INTRODUCTION

Plant pathology has four objectives:

- 1. To study the structure and life cycle of the etiologic organism.
- 2. To study the pathogenesis and the disease symptoms.
- 3. To study the epidemiology and the conditions that favor spread of the pathogen.
- 4. To know the methods of disease control or management to reduce losses in crop yield.

Terminology of Plant Pathology

- 1-Disease: pathological process involving harmful physiological changes in the living plant after infection by a living organism.
- 2-Disorders: Physiological changes due to non parasitic agents.
- 3-Pathogens: living organisms (fungi, bacteria, etc.) which cause damage to the host plants
- 4- Parasites: pathogens deriving nutrients for growth from a living plant. They are:
 - * Obligate (biotrophs), restricted to living tissues.
 - * Facultative colonize living or dead tissues.
 - * Necrotrophs: grow on dead tissue; they kill in advance, thus more dangerous than biotrophs.
- 5- Pathogenicity: the ability to cause disease.
- 6- Virulence: degree of pathogenicity in a qualitative sense. Some strains of a pathogen may be avirulent
- 7- Aggressiveness: capacity of a parasite to invade and grow in its host plant and to reproduce on or in it.
- 8- Inoculum: portion of a pathogen capable of infecting a host.
- 9- Inoculum potential: a measure of the biological energy available for the colonization of a host. It is a function of: i inoculum density,
 - ii nutrients available to the infectious units for germination or growth,
 - iii virulence of the pathogen,
- iv susceptibility of the host.
- 10 Immune: exempt from infection.
- 11 Resistance& susceptibility: the extent to which the plant is able to prevent the entry or subsequent growth of the pathogen within it. High resistance means low susceptibility that approaches immunity. Low resistance means high susceptibility.
- 12 Hypersensitivity: development of necrotic spots resulting from rapid death of cells in the vicinity of invading pathogen (confers high resistance to host plant).
- 13 Entry (Penetration): direct or indirect.
- 14 Infection: Establishment of nutritional relationship between the pathogen and the host.
- 15- Colonization: the pathogen advances through the tissues of host to varying extent.
- 16 Symptoms: visible external alterations on the host by which a disease can be recognized.

General categories of symptoms are:

- a- Necrosis: (death of infected tissue).
- b- Hyperplasia: (increased cell division) and / or hypertrophy (increase in cell size) leading to galls, tumors, and witches 'brooms
- c- Hypoplasia (reduced growth or stunting of infected plant).

Significance of Plant Diseases

- 1. Reduction of quality and quantity of plant products (flowers, fruits, fibers, wood, latex, etc.).
- 2. Limitation the kinds of plants and industries in an area.
- 3. Contamination of plant products with poisonous substances.
- 4. Responsible for direct/indirect financial losses (costs of control).

Stages in the Development of a Disease (Disease Cycle)

- 1- Inoculation: pathogen in contact with plant.
- 2- Prepenetration: germination of spores, attachment to host and recognition // host &pathogen
- 3- Penetration:
- a- Direct through cuticle.
- b- Indirect through natural openings (stomata, hydathodes)
- c- Indirect through wounds caused by nematodes or farming tools.
- 4- Infection (includes invasion): pathogen establishes contact with host cells & tissues, absorbs nutrients.
- 5- Colonization: growth and reproduction of the pathogen on host surface, within the plant or its vascular elements.
- 6- Dissemination of the pathogen: transfer of inoculum from the site of its production to the susceptible host surface either actively or passively by air, water, human, animal, insects, agricultural practice, seeds transplants etc.
- 7- Seasonal carryover (overwintering or over summering): survival of the pathogen in the form of hyphae, resting spores, sclerotia, chlamydospores, etc.

Classification of Plant Diseases

A- According to mode of primary infection:

- 1- Soil-borne diseases: due to soil-borne pathogens e.g. damping-off of seedlings, vascular wilt, root rots etc.
- 2- Air-borne disease: fungal spores are disseminated by wind and infect the shoot of plant e.g. rusts, downy mildews, powdery mildews, etc.
- 3- Seed-borne diseases: some pathogens survive as dormant mycelium in the seeds or other propagative structures of host plants e.g. many smuts.

B- According to extent of occurrence and geographic distribution:

- 1- Endemic diseases: constantly present in a particular country or part of the earth.
- 2- Epidemic (epiphytotic) diseases: occur periodically but in a severe form under favorable environmental conditions
- 3- Sporadic: occur at very irregular intervals and locations in few instances A disease may be endemic in one region and epidemic in another.

C- According to disease symptoms:

I- Necrosis (death of cells & tissues)

1- Rusts 2- Smuts 3- Mildews 4- Root-rots 5- Blights
6- Leaf spots 7- Wilts 8- Cankers 9- Fruit rots 10- Dieback
11- Chlorosis 12- Bloch 13- Damping-off 14 - Scab

15- Streaks or stripes 16- Burn, scald or scorch 17- White blisters or pustules

II- Hypertrophy and hyperplasia

- 1- Elongated internodes: rice infected with Gibberella fujikuroi; Euphorbia with Uromyces pisi; sugarcane with Sclerospora sacchari.
- 2- Galls and tumors: globose, elongated or irregular large sized outgrowths formed on attacked part e.g. Club root of Crucifers;
- 3- Witche's broom: upright cluster of small shoots contrasting with horizontal growth habit of normal shoot.
- 4- Curls: leaves are arched, twisted and distorted eg. peach leaf curl,
- 5- Floral abnormalities: enlargement of infected inflorescence which become green and fleshy with stamens converted into leafy structures.

III- Hypoplasia

- 1- Chlorosis: reduced development of chlorophyll (mosaic, vein clearing yellowing).
- 2- Reduction of individual organ: e.g. leaves, flowers, internodes as in dwarf bunt of wheat by *Tilletia contraversa*.
- 3-Floral abnormalities: in anther smut of Caryophyllaceae caused by *Ustilago violacea*, stamens become sterile.

D- According to major Phyla of fungi:

- 1- Diseases caused by Myxomycota
- 2- Diseases caused by Oomycota
- 3- Diseases caused by Chytridiomycota
- 4- Diseases caused by Ascomycota
- 5- Diseases caused by Basidiomycota
- 6- Diseases caused by Deuteromycota

J- Diseases caused by Myxomycota

A- Club Root of Crucifers (finger and toe disease)

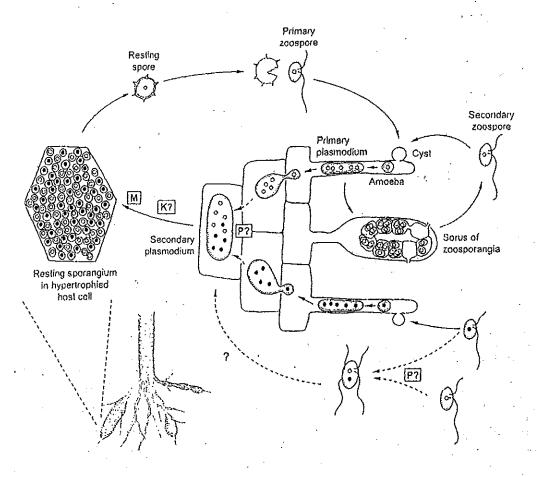
- Causal agent: Plasmodiophora brassicae
- Host plants: Cruciferous vegetables such as cabbage, cauliflower, radishes, and turnips; and field crops such as mustard.

• Symptoms:

Roots show malformation and enlargement
due to spindle or club shaped swellings resulting from hypertrophy and hyperplasia of
infected cells. Inside root cells, plasmodia followed by resting spores are formed.
Leaves show yellowing and wilting.

Class: Plasmodiophoromycetes

Order: Plasmodiophorales


Family: Plasmodiophoraceae

Plasmodiophora brassicae

Disease cycle:

Plasmodiophora brassicae infects susceptible host plants through root hairs. It stimulates abnormal growth of affected parts, resulting in a swollen clubs. Infection is favored by excess soil moisture and low pH.

Numerous resistant spores of the fungus are produced in the "clubbed" tissues. As tissues decay, spores are released into the soil where they can remain infectious for at least 10 years.

Disease management:

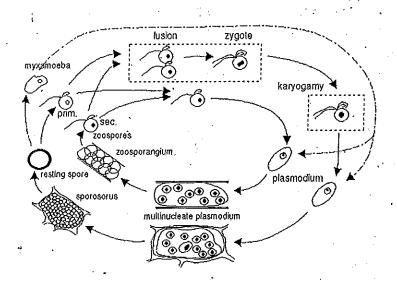
- 1. Eradication of cruciferous weeds.
- 2. Use of well drained, pathogen free pots.
- 3. Use of seedlings raised in pathogen free soil.
- 4. Very long crop rotation with non cruciferous crops.
- 5. Soil fumigation with volatile chemicals such as vapam, methyl dibromide etc.
- 6. Alteration of soil pH to 7 or above by adding lime.
- 7- Soil treatment with fungicides (e.g. PCNB)

B-Powdery scab of potatoes

Causal agent: Spongospora subterranea
 It is generally found in wet, badly drained soils. The spores remain in the soil for several years.

Class: Plasmodiophoromycetes
Order: Plasmodiophorales
_rFamily: Plasmodiophoraceae

Spongospora subterranea


Symptoms:

On tubers, irregular brown depressions with raised papery margins (scabs) are

formed. These scabs are filled with dusty brown spongy masses of spore balls. Infected young tubers show distortion and swollen outgrowths.

Control:

- 1. Healthy, powdery scab-free seeds are only planted.
- 2. Infected tubers should be disposed correctly not composted.
- 3. Crop rotation is useful where replanting potatoes in the same position is avoided for three years.
- 4. Improved soil aeration.
- 5. There are no fungicides that can be used.

II- Diseases caused by Chytridiomycota

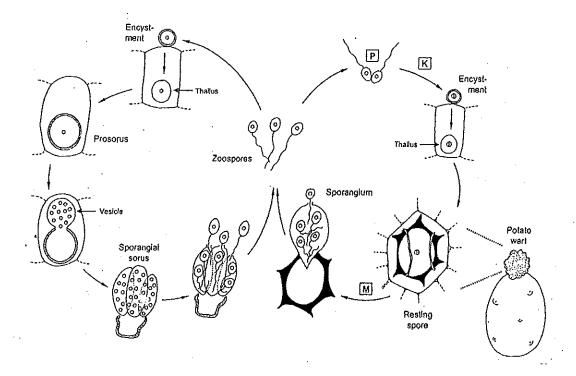
1- Black Wart of Potatoes

Caused by: Synchytrium endobioticum. It is a non mycelial, unicellular, holocarpic biotrophic chytrid fungus.

Class: Chytridiomycetes

Order: Chytridiales

Family: Synchytriaceae


Synchytrium endobioticum

Disease Cycle:

- Infected host cells contain spherical (2n) resting sporangia (RS) of dark brown walls
- RS are released by the decay of warts and they may remain viable in soil for up to 40
 years. They germinate producing prosporangia (vesicles) in which uniflagellate zoospores
 (n) are produced.
- Meiosis occurs during germination.
- Zoospores encyst on host epidermis before infection
- Inside the host cell the small fungal cell enlarges and the host is stimulated to enlarge.
- Zoosporangia (n) are formed producing up to 600 zoospores per spoangium.
- · At later stages zoospores behave as gametes to give resting sporangia

Symptoms:

- Large irregular cauliflower-like warts or galls develop on all underground parts except roots.
- Warts at first greenish-white, becoming dark or black
- · Warts develop due to hyperplasia and hypertrophy.
- The disease causes losses by reducing the quantity and quality of tubers.

III- Diseases caused by Oomycota

1- Aphanomyces root rot
Caused by Aphanomyces one of the zoosporic
fungi belonging to the Family Saprolegniaceae

Hosts: Sugar beet, wheat, pea, etc Symptoms:

• Soft decay of the root cortex.

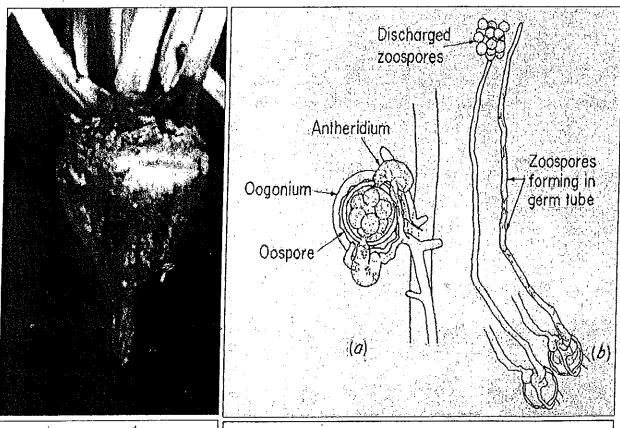
Vascular core of root tends to come out when roots are pulled up.

• Progressive death of the leaves from the base of the stem.

· General check in growth.

Infected plants may survive but produce poorly filled pods.

• Oospores of the fungus are present in decaying tissues.


• Disease is most serious in soils with high moisture content and at $15^{\circ} - 30^{\circ}$ c.

Class: Oomycetes

Order: Saprolegniales

Family: Saprolegniaceae

Aphanomyces euteiches

Aphanomyces root rot of Sugar beet

Aphanomyces: asexual and sexual reproductive units

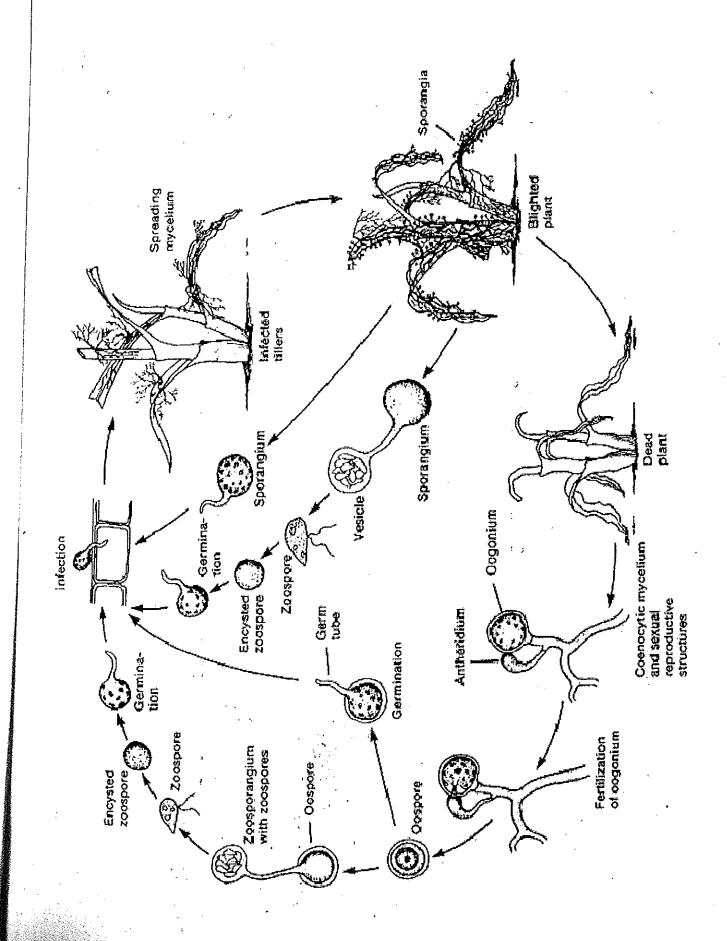
2- Damping off and seedling blight

Caused mainly by Pythium species, Family Pythiaceae

 Other fungal species belonging to Phytophthora, Rhizoctonia, Fusarium, Helminthosporium and Botrytis could be associated with damping off and seedling blight Class: Oomycetes
Order: Peronosporales
Family: Pythiaceae
Pythium aphanidermatum

Pythium oligandrum

Symptoms:


- Pre-emergence: Emergence of seedlings is poor even with seeds of high germinative capacity
- There are patches with no seedlings at all.
- Post- emergence: Seedlings that have emerged often show water soaking, browning or shriveling of the stem tissues at soil level and die.
- When plants are pulled up they show browning and rotting of the smaller roots or stem, and stem lesions at soil level.
- Plants are stunted.
- · Plants wilt at midday and may recover at night.
- Plants show yellowing and die.
- Brown tissue on the outer portion of the root easily pulls off leaving a bare strand of vascular tissue exposed.
- Root tips are brown and dead
- The cells of roots contain round, microscopic, thick-walled oospores of Pythium

Control:

The most favorable environments for *Pythium* disease are soil treated with high-nitrogen fertilizers, alkaline soil and soil with low calcium levels.

To prevent or minimize contamination it is recommended to:

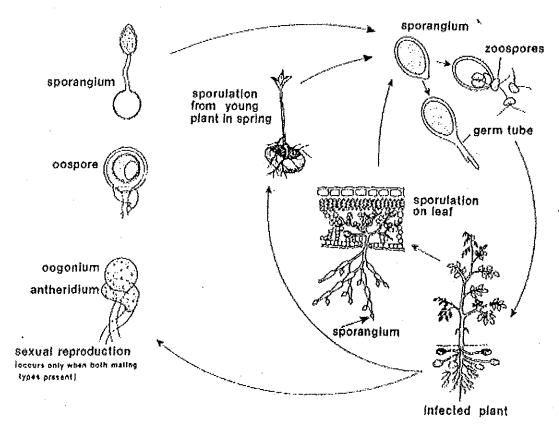
- a- Utilize balanced fertilizers and keep soil pH neutral or slightly acid.
- b- Prune trees and shrubs to improve air circulation.
- c- Correct drainage problems, avoid over-watering,
- d- Preventive fungicide treatment programs using metalaxyl, terrazole, coban, etc

3- Late blight of potato and tomato

Caused by: Phytophthora infestans

Late blight epidemics in the 1840s led to the <u>Irish</u>
 <u>Potato Famine</u>, in which over a million people died and a million emigrated to other countries.

 Even today, Phytophthora infestans poses a major threat to potato agriculture. Class: Oomycetes Order: Peronosporales Family: *Pythiaceae Phytophthora infestans*


Symptoms:

On leaves and stems:

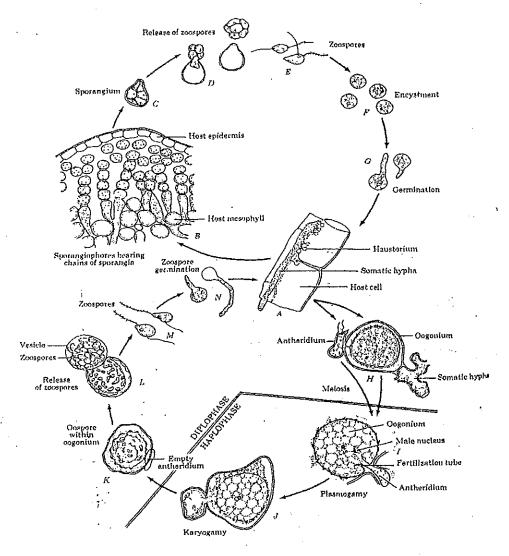
- Dark brown lesions of varying sizes and shapes.
- Under moist conditions a mass of sporangiophores
- (White bloom) develop on the lower leaf surfaces.
- · Lesions increase rapidly and coalesce.
- Potato shoots are killed within 3-4 weeks.

On tubers:

- Tubers show irregular dark and sunken areas associated with brownish rot.
- Rotting often increase during storage due to further invasion by bacteria.

This is a simplified disease cycle for late blight of potato.

4- White rust Diseases

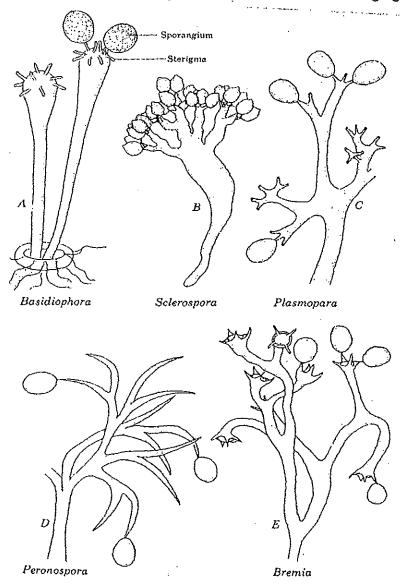

- A- White rust of Crucifers by Albugo candida of the Hosts include radish, turnip, cabbage, cauliflower, mustard,
- B- White rust of Portulaca by Albugo portulacae

Symptoms:

- White pustules or sori develop on leaves and stems.
- Host epidermis ruptures exposing a white powdery mass of spores (chains of sporangia on clavate sporangiophores).

Class: Oomycetes
Order: Peronosporales
Family: Albuginaceae
Albugo candida
Albugo portulacae

- The fungus grows inside the whole plant tissue stimulating various types of deformities.
- Inflorescences and flowers become thickened due to hypertophy and hyperplasia of affected cells.
- · The swollen parts are full of oospores


Life cycle of Albugo candida

5- Downy mildew diseases

Caused by members of the Family Peronosporaceae, Order Peronosporales, Class Oomycetes. Fungal species, their hosts are shown in the following table.

