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PREFACE 

 

echanics is a branch of the physical sciences that is concerned 

with the state of rest or motion of bodies subjected to the action 

of forces. Mechanics is divided into two areas of study, namely, statics and 

dynamics. Statics is concerned with the equilibrium of a body that is either at rest 

or moves with constant velocity. Here we will consider dynamics, which deals 

with the accelerated motion of a body. The subject of dynamics will be presented 

in two parts: kinematics, which treats only the geometric aspects of the motion, 

and kinetics, which is the analysis of the forces causing the motion. To develop 

these principles, the dynamics of a particle will be discussed first, followed by 

topics in rigid-body dynamics in two and then three dimensions 

Historically, the principles of dynamics developed when it was possible to make 

an accurate measurement of time. Galileo Galilei (1564-1642) was one of the 

first major contributors to this field. His work consisted of experiments using 

pendulums and falling bodies. The most significant contributions in dynamics, 

however, were made by Isaac Newton (1642-1727), who noted for his 

formulation of the three fundamental laws of motion and the law of universal 

gravitational attraction. Shortly after these laws were postulated, important 

techniques for their application were developed by Euler, D' Alembert, Lagrange, 

and others. There are many problems in engineering whose solutions require 

application of the principles of dynamics. Typically, the structural design of any 

vehicle, such as an automobile or airplane, requires consideration of the motion 

to which it is subjected. This is also true for many mechanical devices, such as 

motors, pumps, movable tools, industrial manipulators, and machinery. 

Furthermore, predictions of the motions of artificial satellites, projectiles, and 

spacecraft are based on the theory of dynamics. With further advances in 

technology, there will be an even greater need for knowing how to apply the 

principles of this subject.  

Any corrections of errors, or hints for improvement will be thankfully received. 
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VECTORS WITH APPLICATIONS 

 

he physical quantities or measurable objects of reasoning in 

Applied Mathematics or Mechanics are of two classes. The one 

class, called Vectors, consists of all measurable objects of reasoning which 

possess directional properties, such as displacement, velocity, acceleration, 

momentum, force, etc. The other class, called Scalars, comprises measurable 

objects of reasoning which possess no directional properties, such as mass, 

work, energy, temperature, etc.  

 Rectangular Components of a Vector  

A vector A  may have one, two, or three rectangular 

components along the X,Y,Z  coordinate axes, depending on 

how the vector is oriented relative to the axes. In general, 

though, when A  is directed within an octant of the X,Y,Z  

frame, Figure behind, then by two successive applications of 

the parallelogram law, we may resolve the vector into 

components as ˆ
zA A A k  and then ˆ

ˆ
x jA A i A . Combining these 

equations, to eliminate ,A A is represented by the vector sum of its three 

rectangular components, ˆ ˆ ˆ
x y zA A i A j A k  

 Magnitude of a Cartesian Vector It is always possible to obtain the 

magnitude of A provided it is expressed in Cartesian vector form. As shown  

2 2 2
x y zA A A A A  
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Since the magnitude of a vector is equal to the positive square root of the sum 

of the squares of the magnitudes of its components, and A  has a magnitude of  

 Coordinate Direction Angles 

We will define the direction of A  by the coordinate 

direction angles (alpha), (beta), and (gamma), 

measured between the tail of A  and the positive X,Y,Z

axes provided they are located at the tail of A , Figure. 

Note that regardless of where A  is directed, each of 

these angles will be between 0° and 180°.  

2 2 2

2 2 2

2 2 2

cos

cos

cos

x x

x y z

y y

x y z

z z

x y z

A A

AA A A

A A

AA A A

A A

AA A A

 

A  is the magnitude of A . It is obvious that from previous relation, an 

important relation among the direction cosines can be formulated as, by 

squaring and adding  

2 2 2cos cos cos 1  

Here we can see that if only two of the coordinate angles are known, the third 

angle can be found using this equation. 

 The two vectors ,A B  is said to be equal if they have the same 

magnitude and point in the same direction, while A  (negative 

of a vector A )  has the same magnitude and opposite direction.  

 Unit vector of a vector. A vector is said to be a unit vector if its magnitude 

equals unity, A unit vector may, therefore, be chosen in any direction. In 
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particular the unit vector along a vector A  or in direction of the vector A   is 

defined by  ˆ , , cos , cos , cosyx z
AA AA

A
A A A A

 

 Vector Directed Along a Line 

Quite often in three-dimensional statics problems, 

the direction of a force is specified by two points 

through which its line of action passes. Such a 

situation is shown in Figure behind, where the 

vector A  is directed along the cord AB. We can 

formulate A  as a Cartesian vector by realizing that 

it has the same direction and sense as the position 

vector r  directed from point A to point B on the 

cord. This common direction is specified by the unit vector ˆ /u r r . Hence, 

2 2 2

ˆ ˆ ˆ( ) ( ) ( )
ˆ

( ) ( ) ( )

B A B A B A

B A B A B A

x x i y y j z z kr
A Au A A

r x x y y z z
 

 Addition of Cartesian Vectors 

The addition (or subtraction) of two or more vectors is greatly simplified if the 

vectors are expressed in terms of their Cartesian components. For example, let 

,A B  be two vectors of components ˆ ˆ ˆ
x y zA A i A j A k  and 

ˆ ˆ ˆ
x y zB B i B j B k  then the addition or subtraction is given by 

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )
ˆ ˆ ˆ( ) ( ) ( )

x y z x y z

x x y y z z

A B A i A j A k B i B j B k

A B i A B j A B k
 

 Law of Triangle, states that if a body is acted upon by 

two vectors represented by two sides of a triangle taken in 

order, the resultant vector is represented by the third side 

of the triangle.  
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 Polygon of Vectors 

If any number of vectors, acting on a particle be represented, 

in magnitude and direction, by the sides of a polygon, taken 

in order, the resultant vector is represented by the last side 

that will closed the polygon, as shown in red color. 

 

 Scalar Product  

Occasionally in statics one has to find the angle between two lines or the 

components of a force parallel and perpendicular to a line. In two dimensions, 

these problems can readily be solved by trigonometry since the geometry is 

easy to visualize. In three dimensions, however, this is often difficult, and 

consequently vector methods should be employed for the solution. The dot 

product, which defines a particular method for “multiplying” two vectors, can 

be used to solve the above-mentioned problems. 

Let ,A B  be two vectors of components ˆ ˆ ˆ
x y zA A i A j A k  and 

ˆ ˆ ˆ
x y zB B i B j B k  then the scalar product, notation ,A B

 
is expressed in 

equation form cosA B AB  Or may be given by the Cartesian vector 

formulation 

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )x y z x y z

x x y y z z

A B A i A j A k B i B j B k

A B A B A B
 

In which ,A B   represent the magnitude of ,A B  and  is the angle between 

them. Note that the scalar product is a scalar quantity. It is easy to deduce that 

2 0, ( 0 )

, (Commutatitve law)

( ) , (Associative law)

( ) ( ) ( )

A A A

A B B A

A B C A B AC

A B A B A B

 

The dot product can be applied to determine the angle formed between two 

vectors or intersecting lines where 1cos ( / )A B AB  
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In particular, notice that if 10 cos 0
2

A B , so that A  will 

be perpendicular to B . On the other hand the scalar product gives the work 

done by a force. 

 Cross- product  

Let ,A B  be two vectors of components ˆ ˆ ˆ
x y zA A i A j A k  

and ˆ ˆ ˆ
x y zB B i B j B k  then the cross product A B  or 

A B  is defined by  

ˆ ˆ ˆ

ˆ ˆ ˆ( ) ( ) ( )

x y z

x y z

y z z y x z z x x y y x

i j k

A B A A A

B B B

A B A B i A B A B j A B A B k

 

Or      ˆsinA B AB n  

In which n̂  is a unit vector normal to the plane that contains the vectors ,A B

and can be determined by using the right-hand rule, as shown.  

Besides, it is easy to deduce that 

(i) 0, (ii) ( ) ,

(iii) ( ), (iv) ( ) ( ) ( )

A A A B C A B A C

A B B A A B A B A B
 

One of important application of cross product is to 

evaluate the area of parallelogram in which ,A B
 

represents the sides of the parallelogram which is equal  

sinA B AB  

 Triple-Dot product 

If ˆ ˆ ˆ
x y zA A i A j A k , ˆ ˆ ˆ

x y zB B i B j B k and ˆ ˆ ˆ
x y zC C i C j C k  

are three vectors then the triple scalar product is defined by .A B C  
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( )

( ) ( ) ( )

x y z

x y z

x y z

x y z z y y x z z x z x y y x

A A A

A B C B B B

C C C

A B C B C A B C B C A B C B C

 

It is easy to proof that (properties of determinants) 

( ) ( )

( )

A B C C A B

B C A
 

In addition, the absolute value of triple scalar product 

( )A B C  gives the volume of parallelepiped in which 

, ,A B C
 

are three vectors at the corner of the 

parallelepiped. In particular case as ( ) 0A B C
 
then 

the three vectors lie in a plane. 

 Triple-Cross product 

Triple-cross product ( )A B C  for any three vectors , ,A B C
 
is defined by

   ( ) ( ) ( )A B C AC B A BC
  

Note that                ( ) ( )A B C A B C  

If the triple vector product ( ) 0A B C  then either A or B  or C  is zero 

singly or in combination, or A  is in the plane containing B and C . 

 

 λ-μ Theorem  

If ABO is a triangle and the point C divides the line AB such that 

: :CB CA   then  ( )OA OB OC . 

Proof. 

Let the point C divide the line AB such that CA CB BC then  

(1)CA BC   (since CA  and BC  are in the same direction) 
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Now in OAC    (2)OA OC CA OA OC CA  

again in OBC    (3)OB OC CB OB OC CB  

Adding equations (2) and (3), we get 

( )

( ) ( )

( ) ( from(1))

OA OB OC CA CB

OC CA BC CB BC

OC CA BC

 

 Cor. If , then we have 

2OA OB OC  
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Examples Illustrative

 

 EXAMPLE 1 

Determine a unit vector that parallel to resultant of the vectors 

ˆ ˆ ˆ2 7 3A i j k  and ˆ ˆ ˆ4 8B i j k  

 SOLUTION 

The resultant of the two vectors ,A B  is  

ˆ ˆ ˆ ˆ ˆ ˆ(2 7 3 ) ( 4 8 )
ˆ ˆ ˆ2 2

R A B i j k i j k

i j k
 

Therefore the unit vector R̂  parallel to the resultant R  is given by 

ˆ ˆ ˆ2 2ˆ
3

R i j k
R

R
 

 EXAMPLE 2 

Determine the constant so that the vector ˆ ˆ ˆ2A i j k  be 

perpendicular to the vector ˆ ˆ ˆ4 3B i j k  

 SOLUTION 

Since the vectors ,A B
 
will be orthogonal if 0A B  therefore,  

2

ˆ ˆ ˆ ˆ ˆ ˆ(2 ) (4 3 )

8 3 0 0 and 3

A B i j k i j k
 

 EXAMPLE 3 

Find a unit vector normal to the plane that contains the vectors 

ˆ ˆ ˆ2 6 3a i j k  and ˆ ˆ ˆ4 3b i j k  

 SOLUTION 

Since a b  is a vector normal to the plane that contains ,a b  hence, 
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ˆ ˆ ˆ

ˆ ˆ ˆ2 6 3 15 10 30

4 3 1

i j k

a b i j k  

Then the unit vector  
ˆ 5

a b
n

a b

ˆ ˆ ˆ3 2 6

5

i j k 1 ˆ ˆ ˆ(3 2 6 )
749
i j k  

 EXAMPLE 4 

If  ˆ ˆ ˆ8 14A B i j k  and ˆ ˆ ˆ5 3 2 .A B i j k Find the vectors ,A B  

 SOLUTION 

Let the components of the vectorA  be , ,x y zA A A and  

0

ˆ ˆ ˆ5 3 2 then

( )

A B i j k

A A B A A A B A B
 

               

( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) (5 3 2 ) 8 14x y z

A A B A B

A i A j A k i j k i j k

 

ˆ ˆ ˆ

ˆ ˆ ˆ(2 3 ) (2 5 ) (3 5 )

5 3 2
x y z y z x z x y

i j k

A A A A A i A A j A A k  

By equating the components

  
ˆ ˆ ˆ ˆ ˆ ˆ(2 3 ) (2 5 ) (3 5 ) 8 14

2 3 8, 2 5 14, 3 5 1

y z x z x y

y z x z x y

A A i A A j A A k i j k

A A A A A A

 

Solving these three equations we get, 

ˆ ˆ ˆ2, 1, 2 2 2x y zA A A A i j k  

But it is given that ˆ ˆ ˆ5 3 2A B i j k so ˆ ˆ ˆ3 2 4B i j k  

Note there are an infinite numbers of vectors  

ˆ ˆ ˆ ˆ ˆ7 4 and 2 2A i j B i j k    etc. (How?) 
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 EXAMPLE 5 

Find the vector x  that satisfies the equations ,a x b a if .a x b    

 SOLUTION 

Multiply the equation ,a x b a by vector a  using cross-product so

  2

( ) ( ) using triple cross-product

( ) ( )

b a

a a x a b a

a x a a a x a b a a

2
2

ba a b
ba a x a b x

a

 

 

 EXAMPLE 6 

Obtain the vector that satisfies the equation ( ) 0a x x ma  where m

is a scalar  

 SOLUTION 

Multiply the equation ( ) 0a x x ma
 
by vector a x  using scalar-

product so 

( ) (( ) ) 0 fromassociating lawa x a x x ma

  

 

0 0
2

( ) ( ) ( ) ( ) 0

0 0

a x a x x a x ma a x

a x a x
 

Using this formula and substitute it in equation 0a x x ma
 
we get 

0x ma x ma  

 

 EXAMPLE 7 

Solve for vector x  the equation kx a x b where k  is a scalar. 
 SOLUTION 

Multiply the equation kx a x b
 
by vector a  using scalar-product so 

( )a kx a x a b  
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( ) ( )k a x a a x

0

. ( )
a b

a b k a x a b a x
k

 

Once again, multiply the equation kx a x b
 
by vector a  using cross-

product so 

( ) ( )

2

( ) ( )

( ) ( )

a x a a a x

k a x a a x a b

k a x a x a a x a b

 

Equation kx a x b  gives a x b kx  and then substituting in 

previous equation we have 

2

2 2

( )

( )

a b
k b kx a a x a b

k
a b

a k x kb a a b
k

 

Or 2
2 2

1
{ ( ) }

( )
x k b a b a ka b

k a k
 

 EXAMPLE 8 

For any vectors three ,A B and C  show that  

(i) 0

(ii)( ) ( ) 2

(iii) . 0

A B C B C A C A B

A B B A A B

A A B

 

 SOLUTION 

(i) By applying the triple cross product principle, we have 

A B C AC B A B C

B C A B A C B C A

C A B C B A C A B

 

Adding the three equations we obtain 

0A B C B C A C A B  

(ii) 

0

( ) ( )A B B A A B A A

0

B B B A  

2A B A B A B  
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(iii) From properties of triple-scalar product 

0

. .A A B B A A 0 we 

have 
0

.A A B B A A 0  

Another technique from the properties of determinants (two equal rows) 

. 0
x y z

x y z

x y z

A A A

A A B A A A

B B B

 

 

 EXAMPLE 9 

For any four vectors , ,A B C and D  prove that  

D A B C D B D C D A  

 SOLUTION 

L.H.S.

Triple-cross product

D A B C D

D A B D C B C D

D A C B D B C A D

 

         
0

( ){ ( )} ( ){ ( )}

( ){ ( )}

( ){ ( )} R.H.S.

B D D A C B C D A D

B D D A C

B D A C D

 

L.H.S. means Left hand side,           R.H.S. means Right hand side  

 

 

 EXAMPLE 10 

Determine the magnitude and direction of the 

resultant force for the forces acting on the hook. 
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 SOLUTION 

The forces can be in written Cartesian coordinates as  

1

2

3

ˆ300 ,
ˆ ˆ ˆ ˆ400cos30 400 sin 30 , 200 3 200
ˆ ˆ ˆ ˆ250 0.8 250(0.6) 200 150

F i

F i j i j

F i j i j

 

Therefore the resultant is 

ˆ ˆ100 200 3 350F i j  

 

 EXAMPLE 11 

ABCDEF is a regular hexagon, prove that AB+AC+AE+AF = 2AD  

 SOLUTION 

According to the triangle law, we have
 

AD AC+CD, and AD AE+ED  

AF AB

2AD AC+AE+CD ED  

but   AB ED, and AF= CD    
Therefore,      AB+AC+AE+AF = 2AD  

 

 EXAMPLE 12 

Let a , b , c be the middle points of the sides of the triangle abc  prove that  

Oa + Ob + Oc Oa+ Ob + Oc  

For any arbitrary point b . 

 SOLUTION 

By applying the - theorem in ( a  divides 

bc  by a ratio 1:1 , etc.) 
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Obc 2Oa Ob Oc  

Oac 2Ob Oa+ Oc  

Oab 2Oc Oa+ Ob  

Adding these three equations we get 

2 Oa Ob Oc Oa+ Ob Oa+ Oc Ob Oc

2 Oa+ Ob Oc
 

Dividing by 2, we have 

Oa + Ob + Oc Oa + Ob + Oc  

 

 EXAMPLE 13 

Let S  be a median point of a triangle abc , show that for any arbitrary point O  
 

Oa+ Ob + Oc 3OS  
 SOLUTION 

By applying the - theorem in ( b  divides bc  by a ratio 1:1 )
 

OaS Oa OS Sa  

ObS Ob OS+ Sb  

OcS Oc OS+ Sc
 

By adding these three equations
 

02Sa

Oa Ob Oc OS+ Sc OS+ Sb OS Sa

3OS Sa Sb Sc 3OS Sa 2Sa 3OS

 

 

Since S  divides any median of the triangle by a ratio 2:1 . 
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PROBLEMS

 Determine the components of a vector whose its magnitude is 18  and acts 

along the line passing through the point (2, 3, 1)
 
to point ( 2,12, 7) . 

 

 

 Obtain a unit vector of the nonzero vector ˆ ˆ ˆ8 7 12i j k . 

 Calculate the angle between the two vectors ˆ ˆ ˆ2 5 6A i j k ,

ˆ ˆ ˆ4 2 3B i j k . 

 

 

 For any two vectors ,A B , show that
2 2 2 2( )A B A B A B . 

 

 

 Evaluate the constant  so that the three vectors ˆ ˆ ˆ2 2A i j k

ˆ ˆ ˆ3B i j k ˆ ˆC i j  be coplanar. 

 

 

 Determine the vector x  that satisfy the equation a x a b and 

0a x . 

 

 

 Determine the vector x  that satisfies the equation ( ) ( . )x a x b c d
 
in 

terms of the known vectors , , ,a b c d . 

 

 

 Prove that ˆ ˆ( ) {( ). }( )a b c a b n n c , where n̂ is a unit vector 

perpendicular to the plane that contains the vectors ,a b . 
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 Solve, for vectorx , the equation kx a x b  where k  is a scalar. 

 

 

 For any three vectors , ,a b c , deduce that 

        
2(i)( ) {( ) ( )} {( ) }a b b c c a a b c  

        
(ii) { ( )} ( )( )a b c c a c b c  

 

 

ABCD  is a quadrilateral, the points P,M
 
are bisected the sides AC,BD  

respectively, prove that AB + CD + AD + CB = 4PM . 

 

 

 The load at A creates a force of 60 N in wire AB. Express this force as a 

Cartesian vector acting on A and directed toward B as shown.  

 
 

 

 
 



MOMENTS AND COUPLES 

 

 

n this chapter we will obtain the moment of a force about a point or 

about an axis, reduction the forces at a point. 

 

 The Moment 

The moment of a force is the tendency of some forces to 

cause rotation. The moment of a force about a point is 

defined to be the product of the force and the 

perpendicular distance of its line of action from the 

point. On the other hand The moment of a force F  

about point O , or actually about the moment axis 

passing through O  and perpendicular to the plane containing O  and F , as 

shown, can be expressed using the vector cross product, namely, 

OM r F  

Here r  represents a position vector directed from O  to any point on the 

line of action of F . Note that 

O sinM r F rF h  

So if the force F  in Cartesian coordinates is ˆ ˆ ˆ
x y zF F i F j F k and the 

vector r  is given by ˆ ˆ ˆr xi yj zk , then 

O

ˆ ˆ ˆ

ˆ ˆ ˆ( ) ( ) ( )

x y z

z y z x y x

i j k

M r F x y z

F F F

yF zF i xF zF j xF yF k

 

I 

 

 

 

MOMENTS AND COUPLES 
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 Theorem If a number of coplanar forces acting at a point of a rigid body 

have a resultant, then the vector sum of the moments of the all forces about any 

arbitrary point is equal to the moments of the resultant about the same point. 

Proof. 

Let the coplanar forces 1 2, , ......, nF F F
 
acting at a 

a rigid body have the resultant F . 

1 2 ...... n iF F F F F  

Let O  be an arbitrary point and ir  be the 

position vector directed from O  to any point on 

the line of action of F . The sum of the moment 

of the forces 1 2, , ......, nF F F  about O  is 

1 2

1 2

.....

......
i n

n

r F r F r F r F

r F F F

r F

 

which is equal to the moment of the resultant about O. Any system of forces, 

acting in one plane upon a rigid body, can be reduced to either a single force or 

a single couple. 

Three forces represented in magnitude, direction and position by the sides of 

a triangle taken the same way round are equivalent to a couple. 

 Moment of a force about an axis 

Thus if F  be a force and L be a line which does not 

intersect F , OA h  the shortest distance between F  

andL , and  the angle between F  and a line through 

A  parallel to L , then sinF is the resolved part of F  

at right angles to L  and sinFh  is the moment of F  

about L  notation by LM . If F  intersects the line L  
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or is parallel toL , then the moment of F  about L  is zero, because in the one 

case 0h and in the other sin 0 . 

Or  on the other hand    o ˆ ˆ( )LM M n n  where n̂  is a unit vector of axis L  

and oM  represents  the moment of the force F  about a point O  (say) lies on 

the axis L , here 

ˆ ( )L

x y z

m n

M n r F x y z

F F F

 

( ) ( ) ( )z y z x y xyF zF m xF zF n xF yF  

 When two forces act at a point the algebraical sum 

of their moments about any line is equal to the 

moment of their resultant about this line. 

 

 In brief to calculate the moment of a force about an 

axis, one does the following three steps 

(i) Obtain a unit vector of the axis (say n̂ ) 

(ii) Determine the moment oM  of the force 

F  about a point lies on the axis, say O . 

(iii) The moment of a force about an axis is  

o ˆ ˆ( )LM M n n   

 Particular cases 

The moment of a force F  about X  axis is OX o
ˆ ˆ( )M M i i  

The moment of a force F  about Y  axis is OX o
ˆ ˆ( )M M j j  

The moment of a force F  about Z  axis is OX o
ˆ ˆ( )M M k k
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 Couples  

Couples play an important part in the general theory of systems of forces and 

we shall now establish some of their principal properties. Since a couple 

consists of two equal and opposite parallel forces (unlike forces), the 

algebraical sum of the resolved parts of the forces in every direction is zero, so 

that there is no tendency for the couple to produce in any direction a 

displacement of translation of the body upon which it acts; and the couple 

cannot be replaced by a single force. The effect of a couple must therefore be 

measured in some other way, and, since it has no tendency to produce 

translation, we next consider what tendency it has to produce rotation. 

Let the couple consist of two forces of magnitudeF . It is of course assumed 

that they are both acting upon the same rigid body. Let us take the algebraical 

sum of the moments of the forces about any point O  in their plane as the 

measure of their tendency to turn the body upon which they act about the 

point O . 

o ( )A BM r F r F  

o ( )A BM r r F r F  

Where its magnitude is o sinM r F rF F  

 

 

 

 

 

 

 

 

 

 

 

 Forces completely represented by the sides of a plane polygon taken the 

same way round are equivalent to a couple whose moment is represented by 

twice the area of the polygon. 

 

 

 

 

 

 

 

Moment plane 
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 Reduction a system of forces 

 

Suppose a system of forces 1 2, , ....., , ....,i nF F F F  is reduced at a chosen point O  

to a single force F  and a single couple M  viz. the obtaining result is o( , )M F  

where 

o
1 1

,
n n

i i i
i i

M r F F F  

Once again if the system of these forces reduced at another point O where the 

obtaining results is  

o
1 1

,
n n

i i i
i i

M r F F F  

That is when the point of reduction changed from O  to O , the resultant of the 

forces does not change while the moment altered, such that  

o
1

1

1 1

o
1

o
1

( )

n

i i
i
n

i i
i
n n

i i i
i i

n

i
i

n

i
i

M r F

r L F

r F L F

M L F

M L F

 

o oM M L F  

Also it is obvious 

o o o. .( ) . .( )FM F M L F FM F L F
0

o. const.F M  

The quantity o.F M  is called invariant quantity 
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Wrench 

Suppose a system of forces is reduced to a single force F  and a single couple 

M  such that the axis of the couple is coincides with the line of action of the 

force F , then that line is called central axis. In addition, F  and M taken 

together are called wrench of the system and are written as ( , )F M . The single 

force F  is called the intensity of the wrench and the ratio /M F  is called the 

pitch of the system and is denoted by . Since F  and oM have the same 

direction so 

o oM M r F F  multiply by F using scalar product 

2 o O O
o 2 2

{ }
FM MF M

F M r F F
FF F

   

Where  is known as the pitch of equivalent wrench 

Also since o 0F M  multiply by F  using cross product we have, 

o

o o( ) ( ) 0

M

F M r F F M F r F  

According to the properties of triple vector product 

2( ) ( . ) ( . ) ( . )F r F F F r F r F F r F r F  

2
o { ( . ) } 0F M F r F r F  

1

o
12 2

( . )
Or

r

F M r F
r F r r F

F F
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The previous equation represents the equation of the central axis or axis of 

equivalent wrench in vector form and to get the Cartesian form let  

1( , , ), ( , , ), ( , , )x y zr x y z r a b c F F F F  

Therefore, the Cartesian form of central axis is 

x y z

x a y b z c

F F F
 

Special cases 

o o(i) . 0 and 0, 0FM F M  

The system reduced to a single force that acts along the line r F  

o o(ii) . 0 and 0, 0FM F M  

The system reduced to a single moment  

o o(iii) . 0 and 0, 0FM F M  

In this case oM  will be perpendicular to F  and the system can be reduced to 

wrench in which the central axis is  

o
2

F M
r F

F
 

o(iv) 0 and 0F M  

The system of forces will be in equilibrium or it is a balanced system of forces. 
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Examples Illustrative

 

 EXAMPLE 1 

Determine the moment of the force ˆ ˆ ˆ2 3 4F i j k  acting at the point 

(3, 2, 0)A  about the origin and the point (2,1, 1)B . 

 SOLUTION 

Since the moment is given by  oM r F  where 

ˆ ˆO O (3,2,0) (0,0,0) 3 2r A A i j  

Therefore the moment of the given force about the origin is  

o

ˆ ˆ ˆ

ˆ ˆ ˆ3 2 0 8 12 5

2 3 4

i j k

M r F i j k  

Again, ˆ ˆ ˆB (3,2, 0) (2,1, 1)r BA A i j k  

Hence,  the moment f the given force about the point (2,1, 1)B  is  

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ3 2 2 1 0 1 1 1 1 2

2 3 4 2 3 4
B

i j k i j k

M r F i j k  

 EXAMPLE 2 

Calculate the moment of the force of magnitude 10 3  and passing through the 

point (5, 3, 3)A  to (4, 4, 4)B about the origin. 

 SOLUTION 

We have to write the force in vector form, to do this the unit vector in the 

direction of the force F̂ , viz. from point (5, 3, 3)A  to (4, 4, 4)B  so  

ˆ ˆ ˆ(4, 4, 4) (5, 3, 3)

ˆ ˆ ˆ 1 1 1ˆ , ,
3 3 3 3

AB B A i j k

AB i j k
F

AB
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Therefore the force be  

ˆ ˆ ˆ
ˆ ˆ ˆ ˆ10 3 10 10 10

3

i j k
F FF i j k  

Choosing any point as an acting point of the force, then the moment of the 

force about the origin O (consider (5, 3, 3)A  as an acting point) 

(5,3, 3) (0,0,0) (5,3, 3)r

o

ˆ ˆ ˆ

ˆ ˆ5 3 3 80 80

10 10 10

i j k

M r F j k  

Also if we choose the point (4, 4, 4)B  as an acting point 

o

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ4 4 4 40 1 1 1 80 80

10 10 10 1 1 1

i j k i j k

M r F j k  

 EXAMPLE 3 

Determine the moment of the force as shown about point O. 

 SOLUTION 

Taking horizontal axis X  as shown, the force 500 can be resolved into  

0 0ˆ ˆ ˆ ˆ500cos45 500sin 45 250 2( )i j i j  

Therefore, the moment is given by,  

o
3 3

250 2 3 250 2 750 2
2 2

M  

Or by cross product where 

0 0

3 3ˆ ˆ3
2 2

ˆ ˆ ˆ ˆ500cos 45 500 sin 45 250 2( )

r i j

F i j i j

 

o

ˆ ˆ ˆ

3 3 ˆ250 2 3 0 750 2
2 2

1 1 0

i j k

M r F k  
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 EXAMPLE 4 

Force F acts at the end of the angle bracket as shown. 

Determine the moment of the force about point O. 

 SOLUTION 

Using a Cartesian vector approach, the force and 

position vectors are 

0 0

ˆ ˆ0.4 0.2
ˆ ˆ ˆ ˆ400sin 30 400cos30 200 346.4

r i j

F i j i j
 

The moment is therefore, 

o

ˆ ˆ ˆ

ˆ0.4 0.2 0 98.6

200 346.4 0

i j k

M r F k  

 EXAMPLE 5 

Find the sum of moment of the forces, ˆ2F i  acts at the origin, the force 

1

2
F  acts at 2

ˆ3r j  and the force 
1

2
F  acts at 3

ˆ5r k  about the origin. 

 SOLUTION 

As clear the resultant of these three forces is zero but the moment about the 

origin is given by 

 

3

o 1 1 2 2 3 3
1

ˆ ˆ ˆ

0 0 0

2 0 0

i i
i

M r F r F r F r F

i j k ˆ ˆ ˆ ˆ ˆ ˆ

0 3 0 0 0 5

1 0 0 1 0 0

i j k i j k

o o

ˆ ˆ ˆ

ˆ ˆ0 3 5 5 3 and 34

1 0 0

i j k

M j k M  
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 EXAMPLE 6 

The force ˆ ˆ2i j  acts along the line that passing through the point (4, 4,5)  and 

the force ˆ3k  acting at the origin. Find the pitch and axis of equivalent wrench. 

 SOLUTION 

The two forces reduced at the origin to a resultant force F  and a moment OM  

so that 

2
1 2

ˆ ˆ ˆ2 3 , 14F F F i j k F  

O 1 1 2 2

ˆ ˆ ˆ

ˆ ˆ ˆ0 4 4 5 5 10 12

2 1 0

i j k

M r F r F i j k  

Thus the pitch of equivalent wrench is given by 
2

F M

F  
that is 

2

ˆ ˆ ˆ ˆ ˆ ˆ(2 3 ) (5 10 12 ) 36 18

14 14 7

i j k i j kF M

F
 

In addition the equation of axis of wrench 1r r F  

1 2

ˆ ˆ ˆ
1 1 ˆ ˆ ˆ2 1 3 ( 18 39 25 )
14 14
5 10 12

i j k
F M

r i j k
F

 

Then the vector form of the axis becomes 

1 ˆ ˆ ˆ ˆ ˆ ˆ18 39 25 (2 3 )
14

r i j k i j k  

And Cartesian form is 

 

18 39 25
14 18 14 39 14 2514 14 14 Or

2 1 3 2 1 3

x y z
x y z
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 EXAMPLE 7 

A force P  acts along the axis of OX  and another force nP  acts along a 

generator of the cylinder 2 2 2x y a at the point ( cos , sin ,0)a a ; show 

that the central axis lies on the cylinder 2 2 2 2 2 4 2( ) (1 )n nx z n y n a  

 SOLUTION 

Generators of the cylinder are parallel to the axis of . Let one generator of it 

pass through the point and its unit vector is and the force acts along this line.  

Also the force acts along axis then 

1

2
2 2 2

,̂ acts at(0, 0, 0)

,̂ acts at( cos , sin , 0)
ˆ ˆ( ), ( (1 ) )

F Pi

F nPk a a

F P i nk F n P

 

The system reduces to a single force and a moment so 

that 

o 1 1 2 2M r F r F  

o

ˆ ˆ ˆ ˆ ˆ ˆ

0 0 0 cos sin 0

1 0 0 0

ˆ ˆ(sin cos )

0

i j k i j k

M a a

n

P

Pa i jn

 

The pitch of equivalent wrench is given by 
2

F M

F  
that is 

2 2 2 2

ˆ ˆ( ) sin

(

ˆ ˆ(sin co

1 )

s

1

)P iP i nk anF M aj

P

n

F n n
 

In addition the equation of axis of wrench 1r r F  

2

1 2 2 2

2

ˆ ˆ ˆ

1 0
(1 )

sin cos 0

ˆ ˆ ˆ( cos sin cos )
1

i j k
F M anP

r n
F n P

an
n i n j k

n

 

Then the vector form of the axis becomes 
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2
ˆ ˆ ˆ ˆ ˆ( cos sin cos ) ( )

1

an
r n i n j k i k

n
 

And Cartesian form is given by 

2 2

2 2 2

cos sin cos

1 1 1 Or
1 0

an an an
x y z

n n n
n

 2 2

2 2 2

22

2 2

sin cos cos
0,

1 1 1

(1 )cos
sin ,

1 1

an an an
y n x z

n n n

an nan
y nx z

n n

 

 

Squaring these equations  

2 2
2 2 2 2 2 2 2

2 2
sin , ( ) (1 ) cos

1 1

an an
y n nx z n

n n

 
then multiply first equation by 2 2(1 )n  and the second by 2n  then  adding 

the result we get

 2
2 2 2 2 2 2 2 2 2 4

2
(1 ) ( ) (1 )

1

an
n y n nx z n n a n

n
 

 EXAMPLE 8  

Three forces each equal to P  act on a body, one at point ( , 0, 0)a  parallel to 

OY , the second at the point (0, , 0)b  parallel to OZ  and the third at the point 

(0, 0, )c  parallel to OX , the axes being rectangular. Find the resultant wrench. 

 SOLUTION 

As given we see  

1

2

3
2 2

,̂ acts at(0, 0, )

,̂ acts at( , 0, 0)

,̂ acts at(0, , 0)
ˆ ˆ ˆ( ), ( 3 )

F Pi c

F Pj a

F Pk b

F P i j k F P
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The system reduces to a single force and a moment so that 

o 1 1 2 2 3 3M r F r F r F  

o

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

0 0 0 0 0 0

1 0 0 0 1 0 0 0

ˆ

1

ˆ ˆ( )

i j k i j k i j k

M P

P bi cj a

b

k

c a

 

The pitch of equivalent wrench is given by 
2

F M

F  
that is 

2 2

ˆ ˆˆ ˆ ˆ(

3

( )

3

) ˆP bi cj akP i j kF M a b c

PF
 

In addition the equation of axis of wrench 1r r F  

2

1 2 2

ˆ ˆ ˆ

1 1 1
3

1 ˆ ˆ ˆ(( ) ( ) ( ) )
3

i j k
F M P

r
F P

b c a

a c i b a j c b k

 

Then the vector form of the axis becomes 

1 ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
3

r a c i b a j c b k i j k  

and Cartesian form is 

1 1 1
( ) ( ) ( )
3 3 3 Or
1 1 1

3 2 and 3 2

x a c y b a z c b

y x b c a z y a c b

 

 EXAMPLE 9 

Forces , ,XY Z  act along three lines given by the equations  

0, ; 0, ; 0,y z c z x a x y b  

Prove that the pitch of the equivalent wrench is 

2 2 2( ) / ( )aYZ bZX cXY X Y Z  
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If the wrench reduces to a single force, show that the line of the action of the 

force lies on the hyperboloid ( )( )( )x a y b z c xyz  

 SOLUTION 

As given  

1

2

3
2 2 2 2

,̂ acts at(0, 0, )

,̂ acts at( , 0, 0)
ˆ acts at(0, , 0)
ˆ ˆ ,̂

F Xi c

F Yj a

F Zk b

F Xi Yj Zk F X Y Z

 

The system reduces to a single force and a moment so that 

o 1 1 2 2 3 3M r F r F r F  

o

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

0 0 0 0 0 0

0 0 0 0 0

ˆ

0

ˆ ˆ

i j k i j k i j k

M

bZi

c a b

X

k

Z

j

Y

cX aY

 

The pitch of equivalent wrench is given by 
2

F M

F  
that is 

2 2 2

2 2 2

2

ˆ ˆ ˆˆ( ( )ˆ ˆ ) bZi cXj aYkF M

F

bX

Xi Yj Zk

X Y Z

X

Z cXY aYZ

Y Z

 

Besides, the equation of axis of wrench 1r r F  

2 2 2

2 2

1 2

2
2

2 2

ˆ ˆ ˆ
1

1 ˆ ˆ ˆ(( )

( )

( )
( ) ( ) )

X Y Z

X Y Z

i j k
F M

r X Y Z
F

bZ cX aY

aY cXZ i bZ aXY j cX bYZ k

 

Then the vector form of the axis becomes 
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2 2 2

2 2 2ˆ ˆ ˆ(( ) ( ) ( ) ) ˆ ˆ
(

ˆ( )
)

aY cXZ i bZ aXY j cX bYZ k
r Xi Yj

X
Z

Y
k

Z

And Cartesian form is
 

2 2 2 2

2 2 2

2 2 2 2 2
OrX Y Z X Y

aY cXZ bZ aXY cX bYZ
x y z

Z X
X Y

Y Z
Z

 

2 2 2 2 2 2

2

2 2

2 2

2 2 2 2 2

and
aY cXZ bZ aXY

Y x X y

cX b

X Y Z X Y Z

X Y Z X

YZ bZ aXY
Y

Y Z
z Z y

 

Complete
 

 

 EXAMPLE 10 

Two forces each equal to P  act along the lines 
cos sin

sin cos

x a y b z

a b c
 

show that the axis of equivalent wrench lays on the surface 

x z a c
y b
z x c a

 

 SOLUTION 

First line is 
cos sin

sin cos

x a y b z

a b c
 passing through ( cos , sin ,0)a b  

the second line is 
cos sin

sin cos

x a y b z

a b c
 passing ( cos , sin ,0)a b  

The unit vector of first line is 

1 2 2 2 2 2

1
ˆ ( sin , cos , )

sin cos
1 ˆ ˆ ˆsin cos

n a b c
a b c

a i b j ck
 

The unit vector of second line is 
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2 2 2 2 2 2

2 2 2 2 2

1
ˆ ( sin , cos , )

sin cos
1 ˆ ˆ ˆsin cos ( sin cos )

n a b c
a b c

a i b j ck a b c
  

Therefore, 

1 1
ˆ ˆ ˆˆ ( sin cos )

P
F Pn a i b j ck  

2 2
ˆ ˆ ˆˆ ( sin cos )

P
F Pn a i b j ck  

The system reduces to a single force and a moment so that  

1 2

2
2 2 2 2

2

ˆ ˆ ˆ ˆ ˆ ˆ( sin cos ) ( sin cos )

2 4ˆ ˆ( sin ) and ( sin )

F F F

P P
a i b j ck a i b j ck

P P
a i ck F a c

 

1 1 2 2

ˆ ˆ ˆ ˆ ˆ ˆ

cos sin 0 cos sin 0

sin cos sin cos

M r F r F

i j k i j k
P
a b a b

a b c a b c

 

2 ˆ ˆ( sin )
P

M cb i abk  

since the equation of axis of equivalent wrench is 1r r F  

2 2

1 2 2 2 2 2 2 2

ˆ ˆ ˆ
( ) sin ˆsin 0

sin sin
s n

1

i 0

i j k
c a bF M

r a c j
F a c a c

cb ab

 

Then the vector form of the axis becomes 

2 2

2 2 2

( ) sin ˆ ˆ ˆ( sin )
sin

c a b
r j a i ck

a c
 

While the Cartesian form is 

2 2

2 2 2

( ) sin

0 0sin
sin 0

c a b
y

x za c
a c
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Thus we can deduce from these equation 

2 2

2 2 2

( ) sin sin
and

sin

c a b x a
y

z ca c
 

2 2 2 2 2

2
2 2 2

( sin ) ( ) sin

sin ( )
sin

y a c c a b

c
y a b c a

 

Dividing by ac  and substituting 
sinx a

z c
 we get 

x z c a
y b
z x a c

 

 EXAMPLE 11 

Two forces each equal to F  act along the sides of a cube of length b  as 

shown, Fin the axis of equivalent wrench. 

