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Chapter (1) : Unit System and Dimensional Theory

Units, Physical Quantities, Dimensions

1. PHYSICS is a science of measurement. The things which are measured are
called physical quantities which are defined by the describing how they are to
be measured. There are three fundamental quantities in mechanics:

Length
Mas
Time

w

All other physical quantities combinations of these three basic quantities.

2. All physical quantities MUST have units attached to them. The standard
system of units is called the SI (Systeme Internationale), or equivalently, the
METRIC system. This system uses

Length in Meters (m)
Mass in Kilograms (kg)

Time in Seconds (s)

With these abbreviations for the fundamental quantities, one can also be said
to be using the MKS system.

3. An example of a derived physical quantity is Density which is the mass per
unit volume:

ceo . Mass Mass
Density = Volume  (Length).(Length)-(Length)

4. Physics uses a lot of formulas and equation. A very powerful tool
in working out physics problems with these formulas and equations is
Dimensional Analysis. The left side of a formula or equation must have
the same dimensions as the right side in terms of the fundamental quantities of
mass, length and time.

5. A very important skill to acquire is the art of guesstimation, approximating
the answer to a problem. Related to that i1s an appreciation of sizes. Is the
answer to a problem orders of magnitude too big or too small.
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The Standards of Length, Mass, and Time
The three fundamental physical quantities are length, mass, and time.

MASS

The standard mass of 1 Kilogram (kg) is defined as the mass of a platinum-
iridium alloy cylinder (3.9 cm diameter, 3.9 cm height) kept at the International
Bureau of Weights and Measures at Sevres, France.

All countries have duplicates, or secondary standards kept at their own domestic
bureaus of standards. Finally, there are tertiary standards which are available
in all scientific laboratories.

TIME

The standard unit of time, 1 Second (s), used to be defined in terms of the
time 1t took for the earth to rotate about its axis. Since the earth’s rotation
is now known to be slowing down. that is hardly a good standard. Instead
the standard second 1s defined in terms of the vibrations of the cesium—133
atom. Specifically

1 Second = 9,192,631.770 vibrations
In fact this a very a useful definition since any laboratory can set up a cesium
clock and calibrate its time measuring equipment.

LENGTH
Formerly, like the mass definition, the definition of the unit length used to be
in terms of a platinum-iridium bar kept in France. Later that was changed in
terms of the wavelength of the orange-red light emitted from a krypton-86 lamp.
Most recently, the unit of length, the meter (m), has been defined in terms of
the distance traveled by light:

1 Meter = Distance traveled by light in vacuum during m seconds
In principle, all the units except mass, can defined worldwide without reference
to any particular object.

The abbreviations of the fundamental quantities of length, mass, and time are
mks. All other quantities, we will see, are combinations or derivations from these
fundamental quantities. You must ALWAY'S use units in your answers.
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Powers of Ten in the SI Units

A decided advantage of the SI or mks system, compared to the British system
(inches, slugs, etc.), is the use of powers of ten. In addition to the fundamental
units (meter, kilogram, second) one can use prefixes to these units when that
is more convenient. Some of these prefixes are given on pages 56, and you
should memorize these. A more extended set of prefixes are is shown in the
table below, taken from page A8 in Appendix F which as the complete set from
1072 to 10724,

Power of 10 | Prefix | Abbreviation
1071 atto a
0" femto f
10712 pico p

10~° nano n
10— micro [
103 milli m
102 centl C
1071 deci d
10° kilo k
10° mega M
10° giga G
1012 tera T
105 peta P
1018 exa E

Note the capitalization of the mega—, tera—, peta—, and exa— prefixes, while all
the other prefixes, including all those with negative powers of ten, have lower
case abbreviations. Typically, for derived units coming from a person’s names
such as volt (V) from Volta, or newton (N) from Issac Newton, these too will
have capital letters in their abbreviations.

You should be familiar with GBytes, meaning 1 billion! bytes, as a unit of
memory or disk space on a personal computer. It should not be too long before
we see these quantities quoted in units of TBytes. In the high energy nuclear
experiments where I work, we quote our data outputs in units of PBytes, which
is pronounced as peta-Bytes.
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Derived Quantity: Density
Besides the fundamental quantities of length, mass, and time, there are also
many (many) so—called derived quantities which can be always be expressed in
terms of the fundamental quantities. One will also be seeing derived quantities
defined in terms of other derived quantities, but ultimately everything can be
expressed as combinations of length mass and time. For now we look at examples
of such quantities.

Density
Density is the mass of an object divided by its volume. If the object is composed
entirely of one substance, such as iron or gold or water or nitrogen, then the
density will be the same throughout the object. Density is usually given the
Greek symbol p (“rho”)
mass m

P = volume ~ V (1a)
A short table of densities of various substances is given on page 457. By knowing
the density of a substance and the volume of the substance one can find the mass
of the substance according to:

m = pV (1D)

For example what is the mass of a solid cube of aluminum with a volume of
0.2cm® ? First realize that aluminum has a density of 2.7 gm/cm?®, and then use
the formula (1b) above

g

w -0.2(cm)? = 0.54 gm

m=pV =27
Finally, one can compute the number atoms N in the above cube by knowing
that in one mole of a substance there are Avogadro’s number of atoms:
1 Mole = Molecular Weight in Grams
Avogadro’s Number (N4) = 6.02 x 10 atoms
For aluminum 1 Mole = 27 grams, so:

Ny N N N4 -0.54 gm B

= > N 1.2 x 10*? atoms
27 egm  0.54 gm 27 gm

You should look carefully in the above equations to see how the units in the
denominator and the numerator tend to cancel out such that you get the correct
units in the final answer. We will explore this topic more in the following page.
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DIMENSIONAL ANALYSIS

Objectives

(1) Be able to determine the dimensions of physical quantities in terms of fundamental
dimensions.

(2) Understand the Principle of Dimensional Homogeneity and its use in checking
equations and reducing physical problems.

(3) Be able to carry out a formal dimensional analysis using Buckingham’s Pi Theorem.

(4) Understand the requirements of physical modelling and its limitations.

—

. What 1s dimensional analysis?

(]

. Dimensions
2.1 Dimensions and units
2.2 Primary dimensions
2.3 Dimensions of derived quantities
2.4 Working out dimensions
2.5 Alternative choices for primary dimensions

3. Formal procedure for dimensional analysis
3.1 Dimensional homogeneity
3.2 Buckingham’s P1 theorem
3.3 Applications

4. Physical modelling
4.1 Method
4.2 Incomplete similarity (“scale effects™)
4.3 Froude-number scaling

A

. Non-dimensional groups in fluid mechanics
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1. WHAT IS DIMENSIONAL ANALYSIS?

Dimensional analysis is a means of simplifying a physical problem by appealing to
dimensional homogeneity to reduce the number of relevant variables.

It is particularly useful for:
. presenting and interpreting experimental data:

. attacking problems not amenable to a direct theoretical solution:

. checking equations:

. establishing the relative importance of particular physical phenomena:
. physical modelling.

Example.

The drag force F per unit length on a long smooth cylinder is a function of air speed U.
density p. diameter D and viscosity L. However. instead of having to draw hundreds of
graphs portraving its variation with all combinations of these parameters, dimensional
analysis tells us that the problem can be reduced to a single dimensionless relationship

cp = f(Re)
where ¢p is the drag coefficient and Re is the Revnolds number.

In this instance dimensional analvsis has reduced the number of relevant variables from 5 to
2 and the experimental data to a single graph of ¢p against Re.

2. DIMENSIONS
2.1 Dimensions and Units

A dimension is the type of physical quantity.
A unir is a means of assigning a numerical value to that quantity.

ST units are preferred in scientific work.

2.2 Primary Dimensions

In fluid mechanics the primary or fundamental dimensions, together with their SI units are:

mass M (kilogram. kg)
length L (metre, m)
tune T (second. s)
temperature C] (kelvin. K)

In other areas of physics additional dimensions may be necessary. The complete set specified
by the SI system consists of the above plus

electric current I (ampere. A)

luminous intensity C (candela. cd)

amount of substance n (mole. mol)
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2.3 Dimensions of Derived Quantities

Dimensions of common derived mechanical quantities are given in the following table.

Quantity Commeon Symbol(s) Dimensions
Area A L’
Geometry Volume V L’
Second moment of area 7 L’
Velocity ) LT
Acceleration a LT
Kinematics Angle . 0 1 (li.e. dimensionless)
Angular velocity ™ I
Quantity of flow [e] L°T
Mass flow rate bl MT !
Force F MLT
Moment. torque T MLT
Dynamics Energy. work. heat E.W MLT
Power P MLT
Pressure. stress P.T ML T
Density p ML
Viscosity il MLT
Kinematic viscosity v LT
Fluid properties | Surface tension G MT -
Thermal conductivity e MLT O
Specific heat Cp. Cy LT @
Bulk modulus K ML™'T™

2.4 Working Out Dimensions

In the following, [ ] means “dimensions of™.

Example.
Use the definition T = ud—" to determine the dimensions of viscosity.
.1I
Solution.
From the definition.
= T _ Jorce/area
dU/dy velocity [ length
Hence,
MLT /L’ P
W]=—75— =ML'T"
LT /L

Alternatively. dimensions may be deduced indirectly from any known formula involving that
quantity.
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Sample problems based on unit finding

Problem 1. The equation | P+ — | (V- b) = constant. The units of a is
-
(a) [’\7'1' ~om ”') Dyvne -(‘H"
(c) Dwne/cm” (d) Dwne fem®
Solution : (b) According to the principle of dimensional homogenity [P]
P

[@)=[P) [V ]1=[MLT'T)[L%] =ML T*]

or unit of a gm x cm” x sec== Dvne <« cm4

Problem 2. If x =at+bt?. where x is the distance travelled by the body in kilometre while  the time in seconds,

then the units of b are

(a) km/s (b) km-s (c) km/s? (d) km-s2

Solution : (¢)  From the principle of dimensional homogenity [x]=[br*]= [b]= | % - Unit of b = km/s=.

Problem 3. The unit of absolute permittivity is
(a) Farad - meter (b) Farad / meter (¢) Farad/meter= (d) Farad

C

Solution : (b) From the formula C=475R .. g = IR

By substituting the unit of capacitance and radius : unit of &, = Farad/ meter.

Problem 4. Unit of Stefan's constant is

(a) Js~* M) Jm2sik (e Jn™ (d) Js
0 . o
Solution : (b)  Stefan's formula = = ¢T* - & :i - Unitof & :;TLHC = Jn sk
At Ar? m? xsecx K*

Problem 5. The unit of surface tension in SI system is

(a) Dwne /cm? (b) Newton/m (c) Dyne/cm (d) Newton/mz
. . _ F
Solution : (b) From the formula of surface tension T = n

By substituting the S.I. units of force and length, we will get the unit of surface tension = Newton/m
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Problem 6. A suitable unit for gravitational constant is

1 1 1

(a) kg metre sec” (b) Newton metre ' sec (¢) Newton metre*kg™ (d) kgmetre sec™

2
Gm,m, Fr

. N
2 - G=

Solution:(c) As F= )
r mym,

Substituting the unit of above quantities unit of G = Newton metre *kg ™.

Problem . The SI unit of universal gas constant (R) is

(a) Watt K tmol™ (b) Newton K mol™ (¢) Joule K™ 'mol™ (d) Erge K 'mol™

Pl M TL] MEPT
© [nT]  [mole][K]  [mole]x[K]

Solution : (c¢)  Ideal gas equation PV =nRT .. [R]

So the unit will be Joule K mol™.

(2) To find dimensions of physical constant or coefficients : As dimensions of a physical
quantity are unique, we write any formula or equation incorporating the given constant and then by
substituting the dimensional formulae of all other quantities, we can find the dimensions of the required
constant or coefficient.
™y, Fr?

>— or G=
7 mym,

(i) Gravitational constant : According to Newton'’s law of gravitation F = G

[MLT ~][L*]

Substituting the dimensions of all physical quantities [G] = =[ML*T?]

I
(i) Plank constant : According to Planck £ =/4v or h = %
Substituting the dimensions of all physical quantities [h] = “1‘?1;]—2] =[ML*T™]
V _ ;’Ip?‘4 ) :-zpr4

(iii) Coefficient of viscosity : According to Poiseuille’s formula —

orn=—————
87 8i(dv / dt)

[ML™'T[L*]

. =[ML'T™]
[L][L* /T]

Substituting the dimensions of all physical quantities [17] =
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Problem 8.

Solution : (d)

Problem 9.

Solution : (d)

So = .
Ho&p |

Problem 10.

Solution : (b)

Problem 11.

Solution : (b)

Sample problems based on dimension finding

X =3¥z? find dimension of ¥ in (MKSA) system, if X and Z are the dimension of capacity and
magnetic

field respectively
(a) M31721% 47! b) M2 () m3r2r*at (d) mM3r72r8at

1204 2
:@:[M LT 4 ]:[MJL_ETSA“].
(2°] oAty

2

X=3¥Z% - [¥]

Dimensions of , Where symbols have their usual meaning, are

Hoég
@ [ZT7'] ® [27'7] (© [L7T%] @ [Z’17]
1 1 9

L =C
\ Mo Hy&y

‘We know that velocity of light € =

=[LT7'P = [’ T72].

If L, C and R denote the inductance, capacitance and resistance respectively, the dimensional formula
for C2IR is
(@) [M2T7'10] M) M1 1] () ML?2757%] (@ [M°r°1%1]

9 22 R . ",R\__
[C’LR] = {C‘L‘ ﬂ = {(L(. )2\.\;"_‘

. 1 1
and we know that frequency of LC circuits is given by f=—

27 JIC

i.e., the dimension of LC is equal

2

to [T7]

and i %} gives the time constant of L — R circuit so the dimension of 2 is equal to [T].

. . . . . . . (R I P
By substituting the above dimensions in the given formula {(L(.‘ Y| 7 ‘—l =[T*Pir =111

Aforce Fis given by F = ar+ b, where ¢ is time. What are the dimensions of a and b

(a) MET™ and ML*7T™* (b) MZT > and MET ™ (¢) MZT ! and MLT® (Q) MLT~* and MZT!

r -2
E}Z.MLI T
s L T _|

From the principle of dimensional homogenity [F]=[af] .. [a]= {

_ e
Sl'm_i]arly [F] - [b;z] [Z)] _ |:£q} :i ﬂé{i—}: 1
= 2

= [MLT 7.
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Problem 12.

Solution : (a)

Problem 13.

Solution : (c)

Problem 14.

Solution : (d)

—t

The position of a particle at time t is given by the relation x(7) = | Yo |(1 —c™"), where v, is a constant
)

and « > 0. The dimensions of v, and o are respectively

(@ M°ZI'7land 77 ) MI'7° and 7' (@) MOr'7'and I7? (@) MOI'T'and T
From the principle of dimensional homogeneity [« f]= dimensionless .. [o] = P} =[r Y

t

Similarly [x]:% s ol=lled = [ZIT = [LT '].
a

The dimensions of physical quantity X in the equation Force = is given by

Density
(a) Mzt Mm) am2Ar2rt () M2 (@ mir?rt
[X] = [Force] x [Density] = [MLT 2]x[ML] = [M°L*T7].

