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Introduction to ODEs
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- Objectives of Lesson

e Recall basic definitions of ODEs:
- Order
— Linearity
— Initial conditions

- Solution

* Classify ODEs based on:

— Order, linearity, and conditions.

¢ Classifythe solution methods.
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- History of differential equations:

In mathematics, the history of differential equations traces the development of

"differential equations" from calculus, which itself was independently invented
by English physicist Isaac Newton and German mathematician Gottfried Leibniz.

The history of the subject of differential equations, in concise form, from a
synopsis of the recent article “The History of Differential Equations, 1670-1950"

“Differential equations began with Leibniz, the Bernoulli brothers, and others
from the 1680s, not long after Newton’s ‘fluxional equations’ in the 1670s.”

- Definition of DES and some properties:

Differential Equations

| Definition | A differential equation is an equation involving
derivatives of an unknown function and possibly the
function itself as well as the independent variable.

s 0 2 r - 3 2 N
¥y =sin|{x), (¥ —y¥ +2xy —x" =0, |V +¥ +x=0

| 1st order equations | 2rd order equation |

| Definition | The ordesr of a differential equation is the highest o«des
of the derivatives of the unknown function

appearing in the equation
In the simplest cases, equations may be solved by direct integration.

[EEEBEE ¥ - S(x) =y = —cos(x)+C
y ' =Bx+e" =y =3x"+e"+C, =2 y=x"+e"+Cx+C,
Observe that the set of solutions to the above 15t order equation has 1

parameter, while the solutions to the above 2" order equation
depend on two parameters.
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Derivatives
‘l Derivatives H
|
v L 4
Ordiﬁlry Derivatives Partial Derivatives
dv o
dt o

vis a function of one
independent variable

005

vis a function of
more than one
independent variable

POR

Differential Equations

Differential
Equations

v

v

Ordlnary Differential Equations

M+6tv 1
d

t* -

-

involve one or more

Ordinary derivatives of

unknown functions

Partial Differential Equations
(6 u 6 u 0\
o

involve one or more

partial derivatives of
unknown functions
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Ordinary Differential Equations (ODEs) involve one or
more ordinary derivatives of unknown functions with
respect to one independent variable

Examples :
]

@—V(I) =é l x(t): unknown function

dt_
d*x(t dx(t

g ) -5 ®) +2x(¢) = cos(?)
t: independent variable
Example 2:
l Ordinary ‘
______________________________________ differential
Lot T T uation
d c equa

A _gg <,

.t

dv — 0 8 —i v o (Dependent

dr V,% 4 variable)

unknown
function to be
determined
d v c
=98——— v
dzr

(independent variable)
the variable with respect to which
other variables are differentiated

- Order of a Differential Equation:
The order of an ordinary differential equation is the order of the

highest ‘?( derivative
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Examples -
d’;(tt) —x(@)=é€' First order ODE
dzx(t) _ 5@ 2x(t) =cos(f)  Second order ODE
\ dzx(t) ? dx(t) +2x4 () = Second order ODE

( - Linear ODE: 7
An ODE is linear if the unknown function and its derivatives

appear to power one. No product of the unknown function and/or
its derivatives.

Examples:

dx(f)
O Linear ODE
d*x(®) _dx(?)

oy tAxD=cos) Linear ODE

[d2x<r)]3ab«t)+ -1  Non-linear ODE
dr* dt

- Nonlinear ODE:

Examples of nonlinear ODE:

dt”

() _ L OO g O
” cos(x(t)) =1, " 5 ” X(t) =2
4O _ t)‘ Fx(0) =1
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Ordinary Differential Equations (ODEs)

- Auxiliary Conditions:

o0¥

/
Au x\'(a ry
N\

Conditions
P d

|

!

Initial Conditions

All conditions are at one
point of the independent

\/ variable

P

Boundary Conditions

e The conditions are not at one

point of the independent
variable

X, -Boundary-Value and Anitial value Problem )

AN

4

Initial-VValue Problems

The auxiliary conditions
are at one point of the
independent
variable

\/5&+23i:+x=e‘2‘

Bou ndary—\/aluePProblems

The auxiliary conditions are not at

one point of the independent
variable

More difficult to solve than initial
value problems

X+ 2x 4+ x = e °
x(O0)=1, x(0)=25 x(?) =1, x(;z) — 1.5
g o leme] Taarant |

- Classification of ODEs:

ODEs can be classified in different ways:

e Order

— First order ODE
— Second order ODE
— N order ODE

e Auxiliary conditions
— Initial value problems

— Boundary value problems

e Linearity ')’.
— Linear ODE
—_Nonlinear
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- Solutions of Ordinary Differential Equations

For example, this function
x(2) = cos(27r)
is a solution to the ODE

d?x(0)

Is it unique?
All functions of the form x(7Z) = cos(7 + )
(where ¢ 1s a real constant) are solutions.

| | L— )
- Uniqueness of a Solution
In order to uniquely specify a solution to an n" order differential

equation we need n conditions
d?x(1)

dt>
x(0)=a |_——Two conditions are
2(0) = b needed to uniquely
specify the solution

+4x(0) =0 Second order ODE

Classification of ODESs
ODEs can be classified in different ways:

e Order
— First order ODE
— Second order ODE
— Nt order ODE

e Linearity
— Linear ODE
— Nonlinear ODE

e Auxiliary conditions
— Initial value problems
— Boundary value problems
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- Applications of Differential equations:
e Electric Circuits:-

Differential Equations:
) Eleciric Clreults

L. £ +RT = E (+)

o

i \ R (45\5*"(
e
) AWV
) TE L
7
bathery Q;,\Ju’m
SM.J['LL\

e Biological Systems:-
The SIR epidemic model is one of the simplest compartmental models, and
many models are derivations of this basic form. The model consists of three

compartments—S for the number susceptible, | for the number of infectious, and
R for the number recovered (or immune). < &

as

| Susceptible I E b —ﬂSI
Y3
| Infec‘:'tious | % = ﬁSI — 7/]
Y
+ Jo
| Recovered I dt S ;I/I