 SOLUTION 

By calculating the unit vectors of the forces  we get, 

1

1 1

1 ˆ ˆˆ ( , , ) (0, 0, ) ( )
2

ˆ ˆˆ ( )
2

n b b b b i j

F
F Fn i j

 

And for the second force 

2

2 2

1 ˆ ˆˆ (0, , 0) ( , 0, 0) ( )
2

ˆ ˆˆ ( )
2

n b b i j

F
F Fn i j

 

The system reduces to a single force and a moment at the origin so that 
2 2

1 2
ˆ2 2R F F Fj R F  

1 1 2 2

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ1 1 0 1 1 0 ( )
2 20 0 1 1 0 0

i j k i j k
Fb Fb

M r F r F i j k  
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Here we choose the point (0, 0, )b  as an acting point of first force and the point 

( , 0, 0)b  of the second force. The pitch of equivalent wrench is given by 

2

F M

F  
that is 

2 2

ˆ ˆ ˆ ˆ( 2 ) ( )
2

22

Fb
Fj i j k

R M b

R F
 

since the equation of axis of equivalent wrench is 1r r F  so 

 

2

1 2

R M F
r

R 22

b

F

ˆ ˆ ˆ

ˆ ˆ0 1 0 ( )
2

1 1 1

i j k
b
i k  

Then the vector form of the axis becomes 

ˆ ˆ ˆ
2

b
r i k j

While the Cartesian form is given by 

02 2 Or and
0 1 0 2 2

b b
x z

y b b
z x  
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PROBLEMS

 If the force ˆ ˆ ˆ3 7F i j k  acts at the origin, determine its moment about 

the point(4, 4, 6) . 

 A force of magnitude 100  acts along the line passing through the point 

(0,1, 0)  to (1, 0, 0) . Obtain its moment about the origin point and about the axes. 

 The three forces ˆ ˆ ˆ ˆ ˆ ˆ ˆ(2 2 ), ( 2 ), ( 2 )i j j k i j k  act at the points 

(0,1,0), (1,0,0), (0,0,1)  respectively, Find the pitch of the equivalent wrench.  

 Two forces each equal to 3F  act along the lines
1 1 2

2 2 1

x y z
 

and 
2 1 1

1 2 2

x y z
. Find the equivalent wrench. 

 The magnitude of two forces is 2 1,F F  act along the lines 

( c, tan )z y x  and ( c, tan )z y x . Determine the central axis 

of equivalent wrench. 

 

 

 

 

 



EQUILIBRIUM OF FORCES 

 

tudy of Statics and the whole study of Mechanics is actually the 

study about  the actions of forces or force systems and the effect 

of these actions on bodies. So it is important to understand the action of forces, 

characteristics of force systems, and particular methods to analyze them. A 

particle is said to be in equilibrium if it remains at rest if originally at rest, or 

has a constant velocity if originally in motion. Most often, however, the term 

“equilibrium” or, more specifically, “static equilibrium” is used to describe an 

object at rest.  

 

 Triangle of Forces  

If three forces, acting at a point, be represented in magnitude and 

direction by the sides of a triangle, taken in order, they will be in 

equilibrium.  

 Lami's Theorem  

If three forces acting at a point are in equilibrium, then each 

force is proportional to the sine of the angle between the 

other two that is  

1 2 3

sin sin sin

F F F
. 

 Theorem  

 If three forces, acting in one plane upon a rigid body, keep it 

in equilibrium, they must either meet in a point or be parallel.  

S 
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 If two forces acting at a point are represented in magnitude and direction by 

the sides of a parallelogram drawn from that point, then their resultant is 

represented by the diagonal of the parallelogram drawn from that point. In 

addition the magnitude of the resultant can be obtain by  

1 2 1 2 1 2
2 2 2

1 2 1 2

( ) ( )

2 cos

F F F F F F F F F

F F F FF
 

where  is the angle between the two forces. The resultant F  makes an angle 

 to the force 1F  determined by  

since           1 2 2cos cos , and sin sinF F F F F  

Therefore by dividing these two relations, 2

1 2

sin
tan

cos

F

F F
 

 Polygon of forces 

If any number of forces, acting on a particle be represented, in 

magnitude and direction, by the sides of a polygon, taken in 

order, then the forces are in equilibrium. 

 Theorem  

If a system of forces act in one plane upon a rigid body, and if the algebraic 

sum, of their moments about each of three points in the plane (not lying in 

the same straight line) vanish separately, the system of forces is in equilibrium. 

 Theorem  

A system of forces, acting in one plane upon a rigid body, is in equilibrium, if 

the sum of their components parallel to each of two lines in their plane be zero, 

and if the algebraic sum of their moments about any point be zero also. 

 Two important trigonometric theorems 

There are two trigonometrical theorems which are useful 

in There are two Statical Problems. If a line CD be 
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drawn through the vertex C of a triangle ABC meeting the opposite side AB in 

point D and dividing it into two parts m  and n  and the angle C into two parts 

 and , and if CDB then  

(i) ( )cot cot cotm n m n  

(ii) ( )cot cot cotm n n A m B  

 

Proof 

0

sin sin

sin sin
sin( )sin

, 180 ( )
sin( ) sin

m AD AD DC B

n DB DC DB A

DBC
 

sin (sin cos cos sin ) cot cot

sin (sin cos cos sin ) cot cot

(cot cot ) (cot cot ) or

( )cot cot cot

m n

m n m n

 

Again 

sin sin

sin sin
sin( ) sin

,
sin sin( )

m ACD B

n DAC
A B

A B

 

sin (sin cos cos sin ) cot cot

sin (sin cos cos sin ) cot cot
(cot cot ) (cot cot ) or

( )cot cot cot

B A A A

A B B B
m B n A

m n n A m B

 

 

 Conditions for rigid-body Equilibrium 

In this section, we will develop both the necessary 

and sufficient conditions for the equilibrium of the 

rigid body. As shown, this body is subjected to an 

external force and couple moment system that is the 

result of the effects of gravitational, electrical, 

magnetic, or contact forces caused by adjacent 

bodies. The internal forces caused by interactions 
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between particles within the body are not shown in this figure because these 

forces occur in equal but opposite collinear pairs and hence will cancel out, a 

consequence of Newton’s third law. 

Using the methods of the previous chapter, the force and couple moment 

system acting on a body can be reduced to an equivalent resultant force and 

resultant couple moment at any arbitrary point O on or off the body. If this 

resultant force and couple moment are both equal to zero, then the body is said 

to be in equilibrium. Mathematically, the equilibrium of a body is expressed as 

o
1 1

0, 0
n n

i i
i i

R F M M  

These relations can be rewritten in Cartesian form as 

1 1 1

1 1 1

0, 0, 0,

0, 0, 0

n n n

ix iy iz
i i i
n n n

ix iy iz
i i i

F F F

M M M

 

 Particular cases 

 Forces act along the same line  

In this case the equation of equilibrium tends to 
1

0
n

i
i

F  since there is no 

rotation. 

 Parallel forces system 

If the acting forces are parallel then the rigid body may be in equilibrium if the 

resultant of acting forces is zero and the sum of moment of acting forces about 

a chosen point is zero too so that the two following equations are satisfying 

1

0
n

i
i

F ,  
1

0
n

i
i

M  

 Coplanar forces system 

If the acting forces are coplanar then the rigid body may be in equilibrium if 

the three following equations are satisfied (the forces considered to be in XY  

plane) 
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1

0
n

ix
i

F ,  
1

0
n

iy
i

F ,  
1

0
n

iz
i

M  

Note the moment will be in a direction normal to the XY  plane i.e. Z -axis  

Spatial forces system 

If the acting forces are in space then the rigid body may be in equilibrium if the 

following equations are satisfied  

1

0
n

ix
i

F , 
1

0
n

iy
i

F , 
1

0
n

iz
i

F  

1

0
n

ix
i

M  
1

0
n

iy
i

M  
1

0
n

iz
i

M  

If two equal and inverse moments are acting on a body 

then the body will be in equilibrium  

 

 

 Reactions at Joints 

There are a large number of problems in which two bodies are described as 

smoothly hinged' at a point. In such a case the hinge may be regarded as a pin 

passing through cylindrical holes in the bodies, closely fitting and so smooth 

that each body can turn about the pin without friction. When the hinge or joint 

is smooth the reaction of the pin on either body reduces to a single force, 

because, no matter how many points of contact there may be between the pin 

and the cylindrical hole in the body, the reaction at each of these points acts 

along the common normal and therefore passes through the center of the pin 

(considering only forces in one plane) and all such forces can be combined into 

a single force through the center of the pin. When the pin connects two bodies 

A and B only, then the pin is subject to two forces only, namely the reactions of 

A and B upon it, and in equilibrium these must be equal and opposite. But the 

reactions of the pin on the bodies are equal and opposite to the former forces, 
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so that the result of the smooth joint is to set up equal and opposite forces on 

the bodies A and B and it is unnecessary to consider the precise form of the 

joint, because it is sufficient to know that, as the result of the smooth joint, 

there is a pair of equal and opposite forces between the bodies at a certain 

point and that the bodies are so constrained that the only possible relative 

motion is one of turning about this point. 
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 Illustrative Examples  
 

 EXAMPLE 1 

If the resultant of the forces , 2F F  perpendicular to F . Determine the angle 

between the two forces. 

 SOLUTION 

Let  be the angle between the two forces , 2F F
 
then from the law 

2 sin 2 sin
tan tan 90

2 cos 1 2cos
1 2cos 0

F

F F  

           

1 o1
cos Or 120

2
 

 EXAMPLE 2 

The resultant of two forces P and Q  is equal to 3Q  and makes an angle of 

30
0
 with the direction of P ; show that P is either equal to, or is double of Q . 

 SOLUTION 

3 cos30 cos (1)

3 sin 30 sin (2)

Q P Q

Q Q
 

Equation (2) leads to 0 060 or 60  therefore, from 

equation (1) we get 

0( 3 cos30 cos ) when 60P Q P Q
 

    0when 120 2P Q  

 EXAMPLE 3 

The greatest resultant which two forces can have is P  and the least is P . 

Show that if they act an angle  the resultant is of magnitude  

2 2 2 21 1
cos sin
2 2

P P  
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 SOLUTION 

Let the magnitude of the two forces be F  and F  the resultant of the forces is 

greatest when they act in the same direction and is equal F F . Also the 

resultant is least when they act in opposite directions and is equal F F , 

consider F F  therefore, 

   ,P F F P F F  

Solving for ,F F we get     
1 1

,
2 2

F P P F P P  

Then the magnitude of the resultant of the forces F and F when they act at an 

angle  is given by  

2 2 2

2 2 2

2 2

2 2 2 2

2 2 2 2

2 cos

1 1 1
( ) ( ) ( )( )cos
4 4 2
1 1
(1 cos ) (1 cos )

2 2
1 1

cos sin
2 2
1 1

cos sin
2 2

R F F FF

R P P P P P P P P

P P

P P

R P P

 

 EXAMPLE 4 

Two forces ,P Q  act at a point along two straight lines making an angle . 

with each other and R  is their resultant: two other forces ,P Q  acting along 

the same two lines have a resultant R . Find the angle between the lines of 

action of the resultants. 

 SOLUTION 

Let the resultants ,R R  make angles ,   with the line of action of P  and 

P . By resolving along and perpendicular to this line, we get 

cos cos , sin sin

cos cos , sin sin

R P Q R Q

R P Q R Q
 

Multiplying two equations, we have 
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cos cos ( cos )( cos )RR P Q P Q  

2sin sin sinRR QQ  

By adding these two equations we get 

2(cos cos sin sin ) ( cos )( cos ) sinRR P Q P Q QQ  

Or 2cos( ) ( cos )( cos ) sinRR P Q P Q QQ  

Therefore,  

2

2
1

1

( cos )( cos ) sin
cos( )

( cos )( cos ) sin
cos

cos ( )
cos

P Q P Q QQ

RR
P Q P Q QQ

RR
PP QQ PQ P Q

RR

 

 EXAMPLE 5 

A rod whose center of gravity divides it into two portions, whose lengths are a 

and b, has a string, of length , tied to its two ends and the string is slung over 

a small smooth peg ; find the position of equilibrium of the rod, in which it is 

not vertical. 

 SOLUTION 

Since there are only three forces acting on the 

body they must meet in a point. And the two 

tensions pass through O ; hence the line of 

action of the weight W  must pass through O

. The tension of the string is not altered, since 

the string passes round a smooth peg; that is 

the weight W  balances the resultant of two 

equal forces, so it must bisected the angle 

between them.   

(say)AOC BOC  
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Hence   
x AC a

y CB b
 

Also   x y  

Solving these equations we obtain  

x y

a b a b
 

Again from the triangle AOB, we have 

2 2 2 2

2
2 2 2 2

2

( ) 2 cos2 ( ) 2 (1 cos2 )

4
( ) 4 cos cos

( )

a b x y xy x y xy

ab
x y xy

a b
2 2 2

2
2

( ) ( )
cos

4

a b a b

ab  

Let be the inclination of the rod to the horizontal, so that 

090OCA  

From the triangle ACO we have 

sin(90 )
Since

sin

AO x x y

AC a a b a b a b  

sin
cos

a b  

 EXAMPLE 6 

A beam whose center of gravity 

divides it into two portions of lengths 

a and b respectively, rests in 

equilibrium with its ends resting on 

two smooth planes inclined at angles 

,  respectively to the horizon, the 

planes intersecting in a horizontal 

line; find the inclination of the beam 

to the horizon and the reactions of 

the planes. 
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 SOLUTION 

Let N and N be the reactions at A and B perpendicular to the inclined planes, 

let  be the inclination of the beam to the horizon. 

Resolving vertically and horizontally, we have 

cos cos (1)N N W  

sin sin (2)N N  

Also, by taking moments about G, we get 

. sin . sinNGA GAO N GB GBO  

Now   o o90 90 ( )GAO BAO
 

and   o o90 90 ( )GBO ABO
 

Hence the equation of moments becomes 

cos( ) cos( ) (3)Na N b  

From equation (2) we have  

cos cos
fromEq.(1)

sin sin sin cos sin cos sin( )

N N N N W
 

These equations gives N and N ; also substituting for N and N in Eq. (3) 

we obtain 

sin cos( ) sin cos( );

sin cos cos sin sin sin cos cos sin sin ;

a b

a b  

( )sin sin sin cos ( sin cos cos sin );

( )tan cot cot

a b b a

a b b a
 

 

 EXAMPLE 7 

A heavy uniform rod, of length 2a , rests partly within and partly without a 

fixed smooth hemispherical bowl, of radius r  ; the rim of the bowl is 

horizontal, and one point of the rod is in contact with the rim; if  be the 

inclination of the rod to the horizon, show that 2 cos2 cosr a . 
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 SOLUTION 

Since OC and AE are parallel, 

OCA CAE  

Since OC=OA,   OAC OCA  

Also  090GDC DGC  

Now .  cos cos ,AE AG a , 

and cos2 2 cos2 ,AE AD r  

 2 cos2 cosr a  

Hence, if N  and N  are the reactions, 

by Lami's Theorem 

sin 2 sin sin

N N W
 

, 2 cosN W N W  

 EXAMPLE 8 

A bead of weight W can slide on a smooth circular wire in a vertical plane. The 

bead is attached by a light thread to the highest point of the wire, and in 

equilibrium the thread is taut and makes an angle  Find the tension of the 

thread and the reaction of the wire on the bead. 

 SOLUTION 

Let B be the bead, AB the thread, AOC the vertical 

diameter of the circle, and O the center. Then the angle 

OBA OAB
 
and 2BOC  

Hence, if T  denotes the tension and N  the reaction, by 

Lami's Theorem 

sin 2 sin sin

T N W
 

Therefore, we get  2 cos ,T W N W  
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 EXAMPLE 9 

A beam whose center of gravity divides it into two portions, is placed inside a 

smooth spherical bowl, show that if  be its inclination to the horizontal in the 

position of equilibrium and 2 be the angle subtended by the beam at the 

center of the sphere, then 

tan tan
b a

b a
 

 SOLUTION 

Let a beam AB of weight W be in equilibrium inside a 

smooth sphere of center  O  and radius r (say) . If G  

is the center of gravity of the beam then AG a  and 

BG b . As clear, the beam AB is in equilibrium 

under the action of the following forces  

 ,N  the reaction at point A along the normal to the 

sphere at A and so passing through the center,  

 ,W the weight of the beam vertically downwards and  

N the reaction at point B along the normal BO to the sphere at B 

It is given that 2AOB and according to the trigonometric theorem in 

triangle OAB  we get 

( )cot(90 ) cot(90 ) cot(90 )

tan tan

a b b a

b a

b a

 

 EXAMPLE 10 

A rigid wire, without weight, in the form of the arc of a circle subtending an 

angle at its center and having two weights w  and w at its extremities, rests 

with its concavity downwards, upon a smooth horizontal plane. Show that, if 

be the inclination to the vertical of the radius to the end at which w  is 

suspended, then  

sin
tan

cos

w

w w  
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 SOLUTION 

The wire is in equilibrium under the action of 

following three forces 

,w the weight at A and weight w at B 

vertically downwards and the reaction 

N  at the point of contact C, acting at 

right angle to the horizontal plane where 

the line of action of the reaction will pass 

through the center of the circle,  

Given that AOC  then BOC . To avoid the reaction , taking 

moments of all the forces about , we have  

o 0 ( ) ( ) 0

sin sin( )

sin (sin cos sin cos )

M w AA w BB

wa w a

w w

 

Dividing by cos  then we obtain 

tan sin tan cos

sin
tan

cos

w w w

w

w w

 

 EXAMPLE 11 

A uniform beam, of length 2a , rests in equilibrium against a smooth vertical 

wall and upon a peg as a distance b  from the wall, 

prove that the inclination of the beam to the vertical is  

1/3
1sin
b

a  

 SOLUTION 

The beam is in equilibrium under the action of the 

forces namely, ,N  the reaction at point A along the 

normal to the vertical, ,W the weight of the beam 
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vertically downwards and N the reaction at peg along the normal AB. Let  

be the inclination of the beam to the vertical and since in 

CO
ACO sin ,

AO
AO

AOO sin ,
AO
AO

AGO sin
AG

 

Multiplying these three formulas we get 

3

1/3 1/3
1

CO AO AO CO
sin

AO AO AG AG

sin or sin

b

a

b b

a a

 

 

 EXAMPLE 12 

Two small rings of weights W1 and W2 each capable of sliding freely on a 

smooth circular hoop fixed in the vertical plane are connected by a light string, 

show that in the position of equilibrium in which the string be straight and 

inclined at angle  to the horizontal 1 2 1 2
1

( )tan ( )tan
2

W W W W  

where  is the angle subtended by the string at the center. 

 SOLUTION 

The ring at A is in equilibrium under the following 

forces, weight of the ring 1W  acting vertically 

downwards, Tension T  in the string along AB and the 

reaction N  along the normal OA passing through the 

center of the circle. The string is inclined at an angle  

to the horizontal and AOB , therefore by Lami’s 

theorem at point A, we have 
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1

1

1

1

sin NAW sin BAN

sin( ( / 2)) sin( / 2 / 2)
sin( / 2)

(1)
cos( / 2)

WT

WT

T W

 

in the same manner for ring at B we have 

2

2

2

2

sin N BW sin ABN

sin( ( / 2 )) sin( / 2 / 2)
sin( / 2 )

(2)
cos( / 2)

WT

WT

T W

 

From Eqs. (1) and (2)  

2 1
sin( / 2 ) sin( / 2)

cos( / 2) cos( / 2)
W W  

2 1
1 1 1 1

sin cos cos sin sin cos cos sin
2 2 2 2

W W  

Dividing by cos cos( / 2) , we get 

2 1
1 1

tan tan tan tan
2 2

W W  

Or 1 2 1 2
1

( )tan ( )tan
2

W W W W   

 EXAMPLE 13 

Two equal rods, each of length 2  and weight w , are freely jointed at and the 

others ends of the rods are suspended from a fixed point, If the lengths of each 

string is 2 and the angle between the rods is 2 , a disk of weight 3w and 

radius a is putted between the rods in equilibrium in a vertical plane, show that  

2sin t6 ana  

 SOLUTION 

With respect to the disk,
3

3 2 sin
2sin

w
w N N  
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The equations of equilibrium for the whole figure (i) in vertical direction  

5 2 cosw T             
5

2cos

w
T  

Considering one of the rods (right one say) and taking moment about the point 

O , reaction is reaction of the disk on the rod which equals the reaction of the 

rod on the disk but in opposite direction, we get 

cot sin cos (2 sin ) sin (2 cos )Na w T T  

3 5
cot sin 2 cos sin

2sin cos

w w
a w  

2

3 cos
sin 10 sin

2sin

a
 

2 23 18 tan sin 6 tan sina a  

 

 

 

 

 

 

 

 

 

 

  

  

 
 

  

  

i ii 

  



Equilibrium

 
54 

 EXAMPLE 14 

A hexagon ABCDEF is formed of six equal rods of the same weight W  

smoothly jointed at their extremities. It is suspended from the point A  and the 

regular form is maintained by light rods bf and ce . Prove that the thrust in the 

former BF is five times that in the latter CE . 

 SOLUTION 

Suppose that the rod BF is attached to the two upper rods and the rod GE to the 

two lower rods. Let P  and P  denote the thrusts in BF and CE. Then since 

the only effect of these rods is to produce thrusts at their ends, we may ignore 

these rods if instead of them we suppose horizontal forces P  to act outwards 

on AB at B and on AF at F, and horizontal forces P  to act outwards on CD at 

C and on DE at E. Begin by inserting these forces in the figure. Then consider 

the equilibrium of the rod CD. The reaction at D is horizontal because there is 

symmetry about the vertical through D. But the only horizontal forces on CD 

are the force P  at C and the reaction at D, so that this reaction at D must be 

equal and opposite to P . Then as regards vertical forces: the weight W acts 

vertically downwards through the middle point of CD and the only other 

vertical force can be at C, therefore there is a reaction at C which acts vertically 

upwards and is equal to W. Insert this in the figure; and, since it is produced by 

the rod CB, also insert an equal and opposite force W downwards acting at C 

on CB We can now express P  in terms of W by taking moments for the rod 

CD about C or about D, or, what is the same thing, equating the moments of 

the two couples that act upon the rod. We find that  
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o o1
sin 30 cos30

2
PCD W CD   

3

2
P W  

Then, returning to the figure, consider the rod BC. It is in equilibrium under the 

action of its weight W, a downward force W at C and the reaction at B. This 

latter force must therefore act vertically upwards and be equal to 2W. Insert 

this force in the figure and also the equal and opposite reaction 2W at B on AB. 

Then consider the rod AB. It is in equilibrium under the action of its weight W, 

the horizontal and vertical forces P  and 2W at B and the reaction at A. It is 

not necessary to specify the latter because we can take moments about A; by so 

doing we find that 

o o5
sin 30 cos30

2
P AB W AB                

3
5 5

2
P W P  

 EXAMPLE 15 

A regular pentagon ABODE formed of five uniform rods, each of weight W , 

freely hinged to each other at their ends is placed in a vertical plane with CD 

resting on a horizontal plane and the regular pentagonal form is maintained by 

means of a string joining the middle points of the rods BC and DE. Prove that 

the tension in the string is 

2
cot 3 cot
5 5

W  

 SOLUTION 

It is only necessary to consider the reactions at the corners A and B. By 

symmetry that at A is horizontal and equal say to X. The rod AB is also acted 

on by its weight W and the reaction at B. The latter must therefore have a 

horizontal component X and a vertical component W upwards. Insert in the 

diagram forces at B acting upon BC in the opposite senses. Then by taking 

moments about B for the rod AB, since the rod AB makes an angle \n with the 

horizontal, we get 
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1
sin cos (1)
5 2 5

X W  

after dividing by the length of the rod. Again if T denotes the tension in the 

string which joins the middle points of BC and DE, by taking moments about C 

for the rod BC, which makes an angle £n with the horizontal, we get 

1 2 1 2 2 2
sin cos cos sin (2)

2 5 2 5 5 5
T W W X  

after dividing by the length of the rod. On substituting for X in terms of W 

from (1), we find that 

2
cot 3 cot
5 5

T W  
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PROBLEMS

 If two forces P and Q act at such an angle that R=P, show that, if P be 

doubled, the new resultant is at right angles to Q. 

 

  The resultant of two forces P and Q acting at an angle  is equal to 

2 2(2 1)m P Q ; when they act at an angle 90 , the resultant is 

2 2(2 1)m P Q ; prove that 
1

tan
1

m

m
 

 

 The resultant of forces P and Q is R; if Q be doubled R is doubled, whilst, if 

Q be reversed, R is again doubled; show that  : : 2 : 3 : 2P Q R  

 

 The sides BC and DA of a quadrilateral ABCD are bisected in F and H 

respectively; show that if two forces parallel and equal to AB and DC act on a 

particle, then the resultant is parallel to HF and equal to 2HF. 

 

 A solid hemisphere is supported by a string fixed to a point on its rim and to 

a point on a smooth vertical wall with which the curved surface of the 

hemisphere is in contact. If , are the inclinations of the string and the plane 

base of the hemisphere to the vertical, prove that  

3
tan tan

8
 

 

 The sides AB, BC, CD, and DA of a quadrilateral ABCD are bisected at E, 

F, G, and H respectively. Show that the resultant of the forces acting at a point 

which are represented in magnitude and direction by EG ana HF is represented 

in magnitude and direction by AC. 
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 Two uniform rods AB, BC, rigidly jointed at B so that ABC is a right angle, 

hang freely in equilibrium from a fixed point at A. The lengths of the rods are 

a , b  and their weights are wa andwb . Prove that, if AB makes an angle  

with the vertical, then  2 22 tana ab b
 

 

 Two equal rods, AB and AC, each of length 2b, are freely jointed at A and 

rest on a smooth vertical circle of radius a, show that if 2  be the angle 

between the rods then 3sin cosb a  

 

 

 Weights 1 2,W W  are fastened to alight inextensible string ABC at the points 

B, C the end A being fixed. Prove that, if a horizontal force P is applied at C 

and in equilibrium AB, BC are inclined at angles ,  to the vertical then  

1 2 2( )tan tanP W W W
 

 

 A sphere, of given weight W, rests between two smooth planes, one vertical 

and the other inclined at a given angle  to the vertical; find the reactions of 

the planes. 

 

 A picture frame, rectangular in shape, rests against a smooth vertical wall, 

from two points in which it is suspended by parallel strings attached to two 

points in the upper edge of the back of the frame, the length of each string 

being equal to the height of the frame. Show that, if the center of gravity of the 

frame coincide with its center of figure, the picture will hang against the wall at 

an angle 1tan
3

b

a
to the vertical, where a is the height and b the thickness 

of the picture. 



FRAMEWORK 

 

framework is an assembly of bars connected by hinged or 

pinned joints and intended to carry loads at the joints only. Each 

hinge joint is assumed to rotate freely without friction; hence all the bars in the 

frame exert direct forces only and 

are therefore in tension or 

compression. A tensile load is 

taken as positive and a member 

carrying tension is called a tie. A 

compressive load is negative and a member in compression is called a strut. 

The bars are usually assumed to be light compared with the applied loads. In 

practice the joints of a framework may be riveted or welded but the direct 

forces are often calculated assuming pin-joints. This assumption gives values 

of tension or compression which are on the safe side. In order that the 

framework shall be stiff and capable of carrying a load, each portion forms a 

triangle, the whole frame being built up of triangles. Note that the wall ad 

forms the third side of the triangle. The forces in the members of a pin-jointed 

stiff frame can be obtained by the methods of statics, i.e. using triangle and 

polygon of forces, resolution of forces and principle of moments. The system 

of forces in such a frame is said to be statically determinate. 

 Free-Body Diagrams 

Successful application of the equations of equilibrium requires a complete 

specification of all the known and unknown external forces that act on the 

body. The best way to account for these forces is to draw a free-body diagram. 

This diagram is a sketch of the outlined shape of the body, which represents it 

A 

FRAMEWORK 
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as being isolated or “free” from its surroundings, i.e., a “free body.” On this 

sketch it is necessary to show all the forces and couple moments that the 

surroundings exert on the body so that these effects can be accounted for when 

the equations of equilibrium are applied. A thorough understanding of how to 

draw a free-body diagram is of primary importance for solving problems in 

mechanics. 

 Support Reactions 

Before presenting a formal procedure as to how to draw a free-body diagram, 

we will first consider the various types of reactions that occur at supports and 

points of contact between bodies subjected to coplanar force systems. As a 

general rule. A support prevents the translation of a body in a given direction 

by exerting a force on the body in the opposite direction. A support prevents 

the rotation of a body in a given direction by exerting a couple moment on the 

body in the opposite direction. Here, other common types of supports for 

bodies subjected to coplanar force systems. (In all cases the angle  is 

assumed to be known.) 

 One unknown. The reaction is a 

tension force which acts away from the 

member in the direction of the cable. 

 One unknown. The 

reaction is a force which 

acts along the axis of the 

link. 

 

 One unknown. The reaction is a force 

which acts perpendicular to the surface at 

the point of contact. 

 

 

 One unknown. The reaction is a force 

which acts perpendicular to the surface at 

the point of contact. 



  61 

 

 Two unknowns. The 

reactions are two components 

of force, or the magnitude 

and direction of the resultant 

force. Note that and are not 

necessarily equal [usually 

not, unless the rod shown is a link as in (2)]. 
 

 One unknown. The 

reaction is a force which acts 

perpendicular to the slot. 

 

 

 One unknown. The 

reaction is a force which 

acts perpendicular to the 

rod. 

 

 

 One unknown. The reaction is a force 

which acts perpendicular to the surface at 

the point of contact. 

 

 

 Three unknowns. The 

reactions are the couple 

moment and the two force 

components, or the couple 

moment and the magnitude and 

direction of the resultant force. 

 

 Two unknowns. The reactions 

are the couple moment and the 

force which acts perpendicular to 

the rod. 
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 A TRUSS  

A truss is a structure composed of slender members joined together at their end 

points. The members commonly used in construction consist of wooden struts 

or metal bars. In particular, planar trusses lie in a single plane and are often 

used to support roofs and bridges. The truss shown in the figure is an example 

of a typical roof-supporting truss. In this figure, the roof load is transmitted to 

the truss at the joints by means of a series of purlins. Since this loading acts in 

the same plane as the truss, the analysis of the forces developed in the truss 

members will be two-dimensional 

To design both the members and the 

connections of a truss, it is necessary 

first to determine the force developed 

in each member when the truss is 

subjected to a given loading. To do 

this we will make two important assumptions: 

 All loadings are applied at the joints. In most situations, such as for 

bridge and roof trusses, this assumption is true. Frequently the weight of the 

members is neglected because the force supported by each member is usually 

much larger than its weight. However, if the weight is to be included in the 

analysis, it is generally satisfactory to apply it as a vertical force, with half of 

its magnitude applied at each end of the member. 

The members are joined together by smooth pins. The 

joint connections are usually formed by bolting or welding the 

ends of the members to a common plate, called a gusset plate, 

as shown in the figure, or by simply passing a large bolt or pin 

through each of the members, as shown. We can assume these 

connections act as pins provided the center lines of the joining 

members are concurrent, as shown. 
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Because of these two assumptions, each truss member will act 

as a two force member, and therefore the force acting at each 

end of the member will be directed along the axis of the 

member. If the force tends to elongate the member, it is a 

tensile force (T), as in the figure; whereas if it tends to shorten 

the member, it is a compressive force (C), Fig. 6–4b. In the 

actual design of a truss it is important to state whether the 

nature of the force is tensile or compressive. Often, compression members 

must be made thicker than tension members because of the buckling or column 

effect that occurs when a member is in compression. 

 Simple Truss  

If three members are pin connected at their ends, they form a triangular truss 

that will be rigid, as shown. Attaching two more members and connecting 

these members to a new joint D forms a larger truss, as shown. This procedure 

can be repeated as many times as desired to form an even larger truss. If a truss 

can be constructed by expanding the basic triangular truss in this way, it is 

called a simple truss. The basic equation between numbers of members of a 

truss m
 
and numbers of joints n  so that 2 3m n  

 

 

 

 

 

 The Method of Joints 

In order to analyze or design a truss, it is necessary to determine the force in 

each of its members. One way to do this is to use the method of joints. This 

method is based on the fact that if the entire truss is in equilibrium, then each 

of its joints is also in equilibrium. Therefore, if the free-body diagram of each 

joint is drawn, the force equilibrium equations can then be used to obtain the 
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member forces acting on each joint. Since the members of a plane truss are 

straight two-force members lying in a single plane, each joint is subjected to a 

force system that is coplanar and concurrent. As a result, only 0xF  
and 

0yF  are need to be satisfied for equilibrium. 

When using the method of joints, always start at a joint having at least one 

known force and at most two unknown forces. In this way, application of 

0xF  
and 0yF yields two algebraic equations which can be solved 

for the two unknowns. When applying these equations, the correct sense of an 

unknown member force can be determined using one of two possible methods. 

 The correct sense of direction of an unknown member force can, in many 

cases, be determined “by inspection.” In more complicated cases, the sense of 

an unknown member force can be assumed; then, after applying the 

equilibrium equations, the assumed sense can be verified from the numerical 

results. A positive answer indicates that the sense is correct, whereas a negative 

answer indicates that the sense shown on the free-body diagram must be 

reversed.  

 Always assume the unknown member forces acting on the joint’s free-body 

diagram to be in tension; i.e., the forces “pull” on the pin. If this is done, then 

numerical solution of the equilibrium equations will yield positive scalars for 

members in tension and negative scalars for members in compression. Once an 

unknown member force is found, use its correct magnitude and sense (T or C) 

on subsequent joint free-body diagrams. 

 Zero-Force Members 

Truss analysis using the method of joints is greatly simplified if we can first 

identify those members which support no loading. These zero-force members 

are used to increase the stability of the truss during construction and to provide 

added support if the loading is changed. The zero-force members of a truss can 

generally be found by inspection of each of the joints.  
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 The Method of Sections 

When we need to find the force in only a few members of a truss, we can 

analyze the truss using the method of sections. It is based on the principle that 

if the truss is in equilibrium then any segment of the truss is also in 

equilibrium. When applying the equilibrium equations, we should carefully 

consider ways of writing the equations so as to yield a direct solution for each 

of the unknowns, rather than having to solve simultaneous equations. This 

ability to determine directly the force in a particular truss member is one of the 

main advantages of using the method of sections 

 Space Trusses 

A space truss consists of members joined together at their 

ends to form a stable three-dimensional structure. The 

simplest form of a space truss is a tetrahedron, formed by 

connecting six members together, as shown. Any additional 

members added to this basic element would be redundant in 

supporting the force P. A simple space truss can be built 

from this basic tetrahedral element by adding three additional members and a 

joint, and continuing in this manner to form a system of multi connected 

tetrahedrons. Assumptions for Design. The members of a space truss may be 

treated as two-force members provided the external loading is applied at the 

joints and the joints consist of ball-and-socket connections. These assumptions 

are justified if the welded or bolted connections of the joined members 

intersect at a common point and the weight of the members can be neglected. 

In cases where the weight of a member is to be included in the analysis, it is 

generally satisfactory to apply it as a vertical force, half of its magnitude 

applied at each end of the member. 
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Examples Illustrative

 

 EXAMPLE 1 

Draw the free-body diagram of the object as shown. 

 SOLUTION 

Free-Body Diagram. The supports are 

removed, and the free-body diagram of the 

beam is shown in the figure below. Since the 

support at A is pin, the pin exerts two 

reactions on the beam, denoted as xA  and yA . 

The magnitudes of these reactions are 

unknown, and their sense has been assumed. 

The weight of the beam, W N, acts through the beam’s center of gravity G, 

which is 2.5 m from A since the beam is uniform. The tension in the string  as 

illustrated. 

 EXAMPLE 2 

Draw the free-body diagram of the uniform beam shown 

in the figure. The beam has a mass of 100 kg. 