. . Hy —H . . i .. .
Number of particles is given by n = —D—2—L crossing a unit area perpendicular to X- axis in unit

X9 — X
time, where »; and », are number of particles per unit volume for the value of x meant to x, and «x;.
Find dimensions of D called as diffusion constant

(a) M°rT? ®) MLt () M°LT~3 (d) M1
T o . 0040
(n) = Number of particle passing from unit area in unit time = No. of partick M ql 1 (L7277
Axt [Z7]1[7]
[n;]=[n,] =No. of particle in unit volume = 23]
i,
. nllx, —x LT L _
Now from the given formula [D] = ey =] _ | IZ] [Z2171].

[y —m] [L7]

Problem 15. E, m, [ and G denote energy, mass, angular momentum and gravitational constant respectively, then

Solution : (a)

2

the dimension of are

m G
(a) Angle (b) Length (¢) Mass (d) Time
[E]= energy = [ML*T™*], [m] = mass = [M], [1] = Angular momentum = [MZ’T"]

[G] = Gravitational constant = [/ P '2]

EF MOTHx[MLTF

g = M1
m G MM

Now substituting dimensions of above quantities in

i.e., the quantity should be angle.
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Problem 16.

Solution : (b)

Problem 17.

Solution : (b)

Problem 18.

Solution : (¢)

Problem 19.

Solution : (c)

> angular velocity and v is the

The equation of a wave is given by ¥ =

linear velocity. The dimension of k is

yl

(a) LT b T © 17 d 71’

According to principle of dimensional homogeneity [k] = \ z |=|—= l =
N LT |

. , - Y _Alx
The potential energy of a particle varies with distance x from a fixed origin as Z=———, where A
x“+B

and B are dimensional constants then dimensional formula for AB is
(a) ML72T~2 (b) mrM'ir? (¢) M* 1T (d) mzB" 13
From the dimensional homogeneity [x2]=[B8] .. [B] = [L2]

1/2

] (8]
Now [AB]:[M?*“QT'Q] [2*] =22

Aswellas [U]=

The dimensions of \ £ E? (&, = permittivity of free space ; E = electric field ) is

(a) MLT! (b) ML>T? (¢) ML7T™ (@ Mt
. 2527
Energy density = lgoE = E}lelgy | MLT =it
2 Volume |

You may not know integration. But using dimensional analysis you can check on some results. In the
. dx Cafx ) .
integral I ———=d"sin 1‘ Z —1 |thevalue of nis

(2ax —xj)l"z \a

(a) 1 (b) -1 (c) o (d)

bt | —

Let x =length .. [X]=[L] and [dx]=[L]

By principle of dimensional homogeneity { } dimensionless ... [a] =[x]=[L]
a

By substituting dimension of each quantity in both sides: —————=[L"] .. n=0
L -L7]"
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2.2
Problem 20. A physical quantity P= where B= magnetic induction, [= length and m = mass. The dimension
m
of Pis
(a) MLT™ O MATH 1= () M22T*r (d) mrT2r?

-2
Solution : (b) F= BIL . Dimension of[B] = _F] = IMIT 7] = [MT_EI_.I]
L1 ML

B?Jirl ~ [Aw_zf_ljl <[L2]

Now dimension of [P] = 0] =[ML T2
m ]
. . . (2wt (2m) . . .
Problem 21. The equation of the stationary wave is y= 2asin| — |cos| _— ‘ , which of the following statements is
A ) LA )
wrong
(a) The unit of ¢t is same as that of A (b) The unit of x is same as that of 4

(¢) The unit of 27 /4 is same as that of 2z /At  (d) The unit of ¢/ is same as that of x /4

2m

) 2mct 2x . . . 2ct
Solution : (d) Here, as well as —— are dimensionless (angle) i.e. {—C} = {—} =Mror0
A A

A

So (i) unit of ¢ t is same as that of A (ii) unit of x is same as that of A (iii) {_\'n:} = |:)—T;}
A 1

and (iv) 1 is unit less. It is not the case with i
A A

(3) To convert a physical quantity from one system to the other : The measure of a physical
quantity is nu = constant

If a physical quantity X has dimensional formula [M2LPTt] and if (derived) units of that physical
quantity in two systems are [MFLiT] and [M$I57T5] respectively and n; and n. be the numerical values in

the two systems respectively, then ny [u;]=n,[u;]

= ny [M{LT] = ny[M3L5T5]

M T I
:}n2=n1 1 -1 21
M, || L, || T,

where M, L, and T; are fundamental units of mass, length and time in the first (known) system and
M-, L. and T- are fundamental units of mass, length and time in the second (unknown) system. Thus
knowing the values of fundamental units in two systems and numerical value in one system, the numerical
value in other system may be evaluated.

Example : (1) conversion of Newton into Dyne.
The Newton is the S.I. unit of foree and has dimensional formula [MLT-2].
So 1 N =1 kg-m/sec?

a b c 1 1 -2 3 1 1 1 -2
By using 1, = n My |\L | L _ | ke | |m|[sec|” _ |107gm | 107am | isec | .5
) ? oM 3 L, T, gm| [ cm | | sec em cm sec

. 1N =105 Dyne

2) Conversion of gravitational constant (&) from C.G.S. to ML.K.S. system
The value of Gin C.G.S. system is 6.67 x 1078 C.G.S. units while its dimensional formula is [M—L37-2]
So G = 6.67 x 1078 cm3/g s2
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v, [z, T[1 " em [ sec >
Byusing n, =n,| —- | | =L | | =X —6.67 x105| &M | (€cm | | Sec
M, ||L, || T, | kg | | m | |sec
r T -3 -2
cm sec
—6.67x10%| 27| | 3 [ } =6.67 x107!
| 10°gm | [10°cm | | sec

G = 6.67 x 107% M.K.S. units

Sample problems based on conversion

Problem 22. A physical quantity is measured and its value is found to be nu where n = numerical value and u =
\ ¥
unit.

Then which of the following relations is true

(a) nocu’ (b) nocu (© nocfu (d) naci

. . 1
Solution : (d) Weknow P =pu =constant .. mjuy =n,ly or i o —,
u

Problem 23. In C.G.S. system the magnitude of the force is 100 dynes. In another system where the fundamental
physical quantities are kilogram, metre and minute, the magnitude of the force is

(a) 0.036 (b) 0.36 (e) 3.6 (d) 36
Solution:(¢) m =100, My=g,Li=cm, Tj=sec and M, =kg, L, =meter , T, =mimute,, x=1, y=1, z=-2

-

X i) 2
By substituting these values in the following conversion formula n, = n1|:M1 } {ﬁ {ﬂ

L5
m [ em T see T°
ng:mog—[ H }
kg | [ meter | | minute

r 1- -1 -2

B | gm | em || sec B

ny =100 — | — I[ } =3.6
| 107 gm | L10-cm | [ 60 sec

L¥Ly
2z

Problem 24. The temperature of a body on Kelvin scale is found to be X K. When it is measured by a Fahrenheit
thermometer, it is found to be X F. Then X is

(a) 301.25 (b) 574.25 (c) 313 (d) 40
Solution 1 (c)  Relation between centigrade and Fahrenheit K-273 _F _932

According to problem X273 X;32 ~ X=313.
Problem 25. Which relation is wrong

(a) 1 Calorie = 4.18 Joules (b) 14 =10°m

(e) 1 MeV=1.6 x 103 Joules (d) 1 Newton =1075 Dynes

Solution : (d) Because 1 Newton = 10° Dyne.
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(4) To check the dimensional correctness of a given physical relation : This is based on the
‘principle of homogeneity’. According to this principle the dimensions of each term on both sides of an
equation must be the same.

If X =4 +(BC)? =+ DEF,
then according to principle of homogeneity [X] = [A] = [(BC)2] = [V DEF]

If the dimensions of each term on both sides are same, the equation is dimensionally correct,
otherwise not. A dimensionally correct equation may or may not be physiecally correct.

Example: (1) F=mv? /#?

By substituting dimension of the physical quantities in the above relation —
[MLT ] =[M][LT']? [L]
ie. [MLT 2] =[MT]

As in the above equation dimensions of both sides are not same; this formula is not correct
dimensionally, so can never be physically.

(2) 5 =ut —(1/2)at?
By substituting dimension of the physical quantities in the above relation —
[L]=[LT][T] - [LT=][T~]
ie. [L]1=I[L]—-1I[L]
As in the above equation dimensions of each term on both sides are same, so this equation is

. - . . 2
dimensionally correct. However, from equations of motion we know that s = ut +(1/ 2)at~

Sample problems based on_formulae checking

Problem 32. From the dimensional consideration, which of the following equation is correct

9

R? GM GM R?
a) T=2m,]— T=2x c) T=2rx d) T=2x
(a) JGM (b) 3 (c) 2 (d e

3 3
Solution : (a) T = 2,?1’ R =27 R—j =2 ’£ [As GM = gR=]
GM gR"” g

Now by substituting the dimension of each quantity in both sides.

1/2
[r]=[ L_z} - (7}
LT

L.H.S. = R.H.S. i.e., the above formula is Correct.
Problem 33. A highly rigid cubical block A of small mass M and side L is fixed rigidly onto another cubical block B
of the same dimensions and of low modulus of rigidity 7 such that the lower face of A completely

covers the upper face of B. The lower face of B is rigidly held on a horizontal surface. A small force Fis
applied perpendicular to one of the side faces of A. After the force is withdrawn block A executes small
oscillations. The time period of which is given by

oo [M2 or [£ 2n [P [
(a) 27 7 (b) 2n v (c) 2 p (d) 27 L

¥

Solution : (d) Given m = mass = [M], 7= coefficient of rigidity = i), L = length = [L]
By substituting the dimension of these quantity we can check the accuracy of the given formulae
. 112 1/2
[ [M] ) M
[1]= 27 = =[T].
[\ [71LL] J ML T L
L.H.S. = R.H.S. i.e., the above formula is Correct.
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(5) As a research tool to derive new relations : If one knows the dependency of a physical
quantity on other quantities and if the dependency is of the product type, then using the method of
dimensional analysis, relation between the quantities can be derived.

Example : (i) Time period of a simple pendulum.

Let time period of a simple pendulum is a function of mass of the bob (i), effective length (1),
acceleration due to gravity (g) then assuming the function to be product of power function of m, land g

ie., T =Km"g®; where K = dimensionless constant

If the above relation is dimensionally correct then by substituting the dimensions of quantities —
[T]= [MF[LIY [LT=F

or [MPLeTY] = [MXLy+T-2]

Equating the exponents of similar quantities x=0,y=1/2andz=-1/2

So the required physical relation becomes T =K \/E
b4

, . . . 1
The value of dimensionless constant is found (27) through experiments so T = 27 J:
g

(ii) Stoke’s law : When a small sphere moves at low speed through a fluid, the viscous force F,
opposing the motion, is found experimentally to depend on the radius r, the velocity of the sphere v and the
viscosity 7 of the fluid.

So F=f(n,ruv)

If the function is product of power functions of 7, rand v, F=K#5*1’v*; where K is dimensionless
constant.

If the above relation is dimensionally correct [MLT 2] =[ML' T [LP [LT '

or [MLT 2] =[M L7717

Equating the exponents of similar quantitiesx=1;, —x+y+z=1and —x-z=-2

Solving these for x, y and z, we get x=y=2z=1

So eq" (i) becomes F = Knrv

On experimental grounds, K = 67, so F= 6anrv

This is the famous Stoke’s law.
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Problem 39.

Solution : (c)

Problem jo0.

Solution : (a)

Problem 41.

Sample problem based on formulae derivation

If the velocity of light (¢), gravitational constant (G) and Planck's constant (h) are chosen as
fundamental units, then the dimensions of mass in new system is

(a) ¢?G'"n'"? (b) "G (c) G2 (d) ¢V2G"*n'"?
Let m oc c*GPh* or m = K" GV
By substituting the dimension of each quantity in both sides

M LT = KLT P M CTP M T F =[5 L p3]
By equating the power of M, Land Tinbothsides: —+z=1, x+3p+22=0, x-2y-z=0
By solving above three equations x=1/2, y=-1/2 and z=1/2.

Tomx Cl 2 G_l ! zhl 2

If the time period (T) of vibration of a liquid drop depends on surface tension (S), radius (r) of the
drop and density (o) of the liquid, then the expression of T'is

(a) T:Kﬂpr‘3 /S b) T=kyp'"* 15 (o) T=Eyp'Is""? (d) None of these

Let T« ™1 p° or T= K§™F p°
By substituting the dimension of each quantity in both sides
[JMOLO Tl 1= K [MT -2 ]x [L}\= [M—J ]3 _ [Mx—: L}'—Sz T—h’ |

By equating the power of M, L and Tin both sides x+z=0,y-3z=0, -2x=1

By solving above three equations . x=-1/2, y=3/2,2z=1/2
. . - 12,342 142
So the time period can be givenas, T=KS ™ 'r''“p '~ = K,[—.

If P represents radiation pressure, C represents speed of light and Q represents radiation energy

striking a unit area per second, then non-zero integers x, y and z such that P*Q¥C? is dimensionless,
are
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Solution : (b)

Problem 42.

Solution : (b)

Problem 453.

Solution : (d)

Problem 44.

Solution : (b)

L] =[]

Ao A

-2

(a) x=1Ly=1z=-1 (b) x=1y=-1z=1 (c) x=-ly=Llz=1 (d) x=1Ly=1z=1
[P*o*c*1=M1T?

By substituting the dimension of each quantity in the given expression

ML T2 P [MT S PILT Y = M7 L T2 = MO 1070

by equating the power of M, L and Tin both sides: x +y =0, -x+z=0and 2x -3y -z =0

by solvingweget x =1Ly =-1z=1.

The volume V of water passing through a point of a uniform tube during t seconds is related to the cross-

sectional area A of the tube and velocity u of water by the relation 7 oz .4%4%¢”, which one of the
following will be true

() a=p=y (b) a=p=y (@ a=g=y (@ a=p=y
Writing dimensions of both sides [Z°]1=[Z*1°[LT 1°[7) = [ T°1=[2*"7 1777

By comparing powers of both sides 2o+ =3 and y- =0

Which give #=» and o = %(3 -Piea=pf=y.

If velocity (V), force (F) and energy (E) are taken as fundamental units, then dimensional formula for
mass will be

(a) V*FE M) vPEE? (© vF2E° (d v2rFE

Let M=VFE°

Putting dimensions of each quantities in both side [M]=[LT T 2P iy
Equating powers of dimensions. We have b+c=1, a+b+2¢=0 and —a—-2b—-2¢=0

Solving these equations, a =2, b=oandc=1
So M =[F2FE]

Given that the amplitude A of scattered light is :

(i) Directly proportional to the amplitude (4,) of incident light.

(ii) Directly proportional to the volume (V) of the scattering particle

(iii) Inversely proportional to the distance (r) from the scattered particle
(iv) Depend upon the wavelength ( A ) of the scattered light. then:

(a) Acc— ®) 4x— © 4L @ 40t
A A A A

KA VI*
¥

Let 4 =

By substituting the dimension of each quantity in both sides

_ [

L
=[L] 5

= 3+x=1o0orx=-2
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1.12 Limitations of Dimensional Analvsis

Although dimensional analysis is very useful it cannot lead us too far as,

(1) If dimensions are given, physical quantity may not be unique as many physical quantities have
. . . - . . . . 2 = .
same dimensions. For example if the dimensional formula of a physical quantity is [ML*T it may be work

or energy or torque.

