

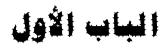
معاضرات

في

فيزياء الحرارة

ومقدمة الديناميكا الحرارية

لطلاب المرحلة الأولى الجامعية


الأقسام العلمية

إعداد الدكتور بدرى النوبي محمد

(La constant of the constant

الباب الأول: مفاهيم اساسية في الحرارة	ترقيم الصفحات
مقدمة	7_0
اسس قياس درجة الحرارة	9-7
مقاييس درجة الحرارة	17-1.
الترمومترات	۲۰-۱۳
امثلة وتمارين	77-71
الباب الثاني : التمدد الحراري	۲ ٤
مقدمة	77_70
التمدد الحرارى للأجسام الصلبة	٣١-٢٦
التمدد الحرارى في السوائل	٣٥_٣٢
التمدد الحرارى في الغازات	٣٦
مسائل وتمارين	٣٨_٣٧
الباب الثالث : انـتقال الحرارة	٣٩
مقدمة	٤٢-٤٠
طرق إنتقال الحرارة	057
الباب الثالث	٥١
كمية الحرارة وطرق القياس	
تعريفات	05-07

قياس الحرارة النوعية	07_0 £
تحو لات حالة المادة	77-07
الباب الخامس : الغــــازات	٦٣
مقدمة	70-7€
نظرية الحركة للغازات وقوانين الغازات	٧٣-٦٥
الطاقة الداخلية للغاز	٧٥_٧٣
الحرارة النوعية للغازات	٨١-٧٦
امثلة وتمارين	۸۳-۸۲
الباب السادس : مقدمة الديناميكا الحرارية	Λź
مقدمة	۸۹-۸٥
القانون الأول للديناميكا الحرارية	97_9.
تطبيقات القانون الأول للديناميكا الحرارية	1.7-95
امثلة وتمارين	1.٧-1.٣

مفاهيم اساسية في الحرارة

الفحل الأول

مهاميم اساسية في الحرارة

۱_ مقدمة

تنقسم طاقة الأجسام إلى عدة أنواع منها الميكانيكية والحرارية والنووية وغيرها .وتتتج الطاقة الحرارية لمنظومة ما عن الحركة العشوائية للذرات والجزيئات فيها، وكلما زادت هذه السرعة كلما كانت طاقتها الحرارية أكبر ويسخن الجسم أكثر .فالسخونة هي معيار لهذه الطاقة التي نسميها حرارة.

وسندرس في هذا الفصل كيف تتأثر خواص جسم أو منظومة (system) تغير الطاقة الحرارية، أي المحيط والوسط الخارجي (environment) عندما نسخنه أو نبرده فنميز المنظومة بها فإذا كنا ندرس حالة كوب ممثلئ بالشاي الساخن مثلا فإنه يصير المنظومة بينما تصير الغرفة التي نجلس فيها المحيط الخارجي بالنسبة له .كما نحدد الكميات الفيزيائية الممكن تحسسها دون الحاجة إلى الدخول إلى جزيئات المنظومة وئراتها واحدة واحدة .وتسمى هذه الكميات عندئذ كميات عينية (macroscopic) لأتنا نتحسسها من خارج الجسم، كالضغط والحجم ودرجة الحرارة وغيرها .أما إذا أربنا دراسة التفاصيل الدقيقة لجزيئات المادة على المستوى المجهري (microscopic) فإننا نتابع حركة كل ذرة من الجسم ونحسب سرعتها وزخمها ونحدد القوى المؤثرة عليها لتحديد أثرها على الخواص العينية للجسم .فالحركة الفردية لكل ذرة، أي الخواص المجهرية، هي التي تحدد الخواص العينية للمنظومة .ومن هنا يبدأ الربط بين كافة أشكال الطاقة ونصل إلى الشكل العام لمبدأ حفظ الطاقة الذي يربط بين تحول الطاقة من حالة لأخرى، أي إذا تغيرت الطاقة الميكانيكية لجسم فإنها تتحول لطاقة حرارية مثلا، وهكذا.

2- : الاتزان المراري والقانون الصفرى في الديناميكا المرارية

من المعروف أن الإحساس بسخونة أو برودة الأجسام تحدث بشكل تلقائي وعفوي للإنسان عندما يلمس جسما ساخنا أو باردا لكن لو تمعنا في هذه الظاهرة بعض الشئ لانتبهنا إلى أننا عندما نقرر سخونة أو برودة جسم فإننا نقارنه غريزيا بحرارة يدنا ومن أبسط الأمثلة على ذلك أن (20إلا (C) ° نمسك بقطعة جليد لفترة من الزمن ثم نمسك مباشرة ملعقة درجة حرارتها عادية نحس أنها ساخنة لأنها كذلك بالنسبة ليدنا وتتنقل الحرارة منها إلينا . أما لو كانت يدنا أسخن من الملعقة لانتقلت الحرارة إلى الأخيرة ونقرر عندها أنها باردة .فقياس مقدار حرارة جسم

تتم عادة ولم يتبادلا B على تماس مع جسم آخر A بمقارنته مع غيره من الأجسام، وإذا وضعنا جسما أول أي كمية من الحرارة بينهما فإننا نقول إنهما متزنان حراريا بالنسبة لبعضهما .ويتم معرفة ذلك متزن حراريا مع A ع. B متزن كل واحد بجسم ثالث خاص، كميزان الحرارة، فإذا كان جسم متزنين بالنسبة لبعضهما A ع. B وكان جسم ثان C جسم آخر C متزن أيضا مع D وكان جسم ثان D جسم آخر D متزن أيضا مع D وكان جسم ثان D جسم آخر D متزن أيضا مع D وكان جسم ثان D جسم آخر D متزن أيضا مع D وكان جسم ثان D جسم آخر D متزن أيضا مع D وكان جسم ثان D جسم آخر D متزن أيضا مع D وكان جسم ثان D جسم آخر D متزن أيضا مع D وكان جسم ثان D جسم آخر D متزن أيضا مع D وكان جسم ثان D جسم آخر D متزن أيضا مع متزن أيضا

الطاقة الداخلية : هي جميع انواع الطاقات التي يمكن ان تمتلكها الذرات او الجزيئات المكونة للمادة. كالطاقة الحركية ، الاهتزازية، النووية، الكيميائية وغيرها.

الطاقة الحرارية : إذا انتقات الطاقة من جسم درجة حرارته عالية (الطاقة الأهتزازية للذرات عالية) الى جسم درجة حرارته منخفضة (الطاقة الأهتزازية للذرات اقل)ونتيجة فرق درجة الحرارة بينهما يسمى هذا بالطاقة الحرارية.

تعريف المرارة : Heat

هي شكل من اشكال الطاقة التي ترافق حركة الجزيئات او الذرات او اي جسيم يدخل في تركيب المادة (النواة او مكوناتها .)ويمكن الحصول على الحرارة اما بطرق فيزياوية مثل الاحتكاك او تهييج جزيئات المادة، او بطرق كيميائية مثل الحرارة الناتجة عن التفاعلات الكيميائية والاحتراق والتفاعلات النووية وغيرها .والحرارة طاقة قابلة للانتقال بطرق مختلفة مثل الاشعاع والحمل والتوصيل .ولا يمكن للحرارة ان تنتقل بين جسمين الا في حالة اختلاف درجة حرارتهما.

درجة الحرارة: Temperature هي كمية فيزيائية عيانية تعتبر مقياس لدرجة سخونة الجسم. وتقاس وفق اجهزة خاصة تسمى موازين الحرارة (الترمومترات) والتي يمكن معايرتها لإظهار تدريجات مختلفة للحرارة .وهناك انظمة عديدة لقياس درجة الحرارة ولكن النظامان الاكثر شيوعا بينها هما درجة الحرارة المطلقة (كلفن) K ودرجة الحرارة المئوية (السيليزية C.

اسس قياس درجة الحرارة-:

استخدمت العديد من العلاقات مابين درجة الحرارة والخواص الفيزيائية في بناء مناسب لدرجة الحرارة، وهذا البناء او الجهاز تم تعريفه باسم المحرار. وان بناء اي مقياس لدرجة الحرارة

يعتمد على عدة عوامل تعتمد على الاختيارات التالية:

- ١ اختيار المادة الحرارية المناسبة
- ٢- اختيار الصفة الترمومترية المناسبة لتلك المادة
- ٣- افتراض ان الصفة الترمومترية المختارة تتغير مع درجة الحرارة
- ٤ اختيار المقدار المناسب لدرجة الحرارة التي يراد قياسها باستمرار

ان استحضار النقاط الآنفة الذكر مهم جداً عند بناء أي مقياس لدرجات الحرارة. فيمكن ان تكون صفة محرارية مناسبة لمدى معين من درجة الحرارة دون غيرها.

فلو فرضنا ان العلاقة بين الخاصية الفيزيائية المحرارية المختارة X ، ودرجة الحرارة المطلقة T يمكن كتابتها بالعلاقة الخطية الآتية:

$$T = aX \qquad (1)$$

إذ ان a تمثل كمية ثابتة، بالا مكان تحديد قيمتها عند القيام ببناء أي محرار لقياس درجة الحرارة. ان المعادلة (1) تشير إلى نقطتين مهمتين هما:

1- ان الفروق المتساوية في درجة حرارة المادة ينتج عنها تغيرات متساوية المقدار في قيمة الخاصية الفيزيائية المحرارية المختارة X

2- ان النسبة بين أية درجتين حراريتين تساوي النسبة بين قيمتي الخاصية الفيزيائية عند تلكما الدرجتين الحراريتين، وبتعبير آخر فإن

$$\frac{T_1}{T_2} = \frac{X_1}{X_2}$$
(2)

إذ ان X_1 و X_2 تمثلان مقدار خاصية المادة الفيزيائية عند الدرجتين T_1 و T_2 على التعاقب. أما قيمة الثابت T_1 فإنها تملك نفس القيمة عند T_2 و لذلك فإنها لا تظهر في المعادلة (2).

ان استخدام العلاقات السابقة يحتم علينا ملاحظة النقاط المهمة الآتية:

- 1- ان قيم درجات الحرارة المتأتية من اختيارنا لمقياس معين يعتمد على مادة معينة وخاصية محرارية معينة ليس بالضرورة ان تكون متطابقة مع قيم درجات الحرارة المتأتية من مقياس آخر يعتمد على مادة أخرى وخاصية محرارية أخرى.
- 2- إذا حدث تطابق بين قيم درجات الحرارة المتأتية من مقياسين مختلفين في مدى معين من درجات الحرارة فإنه ليس من الضروري ان يحدث التطابق في مدى آخر لدرجات الحرارة.
- 3- ان العلاقة الخطية في (2) لا تصح لجميع مديات درجات الحرارة،
 وهذا يعني ان قيمة الثابت a لا تكون نفسها عند جميع درجات الحرارة.

ويمكن إعادة كتابة المعادلة (2) على النحو الآتي:

$$T_1 = T_2 \frac{X_1}{X_2} \dots (3)$$

أن عملية تدريج المحارير تتطلب أختيار نقطة قياسية ثابتة وتم الاتفاق على أختيار النقطة الثلاثية للماء فإذا فرضنا ان قيمة خاصية المادة X2

عند النقطة الثلاثية للماء T_2 والمساوية إلى T_2 فإن المعادلة (3) يمكن تبسيطها إلى الصيغة الآتية:

$$T_1 = 273.16 \frac{X_1}{X_2} \dots (4)$$

ان العلاقة الأخيرة يمكن تعميمها على أي نوع من المحارير يراد استخدامه، وكما يأتي:

$$T(L) = 273.16 \frac{L}{L_o}$$
 للمحارير السائلة $T(P) = 273.16 \frac{P}{P_o}$ للمحارير الغازية ذات الحجم الثابت $T(V) = 273.16 \frac{V}{V_o}$ للمحارير الغازية ذات الضغط الثابت $T(R) = 273.16 \frac{R}{R_o}$

$$T(\epsilon) = 273.16 - \frac{\epsilon}{\epsilon_0}$$
 ولمحارير المزدوجات الحرارية

وهكذا لأي نوع من المحارير.

حيث ان P_0 , P_0 , P_0 , P_0 , P_0 تمثل قيم الخاصية المعنية عند درجة الحرارة 273.16 K

يعتمد قياس درجات الحرارة الواطئة عادة على استخدام أحد أنواع محارير المقاومة، والذي غالباً ما يتم اختيار نوع معين منها لمدى معين من درجات الحرارة، الواطئة، لأنه لايوجد محرار مقاومة واحد يكون استخدامه كفوءاً لجميع الحرارة الواقعة بين ١٢ إلى درجة حرارة الغرفة 300K. فيستخدم محرار مقاومة البلاتين في مدى درجات الحرارة المحرارة بين ١٥٥٥ ويستخدم محرار مقاومة شبه الموصل لمدى درجة الحرارة بين ١٤ إلى ١٥٥٨. كذلك يستخدم محرار مقاومة الكاربون في مديات مختلفة لدرجات، مثلاً بين ١٥٠٨ إلى ١٥٠٨ المخاطيسية لأحد الأملاح الأقل من ١٨ فغالباً ماتستخدم صفة التأثيرية المغناطيسية لأحد الأملاح

البار امغناطيسية كمحرار لدرجة الحرارة. أما القوة الدافعة الكهربائية لمعظم المعادن فإنها تصبح قليلة جداً لأجل استخدامها في المزدوجات الحرارية ولا توفر دقة عالية في القياس. وتعتمد كفاءتها على نوع المزدوج الحراري ومدى درجات الحرارة الذي يستخدم فيه محرار المزدوج الحراري. أما لدرجات الحرارة الأعلى من 100K فغالباً ما يستخدم المحرار البارومتري (Pyrometer).

مقاييس درجة الحرارة:

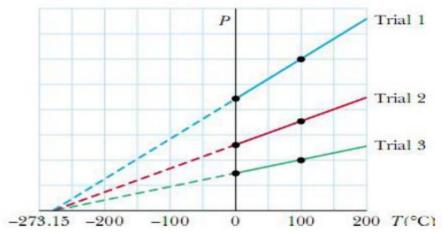
- $^{\circ}$ C المقياس المئوي (السيليزي $^{\circ}$)
- ۲- المقياس المطلق (الكلفن K)
 - $^{\circ}$ F) المقياس الفهرنهايتى ($^{\circ}$

entigrade (or Celsius) scale القياس المنوى

وهذه التسمية نسبة إلى العالم سلزيوس الذي وضع هذا السلم في عام (1742) ، حيث اعتمد في إنشاءه على حالة التوازن الحرارى بين الجليد النقي والماء النقي تحت الضغط الجوي النظامي، وأطلق عليها اسم نقطة الجليد و عدها تمثل الرقم صفر على مقياس درجة الح ا رة ر الزئبقي. كما اختار أيضاً نقطة أخرى ثابتة تمثل التوازن الحرارى بين الماء النقي وبخاره تحت الضغط الجوي النظامي، وأسماها نقطة الغليان و عدها تمثل العدد (100) على مقياس درجة الحرارة الزئبقي ثم قام بتقسيم المسافة بين هاتين النقطتين إلى مئة قسم متساوي وسمى كل منها درجة مئوية.

• القياس الفهرنهايت Fahrenheit scale

وضع هذا المقياس العالم الألماني فهرنهايت في عام (1709) ، حيث اعتبر أن نقطة الجليد توافق - ٣٢ ف وأن نقطة الغليان توافق ٢١٢ ف ، وقسم المسافة الفاصلة بينهما إلى 180 , قسماً متساوياً .


• المقياس المطلق:

باستخدام مقاييس الحرارة الغازية التي تعتمد على تغير الضغط مع درج الحرارة بثبات حجم الغاز، وبرسم منحني بياني يمثل تغير ضغط الغاز مع درجة ح ا ررته بالتجربة من أجل غازات مختلفة، فقد وجد أن جميع ممدات هذه الخطوط تلتقي في نقطة واحدة على الطرف السالب لدرجات الحرارة وهي نقطة الصفر المطلق -273,150 ،ا واستخدمت هذه النتيجة قاعد ة لتدريج سلم درجات الحرارة المطلقة على أنها درجة الصفر المطلق أو صفر كلفن .وتم قاعد ة لتدريج سلم درجات اعتبرت درجة الحرارة اختيار الفرق بين نقطتين على التدريج المئوي لتساوي الفرق بين نقطتين على التدريج المؤي والتدريج المؤي المؤي الفرق بين التدريج المؤي والتدريج المطلق وفق المعادلة الآتية:

$${}^{0}K = {}^{0}C + 273.15$$

درجة الحرارة المطلقة T . درجة الحرارة بالتدريج المئوي، و tc = 20C يكون tc = 20C : ومن أجل درجة الحرارة

$$T = 20 + 273,15 = 293,15 \, {}^{0}K$$

الشكل يوضح منحنيات تجريبية لتبعية ضغط الغاز لدرجة ح ا ررته (مع ثبات حجم الغاز .) يلاحظ من هذه المستقيمات العائدة لثلاث غازات مختلفة أن ضغط الغاز يتناقص مع تناقص درجة الحرارة ويؤول الضغط لجميع أنواع الغازات إلى الصفر عند درجة الحرارة C -273,15 C .

التعبير الرياضي للمقياس الترمومتري

نفرض أن X تمثل قيمة أي خاصية طبيعية تتغير بتغير درجة الحرارة ، مثل حجم معين أو طول قضيب مثلاً أو غير ذلك ، وأن :

 X_{0} قيمة X عند درجة الصفر المنوي (انصهار الجليد).

 χ هي قيمة χ عند درجة χ (غليان الماء). χ هي قيمة χ عند درجة الحرارة المجهولة (٦).

وعليه فإن التغير في قيمة X لدرجة منوية واحدة تعطى حسب العلاقة:

$$\frac{X_T - X_0}{T - 0} = \frac{X_{100} - X_0}{100 - 0} \qquad T^0 C = \frac{X_T - X_0}{X_{100} - X_0} \times 100$$

وبالمثل فإن التغير في قيمة لا لدرجة فهرنهيتية واحدة تعطى حسب العلاقة:

$$\frac{X_T - X_{32}}{T - 32} = \frac{X_{212} - X_{32}}{212 - 32} \quad T^0 F = \frac{X_T - X_{32}}{X_{212} - X_{32}} \times 180 + 32$$

الشكل ادناه يوضح تدريج الترمومترات حسب الانظمة المختلفة:

اما العلاقة الرياضية بين هذه الانظمة فهي كالاتي:

$$\frac{t_C}{100} = \frac{t_F - 32}{180} = \frac{T - 273.16}{100}$$

١- التحويل من السيليزيس الى الفهر نهايتي وبالعكس

$$^{\circ}\text{C} = 100/180 \, (^{\circ}\text{F} - 32^{\circ})$$
 $^{\circ}\text{C} = 5/9 \, (^{\circ}\text{F} - 32^{\circ}).$

$${}^{\circ}F = (180 / 100 {}^{\circ}C) + 32^{\circ}$$
 ${}^{\circ}F = (9 / 5 {}^{\circ}C) + 32^{\circ}$

٢- للتحويل من السيليزي الى المطلق وبالعكس

$$K = 273 + C$$

 $C = K - 273$

٣- للتحويل من المطلق الى الفهرنهايتي وبالعكس

$$F = \frac{9}{5}(K - 273) + 32$$

$$K = 273 + \frac{5}{9}(F - 32)$$

مثال (1): اوجد درجة الحرارة الفهرنهايتية المقابلة ل. $^{\circ}$ 50 .

$$F=(9/5)\times C+32=(9/5)*50+32=122:$$
 الحل

مثال (۲):

تتغير درجة حرارة ماء من $25 ^{\circ}$ C . $325 ^{\circ}$ C . ماتغيرها في النظام الدولي والفهرنهايت؟ الحل: من الواضح أن تغير درجة الحرارة في النظام الدولي هو نفسه في النظام المئوي، أي أن

$$\Delta T_K = \Delta T_C = 95 - 25 = 70 \,^{\circ}\text{C} = 70 \,^{\circ}\text{K}$$

أما في نظام الفهرنهايت فيكون الفرق أكبر من ذلك ونجده من العلاقة (13-1):

$$\Delta T_F = \frac{9}{5} \Delta T_C = \frac{9}{5} (95 - 25) = 126 \,^{\circ}\text{F}$$

مثال (٢):

$$T_c = 30^{\circ} c$$
 $5(T_F + 40) = 9(T_c + 40) = 9(30 + 40)$
 $5T_F + 200 = 630$ $T_F = \frac{630 - 200}{5} = 86^{\circ} F$

مثال (٣) :

ما قراءة المقياس المثوي المقابلة لـ 61°F أ

$$T_F = 61^{\circ}F$$

 $9(T_c + 40) = 5(T_F + 40) = 5(61 + 40)$
 $9T_c + 360 = 505$ $T_c = \frac{505 - 360}{9} = 16.11^{\circ}c$

مثال (٤):

إذا كانت درجة الحرارة في المقياس المثوي 25°c ، فكم تكون على المقياس المطلق؟.

$$T_c = 25^{\circ} c$$
 $T = T_c + 273$ $T = 25 + 273 = 298 K$

الترمومترات Thermometers

يتوقف عمل الترمومترات بجميع أنواعها وأشكالها على إستخدام خاصية من خواص المادة تكون متغيرة بتغير درجة الحرارة (الخاصية الترمومترية). ومن أهم تلك الخواص:

خاصية التمدد الحجمى للسوائل.

خاصية تمدد الأجسام الصلبة.

خاصية التمدد الحجمى للغازات

خاصية تغير المقاومة الكهربية لبعض المعادن كالبلاتين.

خاصية التيارات الكهروحرارية كما بالمزدوج الحراري.

أولا : الترمومترات السائلة

اد الترمومتر الزئيقي

يصنع الترمومتر من أنبوبة شعرية سميكة الجدار و منتظمة المقطع و تنتهي من أسفل بمستودع من الزجاج به زئبق و الأنبوبة مغلقة من أعلى و مفرغة من الهواء .

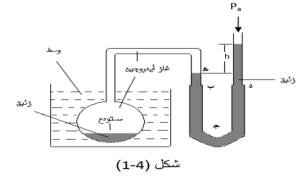
ويمتاز الزئبق بما يجعله من أنسب السوائل في صنع الترمومترات حيث فهو يتجمد في درجة حرارة -400 و يغلي في درجة 3570 . يتمدد بانتظام ،غير شفاف ، معامل تمدده كبير نسبيا

ب - الترمومتر الكحولي

و يستخدم الكحول كمادة ترمومترية عوضا عن الزنبق لقياس درجات الحرارة المنخفضة و ذلك لأن الكحول يظل في الحالة السائلة ما بين درجتي $78 \, C^0$, $-C^0 \, 110$ يمتاز الكحول بمعامل تمدده أكبر من معامل تمدد الزنبق و لذلك فهو أكثر حساسية.

الثيرمومتر الزئبقي	الثير مومتر الكحولي
المزايا:	المزايا:

- يستخدم في المناطق شديدة البرودة التي الزئبق لا يبلل سالتجاوز درجة الحرارة في الشتاء ℃ 00- مثل روسيا و شمال كندا لأنه يتجمد عند مثل روسيا و شمال كندا لأنه يتجمد عند صحة القراءة في صحة الق
 - للكحول معامل تمدد حراري يساوي ستة أضعاف معامل التمدد الحراري للزئبق مما يجعل الثيرمومتر الكحولي أشد حساسية لأي تغير في درجة الحرارة
- 1. الزئبق لا يبلل سطح الزجاج بالتالي لا يلتصق بالأنبوبة الشعرية أما الكحول فيميل للانتشار على سطح الزجاج مما يؤثر عن صحة القراءة في الثيرمومتر الكحولي
- لون الزئبق غامق مما يجعل رؤية عمود الزئبق سهل أما الكحول فإنه يحتاج لإضافة مادة ملونة إليه
- التوصيل الحراري للزئبق أعلى من الكحول مما يجعل الثير مومتر الزئبقي يستجيب بسرعة للتغيرات في درجة الحرارة
- لدیه نقطهٔ غلیان منخفصه ۲۰ م٬ لذا
 لایمکن استخدامه لقیاس درجات
 الحرارة العالیة
 - لا بد من صبغه لانه عديم اللون
- مادة سامة - لديه تقطة تجمد - ٣٩م' و لذلك لا يمكن ان يستخدم في المواد التي لها درجة حرارة متخفضة للغاية


ج - الترمومتر الغازي

الترمومتر الغازي على نوعين:

- 1- نوع يحفظ فيه ضغط الغاز ثابتا ويعتبر التغير في حجمه مقياسا لدرجة الحرارة.
- 2- النوع الآخر وهو النوع المعتاد وفيه يحفظ حجم الغاز ثابتا بينما يتغير ضغطه تبعا لتغير درجة الحرارة، ويسمى ترمومتر الحجم الثابت.

تركيب الترمومتر الغازي ذي الحجم الثابت

هذا النوع من الترمومترات يتركب كما في الشكل (4-1) من مستودع متصل بأنبوبة زجاجية بعن طريق أنبوبة ملتوية من الزجاج، وتتصل الأنبوبتان ب، د بواسطة أنبوبة من المطاط ج، ويوضع في قاع المستودع أمقدارا من الزئبق حجمه يساوي 1/7

م کی مالت بیات الخلام کم

من الأنبوبة والمستودع حتى سطح الزئبق في الأنبوبة ب بغاز الأيدروجين الجاف.

