16
1 1 1 0
2 2=y 1
3 9 9 0
1 737 16 16
1 1 1 0
[MCQ]Consider the application of Gaussian Elimination method for solving the resulting
algebraic system of applying difference approximation tocetain BVP:
1 1 1
Y2~ 2y, = g'}’3_2}’2 +y = 5:1_2)’3"‘}’2 =3
Answer the following 3 questions:
1 9 1 9 1 1
Dy =0l @y=[opii] @y=[og il

Home Work

[1] Consider the boundary value problem
y'®)+y'®=21+t),0<t<1 (1)
With the conditions,

y(0)=0y(1)=1 )

Use h = %with difference approximation to y** (t) and forward formula for y*. Obtain
the resulting tridaigonal system.



[1](b) Use Gaussian Elimination method to obtain the numerical solution for the
resulting system of the previous problem. If you know that the exact solution is y(t) =
t2 then obtain the numerical error.

[2a] Consider the boundary value problem
y' () +ty'(t) —2y(t) =2

With the conditions,

y(0)=0y(1)=1
Use n=3 with difference approximation of y** (t) and central difference approximation
of y' (t). Obtain the resulting tridaigonal system.

[2b] Use Gaussian Elimination method to obtain the numerical solution for the
resulting system of the previous problem. If you know that the exact solution is y(t) =
t2 then obtain the numerical error.

[3a] Consider the boundary value problem
y"(t) + 5ty (t) — 3y(t) = 7t* + 2

With the conditions,

y(0)=0y(1)=1
Use n=3 with difference approximation to y** (t) and y* (t). Obtain the resulting
tridaigonal system.

[3b] Use Gaussian Elimination method to obtain the numerical solution for the
resulting system of the previous problem. If you know that the exact solution is y(t) =
t2 then obtain the numerical error.

Answer of [1a]



=ince A= -LF vy the interva l L[a,b\= [ o, 1S 5
toso Lyl 2 i
p = = £ T L
e = )./'Z"?[/"‘Z',.v,':i.

= . jv‘

‘ja—‘e/ S’ ? '7-
er‘ '57 ((, 2)G+ ‘é——'él 7 (= ', &/3 o -~ .

=

51 + 9 =2 (eyg)) V=1,2,y G )
30 — o " E’q:' N (q’)
Diffevena Pormula Por Yr =Y CLi) is

;iz iz, -29i+Y;_,

s = 16[3:i 72 Dia

(3)

backward formula
! i—Yi-1

Yi=" = 4yi— ¥l (6)
Inserting (5), (6) in (3),
16y —2y; +yial +4lyi —yidl =201 + ¢)
16y;,1 —32y; + 16y; 1 + 4y; — 4y;_1 = (2 + 2¢;)
16y, + (4y; — 32y;) + (16y;_1 — 4y;_1) = (2 + 2¢;)

16}’i+1 — Z8yl + 12}’i—1 =2+ Ztl ,i = 1, 2,3 (7)
1
i=1==>16y, =28y, + 12y =2+ 2t; =2+ 2+

2
i=2==>16y; — 28y, + 12y, =2+ 2+

3
i=3==>16y,~ 28y3 + 12y, =2+ 2

Y0=0,y,=1
16y, — 28y, = 2+ 2t; = 2%
16y; — 28y, + 12y, =3
—28y; + 12y, = 3%— 16
the resulting tridaigonal system is

| o1

16y, — 28y, = 2

2



[MCQ]The resulting algebraic system of applying difference approximation to y"’(¢) and
backward formula for y'(¢t) for the BVP:y" (t) + y'(t) = 2(1+t),0<t <1, y(0) =
0,y(1) = Lwithh == is

A13y3 + A12Y2 + A11Y1 = by, A23Y3 + Az2Y2 + A21Y1 = by, az3ys + az;y; + az;y; = bs
Answer the following 9 questions:

1) a3 =[0,16,-28,12]  (2) ay, = [0,16,—28,12] (3) ay; = [0,16,—28,12]
4) ay; =[0,16,—-28,12]  (5) ay; = [0,16,—28,12] (6) ay;, = [0,16,—28,12]
7)az; =[0,16,-28,12]  (8) az, = [0,16,—28,12] (9) az; = [0,16,—28,12]

Answer of [3a]







Answer of [3b]




Chapter 5

Theory of Approximation

In this Chapter, we will cover the following sections:

5.1 Best Approximation

5.2 Least Squares Approximation for continu-
ous functions

5.3 Discrete Least Squares Approximation
5.4 Weighted Least Squares Approximation
5.5 Orthogonal Polynomials

5.6 Trigonometric Polynomial Approximation

77



1. Best Approximation

To obtain an efficiency, we want to find the ‘best” possible approximation of a given degree n.
Therefore, we introduce the following,
f(x)-p()f] @

po(f) = min € (p)= min [ mx

The number p,(f) will be the smallest possible uniform error, or minimax error, when
approximating f (x) by polynomials of degree at most n. If there is a polynomial giving this smallest
error, we denote it by mn(x); thus

E(mn) =pn(f) (2)
Example
Let f (x) = € on [1, 1]. In the following table, we give the values of E(tn), t» (x) the Taylor
polynomial of degree n for e* about x = 0, and E(mn).

Consider graphically how we can improve on the Taylor polynomial p,(x)=1+Xx

[——T (%
o |,
—f(x) 25 |
2 A -
15 | -
0.5 A
-~
~ ‘ 0 ‘ ‘
-1 -0.5 0 0.5 1

Linear Taylor approximations to e*
Error in linear minimax approximation to e*

X f(x) P (x) Abs(error)
-1.0 0.368 0.000 0.368
-0.8 0.449 0.200 0.249
-0.6 0.549 0.400 0.149
-0.4 0.670 0.600 0.070
-0.2 0.819 0.800 0.019
0.0 1.000 1.000 0.000
0.2 1.221 1.200 0.021
04 1.492 1.400 0.092
0.6 1.822 1.600 0.222
0.8 2.226 1.800 0.426
1.0 2.718 2.000 0.718

A few look of the last column we see that:



E(p) = max|f (x)-p(x)[=0.718 *)
—1<x <1

When n=2,

P,(x)=1+x +3x?

So, we have the following table:

X f(x) P,(x) Abs(error)
-1.0 0.368 0.500 0.132
-0.8 0.449 0.520 0.071
-0.6 0.549 0.580 0.031
-0.4 0.670 0.680 0.010
-0.2 0.819 0.820 0.001
0.0 1.000 1.000 0.000
0.2 1.221 1.220 0.001
0.4 1.492 1.480 0.012
0.6 1.822 1.780 0.042
0.8 2.226 2.120 0.106
1.0 2.718 2.500 0.218

A few look of the last column we see that:
E(p,) = max|f (x)-p(x)|=0218 **)

—1<x<1
Using Eq. (*) and (**), we conclude
p(F)=min[E(pY).E(p2)]= min[0-718,0.218]=0.218
deg(p)<2 deg(p)<2
Hence the best approximation for the two cases is

P (x)=1+x +ix?
x2 x3 x"

X_ J— —
R TR TR

Accuracy of the Minimax approximation.

