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CHAPTER (1) 

ERRORS 

1. Introduction 

In numerical analysis solving a problem is only a part of the pro-

cess.  Another part is to know how far the  results are accurate. 

This is a very important part and is often more difficult than 

achieving the results themselves. In this part, we take in considera-

tion  the errors that arise whether from rounding errors in arithme-

tic operations or from some other source. Throughout this book, as 

we look at the numerical solution of various problems, we will 

simultaneously consider the errors involved in whatever computa-

tional procedure is being used. 

2. Absolute error and relative error 

The error in a computed quantity is defined as 

Error = true value - approximate value  

The relative error is a measure of the error in relation to the size of 

the true value: 

 error 
 Relative error 

 true value 
  

To simplify the notation when working with these numbers, we 

will usually denote the true and approximate values of a number x  

by  Tx  and Ax , respectively. Then we write 

 

 

Error

Rel

A T A

T A
A

T

x x x

x x
x

x

 




 

As an illustration, consider the well-known approximation 

22

7
   

Here 3.14159265Tx    and 22 / 7 3.1428571Ax   ,  
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22 22
Error 0.00126

7 7

22 (22 / 7)
Rel 0.000402

7







 
    

 

 
   

 

 

An idea related to relative error is that of significant digits. For a 

number Ax , the number of its leading digits that are correct relative 

to the corresponding digits in the true value Tx  is called the num-

ber of significant digits in Ax . For a more  precise definition, as-

suming the numbers are written in decimal, calculate the magni-

tude of the error T Ax x . If this error is less than or equal to five 

units in the ( 1)m  st digit of Tx , counting rightward from the first 

nonzero digit, then we say Ax has, at least, m  significant digits of 

accuracy relative to Tx . In other words, we say that Ax  has m  sig-

nificant digits with respect to Tx if  

0.5 1 (1.1)0 mT A

T

x x

x


   

Example (1.1) 

(a) 0.222Ax   has three digits of accuracy relative to 2 / 9Tx  . 

(b)  23.496Ax   has four digits of accuracy relative to 

23.494Tx  . 

(c)  0.02138Ax   has just two digits of accuracy relative to

0.02144Tx  . 

(d)  22 / 7Ax  has three digits of accuracy relative to Tx  . 

Most people find it easier to measure relative error than significant 

digits; and in some textbooks, satisfaction of (1.1) is used as the 

definition of Ax having m significant digits of accuracy. 

3. Functional error 

If e  is the error in the approximated value 
Ax to the true value 

Tx

so that ATx x e  . If 
fe  denote the error when a function f is 

evaluated  at 
Ax instead of at 

Ax , we have 

( ) ( )T A ff x f x e   

Therefore 
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( ) ( )

( ) ( )

f T A

A A

e f x f x

f x e f x

 

  
 

Expanding ( )Af x e in a Taylor series, we have 

2

( ) ( )

1
( ) ( ) ( ) ( )

2

f A A

A A A A

e f x e f x

f x ef x e f x f x

  

    
 

Therefore, 

21
( ) ( )

2
f A Ae ef x e f x     

Hence if e  is small (and the second and higher derivatives of  f  

evaluated at 
Ax are not excessively large) we see that 

( )f Ae ef x  

Thus 

( )f Ae e f x  

and if 
Ax has m significant digits of accuracy, then 

0.5 10 ( )m

f Ae f x    

4. Sources of errors 

Imagine solving a scientific-mathematical problem, and suppose 

this involves a computational procedure. Errors will usually be in-

volved in this process, often of several different kinds. We will 

give a simple classification of the kinds of error that might occur. 

A. Round-off error 

When carrying out numerical calculations, digital computers 

have precision limit on their ability to represent numbers. 

The difference between the result produced by a giv-

en algorithm using exact arithmetic and the result produced 

by the same algorithm using finite-precision, rounded arith-

metic is called the round-off error. For example,  

4
Exact number 1.333

3
  

4
Roundednumber tofoursignificant digits 1.333

3
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Round-off error 1.333 1.333H 0.00033ence   

5
Exact number 1.666

3
  

5
Roundednumber tofoursignificant digits 1.667

3
  

Hence,Round-off error=1.666 -1.667=-0.000333  

The following table shows the result of rounding exact num-

bers to N  significant digits: 

Number N Roundnumber Round-of error

23.764462 5 23.764 0.000462

0.0092746 3 0.00927 0.0000046

1.650045 3 1.6500 0.000045

0.0003786 3 0.000379 0.0000004

0.57386 3 0.574 0.00014





 

The following table shows the result of rounding exact num-

bers to N  decimal places: 

Number N Roundnumber Round-of error

23.764462 5 23.76446 0.000002

0.0092746 3 0.009 0.0002746

0.0003786 3 0.000 0.0003786

1.650045 5 1.65004 0.000005

0.57386 3 0.574 0.00014

 

B. Imprecision of the given data 

If the data are obtained experimentally, then they are known 

within the limits of experimental error (which can normally 

be estimated), and this will limit the accuracy of the results 

of any subsequent calculations. This is obvious fact that the 

accuracy of results is limited by the accuracy of any initial 

data. 

C. Mistakes  

Mistakes are errors which are created by the person perform-

ing the calculations. A common mistake is to invert the order 

of two digits occurring in a number. For example, it is very 

easy to use the number 62381 instead of the number 63281. 
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When doing calculations, as many checks as possible should 

be incorporated in the method itself so that any mistakes 

come quickly to light. 

D. Mathematical approximation error (Truncation error) 

Mathematical approximation errors are due to replacing an 

exact quantity by an approximation one. For example, we in-

troduce an error if we use only a finite number of terms from 

an infinite series expansion. This error is called a truncation 

error, that is, the error due to truncating the series some-

where. For example sin x can be expressed as the infinite se-

ries expansion 
3 5 7 9 11

sin
3! 5! 7! 9! 11!

x x x x x
x x       

and when x is small the sum of the first three terms, namely 
3 5

3! 5!

x x
x    

will give a good approximation to sin x . The truncation error 

is then the sum of the remaining terms of the infinite series 

expansion namely 
7 5 11

7! 9! 11!

x x x
    

In general if ( )f x is approximated using Taylor series about 

0x , where 0x x h  , then 

       
2

(n)

0 0 0 0( )
2! !1!

n

n

h h h
f x f x f x f x f x R

h
     

 

where 
nR is the truncation error. This error can be calculated 

as  
1

( 1)

0( ), 0 1
( 1)!

n
n

n

h
R f x h

n
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CHAPTER (2) 

FINITE DIFFERENCES 

1. Introduction 

The calculus of finite differences plays an important role in Nu-

merical methods. It deals with the variations in a function when the 

independent variable changes by finite jumps which may be equal 

or unequal. In this chapter, we shall study the variations in a func-

tion due to the changes in the independent variable by equal inter-

vals. 

2. Finite differences 

Let ( )y f x  be a discrete function. If 
0 0 0, , 2 ,x x h x h    

0x nh  are the successive values of x  , where two consecutive 

values differ by a quantity h , then the corresponding values of y  

are 
0 1 2, , , , ny y y y  . The value of the independent variable x is 

usually called the arguments and the corresponding functional val-

ue is known as the entry. The arguments and entries can be shown 

in a tabular form as follows: 

       

1 20

0 0 0

0 1 2

0 0 00

Argument

2

Entry

2( )

n

n

x x xx

x h x h x nhx

y y y y

f x h f x h f x nhy f x f x

     

      

 To determine the values of ( )f x  or ( )f x  etc., for some interme-

diate arguments, the following three types of differences are found 

useful: 

(i) Forward differences 

(ii) Backward differences 

(iii) Central differences 

3. Forward differences 

If we subtract from each value of y  (except 
0y ) the preceding 

value of y  we get 
1 0 2 1 1, , , n ny y y y y y      respectively, 

known as the first differences of y . These results which may be 

denoted 0 1, , , ny y y     

i.e.  

0 1 0 1 2 1 1 1, , , n n ny y y y y y y y y            
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where   is a symbol representing an operation of forward differ-

ence, are called first forward differences. Thus, the first forward 

differences are given by 

1 , 0,1,2, , .i i iy y y i n      

Now, the second forward differences are defined as the differences 

of the first differences, that is, 

   

   

 

2

0 0 1 0 1 0

2 1 1 0 2 1 0

2

1 1 2 1 3 2 1

2

1 2 1

2

2

2n n n n n n

y y y y y y

y y y y y y y

y y y y y y y

y y y y y y  

          

      

          

       

 

Here, 2  is called second forward difference operator. 

Similarly, the third forward differences are: 

     

   

   

3 2 2 2

0 0 1 0 1 0

2 1 1 0 2 1 0

3 2 2 2 1 0

3 2 1 0

3 2 2

1 2 1 4 3 2 1

3 2 2

1 1 2 1

2

2

3 3

3 3

3 3n n n n n n n

y y y y y y

y y y y y y y

y y y y y y

y y y y

y y y y y y y

y y y y y y y   

             

           

     

   

        

        
 

In general, the n th forward differences are defined as 

1 1

1

n n n

k k ky y y 

     

In function notation, the forward differences are as written below: 

2

3

( ) ( ) ( )

( ) ( 2 ) 2 ( ) ( )

( ) ( 3 ) 3 ( 2 ) 3 ( ) ( )

f x f x h f x

f x f x h f x h f x

f x f x h f x h f x h f x

   

     

         
and so on, where h is step size. 

The forward differences are usually arranged in a tabular form in 

the following manner: 
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0 0 0

0

2

1 0 1 1 0

3

1 0

2 4

2 0 2 2 1 0

3 5

2 1 0

2 4

3 0 3 3 2 1

3

3 2

4 0 4

( ) 1st 2nd 3rd 4th 5th

argument entry difference difference difference difference difference

( )

( )

2 ( )

3 ( )

4

x y f x

x y f x

y

x x h y f x y

y y

x x h y f x y y

y y y

x x h y f x y y

y y

x x h y







   

 

    

  

    

 

  2

4 3

4

5 0 5 5

( )

5 ( )

f x y

y

x x h y f x

 



  

The first term in the table 
0y  is called the leading term and the dif-

ferences 2 3

0 0 0, , ,y y y     are called leading differences. It 

can be seen that the differences k

iy  with a subscript ' i ' lie along 

the diagonal sloping downwards,  that is, forward with respect to 

the direction of x . The above difference table is known as For-

ward difference table or Diagonal difference table. 

 Properties of     

The operator " " satisfies the following properties: 

(i) [ ( ) ( )] ( ) ( )f x g x f x g x      , i.e.   is linear. 

(ii) [ ( )] ( ),f x f x      is a constant. 

(iii) ( ) ( ) ( )mm n m n nf x f x f x        , where m  and 

n   are positive integers. 

(iv) [ ( ) ( )] ( ) ( )f x g x f x g x    .  