Proporfion

L " L . " L
o 10 20 30 40 50 80 7O 80 90 100
Time (days)
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First-Order
Differential Equations
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First-order differential equations
Separable Differential Equations

- Objectives of Lesson

*Differential Equation of first Order and first Degree

* Method of Solution: Separation of Variables

* EquationsReducible to Variable Separable Form

* Class Exercise
Definition of DE of first order v/

A differential equation of the first order and first degree containsindependent
variable x, dependentvariabley and its derivative

dy . d d
é i.e. d—§=f(x, y) or f(x,y, d—i)=0
where f (x, y) is the function of x and y.
For example : xy (y +1)dy = (x> +1)dx, dy _x+vy,
dx x-y
d_y + y =sinx etc.
dx

A separable differential equation is one that can be written so that the
independent variable terms (along with its differential) are collected to one

side of the equal sign, and the dependent variable terms (and its
differential) to the other.

) ) ) d
Example 1: y' = xy? is separable. It is first written as ﬁ = xy?, then
“separated”:

d
—Z=xdx.

y
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. d
This is separated as y_32, = xdx.

d .
fy—}z' = [xdx Integrate both sides.

11 .. :
-3 = Exz +C Don’t forget the constant of integration.
1 1 :
5= C — Exz Negate. The C “absorbs” the negative.

1 2 : .

y = P =T Solve for y. Note that 2C is written as C.

Example 2: Solve the IVP: y' = x + xy, y(0) = 3.

Solution
Write y' as z—z: z—i =X+ xy
Factor: z—i =x(1+y)
Separate: i—yy =xdx (* —+1)
Integrate: i—yy=fxdx - In|1 +y|=§x2+C
Isolate y: 11 +y| = eo.5x2+c S N+y = Ce0-5%*

14y =+Ce®* = Ce®*  (+C =0)
Thus, y = Ce®5*" — 1 is the general solution of y’ = x + x.
* The constant of integration C is just a generic constant at this point. It
absorbs all constants that come near it, so to speak. For example, e¢ = C,
1
—C=0C, 2C =C, o= C, and so on.

* The C can be determined with an initial condition. For example, suppose
we have y' = x4+ xy with y(0) =3. The general solution is y =

C%5%* — 1. To find C, let x =0 and y = 3:
3=Ce%®* -1 - 3=C-1 - C=4

Thus, the particular solution is y = 4e%5%" — 1.
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Example 3
e Solve the following first order nonlinear equation:

dy  x?+1

dx y* -1

Solution

Separating variables, and using calculus, we obtain

(y*-1ydy = (x”+1) dx
[ -Ddy = [(x* +
1 5 1 5

— -y=—x+x+C
3)’ Y 3
y*-3y=x>+3x+C

Example 4:

e Solve the following first order nonlinear equation:

dy 3x*+4x+2
D _2X FIXL 2 here y(0)&—1

Solution
2(y —dy={3x> + 4x + 2)dx
2[(y —Ddy= [ (3x® + 4x+ 2)c
Yy 2y=x'+2x>+2x+C
e The equation above defines the solution y implicitly. An
explicit expression for the solution can be found in this case:

2+ Ja+4{x* +2x> +2x+C)
2

y2—2y—(x3+2x2+2x+C):0 = y=

y:li\/x3+2x2+2:l:+cl

e Suppose we seek a solution satisfying y(0) = -1. Using the
implicit expression of y, we obtain

e Thusthe implicit equation defining y is
y:—2y=x>+2x*+2x+C

D>*-2(-D=C = C=3

e Usingexplicit expression of y,
¥y 2y=x>+2x*+2x+3
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Example 5

e Consider the following initial value problem:

COS X
Y y(0)=1

y'_1+3y3’

Solution
Separating variables and using calculus, we obtain

1+3y” dy = cos xdx
y

(R

ln|y|+y3 =snx+C

e Usingthe initial condition, it follows that

Iny+y’ =sinx+1
e Thus

ycosx

T i y(0)=1 = Iny+yp’ =sinx+1

Y=

Example 6

Solve the differential equation g—y =x-14+xy-v.
X

Solution : The given differential equationis 3—1 =X-1+Xy-Y.

:>d—y—(x -1)+y(x-1)

dy .
= YT =(x-1)dx [Variable separable form]|

Integrating both sides, we get

j-diy = J-(x— 1)dx

v+ 1

ﬁ-loge|y+1|=7’(2_x+c
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Example 7
¢ dy _ xcos“y
MY ix 1-x2
——  Separation
tan y X sin y -
caszy ™ 1-x2 dx cos 3y Y 1-x2 dx
[an cos Py dy = f T
ny y ay 1- x2
j , S -1 [(—2=x d
- —Siny cos = — | 7T = ax
— cos "%y -1 , C
- = T m(1-x2)+ 7

cos 2y = —-In(1-x2)+¢C

secly+n(1-x%)=C

(” Q(- “JS (\"“5\\‘}\ fﬁ_ - _Jﬂ( f‘,m‘“\o A
c\‘/\ -~ge ¢
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Differential equation of the form

ﬂ=f(ax+by+c)

dx

Substituteax + by + ¢ = v to reducing variable separable form.

Example 8

Solve the differential equation: (X+ y)2 d_y =1

dx

Solution: We have (x +y)2 :—: =1 ---(1)

dy dv dy _ dv _

= 1
dx dx — dx dx

Putting x+y=v and 1+

in{i), we get

dv Yo 5v2 9V 1.2
v e 1)—1:>v dx 1+v

2 1+v2-1
1+ v 14+v

:{1— 1 Jdv=dx
1+ v2

:I[l-%jdv=jdx:v—tan'1v=x+C
1+v

:>(x+y)-tan'1(x+y)=x+C :>y-tan'1(x+y)=C
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Homogenous Differential Equations

Afunction f (x,y)is called a homogenous function of degree n if f (tx,ty) = "f (x.)