Pathogens	Hosts
Plasmopara viticola	grapevine
Bremia lactucae	lettuce
Peronospora destructor	onion
Peronospora pisi	peas
Peronospora parasitica	Cauliflower, Cabbage
Pseudoperonospora cubensis	Cucurbits
Sclerospora graminicola	cereals (wheat, sorghum, corn)
Basidiophora sp	Compositae (Sonchus, Helianthus)

The sporangiophores of downy mildew fungi are illustrated in the following figure

A- Downy Mildew of Grapevine by Plasmopara viticola

Signifcance of disease:

 The fungus causes direct yield losses by rotting inflorescences, clusters and shoots.

Indirect losses can result from premature defoliation of infected vines.

Premature defoliation predisposes the vine to winter injury.

Class: Oomycetes
Order: Peronosporales
Family: Peronosporaceae
Plasmopara viticola

Symptoms:

a- On leaves:

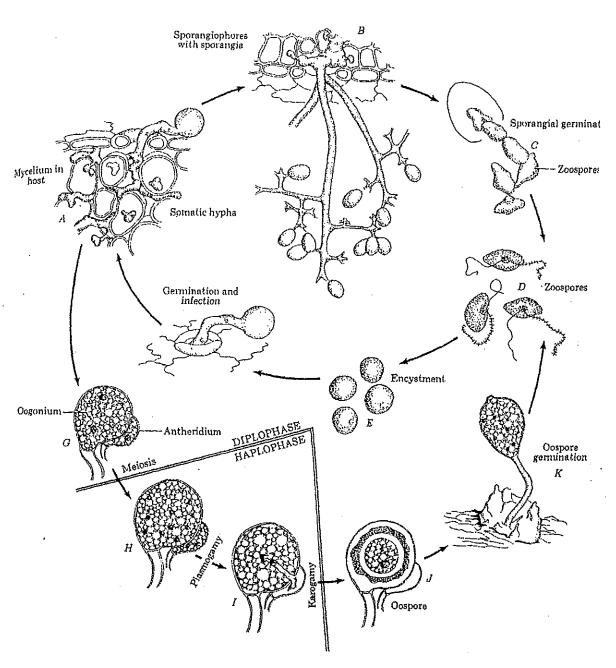
- Aappearance on the upper leaf surface of irregular pale-yellow to greenish-yellow spots up to 1/4 inch or more in diameter.
- On the underside of the leaf, the fungus mycelium (the "downy mildew") can be seen within the border of the lesion as a delicate, dense, and white to grayish, cotton-like growth.
- Infected tissue gradually becomes dark brown, irregular, and brittle.
- Severely infected leaves eventually turn brown, wither, curl, and drop.

b- On fruits:

- young berries turn light brown and soft, and under humid conditions are often covered with the downy-like growth of the fungus.
- Berries infected at late summer do not turn soft or become covered with the downy growth. Instead, they turn dull green, then dark brown to brownish-purple.
- They may wrinkle and will never mature normally

c- On shoots and tendrils:

- Early symptoms appear as water-soaked, shiny depressions on which the dense downy mildew growth appears.
- Young shoots usually are stunted and become thickened and distorted.
- Severely infected shoots and tendrils usually die.


<u>Disease cycle:</u>

- The overwintering oospore germinates in the spring and produces a sporangium. Sporangia are spread by wind and splashing rain.
- When plant parts are covered with a film of moisture, the sporangia release small swimming spores, called zoospores.
- Zoospores, germinate by producing a germ tube that enters the leaf through stomata on the lower leaf surface.
- The optimum temperature for disease development is 18 to 25 C.
- Once inside the plant, the fungus grows and spreads through tissues.
- Infections are usually visible as lesions in about 7-12 days.
- At night during periods of high humidity and temperatures above 13 degrees C, the fungus grows out through the stomata of infected tissue and produces microscopic, branched, tree-like sporangiophores on the lower leaf surface.

- The small sporangiophores and sporangia make up the downy mildew growth.
- Sporangia cause secondary infections and are spread by rain

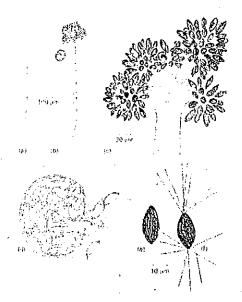
Control:

- Select a planting site where vines are exposed to all-day sun, with good air circulation and soil drainage.
- Proper spacing and orientation of vines in the rows to maximize air movement
- Removal of dead leaves and berries from vines and the ground after leaf drop.
- Downy mildew can be effectively controlled by properly timed and effective fungicides.

Life cycle of Plasmopara viticola

IV- Diseases caused by Zygomycota

A-Choanephora rot


Symptoms: Fruits rot rapidly and white fungal mold appears on the infected area. With time, fruit look like a pin cushion with numerous small, black-headed pins stuck in it. Initially, the heads are white to brown but turn purplish-black within a few days. Affected flowers, pedicels, and immature fruit become water-soaked, and a soft, wet-rot develops. An

Class: Zygomycetes
Order: Mucorales


Family: Choanephoraceae
Choanephora cucurbitarum

entire fruit can rot in a 24 to 48 hour period. Symptoms usually begin on the blossom end of the fruit.

PERSISTENCE AND TRANSMISSION. The fungus overwinters as a saprophyte (living on dead plant tissue) and/or in a dormant spore form (such as a chlamydospore or zygospore). In spring, fungal spores are spread to squash flowers by wind and by insects such as bees and cucumber beetles. Infection occurs through the blossom, into the fruit and stem. Development of wet rot is favored by high relative humidity and excessive rainfall.

Choanephora cucurbitarum

Choanephora rot of squash by Choanephora cucurbitarum.

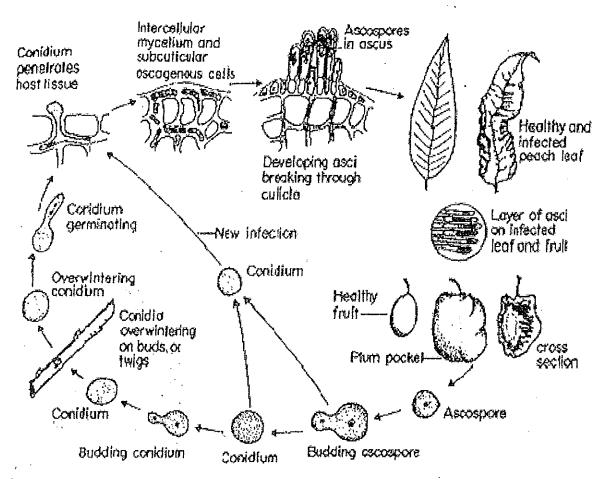
Other diseases by Zygomycetes:

- a- Mucor rot of vegetables and fruits e.g. Guava, cucumber, grape, etc.
- b- Rhizopus rot of vegetables and fruits e.g. Tomatoes, cantaloupe, mandarine, sweet potato, strawberry, etc.

V- Diseases caused by Ascomycota

Disease	Causal agent
Peach leaf curl	Taphrina deformans
Powdery mildews	Members of the Family Erysiphaceae
Apple scab	Venturia inaequalis
Duch elm disease	Ophiostoma ulmi
Ergot disease	Claviceps purpurea
Canker of trees	Nectria galligena
Sclerotinia soft rot of vegetables	Sclerotinia scirotiorum

1- Peach Leaf Curl


Caused by Taphrina (Exoascus) deformans

Taphrina has four unique features:

- (A) The assimilative mycelium is dikaryotic.
- (B) It produces an exposed layer of asci on the surface of the host leaf.
- (C) Ascospores often bud in a yeast-like manner, even while still inside asci.
- (D) When the asci open to release their spores, they tend to split across the tip.
- (E) The anamorph of *Taphrina*, the phase in which it grows in culture, is single-celled budding yeast named *Lalaria*.

Symptoms:.

- Infected leaves are severely deformed and often display a variety of colors ranging from light green and yellow to shades of red and purple.
- The fungus causes the meristematic cells at leaf margins to proliferate quickly and randomly, which results in the leaves becoming variously wrinkled, puckered, and curled.
- As infected leaves mature, naked asci containing ascospores of the pathogen are produced on the surface giving them a dusty appearance, after which the leaves turn brown, shrivel, and drop from the tree.
- Many infected fruits drop early while others develop reddish to purple, wart-like deformities on the fruit surface.
- Infections on young peach leave occur at temperatures of 10-21 C.

Disease cycle of Peach leaf curl caused by Taphrina deformans

Control of peach leaf curl

- 1- Treat trees with a fungicide in late fall using:
 - a- Copper ammonium complex
 - b- 90 % tribasic copper sulfate
 - c- Potassium resinate and potassium oleate
 - d- Bordeaux Mixture
 - e- Lime Sulfur
- 2- Select resistant Varieties.

2- Powdery mildews

- <u>Caused by members of the Family Erysiphaceae of the Order Erysiphales, Class Pyrenomycetes, Phylum Ascomycota</u>
- General characteristics of Powdery mildew fungi:
 - 1- They are obligate, biotrophic parasites
 - 2- They tend to grow superficially, or epiphytically, on plant surfaces producing whitish, powdery asexual structures (hyphae and conidia) on upper and lower leaf surfaces.
 - 3- Few genera produce endophytic hyphae.
 - 4- Infections can also occur on stems, flowers, or fruit.
 - 5- Specialized absorption cells (haustoria) extend into the plant epidermal cells to obtain nutrients.
 - 6- Conidia develop either singly or in chains on specialized conidiophores
 - 7- Conidiophores arise from the epiphytic hyphae, or in the case of endophytic hyphae, the conidiophores emerge through stomata.
 - 8- Tiny, dark sexual structures (ascomata) are produced later on infected shoots
 - 9- Infection by these fungus is favored by high humidity but not by free water.
 - 10- Individual species typically have a very narrow host range.

Powdery mildew fungi and their hosts

Fungal species	Hosts
Erysiphe graminis	Wheat, barley
E. cichoracearum	Cucurbits, Sonchus,
E. polygoni	Beans, peas
Leveillula taurica	artichoke
Sphaerotheca macularis	strawberry
Sphaerotheca pannosa	Rose, peach
Uncinula necator	Grape vine
Microsphaera alphitoides	Oak, lilac
Podsphaera leucotricha	apple
Phyllactinea corylea	Oak, elm, tulip,
Oidium mangiferae	mango

Types of conidiophores of Powdery mildew fungi

- 1- The <u>oidium</u> type: short stipe of one or more cells, conidiogenous cell and a chain of maturing conidia, e.g. *Erysiphe, Uncinula, Microsphaera, Podosphaera and Sphaerotheca*
- 2- The ovulariopsis type: with clavate conidia e.g. Phyllactinia.
- 3- The oidiopsis type: conidiophores branched arising from stomata. e.g. Levellula

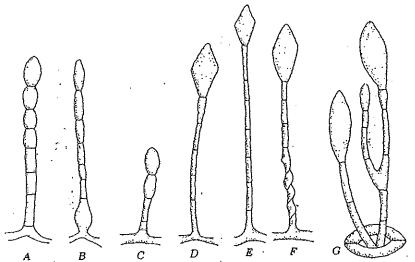
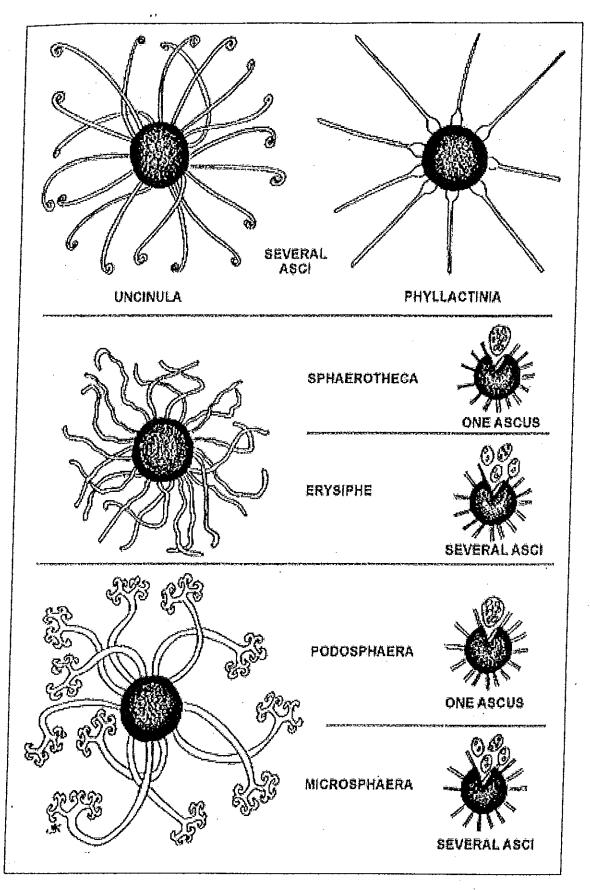
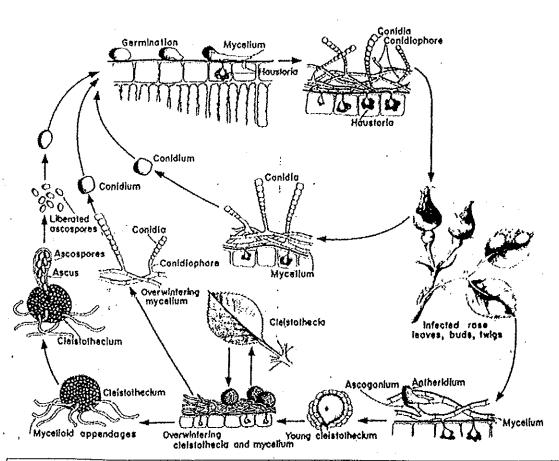



Figure 15-6. Conidiophore types. (A) Erysiphe cichoracearum. (B) Erysiphe graminis. (C) Erysiphe polygoni. (D) Phyllactinia suffulta. (E) Phyllactinia rigida. (F) Phyllactinia subspiralis. (G) Leveillula taurica. (Redrawn from Blumer. 1933. By R. W. Scheetz.)

<u>Key to Genera of Powdery Mildew Fungi</u> (based on ascomatal appendages and number of asci)


- Appendages cölled or hooked at a tip all and a second at a tip all and a second at a tip all a tip all a second at a tip all a tip all a second at a tip all a tip all a tip all
- Appendages simple and straight with bulb-like base --- Phyllactinia
- Appendages branching dichotomously at tip, Cleistothecium contains a single ascus
 ------Podosphaera
 # Cleistothecium contains several asci ------Microsphaera

Types of Ascomata of powdery mildew fungi

Disease cycle of powdery mildew fungi

- 1- The fungus can overwinter as dormant mycelium or resting ascospores (in dark cleistothecia) on infected stems or leaves.
- 2- In spring, dormant mycelia becomes active producing asexual conidia while the cleistothecia produce ascospores.
- 3- Conidia and ascospores are then carried by wind to susceptible young plant parts.
- 4- when a conidium germinates on host leaf surface it produces a germ tube which gives an appressorium.
- 5- From the appressorium a penetration hypha grows through the cuticle and cell wall then swells out in the epidermal cell to form a haustorium (globular or finger-like in shape). The haustorium is a fungus structure that takes the nutrients from the plant 6-Further germ tubes, appressoria and haustoria are produced and the fungus grows out radially from the point of inoculums.
- 7- About 4 days after inoculation, sporulation starts extending outwards giving conidial chains
- 8- Dark pin point cleistothecia develop superficially in the same mycelial felt.
- 9- Cleistothecia overwinter and provide inoculums for infection of next season's crop.

Disease cycle of powdery mildew of rose by Sphaerotheca pannosa

Factors influencing disease development

- 1- Moisture: Powdery mildews are most severe in dry weather. germination of conidia is poor in free water. Spore maturation and release usually occurs during the day when relative humidity is low, at night an increase in relative humidity favors spore germination and penetration of the fungus.
- 2- <u>Temperature</u>: 11-28 C is favorable for infection. Cool damp nights and warm sunny days favor the development of Powdery Mildew.
- 3- <u>Light:</u> Higher incidence of powdery mildew on shaded than on exposed leaves. Effects of light include increased conidial germination, negative phototro-pism of germ tubes to white light (+ve to green).
- 4- Soil <u>fertility</u>: mineral nutrition (K, N, P) affects susceptibility. K- deficiency increases susceptibility.
- <u>5-</u> <u>Others</u>: Closely planted gardens with some air movement are ideal conditions for spread of this disease.

Symptoms of powdery mildews:

- Slightly raised blister like areas on the upper leaf surfaces.
- Later, the young expanding leaves become twisted, distorted and covered with a white powdery mass of mycelium and spores.
- Young peduncles, sepals, petals and stems may also show distortion while growing tips and buds may be killed.
- Infected older leaves and stems may remain symptomless

Control of powdery mildew

- 1- Separation of new plantings from old ones.
- 2- Application of crop rotation of at least 1 year.
- 3- Control of weeds especially those related to host plants.
- 4- Fungicide sprays: e.g. with sulfur, karathane (0.1%), benlate (0.1%), calixin. Seed treatment with bayleton (0.1-0.2%) or its spray on leaves (200-500 ug /ml)
- 5- Breeding of resistant varieties:

3- Apple scab by Venturia inaequalis

Symptoms:

Dull black or grey-brown lesions on the surface of tree leaves, buds or fruits.

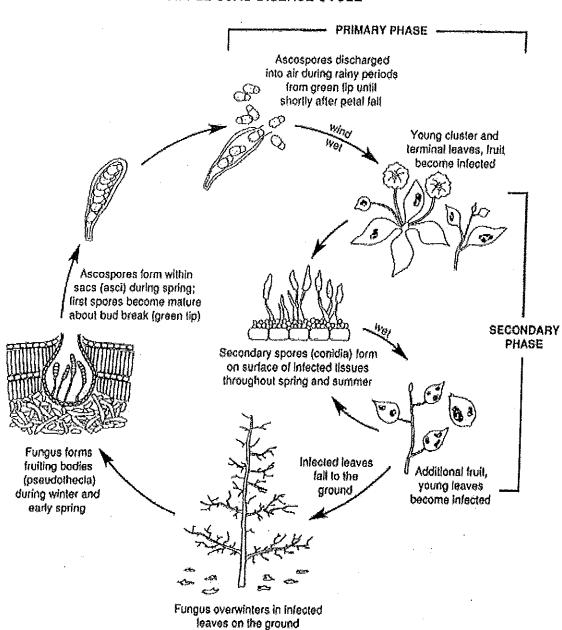
Lesions may also appear less frequently on the woody tissues of the tree.

The disease rarely kills its host, but can significantly reduce fruit yields and fruit quality.

Affected fruits are less marketable due to the presence of the black fungal lesions.

Ascomycota
Dothideomycetes
Pleosporales
Venturiaceae
Venturia inaequalis

Life cycle


- 1. The infection cycle begins in the springtime, when suitable temperatures and moisture promote the release of *V. inaequalis* ascospores from leaf litter around the base of previously infected trees.
- 2. These spores rise into the air and land on the surface of a susceptible tree, where they germinate and form a germ tube that can directly penetrate the plant's waxy cuticle.
- 3. A fungal mycelium forms between the cuticle and underlying epidermal tissue, starting as a yellow spot that grows and ruptures to reveal a black lesion bearing the asexually as the conidia are released and germinate on fresh areas of the host tree, which in turn produce another generation of conidial spores.
- 4. This cycle of secondary infections continues throughout the summer, until the leaves and fruit fall from the tree at the onset of winter.
- 5. Over the winter, *V. inaequalis* undergoes sexual reproduction in the leaf litter around the base of the tree, producing a new generation of ascospores that are released the following spring.
- 6. Scab lesions located on the woody tissues may also overwinter in place, but will not undergo a sexual reproduction cycle; these lesions can still produce infective conidial spores in the spring.

Control:

- a- Resistant cultivars: Breeding programs to develop high quality disease-resistant apple cultivars
- b- Sanitation: Prevention of pseudothcial formation in overwintering apple leaves would probably eliminate scab as a serious threat to apple production. Leaf pickup and destruction in late autumn can be employed. Applications of 5% urea to foliage in autumn can hasten leaf decomposition, thus reducing formation of pseudothecia.

c- Chemical treatment: Protectant fungicides prevent the spores from germinating or penetrating leaf tissue. Postinfection fungicides control the scab fungus inside leaves and fruit. These chemicals can penetrate plant tissues to eliminate or inhibit lesion development. Several fungicides are available for controlling apple and pear scab. These include fixed copper, Bordeaux mixtures, copper soaps (copper octanoate), sulfur, mineral or neem oils, and myclobutanil. All these products except myclobutanil are considered organically acceptable

APPLE SCAB DISEASE CYCLE

4- Dutch elm disease (DED) by Ophiostoma ulmi

Symptoms:

Dutch elm disease results in the blockage of the waterconducting tissue within the tree.

