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ERRORS DR. AHMED YOUSEF

1.

CHAPTER (1)
ERRORS

Introduction

In numerical analysis solving a problem is only a part of the pro-
cess. Another part is to know how far the results are accurate.
This is a very important part and is often more difficult than
achieving the results themselves. In this part, we take in considera-
tion the errors that arise whether from rounding errors in arithme-
tic operations or from some other source. Throughout this book, as
we look at the numerical solution of various problems, we will
simultaneously consider the errors involved in whatever computa-
tional procedure is being used.

Absolute error and relative error

The error in a computed quantity is defined as

Error = true value - approximate value

The relative error is a measure of the error in relation to the size of
the true value:

error

Relative error = ——
true value

To simplify the notation when working with these numbers, we
will usually denote the true and approximate values of a number x
by x, and x,, respectively. Then we write

Tl

Error(X, ) =X; —X,
X, —X,

Rel(x, )= .
.

As an illustration, consider the well-known approximation

Here x, =7 =3.14159265... and x, =22/7 =3.1428571...,
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Example (1.1)

QJ _7r-22_ 000126

7 7

Qj _7=(2217) _ 4 000402
7 V4

relative error is that of significant digits.

In other words, we say that x, has m sig-
respect to x, if

Xy =X,

Xy

<0.5x10 (L.1)

) YYYYYYYYYYYYYYYYY

(@) x, =0.222 has DEE digits of accuracy relative to x; =2/9YYYYYYYYYYYYYYY

(b) x, =23.496

X, =23.494,
() x, =0.02138
X, =0.02144.

has four digits of accuracy relative to

has just two digits of accuracy relative to

(d) x, =22/7has three digits of accuracy relative to x, =r.
Most people find it easier to measure relative error than significant
digits; and in some textbooks, satisfaction of (1.1) is used as the
definition of x, having m significant digits of accuracy.

3. Functional error

If e is the error in the approximated value x , to the true value x;

so that x; =x, +e

evaluated at x , instead of at x

Therefore

. If e, denote the error when a function f is
we have
f(X:)=F(X,)+e
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e =f (x;)—f (x,)
=f (x, +e)—f (x,)
Expanding f (x , +e)in a Taylor series, we have
e, =f (x, +e)—f (x,)

=f (x,)+ef ’(xA)+%e2f "X, ) +...—F (x,)

=

Therefore,
e, =ef '(xA)+%e2f "(X )+

Hence if e is small (and the second and higher derivatives of f

s .
evaluated at x , are not excesleeTy large) we see that
e, =ef '(x,)
Thus

e = ellf ()]
and if x , has m significant digits of accuracy, then
e[ <0.5x107™|f "(x,)|

Imagine solving a scientific-mathematical problem, and suppose
this involves a computational procedure. Errors will usually be in-
volved in this process, often of several different kinds. We will
give a simple classification of the kinds of error that might occur.
A. Round-off error
When carrying out numerical calculations, digital computers
have precision limit on their ability to represent numbers.
The difference between the result produced by a giv-
en algorithm using exact arithmetic and the result produced
by the same algorithm using finite-precision, rounded arith-
metic is called the round-off error. For example,

Exactnumber% =1.333...

Rounded number tofoursignificantdigitsg =1.333
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Hence Round-off error =1.333...-1.333=0.00033...
Exactnumberg =1.666...

Rounded numbertofoursignificantdigits% =1.667

Hence, Round-off error=1.666. ..-1.667=-0.000333...

The following table shows the result of rounding exact num-
bers to N significant digits:

Number | N | Roundnumber | Round-of error
23.764462 | 5 23.764 0.000462
0.009274§ | 3 0.00927 0.0000046
1.650045 |®| 1.6500 0.000045
0.0003786 | 3 0.000379 —0.0000004
057386 |3 | 0578) —0.00014

The following table shows the result of rounding exact num-

bersto N decimal places:

Number | N | Roundnumber | Round-of error
23.764462 | 5 23.76446 0.000002
0.0092746 | 3 0.009 0.0002746
0.0003786 | 3 0.000 0.0003786
1.650045) | 5 | 1.65004° 0.000005
0.57386 3 0.574 —0.00014

B. Imprecision of the given data
If the data are obtained experimentally, then they are known
within the limits of experimental error (which can normally
be estimated), and this will limit the accuracy of the results
of any subsequent calculations. This is obvious fact that the
accuracy of results is limited by the accuracy of any initial
data.

C. Mistakes
Mistakes are errors which are created by the person perform-
ing the calculations. A common mistake is to invert the order
of two digits occurring in a number. For example, it is very
easy to use the number 62381 instead of the number 63281.

4
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When doing calculations, as many checks as possible should
be incorporated in the method itself so that any mistakes
come quickly to light.

. Mathematical approximation error (Truncation error)

Mathematical approximation errors are due to replacing an
exact quantity by an approximation one. For example, we in-
troduce an error if we use only a finite number of terms from
an infinite series expansion. This error is called a truncation
error, that is, the error due to truncating the series some-
where. For example sinx can be expressed as the infinite se-

ries expansion

3 X5 X7 X9 Xll

SiNX =X ——+———+——"—+...
31 5 71 9 11l
and when x is small the sum of the first three terms, namely

x® x°

X ——+—
31 5!
will give a good approximation to sinx . The truncation error
Is then the sum of the remaining terms of the infinite series
expansion namely
7 5 11

X x X
71 91 11
In general if f (x)is approximated using Taylor series about

X,, where x =x,+h, then

h

fO)=1 () + 0t (x,)+o

2!

n

" hn n
f (x0)+...+mf ™(x,)+R

where R, is the truncation error. This error can be calculated
as

n+l

R, =——f ™ (x,+6n), 0<H<1
(n+1)!
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CHAPTER (2)
FINITE DIFFERENCES

1. Introduction

The calculus of finite differences plays an important role in Nu-
merical methods. It deals with the variations in a function when the
independent variable changes by finite jumps which may be equal
or unequal. In this chapter, we shall study the variations in a func-
tion due to the changes in the independent variable by equal inter-
vals.

. Finite differences

Let y =f (x) be a discrete function. If x,, x,+h,x,+2h,--

X, +nh are the successive values of x , where two consecutive
values differ by a quantity h, then the corresponding values of y
are y,,¥Y.,Y,..Y, - 1he value of the independent variable x is

usually called the arguments and the corresponding functional val-
ue is known as the entry. The arguments and entries can be shown
in a tabular form as follows:

Argument | X, X, X, X,
X =X,+h =X,+2h =X, +nh
Entry Yo Y1 Y, Y
y =f (x) =f (xo)| =f(xo+h)| =f(x,+2h) =f (x,+nh)

To determine the values of f (x) or f '(x) etc., for some interme-
diate arguments, the following three types of differences are found
useful:

(i) Forward differences

(i) Backward differences

(iii) Central differences
. Forward differences
If we subtract from each value of y (except y,) the preceding
value of y we get y,—Vy,,Y¥,—Y;,-.,¥,— Y, respectively,
known as the first differences of y . These results which may be
denoted Ay, , Ay,,..., Ay,
i.e.

AYo=Y1=Yo AY1=Y,=Y: e AY (=Y, Yo

6
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where A is a symbol representing an operation of forward differ-
ence, are called first forward differences. Thus, the first forward
differences are given by

AYy. =Y.,—Y,,1=0L12,...,n.
Now, the second forward differences are defined as the differences
of the first differences, that is,

A%y, =A(AY,)=A(y,—Y,) =AY, —Ay,
:(yz_Y1)_(y1_yo)ZY2_2y1+yo
Azyle(Ayl):Ayz_Ay1:y3_2y2+Y1

AZyn :Ayn+l_Ayn =Y _2yn+1+yn

Here, A® is called second forward difference operator.
Similarly, the third forward differences are:

Ay, =A(A%y,) =A%y, - A%y = A(Ay,) - A(Ay,)
=A(Y,=Y1)=A(Y,—Yo) =4y, - 24y, + Ay,
=(Ys=Y2)=2(Y, = Y2)+ Y= Yo
=Y,;—3Y,+3y, -V,

Ny, =A%y, ~ A%y, =y, -3y, +3y,~Y,

Asyn :Azyn+1 _Azyn = yn+1_3yn+2 +3yn+1 —Ya
In general, the n th forward differences are defined as

A"y, = A"y kel A"y K

In function notation, the forward differences are as written below:
Af (x)=f (x +h)—f (x)
A (x)=f (x +2h)=2f (x +h)+f (x)
A (x)=f (x +3h)=3f (x +2h)+3f (x +h)=f (x)

and so on, where[R1SSTEP SIZ€]

The forward differences are usually arranged in a tabular form in
the following manner:
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X y =f (x) 1st 2nd 3rd 4th 5th
argument entry difference | difference | difference | difference | difference
Xo Yo =f (Xo)
Ay,
X, =Xg+h |y, =f(x,) A%y,
A A%y,
X,=Xo+2h |y, =f(x,) : A4yo
Ay,\ S ASYO
Xy =X, +30 |y, =f (x,) Ty, Ty,
A ‘\3Y2
X, =X, +4h |y, =f (x,) k\\Azys ~
“AY,
Xg=Xy,+5n |y, =f (X;)

The first term in the table y, is called fheTeadingfermland the dif-
ferences Ay, , A’y,, A%, ,... are called Jeading differenced. It

can be seen that the differences Ay, with a subscript 'i ' lie along
the diagonal sloping downwards, that is, forward with respect to
the direction of x . The above difference table is known as For-
ward difference table or Diagonal difference table.
< Properties of A
The operator " A " satisfies the following properties:
(i) AIf X)xg(x)]=Af (x)xAg(x) ,i.e. A islinear.
(i) Alaf (X)]=aAf (X), a is a constant.
(i) A"A (x)=A""f (x)=A"A"f (x) , where m and
n are positive integers.
(iv) Alf (x)-g(x)]=f (x)-Ag(x).
< Observation 1
We can express any higher order forward difference of y , in

terms of the entries y,, ¥, ,Y,,.-., Y, - From

AYO =Y1— Yo

A*Yo=Y,=2y,+Y,

A3y0 =Y, _3y2 +3y1_y0
and so on, we can see that the coefficients of the entries on
the RHS are binomial coefficients. Therefore, in general,

Anyo =Y, _Clnyn—1+C2nyn—2 _"'+(_1)ny0

Very important 8

relation for the
Higher order diff
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6/ Observation 2
We can express any value of y in terms of leading entry vy,
We know that Ay, =y, -V,
Yi=Yot+AY,= (1+A)yo

Now,
y,= y1+Ay1 :(1+A)y1 :(1+A)2y0

Similarly, y, =(1+A)%y, and so on.
In general,

Y, =(+A)"y,=Y,+C Ay, +CJA’Y j+---+A"Y,

4. Backward differences
The differences y,-vy,,¥,-V¥;,.-»Y,—Y,, When denoted by

Vy,, Vy, ,...,Vy . respectively, are called the first backward dif- \/

ferences, where V is the backward difference operator called nabla
operator.