(2) Numerical constant having no dimensions [K] such as (1/2), 1 or 27 ete. cannot be deduced by the
methods of dimensions.

(3) The method of dimensions can not be used to derive relations other than product of power
functions. For example,

s=ut+(1/2)ar’ or y=agsmof
cannot be derived by using this theory (try if you can). However, the dimensional correctness of these
can be checked.

(4) The method of dimensions cannot be applied to derive formula if in mechanics a physical quantity
depends on more than 3 physical quantities as then there will be less number (= 3) of equations than the
unknowns (>3). However still we can check correctness of the given equation dimensionally. For example

T = 27/1/mgl can not be derived by theory of dimensions but its dimensional correctness can be checked.

(5) Even if a physical quantity depends on 3 physical quantities, out of which two have same
dimensions, the formula cannot be derived by theory of dimensions, e.g., formula for the frequency of a

tuning fork £ =(d/L*)v cannot be derived by theory of dimensions but can be checked.

VECTORS

Most physical quantities are either Scalars or Vectors

A scalar is a physical quantity which can be specified by just giving the mag-
nitude only, in appropriate units.

Examples of scalars are mass, time, length, speed.

Scalar quantities may be added by the normal rules of mathematics

A very important class of physical quantity is Vectors.
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Vectors and Scalars

Some quantities in physics such as mass, length, or time are called scalars.
A quantity is a scalar if it obeys the ordinary mathematical rules of addition
and subtraction. All that is required to specify these quantities is a magnitude
expressed in an appropriate units.

A very illl]n rtant class of ]'ll\'\i".’ll 4|ll.‘lllliti"\ are spl'(‘iﬁml not only by their
magnitudes, but also by their directions. Perhaps the most important of these
quantities is FORCE. Consider a heavy trunk on a smooth (almost slippery)
floor, weighing say 100 pounds. You want to move the trunk but you are only
able to lift 50 pounds.

What do you do?

A vector must always be specified by giving its magnitude and direction. In
turn the vector’s direction must be given with respect to some known direction
such as the horizontal or the vertical direction, or perhaps with respect to some
pre—defined “X” axis.

The specification of the magnitude and direction does not have to be direct or
explicit. The specification can be indirect or implicit by giving the “X” and “Y”
components of the vector, and it is up to you to use the Pythagorean theorem
to caleulate the actual magnitude and direction.

(Do you remember your trigonometry?)

1) What is a right triangle 7 How many degrees are there in a triangle 7

2) What are the definitions of sine, cosine, and tangent ?

3) What is the Pythagorean theorem 7

4) What is the law of sines ?

5) What is the law of cosines ?

6) What is a radian ?
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Vector Addition by Graphical Means

Depiction of Vectors

A vector is represented by an arrow (a line with an arrowhead).
The length of the line is in some proportion to the magnitude of the vector.
The orientation of the line reflects the direction of the vector

How do I know that this is a vector and not just another arrow?

Answer: If it’s a vector, it must add like a vector

In order to add, I must have another vector. With two vectors, I can add them

together to form a RESULTANT.

Two vectors, A and E_)”, can be added graphically by the simple triangle rule:
Place the tail of the second vector at the head of the first vector, and then draw
a line from the tail of the first vector to the head of the second vector. That
line, both in magnitude and direction is the sum (Resultant) of the two original
vectors.

— —

R=A+D

If there are more than two vectors to be added, say A+B+C+ }j, then the
triangle rule is simply extended to the polygon rule. Just keep placing the tail of
the next vector at the head of the preceding vector. The resultant is represented
by a line from the tail of the first vector to the head of the last vector.

Properties of Vector Addition
1) Vector addition is commutative: A + B=B+A

—

2) Vector addition is associative: A+ (B+C) = (A+ B)+C

A scalar may multiply a vector e.g. 2A . This produces a vector twice as large
as the original vector, and in the same direction as the original vector. On the
other hand —0.5A produces a vector half the size of the original vector, and in
the opposite direction to the original vector’s direction.
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Analytic Addition of Vectors using Vector Components

The graphical addition of vectors is not terribly convenient, especially if a nu-
merical solution is required. Much more often you will have to add vectors
analytically. By that is meant that you first resolve the vectors into their per-
pendicular components, then add the components by ordinary mathematics,
and finally reconstitute the resultant with trigonometry and the Pythagorean
theorem.

Resolving a vector into its perpendicular components.

Say that you are given a vector A oriented at an angle 6 with respect to the x
(horizontal) axis. This original vector may be resolved into two perpendicular
components, Ay and A,, which replace A.

In other words, the original vector no longer exists, and one has two mutually
perpendicular vectors in its place.

The magnitudes of the two component vectors are given by:
A, = Acos#
A, = Asind

The directions of the two component vectors are given by two unit vectors, 1
and j along the z and y directions respectively:

— T
J.Ax — _(4::‘1

— —

A, = Aj

Clearly the above process can be run backwards. One can obtain back the
original vector A by using trigonometry:

For the magnitude use the Pythagorean theorem: A — \ful; - A.E,. For the
direction use the right triangle trigonometry definitions: tan = A,/A, — 6 =

an~ A,/ A,
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Analytic Addition of Vectors using Vector Components

The graphical addition of vectors is not terribly convenient, especially if a nu-
merical solution is required. Much more often you will have to add vectors
analytically. By that is meant that you first resolve the vectors into their per-
pendicular components, then add the components by ordinary mathematics,
and finally reconstitute the resultant with trigonometry and the Pythagorean
theorem.

Instead of one vector A, now take another vector B
Let’s say A is at an angle a, and B is at an angle (3
The vector sum of A and B is denoted by R

R=A+B

This can be solved component-by—component

R;E' — 44:{~ + B:
R,=A,+ B,

Now solve for R. First the magnitude

R — \IRE + R% - '1,;";(-'4;3' + Br)z + (*4;!;’ + B'H)?

And now the direction of R which we symbolize as ~

(Ay + By)

¥ = t-am_1 & = t-am_1 e S—
R. (Ar + B»)




28
Lectures in Properties of Mater — Dr. Badry. Abdalla -Phys. Dept.- Faculty of Science in Qena-

Analytic Addition of Vectors using Vector Components

The graphical addition of vectors is not terribly convenient, especially if a nu-
merical solution is required. Much more often vou will have to add vectors
analytically. By that is meant that you first resolve the vectors into their per-
pendicular components, then add the components by ordinary mathematics,
and finally reconstitute the resultant with trigonometry and the Pythagorean
theorem.

TABLE FORM OF ANALYTIC ADDITION

Vector Angle Magn. of r component | Magn. of y component
( o Acosa Asina
I3 3 B cos 3 B sin 3
R vy = tan ‘IE(: R.=Acosa+ Bcecos3 | R, = Asina + Bsin 3

Worked Example
A hiker walks 25 km due southeast (= —45Y) the first day, and 40 km at
60" north of east. What is her total displacement for the two days?

Arrange the problem in the table above with A being the first day’s displacement
and B being the second day’s displacement:

Vector Angle Magn. of r component | Magn. of y component
(kin) (“) (km) (km)

A=25 15 Acos(—45) = Asin(—45) =

B =40 +60 B cos (+60) = B sin(+60) =

R = v =tan"' 3 = R, = R, =

Analytic Addition of Vector Components

Worked Example
You are given a displacement of 20 km to the West, and a second displacement
at 10 km to the North. What is the sum of the two displacements?

Vector Angle Magn. of r component | Magn. of y component
(km) () (km) (km)

Vector Angle Magn. of r component | Magn. of y component
(km) ) (km) (km)

A=2 + 180 Acos (+180) = Asin (+180) =

B=10 +90 B cos (+90) = B sin (+90) =

R= v = tan " },:4 = ey = =
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Chapter (2) : Elasticity

e Basic concepts :
Elasticity

That property of a body by which it experiences a change in size or shape whenever
a deforming force acts on the body.

The elastic properties of matter are a manifestation of the molecular forces that hold

solids together .

Lattice structure of a solid

A regular, periodically repeated, three-dimensional array of the atoms or molecules
comprising the solid .
Stress

For a body that can be either stretched or compressed, the stress is the ratio of the
applied force acting on a body to the cross-sectional area of the body .
Strain

For a body that can be either stretched or compressed, the ratio of the change in
length to the original length of the body is called the strain .
Hooke’s law

In an elastic body, the stress is directly proportional to the strain .
Young’s modulus of elasticity

The proportionality constant in Hooke’s law. It is equal to the ratio of the stress to
the strain .
Elastic limit

The point where the stress on a body becomes so great that the atoms of the body

are pulled permanently away from their equilibrium position in the lattice structure.
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When the stress exceeds the elastic limit, the material will not return to its original
size or shape when the stress is removed. Hooke’s law is no longer valid above the
elastic limit .

Shear

That elastic property of a body that causes the shape of the body to be changed
when a stress is applied.

When the stress is removed the body returns to its original shape .

Shearing strain

The angle of shear, which is a measure of how much the body’s shape has been
deformed .

Shearing stress

The ratio of the tangential force acting on the body to the area of the body over
which the tangential force acts .

Shear modulus

The constant of proportionality in Hooke’s law for shear. It is equal to the ratio of
the shearing stress to the shearing strain .

Bulk modulus

The constant of proportionality in Hooke’s law for volume elasticity. It is equal
to the ratio of the compressional stress to the strain. The strain for this case is equal
to the change in volume per unit volume .

Elasticity of volume

When a uniform force is exerted on all sides of an object, each side of the object
becomes compressed. Hence, the entire volume of the body decreases. = When the
force is removed the body returns to its original volume .

Compressibility
The reciprocal of the bulk modulus (B).-
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2.1 The Atomic Nature of Elasticity
Elasticity is that property of a body by which it experiences a change in size or shape
whenever a deforming force acts on the body.

When the force is removed the body returns to its original size and shape.

Most people are familiar with the stretching of a rubber band.
All materials, however, have this same elastic property, but in most materials it is not
so pronounced. The explanation of the elastic property of solids is found in an atomic
description of a solid.

Most solids are composed of a very large number of atoms or molecules arranged
in a fixed pattern called the lattice structure of a solid and shown schematically in
figure (1).

IEZIZZ.}ZIIZIZ

Figure (1) : Lattice structure of a solid.
These atoms or molecules are held in their positions by electrical forces. The electrical
force between the molecules is attractive and tends to pull the molecules together.
Thus, the solid resists being pulled apart. Any one molecule in figure (1.1) has an
attractive force pulling it to the right and an equal attractive force pulling it to the left.
There are also equal attractive forces pulling the molecule up and down, and in and

out. A repulsive force between the molecules also tends to repel the molecules if they
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get too close together.  This is why solids are difficult to compress. The net result of
all these molecular forces is that each molecule is in a position of equilibrium.

If we try to pull one side of a solid material to the right, let us say, then we are in
effect pulling all these molecules slightly away from their equilibrium position.

The displacement of any one molecule from its equilibrium position is quite
small, but since there are billions of molecules, the total molecular displacements are
directly measurable as a change in length of the material.

When the applied force is removed, the attractive molecular forces pull all the
molecules back to their original positions, and the material returns to its original
length. If we now exert a force on the material in order to compress it, we cause the
molecules to be again displaced from their equilibrium position, but this time they are
pushed closer together.

The repulsive molecular force prevents them from getting too close together, but
the total molecular displacement is directly measurable as a reduction in size of the
original material.

When the compressive force is removed, the repulsive molecular force causes
the atoms to return to their equilibrium position and the solid returns to its original
size. Hence, the elastic properties of matter are a manifestation of the molecular

forces that hold solids together.

2.2 Hooke’s Law — Stress and Strain

If we apply a force to a rubber band, we find that the rubber band stretches.

Similarly, if we attach a wire to a support, as shown in figure (2.2), and sequentially
apply forces of magnitude F, 2F, and 3F to the wire, we find that the wire stretches by
an amount AL, 2AL, and 3AL, respectively. (Note that the amount of stretching is

greatly exaggerated in the diagram for illustrative purposes.)
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Figure (2.2) : Stretching an object.

The deformation, (AL), is directly proportional to the magnitude of the applied force

(F) and is written mathematically as:

AL=< F..(1-1)

This aspect of elasticity is true for all solids.

It would be tempting to use equation (1.1) as it stands to formulate a theory of
elasticity, but with a little thought it becomes obvious that although it is correct in its
description, it is incomplete.

Let us consider two wires, one of cross-sectional area A, and another with twice that

area, namely 2A, as shown in figure (2.3).

=

Figure (2.3): The deformation is inversely proportional to the cross-sectional area
of the wire
When we apply a force F to the first wire, that force is distributed over all the atoms in

that cross-sectional area A. If we subject the second wire to the same applied force F,
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then this same force is distributed over twice as many atoms in the area 2A as it was in
the area A. Equivalently we can say that each atom receives only half the force in the
area 2A that it received in the area A. Hence, the total stretching of the 2A wire is only
1/2 of what it was in wire A.

Thus, the elongation of the wire (4L) is inversely proportional to the cross-

sectional area (A) of the wire, and this is written:

1
AL oc—_ . (1—-2
~..(1-2)

Note also that the original length of the wire must have something to do with the
amount of stretch of the wire. For if a force of magnitude F is applied to two wires of
the same cross-sectional area, but one has length Lo and the other has length 2Lo, the
same force is transmitted to every molecule in the length of the wire.  But because
there are twice as many molecules to stretch apart in the wire having length 2Lo, there
Is twice the

deformation, or 2AL, as shown in figure (2.4). We write this as the proportion:

AL L,..(1-3)

The results of equations (1.1), (1.2 ) and (1.3) are, of course, also deduced
experimentally.

The deformation (AL) of the wire is thus directly proportional to the magnitude of the
applied force (F) (equation 1.1),inversely proportional to the cross-sectional area
(A) (equation 1.2), and directly proportional to the

original length of the wire (Lo) (equation 1.3).
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Figure (2.4) : The deformation is directly proportional to the original
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length of the wire.

These results can be incorporated into the one proportionality:

AL o FL .
A
which we rewrite in the form:
F AL
T (1-4
T A

The ratio of the magnitude of the applied force to the cross-sectional area of
the wire is called the stress acting on the wire, while the ratio of the change in
length to the original length of the wire is called the strain of the wire.
Equation (1.4) is a statement of Hooke’s law of elasticity, which says
that in an elastic body the stress is directly proportional to the strain, that is:
Stress oc Strain...(1-5)
The stress is what is applied to the body, while the resulting effect is called

the strain. To make an equality out of this proportion, we must introduce a
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constant of proportionality.  This constant depends on the type of material used, since
the molecules, and hence the molecular forces of each material, are different.
This constant, called Young’s modulus of elasticity is denoted by the letter (Y) .