Examples:

2

g (x, y) = X< - Xy + y2 isa homogenous function of degree 2

Since g(tx, ty) =t?x? — (tx)(ty) + t?y? = t?(x? — xy + y?) = t?g(x,y)

Q(x,y) = x3sin (;) — /x% — 4xy is homogenous of degree 2

Method of Solution

dy _ f(x, y)

dx a(x, vy)

. dy dv ‘
= and =¥ = SV inthe equation.
(2) Substitute 'Y = VX I = VXS v
d

\Y
+ e F
\Y, X_dx =F(v)

(1) Write the differential equationin the form

(3) The equationreduces to the form

(4) Separatethe variablesof vand x.

(5) Integrate both sides to obtainthe solutionin terms
of vand x.

(6) Replacev by % to get the solution

Note: you could perform the same steps but with other assumption:

dx du
X=uy and — = U —
) I Ty ”
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Example 1

dy

Solve the differential equation x& =X+Y.

dy

Solution : The given differential equationis xd— =X+Y.
X

_,dy _Xx+y (D)
dx X

It is a homogeneousdifferential equation of degree 1.

dy dv

Putti = d LT =v+x— __{i et
utting y =vx and o =Vv+x (i), weg
V_'_xﬂ=x+vx

dx X

:>v+xj—v=1+v :>xd—v=1 = dv =

X dx
Integrating both sides, we get
J'dv=j%dx =V =loge | x|+C
Y

1dx

=~ =loge || +C [-y=vx] = y=xlogg | x|+Cx

Example 2
(x3+y2/xZT+y%)dx- (xy /a2 +y2)dy=0

—> No Separation

(t3x3+ £2 y?2 [t2 xZ + y2

t3 (x3 + y2/x2 + yz) dx - t3 (xy x2 + yz)dy:O

~~1d
— Homogenous DE of 3" order

dy x3 4+ y2 Y x2+ y?
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d d
Lt y=ur ad == utx—
’ dx dx
4yl ruteiVeieule? o S eutet e (1+u?)
Ut+x—= =
dx xPuvxt+utx 2w xI(14u?)
o rute T4y e (14u?)
k(1Y) oduy(+ud)
du 1+ ul/(1+u?) du 1+ u?(1+u?)
Utx—= - X—=
dx (14 u?) dx (14 u?)
du 1+ ulyV1+u? uy 1+ u?
X— = R
dx w1+ 1l uy 1+ u?
du 1+ i+ ul - uiVI+ul
Y — =
dx uvl+ u?
du 1 [ 1
X — = - uy 1+ u? du = f— dx
dx  y\1+ u? X

0o | =

jZ* u(1+u? )" du = Inx + InC

1 (14+u?2)ts e
= T = Inx + In

[ %(1+(%)2)1'5 = InCx ]
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Example 3

¥

10. (y*-xe v)dx - aydy=0
—  No Separation
ty
(t2y? = ti? e T )dx - thaydy =0
y
t2(yi-xte ¥ )dx - thaydy=0

— Homogenous DE of 2™ order

x
dy yi-xfe’s
dy Xy
dy du
Let y=ux and — = ut+x—
: dx T dx
. du  uixi-gxle® yi- g
utx— = =
dx ux? U
du ui- e U ui- e ¥ -yl
I— = ——— — li¥— =
dx U U u
du -—e7¥ -1
¥—= — ue¥ du= | — dx
dx u j J X

ue“—f&“du = =Inx +inC
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Exact Differential Equations & Intearating Factors
Exact and Integrating factor

M(x.y)dx @ N(x.y)dy =0

An equation 1s said to be solved using exact method only if:

oM
dy
M.

Steps to solve:

Let the solution of the differential equation, F,= C — F=C

Then :
F = [ M(x,y)dx
el +g(v)
9 _ N(x,y)
dy
__________ +g' () =
N(x,y)

Then find the equivalent of
g’ (v) m the right hand side
thus,

gw=[ g madv

F =/[ N(x,y)dy
S + g(x)
oF
- = M(x.y)

__________ +g'(x) =

M(x,y)

Then find the equivalent of
g’ (x) 1in the right hand side
thus,

gx)=[ g’ (x)dx
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Solve the differential equation (2xy — 3x?)dx + (x> — 2y)dy = 0,

Solution The given differential equation is exact because

M N _ 9

— [y =3 =20 =—=—[x2 - 2y].
dy H.v[q t] ' ax Hx[t ﬂ

The general solution, f(x. ¥) = C. is given by

flx.y) = J M(x.y)dx

- J{ny =3 dx=xYy — 23 + gly).

In Section 14.1, you determined g{y) by integrating N(x, y) with respect to y and
reconciling the two expressions for f(x.y). An alternative method is to partially
differentiate this version of f(x. y) with respect to y and compare the result with
N(x. y). In other words,

N(x. )

—

Hay) = aiv [Cy - +gly)] =2+ g’({) =¥l - 1;;.

gly)=-2

Thus, g'(y) = —2y, and it follows that g(y) = —y* + C,. Therefore,
fley) =xy - =y’ + ¢

and the general solution is x’y — x* — y* = C. Figure 15.1 shows the solution curves
that correspond to C = 1, 10, 100, and 1000, I
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Find the particular solution of
(cosx — xsinx + y’)dx + 2xydy =0

that satisfies the initial conditiony = 1 when x = .

