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Chapter 1

Introduction

Operation research, for short OR, is the act of obtaining the best
result under given circumstances. Thus, we may have several
solutions for a certain problem and our aim is to find the best solution
among those solutions which leads to the presentation of the
optimization problem.

® — Problem Formulation

1. Define the quantity to be maximize or minimize.
This quantity is called objective function.
2. Define the constraints
Those are the restriction under which we have to solve our problem.
3. Define the non-negative constraints
We have to be sure that all the variables are of non-negative type. If this
is not the case, then we have to modify them as we will see later on in our
study.

Examples .

Examplel:

The Haty shop makes its sandwiches from a combination beef and
goat meat. The beef contains 80% meat and 20% fat, and it costs
24 pounds per kilo. The goat meat contains 68% meat and 32%
fat, and it costs 18 pounds per kilo. What is the amount of meat
from each type must be used in each kilo of meat if it wants to
minimize its costs and keep the ratio of fat so that no more than
25%7

Solution 1:

Let x; weight of beef meat and x,weight of goat meat

Objective function is
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minimize z = 24x,+18x,
The constrains
(1) Rate of fat

0.20x,+0.32x, <0.25
(2) Per kilo
x+x,=1
Non-negative condition
x; =0,x, =0
Thus, the final formula for the linear programming problem is

Minimize  z=24x,+18x,

Subject to
0.20x,+0.32x, <0.25
xX,+x,=1
x1=0.x, =20
Example2:

A factory wants in the production of 2 models. The first one
needs 3 units of wood; and 3 units of iron; 5 units of aluminum,
models 1l needs a single unit of wood; 8 units of iron; 4 units of
aluminum. If you know that the maximum available of wood is 53
units, Steel 127 and 100 for aluminum. Form the mathematical
model in the following cases
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A - If the first model is given a profit of unit and the second 2
units.

B — If the first model gives a profit of two units and the second
gives a single unit.

Solution 2:
Let the factory produce x unit of 1% one and y from the 2™,
Objective function

@ MaxZ =x+ 2y (b) MaxZ =2x+y

and the constraints are

For wood,
3x +y <53
For iron;
3x + 8y < 127
For Aluminum;
5x +4y <100

Non-negative condition

x=20, y=0
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Nonlinear Programming I:

One-Dimensional Minimization Methods

Introduction
It can be seen

from the blow figure that if a point x*

corresponds to the minimum value of a function f(x), the
same point also corresponds to the maximum value of the

negative of the function, - f (x).

fix)
5 f(x)
x*, Minimum of fix)
|t _
0 i m
1
P .
,I’ \\
,’, x* Maximum of — fix)
,
4
S fe

Optimization can be taken to mean minimization since the
maximum of a function can be found by seeking the minimum of
the negative of the same function.

2. Statement of an optimization problem
An optimization or a mathematical programming problem can be

stated as follows.

Find X =

+y
J’;? which minimizes f(X)

Xy
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subject to the constraints

§X) <0, j=12,...m
X)y=0, j=12,...p

-
!

(1.1)

Where, X is an n-dimensional vector called the design vector, f(X)
is termed the objective function, and g;(X) and [;(X) are known as

inequality and equality constraints, respectively.

- The problem stated in Eg. (1.1) is called a constrained
optimization problem.

The algorithm that treats a nonlinear programming problem.

L. olart witn an nitial tnal point Ag.

). Find a suitable direction S; (i = 1 to start with) which points in the
general direction of the optimum.

3. Find an appropriate step length \* for movement along the direction S,.

L. Obtain the new approximation X.. , as

Xiv1 = X; + N'S;

5. Test whether X, , , is optimum. If X, , | is optimum, stop the procedure.

Otherwise, set anew i = i + | and repeat step (2) onward.

- From this algorithm, we conclude that finding a
minimum of single variable objective function is an
important step (step3) in solving unconstrained
multivariable optimization problem. So we start with
studying unconstrained single optimization problem
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Theorem 1: Necessary Condition
If a function f(x) is defined in the interval a <x <b and have
a relative minimum at x = x*, where a < x* <b, and if the
derivative df(x)/dx = f'(x*) exists as a finite number at
x = x*, then f'(x*) =0.
Theorem 2: Sufficient Condition:
Let f'(x) =f"(x")=...=f @D (x*) =0, butf ™ (x*) # 0. Then
f(x™)is
(i) A minimum value of £ (x*) if f™ (x*) >0 and n is even;

(ii) A maximum value of f(x*) if f™(x*)< 0 and n is even;
(iii) Neither a maximum nor a minimum if n is odd.

Example:
Use theorems 1 and 2 to find the optimum values of

f(x) =12x5 — 45x* + 40x3 + 5
Answer:
f'(x) = 60x* — 3 % 60x3 + 60 = 2 x x2
= 60x%(x%* —3x +2)
=60x’(x—1D)(x—-2)=0



The extreme pointsare x=0,x=1andx = 2

x=0 x=1 x =2
f"(x)=240x3 — f"(1) =-60 f"(2) = 240
540x?% + 240x this point is relative | this point is relative
f"(0)=0 maximum minimum
We evaluate the nex fy.. = 12(1) — fuin = —11
derivative 45(1) +40(1) +5
f""(x)=3%240x* — 2« | =12
540x + 240
£"(0)= +240,
Order of derivative i
odd.
So this point is neithe
maximum nor minimurn

Excercises 3:

Find the maxima and minima, if any, of the functions

@ @) = s

(b) flx) =4x3—18x2+27x -7
(©) f(x) = 10x° — 48x5 + 15x* + 200x3 — 120x2 — 480x + 100

Answer:

A unimodal function is one that has only one peak in a given interval T | F
A unimodal function is one that has several peaks in a given interval T | F
In the Interval halving method, the function value at the middle point of the T |F

interval will be available in the stage except the first stage

The interval of uncertainty of the Interval halving method remaining attheendof | T | F
n experiments) n > 3 and odd) is given by
(n-1)

L (1>2L
n_z 0

the best value for the eliminating part of the interval in Fibonacci method assuming | T | F
we conduct a large number of iterations is 0.38Y




Unconstrained single optimization problem

Analytical methods Numerical methods
(differential calculus methods)
Eliminat!ion Interpolation
methods methods
Unrestricted
search Requiring no Requiring
Exhaustive search  derivatives derivatives
Dichotomous (quadratic) Cubic
search Direct root
Fibonacci method Newton
Golden section Quasi-Newton
method Secant

Unimodal function

A unimodal function is one that has only one peak in a given interval

A unimodal function is one that has only one peak (maximum) or valley (min-
imum) in a given interval. Thus a function of one variable is said to be uni-
modal if, given that two values of the variable are on the same side of the
optimum, the one nearer the optimum gives the better functional value (i.e.,
the smaller value in the case of a minimization problem). This can be stated
mathematically as follows:

A function f(x) is unimodal if (i} x;, < x; < x* implies that f(x,) < f(x,),
and (ii) x, > x; > x* implies that f(x;) < f(x;), where x* is the minimum

point.
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Elimination methods

Unrestricted search

In the most practical problems, the optimum solution is known to lie within
restricted ranges of the design variables. In some cases this range is not
known, and hence the reach has to be made with no restrictions on the values
of the variables.

Search with fixed step size

The most elementary approach for such a problem is to use a fixed step size
and move from an initial guess points in a favorable direction (positive or
negative). The step size used must be small in the relation to the final
accuracy desired. Although this method is very simple to implement, it is not
efficient in many cases. This method is described in the following steps:

Start with an initial guess point, say, x,.

Find f; = f(x,).

Assuming a step size s, find x; = x; + 5.

Find f; = f(xy).

If 5 < fi, and if the problem is one of minimization, the assumption of
unimodality indicates that the desired minimum cannot lie at x < x|.

':J'l&-LQH—
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Hence the search can be continued further along points x3, x;, . . . using
the unimodality assumption while testing each pair of experiments. This
procedure is continued until a point, x; = x;, + (i — 1)s, shows an in-
crease in the function value.

6. The search is terminated at x;, and either x; _, or x; can be taken as the
optimum point.

7. Originally, if f; > f}, the search should be carried in the reverse direction
at points x_5, x_3, ..., wherex_; = x; — (j — Ds.