Equation (1.4) thus becomes:

£ }’.E...(I—G)
4 L
The value of (Y) for various materials is given in table (1.1).
Table : 1-1
Some Elastic Constants
Substance | Youngs Shear Bulk Flastic | Ultamate
Modulus Modulus Modulus Limat Tensile
Stress
Nm® x 10" [ Nfm® x 10" | Nm® x 10" | Nim® x 10" | N/im® x 10°
Aluminum | 7.0 3 T 14 14
Bone 15 8.0 1.30
Brass 01 3.6 6 3.5 45
Copper 11.0 42 14 1.6 41
Iron 01 7.0 10 1.7 3.2
Lead 1.6 0.56 0.77 0.2
Steel 21 84 16 24 48

The applied stress on the wire cannot be increased indefinitely if the wire is to remain
elastic.

Eventually a point is reached where the stress becomes so great that the atoms are
pulled permanently away from their equilibrium position in the lattice structure.

This point is called the elastic limit of the material and is shown in figure (2.5).

When the stress exceeds the elastic limit the material does not return to its original

size or shape when the stress is removed. The entire lattice structure of the material

has been altered.
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Ultimate
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|
Elastic .\
limit |
Breaking
point
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Figure (2.5) : Stress-strain relationship.
If the stress is increased beyond the elastic limit, eventually the ultimate stress
point is reached.

This is the highest point on the stress-strain curve and represents the greatest stress
that the material can bear.  Brittle materials break suddenly at this point, while some
ductile materials can be stretched a little more due to a decrease in the cross-sectional
area of the material.  But they too break shortly thereafter at the breaking point.

Hooke’s law is only valid below the elastic limit, and it is only that region that will
concern us.

Although we have been discussing the stretching of an elastic body, a body is also
elastic under compression.

If a large load is placed on a column, then the column is compressed, that is, it
shrinks by an amount (AL).

When the load is removed the column returns to its original length.

1.3 Hooke’s Law for a Spring
A simpler formulation of Hooke’s law is sometimes useful and can be found from
equation (1.6) by a slight rearrangement of terms.

That is, solving equation (1.6) for (F) gives:
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AY
L

o

F = AL

Because (A), (Y), and (LO) are all constants, the term (AY/LO) can be set equal to a new

constant (k), namely:

szY
L

(1=7)

o

We call (k) a force constant or a spring constant. Then:

F=kAL.(1-8)

The change in length (AL) of the material is simply the final length (L) minus the
original length (LO).
We can introduce a new reference system to measure the elongation, by calling the
location of the end of the material in its un stretched position, (x = 0).

Then we measure the stretch by the value of the displacement (x) from the un

stretched position, as seen in figure (2.6).

Figure (2.6) : Changing the reference system.

Thus, (AL) = X, in the new reference system, and we can write equation (1.8) as:

F=kx.(1-9)

Equation (1.9) is a simplified form of Hooke’s law that we use in vibratory motion

containing springs.
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For a helical spring, we cannot obtain the spring constant from equation (1.7)
because the geometry of a spring is not the same as a simple straight wire.
However, we can find (k) experimentally by adding various weights to a spring
and measuring the associated elongation x, as seen in figure 2.7(a).
A plot of the magnitude of the applied force (F) versus the elongation (x) gives a

straight line that goes through the origin, as in figure (1.7(b)).

= !
r‘“——— ¥ \
: E
Y- e
Ax

j

F,

(a) (b)

Figure (2.7): Experimental determination of a spring constant.
Because Hooke’s law for the spring, equation (1.9), is an equation of the

form of a straight line passing through the origin, that is:

y=mx
the slope (m) of the straight line is the spring constant (k).

In this way, we can determine experimentally the spring constant for

any spring.

1.4 Elasticity of Shape - Shear

In addition to being stretched or compressed, a body can be deformed by changing the

shape of the body.
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If the body returns to its original shape when the distorting stress is removed, the
body exhibits the property of elasticity of shape, sometimes called shear.

As an example, consider the cube fixed to the surface in figure (2.8(a)).

A tangential force (Ft) is applied at the top of the cube, a distance (h) above the

bottom.

....................

Figure (2.8) : Elasticity of shear.

The magnitude of this force (Ft) times the height (h) of the cube would normally cause
a torque to act on the cube to rotate it.

However, since the cube is not free to rotate, the body instead becomes deformed
and changes its shape, as shown in figure (2.8(b)).

The normal lattice structure is shown in figure (2.8(c)), and the deformed lattice
structure in figure (2.8(d)).

The tangential force applied to the body causes the layers of atoms to be displaced
sideways; one layer of the lattice structure slides over another.

The tangential force thus causes a change in the shape of the body that is
measured by the angle [1, called the angle of shear.

We can also relate [ to the linear change from the original position of the body by
noting from (figure 1.8(b)) that:
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tang = A
h

Because the deformations are usually quite small, as a first approximation the tan []

can be replaced by the angle [ itself, expressed in radians. Thus:

;é:%...a—m)

Equation (1.10) represents the shearing strain of the body.
The tangential force (Ft) causes a deformation [1 of the body and we find

experimentally that:

poc F,..(1—11)

That is, the angle of shear is directly proportional to the magnitude of the applied
tangential force (Ft).

We also find the deformation of the cube experimentally to be inversely
proportional to the area of the top of the cube.

With a larger area, the distorting force is spread over more molecules and hence

the corresponding deformation is less. Thus:

1
@ oc E(l —12)

Equations (1.11) and (1.12) can be combined into the single equation:

B a
gﬁac?...(l 13)

Note that (Ft/A) has the dimensions of a stress and it is now defined as the shearing

stress:

F,
ShearingStress = j L(1—14)
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Since (@ ) is the shearing strain, equation (1.13) shows the familiar proportionality that
stress is directly proportional to the strain. Introducing a constant of proportionality

(S), called the shear modulus, Hooke’s law for the elasticity of shear is given Dby:

fr _ _
— =5¢..(1-15)

Values of (S) for various materials are given in table (1.1).

The larger the value of (S) , the greater the resistance to shear. Note that the
shear modulus is smaller than Young’s modulus (Y). This implies that it is easier to
slide layers of molecules over each other than it is to compress or stretch them.

The shear modulus is also known as the torsion modulus and the modulus of
rigidity.
1.5 Elasticity of Volume
If a uniform force is exerted on all sides of an object, as in figure (2.9), such as a block
under water, each side of the block is compressed. Thus, the entire volume of the

block decreases.

Figure (2.9) : Volume elasticity.

The compressional stress is defined as:

Stress = £...(1— 16)
A
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where (F ) is the magnitude of the normal force acting on the cross-sectional area (A)
of the block.

The strain is measured by the change in volume per unit volume, that is:

Strain = ?’—V (1=17)

a

Since the stress is directly proportional to the strain, by Hooke’s law, we have:

F AV
o —

- ..(1-18)

o

To obtain an equality, we introduce a constant of proportionality (B), called the bulk

modulus, and Hooke’s law for elasticity of volume becomes:

£=—B£...(1—19)
A 1

o

The minus sign is introduced in equation (1.19) because an increase in the stress
(F/A) causes a decrease in the volume, leaving (AV) negative.

The bulk modulus is a measure of how difficult it is to compress a substance.

The reciprocal of the bulk modulus (B) , called the compressibility (k) , is a
measure of how easy it is to compress the substance.

The bulk modulus (B) is used for solids, while the compressibility (k) is usually
used for liquids.

Quite often the body to be compressed is immersed in a liquid. In dealing with
liquids and gases it is convenient to deal with the pressure exerted by the liquid or gas.

We will see in detail in Lecture 2 that pressure is defined as the force that is acting

over a unit area of the body, that is:
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For the case of volume elasticity, the stress (F/A), acting on the body by the fluid, can
be replaced by the pressure of the fluid itself.

Thus, Hooke’s law for volume elasticity can also be written as:

N

P= .(1-20)

o

Summary of Important Equations

Hooke’s law in general stress oc strain
Hooke’s law for stretching or compression %= }?\Lc
Hooke’s law for a spring F=kx
6 =Ax

Shearing strain

Hooke’s law for shear

Hooke’s law for volume elasticity

p=-BAV
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Problems for ( Elasticity )

Problem 1.1

Stretching a wire
A steel wire (1 m) long with a diameter (d = 1 mm) has
a (10 kg) mass hung from it. The value of Y for steel
is (21 x 101° N/m?).
(a) How much will the wire stretch? Answer : (0.594 x 103 m)
(b) What is the stress on the wire? Answer : (1.25 x 108 N/m?2)

(e¢) What is the strain? Answer : (0.594 x 10-3)

Problem 1.2

Compressing a steel column
A (445000) N load is placed on top of a steel column (3.05 m)
long and (10.2 em) in diameter. By how much is the column
compressed? The value of Y for steel is (21 x 1010 N/m?2).
Answer : (7.91 x 104 m)

Problem 1.3

Exceeding the ultimate compressive strength
A human bone i1s subjected to a compressive force of
(5 x 105 N). The bone has an approximate area of (4 ecm?).
If the ultimate compressive strength for a bone is
(1.70 x 108 N/m?), will the bone be compressed or will it break

under this force?

Answer : (12.5 x 108 N/m?)
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Problem 1.4

The elongation of a spring
A spring with a force constant of (50 N/m) is loaded with

a (0.500 kg) mass. Find the elongation of the spring.
Answer : (0.098 m)

Problem 1.5

Elasticity of shear

A sheet of copper (0.750 m) long, (1 m) high, and (0.500 cm)

thick is acted on by a tangential force of (50000 N), as shown in
figure below. The value of S for copper is (4.20 x 1010 N/m?2).
Find:

(a) The shearing stress ? Answer : (1.33 x 107 N/m?2)

(b) The shearing strain? Answer : (3.17 x 10 4)

(¢) The linear displacement Ax? Answer : (3.17 x 10 4 m)

Ax

f= 0.500 cm F

F,

1 H=0.750m
P——
] ]

Problem 1.6

Elasticity of volume
A solid copper sphere of (0.500 m3) volume is placed
(30.5 m) below the ocean surface where the pressure is
(3.00 x 10> N/m?2). What is the change in volume of the
sphere? The bulk modulus for copper is (14 X 1019 N/m?2).
Answer : (- 1.1 x 10 ¢ m?)
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o

[D Chapter (3)

"Static Fluids"”
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Chapter (3): Static Fluids

3.1 Introduction
Matter is usually said to exist in three phases: solid, liquid, and gas. Solids are hard
bodies that resist deformations, whereas liquids and gases have the characteristic of
being able to flow.

A liquid flows and takes the shape of whatever container in which it is placed.

A gas also flows into a container and spreads out until it occupies the entire volume
of the container.

A fluid is defined as any substance that can flow, and hence liquids and gases are
both considered to be fluids.

Liquids and gases are made up of billions upon billions of molecules in motion
and to properly describe their behavior, Newton’s second law should be applied to
each of these molecules.

However, this would be a formidable task, if not outright impossible, even with the
use of modern high-speed computers. Also, the actual motion of a particular molecule
IS sometimes not as important as the overall effect of all those molecules when they
are combined into the substance that is
called the fluid.

Hence, instead of using the microscopic approach of dealing with each molecule,
we will treat the fluid from a macroscopic approach. That is, we will analyze the fluid
in terms of its large scale characteristics, such as its mass, density, pressure, and its
distribution in space.

The study of fluids will be treated from two different approaches.

First, we will consider only fluids that are at rest. This portion of the study of

fluids is called fluid statics or hydrostatics.
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Second, we will study the behavior of fluids when they are in motion. This
part of the study is called fluid dynamics or hydrodynamics.

Let us start the study of fluids by defining and analyzing the macroscopic variables.

3.2 Density
The density of a substance is defined as the amount of mass in a unit volume of that
substance.

We use the symbol (p) (the lower case Greek letter rho) to designate the density

and write it as:

m

P = ;...(2—1)

A substance that has a large density has a great deal of mass in a unit volume, whereas
a substance of low density has a small amount of mass in a unit volume.

Density is expressed in Sl units as (kg/m3), and occasionally in the laboratory as
(g/cm3).

Densities of solids and most liquids are very nearly constant but the densities of
gases vary greatly with temperature and pressure.

Table (2.1) is a list of densities for various materials.

We observe from the table that in interstellar space the densities are
extremely small, of the order of 10-18 to 10-21 kg/ms. That is, interstellar
space is almost empty space. The density of the proton and neutron is of
the order of 1017 kg/ms, which is an extremely large density. Hence, the
nucleus of a chemical element is extremely dense.

Because an atom of hydrogen has an approximate density of 2680

kg/ms, whereas the proton in the nucleus of that hydrogen atom as a
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density of about 1.5 x 1017 kg/ms, we see that the density of the nucleus is
about 1013 times as great as the density of the atom.
Hence, an atom consists almost entirely of empty space with the greatest

portion of its mass residing in a very small nucleus.

Table : ( 2-1)
Densities of Various Materials
Substance Eg/m?

Air (0°C, 1 atm pressure) 1.29
Aluminum 2.700
Benzene 879
Blood 1.05 x 103
Bone 1.7 x 10
Brass 8.600
Copper 8.920
Critical density for universe to | 5 x 10727
collapse under gravitation
Planet Earth 5,520
Ethyl alcohol 810
Glycerine 1.260
Gold 19.300
Hydrogen atom 2.680
Ice 920
Interstellar space 10 ™10
Iron 7.860
TLead 11.340
Mercury 13.630
Nucleus 1 x 107
Proton 1.5 x 1037
Silver 10.500
Sun (aveg) 1,400
Water (pure) 1,000
(sea) 1.030
Wood (maple) 620-750

3.3 Pressure
Pressure is defined as the magnitude of the normal force acting per unit
surface area.

The pressure is thus a scalar quantity. We write this mathematically

as:
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F
P==.(2-2)

The SI unit for pressure is newton/meterz, which is given the special
name Pascal, in honor of the French mathematician, physicist, and
philosopher, Blaise Pascal (1623-1662) and is abbreviated (Pa). Hence, 1
Pa =1 N/ma.

Pressure exerted by a fluid is easily determined with the aid of figure

(2.1), which represents a pool of water.

Pressure in a pool of water

_
-~

W/"/r/ 1}

Figure (2.1) : Pressure in a pool of water.
We want to determine the pressure(p) at the bottom of the pool caused by the
water in the pool.
By our definition, equation (2.2), the pressure at the bottom of the pool is the
magnitude of the force acting on a unit area of the bottom of the pool.
But the force acting on the bottom of the pool is caused by the weight of all the

water above it. Thus:
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P F weightofwa ter
A area

p=2_"& (x 3
A A

We have set the weight w of the water equal to (mg) in equation (2.3).

The mass of the water in the pool :

m=pV.(2—4)

The volume of all the water in the pool is just equal to the area (A) of the bottom

of the pool times the depth (h) of the water in the pool, that is:

V=Ah.(2-5)

Substituting equations (2.4) and (2.5) into equation (2.3) gives for the pressure at
the bottom of the pool:

- mg _ pVg  pAhg
A A A

P

Thus,

P = pgh..(2—6)

(Although we derived equation (2.6) to determine the water pressure at the bottom of a
pool of water, it is completely general and gives the water pressure at any depth (h) in
the pool.)

Equation (2.6) says that the water pressure at any depth (h) in any pool is given by
the product of the density of the water in the pool, the acceleration due to gravity ( g),
and the depth (h) in the pool. Equation (2.6) is sometimes called the hydrostatic
equation.