Example.

Define the Minimax error bound. Then use it to bound the error when Minmax error measurement is
used for f (x) = e*for -1 <x <1 forn>1. Does the bound converge to zero as n —oo.

Answer
_ )™ (n+1)
pn( ) (n+1)122" 1£DXa<)é f ( )‘ )
Pn (f ) (nﬁj)ﬁ“”e ®)
Ilm pn(f )_ Ilm(n+1)|2” :;:O
n—oo

So the bound converges to zero as n —o
[Homework] Find the n-order derivative for all common functions f (x).

2



2. Least Squares Approximation for continuous functions

Another approach to approximating a function f (X) on an interval a <x< b is to seek an
approximation p(x) with a small ‘average error’ over the interval of approximation. A convenient
definition of the average error of the approximation is given by

1
P 2 2
E(p,f)=[mj.a[f(x)—p(x)}dx} @
This is also called the root-mean-square-error (denoted subsequently by RMSE) in the approximation
of f (x) by p(x).

To Approximate f(x) we choose p(x) to minimize E(p, f)
E(p.f )=Min I:[f (x)-p(x )]zdx (2b)

thus dispensing with the square root and multiplying fraction (although the minimums are generally
different). The minimizing of (2a) is called the least squares approximation problem.

Example 3
Let f (x) = €, let p(x) = ao + a1X, where ao, o1 unknowns. Approximate f (x )over [71,1] using

LSA.
Solution:

To approximate f (x),

E(p,f )=Min j:[f (x)-p(x )]de (2b)

1r 2
g(ao,al)zjl[e —ao—ali dx (5)
g is a function in the two variables ao, o1.

To find its minimum, solve the system
g &Y

— =V, —= O
oay ooy
It is simpler to return to (5) to differentiate, obtaining

(g n)= J‘:[ex —ay— X de (5)
2J:11[ex —ay - alx](—l)dx =0 ZIjl[ex —ay— ali(—x)dx =0

This simplifies to

X 1 2 "
e — X +E(Z1X

-0, .[1 xe”* —(laox 2 —la1x3J
1 - 2 3 -1



But jxex =xe* —_fex

el-e —{ao (1+1) +%al[(l)2 —(—1)1} -0

20,=e e gozl=2e’l
3
So a;=3%'11.1036
-1
Similarly, @y =0 "% 111752

Using these values for ap and a1, we denote the resulting linear approximation by
p(X) =y +oyx =1.1752+1.1036x

It is called the best linear approximation to €* in the sense of least squares approximation.

For the error,

max
—I<x<1

6™ — py(x )| 0.439

—1 1

The linear least squares approximation to e*

THE GENERAL CASE

[Q]Approximate f (x) on [0, 1], and let n> 0. Seek p(x) to minimize the least squares error.
Answer:
Write

P(X)=cy+apX + X * +oX* +..+ X"
Then

1
9 (g, t) = [ [f (x) = p(¥)]
0



To find coefficients ao, a1, . . . , 0n to minimize this integral. The integral g(oo, 04, . . . , on) IS a

quadratic polynomial in the n + 1 variables ao, 0, . . . , on.
To minimize g(oo, 01, . . . , tn), Use the conditions
o .
9 0, 1=01...,n
og;
This yields a set of n+1 equations that must be satisfied by a minimizing set oo, o1, . . . , an for g.

Manipulating this set of conditions leads to a simultaneous linear system.

To better understand the form of the linear system, consider the special case of [a, b] = [0, 1].
i 2 3 n 2
g(ao,al,...,an):J[f (x)—(a0+a1x + X T+ agX .o X )} dx
0

Differentiating g with respect to each ai, we obtain

2 [f (x)—(ao+a1x +azx2+a3x3+...+anx”ﬂ(—1)dx =0

2 [f (x)—(a0+a1x +a2x2+a3x3+...+anx”)}(—x)dx =0 *)

Ot 2 O

Zj[f (x)—(a0+a1x +a2x2+a3x3+...+anx”)}(—x")dx =0
0

Then the linear system is

SO 1 .
Zf=J‘ x'f (X )dX, 1=01..n (**)
ol +]+1 <0
Which can be written as
Anxnanxl = anl
Example 4

Find least squares approximation from degree 2 for the function
f(x) = sinmx

In the interval [0,1] then evaluate the uniform error

Solution: We set  p(X ) = oy + X + X 2 So using (*) we get

g(ao,al,az):j.[f ()~ (@ + % +a2x2)de

Zf[f (x)f(a0+a1x +a2x2)}(71)dx =0

1
0



2 [f (x)f(a0+alx +a2x2)}(7x)dx =0 (¥

2 [f ()~ (et + a1 +a2x2)](-x2)dx =0

ot—r Ot—r

w
o

2 [Sin(ﬂx ) -y — X — X ZJ(—l)dx =0

2 [sin(;zx)—o:0 — X —apX 2J(—x Ydx =0

2[[sin(zx) - g — X —a,x* | (—x*)dx =0

Ot O Oy

Which become

sin(zx ) — oy —apX —ayX szx =0

2

1

Il

0

1

Hx sin(zx ) — apX —opx % —a,X 3de =0

0

‘l[[x sin(zx) —apx 2 —apx ® —ax 4de =0
0

Or
1

% G2 %3
|:TX +7X +TX :|

1
= [sin(zx yax
0

G2y dmyd gl X sin(zx )dx
2 3 ) = 7

3
|

=

5

RV BT S 26j
[3x XX S sin(zzx )dx

Then

a

G 4 X i

T +5 4+ = | sin(zx )dx
a

23t

!
i

X sin(zx )dx
0
1
"—;+%+"—;=Ixzsin(nx)dx
0

evaluating integrals, we obtain

1
j sin(zx )dx ==cos(zx) [, ==(-1-1)=2
0



1 1
[ xsin(rx)dx =2 xcos(zx) [+ [cos(zx)dx =2(=1-0)+(sin(zx)) |,
0 0

~1+3(0-0)=

1 1
_[xzsin(;rx )dx ==Lx *cos(zx) |z+§jx cos(zzx )dx
0 0
" 1
=71(—1—0)+%{71x sin(zx) |O—%Isin(nx)dx}
0

- %+%{71(0—0)—%J1'sin(7zx )dx }

_1,2[_12
=1+2[-12]
So the linear system become

Dy @2
1+2+3_

1,2 _2|_1_4 _z"-4
7r+7r|: ,,2:|_,~[ P

T
B I R R
2+3 4 T r

5 e
Solving them we get
a, =% 7* -12]=-4.12251

LI Ry
3 T2

o, =-0,
@y = 2 —% % = _0,050465
Hence

P,(x) =-0.050465+4.122251x —4.122251x 2
We have the table

x [T ) =sin(zx)| P,(X) | abs(error)
0.0 0.000 -0.050 0.050
0.2 0.588 0.609 0.021
0.4 0.951 0.939 0.012
0.6 0.951 0.939 0.012
0.8 0.588 0.609 0.021
1.0 0.000 -0.050 0.050

The uniform error is
E(p,)= max\f x)- p(x)\ =0.050

0<x<l

[Q]Find least squares approximation from degree 2 for the function f(x) = e* In the interval [0,1] .