Vy1=y1—y0, Vyzzyz_yl 1o Vyn =Y~ Ynu

Now the second backward differences are defined as the differ-
ences of the first backward differences, i.e.

VY, =V(VY,)=V(Y,=Y.)=VY,-Vy,=(Y,—¥.)— (Y. = Yo)

=Y,—2Y;+Y,
V?y,=Vy,-Vy,=y,-2y,+Yy, and so on.
In general,

Vnyk :vn—lyk _vn—lyk_l
In function notation, these differences are written as

Vi (x)=f (x)-f (x —h)

vE (K+h)=f (x +h)—f (x)

Vi (x +2h)=f (x +2h)=2f (x +h)+f (x)

V3 (x +3h)=f (x +3n)=3f (x +2h)+3f (x +h)—f (x)
and so on, where h is step size.
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These backward differences are arranged in a tabular form in the
following manner. In this table, the difference V*y, with a fixed

subscript 'i ' lies along the diagonal sloping upwards; that is, back-
wards with respect to the direction of increasing argument X .

X y =f (x) 1st 2nd 3rd 4th 5th
argument entry difference | difference | difference | difference | difference
Xo Yo= f(x o)

X,=Xg+h |y, =f(x,)

X,=X,+2h | y,=f(X,)

% //V4y4

Y,
_ |
M ,/V3Y3
oy

,M )ys
Xy =Xo+3h | y;=F(x;) ‘% s
e e
X, =Xo+4h [y, =f (x,) V|
Ve

Xs =Xo+5h | yo=F (X;)

< Properties of V
1) VIf (x)xgXx)]=Vf (x)£Vg(x), i.e. V is a linear
operator.
(i) V[af (x)]=aVf (x), a is aconstant.
(i) V"V (x)=V"™f (x), m and n are positive inte-
gers.
(iv) VIf (x)g ()]=[VE (x)].9(x).
< Observation 1
We can express any higher order backward difference of y

in terms of the entries y,, vy, ,Y,,...,y,. From
VYo =Yn—Yuu
VY=Y =2yt Y
VY=Y, =3 +3Y 0 Yas

and so on, we can see that the coefficients of the entries on
the RHS are binomial coefficients. Therefore, in general,

V'y, =Y, -Cl'y,,+CJy, ,— -+ (D)"Y,
< Observation 2

10
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7@

We can express any value of y in terms of y_  and the
backward differences Vy  , V?y , etc. By definition,

vyn =Y, Ynu
or
Yo1=Ya—VY,=A-V)y,
Now,
Yoo=Yoa—W,i=0-V)y,,=1-V)y,
Similarly,

yn—3 :(1_v)3yn
and so on. In general,

yn—k :(1_v)k yn
Yoi =Yn—Ci VY, +C V2, — 4+ (=) V¥y,

Central differences

Sometimes, it is more convenient to employ another system of dif-
ferences known as central differences. In this system the symbol 6
Is used instead of A and is known as central difference operator.
The subscript of 8y for any difference is the average of the sub-

scripts of the two entries.
Y12 =Y1=Y0: Y=Y~ Y1: Ve =Y3 Yo
For higher order differences, we have
S 1 =3Y 3y — Y oy OV =Y, —OY1ps ey O Y4y =0y, =Y,

and so on. The central differences are tabulated below.

11
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X y =f (x) 1st 2nd 3rd 4th 5th
argument entry difference | difference | difference | difference | difference
Xo Yo =f (Xo)
Yy,
X1=Xo+h y1:f (Xl) 52)/1
OY 32 53Y3/2
X,=Xo+2h |y, =f(x,) 52)’2 54)/2
OY sz 5°Y 512 5°Y 512
X=X, +3h | y;=F(X;) 52y3 54y3
oY, 5°Y 112
)(4:)(0"'4h y4:f (X4) 52)/4
OY g2
Xg=Xy,+5n |y, =f (X;)

We can see from the table that central differences on the same hor-
izontal line have the same subscript. Also, all odd differences have
a fractional subscript, and the even differences have integer sub-
script.
< Note
From all the three tables, we can see that only the notation
changes, not the differences. For examples,

Yi—Yo =Ayo =Vy1 =53/1/2

6. Other differences operators

So far we have studied the operators A ,v and 6. Now we shall in-

troduce other operators like E, z,D etc. which also play a vital role

in numerical methods.

< Shift operator E
If h is step size for the argument x then the operator E is
defined as
Ef (x)=f (x +h).

It is also called translation operator due to the reason that it
results the next value of the function. The higher orders of
shift operator are defined as

E*f (x)=E[Ef (x)]=Ef (x +h)=f (x +2h)
Similarly,
E °f (x)=f (x +3h),

12
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E*f (x)=f (x +4h)
In general

E"f (x)=f (x +nh) for any real n

The inverse shift operator E ~* is defined as
Ef (x)=f (x =h)

Similarly

E"f (x)=f (x —nh) forany real n
If y,, is the function f (x)then Ey, =y, ,, and

E ny k = Yian
< Average operator u

The average operator u is defined by

uf (x):%[f (x +h12)+f (x —h /2)]

ie. ,uy(x):%[y(x +h/2)+y(x —h/2)]
< Differential operator D
The differential operator D is defined as Df (x) :dd—f (x)
X

In general,

n

. d
D'f (x)=_

f(x)
< Note
All the above operators are linear and obey index laws.
7. Relation between different differences operators
< Relation between A and E
Af (x)=f (x +h)—f (x)
=Ef (x)-f (x)
=(E -Df (x)
Thus A=E -1orE =1+A
< Relation between E and V

13
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vi (x)=f (x)=f (x =h)
=f (x)=E'f (x)=(1-E)f (x)

V=1-ElorE'=1-V
SLE=(1-V)* ['.'(E‘l)_le}

—

Relation between E and 6
of (x)=ft (x+h/2)—f (x —=h/2)

—EYf (x)—E ¥ (x)
:(EIIZ_E—HZ)f (X)

o S=E"-E"

5=E”2(1—E—1)=E”2v
S=EY2(E -1)=E A

Also,

Hence
S=E”V=E"A
< Relation between E and u
uf (x):%[f (x +h/2)+f (x =h/2)]

:%[E”Zf (x)+E % (x)]

1

\/ =E(E1’Z+E”2)f (x)

< Relation of D with other Operators

We know that Df (x):dd—f (x)=f"'(x) etc.
X

By Taylor's series

f(x +h)Ef (x)+nf ’(x)+h—2f ”(x)+h—3f "(x)+
1 2! 3!

CAA

Or

14
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2 3
Ef (x)=f (x)+hDf (x)+%D2f (x)+%D3f X)+...
2 2 3 3
:{1+hD+h D _hD +..1f (x)=e"f (x)
3 o

2!
Thus (é’g
\
Taking logarithms on both sides, we get i
\'

hD =InE = In(LxA) \/\/

2 3 4
p-lja_A A AL _
= h 2 3 4 -

Also, - I
: v=1-E" 13 =z
Thus ANY
E'=1-V=e" J Q.
Taking logarithm on both sides,
—hD =1In(1-V)

sinh(hD) = _2 = .