 Observation 1  

We can express any higher order forward difference of 
0y  in 

terms of the entries 
0 1 2, , , , ny y y y . From 

0 1 0

2

0 2 1 0

3

0 3 2 1 0

2

3 3

y y y

y y y y

y y y y y

  

   

    

 

and so on, we can see that the coefficients of the entries on 

the RHS are binomial coefficients. Therefore, in general, 

0 1 1 2 2 0( 1)n n n n

n n ny y C y C y y         
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 Observation 2  

We can express any value of y in terms of leading entry 
0y   

We know that 
1 00y y y    

1 0 0 0(1 )y y y y      

Now, 

2

2 1 1 1 0(1 ) (1 )y y y y y       

Similarly, 3

3 0(1 )y y    and so on.  

In general, 

2

0 0 1 0 2 00(1 )n n n n

ny y y C y C y y         

4. Backward differences 

The differences 
1 0 2 1 1, , , n ny y y y y y      when denoted by 

1 2, , , ny y y     respectively, are called the first backward dif-

ferences, where   is the backward difference operator called nabla 

operator. 

1 1 0 2 2 1 1, , , n n ny y y y y y y y y             

Now the second backward differences are defined as the differ-

ences of the first backward differences, i.e. 

       2

2 2 2 1 2 1 2 1 1 0

2 1 0

2

3 3 2 3 2 1

2

2  and so on.

y y y y y y y y y y

y y y

y y y y y y

          

  

     

 

In general, 
1 1

1

n n n

k k ky y y 

    
In function notation, these differences are written as 

2

3

( ) ( ) ( )

( ) ( ) ( )

( 2 ) ( 2 ) 2 ( ) ( )

( 3 ) ( 3 ) 3 ( 2 ) 3 ( ) ( )

f x f x f x h

f x h f x h f x

f x h f x h f x h f x

f x h f x h f x h f x h f x

   

    

      

        

 

and so on, where h  is step size. 
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These backward differences are arranged in a tabular form in the 

following manner. In this table, the difference 
i

k y  with a fixed 

subscript ' i ' lies along the diagonal sloping upwards; that is, back-

wards with respect to the direction of increasing argument x . 

0 0 0

1

2

1 0 1 1 2

3

2 3

2 4

2 0 2 2 3 4

3 5

3 4 5

2 4

3 0 3 3 4 5

3

4 5

4 0 4

( ) 1st 2nd 3rd 4th 5th

argument entry difference difference difference difference difference

( )

( )

2 ( )

3 ( )

4

x y f x

x y f x

y

x x h y f x y

y y

x x h y f x y y

y y y

x x h y f x y y

y y

x x h y







   

 

    

  

    

 

  2

4 5

5

5 0 5 5

( )

5 ( )

f x y

y

x x h y f x

 



  

 

 Properties of    

(i) [ ( ) ( )] ( ) ( )f x g x f x g x    , i.e.   is a linear 

operator. 

(ii) [ ( )] ( )f x f x    ,   is a constant. 

(iii) ( ) ( ),mm n nf x f x    m  and n are positive inte-

gers. 

(iv) [ ( ) ( )] [ ( )]. ( )f x g x f x g x   . 

 Observation 1  

We can express any higher order backward difference of 
ny  

in terms of the entries 
0 1 2, , , , ny y y y . From 

1

2

1 2

2

3

1

3

2

3 3

n n n

n n n

n n n n

n

n

y y y

y y y y

y y y y y





 





  

   

    

 

and so on, we can see that the coefficients of the entries on 

the RHS are binomial coefficients. Therefore, in general, 

1 1 2 2 0( 1)n n n n

nn n ny y C y C y y         

 Observation 2  
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We can express any value of y in terms of 
ny  and the 

backward differences 2,n ny y  , etc. By definition, 

1nn ny y y    
or  

1 (1 )n n n ny y y y      

Now,  
2

2 1 1 1(1 ) (1 )n n n n ny y y y y          
Similarly, 

3

3 (1 )n ny y    
and so on. In general, 

(1 )k

n k ny y    

2

1 2 ( 1)k k k k

n k n n n ny y C y C y y           

5. Central differences 

Sometimes, it is more convenient to employ another system of dif-

ferences known as central differences. In this system the symbol   

is used instead of   and is known as central difference operator. 

The subscript of y   for any difference is the average of the sub-

scripts of the two entries. 

1/2 1 0 3/2 2 1 5/2 3 2, , ,y y y y y y y y y         

For higher order differences, we have 

2 2 2 2 2

1 3/2 1/2 2 3/2 12 3/2 2 1, , , ,y y y y y y y y y               

and so on. The central differences are tabulated below. 
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0 0 0

1/2

2

1 0 1 1 1

3

3/2 3/2

2 4

2 0 2 2 2 2

3 5

5/2 5/2 5/2

2 4

3 0 3 3 3 3

7/2

( ) 1st 2nd 3rd 4th 5th

argument entry difference difference difference difference difference

( )

( )

2 ( )

3 ( )

x y f x

x y f x

y

x x h y f x y

y y

x x h y f x y y

y y y

x x h y f x y y

y





 

 

  

 







  

  

  
3

7/2

2

4 0 4 4 4

9/2

5 0 5 5

4 ( )

5 ( )

y

x x h y f x y

y

x x h y f x







  

  

We can see from the table that central differences on the same hor-

izontal line have the same subscript. Also, all odd differences have 

a fractional subscript, and the even differences have integer sub-

script. 

 Note 

From all the three tables, we can see that only the notation 

changes, not the differences. For examples, 

1 0 0 1 1/2y y y y y      

6. Other differences operators 

So far we have studied the operators ,   and  . Now we shall in-

troduce other operators like , ,E D etc. which also play a vital role 

in numerical methods. 

 Shift operator E   

If h  is step size for the argument x  then the operator E is 

defined as 

( ) ( ).E f x f x h   

It is also called translation operator due to the reason that it 

results the next value of the function. The higher orders of 

shift operator are defined as 
2 ( ) [ ( )] ( ) ( 2 )E f x E Ef x Ef x h f x h      

Similarly,  
3 ( ) ( 3 ),E f x f x h   
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4 ( ) ( 4 )E f x f x h   

In general 

( ) ( )nE f x f x nh   for any real n  

The inverse shift operator 1E   is defined as 
1 ( ) ( )E f x f x h    

Similarly 

( ) ( )nE f x f x nh    for any real n  

If 
ky , is the function ( )f x then 

1k kEy y    and 

n

n

k kE y y   

 Average operator     

The average operator   is defined by 

1
( ) [ ( / 2) ( / 2)]

2
f x f x h f x h       

i.e.  
1

( ) ( / 2) ( / 2)
2

y x y x h y x h      

 Differential operator D  

The differential operator D is defined as ( ) ( )
d

Df x f x
dx

   

In general, 

( ) ( )
n

n

n

d
D f x f x

dx
  

 Note 

All the above operators are linear and obey index laws. 

7. Relation between different differences operators 

 Relation between    and E   

( ) ( ) ( )

( ) ( )

( 1) ( )

f x f x h f x

Ef x f x

E f x

   

 

 

  

Thus       1 or 1E E      

 Relation between E  and    
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1 1

1 1

1
1 1

( ) ( ) ( )

( ) ( ) 1 ( )

1  or 1

(1 )

f x f x f x h

f x E f x E f x

E E

E E E

 

 


 

   

   

    

    
  

 

 Relation between E  and    

 

1/2

1/2 1/2

1/2

( ) ( / 2) ( / 2)

( ) ( )

( )

f x f x h f x h

E f x E f x

E E f x






   

 

 

 

1/2 1/2E E     

Also, 

 1/ 1 22 1 /1E E E      

1/2 1/2( 1)E E E       

Hence 
1/2 1/2   E E      

 Relation between E   and    

 

 

1/2 1/2

1/2

1/2

1/2

1/2

1
( ) [ ( / 2) ( / 2)]

2

1
( ) ( )

2

1
( )

2

1

2

f x f x h f x h

E f x E f x

E E f x

E E











   

   

 

  

 

 Relation of D  with other Operators 

We know that ( ) ( ) ( )
d

Df x f x f x
dx

   etc. 

By Taylor's series 
2 3

( ) ( ) ( ) ( ) ( )  
1! 2! 3!

h h h
f x h f x f x f x f x         

Or
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2 3
2 3

2 2 3 3

( ) ( ) ( ) ( ) ( )
2! 3!

1 ( ) ( )
2! 3!

hD

h h
Ef x f x hDf x D f x D f x

h D h D
hD f x e f x

    

 
      
 

 

Thus 
hDE e  

Taking logarithms on both sides, we get 

ln ln(1 )hD E    

2 3 41

2 3 4
D

h

   
      

 
 

Also,  
11 E    

Thus 
1 1 hDE e     

Taking logarithm on both sides, 

2 3 4

2 3 4

1

1/2 1/2 1/2 1/2

1

ln(1 )

1

2 3 4

1

2 3 4

sinh( )
2 2

1

2

sinh ( )

hD hD

hD

D
h

h

e e E E
h

D

E

D

E E E

h





 

 



  

   
       

 

   
      

 

 
  

        

 



 

Example (2.1) 

Construct the forward difference table from the following data: 

0 1 2 3 4

1 1.5 2.2 3.1 4.6

x

y
. 

Then evaluate 3

1 5, andny y y . 

Solution 
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The forward differences table is  as given below: 

2 3 4

0

1 1.5

0.7

2 2.2 0.2

1

0.5

0.2

0

0.4

0.9 0.4

3 3.1 0.6

1.5

4 4.6

x y y y y y   

 

Now 

 3

1 1 1

4 3 2

2

1

3 3( 1) 3 3 1

3 3 4.6 3(3.1) 3(2.2) 1.5 0.4

y y y

y y y

E E

y

E E

       

 



  
 

Again from observation 2 of section, we have 

   

2 3 4

0 1 0 2 0 3 0 4 0

2 4 3 2

4 3 2

5

1 1
1 (0.5) ( 1)(0.2) ( 1)( 2)(0)

2 3!

1
( 1)( 2)( 3)(0.4)

4!

1 1 1
1 6 11 6

2 10 60

1
5 6(5) 17(5) 18(5) 60 7.5

60

n n n n

ny y C y C y C y C y

n n n n n n

n n n n

n n n n n n n

y

        

      

   

       

        

 

Example (2.2) 

Evaluate  

(i) cosx  (ii) ln ( )f x  (iii) 2 sin( )px q   (1v) 1tan x (v) en ax b   

Solution  
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Let h  be the interval step size. 