Just as there is a water pressure at the bottom of a swimming pool caused by the

weight of all the water above the bottom, there is also an air pressure exerted on every
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object at the surface of the earth caused by the weight of all the air that is above us in
the atmosphere.  That is, there is an atmospheric pressure exerted on us, given by

equation (2.2) as:

p_ F _ wefghrﬂﬁrfrm(z_?)

A arecda

However we cannot use the same result obtained for the pressure in the pool of
water, the hydrostatic equation (2.6), because air is compressible and hence its density
(p) is not constant with height throughout the vertical portion of the atmosphere.

The pressure of air at any height in the atmosphere can be found if we know the
density variation in the atmosphere.

However, the variation in density is also a function of the temperature of the air
and can be found by use of the ideal gas equation .

Until then we will revert to the use of experimentation to determine the pressure
of the atmosphere.

The pressure of the air in the atmosphere was first measured by Evangelista
Torricelli (1608-1647), a student of Galileo, by the use of a mercury barometer.

A long narrow tube is filled to the top with mercury, chemical symbol Hg. Itis

then placed upside down into a reservoir filled with mercury, as shown in figure (2.2) .

T—

Partial vacuum
of Hg vapor

- n

N e ////
R
T | l i P
< 3 -

Prsg

| S S s A e 2

Figure (2.2) : A mercury barometer.
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The mercury in the tube starts to flow out into the reservoir, but it comes to a stop
when the top of the mercury column is at a height (h) above the top of the mercury
reservoir, as also shown in figure (2.2).

The mercury does not empty completely because the normal pressure of the
atmosphere (p0) pushes downward on the mercury reservoir.

Because the force caused by the pressure of a fluid is the same in all directions,
there is also a force acting upward inside the tube at the height of the mercury
reservoir, and hence there is also a pressure p0 acting upward as shown in figure (2.2).

This force upward is capable of holding the weight of the mercury in the tube up to
a height (h).

Thus, the pressure exerted by the mercury in the tube is exactly balanced by the

normal atmospheric pressure on the reservoir, that is:

P =B, .(2-8)

But the pressure of the mercury in the tube (pHg), given by equation (2.6), is:
By, = Pregh..(2-9)
Substituting equation (2.9) back into equation (2.8), gives:

P, = B, gh..(2—-10)

Equation (2.10) says that normal atmospheric pressure can be determined by
measuring the height (h) of the column of mercury in the tube.

It is found experimentally, that on the average, normal atmospheric pressure can
support a column of mercury (76.0 cm) high, or (760 mm) high.

The unit of (1.00 mm) of Hg is sometimes called a torr in honor of Torricell.
Hence, normal atmospheric pressure can also be given as (760 torr).

Using the value of the density of mercury of 1.360 x 104 kg/m3, found in table

(2.1), normal atmospheric pressure, determined from equation (2.10), is:
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-

10¢ 22 [a 80

]tﬁu.vﬁﬂ m)
_ 1,013 % 105 N/m? = 1.013 x 10° Pa

Now that we have discussed atmospheric pressure, it is obvious that the total

pn—pH

pressure exerted at a depth (h) in a pool of water must be greater than the value
determined previously, because the air above the pool is exerting an atmospheric
pressure on the top of the pool.

This additional pressure is transmitted undiminished throughout the pool.

Hence, the total or absolute pressure observed at the depth (h) in the pool is the

sum of the atmospheric pressure plus the pressure of the water itself, that is:

P, =P +P, (211

a

Using equation (2.6), this becomes

P, =P + pgh.(2-12)

abs

3-4: SURFACE TENSION

o Intermolecular forces

The force between two molecules of a substance is called
intermolecular force. This intermolecular force is basically electric in
nature. When the distance between two molecules is greater, the
distribution of charges is such that the mean distance between opposite
charges in the molecule is slightly less than the distance between their like
charges. So a force of attraction exists. When the intermolecular distance is
less, there is overlapping of the electron clouds of the molecules resulting
in a strong repulsive force.

The intermolecular forces are of two types. They are
(i)  cohesive force and
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(i) adhesive force.
@ Cohesive force

Cohesive force is the force of attraction between the molecules of the
same substance. This cohesive force is very strong in solids, weak in liquids
and extremely weak in gases.

eAdhesive force

Adhesive force is the force of attraction between the molecules of two
different substances. For example due to the adhesive force, ink sticks to
paper while writing. Fevicol, gum etc exhibit strong adhesive property.

Water wets glass because the cohesive force between water molecules
is less than the adhesive force between water and glass molecules.
Whereas, mercury does not wet glass because the cohesive force between
mercury molecules is greater than the adhesive force between mercury
and glass molecules.
eMolecular range and sphere of influence

Molecular range is the maximum distance upto which a molecule can

exert force of attraction on another molecule. It is of the order of 10-9 m
for solids and liquids.

Sphere of influence is a sphere drawn around a particular molecule as
center and molecular range as radius. The central molecule exerts a force
of attraction on all the molecules lying within the sphere of influence.
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Surface tension of a liquid

Surface tension is the property of the free surface of a liquid at rest to
behave like a stretched membrane in order to acquire minimum surface
area.

Imagine a line AB in the free surface of a liquid at rest (Fig. 5.20). The force
of surface tension is measured as the force acting per unit length on either
side of this imaginary line AB. The force is perpendicular to the line and
tangential to the liquid surface. If F is the force acting on the length / of the
line AB, then surface tension is given by

T=F/L
Surface tension is defined as the force per unit length acting
perpendicular on an imaginary line drawn on the liquid surface, tending to
pull the surface apart along the line. Its unit is N m~ and dimensional
formula is MT 2.
It depends on temperature. The surface tension of all liquids decreases
linearly with temperature. It is a scalar quantity and become zero at
critical temperature

eMolecular theory of surface tension
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The surface tension of liquid arises out of the attraction of its
molecules. Molecules of fluid ( liquid and gas) attract one another with a
force. If any other molecule is within the sphere of influence of first
molecule it will experience a force of attraction .

Consider three molecules A, B, C having their spheres of influence as
shown in the figure. The sphere of influence of A is well inside the liquid,
that of B partly outside and that of C exactly half of total molecules like A
do not experience any resultant force, as they are attracted equally in all
directions. Molecules like B or C will experience a resultant force directed
inward. Thus the molecules will inside the liquid will have only kinetic
energy but the molecule near surface will have kinetic as well as potential
energy which is equal o the work done in placing them near the surface

against the force of attraction directed inward

Surface energy

A 1

Any Strained body possesses potential energy, which is equal to the work

done in bringing it to the present state from its initial unstained state. The
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surface of liquid is also a strained system and hence the surface of a liquid
also has potential energy, which is equal to the work done increasing the
surface. This energy per unit area of the surface is called surface energy
To derive an expression for surface energy consider a wire frame equipped
with a sliding wire AB as shown in figure. A film of soap solution is formed
across ABCD of the frame. The side AB is pulled to the left due to surface
tension. To keep the wire in position a force F has to be applied to the
right. If T is the surface tension and | is the length of AB, then the force due
to surface tension over AB is 2IT to the left because the film has two
surfaces ( upper and lower) . Since the film is in equilibrium F=2IT

Now, if the wire AB is pulled down, energy will flow from the agent to
the film and this energy is stored as potential energy of the surface created
just now. Let the wire be pulled slowly through x.
Then the work done = energy added to the film from above agent

W=F, = 2ITy
Potential energy per unit area ( surface energy) of the film

B 2{Tx B

21x
14
T —_—

area

Thus surface energy numerically equal to its surface tension . Its unit is

Joule per square metre ( Jm'z)
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Solved Numerical

Qe) Calculate the work done in blowing a soap bubble of radius 10cm,
surface tension being 0.08 Nm-1. What additional work will be done in
further blowing it so that its radius is doubled?
Solution
In case of a soap bubble, there are two free surfaces
Surface tension = Work done per unit area
~ Work done in blowing a soap bubble of radius R is given by = Surface
tension X Area
W =T X(2x41R?) = (0.06)%(8%3.14%0.1°) = 1.51
Similarly, work done in forming a bubble of radius 0.2 mis :
W’ =(0.06)%(8%3.14%0.22) =60.3 J

Additional work done in doubling the radius of the bubble is given by

W -W=60.3-1.51=5.42).

Qe) A mercury drop of radius 1cm is sprayed into 106 droplets of equal
size. Calculate the energy expended if surface tension of mercury is 35X10-
3 N/m

Solution
Since total volume of 10° droplet has remains same
If radius small droplet is r’ and big drop is r then r = (10%)1/3 r
1=10°" orr =0.01cm=10"m
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Since surface area is increased energy should be supplied to make small
small drops.

Total energy of small droplet =[ T (41r'?)] 10°

Total energy of big droplet = [T(44Tr°)]

Spending of energy = Total energy of small droplets - Total energy of big
droplet

Spending of energy =[ T (41Tr’2)] 10°- [T(41Ir2)]

Spending of energy = TX4m [106X r*—r’]

Spending of energy = 35X10°x4x3.14 [10°x(10-4)2 -(102)?]

Spending of energy =0.44[107 - 10™]

Spending of energy = 4.356%107 )

eAngle of contact

R
Q) P
\ / /’f —
K i ~
0 \ II{ \
N Q
f
p 4 R ‘l 9
PiFor mercu
For Water ry

When the free surface of a liquid comes in contact with a solid, it becomes
curved at the point of contact. The angle between the tangent to the liquid

surface at the point of contact of the liquid with the solid and the solid
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surface inside the liquid is called angle of contact. In Fig., QR is the tangent
drawn at the point of contact Q. The angle PQR is called the angle of
contact. When a liquid has concave meniscus, the angle of contact is acute.
When it has a convex meniscus, the angle of contact is obtuse. The angle of
contact depends on the nature of liquid and solid in contact. For water and
glass, O lies between 8o and 180. For pure water and clean glass, it is very
small and hence it is taken as zero. The angle of contact of mercury with

glass is 1380.

ePressure difference across a liquid surface

If the free surface of a liquid is plane, then the surface tension acts

horizontally (Fig. a). It has no component perpendicular to the horizontal

excess pressure /K-_I-\\ T
L T
R

R
171
- o eXCess pressure
(a) =EEEE (h) ()

surface. As a result, there is no pressure difference between the liquid side
and the vapour side.

If the surface of the liquid is concave (Fig. b), then the resultant force
R due to surface tension on a molecule on the surface act vertically
upwards. To balance this, an excess of pressure acting downward on the

concave side is necessary.
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On the other hand if the surface is convex (Fig.c), the resultant R acts
downward and there must be an excess of pressure on the concave side
acting in the upward direction.

Thus, there is always an excess of pressure on the concave side of a
curved liquid surface over the pressure on its convex side due to surface

tension.

eEXxcess pressure

The pressure inside a liquid drop or a soap bubble must be in excess of
the pressure outside the bubble or drop because without such pressure
difference a drop or a bubble cannot be in state of equilibrium. Due to
surface tension the drop or bubble has got the tendency to contract and
disappear altogether.

To balance this, there must be an excess of pressure inside the
bubble. To obtain a relation between the excess pressure and the surface
tension, consider a water drop of radius r and surface tension T,

The excess of pressure P inside the drop provides a force acting
outwards perpendicular to the surface, to balance the resultant force due

to surface tension.

A C

B

T
Imagine the drop to be divided into two equal halves. Considering the
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equilibrium of the upper hemisphere of the drop, the upward force on the
plane face ABCD due to excess pressure PisP1ur2
If T is the surface tension of the liquid, the force due to surface tension

acting downward along the circumference of the circle ABCD is T 2mr.

At equilibrium, Prtr2 =T 2mr

Here P is excess pressure P = P;— Pg

eExcess pressure inside a soap bubble

A soap bubble has two liquid surfaces in contact with air, one inside the
bubble and the other outside the bubble. Therefore the force due to
surface tension = 2 x 2ruT

=~ At equilibrium, Prr’=2x2iTP =4Tr

Thus the excess of pressure inside a drop is inversely proportional to its
radius the pressure needed to form a very small bubble is high. This
explains why one needs to blow hard to start a balloon growing. Once the

balloon has grown, less air pressure is needed to make it expand more.
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Solved Numerical

Qe) An air bubble of radius R is formed on a narrow tube having a radius r
where R>>r. Air of density p is blown inside the tube with velocity V. The
air molecules collide perpendicularly with the wall of bubble and stop. Find
the radius at which the bubble separates from the tube. Take surface
tension of bulbas T

Solution:
Air molecules collides at stops thus force exerted on the soap bubble
Mass of air = Volume X p
Volume of air = velocity of air X area of hole =v (nrz)
Mass of air=v p(nrz)
Force exerted by the air = change in momentum of air molecules
Force due to air molecule = (v prir’) v = prir’v?
Pressure of blown air in side the bubble = pv°
Now Force due to surface tension of bubble of radius R

Pressure difference in bubble = 4T/R

Bubble gets separated when pressure difference in bubble = pressure of blown air
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Q) Two spherical soap bubbles coalesce to form a single bubble. If V is the
consequent change in volume of the contained air and S the change in the
total surface area, show that 3PV+4ST =0, where T is the surface tension of

the soap bubble and P the atmospheric pressure

Solution:
4T 4T
rl '-2
Since the total number of moles remains same

Ni+n;=n
PiVi+P2V2=P;3 V; ’ )
(P +£)(i—:mf) + (P +LT) (%mzj) (P +£)(§m’)

r Iy r

T 4T

() +(PeT) 0 =(P+) )

Pri + 4TrE + Pr; + 4Trf = Pr® + 4Tr?
4TrE + 4Trf — 4Tr? = Pr® — Pr; — Pr;
4TGZ 4+ =) =P(3 -1 —13)

;; 2 2 2 5
;rr*ﬂ'(rl" + 17 —1r)==nP(® -1 —13)

3
AT(S, + S, — S,) = 3P(Vy =V, — V)
4TS = —3PV

Negative V because V3 <V; +V;
4TS + 3PV =0

Surface tension by capillary rise method
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Y +Rcos#@

Let us consider a capillary tube of uniform bore dipped vertically in a

beaker containing water. Due to surface tension, water rises to a height h

in the capillary tube as shown in Fig.. The surface tension T of the water

acts inwards and the reaction of the tube R outwards. R is equal to T in

magnitude but opposite in direction. This reaction R can be resolved into

two rectangular components.

(i) Horizontal component R sin 8 acting radially outwards

(i) Vertical component R cos 0 acting upwards.

The horizontal component acting all along the circumference of the tube

cancel each other whereas the vertical component balances the weight of

water column in the tube.