8. If fo = f, the desired minimum lies in between x; and x,, and the min-
imum point can be taken as either x, or x,.

9. If it happens that both f; and f_, are greater than f;, it implies that the
desired minimum will lie in the double interval x _; < x < x,.
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Example:

Use unrestricted search with Fixed Step Size to Find the maximum of

1
-x, x <2
fx) = { z
3—x, x>2
by starting from x; = 0 with an initial step size of 0.4.
Solution: this problem corresponds to Find the minimum of

_ (—0.5x%; x <2
f(x)_{x—3; x> 2

xl=01 f(x1)=f(0)=05=04.
1
x,=x;+5=04 f(x)={zx’ x<2

3—x, x=2
1
fxz) = £(04) = =5 (0.4) = —02
f1== 0 .
x;=0 x; =04
f2 =*—0.2




X3=x,+5=04+04=08
1
f&)—{‘zL ¥=2

3—x, x =2

1
flxs) = f(0.8) = = (0.8) = ~04

fo=-02 f3E=-04

Xy =x3+S=08+04=12

1
f&)={z” ¥=2

3—x, x =2

fl) = f(12) = =2 (12) = ~06

fi =|0

X1 Xo = 4 X3 = .8 X4 = 1.

fz =-0.2 f3 —0.4 ﬁ1 = —0.6

xs=x3 +S=124+04=16 f(x5)=/f(16)= —5(1,6) - 08

Xg=x5+S=16+04=20 f(x) = [f(2.0) = —%(2.0) =-1

Xy =26+S=20+04=24 f(x;))=[(24)=24-3=-06



.

xg = 2.0 Is the minimum pointand f(2.0) = —1

Fibonacci method

As stated earlier, the Fibonacci method can be used to find the minimum of a
function of one variable even if the function is not continuous. This method,
like many other elimination methods, has the following limitations:

1.

2.

3.

The initial interval of uncertainty, in which the optimum lies, has to be
known.

The function being optimized has to be unimodal in the initial interval
of uncertainty.

The exact optimum cannot be located in this method. Only an interval
known as the final interval of uncertainty will be known. The final in-
terval of uncertainty can be made as small as desired by using more
computations.

The number of function evaluations to be used in the search or the res-
olution required has to be specified beforchand.

This method makes use of the sequence of Fibonacci numbers, {F,}, for plac-
ing the experiments. These numbers are defined as

FD = F| =1
F'FI' = Fn—l + Fn-l* n = 2’3'4""

which yield the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . ..

Procedure. Let L be the initial interval of uncertainty definedbya <= x < b
and n be the total number of experiments to be conducted. Define

v o Faa
Ly = F,,L“



and place the first two experiments at points x, and x,, which are located at a

distance of L¥ from each end of Ly." This gives®

x|=a+L’f=a+F"_ Ly

F,
F,_ F,._
.Ig=b—£;=-§?——“F—2L0=ﬂ+ "F'zﬂ
H ]

Discard part of the interval by using the unimodality assumption.

Example:
Use Fibonacci method to find the maximum of
1
f(x)={ PR
3—x, x>2

by starting from [0,3] with n=6
Solution:

This problem corresponds to

Find the minimum of

—0.5x; x <2
f(x)_{x—S; x> 2

the sequence of Fibonacci numbers, is
fo=fi=1 1123581321



n= 6 f=fi=1, 1,1,2,3,5,8,13,21

— fn-?_
fn

", =a+1*=0+115= 1.15H

L

_a P
LO—E(3—U)— —(3) =115

xX=b—L"=3-115=185

a=0 x; = 1.15 x, = 1.85 b=3
i == ..‘ |

Discard part of the interval by using the unimodality assumption.
[a =1.15,b = 3]

a=0 x; =115 x, =185 b=3

fo=fi=1, 1123581321 n=5

_ e
3

x;=a+L =115+ 0.694 = 1.84,

3 3
L’ L, = §(3 —1.15) = 5(1.85) = 0.694

x,=b—L"=3-0.694 =231

a=115 x, =184 x, =231 b=3

f.=|-058  f;= }4).92 f =|—0.69 fo=0
Discard part of the interval by using the unimodality assumption.
- as a a - . - . - R
[a=1.15b=2x; =2.31]

1



fO = fl = 1! 1,1,2,3,5,8,13,21/ n=4%

_fae
fi

x; =a+L" =115+ 0.464 = 1.614,

2 2
r Lo = £ (231 - 1.15) = £ (1.16) = 0.464

X, =b—L" =231—-0.464 = 1846
a=115 x;=1614 x,=1846 "b= 2.31!

—0.807  f,={—0.923 f, =—0.69

-—

fa=—057 fi=

Discard part of the interval by using the unimodality assumption.

[a =x, = 1.614,b = 2.31]

n=3

_facz
3

x;=a+L =1614+0.232 = 1.846,

L*

1 1
Lo = 5 (231~ 1.614) = 5(0.696) = 0.232

X, =b—L'=231- 0232 = 2.078
a=1614 x; =1846 x,=2078 b=231

_____ » !
f,=H0807 f|l=-0923 f,&-0922 f, =-0.69



a=1.614 x; = 1846 x, = 2.078 b =231

_____ » '
f.=1+0807 fi|=-0923 f,=-0922 f,=—0.69

The Last interval is [1.846, 2.31]
Thus the minimum must located at the middle

Hence the minimum is x*=2.078

Golden Section Method

The golden section method is same as the Fibonacci method except that in the
Fibonacci method the total number of experiments to be conducted has to be
specified before beginning the calculation, whereas this is not required in the
golden section method. In the Fibonacci method, the location of the first two
experiments is determined by the total number of experiments, ». In the golden
section method we start with the assumption that we are going to conduct a
large number of experiments. Of course, the total number of experiments can
be decided during the computation.

Example:

Deduce the best value for the eliminating part of the interval in
Fibonacci method assuming we conduct a large number of
iterations.

fo=fi=1 1123581321

fn-2
fn

YA

L =

Lo



fi 1 fo 2 3 5 8
fz 3 i 5 8 13 21
= 0.33 — 0.4 —0.382 =0.382

|
I
|
I
I
|
|
|
(=)
w
~N
|
|

The algorithm of method of Golden Section Method

Procedure. The procedure is same as the Fibonacci method except that the
location of the first two experiments is defined by

L* = 0.382L,
1. Let L, be the initial interval : L, = [a, b]
2. Define L* = 0.382L,
3. Put points of testtobe x; =a+ L', x, = b —L"

4. Eliminate the non-desired part of the interval depending on the
unimodality property

5. define the new interval L, = [a, b], repeat steps 2-5 until a desired
accuracy is obtained.

In step 5, we can use one of the following accuracy formula:
lfGe) = flxdl < €
Or
|L,| < ¢

Where ¢ is small chosen value (such as 0.1).



Exercise:
Use Golden Section method to find the maximum of

1
3—x, x>2

By starting from [0,3] with n=6
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Chapter@ Linear Programming Problem

Standard form of a linear programming problem
The general linear programming problem can be stated in the following standard
form:

1. Scalar form

Minimize f(x;,x32,. . ..X,) = ¢1X] + Xy + * * * + CpX,

subject to the constraints

[ daa ) Al A paa 1 AN Juadll|

A U5 o Y U 8 2, g U S 1) . .. _
S apx; + apx; + + ay,x, = b,
i oa ayX, + apxy + 0+ apx, = b,

Optimize (minimize or maxi
Z=c, B+ o+t euxy N
- Al g 5l o) 3 il de gana a3 sy

;[ a,1Xy + amXs + -+ Aunin = bm
X 2 0
S il JCA, Al e ) Als 2 (s I2 a 0
x, =0

where G, bj, and a; (i=12,...mj=12,..n)are known con-
stants, and x; are the decision variables.

Y
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2. Matrix form H ol

Aall 5 jiall Tudl gins I

Minimize f(X) = ¢'X

F(X)= ZL‘; Xi
subject to the constraints T it e
a'X _ b g(X):ZaU X = by j=12,...m
Jj=1
x 0 x>0 i=12,..,n
- s e g, @y, by e
where
Xy b, <y
Xa bz Co
X = . b = . . c = .
x’l bm Cﬂ
ay a2 dyp
ay an A
a = .
'_aml am . o+ amn_

The characteristics of a linear programming problem, stated
in the standard form, are:
1. The objective function is of the minimization type.
2. All the constraints are of the equality type.
3. All the decision variables are nonnegative.
It is now shown that any linear programming problem can be
expressed in the standard form by using the following
transformations.

How to write any LPP as standard form???
The maximization of a function f (x,, x,,. . ., X,) IS equivalent to the
minimization of the negative of the same function. For example,
the objective function

Yy
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minimize f = cx; + cx + 0 - 0+ X,
is equivalent to

maximize f' = —f = —CX; — C2X3 — * * * — C,X,

onsequently, the objective function can be stated in the
minimization form in any linear programming problem.

2. In most engineering optimization problems, the decision
variables represent some physical dimensions, and hence the
variables x; will be nonnegative. ~However, a variable may be
unrestricted in sign in some problems. In such cases, an
unrestricted variable (which can take a positive, negative, or zero
value) can be written as the difference of two nonnegative
variables. Thus if x; is unrestricted in sign, it can be written as

X

=x! —x" >0 " >
; =x/ —x/,where x; =20 and x/ =0

Slack variable

A non-negative variable which must be added to an inequality constraint of the form
< to be in an equality form
If a constraint appears in the form of a ‘‘less than or equal to”’ type of
inequality as

variable x, ,  as follows:

a;“x| + ﬂkzxZ + - -

surplus variable

A non-negative variable which must be subtracted from an inequality constraint of
the form = to be in an equality form

~if the constraint is in the form of a ‘‘greater than or equal to”’

Yy
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type of inequality as
X, + aux; + 0+ ak,,bek
—
it can be converted into the equality form by subtracting a variable as
auxy + apxy + 0t QX — X4 bk

where x, ;| is a nonnegative variable known as a surplus variable.