(i) 

cos cos( ) cos 2sin si
2

 n
2

h h
x x h x x

 
       

 
 

(ii) 

ln (x) ln (x ) ln (x)

( ) ( ) ( )
ln ln

( ) ( )

( )
ln 1

( )

f f h f

f x h f x f x

f x f x

f x

f x

   

     
    

   

 
  

 

 

(iii) 

sin( ) sin[ ( ) ] sin( )

2cos sin
2 2

2sin sin
2 2 2

1
2sin sin ( )

2 2

px q p x h q px q

ph ph
px q

ph ph
px q

ph
px q ph





      

 
   

 

 
    

 

 
    

 

 

Hence 

2

2

1
sin( ) 2sin sin ( )

2 2

1
2sin sin 2 ( )

2 2

ph
px q px q ph

ph
px q ph





  
        

  

   
       
   

 

 (iv)  

1 1 1

1

1

tan tan ( ) tan

tan
1 ( )

tan
1 ( )

x x h x

x h x

x x h

h

x x h

  





   

  
  

  


 

 

lab
Pencil

lab
Placed Image

lab
Highlight

lab
Highlight

lab
Pencil

lab
Pencil
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 (v) 

( )

2

2

e e e

e

e e

(e 1)

(e 1)

(e 1) , (e 1) is constant

e

e

ax b a x h b ax b

ax b

ax b ax

ah

ahb ax b

aah ahx b

   



  



 

 

        



   

    

 

Proceeding on, we get, 

   1
n

n ax b ah ax be e e     

Example (2.3) 

Prove the following results: 

(i) 2       

 (ii) 
 

   
 

  

 (iii)  1/2 1/2 1/2(1 ) 2E E         

 (iv) 

2
2

2 21 1
2


 

 
   

 
  

(v) 
2 2

1
2 4

 


 
    

 
  

 (vi) 1 2 4 61 3 5
1

8 128 1024
          

Solution  

(i) We have, 
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( ) [ ( )] [ ( ) ( )]

( ) ( )

[ ( ) ( )] [ ( ) ( )]

( ) ( ) ( ) ( )

f x f x f x f x h

f x f x h

f x h f x f x f x h

f x f x f x

       

    

     

     

   

 

Similarly, 

( ) [ ( )] [ ( ) ( )]

( ) ( )

[ ( ) ( )] [ ( ) ( )]

( ) ( ) ( ) ( )

f x f x f x h f x

f x h f x

f x h f x f x f x h

f x f x f x

     

  

     

     

   

 

Again 

 

2
2 1/2 1/2

1

2

( ) ( )

2 ( )

( ) ( ) 2 ( )

( ) ( )] [ ( ) ( )]

( ) ( ) ( ) ( )

f x E E f x

E E f x

f x h f x h f x

f x h f x f x f x h

f x f x f x









   

  

    

     

     

  

 

Hence 

2      

(ii) 

2 2

R.H.S. 

( )( )

( )

 L.H.S.

   
  
  

   


 

   

 

 (iii) 
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   1/2 1/2 1/2 1/2 1/2 1/2(1 )

1 1 1 2

E E E E E

E

     

        
 

(iv) 

 

2
1/2 1/2

2
2 2 1/2 1/2

22 11

2
1

1 1
2

4
1

2

(2.1)

4

2

E E
E E

E EE E

E E

 








 
       

 

  
  
 

 
  
 

  

Now, 

2 2
2

2 1/2 1/2

22 1
1

1 1
1 1

2 2

1
1 2

2 2
(2.2)

E E

E E
E E

 




   
        

   

  
        

   





 

Hence, from Eqns. (2.1) and (2.2), we have 

2

2 2 21
1 1

2
  

 
   

 
 

(v) 

   

   

  

2
2 2

2
1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2

1/2 1/2 1/2

1 1
RHS 1 4

2 4 2

1
4

2

1

2

1
2 1 LHS

2

E E E E

E E E E

E E E E


    





 

 



      
 

 
     

 

    
 

      

 

(vi) By definition, we have 
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2

2 1/2 1/2

2
1/2 1/2

2
2

1

2

1
4

4

1
4 1

4 4

E E

E E










 
  
 

   
  

   

 

1/2
2

1
4




 
   

 
 

or  

1/2
2

1

2 3
2 2 2

2 4 6

1
4

1 1 1 1 1 1 1 1 1
1 1 1 2

1! 2 4 2! 2 2 4 3! 2 2 2 4

1 3 5
1

8 128 1024
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CHAPTER (3) 

INTERPOLATION 

1. Introduction 

Interpolation is a technique of obtaining the value of a function for 

any intermediate values of  the independent variable, i.e. argument 

within an interval, when  the values of the arguments are given.  

Suppose that the following values of ( )y f x  for a set of values 

of x are given: 

0 1 2

0 1 2

(argument)

( )

n

n

x x x x x

y x y y y y
. 

Then the process of finding the value of y  corresponding to any 

value of 
ix x  between 

0x  and 
nx   is called in interpolation. 

The process of finding the value of a function outside the given 

range of arguments is called extrapolation 

If the form of the function ( )f x  is known we can find ( )f x  for 

any value of x by simple substitution. But in most practical prob-

lems that occur in engineering and science the form of the function 

( )f x  is unknown and it is very difficult to determine its exact 

form which is the help of tabulated set of values in such cases we 

replace ( )f x  by simple function ( )x  is called interpolating func-

tion which assumes the same values as those of ( )f x  and from 

which others are values may be computed to the desired degree of 

accuracy. 

If ( )x  is a polynomial then it is called interpolating polynomial 

and the process is known as polynomial interpolation. If ( )x  is a 

finite trigonometric series the process is called trigonometric inter-

polation. Usually, polynomial interpolation is preferred due to the 

reason that they are  free from singularities is and the easy to dif-

ferentiate and integrate. Even though there are other methods like 

graphical method and method of curve fitting, in this chapter we 

will study polynomial interpolation using the calculus of finite dif-

ferences by driving two important interpolation formulae which are 

used often in all fields by means of forward and the backward dif-

ferences of a function. 

lab
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lab
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lab
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lab
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lab
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lab
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lab
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lab
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lab
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lab
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lab
Highlight

lab
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lab
Highlight

lab
Highlight

lab
Highlight

lab
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2. Newton forward interpolation formula 

Let ( )y f x   be a function which takes the values 
0 1, , , ny y y  

for ( 1)n   values  
0 1, , , nx x x of the dependent variable. Let the-

se values be equidistant 
0 , 0,1,2, ,ix x ih i n    and let ( )P x  

be a polynomial of n  degree such as 

( ) ( ) , 0,1,2, ,i i iP x f x y i n   . 

0 1 0 2 0 1

3 0 1 2

0 1 1

( ) ( ) ( )( )

( )( )( )

( )( ) ( ) (3.1)n n

P x a a x x a x x x x

a x x x x x x

a x x x x x x 

     

    

   

 

Putting 
0 1, , , nx x x x   successfully in equation (3.1), we get 

0 0 1 0 1 1 0

2 0 1 2 0 2 2 0 2 1

0 1 0 2 0 1

0 1 1

, ( ) ,

( ) ( )( )

( ) ( )( )

( )( ) ( )

n n n n

n n n n n

y a y a a x x

y a a x x a x x x x

y a a x x a x x x x

a x x x x x x 

   

     

      

   
 

from these 

1 0 1 0 0
0 0 1

1 0

2 0 1 2 0 2 0 1 0
2 2

2 0 2 1

2

2 1 0 0

2 2

0

, ,

( ) 2 2

( )( ) 2

2
,

2! 2!

!

n

n n

y a y y y
a y a

x x h h

y a a x x y y y y
a

x x x x h

y y y y

h h

y
a

n h

  
   



     
 

 

  
 




 

Putting these values in equation (3.1) we get  
2

0 0
0 0 0 12

3

0
0 1 23

0
0 1 1

( ) ( ) ( )( )
2!

( )( )( )
3!

( )( ) ( ) (3.2)
!

n

nn

y y
P x y x x x x x x

h h

y
x x x x x x

h

y
x x x x x x

n h


 
     


    


   

 

Putting 

lab
Pencil
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0

0

0 0 ( ) , 1,2, ,i i

x x
q

h

x x qh

x x x x x x qh ih q i h i n




 

  

         

 

where 0 1q   is  real number, Eq. (3.2) takes the form 

2

0 0 0

3

0 0

( 1)
( )

2!

( 1)( 2) ( 1)( 2) ( 1)

3! !

(3.3)

n

q q
P x y q y y

q q q q q q q n
y y

n


    

     
      

Equation (3.3) is known as Newton forward interpolation formula 

 Note 

Formula (3.3) is called Newton forward interpolation formu-

la due the fact that this formula  contains values of the tabu-

lated function from 
0y  onward to right and none to the left 

of this value.  This formula is used mainly to interpolating 

the values of y near the beginning of a set of tabulated val-

ues and to extrapolating y a little to the left of 
0y . The first 

two terms of the equation will give a linear interpolation 

while the first three terms a quadratic interpolation and so 

on. 

3. Newton backward interpolation formula 

Let ( )y f x   be a function which takes the values 
0 1, , , ny y y  

for ( 1)n   values  
0 1, , , nx x x of the dependent variable. Let the-

se values be equidistant 
0 , 0,1,2, ,ix x ih i n    and let ( )P x  

be a polynomial of n degree such as 

( ) ( ) , 0,1,2, ,i i iP x f x y i n   . 

Suppose that it is required to evaluate ( )y x   near the end of the ta-

ble values then we can assume that 

0 1 2 1

3 1 2

1 1

( ) ( ) ( )( )

( )( )( )

( )( ) ( ) (3.4)

n n n

n n n

n n n

P x a a x x a x x x x

a x x x x x x

a x x x x x x



 



     

    

   

 

Putting 
0 1, , , nx x x x   successfully in Eq. (3.4), we get 

lab
Rectangle
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0

1 0 1 1

2 0 1 2 2 2 2 1

0 0 1 0 2 0 0 1

3 0 0 1 0 2

0 0 1 0 1

,

( )

( ) ( )( )

( ) ( )( )

( )( )( )

( )( ) ( )

n

n n n

n n n n n n n

n n n

n n n

n n n

a y

y a a x x

y a a x x a x x x x

y a a x x a x x x x

a x x x x x x

a x x x x x x

 

    



 





  

     

     

    

   

 

These equations give 

1 0 1 1
0 1

1 1 1

2 0 1 2 2 1
2 2

2 2 1

2

1 2

2 2

, ,

( ) 2 2

( )( ) 2

2
,

2! 2!

!

n n n n n n
n

n n n n n n

n n n n n n n

n n n n

n n n n

n

n
n n

y a y y y y y
a y a

x x x x x x h

y a a x x y y y y
a

x x x x h

y y y y

h h

y
a

n h

  

  

   

  

 

   
    

  

     
 

  

  
 




 

Putting these values in Eq.(3.4) we get 
2

12

3

1 23

1 1

( ) ( ) ( )( )
2!

( )( )( )
3!

