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Chapter 1 : Static Electricity
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Introduction :

The documents dating back to before 600 BC indicate the availability of cognitive information 

on static electricity and the word static derived from the Greek word for the substance of 

electricity. The Greeks used to spend long hours kneading a piece of cloth with electrostatic 

material and noticing how this substance then attracted the small pieces, but the interest of the 

Greeks was focused on logic and philosophy and not on experimental science. Therefore, a long 

time elapsed before it became possible to prove that this phenomenon of attraction is not magic.

1- Coulomb's law:

The first person to conduct practical experiments was Dr. Colbert, a physician of the Queen of England, 

who declared in 1600 that this phenomenon is not limited to electricity, but rather to glass, wood, sulfur and 

other materials. Shortly thereafter, the French army engineer Coulomb conducted a number of advanced 

experiments using a special real torsional balance in order to find out the magnitude of the attractive force 

between two objects that each carry a static electric charge.

Coulomb's results are now known as Coulomb's law and bear a strong resemblance to Newton's law of 

universal gravitation, which was discovered 100 years earlier. Coulomb's law states that the force between 

two charged bodies separated by a large distance with respect to their volumes is proportional to the 

product of the two charges and inversely to the square of the distance between them. This force is 

considered a repulsive force for charges that have the same signal and an attractive force for charges of 

different signal.

2



Coulomb's law takes the following mathematical form:

Fig. (1-1)
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Where       is the force acting on the charge  � resulting from the presence of the charge      ,       

it is the vector of the position  �� with respect to the origin . In formula (1) we choose a 

constant of proportionality equal to unity.

If there  � is a charges                           then the force acting on the charge becomes in the 

form:

The two formulas (1) and (2) can be generalized in the case of the continuous (uniform) 

distribution of charges, which distinguishes it by two standard functions in the position:

A - The volumetric density of the charge, which is the charge per unit of volume, is symbolized 

by the symbol                    .
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B - The surface density of the charge, which is the charge per unit area, and it is symbolized by 

the symbol                . In this case, the force acting on the charge from the charged object can be 

placed in the form:

Where � is the volume of the object, �� is the volume element,  � is the surface of the body, ��

is the surface element. The general mathematical picture of Coulomb's law of force on a charge, 

arising from a concentrated distribution of charges in addition to the previous two distributions 

is:
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2- The electric field:

It is a mathematical concept that we use to characterize the electric phenomenon, and it is a 

directional function in position, and the strength of the electric field at a point is defined as the 

force acting on a unit of positive charges if placed at that point. The general mathematical picture 

of the electric field strength is:
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By composing the vector product of the operator       and the vector        (the rotation of the 

vector      ) given by equation (5), we find that:

By using Stokes' theorem to convert the surface integral into linear integral, i.e.:

Where S a surface defined by the closed curve ,        the length vector element of the curve .
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Then by substituting in equation (6), we find that:

That is, the vector      (electric field strength) represents a conservative field (i.e. conservative force).

3- Electric potential:

Sometimes it is difficult to find the electric field strength       using Coulomb's law (and in many 

cases very complex) due to the fact that the electric field strength vectors are of the type of directional 

fields arising from the distributions of charges, and in most cases it is necessary to make three 

integrals (one for each component). Of electric field compounds). The field analysis of its compounds 

increases the difficulty of the integration process in most cases. Therefore, it is desirable to find a 

scalar function and with one integral operation from which the electric field can be obtained.
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This standard function is known as the voltage function and it is a function of the position, and 

since the electric field is a conservative force, the work done by the field to transfer the unit of 

positive charges from position A to position �� does not depend on the path, but only on these 

two positions.

If �� is a certain agreed fixed point, then the work done by the electric field to move the unit of 

positive charges from position A to the standard position �� (this standard position is taken at 

infinity) is called with the energy of the positive charge voltage of the unit when placed at A. Or, 

in short, the field voltage at A. It is denoted by the symbol        , and since the work does not 

depend on the path between the two points, the standard function at the position is a single-

valued function at any point in space. If we denote work as 

A

So  :

Accordingly,:
oC CBW =

oA ABW =

0 0 0 0AC AB B c AB CBW W W W W= + = −

Fig. (1-2)

A C C A=  − = −  − (8)
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This means that the work done by the field to transfer the unit of positive charges is equal to the 

change in the voltage function between the two positions multiplied by a negative sign. Now 

suppose that the work is to transfer the unit of positive charges from the point          where the 

voltage function is at      and the point                     and the voltage function                  at it is   

where:

dW d d= − + − = − 

( )P r

( )Q r dr+ d+  dW

Fig. (1-3)

This work can be placed in the picture

dW d d= − + − = − 

dW E dr=

.E dr d dx dy dz
x y z

   
= −  = − + + 
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i j k dxi dyj dzk
x y z

   
= − + + + + 

   

dr= − 

E grad= − = 

(9)

(10)
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This form takes the Cartesian, cylindrical and sphical coordinates, respectively, the forms:

, , , ,x y zE E E
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It is noted that relationship (10) achieves:                     It is also noted from the above that if there 

is a charge  � placed in an electric field, the force acting on this charge becomes        and the 

energy of the charge voltage is

Example: Find the field and potential of a charge placed at the origin.

Solution: Suppose     the position of point � with respect to the charge so that the field at this 

point is:

As for the potential function, it is given as:
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Gaussian theory of flux: If  � the electric flux emerging from the closed surface of the 

electric field      , then this flux is given by the formula:

Where is the total charge inside the surface.

E
r

4
S
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Fig. (1-4)

��

Proof: Assume that        the field strength created by the charge      at the point         as shown  

in the figure. The previous surface integration can be illustrated as:

Where        is the solid angle at charge      . And it is:                or                  when the charge is 

outside or inside the surface, respectively.
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Accordingly, the previous surface integration becomes:

If there were shipments      distributed on the surface in addition to the previous distribution. In 

this case, the stereoscopic angle       corresponds to the surface charge       . Accordingly, the total 

flux resulting from surface charges and the internal distribution of the charges is as follows:

Where �′ is the total charge on the surface . As for the uniform distribution of the shipment,

(11)4
S

E dS Q=

4 2 '
S

E dS Q Q= +

Assuming that the bulk density of the charge inside the surface is , the flux is in form:

Where � is the volume enclosed by the surface , is the volume element. If there is a uniform 

surface distribution with a surface density in addition to the previous uniform volume 

distribution, the flux takes the formula:

Using the integral formula

(12)4
S V

E dS d= 

4 2
S V S

E dS d dS= +  

S V

E dS E d=  
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By substituting in equation (12), we find that:

This equation is known as the differential formula for Gauss's law. If = 0 then:

That is, at the point of no charge, the electrostatic field divergence disappears.

(13)

(14)

4E =

0E =

Poisson's equation:

Putting                      in (13) we get:

This is called the Poisson equation, and it is a fundamental equation in electrophysiology.

Laplace Equation:

Putting = 0 in equation (15) we get:

This equation is called the Laplace equation, and it is one of the important equations in the 

branches of theoretical physics.

(15)

(16)

E = −
2 4  = −

2 0  =
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Power lines and power tubes:

The line of force is the curve whose tangent to it at any point on it fits with the direction of the 

electric field at that point. Assuming that         it is the vector length component of the curve     , 

then:

d dxi dyj dzk= + +

X y zE E i E j E k= + +

d E=

d

Fig. (1-5)

Where         ,       ,        base unit vectors, and be:

In general, at every point in space, one force line passes through, but when it is:                     the 

direction of the force line at this point is not specified, and such a point is called the break-even 

point. A bundle of force lines passing through a closed curve is called a power tube. The flux 

through any section of a power tube is called the intensity of the tube. Unit tube is that unit 

tensioned tube.

X Y z

dx dy dz

E E E
= = =

0E =
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Notes :

(A) The iso voltage line cuts the power line        perpendicular to the orthogonal because the 

electric field is perpendicular to the iso voltage line.

(B) If a conductive object is charged with a charge, then this charge only settles and is distributed 

on the surface of the conductor, that is, there will be no charges inside this conductor.

(C) The conductor surface is the isoelectric surface.

E
r

Example (1): Find the potential and electric field strength of a capacitor consisting of two flat 

conductive plates of infinite length. One of them is connected to the ground while the pontential

on the other plate at any point on it is equal       and the distance between the two plates is equal  

The solution: by choosing a group of cartesian axes � so that the axis is perpendicular to the 

plane of each plate. As the figure.

Fig. (1-6)

1
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It is clear from the symmetry that the potential (and the electric field) is a function of the 

variable , i.e. that                      and the Laplace equation becomes:

Then by integrating, we find that:

Using the two conditions:              when = 0,                when               we find that:                 ,

= 0, so the potential function takes the form:

z =

2

2
0

d

dz


=

Az B = +

1 z


 =

0= 1 =  z = 1A


=

The strength of the electric field is given by:

Where      the unit vector is in the direction of the axis . It is evident that the electric field is a 

uniform field in the direction of the plate conducting the earth.

1d
E k k

dz


= − = −
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Example (2): Find the potential and electric field of a capacitor consisting of two cylinders 

infinite in length and shared in the axis, the inner cylinder radius � and the potential function at 

any point on it        , while the outer cylinder is connected to the ground and the radius �.