Total upward force = R cos 0 x circumference of the tube
F=2nrRcosBorF=2nrTcosH...........(1)

[*R=T]
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This upward force is responsible for the capillary rise. As the water column
is in equilibrium, this force acting upwards is equal to weight of the water
column acting downwards.
(i.e) F=W..(2)
Now, volume of water in the tube is assumed to be made up of :
(i) a cylindrical water column of height h and (ii) water in the meniscus
above the plane CD.
Volume of cylindrical water column = nr’h
Volume of water in the meniscus = (Volume of cylinder of height r and
radius r) — (Volume of hemisphere)

~Volume of water in the meniscus=

2 1
Tre X r —En'?"g :§ﬂ'?"3

~Total volume of water in the tube
1 r
.2 w3 — .2 —
tr?h + BT” T (h + 3)
If p is the density of water, then weight of water in the tube is
>
w =mr?(h+ ‘E) pg — — —eq(3)

Substituting (1) and (3) in (2),
y
Tr? (h + E) Pg

-
2 . — -
mr<\h +=)pg = 2rrTcosO T =
( 3) PE 2mrcos@
Since ris very small, r/3 can be neglected compared to h.
_ hrpg
-~ 2cos@
For water 6 is very small cosB =1
hr
T — Pg

2
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Solved Numerical

Qe) An U-tube with limbs of diameter 5mm and 2mm contains water of

surface tension 7x107% N/m, angle of contact zero and density 1x10°

kg/m>. Find the difference in levels ( g= 10 m/s?)

Solution:

If the menisci are spherical, they will be hemispheres Since angle of contact

is zero, their radii will then equal to radii of the limbs. The pressure on the

concave side of :

each surface exceeds that on the convex side by 2T/r, where T is
surface tension and r is the radius of the limb concerned
Nowr;=25mm=25%X10°mandr; = 1mm=103m
Hence

2T 2x7x1072

Py — P, = — 56 Pa
BT T %10 0H¢

Pn=Pg+56=P +56
Similarly
2T 2x7x107%2
PD—PC—?— 103 = 140 Pa
Po=Pc+140=P + 140

Since Po=Ps =P

5 Pa—Pc=(P-56) — (P-140)
PA - Pc =84 Pa
But Po=Pc+ hpg
Hpg = 84 Pa
84

~ 10 x 10

~h =84 mm

Qe) A mercury barometer has a glass tube with an inside diameter equal to

Amm. Since the contact angle of mercury with glass is 140°, capiliary

depresses the column. How many millimeters of mercury must be added to
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the reading to correct for capillarity ( Assume surface tension of mercury T
=0.545 N/m, density of mercury = 13.6><103)
Solution:

The height difference due to capillarity give by
2T cos6
h=———
rpg

L __ 2x0545xcosl40
T 2 x103)(13.6 x 10%)(9.8) oo

Therefore 3.1mm must be added to the barometer reading

Factors affecting surface tension

Impurities present in a liquid appreciably affect surface tension. A highly

soluble substance like salt increases the surface tension whereas sparingly

soluble substances like soap decreases the surface tension.

The surface tension decreases with rise in temperature. The temperature at

which the surface tension of a liquid becomes zero is called critical

temperature of the liquid.

Applications of surface tension

(i) During stormy weather, oil is poured into the sea around the

ship. As the surface tension of oil is less than that of water, it
spreads on water surface. Due to the decrease in surface
tension, the velocity of the waves decreases. This reduces the

wrath of the waves on the ship.
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(ii) Lubricating oils spread easily to all parts because of their low surface
tension.
(iii) Dirty clothes cannot be washed with water unless some detergent is
added to water. When detergent is added to water, one end of the hairpin
shaped molecules of the detergent get attracted to water and the other
end, to molecules of the dirt. Thus the dirt is suspended surrounded by
detergent molecules and this can be easily removed. This detergent action
is due to the reduction of surface tension of water when soap or detergent
is added to water.

(iii) Cotton dresses are preferred in summer because cotton dresses

have fine pores which act as capillaries for the sweat.

3.4 Pascal’s Principle
The pressure exerted on the bottom of a pool of water by the water itself is given by
(pgh). However, there is also an atmosphere over the pool, and, as we saw in section
(2.3), there is thus an additional pressure, normal atmospheric pressure (p0), exerted
on the top of the pool. This pressure on the top of the pool is transmitted through
the pool waters so that the total pressure at the bottom of the pool is the sum of the
pressure of the water plus the pressure of the atmosphere, equations (2.11) and (2.12).
The addition of both pressures is a special case of a principle, called Pascal’s
principle and it states that if the pressure at any point in an enclosed fluid at rest is
changed (Ap), the pressure changes by an equal amount (Ap), at all points in the

fluid.

As an example of the use of Pascal’s principle, let us consider the hydraulic lift

shown in figure (2.3).
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Figure (2.3) : The hydraulic lift.

A noncompressible fluid fills both cylinders and the connecting pipe. The
smaller cylinder has a piston of cross-sectional area (a), whereas the larger cylinder
has a cross-sectional area (A).

As we can see in the figure, the cross-sectional area (A) of the larger cylinder is
greater than the cross-sectional area (a) of the smaller cylinder.

If a small force (f) is applied to the piston of the small cylinder, this creates a

change in the pressure of the fluid given by:

=L (213

a

But by Pascal’s principle, this pressure change occurs at all points in the fluid, and
in particular at the large piston on the right. This same pressure change applied to the

right piston gives:

F
AP =—..(2.14
= )

where (F) is the force that the fluid now exerts on the large piston of area (A).
Because these two pressure changes are equal by Pascal’s principle, we can set

equation (2.14) equal to equation (2.13). Thus:
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AP = Ap
rF_r
A a

The force (F ) on the large piston is therefore:

r=27 _15
)

Since the area (A) is greater than the area (a), the force (F) will be greater than (f).
Thus, the hydraulic lift is a device that is capable of multiplying forces. It is
interesting to compute the work that is done when the force (f) is applied to the small
piston in figure (2.3).

When the force (f) is applied, the piston moves through a displacement (y1), such
that the work done is given by:
L= oy
But from equation (2.13) :

f =al\p

Hence, the work done is :

I, = a(Ap)y,..(2 - 16)

When the change in pressure is transmitted through the fluid, the force (F) is exerted

against the large piston and the work done by the fluid on the large piston is:

", = Fy,
where (y2) is the distance that the large piston moves and is shown in figure (2.3).
But the force (F), found from equation (2.14), is:

F = AAP

The work done on the large piston by the fluid becomes:
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W, = A(Ap)y,..2 - 17)

Applying the law of conservation of energy to a frictionless hydraulic lift, the

work done to the fluid at the small piston must equal the work done by the fluid at the

large piston, hence:

W, =W,.(2—18)

Substituting equations (2.16) and (2.17) into equation (2 .18), gives:
a(Ap)y, = A(AP)y,..(2 —19)

Because the pressure change (Ap) is the same throughout the fluid, it cancels out of

equation (2.18), leaving:
ay, = Ay,

Solving for the distance (y1) that the small piston moves

Ay,

o

L(2—20)

Vi

Since (A) is much greater than (a), it follows that (y1) must be much greater than
(¥2).

3.5 Archimedes’ Principle
The variation of pressure with depth has a surprising consequence, it allows the fluid to
exert buoyant forces on bodies immersed in the fluid. If this buoyant force is equal to
the weight of the body, the body floats in the fluid.

This result was first enunciated by Archimedes (287-212 BC) and is now called
Archimedes’ principle.
Archimedes’ principle states that a body immersed in a fluid is buoyed up by a force
that is equal to the weight of the fluid displaced. This principle can be verified with
the help of figure (2.4).
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Figure 2.4 : Archimedes’ principle.
If we submerge a cylindrical body into a fluid, such as water, then the bottom of the
body is at some depth (hl) below the surface of the water and experiences a water

pressure (pl) given by :

R =pgh.(2-2])

where (p) is the density of the water.
Because the force due to the pressure acts equally in all directions, there is an

upward force on the bottom of the body. The force upward on the body is given by :

F=BRA4.(2-22)

where (A) is the cross-sectional area of the cylinder.
Similarly, the top of the body is at a depth (h2) below the surface of the water,

and experiences the water pressure (p2) given by :

P, = pgh,.(2-23)

However, in this case the force due to the water pressure is acting downward on

the body causing a force downward given by :

F,=PA.(2-24)
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Because of the difference in pressure at the two depths, (hl) and (h2), there is a
different force on the bottom of the body than on the top of the body. Since the
bottom of the submerged body is at the greater depth, it experiences the greater force.

Hence, there is a net force upward on the submerged body given by :

Net force upward = F1 — F:
Replacing the forces (F1) and (F2) by their values in equations (2.22) and (2.24), this
becomes :

Net force upward = p14d — p2A
Replacing the pressures (pl) and (p2) from equations (2.21) and (2.23), this

becomes :

Netforceupward = pgh, A— pgh,

Netforceupward = pgA(h, —h,)..(2—-25)

But :
ACh, —h,) =V

the volume of the cylindrical body, and hence the volume of the water displaced.

Equation (2.25) thus becomes :

Netforceupward = pgV...(2.26)

But (p) is the density of the water and from the definition of the density :

1l ,_]_1)
EREES!

Substituting equation (2.1) back into equation (2.26) gives:

p=

- mgl”
Netforceupward = = g

- Ll
I/

But mg = w, the weight of the water displaced. Hence:

Netforceupward = Weightofwa rerdisplaced .. (2.27)
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The net force upward on the body is called the buoyant force (BF).
When the buoyant force on the body is equal to the weight of the body, the body does

not sink in the water but rather floats.
Since the buoyant force is equal to the weight of the water displaced, a body

floats when the weight of the body is equal to the weight of the fluid displaced.

Summary of Important Equations

Density p= Ii
Mass m=pV
Pressure p =§
Hydrostatic equation P =pgh
F=pA

Force

Absolute and gauge

Pabs = Dgaugs + Do

pressure

"
Il

Hydraulic lift .

ol e

Buoyant force = Weight of water displaced

BF = Wwater — Wwood
Archimedes’ principle Wiwater = Muwater & = Pwater VG = PwaterANg
pwaterilhg = Wwood

h = Wwood

Pwat er—‘lg
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Problems for ( Static Fluids )

Problem 2.1

Your own water bed
A person would like to design a water bed for the home.
If the size of the bed 1s to be (2.20 m) long, (1.80 m) wide,
and (0.300 m deep), what mass of water 1s necessary to fill
the bed? What 1s the weight of the water ?
Answer : (1190 kg) ., (11600 N)

Problem 2.2

Pressure exerted by a man
A man has a mass of (90 kg). At one particular moment when
he walks, his right heel is the only part of his body that touches
the ground. If the heel of his shoe measures (9 cm)
by (8.30 cm), what pressure does the man exert on the ground?

Answer : (1.18 x 105> N/m?2)

Problem 2.3

Pressure exerted by a woman
A (45.0-kg) woman 1s wearing “high-heel” shoes. The cross
section of her high-heel shoe measures (1.27 em) by (1.80 cm).
At a particular moment when she 1s walking, only one heel of
her shoe makes contact with the ground. What 1s the
pressure exerted on the ground by the woman?

Answer : (1.93 x 106 N/m2)
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Problem 2.4

Pressure in a swimming pool
Find the water pressure at a depth of (3 m) in a swimming

pool.
Answer : (2.94 x 104 N/m? (Pa))

Problem 2.5

Why you get tired by the end of the day
The top of a student’s head 1is approximately circular
with a radius of (8.90 em). What force is exerted on the top

of the student’s head by normal atmospheric pressure?

Answer : (2520 N)

Problem 2.6

Atmospheric pressure on the walls of your house
Find the force on the outside wall of a ranch house, (3.05 m)
high and (10.7 m) long, caused by normal atmospheric

pressure.

Answer : (3.30 x 10¢ N)

Problem 2.7

Absolute pressure
What 1s the absolute pressure at a depth of (3 m) in
a swimming pool? :

Answer : (1.31 x 105 N/m? (Pa))
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Problem 2.8

Amplifying a force
The radius of the small piston in figure below is (5 em),
whereas the radius of the large piston is (30 cm).
If a force of (2 N) 1s applied to the small piston,
what force will occur at the large piston?

Answer : (72.1 N)

- - 3 Eé
vl A
o ol e -

",
|

- -

“— ot

Cylinder t Piston

F

Cylinder Puid

Problem 2.9

You can never get something for nothing
The large piston of problem 2.8 moves through a distance
of (0.200 em). By how much must the small piston be moved?

Answer : (7.21 cm)
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Problem 2.10

Wood floats
A block of oak wood (5 em) high, (5 em) wide, and (10 e¢m) long

1s placed into a tub of water, figure below , the density of the
wood 1s (7.20 x 102 kg/m3). How far will the block of wood sink
before it floats?

Answer : (0.0359 m)

BF

Problem 2.11

Iron sinks

Repeat problem 2.10 for a block of iron of the same
dimensions , then calculate the buoyant force on this piece
of iron ?

Answer : (0.394 m) , (2.45 N)
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Chapter (4)

"Dynamic Fluids™
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Chapter (4): Dynamic Fluids

4.1 The Equation of Continuity

In the previous chapter , we have studied only fluids at rest. Let us now study fluids in
motion, the subject matter of hydrodynamics. The study of fluids in motion is relatively
complicated, but the analysis can be simplified by making a few assumptions.

Let us assume that the fluid is incompressible and flows freely without any
turbulence or friction between the various parts of the fluid itself and any boundary
containing the fluid, such as the walls of a pipe. A fluid in which friction can be
neglected is called a nonviscous fluid.

A fluid, flowing steadily without turbulence, is usually referred to as being in
streamline flow.

The rather complicated analysis is further simplified by the use of two great
conservation principles: the conservation of mass, and the conservation of energy.

The law of conservation of mass results in a mathematical equation, usually
called the equation of continuity.

The law of conservation of energy is the basis of Bernoulli’s theorem, the subject
matter of section (3.2).

Let us consider an incompressible fluid flowing in the pipe of figure (3.1).

Figure (4.1) : The law of conservation of mass and the equation of continuity.
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At a particular instant of time the small mass of fluid (Am) , shown in the left-
hand portion of the pipe will be considered. This mass is given by a slight

modification of equation (3.1), as:
Am = pAV (lefthand )...(3—1)

Because the pipe is cylindrical, the small portion of volume of fluid is given by

the product of the cross-sectional area (Al) times the length of the pipe (Ax1)

containing the mass (Am) , that is:

AV = 4,Ax,...(3-2)

The length (Ax1) of the fluid in the pipe is related to the velocity (v1) of the fluid
in the left-hand pipe. Because the fluid in (Ax1) moves a distance (Ax1) in time (At) .
Thus:

Ax, =vAr...(3-3)

Substituting equation (3.3) into equation (3.2), we get for the volume of fluid:

AV = Av,At..(3—4)

Substituting equation (3.4) into equation (3.1) yields the mass of the fluid as :

Am = pA,v,At...(3-5)

We can also express this as the rate at which the mass is flowing in the left-hand

portion of the pipe by dividing both sides of equation (3.5) by (At) , thus :

% — pd,v, (lefthand )...(3-6)

When this fluid reaches the narrow constricted portion of the pipe to the right in

figure (3.1), the same amount of mass (Am) is given by :

Am = pAV (righthand)...(3—T7)
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But since (p) is a constant, the same mass (Am) must occupy the same volume (AV) .
However, the right-hand pipe is constricted to the narrow cross-sectional area (A2) .

Thus, the length of the pipe holding this same volume must increase to a larger
value (Ax2 ), as shown in figure (3.1).