( )( ) ( ) (3.5)
!

n n
n n n n

n
n n n

n

n
n nn

y y
P x y x x x x x x

h h

y
x x x x x x

h

y
x x x x x x

n h



 



 
     


    


   

 

Let 

  ( ) , 1,2, ,

n

n

i n n i

x x
q

h

x x qh

x x x x x x qh n i h q n i h i n




 

  

           

 

Where q  is real number. Then Eq.(3.5) takes the form 
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2

3

( 1)
( )

2!

( 1)( 2) ( 1)( 2) ( 1)

3! !

(3.6)

n n n

n

n n

q q
P x y q y y

q q q q q q q n
y y

n


    

     
    

Eq.(36) is known as Newton backward interpolation formula 

 Note 

Since the formula (3.6) involves the backward differences it 

is called backward interpolation formula and it is used to in-

terpolate the values of y near to the end of a set of tabular 

values. This may also be used to extrapolate the values of y

a little to the right of 
ny  

Example (3.1) 

Find a polynomial which takes the following values 

0 1 2 3 4 5

( ) 5.2 8.0 10.4 12.4 14.0 15.2

x

y x
 

Solution 

We take 

0
0 1 0

0
0 , 1 ,

1

x x x
x h x x q x

h

 
      

 

The forward differences table is as follows:
 

lab
Pencil

lab
Pencil
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2 3 4( )

0 5.2

2.8

1 8.0 0.4

2.4 0

2 10.4 0.4 0

2.0 0

3 12.4 0.4 0

1.6 0

4 14.0 0.4

1.2

5 15.2

x y x y y y y   









 

Using Newton forward interpolation formula, we get 

2 3

0 0 0

2

( 1) ( 1)( 2)
( )

2! 3!

0.4
5.2 2.8 ( )( 1)

2

5.2 2.6 0.2

q q q q q
P x y q y y y

x x x

x x

  
      

   

  

 

Example (3.2) 

Find a polynomial which takes the following values: 

1 1.5 2.0 2.5

( ) 4.0 18.25 44.0 84.25

x

y x
 

and hence compute (1.25)y . 

Solution 

Take  
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0 1 0

0
0

1.0 , 1.5 1.0 0.5

1.0
2( 1)

0.5 0.5

x h x x h

x x x
x x qh q x

      

 
      

 The forward differences table is as follows: 

2 3( )

1.0 4.0

14.25

1.5 18.25 11.5

25.75 3.0

2.0 44.0 14.5

40.25

2.5 84.25

x y x y y y  

 

Thus 

2 3

0 0 0 04.0 , 14.25 , 11.5 , 3.0y y y y        

Using Newton forward interpolation formula, we get 

  

   

2 3

0 0 0

( 1) ( 1)( 2)
( )

2! 3!

1
4 2( 1)(14.25) 2( 1) 2( 1) 1 (11.5)

2!

1
2( 1) 2( 1) 1 2( 1) 2 (3)

3!

q q q q q
P x y q y y y

x x x

x x x

  
      

      

     

 

Now 

  
  

 

   
 

0.5 0.5
(1.25) 4.0 0.5 14.25 11.5

2!

0.5 0.5 1.5
3 9.875

3!

y


  

 
 

 

Example (3.3) 

lab
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lab
Pencil

lab
Pencil

lab
Pencil

lab
Pencil

lab
Pencil

lab
Pencil
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Find a polynomial which takes the following values 

1 3 5 7 9

3 14 19 21 23

x

y
 

and hence compute (2), (10)y y . 

Solution 

The differences table as follows: 

2 3 4

1

3 14

5

5 19 3

2 3

7 21

3

11

6

3

9 2

0

0

2

3

x y y y y y



   



 

Take 0 0

1
1, 3 , 2 ,

2

x
x y h q


      

Using Newton forward interpolation formula, we get 

 

2 3

0 0 0 0

3 2

( 1) ( 1)( 2)
( )

2! 3!

1 1 1 1
3 (11) 1 ( 6)

2 2! 2 2

1 1 1 1
1 2 (3)

3! 2 2 2

1
21 159 91 .

16

q q q q q
y x y q y y y

x x x

x x x

x x x
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lab
Pencil

lab
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lab
Pencil

lab
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Again 
9

9, 23, 2,
2

n n

x
x y h q


     

Using Newton backward interpolation formula, we get 

2 3( 1) ( 1)( 2)
( )

2! 3!

9 1 9 9
23 (2) 1 (0)

2 2! 2 2

1 9 9 9
1 2 (3)

3! 2 2 2

1
23 ( 9) ( 9)( 7)( 5).

16

n n n n

q q q q q
y x y q y y y

x x x

x x x

x x x x

  
      

   
    

 

     
     

   

      

 

Then 

 3 21
(2) 2 212 159(2) 91 9.4375

16
y       

and 

1
(10) 23 (10 9) (10 9)(10 7)(10 5)

16
y         

Example (3.4) 

The amount A   of a substance remaining in a reacting system after a time 

t  in a certain chemical experiment is tabulated below 

2 5 8 11

94.8 87.9 81.3 75.1

t

A
 

Obtain the value of A when  9t    using Newton backward interpolation 

formula.  

Solution 

Since the value 9t   is near the end of the table, to get the corresponding 

value of t  we use Newton backward interpolation formula. 

The backward differences are calculated and tabulated below: 

lab
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lab
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lab
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lab
Pencil
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Pencil
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Pencil
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Pencil
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Pencil
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Pencil
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Pencil
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Pencil
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2 3

2.0 94.8

6.9

5.0 87.9 0.3

6.6 0.1

8.0 81.3 0.4

6.2

11.0 75.1

t A A A A  







 

Here 

1 0 5 2 3 , 11.0nh t t h t        

Hence the interpolation polynomial is 

2 3( 1) ( 1)( 2)
( ) .

2! 3!
n n n n

q q q q q
A t A q A A A

  
        

If 

 

9t   , we have

  
9 11.0 2

3 3

n
n

t t
t t qh q

h

 
      

 Therefore

  
2 1 2 2

(9) 75.1 ( 6.2) 1 (0.4)
3 2! 3 3

1 2 2 2
1 2 (0.1) 79.183951

3! 3 3 3

A
    

           
    

   
         

   

 

Example (3.5) 

Find the missing value in the following table 

16 18 20 22 24 26

43 89 155 268 388

x

y 
 

Solution 

lab
Pencil

lab
Pencil
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Since five values are given, it is possible to express y  as a polynomial of 

fourth degree. Hence the fifth differences of y  are zeros. Taking the 

origin for x  at 16  , from the given data we have: 

0 1 3 4 543, 89, 155, 268, 388y y y y y     , 

and we have to find 
2y  . We know that 5

0 0y    

5 5

0 0( 1) 0y E y     

i.e. 

 5 5 4 5 3 5 2 5

1 2 3 4 01 0E C E C E C E C E y       

 5 4 3 2

0

5 4 3 2

0 0 0 0 0 0

5 4 3 2 1 0

5 10 10 5 1 0,

5 10 10 5 0,

5 10 10 5 0

E E E E E y

E y E y E y E y Ey y

y y y y y y

     

     

     

 Substituting the given values, we have 

2

2

388 5(268) 10(155) 10 5(89) 43 0

100

y

y
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CHAPTER (4) 

NUMERICAL DIFFERENTIATION 

1. Introduction 

This chapter deals with numerical approximations of derivatives. 

The first question that comes up to mind is: why do we need to ap-

proximate derivatives at all? After all, we  know how to analytical-

ly differentiate every function. Nevertheless, there are several rea-

sons as of why we still need to approximate derivatives: 

 Even if there exists an underlying function that we need to 

differentiate, we might know its values only at a sampled da-

ta set without knowing the function itself. 

 There are some cases where it may not be obvious that an 

underlying function exists and all that we have is a discrete 

data set. We may still be interested in studying changes in 

the data, which are related, of course, to derivatives. 

 There are times in which exact formulas are available but 

they are very complicated to the point that an exact computa-

tion of the derivative requires a lot of function evaluations. It 

might be significantly simpler to approximate the derivative 

numerically instead of computing its exact value. 

 When approximating solutions to ordinary (or partial) differ-

ential equations, we typically represent the solution as a dis-

crete approximation that is defined on a grid. Since we then 

have to evaluate derivatives at the grid points, we need to be 

able to come up with methods for approximating the deriva-

tives at these points, and again, this will typically be done 

using only values that are defined on a lattice. The underly-

ing function itself (which in this case is the solution of the 

equation) is unknown. 

Consider a set of values ( , )i ix y   of a function ( )y f x .  The 

process of computing the derivative or a derivative of the function 

at some value x from the given set of values is called numerical 

differentiation. This may be done by first approximating the func-

tion by a suitable interpolation formula and then differentiating it 

as many times as desired. 

2. Derivatives using  Newton forward interpolation formula 

lab
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If the values of  x are  equispaced and the derivative is required 

near the beginning of the table,  we employ Newton forward inter-

polation formula.  

Newton forward interpolation formula is 

2

0 0 0

3

0 0

( 1)
( )

2!

( 1)( 2) ( 1)( 2) ( 1)
,

3! !

(4.1)

n

q q
y x y q y y

q q q q q q q n
y y

n


    

     
    

 

where 0x x
q

h


  . 

Differentiating both sides of equation (4.1) with respect to q , we 

have 
2 3 2

2 3 4

0 0 0 0

2 1 3 6 2 4 18 22 6

2! 3! 4!

dy q q q q q q
y y y y

dq

     
        

 

Now 

1 1
,

dy dy dq dy dq

dx dq dx h dq dx h

 
    

   
2

2 3

0 0 0

3 2
4

0

1 2 1 3 6 2

2! 3!

4 18 22 6
(4.2)

4!

dy q q q
y y y

dx h

q q q
y

   
     



  
   



 

At 
0 0x x q    . Hence putting 0q   in equation, we get  

0

2 3 4

0 0 0 0

1 1 1 1

2 3 4x x

dy
y y y y

dx h

 
         

 
 

Differentiating Eq.(4.2)  with respect to x ,  we get  
2

2

2
2 3 4

0 0 02

1

1 6 18 11
( 1)

12

(4.3)

d y d dy dq d dy

dx dq dx dx h dq dx

q q
y q y y

h

   
     

   

  
        

 

 

Putting 0q    in equation, we get 

lab
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lab
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0

2
2 3 4

0 0 02 2

1 11

12
x x

d y
y y y

dx h


 
       

 
 

Similarly 

0

3
3 4

0 03 3

1 2

3
x x

d y
y y

dx h


 
     

 
 

And so on. 

3. Derivatives using Newton backward interpolation formula 

If the derivative is required near the end of the table,  we use the 

backward interpolation formula. 

Newton backward interpolation formula 

2

3

( 1)
( )

2!

( 1)( 2) ( 1)( 2) ( 1)
,

3! !

(4.4)

n n n

n

n n

q q
y x y q y y

q q q q q q q n
y y

n


    

     
    

 

where nx x
q

h


  . 