The solution :

By choosing a group of cylindrical axes                    so 

that the axis � applies to the common axis of the two 

cylinders of the capacitor, it is clear that all points located 

on a cylinder of radius are      . Where                similar for 

both the voltage and the electric field function. That is, 

the voltage function

Fig. (1-7)

a

a b 

z 

 = 

Laplace Equation in Cylindrical Coordinates:

Which in this case becomes in the form :

Then by integrating twice, we find that:

2 2
2

2 2

1 1
0

z

      
  = + + = 

    

1
0

d d

d d

 
= 

 

lnA B = +
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Using the two conditions:                 when � = �,              when � = � we find that:

The field strength of the capacitor is given as:

Where       the unit vector is in the direction of �. It is evident that the field is inversely 

proportional to , and its direction is from the smaller cylinder to the largest cylinder.

ln

ln ln
a b

B
b a


=

−ln ln
aA

b a


= −

−

ln ln
ad

E e e
d b a


= − =

−

a =  0=

Example (3): Find the electric potential and electric field of a capacitor consisting of two 

small spherical shells shared in the center. The inner radius of the sphere and the potential 

function on it       . The outer sphere is connected to the ground and has a radius of .

The solution :

By choosing a set of spherical axes                . Obviously, 

for all points on the surface of a sphere a radius                

� < � < � .The voltage and electric field function are the 

same for these points, i.e.:r = 

, ,r

Fig. (1-8)

a
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The Laplace equation for sphrical coordinates is:

Which in this case becomes:

Complementary, we find that:

Using the two conditions:               when � = �,               when � = �. we find that :

2
2 2

2 2 2 2 2

1 1 1
sin 0

sin sin
r

r r r r r

        
  = + + =   

       

2

2

1
0

d d
r

r dr dr

 
= 

 

A
B

r
 = − +

aab
A

b a


= −

−
aa

B
b a


= −

−

0=

Thus,:

That is, the electric field is inversely proportional to �� and its direction from the minor to the 

major crust.

1aa b

b a r

  
 = − 

−  

2

a
r r

abd
E e e

dr r b a


= − =

−
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The electrical phenomenon of combinations of charge

1- A group of charges in a straight line:

Assume that                        a group of charges focused on the straight line = 0 at the points.     

.                      Suppose that point � is on the force line     as shown in the figure. The total 

electric field       must be in the direction of the tangent to the force line through point �. That is, 

the component perpendicular to the field on the tangent must vanish. That is,:

1 2, ,......, ne e e

1 2, ,...., nA A A

E

Fig. (1-9)

Where      is the angle between       and the tangent at point of the force line      , and where:

Then equation (1) takes the form:

Using relationships:

And substituting in equation (2) we get:

1 2
1 22 2 2

1 2

sin sin ..... sin 0n
n

n

e e e

r r r
+ + + =

1 2
1 2

1 2

..... 0n
n

n

e e e
d d d

r r r
+ + + =

1 1 2 2sin sin ..... sinn nr r r m= = = =

1 1 1 2 2 2sin sin ..... sin 0n n ne d e d e d+ + + =

iE

(1)

(2)

(3)

(4)

18



By integrating this equation, we find that:

For all values of the constant we obtain the equations of the power lines of the previous charge 

distribution. Obviously, these lines lie on the surface of its axis     . As for lines of equal voltage 

that cut the lines of forces perpendicular to each other:

That is,:

For all values of the constant we obtain equations of isoelectric lines.

(5)1 1 2 2cos cos ..... cos .n ne e e cons+ + + =

1 2

1 2

..... .n

n

e e e
const

r r r
+ + + =

1 1 2 2sin sin ..... sin .n ne e e const+ + + = (6)

2- Electric field and electric potential of linear charges:

If linear charges are distributed in a continuous line on an infinitely long line, this distribution 

e is called a linear distribution of charge, and the charge e per unit of length is called linear 

density. If  e has the same value at each point, the distribution is called the uniform distribution 

of the charge.

To find the strength of the electric field and the electric potential produced by a wire charged 

with a uniform charge, suppose that the wire is a cylinder of very small radius a and has a 

uniform linear charge. Now we imagine a cylinder of radius r coaxial with the previous cylinder. 

The total flux leaving the outer cylinder of length is  :          where the field strength magnitude 

is . Since the total internal charge is (eL), by applying the Gaussian flux theory we find that:

2 rLE
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Then by integrating, we find that:

2 4rLE eL=

2e
E

r
=

2d e
E

dr r


= − =

. 2 lnconst e r= −
Fig. (1-10)

(7)

(8)

L

The two relationships (7) and (8) do not depend on the radius of the inner cylinder, and 

assuming that � → 0, meaning that the inner cylinder devolved into a charged wire with a 

uniform linear charge, (7) and (8) are the equations for the electric field strength and the electric 

potential of the charged wire.

To find the forec lines of a group of infinitely long parallel wires charged with uniform 

charges: Suppose the linear density of the charge for these wires is                           and suppose 

that the wires cut perpendicular to a plane in points                             respectively, and suppose 

that is P a point on the line of force     in this plane, and assume that:                          make the  

angles                         With a fixed line in the plane = 0 as shown in the figure.

1 2, ,....., ne e e

1 2, ,....., nA A A

1 2, ,....., nA P A P A P

1 2, ,....., n
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Since the total electric field component perpendicular to the tangent at point P of the curve   

must vanish, then:
1 2

1 2

1 2

2 2 2
sin sin ..... sin 0n

n

n

e e e

r r r
+ + + =

Fig. (1-11)

(9)

Where �� is the angle between ���, and the tangent to the curve and where:                          

Then by integrating, we find that:

For different constant values, equation (10) gives the equation of the plane force lines in the 

wire group charged parallel linear charges. As for the lines of equal potential at this level, they 

are required from the equation

1 1 2 2 ..... 0n ne d e d e d+ + + =

1 1 2 2 ..... .n ne e e const+ + + =

1 1 2 2ln ln ..... ln .n ne r e r e r const+ + + =

sin i
i i

d
r
d

=

(11)

(10)
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3-The electric doublet (or dipole):

It is two very large electrical charges                    that are separated from each other by a very 

small distance       . The electric doublet is characterized by a vector called the moment vector, 

and this vector is given by the mathematical formula: limM e
→

=

,e e+ −

Fig. (1-12)

The vector connecting from negative charge to positive charge is called the doublet axis, and it 

is the same direction as the electric moment vector. The doublet potential at the point            can 

be shown as:

By choosing a group of cartesian axes                  so that the double axis applies to the axis x as 

shown in the figure. Then it can put:

Where a is the length of the electric doublet ( is very small). And also:

1 2 1 2

1 1e e
P e

r r r r

+ −  
 = + = − 

 

P r

2 2 2 2 ,r x y z M ae= + + =

, ,x y z

1
2

2
2 2

1 2
1

2

a ax
r x y z r

r

   
= − + + = −   

   

(12)

(13)
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Then by substituting in (12), we find that the double voltage becomes:

Where � is the angle between the vectors:            . The electric field at point P is:

(14)

(16)

1
2

2
2 2

2 2
1

2

a ax
r x y z r

r

   
= − + + = +   

   

1 1

2 2

2 2 2
1 1

e ax ax ae x
P

r r r r r

− − 
     = − − + =       
 

2 3

cosM M r

r r
= =

3 3 5
3

M r M M r
E r

r r r

 
= − = − = − + 

 

,r M

(15)

The two polar components of the electric field require from two relationships:

And the differential polar equation of force lines is given as:

Then by substitution and integration we obtain the equation of the force lines with the formula:

(17)

(19)

(18)

3

2 cos
r

M
E

r r


= − =



3

1 sinM
E

r r


= − =



r

dr rd

E E
=

2sinr c=
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Example (4): Study the force lines of the two positive charges  �� ,�� at the points  �,� and. 

Then show that the tangent at infinity (the asymptote) of the line of force starting from  �� with 

an angle of inclination with �� makes the angle:

The solution :

1 1

1 2

2sin sin
2

e
n

e e
−
 
  + 

Fig. (1-13)

Suppose that P is a point on the force line that starts at and ends at infinity. And suppose the 

line BA. The line is: = 0. The equation of the force lines are:

To find C for the force line that starts at with an angle of inclination � and ends at infinity, we 

use the condition when →A, then:                            by substituting in the previous equation, 

we find that:                                   and the equation of the requird force line becomes:

To find the slope of the tangent at infinity (which is the angle of inclination of the asymptote) 

we use the condition: when →∞, then ��= �� = � Then by substituting into equation (2):

1 2cosC e e= +

1 1 2 2cos cose e C+ =

1 1 2 2 1 2cos cos cose e e e+ = +

1 2 1 2cos cose e e e+ = +

2 10,= =

(1)

(2)
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2 2
1 2 1 21 2sin 1 2sin

2 2
e e e e

   
+ − = − +   

   

2 2
1 2 1sin sin

2 2
e e e+ =

1

1 2

sin sin
2 2

e

e e
=

+

1 1

1 2

2sin sin
2

e

e e
−
 

=   + 

Exercises

1- Find the force lines of two parallel wires that are infinite in length, and the longitudinal 

density of the charge for them  − ,e  . Also find the potential equal curves.

2- Three wires of infinite length, and the linear density of the charge is: 1, -2 , 1 unit charge. 

These wires are cut perpendicular to a plane at three points and on the same line: , , , 

respectively, where �� = �� = �. Prove that the equation of power lines is:

Where is at the origin, is the angle measure , is a parameter.

