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VECTORS WITH APPLICATIONS

he physical quantities or measurable objects of reasoning in
TApplied Mathematics or Mechanics are of two classes. The one

class, called Vectors, consists of all measurable objects of reasoning which
possess directional properties, such as displacement, velocity, acceleration,
momentum, force, etc. The other class, called Scalars, comprises measurable
objects of reasoning which possess no directional properties, such as mass,

work, energy, temperature, etc.

4 Rectangular Components of a Vector

A vector A may have one, two, or three rectangular A

components along the X,Y,Z coordinate axes, depending on

how the vector is oriented relative to the axes. In general,

though, when A is directed within an octant of the X,Y,Z

frame, Figure behind, then by two successive applications of

the parallelogram law, we may resolve the vector into  x

~ / > ..
components as A = él + Ak and thenA = Ai+ A;. Combining these
equations, to eliminate A,AIis represented by the vector sum of its three

rectangular components, A = A i + Aj+ Ak

4 Magnitude of a Cartesian Vector It is always possible to obtain the

magnitude of A provided it is expressed in Cartesian vector form. As shown

A=|A|= a2+ 4+ 2
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Since the magnitude of a vector is equal to the positive square root of the sum

of the squares of the magnitudes of its components, and A has a magnitude of
¢ Coordinate Direction Angles

We will define the direction of A by the coordinate ®

direction angles «(alpha), 3 (beta), and - (gamma),
measured between the tail of A and the positive X,Y,Z

axes provided they are located at the tail of A, Figure.

Note that regardless of where A is directed, each of

these angles will be between 0° and 180°.

A

x

¢Q+A;+A§_

A’!J

¢g+g+g

A

Jﬁ+g+@

A is the magnitude of A. It is obvious that from previous relation, an

cosx =

cos B =

cosy =

NN

important relation among the direction cosines can be formulated as, by
squaring and adding

cos’a+cos?B+cos’y =1
Here we can see that if only two of the coordinate angles are known, the third

angle can be found using this equation.

@ The two vectors A, B is said to be equal if they have the same
magnitude and point in the same direction, while —A4 (negative

of a vector A ) has the same magnitude and opposite direction.

4 Unit vector of a vector. A vector is said to be a unit vector if its magnitude

equals unity, A unit vector may, therefore, be chosen in any direction. In




particular the unit vector along a vector A or in direction of the vector A is

definedby 4 =24 =
A

—_— =, = = CO0S «, COS COS 7Y
A A A ’

4 Vector Directed Along a Line

Quite often in three-dimensional statics problems,

——

the direction of a force is specified by two points i
through which its line of action passes. Such a .

situation is shown in Figure behind, where the

vector A is directed along the cord AB. We can

formulate A as a Cartesian vector by realizing that
it has the same direction and sense as the position

vector r directed from point A to point B on the x

cord. This common direction is specified by the unit vectoru = r / r . Hence,

A=Aa=A|Z|=A

r
T

(zp — mA)i + (yp — yA)j + (25 — zA)I;’
\/(ZBB - wA)2 + (yB - yA)Z + (ZB - ZA)2

¢ Addition of Cartesian Vectors

The addition (or subtraction) of two or more vectors is greatly simplified if the

vectors are expressed in terms of their Cartesian components. For example, let

A,B Dbe two vectors of components A= Azi + A, 7+ Azi: and
B = Bzi + B, 7+ le;: then the addition or subtraction is given by

A+ B=(Aji+Aj+Ak) £ (B,i+B,j+ Bk)
=(A, £ B,)i +(A, £ B)j+ (A, £ Bk

€ Law of Triangle, states that if a body is acted upon by

two vectors represented by two sides of a triangle taken in

order, the resultant vector is represented by the third side

of the triangle.
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¢ Polygon of Vectors

-—

If any number of vectors, acting on a particle be represented,
in magnitude and direction, by the sides of a polygon, taken
in order, the resultant vector is represented by the last side

that will closed the polygon, as shown in red color.

¢ Scalar Product

Occasionally in statics one has to find the angle between two lines or the
components of a force parallel and perpendicular to a line. In two dimensions,
these problems can readily be solved by trigonometry since the geometry is
easy to visualize. In three dimensions, however, this is often difficult, and
consequently vector methods should be employed for the solution. The dot
product, which defines a particular method for “multiplying” two vectors, can

be used to solve the above-mentioned problems.

Let A,B be two vectors of components A = Azz? + A4, 7+ AZE and
B = Bm{ + B, 7+ le;: then the scalar product, notation AeB, is expressed in

equation form AeB = ABcos® Or may be given by the Cartesian vector
formulation
AsB = (A + A j+ Ak)s(B,i + B,j + B,k)
=AB, +AB, +AB,
In which A, B represent the magnitude of A,B and 6 is the angle between
them. Note that the scalar product is a scalar quantity. It is easy to deduce that

AeA = A2a (9 = 00)

153
AeB = BeA, (Commutatitve law) /
As(B+C) = AeB + AC, ,

(Associative law)
(AA)B = As(AB) = \(4+B)

The dot product can be applied to determine the angle formed between two

vectors or intersecting lines where 6 = cos '(4sB / AB)



In particular, notice that if AeB =0 =60 =cos 10 = g, so that A will

be perpendicular to B. On the other hand the scalar product gives the work
done by a force.

1Ty

=

€ Cross- product @:

Let A, B be two vectors of components 4 = Az{ + A, J+ Azlgz /

and B = Bz{ + B, J+ BZIQ: then the cross product A A B or e
T}

A x B is defined by

i 3 k _
ANB=|A, A A,
B, B, B,
=(A,B, — A,B,)i — (A,B, — A,B,)j + (A,B, — A B,)k
Or AAB= ABsin0 #

In which 7 is a unit vector normal to the plane that contains the vectors A, B

and can be determined by using the right-hand rule, as shown.

Besides, it is easy to deduce that

HAANA=0, (i) AA (B + A
(i) A A B = —(BA 4), (iv) (A4) A 1_5’ (A

>|D>
>

|

> 0

5 &
Il
X

One of important application of cross product is to

evaluate the area of parallelogram in which A,B

fik
)
L

represents the sides of the parallelogram which is equal

[Ln]

1=-]

|AA B| = ABsin6 F

4 Triple-Dot product

If A=Ai+Aj+Ak, B=B,i+B,j+BkandC =C,i+C,j+C,k

are three vectors then the triple scalar product is defined by A. B A C

=]

\

i
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parallelepiped. In particular case as Ae¢(BAC) =0 then 7]

A, A, A
A(BAC)=|B, B, B,
c, ¢, C,
= A,(B,C, — B,C,)— A,(B,C, — B,C,) + A,(B,C, — B,C,)
It is easy to proof that (properties of determinants)
As(B A C) = Cs(AA B)
= B+(C A A)
In addition, the absolute value of triple scalar product i
|As(B A C)| gives the volume of parallelepiped in which i
A,B,C are three vectors at the corner of the | A(B A c)|

the three vectors lieina plane. ~F g

¢ Triple-Cross product

Triple-cross product A A (B A C) for any three vectors 4,B,C is defined by
AN(BAC)=(AC)B — (AsB)C

Note that ANBANC)=(AANB)AC

If the triple vector product A A (B A C) = 0 then either Aor B or C is zero

singly or in combination, or A is in the plane containing Band C .

¢ A-U Theorem

If ABO is a triangle and the point C divides the line AB such that
A:p=CB:CA then A\OA + pOB = (A + p)OC

Proof.
Let the point C divide the line AB such that A\CA = uCB = puBC then

ACA = uBC (1) (since CA and BC are in the same direction)



Nowin AOAC QOA=0C+CA =X0A=XO0C+XCA (2
againin AOBC OB=0C+CB = pOB = pOC +uCB  (3)

Adding equations (2) and (3), we get

MOA + pOB = (A + p)OC + ACA + pCB
= (A + )OC + ACA — puBC (CB= —BC)
= (A +moC (ACA = uBC from(1))

© Cor. If A = p, then we have

0OA + OB =20C

8]
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|I Ilustrative Examples I|

O EXAMPLE 1

Determine a unit vector that parallel to resultant of the vectors

A=2—7j+3kand B= —4i +8j — k
O SOLUTION
The resultant of the two vectors A, B is

R=A+B= (2 —17j+3k)+ (—4i +8j — k)
=—2 +j+2k
Therefore the unit vector R parallel to the resultant R is given by

R:§:—2{+35‘+212:

=

O EXAMPLE 2

Determine the constant X so that the vector A =2X\i+Xj+k be
perpendicular to the vector B = 4i — 3\j + Ak

O SOLUTION
Since the vectors A, B will be orthogonal if AeB = 0 therefore,

o AeB = (2Xi + Aj + k)o(45 — 30j + Ak)
=8A—=3\2+A=0 =A=0 and )\ =3

O EXAMPLE 3

Find a unit vector normal to the plane that contains the vectors

a=2—6j—3kand b=4i +3j — k
O SOLUTION

Since a A b is a vector normal to the plane that contains a,b hence,



i 7k
aAb=|[2 —6 —3|=15;—10j + 30k
4 3 -1

Then the unit vector

anb =531_2J+6k=%(3i—25+615)

la A B 819

n =

O EXAMPLE 4
If AANB=28i—14j +k and A + B = 5i + 35 + 2k.Find the vectors A, B

O SOLUTION

Let the components of the vector A be A,,4,,A, and
A+ B ="5i+3j+2k then

0
— AN(A+B)= ANA+AAB=AANB
~ANA+B)=AAB

= (A4 +AJ+ Ak)A (50 + 385 +2k) =8 —145 + k

k
A, |= (24, —3A4))i — (24, — 5A,)j + (34, — 54 )k
2

«w @> S

i
|,
5

By equating the components

(24, —3A)1 — (24, —5A,)j + (34, —5A )k =8i — 145 + k

S 24, —3A, =3, 24 —5A_ =14, 34, —54, =1
Solving these three equations we get,

A,=2 A =1 A =-2 nA=2+7—2k

But it is given that A + B = 5i +3j +2kso B = 3i +2j + 4k
Note there are an infinite numbers of vectors

A="Ti+4j and B=—2i—j+2k etc.(How?)
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O EXAMPLE 5

Find the vector z that satisfies the equations a Az =b + a, if a.xz =b

O SOLUTION

aAN(anz)=aANn(b+a) using triple cross-product
b a?
(asz)a — (aoa)z = a A b + 0 KG
ba—aANb
ba —a’z =aAb => = = ‘;1 =
a

O EXAMPLE 6

Obtain the vector that satisfies the equation (a A z) + = + ma = 0 where m
is a scalar

8 SOLUTION

Multiply the equation (a A ) + £ + ma = 0 by vector a A z using scalar-
product so

(enz)AN((aNnz)+z+ma)=0 from associating law
(@anz)s(aNz)+zo(aNz)+maslaNz)=0

0 0
=0 = anz=0

Using this formula and substitute it in equation a Az + z + ma = 0 we get

SLz+ma=0 = =—ma

O EXAMPLE 7

Solve for vector = the equation kxz + a A x = b where k is a scalar.