Discrete Least Squares Approximation
To approximate f(x) by a polynomial P(x) at some points x;, i = 1,2, ..., m, we solve:

Min E=§:[fi—P(xi)T

[TF]The Discrete Least Squares Approximation formula for
approximating f (x) by a polynomial P(x) at some points x;, i =

12,..,misMin € =3[, =P (x,)]
i=1

Example
Use Least Squares Approximation method with polynomial of degree 3, to approximate solution for
the BVP

y')=2,0<t<1 1)
y(0)=0y1) =1 &3]
Compare between the approximate solution and the exact solution (y(t) = t?).

Answer:
Let
y(t) = ap + a;t + a,t? + ast3 3)
Using (2) y(0) = 0,
0=aqy
Again using 2) y(1) =1
l=ag;+a,+azdaz=1-a;—a,

Then the approximate solution (3) become

F(t) = ayt + azt? + (1 — ay — ay)t? (4)
Differentiation of (4) twice, we have
§'(t) = ag + 2a,t + 3(1 — ay — a,)t? ®)

') = 2a; + 6(1 —a; — ay)t (6)
We define the error in approximating the differential problem (1)
y'(®) =2
Is

RO =y"() -2 ()

R should be zero. If not, and indeed in the case of approximation R is often not zero. Minimizing R

will reduce the error as can as we could.



Using (6), Eq. (7) becomes:
R(t) =2a,+6(1—a; —ay)t—2
To Apply the LS rule , we evaluate R(t) at 2 points inside the interval [0, 1], namely, t; = § t, ==
So
1 1 2 2
R(3)=2a,+6(1-a,—a;) 2= 2.R (%) = 2a, + 6(1 - a, — @) 2 - 2
r

o

)=2a2+2(1—a1—a2)—2,R(§)=2a2+4(1—a1—a2)—2
)=2(1—a1)—2, R(§)=—2a2+4(1—a1)—2

Wik Wl

R
R(

1\2 2\ 2
Min g(as,a;) = R (3) +R (5) =
[2(1 —ay) —2)% + [-2a, + 4(1 — a;) — 2]?

a a
99 _ % _

da, ' da, 0

2[2(1 —ay) — 2] (=2) +2[~2a, + 4(1—a;) —2] (-4) =0
0+2[-2a, +4(1—a))—2] (=2)=0

Home Work>>>>>
Weighted Least Squares Approximation

weight function
The integrable function w(x) in an interval | is said to be weight function if w(x) >0 for some xel.

w(x) must be nonzero positive value (w(x)>0) at least in some parts of I.

aadliog lagas Gkl

A3 Gy lagas Gkl

W o
W sl 3 ool
Gohll caa ) e o)l Alla s jS8 (ki :5-9 K

Weighted Least Squares Approximation
To approximate f (x) on I=[a, b]. we seek p(x) to minimize the least squares error. i.e.
b

Min E (p) = [w (x)[f (x)-p(x)]Fdx

Where w(x) is the weight function.

An example of set of Polynomials:
Po(x) =1, Pi(x) =x,Py(x) =1+ 2x + x?

Orthogonal Polynomials



Definition:
The set of function {4, }

n
k=0
b

[ wedpeo dx = g

a
Where the Kronecker function &y ; is defined by
_(0,j =k
5kj - {1']- =k

n

« o e said to be orthonormal if they are orthogonal and

a;=1j=01..n

Furthermore {¢, }

Function representation

Theorem 1:
let f (x) is approximated by

Pn(x) = Xk=o Qi (%),

where ¢ (x),k = 01, ...,n, are orthogonal with weight function w(x) in[a, b].

Then ay(x),k = 01,...,n. are defined by
1 ¢b
a :;L\W (x)f (x)g; (x )dx
i
Proof: The Least Squares Approximation with weight function w(x) is
b

MinE (p) = [w ()[f (x) - p, (x)]"dx
n
Using pn (X): Z ak ¢k (X)
k =0

b n 2
MinE(p):J'w(x){f x)->a g (x)} dx
3 k=0

The necessary conditions for E(p) to attain its minimum are
E
E(P)_o  j-01..n

oa,
2w )] ()~ S (0o (i =0
“w (x) { )-Dadh () } X )dx =0

b

W (x ) (x )dx —J:W (x )kzz(;akqﬁk (x)g; (x )dx =0

10

are said to be orthogonal with weight function w(x) in [a, b] if

()



[w (x)F (x)g; (x )ax :kzak [ow (x )i (x )8 (x
Since ¢y (x),k =01,...,nare c;rthogonal

I:W (X)f (x)g; (x )dx =a;;

Hence

a; = J- ¢J()

Examples of orthogonal polynomials:

1-Legendre polynomials
The usual notation for the k' -degree Legendre polynomial is P, (x) and corresponds to the
normalization P, (1) = 1.
In terms of the P, (x), the recurrence relation is
p k+1) k=
ka1 (X) = k+1D xXPe(x) — ——< P (%), k=12,.
Py(x)=1,P(x) =x

k
(k+1)

To obtain the first 4 members of the polynomials P, (x),
Py(x)=1,P(x) =x

k=1=>
Py(x) = SxPy(x) = 3 Po(x) = 3x(0) —; (D) = Jx* =5 .
k=2=>
2 1 2 5 3
— — — a2 _ |y =43 __
Py() = 2P0 P =3 x 327 — 3| - Sx =200 =2
k=3=>
7 7 15 3 3713 1
— _ 3 =, 2 __
Pa(x) = 7 6P5 () = 4Pz(x)—4x2x Zx] 4_[2x 2]
35, 30, 3
=8 78" s
Thus
Py(x) =1, Pl(x)=x Pz(x)zgxz—%,
P3(x)=—x ——x P(x) = Byt —0y2 43

8

The Legendre polynomials are orthogonal with respect to the weight function w(x) = 1:
0, j#k
f P(PGdx =] _2
-1

1 =k

2-Chebyshev polynomials

To(z) = 22Th_1(z) — Tha(z),

11



where Tp(z) =1 and Ti(z)=1=.