Initial symptoms include discoloration and wilting of foliage.

This insect (Scolytus scolytus) feeds primarily on small branches high in the tree crown.

Foliage on diseased branches turns yellow. .

Wilt symptoms continue to progress on other branches in the tree crown over successive weeks or months.

Foliage throughout the crown wilts and the tree dies.

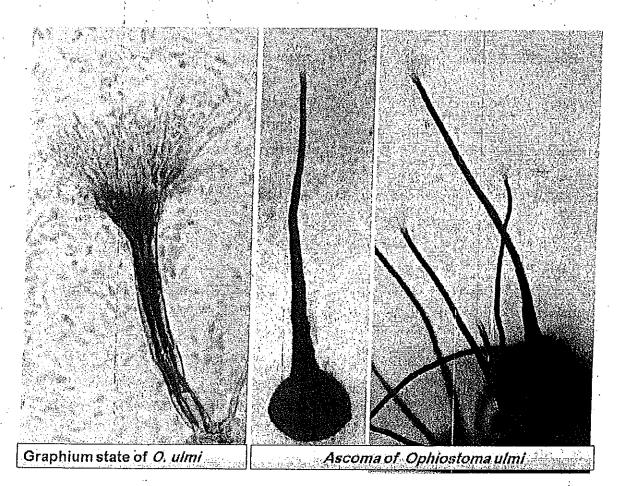
Another diagnostic feature is the formation of brown streaks in infected sapwood.

Fungi

Pezizomycotina

Sordariomycetes

Ophiostomatales


Ophiostomataceae

Ophiostoma ulmi

This is common in trees where infections started by beetle transmission.

Discoloration may occur in the main trunk on trees rapidly killed by root graft infection.

Branches infected with the fungus typically have long brownish: red streaks running the length of a branch section.

Control:

Dutch elm disease control involves two different but related programs: (1) community-wide sanitation programs designed to reduce the level of elm bark beetles (principal carriers of the Dutch elm disease fungus); and (2) prevention of the spread of the disease through natural root grafts from infected trees to adjacent healthy trees.

<u>Insecticides:</u> Dursban insecticide spray of tree bases as part of their regular DED control program

Sanitation: destruction of all dead or dying elm wood present in the community.

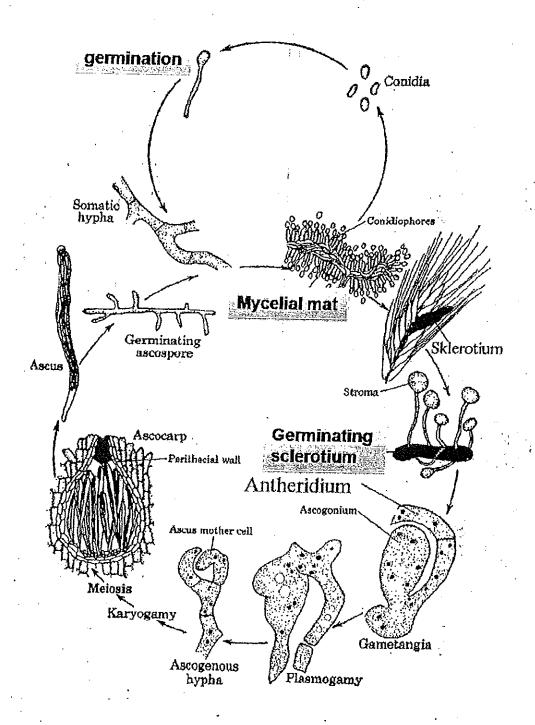
The only way to prevent transmission through the roots is to create a barrier between diseased and healthy trees by severing or killing those roots between the trees

<u>Chemical Treatment:</u> Systemic fungicides (Arbotect) can be injected into the trunk or root-collar of the affected tree

Therapeutic tree injection is generally only effective where less than 5 percent of the crown of the tree shows symptoms.

<u>Protective Treatmant of Healthy Elms:</u> The most effective chemical currently available is Arbotect.

5- Ergot Disease of cereals by Claviceps purpurea


Symptoms and Signs

- Dark purple to black sclerotia (ergot bodies) found replacing the grain in the heads of cereals and grasses just prior to harvest.
- The ergot bodies consist of a mass of vegetative strands of the fungus. The interior of the sclerotia is white or tannish-white.
- In some grains, ergot bodies are larger than the normal grain kernels, while in other grains, such as wheat, grain kernels and the ergot bodies may be similar in size.
- Prior to development of the sclerotia bodies, the fungus develops a honey dew stage in the open floret.
- The "honey dew" consists of sticky, yellowish, sugary excretions of the fungus.

• <u>Disease Cycle of Claviceps purpurea</u>

- Sclerotia produced in small grain fields or grassy areas fall to the ground and survive on the surface of the soil.
- In the spring and early summer, the sclerotia germinate to produce tiny mushroom-like bodies (stroma) approximately the size of a pin .
- Spores (ascospores) formed by a sexual process in these bodies are shot into the air, and wind currents may carry them to grain heads.
- The first infections are from these wind-borne ascospores which invade the embryo of the developing kernel
- Soon a yellow-white, sweet, sticky fluid ("honey-dew") exudes from the infected flowers. The fluid contains a large number of asexually produced fungus conidia.

- Many species of insects visit the "honey-dew" and become contaminated with the fungus spores.
- These insects visit other grass flowers and spread the fungus.
- Spores may be transferred to other grain heads by rain-splash and direct contact, as well.
- Once the fungus becomes established in the florets, it grows throughout the embryos and replaces them, later producing the dark sclerotia.
- Many sclerotia fall to the ground before harvest and overwinter on the soil surface, serving as potential sources of spores the following year.

Life cycle of Claviceps purpurea

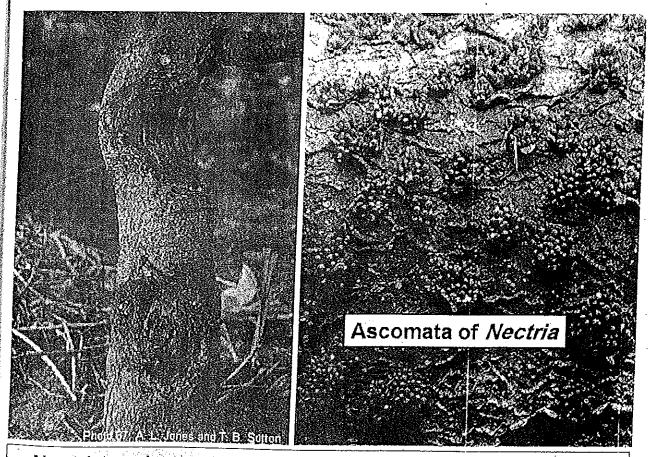
6- Nectria canker of hardwoods

Causal agent: Nectria galligena Bres.

Host: beech, white and yellow birch, red and sugar maple, poplar, and willow.

Symptoms:

A depressed or flattened area of bark near small wounds or at the base of dead twigs or branches is the first indication of the disease.


These areas may have a darker color and a water-soaked appearance.

The older and larger cankers may be concentric or target-shaped with callous ridges evident and the bark completely sloughed off or irregular in shape and lacking evidence of callous tissue.

The tiny, red, balloon-like fruiting bodies may be evident on the canker margin.

Cankered area is partially or completely covered by a roll of callus, (the tree is overcoming the infection.

The resulting deformation reduces the value of the tree

Nectria canker on apple tree caused by Nectria galligena

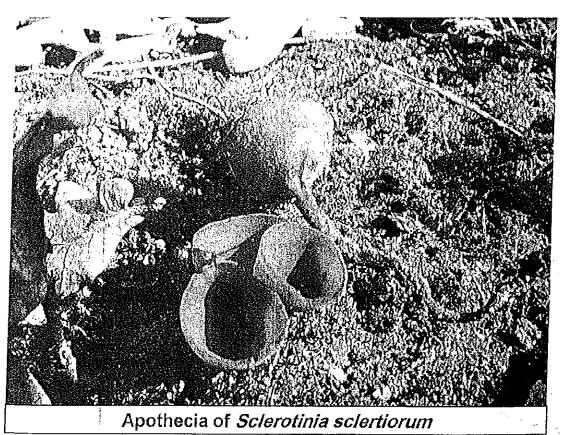
7- Soft rot Diseases by Sclerotinia sclerotiorum

<u>Hosts:</u> Cabbage, bean, citrus, celery, coriander, melon, squash, soybean, tomato, lettuce, carrots,, onions, peas, pumpkins and cucumber.

Symtoms:

Water-soaked spots on fruits, stems, leaves, or petioles which usually have an irregular shape. These spots enlarge and a cottony mycelium covers the affected area.

The fungus spreads and the plant becomes a soft, slimy, water-soaked mass.


The cottony mycelium usually produces numerous sclerotia, black seed-like reproductive structures, a reliable diagnostic sign of *Sclerotinia* (these usually do not form until after host death).

In contrast to the water-soaked symptoms, the host may exhibit "dry" lesions on the stalk, stems, or branches, with an obvious definition between healthy and diseased tissues. The lesions enlarge and girdle the plant part.

Distal portions of the plant become yellow, then brown, then die.

The girdled portion is often the base of the plant which causes the plant to die.

Sclerotia form within the stem pith cavities, fruit cavities, or between tissues (i.e., bark and xylem).

VI- Diseases caused by Basidiomycota

- These are the most structurally complex fungi, and include what we commonly call mushrooms, toadstools and bracket fungi. Rust and smut fungi are plant parasitic basidiomycetes.
- Basidiomycetes are characterized by a <u>septate mycelium</u>.
- The septa are highly complex and are pierced by a particular kind of pore termed a dolipore.
- The dolipore does not allow nuclei to pass through the septum.
- Consequently, hooked outgrowths called <u>clamp connections</u> are formed to ensure the proper distribution of nuclei as the hyphae grow.

The Basidiomycota have three classes:

a) Hymenomycetes

- Mushrooms and toadstools, composed of highly complex fruiting bodies (basidioma) and networks of dikaryotic mycelia.
- Basidioma have pores or gills, which are lined with basidia.
- Mushrooms as Armillaria mellea attack roots and trunks of many trees.
- Bracket fungi as Ganoderma grow on solid substrates such as tree trunks.

b) Uredinomycetes

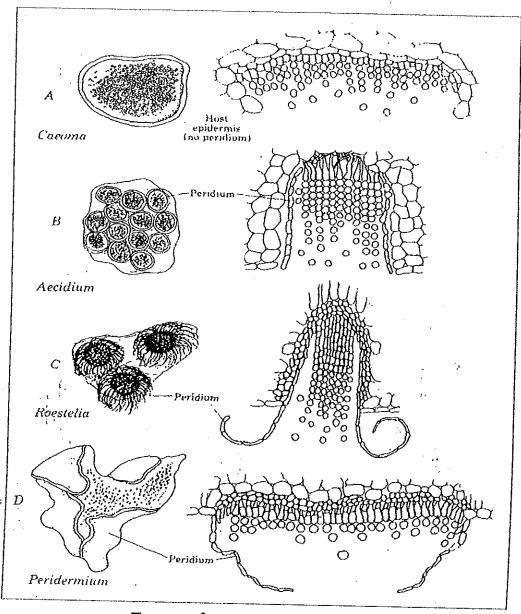
- These are highly specialized plant pathogens which can only grow and reproduce on their host species or closely related species.
- Over 6000 members of the Uredinomycetes (commonly known as rusts) are important members of these sub-phyla.
- Wheat and bean rusts are economically important diseases.

Rust Diseases caused by Order: Uredinales

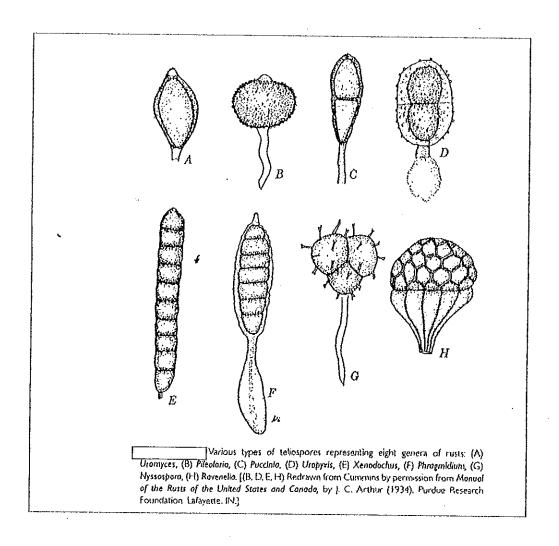
- 1- <u>Family Pucciniaceae</u>: (teliospores stalked)
 - a. Uromyces fabae, U. appendiculatus
 - b. Puccinia graminis tritici
 - c. Hemilea vastatrix
 - d. Gymnosporangium junperi- virginianae
 - e. Phragmidium mucronatum
- 2- <u>Family Melampsoraceae</u>: (teliospores sessile)
 - a. Melampsora lini
 - b. Cronartium ribicola

The life cycle of a typical rust species is among the most complex found anywhere in nature, consisting of five different spore stages (macrocyclic) on two plant hosts which are taxonomically entirely unrelated to each other.

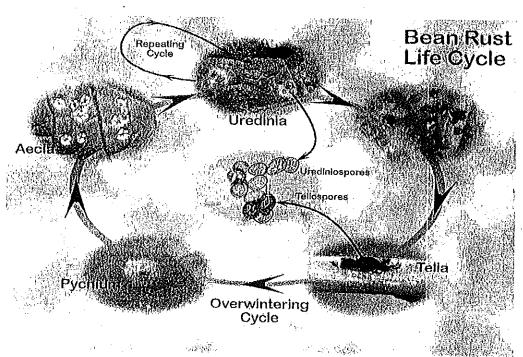
The macrocyclic lfe cycle is consisting of:


A- Spermogonium or pycnial stage

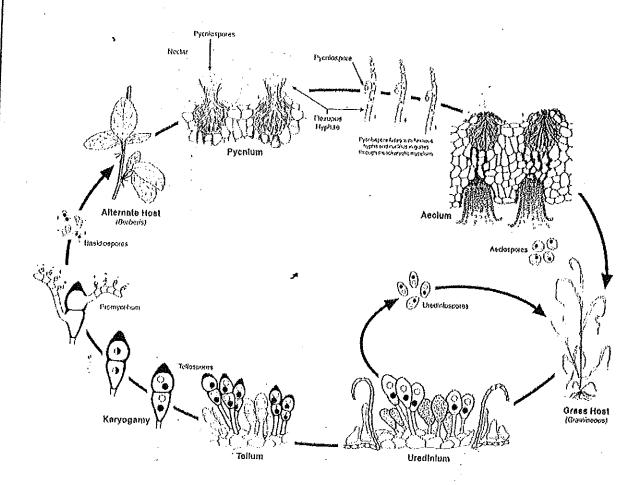
B- Aecial stage


C- Uredial stage

D- Telial stage


E- Basidial stage (in soil)

Types of aecia of rust fungi



A- Rust of broad bean by Uromyces fabae

B- Black stem rust of wheat caused by Puccinia graminis

- Life cycle: (macrocyclic, 5 stages)
 - A- Spermogonium or pycnial stage: on upper srface of Berberis vulgaris leaves
 - B- Aecial stage :(on lower surface of Berberis leaves)
 - G-'Uredial stage (early on wheat stem)
 - D' Telial stage (late on wheat stem)
 - E- Basidial stage (in soil)

Disease cycle of black stem rust of wheat caused by Puccinia graminis tritici

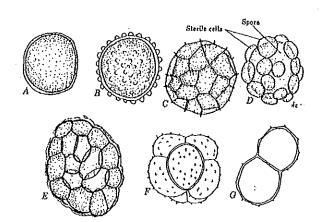
- C- Yellow (stripe) rust of wheat by Puccinia striiformis
- D- Orange rust on wheat leaves by Puccinia recondite
- E- Rust of garlic by Puccinia allii
- F- Peanut rust by Puccinia arachidis on the underside of leaves
- G- Aple rust by Gymnosporangium clavariaeforme
- H- Rust of rose by Phragmidium mucronatum
- I- White pine rust by Cronartium ribicola
- J- Rust of flax by Melampsora lini

c) Ustilagomycetes

They are commonly known as smuts, and over 1000 members of this class live in a similar manner to the rusts, as obligate biotrophic fungi – they can only grow on living plants.

Maize Smut, caused by Ustilago maydis is an economically important disease

Smut Diseases caused by Order: Ustilaginales


1- Family Ustilaginaceae

Ustilago maydis, Ustilago tritici, Ustilago hordei, Ustilago avenae, Sphacelotheca sorghi, S. reliana Tolyposporium ehrenbergii

2- Family tilletiaceae

Tilletia caris Urocystis cepulae

3- Family: Graphiolaceae
Graphiola phoenicis

Modes of infection by smut fungi

1- Embryo infection:

· Loose smut of wheat by U. nuda

2- Seedling infection:

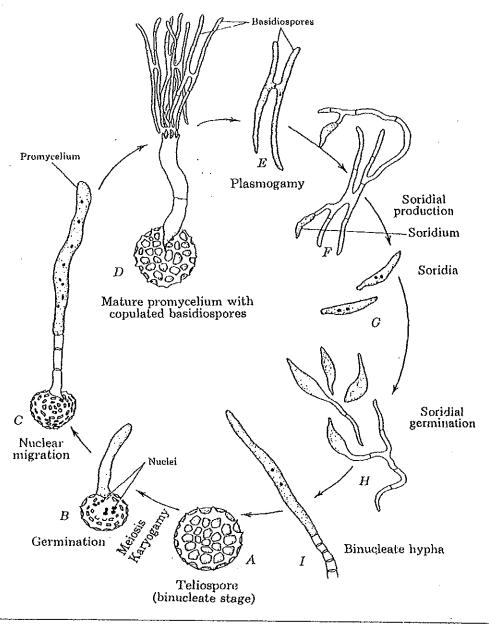
- Loose smut of oats by U. avenae
- Covered smut of barley by U.hordei
- Stripe smut of grasses by U. striiformis
- Dwarf bunt of wheat by Tilletia contraversa
- Onion smut by Urocystis cepulae

3- Shoot or local infection:

- Smut of anthers of Melandrium album by U. violaceae.
- Sugarcane smut by U. scitaminae
- Long smut of sorghum by Tolyposporium ehrenbergii
- Common smut of corn by U. maydis
- Rice bunt by Tilletia barclayana

Examples of smut diseases

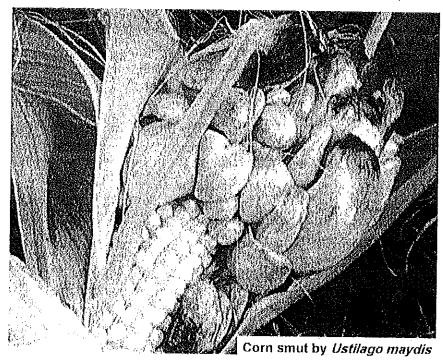
1- Loose smut of wheat and barley by U. nuda

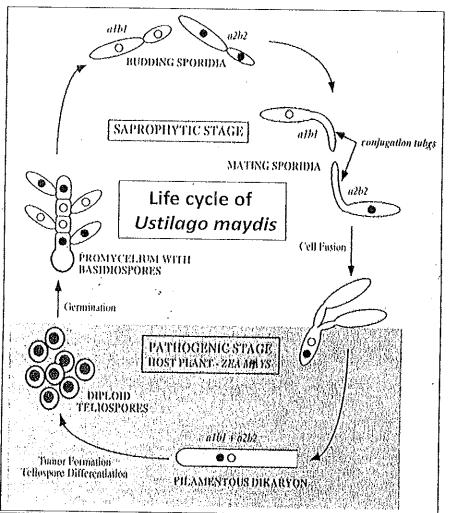

- Embryonic infection.
- It is not possible to determine whether a plant is diseased or not until the ears emerge when in infected plants the inflorescence is replaced by a mass of black, smut spores.
- Flag leaf may be infected in highly susceptible plants.
- Only glumes are affected in resistant plants
- Once spores are exposed they are blown by wind to flowers of healthy plants.
- Infection by *U. nuda* occurs through ovary walls, hyphae cross pericarp, enter the testa (intracellular), move towards the embryo (intercellular).
- Infected grains appear as healthy.
- When grains germinate, fungal mycelium becomes active, passes into the crown node of the seedling and is carried up during growth to the inflorescence primordea.
- Spore formation begins some weeks before the ears emerge and is complete at emergence.

2- Loose smut of oat:

- caused by Ustilago avenae
- · Seedling infection.
- · Spores are dispersed at flowering.
- On germination, the mycelium becomes established in glumes and pericarp.
- Embryo not invaded.
- When seeds are planted the dormant mycelium becomes active and invades the young seedlings.
- Subsequent development of the fungus is similar to that of U. nuda.