O SOLUTION

Multiply the equation kxz + a A z = b by vector a using scalar-product so

as(kx + a A ) = asb
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k(asz) + asla\z) = a.b = k(aez) = asb .. asz =
—_l k
0

Once again, multiply the equation kz + a A z = b by vector a using cross-

product so

klanz)+aA(anz)=aAnbd

(asz)a—(asa)z
= k(@ Az)+ (asz)a —a’z =a Ab

Equation kz +a Az =b gives a Az =0b—kx and then substituting in

previous equation we have

= k(b — kz) + g;f a—a’z=aAb
= (a® + k¥)z = kb + Q’;Q a—aAb
Or z=—"" (k% + (asb)a — ka A b}
k(a® + k%)

O EXAMPLE 8
For any vectors three A, B and C show that
(i) AN BAC +BA CAA +CA AAB =0

(i) (A+ B)A(B—A)=24AB
(ii)A. AAB =0

0O SOLUTION

(i) By applying the triple cross product principle, we have
AN BAC = A«C B— AB
BA CANA = BeA C— BeC
CANAANB = CeB A— C.A

I > 1Q

Adding the three equations we obtain

AN BNC + BN CANA +CAN ANB =0

(i) (A+B)A(B—A4)=AA

B— ANA B
B+AAB=2 AAB
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0
(iii) From properties of triple-scalar product A. AA B = B. i;/\ A =0we

have
0
A . AANB =Be ANA =0

Another technique from the properties of determinants (two equal rows)
A, A A
A. ANB =|A, Ay A =0
B, B, B,

O EXAMPLE 9
For any four vectors A, B,C and D prove that
De AN BN CAD = BeD CAD-A

O SOLUTION

LHS.=D:JJAA BA CAD

\——
1
=DelAAN BeD C— BeC D Triple-cross product
=Ds AAC BsD — B«C AAD
= (BeD){D«(A A C)} — (B+C){D+(A A D)}
——
0
= (B«D){D«(A A C)}
= (B*D){4+(C A D)} = R.H.S.
L.H.S. means Left hand side, R.H.S. means Right hand side

400N

O EXAMPLE 10

Determine the magnitude and direction of the

resultant force for the forces acting on the hook.
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O SOLUTION

The forces can be in written Cartesian coordinates as
F, = 3004,

F, = 400cos 304 + 400sin 30 j,= 200337 + 2005

F, = —250 0.8 7 + 250(0.6)7 = —2007 + 1503

0}

Therefore the resultant is

F = 100+ 20073 4 + 3507

O EXAMPLE 11

ABCDEF is a regular hexagon, prove that AB+AC+ AE+ AF = 2AD

O SOLUTION
According to the triangle law, we have E
" AD = AC+CD, and AD = AE+ED
F ‘
. 2AD = AC+AE+CD + ED
AF AB
but AB=ED, and AF=CD "

Therefore, AB+AC+AE+AF = 2AD

O EXAMPLE 12

Let a’,b’,c’ be the middle points of the sides of the triangle abc prove that
Oa’+ Ob’+ Oc’ = Oa+ Ob + Oc

For any arbitrary point b’.

O SOLUTION .

By applying the A-ptheorem in (a’ divides

be by aratio 1:1, etc.)
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AObc = 20a’ = Ob +0c

=2

AOac = 20b’ =0a+ Oc
_|_

AOab = 20c¢’ = Oa

Adding these three equations we get

2 0a’ +0b’+0c¢’ =0a+ Ob+ Oa+ Oc + Ob +0c
=2 O0a+ Ob+0Oc

Dividing by 2, we have

- 0a’+ Ob’+ Oc’ = Oa + Ob + Oc

0O EXAMPLE 13

Let S be a median point of a triangle abc , show that for any arbitrary point O
Oa+ Ob + Oc=308

0 SOLUTION

By applying the A-ptheorem in (b divides be by aratio 1:1)

AOaS = 0a = 0S +8Sa
AObS = Ob = OS+ Sb

AOQOcS = Oc = 0S+ Sc

By adding these three equations
Oa +0b +0c =08+ Sc + 0S+ Sb + OS +8a
= 30S + Sa + Sb +Sc = 30S + Sa + 2Sa’ = 308
—————

e e/

28a’ 9

Since S divides any median of the triangle by a ratio 2:1.
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PROBLEMS

O Determine the components of a vector whose its magnitude is 18 and acts

along the line passing through the point (2,3,— 1) to point (— 2,12,7).

03 Obtain a unit vector of the nonzero vector8i + 77 — 12k.

O Calculate the angle between the two vectors A = 2i — 55 + 6k,
B=4i—2j—3k.

3 For any two vectors 4, B, show that|4 A §|2 + (AsB)* = A’B*.

O Evaluate the constant X so that the three vectors A = 2i + j — 2k ¢

B=1i+j+3k « C =1+ \j be coplanar.

O Determine the vector z that satisfy the equation a Az = aA band

asx =0.

O Determine the vector z that satisfies the equation (z A a) + (z.b)

I
|
I
=}

terms of the known vectors a, b, c,d

3 Prove that (a Ab) A c ={(a Ab)n}(n Ac), where nis a unit vector
perpendicular to the plane that contains the vectors a,b .
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3 Solve, for vector z , the equation kz + a A z = b where k is a scalar.

3 For any three vectors a, b, ¢, deduce that

(D) (a Ab)e{(b A c)A(cAa)} ={(aAb)ec)

() fan(®Ac)}Ac=(ac)(bAc)

O ABCD is a quadrilateral, the points P,M are bisected the sides AC,BD
respectively, prove that AB + CD + AD + CB = 4PM.

(O The load at A creates a force of 60 N in wire AB. Express this force as a

Cartesian vector acting on A and directed toward B as shown.




MOMENTS AND COUPLES

In this chapter we will obtain the moment of a force about a point or

about an axis, reduction the forces at a point.

4 The Moment

The moment of a force is the tendency of some forces to
cause rotation. The moment of a force about a point is
defined to be the product of the force and the
perpendicular distance of its line of action from the
point. On the other hand The moment of a force F

about point O, or actually about the moment axis

passing through O and perpendicular to the plane containing O and F, as
shown, can be expressed using the vector cross product, namely,
M, =rANF
Here r represents a position vector directed from O to any point on the
line of action of F . Note that
|My|=|r AF|=rFsin6 =h
So if the force F in Cartesian coordinates is F = Fj + ij + sz? and the

vector r is given by r = @i + yj + 2k, then

%
My=rANF=|x
F

T

@)’“j L Ko
Nﬁj NI

= (yF, — zF, )i — (zF, — sz)j + (zF, — yFm)I%
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© Theorem If a number of coplanar forces acting at a point of a rigid body
have a resultant, then the vector sum of the moments of the all forces about any
arbitrary point is equal to the moments of the resultant about the same point.

Proof.

Let the coplanar forces E,F,,......, F, acting at a

arigid body have the resultant F .
F=F+F+...+FE =Y F

Let O be an arbitrary point and r, be the

position vector directed from O to any point on

the line of action of F . The sum of the moment

of the forces E, E,,......, F,, about O is

=rA FE +F, +.... + F,
=rAF
which is equal to the moment of the resultant about O. Any system of forces,
acting in one plane upon a rigid body, can be reduced to either a single force or
a single couple.
@ Three forces represented in magnitude, direction and position by the sides of

a triangle taken the same way round are equivalent to a couple.

4 Moment of a force about an axis

Thus if F be a force and L be a line which does not

and L, and @ the angle between F and a line through

1
1
1
intersect F, OA = h the shortest distance between F :
:
1
1
1

: L sin
A parallel to L, then Fsin@is the resolved part of F OfF-------+ - i

at right angles to L and Fhsin@ is the moment of F

about L notation by M, .If F intersects the line L
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or is parallel to L , then the moment of F about L is zero, because in the one
case h = 0and in the othersin® = 0.

Or on the other hand M ; = (M,*n)n where n is a unit vector of axis L

and M represents the moment of the force F about a point O (say) lies on

the axis L, here

|ML| =ne(r A F) =

&"1&2@
T e 3
NG BN

= LyF, — zF,) — m(zF, — zF,) + n(zF, — yF,)

€ When two forces act at a point the algebraical sum
of their moments about any line is equal to the

moment of their resultant about this line.

4 In brief to calculate the moment of a force about an
axis, one does the following three steps

(1) Obtain a unit vector of the axis (say 7 )

(i1) Determine the moment M, of the force

F about a point lies on the axis, say O .

(iii) ~ The moment of a force about an axis 1S .. of projections,|

ML = (Mo.ﬁ‘)’ﬁ’

© Particular cases

The moment of a force F about X axisis Moy = (M, ei)i
The moment of a force F about Y axisis Mgy = (M, *5)j

The moment of a force F about Z axis is My = (M, ek)k
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¢ Couples

Couples play an important part in the general theory of systems of forces and
we shall now establish some of their principal properties. Since a couple
consists of two equal and opposite parallel forces (unlike forces), the
algebraical sum of the resolved parts of the forces in every direction is zero, so
that there is no tendency for the couple to produce in any direction a
displacement of translation of the body upon which it acts; and the couple
cannot be replaced by a single force. The effect of a couple must therefore be
measured in some other way, and, since it has no tendency to produce
translation, we next consider what tendency it has to produce rotation.

Let the couple consist of two forces of magnitude F . It is of course assumed
that they are both acting upon the same rigid body. Let us take the algebraical
sum of the moments of the forces about any point O in their plane as the
measure of their tendency to turn the body upon which they act about the

point O .

Where its magnitude is |J\_/IO| = |f£ A E| = rFsin0 = F¢

Moment plane

@ Forces completely represented by the sides of a plane polygon taken the
same way round are equivalent to a couple whose moment is represented by

twice the area of the polygon.
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4 Reduction a system of forces

Suppose a system of forces F, E,,....., F,,...., Eis reduced at a chosen point O

T
to a single force F and a single couple M viz. the obtaining result is (M, F)
where

n n

M, =Y, AE, F=YF,

i=1 i=1
Once again if the system of these forces reduced at another point O’ where the
obtaining results is

n

M, =Y 1/ AE, F=YF,
1=1 i=1

That is when the point of reduction changed from O to O’, the resultant of the

forces does not change while the moment altered, such that

"My =M

o

Also it is obvious

,=F.(M,—LAF)=FM, - F.