_1 1/2 ~1/2 1/2 27
_E[E +E V) [EV-E = us
- hD =sinh™(ud)
Example (2.1)

Construct the forward difference table from the following data:

x|o[1]2]3]4
y [1]15[223146]

Then evaluate Ay,,y, andy,.
Solution

15
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The forward differences table is as given below:

y |Ay | A’y | A’y | Aty
1
0.5
1]15 0.2
0.7 0
2 22 0.2 0.4
0.9 0.4
3|31 0.6
15
446

Now
A%y, =(E -1)°y,=(E°-3E*+3E 1)y,
=y,—3y,+3y,-Yy, =46-3(3.1)+3(2.2)-1.5=0.4
Again from observation 2 of section, we have
Y, =Y, +ClAY,+CJA%Y,+C}A%,+C A%y,

=1+n(0.5) +%n(n —-1)(0.2) +%n(n —1)(n —-2)(0)

+%n(n _1)(n -2)(n -3)(0.4)

~1+1n +i(n2—n)+i(n4—6n3+11n2—6n)
2 10 60

. i 1 4 3 2 i
..ys_%[S ~6(5)° +17(5)° +18(5) + 60 |=7.5

Example (2.2)

Evaluate
(i) Acosx (ii)AInf (x) (i) A%sin(px +q) (1v) Atan™'x (v) A"e*™

Solution

16
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Let h be the interval step size.

i
0 G

Acosx =cos(x +h)—cosx :—Zsin(x +%)sin%
(i)

Additional formulae

Al () =Inf (1) =Inf () Pt o
[f (x +h) _ il £00)+ AF ()
L F(x) f(x)
1+ Af (X) tan( A+B) = LI
f(x)

cos (A - B) = cos A cos B + sin A sin B

=In

tan A +tan B

tan{ A+ B )=
L-tan Atan B

j| cos (A + B) = cos A cos B - sin A sin B

=In

(iii)
Asin(px +q) =sin[p(x +h)+qg]-sin(px +q)
ph) . ph
=2 Lik —
cos(px +q + 5 jsm 5

= Zsinp—hsin(£+ pPX +(q +p_hj
2 2 2

:Zsinp—zhsin(px +q +%(7z+ ph)j

Hence
2 o . ph . 1
A sin(px +q)=25|n7A sin| px +( +§(7Z+ ph)

. ph ? 1
= 23|n7 sin| px +( +2-§(7r+ph)

(iv)
Atan™'x =tan*(x +h)—tan™'x
_tan X +h—=x
1+x(x +h)
h

=tan" ———
1+x(x +h)

17
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(V)
A — galcih)ib _ qaxib
=" (e™-1)
A%™ ™ = Al Ae™ ™ |=A| ("1™ |
— (6™ —1)%e™", [ (¢"-1) is constant |

Proceeding on, we get,
A" (e ) =(e™ -1) e™*®
Example (2.3)
Prove the following results:
(i) AV=VA=A-V =5

(i) a+v=2_Y
V A

(iii) (E +E )@+ A =2+A

4

Wi) gt elotist e S gt 2 56y
8 128 1024

Solution

(i) We have,

18
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AVTE (x)=A[VF (x)]=A[f (x)—f (x —h)]
=Af (x)—Af (x —h)
=[f (x +h)—-F COI-[f (x)—f (x —h)]
=Af (x)=VI (xX)=(A-V)f (x)

LAV =A-V

Similarly,
VAf (x)=V[Af (x)]=V[f (X +h)—-T (x)]
=Vf (x +h)-Vf (x)

=[f x +h)=f C)I-[f (x)—F (x —h)]
— Af (x) = Vf (x) = (A= V) (X)

~VA=A-V
Again
5% () =[E¥ ~E Tt (x)
=(E+E*-2)f (x)
=f (x +h)+f (x =h)=2f (x)
=f (x +h)=f (X)]-[f (x)=f (x =h)]
=Af (x)=VFf (x)=(A-V)f (x)
5°=A-V
Hence
AV=VA=A-V =56°
(i)
RHS.:é—Y:N_Vz
V A VA
(A+V)(A-V)
- (a-V)
=A+V=LH.S.

(iii)

19
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(Euz +E7]J2)(1+A)1/2 :(Euz +E7]J2)E1/2
=E +1=1+A+1=2+A

(iv)
EV2 | E V2 2 )
1+y252=1+{—} [EV—E ]
2
2 -1 2
E-g*] 4+(E-E7)
JE+E*T 21
, .
Now,

1. ’ 1r_ —1/27? ’
[1+§5} =[1+E[E —E ]}
1 L P [E+E™T
:{1+§[E+E —2]} { +2 } 2.2)

Hence, from Egns. (2.1) and (2.2), we have

1 2
1+ 1°6? :{1752}

2
RHS:%52+5 1+%=%5[5+\/4+52}

Lof(e-e ) foxe e T |

:%5[(E1/2_E—1/2)+(E1/2+E—u2)]

:%(E“2 ~E¥?)(2E¥)=E ~1=A=LHS

(vi) By definition, we have
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/uz :|:£(E1/2 +E1/2):|2
2

=%[(E”2—E‘1’2)2+4}

1 5’
4(52 +4):7+1

52 1/2
Sou=|1+—

or
-1/2
52
o1+ =
1(1\6% 1
=]1-—— - |—+—
mMmz2)4 2
_1-1lss 350
8 128

(i)s(iﬂm?i(i)(

21
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1.

CHAPTER (3)
INTERPOLATION

Introduction

Interpolation is a technique of obtaining the value of a function for
any intermediate values of the independent variable, i.e. argument
within an interval, when the values of the arguments are given.
Suppose that the following values of y =f (x) for a set of values

of x are given:
X (argument) | X, | X, | X, |- | X, /

Y(X) Yo | Yi | Y2 ]| | Yn
Then the process of finding the value of y corresponding to any

value of x =X, between x, and x, is called in i@terpolation.

The process of finding the value of a function outside the given
range of arguments is called extrapolation
If the form of the function f (x) is known we can find f (x) for

any value of x by simple substitution. But in most practical prob-
lems that occur in engineering and science the form of the function
f (x) is unknown and it is very difficult to determine its exact

form which is the help of tabulated set of values in such cases we
replace f (x) by simple function ¢(x) is called interpolating func-

tion which assumes the same values as those of f (x) and from

which others are values may be computed to the desired degree of
accuracy.
If o(x) is a polynomial then it is called interpolating polynomial

and the process is known as polynomial interpolation. If ¢(x) is a

finite trigonometric series the process is called trigonometric inter-
polation. Usually, polynomial interpolation is preferred due to the
reason that they are free from singularities is and the easy to dif-
ferentiate and integrate. Even though there are other methods like
graphical method and method of curve fitting, in this chapter we
will study polynomial interpolation using the calculus of finite dif-
ferences by driving two important interpolation formulae which are
used often in all fields by means of forward and the backward dif-
ferences of a function.
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2. Newton forward interpolation formula
Let y =f (x) be a function which takes the values y,,y,,---,y,

for (n +1) values x,,x,,---,x, of the dependent variable. Let the-
se values be equidistant x;, =x,+ih,i =0,1,2,---,n and let P (x)
be a polynomial of n degree such as
Px,))=f(;)=y,,1=012,--,n.
P(X):ao+a1(x _Xo)+a2(x _Xo)(X _Xl)
+33(X _Xo)(x _Xl)(x _Xz)"'"'
+a, (X =X )X =X ) (X =X, ;) (3.1

Putting X =x,,X,,---,X,, successfully in equation (3.1), we get

n

Yo=8 » yl:a0+a1(x1—x0),
Y, :a0+a1(xz —x0)+a2(x2 _Xo)(xz _Xl)

Yn :a0+a1(xn —X0)+a2(xn _XO)(Xn —X1)+...
+a (X, = X)X, =X) (X, =X, )

from these

_ _Yima _Yi—Yo Ay,
o=Yo & X, — X, h h '
a2:Y2_ao_a1(xz_xo):yz_yo_2y1+2yo

(Xz_xo)(xz_xl) 2h?
_Yo—2y,+Y, _ A%y,

21h? 21h?’

an:_A”yO

nth"

Putting these values in equation (3.1) we get

P(x)=y,+—=2(x —X )+%(x—x )(X —xr
0 h 0 2!h2 0 1
ASYO

BT

(X _Xo)(x _Xl)(x _Xz)"""

Y0 (6 ) X)X —X,) (32)
n'h"

Putting
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X =Xy
0 =4

X =X,+gh

b 4l

X =X, =X —X,+X,—X; =gh—-ith=(Q-i)h,i =12,---,n
where 0 <a <1 is_real number. Ea, (3.2) takes the form

-1
P(x)=Yy,+04y, +q(q2, Lpy,

RCESCE FMII E (R K R

0

(3.3)
Equation (3.3) is known as Newton forward interpolation formula
< Note
Formula (3.3) is called Newton forward interpolation formu-
la due the fact that this formula contains values of the tabu-
lated function from y, onward to right and none to the left

of this value. This formula is used mainly to interpolating
the values of y near the beginning of a set of tabulated val-

ues and to extrapolating y a little to the left of y,. The first

two terms of the equation will give a linear interpolation
while the first three terms a quadratic interpolation and so
on.
3. Newton backward interpolation formula
Let y =f (x) be a function which takes the values y,,y,,---,y,

for (n +1) values x,,x,,---,x, of the dependent variable. Let the-
se values be equidistant x; =x,+ih ,i =0,1,2,---,n and let P(x)
be a polynomial of n degree such as
Px,))=f(x;)=y,,1=012,--,n.
Suppose that it is required to evaluate y (x) near the end of the ta-
ble values then we can assume that
P(x)=a,+a (X —=x,)+a,(x =X, )(X =X, )
+a3(X —Xn)(X _anl)(x _anz)"""
£, (X=X, )X =X, ) (X = X,) (3.4)

Putting X =x,,X,, -+, X, successfully in Eq. (3.4), we get

n
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=Y
yn—1:a0+a1(xn—1_xn)
Yoo =8t (X, , —X,)+a,(X, 5 =X, )X, , =X, )
YO:ao+a1(xo_Xn)+az(xo_xn)(xo_xn—1)
+as(xo_Xn)(xo_Xn—l)(xo_xn—z)+’“
+an(X0_Xn)(xo_xn_l)'“(xo_Xl)
These equations give
_ Y1~ — Yoa—Yn _ Yo =Yoo :Vyn

aO:y”’ a1 anl_xn anl_xn Xn_anl h ,
a :yn72_a0_a1(xn72_xn):ynfz_yn_zynfl-i_zyn
? (X n-2 X n)(x n-2 X n—1) _2h ?
:yn_zyn—1+yn72:v2yn
21h? 21h?% "
anz—v Y
nth"
Putting these values in Eq.(3.4) we get
B vy, Viy.
P(X)_yn + h (X _Xn)+ 2|h2 (X _Xn)(x _Xn—l)
vy,
+W(X_Xn)(x X)X =X, )+
Vn
L (X )X =X ) (6 = x,) (3.5)
n'h
Let
X_Xn _
h
X =X, +gh
U Uy
X =X, =X =X, +X,—X, =gh +(n—i)h=(q +n-i)h,i=12,--