Hence, the volume of fluid is given by :

AV = 4,Ax,...(3.8)

The length of pipe (Ax2) occupied by the fluid is related to the velocity of the fluid by:

Substituting equation (3.9) back into equation (3.8) , we get for the volume of fluid:

AV = A,v,At...(3-10)

It is immediately obvious that since (A2) has decreased, v2 must have increased
for the same volume of fluid to flow.
Substituting equation (3.10) back into equation (3.7) , the mass of the fluid

flowing in the right-hand portion of the pipe becomes:

Am= p4,v,Ar._(3-11)

Dividing both sides of equation (3.11) by (At) yields the rate at which the mass of fluid
flows through the right-hand side of the pipe, that is:

Arre
AT

= oA, v, (righthand)...(3—12)

But the law of conservation of mass states that mass is neither created nor destroyed
in any ordinary mechanical or chemical process.

Hence, the law of conservation of mass can be written as :
Mass flowing mnto the pipe = mass flowing out of the pipe

or
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Arn A
lefthand ) =
e (lefthand ) v

(righthand)...(3—13)

Thus, setting equation (3.6) equal to equation (3.12) vyields:

Py, = pa,v,..3-14)

Equation (3.14) is called the equation of continuity and is an indirect statement

of the law of conservation of mass.
Since we have assumed an incompressible fluid, the densities on both sides of

equation (3.14) are equal and can be canceled out leaving :

Ay, =A,v,...(3.15)

Equation (3.15) is a special form of the equation of continuity for incompressible
fluids (i.e., liquids).
Applying equation (3.15) to figure (3.1), we see that the velocity of the fluid (v2)

in the narrow pipe to the right is given by :

Al
v, = v,...(3-16
2= ( )

Because the cross-sectional area (Al) is greater than the cross-sectional area (A2) ,
the ratio (A1/A2) is greater than one and thus the velocity (v2) must be greater than
(v1) .

Therefore, as a general rule, the equation of continuity for liquids, equation (3.15)

, says that when the cross-sectional area of a pipe gets smaller, the velocity of the fluid

must become greater in order that the same amount of mass passes a given point in a
given time.

Conversely, when the cross-sectional area increases, the velocity of the fluid

must decrease.
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Equation (3.15) , the equation of continuity, is sometimes written in the

equivalent form :

Av =cons tant..(3.17)

4.2 Bernoulli’s Theorem
Bernoulli’s theorem is a fundamental theory of hydrodynamics that describes a fluid in
motion. Itis really the application of the law of conservation of energy to fluid flow.

Let us consider the fluid flowing in the pipe of figure (3.2).

Figure (4.2) : Bernoulli’s theorem.

The left-hand side of the pipe has a uniform cross sectional area (Al), which
eventually tapers to the uniform cross-sectional area (A2) of the right-hand side of the
pipe.

The pipe is filled with a non viscous, incompressible fluid. A uniform pressure
(p1) is applied, such as from a piston, to a small element of mass of the fluid (Am) and
causes this mass to move through a distance (Ax1) of the pipe.

Because the fluid is incompressible, the fluid moves throughout the rest of the
pipe.

The same small mass (Am) , at the right-hand side of the pipe, moves through a
distance (Ax2) .
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The work done on the system by moving the small mass through the distance

(Ax1) is given by the definition of work as:
W, = F Ax,

We can express the force (F1) moving the mass to the

right in terms of the pressure exerted on the fluid as :

Fy=H4,
Hence,
W, = P4, Ax,
But
AAx, = AV}

the volume of the fluid moved through the pipe.

Thus, we can write the work done on the system as :

W, = F AV, (WorkdoneontheSysten)...(3—18)

As this fluid moves through the system, the fluid itself does work by exerting a force
(F2) on the mass (Am) on the right side, moving it through the distance (Ax2) .

Hence, the work done by the fluid system is :
W, = F,Ax,

But we can express the force (F2) in terms of the pressure (p2) on the right side by :
F,=PA,

Therefore, the work done by the systemis :
W, =P,A4,Ax,

But
A,Ax, =AY,
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the volume moved through the right side of the pipe.

Thus, the work done by the system becomes :

W, = P, AV, (WorkdonebytheSystem)...(3—19)

But since the fluid is incompressible,
AV, = AV, = AV

Hence, we can write the two work terms, equations (3.18) and (3.19), as :

Wi = p1aV
W2 = p2AV

The net work done on the system is equal to the difference between the work done on
the system and the work done by the system. Hence:

Nenvorkdoneonthesystem =W,, —W,,

—W, —W, = AV —P,AV

Networkdoneonthesystem = (F, — P, ).AV...(3—-20)

By the law of conservation of energy, the net work done on the system produces a
change in the energy of the system.
The fluid at position (1) is at a height (h1) above the reference level and therefore

possesses a potential energy given by:

PE, = (Am).gh,..(3-21)

Because this same fluid is in motion at a velocity (v1) , it possesses a kinetic energy

given by:

1
KE, = E.(.ﬂ}?r).1’12...(3—22)

Similarly at position (2), the fluid possesses the potential energy :

PE, = (Am).gh,...(3—23)
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and the kinetic energy :

KE, = %.(mn)mﬁ...e —24)

Therefore, we can now write the law of conservation of energy as :

NetWorkDoneOnTheSystem = ChangelnEnergyOfTheSystem...(3—25)

NetWorkDoneOnTheSystem =(E,_ ), —(E,

o

);..(3—26)

NetWorkDoneOnTheSystem = (PE, + KE,)—(PE, + KE,)...(3—-27)
Substituting equations (3.20) into equation (3.27) we get :

(B — PAT = I:(An?)ghz +%{A3:1)1-‘22:|—|:(Anr)gh1 +%{A}?r)1-‘12:|...(3 —28)

But the total mass of fluid moved (Am) is given by :

Am = pAV...(3-29)

Substituting equation (3.29) back into equation (3.28), gives:

1 , 1 ,
(B = POAV = p(AT) ghs + = pAT IV, — p(AV)ghy — 2 p(AT v

Dividing each term by (AV) gives :

1 2 ]- 2
(E_jjz}:ﬁ)ghz_"gp'z — P _EF"H A3 —30)

If we
place all the terms associated with the fluid at position (1) on the left-hand side of the
equation and all the terms associated with the fluid at position (2) on the right-hand

side, we obtain :

P, + peh, +%p1-f = P, + pgh, +%p'.*22...(3—31)

Equation (3.31) is the mathematical statement of Bernoulli’s theorem
Bernoulli’s theorem: |t says that the sum of the pressure, the potential energy per

unit volume, and the kinetic energy per unit volume at any one location of the fluid is
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equal to the sum of the pressure, the potential energy per unit volume, and the kinetic
energy per unit volume at any other location in the fluid, for a nonviscous,
incompressible fluid in streamlined flow.

Since this sum is the same at any arbitrary point in the fluid, the sum itself must
therefore be a constant.

Thus, we sometimes write Bernoulli’s equation in the equivalent form:

P+ peh +% pv’ = cons tant...(3—32)

3.3 Application of Bernoulli’s Theorem
Let us now consider some special cases of Bernoulli’s theorem.
3.3.1 The Venturi Meter
Let us first consider the constricted tube studied in figure (3.1) and slightly modified
and redrawn in figure (3.3(a)).
Since the tube is completely horizontal (hl = h2) and there is no difference in

potential energy between the locations and (2) .

Figure (3.3) : A Venturi meter.

Bernoulli’s equation therefore reduces to :

1 1
R+ p =B+ pry - (3-33)
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But by the equation of continuity,

v, =y (3-16)

Since (Al) is greater than (A2) , (v2) must be greater than (v1) ,as shown before.

Let us rewrite equation (3.33) as:

or

P,=P +%p(1*12 —,%)...3-34)

But since (v2) is greater than v1, the quantity (1/2)p(vi> — v, 2) is a negative quantity
and when we subtract it from (pl) , (p2) must be less than (p1) .
Thus, not only does the fluid speed up in the constricted tube, but the pressure in
the constricted tube also decreases.
The effect of the decrease in pressure with the increase in speed of the fluid in a
horizontal pipe is called the Venturi effect, and a simple device called a Venturi
meter, based on this Venturi effect, is used to measure the velocity of fluids in pipes.
A Venturi meter is shown schematically in figure (3.3(b)). The device is
basically the same as the pipe in (3.3(a)) except for the two vertical pipes connected to
the main pipe as shown.
These open vertical pipes allow some of the water in the pipe to flow upward into
the vertical pipes.
The height that the water rises in the vertical pipes is a function of the pressure in
the horizontal pipe.
As just seen, the pressure in pipe (1) is greater than in pipe (2) and thus the height

of the vertical column of water in pipe (1) will be greater than the height in pipe (2).
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By actually measuring the height of the fluid in the vertical columns the pressure
in the horizontal pipe can be determined by the hydrostatic equation .

Thus, the pressure in pipe (1) is:

and the pressure in pipe (2) is:
P2 = pgho

where (h01) and (h02) are the heights shown in figure (3.3(b)). We can now write

Bernoulli’s equation (3.33) as:

pghor + 1 pi? = pghoz + _1 puz
)

Replacing (v2) by its value from the continuity equation (3.16), we get:

Solving for (v1%), we get:

ogh, +%pov; = pgh, +%p0 . L2
A,
©oghy, — pghy, = '% Q2 .‘,lL: 7""'.: _;E Uy
A
{ A? -
PE(hyy —hy )=+2p| -1y

Solving for (vi12), we get:

pg(h1—N2)
Vs

% plca? 1 47 1]

Solving for (v1) , we get:

= \IEg(h] 2 535
(4 / 47)-1

Equation (3.35) now gives us a simple means of determining the velocity of fluid flow

in a pipe.
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The main pipe containing the fluid is opened and the Venturi meter is connected
between the opened pipes.

When the fluid starts to move, the heights (h01) and (h02) are measured.

Since the cross-sectional areas are easily determined by measuring the diameters

of the pipes, the velocity of the fluid flow is easily calculated from equation (3.35).

3.3.2 The Flow of a Liquid Through an Orifice
Let us consider the large tank of water shown in figure (3.4) . Let the top of the fluid

be location (1) and the orifice be location (2).

Figure (3.4) : Flow from an orifice.
Bernoulli’s theorem applied to the tank, taken from equation (3.31), is :

I 1
B+ pghy +—pvy = F, + pgh, +— pv,

i

But the pressure at the top of the tank and the outside pressure at the orifice are both
(p0) , the normal atmospheric pressure.

Also, because of the very large volume of fluid, the small loss through the orifice
causes an insignificant vertical motion of the top of the fluid.
Thus, (v1 = 0) .

Bernoulli’s equation becomes :
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N
F, + pghy = B, + pghy, +— pv;

The pressure term (p0) on both sides of the equation cancels out. Also (h2) is very
small compared to (hl) and it can be neglected, leaving;
N
PEMN =— PV,

e

Solving for the velocity of efflux, we get :

v, =,/2gh, ..(3-36)

Notice that the velocity of efflux is equal to the velocity that an object would acquire

when dropped from the height (h1) .

4-4 : VISCOSITY

If we pour equal amounts of water and castor oil in two identical funnels. It
is observed that water flows out of the funnel very quickly whereas the
flow of castor oil is very slow. This is because of the frictional force acting
within the liquid. This force offered by the adjacent liquid layers is known
as viscous force and the phenomenon is called viscosity.

Viscosity is the property of the fluid by virtue of which it opposes
relative motion between its different layers. Both liquids and gases exhibit

viscosity but liquids are much more viscous than gases.
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Co-efficient of viscosity

b

>
AX > V+AV
*>V
>
X >
;

Consider the slow and steady flow of a fluid over a fixed horizontal
surface as shown in the Fig. Let v be the velocity of thin layer of liquid at a
distance x from the fixed solid surface. Then according to Newton, the
viscous force acting tangentially to the layer is proportional to the area of
the layer and the velocity gradient at the layer. If F is the viscous force on

the layer then,

(i) F < A, where A is the area of the layer and :
P Av
C{: e —
At

The negative sign is put to account for the fact that the viscous force is
opposite to the direction of motion Thus

F=-nA—
LT

Where 1 is a constant depending upon the nature of the liquid and is called

the coefficient of viscosity and :
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. _ dv
velocity gradiant = —

dt
IfA=1anddv/dx=1. Wehave F=-1

Thus the coefficient of viscosity of a liquid may be defined as the
viscous force per unit area of the layer where velocity gradient is unity
The coefficient of viscosity has the dimension [ML-1T-1] and its unit is
Newton second per square metre (Nsm-2) or kilogram per metre per
second (kgm-1s-). In CGS, the unit of viscosity is Poise, 1kilogram per metre

per second = 10 Poise

Stroke’s Law
When a solid moves through a viscous medium, its motion is oppsed by a
viscous force depending on the velocity and shape and size of the body.
The energy of the body is continuously decreases in overcoming the
viscous resistance of the medium. This is why cars, aeroplanes etc are
shaped streamline to minimize the viscous resistance on them
The viscous drag on a spherical body of radius r, moving with velocity v, in
a viscous medium of viscosity 1 is given by :

F viscous = BTNV
This relation is called Stoke’s law

This law can be deduced by the method of dimensions.
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Terminal Velocity
Let the body be driven by a constant force. In the beginning velocity v=0
and acceleration ‘a’ is max so the body experiences small viscous force.
With increase in speed viscous force goes on increasing till resultant force
acting on the body becomes zero, and body moves with constant speed,
this speed is known as terminal velocity .

Consider the downward movement of a spherical body through a
viscous medium such as a ball falling through a viscous medium as a ball
falling through a liquid. If r is the radius of the body, p the density of the

material of the body and o is the density of the liquid, then :

(i)The weight of the body down ward force

4 3
E”’T Pg
(ii)The buoyancy of the body upward force
4 3
gm’” Pod
Net down ward force -

4 ]

gﬂ'rg (p—po)g ST

If v is the terminal velocity of the body , then viscous force Fviscous =
6TINrv
When acceleration becomes zero

upward viscous force = resultant down ward force
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4

6mnrv = 5???*3 (P — po)g
o _2r’g(p —po)
9 n

Solved Numerical
Qe) A steel ball of diameter d = 3.0mm starts sinking with zero initial
velocity in oil whose viscosity is 0.9P. How soon after the beginning of
motion will the velocity of the ball differ from the steady state velocity by n
= 1.0%? Density of steel = 7.8x10° kg/m">

Solution:

Initial acceleration is maximum and becomes zero thus acceleration is not
constant:
Viscocity = 0.9P = 0.09 kgm™'s™
Net force on ball=W —FB - Fv
FB = Buoyant force up ward
Fv = viscous force upwards ,
W = weight of ball down wards

Force = ma thus:

dv
m— = mg — Fg — 6n'mrv

dt

Let A = mg-FB is constant and B = 6nmr is another constant
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v_ 4 _g

Tt df — [
dv —dt
T4 = Bo) '

Velocity after time t differs from the steady state velocity by n = 1.0%
v=(1-n)Vv' here V' is terminal velocity

(1=n)vr ‘1'_ 4
m S —————— dt
f(, (A — Bv) f(,

m IA B(1 n)r'| ,

—In
B A

At steady state net force is zero

A-BvV=0 -~ v,=A/B

Q|
m {‘ [))(l ’l) m
t 1—,)111 y B t 1—{!!1 n
m .,‘—rrr"/) 2r4p
t Inn 3 t s i
onmr t e Inn on Inn
(3 %10°3\? ;
2 (T) 7.8 x 103
t = — In(0.01)

9(0.09)
t=0.2 sec
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Q) As shown in figure laminar flow is obtained in a tube of internal radius r and length I.