F) = F.M_, = const.

The quantity F.M is called invariant quantity
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®Wrench

Suppose a system of forces is reduced to a single force F and a single couple
M such that the axis of the couple is coincides with the line of action of the
force F, then that line is called central axis. In addition, F and M taken
together are called wrench of the system and are written as (F, M) . The single
force F is called the intensity of the wrench and the ratio M / F is called the
pitch of the system and is denoted by M. Since F and M have the same
direction so

M,=M,—r ANF =\F multiply by F using scalar product

FeM FM M
:}EO{MO—E/\E}:AFZ _-_A:———O:_O:_O
F? F? F
Where X is known as the pitch of equivalent wrench
Also since F A M, = 0 multiply by F using cross product we have,

W FAM,—rAF)=FAM,—~FA(rAF)=0
——
M,

According to the properties of triple vector product

FA(rAF)=(E.F)r — (Fr)F = F’r — (E.r)F
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The previous equation represents the equation of the central axis or axis of

equivalent wrench in vector form and to get the Cartesian form let
f:(mvyvz)a I :(a,bvc)a E:(Fz7Fvaz)
Therefore, the Cartesian form of central axis is

zT—a _y—b z—c

F F, F.
@ Special cases
() F.M, =0 and F=0,M, =0

The system reduced to a single force that acts along the line » = AF
(i) F.M, =0 and F=0,M,=0

The system reduced to a single moment

(iii) F.M, =0 and F=0M,6 =0

In this case M, will be perpendicular to F and the system can be reduced to

wrench in which the central axis is

FAM
ST ==——="4uF

(ivy F=0 and M, =0

The system of forces will be in equilibrium or it is a balanced system of forces.
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|I Ilustrative Examples I|

O EXAMPLE 1
Determine the moment of the force F = 2i + 3j + 4k acting at the point

A(3,2,0) about the origin and the point B(2,1,—1).
O SOLUTION

Since the moment is given by M, = r A F where

o

r=04=A—0=(320)—(0,00) =3¢ +25

Therefore the moment of the given force about the origin is

M, = = 8; — 125 + 5k

o

ANF =

13
N W So
wCoN So
= o X

Again, 7 = BA=A—B=(3,20—2L—1)=i+;+k

Hence, the moment f the given force about the point B(2,1,—1) is

Mp=r"AF=3-2 2-1 0+1|=1 1 1|=1—2j+k
2 3 4 2 3 4

0O EXAMPLE 2

Calculate the moment of the force of magnitude 1073 and passing through the
point A(5,3,—3) to B(4,4,—4) about the origin.

O SOLUTION

We have to write the force in vector form, to do this the unit vector in the

direction of the force F', viz. from point A(5,3,—3) to B(4,4,—4) so

“AB=B— A= (4,4,—4)— (53,-3)=—i+j— k
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Therefore the force be

—i+j—k
J3

Choosing any point as an acting point of the force, then the moment of the

.-.1_?:F13“:10\/§{ }z—10z’+10§'—10/€:

force about the origin O (consider A(5,3,—3) as an acting point)

wr=(53,—-3) —(0,0,0) = (5,3,—3)

i 7k
=M, =rAF=|5 3 —3|=80j+80k
—10 10 —10

Also if we choose the point B(4,4,—4) as an acting point

) 7 k 3 j k
=M, =r'AF=|4 4 —4|=40/1 1 —1|=280j+80k
—10 10 —10 -1 1 -1

J EXAMPLE 3 N

Determine the moment of the force as shown about point O.

0O SOLUTION

Taking horizontal axis X as shown, the force 500 can be reso

500 cos 45°4 + 500sin 45° § = 25072(¢ + 7)

Therefore, the moment is given by,

3+ %] - 250«5[%] = 750V2

M, = 25072

Or by cross product where

’L’:

3+i]z’+ij
J2) V2

F = 500 cos 453 + 500sin45°j = 250v2(i + j)

k

j
3 3 .
=rAF=20\23+-2 = o|=150V2k

P TENE NN

1 1 0
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O EXAMPLE 4 d

Force F acts at the end of the angle bracket as shown.

Determine the moment of the force about point O.

O SOLUTION

Using a Cartesian vector approach, the force and
position vectors are |

=0.4¢ — 0.2 o -
= 4005sin 305 — 400cos30°j = 2007 — 346.4; , l

|y I3

The moment is therefore,
400 s1n 30° N

I— 04m

% .
= M,=rAF=[04 —02 0 =—0986k A cos SN
200 —346.4 0

O EXAMPLE 5

Find the sum of moment of the forces, F = 2; acts at the origin, the force
1 - 1 ~ . .

-3 F acts at ©, = 37 and the force —3 F acts at r; = 5k about the origin.

O SOLUTION

As clear the resultant of these three forces is zero but the moment about the

origin is given by

3
$M0=ZZiAEi=C1/\El+Cz/\E2 +ry AFy

=1

7 k i 7 k
3 0[+|0 0 5
00 |[—1 00

—5j + 3k and  |M
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O EXAMPLE 6

The force 2¢ — j acts along the line that passing through the point (4,4,5) and
the force 3k acting at the origin. Find the pitch and axis of equivalent wrench.

O SOLUTION

The two forces reduced at the origin to a resultant force F and a moment M|,
so that

F=F +F =2 —j+ 3k L F?=14

=5 + 105 — 12k

S O

i
Mo=n"NE+nANE=0+14 4
2

Thus the pitch of equivalent wrench is given by A= % that is
F

\o PoM _ (2i — j +8k)e(51 +10j —12k) _ 36 _ 18
F? 14 14 7

In addition the equation of axis of wrench r = 1, + uF

i 7 k
A R . .
r=EAM _ 11y 3 3 =1 (184305 + 25%)
F? 14 14
5 10 —-12

Then the vector form of the axis becomes
1 2 - - sa ~
r =4 —18¢ + 395 + 25k + p(2¢ — j + 3k)

And Cartesian form is

u_ 2T T o Mz+18 _1dy—39 14225
2 —1 3 2 —1 3
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O EXAMPLE 7
A force P acts along the axis of OX and another force nP acts along a
generator of the cylinder z? + y* = a®at the point (acosf,asin6,0); show

that the central axis lies on the cylinder n?(nz — 2)? + (1 + n?)*y* = n*a?

O SOLUTION

Generators of the cylinder are parallel to the axis of . Let one generator of it
pass through the point and its unit vector is and the force acts along this line.

Also the force acts along axis then \

F = pi, acts at (0, 0,0)
E, = nPk, acts at (a cos 8, asin 8,0)
F = P(i +nk), (F?=(1+n?)P?)

The system reduces to a single force and a moment so

T

Nl

that

M, =r NF, +7, NF,

i J k i ik X
*“M,=P10 0 0/+|acosf asing 0
1 0 0 0 0 n

= anP(sin0i — cos 0})

The pitch of equivalent wrench is given by A= ¥ that is
F

e FeM P(i + nk)eanP(sin 07 — cos03) _ ansin®
F? (1+ n?)P? 1+ n?

In addition the equation of axis of wrench r = 1, + uF

i 7k

FAM anP?
n = 3 = 7 p? 1 0 n
F (1 +7%) sin@ —cosf 0

_an
- 2
1+n

(ncosBi + nsinfj — cos k)

Then the vector form of the axis becomes

(e eos @, o sin é,0)
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an
14+ n?

r= (ncos@i + nsin0j — cosOk) + p(i + k)

And Cartesian form is given by

_ an’® cos 8 y— an’® sin 0 54+ On cos @
2 2 2
1+n* _ 1+n”* _ 14 n Or
1 0 n
an?®sin@ an? cos @ an cos
y—— =0, nle————|= —_—
1+ n? 14 n? 1+ n?
an? an(1 + n?)cos @
y = sin 4, ne—z—=—7F—"——
14 n? 14 n?
Squaring these equations
2
y? =n? [ ] sin? 0, (nz—2)* =1+ n?)? cos® 0
1+ n? 1+n?

then multiply first equation by (1 + n?)* and the second by n? then adding

the result we get

an
1+ n?

1+ n?)’y? +n’(nz — 2)* = n’(1 + n?)? =a‘n

O EXAMPLE 8

Three forces each equal to P act on a body, one at point (a,0,0) parallel to
0Y, the second at the point (0,b,0) parallel to OZ and the third at the point

(0,0, c) parallel to OX, the axes being rectangular. Find the resultant wrench.

O SOLUTION

As given we see [k fich:]

F = pi, acts at (0,0, c)
F, = Pj, actsat(a,0,0)
F, = Pk, actsat(0,b,0)
F =P(i+j+Ek),

E
Il
w
T
e

‘ (00, 1)
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The system reduces to a single force and a moment so that

M, =1 ANF, +1ry; ANFy +173 NFy

i j k| i
cl+|la 0 0/+]|0
010 0

e

Il
- O S
o O o
(=T~ L Y
=

(=)

= P(bi + cj + ak)

The pitch of equivalent wrench is given by A= ¥ that is
F

N oM PE+G+R)ePOi+cj+ak) oip4c
F? 3pP? 3

In addition the equation of axis of wrench r = 1, + uF

FAM p?
n=="—_ —=—-/111
F? 3P|,

a

~

1 o R
= (@ =i+ b - +(c— b))
Then the vector form of the axis becomes
fzé (@a—c)i +(b—a)j+(c—bk +ui+j+k)

and Cartesian form is

y—x =b+c—2a and 3z—y =a+c—2b

O EXAMPLE 9

Forces X,Y,Z act along three lines given by the equations

Prove that the pitch of the equivalent wrench is

(@YZ +bZX +cXY) /(X2 +Y? + Z?)
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If the wrench reduces to a single force, show that the line of the action of the

force lies on the hyperboloid (z — a)(y — b)(z — ¢) = zy=

O SOLUTION
As given
F = Xi, actsat (0,0, ¢)
F, = Y7, actsat(a,0,0)
F, = Zk  actsat(0,b,0)
F = Xi+Yj+ Zk, FP=X"+Y?+2°

The system reduces to a single force and a moment so that

M, =1 ANF, +ry; ANFy +173 NFy

o

“M,=|0 0 ¢|+|a 0 0|+[0 b 0
X 00 [0Y o [00 2

=bZi + cXj + aYk

The pitch of equivalent wrench is given by A= ¥ that is
F
FoM (Xi 4+ Y+ ZE)s(bZi + cXj + aYk)
A: —_— =
F? X2 4+Y?2+2°