2 2 cos 2 secr a= +
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3- Three parallel and symmetric thin wires of uniform linear charge, and intersecting 

perpendicularly a plane at three points , ,C which represent the vertices of an equilateral 

triangle and the length of its side 3�. Show that the polar equation for the voltage-equal curves 

plotted in the plane is as follows:                                                     Assuming the center of the 

triangle is the origin.

4 - Four parallel wires of infinite length, placed so that they cross a plane perpendicular to a 

plane in four points, which are the vertices of the square and the longitudinal density of 

the uniform charge is:

when , , − when , . If the side length of the square is 2 , prove that the potential       

at the point P located inside the square takes the form:                                 where            the 

polar coordinates of the point are with respect to the center of the square.

6 6 3 32 cos .r c r c cons+ − =

2 22 cos 2er a− = ,r



Polarized dielectric materials

It has been found experimentally that some insulating materials such as mica and glass, if they 

are electrically affected by them, they polarize in the sense that every small element thereof turns 

into an electric doublet, and this phenomenon can be explained in two ways as follows:

(A) Atoms of any substance contain positive and negative charges. If the material is 

conductive then negative charges are free to move in the material under the influence of an 

electric field, resulting in an electric current flow. If the material is neutral and polarizable, then 

this flow does not occur, but the effective electric field displaces the charges in the atom slightly 

so that the charge is shifted in the direction of the effect field and the negative charge in the 

opposite direction, and thus the electric doublets in the polarized material appears in the direction 

of the electric field.
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(B) It can be imagined that the molecules of this substance are mainly composed of electric 

doublets distributed in the substance randomly distributed so that each small element of it 

consists of a large number of these doublets and this element does not appear polarized because 

these doublets disappear each other, but if you put this substance in a field Electrification, it 

creates a regularity in the directions of these doublets and take the direction of the field, and the 

material becomes polarized.

Fig. (1-14)

Polarization vector

We now introduce a concept that characterizes the polarization intensity of the material, which 

is the polarization vector     , which is defined as the electric doublet moment vector equivalent 

to the unit volume of the polarized material. If we have a volume element ��, it is equivalent to 

an electric doublet of its torque:         . For many materials there is a linear relationship between 

the vector      and the vector of electric field strength       at any point within the polarized 

material. That is,:

Where k is a constant dependent on the material and is called the polarizability coefficient. If 

the polarization vector is constant in magnitude and direction at all points of the polarized 

material, it is said that the polarization is uniform.

P kE=

Pd
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Poisson's rule of equivalent distribution

Suppose we have a polarized material of volume � and enclosed in the surface � and that �� is 

a volume element of this body. This element is equivalent to an electric doublet vector torque     . 

If � is a point outside the polarized body, then the electrical phenomenon arising from the body 

at point � is characterized by the field vector      and the potential function       , and they are 

estimated by the complementary effects of the electric doublet that make up the body.

Fig. (1-15)

Pd

To find the potential function at point �, suppose the potential due to the electric doublet          

is:

The potential produced by the body at point � is:

And be:

Pd

1
d Pd

r

 
 =  

 

1
q

V

P P
P d d

r r r

    
 =  =  −   

    
 

n
q

V S V S

PP P dS P
d d dS

r r r r

   − −
 = + = +   

   
   
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This result shows that the polarized body is completely equivalent to the following electrical model:

(1) A group of charges distributed on the volume of an object and their volume density of the charge 

is:

(2) A group of charges distributed over the surface of an object whose surface charge density is:

It is the component perpendicular to the polarization vector on the surface of a polarized 

object.

The previous two distributions are known as the equivalent Poisson distribution for the polarized 

body. It is clear that the total charge resulting from the two previous distributions is:

P= −

nP=

0n

V S V V

Q P d P dS P d P d= − + = −  +  =   

As expected because the total charge inside the polarized body and on its surface must be zero. The 

electric field strength at point outside the polarized body is the force acting on the unit of positive 

charges at this point and satisfies the equations:

The electric phenomenon inside a polarized body is also characterized by the electric field vector 

and it satisfies the previous equations.

, 0 , 0E E E d= −   = =
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The electric displacement vector

At any point inside a polarized body the equivalent Poisson distribution is achieved. This means that 

the field      at any point inside a polarized body is related to the bulk density at this point (the density      

, ) by Gaussian theory of flood. That is,:

Where is the surface of the polarized object surrounding the volume. And by using the 

complementary relationship:

Substituting in Gauss' flood theory, we obtain:

4
S V

E dS P d= − 

P−

V

E dS E d=  

4 0E P + =

And now a new vector can be defined to distinguish the electrical phenomenon inside the polarized 

material, which can be placed in the image:

It is called the electric displacement vector and it achieves the mathematical relationship:               

This is true in the case of a polarized body only and is not charged with additional charges from the 

outside. Whereas                 , by substitution, the vector of electrical displacement takes the form:

And is called the polarization constant. It is further evident that:

4 , 1 4D E kE KE K k= + = = +

P kE=
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If � does not depend on position, then the voltage function satisfies the Laplace equation:

But if the polarized body is charged with additional free charges and its bulk density is �, and by 

applying Gaussian flood theory, we find that:

If � does not depend on position, then the voltage function is fulfilled:                         .  this is the 

Poisson equation. In the case of space � = 0, k= 1 and,

2 0  =

4 , 4 4E P E P = −   + =

4 4D K =    = −

2 4

K
  = −

D E=

Consequences:

1) If we imagine a closed surface drawn inside the material, it results from the above that:

A- If the material is not shipped with free shipment then:

B- If the material is charged with free bulk bulk density � then:

0
S

D dS D d=  = 

4
S V V

D dS D d d=  =  
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2) If the body is uniformly polarized, that is                   , the electric field inside the material is 

uniform, that is                   it is achieved                  if there are no free charges, i.e. = 0 and the 

equivalent Poisson distribution converts to a surface distribution only, i.e.

3) If the point at which we compute the voltage        outside the body that is not charged with free 

charges (i.e. = 0) is too far from the body then:               it remains constant during the integration 

process, i.e. that:

n

S

P
dS
r

 = 

1 1

V

Pd m
r r

   
 =  =    

   


1

r

 
 
 

That is, in this case we consider the polarized body as if it were an electric double and its moment 

vector must be by the formula:

4) If we place a charge +e in a substance with a constant polarization , we enclose this charge with 

a ball of radius and the center of the charge +e and                         at any point at a distance from 

the charge, then:

The electric field should be:                    The polarization intensity vector takes the picture:

V

m Pd= 

, ,P E D

2

2 3
4 4 4

S

e e
D dS e r D e D D r

r r
=  =  =  =

3

e
E r

Kr
=

3

1

4 4

K eD E
P r

r

−−
= =
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This means that if there is a charge �′ at a distance from the charge +�, then the force acting on 

the charge �′ is in the form:                      and if there is no substance,                 then, that is, the 

presence of the charge +� inside the substance decreases its amount from +� to.  because � > � can 

be understood from the Poisson distribution as follows: If we consider the charge +� in the form of a 

sphere of radius b, the material after it polarizes is equivalent to a volumetric distribution of its 

density, then:

The surface distribution has a surface density:             because        in the direction         of any 

perpendicular to the surface of the sphere, this means that the polarization of the material adds to the 

charge +� another charge of magnitude

3

1
0

4

K e r
P

K r

−  
− = −  = 

 

3

ee
F r

Kr


=

3

ee
F r

r


=

2 2

20 0

1 1
lim 4 lim 4

4
r b

b b

K e K e
q b P b

Kb K
=

→ →

− −
= = − = −

a bP =− r

The negative sign because the direction       is the direction       and the perpendicular direction on the 

surface (the surface of the sphere) is towards the outside in a direction         and so the total charge is:

Surface conditions:

The surface conditions that must be met at the surface separating two polarized materials can be 

obtained by assuming that S is the separating surface between two materials (1) and (2) and their 

polarization,                  respectively. We imagine a cylinder perpendicular to the surface S and its 

base area A and that the unit vector is perpendicular to the surface, and if there are free charges on the 

separating surface S and its surface density � and assuming that the height of the cylinder is so small 

that an overflow       on the rotational surface can be neglected, we obtain:

1K e e
e

K K

−
+ − =

2 1,K K

D

r−

r
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This means that the vertical component of the electric displacement vector at the charged separating 

surface is disconnected, and where

We find that:

If the surface is uncharged, i.e. = 0, then:

, nD KE E
n


= =



2 2
2 2 1 1 2 14 4n nK E K E K K

n n

 
− =  − = −

 

2 1
2 1 2 2 1 1 2 10 , 0n n n nD D K E K E K K

n n

 
− = − =  =

 

As for the tangent component to the electric field vector in the direction of the separating surface, it 

is continuous, meaning that                 from it we find that the voltage is a continuous function at the 

surface, that is                 , if we assume that material (2) is a conductive substance, then             that is            

.               , that is                , that is, the electric field in Article (1) is Just perpendicular to the surface 

S:
1

1 1 2

1

4
, ,

4

K
E

K n


= − = +   = 



2 1t tE E=

2 1 =  2 0E =

2 0tE =
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Application:

A sphere of radius a and constant polarization is placed in a substance of constant polarity �� and 

extended to infinity, and the two materials are affected by an electric field       of uniform intensity. 

Calculate the voltage function at any point.

The solution: There are (1) and (2) inside the ball,                   and (2)                     outside the ball.