3- Bunt of wheat (stinking smut)


- caused by Tilletia caries. Seedling infection.
- Spores have an odor of bad fish (trimethylamine).
- All parts of the grain except the coat are replaced by smut spores.
- Infected grains (Bunt balls) are shorter and plumper than healthy.
- Broken bunt balls release millions of spores which contaminate healthy grains
- When contaminated grains are sown, spores on the grain coat germinate and the binucleate hyphae formed by fusion of sporedial cells infect the young coleoptile.
- Subsequent events are similar to those in U. nuda



Life cycle of Tilletia carie cause of bunt of wheat

- <u>4-</u> <u>Sugarcane smut</u>: Black, whiplike sorus arising from the terminal meristem of a stalk infected by *Ustilago scitaminea*.
- 5- Onion smut by Urocystis cepulae

6- Common smut of corn by Ustilago maydis

VII- Diseases caused by Deuteromycetes

1- Fusarium and Verticillium wilts

Fungus	Host
F. oxysporum f.sp. lycopersici	Tomato, potato, eggplant
F. oxysporum f.sp. vasinfectum	Cotton
F. oxysporum f.sp. conglutinans	Cabbage
F. oxysporum f.sp. Cubense	banana
F. oxysporum f.sp. betae	sugarbeet
Verticillium alboatrum (dark resting mycelium)	Tomato, alfalfa
Verticillium daliae (microsclerotia)	Potato, tomato,
Verticillium nigrescens (chlamydospores)	Tomato

Mode of infection and survival:

- Wilt inducing forms of *Fusarium* and *Verticillium* enter their hosts through uninjured young roots or injured old roots.
- Plants infested by nematodes are severely attacked by wilt fungi.
- Fungi invade root cortex but do not damage it to a great extent. They become established in xylem vessels.
- Fungal enzymes disintegrate walls of xylem vessels.
- Fungal toxins are considered as a cause of wilt.
- <u>Survival</u>: by resting mycelium, chlamydospores or microsclerotia.

Disease symptoms:

- Lower leaf-petioles bend downwards (epinasty)
- Slight vein clearing and yellowing of the lower leaves.
- Chlorosis and death of leaves.
- Similar symptoms develop on younger leaves.
- During hot days, leaves wilt ,then recover at night.
- Wilt becomes permanent and plants die.
- Browning of vascular system.
- Water supply to leaves is plugged with fungal mycelium, conidia, tyloses and gums
- Some collapse of the vessels and disintegration of adjoining parenchyma.

4- Bean Anthracnose by Colletotrichum lindemuthianum

- Symptoms and Signs
- Seedlings grown from infected seeds often have dark brown to black sunken lesions on the cotyledons and stems.
- Severely infected cotyledons senesce prematurely, and growth of the plants is stunted.
 Diseased areas may girdle the stem and kill the seedling.
- Under moist conditions, small, <u>pink masses of spores are produced in the lesions.</u> Spores
 produced on cotyledon and stem lesions may spread to the leaves.
- Symptoms generally occur on the underside of the leaves as linear, dark brick-red to black lesions on the leaf veins. As the disease progresses, the discoloration appears on the upper leaf surface.
- On pods. Small, reddish brown to black lesions.
- Mature lesions are surrounded by a circular, reddish brown to black border.
- During moist periods, the interior of the lesion may exude pink masses of spores.
- Severely infected pods may shrivel, and the seeds they carry are usually infected.
- Infected seeds have brown to black sunken lesions.

5- Post harvest diseases

Disease Causal agent!	
Spoilage of corn grains	Aspergillus flavus,
Rot on peanut kernels	Aspergillus flavus
Blue rot of apple fruits	Penicillium expansum
Blue rot of Citrus fruits	Penicillium italicum
Green rot of Citrus fruits	Penicillium digitatum
Cladosporium rot of corn	Cladosporium cladosporioides
Penicillium rot of corn	Penicillium oxalicum
Fusarium rot of corn	Fusarium graminearum

Physiology of fungi

For 4th year of B.Sc. students

Prepared by

Prof. Dr. Abdelrahman Saleem

2022

Physiology of fungi

Culture media

Classification of culture media

Criteria used for classifying culture media includes their chemical composition, physical properties and their use. Every culture medium is designed for a definite use and hence its physical and chemical characteristics depend on its application and function.

I- Classification of culture media according to their use

According to their use culture media are divided into the following types:

- 1- Routine laboratory media: These media contain certain complex raw materials of plant or animal origin such as yeast extract, malt extract, peptone etc., and are employed for routine cultivation and maintenance of a wide variety of fungi.
- **2- Enriched media**: These media are prepared by supplementing the routine laboratory media with some specific substances such as vitamins and amino acids to meet the nutritional requirements of more fastidious of fungi and are employed for their cultivation.
- **3- Selective media**: These media facilitate the isolation of a particular group or species of microorganisms from mixed cultures. Such media contain substances which inhibit microorganisms except the desired group or species, such as mannitol salt agar and tellurite media.
- **4- Differential media**: These media are supplemented with certain reagents or chemicals for differentiating between various kinds of microorganisms on the basis of visible differences in their growth patterns. Such type of media is used more often in bacteriological studies such as eosin methylene blue agar and deoxycholate citrate agar.

- **5- Assay media**: These type of media is specifically employed for the assay of some metabolites such as enzymes, vitamins, amino acids, antibiotics, disinfectants etc., and are of definite composition.
- **6- Biochemical media**: These media are generally used for the differentiation of microorganisms on the basis of their biochemical activities, and are helpful in the study of their metabolic processes.
- II- Classification of culture media according to their chemical composition: According to their chemical composition media are classified into the following types:
- 1- Natural media: The natural medium comprises entirely complex natural products of unknown composition. The raw material of a natural medium may be of plant or animal origin, and some of the common ingredients employed for this purpose include extracts of plant and animal tissues, e.g., fruits, vegetables, egg, milk, blood, body fluids, yeast, malt and manure extracts etc. Obviously, the chemical composition and concentration of a natural medium is not well defined. On account of their complex nature, these media are able to support a variety of organisms, and hence are quite useful for routine laboratory cultures of fungi.
- 2- Semisynthetic media: These media are so designed that some of their constituents are of known chemical composition, while others are derived from some natural sources with unknown composition. The chemical composition of a semisynthetic medium is partly known. The medium is a best serve as a routine medium and sometimes for physiological studies. Potato dextrose agar (PDA) is one of the popular media.
- **3- Synthetic media:** These are chemically defined media of known composition and concentration. The media are exclusively composed of pure chemical substances. However, absolute purity of the ingredients is achieved, although substances of only analytical reagent quality are used for such purposes. One account of their known composition as well as being in solution, these media are quite useful for nutritional and metabolic studies of fungi. The composition of

these media may be amended as per requirement and as such they may be simple or complex in composition. A simple synthetic medium contains a single carbon and energy source, a nitrogen source, generally as ammonium salt, some sulphur and phosphorus sources and various minerals. All these ingredients are dissolved in a buffered aqueous base. However, for more fastidious organisms, a complex synthetic medium is designed by incorporating some additional factors such as certain vitamins, amino-acids, purines, pyrimidines etc., or by employing a multitude of carbon and nitrogen sources together.

- C- According to their physical states: Media are classified into the following types:
- 1- Solid media: Media in solid state are in use since the beginning of laboratory studies of fungi. The first laboratory culture of fungi was obtained on a solid media such as fruit slices. Some common examples of such media are nutrient impregnated slices of potato, carrot, sugar-beet etc. and coagulated egg or serum. However, with the advent of agar as a solidifying agent, such media have largely been replaced by agar media. Use of fruits and vegetable slices in the cultivation of fungi is now more or less restricted to the baiting technique employed for isolation of some specific organisms.
- 2- Solid-reversible to liquid media: Such reversible media were first introduced by Koch (1881) who observed that addition of 2 to 5 percent of gelatin to the commonly employed media rendered them a semi-solid consistency. However, gelatin could not find a wide application on account of its low melting point (37°C), and also because it is hydrolyzed by many proteolytic bacteria at ordinary temperature. The use of agar for solidifying culture media was also initiated the same year and in the same laboratory.
- **3- Semi-solid media:** These are media with gelatinous consistency and are employed for specific purpose. They contain a small amount of agar or some other solidifying agent like corn meal. These media are sometimes used for the study of motile reproductive structures of fungi.

4- Liquid media: These are media without any solidifying agent, and are indispensable for most of the quantitative studies of fungi. Nutritional and metabolic studies of fungi, as well as microbiological assays are invariably carried on liquid media. Some of the advantage of liquid media is that they permit the cultures to be aerated, the mycelium to be weighed and the metabolic products to be analyzed easily. However, with respect to routine studies, liquid media have some distinct disadvantages. Growth in liquid media does not manifest the morphological characteristics of microorganisms. They are also difficult to handle without disturbing the culture. Moreover, liquid media are least helpful in the purification of microorganisms from a mixed culture. For an even distribution of nutrients and for providing uniform aeration to growing fungus, the liquid cultures are sometimes put to constant mechanical shaking.

Sterilization

Sterilization refers to the process that effectively kills or eliminates transmissible agents (such as fungi, bacteria, viruses and spore forms etc.) from a surface, equipment, foods, medications, or biological culture media.

Sterilization can be achieved through application of heat, chemicals, irradiation and filtration.

There are three main methods for sterilization

- 1- Physical methods
- 2- Chemical methods
- 3- Mechanical methods

1- Physical methods

Sterilization by heat

Heat may be utilized for sterilization either in dry or moist form. However, moist heat is much more effective and requires both shorter duration and lower temperature. Sterilization by moist heat generally is complete at 121°C for 15-30 minutes of exposure. On contrast, sterilization by dry heat requires a temperature

of 160°C for 60 minutes. The two kinds of heat treatments kill the microorganisms by coagulating and denaturing their enzymes and other proteins.

Application of dry heat

- a- Flaming
- b- Hot-air oven
- c- Radiation (Infra-red or Ultra violet)

Application of moist heat

The use of the Autoclave for sterilization

Chemical methods

Using of chemical substances as agents, like chloroform, mercuric chloride, formaldehyde and ethyl alcohol.

3- Mechanical methods

Sterilization by filtration

This technique employs special type of filters having pores so small that ordinary bacteria are arrested. This method is particularly useful for sterilizing heat sensitive materials, such as culture media containing serum, antibiotic solutions, culture filtrates etc. The most common filters are Seitz filters and Cellulose membrane filters.

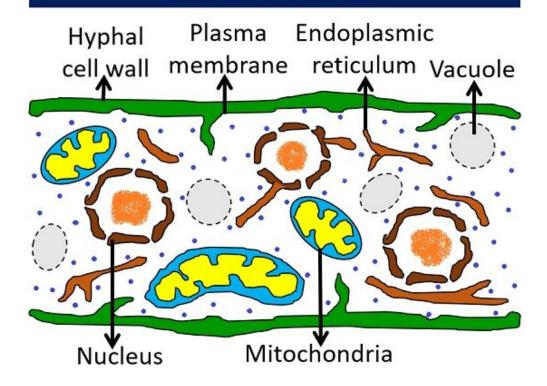
Fungal cell structure

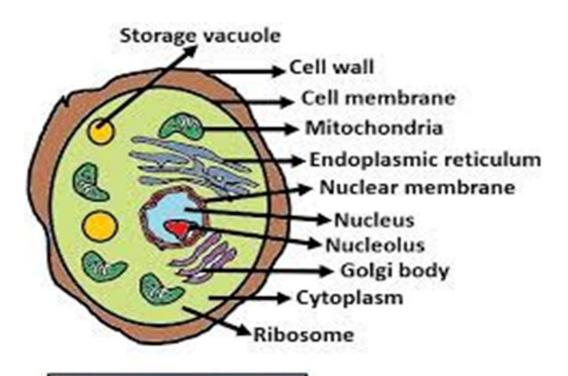
Fungi are eukaryotic organisms that include microorganisms such as yeasts, molds and mushrooms. These organisms are classified under kingdom fungi. They are classified as heterotrophs among the living organisms. They are also found in most skin infections and other fungal diseases. Fungi usually grow in places which are moist and warm enough to support them. The structure of fungi can be explained in the following points:

- 1. Almost all fungi have a filamentous (multicellular) structure except the yeast which are unicellular microorganisms.
- 2. Fungi consist of long thread-like structures known as hyphae. These hyphae together form a mesh-like structure called mycelium.
- 3. Fungi possess a cell wall which is made up of chitin and polysaccharides.
- 4. The cell wall comprises a protoplast, which is differentiated into other cell parts such as cell membrane, cytoplasm, cell organelles and nuclei.
- 5. The nucleus is dense, clear, with chromatin threads. The nucleus is surrounded by a nuclear membrane.
- 6. Fungi are eukaryotic, non-vascular, non-motile and heterotrophic organisms.
- 7. They reproduce by means of spores (sexual or asexual).
- 8. Fungi exhibit the phenomenon of alternation of generation.
- 9. Fungi lack chlorophyll and hence cannot perform photosynthesis.

Based on mode of nutrition, fungi can be classified into 3 groups.

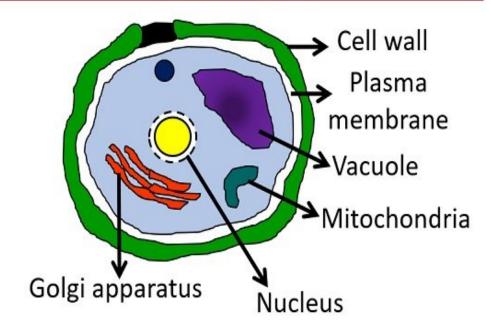
- 1. **Saprophytic fungi** The fungi obtain their nutrition by feeding on dead organic substances such as *Aspergillus*, *Penicillium* and *Rhizopus*.
- 2. **Parasitic fungi** The fungi obtain their nutrition by living on other living organisms (plants or animals) and absorb nutrients from their host such as *Taphrina* and *Puccinia*.
- 3. **Symbiotic fungi**—These fungi live with other species in which both are mutually benefited such as Lichens and mycorrhiza. Lichens are the


symbiotic association between algae and fungi. Here both algae and fungi are mutually benefited as fungi provide shelter for algae and in reverse algae synthesis carbohydrates for fungi. Mycorrhiza is the symbiotic association present between fungi and plants. Fungi improve nutrient uptake by plants, whereas, plants provide organic molecules like sugar to the fungus.

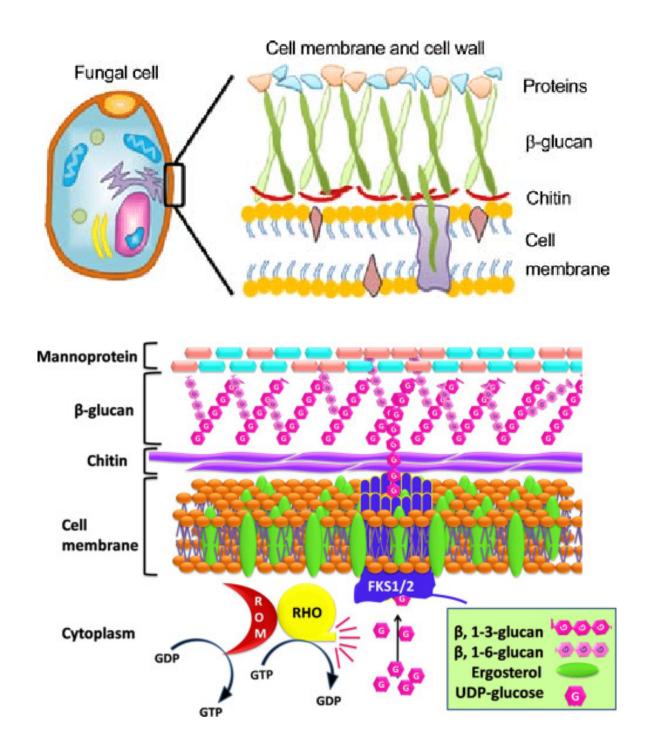

Based on spore formation, Kingdom fungi are classified into the following:

- Zygomycetes These are formed by the fusion of two different cells. The sexual spores are known as zygospores, while the asexual spores are known as sporangiospores. The hyphae are without septa. Example *Mucor* and *Rhizopus*.
- 2. **Ascomycetes** They are also called sac fungi. They can be coprophilous, decomposers, parasitic or saprophytic. The sexual spores are called ascospores. Asexual reproduction occurs by conidiospores. Example *Saccharomyces*, *Aspergillus* and *Penicillium*.
- 3. **Basidiomycetes** Mushrooms are the most commonly found basidiomycetes and mostly live as parasites. Sexual reproduction occurs by basidiospores. Asexual reproduction occurs by conidia, budding or fragmentation. Example- *Agaricus*.
- 4. **Deuteromycetes** They are otherwise called imperfect fungi as they do not follow the regular reproduction cycle as the other fungi. They do not reproduce sexually. Asexual reproduction occurs by conidia. Example *Alternaria* and *Trichoderma*.

Fungi are eukaryotes and have a complex cellular organization. As eukaryotes, fungal cells contain a membrane-bound nucleus where the DNA is wrapped around histone proteins. A few types of fungi have structures comparable to bacterial plasmids (loops of DNA). Fungal cells also contain mitochondria and a complex system of internal membranes, including the endoplasmic reticulum and Golgi apparatus.


FUNGAL MOLD

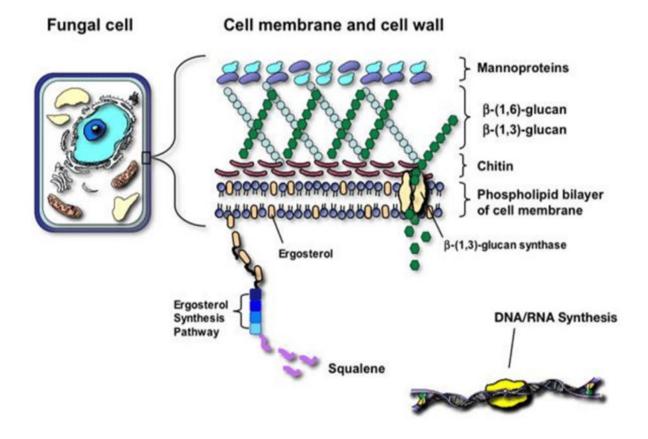
Fungal cell


YEAST CELL

Unlike plant cells, fungal cells do not have chloroplasts or chlorophyll. Many fungi display bright colors arising from other cellular pigments, ranging from red to green to black. The poisonous *Amanita muscaria* (fly agaric) is recognizable by its bright red cap with white patches. Pigments in fungi are associated with the cell wall. They play a protective role against ultraviolet radiation.

Composition of fungal cell wall

In Eumycota the hyphal cells are bounded by a cell wall. Its composition generally varies in different fungal groups. According to workers like Aronson (1965) and Bartnicki-Garcia (1970) fungal cell walls contain proteins, lipids and 80%-90% polysaccharides. Most common cell wall component is chitin. However, in some fungi cellulose or glucans are present. Cellulose is generally a polymer of D-glucose. According to Bartnicki-Garcia (1968) some other substances associated with the fungal cell wall in different members are cellulose-glycogen, Cellulose-glucan, cellulose-chitin, chitin-glucan, mannan-glucan, mnnan-chitin and polygalactosaminegalactan.



The rigid layers of fungal cell walls contain complex polysaccharides called chitin and glucans. Chitin, also found in the exoskeleton of insects, gives structural strength to the cell walls of fungi. The wall protects the cell from desiccation and predators. Fungi have plasma membranes similar to other eukaryotes, except that the structure is stabilized by ergosterol: a steroid molecule that replaces the cholesterol found in animal cell membranes.

Chitin

Plasma membrane

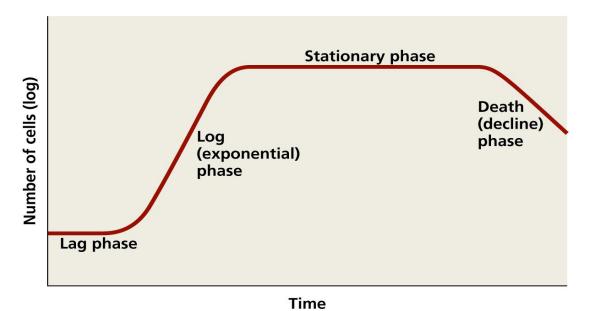
The plasma membrane, also called the cell membrane, is the membrane found in all cells that separates the interior of the cell from the outside environment. The plasma membrane consists of a bilayer of phospholipid that is semipermeable. The plasma membrane regulates the transport of materials entering and exiting the cell.

Nucleus

The nucleus is bounded by a double nuclear envelope and contains chromatin and a nucleolus. Fungal nuclei are variable in size, shape, and number. The number of chromosomes varies with the particular fungus. *Saccharomyces* cerevisiae, (n=18); *Trichophyton mentagophytes*, (n=4).