Solution The differential equation is exact because

dy ax
i[cravs:r —xsinx + vz]l =2 = i [2xy].
dy ' ax

Because N(x, y) is simpler than M(x. y), it is better to begin by integrating Mx. y).

flx.y) = j Nix.y)dy = j 2xydy = xy* + glx)

Mix.y)

filxy) = %[x_v2 +elx)] =y + 2 = ;:05' ¥ —xsinx + _vzﬁ
i i

MY . I .
g'lx) = cosx — xsmx

Thus. g’(x) = cos x — x sin x and

g(x) = f (cos x — x sin x)dx

=xcosx + C)
which implies that f(x. ¥) = x¥* + x cos x + (. and the general solution is
x_vz + xcosx = C. General solution
Applying the given initial condition produces
m(1)2 + wcos m=C
which implies that C' = 0. Hence, the particular solution is
x_vz + xcosx = 0. Particular solution

The graph of the particular solution is shown in Figure 15.3. Notice that the graph
consists of two parts: the ovals are given by ¥ + cosx = 0. and the y-axis is given
by x = 0. I
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o e¥ (2x2y-xyi+ y)dx— e* (y—x)dy=0
———  No separation
—— No Homogenous
e (2x2y-xy2+y)dx + e (x—y)dy=0
M,=e*Q2x*-2xy+ 1) <«

— M, = N.— Exact

N, —e 4 2x2e* —2xye* «—I

F=/[N(x,y)dy = [e*(x—y)dy

2

F=xye* — yTexz + g(x)
aF
—= M(x,y)

ye X + 2x2ye* —xyZe* + g'(x) Eexz(szy—xy2+y)
gm»m =0 — g = [0dy=C

2 2 2
F=xye* — yTex =C
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(923’ - ycos(xy))dx+ (2xe - xcos(xy) + 2y)dy=0 , y(0)=2
—  No Separation

— No Homogenous
My=2e% = cos(xy)+ xysin(xy) , Ne=2e% = cos(xy)+ xysin (xy)
— Exact
F=C
=] (% = yeos(xy)) dx = xe® = sin(xy)+ g(y)
= =)

2~ xcos(xy) + 2y

: y’
cg(y =2y T oely) = Jayd =

5= xcos(xy) + g'(y) = 2xe

2
F=uxe - sin(xy)+ yT: C

By substitutmg y=2and x=0 —» (=2

2
xe® - sin(xy) + yTz 2
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Integrating Factor wu(x,v)

If M, # N, and there 1s a slight difference between them. you have to

drive an integrating factor using either of the following ways:

M, — N, Ny— M
If —Y——— = If —=X— ¥ —
N M
fix) only ffv) only
‘u!f’x) =g J-f(x) dx ‘u’f-‘;-) =g J-JF(:V) dy

Then multiply the original equation by u# getting a new equation in the
form of :
UM(x,v)de + uN(x,v)dy =0
OR
M (x,v)dc + N (x,v)dv =0

Then solve this new differential equation using the normal exact

method.
Note: To check on your solutions, you must find that:

ﬂirl-_l.- T = }“?x ’
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Examples:-

Solve the differential equation (¥? — x)dx + 2yvdy = 0.

Solution The given equation is not exact because J‘-af}:[.r. v) = 2y and NJ(x.y) = 0.
However, because

M/(x.y) — N4x.y) 2y — 0
Nix. v) 2y

it follows that e/ dx = gldr — ox j5 an integrating factor. Multiplying the given
differential equation by e* produces the exact differential equation

=1 = h(x)

(y2e* — xe¥)dx + 2ye’dy = 0

whose solution is obtained as follows.

flx.y) = f Nix. y)dy = f 2ye* dy = yle* + g(x)

Mix. v)
filxy) =y + g'(x) = yPer — xe*
t Yl
glx) = —xe™
Therefore, g'(x) = —xe* and g(x) = —xe* + e* + ;. which implies that

Sflx, y) = y?e¥ — xe*¥ + e + .

The general solution is 2 — xe* + e = C.ory? —x + 1 = Ce ™

(2y2x—yx?+ x)dy + (y—x)dx=0
——» No Separation
— No Homogenous
(y—x)dx + (2y2x—yx?+ x)dy =0

My = 1 X Ny=2y?2—2xy+1 ————» Not Exact
Find an integrating factor:
N,-M,  2y’-2xy+1—-1  2y?—2xy  2y(y—x) _
v = - = o = o =2y —> f(y) only

2

Therefore, the new equation will be:

e (y—x)dx+e? 2ylx—yx2+ x)dy =0
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(ye?" - xe? )dx+ (2yxe’ ~yxley + xe?" )y =0

P=(
2
o ot 7= 40
0F
e N(x,y)

x(ye}’2*2y+e}’2)— xzye"'2+g’(y) = Zyzxe"lz—yxze}'uxey
sgy) =0 = g(y) =

. . .'I ,
o V' tanxsinly = sin"x + cos”y
——  No separation

—— No Homogenous

ay ) .2 2
d_ fan x sm .?1»' = S§im°x t cos V
X : :

. 2 2 .
(sin“x + cosy)dx+(-tanxsin 2v ) dy =0

M, = -2cosysiny +—

=-s5in 2y — M,# N,—> Not Exact

;
N, = -secxsin2y «——-
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So try to find an integrating factor using either of the above cases:

M, — N, — sin 2y + sec ®x sin 2y _ —sinly+ sec?x sin 2y
N —tan x sin 2y —tan x sin 2y
sin2y (=1 + sec?x) (—1+ sec?x) tan?x .
— tan x sin 2y — tan x —tanx
Since that the result is function in x only, then
f : d f —sinx » 1
u —el —tanxdx — o) o5y — elncosx — sy

Therefore, the new equation will be:
cos x (sin’x + cos 21 )dx + cosx (-tanxsin 2y )dy =0
ol

. 2 . :
(cosxsin®x +cosxcos™yv)dx+ (-sinxsinly)dy =0

. 2 2 : :
(cosxsin“x +cosxcos™v)dx+(-2sinxsinycosy)dy =0

F=/[ N(x,y)dy = [(—2sinxsinycosy)dy
F = sinx cos?y + g(x)
JF

5c = M(x,y)
2 r . 2 2
cosxcosv +g(x) = cosxsin x +cosxcos’y

g'(x) = cosxsin’x — g(x) = [ cosxsin’x dx
_ sin®x
gx) = ——
sin’ x
F= sinx cos?y + T =

C
sin x
sin x cos?y + —3 = C
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Linear & and Bernoulli Differential Equations

To say that a 1% order differential equation can be solved using Linear Method, the
form of the equation must be either:

d d
wt POy =0 O0R o+ PG)x =Q)

Solving Criteria:

OR
dy _ dx _
v P(x)y =Q(x) a+ P(y)x =Q()
Let Let
w(x)= elpax w(y)= elpOay
and the solution will be and the solution will be
p(x) »y= [px)* Q(x)dx p() xx= [u)* Q(y)dy

Integration Factor:-

There i1s a process by which most first-order linear
differential equations can be solved. This uses an
integration factor, denoted pu(x) (Greek letter “mu’”).