 SOLUTION 

The free-body diagram of the beam is shown in figure behind. Since the 

support at A is fixed, the wall exerts three reactions on the beam, denoted as

,xA  yA  and AM . The magnitudes of these reactions are unknown, and their 

sense has been assumed. The weight of the beam, W = 100(9.81) N = 981 N, 

acts through the beam’s center of gravity G, which is 3 m from A since the 

beam is uniform. 
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 EXAMPLE 3 

Determine the horizontal and vertical 

components of reaction on the beam 

caused by the pin at B and the rocker at A 

as shown. Neglect the weight of the beam. 

 SOLUTION 

The supports are removed, and the free-body 

diagram of the beam is shown in figure 

besides. For simplicity, the 600-N force is 

represented by its x  and y  components as 

shown. 

Equations of Equilibrium.  

Summing forces in the x  direction yields 

0, 600cos45 0, 424 Nx xx
F B B  

A direct solution for yA  can be obtained by applying the moment 

equation  0BM   about point B. 

0, 100(2) 600sin 45(5) 600cos 45(0.2) (7) 0

319 N
yB

y

M A

A
 

Summing forces in the y direction, using this result, gives 

0, 319 600sin 45 100 200 0, 405y yy
F B B

 

NOTE: Remember, the support forces in the figure are the result of pins that 

act on the beam. The opposite forces act on the pins 

 EXAMPLE 3 

Determine the support reactions on the member in 

the figure. The collar at A is fixed to the member 

and can slide vertically along the vertical shaft. 
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 SOLUTION 

Free-Body Diagram. Removing the 

supports, the free-body diagram of the 

member is shown. The collar exerts a 

horizontal force xA  and moment AM  on 

the member. The reaction BN of the roller 

on the member is vertical. 

Equations of Equilibrium. The forces xA  and BN  can be determined directly 

from the force equations of equilibrium. 

0, 0

0, 900 0 900 N
xx

B By

F A

F N N
 

The moment AM can be determined by summing moments either about point 

A or point B. 

0, 500 900((1.5) (1)cos 45) 0

1486 N
AA

A

M M

M

or B 

0, 900((1.5) (1)cos 45) 500 0

1486 N
AB

A

M M

M
 

The negative sign indicates that AM  has the opposite sense of rotation to that 

shown on the free-body diagram. 

 EXAMPLE 5 

Determine the force in each member of the truss as shown 

and indicate whether the members are in tension or 

compression. 

 SOLUTION  

Since we should have no more than two unknown forces at the joint and at 

least one known force acting there, we will begin our analysis at joint B. 
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Joint B. The free-body diagram of the joint at B is shown. 

Applying the equations of equilibrium, we have 

0, 500 sin 45 0 707.1 N

0, cos 45 0 500 N
BC BCx

BC BA BAy

F F F

F F F F
 

Since the force in member BC has been calculated, we can proceed 

to analyze joint C to determine the force in member CA and the 

support reaction at the rocker. 

Joint C. From the free-body diagram of joint C, as shown, we 

have 

0, 707.1cos 45 0 500 N

0, 707.1sin 45 0 500 N
CA CAx

y yy

F F F

F C C
 

Joint A.  Although it is not necessary, we can determine the 

components of the support reactions at joint A using the results 

of CAF and BAF . From the free-body diagram, we have 

0, 500 0 500 N

0, 500 0 500 N
x xx

y yy

F A A

F A A
 

NOTE: The results of the analysis are summarized in last 

figure. Note that the free-body diagram of each joint (or pin) 

shows the effects of all the connected members and external 

forces applied to the joint, whereas the free-body diagram of 

each member shows only the effects of the end joints on the 

member. 

 EXAMPLE 5 

Determine the force in each member of the truss shown in 

the figure. Indicate whether the members are in tension or 

compression 

 SOLUTION  
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Support Reactions. No joint can be analyzed until the 

support reactions are determined, because each joint has at 

least three unknown forces acting on it. A free-body 

diagram of the entire truss is given in the figure. Applying 

the equations of equilibrium, we have 

0, 600 0 600 N

0, 600 400 0 200 N

0, (6) 400(3) 600(4) 0 600 N

x xx

y yy

y yC

F C C

F C C

M A A

 

The analysis can now start at either joint A or C. The choice is 

arbitrary since there are one known and two unknown member 

forces acting on the pin at each of these joints. 

 Joint A. As shown on the free-body diagram, ABF is assumed 

to be compressive and ADF is tensile. Applying the equations of 

equilibrium, we have 

4
0, 600 0 750 N

5
3

0, (750) 0 730 N
5

AB ABy

AD ADx

F F F

F F F

 

 Joint D.  Using the result for ADF and summing forces in 

the horizontal direction, we have 

3
0, 450 600 0 250 N

5 DB DBx
F F F

 

The negative sign indicates that DBF acts in the opposite 

sense to that supposed. To determine DCF , we can either 

correct the sense of DBF  on the free body diagram, and then 
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apply 0yF , or apply this equation and retain the negative sign for DBF , i.e.,  

4
0, ( 250) 0 200 N

5DC DCy
F F F  

 Joint C.  

0, 600 0

600 N

0, 200 200 0

CBx

CB

y

F F

F

F

 

NOTE: The analysis is summarized in 

last figure, which shows the free body 

diagram for each joint and member. 

 

 EXAMPLE 6 

Determine the force in members GE, GC, and BC 

of the truss shown in the figure. Indicate whether 

the members are in tension or compression. 

 SOLUTION 

Section aa in the figure has been chosen since it cuts 

through the three members whose forces are to be 

determined. In order to use the method of sections, 

however, it is first necessary to determine the 

external reactions at A or D. Why? A free-body 

diagram of the entire truss is shown in second figure.  Applying the equations 

of equilibrium, we have 

0, 400 0 400 N

0, 1200(8) 400(3) (12) 0 900 N

0, 1200 900 0 300 N

x xx

A y y

y yy

F A A

M D D

F A A
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For the analysis the free-body diagram of the left portion 

of the sectioned truss will be used, since it involves the 

least number of forces.  Summing moments about point G 

eliminates GEF  and
 GC
F  yields a direct solution for BCF . 

0, 300(4) 400(3) (3) 0 800 NG BC BCM F F

In the same manner, by summing moments about point C we obtain a direct 

solution for GEF . 

0, 300(8) (3) 0 800 NC GE GEM F F

 
Since BCF and GEF have no vertical components, summing forces in the y  

direction directly yields GCF , i.e., 

3
0, 300 0 500 N

5 GC GCy
F F F

 

NOTE: Here it is possible to tell, by inspection, the proper direction for each 

unknown member force. For example, 0CM requires GEF  
to be 

compressive because it must balance the moment of the 300-N force about C. 

 EXAMPLE 7 

Determine the force in member EB of the roof 

truss shown in the figure. Indicate whether 

the member is in tension or compression.  

 SOLUTION 

Free-Body Diagrams. By the method of 

sections, any imaginary section that 

cuts through EB, as shown, will also 

have to cut through three other 

members for which the forces are 

unknown. For example, section aa cuts 
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through ED, EB, FB, and AB. If a free-body diagram of the left side of this 

section is considered, it is possible to obtain EDF by 

summing moments about B to eliminate the other three 

unknowns; however, EBF cannot be determined from 

the remaining two equilibrium equations. One possible 

way of obtaining EBF is first to determine EDF from 

section aa, then use this result on section bb, which is 

shown in the figure. Here the force system is concurrent and our sectioned free-

body diagram is the same as the free-body diagram for the joint at E. In order 

to determine the moment of EDF about point B, we will use the principle of 

transmissibility and slide the force to point C and then resolve it into its 

rectangular components as shown. Therefore, 

0, 1000(4) 3000(2) 4000(4) sin 30(4) 0

3000 N
B ED

ED

M F

F
Considering 

now the free-body diagram of section bb, we have 

0, cos30 3000cos30 0 3000 N

0, 2(3000sin 30) 1000 0 2000 N
EF EFx

EB EBy

F F F

F F F

 

 EXAMPLE 7 

Determine the forces acting in the members of the 

space truss shown in the figure. Indicate whether 

the members are in tension or compression. 

 SOLUTION 

Since there are one known force and three unknown 

forces acting at joint A, the force analysis of the 

truss will begin at this joint. 
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 Joint A.  Expressing each force acting on the free-body diagram of joint A 

as a Cartesian vector, we have 

ˆ ˆ ˆ4000 , ,

ˆ ˆ ˆ(0.577 0.577 0.577 )

AB ACAB AC

AE
AE AE AE

AE

P j F F j F F k

r
F F F i j k

r

For 

equilibrium, 

0, 0
ˆ ˆ ˆ ˆ ˆ ˆ4000 0.577 0.577 0.577
AB AC AE

AB AC AE AE AE

F P F F F

j F j F k F i F j F k

0, 0.577 0 0

0, 4000 0.577 0 4000 N

0, 0.577 0 0

x AE AE

y AB AE AB

z AC AE AC

F F F

F F F F

F F F F
 

Since ABF is known, joint B can be analyzed next. 

 Joint B.  

1
0, 0 0

2
1

0, 4000 0 5650 N
2

1 1
0, 2000 0 2000 N

2 2

x BE BE

y CB CB

z BD BE CB BD

F F F

F F F

F F F F F

 

The scalar equations of equilibrium can now be applied to the forces acting on 

the free-body diagrams of joints D and C. Show that 

0DE DC CEF F F  
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PROBLEMS

 

 Determine the magnitude of force at the 

pin A and in the cable BC needed to 

support the 500-lb load. Neglect the 

weight of the boom AB. 

 

 

 In each case, calculate the support reactions and then draw the free-body 

diagrams of joints A, B, and C of the truss. 

 

 

 

 

 

   Determine the force in each member of the truss. 

State if the members are in tension or compression. 

 

 

 

 Identify the zero-force members in the truss. 
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Mathematical Induction:  
is a special method of proof used to prove a Statement, a Theorem,  
or a Formula, that is asserted about every natural number. 

The natural numbers are the counting numbers: .,...4,3,2,1 etc  , also  

called positive integers. 
Principle of Mathematical Induction:  

Let )(nP  be a statement involving the positive integer n .  

IF the statement is true when 1n , and whenever the statement is true  

for kn   , then it is also true for 1 kn , Then the statement is true for all 

integers 1n . 

There is nothing special about the integer 1  in the statement above.  
It can be replaced (in both places it occurs) by any other positive integer,  
and the Principle still works. 
Steps of Mathematical Induction: 

(STEP 1): We show that )1(P  is true. 

(STEP 2): We assume that )(kP  is true. 

(STEP 3): We show that )1( kP  is true. 

As shown in the following examples:   
1- Use mathematical induction to prove that:  

2

)1(
....321




nn
n . 

Solution: Let the statement )(nP  be 
2

)1(
....321




nn
n  

(STEP 1): We show that )1(P  is true: 

1... SHL   ,  1
2

)11(1
... 


SHR  

Both sides of the statement are equal hence )1(P  is true. 

(STEP 2): We assume that )(kP  is true: 

2

)1(
....321




kk
k . 

(STEP 3): We show that )1( kP  is true: 

...

]2[
2

)1(

)1(
2

)1(

)1(...321...

SHR

k
k

k
kk

kkSHL















 

Which is the statement )1( kP . 
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Then the statement )(nP  is true for all positive integers n . 

-------------------------------------------------------------------------------------------------------- 
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We can rewrite the solution as follow: 

Solution: Let )(nP  be 
2

)1(
....321




nn
n  

(1) at 1n : 

1... SHL   ,  1
2

)11(1
... 


SHR  

)1(P  is true. 

(2) let kn  : 

2

)1(
....321




kk
k . 

(3) at 1 kn : 

...

]2[
2

)1(

)1(
2

)1(

)1(...321...

SHR

k
k

k
kk

kkSHL















 

)1(  kP  is true. 

Then )(nP  is true for all positive integers n . 
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2- Use mathematical induction to prove that:  

6

)12)(1(
....321 2222 


nnn

n . 

Solution: Let )(nP  be 
6

)12)(1(
....321 2222 


nnn

n  

(1) at 1n : 11... 2 SHL   ,  1
6

)12)(11(1
... 


SHR     

)1(P  is true. 

(2) let kn  : 
6

)12)(1(
....321 2222 


kkk

k . 

(3) at 1 kn :  

...

6

)32)(2)(1(

)]2)(32[(
6

)1(

]672[
6

)1(

]662[
6

)1(

)]1(6)12([
6

)1(

)1(
6

)12)(1(
)1(....321...

2

2

222222

SHR

kkk

kk
k

kk
k

kkk
k

kkk
k

k
kkk

kkSHL































 

)1(  kP  is true. 

Then )(nP  is true for all positive integers n . 

-------------------------------------------------------------------------------------------------------- 
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3- Prove that )2( 3 nn   is divisible by 3  for all positive integers n . 

Solution: Let )(nP  be " )2( 3 nn   is divisible by 3 " 

(1) at 1n : 

3)1(213   is divisible by 3 . 

)1(P  is true. 

(2) let kn  : 

" )2( 3 kk   is divisible by 3 ". 

(3) at 1 kn : 

)1(3)2(

)333()2(

353

)22()133()1(2)1(

23

23

23

233









kkkk

kkkk

kkk

kkkkkk

 

)2( 3 kk   is divisible by 3  from (2), and )1(3 2  kk  is also divisible by 3  

)1(  kP  is true. 

Then )(nP  is true for all positive integers n . 

-------------------------------------------------------------------------------------------------------- 

4- Prove that  !2 1 nn 
  for all positive integers n . 

Solution: Let )(nP  be !2 1 nn 
 

(1) at 1n : 

1!1122 011 
 

)1(P  is true. 

(2) let kn  : 

!2 1 kk 
 

(3) at 1 kn : 









Zkk

kkkkk kkkk

12

;)!1(2)!)(1()2)(2()!)(2()2)(2(!2 111

 

)1(  kP  is true. 

Then )(nP  is true for all positive integers n . 
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0_Algebra%20I%20Content.pdf
0_Algebra%20I%20Content.pdf
0_Algebra%20I%20Content.pdf
0_Algebra%20I%20Content.pdf
2_Partial%20Fractions.pdf
2_Partial%20Fractions.pdf


Back Content Next 
 

  Mathematical Induction                                                                       Dr. Saad Sharqawy 
_________________________________________________________________________________ 

 

6 

 

H.W:  

1- Use mathematical induction to prove that: 

).1(2...642)(  nnni  

.
2

1
2

2

1
...

4

1

2

1
1)(

11 


nn
ii  

2- Prove that )1( nx  is divisible by )1( x  for all positive integers n . 

---------------------------------------------------------------------------------------------------------- 
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Exercises:  
1- Use mathematical induction to prove that:  

2)12(....531)( nni   

2

)13(
)23(....741)(




nn
nii  

3

)2)(1(
)1(....1262)(




nnn
nniii   

2- Prove that )3( 2 nn   is divisible by 2  for all positive integers n . 

3- Prove that )27( nn   is divisible by 5  for all positive integers n .  

4- Prove that )( nn yx   is divisible by )( yx   for all positive integers n . 

---------------------------------------------------------------------------------------------------------- 
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Rational Fraction: 

The algebraic formula 
n

nn axaxaxp   ...)( 1

10
 is called a polynomial  

of a variable x  of degree n ; the coefficients naaa ,...,, 10 are real numbers. 

If )(xp and )(xq are two polynomials, then the ratio 
)(

)(

xq

xp
  

of these two polynomials is called Rational Fraction, 

)(xp  the numerator, and )(xq the denominator.  

We have two types of Rational Fraction:   
1. Proper Rational Fraction. 
2. Improper Rational Fraction. 
Proper Rational Fraction:  
If the degree of the numerator of the rational fraction is less than the degree  
of the denominator of the rational fraction, then that fraction is called the proper 
rational fraction. 
Improper Rational Fraction:  
If the degree of the numerator of the rational fraction is equal or greater than  
the degree of the denominator of the rational fraction, then that fraction is called 
the improper rational fraction. Suppose, the improper fraction is reducible to an 
integer added to a proper fraction, then the improper rational fraction can be 
reduced as a sum of polynomial and a proper rational fraction. 

Let us take if 
)(

)(

xq

xp
 is a improper rational fraction, then 

)(

)(
)(

)(

)( 1

xq

xp
xh

xq

xp
  

Where, )(xh is a polynomial and 
)(

)(1

xq

xp
 is a proper rational fraction. 

Partial-Fraction Decomposition 
You have added and simplified rational expressions, such as: 

xx

x

xx

xx

xx 












2

23

)1(

)1(2

1

12
. 

Partial-fraction decomposition is the process of starting with the simplified 
answer and taking it back apart, of "decomposing" the final expression into  
its initial polynomial fractions. 
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Partial-fraction decomposition rules: 
The following tables indicates the simpler partial fractions associated to proper 
rational fractions. 
1- The denominator factor as distinct linear factors: 
 

Form of the rational fraction Form of the partial fractions 

)...)((

)(

2211 bxabxa

xf


 ...

2211





 bxa

B

bxa

A
 

 

2- The denominator factor as repeated linear factors: 
 

Form of the rational fraction Form of the partial fractions 

kbax

xf

)(

)(


 

k

k

bax

A

bax

A

bax

A

)(
...

)()( 2

21








 

 
3- The denominator factor as distinct quadratic factors can not be factored 
further: 
 

Form of the rational fraction Form of the partial fractions 

)...)((

)(

22

2

211

2

1 cxbxacxbxa

xf


 ...

22

2

211

2

1











cxbxa

DCx

cxbxa

BAx
 

 
4- The denominator factor as repeated quadratic factors: 
 

Form of the 
rational fraction 

Form of the partial fractions 

kcbxax

xf

)(

)(
2 

 
k

kk

cbxax

BxA

cbxax

BxA

cbxax

BxA

)(
...

)()( 222

22

2

11














 

 

In the above tables CBA ,, and D  are real numbers to be determined suitably. 

----------------------------------------------------------------------------------------------------------- 

To decompose the improper fraction: 
Divide the numerator by the denominator, and then use the above rules to 
decompose the remainder (be proper fraction). 
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Examples: 

(1) Express the following in partial fractions:  

    
xx

x




2

23
. 

Solution: To decompose a fraction, you first factor the denominator xx 2
, 

which factors as )1( xx . 

)1(

)1(

)1(

23

1)1(

23



















xx

BxxA

xx

x

x

B

x

A

xx

x
 

BxxAx  )1(23  

AxBAx  )(23  

For the two sides of the equation " AxBAx  )(23 " to be equal,  

the coefficients of the two polynomials must be equal.  

So you "equate the coefficients of x "  to get:  
A

BA





2

3
   

1

2





B

A
  

There is another method for solving for the values of A  and B :  

The equation " BxxAx  )1(23 " is supposed to be true for any value  

of x , we can "pick useful values of x ", and find the values for A  and B .  

Looking at the equation " BxxAx  )1(23 ", you can see that,  

if 0x , then we quickly find that A2  , and   

if 1x , then we easily get B 23 , so 1B . 

1

1223
2 







xxxx

x
. 

----------------------------------------------------------------------------------------------------------- 
(2) Express the following in partial fractions:  

)2()1(

534
2

2





xx

xx
 

Solution:  

)2()1(

)1()2()2)(1(

)2()1(

534

)2()1()1()2()1(

534

2

2

2

2

22

2
























xx

xCxBxxA

xx

xx

x

C

x

B

x

A

xx

xx

 

.)1()2()2)(1(534 22  xCxBxxAxx  

Pick useful values of x : 

2361  BBx ,  39272  CCx ,  

and equate the coefficients of 
2x  to get: 1344  AACA . 
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)2(

3

)1(

2

)1(

1

)2()1(

534
22

2















xxxxx

xx
. 

 
(3) Express the following in partial fractions: 

    
xxx

x

6

1
23 


 

Solution: )3)(2()6(6 223  xxxxxxxxx  

)3)(2(

)2()3()3)(2(

)3)(2(

1

32)3)(2(

1

6

1
23



























xxx

xCxxBxxxA

xxx

x

x

C

x

B

x

A

xxx

x

xxx

x

 

).2()3()3)(2(1  xCxxBxxxAx  

Pick useful values of x : 

6

1
610  AAx  , 

10

3
1032  BBx  , 

15

2
1523  CCx  , 

.
)3(15

2

)2(10

3

6

1

6

1
23 















xxxxxx

x
 

----------------------------------------------------------------------------------------------------------- 
(4) Express the following in partial fractions:  

   
1

1
4 x

 

Solution: )1)(1)(1()1)(1(1 2224  xxxxxx  

)1)(1)(1(

)1)(()1)(1()1)(1(

)1)(1)(1(

1

)1()1()1()1)(1)(1(

1

1

1

2

222

2

224


























xxx

xDCxxxBxxA

xxx

x

DCx

x

B

x

A

xxxx

).1)(()1)(1()1)(1(1 222  xDCxxxBxxA   

Pick useful values of x : 

4

1
411  AAx , 

4

1
411  BBx ,  
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and equate the coefficients of 
3x and 

2x to get: 
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0
4

1

4

1
00  CCCBA , 

2

1

4

1

4

1
00  DDDBA . 

.
)1(2

1

)1(4

1

)1(4

1

1

1
24 











xxxx

 

----------------------------------------------------------------------------------------------------------- 
(5) Express the following in partial fractions: 

    
12

1
2

2





xx

xx
 

Solution: the given fraction is improper rational fraction, then we divide the 
numerator by the denominator:  

 

122  xx   12  xx  

 122  xx  1  

     x           
 

12
1

12

1
22

2









xx

x

xx

xx
 , 

We decompose the proper fraction 
122  xx

x
 as follow: 

2222 )1(

)1(

)1(1)1(12 













 x

BxA

x

B

x

A

x

x

xx

x
 

.)1( BxAx   

Equate the coefficients of x  and 
0x (constant terms) to get: 

A1  and BA0 1,1  BA  

22 )1(

1

1

1

12 








xxxx

x
 , 

22

2

)1(

1

1

1
1

12

1












xxxx

xx
. 

----------------------------------------------------------------------------------------------------------- 
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(6) Express the following in partial fractions: 

    
1

13
23

234





xxx

xxxx
 

Solution: the given fraction is improper rational fraction, then we divide the 
numerator by the denominator:  
 

123  xxx  
 13 234  xxxx  

 xxxx 3333 234   

23 x       1222 23  xxx  

       2222 23  xxx           

         1000   
 

1

1
)23(

1

13
2323

234









xxx
x

xxx

xxxx
 , 

We decompose the proper fraction 
1

1
23  xxx

 as follow: 

).1)(1()1()1(1 2223  xxxxxxxx  

)1)(1(

)1)(()1(

)1)(1(

1

)1()1()1)(1(

1

1

1

2

2

2

2223























xx

xCBxxA

xx

x

CBx

x

A

xxxxx
 

).1)(()1(1 2  xCBxxA  

Pick useful values of x : 

2

1
211  AAx , 

and equate the coefficients of 
2x and x  to get: 

.
2

1

2

1
00

,
2

1

2

1
00





CCCB

BBBA

, 

)1(2

1

)1(2

1

1

1
223 










x

x

xxxx
, 
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)1(2

1

)1(2

1
)23(

1

13
223

234














x

x

x
x

xxx

xxxx
. 

----------------------------------------------------------------------------------------------------------- 
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Exercises:  

Express each of the following in partial fractions: 

.
12

22
)(

2

1
)(

2

1
)(

1

12
)(

6

43
)(

3

3

24

23232



















xx

xx
v

xx
iv

xxx

x
iii

xxx

x
ii

xx

x
i
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Matrices: 

A matrix is a rectangular array of numbers (elements), the general form 
of a matrix with m  rows and n  columns is: 





















mnmm

n

n

aaa

aaa

aaa

.....

....................

.....

.....

21

22221

11211

  

We denote such a matrix by nmija ,)(  or simply )( ija , and the type of the 

matrix is nm . 

Example1: consider the 32  matrix 












250

431
. 

Its rows are )4,3,1(  and )2,5,0(  , and its columns are 

























2

4
,

5

3
,

0

1
. 

Capital letters ,..., BA  denote matrices, whereas lower case letters ,...,ba  

denote elements. 

Example2: build a matrix 32)(  ijaA  ; 

















jiifji

jiifi

jiifji

aij    

Solution:  











232221

131211

aaa

aaa
A  ,   

532,2,112

,431,321,1

232221

131211





aaa

aaa
 

.
521

431








A  

Example3: build a matrix 
33)(  ijbB  ; 

















jiifji

jiif

jiifji

bij

22

0    

Solution:  



















333231

232221

131211

bbb

bbb

bbb

B  ,   

0,523,813

532,0,312

,431,321,0

33

22

32

22

31

2322

22

21

131211







bbb

bbb

bbb
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2 

.

058

503

430

















B  

 

 Two matrices A and B  are equal, if they have the same number of    
rows and the number of columns. 
 A matrix whose elements are all zero is called a zero matrix, and 

denoted by 0 . 

------------------------------------------------------------------------------------------------- 
Matrix Addition: 

The sum of the two matrices A and B , written BA , is the matrix 

obtained by adding corresponding element from A and B . 

Note that: BA  have the same type as A and B ,  
The sum of two matrices with different types is not defined. 

Example: 






 





















 

612

324

132

603

540

321
, 

The sum 



















 

131

250

43

21
 is not defined. 

Properties: For matrices BA ,  and C  (with the same type), 

AAAiii

ABBAii

CBACBAi







00)(

)(

)()()(

 

------------------------------------------------------------------------------------------------- 
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Scalar Multiplication: 

The product of a scalar k  and a matrix A , written kA is the matrix 

obtained by multiplying each element of A  by k . 

Example: 

























15912

063

334

021
3 . 

Matrix Multiplication: 

Let A and B  be matrices such that the number of columns of A  is equal 

to the number of rows of B . Then the product of A and B , written AB ,  

Is the matrix with the same number of rows as A  and of columns as B , 

and whose element in the thi  row and the thj  column is obtained by 

multiplying the thi  row of A  by the thj  column of B . 

Example: 



















 









323

112

05

11

43

21
,  

                 






 








 









29103

1361

540

321

43

21
, 

                 


























63

52

41

43

21
 is not defined ,  

         also 


















 

132

603

540

321
 is not defined. 

Properties:  
Matrix Multiplication does,however, satisfy the following properties: 

.)()()()(

)()(

)()(

)()()(

scalaraiskwherekBABkAABkiv

CABAACBiii

ACABCBAii

BCACABi









 

------------------------------------------------------------------------------------------------- 
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Square Matrix: A matrix with the same number of rows as columns  

is called a square matrix. A square matrix with 
n rows and 

n columns  

is called an n square matrix. The main diagonal or simply diagonal of  

a square matrix )( ijaA   is the numbers nnaaa ,...,, 2211 . 

The square matrix with s1  along the main diagonal and s0  elsewhere  

is called the unit matrix or the identity matrix and will be denoted by I . 

For any square matrix A , AIAAI  . 

Example: The matrix 





















235

140

021

 is 3 square matrix,  

the numbers along the main diagonal are 2,4,1  .  

And the matrix 

















100

010

001

 is a unit matrix. 

------------------------------------------------------------------------------------------------- 

Transpose: The transpose of a matrix A , written by 
tA  is the matrix 

obtainad by writting the rows of A , in order, as columns. 

Example: 



























63

52

41

654

321
t

. 

Properties:  
The transpose operation on a matrices satisfies the following properties: 

ttt

tt

tt

ttt

ABABiv

scalarakforkAkAiii

AAii

BABAi









)()(

,)()(

)()(

)()(
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Exercises:  

1- Build a matrices 3223 )(,)(   ijij bBaA   ;   

























jiifji

jiifi
b

jiifji

jiifi

jiifji

a ijij
2

12
,    

 

1- If 





































0204

1312

1041

,
301

012
BA . Compute AB  

2- If 










































112

102

6411

,

814

312

201

BA . Compute 
tAB , 

where
tB  the transpose of B .  

3- If 












































123

234

112

,

201

111

121

BA . Compute 
tAB  

======================================================= 
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Determinants: 

To every square matrix there is assigned a specific number called 
determinant of the matrix.  

We write )det(A or A  for the determinant of the square matrix A . 

Usually a square matrix is said to be singular if its determinant is zero, 
and nonsingular otherwise. 
 
Determinants of order two: 

The determinant of the 22  square matrix 








dc

ba
 is denoted and 

defined as follows: bcad
dc

ba
  

Example: 

7815)2)(4()3)(5(
32

45
  ,  

16412)4)(1()6)(2(
64

12



 . 

 
Determinants of order three: 

The determinant of the 33  square matrix is defined as follows: 

33

22

1

33

22

1

33

22

1

33

22

1

31

33

22

1

21

33

22

1

11

333

222

111

)1()1()1(

ba

ba
c

ca

ca
b

cb

cb
a

ba

ba
c

ca

ca
b

cb

cb
a

cba

cba

cba



 

 

Example: 

The determinant of a matrix 

























511

240

432

A  is: 
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4616636

)40(4)20(3)220(2

11

40
)4(

51

20
3

51

24
2

511

240

432




















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also, 

461036

)166()220(2

24

43
1

51

43
0

51

24
2

511

240

432


























 

------------------------------------------------------------------------------------------------- 
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Linear equations in three unknowns and determinants: 

Consider three linear equations in the three unknowns zandyx, : 

3333

2222

1111

dzcybxa

dzcybxa

dzcybxa







 

The above system has a unique solution iff the determinant of the matrix 
of coefficients is not zero; 

0

333

222

111



cba

cba

cba

D  

In this case, the unique solution of the system can be expressed  
as quotients of determinants, 

D

N
z

D

N
y

D

N
x zyx  ,,  

Where the denominator D  in each quotient is the determinant of  

the matrix of coefficients,as avove,and the numerators zyx NandNN ,   

are obtained by replacing the column of coefficients of the unknown  
in the matrix of coefficients by the column of constant terms: 

333

222

111

333

222

111

333

222

111

,,

dba

dba

dba

N

cda

cda

cda

N

cbd

cbd

cbd

N zyx   

We emphasize that if the determinant D  of the matrix of coefficients  
is zero then the system has either no solution or an infinite number of 
solutions. 
-------------------------------------------------------------------------------------------------
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Example: Solve the following system by determinants. 

                

432

1

32







zyx

zyx

zyx

 

Solution: 

5342)12(1)13(1)23(2

321

111

112







D   ,  

09312)12(3)14(1)24(2

421

111

312

,531214)14(1)13(3)43(2

341

111

132

,10673)42(1)43(1)23(3

324

111

113























z

y

x

N

N

N

 

0
5

0
,1

5

5
,2

5

10





D

N
z

D

N
y

D

N
x zyx  

------------------------------------------------------------------------------------------------- 
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Invertible matrices and determinants: 

A square matrix A  is said to be invertible if there exists a matrix B  with 

the property that IBAAB  , the identity matrix,  

we call such a matrix B  the inverse of A  and denote it by 
1A . 

Observe that the above relation is symmetric; that is, if B  is the inverse 

of A , then A  is also the inverse of B . 

Example: The matrix 























116

104

2211

 is the inverse of 



















814

312

201

  

Such that 



















814

312

201























116

104

2211

=

















100

010

001

. 

Minors and cofactors: Consider an n square matrix )( ijaA  . 

Let ijM denote  )1(n square submatrix of A  obtained by deleting  

its thi  row and thj  column. 

The determinant ijM  is called the minor of the element ija  of A , and 

we define the cofactor of ija  to be the "signed" minor ijij

ji M  )1( . 

)( ij is called the matrix of cofactors of A , and will be denoted by A
~

. 

Example: Let 

























511

240

432

A . The cofactors of A  are: 

18
51

24
11 




   ,  2

51

20
12    ,  4

11

40
13 




   , 

11
51

43
21 




  ,  14

51

42
22 


   ,  5

11

32
23 


   , 

10
24

43
31 




 , 4

20

42
32 


 ,  8

40

32
33 


  . 

























8410

51411

4218
~
A . 

------------------------------------------------------------------------------------------------- 
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The transpose of the matrix of cofactors of A  is called the adjoint of A , 

denoted 
tAAadj )

~
( . And the inverse of a nonsingular matrix A  is to be 

A

A

A

Aadj
A

t)
~

(1 
. 

For the matrix 

























511

240

432

A  in the above example: 

461036)166()220(2

511

240

432









A  , 

























854

4142

101118

46

1)
~

(1

A

A
A

t

. 

======================================================= 
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Exercises:  

1- Compute the determinant of each matrix: 































































521

321

432

)(

125

320

214

)(

150

324

321

)( iiiiii  

2- Solve the following system by determinants: 

132

8253

132







zyx

zyx

zyx

 

3- Verify that the inverse of 























311

121

132

A  is 























111

354

587

. 

4- Verify that the inverse of  a matrix 
33)(  ijaA  ; 

















jiifj

jiifi

jiifi

aij

2

2

   

is .

204

012

4210

2

11























A  

======================================================= 
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Definition: A complex number is a number consisting of a real and 
imaginary part.  

Its standard form is  iyxz   ; 1i  ,  .)Im(,)Re( yzxz   

 The complex conjugate of a complex number iyxz  , denoted by z   

is given by iyxz  .  

 The complex number iyxz   is the addition inverse of a complex 

number iyxz  , and the multiplication inverse of a complex number 

iyxz 0  is 
22

1

))((

1

yx

iyx

iyxiyx

iyx

zz

z

z
z











 . 

Examples: Find 
1,,,)Im(,)Re(  zzzzz  for each comlex number z   

of the following: 

1,
1

1
,2,,2,21 




i
iiii   

Solution: iz 21  

)21(
5

1

)2(1

21

)21)(21(

21

21

1

,21,21,2)Im(,1)Re(

22

1 i
i

i

ii

i

i
z

izizzz


















 

-------------------------------------------------------------------------------------------- 
-------------------------------------------------------------------------------------------- 
-------------------------------------------------------------------------------------------- 
-------------------------------------------------------------------------------------------- 
-------------------------------------------------------------------------------------------- 
 

 Two complex numbers are equal if their real parts are equal and their 
imaginary parts are equal  

( i.e. If 2211 iyxiyx   Then 21 xx   and 21 yy   ). 
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The polar form of a complex number: 

)sin(cos  irz  is called the polar form of a comlex number 

iyxz   such that: 

 sin,cos ryrx    ,   
x

y
yxzr 122 tan,    

  is called the argument of z , denoted by )(arg z . 

The principal argument of z  is      

(determined according to in which quarter lies?) 
As shown in the following diagram:  
 
 

 
 
                 

“ All Students Take Calculus ” 

( 0  will be one of the famous angles ...,
4

,
4

,
3

,
6


 rad ) 

------------------------------------------------------------------------------------------------- 
In other words: 
 The comlex number iyxz   lies in quarterI. 

 The comlex number iyxz   lies in quarterII. 

 The comlex number iyxz   lies in quarterIII. 

 The comlex number iyxz   lies in quarterIV. 

------------------------------------------------------------------------------------------------- 
 

 20 

2

3


0 

 0

0

2


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Examples: Write each of the following comlex number z  in polar form: 

iiii  1,31,3,1  

(1) iz 1   

    ,21122  yxr  

   

.1
1

1
tan

,
2

1
cos

,
2

1
sin







x

y

r

x

r

y







 

   
4


    ,  

).
4

sin
4

cos(21


ii   

------------------------------------------------------------------------------------------------- 

(2) iz  3   

   

.
3

1
tan

,
2

3
cos

,
2

1
sin

,21322











x

y

r

x

r

y

yxr







 

    
6

5

6


    , 

].)
6

5
(sin)

6

5
(cos[23


ii   

------------------------------------------------------------------------------------------------- 
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   (3) 31 iz   

    ,23122  yxr   

   

.3
1

3
tan

,
2

1
cos

,
2

3
sin













x

y

r

x

r

y







 

    
3

2

3





    , 

].)
3

2
(sin)

3

2
(cos[231


 ii  

------------------------------------------------------------------------------------------------- 

(4) iz 1  

   ,21122  yxr  

   

.1
1

1
tan

,
2

1
cos

,
2

1
sin











x

y

r

x

r

y







 

    
4


    , 

].)
4

(sin)
4

(cos[21


 ii  

------------------------------------------------------------------------------------------------- 
 H.W:  

1- Write the complex number 
i

z



1

2
 in the form iyxz  , and find  

)arg(,,,)Im(,)Re( zzzzz . 

2- Write the complex number 
i

z



3

4
 in the form iyxz  , and find  
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De Moivre`s Theorem: Let )sin(cos  irz   be a complex number 

and n  be any real number. Then )sin(cos  ninrz nn  . 

Examples:   

(1) Using De Moivre`s Theorem, find the value of 
8)1( i  

Solution:  

we put the complex number iz 1  in the polar form as follows: 

4
1tan

1

1
tan,211 11 

  r  

)
4

sin
4

(cos21


ii   ,  

.16)2sin2(cos16)
4

sin
4

(cos)2()1( 888  


iii  

------------------------------------------------------------------------------------------------- 
(2) Using De Moivres` Theorem, reduce the complex number: 

911

75

)5sin5(cos)4sin4(cos

)3sin3(cos)2sin2(cos





ii

ii
z




   , and find its value at 

6


   . 

Solution: 

4544

2110

911

75

)]sin[cos]sin[cos

]sin[cos]sin[cos

)]5sin()5[cos(]4sin4[cos

]3sin3[cos)]2sin()2[cos(























ii

ii

ii

ii
z

 

 .12sin12cos)sin(cos 12  ii   

and at 
6


  : 12sin2cos)

6
)(12sin()

6
)(12cos(  


iiz  

------------------------------------------------------------------------------------------------- 
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(3) Using De Moivre`s Theorem, reduce the complex number: 

7

5

)tan1(

)tan1(





i

i




  , and find its value at 

6


   . 

Solution: 

)].12(sin)12([cos)(cos

)sin(cos)(cos

)sin(cos

)sin(cos)(cos

)sin(cos

)sin(cos)(cos

)
cos

sin
1(

)
cos

sin
1(

)tan1(

)tan1(

2

122

7

52

7

52

7

5

7

5
























i

i

i

i

i

i

i

i

i

i
z


























 

and at 
6


  : 

4

3
]2sin2[cos)

2

3
()]

6
)(12(sin)

6
)(12([cos))

6
(cos( 22  


iiz . 