Al

To maintain such flow, the force balancing the
viscous force obtained by producing the
pressure difference(P) across the ends of the
tube. Derive the equation of velocity of a layer

situated at distance ‘X’ from the axis of the
tube

Solution

Consider a cylindrical layer of radius x as shown in figure. The force acting on it are as

follows

(1) At face A let pressure be P; Thus force F; = ix?P;
(2) At face B let pressure be P; (<P;) Thus force F, = mx?P; is against F,

(3) Viscous force F; = nA (_ d

A is curved area of cylinder of radius x, thus A = 2mxI
Negative sign indicates as we go from axis of cylinder to walls of cylinder velocity

decreases
Viscous force F3

dv

= —n(2mxl) =

For the motion of the cylinder layer with a constant velocity

Fs=F.1—F;

_di
—n(2mxl) == mx’P, — x*P,

_ dv
—n(2mxl) é =nx*(P, — B,)

Ldv -
—r;(ZTrxl_)d—l =mx?(P) [+ P —P, =P]

P

—dv = Tﬂx dx

Atx=r,v=0andatx=x,v=v,vsointegrating the above equation in these limits we get

= [ £ia
—fp L—J‘xmx X

— [x?]%

P
4nl
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P
10— ] = 2 .2
[0 — v] 4”E,[T x“]
P
o — 2 2
1 4”I(r x“)

If we want to fing the volume of liquid flowing the tube in one second
Then velocity at axis x=0
Pr?

At the wall (x = r) velocity is zero
. Average velocity
< 1 = =
8nl
Now volume of liquid = (average velocity)( Area of cross-section)
Pr?

Above equation is called Poiseiulle’s Law
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Problems for ( Dynamic Fluids )

Problem 3.1

Flow rate

What is the mass flow rate of water in a pipe whose diameter

d is (10 ecm) when the water is moving at a velocity of

(0.322 m/s).
Answer : (2.53 kg/s)

Problem 3.2

Applying the equation of continuity

In problem 3.1 the cross-sectional area A1 was (7.85 x 1073 m?2)
and the velocity v1 was (0.322 m/s). If the diameter of the pipe

to the right in figure below is (4 em), find the velocity of

the fluid in the right-hand pipe.
Answer : (2.01 m/s)

‘rl . AXH
/ \ ' - T
1 I

" .-“ N i
1 |, A \
"d“\*ﬂv"'ﬁ.-m}.‘-ﬂ'
P Nl g w
' F0 A iy
b ot g Ny A ), U,

[}
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Problem 3.3

Applying Bernoulli’s theorem

In figure below, the pressure (p1 = 2.94 x 103 N/m?), whereas
the velocity of the water is (v1 = 0.322 m/s). The diameter of
the pipe at location 1 is (10 em) and it is (5 m) above the
ground. If the diameter of the pipe at location 2 is (4 em), and
the pipe is (2 m) above the ground, find the velocity of the
water vz at position 2, and the pressure p2 of the water at
position 2.

Answer : (2.01 m/s, 3.04 x 104 N/m?2)
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Lo
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Chapter (5)

""The laeal gas law"
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Chapter (5): The ldeal gas law

5.1 The Ideal Gas Law
The three gas laws,
W=V p = constant (17.21)
n T:
D1i= D2 V' = constant (17.26)
n T
nVi=p:V: T = constant (17.28)
can be combined into one equation, namely,
Vi=p:Vz ...(6-1)
T T

Equation 6.1 is a special case of a relation known as the ideal gas law.
which were developed

Hence, we see that the three previous laws,
experimentally, are special cases of this ideal gas law, when either the pressure,

volume, or temperature is held constant.
The ideal gas law is a more general equation in that none of the variables must be

held constant.
Equation 6.1 expresses the relation between the pressure, volume, and

temperature of the gas at one time, with the pressure, volume, and temperature at any

other time.
For this equality to hold for any time, it is necessary that:
...(6-2)

pV=constant

T
.

This constant must depend on the quantity or mass of the gas.

A convenient unit to describe the amount of the gas is the mole.
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One mole of any gas is that amount of the gas that has a mass in grams equal to
the atomic or molecular mass (M) of the gas.

The terms atomic mass and molecular mass are often erroneously called atomic
weight and molecular weight in chemistry.

As an example of the use of the mole, consider the gas oxygen. One molecule of
oxygen gas consists of two atoms of oxygen, and is denoted by Oo.

- The atomic mass of oxygen 16.00.

- The molecular mass of one mole of oxygen gas is therefore Mo2 = 2(16) = 32

g/mole

- Thus, one mole of oxygen has a mass of 32 g.

The mole is a convenient quantity to express the mass of a gas because one mole of
any gas at a temperature of 0 oC and a pressure of 1 atmosphere, has a volume of 22.4
liters.

Also Avogadro’s law states that every mole of a gas contains the same number of
molecules. This number is called Avogadro’s number Naand is equal to 6.022 x 1023
molecules/mole.

The mass of any gas will now be represented in terms of the number of moles, n.
We can write the constant in equation 6.2 as n times a new constant, which hall be

called R, that is,

Pil—': nR ...(6-3)

To determine this constant R let us evaluate it for 1 mole of gas at a pressure of 1

atm and a temperature of 0 oC, or 273 K, and a volume of 22.4 L. That is,

R=pV=(1 atmi(22 4 1)
nT (1 moleyW273 K)

R=0.08205 atm L
mole K

Converted to Sl units, this constant is
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_ on= L atm " s N/m= (10 m?
R GDL 05 lhlklﬂIS : 10 atm JL i1t

R=8314 J
mole K

We call the constant R the universal gas constant, and it is the same for all gases.

We can now write equation 6.3 as:
pV=nRT ...(6-4)
Equation 6.4 is called the ideal gas equation.

An ideal gas is one that is described by the ideal gas equation.

Remember that the temperature T must always be expressed in Kelvin units.
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5.2 The Kinetic Theory of Gases
Up to now the description of a gas has been on the macroscopic level, a large-scale
level, where the characteristics of a gas, such as its pressure, volume, and temperature,
are measured without regard to the internal structure of the gas itself.

In reality, a gas is composed of a large number of molecules in random motion.
The large-scale characteristics of gases should be explainable in terms of the motion of
these molecules.

The analysis of a gas at this microscopic level (the molecular level) is called the
Kinetic theory of gases.
In the analysis of a gas at the microscopic level we make the following assumptions:
1. A gas is composed of a very large number of molecules that are in random motion.
2. The volume of the individual molecules is very small compared to the total volume
of the gas.
3. The collisions of the molecules with the walls and other molecules are elastic and
hence there is no energy lost during a collision.
4. The forces between molecules are negligible except during a collision.
Hence, there is no potential energy associated with any molecule.

5. Finally, we assume that the molecules obey Newton’s laws of motion.
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Let us consider one of the very many molecules contained in the box shown in fig 6.1.

Figure 6.1 The kinetic theory of a gas.
For simplicity we assume that the box is a cube of length L. The gas molecule
has a mass m and is moving at a velocity v. The x-component of its velocity is vx.
For the moment we only consider the motion in the x-direction.
The pressure that the gas exerts on the walls of the box is caused by the collision
of the gas molecule with the walls. The pressure is defined as the force acting per unit

area, that is,

p=_F ...(6-5)

where A is the area of the wall where the collision occurs, and is simply:

A=L*

and F is the force exerted on the wall as the molecule collides with the wall and can be
found by Newton’s second law in the form

P:__'g.}_:’ ...(6'6}
At

So as not to confuse the symbols for pressure and momentum, we will use the lower
case p for pressure, and we will use the upper case P for momentum.

Because momentum is conserved in a collision, the change in momentum of the
molecule AP, is the difference between the momentum after the collision Pac and the

momentum before the collision Psc.
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Also, since the collision is elastic the velocity of the molecule after the collision
1S —Vx.
Therefore, the change in momentum of the molecule is:

AP = Py¢ — Pye = —mu, — mu,
=—-2mu; change 1n momentum of the molecule

But the change in the momentum imparted to the wall is the negative of this, or :
AP = 2mu, momentum imparted to wall

Therefore, using Newton’s second law, the force imparted to the wall becomes:

F= g — f.‘mt', (6'?}
Af Af

The quantity At should be the time that the molecule is in contact with the wall.
But this time is unknown.

The impulse that the gas particle gives to the wall by the collision is given by:
Impulse = FAt = AP ...(5-8]'

and is shown as the area under the force-time graph of figure 6.2.

Because the time At for the collision is unknown, a larger time interval toc, the
time between collisions, can be used with an average force Favg, such that the product
of Favgtoc is equal to the same impulse as FAt.

We can see this in figure 6.2
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Figure 6.2 Since the impulse (the area under the curve) is the same, the change in
momentum is the same.

We see that the impulse, which is the area under the curve, is the same in both
cases. At first this may seem strange, but if you think about it, it does make sense.

The actual force in the collision is large, but acts for a very short time.

After the collision, the gas particle rebounds from the first wall, travels back to the far
wall, rebounds from it, and then travels to the first wall again, where a new collision
occurs.

For the entire traveling time of the particle the actual force on the wall is zero.
Because we think of the pressure on a wall as being present at all times, it is reasonable
to talk about a smaller average force that is acting continuously for the entire time toc.

As long as the impulse is the same in both cases, the momentum imparted to the
wall is the same in both cases.

Equation 6.7 becomes:

Impulse = FAt = Fou tn = AP ...(6-9)

The force imparted to the wall, equation 6.6, becomes:

Frw=AP= 20, .(6-10)

We find the time between the collision toc by noting that the particle moves a distance
2L between the collisions.
Since the speed vx is the distance traveled per unit time,

we have:

|5

v, = 2L
W

Hence, the time between collisions is:

bhe = 2L

)
Ve

..(6-11)
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Therefore, the force imparted to the wall by this single collision becomes:

Fug=2my.=mu.’ ...(6-12)
2Llv, L

The total change in momentum per second, and hence the total force on the wall
caused by all the molecules is the sum of the forces caused by all of the molecules, that
IS,

Fug = Fluwg + Fourg + Frag + . . - % Fuam ...(6-13)
where N is the total number of molecules.

Substituting equation 6.12 for each gas molecule, we have:

Favg = MUs" + MU + MUes + . . .+ MU
L L_ ,L ) L n
Fog=mvy" v+ v+ +ug) ___(5_14}
L

Let us multiply and divide equation 6.14 by the total number of molecules N, that is,

Favg= mN(vg® + v + vge™ + . . .+ Updd)

7 N ...(6-15)
But the term in parentheses is the definition of an average value.
That is,
Vereg = (L~ F Do~ + Pea” + 4 pac’) ...(6-16)

N
As an example, if you have four exams in the semester, your average grade is the
sum of the four exams divided by 4.
Here, the sum of the squares of the x-component of the velocity of each
molecule, divided by the total number of molecules, is equal to the average of the
square of the x-component of velocity.

Therefore equation 6.14 becomes:

F',u.g = m:\' L'I:.n':

L
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But since the pressure is defined as p = F/A, from equation 2.2, we have:

= = =mN L.',“_..:: N 'Lr'un-:
D fuz f.;u. ’E: T' ...{5-1?}
or
pV= Nmua.’ ...(6-18) The

square of the actual three-dimensional speed is:

That is, there is no reason why the velocity in one direction should be any different
than in any other direction, hence their average speeds should be the same.

Therefore,

=
-

L',n- = 3'1-.::1.1:

Or

vy~ Loug ...(6-19)

Substituting equation 6.19 into equation 6.18, we get:

pV=Nm Ves
3

Multiplying and dividing the right-hand side by 2, gives:

- 2 .'/mr:uﬁkl
PV=3N"2 ") ...(6-20)
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The total number of molecules of the gas is equal to the number of moles of gas

times Avogadro’s number - the number of molecules in one mole of gas - that is,

N=nN, ..(6-21)

Substituting equation 6.20 into equation 6.19, gives:

-,

Hea

pV= %rz_’f.g b |

| =

...(6-22)

Recall that the ideal gas equation was derived from experimental data as:
pV=nRT ...(6-4)

The left-hand side of equation 6.4 contains the pressure and volume of the gas, all
macroscopic quantities, and all determined experimentally.
The left-hand side of equation 6.22, on the other hand, contains the pressure and
volume of the gas as determined theoretically by Newton’s second law.
If the theoretical formulation is to agree with the experimental results, then these
two equations must be equal.
Therefore equating equation 6.4 to equation 6.22, we have:

o . "m‘.::;..\
nHT—?nh_l =
b i

ar

3(E)r e ...(6-23)

where R/Na is the gas constant per molecule.
It appears so often that it is given the special name the Boltzmann constant and is
designated by the letter k.
Thus,
k=_R =138 x 107 J/K ...(6-24)
N

Therefore, equation 6.23 becomes:
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SAT=_Lmu— ...(6-25)

Equation 6.25 relates the macroscopic view of a gas to the microscopic view.

Notice that the absolute temperature T of the gas (a macroscopic variable) is a
measure of the mean translational kinetic energy of the molecules of the gas (a
microscopic variable).

The higher the temperature of the gas, the greater the average Kkinetic energy of
the gas, the lower the temperature, the smaller the average Kkinetic energy.

Observe from equation 6.25 that if the absolute temperature of a gas is 0 K, then
the mean kinetic energy of the molecule would be zero and its speed would also be
zero.

This was the original concept of absolute zero, a point where all molecular motion
would cease.
The average speed of a gas molecule can be determined by solving equation

(625) for Vavg.

That is,
1 MU =3 kT
2 2
Viee = 3 kT
m
. _ |3kT
Vms = " m ...(6-26)

This particular average value of the speed, vims, is usually called the root-mean-
square value, or rms value for short, of the speed v.

It is called the rms speed, because it is the square root of the mean of the square of the

speed.
Occasionally the rms speed of a gas molecule is called the thermal speed.
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To determine the rms speed from equation 6.26, we must know the mass m of
one molecule.
The mass m of any molecule is found from
m=_M
Ny

That is, the mass m of one molecule is equal to the molecular mass M of that gas

..(6-27)

divided by Avogadro’s number NA

Summary of Important Eguations
( The ideal gcas law )

o1V =paVs
Ideal gas law n T
pV=nRT
Number of molecules N=nNa
Temperature and mean kinetic energy SAT= LMl
. | 3T
rms speed of a molecule Vrms = 4“3 -
m=M
Mass of a molecule N,
Total mass of the gas Meeeat = NM
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Problems for ( The ideal gcas law )

Example 6.1

Find the number of molecules in the gas
Compute the number of molecules In a gas contained in
a volume of 10.0 em?® at a pressure of 1.013 x 105 N/m?,
and a temperature of 300 K

Answer : ( 2.45 x 1020 molecules )

Example 6.2

The kinetic energy of a gas molecule
What 1s the average kinetic energy of the oxvgen and
nitrogen molecules In a room at room temperature?

Answer : (6.07 x1021.J)

Example 6.3

The rms speed of a gas molecule
Find the rms speed of an oxygen and nitrogen molecule
at room temperature?

Answer : (478 m/s, 511 m/s)