The differential equation must be in the form
Y+ )y = gx).

To find pu(x), we perform the following process (next
slide)
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Starting with y’' + f(x)y = g(x), multiply both sides by
mu(x):

)y +u)fxy = px)g(x)
The left side is a product-rule derivative of (u(x)y):
WYY = px)y’ + ' y.
Thus, we have u(x)y’ + ' (xX)y = pu()y’ + p(x)r(x)y.

This forces p'(x) = pu(x)f (x). (next
slide)

Now we find u(x). From the last slide, we had

w (x) = pue)f(x).

This is a separable differential equation... so separate:
du
—— = flx)dx.
() r

Integrating both sides, we have

fﬂa(lﬁ) - ff(x)dx'

After integration, we have

(next slide)

In u(x) = ff(x) dx + C.

Here, we only need one form of the antiderivative, so we
let C = 0. Taking base-e on both sides, we now know

r(x):

u(x) = el F)ax.
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Remark: you don’t need to do all those steps each
time. Just remember that if you have a differential
equation of the form y’' + f(x)y = g(x), then find

Example 1

Find the general solution of the following ODE:

ldy 2y
Oy g2 Xeosx
Solution
by -2 , 2
So o = —V=x"cosx isa linear ODE where P(x) = - and Q(x)
= x%cos x

e
The integrating factor u(x) = e/ PO = /5 & 2 p=2inx = 42

The solutionis u(x) vy = [ u(x)Q(x)dx
X2y = fcosxdx = sinx + C

y = x?sinx + x2C
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Example 2

A rock contains two radioactive isotopes, RA; and RA,, that belong to the
same radioactive series; that is, RA; decays into RA,, which then decays into
stable atoms. Assume that the rate at which RA; decays into RA, is
50e " kg/sec. Because the rate of decay of RA, is proportional to the mass
y(t) of RA, present, the rate of change in RA, is

d—f = Rate of concentration — Rate of decay

dy ¢
i 50e ky

Where k > 0 is the decay constant. If k = 2, ¥(0) = 40 kg then find the
mass y(t) of RA, for t > 0.

Solution

d
d—};+ 2y = 50e" is linear ODE where P(t) = 2and ((t) = 50¢™

The integraing factor u(t) = ¢/ PO = ¢/ 2t = g2
The solution is u(t) y = [ w(t)Q(¢)dt

-25
ety =50 Je'ﬂtdt = Te'at +C

25 g -
y=—e 84 g72(

Since y(0) =40 then € = %so the solution will be

-5 _gp , 185 g
=—¢ " t—¢
i g
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Example: Find the general solution of
v + %y = x.

(Note that f(x) = % and g(x) = x and that x
= 0)
SO ux) =ef (Fax e2nx(—= glnx? — 2

J 1D gxxddx+C
e (x)

Now, use the formula y =

Solve v’ + %y = x. From previous slide, we know that u(x) = x?2.

J (D gxddx+C

Now we use the formula y =

()
2 1 a
S x%xdx + C J x3dx + C X + C
Yy = 2 - 2 - 2
1
- 2 —2
= _—x2 4+ C .
1 x
Thus, y = ixz + Cx 2 is the general solution of

’ 2
5% +;y=x.

Check that y = j:xz + Cx % is the general solution of y’ + %y = x.
First, differentiate y:

_1 2Cx~
y'=5x x

3

Now insert y’ and y into the differential equation and simplify:

1 2/1

o -3 i -2\ —

(Zx 2Cx )+x(4x + Cx ) x
1 2Cx73 ) + ! +2Cx 3| =
2x x 2x x = x

1 1
(zx +§x) + (—2Cx 32 +2Cx3) =x

x+ 0= x.
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Bernoulli Differential equations

Exercise 1.

@ + P(x)y = Q(x)y™

dx
DIVIDE by y™: I+ Pyt = Q)
SET z = yl1—m: 1.e. ﬁ—i = (1 — n)y(l_n_l)%
1.c. (1in)§_§z = y%%
SUBSTITUTE e & + P(x)z = Q(x)
i.e. 4z | Pi(x)z = Q1(x) linear in =
where Pi(x) = (1 —n)P(x)

O (x) = (1 —n)Q(x) .
OR

a

Lt Py = Q) * y"
Divide both sides by w ™
Thus the equation will be:

d
¥ d—y + Plx)y' ™" = Q(x)
A

Then substitute:

Let e =17 ard

du - _ dwv
— = ({(1—n)yv " —=
oo ( } o oo
yor 2¥o_ t  du
- dac (1—m ) dax

So the equation will be :
1 due

(1—rm ) dx

Then multiply both sides byvw (1 —n )

+ P(x) u= Q(x)

o A—mPE) u= (1 —n)e(x)

Let wix)= e fi1—m) p(x) dax

and the solution will be
p(x)*=u= [pu(x)=(1—mn)Q@(x)dx
p(x) = ¥y = [ p(x) * (1 — n)Q(x)dx

T+ POYIxX = QL) * x7
Divide both sides by x ™
Thus the equation will be:
T+ POIxTTT =@
Then substitute:

x—l‘l

Let w=x1"7 and
du _ dax
={1l—mn) x ™ —
dy dy
o dEx 1 du
dy {1—mn) dwv

So the equation will be :