------------------------------------------------------------------------------------------------- 
 H.W:  

Using De Moivre`s Theorem, find the value of  
6)31( i  , 

12)3( i  

------------------------------------------------------------------------------------------------- 
 

The polar form of a complex number: 

)sin(cos  irz   Is called the polar form of a comlex number iyxz   such that: 

 sin,cos ryrx    ,   
x

y
yxzr 122 tan,    

  is called the argument of z  , denoted by )(arg z  , and the principal argument of z  is                      

                               ( 0  will be one of the famous angles ...,
4

,
3

,
6


 rad ) 
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Chapter 1 

 Real Functions 

     One of the important themes in calculus is the analysis of relationships be-

tween physical or mathematical quantities. Such relationships can be described in 

terms of graphs, formulas, numerical data, or words. In this chapter we will de-

velop the concept of a function, which is the basic idea that underlies almost all 

mathematical and physical relationships, regardless of the form in which they are 

expressed. We will study properties of some of the most basic functions that oc-

cur in calculus.  

   Let us begin with some illustrative examples. 

 The area A  of a circle depends on its radius r  by the equation 
2A r , 

so we say that A  is a function of  r . 

 Volume of a sphere depends on its radius by the equation  34

3
V r . 

 Surface area of a cube depends on the length of its side by the equation  

26S x  

 The velocity A  of a ball falling freely in the Earth’s gravitational field in-

creases with time A  until it hits the ground, so we say that A  is a function 

of  A  . 

This idea is captured in the following definition: 

Definition 1. 

If a variable y depends on a variable x  in such a way that each value of x  de-

termines exactly one value of y , then we say that y  is a function of x . 

      In the mid-eighteenth century the mathematician Euler conceived the idea of 

denoting functions by letters of the alphabet, thereby making it possible to de-

scribe functions without stating specific formulas, graphs, or tables. 

This suggests the following definition: 

Definition 2. 

A function f  is a rule that associates a unique output with each input. If the input 

is denoted by x , then the output is denoted by ( )f x  (read " f  of x "). 

         This output is sometimes called the value of f  at x  or the image of x  un-
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der f .  Sometimes we will want to denote the output by a single letter, say y , 

and write 

( )y f x  

This equation expresses y  as a function of x . The variable x  is called the inde-

pendent variable of  f  , and the variable y  is called the dependent variable of f . 

This terminology is intended to suggest that x  is free to vary, but that once x  has 

a specific value a corresponding value of y is determined.  For now,  we will only 

consider functions in which the independent and dependent variables are real 

numbers, in which case we say that f  is a real-valued function of a real variable. 

         In the previous definition the term unique means "exactly one".  Thus, a 

function cannot assign two different outputs to the same input.   

For example, the following equation 

2 9y x x  

describes y as a function of  x because each input x in the interval 3 3x

produces exactly one output 2 9y x x . 

Definition 3.  

A function   f from set A  to set B  (written as :f A B ) is a rule of corre-

spondence that associates to each element of A , one and only one element of B . 

(A function is also called a mapping from A  to B .) 

We observe that 

 Each element of B  need not be in the association, but every element of A  

must be involved in it. Hence, a function is a one way pairing process. 

(Every element of A  pairs off with some element of  B  but not converse-

ly.) 

 One element of A  cannot be associated to more than one element of B , 

but one element of B  may correspond to two or more elements of A . 

The correspondence from the elements of set A  to set B , shown in Figs 1.1-1.3 

represents function(s) whereas that shown in Figs 1.4 and 1.5 does not represent 

functions. 
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       Fig 1.1                                     Fig 1.2                                  Fig 1.3 

 

 

 

 

 

 

                         

                     Fig 1.4                                                                 Fig 1.5 

Example (1) 

For 2( ) 2f x x x , find and simplify 

(a) (4)f ,  (b) (4 )f h ,  (c) (4 ) (4)f h f  

(d) [ (4 ) (4)] /f h f h , where 0h . 

Solution 

2(4) 4 2(4) 16 8 8f  

2

2

2

(4 ) (4 ) 2(4 )

(16 8 ) (8 2 )

8 6

f h h h

h h h

h h

 

2

2

(4 ) (4) 8 6 8

6

f h f h h

h h

2[ (4 ) (4)] / (6 ) / 6f h f h h h h h  
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Domain and Range of  a Function 

Definition 4. 

Let f  be a function from set A  to set B  ( :f A B ), then 

 The (entire) set A  is called the domain of  f . 

 The (entire) set B  is called the codomain of f . 

 An element y  of B  that corresponds to some element x  of A  is denoted 

by ( )f x , and it is called the image of x  under f . 

 The set of all images constitute the range of f . The range of f  is denoted 

by ( )f A  and it is a subset of set B . In other words ( )f A B . 

Definition 5. 

If ( )y f x then the set of all possible inputs (x -values) is called the domain of 

f  , and the set of outputs (y -values) that result when x  varies over the domain is 

called the range of f . 

For example, consider the equations 

2y x    

and   

  2, 2y x x  

In the first equation there is no restriction on x , so we may assume that any real 

value of x  is an allowable input. Thus, the equation defines a function 2( )f x x

with domain x . In the second equation, the inequality 2x  re-

stricts the allowable inputs to be greater than or equal to 2, so the equation de-

fines a function 2g( ) , 2x x x  with domain 2 x . 

As x  varies over the domain of the function 2( )f x x , the values of 2y x

vary over the interval 0 y , so this is the range of f . By comparison, as 

x  varies over the domain of the function 2( ) , 2g x x x , the values of 2y x

vary over the interval 4 y , so this is the range of g . It is important to 

understand here that even though 2( )f x x  and 2( ) , 2g x x x  involve the 

same formula, we regard them to be different functions because they have differ-

ent domains. In short, to fully describe a function you must not only specify the 
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rule that relates the inputs and outputs, but you must also specify the domain, that 

is, the set of allowable inputs. 

Example (2)  

Find the  domain of : 

(a)  3( )f x x  (b) 
1

( )
( 1)( 3)

f x
x x

 

(c)  ( ) tanf x x  (d) 2( ) 5 6f x x x  

Solution  

(a) The function f  has real values for all real x , so its domain is the interval 

( , ) . 

(b) The function f  has real values for all real x , except 1x and 3x , 

where divisions by zero occur. Thus, the domain is                                         

{ : , 1and 3} ( ,1) (1,3) (3, )x x R x x . 

(c) Since 
sin

( ) tan
cos

x
f x x

x
, the function f  has real values except where 

cos 0x , and this occurs when x  is an odd integer multiple of 
2

. Thus, 

the domain consists of all real numbers except 
3 5

, , ,...
2 2 2

x  

(d)  The function f  has real values, except when the expression inside the rad-

ical is negative. Thus the domain consists of all real numbers x  such that 

2 5 6 ( 3)( 2) 0x x x x . This inequality is satisfied if 2x  

or 3x , so the natural domain of f  is ( ,2] [3, ). 

Example (3) 

Find the domain and range of 

(a) ( ) 2 1f x x  (b) 
1

( )
1

x
f x

x
 

Solution 

(a) The domain of ( )f x  is [1, ) . As x  varies over the interval [1, ) , the value 

of 1x varies over the interval [0, ), so the value of ( ) 2 1f x x var-
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ies over the interval[2, ) , which is the range of ( )f x . 

(b) The given function ( )f x  is defined for all real 1x , so the domain of ( )f x  

is ( ,1) (1, ). To determine the range it will be convenient to introduce a 

dependent variable  

1
(*)

1

x
y

x
 

we solve (*) for x  in terms of  

( 1) 1x y x  

1xy y x  

                                                   1xy x y  

( 1) 1x y y  

                                                    

1

1

y
x

y
 

So, the range of the function ( )f x is ( ,1) (1, ).  

Example (4)  

Find the domain for 2(t) 9 t  . 

Solution 

 Here, we must restrict t  so that 29 0t , in order to avoid nonreal values 

for 29 t . This is achieved by requiring that 2 9t  or 3 3t . Thus, 

the domain of ( )t  is { : 3 3}t R t . In interval notation, we can write 

the domain as [ 3,3]. 

Example (5) 

Determine the domains of the functions 

(a) 24y x  (b) 2 16y x  (c) 
1

2
y
x

 

                       (d) 
2

1

9
y

x
    (e) 

2 4

x
y
x

 

Solution 

a. Since y  must be real, 24 0x  or 2 4x . The domain is the interval 
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2 2x . 

b. Here, 2 16 0x , or 2 16x . The domain consists of the intervals 

4x and 4x . 

c. The function is defined for every value of x  except 2 . 

d. The function is defined for 3x . 

e. Since 2 4 0x for all x , the domain is the set of all real numbers. 

Example (6) 

Determine the domain of each of the following functions: 

(a) 2 4y x  (b) 2 4y x  (c) 2 4y x  (d) 
3

x
y
x

 

(e) 
2

( 2)( 1)

x
y

x x
  (f ) 

2

1

9
y

x
  (g) 

2

2

1

1

x
y
x

 (h) 
2

x
y

x
 

Solution 

(a), (b), (g) all values of x   (c) 2x   (d) 3x  (e) 1x , 2  (f ) 

3 3x   (h) 0 2x . 

Example (7) 

Find the domains and ranges of the following functions: 

(a) 2( ) 1f x x  (b) 
1 if 0 1

( )
2 if 1

x x
f x

x x
 

 (c) ( )f x x = the greatest integer less than or equal to x  

(d) 
2 4

2

x
y

x
 (e) 2( ) 5f x x  (f ) ( ) 4f x x  

(g) ( ) 3f x x  (h) ( ) 4 /f x x  (i) ( ) /f x x x  

( j) ( )f x x x  (k) 
if 0

( )
2 if 0

x x
f x

x
 

Solution 

(a) domain, all numbers; range, 1y  

(b) domain, 0x ; range, 1 0y or 2y  
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(c) domain, all numbers; range, all integers 

(d) domain, 2x ; range 4y  

(e) domain, all numbers; range, 5y  

(f ) domain, 0x ; range, 0y  

(g) domain, all numbers; range, 0y  

(h) domain, 0x ; range, 0y  

(i) domain, 0x ; range, 1,1y  

( j) domain, all numbers; range, 0y  

(k) domain, all numbers; range, 0y  

Example (8) 

Find the domains and ranges of the following functions: 

(a) 
2 if 1 0

( )
if 0 1

x x
f x

x x
 (b) 

2 if 0 2
( )

1 if 3 4

x x
f x

x x
 

(c) 

2 4
if 2

( ) 2
4 if 2

x
x

f x x
x

 

Solution 

(a) domain ( 1,1], range [0,2) 

(b) domain (0,2) [3,4], range (0,3)  

(c) domain and range  set of all real numbers 

Types of Functions 

(A) One-One Function 
 A function is one-one provided distinct elements of the domain are relat-

ed to distinct element of the range. In other words, a function :f A B  

is defined to be one-one if the images of distinct element of A  under f  

are distinct, that is, for every 1 2,a a A , 1 2 1 2( ) ( )f a f a a a . 

 [It also means that, 1 2 1 2( ) ( )f a f a a a ]. A one–one function is al-

so called injective function (Figure 1.6 and 1.7). 
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              Fig. 1.6                                       Fig. 1.7 

 

(B) Many-One Function 
 If the range of the function has at least one element, which is the image 

for two or more elements of the domain, then the function is said to be 

many-one function (Figure 2.8a and b). It means that there is at least one 

pair of distinct elements, 1 2,a a A , such that 1 2( ) ( )f a f a  though 

1 2a a . A constant function is a special case of many-one function 

(Figures 1.8 and 1.9). 

            
                                           Fig. 1.8 

                         
 

                            Fig. 1.9 Constant function 
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(C) Onto Function 

A function :f A B  is called an onto function if each element of the 

codomain is involved in the relation. (Here, range of f  codomain B.) 

In other words, a function :f A B  is said to be onto if every element 

ofB  is the image of some element of A , under f , that is, for every 

b B , there exist an element a A such that ( )f a b  (Figure 1.10 

and 1.11). Onto function is also called surjective function. 

 
                           Fig. 1.10                                        Fig. 1.11 

(D) Bijective Function (or One-to-One Correspondence) 

The most important functions are those which are both one-one and onto. 

In a function that is one-one and onto, each image corresponds to exactly 

one element of the domain and each element of codomain is involved in 

the relation as shown in Figure 1,12. Such a function is also called one-

to-one correspondence or a bijective function. 

 
           Fig. 12 

Example (9) 

Consider the function 3( )y f x x . Here, for every value of x R , there 

corresponds a single value of y , and, conversely, to each y R , there corre-

sponds a single value of x  given by 3x y . Therefore, f  specifies a one-to-

one mapping, from R  onto R . 
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Example (10) 

Consider the function 2( )y g x x . Here, for every value of x R , there 

corresponds a single value of (0, )y . However, to every 0y , there corre-

spond two values of :x x y . Therefore, "g " is not one-to-one corre-

spondence. 

Example (11) 

Consider the exponential function y ( ) xy f x e . It can be shown that the 

function ( ) xy f x e is one-to-one mapping from ( , )onto (0, ). Note 

that for 1 2x x , we have 1 2x xe e , where 1 2,x x Rx1, , and 1 2,x xe e R   . 

Consider 1 2 1 2/ 1 1x x x xe e e or 1 2 0x xe e  (since 0 1e )

1 2 1 20x x x x . In other words, 1 2
1 2

x xe e x x . Thus, 

1 2
1 2

x xx x e e . Therefore, " f " defines a one-to-one correspondence 

from ( , )onto (0, ). 

Classification of Functions 

Even and Odd Functions 

(i) A function is an even function if for every x  in the domain of f  

( ) ( )f x f x . 

(ii) A function is an odd function if for every x  in the domain of f  

( ) ( )f x f x . 

Example (12) 

I. A polynomial function of the following form is an even function: 

2 4 2

0 1 2( ) n

nf x a a x a x a x       

Observe that the power of  x  in each term is an even integer. 

II. We have , that  cos cosx x   for allx . Thus, the cosine function is an 

even function. 

III.  A constant function is always even (why?). 

Example (13) 

I.  It can be easily verified that the functions ( )f x x  and 
3( )f x x are 

odd functions. In fact, any polynomial function in which the power of each 

term is an odd integer is an odd function. 

II. We have for allx ,  sin sinx x   and  tan tanx x   . Thus, the 



12 
 
 

 

sine and the tangent functions are odd functions. 

Note 

The property of functions whether even or odd is very useful. In particular, it 

helps in drawing graph of such functions. 

Definition 6. 

 A function  :f   is said to be periodic, if there exists a real number 

( 0)p p   such that ( ) ( )f x p f x   for allx  . 

Period of a Periodic Function  

If a function f is periodic, then the smallest 0p  , if it exists such that 

( ) ( )f x p f x   for all x  , is called the period of the function.  

Obviously, the period of the sine and cosine functions is 2  . It can be shown 

that the period of the tangent function (and that of the cotangent function) is   . 

Remark 

Aperiodic function may not have a period. Note that a constant function f is peri-

odic as ( ) ( )f x p f x  constant for all 0p  , however, there is no smallest 

0p   for which the relation holds. Hence, there is no period of this function, 

though it is periodic by definition. 

Algebraic operation on functions 

Functions are not numbers. But, just as two numbers a  and b  can be added to 

produce a new number (a b ), two functions f  and g  can be added to produce 

a new function ( f g ). This is just one of the several operations on functions.  

(a) Sums, Differences, Products and Quotients of Functions 

Let f  and g  be functions. We define the sum f g , the difference f g , 

and the product .f g to be the functions whose domains consist of all those 

numbers that are common in the domains of both  f  and g  and  whose 

rules are given by  

( )( ) ( ) ( )f g x f x g x  

( )( ) ( ) ( )f g x f x g x  

( . )( ) ( ). ( )f g x f x g x . 

In each case, the domain is consisting of those values of x  for which both

( )f x and ( )g x are defined.  
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Next, because division by 0  is excluded, we give the definition of quotient 

of two functions separately as follows: The quotient 
g

f
is the function 

whose domain consists of all numbers x  in the domains of both ( )f x  and 

g( )x  for which g( ) 0x , and whose rule is given by 

( )
( ) , ( ) 0

( )

f f x
x g x

g g x
 

Example (14) 

Let 
1

( )f x
x

 and ( )g x x . Find the domain and rule of f g . 

Solution 

The domain of f is : 0x R x  and the domain of  ( )g x  

: 0x R x .  

The only numbers in both domains are the positive numbers, which constitute the 

domain of f g . 

For the rule, we have 

1
( )( ) ( ) ( ) , 0f g x f x g x x x

x
. 

Example (15) 

 Let 2( ) 4f x x and g( ) 1x x . Find the domain and rule of f g . 

Solution:  

The domain of ( )f x  is the interval [ 2,2] and the domain of g( )x  is the interval 

[1, ) . The domain of [ 2,2] [1, ) [1,2]f g . The rule of f g  is given 

by 

2

2

( . )( ) ( ). ( ) 4 1

(4 )( 1) for 1 2

f g x f x g x x x

x x x
 

Caution 

This example illustrates a surprising fact about the domain of  functions combi-

nation . We found that the domain of ( ) ( )f x g x is the interval [1,2]. Now observe 
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that the expression 2(4 )( 1)x x is also meaningful for x  in ( , 2]. 

This is true because 2(4 )( 1) 0 2x x x . However, ( , 2] can-

not be considered a part of the domain of ( ). ( )f x g x . By definition, the domain of 

the resulting function ( ) ( )f x g x consists of those values of x  common to do-

mains of ( )f x  and ( )g x . It is not to be determined from the expression (or the 

rule) for ( ). ( )f x g x .  

Similar comments hold for the domains of ( ) ( )f x g x and ( ) ( )f x g x .  

For the domain of ( ) / ( )f x g x , there is an additional requirement that the values 

of x , for which ( ) 0g x , are excluded. 

Example (16)  

Let ( ) 3f x x  and ( ) ( 3)( 2)g x x x . Let us find the domain and rule 

of ( ) / ( )f x g x . 

Solution 

Observe that the domains of ( )f x  and ( )g x are all real numbers, but ( ) 0g x , for 

3x  and 2x . It follows that the domain of ( ) / ( )f x g x consists of all real 

numbers except 2x  and 3x . The 

rule of ( ) / ( )f x g x is given by 

( ) 3
( ) for 2 and 3

( ) ( 3)( 2)

f f x x
x x x
g g x x x

 

Note 

We can add or multiply more than two functions. For example, if ,f g , and h  are 

functions, then for all x  common to the domains of ,f g , and h , we have (

( ) ( ) ( ) ( )f g h x f x g x h x  and ( . . ) ( ). ( ). ( )f g h x f x g x h x . 

(b) Composition of Functions 

Given the two function f  and g , the composite function denoted by (

g f ) is defined by 

( )( ) ( ( ))g f x g f x  

and the domain of ( ( ))g f x is the set of all numbers x  in the domain of f  

such that ( )f x is in the domain of ( )g x . The definition indicates that when 
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computing ( )( )f g x , we first apply g  to x  and then the function f to 

( )g x . We write 

( )( ) ( ( ))f g x f g x  

Example (17) 

 Let 
3

( )
2

x
f x  and ( )g x x . We may composite them as follows: 

I.  
3 3

( )( ) ( ( )) ( )
2 2

x x
g f x g f x g  

  

II. 
2

( )( ) ( )
2

x
f g x f x  

Remark 

Note that ( )( ) ( )( )g f x f g x ). Thus, composition of functions is not 

commutative, ( )( )g f x and ( )( )f g x   are usually different. 

Domain of a Composite Function 

We must be more careful in describing the domain of a composite func-

tion. Let ( )f x  and g( )x  be defined for certain values of x . Then, the do-

main of ( )( )g f x  is that part of the domain of ( )f x  (i.e., those values of 

x x) for which g  can accept ( )f x  as input. In the above example, the do-

main of ( )( )g f x is 3, , since x  must be greater than or equal to 3  in 

order to give a nonnegative number 
3

2

x
 for g to work on. 

Example (18) 

Consider the function 3( ) 7x x . 

We can express ( )x  as the composition of the two functions g( )x  and 

( )f x , given by 3( ) 7f x x and ( )g x x . 

Now, we have 3 3( ) ( )( ) ( ( )) ( 7) 7x g f x g f x g x x  

Next, we can also express ( )x as the composition of another pair of func-

tions g  and f given by 3( )f x x  and ( ) 7g x x . 
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Consider 3 3( ) ( )( ) ( ( )) ( ) ( 7)x g f x g f x g x g x . 

Example (19) 

Given 
2

1
( )

3
x

x
. 

Express ( )x  as the composition of two function f and g in two ways: 

(i) The function  f  containing the radical. 

(ii) The function g  containing the radical. 

Solution  

To solve such problems, it is necessary to develop the ability of decompos-

ing the given function into composite pieces. 

I. We choose 
1

( )
3

f x
x

 and 2( )g x x . 

Now, 
2

2

1
( ) ( )( ) ( ( )) ( )

3
x f g x f g x f x

x
 

(Observe that to express ( ( ))f g x   first we insert the expres-

sion for ( )g x  and obtain ( )f t  , where t  stands for ( )g x . 

Next, we write the expression for ( )f t  and replace  t  by

( )g x .) 

II. Now,  we choose 
1

( )f x
x

 and 2( ) 3g x x  . Then, 

2

2

1
( ) ( )( ) ( ( )) ( 3)

3
x f g x f g x f x

x
(Here again, to express ( ( ))f g x , first we insert the expres-

sion for ( )g x and obtain ( )f t , where ( )f t  stands for 

( )g x . Now we look at the expression for ( )f t , which sug-

gests that we must take the reciprocal of  t .) 

Example (20) 

 Let ( ) 1f x x  and 
1( )g x
x

 . We shall determine the functions 
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g f  and f g  , and then find ( (5))g f  and f 
1

(g( ))
4

f   

Solution  

The function is   ( )g f x  given by 

1
( )( ) ( ( )) ( 1)

1
g f x g f x g x

x
 . The domain of ( )f x is  

[1, ) . Therefore, the domain of g f consists of those numbers x in

[1, )  for which g  can accept ( )f x as input. This demands that 

1 1

1 1
g
x x

 must be defined, which requires that  1x . 

Therefore, the domain of g f  is (1, ). 

The rule for f g is given by 

1 1
( )( ) ( ( )) ( ) 1f g x f g x f

x x
 

The domain of ( )g x is the set of nonzero numbers, that is( ,0) (0, )

Therefore, the domain of f g consists of those numbers  x  in the above 

domain for which f can accept ( )g x  as input. This demands that 

1 1
( ) 1f
x x

 must be defined.  

It requires that must be positi
1 1 1

1 0 1( ve w 1th )ix
x x x

.  

So, The domain is (0,1]. 

Inverse Function 1f  

If a function  " f  " is one-to-one and onto, then the correspondence associating 

the same pairs of elements in the reverse order is also a function. This reverse 

function is denoted by 1f , and we call it the inverse of the function f  . Note 

that, 1f is also one-to one and onto. See figure 1.13 

Remark 

A function f has an inverse provided that there exists a function, 1f such that 

I. the domain of 1f is the range of  f   

II. ( )f x y  if and only if 1( )f y x  for all x  in the domain of  " f " and 
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for all y  in the range of  " f ". 

Note  

Not every function has an inverse. If a function :f A B  has an inverse, then 

1 :f B A is defined, such that, the domain of 1f is the range of f  , and the 

range of 1f is the domain of  f , associating the same pairs of elements. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                     Fig. 1.13 

 

It can be shown that if  f  has an inverse, then the inverse function is uniquely 

determined. Sometimes, we can give a formula for 1f . For example 

( ) 2y f x x , then 1 1
( )

2
x f y y . Similarly, if 3( ) 1y f x x , then 

1 3( ) 1x f y y . In each case, we simply solve the equation that deter-

mines  x  in terms of y . The formula in y expresses the (new) function 1f . 

We cannot always give the formula for 1f . For example, consider the function 

5( ) 2 1y f x x x . It is beyond our capabilities to solve this equation for 

x. 

Note that, in such cases, we cannot decide whether a given function has an in-

verse or not.  

Fortunately, there are criteria that tell whether a given function ( )y f x has an 

inverse, irrespective of whether we can solve it for x . 

In this notation, the letter x  stands for the independent variable and the letter y  

the dependent variable for both the mutually inverse functions. Thus the func-
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tions 
3y x  and 

3y x  , represent a pair of mutually inverse functions. Al-

so 10xy   and 
10logy x  are mutually inverse functions. 

There is a simple relationship between the graphs of two mutually inverse func-

tions ( )y f x  and 
1( )y f x  . They are symmetric with respect to the line

y x (see Figure 1.14 and 1.15). 

 
                                                    Fig. 1.14 

 
                                                       Fig. 1.15 

In the case of simple functions (like linear functions, etc.) there is a three-step 

process that gives a formula for the inverse. 

Step (1): Solve the equation ( )y f x for x, in terms of y . 

Step (2): Use the symbol 1f to name the resulting expression in y . 

Step (3): Replace  y  by  x to get the formula for 1( )f x . 
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Example (21) 

Consider the function ( ) 3 2y f x x , x R , and let us find its inverse 

function. 

Solution 

Step (1): 
2

( ) 3 2
3

y
y f x x x   

Step (2): 1 2
( )

3

y
f y  

Step (3): 1 2
( )

3

x
f x  

Example (22)  

Let us find the formula for 1( )f x if ( )
1

x
y f x

x
 

Step (1): ( )
1 1

x y
y f x x

x y
 

Step (2): 1( ) ( 1)
1

y
f y y

y
 

Step (3): 1( ) ( 1)
1

x
f x x

x
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Algebraic Functions and Their Combinations 

(a) Constant Function:  

A function of the form ( )f x a , where "a " is a nonzero real number 

(i.e., 0a ), is called a constant function. The range of a constant func-

tion consists of only one nonzero number. 

(b)  Identity Function:  

The function ( )f x x  is called the identity function . The range of  iden-

tity function is all real number. From the functions at (a) and (b) above, we 

can build many important functions of calculus: polynomials, rational 

functions, power functions, root functions, and so on. 

(c) Polynomial Function:  

Any function, that can be obtained from the constant functions and the 

identity function by using the operations of addition, subtraction, and mul-

tiplication, is called a polynomial function. This amounts to say  that " ( )f x

" is a polynomial function, if it is of the form 

1 2
1 2 1 0( ) ....n n

n nf x a x a x a x a x a  

where 1 2 1 0, ,...., , ,n na a a a a  are real numbers ) 0na ) and n  is a 

nonnegative integer. If the coefficient 0na , then "n " (in nx ), the 

nonnegative integral exponent of x , is called the degree of the polynomial. 

Obviously, the degree of constant functions is zero. 

I. Linear Function: Polynomials of degree 1 are called linear functions. 

They are of the form 1 0( )f x a x a , with 1 0a . Note that, the 

identity function [ ( )f x x ] is a particular linear function. 

II. 2
2 1 0( )f x a x a x a is a second degree polynomial, called a 

quadratic function. If the degree of the polynomial is 3, the function 

is called a cubic function. 

III. Rational Functions: Quotients of polynomials are called rational 

functions. Examples are as follows: 

2

1
( )f x

x
,  3( ) 5f x x x ; 

3 2
( )

2

x x
f x

x
2

2

2
( )

5 6

x x
f x

x x
. 
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Example (23)  

Let 
2

2

2
( )

5 6

x x
f x

x x
. Find the domain of f . 

Solution 

We have 2 5 6 ( 1)( 6)x x x x . Therefore, the denominator is 0  for 

1x  and 6x . Thus, the domain of  f  consists of all numbers except 1  

and 6 . 

Remark  

Sometimes, it may happen that both the numerator and the denominator have 

a common factor. For example, we have 2 2 ( 1)( 2)x x x x , and 

2 5 6 ( 1)( 6)x x x x . So, we have  

2

2

2 ( 1)( 2)
( )

( 1)( 6)5 6

x x x x
f x

x xx x
 

which may be simplified to read
2

6

x

x
, provided 1x . Note that, while the ex-

pression 
2

6

x

x
is meaningful for 1x , the number 1  is not in the domain of 

function f . (This again suggests that the domain of a combination of functions 

must be determined from the original description of the function(s), and not from 

their simplified form.) 

(d) Power Functions 

These are functions, of the form ( )f x x , where  is real number. Ex-

amples are 4 2 3 5 0 3, , , , ,x x x x x x . 

(e) Root Functions 

I. Square root function  

Consider the relation 2y x . We write it as y x  or 1/2y x  

and call it the square root function of x . We know that there is no 

real number whose square  is a negative number. Hence, we define 

square root function ( )f x x  that assigns to each nonnegative 

number x  the nonnegative number ( )f x . We emphasize that 
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( )f x x  is defined only for 0x and that ( ) 0f x , for all 

0x . Accordingly, it is meaningful to write 8, 1 / 3 , and 0 , 

and so on, but 5 has no meaning. Furthermore, while 4 2 , 

we write 4 2  and we never write 4 2 . 

II. Cube Root Function  

Consider the relation 3y x . We write it as 
3y x  or 1/3y x , 

and call it the cube root function. It assigns to any number x , the 

unique number y  such that 3y x . Of course, our interest lies only 

in real roots. In contrast to the square root function, the cube root 

function has in its domain all real numbers, including negative num-

bers. For example, 
3 8 2 , 

3 1 1and 

3 27 / 64 3 / 4 . Similarly 
3 8 2; 

3 125 5 , and

3 125 5 . Thus cube root of any negative number is a negative 

number and that of any positive number is a positive number. 

III.  thn  Root Function 

We note that cube root function "
3( )f x x "is defined for all real 

numbers x , whereas square root function " ( )f x x " is defined 

only for 0x  with the understanding that 0x  (i.e., only 

nonnegative square roots are accepted). By extending these concepts 

to the roots of higher order, we get that if n  is odd, then thn  root 

function "
n x " is defined for all real numbers, and on the other 

hand, if n  is even, then "
n x " is defined only for 0x  

Note  

 In view of the above, the expressions
3 1 ; 

5 32  and 
7 128 are 

meaningful, whereas the expressions 
4 1 ; 

6 64 ; and 3 9 / 4
are meaningless. For every positive integer n , we also have 

1 1, 0 0n n
. 
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Non-algebraic Functions and Their Combinations 

I. Trigonometric functions 

Let a point ( , )p x y  moves along  a circle perimeter with radius 1r  and 

 is the angle that the revolving line OP makes with the x-axis (see figure 

1.16). Then, we can define the sine and cosine functions of   by: 

sin
x

r
, cos

y

r
 

 
                                                   Fig. 1.16 

Here , it is important to keep in mind that the angle  can be of any mag-

nitude and sign. Therefore, the terminal side OP can be in any quadrant. 

Thus, the angle  that the revolving line makes with the x-axis need not 

be acute. However, we define the trigonometric function of the angle 

with reference to the right-angled triangle in which the revolving line (as 

hypotenuse) makes the angle  with the x-axis. Obviously,  may be 

acute or obtuse or negative. 

There are four other basic trigonometric functions that are defined in terms 

of sin
 
 and cos , we define 

sin
tan

cos
,  

cos
cot

sin
 

1
sec

cos
,  

1
co sec

sin
 

The values of these functions can be quickly computed from the corre-
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sponding values of sin  and cos . 

Properties of  trigonometric functions 

1. Sine function 
Sine function has the following properties(Fig. 1.17) 

a. sin : R R   

b. Its domain is R  and its range is [ 1,1] 
c. It is periodic function with period 2 , that is           

    sin( 2 ) sin . 

d. It is odd function, that is,  sin( ) sinx x . 

e. Sine function is not one-to-one function. 

 

Fig. 1.17 

2. Cosine function 

         Cosine function has the following properties (see Fig. 1.18) 

a. cos : R R  

b. Its domain is R  and its range is [ 1,1] 
c. It is periodic function with period 2 , that is  

    cos( 2 ) cosx x . 

d. It is even function, that is,  cos( ) cosx x . 

e. Cosine function is not one-to-one function. 

 

Fig. 1.18 
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3. Tangent function 
Tangent function has the following properties (see Fig. 1.19) 

a. tan : { } ,
2

R k R k Z .  

b. Its domain is { },
2

R k k Z  and its range is R . 

c. It is periodic function with period , that is tan( ) tanx x . 

d. It is odd function, that is,  tan( ) tanx x . 

e. It is not one-to-one function. 

 

                                                      Fig. 1.19 

4. Secant function 
Secant function has the following properties (see Fig. 1.20). 

a. sec : { } ,
2

R k R k Z . 

b. Its domain is { },
2

R k k Z  and its range is  

    ( , 1] [1, ) . 

c. It is periodic function with period 2 , that is  

    sec( 2 ) secx x . 

d. It is even function, that is,  sec( ) secx x . 

e. It is not one-to-one function. 
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                                                          Fig. 1.20 

5. Cosecant function 
Cosecant function has the following properties (see Fig. 1.21) 

a. cosec : { } ,R k R k Z  

b. Its domain is { },R k k Z  and its range is  

    ( , 1] [1, )  

c. It is periodic function with period 2 , that is  

   cosec( 2 ) cosecx x . 

d. It is odd function, that is,  cosec( ) cosecx x . 

e. It is not one-to-one function.   

 

                                                          Fig. 1.21 

 

6. Cotangent function 

Cotangent function has the following properties (see Fig. 1.22). 

a. cot : { } ,R k R k Z . 

b. Its domain is { },R k k Z  and its range is R . 
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c. It is periodic function with period , that is cot( ) cotx x . 

d. It is odd function, that is,  cot( ) cotx x . 

e. It is not one-to-one function.  

 
                                                              Fig. 1.22 

 

Some Values of Trigonometric Functions 

 

2 3 5
0

6 4 3 2 3 4 6

1 2 3 3 2 1
sin 0 1 0

2 2 2 2 2 2

3 2 1 1 2 3
cos 1 0 1

2 2 2 2 2 2

x

x

x

      


   

 

        
 

 

sin sin

cos cos

x x

x x





  

  
 

Trigonometric  Identities  

1 . 
2 2sin cos 1x x   

2 . 
2 21 tan secx x   

3 . 
2 21 cot cosecx x  

4 . sin( ) sin cos sin cosx y x y y x   

5 . cos( ) cos cos sin sinx y x y x y  

6 . 
tan tan

tan( )
1 tan tan

x y
x y

x y
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7 . sin2 2sin cosx x x   

8 . 
2 2 2 2cos2 cos sin 1 2sin 2cos 1x x x x x   

9 . 
2 1 cos2

sin
2

x
x   

1 0 . 
2 1 cos2

cos
2

x
x   

1 1 . 
1

sin cos [sin( ) sin( )]
2

x y x y x y   

1 2 . 
1

sin sin [cos( ) cos( )]
2

x y x y x y  

1 3 . 
1

cos cos [cos( ) cos( )]
2

x y x y x y  

II. Trigonometric Functions (With Restricted Domains) and Their In-

verses 

We begin with the sine function  siny x  , whose graph appears in 

Figure 1.17. Observe from the figure that the sine function is strictly in-

creasing on the interval ,
2 2

  
 
 

 . Consequently, the function 

( ) sinf x x  , for which 

( ) sin , ,
2 2

f x x x
  

   
 

 

is one-to-one, and hence it does have an inverse in this interval. The graph 

of is sketched in figure 1.23. Its domain is ,
2 2

  
 
 

  and its range is 

 1,1 . The inverse of this function is called the inverse sine function. 
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                                                   Fig. 1.23 

1 . Inverse Sine Function  

The inverse sine function, denoted by 1sin  is defined by 

1siny x , if and only if sinx y   and [ , ]
2 2

y .  

The domain of  1sin x  is the closed interval 1,1   and the range 

is the closed interval ,
2 2

 (see  Fig. 1.24). 

 
                                                        Fig. 1.24 
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Remarks 

1sin ( 1)
2

  as sin( ) 1
2

.  

1sin (0) 0  as  sin(0) 0 .  

1 1
sin ( )

2 6
 as 

1
sin

6 2
. 

1 1
sin ( )

42
 as  

1
sin( )

4 2
.  

1sin (1)
2

 as sin( ) 1
2

.  

The use of the symbol "-1" to represent the inverse sine function 

makes it necessary to denote the reciprocal of sinx  by 1(sin )x  , to 

avoid confusion. 

A similar convention is applied when using any negative exponent 

with a trigonometric function. For instance, 11
(tan )

tan
x

x
 

11
(cos )

cos
x

x
 and so on.  

The terminology arc sine is sometimes used in place of inverse sine, 

and the notation arc sine is then used instead of  1sin x  . 

 

2 . Inverse Cosine Function 

The graph of  cosine function  cosy x , appears in Figure 1.18. 

Observe from the figure that the cosine function is strictly decreas-

ing on the interval 0,  . Consequently, the function 

( ) cosf x x  , for which 

 ( ) cos , 0,f x x x    

is one-to-one, and hence it does have an inverse in this interval. The 

graph of is sketched in figure 1.25. Its domain is  0,   and its 

range is  1,1 . The inverse of this function is called the inverse 

cosine function. 
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                                           Fig. 1.25 

The inverse cosine function, denoted by 1cos x  , is defined by
1cosy x  , if and only if cosx y   and 0,y  . The do-

main of 1cos x  is the closed interval 1,1  and the range is the 

closed interval 0, (see  Fig. 1.26).   

 
                                                         Fig. 1.26 

1cos ( 1)   as cos( ) 1.  

1cos (0)
2

 as  cos( ) 0
2

.  

1 1
cos ( )

2 3
 as 

1
cos

3 2
. 

1 1
cos ( )

42
 as  

1
cos( )

4 2
.  
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1cos (1) 0  as cos(0) 1.  

3 . Inverse Tangent Function 

The inverse tangent function, denoted by 1tan , is defined by

1tany x  , if and only if, tanx y  and  
2 2
y  . The 

domain of  1tan x  is the set  of real numbers and the range is 

the open interval( , )
2 2

 . The graph of the inverse tangent func-

tion is shown in Figure 1.27. 

 
                                                          Fig. 1.27 

4 . Inverse Cotangent Function 

To define the inverse cotangent function, we use the identity

1 1tan cot
2

x x  ,  where x  is any real number. 

The inverse cotangent function, denoted by 1cot  , is defined by

1 1cot tan
2

y x x   where x is any real number. 

The domain of  
1cot x  is the set  of real numbers. To obtain the 

range, we write the equation in the definition as 

1 1cot tan (**)
2

x x  

We know that;   
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1tan (* * *)
2 2

x  

Using (**) in (***), we get 

1cot
2 2 2

x  

Subtracting 
2

 from each member, we get 

1cot 0x  
Now, multiplying each member by 1 , we get 

10 cot x  
The range of the inverse cotangent function is therefore the open in-

terval (0, )(see Fig. 1.28). 