قياس درجة حرارة وسط بواسطة الترمومتر الغازي ذي الحجم الثابت

عندما يُراد معرفة درجة حرارة وسطما يُوضع المستودع في هذا الوسط وبعد مدة كافية نجد أن مستوى الزئبق في الأنبوبة ب قد تغير عن موضع النقطة الثابتة ه قبل وضع المستودع في الوسط، ولكي يبقى الحجم ثابت (أي حجم غاز الأيدروجين المحبوس) ثرفع الأنبوبة د أو تُخفض حتى يصل مطح الزئبق في الأنبوبة ب إلى العلامة الثابتة ه، فيكون الفرق بين مستويي الزئبق في الأنبوبتين ب ، د هو الارتفاع ط كما بالشكل. ويكون ضغط الغاز المحبوس عند أي درجة حرارة T:

$$P_{\tau} = P_a + h_{\tau} \qquad (4-9)$$

حيث ان:

P هو ضغط الغاز عند درجة الحرارة P

atmospheric pressure هو الضغط الجوي P

الزنبق عند درجة الحرارة T (الفرق بين مستويى الزنبق) المرارة T

وإذا فرضنا أن P_0 هو الضغط عند درجة حرارة صغر درجة مئوية، P_{00} هو الضغط في درجة حرارة P_{00} ماء حرارة P_{00} - ويمكن الحصول على قيمتيهما بوضع المستودع داخل جليد منصهر وبخار ماء على الترتيب فإن درجة الحرارة المطلوبة تُعطى حسب العلاقة (P_{00}) كما يلى:

$$\begin{split} T^0\!C &= \frac{P_T - P_0}{P_{100} - P_0} \times 100 \\ P_T &= P_a + h_T \qquad P_0 = P_a + h_0 \qquad P_{100} = P_a + h_{100} \\ & \qquad \qquad \\ & \qquad \\$$

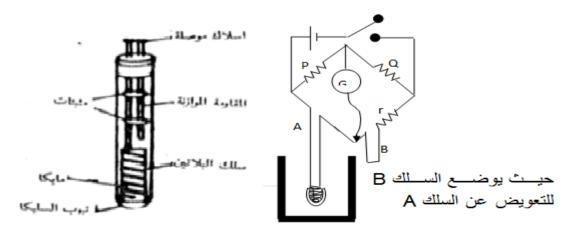
ملاحظة: من أهم مميزات الغازات كمواد ترمومترية أنها تظل غازية في مدى واسع جدا من درجات الحرارة (ابتداء من درجة السيولة إلى 1500°C).

مثال باستعمال الترمومتر الغازي ذي الحجم الثابت لقياس درجة الحرارة كان ضغط الغاز 80cm، 80cm عند درجة حرارة 83cm عند درجة حرارة الغرفة، $100C^0$ ، $0C^0$ عند درجة حرارة الغرفة، 100cm عند وضع مستودع الترمومتر في ماء ساخن. جد درجة حرارة كل من الغرفة والماء الساخن.

$$T = \frac{h_T - h_0}{h_{100} - h_0} \times 100$$
 : $T = \frac{83 - 80}{109.3 - 80} \times 100$: $T = \frac{20}{29.3} \times 100 = 68.3C^0$

فوائد الترمومتر الغازى

- ١. معامل التمدد للغازات كبير جدأ بالمقارنه مع السوائل لذلك فأن المحارير الغازيه تكون حساسه ودقيقه.
 - ٢. معامل التمدد ومعدل التمدد ثابت لكل الغازات اذ كانت تحت نفس الشروط.
- معامل التمدد للماده المصنوع منها بصلة المحرار الغازي مهمله بالمقارنه مع معامل تمدد الغاز.
 - ٤. الغازات تتمدد بثبات وانتظام على مدى واسع من درجات الحراره.
- السعه الحراريه للغاز واطنه جداً بالمقارنه مع السوائل ولذلك يمكن بواسطة المحرار الغازي تسجيل بدقه حتى التغيرات الصغيره في درجات الحراره.
 - ٦. يمكن الحصول على غازات نقيه تماماً كماده محراريه.
 - ٧. المحارير الغازيه يمكن استعمالها لمدى واسع جدامن درجات الحراره.
- ٨. درجات الحراره المسجله بالمحرار الغازي تتفق مع المقياس الثرموديناميكي لدرجات الحراره الذي لايعتمد على طبيعة الماده.


عيويه:

- ١. ضخامته وثقله وصعوبة نقله مما يحدد استخدامه فقط في موقع واحد.
 - ٢. لايصلح لقياس در جات الحراره حيز اصغر من حجم البصله.

تانيا: الترمومترات الصلبة

١- ترمومتر المقاومة البلاتيني

إن أساس عمل هذا الترمومتر مبني على أساس تغير مقاومة السلك البلاتيني تبعا لتغير درجة الحرارة. يتألف هذا الترمومتر كما في الشكل ادناه من سلك رفيع من البلاتين النقي ملفوف لولبيا بشكل مزدوج لتجنب التأثيرات الحثية و السلك ملفوف على إطار من المايكا العازلة وموضوع داخل انبوبة رقيقة الجدران مصنوعة من الفضة لحماية السلك البلاتيني الذي يتصل طرفاه بأسلاك معدنية نحاسية للتوصيل في دائرة كهربائية و يمثل السلك البلاتيني الرفيع و سلك التوصيل النحاسي احد اذرع قنطرة وتستون وفائدة هذه القنطرة هو قياس مقاومة السلك البلاتيني بدقة.

فاذا كانت مقاومة السلك البلاتيني R_t في درجة الحرارة t و في الصفر المئوي هي R_0 فان هاتين المقاومتين ترتبطان بالعلاقة

$$R_t = R_o (1 + \alpha t + \beta t^2)$$
 -----(1)

حيث ان α و β ثوابت تعتمد على طبيعة مادة السلك و لايجاد قيم كل من α نجد قيمة المقاومة للسلك في ثلاث نقاط قياسية (هي نقطة انصهار الجليد ، نقطة غليان الماء و نقطة غليان الكبريت α 444.6°C). في حالة قياس درجات الحرارة العالية اما في حالة قياس درجة الحرارة الواطئة نستخدم بدل الدرجة الاخيرة نقطة غليان الاوكسجين (α 182.5°C)

باستخدام هذه التفاصيل نحصل على

$$R_{100}=R_o (1+\alpha 100 + \beta(100)^2)$$
 -----(2)

$$R_{444.6} = R_o (1+\alpha 444.6 + \beta (444.6)^2)$$
 -----(3)

 β و α قيمة α و بحل هاتين المعادلتين نحصل على قيمة

في المعادلة (1) نستطيع اهمال قيمة $\beta(t)^2$ لأن قيمة β صغيرة جدا و تصبح المعادلة كالآتي

$$R_t = R_o (1+\alpha t)$$
 -----(4)

$$R_{100} = R_o (1 + \alpha 100)$$
 ----(5)

من المعادلة (4) نحصل على

$$R_t - R_o = R_o \alpha t$$
 ----(6)

و من المعادلة (5)

$$R_{100} - R_o = R_o \alpha \ 100 -----(7)$$

من المعادلتين (6,7) نحصل على

$$rac{R_t - R_o}{R_{100} - R_o} = rac{t}{100}$$
 ------(8) ومنها نحصل على $t = rac{R_t - R_o}{R_{100} - R_o} *100$

مثال: مقاومة سلك بلاتيني لمحرار المقاومة البلاتيني في نقطة الصفر Ω 5 و في نقطة الغليان Ω 5 و عند وضعه في سائل تصبح مقاومته Ω 5.7950 جد درجة حرارة السائل.

$$R_o$$
 = 5 Ω , R_{100} = 5.93 Ω , R_t = 5.795 Ω , t = ?

$$\frac{R_t - R_o}{R_{100} - R_o} = \frac{t}{100} \qquad \frac{5.795 - 5}{5.93 - 5} = \frac{t}{100}$$
 t=85.48 °C

مثال: اذا كانت قيمة مقاومة المحرار البلاتيني في النقطة الثلاثية للماء 90.35Ω فكم درجة الحرارة عندما تصبح قيمة المقاومة 96.28Ω

$$R_{tp} = 90.35 \Omega$$
, $R = 96.28 \Omega$, $T(R) = ?$,

$$T(R) = 273.16(R/R_{tp}) = 273.16(96.28/90.35) = 280.6 K$$

المميزات

- ١. يستخدم لمديات واسعه من درجات الحراره.
- ٢. دقيق جداً ،ويفيد في التغيرات البطيئه لدرجات الحراره.
- ٣. لايكون كفوءا في قياس تغيرات درجات الحراره السريعه وذلك لحاجته الى وقت كاف للوصول الى حالة التوازن الحراري بسبب سعته الحراريه العاليه.

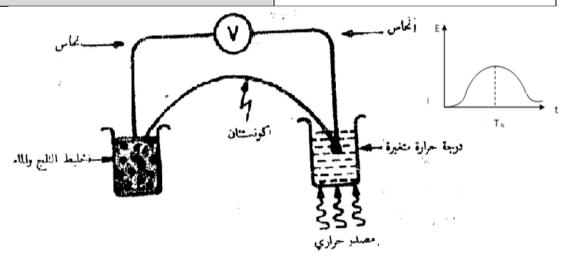
٢ - ترمومتر الأذدواج الحراري

تأثير بلتبيه Peltier Effect

عند مرور تيار كهربي في وصلة بين معدنين مختلفين فإن درجة حرارة هذه الوصلة ترتفع أو تنخفض تبعاً الاتجاه مرور التيار الكهربي.

ظاهرة تأثير سيبك The Seebeck Effect

عند اتصال معدنين مختلفين في وصلتين بحيث تحفظ درجة حرارة إحدى الوصلتين منخفضة وتحفظ الأخرى في درجة حرارة مرتفعة فأنه يتولد بين الوصلتين قوة دافعة كهربائية تتوقف على الفرق بين درجتي حرارة الوصلتين وفكرة عمل ترمومتر الازدواج الحراري Thermocoupleمبنية على ظاهرة سيبك.


يستند عمل هذا الترمومتر على تأثير سيبك حيث اكتشف سيبك عام 1821 انه عندما يتصل فلز ان مختلفان على شكل دائرة فأن قوة دافعة كهربائية تتولد عندما ترفع درجة حرارة نقطتي الاتصال ينما تبقى الأخرى ثابتة و عادة تكون النقطة الباردة في نقطة الجليد. لقد وجد أن القوة الدافعة الكهربائي المتولدة في هذه الدائرة تعتمد على طبيعة المعادن المستخدمة في تكوين المزدوج على الفرق بين درجتي حرارة الاتصال و لقد وجد تجريبيا ان E القوة الدافعة الكهربائية الناشئة من دائرة المزدوج الحراري تعتمد على العلاقة التالية:

$$E=A + Bt + Ct^2 + Dt^3$$

حيث ان D,C,B,A هي ثوابت تعتمد على طبيعة المعادن المستخدمة.

درجة الحرارة التي تتكون عندها القوة الدافعة الكهربائية أعلى ما يمكن تدعى بدرجة حرارة التعادل T_N و نفرض الحصول على قراءة واحدة فقط لتجنب الغموض في قراءة هكذا محرار. في هذا المحرار يجب اختيار معدنين لهما حرارة تعادل تقع خارج حدود المدى المطلوب قياسه بواسطة هذا المحرار، وفيما يلي مجموعة مشتركة للمعادن تستخدم في ترمومتر المزدوج الحراري:

المزدوج الحراري	المدى	
الحديد و النيكل	300-600	
النيكل و الكروم	600-1000	
البلاتين و سبيكة البلاتين و الراديوم	1000-1600	
الاربيديوم وسبيكة الاربيديوم و الريبيديوم	1600-2000	
التنكستن و المولبيدنيوم	2000-5000	

نرمومتر الإذدواج الحرارى

المميزات

- سرعة وصوله الى حالة التوازن الحراري مع الجسم المراد قياس درجة حرارته وذلك الانخفاض سعته الحرارية.
 - ٢. المدى الواسع لدرجات الحراه التي يمكن قياسها.
 - صغر حجمه ودفته العاليه نسبياً.
- إ. يستخدم كثيراً في الصناعه وفي المجالات التي تنطلب تحديد موضعي لدرجة الحراره وتعاني تغيراً سريعاً في درجات الحراره.

العيوب

- ا. ليس مضبوطاً على مدى واسع من درجات الحراره حيث انه اقل دقه من المحارير الغازية والبلاتينية وعليه يفيد استعماله في المديات التي تقل قيها حساسية هذه المحارير ات
 - ٢. بستخدم مزدوجات حراريه مختلفه لمديات مختلفه مت درجات الحراره.
 - ٣. يجب معايرة كل مجهاد (فولتميتر) على انفراد المختلف المزدوجات الحراريه.
 - درجة حرارة التعادل لاي مزدوج حراري تحدد مداه في قياس درجة.

مسائل الفصل الاول

س1: حول الدرجات الحرارية الآتية إلى ما يقابلها:

70°C -1 إلى قيمتها الفهرنهايتية والكلفنية.

2- 150K إلى قيمتها السليزية والفهرنهايتية.

الحل:

أولا: باستخدام المعادلة الآتية:

$$^{\circ}F = \frac{9}{5} ^{\circ}C + 32$$

نحصل على

$$^{\circ}F = \frac{9}{5}70 + 32$$

= 158 $^{\circ}F$

وباستخدام المعادلة الآتية:

$$K = {}^{\circ}C + 273$$

نحصل على

$$= 70 + 273 = 343 \text{ K}$$

تانياً: باستخدام المعادلة الآتية:

$$^{\circ}C = K - 273$$

نحصل على

$$^{\circ}C = 150 - 273 = -123 \,^{\circ}C$$

وباستخدام المعادلة الآتية:

$$^{\circ}F = \frac{9}{5} ^{\circ}C + 32$$

نحصل على

$$^{\circ}F = \frac{9}{5}(-123) + 32 = -221.4 + 32$$

$$^{\circ}F = -189.4 \, ^{\circ}F$$

س2: جد قيمة درجة الحرارة التي تتساوى عندها الدرجة السليزية مع الدرجة الفهرنهايتية.

الحل:

باستخدام المعادلة الاتية:

$$^{\circ}$$
C = $\frac{5}{9}$ ($^{\circ}$ F - 32)

: فان ($^{o}F = ^{o}C$) وبما ان

$$9 \,^{\circ}\text{F} = 5 \,^{\circ}\text{F} - 160$$

 $9 \,^{\circ}\text{F} - 5 \,^{\circ}\text{F} = -160$

$$4 \, ^{\circ} F = -160$$

$$^{\circ}F = \frac{-160}{4}$$

$$^{\circ}F = ^{\circ}C = -40$$

. وعليه فان درجتي حرارة $(-40~{}^{\circ}{\rm C})$ و $(-40~{}^{\circ}{\rm F})$ متكافئتان

س3: يمكن التعبير عن العلاقة بين الدرجة السليزية والدرجة الفهرنهايتية كما في المعادلة الآتية

$$^{\circ}C = a ^{\circ}F + b$$

جد قيم الثوابت a و b .

الحل:

. 32° F وتساوي 0° C درجة حرارة انجماد الماء تحت الظروف الاعتيادية تساوي

 212° F وتساوي 100° C درجة حرارة غليان الماء تحت الظروف الاعتيادية تساوي

بما ان

$$^{\circ}C = a ^{\circ}F + b$$

حیث ان a و b کمیتان ثابنتان یراد تحدید قیمتهما.

نعوض عن درجة انجماد وغليان الماء في المعادلة أعلاه فنحصل على:

$$0 = 32 a + b$$
(1) درجة انجماد الماء

بطرح المعادلة (1) من المعادلة (2) نحصل على

$$100 = 180 a$$

$$a = \frac{100}{180} = \frac{5}{9}$$

وبالتعويض عن قيمة a في المعادلة (1) نحصل على قيمة b

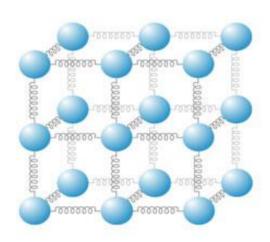
$$b = -\frac{5}{9} (32)$$

وبالتعويض عن قيم كل من a و b في المعادلة العامة نحصل على

$$^{\circ}C = \frac{5}{9} \, ^{\circ}F - \frac{5}{9} (32)$$

$$^{\circ}C = \frac{5}{9} (^{\circ}F - 32)$$

الغطل الثاني


التمدد العراري

مقدمة:

ان تغير درجة حرارة المادة يؤدي إلى تغيرات في الخواص الاخرى للمادة، ومن ابرز هذه التغيرات هو تغير ابعاد المادة او تغير حالتها ان رفع درجة حرارة المادة يؤدي إلى زيادة الطاقة الاهتزازية لذراتها او جزيئاتها وبزيادة سعة اهتزاز تلك الجسيمات يزداد متوسط المسافة بين الذرات او الجزيئات، وذلك يؤدي الى تغير جميع ابعاد المادة بتغير درجة الحرارة، فتزداد بزيادة درجة الحرارة وتنكمش بانخفاضها. وتسمى ظاهرة تغير ابعاد المادة نتيجة لتغير درجة حرارتها بالتمدد الحراري.

هذه الظاهرة تلعب دوراً رئيسيا في العديد من التطبيقات الهندسية، فعلى سبيل المثال يتم ترك مسافات بين الوصلات الحديدية في المباني والجسور والسكك الحديدية والطرق السريعة لتعطي المجال للتمدد والانكماش وإذا لم يتم فعل ذلك يمكن أن يتصدع المبنى أو تنهار الجسور وتلتوي السكك الحديدية بفعل التمدد الحراري للمواد المصنوعة منه.

إن التمدد الحراري thermal expansion للأجسام هو نتيجة عن للتغير الذي يحدث للمسافات الفاصلة بين جزيئات وذرات المادة .ولفهم أدق لما ذكرناه لننظر إلى الشكل الموضح أدناه حيث يعبر عن التركيب البلوري لمادة في الحالة الصلبة والتي تحتوي على مصفوفة مرتبة من الذرات المترابطة مع بعضها البعض بفعل القوى الكهربائية (الزنبرك في الشكل يمثل القوى الكهربائية).

يمثل الشكل بلورة لمادة صلبة والزنبرك بين الذرات يمثل القوى الكهربائية التي تربط الذرات بعضها ببعض.

عند درجات الحرارة العادية تتذبذب الذرات حول موضع استقرارها في البلورة وتبلغ سعة الذبذبة ما يقارب 1×10^{-11} وبتردد يصل إلى 1×10^{13} حيث تكون المسافة الفاصلة بين الذبذبة ما يقارب 1×10^{-10} فإن هذه المسافة تزداد بزيادة درجة الحرارة نتيجة لازدياد سعة الذبذبة وبتجميع هذه الزيادات بين ذرات المادة ينتج عنه تمدد ملحوظ بزيادة درجة الحرارة.

ومن المعروف ان معظم الاجسام تتمدد عندما تزداد درجة حرارتها، ويتوقف مقدار تمدد المادة بالتسخين على مقدار قوى التماسك بين جزيئاتها، فالمادة الصلبة يكون مقدار تمددها بالتسخين صغيراً جداً نظراً لكبر قوى التماسك بين جزيئاتها، في حين ان تمدد السوائل اكبر من تمدد المواد الصلبة أما الغازات فيكون تمددها بالتسخين اكبر بكثير من السوائل لأن قوى التماسك بين جزيئات الغاز تكاد تكون معدومة. وهذه الظاهرة تلعب دوراً رئيسيا في العديد من التطبيقات الهندسية، فعلى سبيل المثال يتم ترك مسافات بين الوصلات الحديدية في المباني والجسور والسكك الحديدية والطرق السريعة لتعطي المجال للتمدد والانكماش واذا لم يتم فعل ذلك يمكن ان يتصدع المبنى او تنهار الجسور وتلتوي السكك الحديدية بفعل التمدد الحراري للمواد المصنوعة منه والتمدد الحراري المادة.

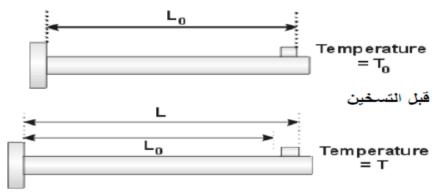
انواع التمدد المرارى:

اولا :تمدد الاجسام الصلبة- :

عندما تتغير درجة حرارة مادة ما، فإن الطاقة المختزنة في الروابط الجزيئية بين ذراتها تتغير. عندما تزداد الطاقة المختزنة يزداد طول الروابط الجزيئية، وبالتالي فإن المواد الصلبة عادة تتمدد عند تسخينها وتتقلص عند تبريدها يطلق على الاستجابة بتغير الأبعاد عند تغير درجة الحرارة اسم التمدد الحراري، وتقاس هذه العلاقة بمعامل التمدد الحراري.

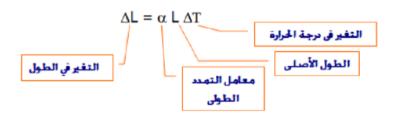
من الممكن تعريف عدة معاملات تمدد حراري بحسب قياس التمدد وهي:

- ١ معامل التمدد الحرارى الطولى
- ٢- معامل التمدد الحراري المساحي
- ٣- معامل التمدد الحراري الحجمي


حيث من الممكن تعريف معامل التمدد الحراري الحجمي للأجسام الصلبة والسائلة والغازية، بينما معامل التمدد الطولي يعرف فقط للأجسام الصلبة وهو العامل المستخدم بكثرة في التطبيقات

الهندسية. هناك بعض المواد التي تتمدد عند تبريدها مثل الماء المجمد، ولهذا يكون لها معامل تمدد حرارى ذو قيمة سالبة

.


a-التمدد الطولي

يحدث التمدد على كافة ابعاد الجسم كالطول والعرض والسمك وتكون نسبة الزيادة حسب الابعاد الهندسية للمادة ومقدار الزيادة يتناسب طرديا مع الطول الاصلي لذا تكون الزيادة في الطول اكثر منها في العرض او السمك، انظر الشكل ادناه.

بعد التسخين

وقد اثبتت التجارب ان التغير في الطول يتناسب طرديا مع التغير في درجات الحرارة والطول الأصلى، لذا يمكن كتابة معادلة التغير في الطول على النحو التالي:

حيث ان ثابت التناسب يسمى معامل التمدد الطولى ويعطى بالمعادلة التالية:

$$\alpha = \frac{\Delta L}{L \Delta T}$$

وعليه يمكننا تعريف معامل التمدد الطولي على انه مقدار التغير في الطول لكل تغير في درجة الحرارة بمقدار درجة مئوية واحدة الما وحدة معامل التمدد الطولي فهي 1(oC) او اي درجة اخرى حسب المقياس المستخدم.

ان جميع المواد تتمدد بالحرارة ولكن كل مادة لها معامل تمدد مختلف، وان قيمته ليست ثابتة تماما ولكنها تتغير بصورة بطيئة مع تغير درجة الحرارة، وان التمدد الطولي يشمل كافة ابعاد الجسم ويكون التمدد ذو علاقة خطية مع درجة الحرارة لجميع ابعاد الجسم.

وقد اثبتت التجارب ان التغير في الطول ΔL يتناسب طرداً مع التغير في درجة الحرارة ΔT ومع الطول الأصلى T_0 لذا يمكن كتابة معادلة التغير في الطول على النحو التالى:

$$\Delta L \sim L_0 \times \Delta T$$

$$\Delta L = \alpha L_0 \times \Delta T \qquad (1)$$

$$L - L_0 = \alpha L_0 \times (T - T_0)$$

$$L = L_0 + \alpha L_0 \times \Delta T$$

ومنه:

$$L = L_0 (1 + \alpha \times \Delta T) \tag{2}$$

هو معامل التمدد الطولي ويُعرف بأنه مقدار التغير النسبي في الطول $-\alpha = \frac{L - L_0}{L_0 \times (T - T_0)} = \frac{1}{L_0} \frac{\Delta L}{\Delta T}$ الموافق لتغير درجة الحرارة بمقدار درجة مئوية.

وواحدة قياس معامل التمدد الطولى هي مقلوب درجة الحرارة $(C^0)^{-1}$ مثلاً: $(C^0)^{-1}$

تتمدد جميع المواد بالحرارة، ولكل مادة معامل تمدد خاص بها، وقيمة هذا المعامل من أجل مادة محددة ليست ثابته تماماً ولكنها تتغير بصوره بطيئة مع تغير درجة الحرارة، ويشمل التمدد الطولى كافة أبعاد الجسم، ويملك التمدد علاقة خطية مع درجة الحرارة بالنسبة لجميع أبعاد الجسم.

وقيمة α ثابتة من أجل مجال معين من درجات الحرارة.

والعوامل التي يتوقف عليها التمدد الطولي: ١- الطول الأصلى للجسم.

٢- مقدار الارتفاع في درجة حرارة الجسم.