Fungal growth and nutrition

When a fungus is added to a suitable liquid medium and incubated at a suitable growth conditions, its growth follows a definite course. If the fungal counts are made at intervals after inoculation and plotted in relation to time, a growth curve obtained shows 4 phases:


Lag phase

Log or Exponential phase

Stationary phase

Decline phase

- 1. Lag phase No increase in the cell number but there is an increase in the size of the cell. Maximum cell size towards the end of the lag phase
- 2. Log or exponential phase: cells start dividing and their number increases exponentially. Smaller cells, stain uniformly.
- 3. Stationary phase: cell division stops due to depletion of nutrients & accumulation of toxic products. Equilibrium exists between dying cells and the newly formed cells, so viable count remains stationary. Irregular staining, sporulation and production of secondary metabolites such as exotoxins & antibiotics.
- 4. Decline phase: population decreases due to the death of cells autolytic enzymes. Involution forms (with ageing).

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

Growth curve of fungi

Factors affecting fungal growth

- 1- Availability of nutrients & H₂O
- 2- Temperature
- 3- Atmosphere O_2 & CO_2
- 4- H-ion concentration (pH)

Functions of nutrients

Generation of energy and synthesis of cellular materials.

Essential nutrients (basic bioelements needed for fungal growth).

H₂O: universal solvent; hydrolyzing agent

Carbon: food & energy source; in the form of carbohydrates, proteins and lipids.

Nitrogen: for amino acids and protein synthesis; nucleic acids synthesis (purines & pyrimidines).

Sulfur (sulfate): Some amino acids synthesis such as cystine and methionine.

Phosphate: key component of DNA, RNA and ATP in addition to the formation of phospholipids of the cell membrane.

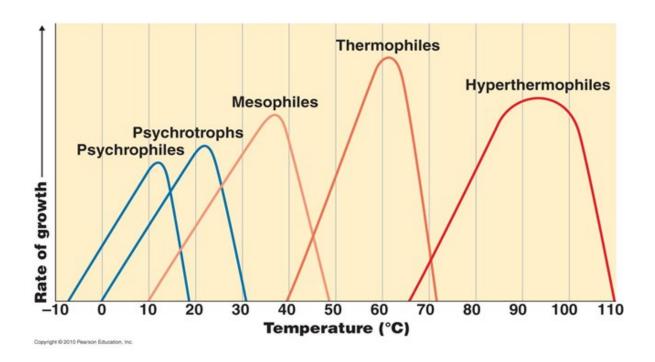
Minerals: associated with protein (i.e., Fe:PRO); common component of enzymes.

Macronutrients – needed in large quantities for cellular metabolism and basic cell structure such as C, N, H, P and O.

Micronutrients – needed in small quantities; more specialized for enzymes and pigments structure and function such as Fe, Cu, Mn and Zn.

Fastidious fungi: microbes that require other complex - nutrients/growth factors such as vitamins or amino acids.

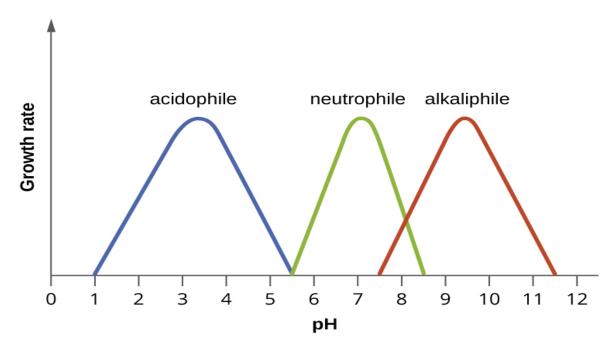
Factors affecting fungal growth


Temperature

Temperature is an important environmental factor affecting growth of molds. Fungi are capable of surviving under the full range of temperatures normally experienced in environments in which they live. The temperature ranges usually reported for fungal growth is broad (10-40°C), with a few species capable of growth below or above this range. Fungi can be divided according to their tolerance to temperature in psychrophilic, mesophilic and thermophilic fungi. Fungi are vary for their temperature requirements. Temperature range - growth does not occur above the maximum or below the minimum.

Minimum temperature – which fungi cannot grow below the minimum temperature.

Optimum temperature – which are the best for fungal growth and metabolism usually within 20-30°C for most fungi (mesophilic fungi).


Maximum temperature - which fungi cannot grow above the maximum temperature.

Hydrogen-ion concentration (pH)

Some products such as yogurt, pickles, sauerkraut, and lime-seasoned dishes all owe their tangy taste to a high acid content. The acidity is a function of the concentration of hydrogen ions [H⁺] and is measured as pH. Environments with pH values below 7.0 are acidic, with a high concentration of H⁺ ions. However, those with pH values above 7.0 are considered basic. Extreme pH affects the structure of all macromolecules. The hydrogen bonds holding together strands of DNA break up at high pH values. Lipids are hydrolyzed by an extremely basic pH. The proton motive force responsible for production of ATP in cellular respiration depends on the concentration gradient of H⁺ across the plasma membrane. If H⁺ ions are neutralized by hydroxide ions, the concentration gradient collapses and impairs energy production. But the component most sensitive to pH in the cell is its workhorse, the protein. Moderate changes in pH modify the ionization of amino-acid functional groups and disrupt hydrogen bonding, which, in turn, promotes changes in the folding of the molecule, promoting denaturation and destroying activity.

The optimum growth pH is the most favorable pH for the growth of microorganisms. The lowest pH value that an organism can tolerate is called the minimum growth pH and the highest pH is the maximum growth pH. These values can cover a wide range, which is important for the preservation of food and to the microorganism survival in the nature.

The curves show the approximate pH ranges for the growth of the different classes of microorganisms. Each curve has an optimal pH and extreme pH values at which growth is much reduced. Most fungi are neutrophiles and grow best at near-neutral pH. Acidophiles have optimal growth at pH values near 3 and alkaliphiles have optimal growth at pH values above 9.

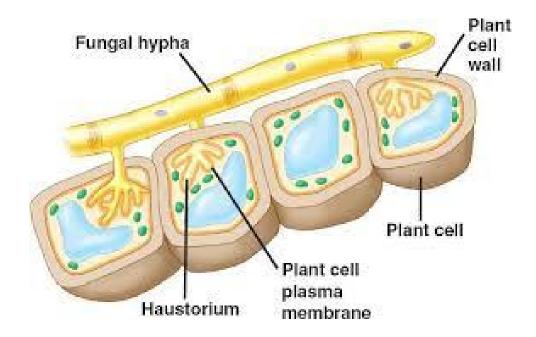
Neutrophiles

Most fungi are neutrophiles, meaning they grow optimally at a pH within one or two pH units of the neutral pH of 7, between 5 and 9. Also most familiar bacteria, like *Escherichia coli*, *Staphylococci*, and *Salmonella* spp. are neutrophiles and do not fare well in the acidic pH of the stomach. However, there are pathogenic strains of *E. coli*, *S. typhi*, and other species of intestinal pathogens that are much more resistant to stomach acid. In comparison, fungi thrive at slightly acidic pH values of 5.0–6.0.

Acidophiles

Microorganisms that grow optimally at a pH less than 5 are called acidophiles. For example, the sulphur-oxidizing Sulfolobus spp. isolated from sulphur mud fields and hot springs in Yellowstone National Park are extreme acidophiles. These archaea survive at pH values of 2.5–3.5. Species of the archaean genus Ferroplasma live in acid mine drainage at pH values of 0–2.9. Lactobacillus bacteria, which are an important part of the normal microbiota of the vagina, can tolerate acidic environments at pH values 3.5-6.8 and also contribute to the acidity of the vagina (pH of 4, except at the onset of menstruation) through their metabolic production of lactic acid. The vagina's acidity plays an important role in inhibiting other microbes that are less tolerant of acidity. Acidophilic microorganisms display a number of adaptations to survive in strong acidic environments. While the membrane is slightly leaky to protons, the cytoplasmic pH of most acidophiles is generally only slightly acidic. One of the major reasons for this is their ability to actively transport of H⁺ ions out of the cell. In addition, cytoplasmic proteins have evolved to function better at a slightly acidic pH with increased negative surface charges compared to their neutrophilic homologues. The ether linkage of the archaeal membrane lipids is more acid stable than the typical ester linked phospholipids, but in addition, acidophilic archaea typically possess tetra ether membrane lipids. The resulting monolayer structure makes their membranes a much better barrier to proton leakage in extremely low pH environments. Since these organisms may also be adapted to growing at high temperatures, the membranes also maintain their semi-fluid consistency. While the cytoplasmic proteins of acidophiles have relatively normal pH optima, those that are secreted have acidic pH optima compared to their neutrophile homologues. The gene sequences for acidophilic secreted proteins have evolved to give secondary, tertiary and quaternary structures that are resistant to the protonating effects of the acidic environment. These proteins are of great interest for their possible biotechnological applications.

Alkaliphiles


Alkaliphiles microorganisms that have pH optima between 8.0 and 11. Vibrio cholerae, the pathogenic agent of cholera, grows best at the slightly basic pH of 8.0; it can survive pH values of 11.0 but is inactivated by the acid of the stomach. When it comes to survival at high pH, the bright pink halophilic archaeon Natronobacterium, found in the soda lakes of the African Rift Valley, may hold the record at a pH of 10.5. Extreme alkaliphiles have adapted to their harsh environment through various evolutionary modifications. Alkaliphilic archaea have diether lipid membranes. The ether linkage is more resistant to chemical or thermal degradation compared to the ester-linked phospholipids. Given the paucity of protons in alkaline environments, maintaining a proton motive force is probably the most pressing challenge for alkaliphiles. One of the adaptations of alkaliphilic halophilic bacteria and archaea in soda lakes and other highly salty environments is the evolution of coupled transporters and flagella that exploit sodium motive force, thus conserving the PMF for oxidative and photophosphorylation by the ATP synthase. The cell surface of alkaliphiles has a high concentration of acidic (i.e. negatively charged) molecules and it has been suggested this acts as a "proton sponge", allowing a more rapid lateral diffusion of protons from the ETS, to the ATP synthase, compared to the rate of diffusion into the surrounding waters. Finally, alkaliphiles may use Na⁺/H⁺ antiport to create a sodium motive force. For example, the alkaliphile *Bacillus firmus* derives the energy for transport reactions and motility from SMF rather than a proton motive force. As with the acidophiles, the genes for secreted proteins of alkaliphiles have evolved to give enzymes that resist deprotonation/denaturation and chemical degradation at the high pH of their environment. These enzymes are also of interest to biotechnology companies. In fact, laundry detergents, which are alkaline in nature, contain alkaliphilic lipases and proteases to improve their stainremoving abilities.

Fungal nutrition

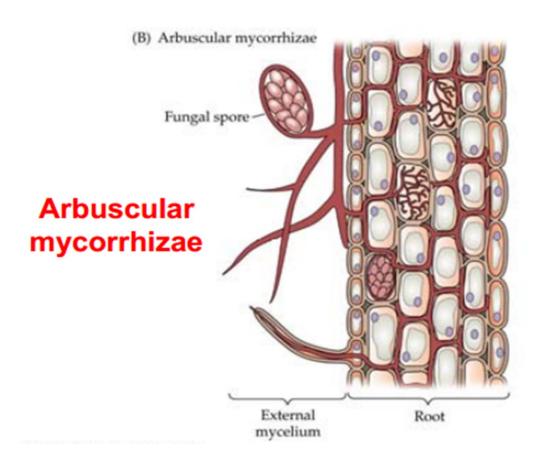
Fungi get their nutrition by absorbing organic compounds from the environment. Fungi are heterotrophic: they rely solely on carbon obtained from other organisms for their metabolism and nutrition. Fungi have evolved in a way that allows many of them to use a large variety of organic substrates for growth, including simple compounds such as nitrate, ammonia, acetate, or ethanol. Their mode of nutrition defines the role of fungi in their environment.

Fungi obtain nutrients in three different ways:

- 1- They decompose dead organic matter. A saprotroph is an organism that obtains its nutrients from non-living organic matter, usually dead and decaying plant or animal matter, by absorbing soluble organic compounds. Saprotrophic fungi play very important roles as recyclers in ecosystem energy flow and biogeochemical cycles. Saprophytic fungi, such as shiitake (*Lentinula edodes*) and oyster mushrooms (*Pleurotus ostreatus*), decompose dead plant and animal tissue by releasing enzymes from hyphal tips. In this way they recycle organic materials back into the surrounding environment. Because of these abilities, fungi are the primary decomposers in forests.
- 2- They feed on living hosts. As parasites, fungi live in or on other organisms and get their nutrients from their host. Parasitic fungi use enzymes to break down living tissue, which may cause illness in the host. Disease-causing fungi are parasitic. Recall that parasitism is a type of symbiotic relationship between organisms of different species in which one, the parasite, benefits from a close association with the other, the host, which is harmed.

3- They live mutualistically with other organisms. Mutualistic fungi live harmless with other living organisms. The mutualism is an interaction between individuals of two different species, in which both individuals benefit.

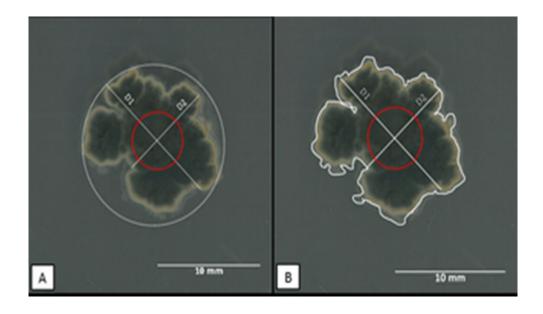
Both parasitism and mutualism are classified as symbiotic relationships, but they are discussed separately here because of the different effect on the host.


Fungal hyphae are adapted to efficient absorption of nutrients from their environments, because hyphae have high surface area-to-volume ratios. These adaptations are also complemented by the release of hydrolytic enzymes that break down large organic molecules such as polysaccharides, proteins, and lipids into smaller molecules. These molecules are then absorbed as nutrients into the fungal cells. One enzyme that is secreted by fungi is cellulase, which breaks down the polysaccharide cellulose. Cellulose is a major component of plant cell walls. In some cases, fungi have developed specialized structures for nutrient uptake from living hosts, which penetrate into the host cells for nutrient uptake by the fungus.

Fungi absorb nutrients from the environment through mycelia.

Mycorrhiza

A mycorrhiza (Greek for "fungus roots") is a symbiotic association between a fungus and the roots of a plant. In a mycorrhizal association, the fungus may colonize the roots of a host plant by either growing directly into the root cells, or by growing around the root cells. This association provides the fungus with relatively constant and direct access to glucose, which the plant produces by photosynthesis. The mycelia of the fungi increase the surface area of the plant's root system. The larger surface area improves water and mineral nutrient absorption from the soil.

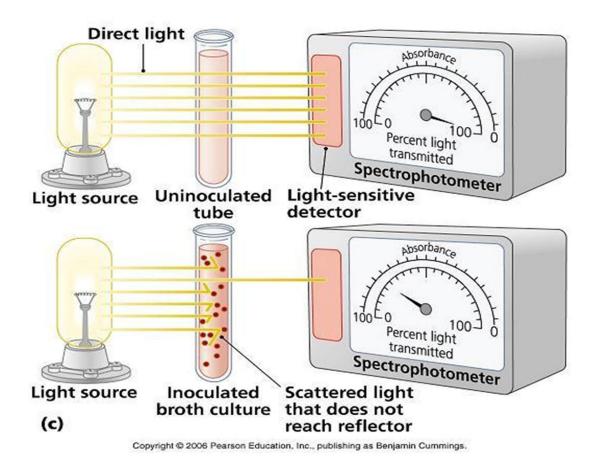


Measuring of fungal growth

The following points highlight the two methods used for measuring the growth in fungi. These methods are: 1. Linear Method (Agar Plate). 2. Mycelial Dry Weight.

1. Linear Method (Agar Plate)

After the fungal inoculum kept in the center of the agar plate, the radial growth of fungal colony can be measured and the rate of growth can be measured each 24 hours.


2. Mycelial Dry Weight

On liquid medium (both stationary and aerated agitated cultures) the mycelial growth can be measured as dry weight. After inoculation of cultures, the cultures must be incubated at a suitable temperature and then the mycelial growth can be determined after filtration and drying of mycelia.

3- Spectrophotometric method

This method is used to measure the growth of unicellular organisms such as yeast and bacterial species using spectrophotometric analysis. Significant variations are found in the growth patterns of budding and fission of yeast. The spectrophotometer absorbance depends on the turbidity in the liquid medium due to the growth rate of yeast.

Carbon metabolism

Metabolism: The entire spectrum of living chemical reactions, occurring in living system. Metabolism is broadly classified into two:

Anabolism: biosynthetic reactions involving in the formation of complex molecules from simple precursors.

Catabolism: degradation processes concerned with the breakdown of complex molecules to simpler ones with release of energy.

Respiration

Glycolysis (Degradation of glucose to pyruvate)

The major function of carbohydrates in metabolism is as a fuel to be oxidized and provide energy for other metabolic processes. The carbohydrate is utilized by cells mainly as glucose. The three principal monosaccharides resulting from digestive processes are glucose, fructose, and galactose. Much of the glucose is derived from starch which accounts for over half of the fuel in the diets of most humans. Glucose is also produced from other dietary components by the liver and, to a lesser extent, by the kidneys. Fructose results in a large intake of sucrose while galactose is produced when lactose is the principal carbohydrate of the diet. Both fructose and galactose are easily converted to glucose by the liver. It is thus apparent that glucose is the major fuel of most organisms and that it can be quickly metabolized from glycogen stores when there arises a sudden need for energy. Pentose sugars such as arabinose, ribose and xylose may be present in the diet. But their fate after absorption is, however, obscure.

Glycolysis is the sequence of 10 enzyme-catalyzed reactions that convert glucose into pyruvate with the simultaneous production of ATP. The glycolytic sequence of reactions differs from one species to the other only in the mechanism of its regulation and in the subsequent metabolic fate of the pyruvate formed. In aerobic organisms, glycolysis is the prelude to the citric acid cycle and the electron transport chain which together harvest most of the energy contained in glucose. In fact, glycolysis is the central pathway of glucose catabolism. Glycolysis takes

place outside the mitochondria in the cytoplasm. It is frequently referred to as Embden-Meyerhof-Pathway (EMP pathway), in the honors of these pioneer workers in the field, and still represents one of the greatest achievements in the field of biochemistry. (https://www.youtube.com/watch?v=UBudWWUqAmc). (https://www.youtube.com/watch?v=UBudWWUqAmc).

Glycolysis is the metabolic process that serves as the foundation for both aerobic and anaerobic cellular respiration. In glycolysis, glucose is converted into pyruvate. Glucose is a six-membered ring molecule found in the blood and is usually a result of the breakdown of carbohydrates into sugars. It enters cells through specific transporter proteins that move it from outside the cell into the cell's cytosol. All of the glycolytic enzymes are found in the cytosol. The overall reaction of glycolysis which occurs in the cytoplasm is represented simply as: $C_6H_{12}O_6 + 2 \text{ NAD} + 2 \text{ ADP} + 2 \text{ P} \longrightarrow 2 \text{ Pyruvic acid} + 2 \text{ ATP} + 2 \text{ NADH} + 2$

 $C_6H_{12}O_6 + 2 \text{ NAD} + 2 \text{ ADP} + 2 \text{ P} \longrightarrow 2 \text{ Pyruvic acid} + 2 \text{ ATP} + 2 \text{ NADH} + 2 \text{ H}^+$

Step 1

The first step in glycolysis is the conversion of D-glucose into glucose 6-phosphate. The enzyme that catalyzes this reaction is hexokinase. The glucose ring is phosphorylated. Phosphorylation is the process of adding a phosphate group to a molecule derived from ATP. As a result, at this point in glycolysis, 1 molecule of ATP has been consumed. The reaction occurs with the help of the enzyme hexokinase, an enzyme that catalyzes the phosphorylation of many six-membered glucose-like ring structures. Atomic magnesium (Mg) is also involved to help shield the negative charges from the phosphate groups on the ATP molecule. The result of this phosphorylation is a molecule called glucose 6-phosphate (G6P), because the 6' carbon of the glucose acquires the phosphate group.

Step 2

The second reaction of glycolysis is the rearrangement of glucose 6-phosphate (G6P) into fructose 6-phosphate (F6P) by glucose phosphate isomerase (Phosphoglucose Isomerase). The second step of glycolysis involves the conversion of glucose-6-phosphate to fructose-6-phosphate (F6P). This reaction occurs with the help of the enzyme phosphoglucose isomerase (PI). The reaction involves the rearrangement of the carbon-oxygen bond to transform the sixmembered ring into a five-membered ring. To rearrangement takes place when the six-membered ring opens and then closes in such a way that the first carbon becomes now external to the ring.