Where q is real number. Then Eq.(3.5) takes the form

25
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P(x)=y,+qVy, +q(qz—,+1)V2yn
L 9(@ +1§|(q t2 ey ... 9000 +2)|---(q =D gy
|
’ "
Eq.(36) is known as Newton backward inter ion a

< Note
Since the formula (3.6) involves the backward differences it
Is called backward interpolation formula and it is used to in-
terpolate the values of y near to the end of a set of tabular

values. This may also be used to extrapolate the values of y
a little to the right of y |

Example (3.1)

Find a polynomial which takes the following values

x [o]1] 23] 475
y(x) [5.2]8.0[104 [12.4 [14.0 [15.2

Solution

We take

Xe=0,h=x,-%x,=1,0= = =X

The forward differences table is as follows:
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X [y(x) [ Ay | A%y | A’y | Aty
5.2

2.8

1| 80 0.4
2.4 0

2 | 104 0.4 0
2.0 0

3| 124 0.4 0
1.6 0

4] 140 0.4
1.2

5 | 15.2

Using Newton forward interpolation formula, we get

q (q2|—1) Ay, + 90 —1;(q —2) p3y

52+ 2.8x —0—;'(x )(x —1)

P(X)=Yy,+qAy, +

=5.2+2.6x —0.2x 2

Example (3.2)

Find a polynomial which takes the following values:

x | 1] 15 [20] 25
y(x) | 4.0]18.25] 44.0 | 84.25

and hence compute y (1.25).

Solution

Take
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X,=10, h=x,-Xx, = h=15-1.0=05
X—=X, x-=10

X=X,+gh = q-= 05 0% =2(x =1)

The forward differences table is as follows:

X | y(x)| Ay | A%y | A%y
10| 40 [ oYy

@z
1.5 | 18.25 %
25.75 Q(D

20| 44.0 14.5
40.25

2.5 | 84.25

Thus
y,=40, Ay, =14.25 , A’y, =115, A’y,=3.0
Using Nevvtgn forward interpolation formula, we get

q(q-1) A%y L 9@-1@-2) s
21 ° 3!

=4+2(x —1)(14.25)+%[2(x -D][2(x 1) -1](11.5)

[2(x =D][2(x 1) -1][2(x -1)-2](3)

P(X)=y,+qAy, +

y

3!

Now

—

y (1.25) =4.0+(0.5)(14.25) + (0'5)5:0'5) (11.5)

3!
-
Example (3.3) D 15

28
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Find a polynomial which takes the following values

x [1]3][5][7]9
y [3]14]19]21]23

and hence compute y \i),y (20).
> v/

The differences table as follows:
y =Y =AY &Y [

X
\].'} Ny

Solution

1{ 6 J_
) % 8.
5°] 197 -3 :‘ X
RE =%
7/ 21’%‘ 0}
Q
K 14es3

(6 x -1 ’\\( "1\‘
Take >.</:1,yv[3,h12 .q ==

A
Using Newton forward interpolation formula, we get
- 2
)=y, 1oy, LD ey, , 90D ) 'Y Q

28t X o

1x-1x-1
57[7‘ }{—‘2 (3)

Qx —21x 2 +159x — 91 VJ
16
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r;ain x =9,y =23,h=2,q _x=9 )

2
=3 x\
Using Newton backward interpolation formula, we get ’/'\L
_ @(q +1) 2y, ,4@+D)@+2) s
Y () =Y, VY, AV RSV
Y ) X -9 1 X -9
2 2' 2

Then
1
y (2)= E(23 — 212f +159(2) -91) =9.4/3__?>
and

y (10) = 23+ (10— 9)+—(1o 9)(10—7)(10-5)

Example (3.4) LQ(_B

The amount A of a substance remaining in a reacting system after a time
t in a certain chemical experiment is tabulated below

t] 2[5 ]8 [1
A 94887.9 (813751

I

/
Obtain the value of A whenG :9] using Newton backward interpolation
formula.

Solution

Since the value t =9 is pear the end of the table, to get the corresponding
value of t we use Newton backward interpolation formula.

The backward differences are calculated and tabulated below:
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t A | VA | V?A | VA
2.0 |94.8
—6.9
5.0 | 87.9 0.3
—6.6 0.1
8.0 | 81.3 0.4
—6.2
11.0 | 75.1

Here
h=t,—t, => h=5-2=3,t =110

Hence the interpolation polynomial is

At)=A, +qVA, + 92 (qul)van it +1§|(q 2y,

If t =9, we have

t=t,+gh = qzt_ht” =9_;1'0=—§

Therefore

2 1( 2 2

; i(_ZJ(_Z +1)(—3 ¥ 2}(0.1) ~79.183951
333 3

xample (3.5)

Find the missing value in the following table

X |16 |18 |20 | 22 | 24 | 26
y |43 |89 B 155 | 268 | 388

Solution
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Since five values are given, it is possible to express y as a polynomial of
fourth degree. Hence the fifth differences of y are zeros. Taking the
origin for x at 16 , from the given data we have:

y,=43,y,=89,y,=155y, =268,y =388,
and we have to find y, . We know that A°y =0
Ny,=(E -1)’y,=0
e
(E®—CE*+C;E°~CJE®+CJE 1)y, =0
(E®-5E*+10E°-10E*+5E -1)y, =0,

E°y,-5E"y,+10E°y,-10E %y ,+5Ey, -y, =0,
Ys—9Y,+10y; 10y, +5y, —y, =0

Substituting the given values, we have

388 —5(268) +10(155) —10y, +5(89) —43=0
U
y, =100

Lagrange Interpolation

32


lab
Typewriter
Lagrange Interpolation


NUMERICAL DIFFERENTIATION DR. AHMED YOUSEF

1.

CHAPTER (4)
NUMERICAL DIFFERENTIATION

Introduction
This chapter deals with numerical approximations of derivatives.
The first question that comes up to mind is: why do we need to ap-
proximate derivatives at all? After all, we know how to analytical-
ly differentiate every function. Nevertheless, there are several rea-
sons as of why we still need to approximate derivatives:

< Even if there exists an underlying function that we need to

differentiate, we might know its values only at a sampled da-
ta set without knowing the function itself.

There are some cases where it may not be obvious that an
underlying function exists and all that we have is a discrete
data set. We may still be interested in studying changes in
the data, which are related, of course, to derivatives.

There are times in which exact formulas are available but
they are very complicated to the point that an exact computa-
tion of the derivative requires a lot of function evaluations. It
might be significantly simpler to approximate the derivative
numerically instead of computing its exact value.

< When approximating solutions to ordinary (or partial) differ-

ential equations, we typically represent the solution as a dis-
crete approximation that is defined on a grid. Since we then
have to evaluate derivatives at the grid points, we need to be
able to come up with methods for approximating the deriva-
tives at these points, and again, this will typically be done
using only values that are defined on a lattice. The underly-
ing function itself (which in this case is the solution of the
equation) is unknown.

Consider a set of values (x;,y;) ofafunction y =f (x). The

process of computing the derivative or a derivative of the function
at some value x from the given set of values is called numerical
differentiation. This may be done by first approximating the func-
tion by a suitable interpolation formula and then differentiating it
as many times as desired.

2. Derivatives using Newton forward interpolation formula
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If the values of x are equispaced and the derivative is required

near the beginning of the table, we employ Newton forward inter-
polation formula.

Newton forward interpolation formula is

-1
y(x)=yo+quo+(m2—,)A2yo
. 9@ —1§I(q =2 gy, 4. 40200 —i)l---(q —NHD pny

(4.1

where q = ;XO .

Differentiating both sides of equation (4.1) with respect to q , we
have

49°-184°+229 -6 ,

2
%:Ayo+—2q |_1A2y0+—3q 04 +2 s

Now

dy _dy dq _1dy (d_q_ij
dx dgq dx hdg \dx h
30°-6q+2
___Ti___13YO
3 2
+4q -189° +22q —6A4y0+uw
4!

At x =x, = q=0.Hence putting g =0 in equation, we get

d 1 1 1 1

d_§x=x0 :F|:Ayo _EAzyo +§A3YO _ZAAyo +}
Differentiating Eq.(4.2) with respectto x , we get

ﬂ_d_(d_yjd_q_i.d_(dij
dx¥ dgldx Jdx __h daldx

1 60°—18q +11
:—{A2y0+(q ~DA%y,+ 9" ~189 A4y0+--}

dy 1 2q9-1 .,
d—X—H{AyOJF o1 A%y, +

(4.2)

h2

Putting q =0 in equation, we get

34
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1 11
:F[Azyo_A3yo+EA4yo _:|

Similarly

dx®

1 2
:—h3‘:A3yo —§A4y0 —{—:|
And so on.

3. Derivatives using Newton backward interpolation formula
If the derivative is required near the end of the table, we use the
backward interpolation formula.