The Chebyshev polynomials are orthogonal with respect to the weight function w(x) = (1 — xz)%l:

! dz
Chebysh / Tu(2)Tim(z) —= = 0,
(Chebyshen) [ LoTne) o2
1 dz x ifn=0,
(Chebyshev) / T (2) — =
-1 V1-—a? I ifn>0,

Gram-Schmidt Process

Theorem 1: Let {1, (x)}r= are linearly independent functions, defined in the interval [a, b]. Then,
we can construct from it the orthogonal /orthonormal set of polynomials by:

$1(x) = 11 (%),

$2(x) = 11 (x) + co2h, (%),

$3(x) = c31P1 (x) + 3292 (%) + €333 (%),

Where, the constants {Ci j}:ljzlcan evaluated by applying the orthogonal/orthonormal property.

Example:
Consider the set of functions:

W )Ik=y = {Lx, 22,23, .3
defined in the interval [—1,1]. Construct from it an orthonormal set of polynomials {¢ (x)}3=, with
the weight function w(x) = 1, making use of Gram-Schmidt Process.
Solution:

The first three orthonormal of polynomials {¢, (x)}3-, are defined by
$1(x) = c1q,
$2(x) = c31 + cppx
$3(x) = c31 +cgpx + C337i‘72
i

Where, the constants {Cij} j=1can evaluated by applying the orthonormal property.
1

J* k
[weoscme ar=sy = {377 ¢

-1

To obtain c;4, we apply only the orthonormal property when j = k = 1:
[ 61061 (x)dx =1 7 (e1)%dx = 1D 2(c;1)? = 1

1
S0 ¢y = i‘ﬁ , and thus

1
X) =€ = +—
¢1( ) 11 \/E
Now, for the second polynomial ¢,(x) = ¢, + c3,x, we apply only the orthonormal property as
follows:
[ d:@0b.(dx =1, L $1 () (x)dx =0
f_ll(cm + Cpp%)%dx =1, i\%f_ll(cu + c22x)dx =0

12



The first integration gives
1
Jo,[(e21)? + 2¢5100% + (c22)x*]dx =
1 2
[(c21)%x + CaqC00x* + g(czz)zx3]1—1 =2(cz)*+ 0+ ;(022)2 =1
The second integration gives
1
1 2 1 271
XCyq +§szx dx = [xcyy +§c22x 121 =2¢;; +0=0
-1

This gives c,; = 0and ¢;, = i\E . Thus

¢, (x) = iﬁx

Now, for the third polynomial ¢ (x) = c3; + c32x + c33x%, we apply only the orthonormal property
as follows:

I2, 0305 (0)dx =1, [ 1 (0)ps(x)dx =0, [1 ¢ (x)3(x)dx =0

These integrations implies
1

f[c31 + C30X + €33x2%)%dx = 1
1
iﬁf_l[cn + C32X + c33x°]dx =0

i\/g f_ll[C31 + ¢35% + c33x%]dx =0

Solving these three equations the constants cs4, €35, €33 Can be obtained and so ¢5(x) = ¢3; +
C32% + ca3x? is defined.
(left for student as homework).

[HomeWork] Consider the set of functions:

Wk ()}k=1 = {Lx,x%,2%,..3
defined in the interval [0,1]. Construct from it an orthonormal set of polynomials {¢, (x)};i=; with
the weight function w(x) = 1, making use of Gram-Schmidt Process.

Gram-Schmidt Process(b)
We can define an orthogonal set {¢,}-,0f polynomials with weight function w(x)in[a, b]as
follows:

_ o _ Joxaw@lgo@P?
®o(x) =1,¢1(x) =x — By, By = —I:W(x)[%(x)]z )
and the sequence

6. (x)=(x -=B. )d. .(x)-C.d. .(x). k >2°

b
[ 001 0o
B, =5—— b
v colsofex [ 0010002 (x)ae
a Ck =4 b

13



Example(Home Work)
(a)Use Gram-Schmidt Process to construct an orthogonal polynomial in [-1,1] with weight function

w(x)=1

(b) use the constructed polynomial in (a) to approximate f(x)=e* in[-1,1]
Answer:

@

j'xw (x )[¢0(x)]2dx jx [1]2dx jx dx
B, =} =2 =3 -
Jw ) (x ) dx | [1] dx [ ox
L =X
k=2
$, = (X =B,)¢ (X)) —C gy (x)
[xw 0 0T dx jx [x JPdx j[x *dx

BZ b 1 — 1 -
jw (x)[¢1(x)]2dx j[x ]zdx Ixzdx
ba -1 ) -1
jxw (X ) (X )by (x )dx szdx )

C2 =42 = Il = % = %

Tw () (<) dx | [1] dx

-1
B;=0C;=24= ¢ =x>-$x

B=x=tx?+ 2 h=x"-Vx +5x ..
®)
f (x);Pn(x):gakyﬁk (x)
a, :ij:w () (x)F (x )
And from orthogonal property, ** I:W (%) ()] dx
k=0=
ao=J' [(x)T o = g =xf, =1-(-1)=2

1.1 101 _1 X
a, :EL%(X ) (x )dx :ELe dx =e

1
-1

14



=%[e1—e-1]=1.1752

k=1=

1
X

et g 5] ()

ai:g»[—llﬁ(x )f (X ) =§flxexdx =§[Xex _eXJil

zg[(e ~e)-(-e™-e™)|=+3=+11036

=0.1778
_1np 450 ( 5, 1),
az—a—zjllqﬁzf (x )dx oy 1(x —gje dx
X 1
] NER P S :E[Ee —Ee‘1):—0.5288
8 3], 8l3 3

~F (X)) =agdy (x ) +ad (X ) +ad,(x)
—1.1752¢, —1.1036¢; — 0.528¢, (x )

=1.1752(1)-1.1036x —0.528(x > - 1)

=0.192-1.1036x +0.528x *

Home Work :
Use Gram-Schmidt Process(b) to construct an orthogonal polynomial in [0,1] with weight function

w(x)=1

15



Use Gram-Schmidt Process(b) to construct an orthogonal polynomial in [-1,1] with weight function
w(x)=??

&EE&EEEEEEEEEEEEEEEEEEEEEZEEREEE

[1]: Use Galerkin method with Legendre polynomial of degree 3, to approximate solution for the

BVP
y'(®)=2,-1<t<1 @)

y-D=1y1)=1 @
Compare between the approximate solution and the exact solution(y(t) = t2).