٣- نوع مادة الجسم

مثال(١) :سكة حديد طولها 30m عندما كانت درجة الحرارة صفر درجة مئوية ماطولها عندما $(0.000011~{\rm C}^{-1})$ اذا علمت ان معامل التمدد الطولي للحديد $(0.000011~{\rm C}^{-1})$

 $\Delta L = \alpha Lo\Delta T = 0.000011*30*40=0.013 \ m \ \Delta L = L2-L1 \rightarrow L2=30.013 \ m$

مثال(٢) : قضيب من النحاس طوله 50cm ، سخن على لهب بحيث زادت درجة حرارته بمقدار النحاس) الزيادة في طول القضيب، اذا علمت ان معامل التمدد الطولى للنحاس) $20 {
m _oC}$ $19*10^{-6}$ C⁻¹

 $\Delta L = \alpha Lo\Delta T = 0.000019*50*20=0.019$ cm

مثال (٣) : قضيبان معدنيان متساويان في الطول والمساحة المقطع الأول من الفولاذ معامل (0.000017 oC). معامل تمدده (0.000011 oC) والثاني من النحاس الأحمر معامل تمدده احسب الزيادة التي تطرأ على كل من القضيبين عندما يتعرضان لتغير في درجة الحرارة من 50C الى 30oC ، علما ان الطول الأصلى لكل قضيب.

لقضيب الفو لاذ

 $\Delta L = \alpha Lo\Delta T = 0.000011*10*25=0.00275 m$

اما لقضبب النحاس

 $\Delta L = \alpha Lo\Delta T = 0.000017*10*25=0.00425 m$

b) التمدد السطحى:

عندما يكون الجسم ثنائي البعد فإن تغير درجة الحرارة يؤدي إلى تغير في بعديه. فغذا اعتبرنا أن الجسم عبارة عن لوح مستطيل الشكل طوله L_0 وعرضه h_0 عند درجة الحرارة T_0 وبعد تسخين الجسم حتى الدرجة T فإن طوله وعرضه يصبحان L و h على الترتيب، ويكون:

$$L = L_0 (1 + \alpha \times \Delta T) \tag{3}$$

$$h = h_0 (1 + \alpha \times \Delta T) \tag{4}$$

ومنه فمساحة اللوح المستطيل عند درجة الحرارة T:

$$S = L \times h =$$

$$= [L_0(1 + \alpha.\Delta T)] \times [h_0(1 + \alpha.\Delta T)] =$$

$$= L_0 \times h_0 \times (1 + \alpha.\Delta T)(1 + \alpha.\Delta T) = L_0 \times h_0 \times (1 + \alpha.\Delta T)^2$$
وبما أن مساحة اللوح عند درجة الحرارة T_0 هي T_0 هي نان مساحة اللوح عند درجة الحرارة وبما أن مساحة اللوح عند درجة اللحرارة وبما أن مساحة اللوح عند درجة الحرارة وبما أن مساحة اللحرارة وبما أن مساحة اللحرارة وبما أن مساحة اللحرارة وبما أن مساحة اللحرارة اللحرارة وبما أن مساحة اللحرارة وبما أن مساحة اللحرارة ا

$$S = L_0 \times h_0 \times (1 + \alpha.\Delta T)(1 + \alpha.\Delta T) = L_0 \times h_0 \times (1 + \alpha.\Delta T)^2$$

ومنه

$$S = S_0 [1 + 2\alpha \cdot \Delta T + (\alpha \cdot \Delta T)^2]$$
 (5)

إن α مقدار صغير وأصغر من الواحد، ومربعه أيضاً أصغر من الواحد بكثير، لذلك يمكن إهمال الحد الثالث في العلاقة (5) فيكون:

$$S = S_0 (1 + 2\alpha . \Delta T) \tag{6}$$

وبما أن $\gamma = 2\alpha$ معامل التمدد السطحي، ومنه:

$$S = S_0 (1 + \gamma . \Delta T) \tag{7}$$

إن تغير مساحة السطوح مع تغير درجة حرارتها يعرف بالتمدد السطحى أو تمدد المساحة.

٢- . مقدار الارتفاع في درجة حرارة الجسم

٣- . نوع مادة الجسم

ويعطى التغير بالمساحة ΔA مع درجة الحرارة T بالمعادلة التالية:

$$\Delta A = A_0 \beta \Delta T$$

 $A_1 = A_0 (1 + \beta \Delta T)$

 $\beta = \Delta A A o \Delta T$

واذا كانت المادة الصلبة متجانسة الخواص فيكون التغير في وحدة الطول الناتج عن تغير درجة ً الحرارة متساويا في جميع الاتجاهات.

ومعامل التمدد السطحى هو التغير النسبى للسطح عند ارتفاع درجة الحرارة درجه حرارية واحده وهو يعادل ضعفين معامل التمدد الطولي للمواد المتماثلة، ويتوقف على نوع المادة $\gamma = \frac{S-S_0}{S_0} imes \frac{1}{\Delta T}$

نفسها ويقدر بنفس وحدات معامل التمدد الطولى

c) التمدد الحجمي:

عندما يكون للجسم المدروس ثلاثة أبعاد فإنه مع تغير درجة الحرارة سوف تتغير أبعاد الجسم الثلاثة (أي حجم الجسم). بفرض أن الجسم الصلب هو صندوق ثلاثي الأبعاد:

 T_0 أبعاده X_0, L_0, h_0 عند درجة الحرارة T_0 ، و T_0 و T_0 حجمه في درجة الحرارة الحرارة T وأبعاده X, L, h عند درجة الحرارة T، و $T = X \times L \times h_0$ عند درجة الحرارة وبالتشابه مع الفقرة السابقة:

$$V = V_0 [1 + 3\alpha \cdot \Delta T + 3(\alpha \cdot \Delta T)^2 + (\alpha \cdot \Delta T)^3]$$
 (8)

وبإهمال الحدين الثالث والرابع الحاويين α^2 و بنجد أن:

$$V = V_0 [1 + 3\alpha.\Delta T] \tag{9}$$

وبما أن $\beta = 3\alpha$ معامل التمدد الحجمي، ومنه:

$$V = V_0 [1 + \beta . \Delta T] \tag{10}$$

ويعرف معامل التمدد الحجمي بأنه التغير النسبي في حجم المادة الصلبة نتيجة لتغير درجة حرارتها بمقدار

.
$$\beta = \frac{V - V_0}{V_0} \times \frac{1}{\Delta T}$$
 درجه واحده

العوامل التي يتوقف عليها التمدد الحجمي: ١- الحجم الأصلي للجسم-

٢- مقدار الارتفاع في درجة حرارة الجسم-

٣- نوع مادة الجسم-

وبالمثل فإن التغير بالحجم يعطى بالمعادلة:

 $\Delta V = \gamma V o \Delta T$

اما معامل التمدد الحجمى فيكون:

 $\gamma = \Delta V V o \Delta T$

مثال 3:

وعاء من النحاس حجمه $0.25m^3$ عند درجة الحرارة $0.15C^0$. كم يصبح حجمه عند درجة الحرارة $\cdot \alpha = 0{,}000019\,C^{-1} = 1{,}9.10^{-5}\,C^{-1}$ علماً أن معامل التمدد الطولى للنحاس $C^{-1} = 1{,}9.10^{-5}\,C^{-1}$

الحل:

$$\beta = 3\alpha = 3 \times 1,9.10^{-5} \, C^{-1} = 5,7 \times 10^{-5} \, C^{-1}$$
$$\Delta V = 3\alpha V \, \Delta T = 5,7.10^{-5} \times 0,25 \times 100 = 1,4.10^{-3} \, m^3$$

ومنه

$$\Delta V = V - V_0 = 1,4.10^{-3} \, m^3 \Rightarrow$$

 $V = V_0 + 1,4.10^{-3} = 0,25 + 0,0014 = 0,2514 \, m^3$

جدول (١): معامل التمدد الطولى والسطحى والحجمى لبعض المواد

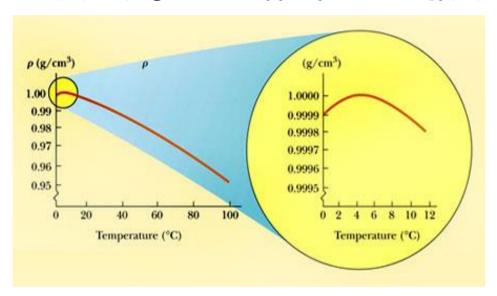
γ (10 ⁻⁴ /°C)	الحالة المائعة	$\alpha (10^{-6}/^{\circ}\text{C})$	الحالة الصلبة
0.0018	زئبق	24	ألمنيوم
1.01	كحول	17	نحاس
0.95	بنزين	12	حديد
1.51	أثير	11	فو لاذ
36.7	هواء	29	رصاص
0.49	غليسرين	11	زجاج تجاري
0.68	زيت زيتون	3.3	زجاج بايركس
1.18	کربون	12	اسمنت مسلح

مثال(٤)

وعاء من الألمنيوم حجمه $1500~cm^3$ عند درجة الحرارة $1500~cm^3$ ما هو مقدار التمدد الحجمي له إذا سخن إلى درجة $1500~cm^3$ علماً أن معامل التمدد الحجمي للألمنيوم $10^{-5}/c^3$.

الحل:

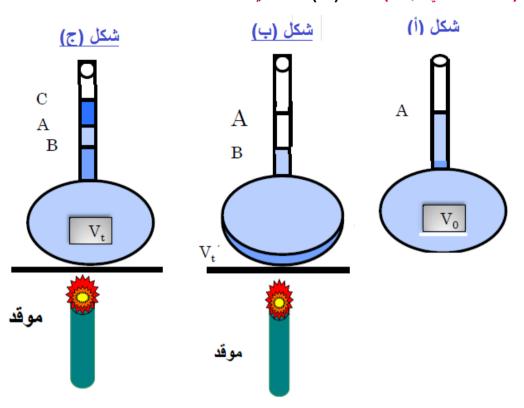
$$V_1 = 1500 \text{ cm}^3$$
 . $T_1 = 25 \text{ °c}$. $T_2 = 85 \text{ °c}$. $\gamma = 7.2 \times 10^{-5} / \text{ °c}$
 $\Delta V = V_1 \alpha \Delta T = 1500 \times 7.2 \times 10^{-5} \times (85 - 25) = 6.48 \text{ cm}^3$


بعض التطبيقات على تمدد الأجسام الجامدة:

إن لخاصية تمدد الأجسام الجامدة بتأثير الحرارة وانكماشها عندما تبرد تطبيقات هامة في الصناعة والمنشآت المختلفة. ومن ذلك ما يلى:

- 1- عند مد قضبان السكك الحديدية تترك مسافات صغيرة بين طرق كل قضيبين متجاورين كي تسمح بتمدد القضبان في فصل الصيف.
- 2- تمد أسلاك الكهرباء على الأعمدة بحيث تكون مرتخية قليلاً حتى لا تؤثر على الأعمدة أو تنقطع عندما ينكمش طولها في فصل الشتاء.
- 3- عند إقامة الجسور الفولاذية الطويلة يراعى ترك مسافات صغيرة بين أطراف الجسور والدعامات التي ترتكز عليها وتكون إحدى نهايتي الجسر محمولة على عجلات تسمح للفولاذ بالتمدد.
- 4- وفي البناء يراعى أن يكون معامل تمدد الحديد مساوياً لمعامل تمدد المزيج المكون من الأسمنت والرمل والحجر وإلا تفتت الأسمنت بسبب التمدد والانكماش.
- 5- صناعة الترموستات (الازدواج المعدني) وهو عبارة عن قضيبين مختلفين في النوع متلاصقين يختلف الواحد منها عن الآخر بمعامل تمدده ، فعندما يسخن الازدواج المعدني يتمدد أحد القضيبين أكثر من الآخر فينحني القضيب ، لذلك يستخدم الترموستات (الازدواج المعدني) في الكهرباء مثلاً في وصل التيار الكهربائي أو قطعة.

ثانيا: التمدد الحراري للسوائل


بصفة عامة تتمدد السوائل ويزداد حجمها بزيادة درجة الحرارة، ويكون معامل تمددها الحجمي أكبر بعشرة مرات من تمدد المواد الصلبة . ولكن الماء يشذ عن باقي السوائل حيث أن كثافة الماء تزداد بزيادة درجة الحرارة من $0 \circ 0$ إلى $0 \circ 0$ وينكمش الماء، وإذا ازدادت درجة الحرارة أكثر من $0 \circ 0$ في $0 \circ 0$ وينكمش الماء، وإذا ازدادت درجة الحرارة أكثر من $0 \circ 0$ فإن الماء يتمدد بزيادة درجة الحرارة وتتناقص كثافته. تكون كثافة الماء أكبر ما يمكن عند درجة حرارة $0 \circ 0$ و لهذه النتيجة أهمية كبيرة على حالة البحيرات في المناطق الباردة في فصل الشتاء، حيث تتشكل على سطحها طبقة جليدية درجة حرارتها $0 \circ 0$ دوماً بينما يكون الماء تحتها عند درجة حرارة $0 \circ 0$ محافظاً على الحياة المائية فيها.

من أهم التطبيقات لظاهرة تمدد السوائل: الترمومترات الزئبقية و الكحولية لنأخذ دورق مملوء بالسائل المراد دراسة تمدده الحجمي، محكم الإغلاق بسدادة مطاطية يجتازها أنبوب خارجي رفيع (أنبوبة شعرية.) عند وضع الدورق في ماء ساخن فإن مستوى السائل في الأنبوب الشعري يهبط قليلاً ثم يرتفع و يثبت عند حد أعلى من المستوى الأول للسائل.

- ۱- لو أحضرنا دورقا متصلا بأنبوب طويل ثم ملأناه بسائل (ماء ملون مثلا) إلى المستوى آلم سخنا هذا الدورق شكل (۱), فماذا يحدث لمستوى السائل في الأنبوب؟
- Y- بعد التسخين, قد يتبادر إلى الذهن أن مستوى السائل سوف يرتفع بسبب تمدد السائل الا أن ذلك ليس ما يحدث. إن مستوى السائل سوف ينخفض قليلا من المستوى المستوى المستوى السائل؟. إن الحرارة تصل أولا إلى الدورق فيتمدد

الدورق ويزيد حجمه فينخفض مستوى السائل من A إلى B ويسمى تمدد الدورق في هذه الحالة (التمدد الحجمى للإناء) شكل (ب). ما الذي يحدث بعد ذلك؟

٣- بعد تمدد الدورق تصل الحرارة الى السائل فيتمدد ويرتفع مستواه من B الى C ويسمى تمدد السائل في هذه الحالة (بالتمدد الحقيقى للسائل). أما المحصلة النهائية تمدد السائل من A الى C شكل (ج) ويسمى بالتمدد الظاهرى).

يعرَّف معامل التمدد الحقيقي للسائل: بأنه الزيادة الحقيقية في حجم واحدة الحجوم من السائل عندما ترتفع درجة حرارته درجة مئوية واحدة و ذلك في وعاء يهمل تمدده

 t_0 • history t_0 • histo

$$\alpha = \frac{V_t - V_0}{V_0 \, \Delta T} \qquad \Rightarrow \qquad$$

حجم السائل عند الدرجة t

$$V_t = V_0(1 + \alpha \Delta t) \tag{8}$$

• التقلص AB: بفرض أن حجم الوعاء بعد التمدد أصبح V_t' و معامل تمدده الحجمي عندئذ حجم الوعاء عند الدرجة t يكتب بالشكل :

$$\dot{V}_t = V_0(1 + \varphi \Delta t) \tag{9}$$

$$V_t = ec{V}_t (1+a \ \Delta t)$$
 التمدد الظاهري : يساوي • التمد الظاهري المياوي

حيث a معامل التمدد الظاهري للسائل

نعوض (8) و (9) في (10)

$$V_0(1 + \alpha \Delta t) = V_0(1 + \varphi \Delta t)(1 + \alpha \Delta t)$$

$$1 + \alpha \Delta t = 1 + \varphi \Delta t + a \Delta t + a \varphi (\Delta t)^2$$

$$\alpha \Delta t = (\varphi + a) \Delta t \qquad \Rightarrow$$

$$\alpha = \varphi + a \qquad (11)$$

ن معامل التمدد الحقيقي αللسائل يساوي مجموع معامل التمدد الظاهري للسائل ع ϕ oslab التمدد الحجمى للوعاء

ا - إذا كان الطول القياسي للمتر عند درجة الحرارة $0 \, ^{\circ} c$ هو $1 \, m$ و كان معامل التمدد الحراري الطولى لمادة القياس هو $1/^{\circ}c$ $1/^{\circ}c$ فاحسبي الطول عند الدرجة $37^{\circ}c$

من العلاقة:

$$L = L_0(1 + \alpha \Delta t) \qquad (3)$$

L= 1 $\{1+[(8.9 \times 10^{-6})(37-0)]\}$ = 1.0003293 m

$$\Delta L = L_0 \alpha \Delta T = 1 \times (8.9 \times 10^{-6}) \times (37 - 0) = 3.293 \times 10^{-4} \text{ m}$$

 $L = L_0 + \Delta L = 1 + (3.293 \times 10^{-4}) = 1.0003293 \text{ m}$

 ٢- عند درجة حرارة الغرفة c 25°c وجد أن قطر كرة مصمتة من الشبه 4cm و أن القطر الداخلي لحلقة حديدية 3.95 cm ، احسبي درجة الحرارة التي يجب أن تسخن إليها الحلقة $0.11 \times 10^{-6} \ 1/^{\circ} c$ حتى تكاد تمر الكرة في الحلقة ، علماً بأن معامل التمدد الطولي للحديد

الحل

$$\leftarrow 4 cm$$
 عند الدرجة T_2 يكون القطر الداخلي للحلقة مساوياً لقطر الكرة T_2 عند الدرجة $L=L_0[1+lpha(T_2-T_1)]$ $T_2=\dfrac{\left(\dfrac{L}{L_0}\right)-1+lpha T_1}{lpha}$

$$T_2 = \frac{\left(\frac{4}{3.5}\right) - 1 + (0.11 \times 10^{-6})(25)}{0.11 \times 10^{-6}}$$
$$= 13012^{\circ}c$$

 $^{\rm T-}$ صفيحة من الصلب مساحتها $1000 {\rm cm}^2$ ، أوجدي مقدار الارتفاع في درجة الحرارة لتصبح مساحتها 1.6×10^{-6} مع العلم أن معامل التمدد الطولي للمادة 10^{-6} 1/ $^{\rm C}$

الحل

$$\gamma=2\alpha=2 imes1.6 imes10^{-6}=2.2 imes10^{-6}\ 1/^{\circ}c$$
 $S=S_{0}(1+\gamma\Delta t)$ من العلاقة:
$$\Delta T=\frac{S-S_{0}}{S_{0}\gamma}$$
 من العلاقة:
$$\Delta T=\frac{100.2-1000}{1000 imes2.2 imes10^{-6}}=100^{\circ}c$$

 $20\,^{\circ}\,\mathrm{c}$ ، أوجدي حجمه $0.55\mathrm{m}^3$ عند الدرجة $20\,^{\circ}\,\mathrm{c}$ ، أوجدي حجمه عند الدرجة $0.55\mathrm{m}^3$ مع العلم أن معامل التمدد الطولي للنحاس $0.5\,^{\circ}\,\mathrm{c}$ ، ثم أوجدي مقدار الزيادة في الحجم .

الحل

$$\beta = 3\alpha = 3 \times 1.7 \times 10^{-5} = 5.1 \times 10^{-5} \text{ } 1/\text{°c}$$

$$V = V_0 (1 + \beta \Delta t)$$

$$V = 0.55[1 + (5.1 \times 10^{-5})(100 - 20)]$$

$$= 0.552m^3$$

$$\Delta V = V - V_0 = 0.552 - 0.55 = 0.002 \text{ m}^3$$

 $^{\circ}$ -يسخن دورق يحوي $^{\circ}$ cm من سائل من الدرجة $^{\circ}$ c الدرجة $^{\circ}$ 150 الدرجة $^{\circ}$ 6 فأصبح حجمه $^{\circ}$ 52 cm ، احسبي معامل التمدد الحقيقي لهذا السائل

الحل

$$\alpha = \frac{V_t - V_0}{V_0 \Delta T} \implies$$

$$\alpha = \frac{52 - 50}{50(150 - 10)} = 0.00029 \text{ 1/°C}$$

φ Expansion of Gases تمدد الغازات

يتغير حجم الغاز تغيراً كبيراً إذا تغيرت درجة حرارته عند ثبوت الضغط المسلط عليه، ان قيمة معامل التمدد الحجمي للغازات تكاد تكون ثابتة تقريباً. ان قيمة معامل التمدد الحجمي لغاز الهيدروجين تساوي ($^{-3}$ 3.66 × $^{-3}$ 10 لكل درجة حرارية، ويزيد قليلاً عن هذه القيمة لبقية الغازات. ويمكن الحصول على معامل التمدد الحجمي للغاز ($^{-3}$) من المعادلة الآتية:

$$\phi \; = \; \frac{\Delta \, V \, / \, V_{\text{o}}}{\Delta \, T}$$

إذ ان V_0 تمثل حجم كتلة معينة من غاز عند درجة حرارة V_0 . ان الإشارة إلى حجم الغاز عند درجة حرارة V_0 ضروري جداً لان معامل التمدد الحجمي للغاز كبير جداً. إذا كان V_1 و V_2 تمثلان حجم الغاز عند

درجتي الحرارة T_1 و T_2 على الترتيب، فانه لا يصبح تطبيق المعادلة الآتية:

$$V_2 = V_1 \left[1 + \varphi \left(T_2 - T_1 \right) \right]$$

بل يجب ان يشار إلى ان القيم V_1 و V_2 نسبة إلى الحجم V_0 عند درجة حرارة 0° C ، وكما يأتى:

$$= V_o (1 + \phi T_2)$$

$$= V_0 (1 + \varphi T_1)$$

وبقسمة المعادلة الأولى على الثانية نحصل على المعادلة الاتية:

$$\cdot = \frac{1 + \varphi T_2}{1 + \varphi T_1}$$

وقد وجد عملياً ان معامل التمدد الحجمي للغاز يكافيء تقريباً (1/273). وهو ما يعرف بقانون جارلس الذي ينص على: ان حجم كتلة معينة من غاز محفوظ تحت ضغط ثابت، يزداد بنسبة ثابتة تعادل (1/273) من حجمة عند درجة حرارة °C لكل زيادة في درجة حرارته مقدارها درجة حرارية واحدة

ان هذا القانون يعني ان حجم الغاز سيصبح صفراً عند درجة حرارة 273°C - . إلا ان جميع الغازات تتحول إلى الحالة السائلة لها قبل الوصول إلى درجة حرارة الصفر الوصول إلى درجة حرارة الصفر المطلق). وهذا يعني ان قانون جارلس لا يصح تطبيقه عند درجات الحرارة الواطئة.

مسائل

س أ : جد مقدار التغير في طول قضيب من النحاس طوله $0.08~{\rm m}$ اذا تغيرت درجة حرارته من $15^{\circ}{\rm C}$ الله $15^{\circ}{\rm C}$ علماً ان قيمة معامل التمدد الطولي للنحاس يساوي $17~{\rm x}~10^{-6}~{\rm c}^{-1}$.

الحل:

$$L_\circ = 0.8\,\mathrm{m}$$
 بما ان $\Delta T = 35\,-\,15\,=\,20\,^\circ\mathrm{C}$

$$\alpha = 17 \times 10^{-6} \, {}^{\circ}\text{C}^{-1}$$

$$\Delta L = L - L_0 = \alpha L_0 \Delta T$$

$$\Delta L = 17 \times 10^{-6} \, {}^{\circ}C^{-1} \times 0.8 \, m \times 20 \, {}^{\circ}C$$

$$\Delta L = 272 \ x \ 10^{-6} \ m = 0.272 \ mm$$

2.5 m ين التغير في طول قطعة نحاس على شكل قضيب طولها 2.5 m إذا ارتفعت درجة حرارتها من 2.5°C الى 2.5°C الى 2.5°C الى 2.5°C الى 2.5°C الكمادة النحاس 1.5°C . 1.5°C الكمادة النحاس 1.5°C . 1.5°C الكمادة النحاس الحل :

$$L_{o} = 2.5 \text{ m}$$
 بما ان

$$\Delta T = 25 - 15 = 10 \,^{\circ} C$$

$$\alpha = 17 \times 10^{-6} \, {}^{\circ}\text{C}^{-1}$$

$$\Delta L = \alpha L_o \Delta T$$

$$\Delta L = 17 \times 10^{-6} \, {}^{\circ}C^{-1} \times 2.5 \, \text{m} \times 10^{\circ}C$$

$$\Delta L = 425 \times 10^{-6} m$$

$$\Delta L = 0.425 \ mm$$

مقدار الزيادة في الطول

الجو من $^{\circ}$ 0 الى $^{\circ}$ 1 علماً ان قيمة معامل التمدد الطولي للخرسانة تساوي $^{\circ}$ 1 12 x $^{\circ}$ 1 الحو من $^{\circ}$ 1 الى $^{\circ}$ 1 الى $^{\circ}$ 1 علماً ان قيمة معامل التمدد الطولي للخرسانة تساوي $^{\circ}$ 1 . $^{\circ}$ 1.