Newton backward interpolation formula

y(x)=y,+qVy, +Q(O'2 )sz

L9@+D@+2) oo, 0@+D@+2)@ N oy
3! " n! n

(4.4)

X —X
where q = L

Differentiating both sides of Eq. (4.4) with respect to g, we have

2 3 2
d—y_Vy 2q+1v2yn+3q +6q+2V3yn+4q +189°+229 +6 _,
dg 2! 3! 41

Now

dy _dy dg _1dy (d_qzlj
dx dgq dx hdg \dx h
2
d—yzi{Vyn+Zq+1V2yn+3q 00 +20s
2! 3!
3 2
, 4a° +189° +22q +6v4yn+“1
41
At x =x, = g =0.Hence, putting g =0 in equation, we get
dy 1 1, 1_, 1_, }
— =—|Vy, +=Vy +=Vy +-V'y_ +--.
ax |, h[y” 2 It et

Again differentiating Eq. (4.5) with respect to X we get

(4.5)
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d’y _d_(d_yjd_q_l.d_(dlj
dx* dgldx Jdx h dgldx
60°+18q +11_,

1
=F{v2yn+(q+1)v3yn+ - Vyw--}

(4.6)
Putting g =0 in Eqg. (4.6) , we get

dzy 1 2 3 11_,
=V \V/ i vA VAR

ix?| h{ Y.+ yn+12 Yn

Similarly

d3y 1 2

x| =Q{V3yn+gv“yn+--}

and so on.

Example (4.1)

Find the first, second and third derivatives of y (x) at x =15 if

X 1.5 2.0 2.5 3.0 3.5 4.0

y(x) | 3.375 | 7.000 | 13.625 | 24.000 | 38.875 | 59.000

Solution

We have to find the derivative at the point x =1.5 which is at the begin-
ning of the given data. Therefore we use here the derivative of Newton
forward interpolation formula. The forward differences table as follows
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X | y(x) | Ay | A’y | A%y | Ay
15| 3.375
3.625
2.0 | 7.000 3.000
6.625 0.750
25| 13.625 3.750 0
10.375 0.750
3.0 | 24.000 4.500 0
14.875 0.750
3.5 | 38.875 5.250
20.125
4.0 | 59.000

Here x,=1.5, h=x,-x,=0.5,from Eq. (4.2) we have

1 1 1 1
:F|:AYO _EAzyo +§A3YO _ZA4yo +}

dy
dx

X=Xg

Thus

15— L 11 _
y (1.5)_0.5[3.625 2(3)+3(o.75)} 4.75

from Eq.(4.3) we have

d 2y 1 11
ax?| :F[AZYO —A3yO+EA4yO —}
Hence
" 1
y"(1.5)= (0 5)2 [3—0.75] =9

Again from Eq.(4.4) we have
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Thus

y"(L5) = (0; ; [0.75]=6

Example (4.2)

The population of a certain town is shown in the following table

X | 1951
y |19.96

1961
36.65

1971
58.81

1981
77.21

1991
94.61

Find the rate of growth of the population in the year 1981.
Solution

Here we have to find the derivative at 1981 which is near the end of the
table. Hence we use derivative of Newton backward difference formula.
The table of differences is as follows

X y vy | Vy | V¥y |V
1951 | 19.96
16.69
1961 | 36.65 5.47
22.16 —9.23
1971 | 58.81 —3.76 11.9
18.40 2.76 /
1981 | 77.21 ¥ 4
1740 J
1991 [ 9461 | °
I
Hence
h=10,x =1991,q _X =X, :1981—1991:_1
—_—— 10 —
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we know from Eq.(4.5) that

2
1 vy 2q+1v2yn+3q +6q+2V3y

h . 2! 3l "

3 2
L4 +18q4|+ 220 +6V4yn +}

dy
dx

X=X,

Now we have to find out the rate of growth of the population in the year
1981

(1) (2.76)

y'(1981) = 1 [17.44 2D +1
10 2l

. 3(-1)%+6(-1) +2
3!

. 4(-1)° +18(-1)%* + 22(-1) +6
41

(11.99)} =1.6440833

The rate of growth of the population in year 1981 is 1.6440833
Example (4.3)

Find the first and second derivative of the function tabulated below at the
point x =1.9. -

x | 10 | 1.2 | 14 | 16 | 18Y( 2.0Y
y (x) | 0.000 | 0.128 | 0.544 |1.296 | 2.432 | 4.00

Solution

We have to find the derivative at the point x =1.9 which is near the end
of the given data. Therefore we use the derivative of Newton backward
interpolation formula. The backward differences table as follows
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X |y(x)| Vy | Vi | Vy |V
1.0 | 0.000
0.128
1.2 | 0.128 0.288
0.416 0.048
1.4 | 0.544 0.336 0
0.752 0.048
1.6 | 1.296 0.384 0
1.136 0.048
1.8 | 2.432 0.432
1.568
2.0 | 4.000
Here
X =2,h=x,-%,=02,q=2_2n _19720_ 45
—_— h 0.2
we know from Eq.(4.5) that
2
dy :E{Vyn L2 +1szn 392 +6q +2V3yn
dx |, h 21 3!
3 2
, %° +189° +229 +6V4yn +}
41
Thus
y'(L9)= 0—12{1.568+ 2(_02'?) +10.432) 4 305 +3ﬁ’(_0'5) +2 (0.048)} ~7.83

we know from Eq.(4.6) that

2 2
Yy =i{vzyn+(q sV, + X +i§q +11V“yn+--}

dx? h?
Hence
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f

y"(1.9) = (0.12 ; [0.432+ (~0.5+1)(0.048)| =11.4.

Two points first derivative approximation

First derivative forward differences approximation
The Taylor expansion of f (x, +h) about x. is given by:

f(x+h)=F )+, f(x)+h—2f ”(x)+h—f (X, )+

h o h™ com
Yy (Xi)+(n+1)!f (&), Sel(x;.x;+h)

For such expansion to be valid, we assume that f (x) has
(n +1th continuous derivatives at the point x =x,. Ne-
glecting terms of degree higher than two, we obtain

2
f(x, +h)=f (x, )+—f (X, )+h—f (&), &e(x,,x,+h)

which turns into

fo,+h)-f(x) h

f(x;)= h Z!f (&), Se(x;,x;+h)
&7
Eq. (4.7) can be written as
f'(x;)=F+E_.,
where
FottDEL) e e, detox, +h)

F is called forward differences formula for approximating
f'(x;) and E. is the error.

First derivative backward differences approximation
The Taylor expansion of f (x, —h) about x. is given by:

f(x, —h)=f (x, )——f (X, )+h—2f "(X. )—h—f (X, )+
hn+1

(n) n+l
+(- 1) (x;)+ (1) LR

41

(n+1)(§) Se(x;—h

X))
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For such expansion to be valid, we assume that f (x) has
(n+1)th continuous derivatives at the point x =x. . Neglect-
ing terms of degree higher than two, we obtain

f(xi—h)=f(xi)—%f'(xi)%f"(f), Ee(x, —hx,)

which turns into

fr(xi):f (Xi)_L(Xi _h)_'_%

f"(&), &e(x;—hx;)
(4.8)

Eq. (4.8) can be written as
f'(x;)=B +Eg,

where

S e LB, st —hix)
B is called backward differences formula for approximat-
ing f '(x;) and E; isthe error.

B

Example (4.4)

Find the first derivative approximation of the functionf (x)=cos(zx) at

X :% using forward differences approximation formula (take h =0.01)

Solution

The forward differences approximation formula of the first derivative de-
fined as

f(x, +h)—f (x,)

fr(x,)= x

then we have

(af 4):f (n/4+06?()11 —f (z/4)

~0.700000476-0.707106781
0.01

=0.71063051

Example (4.5)
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Find the first derivative of the function tabulated below at the point
x =0.2 using both forward differences and backward differences approx-
imation formulae

0.1 0.2 0.3 0.4 0.5
y | 0.0001 | 0.0016 | 0.0081 | 0.0256 | 0.0625

Solution

The forward differences approximation formula of the first derivative de-
fined as

f(x, +h)—f (x,)

f/(x,) = -

then we have

f (0.3)—f (0.2) _0.0081—0.0016

f'(0.2)= -
( ) 0.1 0.1

=0.065

The backward differences approximation formula of the first derivative
defined as

f (Xi)_f (Xi _h)
h ,

f/(x,) =

then we have

f (02)—f (0.1) _0.0016-0.0001
0.1 0.1

=0.015

£(0.2)=

5. Three points first derivative approximation
The Taylor expansion of f (x, +h) about x. is given by:

foxrh)=f )+ f (X, )+h—2f "(X. )+h f (X, )+
hn+1
(n+!

LY ®(x,)+—
n!

FODE), Selx;.x; +h).

(4.9)
While, the Taylor expansion of f (x; —h) about x. is given by:
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f (X, —h)= f(x)—nf(x) Dif%x)—h F(X,) 4
0 o0+ (ot e, ge(x, —hx,)
(n+1)!

(4.10)

Subtracting Eq. (4.10) from Eq. (4.9) and neglecting terms of de-
gree higher than three, we obtain

f(Xi+h)—f(Xi—h)=2hf'@«)+%§U'T§)+f”Qéﬂ

If the third-order derivative f "(x) is a continuous function in the
interval [x; —h,x; +h], then the intermediate value theorem im-

plies that there exists a point £ e(x; —h,x; +h) such that

(&) =211 "(6)+f ")

Henc
, f (x, +h)—f (x,=h) h?_,
)=t Bop
Eq. (4.11) can be written as
f'(x,)=C +E,,
where
c -t e JBtre), cex—hx, +h)

C is called central differences formula for approximating f '(x;)
and E_ isthe error.