Differentiating both sides of  Eq. (4.4) with respect to q , we have 

2 3 2
2 3 42 1 3 6 2 4 18 22 6

2! 3! 4!
n n n n

dy q q q q q q
y y y y

dq

     
       

 

Now 

1 1
,

dy dy dq dy dq

dx dq dx h dq dx h

 
    

   
2

2 3

3 2
4

1 2 1 3 6 2

2! 3!

4 18 22 6
(4.5)

4!

n n n

n

dy q q q
y y y

dx h

q q q
y

   
     



  
   



 

At 0nx x q    . Hence, putting 0q   in equation, we get 

2 3 41 1 1 1

2 3 4
n

n n n n

x x

dy
y y y y

dx h

 
         

 
 

Again differentiating Eq. (4.5) with respect to x  we get 

lab
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2

2

2
2 3 4

2

1

1 6 18 11
( 1)

12

(4.6)

n n n

d y d dy dq d dy

dx dq dx dx h dq dx

q q
y q y y

h

   
     

   

  
        

 
 

Putting 0q   in Eq. (4.6) , we get 

2
2 3 4

2 2

1 11

12
n

n n n

x x

d y
y y y

dx h


 
      

 
  

Similarly 
3

3 4

3 3

1 2

3
n

n n

x x

d y
y y

dx h


 
     

 
 

and so on. 

 

Example (4.1) 

Find the first, second and third derivatives of ( )y x  at 1.5x   if 

1.5 2.0 2.5 3.0 3.5 4.0

( ) 3.375 7.000 13.625 24.000 38.875 59.000

x

y x

 

Solution 

We have to find the derivative at the point

 

1.5x 

 

which is at the begin-

ning of the given data. Therefore we use here the derivative of Newton 

forward interpolation formula. The forward differences table as follows   

lab
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2 3 4( )

1.5 3.375

3.625

2.0 7.000 3.000

6.625 0.750

2.5 13.625 3.750 0

10.375 0.750

3.0 24.000 4.500 0

14.875 0.750

3.5 38.875 5.250

20.125

4.0 59.000

x y x y y y y   

 

Here
 

0 1 01.5 , 0.5 ,x h x x    from Eq. (4.2) we have 

0

2 3 4

0 0 0 0

1 1 1 1

2 3 4x x

dy
y y y y

dx h

 
         

 
 

Thus 

1 1 1
(1.5) 3.625 (3) (0.75) 4.75

0.5 2 3
y

 
     

 

 
from Eq.(4.3) we have 

0

2
2 3 4

0 0 02 2

1 11

12
x x

d y
y y y

dx h


 
       

 

 
Hence 

 
 2

1
(1.5) 3 0.75 9

0.5
y    

 
Again from Eq.(4.4) we have 
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0

3
3 4

0 03 3

1 2

3
x x

d y
y y

dx h


 
     

 
 

Thus 

 
 3

1
(1.5) 0.75 6

0.5
y   

 

Example (4.2) 

The population of a certain town is shown in the following table 

1951 1961 1971 1981 1991

19.96 36.65 58.81 77.21 94.61

x

y
 

Find the rate of growth of the population in the year 1981. 

Solution 

Here we have to find the derivative at 1981 which is near the end of the 

table.  Hence we use derivative of Newton backward difference formula.  

The table of differences is as follows 

2 3 4

1951 19.96

16.69

1961 36.65 5.47

22.16 9.23

1971 58.81 3.76

18.40

1981 77.21

1991

11.9

2.76

1

17.40

94.61

x y y y y y   







 

Hence  

1981 1991
10 , 1991 , 1

10

n
n

x x
h x q

h
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we know from Eq.(4.5) that 

2
2 3

3 2
4

1 2 1 3 6 2

2! 3!

4 18 22 6

4!

n

n n n

x x

n

dy q q q
y y y

dx h

q q q
y



   
     



  
   



 

Now we have to find out the rate of growth of the population in the year 

1981 

2

3 2

1 2( 1) 1 3( 1) 6( 1) 2
(1981) 17.4 ( 1) (2.76)

10 2! 3!

4( 1) 18( 1) 22( 1) 6
(11.99) 1.6440833

4!

y
      

    


     
 



 

The rate of growth of the population in year 1981 is 1.6440833  

Example (4.3) 

Find the first and second derivative of the function tabulated below at the 

point  1.9x  . 

1.0 1.2 1.4 1.6 1.8 2.0

( ) 0.000 0.128 0.544 1.296 2.432 4.00

x

y x
 

Solution 

We have to find the derivative at the point

 

1.9x 

 

which is near the end 

of the given data. Therefore we use the derivative of Newton backward 

interpolation formula. The backward differences table as follows  
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2 3 4( )

1.0 0.000

0.128

1.2 0.128 0.288

0.416 0.048

1.4 0.544 0.336 0

0.752 0.048

1.6 1.296 0.384 0

1.136 0.048

1.8 2.432 0.432

1.568

2.0 4.000

x y x y y y y   

 

Here 

1 0

1.9 2.0
2 , 0.2 , 0.5

0.2

n
n

x x
x h x x q

h

 
         

we know from Eq.(4.5) that 

2
2 3

3 2
4

1 2 1 3 6 2

2! 3!

4 18 22 6

4!

n

n n n

x x

n

dy q q q
y y y

dx h

q q q
y



   
     



  
   



 

Thus 

21 2( 0.5) 1 3( 0.5) 6( 0.5) 2
(1.9) 1.568 (0.432) (0.048) 7.83

0.2 2! 3!
y

      
     

 
 

we know from Eq.(4.6) that 

2 2
2 3 4

2 2

1 6 18 11
( 1)

12
n n n

d y q q
y q y y

dx h

  
        

   

Hence 

lab
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 2

1
(1.9) 0.432 ( 0.5 1)(0.048) 11.4

0.2
y       . 

4. Two points first derivative approximation 

I. First derivative forward differences approximation 

The Taylor expansion of ( )if x h  about 
ix is given by: 

2 3

1
( ) ( 1)

( ) ( ) ( ) ( ) ( )
1! 2! 3!

( ) ( ), ( , )
! ( 1)!

i i i i i

n n
n n

i i i

h h h
f x h f x f x f x f x

h h
f x f x x h

n n
 




       

   


  

For such expansion to be valid, we assume that ( )f x  has 

( 1)thn   continuous derivatives at the point 
ix x . Ne-

glecting terms of degree higher than two, we obtain 
2

( ) ( ) ( ) ( ), ( , )
1! 2!

i i i i i

h h
f x h f x f x f x x h         

which turns into  

( ) ( )
( ) ( ), ( , )

2!

(4.7)

i i
i i i

f x h f x h
f x f x x h

h
 

 
    

 

Eq. (4.7) can be written as 

( ) ,i Ff x F E    

where 

( ) ( )
, ( ), ( , )

2!

i i
F i i

f x h f x h
F E f x x h

h
 

 
      

F  is  called  forward differences formula for approximating 

( )if x   and 
FE  is the error. 

II. First derivative backward differences approximation 

The Taylor expansion of ( )if x h  about 
ix is given by: 

2 3

1
( ) 1 ( 1)

( ) ( ) ( ) ( ) ( )
1! 2! 3!

( 1) ( ) ( 1) ( ), ( , )
! ( 1)!

i i i i i

n n
n n n n

i i i

h h h
f x h f x f x f x f x

h h
f x f x h x

n n
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For such expansion to be valid, we assume that ( )f x  has 

(n+1)th  continuous derivatives at the point 
ix x . Neglect-

ing terms of degree higher than two, we obtain 
2

( ) ( ) ( ) ( ), ( , )
1! 2!

i i i i i

h h
f x h f x f x f x h x         

which turns into  

( ) ( )
( ) ( ), ( , )

2!

(4.8)

i i
i i i

f x f x h h
f x f x h x

h
 

 
    

 

Eq. (4.8) can be written as 

( ) ,i Bf x B E    

where 

( ) ( )
, ( ), ( , )

2!

i i
B i i

f x f x h h
B E f x h x

h
 

 
     

B  is  called  backward differences formula for approximat-

ing ( )if x   and 
BE  is the error. 

Example (4.4) 

Find the first derivative approximation  of the function ( ) cos( )f x x  at 

4
x


  using forward differences approximation formula (take 0.01h  ) 

Solution 

The forward differences approximation formula of the first derivative de-

fined as 

( ) ( )
( ) i i

i

f x h f x
f x

h

 
  , 

then we have 

 
( 4 0.01) ( 4)

4
0.01

0.700000476 0.707106781
0.71063051

0.01

f f
f

 


 
 


 

 

Example (4.5) 
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Find the first derivative of the function tabulated below at the point  

0.2x   using both forward differences and backward differences approx-

imation formulae 

0.1 0.2 0.3 0.4 0.5

0.0001 0.0016 0.0081 0.0256 0.0625

x

y
 

Solution 

The forward differences approximation formula of the first derivative de-

fined as 

( ) ( )
( ) i i

i

f x h f x
f x

h

 
  , 

then we have 

 
(0.3) (0.2) 0.0081 0.0016

0.2 0.065
0.1 0.1

f f
f

 
     

The backward differences approximation formula of the first derivative 

defined as 

( ) ( )
( ) i i

i

f x f x h
f x

h

 
  , 

then we have 

 
(0.2) (0.1) 0.0016 0.0001

0.2 0.015
0.1 0.1

f f
f

 
     

5. Three points first derivative approximation 

The Taylor expansion of ( )if x h  about 
ix is given by: 

2 3

1
( ) ( 1)

( ) ( ) ( ) ( ) ( )
1! 2! 3!

( ) ( ), ( , ).
! ( 1)!

(4.9)

i i i i i

n n
n n

i i i

h h h
f x h f x f x f x f x

h h
f x f x x h

n n
 




       

   


 

While, the Taylor expansion of ( )if x h  about 
ix is given by: 
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2 3

1
( ) 1 ( 1)

( ) ( ) ( ) ( ) ( )
1! 2! 3!

( 1) ( ) ( 1) ( ), ( , ).
! ( 1)!

(4.10)

i i i i i

n n
n n n n

i i i

h h h
f x h f x f x f x f x

h h
f x f x h x

n n
 


 

       

     


 

Subtracting Eq. (4.10) from Eq. (4.9) and neglecting terms of de-

gree higher than three, we obtain 

 
3

1 2( ) ( ) 2 ( ) ( ) ( )
3!

i i i

h
f x h f x h h f x f f          

If the third-order derivative ( )f x  is a continuous function in the 

interval  ,i ix h x h  , then the intermediate value theorem im-

plies that there exists a point  ,i ix h x h      such that 

 1 2

1
( ) ( ) ( )

2
f f f       

Hence 
2( ) ( )

( ) ( ) (4.11)
2 6

i i
i

f x h f x h h
f x f

h


  
    

Eq. (4.11) can be written as 

( ) ,i Cf x C E    
where 

( ) ( )
, ( ), ( , )

2!

i i
C i i

f x h f x h h
C E f x h x h

h
 

  
      

C  is  called  central differences formula for approximating ( )if x    

and 
CE  is the error. 