By taking the axis � in the direction of the uniform field        through the center of the sphere o, then 

this axis is the axis of symmetry. If we choose the spherical polar coordinates to express the voltage 

function, which then depends on ,�, that is,                       we will search for the two voltage 

functions:                                         in the two regions (1) and (2) and each of them fulfills the conditions:

(A) When we write the Laplace equation in spherical polar coordinates.

0E

0E

0 r a 

,r =

1 2, , ,r r 

(B) It is monovalent and finite when = ∞,         it is monovalent and finite when = 0.

(C) when =a for all values of the angle �.

(D) When =a for all values of the angle �.

So we compound the two functions                   from the functions:

Inside the ball                   we choose                          .

Outside the ball                   , the potential must devolve to that uniform field at =∞, and the field at 

far points is close to that of the electric duplex. So we choose

1 2

1 2 = 

1 2
1 2K K
r r

 
=

 

1 2 = 

02

cos
, , cos , cos

C A
Br E r

r r
−

2 cosBr =0 r a 

a r 

1 0 2

cos
cos

A
E r

r
 = − +
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Then by applying the two conditions (c) and (d) we get:

By solving these two equations, we find that:

Thus, it is:

0 2

cos
cos cos

A
E a Ba

a
− + =

1 0 23

2 cos
cos cos

A
K E K B

a

 
− − =  

2
0 03 3

1

2
,

KA A
E B E B

a a K
− + = − − =

32 1 1
0 0

2 1 2 1

3
,

2 2

K K K
A E a B E

K K K K

− −
= =

+ +

3
02 1

1 0 2
2 1

cos cos
2

E aK K
E r

K K r

−
 = − + 

+

1 0
2

2 1

3
cos

2

K E
r

K K

−
 = 

+

Result (1): We can find a distribution of charges in space equivalent to the previous combination 

and give the same two voltage functions                  , from

The two functions                  fulfill the Laplace equation where �= 0. In the two worlds (1), (2) we 

put

2 2

2 2

1 1
sin 0 4

sin
r

r r r r

      
  = + + =   

      

1 2 4n N r a
E E

=
− =

1 2 = 

1 2 = 

1 2 4
r ar r =

  
− = − 

  

0 0 0

1 3
cos 2 cos cos 4

2 2

K
E E E

K K

−
− −  +  = −

+ +
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This means that a distribution of charges with a surface density on the surface of a sphere (radius 

) and constant polarization placed in space gives the same electrical phenomenon (such as a 

sphere of radius a in a uniform electric field        ).

Result (2): If the ball is a gap in material, �� then:

1
2 0

1

3
cos

1 2

K
E r

K

−
 = 

+

0

3 1
cos

4 2

K
E

K

−
 = 

+

0E

Example (5): Calculate the equivalent Poisson distribution in the case of a sphere of radius a and 

polarized so that the polarization vector should be from:                 where � is constant,      the 

position vector of a point with respect to the center of the sphere

The solution:

The bulk density of a charge is given by:

The surface density should be:

Because =a at the surface of the sphere. It is evident that the total charge:

3 24
3 3 4 0

3
V S

Q d a dS a a a
 

= − + = − + = 
 

 

3P r= − = −  = −

r
P n r r a

r
= = =  =

r
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Exercises

1 - a charge +e placed in front of the plane surface of a substance of constant k and half-infinite 

polarization. Calculate the force between the charge and matter.

2 - A sphere of radius is uniformly polarized and has      a polarization vector. Calculate the total 

electric field at the center resulting from the surface portion of the equivalent Poisson distribution.

3 - A thin rod with a cross-sectional area A is applied to the axis from the origin to x=L. If it is 

known that the polarization was in the direction of the penis, it is necessary to:                               

Calculate the bulk density of the polarizing charge as well as the surface density of the charge at each 

end.

2P ax b= +

4 - Three concentric, thin spherical                         shells of radii,                     respectively. Where      

.                 . Fill the space between                 a substance of constant polarity k, and the space 

between                a substance with a constant polarization �′. The two crusts               reached the 

ground and the shell B was charged with a total charge Q. Prove that Q is divided between the inner 

and outer surfaces of the shell B with respect to:

, ,A B C , ,a b c

a b c  ,A B

,B C ,C A

Ka c b

K c b a

−

 −
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Electric currents:

When two conductors of the two voltage functions                    are connected by a metal wire, then 

an electric flow occurs from the conductor with the highest voltage of the other conductor until the 

two voltages are equal.

Electric current:

The current intensity in a regular conductor is the rate of change of charge i.e.

Current density vector:

The rate of electric current flow through an element �� from a surface at a point            is:                  

.where                     Is the vector of current density.

dQ
I

dt
=

( )p r j dS

( )j j r=

Continuity equation:

The rate of flow of electric charge outside the surface surrounding the volume is:                        

is equal to the rate of decrease in charge, and assuming that the surface is fixed, then:

And using the integral relationship:

we find that :

S V

j dS d
t


= −

 

S

j dS

S V

j dS j d=  

0
V

j d
t

 
 + = 

 


0j
t


 + =


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This equation is called the coninuity equation. When                   van :                   .

By setting it                        , it turns out that the divergent charge per second per unit volume is equal

to the rate of decrease in the charge with respect to time per unit of volume at this point.

0
t


=


0j =

j
t


 = −


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Chapter 2 : Magnetic Phenomenon
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Introduction :

The phenomenon of magnetic field in space is determined by the presence of a vector known as 

a vector of magnetic field strength and a standard potential  function       . The magnetic 

phenomenon can be treated in the same way that we treat the static electrical phenomenon.

Magnetic fields usually originate from two types of objects:

(A) By moving electric charges or electric currents.

(B) By means of magnetized objects (magnetic materials). It should be noted that there is a 

fundamental difference between the electric phenomenon and the magnetic phenomenon, as it is 

possible for electric charges to appear separately. (Positive or negative) As for the magnetic 

phenomenon, the magnetic poles appear in the form of correlative pairs (i.e. a positive magnetic 

pole associated with a negative magnetic pole or a north pole associated with a south pole)



Coulomb's reverse law:

For any two magnetic poles of intensity �� ,�� and separated by a distance �, a force between 

them will appear directly proportional to the product ���� and inversely proportional to the 

square of the distance between the poles, that is:

The constant of proportionality depends on the medium in which these two magnetic poles are 

located.

1 2
3

p p
F r

r

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Magnetic Potential of Small Magnets:

A small magnet is called a magnetic double or magnetic bipole, and it consists of two large 

magnetic poles separated by a very small distance. The magnetic moment vector of a double is 

denoted by ՜
�

and has a magnitude: � = ��

Where is m the pole strength, the length of the small magnet ( is very small).

The direction of the torque vector in the direction of the double axis (the line connecting from 

the negative pole to the positive pole) the magnetic potential produced by the the small magnet at 

the point �(�) is given by the formula:

1 2 1 2

1 1m m
p m

r r r r

 −
 = + = − 

 

By choosing a group of cartesian axes so that the axis � applies to the axis of the small magnet 

as shown in the figure, and accordingly, it is possible to place:

Fig. (2-1)

2 2 2r x y z= + +

43



By substitution, the potential function becomes:

Assuming is � the angle between the two vectors  ՜
�
,՜
�

then ���� =
�

�
, and the potential 

function becomes:

1
2

2
2 2

1 2
1

2

a ax
r x y z r

r

   
= − + + = −   

   

1
2

2
2 2

2 2
1

2

a ax
r x y z r

r

   
= + + + = +   

   

1 1

2 2

2 2 2
1 1

m ax ax ma x
p

r r r r r

− − 
     = − − + =        
 

2 3

cosM M r
p

r r
 = =

Magnetic field of a small magnet:

The magnetic field strength of a small magnet at point  � is determined from the following 

relationship:

Thus, the field component in the direction of increasing  � is given as:

The field component in the direction of increasing the angle  � is given by:

2

cosM
H p

r

 
= − = −  

 

3

2 cos
r

M
H

r r


= − =



3

1 sinH
H

r r


= −  =


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The magnetic field can also be placed with the formula:

And be:

3 3 3

1 1M r
H M r M r

r r r

   
= − = − = −  −    

  

3 3

3 M rM
r

r r
= − +

3 3

3 cos
,M r

M M
H H

r r
= − =

Magnetic materials:

Elements of these materials are small magnets. These tiny magnets are randomly distributed. If you 

put a material that can be magnetized in a magnetic field, then there is a modification in the small 

magnets so that the direction of the magnetic moment vector of each small magnet is in the direction 

of the magnetic field in which this material that can be magnetized is located, and then the material 

becomes magnetized.

To study such materials, we use a vector called the magnetization intensity vector, denoted by the 

symbol  ՜
�

, and it is defined as the vector of the magnetic moment of the unit volumes of the 

magnetized material. There is a relationship (practically demonstrated for some magnetized materials) 

between the field strength  ՜
�

and the vector  ՜
�

of the magnetized material by the formula:
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Where is  � a constant and is called the magnetic susceptibility parameter. Associates with the 

two vectors  ՜
�
,՜
�

, another vector  ՜
�

The vector of magnetic induction is called the relationship:

Where                         it is called the magnetic permeability coefficient. The vector of magnetic 

induction achieves:

4B H I H= + =

1 4 k= +

0B =

Vector potential:

From the relationship                 , the vector of magnetic induction can be placed on the image:

The vector       is called the vector potential. If it       is a vector potential then                   it also 

represents a vector potential (since       it is a scalar function), and gives the same vector of 

magnetic induction, because if it is                          , then:

0B =

B A=

A A  A  +



A A = +

A A  =
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Therefore, to determine the vector       from which the vector of magnetic induction is required to 

be solely determined, a condition (constraint) must be placed on the vector      . From the 

relationship                          we find that:                                  We will choose the standard 

function         so that it fulfills the condition:                           then the vector of magnetic 

induction is given in the form:                     and the vector        fulfills the condition:

A

A A = +

A

2A A  = + 

2 A   = −

AB A= 0A =



Example (1):

Prove that the vector potential of a small magnet at a point is:                        Where        is the 

magnet moment vector of the magnet,       the point position vector with respect to the magnet.

