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PREFACE

I\/I echanics is a branch of the physical sciences that is concerned
with the state of rest or motion of bodies subjected to the action
of forces. Mechanics is divided into two areas of study, namely, statics and
dynamics. Statics is concerned with the equilibrium of a body that is either at rest
or moves with constant velocity. Here we will consider dynamics, which deals
with the accelerated motion of a body. The subject of dynamics will be presented
in two parts: kinematics, which treats only the geometric aspects of the motion,
and kinetics, which is the analysis of the forces causing the motion. To develop
these principles, the dynamics of a particle will be discussed first, followed by
topics in rigid-body dynamics in two and then three dimensions

Historically, the principles of dynamics developed when it was possible to make
an accurate measurement of time. Galileo Galilei (1564-1642) was one of the
first major contributors to this field. His work consisted of experiments using
pendulums and falling bodies. The most significant contributions in dynamics,
however, were made by lIsaac Newton (1642-1727), who noted for his
formulation of the three fundamental laws of motion and the law of universal
gravitational attraction. Shortly after these laws were postulated, important
techniques for their application were developed by Euler, D' Alembert, Lagrange,
and others. There are many problems in engineering whose solutions require
application of the principles of dynamics. Typically, the structural design of any
vehicle, such as an automobile or airplane, requires consideration of the motion
to which it is subjected. This is also true for many mechanical devices, such as
motors, pumps, movable tools, industrial manipulators, and machinery.
Furthermore, predictions of the motions of artificial satellites, projectiles, and
spacecraft are based on the theory of dynamics. With further advances in
technology, there will be an even greater need for knowing how to apply the
principles of this subject.

Any corrections of errors, or hints for improvement will be thankfully received.
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VECTORSWITH APPLICATIONS

he physica quantities or measurable objects of reasoning in

T Applied Mathematics or Mechanics are of two classes. The one

class, caled Vectors, consists of al measurable objects of reasoning which
possess directional properties, such as displacement, velocity, acceleration,
momentum, force, etc. The other class, caled Scalars, comprises measurable
objects of reasoning which possess no directional properties, such as mass,

work, energy, temperature, etc.

4 Rectangular Components of a Vector

A vector A may have one, two, or three rectangular A

components along the X,Y,Z coordinate axes, depending on

how the vector is oriented relative to the axes. In general, *

though, when A is directed within an octant of the X,Y,Z

frame, Figure behind, then by two successive applications of

the paralelogram law, we may resolve the vector into  x
components as A= A" + Ak and then A =Ai+ 4;. Combining these

equations, to eliminate A,A'is represented by the vector sum of its three

rectangular components, A = Ai + A j + Ak

4 Magnitude of a Cartesian Vector It is aways possible to obtain the

magnitude of A provided it is expressed in Cartesian vector form. As shown

A=[Al= 2+ 2 2
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Since the magnitude of a vector is equal to the positive square root of the sum
of the squares of the magnitudes of its components, and A has a magnitude of

4 Coordinate Direction Angles

We will define the direction of A by the coordinate z

direction angles « (alpha), A3 (beta), and -~ (gamma),
measured between the tail of A and the positive X,Y,Z

axes provided they are located at the tail of A, Figure.

Note that regardless of where A is directed, each of

these angles will be between 0° and 180°.

AE A.’l)

cosx = = —
JAai+aza A

A

COSB = =Y
Ja+aziar A

A A

COSY = ——tee——— = =
Ja+a 14 A

A is the magnitude of A. It is obvious that from previous relation, an
important relation among the direction cosines can be formulated as, by
squaring and adding

cos?a+ cos? B+ cos? v =1
Here we can see that if only two of the coordinate angles are known, the third

angle can be found using this equation.

@ The two vectors A4, B is said to be equal if they have the same
magnitude and point in the same direction, while —A (negative

of avector A ) has the same magnitude and opposite direction.

4 Unit vector of a vector. A vector is said to be a unit vector if its magnitude

equals unity, A unit vector may, therefore, be chosen in any direction. In




particular the unit vector along a vector A or in direction of the vector A is

defined by A =4 =
A

Az Ay AZ]— /6
—,—,—~| = cosq,Cos D,CcoS Y
A7AA T

4 Vector Directed Along a Line

Quite often in three-dimensional statics problems,
the direction of a force is specified by two points
through which its line of action passes. Such a
situation is shown in Figure behind, where the

vector A is directed along the cord AB. We can

formulate A as a Cartesian vector by realizing that
it has the same direction and sense as the position

vector r directed from point A to point B on the X

cord. This common direction is specified by the unit vectora = r / . Hence,

(wB — wA)'Z + (yB - '!JA).; + (ZB — ZA)’:”’

=A
V@g — 2,0 + (yy —ya)* + (25 — 24)?