Example (4.6) 

Find the first derivative of the function tabulated below at the point  

0.2x   using central differences approximation formula 

0.1 0.2 0.3 0.4 0.5

0.0001 0.0016 0.0081 0.0256 0.0625

x

y
 

Solution 
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The central differences approximation formula of the first derivative de-

fined as: 

( ) ( )
( )

2

i i
i

f x h f x h
f x

h

  
  , 

so we have 

(0.3) (0.1) 0.0081 0.0001
(0.2) 0.04

2(0.1) 2(0.1)

f f
f

 
     

6. Three points second derivative approximation 

For the second derivative approximation, we add Eq. (4.9) and Eq. 

(4.10) and neglecting terms of degree higher than four to obtain 

 
4

2 2
( ) ( ) 2 ( ) ( ) ( ) , ,

4!
i i i i i i

h
f x h f x h f x h f x f x h x h          

So, we have 

 
2

2

( ) 2 ( ) ( )
( ) ( ) , ,

12

(4.12)

i i i
i i i

f x h f x f x h h
f x f x h x h

h
 

   
     

 

Eq. (4.12) can be written as 

( ) ,i Sf x S E    

where 
2

2

( ) 2 ( ) ( )
, ( ), ( , )

12

i i i
S i i

f x h f x f x h h
S E f x h x h

h
 

   
     

S  is  called differences approximation  formula of  ( )if x   and 

SE  is the error. 

Example (4.7) 

Find the second derivative of the function tabulated below at the point  

0.2x   using differences approximation formula 

0.1 0.2 0.3 0.4 0.5

0.0001 0.0016 0.0081 0.0256 0.0625

x

y
 

Solution 

lab
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The differences approximation formula of the second derivative defined 

as 

2

( ) 2 ( ) ( )
( ) .i i i

i

f x h f x f x h
f x

h

   
   

So, we have 

 

2

2

(0.3) 2 (0.2) (0.1)
(0.2)

(0.1)

0.0081 2 0.0016 0.0001
0.5

(0.1)

f f f
f
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CHAPTER (5) 

NUMERICAL INTEGRATION 

1. Introduction 

The process of computing ( )

b

a

y x dx  where ( )y f x  is given by a 

set of tabulated values [ , ]i ix y , 0,1,2, , ,i n  
0 , na x b x   is 

called numerical integration.  Like that of numerical differentia-

tion, here we also replace ( )y f x  by an interpolation formula 

and integrate it between the given limits.  In this way we can derive 

a quadrature formula for approximate integration of a function de-

fined by a set of numerical values.  

2. General quadrature formula  

In this section we will derive a general quadrature formula for 

equidistant mesh points.  

Let 
b

a

I y dx  , where ( )y f x , 

takes the values 0 1, , , ny y y   for 0 1, , , nx x x  . Let us divide the 

interval ( , )a b  into n   equal parts of width h , so that 

0 1 0 2 0 0, , 2 , , na x x x h x x h x x nh b        . 

Then, 

0

0

( )

x nh

x

I f x dx



   

 Putting, 
0x x qh  , so that dx hdq  in above, we get, 

0

0 0

( ) ( )

n n

I h f x qh dq h y x dq    . 

Now replacing ( )y x  by Newton forward interpolation formula we 

get, 
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2 3

0 0 0 0

0

4

0

5

0

6

0

( 1) ( 1)( 2)

2! 3!

( 1)( 2)( 3)

4!

( 1)( 2)( 3)( 4)

5!

( 1)( 2)( 3)( 4)( 5)

6!

n

q q q q q
I h y q y y y

q q q q
y

q q q q q
y

q q q q q q
y dq

  
      



  
 

   
 

     
   







 

Now integrating a term by term we get after substituting the limits 

as 

2 3 2 4
2 3 2 3

0 0 0 0

5 4 3
2 4

0

6 4 3
5 2 5

0

7 6 4 3
5 2 6

0

1 1

2 2 3 2 3! 4

1 3 11
3

4! 5 2 3

1 35 50
2 12

5! 6 4 3

1 15 225 274
17 60

6! 7 6 4 3

(5.1)

n n n n
I h ny y y n n y

n n n
n y

n n n
n n y

n n n n
n n y

    
            

   

 
     

 

 
      

 

 
        

  

 

Eq.(5.1) is known as Newton-Cote's quadrature formula which is 

general quadratic formula for equidistant mesh points. In the fol-

lowing sections we deduce important quadrature formula for this 

equation taking 1,2,3n  . 

3. Trapezoidal rule  

Putting 1n   in Eq. (5.1) and neglecting second and higher order 

differences we get 

 

0

0

1

0 0

0

0 1 0 0 1

1
( ) ( )

2

1
( )

2 2

x h

x

y x dx h y x dq h y y

h
h y y y y y



 
    

 

 
     

 

 

 
Similarly 
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0

0

0

0

2

1 2

1

( 1)

( )
2

( )
2

x h

x h

x nh

n n

x n h

h
y x dx y y

h
y x dx y y









 

 

 




 

Adding these n  integrals, we get, 

   
0

0

0 1 2 1( ) 2
2

(5.2)

x nh

n n

x

h
I y x dx y y y y y




          

 Eq.(5.2) is known as trapezoidal rule. 

4. Simpson's 1/ 3   rule  

Here, taking 2n   in Eq.(5.1)  and neglecting third and higher-

order differences,  we get 

 

0

0

2 2

2

0 0 0

0

0 1 0 2 1 0

0 1 2

1 8
( ) ( ) 2 2 2

2 3

1
2 2( ) ( 2 )

3

4
3

x h

x

y x dx h y x dq h y y y

h y y y y y y

h
y y y


  

        
  

 
      

 

  

 

 
Similarly 

 

 

0

0

0

0

4

2 3 4

2

2 1

( 2)

( ) 4
3

( ) 4 ,
3

x h

x h

x nh

n n n

x n h

h
y x dx y y y

h
y x dx y y y







 

 

  

  





 

where n   is even. Adding all these integrals, we get 

   

 

0

0

0 1 3 1

2 4 2

( ) 4
3

2

(5.3)

x nh

n n

x

n

h
I y x dx y y y y y

y y y







      

    



 

Eq.(5.3) is known as Simpson's 1/ 3  rule. 

5. Simpson's 3 / 8   rule 
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Putting 3n    in Eq.(5.1)  and neglecting all differences above the 

third order, we get 

 

0

0

3 3

0

2 3

0 0 0 0

0 1 0 2 1 0 3 2 1 0

0 1 2 3

( ) ( )

9 1 27 9 1 81
3 27 9

2 2 3 2 3! 4

9 9 3
3 ( ) ( 2 ) ( 3 3 )

2 4 8

3
3 3

8

x h

x

y x dx h y x dq

h y y y y

h y y y y y y y y y y

h
y y y y





    
             

    

 
          

 

   

 

 Similarly 

 

 

0

0

0

0

6

3 4 5 6

3

3 2 1

( 3)

3
( ) 3 3

8

3
( ) 3 3

8

x h

x h

x nh

n n n n

x n h

h
y x dx y y y y

h
y x dx y y y y







  

 

   

   




 

Adding all these integrals, where n  is a multiple of 3 , we get 

 

 

 

0

0

0

1 2 4 5 7 8 2 1

3 6 3

3
( )

8

3

2 (5.4)

x nh

n

x

n n

n

h
I y x dx y y

y y y y y y y y

y y y



 



  

        

    



 

Eq. (5.4) known as Simpson's 3 / 8  rule. 

 Note 

 The trapezoidal rule ( )f x  is linear function of x i.e. of the 

form ( )f x ax b  . It is the simplest rule but least  accu-

rate.  

 In Simpson's 1/ 3  rule, ( )f x  is a polynomial of second de-

gree, i.e. 2( )f x ax bx c   . To apply this rule, the number 

of intervals n  must be even.    

 In Simpson's 3 / 8  rule ( )f x  is a polynomial of third degree, 

i.e. 3 2( )f x ax bx cx d    . To apply this rule the num-

ber of intervals n  must be a multiple of 3 . 
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Example (5.1) 

Evaluate 

10

2

0
1

dx
I

x








, 

by using  

1. Trapezoidal rule 

2. Simpson's 1/ 3  rule. Compare the results with the actual value. 

Solution 

Taking 10n  , divide the whole range of the integration into ten equal 

parts. The value of the integrand function for each point of  sub-division 

are given below: 

0

1

2

3

4

5

6

7

8

9

3

10

0 1.00000

1 0.50000

2 0.200000

3 0.100000

4 0.0588235

5 0.0384615

6 0.027027

7 0.0200000

8 0.0153846

9 0.0121951

10 9.9009901 10

nx y y

y

y

y

y

y

y

y

y

y

y

y

  

1. By Trapezoidal rule  
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10

0 10 1 2 3 4 5 6 7 8 92

0

3

2
1 2

1
(1 9.9009901 10 ) 2(0.5 0.2 0.1 0.0588235 0.0384615

2

0.027027 0.02 0.0153846 0.0121951) 1.4768422

dx h
I y y y y y y y y y y y

x



             

       

    





 

2. By Simpson's 1/ 3  rule 

   



10

0 10 1 3 5 7 9 2 4 6 82

0

3

4 2( )
1 3

1
(1 9.9009901 10 ) 4(0.5 0.1 0.0384615 0.02 0.0121951)

3

2(0.2 0.0588235 0.027027 0.0153846) 1.4316659

dx h
I y y y y y y y y y y y

x



             

       

    





 

Example (5.2) 

The velocity v  of a particle at a distance x  from a point on its path is 

given by the following table: 

( ) 0 10 20 30 40 50 60

( / ) 47 58 64 65 61 52 38

x ft

v ft s
 

Estimate the time taken to travel to 60ft using Simpson's 1/ 3  rule. Com-

pare the result with Simpson's 3 / 8  rule. 

Solution 

We know that the rate of displacement is velocity , i.e. 
dx

v
dt

  . There-

fore the time taken to travel 60ft  is given by 

60
60

0
0

1
t dx y dx

v
 

   

where 1/y v . The table is as given below. 
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0

1

2

3

4

5

6

1 /

0 0.0212765

10 0.0172413

20 0.015625

30 0.0153846

40 0.0163934

50 0.0192307

60 0.0263157

nx y v y

y

y

y

y

y

y

y



 

By Simpson's 1/ 3  rule 

   





60

0 6 1 3 5 2 4

0

4 2( )
3

10
(0.0212765 0.0263157) 4(0.0172413 0.0153846 0.0192307)

3

2(0.015625 0.0163934) 1.063518

h
I y dx y y y y y y y         

    

  



 

Hence the time taken to travel 60ft  is 1.064s . 