Step 3

Phosphofructokinase, with magnesium as a cofactor, changes fructose 6-phosphate into fructose 1,6-bisphosphate. In the third step of glycolysis, fructose 6-phosphate is converted to fructose 1,6-bisphosphate (FBP). Similar to the reaction that occurs in step 1 of glycolysis, a second molecule of ATP provides the phosphate group that is added on to the F6P molecule. The enzyme that catalyzes this reaction is phosphofructokinase (PFK). As in step 1, a magnesium atom is involved to help shield negative charges.

Step 4

The enzyme Aldolase splits fructose 1,6-bisphosphate into two sugars that are isomers of each other. These two sugars are dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (GAP). This step utilizes the enzyme aldolase, which catalyzes the cleavage of FBP to yield two 3-carbon molecules. One of these molecules is called glyceraldehyde-3-phosphate (GAP) and the other is called dihydroxyacetone phosphate (DHAP).

Step 5

The enzyme triosephosphate isomerase rapidly inter-converts the molecules dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (GAP). Glyceraldehyde phosphate is removed / used in next step of Glycolysis. GAP is

the only molecule that continues in the glycolytic pathway. As a result, all of the DHAP molecules produced are further acted on by the enzyme Triosephosphate isomerase (TIM), which reorganizes the DHAP into GAP so it can continue in glycolysis. At this point in the glycolytic pathway, we have two 3-carbon molecules.

Step 6

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) dehydrogenates and adds an inorganic phosphate to glyceraldehyde 3-phosphate, producing 1,3-bisphosphoglycerate. In this step, two main events take place: 1- glyceraldehyde 3-phosphate is oxidized by the coenzyme nicotinamide adenine dinucleotide (NAD); 2- the molecule is phosphorylated by the addition of a free phosphate group. The enzyme that catalyzes this reaction is glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The enzyme GAPDH contains appropriate structures and holds the molecule in a conformation such that it allows the NAD molecule to pull a hydrogen off the GAP, converting the NAD to NADH. The phosphate group then attacks the GAP molecule and releases it from the enzyme to yield 1,3 biphosphoglycerate, NADH, and a hydrogen atom.

Step 7

Phosphoglycerate kinase transfers a phosphate from 1.3group biphosphoglycerate to ADP to form ATP and 3-phosphoglycerate. In this step, 1,3 biphosphoglycerate is converted to 3-phosphoglycerate by the enzyme phosphoglycerate kinase (PGK). This reaction involves the loss of a phosphate group from the starting material. The phosphate is transferred to a molecule of ADP that yields our first molecule of ATP. Since we actually have two molecules of 1,3 biphosphoglycerate (because there were two 3-carbon products from stage 1 of glycolysis), we actually synthesize two molecules of ATP at this step. With this synthesis of ATP, we have cancelled the first two molecules of ATP that we used, leaving us with a net of 0 ATP molecules up to this stage of glycolysis.

Again, we see that an atom of magnesium is involved to shield the negative charges on the phosphate groups of the ATP molecule.

Step 8

The enzyme phosphoglycero mutase relocates the P from 3-phosphoglycerate from the 3rd carbon to the 2nd carbon to form 2-phosphoglycerate. This step involves a simple rearrangement of the position of the phosphate group on the 3 phosphoglycerate molecule, making it 2-phosphoglycerate. The molecule responsible for catalyzing this reaction is called phosphoglycerate mutase (PGM). A mutase is an enzyme that catalyzes the transfer of a functional group from one position on a molecule to another. The reaction mechanism proceeds by first adding an additional phosphate group to the 2' position of the 3 phosphoglycerate. The enzyme then removes the phosphate from the 3' position leaving just the 2' phosphate, and thus yielding 2 phsophoglycerate. In this way, the enzyme is also restored to its original, phosphorylated state.

Step 9

The enzyme enolase removes a molecule of water from 2-phosphoglycerate to form phosphoenolpyruvate (PEP). This step involves the conversion of 2 phosphoglycerate to phosphoenolpyruvate (PEP). The reaction is catalyzed by the enzyme enolase. Enolase works by removing a water group, or dehydrating the 2 phosphoglycerate.

Step 10

The enzyme pyruvate kinase transfers a P from phosphoenolpyruvate (PEP) to ADP to form pyruvic acid and ATP Result in step 10. The final step of glycolysis converts phosphoenolpyruvate into pyruvate with the help of the enzyme pyruvate kinase. As the enzyme's name suggests, this reaction involves the transfer of a phosphate group. The phosphate group attached to the 2' carbon of the PEP is transferred to a molecule of ADP, yielding ATP. Again, since there are two molecules of PEP, here we actually generate 2 ATP molecules.

Steps 1 and 3 = -2 ATP, Steps 7 and 10 = +4 ATP, Therefore Net ATP produced = 2.

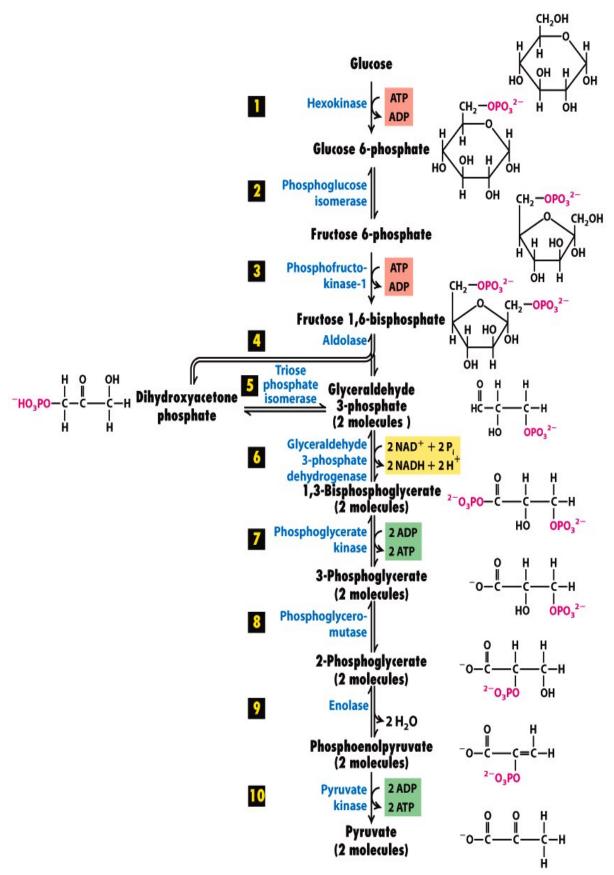
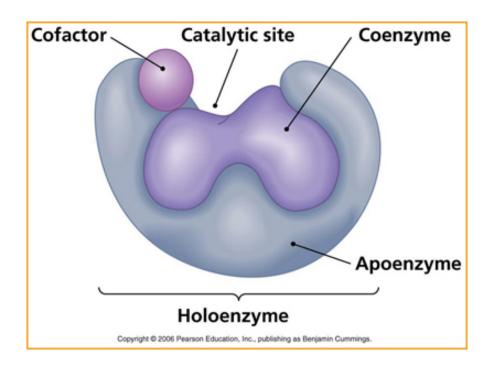
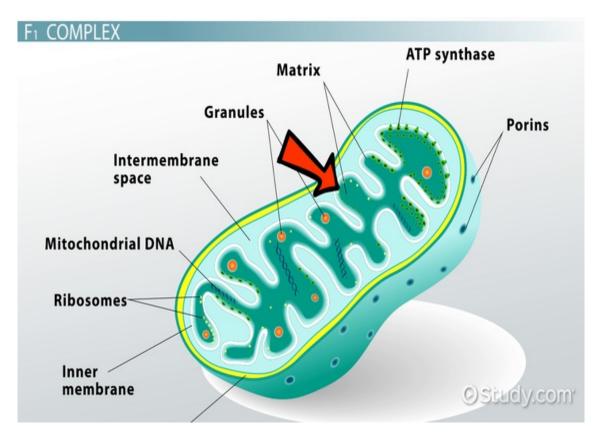


Figure 12-3

Molecular Cell Biology, Sixth Edition
© 2008 W.H. Freeman and Company


Cofactors


The cofactors are non-protein compounds that assists with a biological chemical reaction. Cofactors may be metal ions, organic compounds, or other chemicals that have helpful properties not usually found in amino acids. Some cofactors can be made inside the cell, such as ATP, while others must be consumed in food.

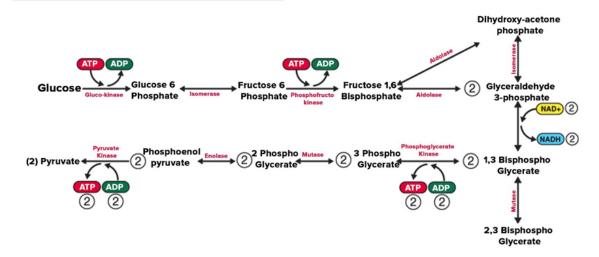
Minerals, for example, come from the environment, and cannot be made from scratch by any living cell. The organic compounds we refer to as "vitamins" are cofactors that our own bodies cannot make, so we must consume them from food in order for our cells to be able to perform essential life functions.

At the biochemical level, cofactors are important in understanding how biological reactions proceed. The presence or absence of cofactors may determine how quickly reactions proceed from their reactant to their product.

- Cofactor: A substance, especially a coenzyme or a metal, that must be present for an enzyme to function.
- **Enzymes**: Enzymes are large biological molecules responsible for the thousands of chemical interconversions that sustain life. They are highly selective catalysts, greatly accelerating both the rate and specificity of metabolic reactions, from the digestion of food to the synthesis of DNA.
- **Reaction**: A chemical reaction is a process that leads to the transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that strictly involve the motion of electrons in the forming and breaking of chemical bonds between atoms, and can often be described by a chemical equation.
- **Apoenzyme**: an inactive haloenzyme lacking a cofactor.

Adenosine triphosphate (ATP)

Nicotinamide adenine dinucleotide (NAD)


Nicotinamide adenine dinucleotide (NAD+) and flavin adenine dinucleotide (FAD+) are two cofactors that are involved in cellular respiration. They are responsible for accepting "high energy" electrons and carrying them ultimately to the electron transport chain where they are used to synthesize ATP molecules. Therefore, although they themselves are not a direct source of energy, they are

used to form ATP energy molecules that are used by the cell. When these electron-carrier molecules accept the electrons, they are reduced into NADH and FADH₂.

ATP and NADH produced by glycolysis

It is the process of breaking down glucose to create energy. Glycolysis generates .2 ATP and 2 NADH, for a total of 8 ATP molecules.

PATHWAY OF GLYCOLYSIS

Krebs cycle (Citric acid cycle)

The German chemist Hans Adolf Krebs discovery this cycle in 1937 marked a milestone in biochemistry. Krebs received the Nobel Prize for Physiology or Medicine in 1953 for this contribution to the study of intermediary metabolism in the oxidative breakdown of carbohydrates. Krebs and his coauthor William Arthur Johnson published their findings "The role of citric acid in intermediate metabolism in animal tissues" in Enzymologia after being rejected by Nature. That original publication was followed by many more.

Krebs or Citric acid cycle, also known as the tricarboxylic acid (TCA) cycle, is the main source of energy for cells and an important part of aerobic respiration. The cycle harnesses the available chemical energy of acetyl coenzyme A (acetyl-CoA) into the reducing power of nicotinamide adenine dinucleotide (NADH). The TCA cycle is part of the larger glucose metabolism whereby glucose is oxidized to form pyruvate, which is then oxidized and enters the TCA cycle as acetyl-CoA. Half of the intermediates on which the cycle depends are also the origin of pathways leading to important compounds such as fatty acids, amino acids, or porphyrins. If any of these intermediates are thus diverted, the integrity of the cycle is broken and the cycle no longer functions. Production of essential energy can only be resumed if the diverted intermediate or a subsequent intermediate that leads to oxaloacetate can be replenished by refilling reactions.


Krebs cycle intermediates (precursors)

These intermediates are numbered on the diagram below as Citrate, Isocitrate, Oxoglutarate, Succinyl-CoA, Succinate, Fumarate, Malate, Oxaloacetate (Oxaloacetic acid).

Krebs cycle steps

It is an eight steps process. Krebs cycle or TCA cycle takes place in the matrix of mitochondria under aerobic condition.

- **Step 1**: The first step is the condensation of acetyl CoA with 4-carbon compound oxaloacetate to form 6C citrate, coenzyme A is released. The reaction is catalyzed by citrate synthase.
- **Step 2**: Citrate is converted to its isomer, isocitrate. The enzyme aconitase catalyzes this reaction.
- **Step 3**: Isocitrate undergoes dehydrogenation and decarboxylation to form 5C α -ketoglutarate. A molecular form of CO2 is released. Isocitrate dehydrogenase catalyzes the reaction. It is an NAD⁺ dependent enzyme. NAD⁺ is converted to NADH.
- **Step 4**: α -ketoglutarate undergoes oxidative decarboxylation to form succinyl CoA, a 4C compound. The reaction is catalyzed by the α -ketoglutarate dehydrogenase enzyme complex. One molecule of CO₂ is released and NAD⁺ is converted to NADH.
- **Step 5**: Succinyl CoA forms succinate. The enzyme succinyl CoA synthetase catalyzes the reaction. This is coupled with substrate-level phosphorylation of GDP to get GTP. GTP transfers its phosphate to ADP forming ATP.
- **Step 6**: Succinate is oxidized by the enzyme succinate dehydrogenase to fumarate. In the process, FAD is converted to FADH₂.
- **Step 7**: Fumarate gets converted to malate by the addition of one H₂O. The enzyme catalyzing this reaction is fumarase.
- **Step 8**: Malate is dehydrogenated to form oxaloacetate, which combines with another molecule of acetyl CoA and starts the new cycle. Hydrogens removed, get transferred to NAD⁺ forming NADH. Malate dehydrogenase catalyzses the reaction. (https://www.youtube.com/watch?v=ubzw64PQPqM).

Summary of Krebs cycle

Location: Krebs cycle occurs in the mitochondrial matrix.

Krebs cycle reactants: Acetyl CoA, which is produced from the end product of glycolysis, i.e. pyruvate and it condenses with 4 carbon oxaloacetate, which is generated back in the Krebs cycle.

Krebs cycle products

Each citric acid cycle forms the following products:

2 molecules of CO_2 are released. Removal of CO_2 or decarboxylation of citric acid takes place at two places: In the conversion of isocitrate (6C) to α -ketoglutarate (5C). In the conversion of α -ketoglutarate (5C) to succinyl CoA (4C). 1 ATP is produced in the conversion of succinyl CoA to succinate, 3 NAD⁺ are reduced to NADH and 1 FAD⁺ is converted to FADH₂ in the following reactions:

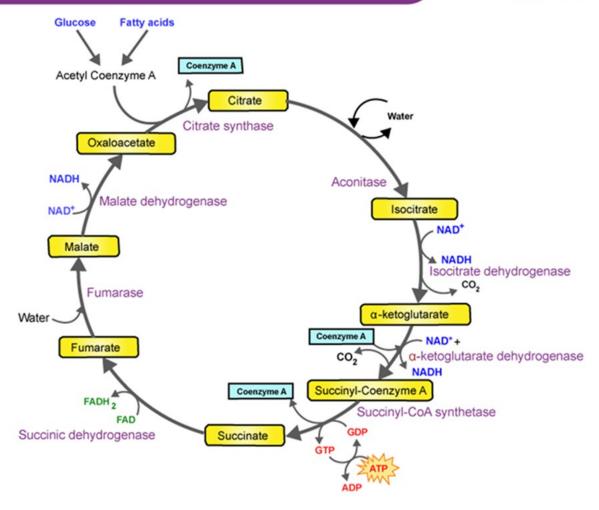
Isocitrate to α -ketoglutarate \rightarrow NADH

 α -ketoglutarate to succinyl CoA \rightarrow NADH

Succinate to fumarate \rightarrow FADH₂

Malate to Oxaloacetate → NADH

Note that 2 molecules of Acetyl CoA are produced from oxidative decarboxylation of 2 pyruvates so two cycles are required per glucose molecule. To summarize, for complete oxidation of a glucose molecule, Krebs cycle yields 4 CO₂, 6 NADH, 2 FADH₂ and 2 ATPs. Each molecule of NADH can form 2-3 ATPs and each FADH₂ gives 2 ATPs on oxidation in the electron transport chain. It is a series of events in living organisms in which acetic acid or acetyl equivalent oxidation produces energy for storage in phosphate bonds (as in ATP).


The Krebs cycle yields three NADH molecules (two cycles) and 18 ATP molecules. In two cycles, four FADH₂ molecules are generated, yielding four ATP molecules. Two GTP molecules are created in two cycles, resulting in the release of two ATP molecules.

TCA cycle applications

These TCA-related metabolic applications are commonly studied using stable isotope-labeled compounds and mass spectrometry: Lipid metabolism, Amino acid metabolism, Protein metabolism (Turnover), Glucose metabolism, Energy expenditure, Metabolomics.

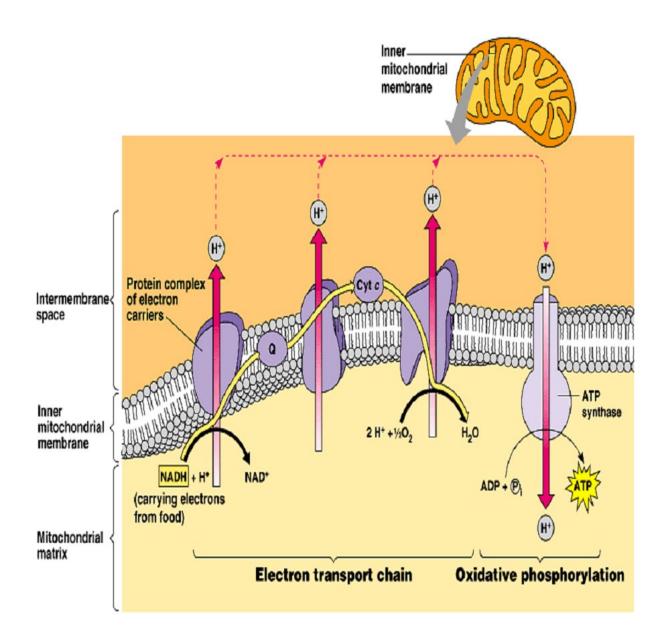
KREBS CYCLE (CITRIC ACID CYCLE)

Significance of Krebs cycle

Krebs cycle is the final pathway of oxidation of glucose, fats and amino acids. Many organisms are dependent on nutrients other than glucose as an energy source. Amino acids (metabolic product of proteins) are deaminated and get converted to pyruvate and other intermediates of the Krebs cycle. They enter the cycle and get metabolized e.g. alanine is converted to pyruvate, glutamate to α -ketoglutarate, aspartate to oxaloacetate on deamination.

Fatty acids undergo β -oxidation to form acetyl CoA, which enters the Krebs cycle. It is the major source of ATP production in the cells. A large amount of energy is produced after complete oxidation of nutrients. It plays an important role in gluconeogenesis and lipogenesis and interconversion of amino acids.

Many intermediate compounds are used in the synthesis of amino acids, nucleotides, cytochromes and chlorophylls, etc. Vitamins play an important role in the citric acid cycle. Riboflavin, niacin, thiamin and pantothenic acid as a part of various enzymes cofactors (FAD, NAD) and coenzyme A.


Regulation of Krebs cycle depends on the supply of NAD⁺ and utilization of ATP in physical and chemical work. The genetic defects of the Krebs cycle enzymes are associated with neural damage. As most of the biological processes occur in the liver to a significant extent, damage to liver cells has a lot of repercussions. Hyperammonemia occurs in liver diseases and leads to convulsions and coma. This is due to reduced ATP generation as a result of the withdrawal of α -ketoglutarate and formation of glutamate, which forms glutamine.

Electron transport chain (Oxidative phosphorylation)

The electron transport chain is a series of four protein complexes that couple redox reactions, creating an electrochemical gradient that leads to the creation of ATP in a complete system named oxidative phosphorylation. It occurs in mitochondria in both cellular respiration and photosynthesis. In the former, the electrons come from breaking down organic molecules, and energy is released. In the latter, the electrons enter the chain after being excited by light, and the energy released is used to build carbohydrates.

Aerobic cellular respiration is made up of three parts: glycolysis, the citric acid (Krebs) cycle, and oxidative phosphorylation. In glycolysis, glucose metabolizes into two molecules of pyruvate, with an output of ATP and nicotinamide adenine dinucleotide (NADH). Each pyruvate oxidizes into acetyl CoA and an additional molecule of NADH and carbon dioxide (CO₂). The acetyl CoA is then used in the citric acid cycle, which is a chain of chemical reactions that produce CO₂, NADH, flavin adenine dinucleotide (FADH₂), and ATP. In the final step, the three NADH and one FADH₂ amassed from the previous steps are used in oxidative

phosphorylation, to make water and ATP. (https://www.youtube.com/watch?v=zJNx1DDqIVo).