الحل : يجب تحويل الدرجات الفهرنهايتية إلى درجات سليزية، واستخدام المعادلة الآتية:

$$^{\circ}C = \frac{5}{9} (^{\circ}F - 32)$$
 $^{\circ}C = \frac{5}{9} (0 - 32)$
 $^{\circ}C = -17.77 \,^{\circ}C = T_{1}$ $^{\circ}C = \frac{5}{9} (113 - 32)$
 $^{\circ}C = 45 \,^{\circ}C = T_{2}$

$$\Delta T = T_2 - T_1 = 45 - (-17.77) = 62.77 \,^{\circ}\text{C}$$

 $\Delta L = \alpha L_0 \, \Delta T = 12 \times 10^{-6} \,^{\circ}\text{C}^{-1} \times 20 \,\text{m} \times 62.77 \,^{\circ}\text{C}$
 $= 1.5064 \times 10^{-2} \,\text{m} = 1.5064 \,\text{cm}$

يس 4 : جد كمية الماء التي ستنسكب من وعاء زجاجي سعته 250 cm³ مملوء تماماً بالماء التي ستنسكب من وعاء زجاجي سعته 250 cm³ بالماء التي ستنسكب من 25° C الى 25° C علماً بان قيمة معامل التمدد الحجمي للماء $2.1 \times 10^{-4} \, ^{\circ}$ C -1 $0.09 \times 10^{-4} \, ^{\circ}$ C -1

الحل:

محاضرات في الحرارة والديناميكا الحرارية – د/ بدرى النوبي محمد – قسم الفيزياء/كلية العلوم بقنا / جامعة جنوب الوادى

عندما تتغير درجة الحرارة من 2°C الى 65°C فان كلا من الوعاء الزجاجي والماء سوف يتمددان. ان مقدار الماء الذي ينسكب سيكون مساوياً الى الفرق بين حجمي الماء والوعاء الزجاجي الذي يحتويه.

$$\Delta T = 65 \,^{\circ}C - 25 \,^{\circ}C = 40 \,^{\circ}C$$

وعليه فان التغير في درجة الحرارة يساوي:

أما التغير في حجم الوعاء الزجاجي فانه يساوي:

$$\Delta V_g = \gamma_g V_o \Delta T$$

= 0.09 x 10⁻⁴ °C⁻¹ x 250 cm³ x 40 °C
= 0.09 cm³

التغير في حجم الماء $\Delta \, V_{\rm w}$ سيكون مساوياً الى :

$$\Delta V_{\rm w} = \gamma_{\rm w} V_{\rm o} \Delta T$$

= 2.1 x 10⁻⁴ °C⁻¹ x 250 cm³ x 40 °C
= 2.1 cm³

وعليه فان حجم الماء المسكوب سيكون مساوياً الى:

$$\Delta V_{\rm w} - \Delta V_{\rm g} = 2.1 - 0.09$$

= 2.01cm³

س 5 : قضيب معدني طوله m 1.5 m ومساحة مقطعة العرضي 2 cm² ، وضع احد طرفية في ماء مغلي ووضع الطرف الآخر في خليط الثلج والماء. جد كمية الحرارة المنتقلة خلال القضيب خلال زمن مقدارة 10 min ؟ علماً بان الموصلية الحرارية تساوي 0.2 cal/cm.s.°C .

الحل:

$$Q = K_L At \frac{(T_1 - T_2)}{L}$$

$$Q = 0.2 \text{ cal/cm.s.}^{\circ} C \times 2 \text{ cm} \times 10 \times 60 \text{ s} \frac{(100^{\circ} C - 0^{\circ} C)}{150 \text{ cm}}$$

$$Q = 160 \text{ cal}$$

الفصل الثالث

طرق انتقال المرارة

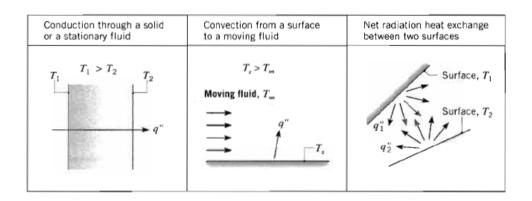
مقدمة

الحرارة هي طاقة في حالة عبور ناشئة عن الفرق في درجات الحرارة. وانتقال الحرارة هو الذي يتعامل مع الأليات المسئولة عن انتقال للطاقة من مكان الي آخر عند وجود فرق في درجات الحرارة ، أي أنه سوف يحدث انتقال للحرارة بين سطحين أو جسمين طالما أن هناك فرق في درجات الحرارة . واتجاه سريان الحرارة سوف يكون من المنطقة ذات درجات الحرارة المرتفعة إلي المنطقة ذات درجات الحرارة المنخفضة .

حيث يتناول هذا الفرع من العلوم انتقال الطاقة الحرارية بين اجسام المواد المختلفة والتي ترجع الى الفروق في درجات الحرارة أي ان انتقال الطاقة هنا يكون نتيجة لفرق درجات الحرارة بين الاجسام ، بينما فرع الديناميكا الحرارية يعرف انتقال الطاقة على انه نتيجة لفرق في كمية الحرارة بين المنظومه من الداخل و الخارج . علم انتقال الحرارة لايبحث فقط في توضيح كيفية حدوث انتقال الطاقة ولكن ايضا يقدم توقع علمي لمعدلات انتقال الطاقة تحت ظروف متباينة وأثناء حدوث أي تغير في درجات حرارة الاجسام وفي أي فترة زمنية من عملية انتقال الحرارة ، وأدل مثال على ذلك هو اثناء تبريد عمود معدني ساخن في اناء ماء فان علم الديناميكا الحرارية يعطينا فقط توقع لدرجة الحرارة النهائية المتزنة للماء والعمود المعدني ، ولكن لايقدم أو يوضح الفترة الزمنية التي قضيت حتى يتم الأتزان الحراري بين الماء والعمود المعدني ، كذلك لايعطي توضيح لدرجة حرارة العمود المعدني عند أي فترة زمنية متوسطة من عملية التبريد وقبل حدوث الأتزان الحراري . ولكن انتقال الحرارة يمكن ان يعطي توقع سليم عملية التبريد وقبل حدوث الأتزان الحراري . ولكن انتقال الحرارة يمكن ان يعطي توقع سليم لدرجة حرارة المعدني . فدلة المعدن وايضا الماء عند اي فترة زمنية (كدالة للزمن).

ومع تناقص الطاقة في الوقت الحاضر ، يصبح من الاهمية الكبيرة دراسة انتقال الحرارة ، بحيث نستطيع استخدام مخزون الطاقة الحالي بكفاءة عالية وذلك بتحسين طرق نقل الطاقة وتقليل الفاقد وزيادة الكفاءة ، وبالتالي يمكننا الاعتماد على مصادر الطاقة المحدودة بانماط اقتصادية.

جميع عمليات حفظ المنتجات الغذائية تتم برفع أو بخفض درجات الحرارة (أي عمليات التبريد و التسخين) وهي ايضا تعتبر من أكثر العمليات شيوعا في مصانع الأغذية.


ويوجد نسبة بسيطة جدا من الأغذية المصنعة لا تتعرض لنوع أو أخر من عمليات التسخين والتبريد خلال خط إنتاجها في المصنع. وحيث أن أنتقال الحرارة هي وحدة التشغيل (Unit) المسئولة عن عمليات التسخين والتبريد فلابد أن نوليها عناية خاصة عند الحديث عن تصميم العمليات الحرارية داخل مصانع الأغذية.

طرق إنتقال الحرارة:

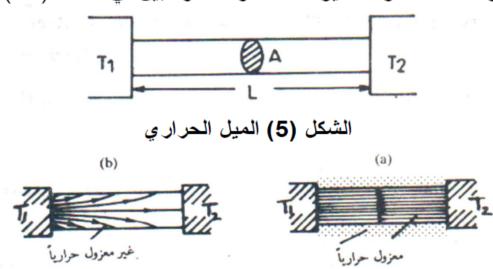
۱-التوصيل (conduction): وتنتقل الحراة بالتوصيل من جسم إلي آخر بواسطة الإتصال المباشر أو التصادم العشوائي بدون أي حركة لكتلة المادة وإنتقال الحرارة وقد يكون توصيلا مستقرا اي بمعدل ثابت أو غير مستقر بمعدل متغير.

Y-الحمل (convection): يحدث هذا النوع من إنتقال الحرارة في الموائع (السوائل والغازات) وذلك أثناء سريانها داخل أو خارج المواسير أو سريانها على الأسطح الساخنة أو الباردة، ويتم إنتقال الحرارة بالحمل نتيجة لحركة جزئيات المائع وهي محملة بالحرارة حيث تصطدم مع جزئيات آخري أقل منها في درجة الحرارة وبالتالي تكسبها جزء من حرارتها، ويلاحظ أن انتقال الحرارة بالتوصيل أسرع من انتقال الحرارة بالحمل، هذا ويكون اما حملا حرا او حملا جبريا.

٣-الإشعاع (radiation): هو إنتقال للموجات الكهرومغناطيسية من مصدر مشع إلي آخر خلال الفراغ الذي قد يكون أو لا يكون مشغولا بالمادة .

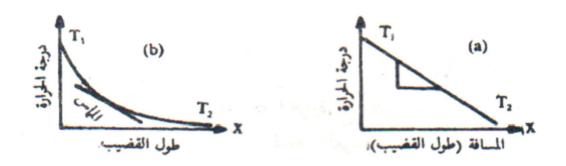
شكل (١-١) طرق انتقال الحرارة الثلاثة بالتوصيل ، الحمل والاشعاع.

ويقدم هذا الفصل مقدمة سريعة لطرق إنتقال الحرارة وسوف يتم دراسة هذه الطرق كل على حدة بطريقة تفصيلية الفصول اللاحقة.


طريقة التوصيل Conduction Method

من المعروف انه إذا تلامس جسمان فإن الحرارة تتقل من الجسم الساخن إلى الجسم الأقل سخونة، وبتعبير آخر تتقل الحرارة من الجسم ذي درجة الحرارة المرتفعة إلى الجسم ذي درجة الحرارة الأقل، ويتوقف انتقال الحرارة بين الجسمين عندما تتساوى درجتا حرارتيهما ويتحقق التوازن الحراري. ان انتقال الحرارة بين الأجسام يعنى انتقال الطاقة الحرارية من الجزء الساخن إلى الجزء البارد. فإذا عرفنا ان الحركة الاهتزازية لجسيمات المادة تمثل معظم الطاقة الحرارية في المادة، فإن جسيمات الجزء الساخن تكون ذات سعة اهتزازية اكبر من جزيئات الجزء البارد، ونتيجة التصادم بين هذه الجسيمات والجسيمات المجاورة تتتقل اليها جزءاً من طاقتها الحرارية، أي تزداد سعة اهتزازها وهذه بدورها تعمل على نقل الطاقة الحرارية بالتصادم إلى الجسيمات المجاورة، وهكذا تستمر العملية إلى ان تكتسب جميع الجسيمات نفس معدل الطاقة الحرارية، وعندها يتوقف انتقال الحرارة. أن انتقال الحرارة في الأجسام الصلبة يتم بوساطة التصادمات الجزيئية، وتسمى هذه الطريقة لانتقال الحرارة في الأجسام الصلبة بالتوصيل. وتكون المعادن جيدة التوصيل الحراري، وبصورة عامة تكون الموصلات الجيدة التوصيلية الكهربائية موصلات حرارية جيدة لان

الكترونات التكافؤ تتحرك بحرية تامة تقريباً خلال المعدن حاملة معها الحرارة إلى أجزاء المعدن المختلفة.


الميل الحراري Temperature gradient

يعرف الميل الحراري على انه تغير درجة الحرارة مع تغير المسافة على طول الجسم. نأخذ قضيباً معدنياً طوله (L) ومساحة مقطعه العرضي على طول الجسم. نأخذ قضيباً معدنياً طوله (L) ومساحة مقطعه العرضي (A) ودرجة حرارته (T) ،متصلاً بجهازين (خزانين) درجتا حرارتهما T_2 و T_2 (افرض ان T_2 > T) كما هو موضح في الشكل (5)، وكما هو معلوم بأن الحرارة تنساب من الطرف الساخن إلى الطرف البارد، إلا ان شكل خطوط انتقال الحرارة خلال المادة يعتمد أساسا على طريقة العزل الحراري للمادة. فعندما يغلف القضيب بمادة عازلة للحرارة، نرى ان خطوط انتقال الحرارة تكون بصورة مستقيمة ومنتظمة وكما هو مبين في الشكل (6a). أما في حالة عدم عزل القضيب حراريا فان خطوط انتقال الحرارة تسلك مسارات غير منتظمة وكما هو مبين في المدرارة تسلك مسارات غير منتظمة وكما هو مبين في الشكل (6b).

الشكل (6) خطوط انتقال الحرارة في المادة الصلبة

ففي كلتا الحالتين، وبعد مرور فترة زمنية كافية تستقر درجة حرارة الأجزاء المختلفة من المعدن عند قيم ثابتة لا تتغير، وهذه الحالة تسمى الحالة الثابتة (أو المستقرة) steady state. يبين الشكل (7) العلاقة بين درجات الحرارة المقاسة عند مسافات مختلفة على القضيب في الحالتين سواءً كان معزولاً أم غير معزول.

الشكل (7) العلاقة بين درجة الحرارة والمسافة

ان ميل الخط المستقيم في شكل (7a) وميل المماس في شكل (7b) يمثلان تدرج درجة الحرارة Temperature gradient الذي عرفناه سابقاً على انه تغيّر درجة الحرارة مع المسافة على طول المادة عند أية نقطة من نقاطها وعند أية لحظة زمنية، ويرمز لها عادة ب $\frac{\Delta T}{\Delta x}$ ووحدته $\frac{\Delta T}{\Delta x}$ أو $\frac{\Delta T}{\Delta x}$. تنتقل الحرارة دائماً من الجزء الساخن إلى الجزء الأقل سخونة (البارد)، ويعرف التيار الحراري Thermal على انه كمية الحرارة (dQ) المنتقلة أو العابرة لمقطع في المادة خلال فترة زمنية (dt)، أي ان

$$H = \frac{dQ}{dt} \qquad (20)$$

ووحدته هي J/s أو cal/s .

معامل التوصيل الحراري (KL)

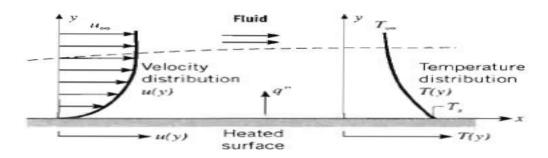
لقد وجد عملياً (تجريبياً) ان التيار الحراري $\frac{\mathrm{dQ}}{\mathrm{d}\,t}$) يتناسب طردياً مع $\frac{\Delta T}{\Delta x}$ مساحة المقطع العرضي وتدرج درجة الحرارة $\frac{\Delta T}{\Delta x}$ ، أي أن $\frac{\mathrm{dQ}}{\mathrm{d}\,t}$ \propto A $\frac{\Delta T}{\Delta x}$

أو

$$\frac{dQ}{dt} = -K_L A \frac{\Delta T}{\Delta x} \qquad \dots (21)$$

إذ ان (K_L) تمثل ثابت التناسب وتسمى بمعامل التوصيل الحراري أو الموصلية الحرارية Thermal Conductivity. تعني الإشارة السالبة ان انسياب الحرارة يكون باتجاه درجة الحرارة الأقل، أي انه كلما زادت المسافة (x) من المصدر الحراري قلت معها درجة الحرارة (T) وهذا يجعل الكمية $(\frac{\Delta T}{\Delta x})$ سالبة الإشارة. ان إضافة الإشارة السالبة في

المعادلة أعلاه يفيد في جعل الكميتين $\frac{dQ}{dt}$) و (K_L) كميتين موجبتين. وتعرف الموصلية الحرارية (K_L) على أنها المعدل الزمني لانسياب الحرارة خلال المادة لوحدة المساحة لكل وحدة تدرج حراري. ومن الصيغ الأخرى للمعادلة (21) بعد تكامل طرفيها الصيغة الآتية:


$$Q = K_L At \frac{(T_1 - T_2)}{L}$$
 (22)

ويسمى هذا القانون أحيانا بقانون فورير (Fouriers Law) ان وحدة K_L هي J/s.m.K أو J/s.m.K . ان الجدول (4) يحتوي على قيم الموصلية الحرارية لبعض المواد.

الجدول (4) قيم الموصلية الحرارية لبعض المواد.

K (cal/cm,sec,°C)	المادة	K (cal/cm, sec C°)	المادة
0.0005	المطاط	1.006	الغضة
0.0005	ورق اسيستوس	0.918	النحاس
0.004	الجليد	0.50	الالمنيوخ
0.0001	الفلين	0.25	البرونز (النحاس الاصفر)
0.00006	الهواء	0.0025	الزجاج
0.00004	الاركون	0.12	الفولاذ
0.000034	الحيليوم	0.0013	الماء

طريقة الحمل Convection Method

يعرف الحمل على انه طريقة انتقال الحرارة من مكان إلى آخر خلال السوائل والغازات وذلك بحركة جزيئات مادة الوسط نفسها من مكان إلى آخر، على عكس حركة جزيئات المادة الصلبة خلال عملية التوصيل الحراري والتي لا تتضمن حركة الجزيئات من مكان إلى آخر، إذ تنتقل الحرارة من جزيء إلى آخر بالتصادم. ومن الأمثلة على انتقال الحرارة بطريقة الحمل تدفئة الغرف في الشتاء بوساطة المدفئات أو جهاز تسخين الماء، إذ تمتص جزيئات الهواء أو السائل كمية من الحرارة من الجزء الساخن فيتمدد الهواء أو السائل أي تقل كثافته فينتقل إلى الجهة الأخرى الساخن فيتمدد الهواء أو السائل أي تقل كثافته فينتقل إلى الجهة الأخرى طاقة حرارية وتكسبها كمية من الحرارة التي امتصتها. ان انتقال المادة (غاز أو سائل) من المنطقة ذات الدرجة الحرارة العالية إلى المنطقة ذات الدرجة الحرارة العالية إلى المنطقة ذات الحراري المنطقة ذات الدرجة الحرارة المائل يعرف على انه الحرارة المكتسبة أو المفقودة من قبل السطح الملامس للغاز أو السائل خلال وحدة الز من.

واعتماداً على الطريقة التي يتولد بها تيار الحمل فانه يكون بصورة عامة على نوعين هما:

- 1- تيار الحمل الطبيعي Natural Convection Current إذا كان ناتجاً عن تغيير كثافة الوسط.
- 2- تيار الحمل الاضطراري Forced Convection Current إذا كان ناتجاً عن تأثير اصطناعي كاستخدام المروحة أو المضخة أو غيرها.

وتعد طريقة الحمل من الطرق الفعالة لانتقال الحرارة وتشكيل تيارات الحمل الهوائية في المناطق الساحلية والجبلية وعند خط الاستواء والقطبين وفي المناطق المدارية.

ان دراسة الحمل بطريقة المعادلات الرياضية ليس شيئا سهلاً وذلك يرجع إلى ان فقدان واكتساب الحرارة من الأجسام الملامسة للمائع (غاز أو سائل) عميلة معقدة رياضيا وتعتمد على كثير من العوامل مثل شكل السطح وكثافة المائع ولزوجته وعلى عوامل أخرى. ويتم أحيانا تعريف معامل الحمل الحراري (Thermal Convection Coefficient (h) حسب المعادلة الآتية:

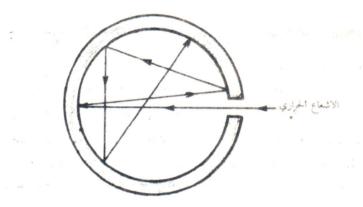
$$h = \frac{H_C}{A \Delta T} \qquad (23)$$

إذ تمثل $H_{\rm C}$ تيار الحمل الحراري و A المساحة و ΔT الفرق بين درجة حرارة السطح والمائع. ان المعادلة في أعلاه تدل على ان (h) تعتمد على الفرق بين درجات الحرارة، وعليه يجب تعيين قيمتها لكل حالة من الحالات.

يمكن إجراء تجربة بسيطة توضح ظاهرة الحمل، فلو أخذنا الأنبوبان الموضحان في الشكل (8) وملأناهما بالماء ووضعت قليل من الصبغة قرب نهايتيهما عند الفتحتين. عند تسخين احد الأنبوبتين بالطريقة المبينة في الشكل (8) نجد ان السائل سبيدا بالانسياب والدوران داخل الأنبوبة، حاملاً معه الصبغة، وبعد فترة من الزمن نجد ان الصبغة قد انتشرت في جميع أنحاء السائل، مما يدل على انتقال جزيئات السائل خلال الأنبوبة ودورانها خلالها. ان سبب هذه الحركة يعود إلى تمدد السائل (تقل كثافته) عند التسخين فيصبح اخف من باقي السائل، ولهذا فانه يحدث اختلال توازن الضغط بين العمودين الأبسر والأيمن، فيرتفع السائل في الطرف السائل ودورانه وبذلك تنتقل الحرارة خلال حركة السائل إلى الأماكن البعيدة من المصدر الحراري، والشيء نفسه يحدث في انتقال الحرارة خلال الغاز أو الهواء. واعتماداً على طريقة انتقال الحرارة بالحمل تُصمم الأجهزة في أنظمة التدفئة بحيث تسمح بالهواء البارد أو السائل البارد بالعودة إلى المصدر الحراري لإكمال الدورة.

طريقة الإشعاع Radiation Method

يتم انتقال الحرارة خلال الفضاء بطريقة الإشعاع. ويقصد بالإشعاع أيضا الانبعاث المتواصل للطاقة من سطوح الأجسام المختلفة إلى الأجسام الأخرى الأقل درجة حرارية ويجب ملاحظة ان الإشعاع الحراري ما هو الأطاقة كهرومغناطيسية تنبعث من الأجسام الساخنة وتنتقل بسرعة الضوء خلال الفضاء. فينعكس جزء من هذه الطاقة ويمتص الجزء الآخر من قبل الأجسام التي تسقط عليها. ان امتصاص الاشعة الكهرومغناطيسية يؤدي إلى تحولها إلى طاقة حرارية وسترتفع حرارة الجسم. ان الحرارة التي تصل إلى الأرض والكواكب الأخرى من الشمس بوساطة الإشعاع الذي ينتقل خلال الفراغ الشاسع ودونما الحاجة إلى وسط مادي لتصل إلى الأرض. لو فرضنا ان جزء الطاقة التي تمتص من قبل الجسم تساوي (a) فان


$$a + r = 1$$
(24)

وفي حالة التوازن الحراري التي تبقى درجة حرارة الجسم عندها ثابتة، فان الجسم يشع كمية من الطاقة الحرارية مساوياً إلى الكمية التي يمتصها، أي ان قابليته الإشعاعية (emissivity) (e) تساوي قابليته الامتصاصية (r) وفي حالة التوازن يكون:

$$a = e$$
(25)

وتعتمد كل من القابلية الإشعاعية والقابلية الامتصاصية على طبيعة الجسم وعلى طول الموجة الكهرومغناطيسية الساقطة. ويطلق على الجسم الذي يمتص جميع الإشعاع الساقط عليه بالجسم الأسود (Body). ويمثل هذا الجسم بفجوة معزولة حرارياً ذات فتحة صغيرة لدخول الإشعاع، الذي يعاني انعكاسات متتالية عن السطح الداخلي للفجوة، وتصمم الفجوة بحيث تصبح فرصة خروج الإشعاع من الفتحة ضئيلة جداً، كما في الشكل (9).

ومن المؤكد ان الجسم الأسود مشع جيد للحرارة مثلما هو ماص جيد لها. وإشعاعية الجسم الأسود تكون اكبر من انعكاسية الأجسام العادية، وبصورة عامة تكون الأجسام ذات الامتصاصية الحرارية الجيدة مشعات حرارية جيدة.

الشكل (9) يوضح الجسم الأسود

ان كمية الإشعاع الحراري (R) التي تنبعث من وحدة المساحة من سطح أسود في الثانية الواحدة تعطى بالعلاقة الاتية:

$$R = \sigma T^4 \qquad \dots (26)$$

إذ تمثل T درجة حرارة الجسم المشع بالدرجات الكلفنية و σ تمثل كمية ثابتة، قيمتها تساوي

 $σ = 5.57 \times 10^{-8} \text{ Joule/m}^2. \text{ s. K}^4$ $δ = 5.57 \times 10^{-5} \text{ erg/cm}^2. \text{ s. K}^4$

ويطلق على العلاقة (26) بقانون ستيفان – بولتزمان – Boltzmann Law . قانون ستيفان – بولتزمان للجسم غير الأسود بالصيغة الآتية:

$$R = e a T^4$$
 (27)

إذ تمثل (e) القابلية الإشعاعية للجسم المذكور.

أما كمية الحرارة المنبعثة (ΔQ) من الجسم الساخن إلى الأجسام الأخرى الأقل درجة حرارية، فانه يمكن كتابتها كما في الصيغة الآتية:

$$\Delta Q = \sigma A (T_{14}^4 - T_{0}^4) t$$
(28)

إذ تمثل t النزمن بالثانية. وتعرف هذه المعادلة بقانون ستيفان. ومن شروط استخدام هذا القانون هو: ان تكون كل من T_1 و T_2 مقاسة بالدرجات الكلفنية والفرق بينهما ليس قليلاً.