By Simpson's 3 / 8  rule 

   





60

0 6 1 2 4 5 3

0

3
3 2

8

30
(0.0212765 0.0263157) 3(0.0172413 0.015625 0.0163934 0.0192307)

8

2(0.0153846) 1.0643723

h
I y dx y y y y y y y         

     

 



 By this method also the time taken to travel 60ft  is 1.064s . 

Example (5.3) 

Find the following integral by 

(i)  Trapezoidal rule  (ii)  Simpson's 1/ 3  rule (iii)  Simpson's 3 / 8  rule 

5.2

4

lnI x dx   

Solution 
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Taking 6n  , divide the whole range of the integration into six equal 

parts. The value of the integrand function for each point of  sub-division 

are given below: 

4 4.2 4.4 4.6 4.8 5 5.2

( ) ln 1.386 1.435 1.482 1.526 1.569 1.609 1.649

x

f x x
 

1. By Trapezoidal rule  

   

 

5.2

0 6 1 2 3 4 5

4

ln 2
2

0.2
(1.386 1.649) 2(1.435 1.482 1.526 1.569 1.609) 1.8277

2

h
I x dx y y y y y y y         

       



 

2. By Simpson's 1/ 3   rule 

   

 

5.2

0 6 1 3 5 2 4

4

ln 4( ) 2
3

0.2
(1.386 1.649) 4(1.435 1.526 1.609) 2(1.482 1.569) 1.8278

3

h
I x dx y y y y y y y         

       



 

3.  By Simpson's 3 / 8   rule 

   

 

5.2

0 6 1 2 4 5 3

4

3
ln 3 2

8

0.6
(1.386 1.649) 3(1.435 1.482 1.569 1.609) 2(1.526) 1.8279

8

h
I x dx y y y y y y y         

       



 

Example (5.4) 

A rocket is launched from the ground . Its acceleration is registered dur-

ing the 90  seconds and are given in the table below. Using Simpson's 

3 / 8  rule, find the velocity of the rocket at 90t  . 

2

(s) 0 10 20 30 40 50 60 70 80 90

(m/ s ) 30 31.63 33.64 35.47 37.75 40.33 43.25 46.69 50.67 54.87

t

a

 

Solution 
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We know that the rate of velocity is acceleration , i.e. 
dv

a
dt

 Therefore 

the velocity of the rocket at 90t   is given by 

90

0

v a dt  . 

By Simpson's 3 / 8    rule 

   

 

90

0 9 1 2 4 5 7 8 3 6

0

3
3 2( )

8

30
(30 54.87) 3(31.63 33.64 37.75 40.33 46.69 50.67) 2(35.47 43.25)

8

3616.65

h
I adt y y y y y y y y y y            
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CHAPTER (6) 

SOLUTIONS OF ALGEBRIAC  

AND TRANSCENDENTAL EQUATIONS 

1. Introduction 

We have seen that an expression of the form 

1 2

0 1 2( ) n n n

nf x a x a x a x a      , 

where 'a s  are constants 0( 0)a   and n  is positive integer, is called 

a polynomial in x  of  degree  n   and the equation  ( ) 0f x   is 

called an algebraic equation of degree n  . If ( )f x  contains  some 

other functions like exponential, trigonometric, logarithmic , then 

( ) 0f x    is called transcendental equation. For example 

3 5 4 23 6 0 , 7 3 36 7 0x x x x x x         

are algebraic equations. Whereas  
2 3cos 1 0 , 2 0, log 1.2xx x xe x x        

are transcendental equations.  

In this chapter we will solve algebraic and the transcendental equa-

tions.  For equation s of degree two or three  or four, methods are 

available to solve them. But the need often arises to solve higher 

degree or transcendental equation for which no direct method ex-

ists. Such equations can be solved by approximate methods.  Be-

fore we proceed to solve such equations let us recall the fundamen-

tal theorem on roots of ( ) 0f x   in a x b  . 

Theorem 6.1 

If ( ) 0f x   is  continuous function in a closed interval  ,a b  and 

( ), ( )f a f b   are of opposite signs, then the equation  ( ) 0f x    will 

have at least one real root between a  and b . 

2. Bisection method 

Let the function ( )f x  be continuous between a  and b . For defi-

niteness let ( )f a   be negative and ( )f b  be positive,  then there is a 

root of ( ) 0f x   lying between a  and b . Let the first the approx-

imation be 1
2

a b
x


   (the average of the ends of the range).  
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Now if  
1( ) 0f x  , then  

1x  is a root of ( ) 0f x  .  Otherwise, the 

root will lie between a  and 
1x  or 

1x  and b  depending upon 

whether 
1( )f x  is positive or negative. 

Then,  as before we bisect the interval and continue the process till 

the root is found to the desired accuracy.  If 
1( )f x  is positive, 

therefore the root lies between a  and 
1x . The second approxima-

tion to the root now is 1
2

2

a x
x


 . If 

2( )f x  is negative, then the 

root lies between 
1x  and 

2x  then, the third approximation to the 

root is  1 2
3

2

x x
x


 and so on. This method is simple but slowly 

convergent. 

Example (6.1) 

Find a root of the equation 

3 11 0,x x    

correct to four decimal places using bisection method. 

Solution  

Let 

3( ) 11f x x x   . 

Since  (2) 5 0f    and (3) 13 0f   , then there exist a real root lies 

between 2  and 3 . Hence, the first approximation to the root is 

1

2 3
2.5

2
x


  . 

Now  

3(2.5) (2.5) 2.5 11 2.125 0f      . 

Therefore the second approximation lies between 2  and 2.5 . Thus the 

second approximation to the root is 
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2

2 2.5
2.25

2
x


  . 

Now 

3(2.25) (2.25) 2.25 11 1.859375 0f       . 

Therefore the third approximation lies between 2.5  and 2.25 . Thus the 

third approximation to the root is 

1 2
3

2.5 2.25
2.375

2 2

x x
x

 
   . 

Now 

3(2.375) (2.375) 2.375 11 0.0214843 0f      . 

Therefore the fourth approximation lies between 2.25  and 2.375 . Thus 

the fourth approximation to the root is 

2 3
4

2.25 2.375
2.3125

2 2

x x
x

 
   . 

Now 

3(2.3125) (2.3125) 2.3125 11 0.9460449 0f       . 

Therefore the fifth approximation lies between 2.375  and 2.3125 . Thus 

the fifth approximation to the root is 

3 4
5

2.375 2.3125
2.34375

2 2

x x
x

 
   . 

Now 

3(2.34375) (2.34375) 2.34375 11 0.4691467 0f       . 

Therefore the sixth approximation lies between 2.375  and 2.34375 . Thus 

the sixth approximation to the root is 

3 5
6

2.375 2.34375
2.359375

2 2

x x
x

 
   . 

Now 
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3(2.359375) (2.359375) 2.359375 11 0.2255592 0f       . 

Therefore the seventh approximation lies between 2.375  and 2.359375 . 

Thus the seventh approximation to the root is 

3 6
7

2.375 2.359375
2.3671875

2 2

x x
x

 
   . 

Now 

3(2.3671875) (2.3671875) 2.3671875 11 0.1024708 0f       . 

Which means that the eighth approximation lies between 2.375  and 

2.3671875 . Thus the eighth approximation to the root is 

3 7
8

2.375 2.3671875
2.3710938

2 2

x x
x

 
   . 

Now 

3(2.3710938) (2.3710938) 2.3710938 11 0.040601 0f       . 

Which means that the ninth approximation lies between 2.375  and 

2.3710938 . Thus the ninth approximation to the root is 

3 8
9

2.375 2.3710938
2.3730469

2 2

x x
x

 
   . 

Now 

3 3(2.3730469) (2.3730469) 2.3730469 11 9.585864 10 0f        . 

Therefore the tenth approximation lies between 2.375  and 2.3730469 . 

Thus the tenth approximation to the root is 

3 9
10

2.375 2.3730469
2.3740235

2 2

x x
x

 
   . 

Now 

3 3(2.3740235) (2.3740235) 2.3740235 11 5.942463 10 0f       . 

Therefore the eleventh approximation lies between 2.3730469  and 

2.3740235 . Thus the eleventh approximation to the root is 
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9 10
11

2.3730469 2.3740235
2.3735352

2 2

x x
x

 
   . 

Now 

3 3(2.3135352) (2.3135352) 2.3135352 11 1.823398 10 0f         

Therefore the twelfth approximation lies between 2.3740235and 

2.3735352 . Thus the twelfth approximation to the root is 

10 11
12

2.3740235 2.3735352
2.3737793

2 2

x x
x

 
   . 

Now 

3 3(2.3737793) (2.3737793) 2.3737793 11 2.059107 10 0f       . 

Therefore the thirteenth approximation lies between 2.3735352  and 

2.3737793 . Thus the thirteenth approximation to the root is 

11 12
13

2.3735352 2.3737793
2.3736572

2 2

x x
x

 
   . 

Now 

3 4(2.3736572) (2.3736572) 2.3736572 11 1.17748 10 0f       . 

Therefore the fourteenth approximation lies between 2.3735352  and 

2.3736572 . Thus the fourteenth approximation to the root is 

11 13
14

2.3735352 2.3736572
2.3735962

2 2

x x
x

 
   . 

Now 

3 4(2.3735962) (2.3735962) 2.3735962 11 8.52851 10 0f        . 

Therefore the fifteenth approximation lies between 2.3736572  and 

2.3735962 . Thus the fifteenth approximation to the root is 

13 14
15

2.3736572 2.3735962
2.3736267

2 2

x x
x

 
   . 

Now 
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3 4(2.3736267) (2.3736267) 2.3736267 11 3.67558 10 0f        . 

Therefore from 
14x  and 

15x  we can see that 
14( )f x   and 

15( )f x  are near-

ly equal to 0. Hence the root is correct to 4 decimal places is 2.37362 . 

Example (6.2)  

Using bisection method,  find the negative root of 

3 11 0x x    

Solution 

Let 

3( ) 11f x x x   . 

Hence 

3( ) 11f x x x     . 

The negative root of ( ) 0f x    is the positive root of ( ) 0f x  . There-

fore we will find the positive root of ( ) 0f x  , 

i.e. 

3 11 0x x   . 

Proceeding as explained in example (1), we get 2.37362x    and hence 

the negative root is 2.37362x   . 

3. Iteration method 

Let ( ) 0f x    by the given equation whose roots are to be deter-

mined this equation can be written in the form 

( ). (6.1)x x  

Let 0x x   an initial approximation to the actual root say    of  

Eq. (6.1). Then the first approximation is 1 0( )x x  and successive 

approximations are 2 1 3 2 4 3 1( ), ( ), ( ) , , ( )n nx x x x x x x x        . 