 
                              Fig. 1.28 

Illustration 

(a) 1tan (1)
4

  

(b) 1tan ( 1)
4

 

(c) 1 1cot (1) tan (1)
2 4

  

(d) 1 1 3
cot ( 1) tan ( 1)

2 4
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5 . Inverse secant Function 

The inverse secant function, denoted by 1sec , is defined by

1secy x  , if and only if, secx y  and  [0, ] { }
2

y  . The 

domain of  1sec x  is the set ( 1,1) of real numbers and the 

range is [0, ] { }
2

 . The graph of the inverse secant function is 

shown in Figure  1.29.  

 
                                                         Fig. 1.29 

6 . Definition of the Inverse cosecant Function 

The inverse secant function, denoted by 1cosec , is defined by
1cosecy x  , if and only if, cosecx y  and  

[ , ] {0}
2 2

y  . The domain of  1cosec x  is the set 

( 1,1) of real numbers and the range is [ , ] {0}
2 2

 .  
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The graph of the inverse cosecant function is shown in Figure 1.30.  

 
                                      Fig. 1.30 

 

III. Exponential Function 

The product 2 2 2 2 2 2 64       , is conveniently written in the form 
62 64   , to mean that the number is multiplied by itself, six times. In the 

expression 
62  , the number "2  "is called the base and "6  " is called the ex-

ponent. We say that the number 64   is expressed in the exponential form as
62  . Similarly, we can write 

34 64  and
164 64  , which are two other 

exponential forms for 64. 

In fact, any positive number can be expressed in any number of exponential 

form(s), by choosing a positive base and an appropriate exponent. 

Definition  
The exponential function is defined as  

( ) , 0, 1xy f x a a a  

The domain of exponential function is the set of all real numbers  and its 

range is the set of positive numbers. This function monotonically increases, 

if the base is 1a  and monotonically decreases if 0 1a   (see Fig. 

1.31). 
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                                                           Fig. 1.31 

 

The Natural Exponential Function 

The exponential function to the base  e  is called the natural exponential 

and is usually denoted by  ( ) xy f x e  (see Fig.  1.32). 

 
 

                                                      Fig. 1.32 

Laws of Exponents (or Laws of Indices) for real exponents 

For any positive real numbers 1, 1a b  , ,m n  natural numbers and real 

variables ,x y  , the following laws are valid: 

I. .x y x ya a a    
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II. , 0
x

x y

y

a
a a

a

    

III.  
y

x xya a   

IV.  . .
x x xab a b   

V. 
0 1a    

VI. 
/n m m na a   

The Exponential Series 

Now, we will show that, 
2 3 4

1 ...
1! 2! 3! 4!

x x x x x
e        

Proof. 

Consider  the expression 
1

1

nx

n

 
 

 
, by making use of the binomial theo-

rem, we can expand this expression and get 

2

3

2

2

1 1 ( 1) 1
1 1 .

1! 2!

( 1)( 2) 1
...

3!

( 1 / ) 1
1

1! 2!

n x
nx nx nx

n n n

nx nx nx

n

x n x x n

n

 
    

 

 
 


  

 

3

3

( 1/ )( 2 / ) 1
...

3!

n x x n x n

n

 
   

( 1/ ) ( 1/ )( 2 / )
1 ...

1! 2! 3!

x x x n x x n x n  
      

But, asn   , the terms 1/ , 2 /n n  , and so on approach 0  . Therefore, 

the right-hand side simplifies to the following: 
2 3 4

R.H.S. 1 ...
1! 2! 3! 4!

x x x x
       

Moreover, the number of terms (being   1n   ) becomes infinitely large as

n   , whatever x may be. Hence, the series continues to infinity. 

Also, 
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1 1

lim L.H.S.= lim 1 lim 1

x
nx n

x

n n n
e

n n  

    
            

 

We get,  
2 3 4

1 ...
1! 2! 3! 4!

x x x x x
e        

 

IV. The Logarithmic Function 

Firstly, we introduce the concept of logarithm of a positive real number. If 

three numbers  ,a b , and c  are so related that 
ba c  

then the exponent "b " is called the logarithm of  "c " to the base "a " 

We write 

loga c b  

It may be noted that the logarithm of a number can be different for different 

bases. In the system of logarithms, which we use in our day-to-day calcula-

tions (such as those in the field of engineering, etc.), the base 10   is found 

to be most useful. Logarithms to the base 10   are called common loga-

rithms. Once the base "10  " is chosen, it has to be raised with a suitable re-

al number "b "(positive, zero, or negative) so that, it represents the given 

(positive) number c , exactly or very close to it.  

Thus, we write, 

10 or 10b bc c    where the symbol "" stands for "very close to". 

For example, 

10 10log 100 2, log 1000 3  . 

These values of logarithms are exact, since 
210 100  and

310 1000 .  

On other hand,  

10 10log 5 0.669 , log 27.8 1.4453   

These values of logarithms are not exact, but they are very close to 

the numbers in equations, since    
0.699 1.4453

10 5 , 10 27.8  . 

In common logarithms, the base is always10  , so that, if no base is men-

tioned, the base 10   is always understood. However, it is useful only while 

dealing with arithmetical calculations. 

Important in calculus are logarithms to the base "e ", called natural loga-

rithms . The number"e ", (which is the base for natural logarithms) is a typ-

ical irrational number, lying between 2   and 3  ( 2.71828. . .e  ). 
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The notation for "natural logarithm" is " ln ". 

Definition of the logarithm 

The logarithm of a given number to a given base, is equal to the power to 

which, the base should be raised to get the given number. 

 

We know that     Therefore we  say that          we write 
6

2

3

4

1

64

2

5

3

5

2 =64 log of 64 to the base 2=6 log 64=6 

4 =64 log of 64 to the base 4=3 log 64=3

64 =64 log of 64 to the base 64=1 log 64=1

5 =25 log of 25 to the base 5=2 log 25=2

5 =1/125 log of 1/125 to the base 5=-3 log (1

0

1

/125)=-3

1,(a 0) log of 1 to the base a=0 log 1=0

log of a to the base a=1 log a=1

a

a

a

a a

 



 

Note  

I. From the first three illustrations, we observe that the logarithm of a (posi-

tive) number is different for different bases. 

II. The logarithm of  1  to any base is zero. 

III. The logarithm of any number to the same base (as the number itself)    

is 1  (i.e. 10log 1, log 10 1, log 1a ea e   .) 

Definition 
the general logarithmic function is defined as  

( ) log , 0, 1ay f x x a a     

and defined by the condition 

log y

ay x a x     

The domain of  the logarithmic function logay x is the set of all posi-

tive real numbers  0, , and its range is the open interval ( , )  .  

This function monotonically increases if 1a   , and monotonically de-

creases if 0 1a   (see Fig. 1.33). 
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                                                     Fig. 1.33 

 

The logarithmic function, logay x is the inverse of the exponential 

function 
xy a . 

The Natural Logarithm 

The logarithmic function to the base  e  is called the natural logarithmic 

function and is usually denoted by lnx  (or loge x ) see Fig. 1.34. 

 
 

                                             Fig. 1.34 
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The Common Logarithm 

The logarithmic function to the base 10  is called the common logarithmic 

function and sometimes denoted by logx . 

The fundamental Laws of Logarithms 

        
(i) log logx

a ab x b  

Proof. 

        

   

Let log

L.H.S. log log

log R.H.S.

u

a

x
u ux

a a

a

b a b u

a a

u x x b

  

  

  

 

         

(ii) log ( ) log log

(iii) log log log

a a a

a a a

x y x y

x
x y

y

 

 
  

 
 Change of Base 

We will now show that, if we are given the logarithm of a number, to any 

base, then we can easily compute the logarithm of that number to any other 

base. The following relation states the rule. 

log
log (1)

log

b
a

b

x
x

a
  

 

Proof. 

Let  
/,y c y cx b a b x a     

The left hand side of (1) 

/L.H.S. log log (2)y c

a a

y
x a

c
  

 
The right hand side of (1) 

log log
R.H.S. (3)

log log

y

b b

c

b b

x b y

a b c
    

Comparing  (2) and (3) we have the result. 
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Relation Between Exponential Function and Logarithmic Function 

Now, it is easy to show that 
loga x

a x  

 

Proof. 

Let  
log

(1)a x
a t  

 

Taking the logarithm to base a  for both sides of  (1), we have 
log

log log log loga x

a a a aa t x t    

So, we have 

t x  

Corollaries 

I. ln yy x x e    . 

II. ln lnxy a y x a   . 

III. 
ln

log
ln

a

x
x

a
  . 

IV. ln xe x  . 

V.  
lnxe x .  

V. Hyperbolic Functions and Their Properties 

Certain special combinations of  
xe  and  

xe 
 appear so often in both math-

ematics and science that they are given special names. 

Definitions 

The functions 

sinh , cosh (1)
2 2

x x x xe e e e
x x

  
   

are respectively, called the hyperbolic sine and hyperbolic cosine. 

the parametric equations  coshx t  , sinhy t  describe the right 

branch of the unit hyperbola  
2 2 1x y   [which is the special case of the 

hyperbola

2 2

2 2
1

x y

a b
   ](Figure 1.35). Moreover,  the parameter  t  is re-

lated to the shaded area S  by 2t S . 
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                                                  Fig. 1.35 

 

There are six basic hyperbolic functions. The other four hyperbolic func-

tions are defined in the terms of the hyperbolic sine and hyperbolic cosine. 

Definitions  
The functions 

sinh
tanh

cosh

x x

x x

x e e
x

x e e






 


 

cosh
coth

sinh

x x

x x

x e e
x

x e e






 


 

1 2
sech

cosh x x
x

x e e 
 


 

1 2
cosech

sinh x x
x

x e e 
 


 

are respectively called the hyperbolic tangent, the hyperbolic cotangent, the 

hyperbolic secant, and the hyperbolic cosecant. 

Hyperbolic functions are connected by a number of algebraic relations simi-

lar to those connecting trigonometric functions. In particular, the fundamen-
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tal identity for the hyperbolic functions is 
2 2cosh sinh 1x x   

2 21 tanh sechx x   
2 21 coth cosechx x    

 cosh cosh cosh sinh sinhx y x y x y    

 sinh sinh cosh sinh coshx y x y y x    

If y  is replaced by x  in these identities we obtain, 

  2 2cosh 2 cosh sinhx x x   

 sinh 2 2sinh coshx x x  

Note   
From the definitions (1) , we can obtain 

sinh cosh xx x e   

cosh sinh xx x e    

It is, therefore, apparent that any combination of the exponentials  
xe  and 

xe 
 can be replaced by a combination of  sinhx  and coshx  and  con-

versely. 

The important hyperbolic identities  

 

 

2 2

2 2

2 2

2 2

cosh sinh 1

sinh 2 2sinh cosh

cosh 2 cosh sinh

sech 1 tanh

cosech coth 1

sinh sinh cosh sinh cosh

cosh cosh cosh sinh sinh

x x

x x x

x x x

x x

x x

x y x y y x

x y x y x y

 



 

 

 

  

  

 

Note  

Hyperbolic functions are defined in terms of exponential functions. This is 

very different from the way we defined trigonometric functions. However, 

if you study complex analysis, you will discover that trigonometric func-

tions can also be defined in terms of exponential functions of a complex 

variable. 
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The Properties of  Hyperbolic Functions 

The graphs of hyperbolic cosine and hyperbolic sine are shown in Figs. 

1.36 and 1.37. 

 At  0x   , cosh 1x   andsinh 0x   . Note that these value are same as 

in the case of corresponding trigonometric functions  at 0x   . Therefore, 

all the hyperbolic functions have the same values at 0x    that the corre-

sponding trigonometric functions have. 

Further, note that 

 sinh sinh
2 2

x x x xe e e e
x x

  
       

 cosh cosh
2 2

x x x xe e e e
x x

  
     

Thus, hyperbolic sine is an odd function and the hyperbolic cosine is an 

even function. So the graph of sinhx is symmetric with respect to the 

origin and that of  coshx  is symmetric about the axisy   . 

 
 

                                                    Fig. 1.36 
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                                                    Fig. 1.37 

 

1. The domain of  the  function sinhx   is the set of  all real numbers  

 and its range is ( , )  (Fig. 1.36). 

2. The domain of  the  function coshx   is the set of  all real numbers 

 and its range is [1, ) (Fig. 1.37).  

3. The domain of  the  function tanhx   is the set of  all real numbers  

 and its range is ( 1,1) (Fig. 1.38).  

4. The domain of  the  function cothx   is the set of  all real numbers  

 except at 0x     {0}  and its range is 

 1,1 ( , 1) (1, )       (Fig. 1.39). 

5. The domain of  the  function sechx   is the set of  all real numbers  

 and its range is (0,1](Fig. 1.40).  

6. The domain of  the  function cothx   is the set of  all real numbers  

 except at 0x    {0}  and its range is  {0}   

(Fig. 1.41).  
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                                              Fig. 1.38 

 
                                               Fig. 1.39 

 

 
                                              Fig. 1.40 
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                                      Fig. 1.41  

VI. Inverse Hyperbolic Functions 

1. Inverse Hyperbolic Sine Function.  

From the graph of the hyperbolic sine in Figure 1.36, observe that  

the hyperbolic sine is one-to-one. Furthermore, the hyperbolic sine is 

continuous and increasing on its domain. Thus, this function has an 

inverse that we now define. 

Definition (A): The inverse hyperbolic sine function denoted by
1sinh x

 , is defined as follows: 
1sinhy x  , if and only if, sinhx y , where y is any real 

number (Figure 1.42). 

Both, the domain and range of  
1sinh x

 , are the set  of real 

numbers. From the definition (A), 

   1 1sinh sinh and sinh sinhx x y y  
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                                       Fig.1.42 

2. Inverse Hyperbolic Cosine Function 
As in the case of inverse trigonometric functions, we restrict the do-

main and define a new function ( ) cosh , 0f x x x    as follows: 

The domain of this function is the interval [0, )  and the range is the 

interval[1, )  . Because ( )f x  is continuous and increasing on its 

domain, it has an inverse, called the inverse hyperbolic cosine func-

tion.  

Definition (B): The inverse hyperbolic cosine function denoted by
1cosh x

 , is defined as follows: 
1cosh , if andonlyif cosh , 0y x x y y    

 

The domain of 
1cosh x

 is in the interval [1, )  and the range is in 

the interval [0, ) ( See Fig. 1.43) . From the definition (B), 

 

 

1

1

cosh cosh if 1,

and cosh cosh if 0

x x x

y y y





 

 
 



51 
 
 

 

 
Fig. 1.43 

3. Inverse Hyperbolic Tangent Function 
The hyperbolic tangent function is one-to-one and has an inverse. 

Definition (C): The inverse hyperbolic tangent function denoted by 
1tanh x

 is defined as follows: 
1tanh  if and only if ,  tanh ,  

where  is any real number.

y x x y

y

 
 

The domain of the inverse hyperbolic tangent function is the interval 

( , )   and the range is the set  of real numbers. The graph of 
1tanh x

 appears in Figure 1.44.   

 
Fig.1.44 

4. Inverse Hyperbolic Cotangent Function.  

The hyperbolic cotangent function is one-to-one and has an inverse. 

The graphs of  
1cothy x  is given in Figures 1.45.  
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The domain of the inverse hyperbolic cotangent function is 

( ,1) (1, )     and the range is ( ,0) (0, )   . 

 
                                              Fig. 1.45 

5. Inverse Hyperbolic Secant Function. 

We restrict the domain of  hyperbolic secant function and define a 

new function ( ) sech , 0f x x x    as follows: 

The domain of this function is the interval [0, )  and the range is the 

interval(0,1]  . Because ( )f x  is continuous and increasing on its 

domain, it has an inverse, called the inverse hyperbolic secant func-

tion.  

Definition (D): The inverse hyperbolic secant function denoted by
1sech x

 , is defined as follows: 
1sech , if andonlyif cosh , 0y x x y y    

The domain of 
1sech x

 is the interval (0,1]  and the range is the in-

terval [0, )  (see Fig. 1.46).  

From the definition (D), 

 

 

1

1

sech sech if 0 1,

and sech sech if 0

x x x

y y y





  

 
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                                            Fig. 1.46 

6. Inverse Hyperbolic Cosecant Function. 

The hyperbolic cosecant function is one-to-one and has an inverse. 

The graphs of  
1cosechy x  is given in Figures 1.47.  

The domain of the inverse hyperbolic cotangent function is 

( ,0) (0, )     and the range is ( ,0) (0, )   . 

 
                                               Fig. 1.47 

Logarithm Equivalents of the Inverse Hyperbolic Functions 

Since the hyperbolic functions are defined in terms of 
xe  and 

xe 
 , 

it is not too surprising that the inverse hyperbolic functions can be 

expressed in terms of the natural logarithm. Following are these ex-

pressions for the six inverse hyperbolic functions we have discussed. 
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 

 

1 2

1 2

1

1

2
1

2
1

sinh ln 1 ,

cosh ln 1 , 1

1 1
tanh ln , 1

2 1

1 1
coth ln , 1

2 1

1 1
sech ln , 0 1

1 1
cosech ln , 0

x x x x

x x x x

x
x x

x

x
x x

x

x
x x

x

x
x x

x













   

   

 
  

 

 
  

 

  
   

 
 

  
  

 
   

To prove 

 1 2sinh ln 1 ,x x x x      

Let 
1sinhy x   

From definition (A) 

 

2 2

2

1 2

sinh
2

1 1 sinh cosh
2

1

sinh ln 1

y y

y y

y

e e
x y

e e
x y y

x x e

y x x x








 


    

   



   

 

To prove 

 1 2cosh ln 1 , 1x x x x      

Let 
1coshy x   

From definition (B) 
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 

2 2

2

1 2

cosh
2

1 cosh 1 sinh
2

1

cosh ln 1

y y

y y

y

e e
x y

e e
x y y

x x e

y x x x








 


    

   



   

 

 

To prove 

1 1 1
tanh ln , 1

2 1

x
x x

x

  
  

 
 

Let 
1tanhy x   

From definition (C) 

   

2

2

2 2 2

2

1
tanh

1

1 1 1 1

1 1

1 1

y y y

y y y

y y y

y y

e e e
x y

e e e

x e e e x x

x x
e e

x x





 
  

 

       

 
   

 

 

But  0ye   , we have 

1

1

1 1
ln

2 1

y x
e

x

x
y

x






 
  

 

 

The other relations can be proved in similar way. 
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Chapter 2 

Limits of Real Functions 

Introduction 

      Addition, subtraction, multiplication, division, raising 

to a power, extracting a root, taking a logarithm, or a modu-

lus are operations of elementary mathematics. In order to 

pass from elementary mathematics to higher mathematics, 

we must add to this list one more mathematical operation, 

namely, "finding the limit of a function". 

     The notion of limit is an important new idea that lies at 

the foundation of Calculus. In fact, we might define Calcu-

lus as the study of  limits. It is, therefore, important that we 

have a deep understanding of this concept. Although the 

topic of  limit is rather theoretical in nature, we shall try to 

represent it in a very simple and concrete way. 

 

Useful  Notations 

 Meaning of the notation x a  Let x  be a variable 

and "a" be a constant. If  x  assumes values nearer and 

nearer to "a" (without assuming the value "a" itself), 

then we say x tends to a (or x approaches a) and we 

write x a . In other words, the procedure of giving 

values to x  (from the domain of   " f ") nearer and 

nearer to "a", but not permitting  x  to assume the val-

ue "a ", is denoted by the symbol "x a ". Thus, 

1x   means, we assign values to x which are nearer 

and nearer to 1 (but not permitting  x to assume the 

value 1), which means that x comes closer and closer 

to "1" reducing the distance between "x " and "1", in 

the process. Thus, by the statement "x " tends to "a ", 

we mean that: 

 x a , 

 (x  assumes values nearer and nearer to a, and 
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 The way in which x should approach a is not spec-

ified. (Different ways of approaching “a” are given 

below.) 

 Meaning of  x a    

If we consider x to be approaching closer and closer to 

"a " from the left side (i.e., through the values less than 

"a "), then we denote this procedure by writing  

x a   and read it as "x  " tends to "a minus". 

 Meaning of x a   

If we consider x  approaching closer and closer to "a " 

through the values greater than "a  " (i.e., x approach-

ing "a " from the right side), then this procedure is de-

noted by writing x a and we read it as  "x ‏  " 

tends to "a plus". 

Example (1) 
Consider the function 

( ) 3 5, (2,3) (3,5]f x x x     

Note the following points 

1. " 4" is in the domain of  f  , and it can be approached 

from both the sides. Therefore, we can write 4x   . 

2. "5  " is in the domain of  f  , but x  can approach 5  , 

only from the left of  5 (i.e., through values of 5x   ). 

Thus, in this case, it is meaningful to write ‏ 5x   ,‏‏

but we cannot write 5x  .   

3. " 2" is not in the domain of  f , but x  can approach “2”, 

from the right of "2" (i.e., through values of 2x  ). 

Thus, in this case, it is meaningful to write 2x   but ,‏‏

we cannot write 2x   or 2x  . 

4. "3 " is not in the domain of  f  , but x can approach  " 

3 " from both the sides of "3 ". Thus, we can write ‏

3x  and  3x ‏‏   or 3x    

Notes 

1. If x  can approach "a  " from both sides, then  for an 
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arbitrary small 0   , x  always belongs to the  

 -neighborhood of  "a ", that is, ( , )x a a     with

x a . This is equivalent to assigning values to "x ", clos-

er and closer to "a "from both sides of  "a ". (This proce-

dure is useful for studying the values of a function in the 

neighborhood of the given point "a ".) 

 

2. If x a  (i.e., if  approaches "a "from the left) then, 

for an arbitrary small 0   , x always belongs 

( , )a a  

 

3. If x a  (i.e., if x approaches “a” from the right) ‏‏

then, for an arbitrary small 0   , x  always belongs to 

(a,a )  

 
Definition of the limit 
Let f(x) be a function. If  x assumes values nearer and near-

er to the number "a "except possibly the value "a " and f(x) 

assumes the values nearer and nearer to l  , which is a finite 

real number, then we say that f(x) tends to the limit l  as x 

tends to a, and we write   

lim ( )
x a

f x l


  

Notice that the function f need not even be defined at "a ".  

If  ( )f x  assumes the values nearer and nearer to l as  x  

approaches closer and closer to "a " from the left side, then  

the number " l " is the limit of ( )f x  as x  approaches "a

"from the left and we write 
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lim ( )
x a

f x l


  

If  ( )f x  assumes the values nearer and nearer to l as x 

approaches closer and closer to "a " from the right side, 

then  the number " l " is the limit of  ( )f x  as x approach-

es "a "from the right and we write 

lim ( )
x a

f x l


  

Since "a " may be approached from both the sides of  a 

(i.e., left side and right side of a) when we say that 

lim ( )
x a

f x l


  

we really mean to say that  

lim ( ) lim ( )
x a x a

f x l f x
  

   

If these conditions are not satisfied simultaneously, we say 

that lim ( )
x a

f x


 does not exist. 

Example (2) 
Consider  

2 4
( ) , 2

2

x
f x x

x


 


 

Find 
2

lim ( )
x

f x


. 

Solution 

We prepare the following calculations, by choosing succes-

sive values of  x from a small neighborhood of  2 (say  

0.1   is  neighborhood of  2) and compute correspond-

ing values ( )f x  . From the  calculations, we get the data of 

our interest, which is given in Table 2.1. 
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x                             ( )f x   x                             ( )f x   

1.91 3.91

1.92 3.92

1.96 3.96

1.99 3.99

1.997 3.997

1.9998 3.9998

1.999998  3.999998

1.99999999 3.99999999

2 Not defined

  

2.1 4.1

2.01 4.01

2.001 4.001

2.0001 4.0001

2.00001 4.00001

2.000001 4.000001

2.0000001 4.0000001

2.00000001 4.00000001

2 Not defined

  

                                              

                                           Table 2.1 

From the table,  we observe that as x approaches 2,  ( )f x  

takes up values closer and closer to 4.We, therefore, say 

that the limit of ( )f x  as x  approaches 2, is 4. In symbols, 

we write  

2
lim ( ) 4
x

f x


  

 

Note that the preparation of  Table 2.1 is time consuming 

and tedious. On the other hand, we have 
2 4 ( 2)( 2)

( ) , 2 (1)
2 ( 2)

x x x
f x x

x x

  
  

 
 

Note that, if ( 2) 0x    , (i.e., if 2x  ) then we can 

cancel the factor ( 2x   ) from the numerator and the de-

nominator of the above expression on the right-hand side of 

Equation (1), and get, 

( ) 2, 2 (2)f x x x    

Thus, we have two Equations (1) and (2), both representing 

the same function ( )f x  , when 2x   . We may choose 
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any of them for computing the limit of the function in ques-

tion. Obviously, the Equation (2) is simpler to handle in 

view of the difficulty observed in connection with the ex-

pression‏

2 4
, 2

2

x
x

x





 , in listing the values of ( )f x  in 

the neighborhood of  2. Hence, we choose the expression  

( ( ) 2f x x   ) for computing the limit in question. We 

get 
2

2 2

2

4
lim ( ) lim , 2

2

lim( 2), 2

2 2 4

x x

x

x
f x x

x

x x

 




 



  

  

 

Note that whereas (2)f   does not exist (since 2 is not in 

the domain of  " f "),  
2

lim ( )
x

f x


  exists, and it is given by 

the number 4. This shows that the existence or nonexist-

ence of the limit of a function at a point does not depend on 

the existence or nonexistence of the value of the function at 

that point. 

Example (3) 

 Consider  

2
( ) , 2

2

x
G x x

x


 


 

Note that this function is defined for all real values of  x , 

except 2x   . However, the limit 
2

2
lim , 2

2x

x
x

x





  

does not exist (see Fig. 2.1). 
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                                       Fig. 2.1 

This is because, as 2x   , the numerator ( 2x   ) ap-

proaches the number 4 whereas the denominator approach-

es the number "0 " from right, so that ( )G x  approaches 

positive large values.  On the other hand, as 2x   , the 

numerator ( 2x   ) approaches the number 4 whereas the 

denominator approaches the number "0 "from left, so that 

( )G x approaches negative large values.   Whenever such a 

situation arises, we say that the limit of the function does 

not exist. Later , we shall introduce infinity as limit of a 

function. 

Example (4) 
Let  

5, 0
( )

2, 0

x x
f x

x x

 
 

 
 

Find  
0

lim ( )
x

f x


.  

Solution 

Observe that (0)f  is not defined. Let us study the values 

( )f x  as of 0x  . We note that as 
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0 ( ) 2x f x    . 

On the other hand, as 

0 ( ) 5x f x    . 

Thus 

0 0
lim ( ) lim ( )
x x

f x f x
  

 . 

When this happens, we say that the limit of the function 

does not exist. 

Example (5) 

2 1, 1 2
( )

4 5, 2 3

x x
f x

x x

  
 

  
 

Observe that  (2)f  is not defined. Let us study the values 

of ( )f x  as 2x   . We prepare Table 2.2.  

  

 x                       ( ) f x                x                   ( ) f x   

1.9 2.8 2.1  3.4

1.99 2.98 2.01 3.04

1.999 2.998 2.001 3.004

1.9999 2.9998 2.0001 3.0004

1.9999 2.99998 2.00001 3.00004

2  ( ) 3  2 ( ) 3As x f x As x f x    

 

                                      

Table 2.2 

From Table 2.2, we observe that 

2
lim ( ) 3
x

f x


  

And 

2
lim ( ) 3 
x

f x


  
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Thus, the left-hand limit of ( ) f x  at 2x   is equal to its 

right-hand limit at 2x   . In this case, we say 

that the limit of ( ) f x  as 2x   exists, and we write 

2
lim ( ) 3
x

f x


  

Example (6) 

Let  

, 1

( ) 2, 1

2, 1

x x

f x x

x x




 
  

 

Find   
1

lim ( ) 
x

f x


   

Solution 

We have the following observations: 

(a) 
1

lim ( ) 1
x

f x


  (left-hand limit) 

(b) 
1

lim ( ) 3
x

f x


  (right-hand limit) 

(c) (1) 2f    

Thus 

1 1
lim ( ) =1 lim ( ) 3 
x x

f x f x
  

    

Obviously, 
1

lim ( ) 
x

f x


does not exist. 

Example (7) 

Let  

1
( ) , 1

1
f x x

x
 


 

Find   
1

lim ( ) 
x

f x


  

Solution 

Observe that as ‏ 1x  as x) ‏   assumes values closer and 

closer to 1 from the right hand side) ( ) f x gets larger and 

larger positive values. On the other hand, when 1x   (as 
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x assumes values closer and closer to 1 from the left hand 

side),  ( ) f x  gets larger and larger negative values (see 

Fig. 2.2). 

Thus,  
1

lim ( ) 
x

f x


 does not exist. 

 
                                        Fig. 2.2 

Example (8) 
Evaluate the following limit 

0

sin
lim , ( in radians)
x

x
x

x
 

Solution 

Here, there is no way of canceling terms in the numerator 

and denominator. Since sin 0x   as 0x   , the quo-

tient 
sin x

x
 might appear to approach

0

0
 . But, we know 

that 
0

0
 is undefined, so if the above limit exists, then we 

must find it by a different technique. Since we do not have 
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any other simpler way of  rewriting 
sin x

x
 to obtain the 

limit, we use a calculator to find the values of 
sin x

x
for 

values of  x close to 0 and angles  x (in sin x) in radians. 

(Other methods of finding this limit will be discussed later.) 

 

   x           sinx              
sin x

x
  

-0.10 0.0998333 0.99833

-0.09 0.0898785 0.99865

-0.05 0.0499792 0.99958

-0.03 0.0299955 0.99985

-0.02 0.0199987 0.99993

-0.01 0.00999983 0.999983

0.00 0.00000 Not defined

0.01 0.00999983 0.999983

0.02 0.0199987 0.99993

0.03 0.0299955 0.99985

 

     

                                    Table 2.3 

From Table 2.3, it is obvious that, as 0x   , either from 

the right or from the left, the value of 
sin x

x
approaches 

closer and closer to the number 1. We, therefore, agree to 

write 

0

sin
lim 1
x

x

x
  

This limit is used very often to find the limits of many trig-

onometric functions (including various functions involving 
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trigonometric functions), and plays a very important role in 

deriving many useful results. 

Simpler and Powerful Rules for Finding Limits (Alge-

bra of Limits) 

Limits are extremely important throughout Calculus.  A 

general method, we can prepare a table listing values of  x  

, closer and closer to “a”, and the corresponding values 

( ) f x . Such a table may help us guess a number to which 

( ) f x approaches, suggesting the limit of   ( ) f x  , as

x a . However, such a process of finding the values of 

“f” as x a  is  both time consuming and  generally very 

tedious.  

Let n  be a positive integer, k  be a constant,  and ( ) f x ,  

( ) g x and ( ) h x be  functions, such that lim ( ) 
x a

f x


, 

lim ( ) 
x a

g x


 and lim ( ) 
x a

h x


 exist. Then  

1. lim
x a

k k


   

2. lim
x a

x a


   

3. lim [ ( ) ( )] lim ( ) lim ( ) 
x a x a x a

f x g x f x g x
  

    

4. lim . ( ) .lim ( ) 
x a x a

k f x k f x
 

    

5. lim [ ( ). ( )] lim ( ).lim ( )
x a x a x a

f x g x f x g x
  

   

6. 

lim ( ) ( ) 
lim , lim ( ) 0 

( ) lim ( ) 

x a

x a x a

x a

f xf x
g x

g x g x



 



    

7. lim[ ( )] [lim ( )]n n

x a x a
f x f x

 
   

8. lim ( ) lim ( ) n n
x a x a

f x f x
 

  provided lim ( ) 0
x a

f x


   

when n is even. 

9.    
0 0 0

lim( )( ) lim ( ) lim ( )
x x x

f g x f g x f g x
  

    
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10. If  ( ) ( ) ( ) f x g x h x   for all x near a, except 

possibly at a. If  lim ( ) lim ( )
x a x a

f x h x l
 

   , then 

lim ( ) 
x a

g x l


 .  

Example (9) 

Find the following limit 
1/4

1/31

1
lim

1x

x

x




 

Solution 

Here, we observe that the indices of  x are fractions. Hence, 

it is not possible to factorize both numerator and denomina-

tor. We substitute
12x y  . Required limit is  

1/4 3

1/3 41 1

2

3 21

2

3 21

1 1
lim lim

1 1

( 1)( 1)
lim

( 1)( 1)

1 3
lim

1 4

x y

y

y

x y

x y

y y y

y y y y

y y

y y y

 





 


 

  


   

 
 

  

 

Example (10) 

Determine the following limit 

0

1 1
lim
x

x

x

 
 

Solution 

Put 1y x   , then as 0 1x y    . Hence, the lim-

it reduces to the form 

1/2

1

1
lim

1y

y

y




 . 
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Example (11) 

One can show that 
0

lim 0
x

x


   but it must be clear that 

neither 
0

lim
x

x


 nor  
0

lim
x

x


exists (because  x  is not 

defined to the left of 0). 

Methods for Evaluating Limits of Various Algebraic 

Functions 

1. Direct Method [or Method of Direct Substitution] 

This method is applicable in the case of very simple 

functions, in which the value of the function and the lim-

it of the function both are the same. 

Example (12) 
2 2

2 2 2
lim[ 3] lim lim3 4 3 7
x x x

x x
  

       

Example (13) 

5 5

5

5

lim 1 lim21 2 4 2
lim[ ]

6 331 lim 31

x x

x

x

xx

x x

 





  
  

 
 

Example (14) 
2

1

2

1

1

9
lim , 3

3

lim( 9)
4

lim( 3)

x

x

x

x
x

x

x

x













 



 

 

2. Factorization Method 

For computing limit(s) of the type, 
( ) 

lim
( ) x a

f x

g x
, where 

( ) 0f a   and ( ) 0g a   , the direct substitution method 

fails. In such cases, we search for a common factor 

(x a  ) in f(x) and g(x) by factorizing them and cancel-

ing this factor to reduce the quotient to the simplest form 
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and then apply the direct method to obtain the limit. 

[Remember that x a  means thatx a  , at any stage. 

In other words ( ) 0x a   , at any stage. This permits 

us to cancel the common factor (x – a) from both numer-

ator and denominator. 

Example (15) 

Evaluate 
2

21

4 3
lim

2 3x

x x

x x

 

 
 

Solution 
2

21 1

1

4 3 ( 3)( 1)
lim lim

2 3 ( 3)( 1)

( 3) 1
lim , [( 1) 0]

( 3) 2

x x

x

x x x x

x x x x

x
x

x

 



   


   


    



 

Note: For evaluating  
( ) 

lim
( ) x a

f x

g x
, we may also follow 

the following steps: 

I. Put x a h   ( 0)x a as h     

II. Simplify numerator and denominator and cancel the 

common factorh  . 

III. Put  0h   , in the remaining expression in h and ob-

tain the limit. 

Example (16)  
Evaluate 

3 2

34

8 16
lim

60x

x x x

x x

 

 
 

Solution 
3 2

34

8 16
lim

60x

x x x

x x

 

 
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2

3 2 24

( 8 16)
lim

4 4 16 15 60x

x x x

x x x x x

 


    
 

  

2

4

4

4

( 4 4 16)
lim

( 4)[( 4) 4 15]

( 4)( 4)
lim

( 4)[( 4) 4 15]

( 4)
lim 0

[( 4) 4 15]

x

x

x

x x x x

x x x

x x x

x x x

x x

x x







  


   

 


   


 

  

  

 

An Important Standard Limit 

1lim , nisnaturalnumber (*)
n n

n

x a

x a
na

x a









 

Example (17) 

Evaluate 
1 2 3 2

1

...
lim , nisnaturalnumber

1

n n n

x

x x x x x x n

x

 



      


 

Solution 
1 2 3 2

1

1 2 3 2

1

...
lim

1

... (1 1 1 ....n times)
lim

1

n n n

x

n n n

x

x x x x x x n

x

x x x x x x

x

 



 



      



         



1 3 2

1

( 1) ( 1) ... ( 1) ( 1) ( 1)
lim

1

n n

x

x x x x x

x





         



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1 2

0 0 0

3 2

0 0 0

( 1) ( 1) ( 1)
lim lim lim

1 1 1

( 1) ( 1) ( 1)
... lim lim lim

1 1 1

n n n

x x x

x x x

x x x

x x x

x x x

x x x

 

  

  

  
  

  

  
   

  

  

1 2 ... 1
( 1)

n
n n n

n n
       


  

The above formula can be used to evaluate limits of the  

lim
n n

m nx a

x a

x a




 

For this purpose, we write 

 

0
lim lim lim

n n n n m m

m nx a x a x

x a x a x a

x a x a x a  

  
 

  
 

and apply the standard limit to obtain 

lim (**)
n n

n m

m nx a

x a n
a

x a m









 

Example (18) 
Evaluate   

5 5

3 3
lim
x a

x a

x a




 

Solution   
5 5

5 3

3 3

5
lim

3x a

x a
a

x a









 

 

Remark  
Formula (*) has been proved for natural numbers n and m. 

However, the result is true for rational values of n and m. 

The following examples tell how this is justified. 
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Example (19)  
Evaluate  

1/4 1/4

1/3 1/31

1
lim

1x

x

x




 

 

Note : In such cases the important point is that the given 

limit can be converted in the form (*) by substitution as fol-

lows. 

Here, the indices of x are fractions and hence we cannot 

factorize. The denominators of these indices are 4 and 3. 

Their L.C.M. is 12. Therefore, we use the substitution 
12x t , for our purpose. 