_bXZ + cXY +aYZ
X2 +Y?+2°

Besides, the equation of axis of wrench r = r; + puF

~ ~ ~

FAM 1 gk

AN

5:_1«“2 :X2 Y? + 72 X ¥y 7z
(X*+Y"+ 2%, ox v

1 . A R
= ((aY? — ¢XZ)i + (bZ® — aXY)j + (cX? — bYZ)k)
(X2 +Y?+ 2%

Then the vector form of the axis becomes
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((@Y? —eXZ)i + (bZ® — aXY)j + (cX? —bYZ)k)
(X2 +Y?*+ 2%
And Cartesian form is

’]_":

+ w(Xi + Y] + Zk)

aY? — cXZ bZ* — aXY cX? —bYZ
X2 +Y*+27° _ X +Y*+2° _ X2 +Y*+27° Or
X Y z

2 2 _
Y[m aY cXZ]:X[_bZ aXY nd

X2+Y%2+ 22 X24+Y%2+ 22

cX?—-bYZ
Y|iz———M—
X2+Y*+ 22

_ bZ® —aXY
X24+Y*+ 22

Complete

O EXAMPLE 10

Two forces each equal to P act along the lines zFacosd _y—bsing _ 2z

asinf Fbcosb c
show that the axis of equivalent wrench lays on the surface
z r C a
O SOLUTION
. .. - 0 — bsin8 .
First line is = C_LCOS _y—bsinf_z passing through (a cos8,bsin 6,0)
asin@ —bcos O c

z+acosf y—bsinf z

the second line is = = passing (—acos8,bsin6,0)
asin@ bcosO c

The unit vector of first line is

n, = ! (asin8,—bcos,c)
\/a2 sin? @ + b% cos? 0 + 2
= 1 asini — bcos9_§' + ck
m

The unit vector of second line is
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1

N, = (asin8,bcosb,c)
\/az sin® 8 + b% cos? 0 + 2
-1 asinBi + beosj + ck (u:\/azsin29+b2cos29+c2)
7
Therefore,
- P
F = Ph, = —(asin8i — bcosOj + ck)
I
~ P . < < r
F, = Pn, = —(asin®i + bcosOj + ck)
7

The system reduces to a single force and a moment so that

F=FK+F
P . N o} % P . T 3 y
= —(asinfi — bcosBj + ck) + —(asinfi + bcos 85 + ck)
© ©
. . 2
= E(a sin 83 + ck) and F? = ﬂ(a2 sin? 8 + c?)
= /\
P k i ik
acos@ bsmB 0|+ |—acos@ bsinfd 0
M asinf —bcosf c asin bcosf c
M= 2(cbsinﬁ"z — abk)
@

since the equation of axis of equivalent wrench is r = r; + uF

i k
e | (c® + a®)bsin0 -

j
:E/\M: 1 asin@ 0
0

F? a?sin? @ + 2

2 s 2 2
cbsin@ —ab a”sin” 6 +c

Then the vector form of the axis becomes

(c® + a®)bsin@ -

r= J+ u(asine'z + cl;:)
a’sin® 0 + 2

While the Cartesian form is

_ (c® + a®)bsind
z—0 a’sin?@+c2 _z—0

asin@ 0 c
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Thus we can deduce from these equation

Y= (c® + a®)bsin@ and %= asin @
z

a?sin? @ + 2

y(a®sin® @ + c?) = (c* + a®)bsin 8

2
= y|a®sind + — = b(c® + a?)
sin 8
. L in @
Dividing by ac and substituting T _ 2T e get
z C
Y E + E =b 2 + 2
z £ a C

O EXAMPLE 11

Two forces each equal to F act along the sides of a cube of length b as
shown, Fin the axis of equivalent wrench.

0 SOLUTION

By calculating the unit vectors of the forces we get,

~ 1 < b3
nl = (b7b3b) - (O,U,b) = E(Z + .7) m,_“_ il

F = Fi, = (i + ) :

- N | (b, . )
And for the second force i

. (00415, 1)

R 1, - AT ==y
n, = (0,b,0) — (b,0,0) = J_E(_Z + 7) i

E = Fa, = (i +7)

—2 2 \E
The system reduces to a single force and a moment at the origin so that
R =F, +F, = 2Fj - R? = 2F"

i gk |1 j K
Fb Fb . - -
2o 0 1| |1 0 o0 2
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Here we choose the point (0,0,b) as an acting point of first force and the point
(,0,0) of the second force. The pitch of equivalent wrench is given by

FeM

A= == thatis
F2
~ Fb » ~
2Fj)e i — j—k
A:E,M:(Ia)ﬁ(z imRh
R? 2F? 2

since the equation of axis of equivalent wrench is » = r; + uF so

i 3k
0 1 0
1 -1 -1

_RAM _ F%

TR

Then the vector form of the axis becomes

= -2 +h)

b - =~ 4
f:—g t+k +pj

While the Cartesian form is given by

w+9 z+9
2 _y—0 2

= = Or z:——and:n:—é
2 2

0 1 0
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PROBLEMS

O If the force F = 37 — j + 7k acts at the origin, determine its moment about

the point (4, 4,6) .

O A force of magnitude 100 acts along the line passing through the point
(0,1,0) to (1,0,0). Obtain its moment about the origin point and about the axes.

O The three forces (2 +2j), (7 — 2k), (— +2j + k) act at the points

(0,1,0), (1,0,0), (0,0,1) respectively, Find the pitch of the equivalent wrench.

1 y+1_ z—2
2 1

O Two forces each equal to 3F act along the linesm;

r—2 y+1 =z
1 —2

and

; ! Find the equivalent wrench.

O The magnitude of two forces is F,, F; act along the lines
(z=—c, y = —xztana) and (z = ¢, y = ztanc). Determine the central axis

of equivalent wrench.



EQUILIBRIUM OF FORCES

tudy of Statics and the whole study of Mechanics is actually the

Sstudy about the actions of forces or force systems and the effect

of these actions on bodies. So it is important to understand the action of forces,
characteristics of force systems, and particular methods to analyze them. A
particle is said to be in equilibrium if it remains at rest if originally at rest, or
has a constant velocity if originally in motion. Most often, however, the term
“equilibrium” or, more specifically, “static equilibrium” is used to describe an

object at rest.

4 Triangle of Forces

If three forces, acting at a point, be represented in magnitude and
direction by the sides of a triangle, taken in order, they will be in

equilibrium.

4 Lami's Theorem

If three forces acting at a point are in equilibrium, then each
force is proportional to the sine of the angle between the

other two that is

F _ 5 F

sina sin@ sin‘y

4 Theorem

@ If three forces, acting in one plane upon a rigid body, keep it

in equilibrium, they must either meet in a point or be parallel.
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@ If two forces acting at a point are represented in magnitude and direction by
the sides of a parallelogram drawn from that point, then their resultant is
represented by the diagonal of the parallelogram drawn from that point. In
addition the magnitude of the resultant can be obtain by
wF=F +F, = FoF = (F; + F,y)o(F; + F,)

F? = F? + F} + 2F,F,cosa

where « is the angle between the two forces. The resultant F makes an angle

0 to the force F, determined by

since Fcos@ = F, + F,cosc, and Fsin@ = F,sinc
c g . F,sinx
Therefore by dividing these two relations, tan = —2———
F, + F,cosx
¢ Polygon of forces -—

If any number of forces, acting on a particle be represented, in
magnitude and direction, by the sides of a polygon, taken in

order, then the forces are in equilibrium.

4 Theorem

If a system of forces act in one plane upon a rigid body, and if the algebraic
sum, of their moments about each of three points in the plane (not lying in

the same straight line) vanish separately, the system of forces is in equilibrium.

¢ Theorem

A system of forces, acting in one plane upon a rigid body, is in equilibrium, if
the sum of their components parallel to each of two lines in their plane be zero,

and if the algebraic sum of their moments about any point be zero also.

¢ Two important trigonometric theorems -
There are two trigonometrical theorems which are useful

in There are two Statical Problems. If a line CD be
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drawn through the vertex C of a triangle ABC meeting the opposite side AB in

point D and dividing it into two parts m and n and the angle C into two parts

« and 3, and if ZCDB = 0then

(1) (m 4+ n)cot@ = mcota — ncot 3
(ii) (m 4+ n)cot8 = ncot A — mcot B

Proof
Lm_ AD _ AD % DC _ sin o ><sinAB
n DB DC DB sinZA sing
= _sne smO+8) ppo =180 — (8 +6)
sin(f — a) sin 8
_ sina(sin@cos 3 + cos@sin3) _ cot 3 + cotd

sin B(sin@ cosa — cosfOsina) cota — cotd

= m(cot o — cot @) = n(cot 3 + cotH) or

(m + n)cot® = mcotx — ncot 3

Again
. m _ sinZACD v sin /B
n sinZDAC sin 3
sin(d — A) % sin B
sin A sin(@ + B)’
sin B(sin@ cos A — cos@sin A) _ cot A — cotd

sin A(sin@ cos B + cosOsin B)  cot B + cot8
= my(cot B + cot0) = n(cot A — cot ) or

(m + n)cotd = ncot A — mcot B

4 Conditions for rigid-body Equilibrium

In this section, we will develop both the necessary I,

and sufficient conditions for the equilibrium of the \ /
o

rigid body. As shown, this body is subjected to an

external force and couple moment system that is the

result of the effects of gravitational, electrical, I-';""-.-. -
magnetic, or contact forces caused by adjacent /
M, (a)

bodies. The internal forces caused by interactions
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between particles within the body are not shown in this figure because these
forces occur in equal but opposite collinear pairs and hence will cancel out, a
consequence of Newton’s third law.

Using the methods of the previous chapter, the force and couple moment
system acting on a body can be reduced to an equivalent resultant force and
resultant couple moment at any arbitrary point O on or off the body. If this
resultant force and couple moment are both equal to zero, then the body is said

to be in equilibrium. Mathematically, the equilibrium of a body is expressed as

¢ Particular cases

@ Forces act along the same line

n

In this case the equation of equilibrium tends to EE = 0 since there is no
=1

rotation.