1 die

(i-m) dy + P(y) u= Q(»¥)
Then multiply both sides by { 1 —n )

o : : :

o T —mPO) = —me)

Let p(v) = eJ(l—miplydy

and the solution will be
p(¥) *u= fpu()*(1—n)Q(y)dy

p () =x"" = [ p() = (1 —n)Q(y)dy
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Example 2
. . . d dxr + 5
Find the general solution of 2%Y | tanz - y = @z +5)"
dx cos T
Solution
Divide by 2 to get standard form:
dy 1 T ¢ 5)2, 3
dx i 2 v g = 2cosx .
C e ) dy =
This is of the form p + P(x)y = Q(x)y
1
where Plz) = 5 tanz
4z + 5)2
Q(z) = : ) . )
2cosa
and n = 3
. 1d 1 Adr 4+ 5)2
DIVIDE by y™: 1.e. i ] 4+ Ztanx -y 2 = (4z + 5)
y3dxr 2 2cosw
. dz dy 2 dy
SET z =y " =y 2. je. — =29 32— _° "%
S— Y S ¥ y3 dx
1032:_{_1t (4z + 5)2
———+ —tanx -z = ———
2dx 2 2cosx
d Ar + 5)2
i_e_ _z_tanx.z:ﬂ

dx cos T
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: - _ . _singzx (=)
Integrating factor, IF = ol —tanzdr _ o —255 do [ el T dm]

— elncosz — oo

dz (4z+5)2
COST— —cosxtanxT - z=cosr——
£ CosT
. dz .
ie. cosr— —sinz-z = (4z+5)?
T
ile. cosx-z= f(4:1?—|— 5)%dx
: Ly 1 3
re. cosx-z=|—-)-5dx+5)"+C
4 3
Usezzﬁg: %”%:%(4.1?4—5}34—0
1 1 C
ie. —=-—(4 5)3 .
Ne 2 12(:053:( z+5)"+ COs T

Example
. . . dy — 2221
Find the general solution of - +vy =y 2" Inx

Solution

Standard form: % - ( %) y = (zln x)y?

ie. P(x)= %, Qz)=zlnz,n=2

DIVIDE by 3> FE+E)y=zhz
SET »=g~%: &=y 2=t
—g—;—&-(%):: rln a
1.e. % — % z=—xlnzx
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: ; — dz —lnzr Inz~ 1 1
Integrating factor: IF =e¢ /= = =e = —
T
%g—; - éz = —Inz

l.c. %z =—[lnade+C'
[Use integration by parts: fu%da: = uv — fv‘é—:dm,
: _ dv __
withu=Inz, §2=1]

1.e. iz:—[mlnx—fﬂ:-%dm]—l—c

Usezziz L —z01-lmz)+C.

Ty
Example dy
Find the general solution of ;- =Y cot x + y”cosecx
Solution
Standard form: dz — (cotz) - y = (cosec z) y°
DIVIDE by ?: ?15‘—;}2{ — (cotz) - y=2 = cosec z
! s dz __ —-3dy __ 1 dy
SET z=9y*: = =2y #——2'53'&3

1dz . .
=o'k —cotx -z = cosec x

l.e. é‘% +2cotx -z = -2 cosec x
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. . Ccos T 2 f’(::} d . .
Integrating factor: IF = 2/ S22 % = ¢ /7y dz = 2 In(sing) _ 2 50
+ 2 dz : . :
sin“ - = +2sinx -cosx -z = —28InxT
. d .9 _ .
Le. - [5111 T -z] = -2sInz

ie. zsinz=(-2)-(-cosz)+C
1 sin2:r
US@Z:?: —yr:2€05$+0

2 _ _sin’z

1L.e. Yy = 2cosz+C °

Example
A 30-volt battery is applied to R-L series circuit with R=50 ohm and
L=0.1 henry. Find the current i(t)if i(0) = 0. Determine the time at
which i = 0.25 i, .

Solution

d[(t)

L2 4 Ri(t) = E(D)

d;(t)

O 4 Rice) =
di(t) 3
dt o 1 S0 = 01

2O 4 500 i(e) = 300
dt

u = el s00at

E(t)

— 500t

3
eS00t j(¢) = f300 eS0% dt = - e +C
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3
i(t) = < + Ce—500¢
since i(0) = 0,then C = %
3

— 2 _ 2 _-500t
i(t) = 5 5 —e
Ati(t) = 0.25iss = 0.25 (2) = >then =2 (1 —e

Thent = 5.75 X 10™% sec

—SOOI)
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Equations with Linear Coefficients
Equations with linear coefficients that is, equations of the form

(13) (@yx + byy + ¢)dx + (a,x + byy + ¢,)dy =0 ,

where the a;’s, b;’s. and c¢;’s are constants. We leave it as an exercise to show that when
a,b, = a,b;, equation (13) can be put in the form dv/dx = Glax + b}-‘], which we solved via
the substitution z = ax + by.

Before considering the general case when a0, # a,b, let’s first look at the special situa-
tion when ¢; = ¢, = 0. Equation (13) then becomes

(arx + byy)dx + (axx + byy)dy = 0,
which can be rewritten in the form

dy  ax+ by oap+ by(y/x)
Ay ax+ by  ay+ by(v/x)

This equation is homogeneous, so we can solve it using the method discussed earlier in this
section.
The above discussion suggests the following procedure for solving (13). If a;b, # asb,
then we seek a translation of axes of the form
x=u+h and y=v+k,

where /i and k arc constants, that will change ax + by + ¢; into aqqu + byv and change
a»x + byv + o5 into a,u + brv. Some elementary algebra shows that such a transformation
exists if the system of equations

ah +bk+c¢, =0,

(4) ah + bk + ¢, =0

has a solution. This is ensured by the assumption a0, # a,b,, which is geometrically equiva-
lent to assuming that the two lines described by the system (14) intersect. Now if (4. k) satisfies
(14). then the substitutions x = u + hand y = v + k transform equation (13) into the homo-
geneous equation

dv a + bv  ay + by(v/u)

du asu + by a, + by(vfu)

(15)

which we know how to solve.
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Example
Solve  (=3x+y+06)dc+ (x+y+2)dv=0. (16)

Solution  Since ab, = (=3)(1) # (1)(1) = a,b,. we will use the translation of axes x=u + h,
y = v + k, where hand k satisfy the system

“h+k+6=0,
h+k+2=0.