Example (4.6)

Find the first derivative of the function tabulated below at the point
x =0.2 using central differences approximation formula

X 0.1 0.2 0.3 0.4 0.5
y | 0.0001 | 0.0016 | 0.0081 | 0.0256 | 0.0625

Solution
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The central differences approximation formula of the first derivative de-
fined as:

)= +h)2—hf (x; ~h)

SO we have

f (0.3)—f (0.1) _0.0081-0.0001
20.) 2001

=0.04

f(0.2) =

6. Three points second derivative approximation
For the second derivative approximation, we add Eq. (4.9) and Eq.
(4.10) and neglecting terms of degree higher than four to obtain

2h "(&), Ee(x, —h,x; +h)

O +h)+F (¢ —h)=2F () +h? () +

So, we have
f (x; +h)=2f (x,)+f (x, —h)_h_2

f(x.)= f"(&), Ee(x, —h,x; +h)

h? 12
(4.12)
Eq. (4.12) can be written as
f"(x;)=S +E,,
where
S _f(x +h)—2fh(z<i)+f (x, —h) E, :_2_; "E), Ec(x. —hx, +h)

S is called differences approximation formula of f "(x,) and
E. is the error.

Example (4.7)

Find the second derivative of the function tabulated below at the point
x =0.2 using differences approximation formula

X 0.1 0.2 0.3 0.4 0.5
y | 0.0001 | 0.0016 | 0.0081 | 0.0256 | 0.0625

Solution
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The differences approximation formula of the second derivative defined
as

f(x, +h)—2f (x,)+f (x, —h)
h? |

£7(x,)=

So, we have

f (0.3)—2f (0.2)+f (0.2)
(0.1)

~ 0.0081-2(0.0016)+0.0001

- (0.1)2 -

f"(0.2) =

0.5
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CHAPTER (5)
NUMERICAL INTEGRATION

1. Introduction
b
The process of computing Iy (x)dx where y =f (x) isgiven by a

set of tabulated values [x;,y;],1 =0,12,---,n, a=X,, b=x, is
called numerical integration. Like that of numerical differentia-
tion, here we also replace y =f (x) by an interpolation formula

and integrate it between the given limits. In this way we can derive
a quadrature formula for approximate integration of a function de-
fined by a set of numerical values.

2. General quadrature formula
In this section we will derive a general quadrature formula for
equidistant mesh points.
Let

b
I :jy dx , wherey =f (x),

takes the values y,,y,,....y, forx,,x,,...,x, . Letus divide the
interval (a,b) into n equal parts of width h, so that

a=X, ,X;=X,+h,x,=x,+2h,...,x, =x,+nh =Db.
Then,

Xo+nh

| = j f (x)dx

Xo

Putting, X =x,+gh, so that dx =hdqg in above, we get,

| =h[f (x,+gh)dg =h [y (x)dg.
0 0

Now replacing y (x) by Newton forward interpolation formula we
get,
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n

-1 ~1)(q -2
l=hﬂyo+quo+q(q2, ) a2y 90 3))I(q )%y,

4@ —1)(q4—| 2)[@-3) Ay,
L 9@ -9 —2;I(q =@ =) sy
L4@-9@- 2)(q67 3)@ -4 -5) Ay +,,1dq

Now integrating a term by term we get after substituting the limits
as

n? 1(n® n? 1(n*
| =h|lny, +—Ay, +=4——— A2y 4+ =) _n34n2iAs
{ Yo > Yo 2{ 3 2} Yo 3!{ 4 } Yo

5 4 3
PEH L LA L Y GO
411 5 2 3
6 4 3
+l n__2n5+35n _50n +12n% L A%,
511 6 4
7 6 4 3
+l n__15n +17n5_225n +274n —60n? AGyo
6! 7 6 4 3

(5.1)

Eq.(5.1) is known as Newton-Cote's quadrature formula which is
general quadratic formula for equidistant mesh points. In the fol-
lowing sections we deduce important quadrature formula for this
equation taking n =1,2,3.

3. Trapezoidal rule
Putting n =1 in Eq. (5.1) and neglecting second and higher order
differences we get

Xg+h

| y(x)dx=hfy(x)dq=h[yo+%Ayo}

Xo

1 h
=h|:yo +§(y1_yo):|:E[y0 +y1]

Similarly
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Xo+2h h
[ yo)dx =2y +y,]
Xg+h
Xg+nh h
Y () =2 Y5+, ]
Xo+(n-1)h

Adding these n integrals, we get,

Xg+nh

= | y(x)dx =%[(yo+yn)+2(y1+yz+---+yn—1)]

(5.2)
Eq.(5.2) is known as trapezoidal rule.
4. Simpson's 1/3 rule
Here, taking n =2 in Eq.(5.1) and neglecting third and higher-
order differences, we get

Xg+2h

2
I y (X )dx :hjy(x)dq :h{Zyo+2Ay0 +%(%—2jAzyo}
0

Xo

1
:h|:2yo +2(y1_yo)+§(y2 _ZY1+yo)}

h
:g[yo+4Y1+y2]
Similarly
Xo+4h h
_[ y(X)dX :_[yz +4y3 +y4]
Xo+2h 3
Xg+nh h
[ yed=Zly,,+4y,:+y,]
Xo+(n-2)h
where n is even. Adding all these integrals, we get

Xg+nh

| = J. y(x)dx:%[(yo+yn)+4(Y1+y3+---+yn_1)

+2( Y, + Y, et ynfz)}
(5.3)

Eq.(5.3) is known as Simpson's 1/ 3 rule.
5. Simpson's 3/8 rule
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Putting n =3 in Eq.(5.1) and neglecting all differences above the

third order, we get

X+3h 3
y ()dx =h[y (x
0

J

Xo

=h|3y,+

=h

3y, +

Sy
=35 Yo
Similarly

Xo+6h

J

Xo+3h

Xo+nh

Xo+(n-3)h

)dq

9 1(27 9)., 1(81 ,

—Ay, +—| ———=|A +—| —=-27+9 |A

2 Vo 2(3 2) Yo 3!(4 j yO}

9 9 3
E(yl_yo)"'Z(yz_2y1+yo)+§(y3_3y2+3y1_yo)
3y, +3Y,+Y,)

3h
y (x)dx =§[y3 +3y,+3Ys+ Y]

3h
y (x )dx =§[yn_3+3yn_2+3yn_l+yn]

Adding all these integrals, where n is a multiple of 3, we get

Xg+nh

| = '[ y (x)dx =

Xo

3h

8

[(y

0 + 3/ n )

+3(Yi+Y, t Yt Yt Y Yt Yo+ Y o)

+2( Y+ Yo+t Yos)]

(5.4)

Eq. (5.4) known as Simpson's 3/8 rule.

< Note

e The trapezoidal rule f (x) is linear function of X i.e. of the
form f (x)=ax +b . Itis the simplest rule but least accu-

rate.

gree,ie. f (x)=

In Simpson's 1/3 rule, f (x) is a polynomial of second de-

ax > +bx +c . To apply this rule, the number

of intervals n must be even.

In Simpson's 3/8 rulef (x) is a polynomial of third degree,

i.e. f (x)=ax>+bx*+cx +d . To apply this rule the num-
ber of intervals n must be a multiple of 3.
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Example (5.1)

Evaluate

by using

1. Trapezoidal rule
2. Simpson's 1/ 3 rule. Compare the results with the actual value.

Solution

Taking n =10, divide the whole range of the integration into ten equal
parts. The value of the integrand function for each point of sub-division
are given below:

X y Y,
0 1.00000 Yo
1 0.50000 Y,
2 0.200000 |y,
3 0.100000 |y,
4 0.0588235 |y,
5 0.0384615 | y.
6 0.027027 |y,
7 0.0200000 |y,
8 0.0153846 |y,
9 0.0121951 |y,

10 [9.9009901x10° [y,

)3

1. By Trapezoidal rule
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10

| = dx

1+x?
0

h
=S LVot Vi) +2(Yat Yot Yot Yt Vst Yoty s +Yo+Ya)]

= %[(LL 9.9009901x107%) +2(0.5+ 0.2 + 0.1+ 0.0588235 + 0.0384615

+0.027027 + 0.02 + 0.0153846 + 0.0121951)] =1.4768422

2. By Simpson's 1/3 rule

10

dx

h
| = = Lot Vi) +A(Yi+ Yot Vs + Y+ Vo) + 2V + Y+ Yo+ o) ]

1+x°2
0

= %[(1+ 9.9009901x107°) + 4(0.5+ 0.1+ 0.0384615+ 0.02 + 0.0121951)

+2(0.2+0.0588235+0.027027 + 0.0153846)] =1.4316659

Example (5.2)

The velocity v of a particle at a distance x from a point on its path is
given by the following table:

X (ft)

0

10

20

30

40

50

60

v(ft/s)

47

58

64

65

61

52

38

Estimate the time taken to travel to 60ft using Simpson's 1/3 rule. Com-

pare the result with Simpson's 3/8 rule.

Solution

We know that the rate of displacement is velocity , i.e. v = ((j:i_)t( . There-

fore the time taken to travel 60ft is given by

where y =1/v . The table is as given below.

60

f

0

idx =
v

52

60
jydx
0
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X y=1l/v |y,
0.0212765 | y,
10 | 0.0172413 | vy,
20 | 0.015625 |v,
30 | 0.0153846 | y,
40 | 0.0163934 | vy,
50 | 0.0192307 | y,
60 | 0.0263157 | y,

By Simpson's 1/ 3 rule

60
h
I =]y dx =3LVorye)+4(yityatys)+ 2y, +y.)]
0
= %[(0.0212765 +0.0263157) + 4(0.0172413+ 0.0153846 + 0.0192307)
+2(0.015625 + 0.0163934)] =1.063518
Hence the time taken to travel 60ft is 1.064s.

By Simpson's 3/8 rule

60 3h
I =J.de :g[(yo+ye)+3( y1+y2+y4+y5)+2y3]
0

= %[(0.0212765 +0.0263157) + 3(0.0172413+ 0.015625 + 0.0163934 + 0.0192307)

+2(0.0153846)] =1.0643723
By this method also the time taken to travel 60ft is 1.064s.