The solution :

Assume that the axis of the small magnet is applied to the axis       so that the torque vector of 

the small magnet is in the shape                          , and the vector       becomes:

From it we find that:

3

M r
A

r


= M

3 3 3
( , ,0)

M r My Mx
A

r r r

 −
= =

2

5 5 5 3

3 3 3
, ,

Mxz Myz Mz M
A

r r r r

 
 = − 

 

A

oz
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Where                     as, this vector can be placed in the form:

This vector represents the magnetic field strength of the small magnet at a point          , and the 

vector       fulfills the condition :

Therefore, the vector       represents the vector potential of the small magnet.

M r Mz=

2

5 5 5 3

3 3 3
, ,

Mxz Myz Mz M
A

r r r r

 
 = − 

 

( )p r

A

3 3
0 0

My Mx
A

x r y r

 −    
 = + + =   

    

A

Example (2):

Prove that the vector potential of a constant magnetic field (where the magnetic field       is in the 

direction of the axis      ) can be put into the picture:                                             where � is 

constant.

The solution :

The rotation vector of a vector      is:

,0,0H=

0 1

i j k

A
x y z

aHz a Hy

  
  =

  

− −

H

0, , 1A aHz a Hy= − −  

A

oz
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The vector        fulfills the condition:

From this we conclude that the vector         is the vector potential of the constant magnetic field

where              .

H

A

A

H B=

0 1 0A aHz a Hy
y z

 
 = + − + − =

 

Example (3):

Using cylindrical coordinates,  prove that if the magnetic field       is in the direction of the z  

axis, the vector potential takes the form:

The solution :

The rotation vector       of the given vector in cylindrical coordinates is as:

H

A

0,0,H=

2

1

1
0 0

2

ze e e

A
z

A

  
 =

  

1
0, ,0

2
A H

 
=  
 

49



The vector        fulfills the condition:

From this it follows that the vector       represents the vector potential of a constant magnetic 

field in the direction of the axis         where    

A

1 1
0

2
A H

  
 = = 

  

A

oz B H=

Example (4):

Prove that for a magnetic field       parallel to the axis of the angle  � in polar spherical 

coordinates, the vector potential can be positioned as:

The solution :

The rotation vector of a vector       in spherical polar coordinates takes the shape:A

1
0,0, sin

2
A Hr

 
=  
 

2

2 2

sin

1

sin

1
0 0 sin

2

re re r e

A
r r

Hr

  
 =

  

H

cos , sin ,0H= −
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The vector      fulfills the condition:

Therefore, the vector             represents the strength of the magnetic field      , and its first 

component is in the direction of increasing and the second component is in the direction of 

decreasing angle. That is, the magnetic field is in the direction of the axis and is the axis of the 

angle .

A

H

1 1
0 0 sin 0

sin 2
A Hr

r

  
 = + + = 

  

A

The potential for regular magnetic shell:

We consider a crust of small thickness, and assume that is the number of small magnetic 

positive poles per unit surface of this shell. Assume that        is the torque vector of each small 

magnet. Assume that the small magnets are uniformly distributed so that the positive poles are 

applied to one surface of the cortex while the negative poles are applied to the other surface of the 

cortex. To find the magnetic potential produced by the shell at point, we select the element from 

the surface of the magnetic shell. Suppose is the position of the point with respect to ��  .

The magnetic potential produced by the surface element at the point (placed on the side of the 

positive poles) is as:

2

cosMndS
d p

r
 =

M
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We draw a cone with the base element �� and the vertex of the point �, so it is:

2

cosdS
d

r
=

Fig. (2-2)

Where �� is the solid angle of the cone with its base ��. Therefore, the total magnetic potential 

created by the shell at point � is given by the relation:

Where �� is the solid angle made by the shell at point �. Putting                   we find that:

Where       represents the magnetic moment of a unit surface (per unit area) or magnetic intensity.

When the point is on the other side (i.e. on the negative poles side) then:

S S

p d Mn d Mn+ =  =  = = 

+ = 

− = −

Mn = 


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The work required to transfer the positive poles from the point (located on the surface of the 

negative poles) to the point � (located on the surface of the positive poles) is given by the relation:

It is the vector of magnetic induction      , the displacement element, and the two solid 

angles                     on the periphery of the magnetic shell. When the magnetic shell is of very 

small thickness, then point � applies roughly to point �, and in this case:

The work then becomes as:

B B B

A A A
W F dl B dl H dl= = =  

B A B A=  − =  +

2W = 

2A B+ =

B H= dl

,B A

Example (5):

A  magnetic doublet of streng is held  in a regular magnetic field      so that the axis of the 

magnet is parallel to the magnetic field. Show that the resulting field will vanish on a circle or at 

two points. Find the ratio between the diameter of the circle and the distance between the two 

points.

The solution :

The resultant of the magnetic field       and the field arising from the dual at point ( ) is:H

H

1 3 5

3M M r
H H r

r r
= − +

M
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The two fields                  have the same direction, and therefore the field       is the sum of two 

vectors, one in the direction of the vector       and the other in the direction of the vector     . The 

resultant vector        decays when it fades into a coefficient                , i.e. when it is:

Fig. (2-3)

3
, cos 0

M
H

r
− =

,H M 1H

,r H

H r

1H

Of which we find that:                 and  � is perpendicular to        . That is, the field        vanishes at 

all points of the circle of radius              , and this circle is in a perpendicular plane       , meaning 

that the circle is perpendicular to the axis of the double, and on the other hand if        it is in an 

opposite direction to the vector       , then it can be placed                   where             , and the 

resulting field is then:

It is clear from this relationship that the coefficient       is not equal to zero, and it disappears    

only when the vectors are parallel              . When it is                in the same direction it will 

vanish at the point (on the dual axis whose position is which achieves):

1 3 5

3
1

H r
H H r

r r

 
= + − 
 

3 3

3
1 0

H
H

r r

 
+ − = 

 

,H r ,H r

H

1H

1H

1

3M
r

H

 
=  
  1H

1

3M

H

 
 
 

H M H= − 0

M

M

M
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Among them                 , we find that:                  When they are in opposite directions, the 

position of the point is determined by:

That is                  . That is, there are two points at which the field disappears      . The distance 

between the two points is

. And the diameter of the perpendicular circle on the double axis is:

That is:                         . The ratio between the diameter of the circle and the distance between the 

two points is:

3 3

3
1 0

H
H

r r

 
+ − = 

 

3 2r = ,H r

3 2r =
1

32 2 2r =
1

3

2 2
M

r
H

 
 =  

 
1

32 2 2r =
1

3

1 1

3 3

22 1

2
2 2 2

r

r


= =

H

Example (6):

Two small magnets of moments               are fixed at the vertices               of an equilateral 

triangle   so that the axis of the corresponding doublet angle bisected, and then placed a small 

magnet at so that it rotated freely. Prove that the angle between the axis of the small magnet and 

the angle � bisector is:

The solution :

The double                  at two points              produces at the point the two magnetic fields:

1 3
tan

7

M M

M M
−
 −
  + 

,B C

,B C

ABC,M M 

,M M 

, , ,r rH H H H H H  = =
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Fig. (2-4)

The components of the sum of the two fields                 are                where:

3 3 3 3

2 cos 30 3 sin 30
,

2

o o

r

M M M M
H H

r r r r
= = = =

3 3 3 3

2 cos30 3 sin 30
,

2

o o

r

M M M M
H H

r r r r

   
 = = = =

,H H  ,X Y

3

3
cos60 cos30

4
o o

r r

M M
X H H H H

r

−
 = − + − =

3

7
cos30 cos60

4
o o

r r

M M
Y H H H H

r

+
 = + + + =
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The line of force at (the direction of the small magnet at in equilibrium) is inclined 

on the bisector of the angle at the angle � where:

13 3
tan tan

7 7

X M M M M

Y M M M M
−
  − −

= =  =    + + 

Example (7):

A magnetic crust of uniform intensity      bounded by a circular curve of radius . Find the 

magnetic field for this crust at a point on the axis of the shell that is from the center of the circle �. 

Then find the mechanical force acting on a small magnet located on the axis of the shell (the axis 

of the small magnet applies to the axis of the shell �).

The solution :

First, suppose that point � is away from point � by distance �. The angle formed at point � by 

a right circular cone is:


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2 1 cos= −

Fig. (2-5)

The magnetic potential of the crust at is:

The field strength of the crust when given as:

Second: Suppose that         the torque vector of the small magnet applied to the axis � is at , and 

assuming that the poles are two                         distances from the point:

2 2
2 1

z
p

a z

 
 =  =  − 

+ 

2

3
2 2 2

2 a
H

z
a z

 
= − =


+

M

,m m+ − ,z dz z+
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The two forces acting on the magnetic poles are:                                  The force acting on the 

small magnet (the sum of the two forces) is:

And a negative sign means that the force acting is a force of attraction.