Solving the above system for /i and k gives h = 1,k = —3. Hence, we let x =u + | and
y = v — 3. Because dy = dv and dx = du, substituting in equation (16) for x and y yields

(=3u+ v)du+ (u+v)dv=0

The last equation is homogeneous, so we let z = v/u. Then dv/du = z + u(dz/du), and, sub-
stituting for v/u, we obtain
dz 3-12

+us = .
¢ du 1+7

Separating variables gives
z+1
2+2%-3

d7 = — lr;!u.
u

%ln\z2 +22-3|=-Inful +C; .

from which it follows that
2+2-3=Cu"’.
When we substitute back in for z, #, and v, we find
(v/ul + 2(vfu) —3=Cu? |
v+ uv - 3ut=C,
(43P +2—1)(y+3)=-3x—-1F=C.

This last equation gives an implicit solution to (16).
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Riccati Differential Equation

Riccati Equation. An eguation of the form

(18)

(a)

(b)

dy R e o
: = Plx)y~ + OQlx)y + R(x)
dx - -
is called a generalized Riccati equation.
If one solution—say. u(x)—of (18) is known.
show that the substitution v = u« + 1/v reduces
(18) to a linear equation in .
Given that u#(x) = x is a solution to
dv W
- _ 3 N -
= x7 (v — x -+ = .
dx (. ) X

use the result of part (a) to find all the other solu-
tions to this equation.

Solution:
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Chapter Summary:

In this chapter we have discussed various types of first-order differential equations. The most
important were the separable, linear, and exact equations. Their principal features and method
of solution are outlined below.

Separable Equations: dy/dx = g(x)p(y). Separate the variables and integrate.

Linear Equations: dy/dr + P(x) = Q(x). The integrating factor p = exp[f P(x)a’x] reduces
the equation to d(uy)/dx = pQ, so that uy = fuQdx + C.

Exact Equations: dF(x,y) = 0. Solutions are givdn implicitly by F(x.y) = C. If aM/ay =
aN/ax, then M dx + N dy = 0 is exact and F is given by

F = {de%—g(}-'), where g'(}-‘)ZN—% (de
ay

or

F = [Ndy + h(x) ., where h'(x)=M— i [N.{{\-‘ .

When an equation is not separable, linear, or exact, it may be possible to find an integrat-
ing factor or perform a substitution that will enable us to solve the equation.

Special Integrating Factors: uMdx + uNdy = 0 is exact. If (aM/ay — aN/ax)/N depends
only on x, then

2(x) = exp [(HM{:’JJ; ; EJN[E}x)dx

is an integrating factor. If (aN/ax — aM/ay)/M depends only on v, then

u(y) = exp [ (;aNfax ;,IHM'M"Y)J\’

is an integrating factor.

Homogeneous Equations: dy/dx = G(y/x). Let v = y/x. Then dy/dx = v + x(dv/dx),
and the transformed equation in the variables v and x is separable.

Equations of the Form: dy/dx = G(ax + by). Letz = ax + by. Thendz/dx = a + b(dy/dx).
and the transformed equation in the variables z and x is separable.

1—n

Bernoulli Equations: dy/dx + P(x)y = Q(x)y". For n+0 or 1, let v=1y . Then
dv/dx = (1 — n)y "(dv/dx). and the transformed equation in the variables v and x is linear.

Linear Coefficients: (a;x + byy + ¢y)dx + (ax + by + c2)dy = 0.  For ab, # a)b,. let
x=u+ handy = v + k., where h and k satisfy

ah + bk +c¢ =0,

ah + b;k + ¢, =0 .
Then the transformed equation in the variables i and v is homogeneous.
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FIRST-ORDER DIFFERENTIAL EQUATIONS OF HIGHER DEGREE

Equations of the First-order and not of First Degree

First-Order Equations of Higher Degree Solvable for Derivative j—y =p

X
Equations Solvable fory

Equations Solvable for x

Equations of the First Degree in x and y - Lagrange and Clairant

Exercises

Equations of the first-Order and not of First Degree

In this Chapter we discuss briefly basic properties of differential equations of first-order

and higher degree. In general such equations may not have solutions. We confine

ourselves to those cases in which solutions exist.

The most general form of a differential equation of the first order and of higher degree

say of nth degree can be written as

or

n n-1 n-2
(g—ij +a1(x,y)(3—ij +a2(x,y)(3—ij + ..

d
...... + an_l(x,y)% +an(x,y)=0

p"+a;p"tapi ... +a,.1 p+a,=0 (3.1)
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where p = j_y and ag, Ay, . ., Ap are functions of X and Y.
X

(3.1) can be written as
F(x,y,p)=0 (3.2)
3.2 First-Order Equations of Higher Degree Solvable for p
Let (3.2) can be solved for p and can be written as
(P-a:(xY)) (P-02(X.Y)) ... (P-an(x,y)) =0
Equating each factor to zero we get equations of the first order and first degree. One can
find solutions of these equations by the methods discussed in the previous chapter. Let
their solution be given as:
fix,y,c)=0, i=1,2,3 ......... n (3.3)

Therefore the general solution of (3.1) can be expressed in the form

f1(x,y,€) f2(x,y,C)......... fa(x,y,c) =0 (3.4)
where c in any arbitrary constant.
It can be checked that the sets of solutions represented by (3.3) and (3.4) are identical

because the validity of (3.4) in equivalent to the validity of (3.3) for at least one i with a

suitable value of C, namely C=C;

dy )’ d
Example 3.1  Solve Xy[d_;/j +(X? + yz)d—i +xy =0 (3.5)