Example (5.3)
Find the following integral by

(i) Trapezoidal rule (ii) Simpson's 1/3 rule (iii) Simpson's 3/8 rule
5.2
| = I Inx dx
4

Solution
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Taking n =6, divide the whole range of the integration into six equal

parts. The value of the integrand function for each point of sub-division
are given below:

X

4

4.2

4.4

4.6

4.8

5.2

f (x)=Inx

1.386

1.435

1.482

1.526

1.569

1.609

1.649

1. By Trapezoidal rule

5.2 h
I :Ilnx dx =§[(y0+y6)+2(y1+y2+y3+y4+y5)]
4

0422[(1.386 +1.649) +2(1.435+1.482+1.526 +1.569 +1.609)] =1.8277

2. By Simpson's 1/3 rule

5.2 h
| = J- Inx dx :g[(yo+YG)+4(yl+y3+y5)+2(y2+y4)]
4

%[(1.386 +1.649) +4(1.435+1.526 +1.609) + 2(1.482 + 1.569)] =1.8278

3. By Simpson's 3/8 rule

52 3h
= [Inxdx =2 [(Yor Ye) +3(Yat Y +Ya+ys)+ 2y
4

Example (5.4)

A rocket is launched from the ground . Its acceleration is registered dur-

ing the 90 seconds and are given in the table below. Using Simpson's
3/8 rule, find the velocity of the rocket at t =90.

%[(1.386 +1.649) + 3(1.435+1.482+1.569 +1.609) + 2(1.526)] =1.8279

t(s) 0 10 20 30 40 50 60 70 80 90
a(m/s®) | 30 | 31.63 | 33.64 | 35.47 | 37.75 | 40.33 | 43.25 | 46.69 | 50.67 | 54.87
Solution
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We know that the rate of velocity is acceleration , i.e. a = OI—VTherefore

the velocity of the rocket at t =90 is given by
90
V= Ia dt .
0
By Simpson's 3/8 rule

90 3h
| = [adt ==2[(yo+ya)+3(Yst Yo +Yat Y5+ Yo +Ya)+ 20y +Ys)]
0

- %[(30+ 54.87) + 3(31.63+ 33.64 + 37.75+ 40.33+ 46.69 + 50.67) + 2(35.47 + 43.25)]
= 3616.65

55



SOLUTIONS OF ALGEBRIAC AND TRANSCENDENTAL EQUATIONS DR. AHMED YOUSEF

1.

CHAPTER (6)
SOLUTIONS OF ALGEBRIAC
AND TRANSCENDENTAL EQUATIONS

Introduction
We have seen that an expression of the form

f(x)=ax"+ax" " +ax"?+---+a_,

n

where a's are constants (a, =0) and n is positive integer, is called
a polynomial in x of degree n and the equation f (x)=0 is
called an algebraic equation of degree n . If f (x) contains some
other functions like exponential, trigonometric, logarithmic , then

f (x)=0 is called transcendental equation. For example

X*=3x +6=0, x°—7x*"+3x*+36x —7=0

are algebraic equations. Whereas

x?—-3cosx +1=0, xe* —2=0,x logx =1.2

are transcendental equations.

In this chapter we will solve algebraic and the transcendental equa-
tions. For equation s of degree two or three or four, methods are
available to solve them. But the need often arises to solve higher
degree or transcendental equation for which no direct method ex-
Ists. Such equations can be solved by approximate methods. Be-
fore we proceed to solve such equations let us recall the fundamen-
tal theorem on roots of f (x)=0 ina<x <b.

Theorem 6.1

If f (x)=0 is continuous function in a closed interval [a,b] and
f (@), f (o) are of opposite signs, then the equation f (x)=0 will
have at least one real root between a and b .

Bisection method
Let the function f (x) be continuous between a and b . For defi-

niteness let f (a) be negative and f (b) be positive, then there is a
root of f (x)=0 lying between a and b . Let the first the approx-

imation be x, = % (the average of the ends of the range).
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Now if f (x,)=0,then x, isarootof f (x)=0. Otherwise, the
root will lie between a and x, or x, and b depending upon
whether f (x,) is positive or negative.

Then, as before we bisect the interval and continue the process till
the root is found to the desired accuracy. If f (x,) is positive,

therefore the root lies between a and x,. The second approxima-
+X,

tion to the root now is x, = 2 1f f (x,) is negative, then the
root lies between x, and x, then, the third approximation to the
rootis X, = szzand so on. This method is simple but slowly
convergent.

Example (6.1)

Find a root of the equation

x®—x —-11=0,

correct to four decimal places using bisection method.

Solution

Let

f (x)=x°-x—11.

Since f (2)=-5<0 and f (3)=13>0, then there exist a real root lies
between 2 and 3. Hence, the first approximation to the root is

2+3
X, =—=

\=""=25.

Now
f (25 = (2.5)3 —-25-11=2.125>0.

Therefore the second approximation lies between 2 and 2.5. Thus the
second approximation to the root is
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X, = 2+22'5 =2.25.

Now
f (2.25)=(2.25)° - 2.25-11=-1.859375<0.

Therefore the third approximation lies between 2.5 and 2.25. Thus the
third approximation to the root is

X, +X, 25+2.25
=

X, = =2.375.

Now
f (2.375) = (2.375)3 —2.375-11=0.0214843 > 0.

Therefore the fourth approximation lies between 2.25 and 2.375. Thus
the fourth approximation to the root is

X,+X; 2.25+2.375
X, = =

\ =2.3125.
2

Now
f (2.3125) = (2.3125)3 —2.3125-11=-0.9460449 < 0.

Therefore the fifth approximation lies between 2.375 and 2.3125. Thus
the fifth approximation to the root is

Xz+X, 2375+2.3125
X = =

i = 2.34375.
2

Now
f (2.34375) = (2.34375)° —2.34375-11=-0.4691467 < 0.

Therefore the sixth approximation lies between 2.375 and 2.34375. Thus
the sixth approximation to the root is

X;+X; 2.375+2.34375
X, = =

o= = 2.359375.

Now
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f (2.359375) = (2.359375)° — 2.359375 —11 = —0.2255592 < 0.

Therefore the seventh approximation lies between 2.375 and 2.359375.
Thus the seventh approximation to the root is

X,+X, 2.375+2.359375
X, = =

. = 2.3671875.
2 2

Now
f (2.3671875) = (2.3671875)3 —2.3671875-11=-0.1024708<0.

Which means that the eighth approximation lies between 2.375 and
2.3671875. Thus the eighth approximation to the root is

X,+X, 2.375+2.3671875
X, = =

. = 2.3710938.
2 2

Now

f (2.3710938) = (2.3710938)° — 2.3710938 —11 = —0.040601< 0.

Which means that the ninth approximation lies between 2.375 and
2.3710938. Thus the ninth approximation to the root is

X,+X, 2.375+2.3710938
—

Xy = = 2.3730469.

Now
f (2.3730469) = (2.3730469)3 —2.3730469-11=-9.585864 x10" < 0.

Therefore the tenth approximation lies between 2.375 and 2.3730469.
Thus the tenth approximation to the root is

X, = X, erxg _ 2.375+2.3730469 _ 5 3740235
Now
f (2.3740235) = (2.3740235)° — 2.3740235-11=5.942463x10"° > 0.

Therefore the eleventh approximation lies between 2.3730469 and
2.3740235. Thus the eleventh approximation to the root is
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X, +X, 2.3730469+2.3740235
Xu==5"7 2

=2.3735352.

Now
f (2.3135352) = (2.3135352)° —2.3135352 —11=-1.823398x10"° <0

Therefore the twelfth approximation lies between 2.3740235and
2.3735352. Thus the twelfth approximation to the root is

X, +X, 2.3740235+ 23735352

Xy =0 > = 2.3737793.

Now
f (2.3737793) = (2.3737793)3 —2.3737793-11=2.059107 x103 > 0.

Therefore the thirteenth approximation lies between 2.3735352 and
2.3737793. Thus the thirteenth approximation to the root is

X, +X, 2.3735352+2.3737793

y = 2.3736572.
2 2

Now
f (2.3736572) = (2.3736572)3 —2.3736572-11=1.17748x10"* > 0.

Therefore the fourteenth approximation lies between 2.3735352 and
2.3736572. Thus the fourteenth approximation to the root is

Xy, +X, 23735352+ 2.3736572

y = 2.3735962.
2 2

Now
f (2.3735962) = (2.3735962)° — 2.3735962 —11=-8.52851x10~* < 0.

Therefore the fifteenth approximation lies between 2.3736572 and
2.3735962. Thus the fifteenth approximation to the root is

Xy, +X,, 23736572+ 2.3735962

5 = 2.3736267.
2 2

Now
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f (2.3736267) = (2.3736267)° — 2.3736267 —11=—3.67558x 10 < 0.

Therefore from x,, and x,, we can see that f (x,,) and f (x,;) are near-
ly equal to 0. Hence the root is correct to 4 decimal places is 2.37362.

Example (6.2)

Using bisection method, find the negative root of

x®—x +11=0
Solution
Let
f(x)=x%-x +11.
Hence

f (—x)=—x>+x +11.

The negative root of f (x)=0 is the positive root of f (—x)=0. There-
fore we will find the positive root of f (—x) =0,

l.e.
x®-x -11=0.

Proceeding as explained in example (1), we get x =2.37362 and hence
the negative root is x =-2.37362.

3. Iteration method
Let f (x)=0 by the given equation whose roots are to be deter-

mined this equation can be written in the form
X =@(X). (6.)