Exercises

Detect which of the following Mathematical statements is true and
which is false.

1 The Matrix form of the standard form of linear O 0
programming problem is Minimize f(X) =
cT X, where ¢ is unknown constant.

2 The decision variables in the standard form of O O
linear programming problem must be positive
or zero

3 The maximization of a function is 0 O

equivalent to the minimization of the
negative of the same function

4 An unrestricted variable can be written O| O
as the difference of two nonnegative
variables to agree the standard form of
linear programming problem

5 A non negative variable which must be added to an 0 N
inequality constraint of the form < to be in an equality
form is called slack variable

6 A non negative variable which must be subtracted from ] ]
an inequality constraint of the form > to be in an equality
form is called surplus variable

7 A non negative variable which must be added to an 0 N
inequality constraint of the form < to be in an equality
form is called surplus variable

8 A non negative variable which must be subtracted from 0 M
an inequality constraint of the form > to be in an equality
form is called slack variable

Classify of LP \/

Y¢


lab
Pencil

lab
Pencil

lab
Textbox
Classify of LP 

lab
Textbox

lab
Pencil


Geometry of linear programming problems

The following general geometrical characteristics can be noted from the
graphical solution.

1. The feasible region is a convex polygon.

2. The optimum value occurs at an extreme point or vertex of the
feasible region.

Example:
Find the set of points that satisfies the following set of inequalities:

4x +5y<33,x+4y=>11,2x -3y = —-11
Answer:

We consider the line

4x + 5y =33
33 3
x=0 —->5y=33 —>y=?=6§=6.6
4x + 5y = 33

0 -4 33 33 81 8.25
= - = - = — = — = 0.
y X X 4 4

6.5).(

(0,0) satisfies 4x + 5y < 33 then this inequality is satisfied by the set of
point down and left the line passes through (0 ?) , (? 0)

Thelinex + 4y = 11

11 3
x=0->4y=11 _)y:TZZZ

y=0-x=11
The point to that satisfies the inequality are over and on the line

The line 2x —3y=-—11

Yo



11
x=0 - —3y=—11—>y=?=3 = 3.67

3
0 -2 11 —i_ Gl
= e = — e d = —_— = =5 -
y X X 2 2

(0,0) satisfies 2x — 3y > —11 then this inequality is satisfied by the set of
point down the line

Solving 4x+5y=33,x+4y =11,
we obtain P(7,1)

Solving 4x + 5y = 33,2x — 3y = —11,
we obtain  Q(2,5)

Solvingx + 4y = 11,2x — 3y = —11
We obtain R(-—1,3)

Y1



The set of points that satisfy the three inequalities are those inside
and at the triangle described at the figure ABC.

The optimum value occurs at an extreme point or vertex of the

feasible region.

Exercises

Select the correct word

(1) The inequality 4x + 5y < 33 is satisfied by the set of points down and
left the line passes through

0

(0 33) (33 0
I5 ) 41

0

(

33
5)

0).

(33
4 )

0

\

Vi

H

(33
5 )

0).

(0 33
"4

O

(1,0),(0,1)

(2)The inequality 2x — 3y = —11 is satisfied by the set of point down and
left the line passes through

0 (11 ) (—11 \
_!0 ] —’0
3 2 /

U

o

11
3

)

-11

2 ’

A

/

(11
3 )

9).(

0—11
)

(9,0),(0,6)

Example

Find the solution of the following LP problem graphically:
Maximizef (x,y) = 3x +y + 2,
Subjectto2x +y+9>0,3y—x+6=>0,x+2y<3,y<x+3

Answer:

2x+y+9=0

y=0,x=—-4.5

2x+y=—-92x=0,y=-9

(0,0) Satisfies it, so the proposed area is up right the line

3y—x+62=>0

y=0,x=6

3y—x=—62x=0,y=-2

(0,0) Satisfies it, so the proposed area is up Left the line

Yv



The intersection of
2x+y=-9,3y—x=-6
is obtained by solving these two eqs. To obtain
x=-3,y=-3
f(atA) =3(-3)+(-3)+2=-10

3 N\
2 3y—x+
6=>0 1
1234 7
y+9=>0

YA




x+2y=32x=0,y=15
y=0,x=3

(0,0) satisfies it, so the proposed area is Down Left the line

The intersectionof 3y —x=—-6,x+2y =3
is obtained by solving these two eqgs. To obtain  x = 4.5,y = —0.6
f(atB) =3(4.5)+ (-06)+2=14

AN

3y—x+62=

2x+y+9=0

Y4
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y—x=32x=0,y=3
y=0,x=-3

(0,0) satisfies it, so the proposed area is Down Wright the line

The intersectionof y—x=3,x+2y =3
Is obtained by solving these two egs. To obtain  x = -1,y =2

fatC)=3-D+@) +2=1

The intersectionof y+x=3,2x+y=-9

Is obtained by solving these two egs. To obtain x = —4,y = —12

fx,y) =3x+y+2

Thus,
fa=-10atA(—3,-3)
fc=1lat C(—1,2)
fg =14 at B(4.2,—0.6)
fp =—11atD(—4,—1)
Hence the Maximum value is fz = 14 at B(4.2,—0.6)
And the Minimum value is f, = —11 at D(—4,-1)
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Exercises

Consider the following graph that represent four inequalities constraints
of linear programming problem with the objective function f(x,y) =

3x + y + 2. Answer the following:

(1) The Point of intersection A is

|0 42,-06) 0] (=3,-3) [ 0] (=1,2) | 0 [@0),01) |
(2) The Point of intersection B is

0] (42,-06) |O] (=3,-3) |0 (-1,2) [0]@o,0D]

(3) The Point of intersection C is

(0] (=3,-3) [0] (42,-06) [ 0] (-1,2) [0 [10),00,-D]

(4) The Point of intersection D is

0] (—42,06) [0] (-3,-3) [0] (4.2,-0.6) | O] (-4,-1) ]

(5) The Maximum value occurs at

| UB(4.2,-0.6) | U] D(=4,-D [U] ¢(-1,2) [0 ]@0.0,1 |

(9) the Minimum value occurs at

[U[B@2-06) 0] [C0] [0[CL0@-D]

Y



Example:

A manufacturing firm produces two machine parts using lathes,
milling machines, and grinding machines. The different
machining times required for each part, the machining times
available on different machines, and the profit on each machine
part are given in the following table.

Machining Time Required (min) Maximum Time Available
Type of Machine ~ Machine Part 1 ~ Machine Part 11 per Week (min)
Lathes 10 5 2500
Milling machines 4 10 2000
Grinding machines 1 1.5 450
Profit per unit $50 $100

Determine the number of parts | and Il to be manufactured per
week to maximize the profit.

Solution
Let the number of machine parts | and Il manufactured per week
be denoted by x and y, respectively.

The constraints due to the maximum time limitations on the
various machines are given by

10x + 5y = 2500 (Ep)
4x + 10y =< 2000 (E,)
x + 1.5y < 450 (E3)

Since the variables x and y cannot take negative values, we have

x=0 (E)
y=0

The total profit is given by

Yy



f(x,y) = 50x + 100y (Es)

Exercise:
Find the solution of the following LP problem graphically:

Maximize

f(x,y) =50x + 100y

subject to
10x + 5y < 2500
4x 4+ 10y < 2000
x + 1.5y <450

x=20,y=0

Thus the problem is to determine the nonnegative values of x and y that satisfy
the constraints stated in Eqs. (E,) to (E;) and maximize the objective function
given by Eq. (Es). The inequalities (E,) to (E,) can be plotted in the xy plane
and the feasible region identified as shown in Fig. 3.3. Our objective is to find

at least one point out of the infinite points in the shaded region of Fig.
which maximizes the profit function (Es).
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Definitions and Theorems
Definitions

1. Point in n-Dimensional Space

(X1, X2,. . .0x,)

2. Line Segment in n-Dimensions (L) If the coordinates of two points A and
B are given by x{" and x? (j = 1,2,. . .,n), the line segment (L) joining these
points is the collection of points X (A) whose coordinates are given by x; =
AP+ (1= Nx?,j =12, .0, with0 < N\ < 1.

Thus

L={X|X =X+ (1 — WX}



In one dimension, for example, il is easy o see that the definition is in accor-
dance with our expenence (Fig. )

= xh) = A -2, 0s=sAs1
A B
1 ] ] | —_1
0 x xik xa
Figure Line segment.
whence
N =P+ a0 -x®, 0=rx=1
Convex Set

4. Convex Set A convex set is a collection of points such that if X' and X*
are any two points in the collection, the line segment joining them is also in
the collection. A convex set, S, can be defined mathematically as follows:

If X1, X®@ € S, implies
X=XD +1-0XPes, 0<a<1.