4 Addition of Cartesian Vectors

The addition (or subtraction) of two or more vectors is greatly simplified if the

vectors are expressed in terms of their Cartesian components. For example, let

A,B be two vectors of components A=Ai+Aj+Ak and
B = B,i + B,j + B,k then the addition or subtraction is given by

A+ B=(Aji+Aj+Ak)* (B, + B,j + B,k)
= (A, £ B,)i + (A, £ B))j + (A, £ B,)k

€ Law of Triangle, states that if a body is acted upon by

two vectors represented by two sides of a triangle taken in

order, the resultant vector is represented by the third side

of the triangle. A
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4 Polygon of Vectors

If any number of vectors, acting on a particle be represented,
in magnitude and direction, by the sides of a polygon, taken
in order, the resultant vector is represented by the last side

that will closed the polygon, as shown in red color.

4 Scalar Product

Occasionally in statics one has to find the angle between two lines or the
components of a force parallel and perpendicular to a line. In two dimensions,
these problems can readily be solved by trigonometry since the geometry is
easy to visualize. In three dimensions, however, this is often difficult, and
consequently vector methods should be employed for the solution. The dot
product, which defines a particular method for “multiplying” two vectors, can

be used to solve the above-mentioned problems.

Let A,B be two vectors of components A= A3+ A, j+Ak and
B = B,i + B,j + B,k then the scalar product, notation AsB, is expressed in

equation form AeB = ABcos® Or may be given by the Cartesian vector
formulation
AsB = (A + A j+ Ak)(B,i + B,j + B,k)
=A,B, +AB, +AB,
In which A4, B represent the magnitude of A, B and 6 is the angle between

them. Note that the scalar product is a scalar quantity. It is easy to deduce that

AeA = A%, =0

B
AeB = BeA, (Commutatitve law) /
Ae(B + C) = AsB + A«C,

(Associative law) ; -

(AA)eB = As(AB) = A\(4+B)
The dot product can be applied to determine the angle formed between two

vectors or intersecting lines where 0 = cos (4B / AB)



In particular, notice that if AeB=0 =6 =cos™'0= g so that A will

be perpendicular to B. On the other hand the scalar product gives the work
done by a force.

¢ Cross- product é:

L]
I
-9
=
1--]

Let 4,B be two vectors of components A = A7+ A j + Ak ]

_

A

< i3 > /
and B = B,i+ B, j+ B,k then the cross product A A B or %
- .

A x B is defined by

[Im]

ANB

i
Aa: y z
B, B, B,
Ay

(A,B, — A.B,)i — (A,B, — A.B,)j + (A,B, — A B,k

Or ANB= ABsinf n

In which 7 is a unit vector normal to the plane that contains the vectors 4, B

and can be determined by using the right-hand rule, as shown.

Besides, it is easy to deduce that

HAAA=0, (H)AA (B +C)

=AANB+ANC,
(i) AAB=—(BA4),  (iv) AA)AB=AA

(AB) = N4 A B)

One of important application of cross product is to

evaluate the area of parallelogram in which A,B

represents the sides of the parallelogram which is equal

]
1]
o

|AA B| = ABsin6 3

4 Triple-Dot product

If A=Ai+Aj+ Ak, B=B,i+Bj+BkandC=C,i+C,j+Ck

are three vectors then the triple scalar product is defined by A. BA C
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A, A, A,
A{BAC)=|B, B, B,
c, ¢, C

= A,(B,C, - B,C,)- A (B,C, — B,C,) + A,(B,C, — B,C,)

It is easy to proof that (properties of determinants)

A(B A C) = Co(A A B)
= B(C A A)

In addition, the absolute value of triple scalar product

| A«(B A C)| gives the volume of parallelepiped in which

A,B,C are three vectors at the corner of the |a.(B A C)
parallelepiped. In particular case as A(BAC) =0 then & |
the three vectors lie in a plane. B
/ ;
A

4 Triple-Cross product

Triple-cross product A A (B A C) for any three vectors A, B,C is defined by

AN(BAC)=(AC)B — (4-B)C

Note that ANBAC)=(ANB)AC

If the triple vector product A A (B A C) = 0 then either Aor B or C is zero

singly or in combination, or A is in the plane containing Band C .

4 A-U Theorem

If ABO is a triangle and the point C divides the line AB such that
A:u=CB:CA then AOA + pOB = (A + pn)OC .