,m H dH mH+ + −

2 2

5 5
2 2 2 22 2

6 6a z mdz a Mz
F mH m H dH mH

a z a z

 
= − + + = = − = −

+ +

Example (8):

A regular magnetic crust ( shell ) is  bounded by two concentric  circules of  center radii �,�. 

Show that it exerts no force at a point distance:                   From its center along its axis, and the 

total work done in bringing a small magnet to this point from infinity is also zero.                    

2

3

2 2

3 3

ab

a b+
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The solution :

Fig. (2-6)

The magnetic potential of the shell at � is as:

The magnitude of the magnetic field at point � must be:

2 1 cos 1 cos 2 cos cosb a = − =  − − − =  −

2 2 2 2
cos , cos

z z

z a z b
= =

+ +

2 2

3 3
2 2 2 22 2

2
b a

H
z

b z a z

 
  

= − =  − 
  + + 

60



The magnetic field        diminishes when the condition is met:

Among them we find that:

That is, the field      diminishes at the point �′ which is by the distance �′ from the center �.

2 2
3 34 2 2 4 2 2

3 3
2 2 2 22 2

b a
a b z b a z

b z a z

=  + = +

+ +

2

3

2 2

3 3

ab
z z

a b

= =

+

H

H

The total work done by the magnetic field to move the tiny magnet from infinity to a certain 

point (representing the potential energy of the magnet) is given by the relation:                              

And at point �′ it is:

Because              at the point �′.

W M H= −

0W M H = − =

0H  =
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Chapter 3 : Varying Electromagnetic Fields
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Introduction :

Now we are discussing the state of varing electromagnetic fields with time. We will present two 

new concepts: an electric field produced from a variable magnetic field, and this concept resulted 

from the experimental research of Michael Faraday. The second concept is a magnetic field that 

arises from an electric field that varies with time.

◦Faraday s Law

After Ørsted (1820 CE) showed that an electric current affected a compass needle. Ferday

declared that if an electric current can produce a magnetic field, then the magnetic field must be 

able to produce an electric current.

Significance of fields It can be said that a magnetic field that varies with time produces an 

electric motive force ( e m f ) that creates a closed circuit current. An individual law is 

formulated mathematically in the formula:

��� = −
��

��
(1)   

Where � is the total magnetic flux through the cross section of a magnetic circuit.

That:

Where   ՜
�

magnetic induction. Relationship (1) shows that the electric motive is a scalar 

quantity.

� =ඵ
�

�. � Ԧ� (2)
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This standard quantity is also known as:

Where  ՜
�

the electric field strength.

In general, the electric motive force changes if the path shape changes from equations (1) - (3), 

we find that:

We will consider here that the path is static, the equation (4) in the image:

��� = ර�. �Ԧ� (3)

ර�. �Ԧ� = −
�

��
ඵ
�

�. � Ԧ�

ඵ
�

∇ ∧ � . � Ԧ� = −ඵ
�

��

��
. � Ԧ�

(4)

(5)

Applying Stokes' theorem, equation (5) takes the picture:

Since  �� is an optional surface element, we obtain:

This equation represents one of Maxwell's equations. Equation (6) shows that a magnetic field, 

changing with time, creates an electric field. This electric field has the property of rotation and 

its linear integration around a generally closed path that is not equal to zero. 

(6)

��� = ර�. �Ԧ� = −ඵ
��

��
. � Ԧ�

∇ ∧ � = −
��

��
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If the vector of magnetic induction  ՜
�

does not depend on time, then equations (5) and (6) 

translate respectively to the two electrostatic equations:

(7)ර�. �Ԧ� = 0

∇ ∧ � = 0 (8)

Displacement Current - Ampere's Circular Law:

Ampère's circular law in the case of magnetic fields that do not depend on time can be written 

in the mathematical form:

Where the strength of the magnetic field is the vector of the current density. In the case of 

magnetic field that varies with time, equation (9) is incorrect and this is evident because when 

we multiply both sides of equation (9), it is standard in the influence, that is,:

Which leads to the result:                   , and this result conflicts with the equation of continiuty:

(9)∇ ∧ � = Ԧ�

∇. ∇ ∧ � = 0 = ∇. Ԧ�

∇. � = −
��

��

0J =
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Therefore, equation (9) is correct only if it is:               Suppose we add an unknown term Ԧ� to 

the right-hand side of equation (9). Then (9) takes the picture:

Comparing this equation with the connection equation, we find that:

Using the equation                  we get the simplest solution to the vector  ՜
�

in the form:

Therefore, Ampère's Circular Law takes the following differential form:

(9’)

0
t


=



∇ ∧ � = Ԧ� + Ԧ�

Ԧ� =
��

��

∇ ∧ � = Ԧ� +
��

��
(10)

G
t


 =



Equation (10) was not inferred, but rather it is a mathematical form of Ampère's circular law 

that we obtained and does not contradict the connection equation. Equation (10) is also 

compatible with all other results and it is an acceptable equation as we usually do with any 

experimental law and the equation deduced from it. Equation (10) is another one of Maxwell's 

equations. The additional term on the right-hand side of equation (10) i.e. the term             has 

units of current density (ampere per square meter) and because it results from the time change of 

the displacement vector       , it is called the displacement current density and denoted by the 

symbol                . As for the current density vector     , it is the conduction current density 

(which results from the movement of charges) as well as the load current       .

D

t





D

d

D
J

t


=


J E

v
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In the case of a non-conductive medium in which there is no volumetric charge density (� = 0), 

equation (10) yields the following simple form:

The total displacement current passing through any surface S must integrate:

We can obtain the time-varying form of Ampère's circular integral law by integrating equation 

(10) on the surface S

(11)

∇ ∧ � =
��

��

� = ඵ
�

Ԧ��. � Ԧ� = ඵ
�

��

��
. � Ԧ�

ඵ
�

∇ ∧ � . � Ԧ� = ඵ
�

Ԧ�. � Ԧ� +ඵ
�

��

��
. � Ԧ� = � + ��

Applying Stokes' theorem, the previous equation takes the formula:

Maxwell's equations:

We had previously obtained two Maxwell's equations for time-varying fields in the two 

equations:

The remaining two equations are unchanged from their time-changing images, namely:

(12)ර�. �Ԧ� = � + ��

∇ ∧ � = −
��

��

∇ ∧ � = Ԧ� +
��

��

∇. � = �

∇. � = 0

(13)

(14)

(15)

(16)
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The four preceding equations are Maxwell's equations that represent the basis for studying 

electromagnetic theory. They are partial differential equations that relate electric and magnetic 

fields to each other and their sources (charge and current density). Recognizing the integral 

forms of Maxwell's equations is usually easier in terms of the experimental laws from which 

these equations were obtained by a generalization process (experiments should deal with 

physical macroscopic quantities). So, the results of these experiments are expressed in 

complementary relationships.

We will now try to find the integral forms of the previous Maxwell's equations (13) - (16). By 

integrating equation (13) to a surface and applying Stokes' theorem, we obtain:

(17)ර�. �Ԧ� = −ඵ
�

��

��
. � Ԧ�

This equation is called an odd law. By performing the same integral operation on equation (14), 

we find that:

This is called Ampère's Circular Law. By carrying out the volume integration of equation (15), 

considering that the total volume � is surrounded by the surface, we find that:

And using the Gaussian theorem to convert the scalar integral to a surface integration, the 

previous equation takes the formula:

(18)ර�. �Ԧ� = � +ඵ
�

��

��
. � Ԧ�

(19)

ම
�

∇.� �� =ම
�

���

඾
�

�. � Ԧ� =ම
�

���
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By conducting the same integration process prior to equation (16), we obtain:

When using electrostatic units to measure � and vectors ՜
�
,՜
�
,՜
�

, as well as using 

electromagnetic units to measure vectors ՜
�
,՜
�

, Maxwell's equations for variable 

electromagnetic fields take the following differential images:

(21)

(22)

(20)඾
�

�. � Ԧ� = 0

∇. � = 4��

∇. � = 0

Where c is the speed of light in space.

(23)∇ ∧ � = −
1

�

��

��

∇ ∧ � = 4�Ԧ� +
1

�

��

��
(24)
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Electromagnetic potentials in Maxwell's equations:

From the equation                    , the vector of magnetic induction        can be placed in the 

formula                       . Where        it represents the vector potential. Substituting into Maxwell's 

equation (23) we get:

Accordingly, it is possible to put:

That is, the electric field strength can be given as:

∇ ∧ � = −
1

�

�

��
∇ ∧ Ԧ�

0B =

B A=

B

A

� = −∇� −
1

�

� Ԧ�

��
(25)

Multiplying both sides of this scalar relationship by the operator  ∇ using the equation                  

where                   we get:

Where we assumed here that the ethotropic medium is homogeneous (where  � ,� are constant 

quantities).         From Maxwell's equation (24) and using the relationships:

we find that :

And by using the following vector identity

D KE=

∇�� +
1

2

�

��
∇. Ԧ� = −

4�

�
� (26)

∇ ∧ ∇ ∧ Ԧ� = 4��Ԧ� +
��

�

��

��

∇ ∧ ∇ ∧ Ԧ� = ∇ ∇. � − ∇� Ԧ�

(27)
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Also, using equation (25), equation (27) takes the formula:

Then using the following condition:

Equation of guage invarience

∇ ∇ Ԧ� − ∇� Ԧ� = 4�� Ԧ� −
��

�
∇

��

��
−
��

��
�� Ԧ�

���

∇ Ԧ� +
��

�

��

��
= 0

(28)

(29)

Therefore, equations (26) and (28) become, respectively, in two forms:

Equations (30) and (31) are the wave equations for the related scalar potential      and the 

vector potential

(30)

(31)

∇�� −
��

��
���

���
= −

4�

�
�

∇� Ԧ� −
��

��
�� Ԧ�

���
= −4�� Ԧ�



A
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Example (1) :

Show that the function:                                                              satisfies the quation :

,                             , r  Is the distance between the two points

is the speed of light in space.