© Parallel forces system

If the acting forces are parallel then the rigid body may be in equilibrium if the
resultant of acting forces is zero and the sum of moment of acting forces about

a chosen point is zero too so that the two following equations are satisfying

> F =0, zn:Mizo
i=1

© Coplanar forces system

If the acting forces are coplanar then the rigid body may be in equilibrium if
the three following equations are satisfied (the forces considered to be in XY

plane)
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Note the moment will be in a direction normal to the XY plane i.e. Z -axis

© Spatial forces system

If the acting forces are in space then the rigid body may be in equilibrium if the

following equations are satisfied

If two equal and inverse moments are acting on a body

then the body will be in equilibrium

4 Reactions at Joints

There are a large number of problems in which two bodies are described as
smoothly hinged' at a point. In such a case the hinge may be regarded as a pin
passing through cylindrical holes in the bodies, closely fitting and so smooth
that each body can turn about the pin without friction. When the hinge or joint
is smooth the reaction of the pin on either body reduces to a single force,
because, no matter how many points of contact there may be between the pin
and the cylindrical hole in the body, the reaction at each of these points acts
along the common normal and therefore passes through the center of the pin
(considering only forces in one plane) and all such forces can be combined into
a single force through the center of the pin. When the pin connects two bodies
A and B only, then the pin is subject to two forces only, namely the reactions of
A and B upon it, and in equilibrium these must be equal and opposite. But the

reactions of the pin on the bodies are equal and opposite to the former forces,

A
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so that the result of the smooth joint is to set up equal and opposite forces on
the bodies 4 and B and it is unnecessary to consider the precise form of the
joint, because it is sufficient to know that, as the result of the smooth joint,
there is a pair of equal and opposite forces between the bodies at a certain

point and that the bodies are so constrained that the only possible relative

motion is one of turning about this point.
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|I Ilustrative Examples I|

O EXAMPLE 1

If the resultant of the forces F,2F perpendicular to F . Determine the angle
between the two forces.

O SOLUTION

Let a be the angle between the two forces F,2F then from the law

tanH:M = tan 90 = 2sinox

F + 2F cos 14+ 2cos
= 1+4+2cosax =0

1
= a= cos_l{—i} Or o=120°

O EXAMPLE 2

The resultant of two forces P and @ is equal to J3Q and makes an angle of

30° with the direction of P ; show that P is either equal to, or is double of Q .

3 SOLUTION & e
V3Qcos30 = P + Qeos o (1) : q:n

J3Qsin30 = Qsin (2)
Equation (2) leads to «=60° or a =m—60" therefore, from

equation (1) we get

P:Q(\/gcos30—cosa) when a=60" = P=Q

when o =120 = P =2Q

O EXAMPLE 3
The greatest resultant which two forces can have is P and the least is P’.

Show that if they act an angle € the resultant is of magnitude

\/Pz cos? é@ + P’?sin? %0
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O SOLUTION

Let the magnitude of the two forces be F and F’ the resultant of the forces is
greatest when they act in the same direction and is equal F + F’. Also the
resultant is least when they act in opposite directions and is equal F — F”’,
consider F > F’ therefore,

P=F+F, P =F—F

Solving for F, F’ we get F:% P+ P, F’ :% pP—P

Then the magnitude of the resultant of the forces F and F’when they act at an
angle 0 is given by
R = F* + F'* + 2FF’cos @
= R’ = i(P + P')? + i(P — P’y + %(P + P’)(P — P’)cos@
= ;Pz(l + cos8) + ;P'Z(l — cos 9)
= P? cos? %9 + P’% sin? %9

= R= \/Pz cos® 19 + P’%sin? 19
2 2
O EXAMPLE 4
Two forces P,Q act at a point along two straight lines making an angle «.
with each other and R is their resultant: two other forces P’,Q’ acting along

the same two lines have a resultant R’. Find the angle between the lines of

action of the resultants.

O SOLUTION

Let the resultants R, R’ make angles 6,0’ with the line of action of P and

P’ . By resolving along and perpendicular to this line, we get

Rcosf@ = P + Qcosa, Rsinf = Qsina
R’cos8’ = P’ + Q' cos o, R’'sin@’ = Q' sina

Multiplying two equations, we have
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RR' cosBcos8’ = (P + Qcos ) (P’ + Q' cos )

RR'sinfsin 0’ = QQ’sin’® o

By adding these two equations we get

RR/(cosBcos@’ + sinfsin@’) = (P + Qcosa)(P’ + Q' cos ) + QQ’sin®

Or RR'cos(60 — 0') = (P + Qcosa)(P' + Q' cosa) + QQ’ sin” o

Therefore,
n_ (P+Qcosa)(P' + Q cosa) + QQ’sin’ a
cos(@ — 0') = RE'
0— 0 — cos! (P 4+ Qcosa)(P’ 4+ Q' cosa) + QQ’sin®
RR’
— cos! PP’ + QQ’ + cosa(PQ’ + P’Q)]
RR’

O EXAMPLE 5

A rod whose center of gravity divides it into two portions, whose lengths are a
and b, has a string, of length £, tied to its two ends and the string is slung over
a small smooth peg ; find the position of equilibrium of the rod, in which it is

not vertical.

O SOLUTION

Since there are only three forces acting on the
body they must meet in a point. And the two
tensions pass through O ; hence the line of
action of the weight W must pass through O
. The tension of the string is not altered, since
the string passes round a smooth peg; that is

the weight W balances the resultant of two

equal forces, so it must bisected the angle

between them.

ZAOC = £ZBOC = « (say)
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z AC a
Hence ===

y CB b
Also c+y=~

Solving these equations we obtain

T
a

a+b
Again from the triangle AOB, we have

(@ +b)? = 2 + y* — 2zycos2a = (z + y)® — 2zy(1 + cos 2cr)

2
=(z+y)’ —4zycos’ a = L2 — Labcos2 «a
(a + by’
2 2 2
3cosza:£ (a+b) (a+b)
402 ab
Let be the inclination of the rod to the horizontal, so that
ZOCA =90° +6
From the triangle ACO we have
i 2]
sm(90+):AO:£: L Since £ Y _ L
sin a AC a a+bd a b a+bd
— cosO = £sin o
a+b

O EXAMPLE 6

A beam whose center of gravity
divides it into two portions of lengths
a and b respectively, rests in
equilibrium with its ends resting on
two smooth planes inclined at angles

a, 8 respectively to the horizon, the

planes intersecting in a horizontal

line; find the inclination of the beam

to the horizon and the reactions of

the planes.



47

O SOLUTION

Let N and N’be the reactions at A and B perpendicular to the inclined planes,
let 6 be the inclination of the beam to the horizon.

Resolving vertically and horizontally, we have

Ncosa+ N'cosB =W 1)
Nsina = N'sin3 (2)

Also, by taking moments about G, we get

N.GAsinGAO' = N'.GBsinGBO'’
Now ZGAO' =90° — ZBAO = 90° — (o — 0)
and ZGBO' =90° — ZABO = 90° — (3 + 0)
Hence the equation of moments becomes
Nacos(a — 8) = N'bcos(B + 6) (3)

From equation (2) we have

N N’ _ Ncosa+ N'cos 3 _ w
sin@ sina sinBcosa + sinacosB  sin(a + B)

from Eq. (1)

These equations gives N and N’; also substituting for N and N’in Eq. (3)
we obtain

asin Bcos(a — 0) = bsinacos(B + 0);

= asinB cosacosf + sinasinfd = bsina cos Bcosf — sin Bsin 0 ;

= (a + b)sin asin Bsin@ = cos B(bsin cxcos B — a cos axsin B);
= (a+ b)tanf = beot 3 —acotax

O EXAMPLE 7
A heavy uniform rod, of length 2a, rests partly within and partly without a
fixed smooth hemispherical bowl, of radius = ; the rim of the bowl is

horizontal, and one point of the rod is in contact with the rim; if 6 be the

inclination of the rod to the horizon, show that 27 cos20 = acos9.
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O SOLUTION
Since OC and AE are parallel,
ZLOCA =ZLCAE =0
Since OC=0A, ZOAC = Z0OCA =86
Also ZGDC =90" — ZDGC =8
Now. AFE = AGcosf = acosb,,
and AE = ADcos20 = 2rcos 20,
= 2rcos 20 = acos@

Hence, if N and N’ are the reactions,

by Lami's Theorem 3

N N’ W
sin20 sin® sin@

= N' =W, N =2Wcos6

0O EXAMPLE 8

A bead of weight W can slide on a smooth circular wire in a vertical plane. The
bead is attached by a light thread to the highest point of the wire, and in
equilibrium the thread is taut and makes an angle @ Find the tension of the

thread and the reaction of the wire on the bead.

O SOLUTION

Let B be the bead, AB the thread, AOC the vertical
diameter of the circle, and O the center. Then the angle
Z0OBA = ZOAB =6 and ZBOC = 20 o

Hence, if T denotes the tension and N the reaction, by

Lami's Theorem

T = N W W
sin20 sin® sin@

Therefore, we get T =2Wcos8, N =W
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O EXAMPLE 9

A beam whose center of gravity divides it into two portions, is placed inside a
smooth spherical bowl, show that if 8 be its inclination to the horizontal in the
position of equilibrium and 2abe the angle subtended by the beam at the

center of the sphere, then

ta.n@:b_

O SOLUTION

Let a beam AB of weight W be in equilibrium inside a
smooth sphere of center O and radius r(say) . If G
is the center of gravity of the beam then AG = a and
BG =b. As clear, the beam AB is in equilibrium

under the action of the following forces

4 N, the reaction at point A along the normal to the

sphere at A and so passing through the center,

4 W, the weight of the beam vertically downwards and

4 N’ the reaction at point B along the normal BO to the sphere at B
It is given that ZAOB = 2acand according to the trigonometric theorem in
triangle AOAB we get

(a + b)cot(90 — 8) = bcot(90 — ) — acot(90 — o)
—a

= tanf = b tan o

b+a

O EXAMPLE 10
A rigid wire, without weight, in the form of the arc of a circle subtending an
angle aat its center and having two weights w and w’ at its extremities, rests
with its concavity downwards, upon a smooth horizontal plane. Show that, if 6
be the inclination to the vertical of the radius to the end at which w is
suspended, then

w' sin o

w+ w cos«
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O SOLUTION

The wire is in equilibrium under the action of
following three forces

w, the weight at A and weight w’at B

vertically downwards and the reaction
N at the point of contact C, acting at
right angle to the horizontal plane where
the line of action of the reaction will pass

through the center of the circle,

Given that ZAOC = 6 then ZBOC = o — 6. To avoid the reaction , taking

moments of all the forces about , we have

> M, =0 = w(AA') — w'(BB’) =
= wasind = w’'asin(a — 6)

. 1[ o .
= wsinf = w'(sinacosd — sin G cos )

Dividing by cos8 then we obtain

! . V4
wtanf = w' sina — w’ tan 6 cos o

7 .

w' sina
:>tan9:—,
w + w cos &

O EXAMPLE 11

A uniform beam, of length 2a, rests in equilibrium against a smooth vertical

wall and upon a peg as a distance b from the wall,

prove that the inclination of the beam to the vertical is

1/3
1

a

sin™

0O SOLUTION
The beam is in equilibrium under the action of the

forces namely, N, the reaction at point A along the

normal to the vertical, W, the weight of the beam
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vertically downwards and N’ the reaction at peg along the normal AB. Let 0

be the inclination of the beam to the vertical and since in

!
AACO’  sinf = C—O,,
AQ’
AAOO’  sing = A9
AO
AAGO  sing = 29
AG

Multiplying these three formulas we get
CO’ AO" AO_cCO' _b

A0 A0 “AG_ AG a

sin® 9 =

1/3

a

= sinf = or 6 = sin

O EXAMPLE 12
Two small rings of weights W; and W, each capable of sliding freely on a
smooth circular hoop fixed in the vertical plane are connected by a light string,

show that in the position of equilibrium in which the string be straight and
inclined at angle @ to the horizontal (W, + W,)tan@ = (W, — W’Z)tan%a
where « is the angle subtended by the string at the center.