Answer:
Let
F() = agPo(t) + arPy(£) + axPy(t) + azPs(t) (©)]
Using (2) y(-1) = 1,
0 =agPy(—1) + a;P;(—1) + a,P,(—1) + a3P;(—1)

3 1 5 3
Py(x) =1,P(x) =x, P,(x) = Exz — % Py(x) = ;x3 —3x

PR =1, PAED=-1PED =1 D =-1

0=ay—a;+a,—a;
az;=ag—a; +a, 4
Againusing ) y(1) =1
1=agPy(1) + a1 P1(1) + a;P(1) + a3P5(1)

3 1 5 3
Po() =1, P () = x, Py(x) =222 =3, Py(0) = 2% — 2x

Py(D) =1,P,(1) =1, P,(1) = 1, P,(1) = 1 ’

l=aqay+a,+a,+az
Using (4),1=ag+a, +a, +ay—a; +a, = 2a, + 2a,

az :%_ao (5)

Substituting from (4)-(5), then the approximate solution (3) become
() = aPo(t) + 1Py () + [; — @] Po(6) + [ag — a3 + a]P3(¢) (6)

Differentiation of (4) twice, we have

~ 1
Y0 = aoP'o(6) + arP's(0) + |5 = o Pa() + [ag — ay + aalP's(0)

Po(x) =1, Py(x) = x, P (x) = 3x% =3, Py(x) = 2x° =
! ! r r 5 3
Plo() =0, P'y(x) = 1, Py (x) = 3x, P'3(x) = 3()x% -3

P'3(x) = Py(x), P'5(x) = 3P (%), P3(x) =5(2)x? =2+ 1=5P,(x) +1

1
F(6) = 0+ ay Py(x) + [E - ao] 3P,(x) + [a — a; + a,][5P,(x) + 1]

16



1
7"(©) = arP'o() +3 |5 = ao| P10 + [ag — a1 + @ ][5P200 + 1]

y%ﬂ=O+3E—a4+h%—ay+ﬁﬂﬂ$ﬂ&)+ﬂ

1
7'(t) =3 [E — ao] + [ag — a; + a,][15P;(x) + 1]

1
'O =3 [E - ao] + 15[ag — a3 + a, 1P (x) + [ag — a; + a,]

3
$''(t) = 15[ag — a; + a,]P;(x) + [—Zao —a; +a,+ E]
We define the error in approximating the differential problem (1)
y'® =2
Is

3

R(t) =y"(t) — 2 =15[ag — a; + a,|P;(x) + [—Zao —a;+a,+ —] -2

2

1
R(t) = 15[ag — a; + a,]P;(x) + [—Zao —a;+a, — E]

Galerkin method obtain the unknowns by

b
f w(t)R(t) P;(t)dt = 0,j =0,1,2
w() =1 ‘

b 1
f (15[a0 —a, +ay]P;(x) + [—Zao —a;+a, — ED P (t)dt =0,j = 0,1,2
a

Trigonometric Polynomial Approximation

Trigonometric Polynomial consists of all linear combination of the set {¢0,¢1,...,¢2n,1} , where

o (x)=

¥l
N

@(x):%coskx foreach k =1,2,....n

Bk (x):%sin kx foreach k =12,..,n—1 Which are orthonormal in[—7, 7 |

Theorem: If fe) If is approximated by trigonometric polynomial, by

17



A A 3 gasl il I i sl f e C [—ﬂ,yz]:um\ a3 135 RS

2n-1
= Z ah (x)
Then k=0
o
a, :ff (x )4 (x )dx foreach k =0,1,...,2n -1
:Jbia
Example:
Consider that the function
Alall oy 55 a3 13)

f(x)=|x| for —r<x <z

is approximated by trigonometric polynomial. Obtain the unknown coefficients.
Blabnall fana aa o AT ZEDEN 3 ganl) il IS G 5 phadily

Answer:

g 1 1 o 1 oz
3 :J._”|X |de :_TI‘”XdX +—_27Tj0 xdx
I d \/—72'
J_ ~odr
= V2
1 T 2 e
a :TI |x |coskxdx :TJO x coskxdx
/2 T
2 k
:\/;_kz[(_l) —1] foreach k =1,2,...,n

;bk@mq}un A anl) ey COlabaall fra

b, =a,, for k =12,.,.n-1

n+k
:%r [ |sinkxdx :2kﬁ( )k+1 foreach k =1,2,..,n
72' -7

Sl e Toly,

[EN

_ n1(_ k +1
coskx +ZZ( T() sinkx
k=1

18



HomeWork

Al S| (X) ARl 2 3 saall <l 1S cu i sl
Consider that the function

Alall oy 5 a3 13)
0 if —7r<x<0
f(x)= .
1 if O<x<x
is approximated by trigonometric polynomial. Obtain the unknown coefficients.
sl
AR AN 3 gandl il S Gy 8 aladily slanall ANl i 5 13)
2n-1 n n-1
Sp(X)=2 adh (X)=ay+ > adh + > b
k=0 k=0 k=0
1
d(x ) ==
O( ) 2

@(x):icoskx for each k =1,2,...,n
T

Bk (x)=isin kx foreach k =1,2,...,n -1

N

O O S el e (8
8 :J”f (X)é (x)dx, k =01..,2n-1

O (1) Al iy a5 (o

=1 ()= oo [T
= %LO”OCOS kxdx +%I0”cos kxdx
=0+%*W=\/__le[sinkﬂ—sin0] =0

19



f (x)sinkxdx

b=k

.o 1 ¢, .
=ﬁ£ﬂ0 sinkxdx +ﬁjol sinkx

=0+icoskx |g =

N

(Y
1o

n n-1
Sp=ayh + Zak¢k + Zbk¢k
k=0

[ 1) _1] ! ——=sinkx

T

0 [y
o it

[cosk 7 —cos0]

1
Jrk

sm kx

1n1
n

sinkx =1+
2 k=0

Exercises
[1] Test which of the following pairs of functions are_orthogonal /orthonormal in the given interval:
(a) sinx,cosx,[—1,1].
(b) 1,x,[-1,1].
[2] Test if the following set of functions are_orthogonal /orthonormal in the given interval:
.. mnx M
@) {sm T}m:1 ,[—1,1].
(b) {1,x,x2%, ...}, , [-1L1].

T kmx T kmx T knt kmt
f cos (—) dx = [stn ( )] [sm ( ) —sin (— —)]
_r T km T M kn T T

kT [sin(km) + sin(kn)] = E [0+0] =0

[1] Test which of the following pairs of functions are_orthogonal /orthonormal in the given interval:
(@) sinx,cosx,[—1,1].
(b) 1,x,[-1,1].
[2] Test if the following set of functions are_orthogonal /orthonormal in the given interval:
.. mnx M
@) {sm T}mzl ,[—1,1].
() {1,x,x% ...}, , [-L1].

20



f’ kmx T . (knx\1® T . (knt . kmt
cos (—) dx =— [sm (—)] =— [sm (—) —sin (— —)]
—r T km t /Il km T T

- é[sin(kn) + sin(kn)] = é [0+0] =0
[Exercise 1]The following recurrence relation generates the Legendre polynomials.