Solution 

Put  
12 ( 1 as 1)x t t x     

1/4 1/4 3 3

1/3 1/3 4 41 1

1 1 3
lim li  m

1 1 4x t

x t

x t 

 


 
  

Note   

We can also apply Corollary (**) directly and obtain the 

limit as follows: 
1/4 1/4

1/4 1/3

1/3 1/31

1 1/ 4 3
lim .1

1 1/ 3 4x

x

x






 


 

Example (20) 

Find 
2/5 2/5

1/2 1/23

3
lim

3x

x

x




 

Solution 
2/5 2/5

2/5 1/2 1/10

1/2 1/23

3 2 / 5 4
lim .3 3

3 1/ 2 5x

x

x

 




 


 

Example (21) 

Evaluate 
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3 3

2

2
lim

2x

x

x

 






 

Solution
 3 3

3 1 4

2

2 3 3
lim .2 3.2

2 1 16x

x

x

 
  



 
    


 

Note : To evaluate limits of this type, it is always useful to 

convert the given limit to the standard form as follows: 
3 3 3 3

2 2

3 3
3 1

32

2 1/ 1/ 2
lim lim

2 2

1 2 1 3
lim 3.2

8 2 64 16

x x

x

x x

x x

x

x x

 

 





 


 


    

 

 

Example (22)  
Evaluate  

5/3 5/3( 2) ( 2)
lim
x a

x a

x a

  


 

Solution 
5/3 5/3

5/3 5/3

2 2

5/3 1

( 2) ( 2)
lim

( 2) ( 2)
lim

( 2) ( 2)

5
(a 2)

3

x a

x a

x a

x a

x a

x a



  



  



  


  

 

 

Example (23) 

Evaluate  
1/3

2/31

1
lim

1x

x

x








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Solution 
1/3 1/3 1/3

2/3 2/3 2/31 1

1/3 1/3 1/3
1/3

2/3 2/31 1

1 ( 1) /
lim lim

1 ( 1) /

x ( 1) 1
lim 1 .lim

( 1) 1

1

2

x x

x x

x x x

x x x

x x

x x



 

 

 


 

 
 

 



 

Method of Simplification 

Sometimes it is required to simplify the given function and 

then evaluate the limit. 

Example (24)  
Evaluate  

25

1 5
lim( )

5 5x x x x


 
 

Solution 

2 25 5

0 5

1 5 5
lim( ) lim( )

5 5 5

5 1 1
lim lim

( 5) 5

x x

x x

x

x x x x x

x

x x x

 

 


 

  


  



 

Example (25) 

Evaluate 

2 22

1 1
lim ( )

5 6 3 2x x x x x


   
 

Solution 

We have 
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2 22

2

2

2

2

1 1
lim ( )

5 6 3 2

1 1
lim[ ]

( 2)( 3) ( 2)( 1)

( 1) ( 3)
lim

( 1)( 2)( 3)

2( 2)
lim

( 1)( 2)( 3)

2
lim 2

( 1)( 3)

x

x

x

x

x

x x x x

x x x x

x x

x x x

x

x x x

x x












   

 
   

  


  




  

  
 

 

Method of Rationalization 

If the numerator or the denominator or both contain func-

tions of the type  [ ( ) ( )]f x g x   or 

[ ( ) ( )]f x g x  and the direct method fails to give the 

limit, we rationalize the given 

function by multiplying and dividing by [ ( ) ( )]f x g x  

or  [ ( ) ( )]f x g x , as the case may be. After simpli-

fication of the function, we evaluate the limit by the earlier 

methods. 

Example (26)  
Evaluate 

0
lim

1 1x

x

x  
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Solution 

Consider 

0 0

0 0

1 1
lim lim

1 1 1 1 1 1

( 1 1)
lim lim( 1 1) 2

(1 ) 1

x x

x x

x x x

x x x

x x
x

x

 

 

 
 

     

 
    

 

 

Example (27) 

3

3
lim

2 4x

x

x x



  
 

Solution  
Consider 

3

3

3

3

3

3
lim

2 4

3 2 4
lim

2 4 2 4

( 3)( 2 4 )
lim

( 2) (4 )

( 3)( 2 4 )
lim

2( 3)

( 2 4 )
lim 1

2

x

x

x

x

x

x

x x

x x x

x x x x

x x x

x x

x x x

x

x x













  

   
 

     

   


  

   




  
 

 

Example (28) 

Evaluate 

0
lim
x

a x a x

b x b x

  

  
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Solution 

 

 

0

0

0

lim

lim

lim

x

x

x

a x a x

b x b x

a x a x
a x a x

a x a x

b x b x
b x b x

b x b x







  

  

   
     

   

   
     

   

 

0

2 2
lim

2

2

x

x x

a x a x b x b x

b b

aa



 
  

      

 
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Infinite Limits 
So far we have considered the cases where as x a  (a 

finite number), ( )f x l  , (a finite number). 

But, it may happen that as  x a  , ( )f x  increases (or 

decreases) endlessly. Symbolically, we express these 

statements as follows: 

lim ( ) , lim ( )
x a x a

f x f x
  

    

Or 

lim ( ) , lim ( )
x a x a

f x f x
  

     

Consider the graph of  
1

( )
2

f x
x




 , as shown in Figure 

2.3. Note that it makes no sense to ask  
2

1
lim

2x x 
 ,(?why)‏ 

but we think it is reasonable to write 
2

1
lim

2x x
 


 and 

2

1
lim

2x x
 


. The following definition relates to 

this situation. 

 
Fig 2.3 
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Definition (Infinite Limits) 

We say that  lim ( )
x a

f x


    , if ( )f x  gets larger and 

larger  without  bound, when  x  assumes values nearer and 

nearer to "a". On other hand,  we say that  

lim ( )
x a

f x


    , if  ( )f x    is permitted to assume 

smaller and smaller values endlessly, when  x  assumes 

values nearer and nearer to "a". 

Example (29)  
Find  

2
2

1
lim

( 2)x x 
  and 

2
2

1
lim

( 2)x x 
 

Solution 

The graph of  
2

1
( )

( 2)
f x

x



 is shown in Figure 2.4.  

 
Fig. 2.4 

We think it is quite clear that 

2
2

1
lim

( 2)x x
 


 

And  
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2
2

1
lim

( 2)x x
 


 

Since both limits are  , we could also write 

22

1
lim

( 2)x x
 


 

Example (30)  
Find  

2
2

1
lim

5 6x

x

x x



 
 

Solution  

2
2 2

1 1
lim lim

5 6 ( 2)( 3)x x

x x

x x x x  

 


   
 

As 2x  we see that  1 ,‏‏ 3x    , 3 1x    , and ‏

2 0x    Thus, the numerator is approaching  3, but the .‏‏

denominator is negative and approaching  0. We conclude 

that    

2

1
lim

( 2)( 3)x

x

x x


 

 
 

Asymptotes 

Definition: An asymptote to a curve is defined as a straight 

line, which has the property that the distance from a point 

on the curve to the line tends to zero as the distance of this 

point to the origin increases without bound. There are verti-

cal, horizontal  asymptotes. 

Vertical Asymptotes 

The graph of the function ( )y f x  has a vertical asymp-

tote forx a  , if  lim ( )
x a

f x


   or lim ( )
x a

f x


   

(see Figure 3.3a and b). The equation of the vertical asymp-

tote has the formx a  . (In Figure 2.5a, it is 0x   , and 

in Figure 2.5b  it isx a  .) 
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                                            Fig. 2.5 

Horizontal Asymptotes 

The graph of the function ( )y f x  for  x   or for 

x   , has a horizontal asymptote, if 

lim ( )
x

f x b


   Or lim ( )
x

f x b


  , where b  is a finite 

number. It may happen that either only one or none of these 

limits is finite. Then, the graph has either one or no hori-

zontal asymptote. Of course, the graph of a function may 

have two horizontal asymptotes. The equation of the hori-

zontal asymptote has the form y a  . (In Figure 2.6a, it is

y b  , and in Figure 2.6b the two asymptotes are 1y  

.) 
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Fig. 2.6 

 

Example (31)  
Find the asymptotes to the curve  

1

3
y

x



 

Solution:  

We have 

1
lim 0

3x x



 

Therefore, the curve has a horizontal asymptote at 0y    

Further, we observe that 

3

1
lim

3x x
 


 

and  

3

1
lim

3x x
 


 

Hence, the curve has a vertical asymptote at 3x   (see 

Figure 2.7). 
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Fig. 2.7 
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Limit at Infinity 

The symbol for infinity is “  ”. In modern mathematics, 

the symbol “  ” is not a number, and not all algebraic op-

erations are defined for this symbol. 

Often we shall have to study the behavior of functions of  

x, as x becomes infinitely large, that is, when x is permitted 

to assume larger and larger values exceeding any bound K, 

no matter how big K is chosen.  

For example, take     

1
( )f n

n
  . 

Then if n  takes the values 1, 2, 3, . . ., 100, the class, or set, 

consisting of the values of ( )f n  , for various values of  n 

consisting of the fractions( 1, 1/2, 1/3, . . . 1/100). 

We wish to discuss the behavior of this function for very 

large values of n. It is immediately obvious that 
1

( )f n
n

  

becomes very small when n is very large. 

Note: It is wrong to say that 
1

0
n
  whenn   . Remem-

ber that    is not a number, so it cannot be equated to any 

number, howsoever large. Further, 
1

n
  can never be equat-

ed to zero, however big  n  is chosen. However, it makes 

sense to say that the function 
1

( )f n
n

   tends to zero for 

values of n that tend to infinity. 

If we now consider the function 
2( )f n n  , 

it is clear that this function can be made as large as we 

please by taking sufficiently large values of  n. We may 

therefore, say that the function 
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2( )f n n  

tends to infinity when n tends to infinity. 

Now, let us consider the function 
2( )f n n    

In this case, we say that f(n) tends to   when n tends to

  . We would usually write these statements briefly as 

given below: 

 
2 asn n   
2 asn n    

Consider the function  

2
( )

1

x
f x

x



  

We ask the question:  

What happens to ( )f x  as x  gets larger and larger? In 

symbols, we ask for the value  lim ( )
x

f x


  

We use the symbol x   as a shorthand way of saying 

that x  gets larger and larger without bound. 

(When we writex   , we are not implying that some-

where far, far to the right on the x-axis, there is a number 

bigger than all other numbers to which x is approaching. 

Rather, we use x   to say that x is permitted to assume 

larger and larger values endlessly.) 

In Table 2.4, we have listed values of ( )f x  , for larger and 

larger values of x, for several values of x  . 
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2
( )

1

x
x f x

x



 

10 0.099

100 0.010

1000 0.001

10,000 0.0001

0

 



 

                                   Table 2.4 

It appears that ( )f x  gets smaller and smaller as x gets 

larger and larger. Therefore, we 

 
2

lim 0
1x

x

x



 

Experimenting with large negative values of x, would again 

lead us to write 

2
lim 0

1x

x

x



 

Definitions of Limits x    

If ( )f x   gets closer and closer to the value l   as  x  is 

permitted to assume larger and larger values endless-

ly(without bound).  In symbols, we write 

lim ( )
x

f x l


  

Definitions of Limits x    

If ( )f x   gets closer and closer to the value l   as  x  is 

permitted to assume larger and larger negative values end-

lessly(without bound).  In symbols, we write 

lim ( )
x

f x l


  
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Simpler and Powerful Rules for Finding Limits 

x    
 

1. lim n

x
x


   

2. lim , (niseven)n

x
x


   

3. lim , (nisodd)n

x
x


   

4. 
1

lim 0
nx x
  

5. If  
1 2

0 1 2( ) ...n n n

nf x a x a x a x a       , then 

0lim ( ) lim n

x x
f x a x

 
   

6. If  

1 2

0 1 2

1 2

0 1 2

...
( ) ,

...

n n n

n

m m m

m

a x a x a x a
f x

b x b x b x b

 

 

   


   
then  

0

0

lim
lim ( )

lim

n

x

mx

x

a x
f x

b x







   

Example (31)  
Find   

3

3

2
lim

1x

x

x 
 

Solution 

Here we use a standard trick: dividing  numerator and de-

nominator by the highest power of x that appears in the de-

nominator. 
3 3 3

3 3 3 3

2 2 / 2
lim lim lim 2

1 1/ / 0 1x x x

x x x

x x x x  
  

  
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Exercise 

Evaluate the following limits 

 

2

3

20 30

50

2 4 5
(i) lim

3 7

(2 1) (3 1)
(ii) lim

(2 1)

(iii) lim 1

x

x

x

x x

x x

x x

x

x x







 

 

 



 
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Limits of Trigonometric Functions 

We shall be using the following basic trigonometric limits: 

 

0 0

0 0

(i) limsin 0 (ii) limcos 1

sin cos 1
(iii) lim 1 (iv)lim 0

x x

x x

x x

x x

x x

 

 

 


 

 

 
                                         Fig.2.8 

In Figure 2.8, let C be any point on the unit circle (placed 

in the standard position) such that it is at the end of the arc 

length x. Since this arc length subtends an angle of x radi-

ans at the center, we identify the point C as a function of 

the angle x . We recall the definitions of the sine and cosine 

functions  as follows :  

sin coordinateof

cos coordinateof

x y C

x x C

 

 
 

Since C (cos ,sinx x ) can move endlessly around the unit 

circle (with positive or negative arc length), the domain of 

both sine and cosine functions is( , )   . The largest val-

ue either function may have is 1 and the smallest value is  

1  . Also, observe that both these functions assume all 
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values between 1   and 1. Hence, the range of both the 

functions is  1,1  . 

Note that as 0x   , the point  P(cos ,sinx x ) moves to-

ward (1, 0) so that we get 

0 0
limcos 1, limsin 0
x x

x x
 

   

Thus, we have shown the correctness of the results (i) and 

(ii). Now, onward, we shall be using results (i) and (ii) 

freely in solving problems and obtaining other results. 

Now, our next goal is to show that for any real number “a”, 

 

limsin sin
x a

x a


   

and  

limcos cos
x a

x a


  

We know that, if “a” is a fixed number and x a h   , 

then 

lim ( )
x a

f x l


    if and only if   
0

lim ( )
h

f a h l


    

Therefore, in order to prove the result(s) at (1) above, we 

can instead show that 

0
limsin( ) sin
h

a h a


    and 
0

limcos( ) cos
h

a h a


    

So,  

0 0

0 0

limsin( ) lim[sin cos cos sin ]

sin limcos cos limsin

sin

h h

h h

a h a h a h

a h a h

a

 

 

  

 



 

And 

0 0

0 0

limcos( ) lim[cos cos sin sin ]

cos limcos sin limsin

cos

h h

h h

a h a h a h

a h a h

a

 

 

  

 


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To prove (iii) , (
0

sin
lim 1
x

x

x
  ) consider a unit circle with 

center “O”, placed at the origin, and let the radian measure 

of angle AOC be x radians (Figure 2.9). 

Using Figure 3a.4, we obtain the following equations, 

which are valid for 0
2

x


  . 

 
                                     Fig. 2.9 

Area of triangle OAC 

1 1 sin
| | . | | .1.sin

2 2 2

x
OA BC x    

Area of sector   

21
.

2 2

x
x r   

 

Area of triangle OAD  

1 1 tan
| | . | | .1.tan

2 2 2

x
OA AD x    

It is geometrically clear that 
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Area of area of sector area of OAC OAC OAD   
So that,  

sin tan

2 2 2

x x x
   

So, we have  

sin
cos 1

x
x

x
   

But  
0

limcos 1
x

x


  and 
0

lim1 1
x 

  , it follows from the  

squeezing theorem 

0

sin
lim 1
x

x

x
  

0 0

cos 1 cos 1 cos 1
lim lim .

cos 1x x

x x x

x x x 

  



 

2 2

0 0

0 0

cos 1 sin
lim lim

(cos 1) (cos 1)

sin sin 0
lim .lim 1. 0

cos 1 1 1

x x

x x

x x

x x x x

x x

x x

 

 

 
 

 


  

 

 

Corollaries 

 

0 0 0

2

20 0

tan
(i) lim 1 (ii) lim 1 (iii) lim 1

sin tan

1 cos 1
(iv)lim (v) lim 2

2 1 cos

x x x

x x

x x x

x x x

x x

x x

  

 

  


 


Proposition: 

 If ( )f x  is a bounded function, and if lim ( ) 0
x a

g x


   
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Then,  

lim ( ). ( ) 0
x a

f x g x


  

Example (32)  
Evaluate 

sin
lim
x

x

x
 

Solution  

Note that 1 sin 1x    for all x 

 sinx  is a bounded function. Also 
1

lim 0
x x

   

sin 1
lim lim .limsin 0
x x x

x
x

x x  
   

Example (33)  
Evaluate 

 
0

sin(1/ )
lim

1/x

x

x
 

Solution 

0 0

sin(1/ ) 1
lim lim .sin

1/x x

x
x

x x 
  

We know that  

1 sin 1x     for all x 

1
sin

x
   is a bounded function. 

Next,  

0
lim 0
x

x


  

0

0

lim sin(1/ ) 0

sin(1/ )
lim 0

1/

x

x

x x

x

x





 

 
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Example (34) 

 Evaluate  

0

sin3
lim
x

x

x
 

Solution
  

0 0

sin3 sin3
lim lim .3

3x x

x x

x x 
  

Note that as 0, 3 0x x   . If we put3x t  , we get 

the given limit as 

0 0 0

sin sin
lim .3 lim .lim3 1.3 3
t t t

t t

t t  
    

Example (35) 
Evaluate 

0

cos sin
lim

tanx

x x x

x x




 

Solution 

0 0

sin
cos

cos sin
lim lim

tantan
1

x x

x
x

x x x x
xx x

x

 









 

1 1
1

1 1


 


 

Example (36) 
Evaluate 

0

cosec2 cot 2
lim

sinx

x x

x


 

Solution 

0 0

1 cos2
cosec2 cot 2 sin 2 sin 2lim lim

sin sinx x

x
x x x x

x x 




  
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2

20 0

0

1 cos2 2sin
lim lim

sin 2 sin 2sin cos

1
lim 1

cos

x x

x

x x

x x x x

x

 




 

 

 

Example (37) 

 Evaluate 

20

2 1 cos2
lim

sinx

x

x

 
 

Solution 

20

20

20

2

20

0

2 1 cos2
lim

sin

2 1 cos2 2 1 cos2
lim .

sin 2 1 cos2

2 1 cos2
lim

sin ( 2 1 cos2 )

2sin
lim

sin ( 2 1 cos2 )

2 2 1 2
lim

22 1 cos2 2 2 2

x

x

x

x

x

x

x

x x

x x

x

x x

x

x x

x











 

   


 

 


 


 

   
 

 

Example (38) 

Evaluate 

20

1 cos4
lim
x

x

x


 

Solution 

2 20 0

1 cos4 1 cos4 1 cos4
lim lim .

1 cos4x x

x x x

x x x 

  



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2 2

2 20 0

2

20 0

1 cos 4 sin 4
lim lim

(1 cos4 ) (1 cos4 )

sin 4 1 1
lim .16.lim 1.16. 8

(4 ) 1 cos4 2

x x

x x

x x

x x x x

x

x x

 

 


 

 

  


 

Example (39)  

Evaluate  

30

3sin sin3
lim
x

x x

x


 

Solution 

Since 
3sin3 3sinx 4sinx x    

3

3 30 0

3sin sin3 4sin
lim lim 4
x x

x x x

x x 


    

Example (40) 

Evaluate  

0

cos cosbx
lim

cos cosx

ax

cx dx




 

Solution 

Since 

cos cos 2sin sin
2 2

x y x y
x y

 
    

0

0

cos cos
lim

cos cos

( ) ( )
2sin sin

2 2lim
( ) ( )

2sin sin
2 2

x

x

ax bx

cx dx

a b x a b x

c d x c d x









 



 


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0

( ) ( )
sin sin

2 2lim
( ) ( )

2 2

x

a b x a b x

a b x a b x

  
 

   
 
 

 

0

(c ) (c )

2 2lim
(c ) (c )

sin sin
2 2

x

d x d x

d x d x

  
 

  
 
 

 

0

2 2

2 2

( ) ( )

2 2lim
(c ) (c )

2 2

x

a b x a b x

d x d x

a b

c d



  
 

   
 
 






 

Example (41)  

Evaluate  

sin sin
lim
x a

x a

x a




 

Solution 

sin sin sin sin
lim lim .

(sin sin )( )
lim

x a x a

x a

x a x a x a

x a x a x a

x a x a

x a

 



  


  

 




 

Let x a t x t a       

As , 0x a t    
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 
0

(sin sin )( )
lim

sin( ) sin ( )
lim

x a

t

x a x a

x a

t a a t a a

t





 



   


 

But 

sin sin 2cos( )sin( )
2 2

x y x y
x y

 
   

So, 

0

0

2cos( )sin ( )
2 2

lim

sin / 2
lim cos( ). .( )

2 / 2

cos(a 0).1.(2 ) 2 cos

t

t

t t
a t a a

t

t t
a t a a

t

a a a





 
    

   

  

 

Example (42) 

Evaluate 

2

2 cos 1
lim

( )x

x

x 

 


 

Solution  
Put x t     

Note that , 0x t    
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2 20

2 20 0

220 0 0

2 cos( ) 12 cos 1
lim lim

( )

2 cost 1 2 cost 1 2 cost 1
lim lim .

2 cost 1

1 cos 1 cos 1
lim lim .lim

2 cost 1 2 cost 1

1 1 1
.

2 2 4

x t

t t

t t t

tx

x t

t t

t t

tt





 

 

  

   




     
 

 

 
 

   

 

Example (43) 
Evaluate 

4

1 tan
lim

1 2 sinx

x

x





 

Solution 

 

4 4

4

2 2

4

4

1 tan cos sin 1
lim lim .

cos1 2 sin 1 2 sin

cos sin 1 1 2 sin
lim . .

cos 1 2 sin 1 2 sin

cos sin 1 2 sin
lim .

cos cos sin

1 2 sin 2
lim 2

cos cos sin 1

x x

x

x

x

x x x

xx x

x x x

x x x

x x x

x x x

x

x x x

 







 







 


 

 


 

 





  



 

Example (44)  

Evaluate 
2

21

3 2
lim

sin( 1)x

x x

x x x

 

  
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Solution 
2

21

1

3 2
lim

sin( 1)

( 1)( 2)
lim

( 1) sin( 1)

x

x

x x

x x x

x x

x x x





 

  

 


  

 

Put   1 as 1, 0x t x t       

1

0

0

( 1)( 2)
lim

( 1) sin( 1)

( 1)
lim

( 1)( ) sin

1 1 1
lim

1 sin / 0 1 1 2

x

t

t

x x

x x x

t t

t t t

t

t t t







 

  




 

 
   

   

 

Limits of exponential and logarithmic functions 

1/

0

/

1
(i) lim 1

(ii) lim(1 )

(iii) lim 1

x

x

x

x

x a

x

e
x

x e

a
e

x







 
  

 

 

 
  

   
If ( ) 0, as 0, thenf x x   

 
1

( )

0
(iv) lim 1 ( ) , 0kf x

x
kf x e k


    

If ( ) , as , thenf x x   
( )

1
(v) lim 1 , 0

( )

kf x

x
e k

kf x

 
   

 
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 
1

0

1
lim 1 lim 1

x

x

x x
x e and e

x 

 
    

 
 

It follows that  

0

1
(vi)lim ln

x

x

a
a

x


  

By replacing a  with e  in (vi), we get 

0

1
(vii)lim ln 1

x

x

e
e

x


   

Let ( ) 0f x   as 0x   . If 0k   , then any  number 

. ( ) 0t k f x   as 0x  . 

We have 
. ( )

0 0

1 1
(viii)lim lim ln

. ( )

k f x t

x t

a a
a

k f x t 

 
   

 

Example (45) 
1/

0

3 2
lim

3 2

x

x

x

x

 
 

 
 

Solution  
1/

1/

0 0

1/

1/ 1/
0

1/ 0 0

0

2
1

3 2 3lim lim
23 2

1
3

2
lim 1

2 23
lim 1 .lim 1

3 32
lim 1

3

x

x

x x

x

x x
x

x x x

x

x
x

xx

x

x x

x

 




 



 
  

   
   

 

 
 

    
      

    
 

 

 

First consider  
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1/

0

2
lim 1

3

x

x

x



 
 

 
 

(If we put
2

3

x
t  , then

3 1

2x t
  . Furthermore, note that 

as 0, 0x t   and 
1

t
  .) 

 

2/3
1/ 3/2

0 0

2/3
1/ 2/3

0

2 2
lim 1 lim 1

3 3

lim 1

x x

x x

t

t

x x

t e

 



    
      

     

   
 

 

Next, consider, 

 

1/

0

2/3
3/2

2/3
1/ 2/3

0 0

2
lim 1

3

2
lim 1 lim 1

3

x

x

x
t

x t

x

x
t e








 

 
 

 

               

 

Thus, 
1/

4/3

0

3 2
lim

3 2

x

x

x
e

x

 
 

 
 

Example (46) 
1

2 3
lim

2 1

x

x

x

x





 
 

 
 

Solution 
1

2 3 2 3 2 3
lim lim .lim

2 1 2 1 2 1

x x

x x x

x x x

x x x



  

       
     

       
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3 3
1 2

2lim .lim
1 1

1 2
2

x

x x

x x

x x

 

   
    

    
    
   

 

33 lim 11
22lim

1 11 lim 1
2 2

3 1
lim 1 .lim 1

2 2

xx

x

xx

x

x x

x x

xx

x x

x x









 

        
  

       

   
     

   

 

First consider  

3
lim 1

2

x

x x

 
 

 
 

(If we put
3

2
t

x
  , then

2 1

3

x

t
  . Furthermore, note that 

as , 0x t  .) 

 

3/2
2 /3

3/2
1/ 3/2

3 3
lim 1 lim 1

2 2

lim 1

x x

x x

t

t

x x

t e

 



    
      

     

   
 

 

Next, consider 
1/2

2

1/2

1 1
lim 1 lim 1

2 2

x x

x xx x

e

 

 

    
      

     



 

Thus 
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1 3 1

22 2
2 3

lim
2 1

x

x

x
e e

x






 
  

 
 

 

Example (47)  
Evaluate 

1/( 1)

1
lim x

x
x 


 

Solution 

Put 1x t   . Therefore, 1x t  . Note that, as

1, 0x t   , 

 
1/1/( 1)

1 0
lim lim 1

tx

x t
x t e

 
    

 

Example (48) 
 

Evaluate;  

 
1/( 4)

4
lim 3

x

x
x




  

Solution 

Put 4x t  . Therefore, 4x t   . Note that, as

4, 0x t   , 

   
1/( 4) 1/

4 0
lim 3 lim 1

x t

x t
x t e



 
     

Example (49) 

Evaluate 

3

ln ln3
lim

3x

x

x




 

Solution 

Put 3x t   . Therefore, 3x t  . Note that as 

3, 0x t   0. 

Thus, 
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3 0

1/

0 0

1/3
3/

1/3

0

ln ln3 ln (t 3) ln3
lim lim

3

1 3
lim ln limln 1

3 3

1
ln lim 1 ln

3 3

x t

t

t t

t

t

x

x t

t t

t

t
e

 

 



  




   
     

   

  
     

   

 

Example (50)  

Evaluate 

ln 1
lim
x e

x

x e




 

Solution 

Let 

Put x e t   . Therefore, x t e  . Also, note that as 

, 0x e t    

0

1/

0 0

1/
e/

1/

0

ln 1 ln( ) ln
lim lim

1
lim ln 1 limln 1

1
ln lim 1 ln

x e t

t

t t

e
t

e

t

x t e e

x e t

t t

t e e

t
e

e e

 

 



  




   
      

   

  
     

   

 

Example (51)  
Evaluate 

0

ln10 ln( 0.1)
lim
x

x

x

 
 

Solution 

Consider  
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   

10 1
ln10 ln(x 0.1) ln10 ln

10

ln10 ln 10 1 ln10 ln 10 1

x

x x

 
     

 

     

 

Therefore, the given limit can be expressed in the form 

 

   

0 0

10
1/ 1/(10 )

0 0

10

ln10 ln( 0.1) 1
lim lim ln 10 1

limln 10 1 ln lim 10 1

ln 10

x x

x x

x x

x
x

x x

x x

e

 

 

 
 

    
 

 

 

Example (52)  
Evaluate 

0
lim

x x

x

a b

x


 

Solution  

0 0

0 0

( 1) ( 1)
lim lim

( 1) ( 1)
lim lim ln ln ln

x x x x

x x

x x

x x

a b a b

x x

a b a
a b

x x b

 

 

   


 
    

 

Example (53)  
Evaluate 

8

0

3 1
lim

x

x x


 

Solution 

Put  8x t . Then, 0, 0x t   . 
8

0 0

0

3 1 3 1
lim lim

/ 8

3 1
8.lim 8ln3

x t

x t

t

t

x t

t

 



 



 
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Example (54)  
Evaluate 

0
lim

sin

x x

x

e e

x






 

Solution 
2

0 0

2

0

1
lim lim

sin sin

1 2
lim . . ln .1.2 2

2 sin

x x x

xx x

x

xx

e e e

x e x

e x
e

x x e



 



 



  

 

Example (55)  

Evaluate 

20

( ) 1
lim

x x x

x

ab a b

x

  
 

Solution  
Consider 

   

   

( ) 1

1

1 1

1 . 1

x x x

x x x x

x x x

x x

ab a b

a b a b

a b b

a b

  

   

   

  

 

The required limit 

   

   

2 20 0

0 0

1 . 1( ) 1
lim lim

1 1
lim .lim ln .ln

x xx x x

x x

x x

x x

a bab a b

x x

a b
a b

x x

 

 

   


 
 

 

Example (56)  
Evaluate 

20

2
lim

x x

x

a a

x





 
 



990 
 

Solution 

Consider  

 

2

2
2

1 2
2

12 1

x x
x x

x

xx x

x x

a a
a a

a

aa a

a a

  
  

 
 

 

The required limit  

 

   

2

2 20 0

2

2 2

0 0

12
lim lim

.

1 1
lim .lim ln .1 ln

xx x

xx x

x

xx x

aa a

x a x

a
a a

x a



 

 

 


 
   

 

 

 

Example (57)  
Evaluate 

5

0

3 1
lim

tan3

x

x x


 

Solution  
5 5

0 0

5

0

3 1 3 1 5
lim lim .

tan3 5 tan3

5 3 1 3 5 5
lim . ln3.1 ln3

3 5 tan3 3 3

x x

x x

x

x

x

x x x

x

x x

 



 



  

 

Example (58)  

Evaluate 

0

12 4 3 1
lim

x x x

x x

  
 

Solution  

0

12 4 3 1
lim

x x x

x x

  
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0

0 0 0

(12 1) (4 1) (3 1)
lim

(12 1) (4 1) (3 1)
lim lim lim

ln12 ln 4 ln3 ln16

x x x

x

x x x

x x x

x

x x x



  

    


  
  

   

 

Example (59)  
Evaluate 

0

12 4 3 1
lim

sin

x x x

x x x

  
 

Solution  

   

   

0 0

0 0

0

0 0 0

12 4 3 1 4 .3 4 3 1
lim lim

sin sin

4 3 1 3 14 .3 4 3 1
lim lim

sin sin

4 1 . 3 1
lim .

sin

4 1 3 1
lim .lim .lim

sin

ln 4. ln3.1 ln 4. ln3

x x x x x x x

x x

x x xx x x x

x x

x x

x

x x

x x x

x x x x

x x x x

x

x x x

x

x x x

 

 



  

     


    
 

 


 


 
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Chapter 3 

Continuity of Real Functions 

Introduction 

We can introduce the concept of continuity proceeding from a graphic repre-

sentation of a function. 

A function is continuous if its graph is unbroken, i.e., free from sudden 

jumps or gaps. 

Suppose a function is defined on an interval I  . We say that the function is 

continuous on the interval I  , if its graph consists of one continuous curve, 

so that it can be drawn without lifting the pencil. There is no break in any of 

the graphs of continuous functions (Figure 3.1a-b). 

 
                                                      Fig. 3.1 

If the graph of a function is broken at any point "a " of an interval, we say 

that the function is not continuous (or that it is discontinuous) at “a”. 

The Natural Domain 

If the domain of the given function is not specified, we take the domain as 

the largest set of real numbers for which the rule of the function makes sense 

and gives real-number values. This is called the natural domain of the func-

tion. 

To understand the concept of continuity better, it is useful to study the fol-

lowing graphs of functions, which represent discontinuous functions. 

The graph of the function 1( )f x  appears in Figure 3.2a. It consist of all 

points on the line 2 3y x   , except(2,5) . The graph has a break at the 

point (1, 5). Here  1( )f x  is not continuous at 1x   since “1” is not in the 

domain of 1( )f x . We say that 1( )f x  is not defined at 1x   .We can 
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Fig. 3.2 

also say that 
1( )f x is continuous for all x , except for 1x   . It is also cor-

rect to say that 1( )f x  is discontinuous at 1x  (or that it is discontinuous in 

any interval containing “1”). 

Now consider the function 2 2

1
( )f x

x
  , 0x  . Its graph appears in the 

Figure 3.2b. Observe that as
2

1
0,x

x
   , which means that 2 ( )f x  

does not exist at 0x   or that 2 2

1
( )f x

x
 is not defined at 0x   .We say 

that in any interval containing "0", the function 2 ( )f x is discontinuous 

at the point 0x   .  

Note  

We say that a function  ( )f x  is not defined at x a  if either "a  " is not in 

the domain of  ( )f x  or ( )f x   asx a . 

We give below some more situations when a function may be discontinuous 

"at a point", in the interval of its definition. The functions 3( )f x  is defined 

for allx . Note that the point (1, 5) is torn out from the graph of 3( )f x  and 

shifted to the location (1, 2). Here, the point (1, 5) of the graph jumps out 
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from the height 5 to 2, creating a break in the graph at 1x    (Figures 3.3 

and 3.4). 

The graph of the function 
4 ( )f x , shows a break at the point 1x   . Here, a 

portion of the graph has a finite vertical jump at 1x   making the graph 

discontinuous at 1x   .  

 
Fig.3.3  

 
Fig.3.4 

Next, consider the graph of the function 5( )f x  (Fig. 3.5). The function 

5( )f x  is not defined at 0x   but it is defined for all other values of x. We 
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observe that as 
1

0 ,x
x

   , and as 
1

0 ,x
x

  . Thus, 

5( )f x  is discontinuous at the point 0x  . 

 
Fig. 3.5 

From the above discussion (and the graphs), it is clear that the question of 

continuity must be considered only for those points, which are in the domain 

of the function. However, a point of discontinuity may or may not be in the 

domain of the function.  

Definition  

Let a function “ ( )f x  ” be defined in an interval I  , and let “a  ” be any 

point in I  . The function “f ” is said to be continuous at the point “a”, if and 

only if the following three conditions are met: 

0

(i) ( ) isdefinedat

(ii) lim ( )exists

(iii) lim ( ) ( )

x a

x

f x x a

f x

f x f a









 

In fact, these three conditions of continuity “at a point”, are summed up in 

the following short definition. 

A function f(x) is said to be continuous at a pointx a  , if the limit of the 

function asx a  , is equal to the value of the function forx a  , which 

we express by the statement, 

lim ( ) ( ) (*)
x a

f x f a


  

There is another way to express continuity of a function at a point “a”. In the 

statement (*), if we replace x  bya h  , then asx a  , we have 0h  . 
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Thus, the statement 

0
lim ( ) ( )
h

f a h f a


   

defines continuity of the function “f ” at “a”. 

Remark 

I. f(x) is defined at x a  means, the value f(a) is a finite number. 

II. f(x) is not defined at x a  means, either the point  , ( )a f a  is 

missing from the graph (which also means that “a” is not in the do-

main of “f ”) or f(a) is not finite [i.e., asx a  , ( )f x   ]. 

III.  lim ( )
x a

f x


 exists means lim ( ) lim ( )
x a x a

f x f x
  

  and both being fi-

nite 

Note   

It is important to remember that the value f(a) and lim ( )
x a

f x


are two differ-

ent concepts and hence even when both the numbers exist, they may be dif-

ferent. The concept of continuity of the function (at any pointx a  , in its 

domain) is based on the existence and equality of these 

two values, at “a”. 

Definition [Discontinuity] 

We can say that, a function defined on an interval I  is discontinuous at a 

point a I , if at least one of the following 

conditions occur at the point x a . 

I. The function f(x) is not defined atx a  , 

II. lim ( )
x a

f x


  does not exist [which means that  

lim ( ) lim ( )
x a x a

f x f x
  

  or at least one of the one-sided limits is infi-

nite], 

III. lim ( ) ( )
x a

f x f a


  , in the arbitrary approach of x a  (which 

means that the expressions on the right and the left both exist but they 

are unequal). 

One-Sided Continuity 

In Chapter 2, the concept of limit of a function was extended to include one-

sided limits (and limits involving  ). The importance of one-sided limits 

has since been seen in testing the continuity of a function at any point and in 

identifying the type of discontinuity at that point. 

Now, we extend the concept of limit to define the concept of one-sided con-

tinuity, which is useful in defining continuity in a closed interval.  

 



111 
 

Example(1)  

Consider the function ( )f x x  . We know that the domain of the square 

root function ( )f x x  is [0, )  Therefore, the  
0

lim ( )
x

f x


  does not 

exist. As a consequence, under the definition of continuity, the square root 

function ( )f x x   is not continuous at 0x   (Why?). 

However, it has a right-hand limit at 0  . We express this fact by saying that 

the square root function ( )f x x  is continuous from the right of “0”.We 

can give the following definitions of one-sided continuity. 

Definition [Continuity from the Right]  
A function f(x) is continuous from the right at a point “a” in its domain, if  

lim ( ) ( )
x a

f x f a


  

Definition [Continuity from the Left]  
A function f(x) is continuous from the left at a point “a” in its domain, if  

lim ( ) ( )
x a

f x f a


  

In view of the above definitions a function whose domain is a singleton is 

considered continuous at that point.  

Continuity on An Interval 

We say that a function is continuous on an open interval if it is continuous at 

each point there. It must be clear that each point in the interval has to satisfy 

all the three conditions of continuity at a point as stated in the definition (1). 

When we consider a closed interval  ,a b  we face a problem as we have 

seen in the case of the square root function ( )f x x . 

We overcome this situation by agreeing as follows: we say that “f ” is con-

tinuous on closed interval  ,a b , if it is continuous at each point of ( , )a b  

and if the following limits exist: 

lim ( ) ( )
x a

f x f a


   and lim ( ) ( )
x b

f x f b


  

 

Example (2)  
Given 

( )
2

x
f x

x



 . 

Test the continuity of the function in the intervals (1, 2), [1, 2], and (1, 3).  
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Solution 

Note that, f(x) is not defined for 2x   . Accordingly, f(x) is continuous 

in any interval which does not contain 2. Thus, “f ” is continuous on (1, 2), 

but it is discontinuous on [1, 2] and on (1, 3). 

Some Theorems on Continuity (Without Proof) 

I. If ( )f x  and ( )g x  are two functions continuous at the number “a”, 

then ( ) ( )f x g x , ( ). ( )f x g x   are continuous at “a” and 
( )

( )

f x

g x
 is 

continuous at “a”, provided that ( ) 0g a  . 

II. Continuity of a Composite Function: If the function ( )g x  is continu-

ous at “a” and the function ( )f x  is continuous at ( )g a , then the 

composite function ( )( )f g x  is continuous at “a”. 