Y 2% @ @

Convex Set
A set containing only one point is always considered to be convex

lm @& & )

Non Convex Set

1
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(a)

Figure a and b represent convex polytopes in two and three
dimensions,

X2 x2

A
L/ n ———x
-

Y

wo and three

x3
) (d)
and Fig. ¢ and d denote convex polyhedra i
dimensions.
It can be seen that a convex polygonsShown in Fig. a and ¢, can be
considered as the intersection of.ghe or more half-planes.

Vertex or Extreme Point
This is a point in the convex set that does not lie on a line
segment joining two other points of the set. For example,

v
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every point on the circumference of a circle and each corner
point of a polygon can
be called a vertex or extreme point.

7. Feasible Solution In a linear programming problem, any
solution that satisfies the constraints
aX = b
X=0
is called a feasible solution.
8. Basic Solution A basic solution is one in which n - m variables
are set equal to zero. A basic solution can be obtained by setting n

- m variables to zero and solving the constraint Egs. (3.2)
simultaneously.

9. Basis The collection of variables not set equal to zero to obtain
the basic solution is called the basis.

10. Basic Feasible Solution This is a basic solution that
satisfies the non negativity conditions of the problem
aX = b X =0

11. Non degenerate Basic Feasible Solution This is a
basic feasible solution that has got exactly m positive x;.

12. Optimal Solution A feasible solution that optimizes
the objective function is called an optimal solution.

13. Optimal Basic Solution This is a basic feasible solution for
which the
objective function is optimal.

YA



Theorems

The basic theorems of linear programming can now be stated
and proved.

Theorem 1 The intersection of any number of convex sets is also
CONVEX.

Prgof: JLet the given convex sets be represented as R; (i = 1,2,...,K) and
their ftersection as R, so that'

K
R=NR
i=1

If the points X'V, X® ¢ R, then from the definition of intersection,

X=X"+a0-M0X%eRrR (=12,...K)
0<A=<1

Thus

K
XeR=NRK
i=1

and the theorem is proved.

Theorem 2 The feastske—egion of a linear programming problem is
CONVEX.

Proof: The feasible region S of a standard linear programming
predlem is defined as

Y4
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S={X]aX =b,X = 0}
Let the points X; and X, belong to the feasible set S so that

aX, =b, X, =0
3X2=—b, XQZO

Multiply the 1% eq by A and the second by 1 — A, and
adding them, we obtain:
alAX; + (1 —MNXs]l=Ab+{(0 —-—Nb=Db
that is,
aX, = b
where

x,\ = AXI + (l - )\)X;

Thus the point X, satisfies the constraints and if
0=hX=1, X, =90
Hence the theorem is proved.

Theorem 3 Any local minimum selution is global for a linear
programming problem.
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fix)

: Local

| minimum
1
]

x]

Theorem 4: Every basic feasj
the convex set of feasible

e solution is an extreme point of
utions.

Theorem 5 Le
minimum of
point of S.

be a closed convex polyhedron. Then the
linear function over S is attained at an extreme

£
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Classical Optimization Techniques

Single-variable optimization

A function of one variable f(x) is said to have a relative or local
minimum at x = x* if f(x*) < f(x* + h) for all sufficiently small
positive and negative values of h.

)
F 3 i)
x*, Minimum of fix)
§) | —x
A1, A, A3 = Relative maxima
A = Global maximum
B, ,B; = Relative minima
fix) By = Global minimum
I AE

1

I

I

1

1

a b
Theorem 1: Necessary Condition

If a function f(x) is defined in the interval a <x <b and have a
relative minimum at x = x*, where a < x* <b, and if the derivative

£y



df(x)/dx = f'(x*) exists as a finite number at x = x*, then f'(x*) =
0.

Theorem 2: Sufficient Condition:

Let f'(x")=f"(x*)=....=f @ D(x*) =0, butf ™ (x*)# 0. Then
fx)is

(i) a minimum value of £ (x*) if f™ (x*) > 0and n is even;

(i) a maximum value of f(x*) if f™(x*)< 0 and n is even;

(iii) neither a maximum nor a minimum if n is odd.

(b) Use theorems in(a) to find the optimum values of
f(x) =12x5 — 45x* + 40x3 + 5
Answer:
f'(x) = 60x* —3 % 60x3 + 60 * 2 x x2
= 60x?%(x? —3x + 2)
=60x?(x—1)(x—-2)=0
The extreme points are
x=0x=1landx =2

x=0 x=1 x=2
f(x)=240x3 — 540x2 +| f"(1) = =60 | f"(2) = 240
240x this point is this point is

f"(0)=0 relative relative

We evaluate the next maximum minimum
derivative frtax = 12(1) — fum=—11
F(x)=3 % 240x2 — 2 % 540x + | 45 (1) + 40(1) +5
240 =12
£"(0)= +240,
order of derivative is odd
So this point is neither
maximum nor minimum

Excercises:

(1)Find the maxima and minima, if any, of the
functions

¢y



-1'4

x — Dx — 3)

fx) =
fG) = 4ax® — 18> + 27x — 7

fx) = 10x% — 48x° + 15x* + 200x® — 120x2 — 480x + 100

[2] Detect which of the following Mathematical statements is true
and which is false. Write the false one(s) in the correct case.

flx)

Figure |

In Figure I,

1 A; is relative minimum

2 A, is Global Maximum

A; is relative Maximum

B, is Global minimum

B, is Global minimum

O|g|lgylo|o|ag
Oglgo|o|g

The necessary condition for a function
f(x) to have a relative minimum at
x =x*1is f'(x*) =0.

The sufficient condition for a function o | o
f(x) to have a relative minimum at

x = x* depends on the order (even- or odd) of
the first non zero derivative of f(X).

123



[3] Select the correct word

(1) A function of one variable f(x) is said to have a relative or
local minimum at x=x" if f(x*)..f(x*+h) for all
sufficiently small positive and negative values of h.

o] < Jef = o] < [0 Els

Consider using the necessary and sufficient condition to find the
optimum values of

f(x) = 12x> — 45x* + 40x3 + 5. Answer the following
questions:

f'(x) = ax?(x = b)(x — c)

(0] 40 [Of 80 [C] 60 [O] 1
(Db=

o] 40 O] 1 [ O] 60 [O] 10
1Dc=

0] 40 0] 1 [ O] 60 [O] 2
(1)The extreme point x = --- is neither maximum nor minimum
ol o fof 1 [ O] 60 [O] 2
The extreme point x = -+ is relative maximum

ol 40 [Of 1 [ O] 60 | O] 10
The extreme point x = -+ is relative minimum

(ol 40 Jof 1 [ 9] e [O] 2
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Multivariable optimization with no constraints

Definition: r_th Differential of f: If all partial derivatives of the
function f through order r >1 exist and are continuous at a point
X*, the polynomial

B O

F, ¥
dfX) = 121 ;E : dx; dx; + - - ax

k=1
\-.-—-‘—v—‘-_.-/
r summations
is called the r'" differential of fat X*.

For example :

when r =1 and n = 3, we have

3
o of of . of  of
df(X*) = Z g = Mg+ g hag
i=

Which corresponds df = :deh + :dexz + ;dex3
1 2 3

When r=2and n =3, we have

a°f(X*
dfX* =d*f (¥, xF, x5 = E Zth 6{:‘,:3 )
¥f 2f

== 2(X*)+h2 2(X*)+h2
' x] a3

62f 2f f
X* + 2hh X*) + 2hh

(X*)

The Taylor's series expansion of a function f (X) near a point X* is
given by

€1



£OX) = FOX%) + dFOX®) + 5 KR + 5 d X

+ oo+ R{—.d”f(x*) + Ry(X*,h)
Example 3 : Find the second-order Taylor's series approximation of
the function

fxX2.x3) = x3x3 + x;€7

SOLUTION The second-order Taylor’s series approximation of the function
Jf about point X* is given by

near the point

1 1 1
o =f ol+a|l ol +Laxl o
-2 2! 2

where
1
fl o)=¢7
-2
1 1 1
af

ax, -2 BXQ dx;

1
0
-2
[k.e"’ + h2(2x2x3) + h3x2 + h3xle‘“] ) = h,e_z + h3€—2

& 3 & 1
+ Zhlhza—‘fxz + 2h2h3 xz fx3 + 2h‘h3 f )

1A



[h (O) + h (2&!’3) + h (xle”) + 2h hz(O) + 2h2h3(2x2)

1
+2hhy(e™]| 0] = —4h} + e h5 + 2h hye?
-2

Thus the Taylor’s series approximation is given by

1 ~ .
fX) =e 2+ e Xh + hy) + 5 (—4h3 + e °h; + 2h he )

Theorem  : Necessary Condition If f(X) has an extreme point (maxi-
mum or minimum) at X = X* and if the first partial derivatives of f(X) exist
at X*, then

¥xre Y xrm-..u X
a!X) a!X) ax,

(X*) =0

Proof: The proof given for Theorem can easily be extended to prove the
present theorem. However, we present a different approach 1o prove this theo-
rem. Suppose that one of the first partial derivatives, say the kth one, does not
vanish at X*. Then, by Taylor’s theorem,

X=X*+h
n af s
fX* + h) = f(X*) + Z‘. h; x*) + 'd-ﬂx* + 6h),
that is,
fX* + h) — f(X¥) = hk&—f (X*) + 'dlﬂx* +6h), O0<f<l
‘. -

Since d’f(X* + 6h) is of order k?, the terms of order h will dominate the
higher-order terms for small h. Thus the sign of f(X* + h) — f(X*) is decided
by the sign of k; 3f(X*)/3x, . Suppose that 3f(X*)/dx, > 0. Then the sign of
f(X* + h) — f(X*) will be positive for h, > 0 and negative for , < 0. This
means that X* cannot be an extreme point. The same conclusion can be ob-
tained even if we assume that 3f(X*)/dx, < 0. Since this conclusion is in
contradiction with the original statement that X* is an extreme point, we may

say that df/dx, = 0 at X = X*, Hence the theorem is proved.
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Theorem . : Sufficient Condition A sufficient condition for a stationary
point X* to be an extreme point is that the matrix of second partial derivatives
(Hessian matrix) of f(X) evaluated at X* is (i) positive definite when X* is a
relative minimum point, and (ii) negative definite when X* is a relative max-
imum point.