2k+1 k
Prp1(x) = ((kT-i-l))ka(x) —mPk_l(x), k=1.2,..

starting with
Py(x) =1and Py(x) = x .
(a) Obtain the first five members of the polynomials P, (x),
(b) obtain the value of P, (0.5).
() if f(x) = Tioo kP, (x), with @ = [1,0,0,1,0]. Obtain the expression for f(x), and the value of
0.5).
}[cE(xergise 2]The following recurrence relation generates the Chebyshev polynomials.
Tu(z) = 22Th1(z) — Th-a(z),
starting with
To(z) =1 and Ti(z)=w=.
(2) Obtain the first five members of the polynomials T, (x),k =0,1,...,4
(b) obtain the value of P, (0.75).
() if f(x) = koo ar Ty (%), with @ = [0,1,1,0,1]. Obtain the expression for f(x), and the value of
—0.5).

f[(Exerci)se 1]The following recurrence relation generates the Legendre polynomials.

k+1)
Pria(x) = m
starting with
Py(x) =1and Py(x) = x .
(a) Obtain the first five members of the polynomials P, (x),
(b) obtain the value of P, (0.5).
(©)if f(x) = T, ax P, (x), with @ = [1,0,0,1,0]. Obtain the expression for f(x), and the value of
£(0.5).

k
ka(x) - mPk_l(x), k=12,..

[Exercise 2]The following recurrence relation generates the Chebyshev polynomials.

Ta(z) = 22Tho1(z) — Taa(2),
starting with
To(z) =1 and Ti(z)=z=.

(a) Obtain the first five members of the polynomials T, (x),k = 0,1, ...,4

(b) obtain the value of P, (0.75).

©if f(x) = T, T, (x), with @ = [0,1,1,0,1]. Obtain the expression for f(x), and the value of
f(=0.5).
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Chapter 6

Spline Interpolation
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Spline Interpolation ( linear)

[Q11] Obtain linear spline function that interpolate the given data: f(0) =0
, f(1) =1 f(2) =2 and satisfies the conditions f'(0) =1, f'(2)=1
Solution:

Consider the data : {x; , f(x;)}-, is given

x| fO)
0] 0 0
111 1
2] 2 2

To obtain an interpolated function for this data, we construct , firstly the linear spline
function .

si(x) =a; + bj(x - xj) ,j=0,1. 1)
in each subinterval.

So S1

So = g + bo(x — xp) = ag + byx 2)
Since x, = 0, similarly, since x; = 1, we have
si®) =a; +b(x—x) =a; +b(x—1) (3)
we have 4 unknowns a, , a, , by , b, to be determined
Spline function must satisfy:
si(%) = £ (%) ©)
(3) 5(2) wlabaall & Gudally
so(xo) = f(xg) @ ap+bex0=0 - ag =0

51(x) =f(x) > a; +b(x1-1)=1->a,=1




Sj+1(Xj+1) = Sj(x]'+1) (5)
51(x1) = s0(x1)

Condition (5) is applied to ensure that the resulting spline function is continuous

51(x1) = so(x1)
(3) 5(2) oihaladll i Gadailly

So = ag + bgx 2 s1(x) =a;+bi(x—-1) 3),x =1

ag+ by =a,
0+ by=1
by =1
One more condition must be given for define spline interpolation that’s

S0 (x0) = f'(x0) , 51'(x2) = f'(x2) (6)
From the given condition:
500 =1, s;/(2) =1

dualdll 22 (3) 5(2) &b L smilly

Differentiation (2,3)
S’ =by=1, s;'= b =1
Hence the spline function that interpolate the given data is
So = ag + bo(x —x9) = ag + box  s1(x) =a; +by(x —x;) =a; + b (x—1)
so(x) =x
si)=1+(x—-1)=x
Which can be written as:

_(so=x, 0=x<1 _ _(x, 0=x<1
S(")‘{sl=x, %<2 =2 S(")‘{x, 1<x<2



The exact solution for this problem is :
f)=x

The resulting interpolation is equal the exact solution.

X s(x) f(x) Absolute error
0.0 0.0
0.2 0.2
0.4 0.4

2.0
[Q12] Obtain quadratic spline function that interpolates the given data:
fO=0, f(1)=1, f(2) =2 f(3) = 3 and satisfies the condition f’(0) =
1, f@®=1

Solution :

The spline function (quadratic) is

sj (x) = a; + b; (x — x]-) + cj(x - xj)2 i=0,1,2, (€8]

So | s | s |

<

:) 1 2 3
si(x) = aj + bj(x — x;) + ¢;(x — x,-)Z
So(xX) = ag + box + cox? @)
s1(x) = a; + by(x — x1) + ¢1(x — x1)?
51(x) = a; + by(x — 1) + ¢y (x — 1)? 3)
52(x) = ag + by(x — x3) + co(x — x;)?
S2(x) = az + by(x — 2) + ¢, (x — 2)2 (€]

The first condition spline function must satisfying



s(x) = £ (%)
so(x0) = f(x0)
s1001) = f(x1)
s2(x2) = f(x2)

(4) 5(3) 5(2) ofldladl 8 Gy

so(x) = ag + box + cox?, f(x) =0
So(x0) = f(xg) oCasidaB(2) ag=0
i) =a; + b (x—1D+c,(x—1)2 , f(x) =1
s51(x) = f(x1) ol HA(3) a;=1
S5(x) =az +bhy(x —2) +c,(x —2)2 , f(xy) =2
S(x5) = f(x)Da, =2

The second condition to ensure continues spline function at entire points

SJ‘+1(X1'+1) = Sj(xj+1)

| So | s | s |
0 1 2 3
51(x1) = s0(x1) )
51(1) = s0(1)
So(x) = ag + box + cox? 51(x) = ay + by (x — 1) + ¢;(x — 1)?

ag+ bg+co=a, P 0+ by+cy=1=2>by+cy=1 (6)

$1(2) = 52(2)

51(x) =a; + by (x — 1) + c1(x — 1)? s5(x) = ap + by(x — 2) + c(x — 2)%
a,+bi+ci=a,2 1+bj+c;=2 Db+ =1(7)

The given condition is at the end points of the interval

f'(0) =1, So:



so(x) = ap + box +cox? D s'o(x) = by + 2cox™  Ds'(0) = 1>
be =1

ff@=1
55(x) = ay + by (x — 2) + c(x — 2)?
Sy = by + 2¢c,(x —2)
$5'(3) =by+ 2¢,(3-2)=1
=b,+ 2c;=1 (8)
(6) & by e Ll
bo+ co=1 ==>14+ =1 =D =0

since the spline function is quadratic one more condition must be added to the linear
spline case

we must insure the continuity of first derivative of spline function at

So'(x1) = 51" (x1)

So' = by + 2¢cox x=x=1
si'=by+ 2¢;(x—1) , x=x =1
by = by + 2¢,

by=1+ 2¢, )

(7), (9) must be solved to obtain b, , ¢,

by +c;=1(7)

So:

2b,=2 = b =1

(9) &t sl

1=142¢; 2 ¢,=0

There are 4 more unknowns, and 1 more condition, that is
51'(x2) = 55" (x2), %, = 2

s =a; +bhi(x—1D+c(x—1)?% Ds'(x) =b; +2c,(x—1)



s'(2)=by+2c,(2-1) =by+2¢c; ()
s(x) = ay + by (x — 2) + c(x — 2)% Ds',(x) = by + 2¢,(x — 2)
§5(2) = by +26,(2—2) =bh, (**)
51'(%5) = 55" (x3), %, = 2¥by + 2¢; = b, b, =1(9)

Together with b, + 2¢c, =1 (NP, =0

Hence the quadratic spline function that approximate the given data is
So(x%) = ag + box + cox? @)
5100 = a; + by (x = 1) + ¢, (x — 1)? 3

52(x) = az + by (x = 2) + c(x — 2)? ©))

so(x) = ap + bo(x) +co(x)? =x
s =a; +b(x—-1) +(x—-1)?=1+x-1=x
s;(0)=ay,+by(x—2)+c(x—2)2=2+(x—-2)=x

Which is the exact solution

[HW_Q13] Obtain quadratic spline function that interpolate the given data:
f@O=0, fW=1, f(2)=4
And the additional condition f'(0) =0, f'(3)=6

With the exact solution = x?
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Eigen value Problem

Use usual analytic solution to obtain all of the eigenvalues and the
corresponding eigenvectors of the matrix , given by

8 -2 -2
A=|-2 4 =2
-2 -2 13
Then Write the algorithm of your favorite numerical method to approximate

the largest eigenvalue of the matrix and the corresponding eigenvectors.

The eigenvalues can be found by expanding det(A — AI} = ( and finding the roots of
the resulting nth-order polynomial, which is called the characteristic equation. This
procedure is illustrated in the following discussion.

Consider the dynamic spring-mass problem specified by Eq. (2.9):

R—1) -2 -2

(A=ix=| =2 (@d-1) =2 |[x=0 (2.28)
-2 -2 (13-4

The characteristic equation, |A — AI} =0, is

EB-D[E4—-D13 - -4 -2 [(-2X13 - —4]+(-2)[4+2(4 - )] =0

(2.29)
A 2502 41764 —300=0 (2.30)
The eigenvalues are
4= 13.870585, 8.620434, 2.508981 (2.31)
(A—Dx=0
®-4 =2 -2
(A—ADx = -2 4—24 -2 x=0
2 2 13-k
(8 — )X, — 2X, — 2X, =0 (2.9a)
X, + (4= Xy —2X, =0 (2.9b)

~2X, —2X, + (13— )X, = 0 (2.9¢)



The eigenvectors corresponding to A, to 4; are determined as follows. For each
eigenvalue A,(i = 1, 2, 3), find the amplitudes X, and X; relative to the amplitude X; by
letting X; = 1.0. Any two of the three equations given by Eq. (2.9) can be used to solve for
X, and X; with X; = 1.0. From Egs. (2.9a) and (2.9c),

8 — )X, — 2%, — 2X; = 0 (2.33a)
—2X, - 2X, + (13— )X, =0 (2.33b)

8—1—2x,—2x3=0
—2—2x2+(13—l)X3 =0

Selving Egs. (2.33a) and (2.33b) for X; and substituting that result in Eq. (2.33a) yields

X, =(—w1—;39—,1 d Xzz(S;D—X, (2.33¢)
Substituting 4; to A3 into Eq. (2.33c) yields:
For 4, = 13.870586:
X, =[1.000000 0.491779 -3.427072) (2.34a)
For 4, = 8.620434:
X, =[1.000000 —0.526465 0.216247] (2.34b)
For 1; = 2.508981:
X; =[1.000000 2.145797 0.599712] (2.34¢c)
Definition 71 A vector norm on R" is a function, || - ||, from R” into R with the following properties:
i) x| 2 Oforallx € R",
(i) |/x|l = Oifandonlyifx =0,
(iii) flex|| = |e|||x]| for all @ € R and x € ",
iv) lIx+yll < Ixll +|lyl for all X,y € R". ]

Definition 72  Thel, and I, norms for the vector X = (x1, X2, - . ., X,)" are defined by

i/2

n
Ixllz = {gx,’l and  [xllos = muax bl

The I, norm is called the Euclidean norm of the vector x since it represents the usual
notion of distance from the origin in case % is in R! = R, R?, or R?. For example, the I
norm of the vector X = (x;, x2, x3)° gives the length of the straight line joining the points
(0,0, 0) and (xy, X7, x3). Figure 7.1 shows the boundary of those vectors in k? and R that
have l; norm less than 1. Figure 7.2 is a similar illustration for the I, norm.



Definition

If A is a square matrix n on n, the characteristic polynomial of A is defined by
p(x) =det(A — Al).

It is not difficult to show that p is an nth-degree polynomial and, consequently,
has at most n distinct zeros, If A is a zero of p, then, since det(A — A 1) =0,
Theorem 6.16 in Section 6.4 implies that the linear system defined by (A — 4
I)x = 0 has a solution with x = 0.

Definition

if p is the characteristic polynomial of the matrix A, the zeros of p are
eigenvalues, or characteristic values, of the matrix A. If A is an eigenvalue of A
and x = 0 satisfies

(A — 1 1)x =0, then x is an eigenvector, or characteristic vector, of A
corresponding to

the eigenvalue 1. m
Definition

The spectral radius p (A) of a matrix A is defined by p (A) = max | A |, where A
is an eigenvalue of A.

Example:
8 -2 =2
A=|-2 4 =2
-2 -2 13

A, =13.87,1, = 8.62, 15 = 2.5

p(A) = max{13.87, 8.62, 2.5 }=13.87

Theorem : If A 'is an n X n matrix, then

) JAJ2 = [p(A"A)])'/2,
(ii) p(A) < ||Al. for any natural norm || - |.



EXAMPLE 2

1 10
If A=] 1 2 1| Then obtain [|A]],
-1 1 2

1 -1 110 32 -1
A'A=|1 2 1 12 1f= 2 6 4.
o1 2 -1 1 2 -1 4 3

To calculate p(A?A) we need the eigenvalues of A“A. If

0 =de(A’A — AD)

3—-A 2 -1
=det| 2 6—A 4
-1 4 S—1x

=214 1437 — 420 = —A (02 — 140 + 42),
then
A=0 o A=Tx+7,

50

1Al = Vp(ATA) = ‘/max{O,T —AT1, T4+ = \/7 + /7 % 3.106. »

We call an nxn matrix A convergent if

lim (A%); =0, foreachi=12,...,nandj =12 ...,n
k—oo

EXAMPLE 3
>0
LetA=|2 | IsAisconvergent matrix?
4 2
! 0 ! 0 ! 0
A4 = |2 2 _ |4
1 1)1 1 11
4 2114 2 4 4



Computing powers of A, we obtain:
and, in general,

Since
1\* k
i -] = im — =0,
klingo( 2) 0 and kllan;lo k41

A is a convergent matrix.,

O S ) 8 A aaoan g aliall g oas 5 o) Jualiy

dl:axlna G8 y=g* sy
dx

Theorem

The following statements are equivalent.