مسائل محلولة

1- جعل جدار رأسي مستو مساحته $6m^2$ عند درجة الحرارة الثابتة c^* 116 ، بينما الهواء على جانبيه عند درجة الحرارة c^* 35 . ما هي الحرارة المفقودة من الجدار في الساعة بفعل الحمل الحراري لصفيحة رأسية c^* 1.27×10-3 c^*

الحال

$$\Delta Q = h_c$$
. A. ΔT . Δt (4)

$$\Delta Q = (1.27 \times 10^{-3}) (6)(116-35)(3600) = 2.22 \times 10^{3} \text{ j}$$

٢- أوجدي كمية الحرارة التي تنتقل في دقيقة واحدة بين وجهي لوح من النحاس مساحته 1m²
 و سمكه 10cm و فرق درجة الحرارة بين وجهيه هو 2° c علماً بأن معامل التوصيل الحراري للنحاس هو j/°K.m.s).

$$rac{\Delta Q}{\Delta t} = H = rac{A(T_2 - T_1)}{\sum \binom{L_n}{k_n}}$$
 (3)

$$\frac{\Delta Q}{60} = \frac{(1)(20)(110)}{10 \times 10^{-2}} \Longrightarrow$$

$$\frac{Q}{60} = 22 \times 10^3 \implies Q = 1.32 \times 10^6 \text{ joul}$$

مثال (۳)

الشكل (1) يمثل شريحة معدنية سمكها $2.0cm^2$ ومساحة سطحها $200cm^2$ فإذا كان الفرق في درجات الحرارة بين السطحين المتقابلين الساوي 0.00 جد كمية الحرارة التي ستنتقل خلال الشريحة في زمن 0.00 حدة علما بان 0.00 C.g.s units

الحل:

$$k = .2cgs$$
 $A = 200cm^2$
 T_2
 $x = 0.2cm$
 $T_1 - T_2 = 100^0$
 $t = 1 \min = 60 \sec$

$$Q = kA \frac{T_1 - T_2}{x} t$$

$$Q - 0.2 \times 200 \times \frac{100}{0.2} \times 60$$

$$Q = 12 \times 10^5 cal$$

مثال (٤)

قضيب طوله 30cm ومساحة مقطعه العرضي $5cm^2$ يتكون من جزئيين متساويين في الطول . الجزء AB من النحاس والجزء BC من الحديد ونقطة اتصالهما هي النقطة B كما هو مبين في الشكل (3-7). الطرف A محفوظ عند درجة حرارة 300° والطرف C عند درجة حرارة 300° والطرف C عند درجة سريان الحرارة على طول القضيب معزولة حراريا احسب معدل سريان الحرارة على طول القضيب وذلك عند الوصول إلي حالة الاستقرار علما بأن:

$$K_1 = K_{copper} = 0.9$$
 c.g.s unit $K_2 = K_{iron} = 0.12$ c.gs unit $X_1 = 15$ cm, $X_2 = 15$ cm $A = 5$ cm² $(\Delta T)_1 = 200 - T$, $(\Delta T_2) = T - 0$ $K_1 = 0.9$ c.g.s copper $K_2 = 0.12$ c.g.s iron

بما أن حالة الاستقرار قد تم الوصول إليها فان معدل سريان الحرارة خلال الجزء خلال الجزء الأول AB يساوي معدل سريان الحرارة خلال الجزء الثاني BC وعليه فإنه بعد الوصول إلى حالة الاستقرار فان معدل سريان الحرارة يكون متساوي في كلا الجزأين وعليه فان

$$(\frac{dQ}{dT}) = k_1 A \frac{(T_1 - T)}{x_1}$$

$$= \frac{0.9 \times 5 \times (200 - 176.47)}{15} = 7.059 cal / sec$$

كمية الحرارة وطرق قياسها

الباب الرابع كمية الحرارة وطرق قياسها.

تعريفات هامة

• كمية الحرارة: وتمثل مقدار الطاقة التي يكتسبها الجسم ليبدي رد فعل لاكتسابه تلك الطاقة مثل از دياد درجة حرارته او تمدده او اى نشاط اخر يبديه.

وقد جد بالتجربة العملية أن كمية الحرارة اللازمة لرفع درجة حرارة المادة تختلف حسب طبيعة المادة، فعلى سبيل المثال كمية الحرارة اللازمة لرفع درجة حرارة 1Kg من الماء درجة مئوية واحدة تساوي 14186 ولكن لرفع درجة حرارة 1Kg من النحاس درجة مئوية واحدة يلزم 1Kg ولهذا فإننا نحتاج إلى تعريف كمية فيزيائية جديدة تأخذ في الحسبان طبيعة المادة المكتسبة او الفاقدة للحرارة وهذه الكمية هي

• السعة الحرارية . heat capacity وتعرف السعة الحرارية بأنها مقدار الطاقة الحرارية اللازمة لرفع درجة حرارة المادة درجة مئوية واحدة.

ومن تعريف السعة الحرارية نستنتج أن كمية الحرارة Q التي تضاف للمادة تساوي التغير في درجات الحرارة ΔT مضروبة في السعة الحرارية . C اي ان:

$$Q = C \Delta T$$

وبما ان وحدة كمية الحرارة هي الجول J ، فتكون وحدة السعة الحرارية هي. J من المؤكد بأن السعة الحرارية تتناسب طرديا مع كتلة المادة ولذلك سنقوم بتقسيم السعة الحرارية على الكتلة حتى نحصل على كمية فيزيائية جديدة لا تعتمد على الكتلة وهي السعة الحرارية النوعية specific heat capacity والتي تعتمد فقط على نوع المادة:

$$c = \frac{C}{m} \left(\frac{J}{\circ C.Kg} \right)$$

J/kg. C ووحدة السعة الحرارية النوعية J/kg. C المثلا السعة الحرارية النوعية للماء تساوي C الماء وهذا يعني اننا نحتاج إلى 4186 جول من الطاقة تلزم لرفع واحد كيلو جرام من الماء درجة مئوية واحدة . ونلاحظ ان الماء هو اكثر العناصر سعة حرارية في الطبيعة وذلك لان اجسامنا تحتوي على C من الماء وهذا يجعل درجة حرارة الجسم ثابتة طوال اليوم والا ارتفعت درجة الحرارة في النهار وانخفضت في الليل، كما ان مياه المحيطات والبحار لا تتغير

محاضرات في الحرارة والديناميكا الحرارية – د/ بدرى النوبي محمد – قسم الفيزياء/كلية العلوم بقنا / جامعة جنوب الوادي

درجة حرارتهم بسرعة حفاظا على الكائنات الحية التي فيها وهذا من حكمة الله عز وجل بأن يكون للماء اكبر سعة حرارية أي الاقل تأثرا بتغير درجات الحرارة.

الجدول التالي يبين السعة الحرارية لبعض المواد عند درجة حرارة 25 درجة مئوية (درجة حرارة الغرفة)وعند الضغط الجوي.

Al	900J/kg.C°	wood	1700J/kg.C°
Cu	387J/kg.C°	glass	837J/kg.C°
Ag	129J/kg.C°	water	4186J/kg.C°
Pb	128J/kg.C°	ice	2090J/kg.C°

لاحظ كيف ان السعة الحرارية للماء اكبر مايكون اما بالنسبة للمعادن مثل النحاس والالمنيوم فتلاحظ ان السعة الحرارية النوعية قليلة جداً وهذا ان الحرارة المطلوبة لرفع درجة حرارة المعادن درجة مئوية واحدة اقل بكثير من الحرارة التي تتطلب لرفع درجة حرارة الماء. اما كمية الحرارة فيمكن التعبير عنها بدلالة السعة الحرارية النوعية كالاتي:

$$Q=m c \Delta T$$
 & $(\Delta T=T2-T1)$

وحيث ان الكتلة والسعة الحرارية النوعية كميات موجبة دائما، فإن كمية الحرارة تعتمد على التغير في درجة الحرارة . حيث تكون موجبة اذا اكتسبت المادة حرارة $T_2 > T_1 \to T_2 - T_1 \to T_1$ وتكون سالبة في حالة فقدان الجسم للحرارة $T_1 = -ve$. ($T_2 < T_1 \to T_2 - T_1 = -ve$)

مثال (1): سخنت كتلة من المعدن الى 200oC ثم اسقطت في قدح يحتوي 0.4 كغم من الماء بدرجة حرارة 20 درجة مئوية وبعد قياس درجة التوازن النهائية للنظام وجد انها تساوي 22.4 درجة مئوية الحرارة النوعية للمعدن وما هي الحرارة الكلية المنتقلة الى الماء من المعدن المبرد.

عندما يكون النظام في حالة توازن فهذا يعني حرارة الجسم (المعدن) تصبح متساوية مع حرارة المحيط (الماء) ي ان:

الحرامة المفقودة من المعدن = الحرامة المكتسبة من قبل الماء

: ففرض ان المعدن x كتلته m_x ، ذو سعة حرارية نوعية c_x .

$$m_x \cdot c_x (T_i - T_f) = m_w \cdot c_w (T_f - T_i)$$

$$(0.05kg). c_x(200°C - 22.4°C) = (0.4kg). (\frac{4186J}{kg°C})(22.4°C - 20°C)$$

 $c_x = 453 \text{J/kg.}^{\circ}\text{C}$

اما الحرارة المنتقلة من الماء الى المعدن المبرد فهي نفسها كمية الحرارة التي فقدها الماء المعدن فيكون:

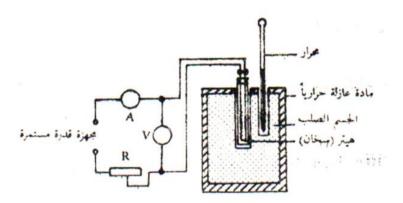
 $Q = m c (T_f - T_i) = 0.05 *453*(22.4-200) = -4020 J$

قياس الحرارة النوعية Specific Heat Measurement

هناك عدة طرق لقياس الحرارة النوعية والتي تختلف فيما بينها باختلاف مديات درجات الحرارة الواطئة أو العالية جداً ومن هذه الطرق ما يأتي:

1- الطريقة الكهربائية لقياس الحرارة النوعية للمواد الصلبة

تستخدم هذه الطريقة لقياس الحرارة النوعية للمواد الصلبة الجيدة التوصيل للحرارة كالنحاس والألمنيوم. إذ تؤخذ قطعة منتظمة الشكل تحتوي على ثقب يثبت فيه سخان كهربائي (هيتر) ومجس حراري (ثرموميتر). تقاس كتلة المادة ودرجة حرارتها الابتدائية، ثم تحاط القطعة المعدنية بمادة عازلة كالصوف الطبيعي أو الاصطناعي أو البولستيرين ويمرر خلال السخان تيار كهربائي (۱) مناسب وتحسب مدة مرور التيار باستخدام ساعة توقيت وتسجل ايضاً قراءات الفولتميتر (۷) والأميتر (۱). عندما ترتفع درجة الحرارة بمقدار مناسب عشر درجات مثلاً يوقف مرور التيار وساعة التوقيت في مناسب عشر درجات مثلاً يوقف مرور التيار وساعة التوقيت في


الوقت نفسه وتسجل أعلى قراءة يصلها المحرار. فإذا فرضنا ان الطاقة الحرارية المتسربة الى المحيط تساوي صفراً، فان

الطاقة الكهربائية التي يزود بها السخان = الطاقة الحرارية التي تزود بها القطعة المعدنية

$$mC(T_2 - T_1) = VIt$$

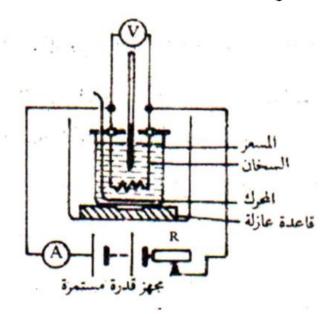
$$C = \frac{V I t}{m (T_2 - T_1)}$$
 (6)

فإذا كانت قيمة التيار بالأمبير والفولتية بالفولت والزمن بالثانية ودرجة الحرارة بالدرجة الكلفنية والكتلة بالغرام فان وحدة الحرارة النوعية هي الجول لكل غرام لكل درجة كلفنية. الشكل (1) يوضح الطريقة الكهربائية لقياس الحرارة النوعية للمواد الصلبة.

الشكل (1) يوضح الطريقة الكهربائية لقياس الحرارة النوعية للمواد الصلبة.

2- الطريقة الكهربائية لقياس الحرارة النوعية للمواد السائلة وهي تشبه الى حد كبير طريقة قياس الحرارة النوعية للمواد الصلبة حيث يستخدم وعاء معدني كمسعر حراري يوضع فيه السائل والسخان الكهربائي والمجس الحراري، يحرك السائل باستمرار خلال

فترة مرور التيار الكهربائي. حيث يتم إيجاد قيم كتلة السائل (m_c) وكتلة المسعر (m_c) ودرجة الحرارة الابتدائية (T_1) والنهائية (V) وقيم الفولتية (V) والتيار (I) والزمن (I). وهنا يجب ان تكون قيمة الحرارة النوعية للمسعر والمحرك معلومة، ويمكن استخدام المعادلة الآتية:


الطاقة التي يزود بها السخان=الطاقة التي اكتسبها السائل+الطاقة التي اكتسبها المسعر والمحرك

$$mC (T_{2} - T_{1}) + m_{c}C_{c}(T_{2} - T_{1}) = V I t$$

$$mC (T_{2} - T_{1}) = V I t - m_{c}C_{c}(T_{2} - T_{1})$$

$$C = \frac{V I t - m_{c}C_{c}(T_{2} - T_{1})}{m (T_{2} - T_{1})} \qquad (7)$$

والشكل (2) يوضح الطريقة الكهربائية لقياس الحرارة النوعية للمواد السائلة.

الشكل (2) يوضح الطريقة الكهربائية لقياس الحرارة النوعية للمواد السائلة

3- طريقة الخلط لايجاد الحرارة النوعية للمواد الصلبة

في هذه الطريقة يتم إيجاد كتلة الجسم الصلب المراد إيجاد حرارته النوعية، ثم يعلق بخيط ويوضع في ماء يغلي لمدة معينة (عشر دقائق مثلاً)، إذ تصبح درجة حرارته (T_3) مساوية الى $(100^{\circ}C)$ ، وبعدها ينقل بسرعة الى مسعر حراري كتلة (m_c) يحتوي على كمية من الماء كتلة (m_w) ودرجة حرارتهما (T_1) ، يحرك الماء ونسجل اعلى درجة حرارة يصلها المحرار (T_2) . عند فرض ان الجسم الصلب لم يفقد حرارة خلال نقلة الى المسعر فان

فإذا كانت الحرارة النوعية للجسم الصلب تساوي (C) والحرارة النوعية للماء (C_w) فانه يمكن الحصول على المعادلة الآتية

$$mC (T_3 - T_2) = m_w C_w (T_2 - T_1) + m_c C_c (T_2 - T_1)$$

$$mC (T_3 - T_2) = (m_w C_w + m_c C_c) (T_2 - T_1)$$

$$C = \frac{(m_w C_w + m_c C_c) (T_2 - T_1)}{m (T_3 - T_2)} \qquad(8)$$

4- طريقة الخلط لإيجاد الحرارة النوعية للمواد السائلة

وهي مشابهة الى الطريقة السابقة (3) حيث يتم اختيار الجسم الصلب بحيث تكون قيمة حرارته النوعية معروفة، وتستخدم المعادلات السابقة نفسها لإيجاد الحرارة النوعية للسائل.

وهناك طرق اخرى لقياس الحرارة النوعية للمواد مثل طريقة الجريان المستمر والطريقة الميكانيكية وطريقة التبريد.

تحولات حالة المادة State Transformation

يطلق على العمليات التي تتغير فيها حالة المادة بعملية التغير في الطور، فمثلاً يحدث تغير في طور المادة المعدنية عند انصهارها وكذلك يحدث تغير في طور السائل عند غليانه وتحوله الى الحالة الغازية (طور البخار). ولكي يحدث التغير في الطور يجب اضافة الحرارة، ولكن على الرغم من اضافة الحرارة الى المادة فان درجة حرارتها لا ترتفع وهذا يعني ان الطاقة الداخلية للمادة هي التي تتغير عندما تتحول المادة من طور الى آخر. ومثال على ذلك الطاقة الداخلية لجزيئات الماء في الثلج هي أقل من الطاقة الداخلية لها في الماء السائل، وتكون الطاقة الداخلية لجزيئات الماء في الثلج هي الماء في بخار الماء اكبر من طاقتها الداخلية بعد ان تتكثف وتصبح سائلاً.

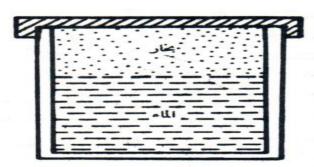
وهناك تحولات من نوع آخر تحدث داخل المادة وتغير من خواصها الفيزيائية أو الكيميائية كالتحولات المغناطيسية والكهربائية وتركيب المادة. يحدث هذا النوع من تغيرات الطور نتيجة لتسخين أو تبريد المادة الى درجة حرارة حرجة. ان هذه التحولات تكون مصحوبة بامتصاص أو تحرير كمية من الطاقة الحرارية فضلاً عن تغيرات خواص المادة.

سنتناول بعض حالات تغير المادة كالتبخر والغليان والانصهار والانجماد وغيرها.

التبخر Evaporation

يمكن ان تعرف الحرارة الكامنة للتبخر على انها كمية الحرارة اللازمة (الطاقة اللازمة) لفصل وحدة الكتلة من جزيئات السائل عن بعضها البعض وتحويلها من طور السيولة الى طور الغاز (البخار) تحت ضغط ثابت ودرجة حرارة ثابتة. وهناك حقيقة اخرى وهي ان نفس كمية الحرارة سوف تنطلق (تتحرر) عندما يتكاثف البخار، أي عندما تتحول جزيئات الغاز (البخار) من طور الغاز (البخار) الى طور السيولة.

اما من ناحية علاقة الحرارة الكامنة للتبخير مع درجة الحرارة فان الحرارة الكامنة تتغير عكسياً مع تغير درجة الحرارة، أي انها تقل كلما ارتفعت درجة حرارة السائل ويعود ذلك الى كون جزيئات السائل تكون اقل ترابطاً مع بعضها عند درجات الحرارة العالية عنها عند درجات الحرارة المنخفضة. ومثال ذلك الحرارة اللازمة لتبخير الماء عند درجة حرارة 00°C تساوي 530 cal/g عند درجة حرارة حرارة 010°C. وغالباً ما تعطى الحرارة الكامنة للتبخير عند درجة غليان السائل العادية، والجدول (2) يبين بعض قيم الحرارة النوعية للتبخير لبعض المواد.


جدول (2) قيم الكامنة لتبخر بعض السوائل

حرارة التبخير cal/g	المادة	
539	الماء	
48 .	النيتروجين	
51	الإوكسجين	
204	كحول اثيلي (ايثانول)	
71	الزئبق	
475	الزنك	
175	الرصاص	
122	حامض الكبريتيك	

إن معظم الحرارة الكامنة للتبخير تصرف للتغلب على قوة التجاذب الكبيرة لجزيئات المادة في حالة السيولة وبصرف جزء قليل منها كشغل خلال عملية التمدد ضد الضغط المسلط على السائل (كالضغط الجوي).

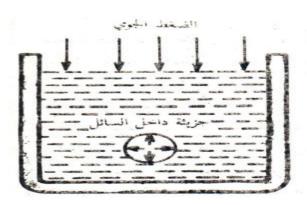
اما وحدات قياس الحرارة الكامنة للتبخر فهي J/g أو J/Kg. وفي نظام الوحدات العالمي (SI) فيستخدم وحدة J/Kg.

اذا وضع سائل في وعاء مغلق مفرغ من الهواء، فان جزيئات السائل سوف تتبخر الى الفراغ الموجود فوق سطح السائل، كما وتعود بعض جزئيات البخار وتصطدم بسطح السائل وتعود اليه، وتستمر هذه العملية الى ان تحصل حالة التوازن، وهي الحالة التي تتساوى فيها عدد الجزيئات التي تترك السائل في زمن معين مع الجزيئات التي تعود اليه من البخار في نفس الزمن. وهذا يعني ان عدد جزيئات البخار ستبقى ثابتة عند حد معين بشرط عدم تغير درجة حرارة النظام، ويقال عندئذ بان البخار مشبعاً تحت هذه الظروف. ويطلق على ضغط الجزيئات في البخار تحت هذه الشروط بضغط البخار للسائل، الذي يزداد بارتفاع درجة الحرارة ويقل بانخفاضها. مثال ذلك يكون ضغط بخار الماء 20.1 و 49.4 و 760 ملم زئبق عند درجة حرارة 10 و60 و 100 درجة سليزية على التوالي. ملاحظة 1ملم زئبق يساوي 1تور (1mm Hg = 1Torr). الشكل ملاحظة 1ملم زئبق يساوي 1تور (1mm Hg = 1Torr). الشكل

الشكل (5) يوضح حالة البخار المشبع

الانصهار Melting

تعرف الحرارة الكامنة لانصبهار على انها كمية الحرارة اللازمة لتحول وحدة الكتلة من المادة من الحالة الصلبة الى الحالة السائلة تحت درجة حرارة ثابتة وضغط ثابت. والجدول (3) يبين قيم الحرارة الكامنة لانصبهار بعض المواد الصلبة. وبما ان الطاقة الداخلية للمادة في حالتها السائلة اعلى بكثير من طاقتها الداخلية في حالتها الصلبة، فان المادة عند تحويلها من الحالة الصلبة الى الحالة السائلة تحتاج الى تزويدها بالطاقة الحرارية مثلاً.

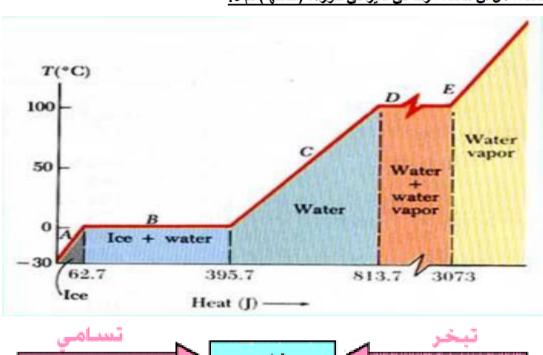

ان وحدة قياس الحرارة الكامنة للانصهار هي cal/g. اما في نظام (SI) فانها تساوي (J/Kg). ان الحرارة الكامنة لانصهار الجليد في درجة حرارة 0°C هي 80 cal/g تحت الضغط الجوي الاعتيادي. ان الطاقة المجهزة للجسم الصلب تعمل على مساعدة الجزيئات على التغلب على القوى التي تربطها مع الجزيئات الأخرى في التركيب الصلب وجعلها تتحرك بحرية اكبر. تبدأ المادة الصلبة عند تسخينها بالانصهار عند درجة حرارة معينة. وعند تسخين خليط المادة الصلبة مع السائل تبقى درجة حرارة الخليط ثابتة الى ان يكتمل انصهار المادة الصلبة. ولكل مادة درجة حرارة انصهار معينة. وتحرر نفس الكمية من الحرارة من المادة عند تحويلها من الحالة السائلة الى الحالة الصلبة عند نفس درجة الحرارة والضغط الجوي. تمتص الحرارة الكامنة لعرق الجسم من الجسم عند التعرق لكي يتبخر العرق وبذلك يتم تبريد الجسم.

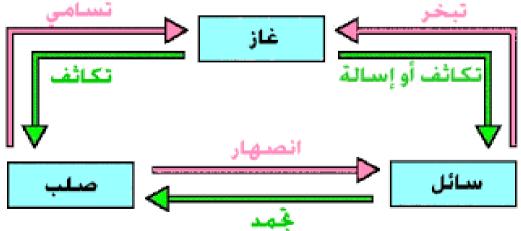
الغليان Boiling

تنشأ ظاهرة الغليان عندما تكتسب مجموعة من الجزيئات في داخل السائل طاقة تكفي لفصلها عن بقية الجزيئات وتكوين فقاعة صغيرة. ان ضغط البخار داخل الفقاعة يعتمد على درجة الحرارة، فإذا كانت درجة الحرارة أقل من درجة غليان السائل، فإن الضغط الجوي المسلط على السائل يكون اكبر من ضغط البخار داخل الفقاعة. وبناء على ذلك فإن

الفقاعة سوف تتلاشى تدريجياً قبل ان تجد الفرصة للنمو والوصول الى سطح السائل. وعندما ترتفع درجة الحرارة (كما في حالة تسخين السائل) يرتفع معها ضغط بخار السائل داخل الفقاعات وسوف يصل الى درجة حرارة معينة يتساوى عندها الضغط الجوي مع ضغط البخار داخل الفقاعة، وعندها سوف تنمو الفقاعة ويزداد حجمها كلما ارتفعت نحو سطح السائل (بدلاً من التلاشي والاختفاء) وبتكرار حدوث هذه الظاهرة في اماكن متفرقة كثيرة داخل السائل تنشأ ظاهرة الغليان. والشكل (6) يوضح ظاهرة الغليان.

وتعرف درجة الغليان على انها الدرجة الحرارية التي يتساوى عندها ضغط بخار السائل داخل الفقاعة مع الضغط الخارجي المسلط على السائل. ان انخفاض الضغط المسلط على السائل بؤدي الى انخفاض درجة غليان السائل والعكس صحيح. ان عملية هروب بخار السائل بحتاج الي طاقة عالية تكتسبها من جزيئات السائل الأخرى. ان الاستمرار في الغليان يحتاج الى امداد السائل بالحرارة. ولن ترتفع درجة حرارة السائل اعلى من درجة حرارة الغليان مهما كانت كمية الحرارة التي يزود بها السائل خلال عملية الغليان. تتكون الفقاعة بسهولة اكبر اذا كان السائل يحتوي على الشوائب كدقائق الغبار أو فقاعات الهواء، ومن الممكن ان يسخن السائل النقي الى اعلى من درجة غليانه من دون تكون الفقاعات، ولكن عندما ببدأ تكوين الفقاعات فانه يحدث بشدة كبيرة تقرب من الانفجار. تعطى درجة الغليان (في الغالب) لمختلف السوائل تحت الضغط الجوي القياسي اي 760mmHg أو (1atm). ان درجة حرارة غليان الماء تساوى 100°C تحت نفس الظروف. اما الحرارة الكامنة لتبخير الماء تحت الظروف السابقة فتساوي 539cal/g. ان درجة غليان الماء في المدن الواقعة في الجبال تكون اقل من 100°C. وذلك بسبب ان الضغط الجوي يقل كلما ارتفعنا عن سطح البحر. وهذا يفسر لنا اهمية استخدام قدور الضغط في عمليات الطهو.