0 SOLUTION

The ring at A is in equilibrium under the following

forces, weight of the ring W, acting vertically

downwards, Tension T in the string along AB and the
reaction N along the normal OA passing through the
center of the circle. The string is inclined at an angle 8

to the horizontal and ZAOB = e, therefore by Lami’s

theorem at point A, we have
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r W
sin /ZNAW,  sin ZBAN
T _ W,
sin(w — (0 + a / 2)) - sin(w /2+ a/2)

sin(@ + « / 2)

=T= cos(a / 2)

W (1)

in the same manner for ring at B we have

T __w
sin /N'BW,  sin ZABN’
T _ W,
sin(m — (a/2—0)) sin(w/2+ a/2)
:>T:Sin(a/2_9)sz @)
cos(a / 2)

From Egs. (1) and (2)
sin(a / 2 —9)W _ sin(0 + a/2)W

cos(a / 2) 2 cos(a / 2) !

w, [sin@coséa + cos@sin%a] =W [sin%acos@ — coséasin@]
Dividing by cos8cos(c / 2), we get

VVz[tane + tan%a] = VVl[tanéa - tan@]
Or (W, + W,)tan6 = (W, — W) tan o

O EXAMPLE 13

Two equal rods, each of length 2€ and weight w, are freely jointed at and the
others ends of the rods are suspended from a fixed point, If the lengths of each
string is 2£ and the angle between the rods is 26, a disk of weight 3w and

radius a is putted between the rods in equilibrium in a vertical plane, show that
a = 6£sin’ Otan @

O SOLUTION

3w

With respect to the disk, 3w = 2N sin @ = N =
2sin @
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The equations of equilibrium for the whole figure (i) in vertical direction

_ bw
2cosO

5w = 2T cos @ =T

Considering one of the rods (right one say) and taking moment about the point
0, reaction is reaction of the disk on the rod which equals the reaction of the

rod on the disk but in opposite direction, we get

Na cotf + wlsin@ = T cos 6(2L sin B) + T sin 6(2£ cos O)

5w

2sin cos

acot9+w£sin9={ } 2£ cosOsin @

. 3acosf

" 25in2 0

+ £sin@ = 10£sin 8

. 3a = 18€tan@sin? 0 . a=6LtanBsin® 0
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O EXAMPLE 14

A hexagon ABCDEFis formed of six equal rods of the same weight W
smoothly jointed at their extremities. It is suspended from the point A and the
regular form is maintained by light rods bf and ce . Prove that the thrust in the

former BF is five times that in the latter CE .

O SOLUTION

Suppose that the rod BF is attached to the two upper rods and the rod GE to the
two lower rods. Let P’ and P denote the thrusts in BF and CE. Then since
the only effect of these rods is to produce thrusts at their ends, we may ignore
these rods if instead of them we suppose horizontal forces P’ to act outwards
on AB at B and on AF at F, and horizontal forces P to act outwards on CD at
C and on DE at E. Begin by inserting these forces in the figure. Then consider
the equilibrium of the rod CD. The reaction at D is horizontal because there is
symmetry about the vertical through D. But the only horizontal forces on CD
are the force P at C and the reaction at D, so that this reaction at D must be
equal and opposite to P . Then as regards vertical forces: the weight W acts
vertically downwards through the middle point of CD and the only other
vertical force can be at C, therefore there is a reaction at C which acts vertically
upwards and is equal to W. Insert this in the figure; and, since it is produced by
the rod CB, also insert an equal and opposite force W downwards acting at C
on CB We can now express P in terms of W by taking moments for the rod
CD about C or about D, or, what is the same thing, equating the moments of

the two couples that act upon the rod. We find that

W

P P

W)
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w

3
2

P CDsin 30° :W[%CDcosiiO“] = P=

Then, returning to the figure, consider the rod BC. It is in equilibrium under the
action of its weight W, a downward force W at C and the reaction at B. This
latter force must therefore act vertically upwards and be equal to 2W. Insert
this force in the figure and also the equal and opposite reaction 2W at B on AB.
Then consider the rod AB. It is in equilibrium under the action of its weight W,
the horizontal and vertical forces P’ and 2W at B and the reaction at A. It is
not necessary to specify the latter because we can take moments about A; by so

doing we find that

P’ ABsin30° = gw AB cos30° = P'= 5[W—] =5P

O EXAMPLE 15
A regular pentagon ABODE formed of five uniform rods, each of weight W,
freely hinged to each other at their ends is placed in a vertical plane with CD
resting on a horizontal plane and the regular pentagonal form is maintained by
means of a string joining the middle points of the rods BC and DE. Prove that
the tension in the string is

[cotI + 3cot2—ﬂ-]W

5 5

O SOLUTION
It is only necessary to consider the reactions at the corners A and B. By
symmetry that at A is horizontal and equal say to X. The rod AB is also acted
on by its weight W and the reaction at B. The latter must therefore have a
horizontal component X and a vertical component W upwards. Insert in the
diagram forces at B acting upon BC in the opposite senses. Then by taking
moments about B for the rod AB, since the rod AB makes an angle \n with the

horizontal, we get
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Xsin—® = 1WcosE 1)
5 2 5

after dividing by the length of the rod. Again if T denotes the tension in the
string which joins the middle points of BC and DE, by taking moments about C

for the rod BC, which makes an angle £n with the horizontal, we get

1Tsin2—7r:chosz—ﬂ—+Wcos2—7r+Xsin2—7r (2)
2 5 2 5 5 5

after dividing by the length of the rod. On substituting for X in terms of W
from (1), we find that

&
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PROBLEMS

O If two forces P and Q act at such an angle that R=P, show that, if P be

doubled, the new resultant is at right angles to Q.

(0 The resultant of two forces P and Q acting at an angle 6 is equal to

(2m + 1)y P? + Q*; when they act at an angle 90 — @, the resultant is

(2m — 1)\/P2 + @* ; prove that tan@ = m ; i
m

O The resultant of forces P and Q is R; if Q be doubled R is doubled, whilst, if

Q be reversed, R is again doubled; show that P: Q: R = V23: 2

O The sides BC and DA of a quadrilateral ABCD are bisected in F and H
respectively; show that if two forces parallel and equal to AB and DC act on a

particle, then the resultant is parallel to HF and equal to 2HF.

3 A solid hemisphere is supported by a string fixed to a point on its rim and to
a point on a smooth vertical wall with which the curved surface of the

hemisphere is in contact. If 6, ¢ are the inclinations of the string and the plane

base of the hemisphere to the vertical, prove that

tanp = g + tan 6

O The sides AB, BC, CD, and DA of a quadrilateral ABCD are bisected at E,
F, G, and H respectively. Show that the resultant of the forces acting at a point
which are represented in magnitude and direction by EG ana HF is represented

in magnitude and direction by AC.
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O Two uniform rods AB, BC, rigidly jointed at B so that ABC is a right angle,
hang freely in equilibrium from a fixed point at A. The lengths of the rods are

a, b and their weights are wa and wb . Prove that, if AB makes an angle 0

with the vertical, then a? + 2ab tan@ = b?

O Two equal rods, AB and AC, each of length 2b, are freely jointed at A and

rest on a smooth vertical circle of radius @, show that if 20 be the angle

between the rods then bsin® 8 = acos8

O Weights W,,W, are fastened to alight inextensible string ABC at the points

B, C the end A being fixed. Prove that, if a horizontal force P is applied at C

and in equilibrium AB, BC are inclined at angles 6, « to the vertical then

P = (W, + W,)tan8 = W, tan o

3 A sphere, of given weight W, rests between two smooth planes, one vertical
and the other inclined at a given angle « to the vertical; find the reactions of

the planes.

O A picture frame, rectangular in shape, rests against a smooth vertical wall,
from two points in which it is suspended by parallel strings attached to two
points in the upper edge of the back of the frame, the length of each string
being equal to the height of the frame. Show that, if the center of gravity of the

frame coincide with its center of figure, the picture will hang against the wall at

an angle @ = tan™! 3£ to the vertical, where a is the height and b the thickness
a

of the picture.



FRAMEWORK

framework is an assembly of bars connected by hinged or
Apinned joints and intended to carry loads at the joints only. Each

hinge joint is assumed to rotate freely without friction; hence all the bars in the
frame exert direct forces only and
are therefore in tension or

compression. A tensile load is

taken as positive and a member

carrying tension is called a tie. A

compressive load is negative and a member in compression is called a strut.
The bars are usually assumed to be light compared with the applied loads. In
practice the joints of a framework may be riveted or welded but the direct
forces are often calculated assuming pin-joints. This assumption gives values
of tension or compression which are on the safe side. In order that the
framework shall be stiff and capable of carrying a load, each portion forms a
triangle, the whole frame being built up of triangles. Note that the wall ad
forms the third side of the triangle. The forces in the members of a pin-jointed
stiff frame can be obtained by the methods of statics, i.e. using triangle and
polygon of forces, resolution of forces and principle of moments. The system

of forces in such a frame is said to be statically determinate.

¢ Free-Body Diagrams

Successful application of the equations of equilibrium requires a complete
specification of all the known and unknown external forces that act on the
body. The best way to account for these forces is to draw a free-body diagram.

This diagram is a sketch of the outlined shape of the body, which represents it
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as being isolated or “free” from its surroundings, i.e., a “free body.” On this
sketch it is necessary to show all the forces and couple moments that the
surroundings exert on the body so that these effects can be accounted for when
the equations of equilibrium are applied. A thorough understanding of how to
draw a free-body diagram is of primary importance for solving problems in
mechanics.