(i) A'is a convergent matrix,

, for all natural norms,

(iv) p(A)<1.

, for every



Approximating Eigenvalues

The Power Method

The Power method is an iterative technique used to determine the dominant
eigenvalue of a matrix—that is, the eigenvalue with the largest magnitude. By
modifying the method slightly, it can also used to determine other eigenvalues.
One useful feature of the Power method is that it produces not only an
eigenvalue, but an associated eigenvector. In fact, the Power method is often
applied to find an eigenvector for an eigenvalue that is determined by some
other means.

The Eigen value problem is: Find A and X which satisfy:

AX = AXOr
[A=2AIlX=0

2.3.1. The Direct Power Method

When the largest (in absolute value) eigenvalue of A is distinct, its value can be found
using an iterative technique called the direct power method. The procedure is as follows:

1. Assume a trial value x{*) for the eigenvector x. Choose one component of x to be
unity. Designate that component as the unify component.
2. Perform the matrix multiplication:

AxO =y (2.37)
3. Scale yV so that the unity component remains unity:
y(!) — Mg (2.38)

4. Repeat steps 2 and 3 with x = xI), Iterate to convergence. At convergence, the
value 4 is the largest (in absolute value) eigenvalue of A, and the vector x is the
corresponding eigenvector (scaled to unity on the unity component).

The general algorithm for the power method is as follows:

Ax(l’] — y(i+|) — j'(k+[)x(k+l) (2»39)

When the iterations indicate that the unity component could be zero, a different unity
component must be chosen. The method is slow to converge when the magnitudes (in
absolute value) of the largest eigenvalues are nearly the same. When the largest
eigenvalues are of equal magnitude, the power method, as described, fails.

Example 2.1. The direct power method.

Find the largest ,in absolute value, eigenvalue and the corresponding
eigenvector of the matrix (to two digits of accuracy), given by




8 -2 -2
A=|-—2 4 =2
-2 -2 13

Answer

Assume xX7 =[1.0 1.0 1.0]

Scale the third component x; to unity.

Then apply Eq.

Ax®) = D) — D)

Ax© = y@®©
y@® = Ax©
8§ -2 =271[10 4.00
AxP=| -2 4 =2 1.0 | = | 0.00
-2 =2 13|10 9.00
"
y(1)= 0
O]
AN =900
y@ = Wy

1
ﬂﬁﬂn:xm



0.444444
Y = | 0.000000
1.000000

Ax® = i+ — 0Dy

g -2 -2 0.444444 1.555555
AxV = 2 4 22 0.000000 [ = | —2.888888
-2 -2 13 1.000000 12.111111
AP = 12111111
0.128440
x@ = | —0.238532
1.000000
Table 2.1. The Power Method
k ;. i| xz x3
] 1.000000 1.000000 1.000000
1 9000000 0444444 0.000000 1.000000
2 12111111 0.128440 —0,238532 1.000000
3 13.220183 —0.037474 —0.242887 1.000000
4 13.560722 —0.133770 —0.213602 1.000000
5 13.694744 —0.19299] —(0.188895 1.000000
29 13.870583 —0.291793 —0.143499 1.000000
30 13.870584 —0.291794 —0.143499 1.000000

Homework:

The required answer is up to k=5



HomeWork: The direct power method.

Find the largest ,in absolute value, eigenvalue and the corresponding
eigenvector of the matrix (to five iterations), given by

-4 14 0
A=|-5 13 0]
-1 0 2
Let x® = (1,1, 1), then
y" = ax® = (10,8, 1),
1)
(l]_y( - t
M ==— =1(1,08,0.1)".
10 ( )
(1, 0.714316, —0.249895) 6.000837

Answer:

Find the largest eigenvalue and the corresponding eigenvector of the
following matrix to two digits of accuracy. Take component be

the unity component.

A=]-5 13 0

-1 0 2

-4 14 Ol

4 =1 1
A=| -1 3 =2
1 -2 3



Step 1 Setk=1;

x = x/||x[lz.

Step 2 While (k = N)do Steps 3-8,

Step 3
Step 4
Step 5

Step 6

Step 7

Step 8

Sety = Ax.
Set = x'y.

If |lyllz = 0, then OUTPUT (‘Eigenvector’, x);
OUTPUT (" A has eigenvalue 0, select new vector X

and restart’);
STOP.
Set ERR = |x — —X—| ;
[l¥Hz fl2
x = ¥/l¥lla-

If ERR < TOL then OUTPUT (g, x);
(The procedure was successful.)
STOP.

Setk=k+1.

Step @ OUTPUT (*Maximum number of iterations exceeded’);
(The procedure was unsuccessful.)
STOP,

4
A= -1
1

is symmetric with eigenvalues 3, = 6,1, = 3, and 43 = 1. Table 9.2 lists the re-
sults the Power method, and the results in Table 9.3 come from the Symmetric Power
method, assuming in each case that ¥ = x® = (1,0, 0)". Notice the significant
improvement that the Symmetric Power method provides. The approximations to the
eigenvectors produced in the Power method converge to (1, =1, 1), a vector with
(1, =1, 1¥lse = 1. In the Symmetric Power method, the convergence is to the paral-

-1 1
3 =2
-2 3

lel vector (+/3/3, —+/3/3, 373V, with /33, —/3/3, V313Vl = 1.



Table 9.3

Ed

(y™)'

W BD DA B W R e D

(1,0,0)

@, ~1,1)

(4.242641, —2,121320, 2.121320
(4082483, —2.857738, 2.857738)
(3.837613, ~3.198011, 3.198011)
(3.666314, —3,342816, 3.342816)
(3.568871, —3.406650, 3.406650)
[3.517370, —3.436200, 3.436200)
(3.490052, —3.450359, 3.450359)
[3.477580, —3.457283, 3.457283)
(3.470854, —3.460706, 3.460706)

m}

I3

5

5.666667
5.909091
5976744
5.994152
5.998536
5.999634
5.999908
5.099977

fuim

(™) with [|x™ iz =

7

6.047619
6002032
6,000183
6.000012
6.000000
6.000000

(1,0,0)

(0.942809, —0.235702, 0.235702)
(0.816497, —0.408248, 0.408248)
(0.710669, —0,497468, 0.497468)
(0646997, —0.539164, 0.539164)
(0.612836, —0,558763, .558763)
(0,595247, ~0.568190, 0,568190)
(0.586336. —0.572805, 0.572805)
{0.581852, —0.575086, 0.575086)
(0.579603, —0.576220, 0.576220)
(0.578477, —0.576786, 0.576786)

Ay A2y ..., Ay and |AX — AX|; < &

min [A; — A} < &,

1<j=n