Solution: This is first-order differential equation of degree 2. Let p= dy

dx
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Equation (3.5) can be written as
Xy p*+(X"+y”) p+xy=0 (36)
(Xp+y)(yp+x)=0
This implies that
xp+y=0, yp+x=0 (3.7)
By solving equations in (3.7) we get

Xy=C; and X2+y2=C2 , respectively

Xﬂ+y:o or ﬂ+1y:o,lntegrating factor
dx dx X

fldx logx
I(X) =e* =e°9%,

This gives

y.X = Jo.x dx +¢1 or Xy=cC;

dy 0

y——+X= or ydy+xdx=0
dx

1
By integration we get Eyz +%X2 =C

or X+y? = ¢, €, >0, —.Jco <x<.[co

The general solution can be written in the form

(X*+y’-C2) (Xy-C1)=0 (3.8)
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It can be seen that none of the nontrivial solutions belonging to Xy=C or X2+y2=cz Is
valid on the whole real line.
3.3 Equations Solvable for y

Let the differential equation given by (3.2) be solvable for y. Then y can be expressed

as a function x and p, that is,
y=f (x,p) (3.9)
Differentiating (3.9) with respect to x we get

dy _of ot dp .
dx ox op dx (3.10)

(3.10) is a first order differential equation of first degree in X and p. It may be solved by
the methods of Chapter 2. Let solution be expressed in the form

@(%p,c)=0 (3.11)
The solution of equation (3.9) is obtained by eliminating p between (3.9) and (3.11). If
elimination of p is not possible then (3.9) and (3.11) together may be considered
parametric equations of the solutions of (3.9) with p as a parameter.
Example 3.2: Solve y?-1-p®=0

Solution: It is clear that the equation is solvable for y, that is

y =1+ p2 (3.12)

By differentiating (3.12) with respect to x we get
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dy _1__1 . dp o___P dp
dx 2 14 p2 dx /1+ p2 dx
or p 1—;$ =0 (3.13)
V1+ p2 X
d
(3.13) gives p=0 or 1-—P _SP_g
2 dx
1+p

By solving p=0 in (3.12) we get y=1

1 dp=O
1+p2 dx

By 1-—

we get a separable equation in variables p and x.

dp _ /1+p2

dx
By solving this we get
p=sinh (x+c) (3.14)
By eliminating p from (3.12) and (3.14) we obtain
y=cos h (x+c) (3.15)
(3.15) is a general solution.
Solution y=1 of the given equation is a singular solution as it cannot be obtained by

giving a particular value to c in (3.15).
3.4 Equations Solvable for x

Let equation (3.2) be solvable for x, that is
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x=f(y,p) (3.16)
Then as argued in the previous section for y we get a function ¥ such that
Y(y,p,c)=0 (3.17)
By eliminating p from (3.16) and (3.17) we get a general solution of (3.2). If elimination

of p with the help of (3.16) and (3.17) is cumbersome then these equations may be

considered parametric equations of the solutions of (3.16) with p as a parameter.

3
Example 3.3 Solve x| &Y. | —129Y _g_0
dx dx

Solution: Let p=g—i, then xp°-12p-8=0

It is solvable for x, that is,

12p+8 12 8
X = = +

p3 p2 p3

(3.18)

Differentiating (3.18) with respect to y, we get

d« __,12dp ,8dp 1 _ 24dp 24dp :{ 24 24}1"

dy ~p°dy ptdy p pdy p'dy 02 3
or y=+ﬁ+£+c (3.19)
P p2

(3.18) and (3.19) constitute parametric equations of solution of the given differential

equation.



Ordinary Differential Equations (ODEs)

Chapter 3

3.5 Equations of the First Degree in x and y — Lagrange’s

and Clairaut’s Equation.

Let Equation (3.2) be of the first degree in x and y, then

Y = X¢1(p) + 92 (p)

(3.20)

Equation (3.20) is known as Lagrange’s equation. If ¢1(p) = p then the equation

Yy =Xp + ¢2(p)

(3.21)

is known as Clairaut’s equation. By differentiating (3.20) with respect to X, we get

dy o3 4 ()8R
&—¢{(|0)+x¢1(|0)dX +¢2(p)dx

y p—@(p)=(x¢;<p)+¢;(p»j—i’

From (3.22) we get

' d
(x+0,(P) > =0 for u(p)=p

This gives

dp '
—=0or X+ =0
~ ¢, (P)
%:0 gives p = c and
dx

by putting this value in (3.21) we get

y=CcX+@(C)

(3.22)
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This is a general solution of Clairaut’s equation. The elimination of p between

x+(p' (p) =0 and (3.21) gives a singular solution. If ¢i(p) # p for any p, then we
2

observe from (3.22) that % # 0 everywhere. Division by
X

N (%)

[p (Pl(p)]dx in (3.22) gives ap p—cpl(p)x P 0,0

which is a linear equation of first order in x and thus can be solved for x as a function of
p, which together with (3.20) will form a parametric representation of the general

solution of (3.20).

dy dy ) _dy
E le 3.4 Sol —-1 —X— ==
xample olve (dx j(y dxj dx

) dy 4
Solution: Let p = ax then, (p-1)(y-Xp)=p

This equation can be written as

p
= Xp+——
y p b1

Differentiating both sides with respect to x we get

d_p X—; =0
dx| " (p-1?

Thus either d—p:Oor X — 12:0
dx (p-1
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dp = O gives p=cC .
dx

Putting p=c in the equation we get

y =cx +L1 = (y-cx)(c-1)=c
C —

which is the required solution.

3.6 Exercises

Solve the following differential equations

3
1 [d_yj _dy 2x
dx dx

2. Y(y-2)p° - (y-2x+xy)p+x=0

2
3. _[d_y) +4y—x2 =0
dx

dy dy dy
=y =Y =L y2x|=0
4, (dx+y+Xj(XdX+y+Xj(dX+ Xj

2
dx

o
TN
Q
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|
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o
<
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<
_|_
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N
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