Proof: From Taylor’s theorem we can write

n af E Z f
E 3 = * *
FX* 4+ h) = fXN) + 2 hi - PR T e R Ajlx—xeron

Since X* is a stationary point, the necessary conditions give (Theorem

E - “' fl - qul""'n
Thus Eq. | ) reduces o
55
X* + h) - * — hihy —— 0<t<l
S ) — fX¥) = 20i=ti=1 7 3% Ol _xepon <0

Therefore, the sign of
fX* + h) — f(X¥)

will be same as that of

n 32
2 2 by !
i=1j=1 ax; x|y _xx 1 6m
L] a}f
2 hh
e= EJI i=1 ! “h: A=X*

is positive. This quantity @ is a quadratic form and can be written in matrix
form as

Q = h'Jh|x.x-
where
_|_9r_
J|x-x- = [B&x. arj :_x.]




[ 0*f o*f o*f ]
0x,0x; 0x,0x, 0x,0x3
0%f 0%f 0% f
dx,0x; 0x,0x, 0x,0x;5
o*f o*f o*f

[0x30x; 0x30x, 0x30x5.

is the matrix of second partial derivatives and is called the Hessian matrix of

JX).

Definition:

A matrix A will be positive definite if all its eigenvalues are
positive;

that is, all the values of A that satisfy the determinantal equation

|A—2AIl =0
should be positive. Similarly, the matrix [A] will be negative
definite if its
eigenvalues are negative.

Another test that can be used to find the positive definiteness
of a matrix A of order n involves evaluation of the
determinants

A = |ﬂ|r|,
ayy 4z
Az - .
dyy dxr

ay dyz a3

Ay = lay ay axpl, ...,

dz; di3p dzip



ayy, dyp dyz 0 Ay,
dry Ay dx T adyy,
A, = |ay an az - as,
d; dyp 4y R am:

The matrix A will be positive definite if and only if all the values A,, A,, A5,
..., A, are positive. The matrix A will be negative definite if and only if the
sign of A; is (—1)/ for j = 1,2,. . . n. If some of the 4; are positive and the
remaining A; are zero, the matrix A will be positive semidefinite.

A matrix A will be positive definite if and only if all its

determinants are positive;

A matrix A will be negative definite if and only if all its

determinant 4, satisfies: (—=1)%,k = 1,2,..

A matrix A will be semi-definite if some of its determinant

are positive, and the remaining are zeros

Saddle Point

In the case of a function of two variables, f(x,y), the Hessian matrix may be
neither positive nor negative definite at a point (x*,y*) at which

of  of

—=—=0

dx dy
In such a case, the point (x*,y*) is called a saddle point.
P y

The characteristic of a saddle point is that it corresponds to a
relative minimum or maximum of f(x,y) with respect to one
variable , say, x (the other variable being fixed at y = y*) and a
relative maximum or minimum of f(x,y) with respect to the second
variable y (the other variable being fixed at x*).

o)
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Figure 2.5 Saddle point of the function f(x,y) = x> — y*.

A matrix A will be positive definite if al|] U 0
its eigenvalues are positive;
A matrix A will be positive definite if 0 0
and only if all its determinants are
positive;
A matrix A will be negative definite if 0 0
and only if all its determinant A,
satisfies: (—1)*
A matrix A will be semidefinite 0 0
definite if some of its determinant are
positive, and the remaining are zeros

0

A saddle point is corresponds to a a
relative minimum of f(x,y) with
respect to one variable and a relative
maximum with respect to the second
variable
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[Q3] Find the extreme points of the function
fley,x) =x3 +x3 +2x7 +4x5 +6
The necessary condition is

A N S >0

ax, X A = a0 ) = x1(3x; +4) =0
a x2(3x2+8)=0
i=3x§+&2=x2(3x2+8)=0

6X2

Consider finding the extreme points of the function
flxy, %) = x3 +x3 + 2x2 + 4x2 + 6. Answer the
following

(1) The necessary condition yields

O x1(3x; +4) =0, O x1(3x; —4) =0,
x,(3x,+8) =0 x,(3x,+8) =0

O x1(3x;+4)=0,| U x1(x, —4) =0,
x,(3x, —8) =0 xX,(x; —8) =0

Consider finding the extreme points of the function
f(xg,x) = x3 + x5 + 2x2 + 4x2 + 6. Answer the
following

(2) The solutions of the necessary condition equations are

O 4 -8 | [ —4 -8
x1=0,§, X2=O,? X1=0,?, x2=0,?

0 O | Else

-4 8
X1 = 0,?, Xy = 0,5

Consider finding the extreme points of the function
fxy,x5) = x3 + x5 + 2x2 + 4x2 + 6. Answer the
following

(3) The necessary condition equations are satisfied at the
points

oy
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Consider finding the extreme points of the function
flxy,x3) = x3 +x3 + 2x2 + 4x2 + 6. Answer the

following

(3) The following point satisfies the necessary condition

0 —4 ]
(O' ?)

G

O -8 O
(?0)

&3

To find the nature of these extreme points, we have to use the sufficiency conditions. The
second-order partial derivatives of fare given by

o%f a2f
= 4 —
aﬂj': = 3x2| + 4x, 0x1? 6x16;|; " 9x,?
X —
I 6x, + 8, oo, 0
a
9 _ 3x3 + 8x;
612
62f aZf The Hessian matrix of f is given by
] 6x, + 4 0
0x10x; 0x,0x;
aZf aZf J 0 6X2 + 8
0x,0x; 0x,0x,

IfJ, = |6x, + 4| and J,

6x, + 4 0
0 6x, + 8

l, the values of J, and J, and

the nature of the extreme point are as given below.
fle,x) =x3 +x3+2x2 +4x2 +6

o¢



Value  Value
Point X of J, of J, Nature of J Nature of X JX)
0,0 +4 +32  Positive definite Relative minimum 6
0,~-% +4 —~32  Indefinite Saddle point 418/27
( “%,0) -4 -32 Indefinite Sadd!e point 194/27
-3 -3 —4 +32 Negative definite ~ Relative maximum 50/3

(4)To find the nature of these extreme points, we use the sufficiency
conditions. The second-order partial derivatives of fare given by

D aZf 3 aZf 3 D aZf 3 aZf
0x,2 0'6x22 = 6x 0x,2 6x, + 4'@
92 92
+8, f =0, f
0x10x, 0x,0x,
=6x; +4 = 6x, + 8
0 o*f o*f O | Else
ax12 6x1 + 4‘,@
= 6x2
0% f
+8, 0x,0x,
=0
(5) The Hessian matrix of f is given by...
0 [ [0 6x,+4] [0 6x, + 4 0
|0 6x, + 8] | 0 6x, + 8]
O [6x; +4 0] | O [6x1 + 4 3x; ]
6x,+8 0 | 2x, 6x, + 8|
(6) The nature of the extreme point (0,0) is
[1 | Relative M Saddle [] | Relative (] indefinite
minimum point maximum points
(7) The nature of the extreme point (0, _?8) is
[ | Relative [1 | Saddle [1 | Relative [ | indefinite
minimum point maximum points
(8) The nature of the extreme point (_74 0) is
[ | Relative [1 | Saddle point | [] | Relative [ | indefinite points
minimum maximum
(9) The nature of the extreme point (_?4_?8) is
[ | Relative [ | Saddle point [ | Relative ] indefinite
minimum maximum points
(10) The Relative maximum of the function IS
[ | 194/27 1|6 1508 | 418

27

o
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[1] Answer whether each of the following quadratic forms is positive
definite, negative definite, or neither.

@ f=x{—x3

(b) f = 4xx;

(¢) f=x7 + 2x3

) f= —xi7 + 4x,x, + 4x3

(e) f= —x% + dx;x; — ng + 2xpx; + Bxyxy — 4,\:%

(2) Match the following equations and their characteristics.