If the sequence of approximate roots 0 1 2, , , , nx x x x  converges to 

 ,  then the value nx  it is taking as the root of the equation 



SOLUTIONS OF ALGEBRIAC AND TRANSCENDENTAL EQUATIONS  DR. AHMED YOUSEF 

62 
 

( ) 0f x  . For the convergence purpose the function ( )x   have to 

be chosen carefully. The choice of ( )x is determined according to 

the following theorem. 

Theorem 6.2 

If   is a root  of  ( ) 0f x   which is equivalent to ( )x x . Let I  

be an interval contains the point x  .Then the sequence of ap-

proximations 0 1 2, , , , nx x x x  will converge to the root   , if  

( ) 1x x I    . 

 Note 

The smaller  values of ( )x  the more rapid convergence 

Example (6.3) 

Find a real root of the equation  

3 2 1 0x x   . 

 By iteration method. 

Solution 

Let 3 2( ) 1f x x x   . Now (0) 1f   and (1) 1f  . Hence a real root lies be-

tween 0  and 1 . Rewrite 3 2 1 0x x    as  

1
( )

1
x x

x
 


. 

Now  

 
3/2

1
( )

2 1
x

x
  


. 

It is clear that  

 ( ) 1 0,1x x    . 

Hence the iteration method can be applied. Let 0 0.65x   be the initial 

approximation to the desired root, then 
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                                        0 0.65x  , 

1 0

0

1 1
( ) 0.7784989

1 1.65
x x

x
   


, 

2

1

1 1
0.7498479

1 1.7784989
x

x
  


, 

3

2

1 1
0.7559617

1 1.7498479
x

x
  


, 

4

3

1 1
0.7546446

1 1.7559617
x

x
  


, 

5

4

1 1
0.7549278

1 1.7546446
x

x
  


, 

6

5

1 1
0.7548668

1 1.7549278
x

x
  


, 

7

6

1 1
0.7548799

1 1.7548668
x

x
  


, 

8

7

1 1
0.7548771

1 1.7548799
x

x
  


, 

9

8

1 1
0.7548777

1 1.7548771
x

x
  


, 

10

9

1 1
0.7548776

1 1.7548777
x

x
  


, 

11

10

1 1
0.7548776

1 1.7548776
x

x
  


, 

Hence the root is 0.7548776 . 

Example (6.4) 

Find a real root of the equation cos 3 1 0x x    correct to seven decimal 

places. 

Solution 
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Let ( ) cos 3 1f x x x   . Now (0) 2 0f   and 
3

( / 2) 1 0
2

f


     . There-

fore there exist a real root lies between 0  and / 2  . Rewrite 

cos 3 1 0x x    as  

 
1

cos 1 ( )
3

x x x   . 

Now  

sin
( )

3

x
x   . 

It is clear that  

sin 1
( )

3 3

x
x x     . 

Hence the iteration method can be applied. Let 0 0.5x   be the initial ap-

proximation to the desired root, then 

 1 0

1
( ) cos 1 0.6258608

3
x x x    , 

 2

1
cos(0.6258608) 1 0.6034863

3
x    , 

 3

1
cos(0.6034863) 1 0.6077873

3
x    , 

 4

1
cos(0.6077873) 1 0.6069711

3
x    , 

 5

1
cos(0.6069711) 1 0.6071264

3
x    , 

 6

1
cos(0.6071264) 1 0.6070969

3
x    , 

 7

1
cos(0.6070969) 1 0.6071025

3
x    , 

 8

1
cos(0.6071025) 1 0.6071014

3
x    , 

 9

1
cos(0.6071014) 1 0.6071016

3
x    , 
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 10

1
cos(0.6071016) 1 0.6071016

3
x    , 

 Hence the root is 0.6071016 . 

4. Newton-Raphson method 

This method, is a particular form of the iteration method 

discussed in section 3. When an approximate value of a 

root of an equation is given, a better and closer approxima-

tion to the root can be found using this method. It can be 

derived as follows: 

Let 0x  be an approximation of a root of the given equation 

( ) 0f x   , which may be algebraic or transcendental. Let 

0x h  be the exact value or the better approximation of the 

corresponding root, h  being a small quantity. Then 

 0 0f x h  . Expanding  0 0f x h   by Taylor's theo-

rem, we get 

     
2

0 0 0 0( 0
2!

)
h

f x h f x hf x f x      . 

Since h  is small, we can neglect second, third and higher 

degree terms in h  and thus we get, 

   0 0 0f x hf x 
. 

Or 

 
 

 0

0

0

; 0
f x

h f x
f x

  


. 

Hence, 

 
 

0

1 0 0

0

f x
x x h x

f x
   


 

Now substituting 1x   for 0x  and 2x  for 1x , then the next bet-

ter approximations are given by 

 
 

1

2 1

1

f x
x x

f x
 


, 
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and  

 
 3 2

n

n

f x
x x

f x
 


. 

Proceeding in the same way n  times, we get the general 

formula 

 
 1  for 0,1,2, , (6.2)n

n n

n

f x
x x n

f x
    


 

which is known as Newton-Raphson formula. 

Example (6.5)  

Find an iterative formula to find N , where N  is a positive 

number and hence, find 12   correct to four decimal places. 

Solution 

 Let  

2 0x N x N    . 

Assume  

2( )f x x N  . 

Then, 

( ) 2f x x   

Now, from Newton-Raphson formula, 

 
 

2

1
2

1
(6.3)

2

n n
n n n

n n

n

n

f x x N
x x x

f x x

N
x

x




   



  
   

  

 

Eq. (6.3) is the required iterative formula. Putting 12N   in 

( )f x , we have 2( ) 12f x x  .  
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Now,  3 0f    and  4 0f  . Therefore, the root lies in between 

3  and 4 . Let the initial approximation 
0x   be 3.1. Then, from 

Eq. (6.3) the first approximation to the root 

1 0

0

1 12 1 12
3.1 3.4854839

2 2 3.1
x x

x

   
       

  
. 

The second approximation is 

2 1

1

1 12 1 12
3.4854839 3.4641672

2 2 3.4854839
x x

x

   
       

  
. 

The third approximation is 

3

1 12
3.4641672 3.4641016

2 3.4641672
x

 
   

 
. 

The fourth approximation is 

4

1 12
3.4641016 3.4641016

2 3.4641016
x

 
   

 
. 

Thus, the value of  12  correct to four decimals is 3.4641. 

Example (6.6) 

Solve 3 22 10 20 0x x x     by Newton-Raphson method. 

Solution  

Let  

3 2( ) 2 10 20f x x x x    . 

Therefore  

2( ) 3 4 10f x x x    . 

From Eq. (6.2) 
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1

3 2

2

3 2

2

2 10 20

3 4 10

2 10
. (6.4)

3 4 10

n

n n

n

n n n
n

n n

n n

n n

f x
x x

f x

x x x
x

x x

x x

x x

 


   
   

  

 


 



 

Now we can see that  1 7 0f      and  2 16 0f    . Therefore, 

the root lies in between 1  and 2 . Let 
0 1.2x    be the initial ap-

proximation ( (1.2) 0)f  . 

Putting 0n   in Eq. (6.4), first approximation 1x  is given by 

 3 7 2 2

0 0

1 2 2

0 0

2 10 2 (1.2) (1.2) 10

3 4 10 3(1.2) 4(1.2) 10

26.336
1.3774059.

19.12

x x
x

x x

      
   

 

 

The second approximation 
2x  is 

 3 2 3 2

1 1

2 2 2

1 1

2 10 2 (1.3774059) (1.3774059) 10

3 4 10 3(1.3774059) 4(1.3774059) 10

29.021052
1.3688295.

21.201364

x x
x

x x

      
   

 

 

The third approximation 3x  is given by 

 3 2 3 2

2 2

3 2 2

2 2

2 10 2 (1.3688295) (1.3688295) 10

3 4 10 3(1.3688295) 4(1.3688295) 10

28.876924
1.3688081.

210064

x x
x

x x

      
   

 

 

The fourth approximation 4x   (to the root) is given by 
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 3 2 3 2

3 3

4 2 2

3 3

2 10 2 (1.3688081) (1.3688081) 10

3 4 10 3(1.3688081) 4(13688081) 10

28.876567
1.3688081.

21.09614

x x
x

x x

      
   

 

 

Hence the root is 1.3688081. 

Example (6.7)  

Using Newton-Raphson method, find the root of the equation  

ln 1.2x x   . 

Solution  

Let  

( ) ln 1.2 ( ) ln 1f x x x f x x     . 

From Newton-Raphson formula,  

 
 1

ln 1.2

ln 1

n n n
n n n

n n

f x x x
x x x

f x x



   

 
. 

Therefore 

1

1.2
. (6.5)

ln 1

n
n

n

x
x

x






 

Now  2.5 0.2051499 0f     and  3 0.2313637 0f   . Therefore, 

the real root of ( )f x  lies in  2.5,3 . Let 0 2.7x   be the initial ap-

proximation. Putting 0n    in Eq. (6.5), the first approximation  

1x  is given by 

0
1

0

1.2 2.7 1.2
1.9566

ln 1 ln 2.7 1

x
x

x

 
  

 
. 

The second approximation 2x  is 
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1
2

1

1.2 1.9566 1.2
1.8888

ln 1 ln(1.9566) 1

x
x

x

 
  

 
. 

Similarly, the third approximation is 

2
3

2

1.2 1.8888 1.2
1.88809

ln 1 ln(1.8888) 1

x
x

x

 
  

 
. 

Hence, the root is 1.88809 . 

Example (6.8) 

Solve  3sin 1x x   using Newton-Raphson method. 

Solution 

Let 

3 2( ) sin 1 ( ) cos 3f x x x f x x x      . 

Then, from Newton-Raphson formula, 

 
 

3

1 2

sin 1

cos 3

n n n
n n n

n n n

f x x x
x x x

f x x x


 
   

 
. 

Hence 

3

1 2

cos sin 2 1
. (6.6)

cos 3

n n n n
n

n n

x x x x
x

x x


  



 

Now  

3( 1) sin( 1) 1 ( 1) 0.8414709 0f          , 

and  

3( 2) sin( 2) 1 ( 2) 6.0907026 0f         , 

which means that the root lies in between 1  and 2 . Let 

0 1.1x     be the initial approximation. Then, by putting 
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0,1,2,n    in Eq. (6.6), we obtain the successive approxima-

tions as 

3

0 0 0 0
1 2

0 0

2

3

6

5

4

cos sin 2 1 4.0542516
1.2763653

cos 3 3.1764039

5.7452469
1.2497465

4.5971297

5.4584049
1.2490526

4.370036

5.4510835
1.2490522

4.364176

5.4510786
1.2490521

4.3641722

5.4

x x x x
x

x x

x

x

x

x

x

  
   

 

  


  


  


  



510785

1.2490522
4.3641721

 


 

Hence the approximated root is 
6x , i.e. 1.2490522  . 

 

 

 