الشكل (6) يوضح ظاهرة الغليان

التسامي The Sublimation

لا يمكن ان تبقى المادة في حالتها السائلة تحت ضغط اقل من ضغط نقطتها الثلاثية، يسمى منحني الضغط - درجة الحرارة الفاصل بين الحالة الصلبة وحالة البخار بمنحني التسامي، لانه يمثل الظروف المناسبة لجزيئات الحالة الصلبة للتبخر مباشرة دون المرور بالحالة السائلة بالعكس. ان اضافة الحرارة الى الثلج تحت الضغط الجوي الاعتيادي يسبب انصهار الثلج، اي الانتقال من الحالة الصلبة الى الحالة السائلة والسبب في ذلك يعود الى ان ضغط النقطة الثلاثية للماء اقل بكثير من الضغط الجوي الاعتيادي. بينما اضافة الحرارة الى صلب ثنائي اوكسيد الكاربون تسبب حالة التسامي أي الانتقال من الحالة الصلبة الى الحالة البخارية لان ضغط النقطة الثلاثية لثنائي اوكسيد الكاربون اعلى بكثير من البخارية لان ضغط النقطة الثلاثية لثنائي اوكسيد الكاربون اعلى بكثير من الضغط الجوي الاعتيادي.

لذلك يجب الانتباه عند حل السؤال المتعلق بكمية الحراة والحرارة الكامنة الى تأثير درجة الحرارة على المادة، هل ان المادة مرت فى تغير فى طورها (حالتها) ام لا.

مسائل

س1: إذا كان معدل انسياب سائل خلال مسعر الانسياب المستمر تساوي 15g/s، وان السخان الكهربائي يقوم بتزويد قدرة مقدارها W 200. تحت هذه الظروف تم الحصول على فرق في درجة الحرارة مقدارها °3، ولأجل الحصول على نفس الفرق في درجات الحرارة تحت معدل انسياب مقداره 5g/s يجب تبديد قدره مقدارها W 80. جد الحرارة النوعية للسائل ومعدل فقدان الحرارة إلى المحيط. افرض أن درجة حرارة المحيط هي نفسها في الحالتين.

الحل:

1W = J/s1

الطاقة الكهربائية للحالة الأولى = 200 J/s

الطاقة الكهر بائية للحالة الثانية = 200 J/s

 $T\Delta m C = كمية الحرارة المكتسبة بواسطة الماء في الثانية الواحدة$

 $T = T_2 - T_1 = 3 \,^{\circ}C \,^{\circ}\Delta$

نفرض أن معدل فقدان الحرارة إلى المحيط خلال الثانية الواحدة = H

كمية الحرارة المكتسبة = كمية الحرارة المفقودة

في الحالة الأولى J/s= (15x10⁻³ Kg/s) C (3K) + H

في الحالة الثانية (5x10⁻³ Kg/s) x C x (3K) + H وبطرح الحالة الثانية من الحالة الأولى نجد

 $(200 - 80) \text{ J/s} = (15 - 5) \times 10^{-3} \text{ Kg/s} \times \text{C} \times (3\text{K})$

$$120 \text{ J/s} = 30 \times 10^{-3} \text{ Kg/s} \times \text{C}$$

$$C = \frac{120 \text{ J/s}}{30 \text{ x} 10^{-3} \text{Kg.K/s}} = 4 \text{ x} 10^{3} \text{J/Kg.K}$$

بالتعويض عن C في الحالة الأولى أو الثانية نجد أن

200 J/s = $(15x10^{-3} \text{ Kg/s}) (4x10^{3} \text{ J/ Kg.K}) (3\text{K}) + \text{H}$

200 J/s = 180 J/s + H

H = 200 J/s - 180 J/s

H = 20 J/s

س2: سخنت قطعة من النحاس كتلتها g 100 إلى درجة حرارة 100° C ونقلت إلى مسعر النحاس جيد العزل كتلتة g 50 يحتوي على 200 g 200 من الماء عند درجة حرارة g 10°C. جد القيمة النهائية لدرجة حرارة الماء مع العلم إن الحرارة النوعية للنحاس تساوي f 4 f 200 f وللماء تساوي f 3 f 4 f 4 f 6 أهمل أي فقدان في درجة الحرارة إلى المحيط.

الحل:

$$T_2 = \text{id}_{C}$$
 is its interval in the second se

$$T^{\Delta}$$
 m C = mixed line line line line | Tau |

س⁴: جد مقدار التغير في الطاقة الداخلية لنظام يتكون من 1g من الماء المقطر يتحول إلى بخار تحت الضغط الجوي الاعتيادي في درجة حرارة 100°C. وكان 1cm3 من الماء المقطر يشغل 167 cm3 في حالة البخار تحت نفس الضغط. وان الحرارة الكامنة للتبخر تساوي 40. cal/g

الحل:

$$Q = mL$$

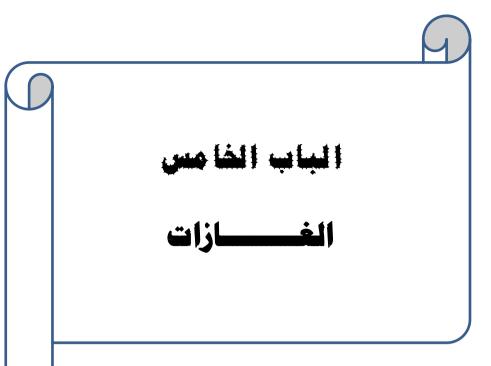
 $Q = 1g \times 540 \text{ cal/g}$

$$Q = 540 \text{ cal}$$

$$W = P(V_f - V_i)$$

$$W = 1.01 \times 10^{5} N/ m^{2} (1671 - 1) \times 10^{-6} m^{3}$$

W = 168.67 Joule


$$= \frac{168.76}{4.186} = 40.293 \,\text{cal}$$

و عليه فان الزيادة في الطاقة الداخلية للنظام تكون مساوية إلى Δ \mathbf{U} ، أي أن

$$\Delta U = U_2 - U_1 = Q - P(V_f - V_i)$$

$$\Delta U = 540 \text{ cal} - 40.293 \text{ cal}$$

$$\Delta U = 499.707$$
 cal

الفصل الخامس

الغازات

مقدمة

تتكون الغازات من جزيئات صغيرة، تكون الجزيئات مستقلة تقريباً بعضها عن البعض ، أي لا تؤثر بعضها على البعض الآخر بأي قوى ما عدا في لحظات تصادمها. كما انها في حركة مستمرة وتتجول في الفضاء (space) متصادمة مع بعضها من دون ان تتلاصق نتيجة هذا التصادم. تكون الطاقة الحركية لجزيئات الغاز كافية للتغلب على القوى الضئيلة التي تربط بين هذه الجزيئات. كما وتكون جزيئات الغاز متباعدة كثيراً عن بعضها، اذ يقدر معدل المسافة بين الجزيئات بعشرة امثال قطر الجزيئة تقريباً. تكون سرعة جزيئات الغاز (في الأحوال الاعتيادية) مقاربة لسرعة الصوت في الهواء (أي 300 الى 400 متر في الثانية)، وبناء على ذلك يكون المعدل الزمني لعدد التصادمات بين جزيئات الغاز بحدود 10⁹ تصادم لكل ثانية. وتؤدى التصادمات بين جزيئات الغاز وجدران الوعاء الذي يحتويه الى تكوين الضغط المؤثر على هذه الجدران. ان تباعد جزيئات الغاز بعضها عن البعض الأخر بمسافات اكبر من اقطار هذه الجزيئات ادى الى انعدام الاحتكاك الداخلي بينها، والى هذا السبب ايضاً تعزى قابلية الغازات على الانكماش لكونها لا تمتلك شكلا محدداً ولا حجماً ثابتاً، اذ تملأ جزيئات الغاز كل أنحاء الوعاء الذي توضع فيه.

ان التغيرات التي تطرأ (اثناء تصادم الجزيئات) على قيمة واتجاه سرعة أحد الجزيئات يقابله تغير معاكس (مضاد) في قيمة سرعة الجزيئة الثانية واتجاهها، اذ يكون معدل التغير في القيمة والاتجاه لسرع الجزيئات المختلفة مساوياً للصفر، وعلى هذا الأساس يكون للكتلة المعينة المتزنة من الغاز وعند درجة الحرارة الثابتة ما يأتى:

- 1- تكون اتجاهات حركة الجزيئات موزعة بالتساوي على جميع الاتجاهات
- 2- يكون معدل الطاقة الحركية لجميع جزيئات الغاز متساوية، ويعتمد على درجة الحرارة.

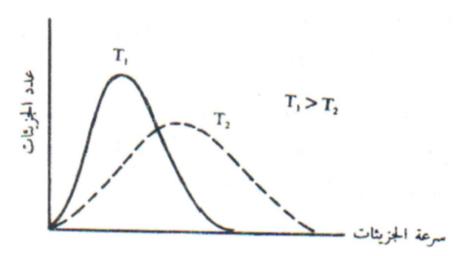
الغاز المثالي The Ideal Gases

الغاز المثالي هو الغاز الذي تكون جزيئاته متناهية في الصغر (نقطية)، تامة المرونة، ينعدم بينها الاحتكاك لأنها لا تؤثر في بعضها البعض باية قوى، ان الغاز المثالي غير موجود في الحقيقة.

الغاز الحقيقي The Real Gases

هو الغاز الذي تكون جزيئاته صغيرة ومتباعدة بعضها عن بعض. وعند الظروف الاعتيادية من

ضغط ودرجة حرارة تقترب خواص الغازات الخفيفة من خواص الغاز الم المنالج به المناطور الم المناطور الم المناطور الم


النظرية الحركية للغازات The Kinetic Theory of Gases

ان الكثير من خواص الغازات يمكن توقعها بالاعتماد على اساسيات النظرية الحركية للغازات. تعتمد هذه النظرية على الفرضيات الرئيسة التي يمكن اجمالها في النقاط الآتية:

- 1- تتكون الغازات من جزيئات متناهية في الصغر (كتلة نقطية)، أي انها تملك كتلة ولا تملك حجماً.
 - 2- اهمال القوى المؤثرة بين جزيئات الغاز، ما عدا لحظة التصادم.
- 3- تكون حركة الجزيئات عشوائية ومستمرة وبخطوط مستقيمة بين التصادمات
- 4- تكون جزيئات الغاز تامة المرونة، كما ويكون التصادم بين هذه الجزيئات مرنأ ايضاً، اذ تهمل الطاقة المفقودة عند التصادم بين الجزيئات او عند التصادم مع جدران الوعاء الذي يحتويها، كما وتحفظ الطاقة الحركية خلال التصادم، وقد يحصل تبادل بين الجزيئات للطاقة المذكورة. ان الوقت المستغرق خلال التصادم يكون قصير جداً يمكن اهماله.

5- ان درجة حرارة الغاز هي مقياس لمتوسط الطاقة الحركية التي تمتلكها جزيئاته نتيجة لحركتها.

ان سرعة جزيء معين تتغير باستمرار نتيجة للتصادم مع الجزيئات الأخرى أو مع جدران الوعاء الذي يحتويها، كما وتختلف قيم سرعة الجزيئات بعضها عن البعض عند اية لحظة من الزمن، وتبعاً لذلك ستختلف طاقتها الحركية. وهذا يعني ان هناك مدى واسعاً جداً لسرع الجزيئات عند اية درجة حرارية. ان توزيع سرع الجزيئات وبالتالي طاقاتها الحركية تتبع توزيعاً معيناً يعرف بتوزيع ماكسويل – بولتزمان. الشكل (1) يوضح هذا النوع من التوزيع.

الشكل (1) تغير عدد الجزيئات مع سرعتها كدالة لدرجة الحرارة

ان الطاقة الحركية للجزيئات تتناسب طردياً مع مربع سرعتها.

يتساوى معدل الطاقة الحركية للجزيئات المختلفة عند درجة الحرارة نفسها، فإذا فرضنا ان m_2 و m_1 تمثلان كتلة جزيئتين من غازين مختلفين، فعند درجة الحرارة نفسها يكون:

$$\frac{1}{2}m_1v_1^2 = \frac{1}{2}m_2v_2^2 \qquad \dots$$
 (1)

حيث أن v_1^2 و v_2^2 تمثلان متوسط قيم مربع سرع الجزيئتين، وعلية فان:

$$\frac{v_1}{v_2} = \sqrt{\frac{m_2}{m_1}} \qquad (2)$$

عدد افو کادرو (N_A) عدد افوکادرو

تحتوي الحجوم المتساوية للغازات جميعها على نفس العدد من الجزيئات، بشرط ان تكون تحت الظروف نفسها من ضغط ودرجة حرارة. وبناء على ما تقدم فان عدد افوكادرو من جزيئات أي غاز تشغل الحجم نفسه تحت الظروف نفسها من ضغط ودرجة حرارة.

وعلى وجه الدقة فان المول الواحد من أي غاز تحت الظروف القياسية من ضغط ودرجة حرارة سوف يشغل الحجم نفسه الذي مقداره 22.4 لتر.

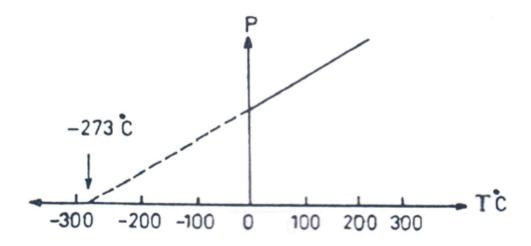
يعد عدد افوكادرو ذا أهمية اساسيه وبخاصة عند التعامل مع الذرات والجزيئات، وغالبًا ما يرمز لعدد افوكادرو بـ (N_A) . وهذا العدد يعني ان الكتلة الذرية او الجزيئية (الوزن الذري او الجزيئي) من المادة يحتوي على عدد محدد من الذرات او الجزيئات هو عدد افوكادرو. ونورد هنا بعض الأمثلة لتوضيح فكرة عدد افوكادرو والوزن الذري والوزن الجزيئي ومنها: ان الكتلة الذرية للهيدروجين تساوي (1) وهذا يعني ان كيلوغرام واحد من غاز الهيدروجين يحتوي على عدد افوكادرو (N_A) من ذرات الهيدروجين.

وبما ان الكتلة الذرية (الوزن الذري) للاوكسجين تساوي 16، فان هذا يعني 16 كيلوغرام من غاز الاوكسجين يحتوي على افوكادرو من ذرات الاوكسجين والشيء نفسه يقال عن الكتلة الجزيئية (الوزن الجزيئي)، فإذا أخذنا الماء (H2O) فان الكتلة الجزيئية (الوزن الجزيئي) له يساوي 18. أي ان 18 كيلوغرام من الماء يحتوي على عدد افوكادرو من جزيئات الماء.

ان احسن قيمة تجريبية لعدد افوكادرو هي :

 $N_A = 6.022 \times 10^{26} \text{ particles / Kg.mol}$

وبما ان الكيلوغرام الواحد يساوي 1000 غرام، فان


 $N_A = 6.022 \times 10^{23} \text{ particles / g.mol}$

وغالباً ما يستخدم مصطلح المول عوضاً عن الجزيء الغرامي.

قانون الغاز Gas Law

يعد قانون الغاز الذي يحكم سلوك الهواء وكثير من الغازات بسيطاً ويمكن تحقيقه تجريباً. يعتمد قانون الغاز على ثلاثة متغيرات هي الضغط ودرجة الحرارة وعدد الجزيئات في وحدة الحجوم.

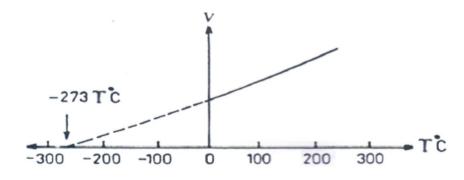
عند تسخين كمية من الغاز محبوسة في وعاء مغلق (الحجم ثابت) فان ضغطها سوف يزداد زيادة خطية مع درجة الحرارة، شرط الا يكون الغاز قريباً من ظروف اسالته من ضغط ودرجة حرارة. ان العلاقة بين الضغط ودرجة الحرارة في هذه الحالة تكون علاقة خطية وكما هو مبين في الشكل (2)، إن امتداد الخط المستقيم سيقطع محور درجة الحرارة عند درجة الحرارة (273.15°C)

الشكل (2) علاقة ضغط الغاز مع درجة حرارته عند ثبوت الحجم عند ثبوت حجم الغاز فان:

ΡαΤ

$$P = (constant) \times T \dots (3)$$

بشرط أن يعبر عن قيمة درجة الحرارة بالمقياس الكلفني (المطلق).


أما عند تسخين الكمية نفسها من الغاز تحت ضغط ثابت فان حجمها سيتغير تغيراً خطياً مشابها الى التغير السابق، وسنحصل على علاقة خطية بين حجم الغاز ودرجة الحرارة، وان امتداد الخط المستقيم سوف يقطع محور درجة الحرارة مرةً أخرى عند درجة حرارة (273.15°C). يبين الشكل (3) العلاقة بين حجم الغاز ودرجة الحرارة ويوضح ان انكماش الغاز تحت ضغط ثابت سيصاحبه انخفاض في درجة حرارته. وباستخدام المقياس الكلفني (المطلق) يكون

V α T

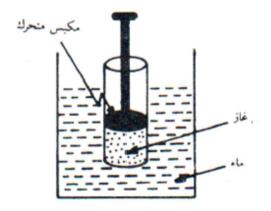
عند ثبوت الضغط المسلط على الغاز

$$V = (constant) \times T$$
(4)

يمكن إعادة صياغة العلاقتين السابقتين بعلاقة واحدة وهي

الشكل (3) علاقة حجم الغاز مع درجة حرارته عند ثبوت الضغط

يتبع الغاز هذه المعادلة بشرط ان تكون قيم كل من الضغط المسلط على الغاز ودرجة حرارته بعيدين عن قيم شروط اسالته.

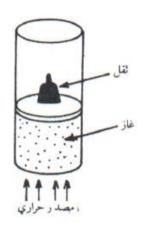

إن قانون الغاز المثالي ينطوي على قانونين ثانويين وهما:

قانون بویل Boyle's Law

_ وينص على انه حاصل ضرب ضغط كمية محدودة من غاز في حجمها يجب ان تكون كمية ثابتة في حالة التمدد او الانكماش بشرط ثبوت درجة الحرارة، أي انه:

(عند ثبوت درجة PV = constant الحرارة)

يمكن التحقق من صحة هذا القانون وذلك بوضع كمية محددة من الغاز في اسطوانة ذات مكبس متحرك محاطة بمادة ذات درجة حرارة ثابتة (كحمام الماء مثلاً) وذلك للمحافظة على درجة حرارة ثابتة للغاز. كما الشكل (4).


الشكل (4) التحقق من قانون بويل

قانون شارل Charle's Law

وينص على انه ثبوت الضغط فان نسبة حجم كمية من الغاز الى درجة حرارته المطلقة تبقى ثابتة في حالة التسخين او التبريد، أي ان:

$$\frac{V}{T} = constant$$
 (عند ثبوت الضغط)

يمكن التحقق من هذه العلاقة وذلك بوضع كمية محددة من الغاز في اسطوانة ذات مكبس متحرك ووضع ثقل ثابت فوق المكبس. ثم يسخن الغاز لأجل تغيير درجة حرارته كما في الشكل (5).

الشكل (5) التحقق من قانون شارل

ثابت الغاز (The Gas Constant (R

يطلق على القانون الاتي

بقانون الغاز المثالي. تمثل P ضغط كمية معينة من الغاز المثالي و V حجم الغاز و T درجة حرارة الغاز المطلقة. وتم تحديد قيمة الكمية الثابتة (constant) تجريباً فوجد بانها مساوية الى (nR)، أي ان

تمثل n عدد الجزيئات الكيلوغرامية أو الغرامية (المولات) من الغاز الموجود في الحجم V، اما R فتمثل ثابت الغاز. ان احسن قيمة تم ايجادها لثابت الغاز مساوية الى:

R = 8314 J/Kmol.k

أو

R = 8.314 J/mol.k

قانون الغاز المثالي The Ideal Gas Law

يمكن الان اعادة كتابة قانون الغاز، كما في الصيغة الآتية:

$$P V = n R T$$
(8)

و غالباً ما يطلق على هذا القانون. قانون الغاز المثالي او العام.

هناك عدة نقاط مهمة يجب مراعاتها عند تطبيق هذا القانون واهمها:

- 1- ان قيمة درجة الحرارة T يجب ان تكون دائماً بالدرجة الكلفنية.
 - 2- استخدام الوحدات المناسبة لمختلف الكميات المستخدمة.
 - 3- ان قيمة R تكون اما
 - (أ) مساوية الى 8314 في حالة كون (n) تمثل عدد الجزيئات الكيلوغرامية في الحجم V
 - (ب) مساوية الى 8.314 في حالة كون (n) تمثل عدد الجزيئات الغرامية في الحجم V.
- 4- يجب ان يكون الحجم الذي تشغله جزيئات الغاز نفسها صغيراً جداً (مهملاً) مقارنة بالحجم الذي يشغله الغاز.

5- يجب ان يكون الغاز بعيدا عن شروط اسالته من ضغط ودرجة حرارة.

ولتحقيق هذا الشرط يجب ان تكون درجة حرارة الغاز عالية لدرجة حرارية تكفي لان يكون عدداً قليلاً جداً من الجزيئات ترتبط ببعضها. وهذا يعني ان تكون الطاقة الحركية الانتقالية لجزيئات الغاز كبيرة بالمقارنة بالطاقة التي تعمل على التصاق الجزيئات مع بعضها. ان عملية التصاق الجزيئات مع بعضها تعني تكاثف الغاز وتحوله الى سائل.

ان مجالات استخدام قانون الغاز المثالي وتطبيقاته واسعة جداً ومفيدة ومن أهمها:

- 1- استخدام القانون المذكور في تعريف مقياس كلفن لدرجات الحرارة.
- 2- استخدام قانون الغاز المثالي لإيجاد قيم P او V او T او n اذا كانت جميع الكميات معلومة ما عدا واحدة.
- Γ او V او Γ او

معادلة فاندرفالز Vander Waals Equation

توصل فاندر فالز الى معادلة العازات الحقيقية والتي هي:

$$(P + \frac{a}{V^2})(V - b) = R T$$
 (9)

حيث تمثل كل من a و b كميات ثابتة تختلف قيمتها من غاز الى آخر. ويتم إيجاد قيمهما تجرببيا.

الطاقة الداخلية للغاز (The Potential Energy of Gas (E)

يمكن التعبير عن ضغط الغاز بدلالة الكتلة ومعدل مربع سرعة الجزيئات كما في المعادلة الآتية:

$$PV = \frac{Nm\overline{v}^2}{3} \qquad \dots \tag{10}$$

محاضرات في الحرارة والديناميكا الحرارية – د/ بدرى النوبي محمد – قسم الفيزياء/كلية العلوم بقنا / جامعة جنوب الوادى

ومن خلال مقارنه هذه المعادله مع المعادله العامه للغازات (او قانون الغاز المثالي) الذي يعبر عنه كما يأتي:

$$P V = N k_B T$$
(11)

(Boltzmann Constant) يمثل ثابت بولتزمان : KB

ومن خلال مساواة الطرف الأيمن للمعادلتين في أعلاه نجد العلاقة الآتية:

$$\frac{Nm\,\overline{\nu}^2}{3} = N\,k_BT$$

$$\frac{m\,\overline{v}^2}{3} = k_B T \qquad \dots \tag{12}$$

إن هذه المعادلة تبين ان معدل مربع السرعة تعتمد على درجة الحرارة. يمكن الحصول على معدل الطاقة الحركية من العلاقة السابقة وذلك بقسمة طرفى المعادلة على (2) نجد ان:

$$\frac{1}{2} \ \mathrm{m} \overline{\mathrm{v}}^2 = \frac{3}{2} \, \mathrm{k_B T} \quad \dots$$
 (13)

ويمكن الحصول على الطاقة الحركية الكلية الانتقالية لجميع الجزيئات من خلال ضرب طرفي المعادلة السابقة بـ (N)، أي ان

$$\frac{1}{2} \text{ m} \overline{v}^2 \text{ N} = \frac{3}{2} \text{ N } k_B T$$
(14)

إن الطاقة الحركية للغاز المثالي هي نفسها الطاقة الكلية، وعليه فان

$$E = K.E = \frac{3}{2} N k_B T$$
 (15)

إن هذه المعادلة تمثل الطاقة الحركية لغاز مثالي احادي الذرة، وهي تعني ان الذرات او الجزيئات تملك طاقة حركية انتقالية ولكنها لا تملك طاقة داخلية. ان الغازات الحقيقية الخاملة أحادية الذرة كالهليوم والاركون والكربتون وغيرها تتصرف (تقريباً) بهذه الطريقة. اما الغازات ثنائية الذرة كالأوكسجين والنتروجين فأنها تتصرف بطريقة مختلفة، إذا انها تخزن مقداراً من الطاقة الإضافية في حركة ذراتها الداخلية ضمن التركيب الجزيئي لها. تعتبر جزيئات الغاز الثنائي الذرة متكونة من كرتين نقطيتين متصلتين مع بعضهما بنابض حلزوني له القابلية على الانضغاط والتمدد. وفي الحالتين كاتيهما تخزن طاقة فضلا عن الطاقة الحركية الانتقالية للجزيء. ويمكن للجزيء ان يدور. أي انه سيمتلك طاقة دورانية. وقد وجد ان مركبات الحركتين كلتيهما الانتقالية والدورانية للحركة العشوائية للجزيء تمتلك معدل طاقة حركية مساوية الى $(\frac{1}{2}\,k_{\rm B}T)$ وهذا ما يعرف بنظرية التوزيع المتساوي.