© Support Reactions

Before presenting a formal procedure as to how to draw a free-body diagram,
we will first consider the various types of reactions that occur at supports and
points of contact between bodies subjected to coplanar force systems. As a
general rule. A support prevents the translation of a body in a given direction
by exerting a force on the body in the opposite direction. A support prevents
the rotation of a body in a given direction by exerting a couple moment on the
body in the opposite direction. Here, other common types of supports for
bodies subjected to coplanar force systems. (In all cases the angle 6 is

assumed to be known.)

4 One unknown. The reaction is a

-

- “#/ tension force which acts away from the
F

member in the direction of the cable.

¢ One unknown. The

y : 8
reaction is a force which 7! > B
I F

acts along the axis of the

link.
¢ One unknown. The reaction is a force
which acts perpendicular to the surface at
a7 }’\ﬂ the point of contact.

reller

4 One unknown. The reaction is a force

which acts perpendicular to the surface at 4f \991’ —
N 5

the point of contact.
rock el
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¢ Two unknowns. The

, I'T I/< reactions are two components

Myé Ly S bt of force, or the magnitude

I, ' and direction of the resultant

, force. Note that and are not
sromtpualcy wlage necessarily equal [usually

not, unless the rod shown is a link as in (2)].

¢ One unknown. The 9 : ‘ﬁ
reaction is a force which acts - ¥ or
é s B - A
perpendicular to the slot. —l/— ' A ' A
rotler or pin in
ronfined smooth slot

;\( 5 ? 4 One unknown. The
5 L .
- reaction is a force which
Bf AN h acts perpendicular to the

’ rod.

membr pin connected
to- collar on smooth rod

4 One unknown. The reaction is a force

which acts perpendicular to the surface at <
the point of contact. 1 S o

smooth contacting F
surtace

4 Three unknowns. The
i reactions are the couple
T_l. " /\'\]' moment and the two force

— f— components, or the couple
" " moment and the magnitude and

fixed support direction of the resultant force.

¢ Two unknowns. The reactions

are the couple moment and the v
force which acts perpendicular to : / M
the rod. member fined connected

to collar on smooth rod
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B A TRUSS

A truss is a structure composed of slender members joined together at their end
points. The members commonly used in construction consist of wooden struts
or metal bars. In particular, planar trusses lie in a single plane and are often
used to support roofs and bridges. The truss shown in the figure is an example
of a typical roof-supporting truss. In this figure, the roof load is transmitted to
the truss at the joints by means of a series of purlins. Since this loading acts in
the same plane as the truss, the analysis of the forces developed in the truss

members will be two-dimensional \/

To design both the members and the L
connections of a truss, it is necessary \ 4V 2 O /
first to determine the force developed A : _

in each member when the truss is [ Roof truss
subjected to a given loading. To do

this we will make two important assumptions:

@ All loadings are applied at the joints. In most situations, such as for

bridge and roof trusses, this assumption is true. Frequently the weight of the

members is neglected because the force supported by each member is usually

much larger than its weight. However, if the weight is to be included in the

analysis, it is generally satisfactory to apply it as a vertical force, with half of

its magnitude applied at each end of the member.

©The members are joined together by smooth pins. The N /

joint connections are usually formed by bolting or welding the "‘J:\;&ff#_ o

ends of the members to a common plate, called a gusset plate, .-=="" -

as shown in the figure, or by simply passing a large bolt or pin

through each of the members, as shown. We can assume these ™.

connections act as pins provided the center lines of the joining \\/L«-
—

members are concurrent, as shown.
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Because of these two assumptions, each truss member will act T c

as a two force member, and therefore the force acting at each
end of the member will be directed along the axis of the

member. If the force tends to elongate the member, it is a

tensile force (7), as in the figure; whereas if it tends to shorten

the member, it is a compressive force (C), Fig. 6—4b. In the T c
actual design of a truss it is important to state whether the feen Compresien
nature of the force is tensile or compressive. Often, compression members
must be made thicker than tension members because of the buckling or column

effect that occurs when a member is in compression.

¢ Simple Truss

If three members are pin connected at their ends, they form a triangular truss
that will be rigid, as shown. Attaching two more members and connecting
these members to a new joint D forms a larger truss, as shown. This procedure
can be repeated as many times as desired to form an even larger truss. If a truss
-can be constructed by expanding the basic triangular truss in this way, it is
called a simple truss. The basic equation between numbers of members of a

truss m and numbers of joints n so that m = 2n — 3

¢ The Method of Joints

In order to analyze or design a truss, it is necessary to determine the force in
each of its members. One way to do this is to use the method of joints. This
method is based on the fact that if the entire truss is in equilibrium, then each
of its joints is also in equilibrium. Therefore, if the free-body diagram of each

joint is drawn, the force equilibrium equations can then be used to obtain the
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member forces acting on each joint. Since the members of a plane truss are

straight two-force members lying in a single plane, each joint is subjected to a

force system that is coplanar and concurrent. As a result, only > F, =0 and

EFy = 0 are need to be satisfied for equilibrium.

When using the method of joints, always start at a joint having at least one

known force and at most two unknown forces. In this way, application of

> F, =0 and ) F, = 0yields two algebraic equations which can be solved

for the two unknowns. When applying these equations, the correct sense of an

unknown member force can be determined using one of two possible methods.

@ The correct sense of direction of an unknown member force can, in many
cases, be determined “by inspection.” In more complicated cases, the sense of
an unknown member force can be assumed; then, after applying the
equilibrium equations, the assumed sense can be verified from the numerical
results. A positive answer indicates that the sense is correct, whereas a negative
answer indicates that the sense shown on the free-body diagram must be

reversed.

@ Always assume the unknown member forces acting on the joint’s free-body
diagram to be in tension; i.e., the forces “pull” on the pin. If this is done, then
numerical solution of the equilibrium equations will yield positive scalars for
members in tension and negative scalars for members in compression. Once an
unknown member force is found, use its correct magnitude and sense (T or C)

on subsequent joint free-body diagrams.

¢ Zero-Force Members

Truss analysis using the method of joints is greatly simplified if we can first
identify those members which support no loading. These zero-force members
are used to increase the stability of the truss during construction and to provide
added support if the loading is changed. The zero-force members of a truss can

generally be found by inspection of each of the joints.
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¢ The Method of Sections

When we need to find the force in only a few members of a truss, we can
analyze the truss using the method of sections. It is based on the principle that
if the truss is in equilibrium then any segment of the truss is also in
equilibrium. When applying the equilibrium equations, we should carefully
consider ways of writing the equations so as to yield a direct solution for each
of the unknowns, rather than having to solve simultaneous equations. This
ability to determine directly the force in a particular truss member is one of the

main advantages of using the method of sections

¢ Space Trusses

A space truss consists of members joined together at their
ends to form a stable three-dimensional structure. The

simplest form of a space truss is a tetrahedron, formed by

connecting six members together, as shown. Any additional !
members added to this basic element would be redundant in ' 4 o
supporting the force P. A simple space truss can be built
from this basic tetrahedral element by adding three additional members and a
joint, and continuing in this manner to form a system of multi connected
tetrahedrons. Assumptions for Design. The members of a space truss may be
treated as two-force members provided the external loading is applied at the
joints and the joints consist of ball-and-socket connections. These assumptions
are justified if the welded or bolted connections of the joined members
intersect at a common point and the weight of the members can be neglected.
In cases where the weight of a member is to be included in the analysis, it is
generally satisfactory to apply it as a vertical force, half of its magnitude

applied at each end of the member.
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|I Ilustrative Examples I|

00N
O EXAMPLE 1 #
4
Draw the free-body diagram of the object as shown. L qn
0 SOLUTION b—3m—— :mJ

Free-Body Diagram. The supports are

removed, and the free-body diagram of the 500
a,
beam is shown in the figure below. Since the ' /
support at A is pin, the pin exerts two c ol
pp p p 4 : &

reactions on the beam, denoted as A, and 4, . A
|ﬂ— -3im — 2m

The magnitudes of these reactions are W

unknown, and their sense has been assumed.

The weight of the beam, W N, acts through the beam’s center of gravity G,
which is 2.5 m from 4 since the beam is uniform. The tension in the string as

illustrated.

O EXAMPLE 2 R 1|:---N

Draw the free-body diagram of the uniform beam shown

in the figure. The beam has a mass of 100 kg.

0 SOLUTION . 6m

The free-body diagram of the beam is shown in figure behind. Since the
support at A is fixed, the wall exerts three reactions on the beam, denoted as
A, A, and M, . The magnitudes of these reactions are unknown, and their
sense has been assumed. The weight of the beam, W = 100(9.81) N = 981 N,

acts through the beam’s center of gravity G, which is 3 m from A4 since the

beam is uniform.

¥ 1200
Im
r Ay Effect of applisd
- J force acting on beam

FN, - &
Effect of fixed \a A
support acting M =
on beam i = 7 :

Q81N

Effect of gravity {weight)
acting on beam
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O EXAMPLE 3 o
GO0 N 0N

Determine the horizontal and vertical >\ 1
450 0.2m

components of reaction on the beam

]

as shown. Neglect the weight of the beam.

caused by the pin at B and the rocker at 4 | ‘

R
‘I—J
2m i Im * 2m —‘
0O SOLUTION .
The supports are removed, and the free-body ¥
diagram of the beam is shown in figure 00 sin 45° N
HON
besides. For simplicity, the 600-N force is 600 cos 45° N l:n.:*lm
represented by its # and y components as AGT———— 1 B

shown.

—Ilm—

Equations of Equilibrium. A, B,
Summing forces in the z direction yields

+ Y F =0, 600cos45 — B, = 0, = B, =424 N

A direct solution for A, can be obtained by applying the moment

equation » M =0 about point B.

S M, =0, 100(2) + 600sin 45(5) — 600 cos 45 (0.2) — A (7) =0
= A =319N

Summing forces in the y direction, using this result, gives

+T2Fy =0, 319—6003in45—100—200+By =0, :>By = 405

NOTE: Remember, the support forces in the figure are the result of pins that

act on the beam. The opposite forces act on the pins

O EXAMPLE 3 000 N

Determine the support reactions on the member in - I— i

the figure. The collar at 4 is fixed to the member =) N S
and can slide vertically along the vertical shaft. el xﬂ
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O SOLUTION

Free-Body Diagram. Removing the AN

supports, the free-body diagram of the . -

member 1s shown. The collar exerts a _C,\:'?_.JI,;" , <n?m \\%f"

horizontal force A, and moment M, on :T 3
P Ng

the member. The reaction N of the roller
on the member is vertical.
Equations of Equilibrium. The forces A, and N, can be determined directly

from the force equations of equilibrium.