@) f=4x; — 3x, + 2 Relative maximum at (1, 2)
b) f=Q2x;, — 2 + (x; — 2)* Saddle point at origin

© f=—(x; — 1)} = (x; — 2)% No minimum

d f=xx Inflection point at origin
e f=x* Relative minimum at (1, 2)

(4) Determine whether each of the following matrices is positive
definite, negative definite, or indefinite by finding its eigenvalues.

3 1 —17

[4} = 1 3 —1
-1 —1 5
4 2 —4

1Bl = 2 4 -2
| —4 —2 4]

-1 -1 -1
[Cl=|-1 -2 =2
-1 -2 -3

-14 3 0

[A] = 3 -1 4
0 4 2

o1



(5) Determine whether each of the following matrices is positive
definite, negative definite, or indefinite by evaluating the signs of
its submatrices.

3 1 —17

[M]=| 1 3 -1

-1 -1 5_

4 2 -4

[B] = 2 4 -2

| -4 -2 4

(—1 -1 —17

[C]=|-1 -2 -2

-1 -2 -3

4 =30

[Al=]-3 0 4

0 4 2

(6) Express the function

fxy, %0, %3) = —x% — x5 + 2x,X, — x5 + 6x,X3 + 4x; — 5x3

+ 2

in matrix form as
1
fxX) = E XT [A]X + BTX +C

and determine whether the matrix [A] is positive definite,
negative definite, or indefinite.

(7) The profit per acre of a farm is given by

ov


hillal
Highlight


20x, + 26x, + 4x,x, — dx? — 3x)

where x; and x, denote, respectively, the labor cost and the fertilizer
cost. Find the values of x; and x, to maximize the profit.

where X1 and x2 denote, respectively, the labor cost and the

fertilizer
cost. Find the values of X1 and X2 to maximize the profit.
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Multivariable Optimization With Equality Constraints
In this section we consider the optimization of continuous functions subjected
to equality constraints:

Minimize f = f(X)
subject to

gj(x) = 09 } = 1,2,. . am

Where

Here m is less than or equal to n; otherwise (if m > n), the problem becomes
over defined and, in general, there will be no solution. There are several
methods available for the solution of this problem. The methods of direct
substitution, constrained variation, and Lagrange multipliers are discussed in
the following sections.

(*) In the equality constraints optimization problem, the number
of constraints must be ..... the number of variable.

0] < Jo] = THJ] < ToO]J Else

Solution by Direct Substitution

For a problem with n variables and m equality constraints, it is
theoretically possible to solve simultaneously the m equality
constraints and express any set of m variables in terms of the
remaining n - m variables. When these expressions are substituted
into the original objective function, there results a new objective
function involving only n - m variables. The new objective
function is not subjected to any constraint, and hence its optimum
can be found by using the unconstrained optimization techniques
discussed in Section 2.3.
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[Q4] Find the dimensions of a box of largest volume that can be
inscribed in a sphere of unit radius.

SOLUTION Let the origin of the Cartesian coordinate system Xy, x,, x3 be
at the center of the sphere and the sides of the box be 2x;, 2x,, and 2x;. The

Ban gl Ll Caiais S 8o g sial Sy aaa ST 4l () 5S) Cumy (5 sdka el 2a

< 2xy = P(xq,x3,x3)

a

v

volume of the box is given by f(x; x,, x3) = 8x3x,%3

Since the corners of the box lie on the surface of the sphere of unit radius, x;,
X», and x; have to satisfy the constraint

xt+x2+x3=1

This problem has three design variables and one equality constraint. Hence
the equality constraint can be used to eliminate any one of the design variables
from the objective function. If we choose to eliminate x;, Eq. (E,) gives

x=(1-xi-xp"” (E)

Thus the objective function becomes

fxx) = 8xx(1 — x7 — x9)'? (E,)

flxix;) = 8x1x2\/1 — x% — x2



which can be maximized as an unconstrained function in two variables.
The necessary conditions for the maximum of f give

d x3

e e i = IR
9 _ RN V- I x3 ] _

ax = 8x, {(l X X3) a1 - I? _ x%)ug =0 (Es)

Equations (Es) and (Eg) can be simplified to obtain
1 —2x]—x3=0
1—xi—2x3=0

from which it follows that x¥ = x¥ = 1/+/3 and hence x¥ = 1/+/3. This
solution gives the maximum volume of the box as

8
fmax - 3\/5
For the sufficient condition, it is clear that the Hessian matrix is negative
definite. Hence the point X; is maximum for the given function.

1 | In the equality constraints optimization problem, the 0 O
number of constraints must be less than or equal to the
number of variable.

2 | If the number of constraints is greater than the number ] 0
of variable in the equality constraints optimization
problem, the problem becomes over defined

3 Max. f(xl’xz,x?)) = 8xleX3 SUbjECt to x% + XZZ + x% = D D
1 is equivalent to

MaX f(xl’xZ) = 8X1X2V 1-— Xf - x%

4 | The extreme points for the problem Max. f(x1,xz'x3) = [ [

8x1X,x5 subjectto xf + x3 + xZ =1is G%%)

5 | The maximum value for the problem Max. ] (]
f (1,5, x3) = 8x1x,%3 subject to x7 + x3 + x% = 1s
8

ﬁ.

[Q4]

Minimize f = 9 — 8, — 6x; — 4x; + 2x} + 2x3 + x3 + 25x, + 2xx3

subject to x, + x, + 2x; = 3 Dby direct substitution,

1)



2 2 2
[Q5] Consider the problem Minimize f(X) = "—1“‘22*"3

SUbjeCt to gl(X) = x1 - xz = 0, gz(X) = x1 +x2 + X3 = 1
By Direct substitution

[Q6] Find the value of X, y, and z that maximize the function f(x,y,z) =
6Xyz

X+2y+2z
When X, y, and z are restricted by the relation xyz = 16.

a1y



Solution by the Method of Lagrange Multipliers

The basic features of the Lagrange multiplier method is given
initially for a simple problem of two variables with one constraint.
The extension of the method to a general problem of n variables
with m constraints is given later.

Problem with Two Variables and One Constraint.
Consider the problem:
Minimize f(x,, x,) subjectto g(x,,x,) =0

1 | Lagrange multiplier for the problem [Minimize o | [
f (x4, x,) subject to g(x;, x,) = 0], evaluated at the
of
extreme pointis 1 = — 52
ox;

The necessary conditions generated by constructing a function L,
known as the Lagrange function, as
U.Il..l.':.}ll' - f{.ﬁ,l’:] Ln ?\gf.h.,l':]

By treating L as a function of the three variables x|, x,, and A, the necessary
conditions for its extremum are given by

ﬂL d ag
&x, (x),%2,A) = _f () + A 3_| (x).x2) =
8L

d d
7 ()-'ly"zs}\) a_f (1) + A a_g (x1.x2) = 0
X3 X2

L
P (x1.%3,A) = glx.x;) = 0

2 | One of the necessary conditions for extremum of Lagrange| [} | [
multiplier solution for the problem [Minimize f (x4, x5)
subject to g(x4, x,) = 0], evaluated at the extreme point is

g(xll xZ) =0

a1y




[Q9] Find the solution of Minimize f = k/xy? Subject to
x% + y? = a? using the necessary condition of Lagrange multiplier method
SOLUTION

The Lagrange function is
Lx,y,N) = fix,y) + Ng(xy) = kx7'y™72 + ANx? + y? — d%)

The necessary conditions for the minimum of f(x, y) give
AL

_— = -2,,-2 + —

I kx y_ 2xA 0 (E;)
oL

— = =2kx 'y + 2yA =0 E
oL _ > 2 _ 2 _

In x4+ y a- =0 (E3)

Equations (E1) and (E2) yield

K 2k
2?\=x32='—4
y Xy
1 2
xz_yz

from which the relation x* = (l/\@) y* can be obtained. This relation, along
with Eq. (E;), gives the optimum solution as

a a
x*¥ = — and *=\/E"
NG Y B

Sufficiency Conditions for a General Problem

Theorem 1 Sufficient Condition A sufficient condition for f(X) to have
a relative minimum at X* is that the quadratic, Q, defined by

n n

R P L I

i=1j=1 aX, a.(,

evaluated at X = X* must be positive definite for all values of dX for which
the constraints are satisfied.

¢



[Q11]Find the dimensions of a cylindrical tin (with top and

bottom) made up of sheet metal to maximize its volume such that
the total surface area is equal to A0 = 24 7.