Continuity of Some Elementary Functions  

It can be shown that 

I. A constant function is continuous for all x. 

II. A polynomial function 
1

0 1( ) ...n n

nf x a x a x a     is continuous 

for all values of x on( , )   . 

III.  , 0nx n   is continuous for all values of  x. 

IV.  A rational function is continuous at every point in its domain. 

V. 
1

, 0
n

n
x

  is continuous for all values of x, except 0x   . 

VI. Trigonometric functions: ( ) sinf x x  and ( ) cosg x x  are con-

tinuous on( , )   . Other trigonometric functions (i.e., tan x, cot x, 

sec x, cosec x) are continuous for all values of  x for which they are de-

fined. 

VII. Inverse trigonometric functions are continuous for all values of x for 

which they are defined. 

VIII. The exponential function: f ( ) xf x a  is continuous on( , )  . (In 

particular, ( ) xf x e  is continuous for all x.) 

IX. The logarithmic function: ( ) logaf x x  , (a>0) is continuous o 

(0, ) . 

 

 

 



111 
 

Example (3)  
Discus the continuity of  the function 

| |
( )

x
f x

x
  at 0x  . 

Solution 

The arrows at the ends of the rectilinear portions of the graph mean that for 

0x  , the function is not defined but for the values of  x less than zero the 

value of the function is “ 1  ”, and for the values of x exceeding zero, it is 

equal to “1”. Hence, the function has no limit as 0x  . Thus, the function 

( )f x  discontinuous at 0x  .   

Example (4) 

The greatest integer function of  x  denoted by ( ) [ ]f x x  is defined as: 

[ ]x   the greatest integer less than or equal to x . Thus, for all numbers  x  

less than 2 but near 2, [ ] 1x  , and for all numbers greater than 2 but near 2, 

[ ] 2x  . 

The graph of [ ]x takes a jump at each integer as clear from the graph (Fig. 

3.6). 

Now,  for any integer number  k , we have 

lim[ ] 1
x k

x k


   , but when lim[ ]
x k

x k


 . 

Thus, lim[ ]
x k

x


 does not exist. Thus,  [ ]x  is not continuous for any integer 

x . 

 
Fig. 3.6 
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Example (5)  

Find any points of discontinuity for the function ( )f x  given by 
4 2

2

3 2 1
( )

1

x x x
f x

x

  



 

Solution 

The denominator is zero when 2x    . Hence “ ( )f x ” is not defined at 

2   and accordingly it is discontinuous at these points. Otherwise, the func-

tion is “well behaved”. In fact, any rational function (i.e., any quotient of 

polynomials) is discontinuous at points where the denominator becomes 0, 

but it is continuous at all other points. 

Example (6)  

Check whether the function 
1/

1/

2 1
( )

2 2

x

x
f x





 

is continuous at 0x  . 

Solution  

Note that the function ( )f x  is not defined at 0x   . To check whether this 

function is continuous at 0x   , we compute its one-sided limits.  

As  
1

0 ,x
x

  , so that 
1/2 0x  . 

1/

1/
0 0

2 2 0 1 1
lim ( ) lim

2 1 0 2 2

x

x
x x

f x
  

 
   

 
 

However, as  
1

0 ,x
x

  , so that 
1/2 x  . 

1/ 1/ 1/

1/ 1/ 1/
0 0 0

1/

1/
0

2 2 2 (1 2.2 )
lim ( ) lim lim

2 1 2 (1 2 )

1 2.2 1 0
lim 1

1 2 1 0

x x x

x x x
x x x

x

x
x

f x
  






  






 
  

 

 
  

 

 

Therefore, the ( )f x  is discontinuous at 0x   . 
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Example (7) 
Prove that the function defined by 

1
sin , if 0

( )

0, if 0

x x
f x x

x




 
 

 

is continuous at 0x  . 

Solution  
We shall compute the left-hand limit and right-hand limit of this function, at

0x  . 

0 0 0 0

1 1
lim ( ) lim sin ( lim )( lim sin ) 0
x x x x

f x x x
x x      

    

0 0 0 0

1 1
lim ( ) lim sin ( lim )( lim sin ) 0
x x x x

f x x x
x x      

    

(Since 
1

sin
x

 is a bounded function, which lies between 1   and 1.) 

As 
0 0

lim ( ) lim ( ) (0)
x x

f x f x f
  

  , ( )f x  is continuous at 0x   . 

Example (8) 

1
sin , if 0

( )

0, if 0

x
f x x

x




 
 

 

Test the continuity of  f(x) at 0x  . 

Solution  

Note that f(x) is defined for all x . 
0

1
limsin
x x

  does not exist. [Indeed, the

0

1
limsin
x x

 oscillates between 1   and 1‏]. Hence, the given function f(x) is 

not continuous at 0x   . 

Note   

The function 
1

sin
x

 is defined for all values of x  except for 0x   . It does 

not approach either a finite limit or infinity as 0x   . The graph of this 

function is shown below (Fig. 3.7). 
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                                                Fig. 3.7 

Example (9) 

2 1
sin , 0

( )

0, 0

x if x
f x x

if x




 
 

 

Test the continuity of  ( )f x  at 0x  . 

Solution  

Note that ( )f x is defined for all x .  We have 

I. (0) 0f    

II. 
2

0 0

1
lim ( ) lim sin 0
x x

f x x
x 

    

III. 
0

lim ( ) (0) 0
x

f x f


    

Thus, ( )f x  is continuous at 0x  . 

Example (10) 

Test the continuity/discontinuity of the following function at 0x   . 
1/

1/
, if 0

( ) 1

0, if 0

x

x

e
x

f x e

x




 
 

 

Solution  

Observe that,  

I. (0) 0f    
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II. 

1/

1/
0 0

0
lim ( ) lim 0

1 1 0

x

x
x x

e
f x

e  
  

 
 and 

1/ 1/

1/ 1/ 1/
0 0 0

1/
0

lim ( ) lim lim
1 (e 1)

1 1
lim 1

(e 1) 0 1

x x

x x x
x x x

x
x

e e
f x

e e  




  




 
 

  
 

  

Thus, 
0

lim ( )
x

f x


 does not exist.  We conclude that f(x) is discontinuous at 

0x  .  

Example (11)  

sin 2
, 0

( )

1, 0

x
x

f x x

x




 
 

 

Is f (x) continuous at 0x   ? 

Solution  
Note that the function is defined for all x. To find whether f(x) is continuous 

at 0x   or not, we check the left-hand and the right-hand limits at 0x  . 

I. (0) 1f    

II. 
0 0

sin 2
lim ( ) lim 2
x x

x
f x

x  
   and 

0 0

sin 2
lim ( ) lim 2
x x

x
f x

x  
  . 

Thus, 
0

lim ( ) 2
x

f x


  

III. 
0

lim ( ) (0)
x

f x f


   

We conclude that f(x) is discontinuous at 0x  .  

Example (12)  

Let  

sin
( )

x
f x

x
 . 

Define a function ( )g x  which is continuous, and ( ) ( )g x f x  for all 

0x   . 

Solution  

We have 
0 0

sin
lim ( ) lim 1
x x

x
f x

x 
    
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Let  

sin
, 0

( )

1

x
x

g x x




 


 

Then, g(x) is continuous at “0”. Since 
0

lim ( ) (0) 1
x

g x g


  . Furthermore, 

 ( ) ( )g x f x  for all 0x  , as was desired. 

Note   

The graph (Fig. 3.8)of the function 
sin x

x
 is given below. It gives a feel of 

how it becomes continuous when we redefine it at 0x   as 1. 

 
 

 

Fig. 3.8 

Example (13)  

Discuss the continuity of the function 
2(3 1)

, 0
( ) sin ln(1 )

2ln3, 0

x

x
f x x x

x

 


 
 

 

 

Solution:  

Given (0) 2ln3f    

 
 

2

0 0

2

2

2

0

(3 1)
lim ( ) lim

sin ln(1 )

3 1

ln3
lim ln3

sin ln(1 ) 1.1

x

x x

x

x

f x
x x

x

x x

x x

 








 
 
 

  

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Thus,  we have  
0

lim ( ) (0)
x

f x f


 . Hence, ( )f x  is discontinuous at 

0x  . 

Example (14) 

 Find the value of k , if 

1 cos
, 0

( ) sin

2, 0

kx
x

f x x x

x




 
 

  

is continuous. 

Solution  

Since ( )f x  is continuous at 0x   ,  

0
lim ( ) (0) 2
x

f x f


   

Hence our problem reduces to computing the limit of f(x) as 0x  . 

Consider, 

2

0 0 0 2

2
2 2

0 2

2

2sin
1 cos 2lim ( ) lim lim

sinsin

2sin
2.12lim

4 sin 4 1 2
( ) . .

2

x x x

x

kx
kx

f x
xx x

x
x

kx
k k

kx x

k x

  




 

  

 

 

Thus,  
2

2 2
2

k
k     

Example (15)  

If   
 5 2 .

( )
cos5 cos3

x x x
f x

x x





 , for 0x  , is continuous at 0x  , find

(0)f . 

Solution  

It is given that ( )f x  is continuous at 0x   . Therefore, by definition, we 

have, 
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0
lim ( ) (0)
x

f x f


  

Thus, our problem is reduced to computing the 
0

lim ( )
x

f x


 . 

Now, 

 
0 0

5 2 .
lim ( ) lim

cos5 cos3

x x

x x

x
f x

x x 





 

 
0

5 2 .
lim (since cosA cos 2sin sin )

2sin 4 .sin 2 2

x x

x

x A B A B
B

x x

  
   


 

0

5 1 2 1

ln5 ln 2 1 5
lim ln

sin 4 sin 8 8 2
8 .

4

x x

x

x x

x x

x x



  
 

 
   




 

Example (16) 

 The function  ( )f x  is defined by 

2

1
, 0

( )
1

, 0
2

xe x
x

xf x

x

  


 
 


 

 is continuous at 0x   . What is 
0

lim ( )
x

f x


 ? 

Solution  
If the problem is read carefully, it must be clear that we do not have to com-

pute 
0

lim ( )
x

f x


]. Since, ( )f x  is continuous at 0x   , 

0

1
lim ( ) (0)

2x
f x f


   

Example (17) 

Discus the continuity of  the function 

1
( ) at 2

2
f x x

x
 


 

Solution 

Since ( )f x  is not defined at 2x   . Hence, ( )f x  is discontinuous at  2.  
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Again, 
2

lim ( )
x

f x


 does not exist (see Fig. 3.9) (Why?).  

 
Fig. 3.9 

 
Fig. 3.10 

Example (18) 

Discus the continuity of  the function 

1
, 2

( ) 2

3, 2

x
f x x

x




 
 

 

at 2x    

Solution 

Here , the graph of ( )f x  has a break at 2 (see Fig.3.10 ).We check 

the conditions of ( )f x , at 2x   . Observe that 

I. (2) 3f    
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II. 
2 2

1 1
lim , and lim ,

2 2x xx x  
   

 
Thus, 

2

1
lim

2x x 
 does not 

exist.  

Obviously, ( )f x  is discontinuous at 2x  . 

Example (19) 

Discus the continuity of  the function 

3 , 3
( )

2, 3

x x
f x

x

  
 


 

Solution 

We check the three conditions of continuity at 3x     

I. (3) 2f    

II. 
3 3 3 3

lim ( ) lim(3 ) 0, and lim ( ) lim( 3) 0
x x x x

f x x f x x
      

      . 

Thus, 
0

lim 3
x

x


  exists and equals 0  (see Fig. 3.11) . 

III. 
3

lim ( ) (3)
x

f x f


   

Thus, ( )f x  is discontinuous at 3. 

 

 
                                                     Fig. 3.11 

Example (20) 

Discus the continuity of  the function 
2 2, 1

( )
5 1, 1

x x
f x

x x

  
 

 
 

Solution 

The functions having values 
2 2x   and 5 1x   are polynomials and are 

therefore continuous everywhere. Thus, the only number at which continuity 

is questionable is 1. We check the three conditions for continuity at “1”. 
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I. (1) 4f  . Thus, (1)f  exists. 

II. 
2

1 1
lim ( ) lim( 2) 3
x x

f x x
  

    and 
1 1

lim ( ) lim(5 1) 4
x x

f x x
  

  

Thus, 
1 1

lim ( ) lim ( )
x x

f x f x
  

 . Therefore,
1

lim ( )
x

f x


 does not exist, 

and so “ ( )f x  ” is discontinuous at 1x  . 

Example (21) 

Discus the continuity of  the function 

2

6, 3
( )

, 3

x x
f x

x x

 
 


 

 

Solution 

We observe that, 

I. (3) 9f  . 

II. 
2

3 3
lim ( ) lim 9,
x x

f x x
  

   and 
3 3

lim ( ) lim( 3) 9,
x x

f x x
  

     

Thus,  
3

lim ( ) (3)
x

f x f


  and ( )f x  is continuous at 3x      

Example (22) 

Discus the continuity of  the function 

2

2, 2
( )

, 2

x x
f x

x x

 
 


 

Solution 

Since “ ( )f x  ” is not defined at 2x   , it is discontinuous there. (It is con-

tinuous for all other x.). Note that 
2

2 2
lim ( ) lim( ) 4
x x

f x x
  

   and 
2 2

lim ( ) lim( 2) 4
x x

f x x
  

    

Thus 
2

lim ( ) 4
x

f x


  exists. 

Example (23) 
Discus the continuity of  the function 

2 , 1
( )

, 1

x x
f x

x x

 
 


 

Solution 
Note that 

I. (1) 1f    
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II. 
2

1 1
lim ( ) lim( ) 1
x x

f x x
  

   and 
1 1

lim ( ) lim( ) 1
x x

f x x
  

  . Thus 

1
lim ( ) 1
x

f x


  exists (see Fig. 3.12). 

III.  
1

lim ( ) (1) 1
x

f x f


   

 
Fig. 3.12 

Example (24) 
Discus the continuity of  the function 

2

2
( )

1

x
f x

x



 

Solution 

Here again “ ( )f x ” is a rational function, but its denominator (
21 x  ) is 

never 0 . Thus, “ ( )f x ” is defined for all x and therefore “f ” is continuous 

for every real value of  x. 

Example (25) 

Show that the function ( ) 5f x   is continuous for every value of  x  . 

Solution 

We must verify that the conditions for continuity at arbitrary point x a  

are satisfied. 

I. ( ) 5f a    

II. lim ( ) 5
x a

f x


  and  lim ( ) 5
x a

f x


 . Thus, lim ( ) 5
x a

f x


  

III.  lim ( ) ( )
x a

f x f a


  

Therefore, ( )f x   is continuous atx a . 
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Example (26) 

Let  

1, 0

( ) sgn 0, 0

1, 0

x

f x x x

x

 


  
 

 

 

Discus the continuity of  ( )f x .  

Solution 

The function f(x) is called signum  function (or sign function) denoted by 

sgnx  and read “signumof x ” (Figure 3.13). (It gives the sign of x  .) 

Note that the function sgnx is defined for allx . 

 

 
Fig. 3.13 

Because 

 sgn 1, If 0x x    , sgn 0, If 0x x  and sgn 1, If 0x x  , 

we have 

0 0 0 0
lim sgn lim ( 1) 1, lim sgn lim (1) 1
x x x x

x x
      

       

Thus, the left-hand limit and the right-hand limit are not equal, which means 

that  
0

limsgn
x

x


does not exist. Accordingly, f(x) is discontinuous at 0x  . 
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Chapter 4 

Differentiation of Real Functions 
Let ( )y f x  be a given function defined in an open interval (a, b).  Let 

the points  x and  (x x ) both belong to the domain of function ( )f x

where x  is an arbitrary nonzero number. From the function f(x), we form 

a new function 

( ) ( )
( )

f f x x f x
x

x x


   
 
 

 

The limit of this ratio, as 0x   , may or may not exist. If 

0

( ) ( )
lim
x

f x x f x

x 

  


 

exists, then we call it the derivative of  ( )f x   with respect to x . It is de-

noted by  ( )f x  or 
dy df

dx dx
 . 

Derivative of a Function at a Particular Point 

The derivative of a function ( )y f x  at a particular point 1x x  in the 

domain of ( )f x  is given by the limit 

1 1

0

( ) ( )
lim
x

f x x f x

x 

  


 

if this limit exists. It is denoted by 1( )f x . 

If we replace ( 1x x  ) by x , and accordingly 1x x x    , then the de-

rivative of ( )f x   at 1x  is given by 

1

1
1

1

( ) ( )
( ) lim

x x

f x f x
f x

x x


 


 

 

if this limit exists. 

In all cases, the number 1x  at which  f   is evaluated is held fixed during 

the limit operation. Here, x  is the variable and 1x  is regarded as a constant. 

Note   

Observe that if  1( )f x  exists, then the letter x  in (C) can be replaced by 

any other letter. For example, we can write 
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( ) ( )
( ) lim (*)

t a

f t f a
f a

t a


 


 

Example (1)  
Let 

2

( ) 1
4

x
f x    . 

Find ( 1)f    and (3)f   

Solution  

Using (*), we obtain 

 

 

 

2

1

2

2

1 1

2

1 1

1

5
( / 4) 1̀

4( 1) lim
( 1)

1
(1/ 4) 1

4 4lim lim
1 1

1
1

(1/ 4)( 1)( 1)4lim lim
1 1

1
lim (1/ 4)( 1)

2

x

x x

x x

x

x

f
x

x
x

x x

x
x x

x x

x



 

 



 
  

 

 
 

 


 

 
 

   

 

 

 

2

3

22

3 3

2

3 3

3

13
( / 4) 1̀

4(3) lim
3

(1/ 4) 9(1/ 4) 9 / 4
lim lim

3 3

(1/ 4) 1 (1/ 4)( 3)( 3)
lim lim

3 3

1
lim(1/ 4)( 3)

2

x

x x

x x

x

x

f
x

xx

x x

x x x

x x

x



 

 



 
 




 

 

  
 

 

   
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Next, we give the following formal definitions. 

Differentiability of Functions 
I. Functions differentiable at a point  

If a function has a derivative at 
1x  of its domain, then it is said to be 

differentiable at
1x . 

II. Functions differentiable in an open interval 

 A function is differentiable in an open interval ( , )a b  if it is differen-

tiable at every number in the open interval. 

III. Functions differentiable in a closed interval  
If f(x) is defined in a closed interval [a, b], then the definitions of the 

derivatives at the end points are modified so that the point ( x x ) 

lies in the interval  ,a b . Hence, we define the one side derivative at 

the end points as follows: 

The right-hand derivative 

( ) ( )
( ) lim

x a

f x f a
f a

x a



 


 

The left-hand derivative 

( ) ( )
( ) lim

x a

f x f b
f b

x b



 


 

IV. Differentiable Function 

If a function is differentiable at every number in its domain, it is 

called a differentiable function. 

Note   
The above definition appears to be quite simple, but certain situations might 

create confusion. Hence, to get a clear idea of a differentiable function, it is 

useful to consider the following example: 

Example (2) 

Check the differentiability of the function  ( )f x x   at 0x   

Solution 

The right-hand derivative 

0 0

0

( ) (0) 0
(0) lim lim

0 0

1
lim

x x

x

f x f x
f

x x

x

 




 



 
  

 

  

 

The left-hand derivative 
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0 0

0

( ) (0) 0
(0) lim lim

0 0

1
lim doesnot exist

x x

x

f x f x
f

x x

x

 




 



 
  

 



 

Here, the domain of ( )f x  is [0, )  but  ( )f x  does not exist at 0x   . 

Thus, ( )f x  is not differentiable at “0  ”, which is in the domain of ( )f x . 

Therefore, we will say that ( )f x  is not a differentiable function. 

However, if we define the function ( )f x x  in the open interval(0, ) , 

then it becomes a differentiable function. 

In view of the above, we agree to say that if the domain of ( )f x  is the 

same as that of ( )f x  , then ( )f x  is a differentiable function. 

Nearly every function we will encounter is differentiable at all numbers or 

all but finitely many numbers in its domain. 

Note   
To obtain the derivative of a function, by using the definition of the deriva-

tive, is known as the method of finding the derivative from the first princi-

ple. 

Notation for Derivative 

We know that differentiation of  ( )y f x  by the first principle involves 

two steps: 

I. First, the formation of the difference quotient  
( ) ( )f x x f x

x

  


  

II. Second, the evaluation of the limit 
0

( ) ( )
lim
x

f x x f x

x 

  


  

III.  If the limit,  
0

( ) ( )
lim
x

f x x f x

x 

  


 exists, then we denote it by 

the symbol ( )f x  or 
dy

dx
 and call it the derivative of the function 

( )f x . 

Note  
We can look at the process of differentiation as an operation. The operation 

of obtaining ( )f x  , from ( )f x  , is called differentiation of ( )f x  . The 
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symbol 
d

dx
 is assigned for this operation. We call it the operator of differ-

entiation. 

The Operator of  Differentiation 
d

dx
 

In view of the above discussion, we can say that the symbol 
d

dx
 stands for 

the operation of computing the derivative of a given function by the first 

principle. In other words, we agree to say that 
d

dx
 constructs from the dif-

ference quotient 
( ) ( )f x x f x

x

  


, and determines its limit as 0x   

(treating the difference quotient as a function of variable x ) 

Note   

The notation 
d

dx
 should be interpreted as a single entity and not as a ratio. 

(It reads “d over dx”). It is also used in a formula to stand 

for the phrase “the derivative of ”. Thus, the symbol 
d

dx
 is used to define 

the derivatives of combinations of functions. 

Derivatives of Simple Algebraic Functions 

Now, we proceed to evaluate the derivatives of some simple algebraic func-

tions by definition. 

Example (3) 

Let ( ) ,ny f x x n   . Then, we have 

 

0

1

0

( ) ( ) ( )
( ) lim

lim

x

n n

n

x

dy df x f x x f x
f x

dx dx x

x x x
nx

x

 



 

  
   



  
 



 

Example (4)  

Let ( ) ,y f x x      . Then, we have 
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 

0

1

0

( ) ( ) ( )
( ) lim

lim

x

x

dy df x f x x f x
f x

dx dx x

x x x
x

x

 



 



 

  
   



  
 



 

Remark 

To obtain, the limit 
 

0
lim
x

x x x

x

 

 

  


,  by making use of binomial 

theorem , we can expand the amount 
 x x x

x

   


 as follows: 

   

   

 

2 3

1 2 3
2 3

1 2

1 /
(since 1)

( 1) ( 1)( 2)
1 ...

1! 2! 3!

( 1) ( 1)( 2)
( ) ...

1! 2! 3!

( 1) ( 1)( 2)

1! 2!

x x x x x x x x

x x x

x x x
x x

x x x

x

x x x
x x x

x

x x x
x

   

 

  

  

     

     

     

  

 

      
 

 

         
        

     




  
     




  
     

3
2

...
3!

x


 

So, we have 

 

   

0

1 2 3
2

0

1

lim

( 1) ( 1)( 2)
lim ...

1! 2! 3!

x

x

x x x

x

x x x
x x

x

 

  



     



 

  

 



  



   
      

 


Note   
Later, where the method of  logarithmic differentiation is discussed, we shall 

show prove the above formula by using logarithmic differentiation .  

Example (5) 

Find the derivative  of  y x   
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Solution 

1/2 (1/2) 1

1/2

1
( )

2

1 1

2 2

dy d d
x x x

dx dx dx

x
x





  

 

  

Now, Let Us Consider the Derivative of a Constant, ( )y f x C  . 

0

0

( ) ( )
lim

lim 0

x

x

dy f x x f x

dx x

C C

x





  





 



  

Example (6)  

Find the derivative of  

( ) 3 7f x x   

Solution  

0

0

( ) ( )
( ) lim

3( ) 7 3 7
lim

h

h

f x h f x
f x

h

x h x

h





 
 

   


  

By rationalizing the numerator, we get 

0

0

0

0

3( ) 7 3 7 3( ) 7 3 7
( ) lim .

3( ) 7 3 7

3( ) 7 (3 7)
lim

3( ) 7 3 7

3
lim

3( ) 7 3 7

3
lim

3( ) 7 3 7

3

2 3 7

h

h

h

h

x h x x h x
f x

h x h x

x h x

h x h x

h

h x h x

x h x

x









       
 

   

   


   


   


   



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Example (7) 

Find the derivative of  
1

( )f x
x

 . 

Solution  

0

0

( ) ( )
( ) lim

1/ ( ) 1/
lim

h

h

f x h f x
f x

h

x h x

h





 
 

 


  

By rationalizing the numerator, we get 

 

 

 

0

0

0

0

3/2

2

1/ 1/ 1 / 1 /
( ) lim .

1/ 1 /

1 / ( ) 1 /
lim

1/ 1/

( )
lim

1/ 1/

1

( )
lim

1/ 1/

1 1 1
.

22 /

h

h

h

h

x h x x h x
f x

h x h x

x h x

h x h x

x x h

x x h

h x h x

x x h

x h x

x
x x











   
 

 

 


 

 




 






 


    

Rules of Differentiation of Functions 

We find the result of applying the operator 
d

dx
 to certain combinations of 

differentiable functions, namely, sums, products, and ratios. (It turns 

out that the rules for differentiating such combinations of functions are easi-

ly established in terms of the derivatives of the constituent functions). 

I. Derivative of a sum (or difference) of functions 

Let 1( )f x  and 2 ( )f x  be differentiable functions of  x  , with the 

same domain,  then  
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 1 2 1 2( ) ( ) ( ) ( )
d d d

f x f x f x f x
dx dx dx

     

This rule can be extended to the derivative of the sum (or difference) 

of any finite number of differentiable functions, with the same do-

main. Thus,  

 1 2

1 2

( ) ( ) ... ( )

( ) ( ) ... ( )

n

n

d
f x f x f x

dx

d d d
f x f x f x

dx dx dx

  

   

 

II. The Constant Rule for Derivatives 

If  k  is any constant,  ( )f x  is any differentiable function, then 

 

 . ( ) ( )
d d

k f x k f x
dx dx

  

III. The derivative of product of two functions 

Let 
1( )f x  and 

2 ( )f x  be differentiable functions of  x , then 

 1 2 1 2 2 1( ). ( ) ( ) ( ) ( ) ( )
d d d

f x f x f x f x f x f x
dx dx dx

   

This rule can be extended to the product of more than two functions 

(and in general for a product of finite number of differentiable func-

tions). Thus, 

   

   

 

1 2 3 1 2 3

1 2 3 3 1 2

1 2 3 3 1 2 2 1

( ). ( ). ( ) ( ). ( ) . ( )

( ). ( ) ( ) ( ) ( ). ( )

( ). ( ) ( ) ( ). ( ) ( ) ( ) ( )

d d
f x f x f x f x f x f x

dx dx

d d
f x f x f x f x f x f x

dx dx

d d d
f x f x f x f x f x f x f x f x

dx dx dx

   

 

 
   

 

 

IV. The derivative of quotient of two functions 

Let 1( )f x  and 2 ( )f x  be differentiable functions of  x , then 

 

2 1 1 2
1

2

2 2

( ) ( ) ( ) ( )
( )

( ) ( )

d d
f x f x f x f x

f xd dx dx

dx f x f x


 

 
 
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Example (8) 

 If   
1 1

1 1

x x
y

x x

  


  
 , find 

dy

dx
. 

Solution 

   

   

2

1 1 1 1
.

1 1 1 1

1 1 2 1 1

1 1

1 1

1 1
1

2 1 2 1

1
1

x x x x
y

x x x x

x x x x

x x

x x x

dy x x

dx x x

x

x

     


     

     


  

   

 
   

 

 


 

Example (9) 

If  
a x

y
a x





, find 

dy

dx
.  

Solution 

   
2

2 2

1 1

2 2

/

a x a x
dy x x

dx a x

a x a

a x x a x

   
     

   


 
 

 
    
   

 

The Derivative of a Composite Function 

We have already introduced the concept of composite functions in Chapter 

1. Many of the functions we encounter in mathematics and in applications 

are composite functions. Consider the following examples: 

I.  
10

3 1y x   is a function of  
3 1x  , and  

3 1x   is a function of  

x . 
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So,  
10

3 1y x   can be considered as a composition of two func-

tions as follows 

 

10 3

10
3 3

, 1 ( )( )

( ( )) ( 1) 1

y u u x y u x

y u x y x x

   

    
 

II. 
3 4 1y x    is a function of 

4 1x   , and 
4 1x   is a function of 

x .  So, 
3 4 1y x  can be considered as a composition of two 

functions as follows 
43

34 4

, 1 ( )( )

( ( )) ( 1) 1

y u u x y u x

y u x y x x

   

    
 

III. 

10

7 1
2

x
y

 
  

 
 is a function of  

10

1
2

x 
 

 
 ,  

10

1
2

x 
 

 
 is a func-

tion of 1
2

x
 , and 1

2

x
  is a function of  x . 

Thus,  
10

10 33 4
71 , 1, 1

2

x
y x y x y

 
      

 
 and so on are ex-

amples of composite functions of x  . If we could discover a general rule for 

the derivative of a composite function in terms of the component functions, 

then we would be able to find its derivative without resorting to the defini-

tion of the derivative. 

To find the derivative of a composite function, we apply the chain rule, 

which is one of the important computational theorems in calculus. It as-

sumes a very suggestive form in the Leibniz notation . 

The Chain Rule 

If ( )y f u  is a differentiable function of  u  and ( )u g x  is a differen-

tiable functions of x  , such that the composite function 

( )( ) ( ( ))y f g x f g x   is defined,  then  
dy

dx
 is given by 

.
dy dy du

dx du dx
  



839 
 

If y  is a function of u  , defined by ( )y f u  and  
dy

du
 exists, and if  u  is 

a function of  x  defined by ( )u g x  and 
du

dx
 exists, then y  

. (*)
dy dy du

dx du dx
  

Note   
Here, it is important to note that in the product of derivatives on RHS, there 

are two separate operators of differentiation, namely, 
d

du
 and

d

dx
. Hence, 

dy

dx
 is not obtained by canceling du  from the numerator and the denomina-

tor. 

Extension of Chain Rule (i.e. The Compound Chain Rule) 

In general, if ( )y f t ,  ( )t g u , and  ( )u h x , where  ,
dy dt

dt du
 and 

du

dx
 exist, then  y  is a function of  x  and 

dy

dx
 exists, given by 

. .
dy dy dt du

dx dt du dx
  

Thus, the derivative of  y  is obtained in a chain-like fashion. In practice, it 

is convenient to identify the functions ,t u , and so on at different stages of 

differentiation. 

Remark  

In formula (*), y is represented in two different ways: once as a function of  

x and once as a function of  u . The expression 
dy

dx
is the derivative of  y , 

when y is regarded as a function of x . In the same way, 
dy

du
 is the deriva-

tive of y  , when y is regarded as a function of  u . Formula (*) is especially 

useful when y  is not given explicitly in terms of  x , but is given in terms 

of an intermediate variable . 
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Example (10) 

If  
2

2

x
y

x





, find 

dy

dx
.  

Solution 

Let 
1

1

x
u y u

x


  


. 

Then,  

 
2

1 4
,

2 2

dy du

du dxu x
 


 

 
2

1 4

1 1
2

1

dy dy du

dx du dx x x

x

  
 



 

Example (11) 

If   
5

3 3y x  , find 
dy

dx
.  

Solution 

Let 
3 53u x y u    . 

Then,  

4 25 , 3
dy du

u x
du dx

   

   
4 4

3 2 2 35 3 3 15 3
dy dy du

x x x x
dx du dx

       

Derivatives of Trigonometric Functions 

By using the basic trigonometric limits and applying the definition of the de-

rivative, we can compute the derivatives of all basic trigonometric functions. 

The Derivatives of  sinx  and cosx  (From the First Principle) 

To find the derivative of  ( ) sinf x x  , using the definition of the deriva-

tive. We have, 

0

( ) ( )
( ) lim

x

f x x f x
f x

x 

  
 


 

provided the limit on the RHS exists. 
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 
 

 

 
 

   

0

0

0

0 0 0

sin sin
sin lim

sin cos cos sin sin
lim

sin( ) sin cos cos sin

sin cos 1 sin cos
sin lim

sin cos 1 cos 1sin
lim cos lim lim 0

0 cos

x

x

x

x x x

x x xd
x

dx x

x x x x x

x

x y x y x y

x x x xd
x

dx x

x x xx
x

x x x

x

 

 

 

     

  




   




  

   




    
   

   

  cosx
  

Similarly we can  find the derivative of  ( ) cosf x x  , using the defini-

tion of the derivative. We have, 

0

( ) ( )
( ) lim

x

f x x f x
f x

x 

  
 


 

provided the limit on the RHS exists. 

 
 

 

 
 

   

0

0

0

0 0 0

cos cos
cos lim cos

cos cos sin sin cos
lim

cos( ) cos cos sin sin

cos cos 1 sin sin
cos lim

cos cos 1 cos 1sin
lim sin lim lim 0

0 s

x

x

x

x x x

x x xd
x

dx x

x x x x x

x

x y x y x y

x x x xd
x

dx x

x x xx
x

x x x

 

 

 

     

  




   




  

   




    
   

   

  in sin .x x 
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Theorem  

 If  ( )f x  is a differentiable function of x , 

   

 

   

 

sin ( ) cos ( ) ( ) [bychain rule]

( ) cos ( )

cos ( ) sin ( ) ( ) [bychain rule]

( ) sin ( )

d d
f x f x f x

dx dx

f x f x

d d
f x f x f x

dx dx

f x f x

   

   

    

    

 

The Derivative of  tanx   

     
2

2 2
2

2 2

cos cos sin sinsin
tan

cos cos

cos sin 1
sec

cos cos

x x x xd d x
x

dx dx x x

x x
x

x x

  
  

 


  

  

The Derivative of  cot x   

     
2

2 2
2

2 2

sin sin cos coscos
cot

sin sin

cos sin 1
cosec

sin sin

x x x xd d x
x

dx dx x x

x x
x

x x

  
  

 


     

 

The Derivative of  secx   

   
2

2

0. cos sin .11
sec

cos cos

sin 1 sin
sec tan

cos cos cos

x xd d
x

dx dx x x

x x
x x

x x x

  
  

 

  

  

The Derivative of  cosecx   

   
2

2

0. sin cos .11
cosec

sin sin

cos 1 cos
cosec cot

sin sin sin

x xd d
x

dx dx x x

x x
x x

x x x

 
  

 

     
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Theorem  

 If  ( )f x  is a differentiable function of x , 

   

 

   

 

     

 

2

2

2

2

tan ( ) sec ( ) ( ) [bychain rule]

( ) sec ( )

cot ( ) cosec ( ) ( ) [bychain rule]

( ) cosec ( )

sec ( ) sec ( ) tan ( ) ( ) [bychain rule]

( ) sec ( ) tan (

d d
f x f x f x

dx dx

f x f x

d d
f x f x f x

dx dx

f x f x

d d
f x f x f x f x

dx dx

f x f x f

   

    

    

     

    

   

     

   

)

cosec ( ) cosec ( ) cot ( ) ( ) [bychain rule]

( ) cosec ( ) cot ( )

x

d d
f x f x f x f x

dx dx

f x f x f x

  

     

    
 

Example (12)  
Differentiate 

 3 25 siny x x x  . 

Solution 

   

   

3 2 3 2

3 2 2

5 . sin sin . 5

5 .cos sin . 3 10

dy d d
x x x x x x

dx dx dx

x x x x x x

   

   

 

Example (13) 

If 
1 sin

1 sin

x
y

x





 , find 

dy

dx
  

Solution 

Let 
1 sin

,
1 sin

x
u

x





 then  y u  and  

.
dy dy du

dx du dx
  
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     

 

 

 

 

2

2

2

2

1
,

2

cos 1 sin cos 1 sin

1 sin

2cos

1 sin

1 2cos

2 1 sin

1 sin cos

1 sin 1 sin

dy

du u

x x x xdu

dx x

x

x

dy x

dx u x

x x

x x



   









 
   

  

 
   

   
 

 

Example (14) 

If 
tan sec

tan sec

x x
y

x x





 ,  find 

dy

dx
. 

Solution: 

  

 

  

 

 

 

 

2

2

2

2

2 3

2

sec sec tan tan sec

tan sec

sec sec tan tan sec

tan sec

2sec tan 2sec

tan sec

2sec tan sec

tan sec

x x x x xdy

dx x x

x x x x x

x x

x x x

x x

x x x

x x

 




 













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Derivative of Exponential Function 

To find the derivative of the exponential function ( ) xy f x a  , we use 

the principal  definition  

 

0

0 0

0 0

( ) ( )
( ) lim

lim lim

1 1
lim lim

ln

x

x x x x x x

x x

x x x
x

x x

x

dy f x x f x
f x

dx x

a a a a a

x x

a a a
a

x x

a a

 

 

   

 

   

  
 



 
 

 

 
 

 



 

So, we have 

lnx xd
a a a

dx
  

Also, we have 

lnx x xd
e e e e

dx
   

Derivatives of Logarithmic Function 

To find the derivative of the natural logarithmic function ( ) lny f x x  , 

we use the principal  definition  

 

0

0 0

1/

0 0

1/ 1/
/ /

0 0

( ) ( )
( ) lim

ln 1
ln ln

lim lim

1
lim ln 1 lim ln 1

ln lim 1 ln lim 1

ln

x

x x

x

x x

x x
x x x x

x x

dy f x x f x
f x

dx x

x

x x x x

x x

x x

x x x

x x

x x

e

 

   



   

 

   

  
 



 
     

 
 

    
      

    

       
         

         

 1/ 1x

x

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So, we have 

1
ln

d
x

dx x
  

Also, we have 

ln
log

ln

1 1 1
ln .

ln ln

a

d d x
x

dx dx a

d
x

a dx a x

 
  

 

 

 

Example (15) 

 

 

 

 

3 2

2

5 4

sin cos cos sin

7 5 3 7

1
tan ln ln sec

sec 5 sec tan

x x

x x

d
x x x x

dx

d
x x x

dx

d
a x x a a x

dx x

d
x e x x e x x

dx

  

   

    

    
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Exercise  

Find the derivative of                                      Answer 

the following functions                               

with respect tox   

 

 

 

 

 

 

2

2

2

2

2

2 2

2

10

sin cos

sin sin

ln

cos sin ln coscos

ln ln

ln cos sin ln

cos cos

4

1 1

1 (1 ) 1

ln

1 ln10

log ln

xx

x x

n n

x x

x x x x

e x xe

x x

a a n
a

x x x

x x x x xx x

x x

x x x x x

x x x

e e

e e e e

x

x x x

a x a

a x a x

x x x



 



 
 

 

 






 



  

 
 

  



 

 

Example (16)  

Differentiate 

53 logxy x   
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Solution 

 

5 5

5

3 log log 3

1 1
3 log 3 ln3

ln5

x x

x x

dy d d
x x

dx dx dx

x
x

 

 
  

   
Example (17)  
Differentiate with respect to x , the function  

logxy a  

Solution 

We have,  

ln
log

ln
x

a
y a

x
   

 

 

2

2

1 1/
ln ln

ln ln

ln

ln

dy d x
a a

dx dx x x

a

x x

  
   

  




 

 

Exercise Answer   

 

     

 

2

1  Differentiate ln 1 ln ‏

2  If 2 3 , find  at 2 36 1 2ln3

3  If 6 tan , find  at 0  0

x

x x x

dy
y x x x

dx

dy
y x x x

dx



   

 

 

 

Theorem  

If  ( )f x  is a differentiable function of x , 

( ) ( )

( )

ln ( ) [bychain rule]

ln ( )

f x f x

f x

d d
a a a f x

dx dx

a a f x

     

  
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( ) ( )

( )

( ) [bychain rule]

( )

f x f x

f x

d d
e e f x

dx dx

f x a

    

 

 

 

 

1 1
log ( ) ( ) [bychain rule]

ln ( )

1 ( )

ln ( )

1
ln ( ) ( ) [bychain rule]

( )

( )

( )

a

d d
f x f x

dx a f x dx

f x

a f x

d d
f x f x

dx f x dx

f x

f x

     


 

    




 

 

Example (18) 

If   ln ln siny x  find
dy

dx
 . 