+ EF1=0, A, =0
+T2Fy=0, Ny —900=0 = N, =900 N

The moment M , can be determined by summing moments either about point

A or point B.

YoM, =0, M, — 500 + 900((1.5) + (1) cos45) = 0
= M, = —1486 N

orB

Y M, =0, M, + 900((1.5) + (1) cos 45) — 500 = 0

= M, = —1486 N

The negative sign indicates that M, has the opposite sense of rotation to that

shown on the free-body diagram.

SO0 N

O EXAMPLE 5

Determine the force in each member of the truss as shown

and indicate whether the members are in tension or

compression.

O SOLUTION —2m—
Since we should have no more than two unknown forces at the joint and at

least one known force acting there, we will begin our analysis at joint B.
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@Joint B. The free-body diagram of the joint at B is shown.
Applying the equations of equilibrium, we have

t L F, =0
+1)F, =0,

500 — Fi;,sin45 = 0

F

FBCcos45 —Fz, =0

Since the force in member BC has been calculated, we can proceed
to analyze joint C to determine the force in member CA4 and the

support reaction at the rocker.

@Joint C. From the free-body diagram of joint C, as shown, we

have
+ D> F =0, —Fg +7071cosd5=0 = F, =500N
+ TEFy =0, C,—T707.1sin45 =0 = C, =500 N

@ Joint A. Although it is not necessary, we can determine the

components of the support reactions at joint 4 using the results
of F,, and Fy, . From the free-body diagram, we have

t LF, =0
+ 1 EFy =0,

NOTE: The results of the analysis are summarized in last

500 — A, =0
500 — A, =0

= A, =500 N
= A =500 N

B

S00N

figure. Note that the free-body diagram of each joint (or pin)

Tension

shows the effects of all the connected members and external
forces applied to the joint, whereas the free-body diagram of 59N
each member shows only the effects of the end joints on the

member.
O EXAMPLE 5

Determine the force in each member of the truss shown in
the figure. Indicate whether the members are in tension or

compression

|
AA

- > -
S00N ¥ 500N

SO00N

lr;—1-—.‘?"!'?*1

L .E'Aj B Mg

= Fy, = T0T.1N
= Fy, =500 N

TIT1N
I

] Fga=S00N
A

A= Fry = 500N

X

A,

S00N
T07.1N
LY

3 o

4

~ R7T0TIN
Tension + 3?’
R

5""N+5~1||N

400N

i

O SOLUTION

*

3 m:

600N
-
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400N G,
Support Reactions. No joint can be analyzed until the 1 m (l
support reactions are determined, because each joint has at N 1
least three unknown forces acting on it. A free-body o
diagram of the entire truss is given in the figure. Applying N
the equations of equilibrium, we have AT\ 6m ! 600 N
+ Y. F =0, 600—C,=0 = C, =600 N
+T2Fy:0, 600 — 400 —C, =0 = C, =200 N

Y M, =0, —A/(6)+4003)+6004) =0 = A =600N

The analysis can now start at either joint 4 or C. The choice is
arbitrary since there are one known and two unknown member

forces acting on the pin at each of these joints.

® Joint A. As shown on the free-body diagram, F, , is assumed

to be compressive and F,,is tensile. Applying the equations of GO0 N

equilibrium, we have

+1YF =0, 600—§FAB:O = F,; =T50 N
+ >, F =0 F, —2(750):0 = F,, =730 N

@ Joint D. Using the result for F,,and summing forces in

the horizontal direction, we have I
450N 600N

3
£ F =0 — 450+ ~Fpy +600 =0 = Fj; =250 N
The negative sign indicates that F,jacts in the opposite
200N
sense to that supposed. To determine F,,, we can either Fea €Y 600N

correct the sense of Fy,; on the free body diagram, and then

200N
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apply F, = 0, or apply this equation and retain the negative sign for Fj5, i.e.,

4

+T2Fy =0, —FDC—g(—250):0 = F,, =200 N
@ Joint C.
1—1110 ™ 1 200N
£ TF, =0, Ry —600=0 D e B .i":z*.r_w[.
= Fgp = 600 N BN /\ESDN 200N
+ 13 F, =0, 200 — 200 = 0 " v
ey A &
Q&"*“- 7 % 2
NOTE: The analysis is summarized in 5 N i
last figure, which shows the free body / |
diagram for each joint and member. Fﬁy <-' ”0['
Tension
e A j—béDHN
T 450N T 0N
600N
O EXAMPLE 6
he fi bers GE, GC, and BC -Iic (g 400N
Determine the force in members GE, ,and B - w00
. . Im s:l-
of the truss shown in the figure. Indicate whether ~ J_ .f e
.D‘
the members are in tension or compression. L ~‘
|~—4 m—f—4m—}—4 m
0O SOLUTION S
Section aa in the figure has been chosen since it cuts
— i 40000 N
through the three members whose forces are to be -11 ‘
am ;
determined. In order to use the method of sections, 1_4 D
. . Ar A
however, it is first necessary to determine the q _
A, Sm r 4m D
external reactions at 4 or D. Why? A free-body ' 1200 N

diagram of the entire truss is shown in second figure. Applying the equations
of equilibrium, we have
+ > F =0, 400 — A, =0 = A, =400 N

S M, =0, — 1200(8) — 400(3) + D,(12)=0 = D, =900 N
+T2Fy:0, A, —1200 + 900 = 0 = A, =300 N
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For the analysis the free-body diagram of the left portion

of the sectioned truss will be used, since it involves the

least number of forces. Summing moments about point G
eliminates F,, and F . yields a direct solution for Fy, .
> Mg =0, —300(4) —400(3) + Fp,(3)=0 = Fy -
In the same manner, by summing moments about point C we obtain a direct

solution for F .

> M, =0,

Since Fyz,and Fg,have no vertical components, summing forces in the y

—300(8) — F,;,(3)=0 = F,, =800 N

direction directly yields F, , i.e.,

+TEFy

0, 300 — EFGC =0 = F,, =500 N

NOTE: Here it is possible to tell, by inspection, the proper direction for each

F,

cp to be

unknown member force. For example, > M, = 0requires

compressive because it must balance the moment of the 300-N force about C.

1000 M
03 EXAMPLE 7 i

3000 M 1000 M
Determine the force in member EB of the roof [E &
1000

truss shown in the figure. Indicate whether

the member is in tension or compression.

O SOLUTION

AN W

Free-Body Diagrams. By the method of

sections, any imaginary section that

cuts through EB, as shown, will also Ll

have to cut through three other 000N

members for which the forces are

unknown. For example, section aa cuts

Fpp cos 30F

FE.D sin 30°
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through ED, EB, FB, and 4B. If a free-body diagram of the left side of this

section is considered, it is possible to obtain Fy, by

summing moments about B to eliminate the other three

1000 N
unknowns; however, Fg,cannot be determined from l

the remaining two equilibrium equations. One possible 31l ‘l\

.. . . F = 3080
way of obtaining Fpis first to determine Fy,, from £ £p = 300N

section aa, then use this result on section bb, which is fee

shown in the figure. Here the force system is concurrent and our sectioned free-
body diagram is the same as the free-body diagram for the joint at £. In order
to determine the moment of Fy;, about point B, we will use the principle of

transmissibility and slide the force to point C and then resolve it into its

rectangular components as shown. Therefore,

ST My =0, 1000(4) + 3000(2) — 4000(4) + Fy, sin30(4)= 0

Consideri
— F,, = 3000 N onsidering
now the free-body diagram of section bb, we have
+ EFw =0, Fpp cos30 — 3000cos30 = 0 = Fpp = 3000 N
+1TYF =0, 2(3000sin30) — 1000 — Fj,; =0 = F,, = 2000 N

O EXAMPLE 7

Determine the forces acting in the members of the
space truss shown in the figure. Indicate whether

the members are in tension or compression.

O SOLUTION

Since there are one known force and three unknown

forces acting at joint A, the force analysis of the

truss will begin at this joint.
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® Joint 4. Expressing each force acting on the free-body diagram of joint 4

as a Cartesian vector, we have

P = —4000, F,p =F,zj Fac=—Fyck

Fap = Fyp| PAE | = F, (05773 + 0.5775 — 0.577k)

TAE

equilibrium,

Y F =0, P+ F pg+F c+Fup=0

= —4000j+ F,p j— F,ck+ 057TF, ;1 + 0.57TF, ;5 — 0.57TF. .k
D F, =0, 0577F,; =0 =>F,p =0
> F, =0, — 4000 + F,; + 0.577F,, =0 =F,, = 4000 N

> F, =0, —F,c —0577TF,, =0 =F,, =0

Since F,is known, joint B can be analyzed next.

© Joint B.
— 1 — —
E F.’t = 0, ﬁFBE = 0 :>FBE = 0
1

F =0 — 4000+ —=F., =0 =F,., =5650 N

Z y ? G CB CB
1 1
E F, =0 —2000+F,, ——F, . +—F,., =0 =F,  =2000 N
’ BD \/5 BE \/5 CB BD

The scalar equations of equilibrium can now be applied to the forces acting on

the free-body diagrams of joints D and C. Show that

Fpp = Fpe = Fop =0
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PROBLEMS

O Determine the magnitude of force at the
pin A and in the cable BC needed to
support the 500-Ib load. Neglect the
weight of the boom AB.

O In each case, calculate the support reactions and then draw the free-body
diagrams of joints A, B, and C of the truss.

=

Fy

G0 b A0 b l
800 1b 8 j] o
O Determine the force in each member of the truss. ‘
State if the members are in tension or compression. N o
n ‘ i
—12 Et—-|-—2 ft 4
300 Ik
. . E
O Identify the zero-force members in the truss. ’,,»;Ej] -
e
3kN -
1 ¥ 2 :2" ’//
J E L Im D LM '____.—; 3
_|E L T A
I C Fr_‘,:,,;',/ \\\\ 4n
15m N \ L Y
P o
‘ A ﬁ/ ] el i
A P B C D N
A4 I‘— 2m—s 2m—=f—2m—
F RN



g2 |p—ll

L o Bl agd Alallae ¢ Jus cpall Ha daal L4 Sl ale Guad -0
Yool S ¢ land) saal craa llae ¢ Al g
Yoo) asilly il sl -\l —Aflad ad) ) daal —Y
3- Arthur Stanley Ramsey, Statics A Text-Book, Cambridge University
Press.

4- R. C. Hibbeler, Engineering Mechanics, Statics, 14Edition.

5- S. L. Loney, The elements of Statics and Dynamics, Part I, Cambridge
University Press.