Electron transport chain

It is the metabolic mechanism through which electrons move from one carrier to another. In two cycles, oxidative phosphorylation produces two NADH molecules while releasing six ATP molecules. All of the preceding events result in a net ATP gain of 38 molecules from a single glucose molecule.

Fermentation

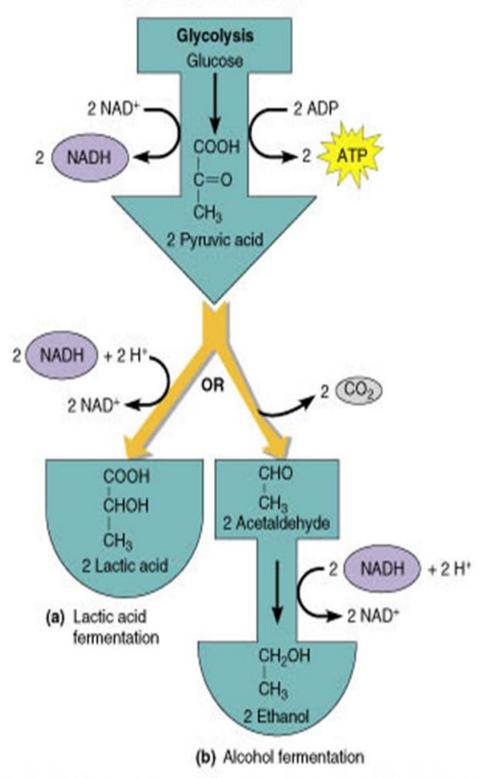
Fermentation occurs in the absence of oxygen (anaerobic conditions), and in the presence of beneficial microorganisms (yeasts, molds, and bacteria) that obtain their energy through fermentation. If enough sugar is available, some yeast cells, such as *Saccharomyces cerevisiae*, prefer fermentation to aerobic respiration even when oxygen is abundant.

- 1. During the fermentation process, these beneficial microbes break down sugars and starches into alcohols and acids, making food more nutritious and preserving it so people can store it for longer periods of time without it spoiling.
- 2. Fermentation products provide enzymes necessary for digestion. This is important because humans are born with a finite number of enzymes, and they decrease with age. Fermented foods contain the enzymes required to break them down.
- 3. Fermentation also aids in pre-digestion. During the fermentation process, the microbes feed on sugars and starches, breaking down food before anyone's even consumed it.

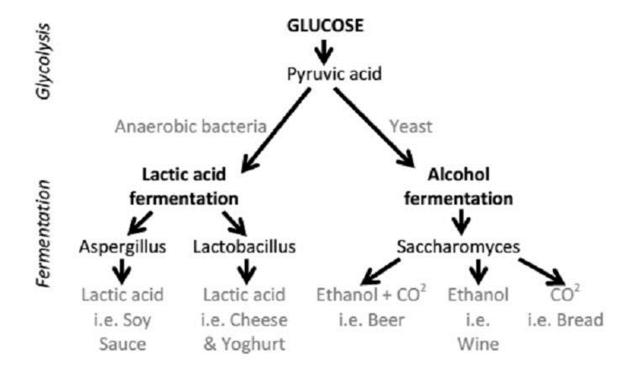
Advantages of fermentation

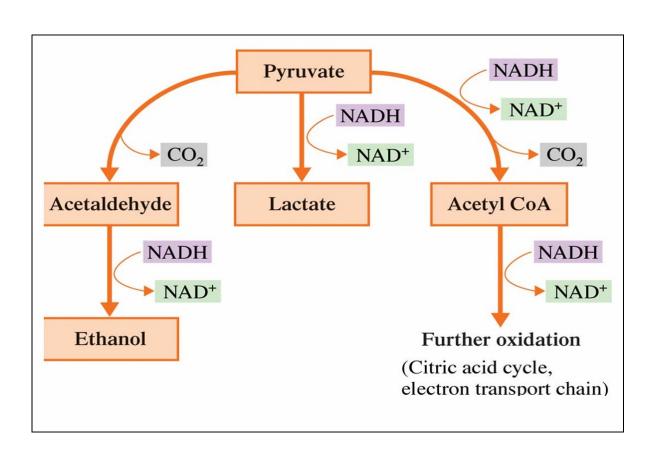
Fermented foods are rich in probiotics, beneficial microorganisms that help maintain a healthy gut so it can extract nutrients from food.

- 1. Probiotics aid the immune system because the gut produces antibiotic, antitumor, anti-viral, and antifungal substances, and pathogens don't do well in the acidic environment fermented foods create.
- 2. Fermentation also helps neutralize anti-nutrients like phytic acid, which occurs in grains, nuts, seeds, and legumes and can cause mineral deficiencies. Phytates also make starches, proteins, and fats less digestible, so neutralizing them is extremely beneficial.
- 3. Fermentation can increase the vitamins and minerals in food and make them more available for absorption. Fermentation increases B and C vitamins and enhances folic acid, riboflavin, niacin, thiamin, and biotin. The probiotics,


enzymes, and lactic acid in fermented foods facilitate the absorption of these vitamins and minerals into the body.

Types of fermentation


Microbes specialized at converting certain substances into others can produce a variety of foodstuffs and beverages. These are three distinct types of fermentation that people use.


- 1. Lactic acid fermentation. Yeast strains and bacteria convert starches or sugars into lactic acid, requiring no heat in preparation. These anaerobic chemical reactions, pyruvic acid uses nicotinamide adenine dinucleotide+hydrogen (NADH) to form lactic acid and NAD+ (Lactic acid fermentation also occurs in human muscle cells. During strenuous activity, muscles can expend adenosine triphosphate (ATP) faster than oxygen can be supplied to muscle cells, resulting in lactic acid buildup and sore muscles. In this scenario, glycolysis, which breaks down a glucose molecule into two pyruvate molecules and doesn't use oxygen, produces ATP). Lactic acid bacteria are vital to producing and preserving inexpensive, wholesome foods, which is especially important in feeding impoverished populations. This method makes sauerkraut, pickles, kimchi, yogurt, and sourdough bread.
- **2. Alcohol fermentation/Ethanol fermentation.** Yeasts break pyruvate molecules—the output of the metabolism of glucose (C₆H₁₂O₆) known as glycolysis—in starches or sugars down into alcohol and carbon dioxide molecules. Alcoholic fermentation produces wine and beer.
- **3. Acetic acid fermentation**. Starches and sugars from grains and fruit ferment into sour tasting vinegar and condiments. Examples include apple cider vinegar, wine vinegar, and kombucha.

FERMENTATION

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Lipid metabolism

Lipids are diverse group of organic compounds including fats, oils, hormones, and certain components of membranes that are grouped together because they do not interact appreciably with water. One type of lipid, the triglycerides, is sequestered as fat in adipose cells, which serve as the energy-storage depot for organisms and also provide thermal insulation. Some lipids such as steroid hormones serve as chemical messengers between cells, tissues, and organs, and others communicate signals between biochemical systems within a single cell. The membranes of cells and organelles (structures within cells) are microscopically thin structures formed from two layers of phospholipid molecules. Membranes function to separate individual cells from their environments and to compartmentalize the cell interior into structures that carry out special functions. So important is this compartmentalizing function that membranes, and the lipids that form them, must have been essential to the origin of life itself. Lipids are hydrophobic compounds. Although biological lipids are not large macromolecular polymers (e.g., proteins, nucleic acids, and polysaccharides), many are formed by the chemical linking of several small constituent molecules. Many of these molecular building blocks are similar, or homologous, in structure. The homologies allow lipids to be classified into a few major groups: fatty acids, fatty acid derivatives, cholesterol and its derivatives, and lipoproteins.

Biological fatty acids, members of the class of compounds known as carboxylic acids, are composed of a hydrocarbon chain with one terminal carboxyl group (COOH). The fragment of a carboxylic acid not including the hydroxyl (OH) group is called an acyl group. Under physiological conditions in water, this acidic group usually has lost a hydrogen ion (H⁺) to form a negatively charged carboxylate group (COO⁻). In addition to straight-chain hydrocarbons, fatty acids may also contain pairs of carbons linked by one or more double bonds, methyl branches, or a three-carbon cyclopropane ring near the center of the carbon chain.

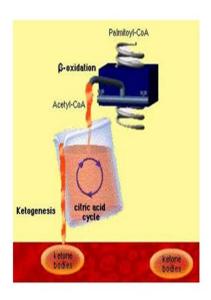
Fats are degraded by lipase enzyme to produce glycerol and fatty acids according to the following equation:

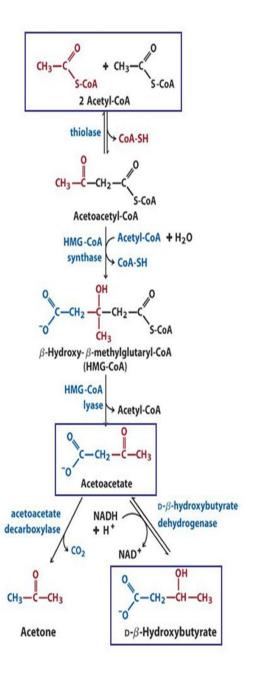
Beta oxidation

Lipids are abundant in host tissues, and fungal pathogens in the phylum basidiomycota possess both peroxisomal and mitochondrial β-oxidation pathways to utilize this potential carbon source. In addition, lipids are important signaling molecules in both fungi and mammals. They are degraded in the catabolic process called beta oxidation. During beta oxidation, the third (or beta) carbon of the saturated fatty acid chain of the fatty acyl CoA is oxidized to a ketone. β-Oxidation of fatty acids is important for the utilization of storage lipids or exogenous fatty acids to generate acetyl coenzyme A (acetyl-CoA) for central carbon metabolism. Most organisms have multiple enzymes for each of the four steps in β-oxidation to accommodate fatty acids of different chain length or saturation state. In mammals, β-oxidation occurs in both peroxisomes and mitochondria. The peroxisome is thought to be responsible for the oxidation of long-chain fatty acids, and the mitochondrion oxidizes short-chain fatty acids and also performs the final oxidation step. Fungal β-oxidation is not well characterized, and it was previously thought that fungi might have peroxisomal βoxidation only because Saccharomyces cerevisiae lacks the enzymes for mitochondrial β-oxidation. However, recent in silico surveys of the pathways encoded in more than 50 fungal genomes revealed that most fungi possess both

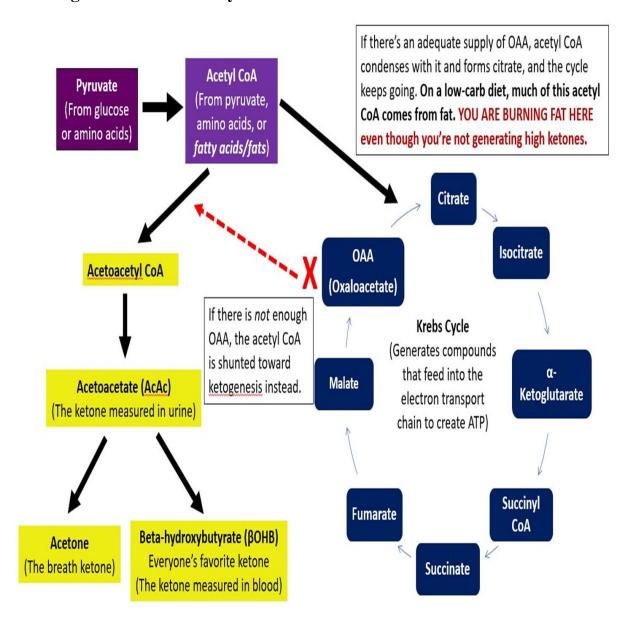
mitochondrial and peroxisomal pathways. Mitochondrial β -oxidation has also been convincingly demonstrated in the saprophytic ascomycete *Aspergillus nidulans*.

Beta oxidation is a spiral pathway. Each round consists of four enzyme-catalyzed steps that yield one molecule of acetyl CoA and an acyl CoA shortened by two carbons, which becomes the starting substrate for the next round. Seven rounds of beta oxidation degrade a C₁₆ fatty acid to eight molecules of acetyl CoA. Complete oxidation of one molecule of palmitic acid to carbon dioxide and water yields 129 molecules of ATP. One round of beta oxidation yields 17 ATP.

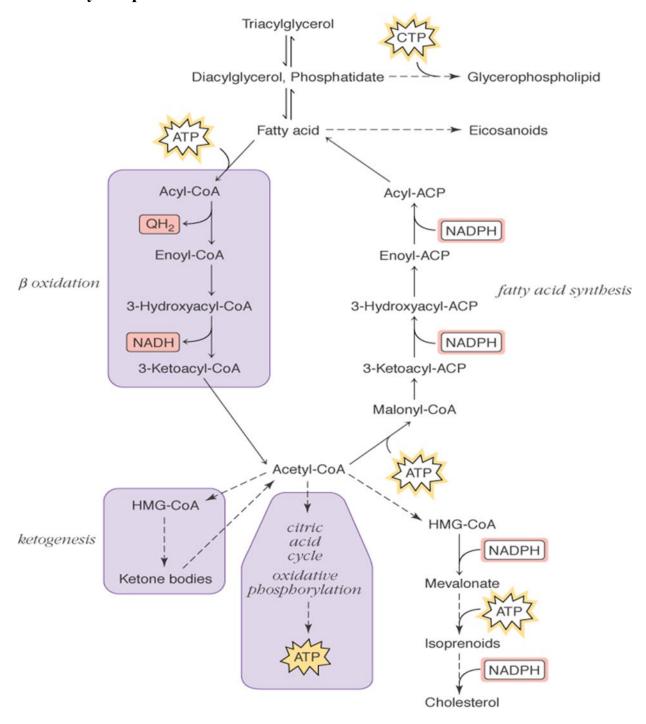

4 Steps of β-oxidation


- 1. Dehydrogenation of the fatty acyl-CoA to make a trans double bond between α and β carbon.
 - Short, medium, and long chain acyl-CoAdehydrogenases
 - e⁻ removed transferred to FAD
- 2. Hydration of the double bond
- Dehydrogenation of the β-hydroxyl group to a ketone
 - e⁻ removed transferred to NAD⁺
- Acylation addition of CoA and production of acetyl-CoA

The reactions of β -oxidation


Ketogenesis

When fatty acid oxidation produces more acetyl-CoA than can be combined with OAA to form citrate, then the "extra" acetyl-CoA is converted to acetoacetyl-CoA and ketone bodies, including acetone. Ketogenesis (synthesis of ketone bodies) takes place primarily in the liver.



Ketogenesis and Krebs cycle

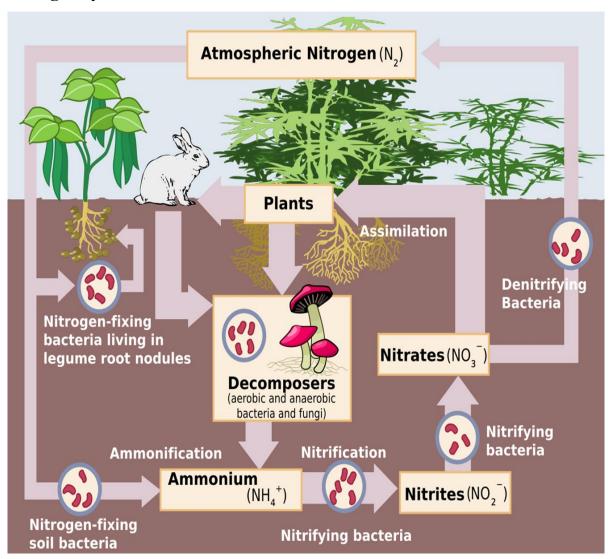
Summary of lipid metabolism

Nitrogen metabolism

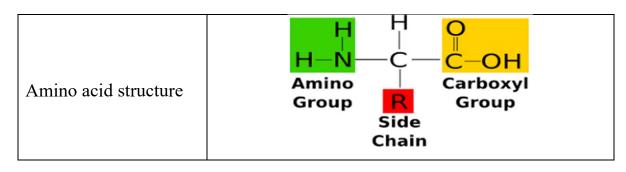
Polymeric nitrogen containing compounds are proteins and nucleic acids that define the major attributes of organism such as function and structure. Operation and mechanism of metabolic pathways is provided by proteins. However genetic information is stored in nucleic acid polymers. Nitrogen is one of the most prevalent essential macro-elements which regulates fungal growth and metabolism. Anabolic processes includes: Nitrogen fixation (as in bacteria, e.g. *Rhizobium*), Amino acids synthesis, Protein synthesis. However, Catabolic processes includes: Proteolysis and amino acids destruction, Nitrification, denitrification.

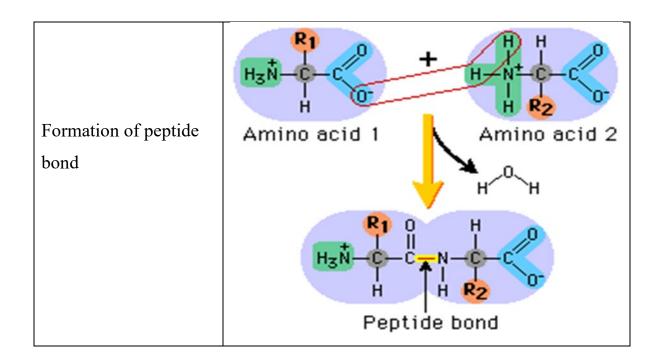
Nitrification is the biological oxidation of ammonia or ammonium to nitrite followed by the oxidation of the nitrite to nitrate.

$$NO_3+O_2+2e- \rightarrow NH_2OH + H_2O$$


$$NH_2OH + H_2O \rightarrow NO_2 + 5 H + + 4e$$

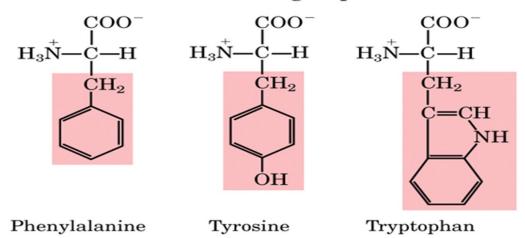
$$NO_2 + O_2 \rightarrow NO_3$$

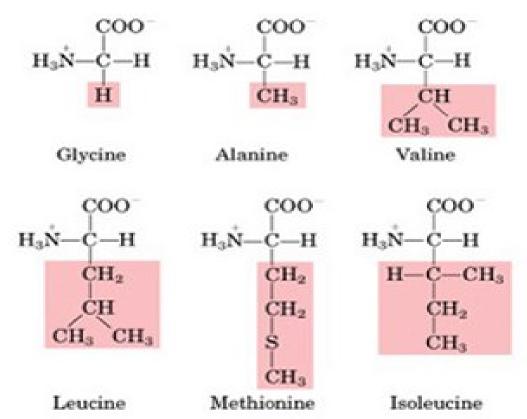

Denitrification is the process that coverts nitrate to nitrogen gas.


$$NO_3 {\longrightarrow}\ NO_2 {\longrightarrow}\ NO + N_2O {\longrightarrow}\ N_2$$

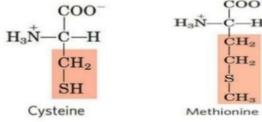
Nitrogen cycle

Amino acids




Types of amino acids

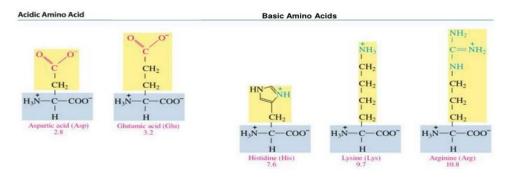
Aromatic amino acids


Aromatic R groups

Aliphatic amino acid

Sulfur-containing amino acids

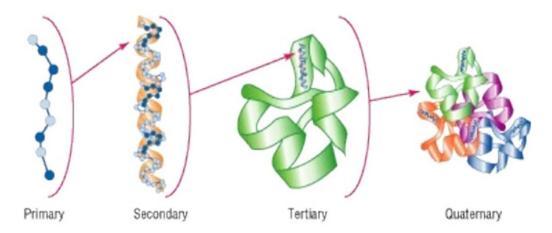
☐ Amide group-containing amino acids


$$COO^ H_3\dot{N}-\dot{C}-H$$
 CH_2
 $CH_$

11

Acidic and Basic Amino Acids

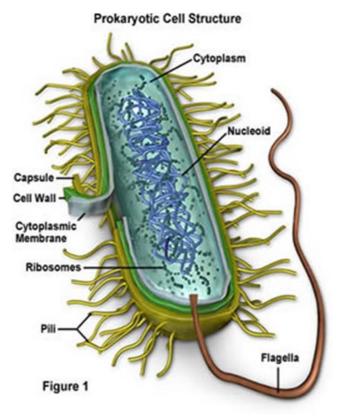
An amino acid is


- Acidic with a carboxyl R group (COO⁻).
- Basic with an amino R group (NH₃+).