وطبقاً لهذه النظرية فان مركبات الطاقة الحركية الدورانية ستمتلك مقداراً من الطاقة مساويا الى $(\frac{1}{2}\,k_BT)$ لكل منهما، وبتعبير آخر فان مجموع معدل الطاقة الحركية الحركية الواحدة ستساوي (k_BT) وان الطاقة الحركية الكلية للجزيئة الواحدة ستساوي

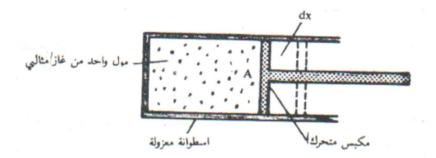
$$E = \frac{5}{2} N k_B T$$
 (17)

وبجب أن نتذكر من انه تم إهمال طاقات أخرى كالطاقة الاهتزازية لذرات الجزيئة الثنائية، فضلاً عن إهمال الطاقة الناتجة من تغير قوة السربط بين السنرات المسنكورة. ويمكن تعريف الطاقة الداخلية للغاز: على انها تمثل جميع أنواع الطاقات التي تملكها الذرات او الجسيمات الأخرى المكونة للمادة.

الحرارة النوعية للغازات The specific Heat of Gases

عند تسخين غاز ما، فان درجة حرارته سترتفع وستزداد معها ايضا الطاقة الداخلية للغاز ويزداد ضغطه واذا سمح له ان يتمدد فانه سينجز شغلا. ان قيمة الحرارة النوعية للغاز تعتمد على ما اذا كان الوعاء الذي يحتوي الغاز سيسمح للغاز بالتمدد ام لا. وبصورة عامة فان للغاز نوعين من الحرارة النوعية وهما كما يأتي:

1- الحرارة النوعية عند الضغط الثابت Cp.


2- الحرارة النوعية عند الحجم الثابت Cv.

ويقصد بهما كمية الحرارة اللازمة لرفع درجة حرارة مول واحد من الغاز درجة حرارية واحدة مع بقاء ضغطه او حجمه ثابتاً على التوالي، وقد وجد ان Cp اكبر من Cv للغازات. والسبب في ذلك يعود الى ان الحرارة التي يزود بها الغاز ذو الحجم الثابت ستؤدي الى زيادة طاقته الداخلية، اما الحرارة التي يزود بها الغاز ذو الضغط الثابت فأنها ستؤدي الى رفع طاقتة الداخلية فضلاً عن قيامها بإنجاز شغل من خلال تمدد الغاز (زيادة حجمه) ضد الضغط الثابت المسلط عليه.

العلاقة بين Cp و CV للغاز المثالي

The Relation between CV and Cp

لنأخذ مولاً واحداً من غاز مثالي ونضعه في اسطوانة ذات مكبس طليق الحركة كما في الشكل(6)، ولنفرض أن مساحة المكبس تساوي (A) وازيح مسافة مقدارها (dx)، نتيجة لتزويد الغاز بكمية من الحرارة مقدارها (dQ)، وهذا يعني ان حجم الغاز قد ازداد من (V) إلى (V) +) نتيجة لارتفاع درجة حرارة من T الى (T + dT).

C_V و C_P التحقق من العلاقة بين

إن القوة التي يسلطها الغاز على المكبس تساوي (PA)، والتي ستنجز شغلا (dW) يعطى بالعلاقة الآتية:

$$dW = PAdx = pdV \qquad(18)$$

ان كمية الحرارة (dQ) ستؤدي الى رفع درجة حرارة مول واحد من الغاز درجة حرارية واحدة، ومن تعريف الحرارة النوعية المولية عند الضغط الثابت Cp فان

الارتفاع في درجة الحرارة x C_P x عدد المولات = dQ

$$dQ = \mathbf{C}_P dT \qquad \dots (19)$$

أما الحرارة اللازمة لرفع درجة حرارة مول واحد من الغاز درجة حرارية واحدة عند ثبوت الحجم فانها ستؤدي الى رفع طاقته الداخلية (dU)، ومن تعريف الحرارة النوعية المولية عند الحجم الثابت C_V نجد ان

$$dU = C_V dT \qquad \dots (20)$$

وباستخدام القانون الأول للثرموداينمك والذي ينص على ان

محاضرات في الحرارة والديناميكا الحرارية – د/ بدرى النوبي محمد – قسم الفيزياء/كلية العلوم بقنا / جامعة جنوب الوادي

$$C_P dT = C_V dT + PdV$$
 (22)

وعندما نطبق القانون العام للغاز المثالي على المرحلتين الابتدائية والنهائية لمول واحد من الغاز نجد ان

PV= RT

$$P(V + dV) = R(T + dT)$$

وبالطرح نجد أن

$$PdV = RdT \qquad(23)$$

وبالتعويض في المعادلة (22) نجد أن

$$C_P dT = C_V dT + RdT$$
 (24)

أي أن

$$C_P - C_V = R$$
(25)

والتي تساوي (8.314J/mol.K) أو تقريباً (2cal/ mol.K). وهكذا نجد ان C_P اكبر من C_V بحوالي (2cal / mol.K).

ان العلاقة السابقة تصح بصورة تقريبية لجميع الغازات الحقيقية.

حساب Cp و CV للغاز المثالي (احادي الذرة)

ان الزيادة في الطاقة الداخلية (dU) لمول واحد من الغاز المثالي تحت الحجم الثابت نتيجة لارتفاع درجة حرارته بمقدار dT تعطى بالعلاقة الآتية:

$$dU = C_V dT \qquad \dots (26)$$

وبما أن الطاقة الداخلية للغاز المثالي احادي الذرة تتكون كلياً من الطاقة الحركية الانتقالية نجد ان

$$dU = \frac{3}{2} R dT$$
(27)

وبمقارنة المعادلتين (26) و(27) نجد أن

$$C_{\rm V} = \frac{3}{2} R$$
 (28)

وبما أن

$$C_P = R + C_V$$
(29)

$$C_P = R + \frac{3}{2} R = \frac{5}{2} R$$
 (30)

وللغاز المثالي ثنائي الذرة نجد ان

$$C_v = \frac{5}{2} R$$
(31)

$$C_P = \frac{7}{2} R$$
(32)

إن نسبة C_V إلى C_V يرمز لها بـ (γ)، أي أن

$$\gamma = \frac{C_{p}}{C_{v}} \qquad (33)$$

إن هذه النسبة تظهر في معادلة حساب سرعة الصوت في الغاز وفي معادلات التغيرات الثرموديناميكية. كما يمكن أن تفيد هذه النسبة في إعطائها معلومات عن عدد ذرات جزيئة الغاز. الجدول (2) يبين بعض

قيم (γ) التجريبية التقريبية، والتي غالباً ما تقل قيمتها بارتفاع درجا الحرارة.

الجدول (1) يبين قيم Cp و Cv و Cv لبعض الغازات المعروفة بوحدات cal/mole. K عند الظروف الاعتيادية من ضغط ودرجة الحرارة

الغاز	Ср	Cv	(Cp - Cv)
الهيليوم (H,)	4.98	3.00	1.98
الاركون (A)	5.00	3.00	2.00
الاوكسجين (O2)	6.95	4.96	1.99
(N_2) النتروجين	6.95	4.96	1.99
اول اوكسيد الكاربون CO	6.95	4.93	2.02
ثنائي اوكسيد الكاربون CO ₂	,8.75	6.74	2.01
الميثان 4 CH	8.49	6.48	2.01

(γ) الجدول (2) يبين بعض قيم

قيمة ٧	نوعية الجزئ
1.67	حادي الذرة
1.40	نائي الذرة
1.30	تعدد الذرات

مسائل

س1: جد الحجم الذي يشغله جزيء كيلوغرامي واحد من غاز النتروجين (N_2) تحت الظروف القياسية من ضغط ودرجة حرارة. علماً ان الكتلة الجزيئية للنتروجين تساوي (28).

الحل:

ان الظروف القياسية من ضغط ودرجة حرارة هي

 $P = 1.01 \times 10^5 \text{ N/m}^2$

T = 273 K

وباستخدام قانون الغاز المثالي

PV = nRT

ولإيجاد الحجم

$$V = \frac{nRT}{P}$$

وبما أن

n = 1Kmol, R = 8314 J/Kmol.K

$$V = \frac{1 \text{Kmol x } 8314 \text{J/KmolK x } 273 \text{K}}{1.013 \text{x } 10^5 \text{N/m}^2}$$

 $V = 22.4 \text{ m}^3$

س2: جد قيمة متوسط سرعة جزيئات الأوكسجين في الهواء في الظروف العيارية من ضغط ودرجة حرارة

الحل:

إن الظروف القياسية (العيارية) من ضغط ودرجة حرارة هي $P = 1.01 \times 10^5 \text{ N/m}^2$

T = 273 K

وباستخدام المعادلة (43) لإيجاد قيمة (v^2) نجد ان

$$v^2 = \frac{3RT}{N_A m}$$

يمكن إيجاد قيمة (m) لجزيئات الأوكسجين باستخدام الكتلة الجزيئية لغاز الأوكسجين المساوية الى (32)، أي ان:

$$m = \frac{32}{N_A}$$

أي أن

 $mN_A = 32$

وبالتعويض في المعادلة السابقة:

$$v^2 = \frac{3RT}{32}$$

$$\nu^2 = \frac{3\,x\,8314\,x\,273}{32} \,= 212786.4375 \; m^2 \,/\, s^2$$

v = 461.2878 m/s

مقدمة

تعريف علم الديناميكا الحرارية:

*هو الفرع من الفيزياء الذي يختص بدراسة العلاقات الكمية بين الحرارة والأشكال المختلفة للطاقة (طاقة وضع حركة)...وتهتم بوصف المادة بدلالة الخواص الفيزيائية. V,T,P - -

*أو هو علم الديناميكا الحرارية هو علم تجريبي يهتم بدراسة كل ما هو متعلق بدرجة الحرارة والطاقة الحرارية أو التدفق الحراري المصاحب لتغيرات الأنظمة الكيميائية أو الفيزيائية.

المفاهيم الأساسية في الديناميكا الحرارية

*تعريف النظام: (System) هو جزء من الكون الذي يحدث فيه التغير الكيميائي أو الفيزيائي أو هو الجزء المحدد من المادة التي توجه إليه الدراسة.

*المحيط (Surroundings) أو الوسط المحيط: هو الجزء الذي يحيط بالنظام ويتبادلمعه الطاقة في شكل حرارة أو شغل ويمكن أن يكون حقيقي أو وهمي.

*حدود النظام : هو الغلاف الذي يطوق النظام ويفصله عن الوسط المحيط ويمثل جدر ان الحاوي للنظام

أنواع الأنظمة في الديناميكا الحرارية

قسمت الأنظمة إلى عدة أنواع:

أ النظام المفتوح: (Open System) - هو النظام الذي يسمح بتبادل كل من المادة والطاقة بين النظام والوسط المحيط.

ب النظام المغلق: (Closed System) - هو الذي يسمح بتبادل الطاقة فقط بين النظام والوسط المحيط على صورة حرارة أو شغل.

ج النظام المعزول: (Isolated System) - هو الذي لا يسمح بانتقال أي من الطاقة والمادة بين النظام والوسط المحيط

د.النظام المكظوم: هو الذي لا يمكنه تبادل المادة والحرارة مع الوسط المحيط بأي شكل من الأشكال أو بتعبير آخر فإنه يمكن تبادل أنواع أخرى من الطاقة عدا الحرارة.

ويقال عن النظام أنه متجانس: إذا كان يحتوي على طور واحد ويقال أنه غير متجانس إذا احتوى على أكثر من طور.

يكون الطور غازيا أوسائلا أوصلبا أما في حالة الغازات يكون النظام دائما متجانسا لأن الغازات قابلة للإمتزاج مع بعضها , وفي حالة السوائل يكون النظام إما متجانس أو غير متجانس حسب قابلية السوائل للإمتزاج.

خواص النظام (Properties of a System

يمكن تقسيم الخواص الطبيعية للنظام إلى مجموعتين:

أ خواص شاملة (Extensive Properties) - الممتدة أو الخارجية:)

هي الخواص التي تعتمد على كمية المادة الموجودة في النظام مثل الكتلة, الحجم, السعة الحرارية.

الطاقة الداخلية, الانتروبي, الطاقة الحرة ومساحة السطح والقيمة الكلية بالنسبة لهذه الخواص تساوي مجموع القيم المنفصلة لها. وتوصف أنها انتشارية

خواص مركزة (المكثفة) Properties)Intensive (داخلية:)

هي الخواص التي لا تعتمد على كمية المادة الموجودة في النظام مثل الضغط, درجة الحرارة, الكثافة, التوتر السطحي, القوة الدافعة الكهربية والجهد الكهربي . كل هذه الخواص مميزة للمادة ولكن لا تعتمد على كميتها.

الاتزان الديناميكي الحراري (Thermodynamic Equilibrium

يمكن تقسيمه إلى ثلاث أنواع:

أ الاتزان الميكانيكي (Mechanical Equilibrium): - ويحدثهذا النوع من الاتزان عندما لا يحدث أي تغير ميكروسكوبي للنظام مع الزمن.

ب الاتزان الكيميائي: (Chemical Equilibrium) - ويحدث هذا النوع من الاتزان عندما لا يحدث تغير في تركيز المادة مع الزمن.

ج الاتزان الحراري: (Thermal Equilibrium) - ويحدث هذا النوع من الاتزان عندما تتساوى

درجة حرارة النظام مع الوسط المحيط به ويتمثل هذا الاتزان في القانون الصفري للديناميكا الحرارية الذي ينص على أنه: إذا تواجد نظامان في حالة اتزان مع نظام ثالث فأن النظامين يكونان في حالة اتزان مع بعضيهما.

العمليات الثيرموديناميكية:

هي العمليات المصحوبة بتغيير في قيمة مقدار أو أكثر ثرموديناميكي مثل الضغط التركيز, درجة الحرارة, الطاقة الداخلية, الانتروبي.... يحدث التغير في حالة النظام عند ظروف مختلفة الخصها في الأتى:

العملية الاديباتيكية: (Adiabatic Process

هي التي لا يفقد النظام أو يكتسب خلالهاطاقة حرارية من الوسط أي أن. q=0 العملية الأيزوثيرمالية: (Isothermal Process)

محاضرات في الحرارة والديناميكا الحرارية – د/ بدرى النوبي محمد – قسم الفيزياء/كلية العلوم بقنا / جامعة جنوب الوادى

(i.e على ذلك يحدث ثبات الطاقة الداخلية $\Delta E=0$.

العملية الآيزوبارية: (Isobaric Process)

هي العملية التي تحدث عند ضغط ثابت.

العملية الآيزوكورية: (Isochoric Process

هي العملية التي تحدث عند حجم ثابت.

العملية الدائرية: (Cyclic Process)

هي العملية التي يتحرك فيها النظام في شكلدائري ويرجع لموقعه الأول (أي لا تتغير طاقته الداخلية) أي أن الحالة النهائية مطابقة ومماثلة للحالة الإبتدائية للنظام. الطاقة) ((E))

Energy:

هي الشغل (w) المنجز أو المستهلك من قبل المادة.

ويمكن توضيح العلاقة بين الطاقة (E) والمادة ممثلة بكتلتها (m) كما يلى:

E= w= F x d= m x a x d= m x d x (v/t)= m x v x (d/t) = m x v x v = m x v2

أي أن الطاقة تساوي حاصل ضرب كتلة المادة في مربع سرعة هذه المادة , وهي تشابه معادلة آي أن الطاقة تساوي حاصل ضرب كتلة المادة في الخسم الذي يتكون منه الضوء والمسمى بالفوتون (E تساوي حاصل ضرب كتلته في مربع سرعته التي تساوي سرعة الضوء c

 $E = m \times c^2$

من الناحية الميكانيكية تقسم الطاقة لنوعان:

أ الطاقة الحركية Kinetic Energy (K. E) : ومقدار ها يعتمد على كتلة الجسم (m) وعلى سرعته v وتساوي v وتساوي v وتساوي v

 $^{\circ}$ 20 km / h وسرعته 60 kg وسرعته $^{\circ}$ 60 kg مثال محلول : أحسب طاقة حركة جسم كتلته $^{\circ}$ 60 kg الحل : $^{\circ}$ 60 kg الحل : $^{\circ}$ 60 kg $^{\circ}$ 60 kg حركة جسم كتلته $^{\circ}$ 60 kg الحل : $^{\circ}$ 60 kg $^{\circ}$ 60

ب - الطاقة الوضعية (P.E)Potential Energy

ومقدارها يعتمد على كتلة الجسم (m) وعلى تسارعه (a) والمسافة التي يقطعها (d).

P.E = mx a x d

مثال محلول: جسم يتحرك بتسارع يساوي ($20~{
m m/ s^2}$) وكتلته تساوي ($300~{
m kg}$) أحسبي طاقة وضعه إذا قطع مسافة قدرها ($10~{
m m}$) ؟

P.E = m x a x d : الحل

 $= 300 \text{ kg x } 20 \text{ m/s}^2 \text{ x} 10 \text{ m}$

 $= 6000 \text{ kg m}^2 / \text{s}^2$

= 6000 J = 6 kJ

كل صور الطاقة لها الوحدات $^{(1 me)2}$ ($^{(2 me)2}$ المسافة $^{(2 me)3}$ الن تكون الطاقة بوحدة الإرج ($^{(2 me)3}$ أوبوحدة الجول ($^{(2 me)3}$ أو السعر الحراري ($^{(2 me)3}$) .

وحدة الطاقة في النظام (cgs) وهو فرنسي الأصل ويعني (cm. gram. sec) هي الإرج ويعرف بأنه مقدار الشغل المبذول عندما تعمل قوة مقدارها واحد داين لمسافة قدرها سم واحد الداين: هو القوة التي تعطي عجلة مقدارها fcm / sec² المالجسم كتلته واحد جرام .

العلاقات بين الوحدات

Calorie = 4.18 J

Joule = 10^7 erg

Atom. L = 24.23 cal = 101.3 J

(Heat Capacity) السعة الحرارية

تعرف بأنها مقدار الطاقة الحرارية اللازمة لرفع درجة حرارة جسم معين أو كمية معينة من المادة كتلتها ((m)) درجة مئوية واحدة وحدة السعة الحرارية جول (m)

الحرارة النوعية (Specific Heat)

تعرف بأنها السعة الحرارية لكل جرام واحد من المادة ، أي كمية الطاقة الحرارية اللازمة لرفع درجة حرارة جرام واحد من المادة درجة مئوية واحدة وحدة الحرارة النوعية جول / جم م (J/g C°)

(Molar Heat Capacity) السعة الحرارية المولارية

هي كمية الطاقة اللازمة لرفع درجة حرارة مول واحد من المادة درجة مئوية ووحدتها جول / مول م $^{\circ}$ ، ($^{\circ}$ / $^{\circ}$ / $^{\circ}$) بالنسبة للماء : السعة الحرارية المولارية هي السعة الحرارية لعدد 18 جرام من الماء وتساوي $^{\circ}$ / $^{\circ$

استخدامات السعة الحرارية

بالاعتماد على السعة الحرارية يمكن حساب كمية الحرارة (q) اللازمة لرفع درجة حرارة نظام كتلته ثابتة من درجة حرارة ابتدائية (T_1) إلى درجة حرارة نهائية (T_2):

$$q = C (T_2 - T_1)$$

$$q = C \Delta T$$

 $C = m \ x \
ho$ الحرارة النوعية x الحرارة النوعية المادة . ρ = الحرارة النوعية المادة . m

كمية الحرارة المفقودة أو المكتسبة تحسب من العلاقة :

 $q = C \Delta T = \rho x m x \Delta T$

السعة الحرارية عند حجم ثابت (C_v) وعند ضغط ثابت السعة الحرارية

السعة الحرارية C_v أي الحرارة المكتسبة عند حجم ثابت تستغل فقط لرفع الطاقة الحركية للجزيئات ،بينما الحرارة المكتسبة عند ضغط ثابت C_p تستغل لعمل شغل معين نتيجة لتمدد وانكماش الغاز ،إضافة لرفع طاقة حركة الجزيئات .

ورياضيا يمكن التعبير عنها كالأتي :

 $C_v = dE/dT$, $C_p = dH/dT$

بالنسبة لغاز مثالي آحادي الذرية فإن الطاقة الحركية الانتقالية

(3/2 R T): هي

 $C_v = d(3/2 RT) / dT = 3/2 R d T/d T = 3/2 R$

 $C_v = 3/2 R$ -----(1)

 $C_p = dH/dT = d(E + PV)/dT = dE/dT + d(PV)/dT$

عند ثبوت الضغط : C_p = dE/dT + PdV/dT

PV = RT : بالنسبة لواحد مول من غاز مثالي فإن

P d V = R dT: عند ثبوت الضغط

 $C_p = dE/dT + RdT/dT$

 $= C_v + R - (2)$

 $C_p = C_v + R$

صور الطاقة:

للطاقة صور مختلفة ويمكن أن تتحول أي صورة إلى الصورة الأخرى وأهم صور الطاقة هي :

الطاقة الحرارية

الطاقة الضوئية الطاقة الصوتية طاقة الحركة طاقة الحركة

الطاقة الذرية

- - الطاقة الداخلية

Work (W) الشغل

يعرف الشغل الميكانيكي (Mechanical Work) بأنه حاصل ضرب القوة في الإزاحة أو الضغط في التغير في الحجم ويرمز له بالرمز (w).

حيث (W) هو الشغل الناتج من تأثير قوة قدرها (F) على النظام مسافة قدرها (ΔL) . نفترض أن هناك غاز موجود داخل اسطوانة مزودة بمكبس متحرك عديم الوزن والاحتكاك مساحة سطحه (A) عند ظروف معينة من الحجم

والضغط ودرجة الحرارة : الشكل يوضح تمدد الغاز ضد ضغط خارجي (P)

عندما يتمدد الغاز يدفع المكبس إلى أعلى ضد ضغط مضاد قدره (P) معاكس لاتجاه التغير منجزا شغلا ضد المحيط. وبما أن الضغط هو القوة الواقعة على وحدة المساحة:

$$P = F/A$$
, $F = P.A$ (2)

وبذلك فإن الشغل المنجز نتيجة التمدد هو:

$$W = P.A.\Delta L ---- (3)$$

وبما أن المكبس ينزاح باتجاه معاكس لاتجاه القوة ، فأن التغير في الحجم $(\Delta \, {f V})$ يساوي حاصل ضرب مساحة المقطع (A) في الإزاحة $(\Delta \, {f L})$ مسبوقا بإشارة سالبة :

$$\Delta V = - A \Delta L - (4)$$

 ${f W}=-{f P} \ \Delta \ {f V}=-{f P} \ (\ {f V}_2-{f V}_1 \) : كون الشغل المنجز : <math>{f V}_1:$ هو الحجم النهائي للغاز . ${f V}_1:$ هو الحجم النهائي للغاز .

وتدل الإشارة السالبة على أن طاقة النظام تنخفض عندما يزداد الحجم أي أن النظام يعمل شغلا على المحيط. تعتمد قيمة الشغل على الضغط الخارجي (P):

- *إذا كانت قيمة (P) تساوى الصفر ، أي أن الغاز يتمدد ضد الفراغ ، فأن الشغل يساوى صفر.
 - ${f W}=-{f P} \ \Delta \ {f V}$ الشغل يعطى حسب المعادلة ${f P} \ \Delta \ {f V}$ +إذا كانت قيمة ${f P}$ موجبة فأن الشغل يعطى حسب
- $(V_2 > V_1)$ أصغر من ضغط الغاز ، فأن الغاز يتمدد ضد المحيط وتكون (P) أصغر من ضغط الغاز ، فأن الغاز (W) سالبة أي أن النظام أنجز شغلا على المحيط.
- * إذا كان ضغط المحيط أكبر من ضغط الغاز فأن الغاز ينكمش وتصبح ($V_2 < V_1$) وتكون قيمة * (W) موجبة ، أي أن المحيط عمل شغلا على النظام .

القانون الأول في الثيرموديناميك

القانون الذي يتعامل مع الطاقة هو نفسه قانون حفظ الطاقة

هناك عدد من النصوص المختلفة تعبر جميعها عن نتيجة مهمة جدا وهي حصيلة تجارب لا يمكن حصرها تتع بتغيرات الطاقة المرافقة لتغيرات الحالة:

* نص هلمهولتز(Helmholtz)

" عندما تختفي كمية من شكل معين من الطاقة فإنه لابد وأن تنتج كمية مكافئة لها بشكل أخر"

* <u>نص كلاوسيوس (</u> "يبقى المقدار الكلي لطاقة النظام ومحيطه ثابتا Clausius)

على الرغم من أنه يمكن أن يتحول من شكل إلى آخر".