- El
Fl L1 I L]
I i ¥ i
1 L
L] L
i L I
I 1 ' 1
i 1 i 1
i 1
X i [ i
L] P i L
L] L} L] [}
L I L] r
L ¥ L ¥
% & % ']
T e e EmeEmeEmeE === St

Let the radius of the tin is r = x,; and the length is h = x,.
respectively, the problem can be stated as:

Maximize f(x,x;) = wxfxz

subject to
2ax} + 2mxxy = Ay = 247
The Lagrange function is

LI = FO0 + ) 24950
j=1

L(x;,%3,8) = wx3ix, + Nmx? + 2ax,x, — Ap)

and the necessary conditions for the maximum of f give

L

% = 27xx + 4whx; + 27Ax, =0 (E)
|

aL

a—xz = rx% + 2W)\X| =0 (EZ)

aL

e 2mx] + 27X0,% — Ag = 0 (E,)

10



Equations (E,) and (E,) lead to

X1 X 1
= ——x

N e m 2

that is,

X = 3% (E,)

and Egs. (E;) and (E,) give the desired solution as

A 172 2A 172 A 112
* _ {70 * _ [ 270 * = 29
o (ﬁw) » R (3«) » and A (24«)

This gives the maximum value of f as

B Ag 1/2
= (G)

If Ay = 24w, the optimum solution becomes

x¥ =2, x¥=4, M= -1, and f* = 167

To see that this solution really corresponds to the maximum of f, we apply the
sufficiency condition of Eq. (2.44). In this case

L
= _— = 2mx; + 47\* = 4rw
11 Bx% %2 2
L L, 27xy + 27NF =2
12 = —— ] I = ﬂ'.t' ™ = e
&L
Ly =373 =0
xz (X*,}\*]
Now since
aL
5 = 211'.3:% + 2TI|XQ - Ao =0

"



=4mxf + 2mx¥ = 167
(X* 2%

%L
dx102

And since

dL
5 = 211'17% + 27x|x2 - AO =0

: = 2mx} = 4w
82 MX* %)
axZa/’{
And since
oL

N

= 211'.1'% + Z‘u'x.xg - Ao =0

0’L 0
o101

[ 0%L 0%L 0%L 7
0x,0x; 0xy0x, 0x,0A
0%L 0%L 0%L
0x,0x; 0x,0x, 0x,01
0%L 0%L 0%L
| 0A0x; 0Adx, 0A0A ]

For test the positiveness of Hessian matrix:

4t 2w 16w
H=|2n 0 41
16w 4m 0

|[H—AI| =0

v



AT — A 2T 16w
2T 0—1 4w |=0
16w 41 0—27

272w + 19213 =0

12
- T17"

Since the value of A is negative, the point (x,*, x,*) corresponds
to the maximum of f.

[Q12] Find the maximum of the function
fX) = 2x + x; + 10 gybject to
gX) =x, +2x5 =3
using the Lagrange multiplier method.
SOLUTION The Lagrange function is given by

LXN =2x +x, + 10 + A3 — x; — 2x) (E)

The necessary conditions for the solution of the problem are

dL

a—xl—z—)\—o

a_L= 1 —4)\I2=0 (E,)
axg

oL

5=3—x.—2x§=0

The solution of Egs. (E;) is

v = {x’."} - {2.97}
ey o3
z (Es)

A =20
Sufficient condition is Homework

TA



[Q3]

Find the admissible and constrained varations al the point X = 12;
for the following problem:

Minimize f = x] + (x, — 1)
subject 1o
-2xi + xy = 4
Minimize f = 9 — 8x; — 6x, — 4x; + fo
+ 23 + x3 + 2%, + 20,x;
subject to

X|+X2+2.I3=3

by (a) direct substitution, (b) Lagrange multiplier method.

[Q6] Consider the problem
Minimize f(X) =

x2+x3+x3
2

Subject to
g1(X)=x;—x, =0
gz(X) =x1 +x2 +X3 = 1
By Lagrange multipliers method.

[Q7] (b) Minimize £ (x) = L2275 (g)
Subjectto g, (X) =x; —x, =0, (2)

g2(X) =x1 +x;, +x3 =1(3)
By Lagrange multipliers method.

14



[Q8] find the value of X, y, and z that maximize the function

( ) = 6xyz
feoy,2) = X+ 2y + 2z
When X, y, and z are restricted by the relation xyz = 16.




Unconstrained Multivariable Optimization Techniques

This chapter deals with the various methods of solving the unconstrained min: imization problem:

Find X = §{ . ¢ which minimizes f(X)

As discussed in Chapter 1, a point X* will be a relative minimum of f (X) if the necessary
conditions

£(3{=x*}=ﬂ. i=12,....n ( 2
ax;

are satisfied. The point X* is guaranteed to be a relative minimum if the Hes-
sian matrix is positive definite, that is,

>

Jxo = Vlxe = [ﬁ‘ (X*)

ax, ox, = positive definite (.3

L

Equations (2) and (3) can be used to identify the optimum point during
numerical computations. However, if the function is not differentiate, Egs.
(2) and (3) cannot be applied to identify the optimum point.

Classification of Unconstrained Minimization Methods

Several methods are available for solving an unconstrained minimization problem.
These methods can be classified into two broad categories as direct search methods and
descent methods as indicated in Table 1.

TABLE 6.1 Unconstrained Minimization Methods

Direct Search Methods Descent Methods
Random search method Steepest descent (Cauchy) method
Grid search method Fletcher-Reeves method
Univariate method Newton’s method
Pattern search methods Marquardt method
Powell's method Quasi-Newton methods
Hooke-Jeeves method Davidon-Fletcher-Powell method
Rosenbrock’s method Broyden-Fletcher-Goldfarb-Shanne method

Simplex method

\A



Direct Search Methods: Do not require the derivatives of the function.
Descent Methods: Require the derivatives of the function.

Direct Search Methods don’t require the O | O
derivatives of the function.
Descent Search require the derivatives of 0 | O
the function.

1.2 General Approach

[Q1]Draw the flowchart of general iterative scheme of unconstrained
multivariable optimization

Start with a trial point X,

l

Seti=1

Y

Find f{X;}

¢

Generate a new point X + 1 [-=

'

Find fiX; ; 1)
! Seti=i+1
(Is convergence satisf ieﬁ?j ™ _*
Yes
Y

Take X=X,y
and stop

Figure 6.3 General iterative scheme of optimization.

3 Rate of Convergence
Different iterative optimization methods have different rates of convergence.
In general, an optimization method is said to have convergence of order p if

1Xi41 =X
—_— < > >
e SKK=0p>1 (4)

\Al



where X, and X, , denote the points obtained at the end of iterations i and
i + 1, respectively, X* represents the optimum point, and [|X| denotes the
length or norm of the vector X:

IXI = VT + 23 + - - +x}
[ F]

If p=1and 0 < k < 1, the method is said to be linearly convergent
(corresponds to slow convergence), If p = 2, the method is said to be
quadratically convergent (corresponds to fast convergence). An optimization
method is said to have superlinear convergence (corresponds to fast
convergence) if

lim | Xp+1—X"l >0 (6)
k = oo lIXk—X"Il
The definitions of rates of convergence given in Eqgs. ( .4) and ( .6) are ap-
plicable to single-variable as well as multivariable optimization problems. In
the case of single-variable problems, the vector, X;, for example, degenerates
to a scalar, x;.

lim 11X =X"Il

An iterative optimization method satisfies
k = oo lIXg—Xx*II

— 0, is said to

be ..... convergence

| 1| quadratically | () | superlinear | (1 | linearly | 0 | super |

An iterative optimization method is saidtobg [ | [

: e I1Xigy X7
quadratically convergent if T
K,K =0,

p=2

Different iterative optimization methods 0| 0
have the same rates of convergence.
Some of the methods for solving O | 0O
constrained minimization problems require
the use of unconstrained minimization
techniques.

The study of unconstrained minimization O | O
techniques provides the basic understanding
necessary for the study of constrained
minimization methods.

All  the unconstrained minimization 0 0
methods are iterative in nature.

vy



Indirect search (descent) methods

Gradient of a function
The gradient of a function is an n-component vector given by

vf _[ﬂﬁﬂ E]T

nx1 l0x; 0x, dx3 ~ 0x,

The gradient has a very important property. If we move along the gradient
direction from any point in n-dimensional space, the function value increases
at the fastest rate. Hence the gradient direction is called the direction of
steepest ascent. Unfortunately, the direction of steepest ascent is a local
property and not a global one. This is illustrated in Fig. 6.15, where the

gradient

Since the gradient vector represents the direction of steepest ascent, the
negative of the gradient vector denotes the direction of steepest descent. Thus
any method that makes use of the gradient vector can be expected to give the
minimum point faster than one that does not make use of the gradient vector.
All the descent methods make use of the gradient vector, either directly or

indirectly, in finding the search directions. Before considering the descent
methods of minimization, we prove that the gradient vector represents the di-
rection of steepest ascent.

[Q1] Prove that the gradient vector represents the direction of

steepest ascent.
Theorem 6.3 The gradient vector represents the direction of steepest
ascent.