Let x =X, an initial approximation to the actual root say « of
Eq. (6.1). Then the first approximation is x, = #(x,) and successive
approximations are x, =@(x,), X; =@(X,), X, =d(X3) , ..., X, =X, _,) .
If the sequence of approximate roots x,,x,,x,,...,x, CONverges to

n

a, then the value x , it is taking as the root of the equation
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f (x)=0. For the convergence purpose the function ¢(x) have to
be chosen carefully. The choice of ¢(x)is determined according to

the following theorem.
Theorem 6.2
If o isaroot of f (x)=0 which isequivalentto x =¢(x). Let |

be an interval contains the point x =« .Then the sequence of ap-
proximations x,,x,,X,,...,x, Will converge to the root « , if

|p(x)| <1V xel.
< Note

The smaller values of ¢'(x) the more rapid convergence
Example (6.3)
Find a real root of the equation
x®+x?-1=0.
By iteration method.
Solution

Let f (x)=x*>+x*-1. Now f (0)=—1and f (1) =1. Hence a real root lies be-
tween 0 and 1 . Rewrite x®+x?-1=0 as

1

m:¢(x)'

X =

Now

, _ 1
)= 2@+xful

It is clear that

#'(x)|<1V x €[0,1].

Hence the iteration method can be applied. Let x, =0.65 be the initial
approximation to the desired root, then
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X,=0.65,

=0.7784989,

Xy = h(X,) = e = =
' 7 L¥x, 165

1 1
X, = =
© Jl+x, 1.7784989

=0.7498479,

1 1
X, = =
P l+x, 17498479

=0.7559617,

1 1
X, = =
b fvx, 17559617

=0.7546446,

1 1
X, = =
© Jlrx, 17546446

=0.7549278,

1

Xy = = —0.7548668,
Jl+xg 17549278

1 1
X, = =
" L+x, 17548668

=0.7548799,

1

Xy = = ~0.7548771,
J1+x;  1.7548799

1 1
X, = =
P JL+x, 17548771

=0.7548777,

1 1

) O — =
P JLx, 17548777

=0.7548776,

1 1
X,.. = =
T ltxy, 17548776

=0.7548776,

Hence the root is 0.7548776 .
Example (6.4)

Find a real root of the equation cosx —3x +1=0 correct to seven decimal
places.

Solution
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Let f (x)=cosx —3x +1. Now f (0)=2>0and f (z/z):—%’+1<o. There-

fore there exist a real root lies between 0 and 7 /2 . Rewrite
cosx —3x +1=0 as

X :%(cosx +1)=¢(x).

Now
oy SINX
P'(x)= 3
It is clear that
#'(x) _|-sinx. <1Vx.
3 3

Hence the iteration method can be applied. Let x, =0.5 be the initial ap-
proximation to the desired root, then

X, =p(X,) = %(cosx +1)=0.6258608,
X, = %(COS(0.6258608) +1) =0.6034863,
X, = < (c0s(0.6034863) +1) = 0.6077873,
3

X, = 2 (c0s(0.6077873) +1) = 0.6069711,
3

Xg = 1(COS(0.6069711) +1) =0.6071264,
3

Xg = 1(COS(O.6071264) +1) =0.6070969,
3

X, = 1 (COS(0.6070969) +1) =0.6071025,
3

Xg= 1 (COS(O.6071025) +1) =0.6071014,
3

Xq = 1(COS(O.6071014) +1)=0.6071016,
3
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X0 = %(008(0.6071016) +1)=0.6071016,

Hence the root is 0.6071016.

4. Newton-Raphson method
This method, is a particular form of the iteration method
discussed in section 3. When an approximate value of a
root of an equation is given, a better and closer approxima-
tion to the root can be found using this method. It can be
derived as follows:
Let x, be an approximation of a root of the given equation

f (x)=0 , which may be algebraic or transcendental. Let
X, +h be the exact value or the better approximation of the
corresponding root, h being a small quantity. Then

f (x,+h)=0. Expanding f (x,+h)=0 by Taylor's theo-
rem, we get

! hz 4
f (xo+h)=f (x,)+hf (X°)+Ef (Xo)+...=0.

Since h is small, we can neglect second, third and higher
degree terms in h and thus we get,
f (xo)+hf (x,)=0

Or
f (%)
h=-— o/ . f' 0
f,(Xo) (Xo)i
Hence,
f (x
x1=x0+h:x0—f,((xo))
0

Now substituting x, for x, and x, for x,, then the next bet-
ter approximations are given by
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and
f(x,)
X=X, — .
3 2 f ,(Xn)
Proceeding in the same way n times, we get the general
formula
f
xn+1:xn—M forn=012,...,, (6.2)
f'(xa)

which is known as Newton-Raphson formula.
Example (6.5)

Find an iterative formula to find VN , where N is a positive
number and hence, find 12 correct to four decimal places.

Solution
Let
x =J/N = x2-N =0.
Assume
f (x)=x*-N.
Then,
f'(x)=2x

Now, from Newton-Raphson formula,

:%{xn {XEH (6.3)

Eq. (6.3) is the required iterative formula. Putting N =12 in
f (x), we have f (x)=x?-12.
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Now, f (3)<0 and f (4)>0. Therefore, the root lies in between
3 and 4. Let the initial approximation x, be 3.1. Then, from
Eq. (6.3) the first approximation to the root

X, = E{Xo + E} = %[3.“ ;—ZJ —3.4854839.

The second approximation is

X, =<l x, + 12 =1{3.4854839+L}=3.4641672.
|2 3.4854839

The third approximation is

12

X, = 3[3.4641672 TR -
2 3.4641672

} =3.4641016.

The fourth approximation is

1

X, = —{3.4641016 + 12
2

__2°  |-3.4641016.
3.4641016}

Thus, the value of 12 correct to four decimals is 3.4641.
Example (6.6)
Solve x°®+2x?+10x —20=0 by Newton-Raphson method.
Solution
Let

f (x)=x%+2x2+10x —20.
Therefore

f'(x)=3x%+4x +10.

From Eqg. (6.2)
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f(x,)
(%)
xS +2x2+10x, —20
" 32 +4x, +10
2(xf+x§+10)
32 +4x,+10°

Xn+1:Xn

—n

(6.4)

Now we can see that f (1)=—7<0 and f (2)=16>0 . Therefore,
the root lies in between 1 and 2. Let x,=1.2 be the initial ap-
proximation (.f (1.2)<0).

Putting n=0 in Eq. (6.4), first approximation x, is given by

2(x5+x¢+10)  2[(1.2)*+(1.2)* +10]

X, = =
Y3 Z2+4x,+10  3(1.2)% +4(1.2) +10
~ 26.336

19.12

=1.3774059.

The second approximation x, is

2(x;+x{+10) 2[(1.3774059)° + (1.3774059)" +10 |
27 3x24+4x,+10  3(1.3774059)% + 4(1.3774059) +10

~29.021052
21.201364

=1.3688295.

The third approximation x, is given by

2(x3+x}+10) 2| (1.3688295)° + (1.3688295) +10 |
* 3x2+4x,+10  3(1.3688295)% + 4(1.3688295) + 10

_ 28.876924 =1.3688081.

210064

The fourth approximation x, (to the root) is given by
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2(x3+x;+10) 2[(1.3688081)° + (1.3688081)" +10 |
‘7 3x2+4x,+10  3(1.3688081)% + 4(13688081) +10

_ 28.876567
21.09614

=1.3688081.

Hence the root is 1.368808L1.
Example (6.7)
Using Newton-Raphson method, find the root of the equation
XInx =12 .
Solution
Let
f(x)=xInx =12 = f’'(x)=Inx +1.

From Newton-Raphson formula,

f(x,) X Inx, -1.2
Xn+1:Xn_ _Xn_
f'(x,) Inx, +1
Therefore
X +1.2
== ) 6.5
" Inx, +1 (6:5)

Now f (2.5)=-0.2051499 <0 and f (3)=0.2313637 > 0. Therefore,
the real root of f (x) liesin (2.5,3). Let x,=2.7 be the initial ap-

proximation. Putting n=0 in Eq. (6.5), the first approximation
x, IS given by

X,+12 27+12
X J— J—

L= = =1.9566.
Inx,+1 In2.7+1

The second approximation x, is
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X,+1.2 1.9566+1.2
X. = _

,= = =1.8888.
Inx,+1 In(1.9566) +1
Similarly, the third approximation is
_X,+1.2 18888412 . ooono

Xs= Inx,+1 In(1.8888)+1
Hence, the root is 1.88809.
Example (6.8)
Solve sinx =1+x° using Newton-Raphson method.
Solution

Let
f (x)=sinx -1-x> = f'(x)=cosx —3x°.
Then, from Newton-Raphson formula,

.y (%) y _sinx, —1-x;
ST of(x,) " cosx, —3x?

Hence
- 3
- X, cosxcr;)s—xs:n_x:;x—If 2X +1. (6.6)
Now
f (<1) =sin(-1) -1—(-1)* =-0.8414709 <0,
and

f (=2) =sin(=2) —1— (-2)* =6.0907026 >0,

which means that the root lies in between -1 and -2. Let
x,=-1.1 be the initial approximation. Then, by putting
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n=012,... in EQ. (6.6), we obtain the successive approxima-
tions as

X,C0SX, —SinX,—2xJ+1 4.0542516
X, = =

1 : _ — _1.2763653
COSX, —3X —-3.1764039

x, = 21452859 _ ) 5497465

45971297
x, = 24984049 _ ) 5490526

~4.370036
x, = >a210835 ) 5490522

4364176
x = 24510780 _ 5490501

43641722

| 5.4510785

Xy =022 _ 12490522
~4.3641721

Hence the approximated root is x, i.e. —1.2490522 .

71