*نص قانون بقاء الطاقة

" الطاقة لا تفنى ولا تستحدث من العدم ولكنها يمكن أن تتحول من صورة إلى أخرى مكافئة لها" ويمكن صياغة القانون الأول في الديناميكا الحرارية كما يلي:

"الطاقة الكلية لنظام معزول تظل ثابتة ويمكن تحول الطاقة من صورة إلى أخرى"

*الطاقة الكلية لنظام معزول تبقى دائما ثابتة،أي أن التغير في الطاقة الداخلية للنظام = كمية الحرارة الممتصا بالنظام مطروحا منها الشغل الذي يبذله النظام.

 $\Delta E=E_2-E_1=q-w$

وهذا هو التعبير الرياضي للقانون الأول في الديناميكا الحرارية كما أنها صيغة قانون حفظ الطاقة هذه العلاقة صحيحة بالنسبة لجميع التغيرات في الحالة التي تتضمن حرارة وشغل كما يجب الحرص على الإشارات أثناء التعامل بهذه العلاقة .

إذا حدث تغير متناهي في الصغر للنظام فإن الصيغة

 $dE = \partial q - \partial w$ التفاضلية للقانون الأول هي

لا يعتبران معاملين تفاضليين لدوال حالة نظام. ∂w

الشغل المبذول عند التمدد والانكماش لغاز:

عندما يكون تمدد الغاز متزنا أو انعكاسيا ويتضمن ذلك أن يكون الضغط الخارجي أقل من الضغط الداخلي ، بمقدار متناه في الصغر طوال عملية التمدد وفي هذه الحالة . P= P_{ext}،

$$w=-\int_{v_1}^{v_2} Pext \ dV$$

بتكامل المعادلة السابقة مع اعتبار الغاز مثاليا ويتكون من عدد من المولات، إذن يمكن استخدام قانون

الغاز المثالي PV=nRT

وإذا كانت العملية أيزوثيرمالية

 $W=-\int_{v_1}^{v_2} nRT/V \cdot dV$

$$=-nRT\int_{v1}^{v2}dlnV$$
 $=-nRTlnV_2/V_1$
 $P_1V_1=P_2V_2$
من قانون بویل فإن
 $W=-nRTlnP_1/P_2$

س واجب: استنبط ، (استنتج) تعبيرات لشغل ضغط حجم متضمن في العمليات التالية

أ. أي عملية تحدث دون تغير في الحجم ، بتمدد غاز مثالي في فراغ (تمدد حر)،

ج. أي عملية تحدث عند ضغط خارجي ثابت

د. تمدد غاز مثالي عند إبقاء درجة الحرارة ثابتة وضبط الضغط الخارجي بصفة ثابتة، بحيث يضاهي الضغط الذء يؤثر به الغاز.

مثال (5): ما أقصى شغل يمكن الحصول عليه من التمدد الأيزوثير مالي من ضغط 4 جو إلى ضغط 1 جو

لواحد مول من غاز مثالي عند 18°C

بالوحدات أ)السعر ب) الجول

مثال (6):

احسبي أقصى كمية شغل ، يمكن الحصول عليه من تمدد ايزوثيرمالي انعكاسي 2moleمن غاز النيتروجين من يقوم حجم 10لتر إلى 20لتر عند25 م.

الحال.

 $w=-nRTlnV_2/V_1$

 $=-(2)(2)(298)\ln 20/10 = -822$ cal.

مثال (7):

أضيف أحد الأحماض إلى معدن ما فحدث تفاعل نتج عنه كمية من غاز الهيدروجين قدرها (30 لتر). احسب الشغل المنجز من قبل الغاز للتغلب على الضغط الجوى المسلط الذي قدره (1جو) افترضي ثبات درجة الحرارة.

 $\mathbf{W} = -\mathbf{P}(\mathbf{V}_2 - \mathbf{V}_1)$

, إلا بعد حدوث التفاعل لأن الغاز لم يتكون $0=V_1$

 $30L = V_2$ هو الحجم النهائي

W=-1(30-0) = -30L.atm = -30x101.39J = -3041.7J

تطبيقات على القانون الأول

ينطبق القانون الأول للثرموداينمك على جميع الأنظمة مهما كانت معقدة. ومن الأنظمة المألوفة لنا هو جسم الإنسان الذي يفقد طاقة داخلية باستمرار، اذ تفقد معظم هذه الطاقة على شكل حرارة يفقدها الجسم الى المحيط ويمثل الشغل الذي يبذله الجسم جزءاً من هذه الطاقة. وبناءً على ما تقدم يمكن صياغة القانون الأول ليناسب الجسم كما يأتي

الشغل المبذول + الحرارة المفقودة = النقص في الطاقة الداخلية

يمكن حساب الشغل الذي ينجزه نظام يتمدد ضد محيطه ويبقى فيها الضغط ثابتًا بينما يتغير الحجم من V_i الى V_i من العلاقة الآتية.

$$W = \int\limits_{V_i}^{V_f} P dV$$

$$W = P \int_{V_i}^{V_f} dV$$

$$W = P(V_f - V_i)$$
(10)

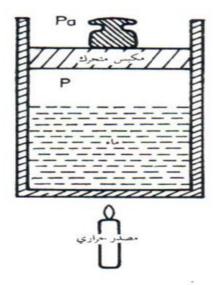
وتسمى هذه العملية بالعملية الثابتة الضغط (Isobaric Process) وتعرف بأنها العملية التي تحدث للنظام بحيث يبقى الضغط المؤثر علية ثابتاً.

يبين الشكل رقم (7) عملية ثابتة الضغط وتتكون من كمية من الماء محصورة في وعاء اسطواني مجهز بمكبس حر الحركة وفوقه ثقل معين. يمكن تزويد الماء بالطاقة الحرارية وذلك بتسخينه الى ان يتحول جزء من الماء الى بخار ويتمدد النظام (الماء والبخار) ويحرك المكبس، أي ينجز شغلاً ضد المكبس. فإذا تحولت كتلة مقدارها (m) من الماء الى بخار وازداد حجمها من V_i الى V_i وكان الضغط ودرجة الحرارة ثابتين فان الشغل المنجز خلال هذه العملية يعطى بالعلاقة الآتية :

$$W = P(V_f - V_i)$$

إن تحول السائل الى بخار يحتاج الى كمية من الحرارة (Q) تعطى بالعلاقة الآتية:

Q = mL


حيث أن L تمثل الحرارة الكامنة للتبخر.

ان هذه الحرارة ستؤدي الى تغير في الطاقة الداخلية للنظام تعطى بالعلاقة الأتية:

$$\Delta U = U_2 - U_1$$
(11)

حيث أن U_2 و U_2 تمثلان الطاقة الداخلية للسائل والبخار على التوالي. وعند تطبيق القانون الأول للثرموداينمك على هذه العملية نحصل على المسيغة الأتية :

$$Q = P (V_f - V_i) + (U_2 - U_1)$$
(12)

الشكل (7) يوضح عملية ثابتة الضغط

وهناك تطبيقات أخرى على القانون الأول للثرموداينمك منها: العملية الأدياباتيكية والعملية تحت حجم ثابت والتمدد الحر والعملية عند درجة حرارة ثابتة.

Adiabatic Process الغملية الأدياباتيكية

العملية الأدياباتيكية هي العملية التي تحدث للنظام، بحيث لا تدخله و لا تخرج منه حرارة. ويمكن ان يتم ذلك إما:

- 1- بإحاطة النظام بمادة عازلة حرارياً (كالفلين).
- 2- بالقيام بالعملية بسرعة كبيرة بحيث نضمن عدم انتقال حرارة من النظام او إليه. وذلك لان انتقال الحرارة عملية بطيئة نسبيا، وبتطبيق القانون الأول للثرموداينمك على هذه العملية نحصل على:

ومن هنا نرى انه في العملية الأدياباتيكية يكون التغير في طاقة النظام الداخلية مساوياً للقيمة المطلقة للشغل. فإذا كان الشغل سالباً، كما هي الحال عندما يضغط النظام، فان (U_2) اكبر من (U_1) وبذلك فان الطاقة الداخلية للنظام تزداد. أما عندما يكون الشغل موجباً، كما هي الحال عند تمدد النظام، فان (U_2) اقل من (U_1) وبذلك فان الطاقة الداخلية للنظام تقل. والجدير بالذكر ان زيادة الطاقة الداخلية للنظام يصاحبها عادة ارتفاع في درجة حرارة النظام. أما عند انخفاض الطاقة الداخلية للنظام فإن ذلك يصاحبه عادة انخفاض في درجة حرارته.

والأمثلة على العملية الأدياباتيكية كثيرة فانضغاط مزيج البنزين والهواء في آلة الاحتراق الداخلي (في شوط الانضغاط) هو عملية أدياباتيكية. وفي هذه الحالة ترتفع درجة حرارة النظام (مزيج البنزين والهواء). كذلك تمدد نواتج الاحتراق (في شوط القوة) هو عملية أدياباتيكية، ولكن في هذه الحالة تتخفض درجة الحرارة.

العملية تحت حجم ثابت Isochoric Process

ان هذه العملية تحدث للنظام مع بقاء حجمه ثابتاً. فإذا سخنا إناء غير قابل للتمدد ويحوي مادة ما كغاز مثلاً، فإن هذه العملية هي عملية تحت حجم ثابت، وفي هذه العملية الشغل يساوي صفراً، لان الحجم لم يتغير وبذلك فإن القانون الأول للثرموداينمك يكون بالشكل التالي:

إن معنى ذلك ان الحرارة التي تعطى للنظام تذهب كلها في زيادة الطاقة الداخلية للنظام. ويمكن اعتبار أن الزيادة المفاجئة في درجة الحرارة والضغط المصاحبين لانفجار مزيج البنزين والهواء في آلة الاحتراق الداخلى ناجمة عن عملية تحت حجم ثابت.

التمدد الحر Free Expansion

يمكن توضيح التمدد الحركما يلي، فإذا تصورنا انه لدينا وعاء بجدران صلبة ومغطاة بعازل حراري، ولنفترض أننا قسمنا الوعاء الى قسمين بحاجز رقيق، بحيث ان احد القسمين يحتوي غازأ والآخر مفرغ من أي مادة. ثم لنفترض ان الحاجز الرقيق انكسر في هذه الحالة يبدأ الغاز بالتدفق من أحد القسمين إلى الآخر ويحدث له ما يسمى بالتمدد الحر وحيث ان الوعاء معزول حراريا فإن هذه العملية هي أدياباتيكية، وبذلك فإن $(\Delta \ 0)$ وحيث ان جدران الوعاء صلبة فأنة لا يبذل شغل خارجي على النظام، وبذلك $(\Delta \ 0)$ وبتطبيق القانون الأول للشرمو داينمك نحصل على

$$\Delta U = 0$$

$$U_2 = U_1$$
(15)

وبذلك نستنتج انه في التمدد الحر فان الطاقة الداخلية الابتدائية تساوي الطاقة الداخلة النهائية، ويجب الانتباة ان التمدد الحر ليس له قيمة عملية وذلك لصعوبة الحصول عليه.

العملية عند درجة حرارة ثابتة Isothermal Process

في هذه العملية تتغير حالة النظام دون ان تتغير درجة حرارته، أي أن

$$U_2 = U_1$$

وعلية فعند تطبيق القانون الأول للثرموداينمك نحصل على

إن معنى ذلك ان الحرارة المعطاة تتحول كلها بالكامل الى شغل، أو ان الشغل المعطى يتحول كله الى حرارة.

وكمثال على هذه العملية نتصور اسطوانة غير معزولة حرارياً بداخلها مكبس، وبداخل الاسطوانة كمية من الهواء، ونتصور ان الاسطوانة موضوعة في حمام مائي عند درجة حرارة معينة. فإذا تحرك المكبس داخل الاسطوانة أنجز شغلاً على النظام يتحول كله كاملاً الى حرارة.

$$U_2 = U_1$$
(15)

وبذلك نستنتج انه في التمدد الحر فان الطاقة الداخلية الابتدائية تساوي الطاقة الداخلة النهائية، ويجب الانتباة ان التمدد الحر ليس له قيمة عملية وذلك لصعوبة الحصول عليه.

العملية عند درجة حرارة ثابتة Isothermal Process

في هذه العملية تتغير حالة النظام دون ان تتغير درجة حرارته، أي أن

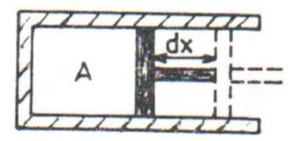
$$U_2 = U_1$$

وعلية فعند تطبيق القانون الأول للثرموداينمك نحصل على

إن معنى ذلك ان الحرارة المعطاة تتحول كلها بالكامل الى شغل، أو ان الشغل المعطى يتحول كله الى حرارة.

وكمثال على هذه العملية نتصور اسطوانة غير معزولة حرارياً بداخلها مكبس، وبداخل الاسطوانة كمية من الهواء، ونتصور ان الاسطوانة موضوعة في حمام مائي عند درجة حرارة معينة. فإذا تحرك المكبس داخل الاسطوانة أنجز شغلاً على النظام يتحول كله كاملاً الى حرارة.

الانتروبي The Entropy


ان الانتروبي هي مقياس لعدم الانتظام (أي مقياس للفوضى). ان العلاقة التي تربط بين مقدار التغير في الانتروبي (Δ) ، وكمية الحرارة (Δ) التي تنتقل الى النظام عند درجة حرارته المطلقة Δ تعطى بالعلاقة الأتية:

$$\Delta S = \frac{\Delta Q}{T} \qquad(34)$$

 Δ ك تكون موجبة اذا كانت الحرارة تنتقل الى النظام (اذ انه يكتسب انتروبيا)، أي تزداد الفوضى والعشوائية في حركة ذراته وجزيئاته.

الشغل المنجز بواسطة الغاز

لو أخذنا كتلة معينة من غاز محصورة في وعاء اسطواني مجهز بمكبس ذي مساحة مقطع عرضي مقدارها (A) كما في الشكل (7).

الشكل (7) الشغل المنجز بواسطة الغاز

ان الحرارة يمكن ان تنتقل من والى الغاز خلال جدران الاسطوانة. فإذا كان الجهاز والغاز الذي بداخله في حاله توازن حراري مع المحيط، وكان للغاز حجم ابتدائي مقدارها V_i وضغط ابتدائي مقداره، P_i . يمكن انجاز

شغل على الغاز عن طريق ضغطة بوساطة المكبس، كما يمكن انجاز شغل من قبل الغاز عن طريق تمدده ودفعه للمكبس الى الخارج. فإذا وصل الجهاز الى حالة توازن حراري نهائية وكان حجمه النهائي V_f .

فان الشغل الذي ينجزه الغاز يتمدد ضد المكبس ويحركة مسافة مقدارها dx هو:

$$dW = F \cdot dx$$
(35)

بما ان

F = PA

فان

$$dW = PA \cdot dx$$
(36)

بما ان

Adx = dV

فان

$$dW = P dV$$
(37)

اذ تمثل (dV) الزيادة التفاضلية في الحجم. ومن تكامل العلاقة في أعلاه يمكن الحصول على الشغل الكلى المنجز، أي ان:

$$W = \int dW = \int_{V_i}^{V_f} P dV \qquad (38)$$

ولأجل أجراء هذا التكامل يجب معرفة كيفية تغير الضغط مع الحجم. لان الشغل المنجز لا يعتمد فقط على الحالة الابتدائية والحالة النهائية للجهاز وإنما يعتمد ايضاً على الحالات المتوسطة بينهما، أي على المسار. انظر الى الشكل (8)

الشكل (8) الشغل وعلاقته بالمسار

ضغط الغاز المثالي The Ideal Gas Pressure

ان تصادم جزيئات الغاز مع جدران الوعاء الذي يحتويه يولد ما يعرف بضغط الغاز، وذلك نتيجة لقوة الناتجة عن هذا التصادم، ونظراً لوجود بلايين التصادمات خلال الثانية الواحدة فإن القوة الناتجة عن هذه التصادمات ستكون:

1- ثابتة تقريباً.

2- ويكون متوسط القوة عمودياً على السطح.

وان القوة العمودية المؤثرة على وحدة المساحة من جدران الوعاء تسمى بضغط الغاز وان وحدات الضغط هي $(Pa = N/m^2)$. إن متوسط الضغط على جدران الوعاء الحاوي على الغاز تعطى بالمعادلة الآتية:

.......... (39)
$$P = \frac{F}{A} = \frac{1}{3} (n_o) m \overline{v}^2 = \frac{2}{3} (n_o) (\frac{1}{2} m \overline{v}^2)$$

حيث أن (n_0) تمثل عدد الجزيئات في وحدة الحجوم و v سرعة جزيئات الغاز و v كتلة الجزيئة. وبما ان v تمثل عدد الجزيئات في وحدة الحجوم فان الضغط يساوي ثلثي متوسط الطاقة الحركية لجزيئات الغاز في وحدة الحجوم.

إن $(n_o V)$ يمثل العدد الكلي للجزيئات في الحجم (V) و n تمثل عدد الجزيئات الغرامية (المولات) في الحجم نفسه و (nN_A) تمثل ايضاً العدد الكلي للجزيئات في الحجم (V)، أي ان: (V) (V)

فنحصل على

$$T = \frac{2N_A}{3R} \left(\frac{1}{2} m \overline{v}^2\right)$$
 (43)

$$\frac{R}{N_A} = K_B = 1.38 \times 10^{-23} \text{J/K}$$
 (44)

يمكن التعبير عن درجة الحرارة المطلقة للغاز المثالي بما يأتي :

$$T = (\frac{1}{2}m\overline{v}^2)(\frac{2N_A}{3R}) = (\frac{1}{2}m\overline{v}^2)(\frac{2}{3K_B})$$
(45)

وهذا يعني انه امكن التعبير عن درجة الحرارة المطلقة بدلالة الطاقة الحركية الانتقالية لجزيئات الغاز.

مسائل

س1: إذا كان معدل انسياب سائل خلال مسعر الانسياب المستمر تساوي 15g/s، وان السخان الكهربائي يقوم بتزويد قدرة مقدارها W 200. تحت هذه الظروف تم الحصول على فرق في درجة الحرارة مقدارها °3، ولأجل الحصول على نفس الفرق في درجات الحرارة تحت معدل انسياب مقداره 5g/s يجب تبديد قدره مقدارها W 80. جد الحرارة النوعية للسائل ومعدل فقدان الحرارة إلى المحيط. افرض أن درجة حرارة المحيط هي نفسها في الحالتين.

الحل:

1W = J/s1

الطاقة الكهر بائية للحالة الأولى = 200 J/s

الطاقة الكهربائية للحالة الثانية = 200 J/s

 $T\Delta \ m \ C = كمية الحرارة المكتسبة بواسطة الماء في الثانية الواحدة$

 $T = T_2 - T_1 = 3$ °C Δ

نفرض أن معدل فقدان الحرارة إلى المحيط خلال الثانية الواحدة = H

كمية الحرارة المكتسبة = كمية الحرارة المفقودة

في الحالة الأولى H + (15x10⁻³ Kg/s) C (3K) + H

في الحالة الثانية 80 J/s= (5x10⁻³ Kg/s) x C x (3K) + H

وبطرح الحالة الثانية من الحالة الأولى نجد

 $(200 - 80) \text{ J/s} = (15 - 5) \times 10^{-3} \text{ Kg/s} \times \text{C} \times (3\text{K})$

120 J/s= 30 x 10⁻³ Kg/s x C

 $C = \frac{120 \text{ J/s}}{30 \text{ x} 10^{-3} \text{Kg.K/s}} = 4 \text{ x} 10^{3} \text{J/Kg.K}$

بالتعويض عن C في الحالة الأولى أو الثانية نجد أن

 $200 \text{ J/s} = (15x10^{-3} \text{ Kg/s}) (4x10^{3} \text{ J/ Kg.K}) (3K) + H$ 200 J/s = 180 J/s + H

H = 200 J/s - 180 J/s H = 20 J/s

س2: سخنت قطعة من النحاس كتلتها g 100 إلى درجة حرارة 100°C، ونقلت إلى مسعر النحاس جيد العزل كتلتة g 50 يحتوي على 200 g من الماء عند درجة حرارة 10°C. جد القيمة النهائية لدرجة حرارة الماء مع العلم إن الحرارة النوعية للنحاس تساوي 4 x10² للحال قدان في درجة الحرارة إلى المحيط.
الحرارة إلى المحيط.

 $T_2 = 1$ نفرض أن درجة الحرارة النهائية $T_2 = 1$ نفرض أن درجة الحرارة النهائية $T_2 = 100 - 10$ C = 100 is a constant of $T_2 = 10$ C = 10 is a constant of $T_2 = 10$ in the consta

 $T\Delta m C = \Delta m C = \Delta m C$ | $\Delta m C$ | $\Delta m C = \Delta m C$ | $\Delta m C$ |

$$T\Delta$$
 m C = D model in the second of the s

س2: جد مقدار التغير في الطاقة الداخلية لنظام يتكون من 1g من الماء المقطر يتحول إلى بخار تحت الضغط الجوي الاعتيادي في درجة حرارة 100°C. وكان 167 cm3 من الماء المقطر يشغل 167 cm3 في حالة البخار تحت نفس الضغط. وان الحرارة الكامنة للتبخر تساوي 40. cal/g

Q = mL

 $Q = 1g \times 540 \text{ cal/g}$

Q = 540 cal

 $W = P(V_f - V_i) = 1.01 \times 10^5 N/m^2 (1671 - 1) \times 10^{-6} m^3$ $W = 168.67 \text{ Joule} = \frac{168.76}{4.186} = 40.293 \text{ cal}$ $U \Delta U$ في الطاقة الداخلية للنظام تكون مساوية إلى $U \Delta U$

أي أن

 $\Delta U = U_2 - U_1 = Q - P(V_f - V_i) = 540 \text{ cal} - 40.293 \text{ cal}$ $\Delta U = 499.707 \text{ cal}$ س4: جد مقدار التغير في الانتروبي عند انصهار مكعب من الثلج كتلته (20 g) في درجة حرارة (0°C). الحل:

يمكن إيجاد كمية الحرارة اللازمة لصبهر الجليد من العلاقة الأتية:

Q = m L

£ : تمثل الحرارة الكامنة لانصهار الجليد في درجة 0°C وتساوي 80 cal/g

 $Q = 20q \times 80 \text{ cal/} q = 1600 \text{ cal}$

Q = 1600 cal x 4.186 J/cal = 6697.6 J

يمكن إيجاد مقدار التغير في الانتروبي عند درجة حرارة O°C من العلاقة الأتية:

$$\Delta S = \frac{\Delta Q}{T} = \frac{Q}{T}$$
 $\Delta S = \frac{6697.6 \text{ J}}{273 \text{ K}}$ $\Delta S = 24.53 \text{ J/K}$

حيث تم التعويض عن℃ 0 بـ 273K

س5: جد مقدار التغير في الانتروبي لمول واحد من غاز حجمه الابتدائي يساوي 1000 cm³ موضوع داخل اسطوانة ذات مكبس متحرك، اذا تمدد الغاز الى حجم نهائي يساوي 2000 cm³ مع ثبوت درجة الحرارة.

> الحل: باستخدام المعادلة الآتية

 $\Delta Q = \Delta U + \Delta W$

إذا كان التغير في درجة الحرارة يساوي صفر فان $\Delta U = 0$ ، أي ان

 $\Delta Q = \Delta W = P\Delta V$ وبما أن $\Delta S = \frac{\Delta Q}{T}$

فان

 $\Delta S = \int \frac{\Delta Q}{T} = \int_{0}^{V_f} \frac{P dV}{T}$ وباستخدام قانون الغاز المثالي

PV = nRTوبما أن n = 1

وعليه فان $\frac{P}{T} = \frac{R}{V}$

محاضرات في الحرارة والديناميكا الحرارية – د/ بدرى النوبي محمد – قسم الفيزياء/كلية العلوم بقنا / جامعة جنوب الوادى

$$\Delta S = \int\limits_{V_{i}}^{V_{F}} R \, \frac{dV}{V} = R \ \ln V \Big|_{V_{i}}^{V_{F}} \qquad \qquad \Delta S = R \ln \frac{V_{f}}{V_{i}} \label{eq:deltaS}$$

$$\Delta S = 8.314 \text{ J/K ln} \frac{2000 \text{ cm}^3}{1000 \text{ cm}^3}$$
 $\Delta S = 5.76 \text{ J/K}$

ويساوي مقدار التغير في الانتروبي

• 6 : جد قيمة كل من Cp و Cp لغاز الأوكسجين عند الظروف القياسية، اذا علمت ان نسبة Cp الى Cv تساوي 1.40.

الحل:
$$P_{\rm P}-C_{\rm V}=8.314$$
 (1) (1)
$$\frac{C_{\rm P}}{C_{\rm V}}=1.4$$

$$C_{\rm P}=1.4 \, C_{\rm V}$$
 (2)

$$1.4 \, C_{V} - C_{V} = 8.314$$

$$0.4 C_v = 8.314$$

$$C_v = \frac{8.314}{0.4}$$

$$C_{v} = 20.785 \, J/mol.K$$

وعليه فان C_P تساوي

$$C_P = 20.785 + R$$

$$C_P = 20.785 + 8.314$$

$$C_p = 29.099 \text{J/molK}$$