Proof: Consider an arbitrary point X in the #-dimensional space. Let f denote

the value of the objective function at the point X. Consider a neighboring point
X + dX with

dx
ax ={%
s,
where dx,, dx,, ... , dx, represent the components of the vector dX. The

magnitude of the vector dX, ds, is given by

dXT dX = (ds)* = §. (dx;)’

\&4



If f + df denotes the value of the objective function at X + dX, the change
in f, df, associated with X can be expressed as

T 1
_Elaxdr—?fdx ('

If u denotes the unit vector along the direction dX and ds the length of d4X,
we can write

dX = uds

The rate of change of the function with respect to the step length ds is given
by Eq. 1} as

df _ 5 Of dx _ f,dx

=z = r {
ds =1 ﬂ.r ds Vita 2

The value of df/ds will be different for different directions and we are inter-
ested in finding the pam:;ular step dX along which the valuc of dfids will be
maximum. This will give the direction of steepest ascent. ' By using the defi-
nition of the dot product, Eq. i 2) can be rewritten as

dar _

s = |9£1l lull cos 6

where |V£|| and [lul| denote the lengths of the vectors Vf and u, respectively,
and @ indicates the angle between the vectors Vf and u. It can be seen that
df/ds will be maximum when 6 = 0° and minimum when 8 = 180°. This
indicates that the function value increases at a maximum rate in the direction
of the gradient (i.e., when u is along Vf).

[Q2] Prove that the maximum rate of change of f at any point X is

equal to the magnitude of the gradient vector at the same point. Then
show what we can do if the Evaluation of the Gradient poses certain

problem

Theorem 4 The maximum rate of change of f at any point X is
equal to the magnitude of the gradient vector at the same point.



Proof: The rate of change of the function f with respect to the step length s
along a direction u is given by Eq. (6.62). Since df/ds is maximum when 6 =
0° and u is a unit vector, Eq. (6.62) gives

(%)

= fIv£ll

which proves the theorem.

Evaluation of the Gradient
[Q3]“The evaluation of the gradient poses certain problems”. Discuss
this sentence.

The evaluation of the gradient requires the computation of the partial derivatives

af/ Bx,-’ i=1,2, ..t There are three situations where the evaluation of
the gradient poses certain problems:

1. The function is differentiable at all the points, but the calculation of the
components of the gradient, df/adx;, is either impractical or impossible.

2. The expressions for the partial derivatives df/dx; can be derived, but they
require large computational time for evaluation.

3. The gradient Vf is not defined at all the points.

In the first case, we can use the forward finite-difference formula

Il _ Xy + Axw) — fiX,)
ol Ax; ’

=12, .. (6.63)

X

Steepest descent (Cauchy) method

The use of the negative of the gradient vector as a direction for minimization
was first made by Cauchy in 1847. In this method we start from an initial trial
point X1 and iteratively move along the steepest descent directions until the
optimum point is found. The steepest descent method can be summarized by
the following steps:

A



[Q4](a)Summarize the steps of steepest descent method for
Multivariable Unconstrained Minimization problem.

1. Start with an arbitrary initial point X,. Set the iteration number as i = 1.

2. Find the search direction S; as
§ = -Vf = -VfX)
3. Determine the optimal step length A in the direction S; and set
X=X+ NS5 =X -\

4. Test the new point, X, ,,, for optimality. If X, is optimum, stop the
process. Otherwise, go to step 5.
5. Set the new iteration number i = i + 1 and go to step 2.

The method of steepest descent may appear to be the best unconstrained
minimization technique since each one-dimensional search starts in the "best"
direction. However, owing to the fact that the steepest descent direction is a
local property, the method is not really effective in most problems.

[Q4](b)Use steepest descent method to Minimize the following
Multivariable Unconstrained Minimization problem starting
from X= {0 0)"

flx,x) =x; —x, +2x% +2x; x, + x2
SOLUTION

Iteration 1
The gradient of fis given by

Vf affaxl 1 + 4x| + 2x2
oflon)  (—1+ 25 + 25

1
Vfi = ViX) = {_ 1]

A%



Therefore,

el

To find X,, we need to find the optimal step length A{". For this, we minimize
f(x| + )\.S,) =f(_}\1, )\l) = A% — 2\, with respect to >\.|. Since dffd}\l =0
at Af = 1, we obtain

X, = X, + NS, = {3 * 1 {_3 ) {ﬂ

As VS, = VX, = [:3 #* Eg}, X, is not optimum.

Iteration 2
1
S, = ~Vf;, = 1

S + MS) = f(—1+ M, 1+ N)
=5\ -2\, -1

To minimize

we set df/d\, = 0. This gives Ay’ = £, and hence

* -1 1 {1 —-0.8
s - )

Since the components of the gradient at X, Vf; = {"ggz’ are not zero, we
proceed to the next iteration.

Iteration 3

YA



As

f(X3 + )\383) =f(—0.8 - 0.2)\3, 1.2 + 0.2%3)

= 0.04\] — 0.08)\; — 1.20, % =0at A = 1.0
3

Therefore,

< 4t -0.8 + Lo 0.2 ~1.0
= -|- -_— . =
X = X3 + 055 1.2 0.2 1.4

The gradient at X, is given by

o, —0.20
* { —o0.20

Since Vf, # gz X is not optimum and hence we have to proceed to the next

iteration. This process has to be continued until the optimum point, X* =
-1.0

150 is found.

Convergence Criteria.
The following criteria can be used to terminate the iterative process:
1. When the change in function value in two consecutive iterations is
small:
f&in) = FED| _
S €

fX)
2. When the partial derivatives (components of the gradient) of/are
small:

B

ax;

3. When the change in the design vector in two consecutive iterations is
small:

= &, i = 1,2,. R ¢

Xy — X = &

vAa



Conjugate Gradient (Fletcher-Reeves) Method

The convergence characteristics of the steepest descent method can be
improved greatly by modifying it into a conjugate gradient method (which
can be considered as a conjugate directions method involving the use of
the gradient of the function).

We saw that any minimization method that makes use of the conjugate
directions is quadratically convergent. T

his property of quadratic convergence is very useful because it ensures
that the method will minimize a quadratic function in n steps or less. Since
any general function can be approximated reasonably well by a quadratic
near the optimum point, any quadratically convergent method is expected
to find the optimum point in a finite number of iterations.

We have seen that Powell's conjugate direction method requires n single
variable minimizations per iteration and sets up a new conjugate direction at
the end of each iteration. Thus it requires, in general, n2 single-variable
minimizations to find the minimum of a quadratic function. On the other
hand, if we can evaluate the gradients of the objective function, we can set up
a new conjugate direction after every one-dimensional minimization, and
hence we can achieve faster convergence. The construction of conjugate
directions and development of the Fletcher-Reeves method are discussed in
this section.

Development of the Fletcher-Reeves Method
[Q5] Develop the Fletcher-Reeves Method

Consider the development of an algorithm by modifying the steepest descent
method applied to a quadratic function f(X) = 1X"AX + B’X + C by impos-
ing the condition that the successive directions be mutually conjugate. Let X,
be the starting point for the minimization and let the first search direction be
the steepest descent direction:

S, = —Vf; = -AX, - B
xg = x; + :’\1*5|

or




where A is the minimizing step length in the direction S,, so that
S| Vflx. = 0 1
Equation ( 1 ) can be expanded as
SIIAX, + AS) + B] =0
from which the value of AT can be found as
~S81(AX, + B) 8] ¥f,

AM=—lool— T Sl
' ST AS, ST AS,

Now express the second search direction as a linear combination of S: and
=Vf:

5, = —Vf; + 8.5,

where 8, is to be chosen so0 as to make 8, and 8, conjugate. This requires that
STAS, =0

Substituting Eq. ( Y into Eq. (. - ) leads to
SIA (=Vf, + B:S) =0
Equations ( jand ( ) yield

X, - X'
-l AW - 680 = 0
1

The difference of the gradients (Vf; — Vf}) can be expressed as
(V, — Vf) = (AX, + B) — (AX, + B) = A(X; - X))
With the help of Eq. ( ), Eq. . ') can be written as

(Vf = VA (VhH = B,8) =0

AN



where the symmetricity of the matrix A has been used. Equation ( .} can be
expanded as

VIIVA - VfIVA - B V1S +B V8 =0 (|
Since Vf1 Vf, = =S| Vf; = 0from Eq. ( "), Eq. () gives

_ VIV _ VIV
VfiS VAV

Next we consider the third search direction as a linear combination of §,, S,,
and —Vf; as

32’-

where the values of 8, and 8, can be found by making S; conjugate to S, and
S,. By using the condition SjAS; = 0, the value of §; can be found to be zero
_ When the condition S;AS; = 0 is used, the value of ;
can be obtained as

8, = VIV
P vl VA

so that Eq. ( ) becomes

5, = =V + 6.5

where 3 is given by Eq. (). In fact, Eq. ( :)) can be generalized as

S, = =V + 85, o )
where
g = Vf! Vf; )
v, (

Equations ( " ) and (t ) define the search directions used in the Fletcher-
Reeves method

If we move along the gradient direction fromany | [1 | [
point in n-dimensional space, the function value
increases at the fastest rate

The gradient vector represents the direction of O 0O
steepest ascent.

The maximum rate of change of f atany point X | [J | [
is equal to the magnitude of the gradient vector at

AY



the same point

The convergence criteria of steepest descent
method that can be used to terminate the iterative
process, when the change in function value in
two consecutive iterations is small is
fXipv)—f (X)) <e. .

fXi

All the unconstrained minimization methods are
iterative in nature.
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