The solution :

To find             , we assign  first            

1
, , , , ,

r
f x y z t

r c

 
= − 

 
0f =

2
2

2 2

1

c t


= −


, , , , ,x y z

c

∇� =
1

�
∇� + �∇

1

�

2f f

Assume that                      where                     . So we get:

Since                   any unit of vectors is in the direction of the vector      , and therefore         , the 

formula is taken:

u


 =



r
u t

c
= −

r
r

r
 = r

∇� = −
�′

���
+

�

��
Ԧ�

∇�� = ∇. ∇� = −∇
�′

���
+

�

��
Ԧ�

�� =
�

�
−

�

�
�� −

�

��
�� = −

��

��
+

�

��
��
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The function        can be written with the formula:

By substituting         from equation (2) into equation (1), we find that:

The differential operator       is called the D'Alembert operator. And equation (3) is called the    .   

wave equation.

(2)

= −
�′

���
+

�

��
∇Ԧ� + Ԧ�∇

�′

���
+

�

��

= − 3
�′

���
+

�

��
− Ԧ�

�″

����
+
2�′

���
+
3�

��
+

�′

���
Ԧ�

�
=

�″

���



�″ =
���

���
=
���

���
= �

���

���



(3)

(1)

2 2
2 2

2 2 2 2

1 1
0

f
f f f

c t c t

  
 =   − = = 

  

Example (2) :

Write Maxwell's equations for free space, and show that vector potential:                           

represents a solution to these equations. Where             a function of the variable                                     

.      ,                                     ,                  a unit vector in the direction of the axis       . Find the 

components of the electric field and the magnetic field, and show that the related scalar potential          

is in the form:

� = �
�′ �

���
+
� �

��

f u
A k

cr


=

f u

r
u t

c
= −2 2 2 2r x y z= + +k


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The solution :

In the case of free space,:                                                 Therefore, Maxwell's equations in this 

case take the form:

In the case of free space, the wave equation achieved by the vector potential takes the form:

∇� −
1

��
��

���
Ԧ� = 0

0 , 0E B =  =

1 1
,

B E
E B

c t c t

 
 = −  =

 

We will now demonstrate that the vector potential given in the example satisfies the wave 

equation (1). To do so, we find the following quantities:

By performing the partial differentiation process again, we obtain:

�
� Ԧ�

��
=

�

��

�′ �

��
� = �′ ⋅ −

1

��
��

��
+
�″

�
⋅ −

1

�

��

��
�

= −
��′

��
+
��‴

���
�

�
�� Ԧ�

���
= −

�� − 3�

�5
⋅ �′ +

�� − 3��

���
⋅ �″ −

��

����
⋅ �‴ �
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Likewise, one can find                              In two formats:

Summing equations (2), (3), (4) we get:

2 2

2 2
,

A A
c c
y z

 

 

�
�� Ԧ�

���
= −

�� − 3��

�5
⋅ �′ +

�� − 3��

���
⋅ �″ −

��

����
⋅ �‴ �

�
�� Ԧ�

���
= −

�� − 3��

�5
⋅ �′ +

�� − 3��

���
⋅ �″ −

��

����
⋅ �‴ �

�� Ԧ�

���
+
�� Ԧ�

���
+
�� Ԧ�

���
= ∇� Ԧ� =

�‴

���
⋅ � (5)

(4)

(3)

and whereas :

By substituting from equation (6) into equation (5), we find that:

That is, the vector given in the example fulfills the wave equation (1), that is, it represents a 

solution to Maxwell's equations in free space. To find the components of the magnetic field 

strength       , we use                  form:

(6)�� Ԧ�

���
=
�‴

��
⋅ �

∇� Ԧ� −
1

��
�� Ԧ�

���
= 0

H H B=

∇ ∧ Ԧ� =

Ԧ� Ԧ� �

�

��

�

��

�

��

0 0
�′

��

(7)
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From equation (7), we find that the magnetic field components are:

To find the associated standard voltage function         we use the condition:

By integrating with respect to time, we get:

∇ Ԧ� +
1

�

��

��
= 0



3 2 3 2
, , 0x y z

f f f f
H y H x H

r cr r cr

      
= − + = + =   

   

��

��
= −�∇ Ԧ� = −�∇

�′

��
� = −

�

��

�′

�
= �

�′

��
+

�″

���

� = �
�

��
+

�′

���
+ � �, �, � (8)

Where                     is an optional and can be selected function equal to zero, so the related 

scalar potential takes the form:

The strength of the electric field        should be determined by the form:

, ,F x y z

� = �
�

��
+

�′

���

E

� = −∇� −
1

�

� Ԧ�

��

� Ԧ�

��
=
�″

��

∇� = �∇
�

��
+

�′

���
+

�

��
+

�′

���
�

= −�
3�

��
+
3�′

���
+

�″

����
∇� +

�

��
+

�′

���
�

(9)

(10)

(11)
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Then by substituting equations (10) and (11) into equation (9), we get the electric field 

components as:

�� = ��
3�

�5
+
3�′

���
+

�″

����

�� = ��
3�

�5
+
3�′

���
+

�″

����

�� = ��
3�

�5
+
3�′

���
+

�″

����
−

�

��
+
�′

���
+
�″

���

Example (3):

Verify that the magnetic field:                                  and the electric field:

satisfy Maxwell's equations in free space. Where        the unit of vectors in the direction of the 

axis       , and the function       fulfills the wave equation:

The solution :

In the case of free space Maxwell's equations are:

1
H k

c t


 =   

2

2 2

1
E k

c t z

  
= − + 

 

k


2

2

2 2

1
0

c t

 
  − =



1 1
,

H E
E H

c t c t

 
 = −   =

 

0 , 0H E =  =
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We will prove that the two vectors                   mentioned in the example satisfy these equations 

as follows:

.i

.ii

,E H

∇� =
1

�

�

��
∇ ∇� ∧ � =

1

�

�

��
� ∇ ∧ ∇� − ∇� ∇ ∧ � = 0

∇� = −
1

��
∇

���

���
� +

�

��
∇ ∇� = −

1

��
�

��

���

���
+
�

��
∇��

=
�

��
∇�� −

1

��
���

���
= 0

.iii

∇ ∧ � = −
1

��
��

���
∇ ∧ �� +

�

��
∇ ∧ ∇� = −

1

��
��

���
∇ ∧ ��

= −
1

��
��

���
∇� ∧ � + � ∇ ∧ � = −

1

��
��

���
∇� ∧ �

= −
1

�

�

��

1

�

�

��
∇� ∧ � = −

1

�

�

��
�

1 H
E

c t


  = −


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.iv

∇ ∧ � =
1

�

�

��
∇ ∧ ∇� ∧ �

=
1

�

�

��
�∇ ∇� − ∇� ∇ � + ∇� ∇� − �∇��

=
1

�

�

��

�

��
∇� − �∇�� =

1

�

�

��
� +

1

��
���

���
� − �∇��

2
2

2 2

1 1 1 E
E k H

c t c t c t

      
= −   −   =  

     
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Chapter 4 : Movement of Charged Particles
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Introduction :

In this study, we will deal with the motions of charged particles, whether these particles are 

positively charged or negatively charged in an electric field, in a magnetic field, or in an 

electromagnetic field. And since the effect of these fields on the movement of charged particles 

is greater than the influence of the Newtonian forces of attraction between them, so we will 

neglect the forces of attraction compared to the forces of the electric field, magnetic field or 

electromagnetic field. We will assume that the mass of the charged particle is constant during 

motion.

Movement of a charged particle in an electrostatic field:

As we know, the electric field arises from a static electric charge, and this field is represented by 

a set of lines of force. The electrostatic field in each point of space strongly affects the unit 

positive charge if it is placed at that point, and this is known as the strength of the electric field 

�, which is the position function. If a charged particle of mass � and charge � moves in a 

uniform electric field of intensity �, then the force acting on this particle is determined by the 

magnitude and direction of Coulomb's law

The acceleration of a particle � is given both magnitude and direction by Newton's law of 

motion. That is, the equation of motion for a charged particle in a uniform electric field is:

F qE=

F mf qE= = (1)
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It is clear that the particle moves with a uniform acceleration that depends on the particle's mass 

�, its charge �, and the field strength �. and be �. In the direction of the field if the particle has 

a positive charge and in the opposite direction if the particle has a negative charge. It is noted 

that the movement of the particle is similar to the motion of a free projectile in the regular field 

of Earth's gravity near the surface of the Earth.

Movement of a charged particle in a uniform magnetic field:

The uniform magnetic field arises from a static magnetic pole or from the passage of a 

continuous electric current in a wire, and this field is represented by a set of lines of force. The 

magnetic field in each point of space strongly affects the unit of the positive poles stationary at 

that point. This is known as the magnetic field strength �, which is a function of position. 