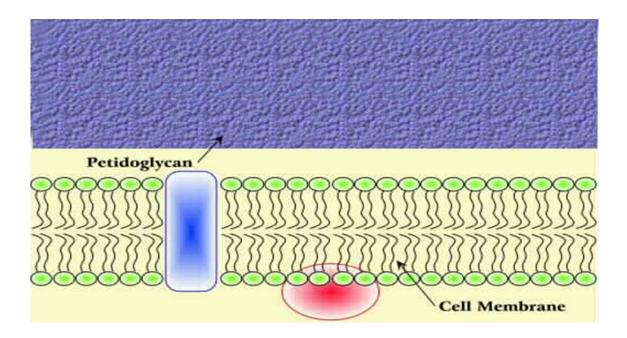
8

Protein structure

- Proteins, amino acid chains, can be any length and any combination.
- · They have four levels of structure.

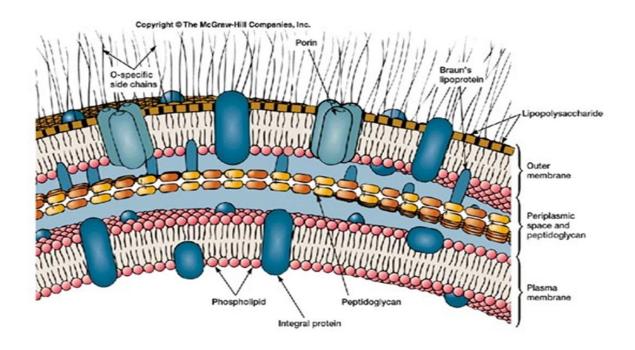


Antibiotics

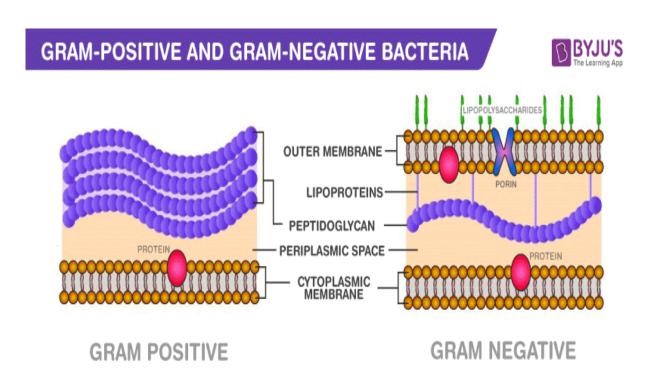

Antibiotics are compounds of natural, semi-synthetic, or synthetic origin which inhibit growth of microorganisms without significant toxicity to the human or animal host. The key concept of antibiotic therapy is selectivity. The independent evolutionary history of bacterial (prokaryotic) and host (eukaryotic) cells led to a significant difference in cell organization, biochemical pathways and structures of proteins and RNA. These differences form the basis for drug selectivity.

Cell wall as antibiotic target

Most of the bacteria have a rigid cell wall which protects the cell from changes in osmotic pressure. Presence of the cell wall is critical for the survival of bacterial cell. The structure and composition of bacterial cell wall is dramatically different from the cell envelope of the eukaryotic cell. Therefore, enzymes of cell wall biosynthesis are unique to bacteria and presents an excellent target for antibiotics. According to the structure of their cell wall and staining procedure developed by Christian Gram in 1884, Bacteria are divided into Gram-positive and Gramnegative.

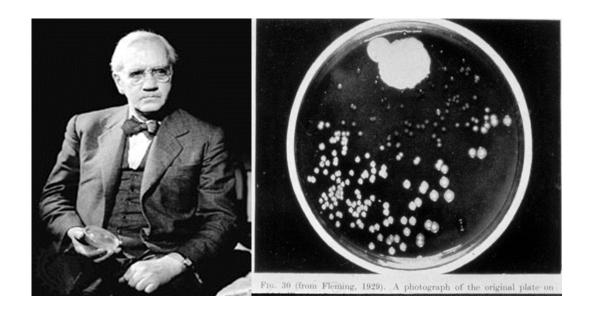


Cell wall of gram positive bacteria



Outside of the cytoplasmic membrane of Gram-positive bacteria lies a thick layer of peptidoglycan which determines the rigidity of the cell wall. In Gram-positive bacteria, peptidoglycan accounts for 50% of the cell weight and up to 90% of the weight of the cell wall. Peptidoglycan layer is 20-80 nm thick. Peptidoglycan compose of polymer of N-acetyl glucosamine and N-acetyl muramic acid.

Cell wall of gram negative bacteria



The cell wall of Gram-negative bacteria consists of the cytoplasmic membrane, a thin layer of peptidoglycan, and an outer membrane. The area between the cytoplasmic membrane and peptidoglycan layer is called the periplasmic space.

Discovery of penicillin

The discovery of penicillin is usually attributed to Scottish Scientist Sir Alexander Fleming in 1928, though others had earlier noted the antibacterial effects of *Penicillium.* The development of penicillin for use as a medicine is attributed to the Australian Nobel Laureate Howard Walter Florey. In March 2000, doctors of the San Juan de Dios Hospital in San Jose (Costa Rica) published manuscripts belonging to the Costa Rican scientist and medical doctor Clodomiro (Clorito) Picado Twight (1887-1944). The manuscripts explained Picado's experiences between 1915 and 1927 about the inhibitory actions of the fungi of genus Penicillium. Apparently Clorito Picado had reported his discovery to the Paris Academy of Sciences in Paris, yet did not patent it, even though his investigation had started years before Fleming's. Fleming, at his laboratory in St. Mary's Hospital (now one of Imperial College's teaching hospitals) in London, noticed a halo of inhibition of bacterial growth around a contaminant blue-green mold Staphylococcus plate culture. Fleming concluded that the mold was releasing a substance that was inhibiting bacterial growth and lysing the bacteria. He grew a pure culture of the mold and discovered that it was a Penicillium mold, now known to be *Penicillium notatum*. Fleming coined the term "penicillin" to describe the filtrate of a broth culture of the *Penicillium* mold. Even in these early stages, penicillin was found to be most effective against Gram-positive bacteria, and ineffective against Gram-negative organisms and fungi. He expressed initial optimism that penicillin would be a useful disinfectant, being highly potent with minimal toxicity compared to antiseptics of the day, but particularly noted its laboratory value in the isolation of "Bacillus influenzae" (now Haemophilus influenzae). After further experiments, Fleming was convinced that penicillin could not last long enough in the human body to kill pathogenic bacteria and stopped studying penicillin after 1931, but restarted some clinical trials in 1934 and continued to try to get someone to purify it until 1940.

In 1939, Australian scientist Howard Walter Florey and a team of researchers (Ernst Boris Chain, A. D. Gardner, Norman Heatley, M. Jennings, J. Orr-Ewing and G. Sanders) at the Sir William Dunn School of Pathology, University of Oxford made significant progress in showing the in vivo bactericidal action of penicillin. Their attempts to treat humans failed due to insufficient volumes of penicillin (the first patient treated was Reserve Constable Albert Alexander), but they proved its harmlessness and effect on mice.

A moldy cantaloupe in a Peoria market in 1941 was found to contain the best and highest quality penicillin after a world-wide search. Some of the pioneering trials of penicillin took place at the Radcliffe Infirmary in Oxford. On March 3, 1942 John Bumstead and Orvan Hess became the first in the world to successfully treat a patient using penicillin. Penicillin was being mass-produced in 1944.

During World War II, penicillin made a major difference in the number of deaths and amputations caused by infected wounds amongst Allied forces; saving an estimated 12-15% of lives. Availability was severely limited, however, by the difficulty of manufacturing large quantities of penicillin and by the rapid renal clearance of the drug necessitating frequent dosing. Penicillins are actively

secreted and about 80% of a penicillin dose is cleared within three to four hours of administration.

This was not a satisfactory solution, however, so researchers looked for a way to slow penicillin secretion. They hoped to find a molecule that could compete with penicillin for the organic acid transporter responsible for secretion such that the transporter would preferentially secrete the competitive inhibitor. The uricosuric agent probenecid proved to be suitable. When probenecid and penicillin are concomitantly administered, probenecid competitively inhibits the secretion of penicillin, increasing its concentration and prolonging its activity. The advent of mass-production techniques and semi-synthetic penicillins solved supply issues, and this use of probenecid declined. Probenecid is still clinically useful, however, for certain infections requiring particularly high concentrations of penicillins.

The chemical structure of penicillin was determined by Dorothy Crowfoot Hodgkin in the early 1940s. A team of Oxford research scientists led by Australian Howard Walter Florey and including Ernst Boris Chain and Norman Heatley discovered a method of mass producing the drug. Chemist John Sheehan at MIT completed the first total synthesis of penicillin and some of its analogs in the early 1950s, but his methods were not efficient for mass production. Florey and Chain shared the 1945 Nobel prize in medicine with Fleming for this work. Penicillin has since become the most widely used antibiotic to date and is still used for many Gram-positive bacterial infections.

Structure and types of Penicillin

Penicillins are a group of β -lactam antibiotics consisting of natural penicillins and semisynthetic penicillins. The basic structure of all penicillins, natural and semisynthetic, is 6-aminopenicillanic acid composed of a four membered heterocyclic β -lactam ring fused with a five membered (benzylpenicillin), penicillin V (Phenoxymethyl penicillin), thiazolidine ring.

This basic structure combines with N-acyl group which is variable and shows structural differences in different type of penicillins. The N-acyl group is the side chain attached to the amino group of 6-aminopenicillanic acid. However, there are three natural penicillins that are produced directly and can be obtained from the fermentation liquours of *Pencillium*.

These are penicillin G and penicillin F (phentenyl penicillin). Natural penicillins are obtained as salts of sodium (Na) or potassium (K) or procaine. The structures of natural penicillins as Na-salts.

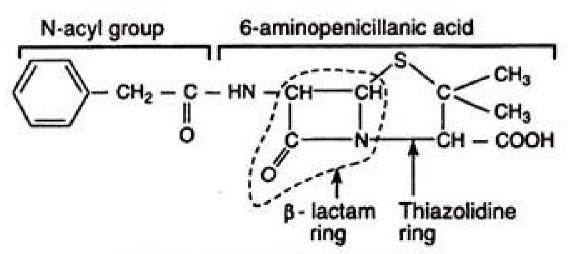


FIG. 45.6. Basic structure of penicillins.

Developments from penicillin

The narrow spectrum of activity of the penicillins, along with the poor activity of the orally-active phenoxymethylpenicillin, led to the search for derivatives of penicillin which could treat a wider range of infections.

The first major development was ampicillin, which offered a broader spectrum of activity than either of the original penicillins. Further development yielded beta-lactamase-resistant penicillins including flucloxacillin, dicloxacillin and methicillin. These were significant for their activity against beta-lactamase-

producing bacteria species, but are ineffective against the methicillin-resistant *Staphylococcus aureus* strains that subsequently emerged.

The line of true penicillins were the antipseudomonal penicillins, such as ticarcillin and piperacillin, useful for their activity against Gram-negative bacteria. However, the usefulness of the beta-lactam ring was such that related antibiotics, including the mecillinams, the carbapenems and, most importantly, the cephalosporins, have this at the center of their structures.

Mechanism of action of beta-lactam antibiotic

 β -lactam antibiotics work by inhibiting the formation of peptidoglycan cross-links in the bacterial cell wall. The β -lactam moiety (functional group) of penicillin binds to the enzyme (DD-transpeptidase) that links the peptidoglycan molecules in bacteria, and this weakens the cell wall of the bacterium (in other words, the antibiotic causes cytolysis or death). In addition, the build-up of peptidoglycan precursors triggers the activation of bacterial cell wall hydrolases and auto lysins which further digest the bacteria's existing peptidoglycan.

When the bacteria lose their cell walls they are then called spheroplasts. Penicillin shows a synergistic effect with aminoglycosides since the inhibition of peptidoglycan synthesis allows aminoglycosides to penetrate the bacterial cell wall more easily, allowing its disruption of bacterial protein synthesis within the cell. This results in a lowered MBC for susceptible organisms.

Benzylpenicillin, commonly known as penicillin G, is the gold standard penicillin. Penicillin G is typically given by a parenteral route of administration (not orally) because it is unstable in the hydrochloric acid of the stomach. Because the drug is given parenterally, higher tissue concentrations of penicillin G can be achieved than is possible with phenoxymethylpenicillin. These higher concentrations translate to increased antibacterial activity.

Phenoxymethylpenicillin, commonly known as penicillin V, is the orally-active form of penicillin. It is less active than benzylpenicillin, however, and is only appropriate in conditions where high tissue concentrations are not required.

Semi-synthetic penicillins

Structural modifications were made to the side chain of the penicillin nucleus in an effort to improve oral bioavailability, improve stability to beta-lactamase activity, and increase the spectrum of action.

Narrow spectrum penicillinase-resistant penicillins

This group was developed to be effective against beta-lactamases produced by *Staphylococcus aureus*, and are occasionally known as anti-staphylococcal penicillin. Penicillin is rampantly used for curing infections and to prevent growth of harmful mold.

Narrow spectrum β-lactamase-resistant penicillins

This molecule has a spectrum directed towards Gram negative bacteria without activity on *Pseudomonas aeruginosa* or *Acinetobacter* spp. with remarkable resistance to any type of β -lactamase.

Commercial production of penicillin

Development of methods for growing *Penicillium notatum* and purifying Penicillin and chain made it into a drug. The deep fermentation method, the use of corn steep liquor and the discovery of *P. chrysogenum* made the commercial production of penicillin possible.

β-lactam antibiotics

The most important class of antibiotics affecting cell wall biosynthesis are β -lactams. β -lactam group (a four-atom cyclic amide) is the pharmacophore of all β -lactam antibiotics. β -lactam rings were unknown before the discovery of penicillin and it took big effort to determine the structure of the drug. The most important classes of β -lactam antibiotics are penicillins and cephalosporins.

Penicillin G

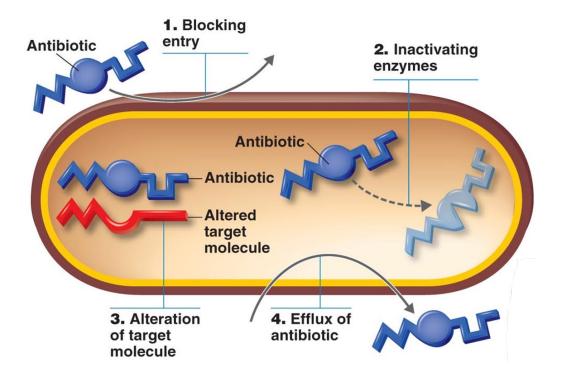
In penicillins, the β -lactam ring is fused to thiazolidine ring. Originally, penicillin was produced in the form of Penicillin G (benzylpenicillin) by fermenting *Penicillium* mold in the presence of phenyl acetic acid as a precursor. It has good activity against Gram-positive bacteria.

Benzylpenicillin (penicillin G)

Biosynthesis of Penicillins

b-lactam antibiotics are produced by fungi, some ascomycetes, and several actinomycete bacteria. Pencillins are synthesized from two amino acids (valine and cysteine).

General Structure of Penicillins


6-Aminopenicillanic acid (6-APA)

Presently, many penicillins are produced semisynthetically starting from 6-aminopenicillanic acid (6-APA) as a precursor. 6-APA can be generated from penicillin G by cleaving off the benzyl moiety of penicillin G. Various new side chains can be then attached to the penicillin molecule through the amino group of 6-APA.

Mechanisms of antibiotic resistance

- 1- Enzymatic destruction of drug
- 2- Prevention of penetration of drug
- 3- Alteration of drug's target site
- 4- Rapid ejection of the drug

Resistance genes are often on plasmids or transposons that can be transferred between bacteria.

Penicillinase (β -lactamase): bacterial enzyme that destroys natural penicillins

Cephalosporins

Cephalosporins have been first obtained from a fungus *Cephalosporium* acremonium. Similar to penicillins, many cephalosporins are produced semi-synthetically either starting from 7-aminocephalosporanic acid (7-ACA) or by converting relevant penicillins into cephalosporins.

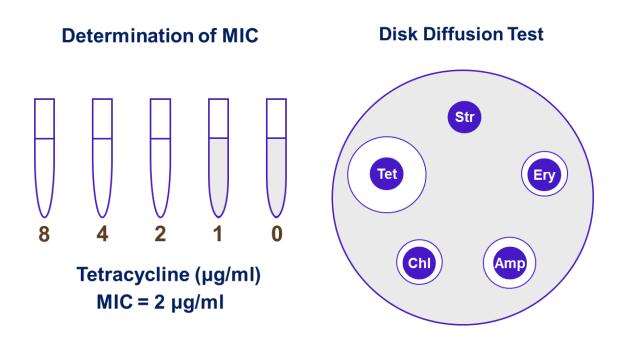
Antibiotic Susceptibility Testing (Minimum inhibitory concentration, MIC)

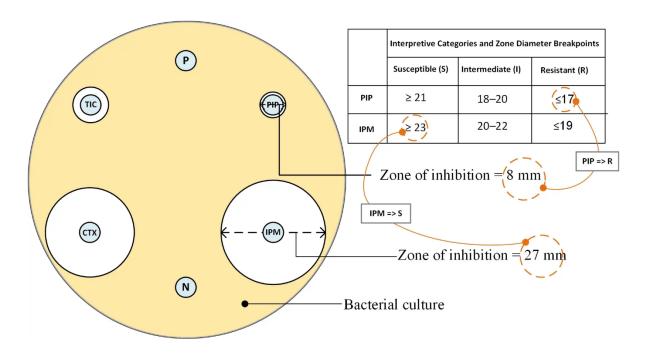
Susceptibility is a term used when microbe such as bacteria and fungi are unable to grow in the presence of one or more antimicrobial drugs. Susceptibility testing

is performed on bacteria or fungi causing an individual's infection after they have been recovered in a culture of the specimen. Testing is used to determine the potential effectiveness of specific antibiotics on the bacteria and/or to determine if the bacteria have developed resistance to certain antibiotics. The results of this test can be used to help select the drug(s) that will likely be most effective in treating an infection.

Bacteria and fungi have the potential to develop resistance to antibiotics and antifungal drugs at any time. This means that antibiotics once used to kill or inhibit their growth may no longer be effective.

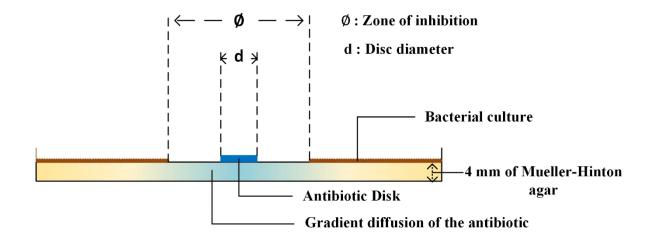
During the culture process, pathogens are isolated (separated out from any other microbes present). Each pathogen, if present, is identified using biochemical, enzymatic, or molecular tests. Once the pathogens have been identified, it is possible to determine whether susceptibility testing is required. Susceptibility testing is not performed on every pathogen; there are some that respond to established standard treatments. For example, strep throat, an infection caused by *Streptococcus pyogenes* (also known as group A streptococcus), can be treated with ampicillin and does not require a test to predict susceptibility to this class of antibiotics.


Susceptibility testing is performed on each type of bacteria or fungi that may be relevant to the individual's treatment and whose susceptibility to treatment may not be known. Each pathogen is tested individually to determine the ability of antimicrobials to inhibit its growth. This is can be measured directly by bringing the pathogen and the antibiotic together in a growing environment, such as nutrient media in a test tube or agar plate, to observe the effect of the antibiotic on the growth of the bacteria. Resistance can also be determined by detection of a gene that is known to cause resistance to specific antibiotics.


Susceptibility testing is used to determine which antimicrobials will inhibit the growth of the bacteria or fungi causing a specific infection. The results from this

test will help a health care practitioner determine which drugs are likely to be most effective in treating a person's infection.

Some types of infections may require testing because the bacteria or fungi isolated from an infection site are known to have unpredictable susceptibility to the drugs usually used to treat them. Some examples include staphylococci ("staph") and *Pseudomonas aeruginosa*.


Sometimes there may be more than one type of pathogen isolated from an infected site, such as a wound infection. Susceptibility testing may be used to determine which antibiotic or antibiotic combinations will be most effective in treating all the different types of bacteria causing the infection.

The medium used for the majority of bacterial species is Mueller-Hinton agar (plus 5% blood for fastidious germs):

- It shows acceptable lot-to-lot reproducibility for susceptibility testing.
- It is low in inhibitors which affect sulfonamide, trimethoprim and tetracycline susceptibility test results.
- It supports satisfactory growth of most pathogens.
- A large amount of data and experience has been collected on sensitivity tests carried out with this medium.