Solution 

Let  sin , ln sint x u x  . Then,   lny u   and   lnu t .  

So, we have    

. .
dy dy du dt

dx du dt dx
  

1 1
, , cos

dy du dt
x

du u dt t dx
     

 

 

1 1 1 1
. .cos . .cos

ln sin sin

cot

ln sin

dy
x x

dx u t x x

x

x

 



  

Example (19) 

If secy x  ; find 
dy

dx
  

Solution: 

Let    , sect x u x   . Then , secy u u t    
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1 1
. . .sec tan .

2 2

1 1
.sec tan .

22 sec

sec tan

4 sec

dy dy du dt
t t

dx du dt dx u x

x x
xx

x x

x x

 





  

 

Example (20)  

If 
1 sin

ln
1 sin

mx
y

mx

 
  

 
; find

dy

dx
. 

Solution 

Let  
1 sin

1 sin

mx
t

mx





  

1 sin

1 sin

mx
u

mx





. Then ln ,y u u t    

   

 

 

2

2

2 2

. .

cos 1 sin cos 1 sin1 1
. .
2 1 sin

1 sin 1 1 sin 2 cos
. .

1 sin 2 1 sin 1 sin

cos cos
sec

1 sin cos cos

dy dy du dt

dx du dt dx

m mx mx m mx mx

u t mx

mx mx m mx

mx mx mx

m mx m mx m
m mx

mx mx mx



  




 


  

   
     

Simpler method for other similar problems: 

When computing derivatives by the chain rule, we do not actually write the 

function  ,t u  and so on, but bear them in mind, and keep on obtaining the 

derivatives of the component functions, stepwise, as shown in the following 

solved examples. 

Example (21)  

If  2ln siny x  find  
dy

dx
. 
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Solution 

 

 

2

2

2

2 2

2

2 2

2

ln sin

1
. sin

sin

1
.cos .

sin

1
.cos .2 2 cot

sin

dy d
x

dx dx

d
x

x dx

d
x x

x dx

x x x x
x

 
 





 

 

 

Note  

Observe that when we differentiate a function by using the chain rule, we 

differentiate from the outside inward. Thus, to differentiate  sin 3 5x   , 

we first differentiate the outer function sinx  (at3 5x   ) and then differen-

tiate the inner function3 5 atx x . Similarly, to differentiate
7cosx , we 

first differentiate the outer function cosx  (at
7x ) and then 

differentiate the inner function
7x  , at  x . The chain rule can be applied to 

even longer composites. The procedure is always the same: 

Differentiate from outside inward and multiply the resulting derivatives 

(evaluated at the appropriate numbers). 

For example, 

  

      

5

5 5 4 2

sin cos tan

cos cos tan sin tan 5tan sec

d
x

dx

x x x x

 
 

    
  

  

Example (22) 

 If   ln ln lny x  find
dy

dx
. 

 

 

 

 

 

 

 



852 
 

Solution  
We have  

  

 
  

 

 

   

ln ln ln

1
ln ln

ln ln

1 1
. . ln

ln ln ln

1 1 1
. .

ln ln ln

1

ln ln ln

dy d
x

dx dx

d
x

x dx

d
x

x x dx

x x x

x x x

   








  

 

 

Example (23) 

 If   3ln ln lny x  find
dy

dx
. 

Solution  
We have  

  

 
  

3

3

3

ln ln ln

1
ln ln

ln ln

dy d
x

dx dx

d
x

dxx

 
 


 

 
3

33

1 1
. . ln
lnln ln

d
x

x dxx
  

 

 

3

3 3

2

3 33

1 1 1
. .

ln ln ln

1 1 1
. . .3
lnln ln

d
x

x x x dx

x
x xx




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   3 3

3

ln ln lnx x x


 
 

 

 

Example (24) 

If 
3xy e  ,   find

dy

dx
 

Solution  
We have, 

 

3 3

3 3

3

2 23 3

x x

x x

dy d d
e e x

dx dx dx

e x x e

 

 

  

 

Example (25)  

If  cosy x ,  find 
dy

dx
. 

 

Solution  
We have, 

 

 

 

cos

1
. cos

2 cos

1
. sin .

2 cos

1 1
. sin .

22 cos

sin

4 cos

dy d
x

dx dx

d
x

dxx

d
x x

dxx

x
xx

x

x x





 

 

 

 

Example (26) 

If  10sin logy x  ; find
dy

dx
. 
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We have,  

  

   

 

 

10

10 10

10

10

sin log

cos log log

1
cos log

ln10

cos log

ln10

dy d
x

dx dx

d
x x

dx

x
x

x

x





 
  

 



 

 

Example (27) 

 If
 

 ln sin cosy x x  ; find
dy

dx
 . 

Solution 

We have 

  

 

 

ln sin cos

1
sin cos

sin cos

1
cos sin

sin cos

cos sin

sin cos

dy d
x x

dx dx

d
x x

x x dx

x x
x x

x x

x x

 

 


 







 

Example (28) 

 If
  

 2 cos 3 2xy x   ; find
dy

dx
. 

Solution  
We have 

 2 cos 3 2xdy d
x

dx dx
     
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   

       

       

   

2 cos 3 2 cos 3 2 2

2 sin 3 2 3 2 cos 3 2 2 ln 2

2 sin 3 2 3 cos 3 2 2 ln 2

2 ln 2cos 3 2 3sin 3 2

x x

x x

x x

x

d d
x x

dx dx

d
x x x

dx

x x

x x

         

           

          

     

 

Example (29) 

 If  
1

ln
y

x x
  ; find 

dy

dx
. 

Solution 

We have 

   

 

 

   

2

2 2

1

ln

(0) ln (1) ln

ln

1
ln (1)

1 ln

ln ln

dy d

dx dx x x

d
x x x x

dx

x x

x x
xx

x x x x

 
  

 





 
   

   

 

Summary of Differentiation Rules 

Derivative of a sum (difference) of functions) 

 1 2 1 2( ) ( ) ( ) ( )
d d d

f x f x f x f x
dx dx dx

    

Derivative of a constant multiple of a function  

 ( ) ( )
d d

k f x k f x
dx dx

   

Derivative of a product of functions 

 1 2 1 2 2 1( ) ( ) ( ) ( ) ( ) ( )
d d d

f x f x f x f x f x f x
dx dx dx

    

Derivative of ratio of functions 
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 

2 1 1 2
1

2

2 2

( ) ( ) ( ) ( )
( )

( ) ( )

d d
f x f x f x f x

f xd dx dx

dx f x f x


 

 
 

  

Derivative of composite functions (the chain rule) 

     ( ) ( ) ( )
d d d

f g x f g g x
dx dg dx

     

Summary of basic functions derivatives . 

dy
y

dx
  

     

     

    

    

    

      

      

1

2

2

( ) , ( ) ( )

( )
( )

2 ( )

sin ( ) cos ( ) ( )

cos ( ) sin ( ) ( )

tan ( ) sec ( ) ( )

cot ( ) cosec ( ) ( )

sec ( ) sec ( ) tan ( ) ( )

cosec ( ) cosec ( ) cot ( ) ( )

f x f x f x

f x
f x

f x

f x f x f x

f x f x f x

f x f x f x

f x f x f x

f x f x f x f x

f x f x f x f x

 
 










 







 

dy
y

dx
 

  

 

 

 

( ) ( )

( ) ( )

( ) ln

( )

( )
ln ( )

( )

1 ( )
log ( )

ln ( )

f x f x

f x f x

a

a a f x a

e e f x

f x
f x

f x

f x
f x

a f x

  

  




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Exercise : Differentiate the following functions w.r.t. x : 

 

     

 

 

4

3

2

7 7

(1) ln ln sin (2) ln ln ln (3) sin

sin
(4) cos (5) (6)

1 cos
(7) 2 (8) log log (9) ln

1 cos3

xe

x

x e

y x y x y x

x
y x e y y e

x

x
y y x y

x

    

  


  


 

Implicit Functions and Their Differentiation 

First, let us distinguish between explicit and implicit functions. Functions of 

the form, ( )y f x  in which y  (alone) is directly expressed in terms of 

the function(s) of  x , are called explicit functions. 

Example (30) 

2 3 2y x x    ,  sin 2 xy x e   , 
2

3

1

x
y

x





  

2cos ln(1 )y x x    and so on. 

Not all functions, however, can be defined by equations of this type. For ex-

ample, we cannot solve the following equations for y  (alone) in terms of 

the functions of x . 

Examples (31) 
3 3 2x y xy  ,   

5 2 23 2 2 0y y x    ,   
2 2 36x y 

sin sin( )y x a y  ,  
3 37y y x  and so on. 

Such relations connecting  x  and y are called implicit relations. An implic-

it relation (in x  and y ) may represent jointly two or more functions  x . 

As an example, the relation  
2 2 36x y   jointly represents two functions: 

236y x    and  
236y x   . 

 

Remark  

Every explicit function ( )y f x  can also be expressed as an implicit 

function. For example, we may write the above equation in the form 

( ) 0y f x   and call it an implicit function of  x . Thus, the term explicit 
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function and implicit function do not characterize the nature of a function 

but merely the way a function is defined. 

The Differentiation of implicit  Functions 

The technique of implicit differentiation is based on the chain rule. 

For example, consider the equation 
3 37y y x   

Differentiating both the sides with respect to x  , treating y  as a function of

x  , we get (via the rule for differentiating a composite function) 

2 23 7 3 (*)
dy dy

y x
dx dx

   

Now solving (*) for 
dy

dx
, we get 

 
2

2 2

2

3
3 7 3

3 7

dy dy x
y x

dx dx y
   


 

Note that, the above expression for 
dy

dx
 involves both  x and y . If it is re-

quired to find the value of the derivative of an implicit function for a given 

value ofx  , then we have to first find the corresponding value of y  , using 

the given relation . This will help in computing the value of 
dy

dx
 at those 

points. 

Example (32) 

Find 
dy

dx
 , if  

5 2 23 2 4y y x     . 

Solution 

Differentiating both sides of the given equation “with respect to x ” (using 

the chain rule), we obtain 

 

45 6 4 0
dy dy

y y x
dx dx

    

We now solve for 
dy

dx
, obtaining 

 4

4

4
5 6 4

5 6

dy dy x
y y x

dx dx y y
   


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Derivatives of the Inverse Trigonometric  Functions 

I. Derivative of the Inverse Sine  Function 

Let 
1siny x , which is equivalent to  

sin and ,
2 2

x y y
  

   
 

 

Differentiating both the sides of this equation with respect to x , we 

obtain 

 
1

1 cos
cos

dy dy
y

dx dx y
    

If ,
2 2

y
  

  
 

, cos y is non-negative. 

Here, we have to write the right-hand side in terms of  x .  

Since,  sin y x  , we have 

2 2cos 1 sin 1y y x       

Of these two values for cos y , we should take  
2cos 1y x  , 

since ,
2 2

y
  

  
 

.  

So, we have  

1

2

1

2

1 1
sin

cos 1

1
sin

1

dy d
x

dx dx y x

d
x

dx x





    


   


 

 

Theorem (A): If  ( )f x  is a differentiable function of x , 

 
 

 

1

2

2

1
sin ( ) ( ) [bychain rule]

1 ( )

( )

1 ( )

d d
f x f x

dx dxf x

f x

f x

    






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Example (33) 

  Find 
dy

dx
 , if 

1 2siny x   

Solution 

1 2

4

2
sin

1

dy d x
x

dx dx x

 


  

II. Derivative of the Inverse Cosine  Function 

Let 
1cosy x , which is equivalent to  

 cos and 0,x y y    

Differentiating both the sides of this equation with respect to x , we 

obtain 

 
1

1 sin
sin

dy dy
y

dx dx y
      

If  0,y  , sin y is non-negative. 

Here, we have to write the right-hand side in terms of  x .  

Since,  cos y x  , we have 

2 2sin 1 cos 1y y x       

Of these two values for sin y , we should take  
2sin 1y x  , 

since  0,y  .  

So, we have  

1

2

1

2

1 1
cos

sin 1

1
cos

1

dy d
x

dx dx y x

d
x

dx x





     


    


 

 

Theorem (B): If  ( )f x  is a differentiable function of x , 

 
 

 

1

2

2

1
cos ( ) ( ) [bychain rule]

1 ( )

( )

1 ( )

d d
f x f x

dx dxf x

f x

f x

     



 


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Example (34) 

 Find 
dy

dx
 , if 

1 2cos xy e   

Solution 
2

1 2

4

2
cos

1

x
x

x

dy d e
e

dx dx e

  


  

III. Derivative of the Inverse Tangent  Function 

Let 
1tany x , which is equivalent to  

tan and ,
2 2

x y y
  

   
 

 

Differentiating both the sides of this equation with respect to x , we 

obtain 

2

2

1
1 sec

sec

dy dy
y

dx dx y
      

Here, we have to write the right-hand side in terms of  x .  

Since,  tan ,x y  , we have 

2 2 2sec 1 tan 1y y x     

So, we have  

1

2 2 2

1

2

1 1 1
tan

sec 1 tan 1

1
tan

1

dy d
x

dx dx y y x

d
x

dx x





       

    

 

 

Theorem (C): If  ( )f x  is a differentiable function of x , 

 
 

 

1

2

2

1
tan ( ) ( ) [bychain rule]

1 ( )

( )

1 ( )

d d
f x f x

dx dxf x

f x

f x

    







 

Example (35)  

Find 
dy

dx
 , if 

1 1
tan

1
y

x



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Solution 

 

 

2

1

2 2

1

11 1
tan

1 1 11
1

1

xdy d

dx dx x x

x




 

    
    

  
 

  

IV. The Derivative of Inverse Cotangent function 

From the definition of inverse cotangent function, we have 

1 1cot tan
2

y x x
      

Differentiating both sides with respect tox  , we get 

 

1 1

2 2

cot tan
2

1 1
0

1 1

dy d d d
x x

dx dx dx dx

x x

  
   

 

   
 

 1 

Theorem (D): If ( )f x  is a differentiable function of  x  , 

 
 

 

1

2

2

1
cot ( ) ( )

1 ( )

( )

1 ( )

d d
f x f x

dx dxf x

f x

f x

   



 



 

V. Derivative of the Inverse Secant  Function 

Let 
1secy x , which is equivalent to  

 sec and 0,
2

x y y



 

    
 

 

Differentiating both the sides of this equation with respect to x , we 

obtain 

 
1

1 sec tan
sec tan

dy dy
y y

dx dx y y
    

If  0,
2

y



 

   
 

, sec tany y is non-negative. 

Here, we have to write the right-hand side in terms of  x .  
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Since,  secx y , we have 

2 2sec tan sec sec 1 1y y y y x x     

So, we have  

1

2

2

1

2

1 1
sec

sec tan sec sec 1

1

1

1
sec

1

dy d
x

dx dx y y y y

x x

d
x

dx x x





    





   


 

Theorem (E): If ( )f x  is a differentiable function of  x  , 

 
 

 

1

2

2

1
sec ( ) ( )

( ) ( ) 1

( )

( ) ( ) 1

d d
f x f x

dx dxf x f x

f x

f x f x

  








 

VI. The Derivative of Inverse Cosecant function 

From the definition of inverse cosecant function, we have 

1 1cosec sec
2

y x x
      

Differentiating both sides with respect tox  , we get 

 

1 1

2 2

cosec sec
2

1 1
0

1 1

dy d d d
x x

dx dx dx dx

x x x x

  
   

 

   
 

 1 

Theorem (D): If ( )f x  is a differentiable function of  x  , 
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 
 

 

1

2

2

1
cosec ( ) ( )

( ) ( ) 1

( )

( ) ( ) 1

d d
f x f x

dx dxf x f x

f x

f x f x

   




 



 

Example (36) 

If 
1 1

tan
1

x
y

x

  
  

 
 ,  find 

dy

dx
  

Solution  

   

 

2

2 2

2

1 1

11
1

1

1 1 ( 1) 11

11
1

1

1

1

dy d x

dx dx xx

x

x x

xx

x

x

 
    

  
 

     
  

      
 




 

 

 

Example (37) 

If 

2
1

2

1
cos

1

x

x

e
y

e

  
  

 
; find 

dy

dx
  

Solution  
We have, 

2

22
2

2

1 1

1
1

1
1

x

x
x

x

dy d e

dx dx e
e

e

 
    

  
   
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     

 

2 2 2 2

22 22

2

2

2 1 2 11

11
1

1

2

1

x x x x

xx

x

x

x

e e e e

ee

e

e

e

    
   
       




 

Example (38) 

Differentiate 

2
1 1 1

tan
x

y
x


  

  
 
 

 with respect to x . 

Solution  
We have, 

    

 

2

2
2

2

2

2 2
2

2

1 1 1

1 1
1

1 1 1
1 1

1 1
1

1

2 1

dy d x

dx dx x
x

x

x
x x

x

x
x

x

x

  
  

     
  
 
 

  
    

  
       
    

 




 

Example (39) 
Differentiate  

  1 2sin 1 1y x x x x     

Solution 

 
2

2
2

1
1 1

1 1 1

dy d
x x x x

dx dx
x x x x

    
 

   
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 

       

 

2
2

2

2

2

2 2
2

1

1 1 1

1 1
1 (1) 1

2 1 21

1 2 3 3 1

2 1 2 1
1 1 1

x x x x

x
x x x x

x xx

x x

x x x
x x x x



   

      
          

      

  
  

     

  

Example (40) 

If 
1 1 4

sec
1 4

x

x
y   
  

 
 , find 

dy

dx
  

Solution  

     

 

2

2

2

1

1 1 4

1 4
1 4 1 4

1
1 4 1 4

1

1 4 1 4
1

1 4 1 4

4 ln 4 1 4 4 ln 4 1 4

1 4

2 ln 2

1 4

x

x
x x

x x

x x

x x

x x x x

x

x

x

dy d

dx dx



 
  

     
   

    



    
   

    

   





  
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Derivatives of Hyperbolic Functions 

The formulas for the derivatives of the hyperbolic sine and hyperbolic cosine 

functions are obtained by considering their definitions, and differentiating 

the expressions involving exponential functions. Thus, 

 

 

sinh cosh
2 2

cosh sinh
2 2

x x x x

x x x x

d d e e e e
x x

dx dx

d d e e e e
x x

dx dx

 

 

    
     

   

    
     

   

 

From these formulas and the chain rule we have the following theorem. 

Theorem (A): If  ( )f x  is a differentiable function of  x , 

   

   

sinh ( ) cosh ( ) ( )

cosh ( ) sinh ( ) ( )

d
f x f x f x

dx

d
f x f x f x

dx

      

      

 

The derivative of  tanhx  may be found from the exponential definition or 

we may use the above result(s) (i.e., the derivatives of sinhx  andcoshx  ). 

Since 

sinh
tanh

cosh

x
x

x
  

Then,  

 
2 2

2

2 2

cosh sinh 1
tanh sech

cosh cosh

d x x
x x

dx x x


     

The formulas for the derivatives of the remaining three hyperbolic functions 

are 

 

 

 

2coth cosech ,

sech sech tanh ,

cosech cosech coth .

d
x x

dx

d
x x x

dx

d
x x x

dx

 

 

 
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From these formulas and the chain rule, we have the following theorem. 

Theorem (B): If  ( )f x  is a differentiable function of  x , 

 

 

   

   

2

2

tanh ( ) sech ( ) ( )

coth ( ) cosech ( ) ( )

sech ( ) sech ( ) tanh ( ) ( )

cosech ( ) cosech ( )coth ( ) ( )

d
f x f x f x

dx

d
f x f x f x

dx

d
f x f x f x f x

dx

d
f x f x f x f x

dx

   

   

 

 

 

Differentiation of Inverse Hyperbolic Functions 

Inverse hyperbolic functions correspond to inverse circular functions, and 

their derivatives are found by similar methods. 

I. Derivative of 
1sinhy x   

Let 
1sinhy x .  Then   sinhx y  

Differentiating both sides  w.r.t.   x    

 

2 2

1 cosh

1 1 1

cosh 1 sinh 1

dy
y

dx

dy

dx y y x



   
 

  

II. Derivative of 
1coshy x   

Let 
1coshy x .  Then   coshx y  

Differentiating both sides  w.r.t.   x    

 

2 2

1 sinh

1 1 1

sinh cosh 1 1

dy
y

dx

dy

dx y y x



   
 

 

III. Derivative of 
1tanhy x   

Let 
1tanhy x .  Then   tanhx y  

Differentiating both sides  w.r.t.   x    
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2

2 2 2

1 sech

1 1 1

sech 1 tanh 1

dy
y

dx

dy

dx y x x

   

   
 

 

The differential coefficient of the reciprocals of the above can be found by 

the same methods. 

They are, 

1

2

1

2

1

2

1
sech

1

1
cosech

1

1
coth

1

dy
y x

dx x x

dy
y x

dx x x

dy
y x

dx x







  


  


  


  

From these formulas and the chain rule, we can obtain the following results. 

If ( )f x  is a differentiable function of  x   

 
 

 
 

 
 

 
 

 
 

 

1

2

1

2

1

2

1

2

1

2

1

( )
sinh ( )

( ) 1

( )
cosh ( ) , ( ) 1

( ) 1

( )
tanh ( ) , ( ) 1

1 ( )

( )
sech ( )

( ) 1 ( )

( )
cosech ( )

( ) 1 ( )

( )
coth ( )

d f x
f x

dx f x

d f x
f x f x

dx f x

d f x
f x f x

dx f x

d f x
f x

dx f x f x

d f x
f x

dx f x f x

d f x
f x

dx














   




    




    




    




    




      

2
, ( ) 1

( ) 1
f x

f x



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Example (41)  

Find 
dy

dx
 if   1tanh cos2y x  . 

Solution  

We have, 

 

 

 
 

1

2

2

tanh cos2

1
2sin 2

1 cos2

2sin 2 2
2cosec2

sin 2 sin 2

dy d
x

dx dx

x
x

x
x

x x

   

  



    

 

Example (42)  

Find
dy

dx
 , if   1sinh tany x  . 

Solution 

 

 1

2
2

2

sinh tan

1 sec
sec sec

sec1 tan

dy d
x

dx dx

x
x x

xx

   

   
  
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Derivatives  Higher  Orders 

We have studied several methods of finding derivatives of differentiable 

functions. If ( )y f x  is a differentiable function of  x  , then its deriva-

tive is denoted by  

dy

dx
 or ( )f x   or  y   

The notation  ( )f x  suggests that the derivative of  ( )f x  is also a function 

of  x . If the function ( )f x   is in turn differentiable, its derivative is called 

the second derivative (or the derivative of the second order) of the original 

function ( )f x  and is denoted by ( )f x  . This leads us to the concept of 

the derivatives of higher orders. 

 
0

( ) ( )
( ) ( ) lim

x

f x x f x
f x f x

x 

     


 

We write, 

 2

2

( )
or ( ) or

d f xd dy d y
f x y

dx dx dx dx

  
    

   
 

Similarly, we can find the derivative of 

2

2

d y

dx
 provided it exists, and is de-

noted by 

3

3

d y

dx
  [or ( )f x  or y  ], called the third derivative of 

( )y f x  and so on. 
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Notations for Derivatives of  ( )y f x   

Order of  Derivative              Prime Notation ( )                     Leibniz Notation  

 

2

2

3

3

4
iv iv

4

( ) ( )

1st or ( )

2nd or ( )

3rd or ( )

4th or ( )

th or ( )
n

n n

n

dy
y f x

dx

d y
y f x

dx

d y
y f x

dx

d y
y f x

dx

d y
n y f x

dx

 

 

 
 

 

Example (43)  

If 
5 22 3y x x    , then 

 
2

4 3

2

3 4
2

3 4

5 6

5 6

10 2 , 40 2

120 , 240

240, 0, , 0
n

n

dy d y
x x x

dx dx

d y d y
x x

dx dx

d y d y d y

dx dx dx

   

 

  

 

Note that, for a polynomial function ( )f x  of degree 5, 
( ) ( ) 0nf x   for

6n   . More generally, the 
th( 1)n   and all higher derivatives of any pol-

ynomial of degree n  are equal to 0. 

However, there are functions [like sinx  , cosx  , 
xe  , lnx  , and their ex-

tended forms, [that is  sin ax b  ,  cos ax b  , 
axe  ,  ln ax b or 
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more general ones like  sin ( )f x  , 
( )f xe  and  log ( )a f x  ] that can be 

differentiated any number of times and 
( ) ( )nf x is never 0. 

Example (44)  

Let us find the thn  derivatives of the following: 

(i) (ii)

(iii) (iv)sin

n x

x

x e

a x
 

Solution 

I.  Let
ny x   

    

        

     

2 3
1 2 3

2 3
, 1 , 1 2

1 2 2 1

1 2 2 1 !

n n n

n
n n

n

dy d y d y
nx n n x n n n x

dx dx dx

d y
n n n n n n n x

dx

n n n n

  



      

      

   

 

II. Let
xy e   

2 3

2 3
, ,x x x

n
x

n

dy d y d y
e e e

dx dx dx

d y
e

dx

   



 

III. Let
xy a   

     

  

2 3
2 3

2 3
ln , ln , ln

ln

x x x

n
nx

n

dy d y d y
a a a a a a

dx dx dx

d y
a a

dx

   



 

 

 

IV. Let siny x   
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2

2

3

3

cos sin ,
2

cos sin sin 2
2 2 2 2

cos 2 sin 2 sin 3
2 2 2 2

cos ( 1) sin ( 1)
2 2 2

n

n

dy
x x

dx

d y
x x x

dx

d y
x x x

dx

d y
x n x n

dx



   

   

  

 
    

 

      
             

      

      
               

      

   
           

   
sin

2
x n

  
   

 
Exercise 

find the thn  derivatives of the following: 

1
(1)cos (2)

(3)ln

x
x

x

 

Derivatives of Higher Orders: Product of Two Functions (Leibniz For-

mula) 

It helps us to find the thn  derivative of the product of two functions. 

 Let ( ) and ( )f x g x   be functions of  x  and ( ) ( )y f x g x  .  

Then, the  thn  derivative of y is 
( ) ( ) ( 1)

0 1

( 2) ( 3)

2 3

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ).

n n n n n

n n n n

n n

n

y C f x g x C f x g x

C f x g x C f x g x

C f x g x



 

   

    

  

 

Where,  

!

!( )!

n

k

n
C

k n k



 

Note  

When one of the functions in the above theorem is of the form ,mx m  , 

then we should choose it as (the second function) ( )g x  , and the other as 

(the first function) ( )f x  , because ,mx m   shall have only m  deriva-

tives (and not more). 
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Example (45)  

If
2axy e x  , find

( )ny . 

Solution 
2

2

( ) (4) ( )

( ) ( )

( ) ( ) 2

( ) ( ) 2

( ) ( ) 0 ( ) ( )

ax

ax

ax

n n ax n

f x e g x x

f x ae g x x

f x a e g x

f x a e g x g x g x

 

  

  

    

   

 

  ( ) 2 1 22 1n n ax n ax n axy a e x na e x n n a e       

 

Example (46) 

Let us compute the 100th   derivative of the function
2 siny x x . 

Solution 

We have 

       
(100) (99) (98)(100) 2sin 200 sin 100 99 siny x x x x x    

All the subsequent terms are omitted here since they are identically equal to 

zero. Consequently, 

(100) 2

2

sin 100 200 sin 99 9900sin 98
2 2 2

sin 200 cos 9900sin

y x x x x x

x x x x x

       
             

     

  

The Method of Logarithmic Differentiation 

For (complicated) functions such as general exponential functions and other 

expressions involving products, quotients, and powers of functions.) 

Recall that to find the derivative  
 nd x

dx
 , we use the power rule 

  1n nd
x nx

dx

  

Also, we get 

   
1

( ) ( ) ( )
n nd

f x n f x f x
dx


  

using power rule and the chain rule. 
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But, we cannot use the power rule to find  xd
e

dx
 . Thus, 

   1x xd
e x e

dx

   

Recall that,   lnx xd
a a a

dx
 , which is the differentiation formula for the 

exponential function. 

Thus, we get, 

lnx x xd
e e e e

dx
   

and 

( ) ( ) ( ) lnf x f xd
a a f x a

dx
       

using differentiation formula for exponential function and the chain rule. 

Now, we ask the question; what can we write for  xd
x

dx
? 

Of course, it would be sheer nonsense to write   1x xd
x x x

dx

   . 

It is for these types of functions, and more generally for functions of the type 

 
( )

( )
g x

y f x   

where both ( )f x  and ( )g x  are differentiable functions of  x , that we can 

use the technique of logarithmic differentiation for computing their deriva-

tives. This technique is also used to simplify differentiation of many (com-

plicated) functions involving products, quotients, and powers of different 

functions. We list below the right technique for differentiating each of the 

following forms of functions: 

 ( ) Power rule
n

f x   

( ) Differentiation formula for exponential functionsf xa   

 
( )

Logarithmic different a on( i) i t
g x

f x   

Remark  

The technique of logarithmic differentiation is so powerful that it can be 

used for each of these forms. 
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Procedure of Logarithmic Differentiation 

The procedure of logarithmic differentiation involves taking natural loga-

rithm of each side of the given equation. After simplifying (by using proper-

ties of logarithms), we differentiate both sides w.r.t.  x .  

The usefulness of the process is due to the fact that the differentiation of the 

product of functions is reduced to that of a sum; of their quotients to that of a 

difference; and of the general exponential to that of the product of simpler 

functions. 

The following solved examples will illustrate the process of logarithmic dif-

ferentiation. 

First, we start with the differentiation of certain (complicated) function in-

volving products, quotients, and powers of functions. 

Example (47) 

If  
5 sin2 cosxy e x x  , find  

dy

dx
. 

Solution 

Taking the natural logarithm of both sides, we get 

ln 5ln lnsin2 lncosxy e x x    

Differentiating w.r.t.  x , we get 

 

 

 5

1 5 1 sin
2cos2

sin 2 cos

5 2cot 2 tan

5 2cot 2 tan

sin 2 cos 5 2cot 2 tan

x

x

x

dy x
e x

y dx e x x

x x

dy
y x x

dx

e x x x x

    

  

  

  

 

Example (48) 

If 
4 2 3sin tanxy e x x  , find

dy

dx
. 

Solution 

Taking the natural logarithms of both sides, we get 

ln 4ln 2lnsin 3ln tanxy e x x    

Differentiating w.r.t. x , we get 
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2

4 2 3

1 2cos 3sec
4

sin tan

3
4 2cot

sin cos

3
4 2cot

sin cos

3
sin tan 4 2cot

sin cos

x

x

x

dy e x x

y dx e x x

x
x x

dy
y x

dx x x

e x x x
x x

  

  

 
   

 

 
   

 

 

Example (49)  

If 
  

  

1 2

1 2

x x
y

x x

 


 
 , find 

dy

dx
  

Solution 

Taking natural logarithm of both sides, we get 

       
1

ln ln 1 ln 2 ln 1 ln 2
2

y x x x x           

Differentiating w.r.t.x , we get 

2 2

1 1 1 1 1 1

2 1 2 1 2

1 2 4

2 1 4

dy

y dx x x x x

x x

 
        

 
    
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  

  

     

2 2

2 2

2

2 2

2

2 2

2 4

2 1 4

1 2

1 4

6 3

1 4

1 2 6 3

1 2 1 4

dy y

dx x x

y
x x

x
y

x x

x x x

x x x x

 
    

 
    

 
 

   

   
 

     

 

Now, we consider functions of the type   
( )

( )
g x

f x  .  

Example (50) 

If 
tan5 xy   , find 

dy

dx
. 

Solution 

Taking natural logarithm of each side, we get 

ln tan ln5y x  

Differentiating w.r.t.  x  , we get 

2

2

tan 2

1
sec ln5

sec ln5

5 sec ln5x

dy
x

y dx

dy
y x

dx

x



   

   

 

Example (51)  

If  
xx  , find

dy

dx
. 

Solution 

Taking the natural logarithm of each side, we obtain 

ln lny x x   

Differentiating both sides w.r.t. x , we have 
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   

1 1
1 ln 1 ln

1 ln 1 lnx

dy
x x x

y dx x

dy
y x x x

dx

     

   

 

Example (52)  

If  
xxy x   , find 

dy

dx
. 

Solution 

Taking the natural logarithm of each side, we get 

ln lnxy x x  

Differentiating both sides w.r.t.  x  , we get 

     

    

    

1

1

1 1
ln 1 ln

ln 1 ln

ln 1 ln
x

x x

x x

x x x

dy
x x x x

y dx x

dy
y x x x x

dx

x x x x x





 
      

 

    

    

 

Example (53)  

If
  

 
x

xy x  , then find
dy

dx
. 

Solution 

We have   
2x

x xy x x    

Taking natural logarithm of both sides, we get 
2ln lny x x   

Differentiating w.r.t.  x  , we get 

 

2

2 2

2

2

1 1
ln

ln

lnx

dy
x x x

y dx x

dy
y x x x

dx

x x x x

 
  

 

   

   
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Example (54)   

If  ln
x

y x  find 
dy

dx
. 

Solution 

Taking natural logarithm of both the sides, we get 

 ln ln lny x x  

Differentiating both sides w.r.t.  ,x  we get 

 

 

   

1 1 1
1 ln ln

ln

1
ln ln

ln

1
ln ln ln

ln

x

dy
x x

y dx x x

dy
y x

dx x

x x
x

 
    

 

 
  

 

 
  

 

 

Example (55) 

If  
sin

cos
x

y x  , find 
dy

dx
 . 

Solution 

Taking natural logarithm of both sides, we get 

ln sin lncosy x x   

Differentiating both sides w.r.t.   x , we get 

 

 

 

   
2

sin

1 sin
sin cos ln cos

cos

sin
sin cos ln cos

cos

sin
cos cos ln cos

cos

x

dy x
x x x

y dx x

dy x
y x x x

dx x

x
x x x

x

 
   

 

  
    

  

 
  

 

 

Example (56) 

If  
ln

tan
x

y x  , find 
dy

dx
. 

Solution 

Taking natural logarithm of each side, we get 
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ln ln tany x x   

Differentiating both sides w.r.t.  x , we get 

 

 

 
 

2

ln

1 sec 1
ln ln tan

tan

ln tanln

sin cos

ln tanln
tan

sin cos

x

dy x
x x

y dx x x

xdy x
y

dx x x x

xx
x

x x x

  

 
  

 

 
  

 

 

Example (57) 

If  
tan

sin
x

y x  , find 
dy

dx
. 

Solution 

Taking the natural logarithm of each side, we get 

 ln tan ln siny x x   

Differentiating both sides w.r.t.  x , we have 

 

2

2

tan 2

1 cos
tan sec lnsin

sin

1 sec lnsin

sin 1 sec lnsin
x

dy x
x x x

y dx x

dy
y x x

dx

x x x

  

    

    

 

Example (58) 

 If  
ln

cos
x

y x , find 
dy

dx
  

Solution 

Taking the natural logarithm of each side, we get 

ln lncosy x x   

Differentiating both sides w.r.t. x , we get 
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 
ln

1 sin 1
ln ln cos

cos

1
ln cos tan ln

1
cos ln cos tan ln

x

dy x
x x

y dx x x

dy
y x x x

dx x

x x x x
x


  

 
   

 

 
   

 

 

Example (59)  

If  1y xx y   , find 
dy

dx
 

Solution 

Taking natural logarithm of both sides, we get 

ln ln 0

ln ln 0

y xx y

y x x y

 

 
 

Differentiating w.r.t. x , we get 

 

 

 

1 1
ln ln 0

ln ln

ln

ln

lnln

ln
ln

dy dy
y x x y

x dx y dx

dy x y
x y

dx y x

y
y

dy x
xdx

x
y

y y x yy x y

x x y xx
x x

y

     

 
    

 



 



  
   

 
 

 

 

Example (60)  
y x bx y a   , 

find 
dy

dx
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Solution  

Putting 
yu x  and  

xv y  , we get 

bu v a   
Differentiating  w.r.t. x  , we have 

 

0 (*)
du dv

dx dx
   

Now, consider  
yu x   

Taking natural logarithm of both sides, we get 

ln lnu y x  

Differentiating both sides w.r.t  x , we get 

1 1
ln

ln

ln (**)y

du dy
y x

u dx x dx

du y dy
u x

dx x dx

y dy
x x

x dx

   

 
   

 

 
   

 

 

Now, consider  
xv y   

Taking natural logarithm of both sides, we get 

ln lnv x y  

Differentiating both sides w.r.t . x , we get 

1 1
ln

ln

ln (***)x

dv dy
x y

v dx y dx

dv x dy
v y

dx y dx

x dy
y y

y dx

  

 
  

 

 
  

 

 

Using (**) and (***) in (*), we get 

ln ln 0y xy dy x dy
x x y y

x dx y dx

  
      

   
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ln lny x y xdy x y
x x y x y y

dx y x

   
       

  
 

 

 

 

/ ln

ln /

y x

y x

x y x y ydy

dx x x y x y


  


 

 