If a particle of mass � and charge � moves with a velocity of � in a magnetic field of uniform 

intensity �. The force acting on this particle is determined by the magnitude and direction of 

Lorentz's law in the form:

The acceleration of the particle � is determined by the magnitude and direction of Newton's law 

of motion. That is, the equation of motion of a charged particle in a uniform magnetic field � is:

Movement of a charged particle in a uniform electromagnetic field:

If a particle of mass � and charge � moves with velocity � in two uniform fields, one of which 

has an electric field of � and a magnetic field of intensity �. So the force arising from the two 

fields together is in the form:

F mf q v H= =  (2)

F q v H= 

F qE q v H= + 
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The acceleration of the particle is determined by the equation of motion:

Using Cartesian coordinates and unit vectors              in the direction of the orthogonal axes           

, then:                                    ,                                      ,                               ,            

. Then by substituting in the equations of motion, we get three differential equations that we 

solve by direct integration or by solving differential equations to get the parametric equations for 

the particle's trajectory:

(3)F mf qE q v H= = + 

, ,i j k , ,x y z

x y zE E i E j E k= + + x y zH H i H j H k= + +
x y zv v i v j v k= + + x y zf f i f j f k= + +

, ,x x t y y t z z t= = =

It is clear that there is a basic difference in the effect of electric and magnetic fields on charged 

particles, as the force that affects the direction perpendicular to the direction in which the body 

advances, cannot change the magnitude of the velocity of this particle (that is, the acceleration 

vector is always perpendicular to the velocity vector), and accordingly the kinetic energy 

remains for the unchanged particle. Therefore, the regular magnetic field (constant with time) is 

unable to transfer energy to the moving charge. On the other hand, the electric field affects a 

force that depends on the direction in which the particle is advancing, so the electric field causes 

a general transfer of energy between the field and the charged particle.
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Charged particles:

Charged particles are of two types:

(a) Negatively charged particles: they are electrons and ions

negative. The electron is the smallest negative charge ever found. Electron constants :

Electron mass:

Electron charge:

(B) Positively charged particles: they are protons and positive ions. A proton has the same 

charge as an electron, but with an opposite sign. Proton constants:

Proton mass:

Proton charge:

319.107 10m X kg−=

191.602 10e X C−− = −

271.67 10m X kg−=

191.602 10e X C−=

Example (1):

A particle with a positive charge of �� is held at the origin point � and a particle of mass � and 

charge of �� is placed at point �,� and left to move from rest under the influence of the 

repulsive force between the two charges. Find the velocity of the particle when it is at a distance 

of � from � and the time of motion.

◦The solution :

The particle motion equation is:

2

2 4

4

q q
m x

x
=

2

2

2q
x

m x
= (1)
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The initial conditions for movement are:

Separating the variables and doing the integration, we get:

Fig. (4-1)

0, , 0t x a x= = =

 2

2

2dv q
x v

dx m x
= =

 2

2

0

2
v x

a

q dx
vdv

m x
= 

And since it increases with time, we choose the positive sign, that is,

Separating the variables and doing the integration, we get:

Using the substitution:                           , the value of the integration can be set in the form:

 2q x a
v

xa m

−
= 

 2q x a dx
v

x dta m

−
= + =

 

0
2

t x

a

a m x
dt dx

q x a
=

− 

 

 
1cosh

2

a m x
t x x a a

q a
−

  
= − + 

  
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Example (2):

An electron of mass � and charge e of moving in a uniform electric field of intensity               . 

If the electron is ejected from the origin with an initial velocity of                       . Find the 

parametric equations for the path (ignoring the weight of the particle).

The solution :

 E Ej= +

 
0v Ui Vj= +

Fig. (4-2)

The equation for the directional motion of the particle is:

The initial conditions for motion are: When:

By solving the differential equations (3) - (1) and using the previous conditions, we get the 

parametric equations for the particle's trajectory in the form:

 
m x i m y j m zk e Ej+ + = −

 
0, , 0

eE
x y z

m
= = − =

(4) – (6)

 
, , 0x U y V z= = =

 
0, 0, 0x y z= = =

 2, , 0
2

eE
x Ut y V t t z

m
= = − =

(1) – (3)
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From equation (6) it is clear that the particle is moving in the plane and from equations (4), (5) 

and by deleting the parameter, we get the Cartesian equation for the path in the form:

It is an equation of a parabola with a vertical axis that passes through the point of ejection (the 

origin) and is inverted downward.

 2
22

V eE
y x x

U mU
= −

Example (3):

An ejector shoots charged particles of mass � and charge � with a velocity �° in the ��� plane 

and tilted at an angle of ��° to the � axis. A variable electric field is affected on the particle where                                                   

,                                          ,           are constants. Prove that the motion of a particle is a planar 

motion in the ��� plane and can be represented by the motion of a point on a circle whose    

geometric center is moving at a constant speed.

The solution :

The equation of motion of a particle in an electric field

0 0sin cosE E ptj E ptk= +  
0,p E

 
0 0sin cosm xi yj zk q E ptj E ptk+ + = +
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Fig. (4-3)

 

 
0 sin

qE
y pt

m
=

 
0 cos

qE
z pt

m
=

(1)

(2)

(3)

And the initial conditions: when � = 0 are :

By direct integration of the differential equations (3) - (1) and using the initial conditions, we 

get the parametric equations of the particle trajectory

 
0 00, ,
2 2

v v
x y z= = =

 
0, 0, 0x y z= = =

 0x =

 
0 0 0 sin
2

v qE qE
y t pt

mp mp

 
= + − 
 

(4)

(5)

 
0 0 0

2 2
cos

2

v t qE qE
z pt

mp mp

 
= + − 
 

(6)
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From equation (4) it is clear that the particle moves in the ��� plane and from equations (5), (6) 

he obtained the Cartesian equation for the path of the particle in the form:

Where:

Equation (7) shows that the motion of the particle can be represented by the motion of a point 

on a circle of radius � and centered at                     , and this center moves in the ��� plane with 

a uniform velocity of its components            , and the trajectory of the center is a straight line 

whose Cartesian equation (the relationship between           ) is:

(7) 

 
0 0 0 0

1 1
2 2

v qE v qE
y t y

mp mp

 
= +  = + 
 

 
0 0 0 0

1 12 2
2 2

v qE v qE
z t z R

mp mp
= + = =

 
1 1 1,O y z

 
1 1,y z

 
1 1,y z

Fig. (4-4)

 
0

1 2
1

0 0 0

2 2

qE
z

ymp
v v qE

mp

−

=

+

 
01

1 2

0

0

2
1

qEy
z

mpqE

mpv

= +

+
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Example (4):

A cathode tube radiates electrons of −� charge, mass �, and velocity �°, placed in a uniform 

magnetic field                 . Determine the coordinates of the collision site of the electron with the 

screen.

The solution :

 H Hj=

Fig. (4-5)

The particle motion equation is:

The initial conditions are: When � = 0

 

0 0

i j k

m xi yj zk e x y z

H

+ + = −

 eH
x z

m
=

 0y =

 eH
z x

m
= −

(1)

(2)

(3)

 
0 , 0, 0x v y z= = =
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By solving the differential equations (3) - (1) taking into account the initial conditions, we get 

the parametric equations of the particle's trajectory:

When the electron hits the screen of the tube, � = � and from equation (4) we get: The time of 

arrival of the particle to the screen as:

(4)

(5)

(6)

 
0, 0, 0x y z= = =

 
0 sin

mv eH
x t

eH m

 
=  

 

 0y =

 
0 cos 1

mv eH
z t

eH m

  
= −  

  

 
1

0

sins

m LeH
t

eH mv
−  

 =  
 

Substituting in (5) and (6) we get:

That is, the coordinates of the location of the collision of the electron with the screen are:             

.

 
0 sin s

mv eH
L t

eH m

 
=  

 

 0sy =

 2

0

0

1 1s

mv LeH
z

eH mv

   
= − −  

   

 ,0, sL z
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Example (5):

A charged particle of mass � and charge � moves in a uniform magnetic field                             

. If the particle is ejected from the origin � with an initial velocity                           . Find the 

parametric equations for the particle's trajectory (ignoring the particle's weight).

The solution :

The equation of motion for the particle is:

 H Hk=

 
0v Ui Wk= +

 

0 0

i j k

M xi yj zk q x y z

H

+ + =

Fig. (4-6)

 qH
x y

m
=

 qH
y x

m
= −

 0z =

(1)

(2)

(3)
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The initial conditions for motion are: When � = �

By solving the differential equations (3) - (1) with the use of the initial conditions, we get the 

parametric equations of the particle's trajectory.

 
0x U y z W= = =

 
0 0 0x y z= = =

 
sin

mU qH
x t

qH m

 
=  

 

 
cos 1

mU qH
y t

qH m

  
= −  

  

 z Wt=

(4)

(5)

(6)

Assume that:

The parametric equations of the particle are as follows:

(7)

(8)

(9)

 
, ,

qH mU mW
a b

m qH qH
 = = =

 
, ,x x y y a z z  = = − =

 sinx a = 

 cosy a = 

 z b = 
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Fig. (4-7)

Equations (9) - (7) represent a circular helx ( Burmese ) curve located on the surface of a right 

circular cylinder with base radius �, axis �′ (the direction of the magnetic field) and the angle of 

the Burmese curve � where:

And his step � is:

 
tan

b W

a U
= =

 2
2 tan

mW
p a

qH
= =
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