Proof.
Let the point C divide the line AB such that A\CA = uCB = uBC'then

ACA = uBC (1) (since CA and BC are in the same direction)




Nowin AOAC OA=0C+CA = AOA=XOC+XCA (2)
againin AOBC OB =0C+CB = pOB = uOC + uCB  (3)

Adding equations (2) and (3), we get

AOA + pOB = (A + p)OC + ACA + pCB
= (A + u)OC + A\CA — uBC (CB= —BC)
= (A +p)OC (ACA = uBC from(1))

@ Cor. If A = u, then we have

0OA+ OB =20C

0}
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Im lllustrative Examples |

O EXAMPLE 1

Determine a unit vector that parallel to resultant of the vectors

A=2 —7j+3kand B=—4i +8j — k
O SOLUTION
The resultant of the two vectors A, B is

R=A+B= (2 —17j+3k)+ (—4i +8j — k)
=—2i4j+2k
Therefore the unit vector R parallel to the resultant R is given by

R:§:—22+3j'+215

=

O EXAMPLE 2

Determine the constant X so that the vector A =2X\i +\j+k be
perpendicular to the vector B = 4i — 3\j + Ak

0 SOLUTION
Since the vectors A, B will be orthogonal if AeB = 0 therefore,

o AeB = (2Xi + Aj + k)e(41 — 3N] + AK)
=8A—3\2+21=0 =XA=0 and )\ =3

O EXAMPLE 3

Find a unit vector normal to the plane that contains the vectors

a=2 —65—3kand b=4i +35 —k
0 SOLUTION

Since a A b is a vector normal to the plane that contains a,b hence,



aAb=|2 —6 —3|=15i —10j + 30k
4 3 -1
Then the unit vector
A T on ~ R R R
a I_):}{Sz 23+6k=1(3i—2j+6k)
|a A b 19 7

n=

O EXAMPLE 4
If ANB=8:;—145+k and A + B = 5i + 35 + 2k. Find the vectors A, B

O SOLUTION

Let the components of the vectorA be A4,,4,,4, and

A+ B=5i+3j+2k then

0
— ANA+B)= ANA+AANB=ANB
. ANA+B)=AAB

= (A0 + A j + A k) A (50 + 3] +2k) = 80 — 147 + &

B s,

ik
. A A|= (24, —3A)) — (24, —5A,)] + (34, —5A )k
3 2

ot

By equating the components

(24, — 3A.)i — (24, —5A,)] + (34, —5A ) = 8i — 145 + k

S 24, — 34, =38, 24, —5A, =14, 34, —54, =1
Solving these three equations we get,

A =2 A =1 A =-2 LA=2+]—2k

Y z
But it is giventhat A + B =5¢ + 35 + 2k S0 B = 3i + 25 + 4k
Note there are an infinite numbers of vectors

A=Ti+45 and B=—2 —j+2k etc. (How?)
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O EXAMPLE 5

Find the vector z that satisfies the equations a Az =b +a, if az=1b
O SOLUTION

Multiply the equation a A = b + a, by vector a using cross-product so

aAN(anz)=aA(b+a) using triple cross-product

b a?
" (asz)a — (asa)z =a A b+ akXa
ba —a’zx =aAb ig::bg_?/\h
a

O EXAMPLE 6

Obtain the vector that satisfies the equation (a A z) + = + ma = 0 where m
is a scalar

0 SOLUTION
Multiply the equation (a A z) + = + ma = 0 by vector a A z using scalar-
product so

(anz)A((aNnz)+z+ma) =0 from associating law

(@aNz)(aNnz)+ze(aAz)+masaNz)=0

0 0
.'.|c_t/\a_v|2=0 = aANz=0

Using this formula and substitute it in equation a Az + x + ma = 0 we get

sLz+ma=0 =z =—ma

O EXAMPLE 7
Solve for vector z the equation kx + a A z = bwhere k is a scalar.

0 SOLUTION

Multiply the equation kz + a A z = b by vector a using scalar-product so

as(kx + a A ) = asb
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k(asz) + asla”z) = a.b = k(asz) = asb .. gz =

|

Once again, multiply the equation kz + a A = b by vector ¢ using cross-

product so

= k(a Az)+ (aez)a —a’z =a Nb

Equation kz+a Az =>b gives aAz=>b—kx and then substituting in

previous equation we have

= k(b — kz) + QI;Q a—ad’z=aAb
= (a® + k*)z = kb + QI;Q]Q—QAQ
1
Or z = —————{k’b + (asb)a — ka A b}
k(a® + k?)

O EXAMPLE 8

For any vectors three A, Band C show that

(i) AN BAC +BAN CANA +CAN ANB =0
(i)(A+B)A(B—A)=24AB

(iii)A. AAB =0

O SOLUTION

(i) By applying the triple cross product principle, we have
AN BAC = AsC B— A-B
BN CANA = BeA C— BeC
CAN AANB = CB A— CeA

& I 1Q

Adding the three equations we obtain

AN BANC +BAN CNA +CAN ANB =0

(ii) (4+§)A(§—A)=4A§—ZA4+§A§—§/\A

=AANB+ANB=2 AAB
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0
(iii) From properties of triple-scalar product A. AA B = B. Z/\ A =0we

have
0

Another technique from the properties of determinants (two equal rows)
A, A, A,
A. AANB =|A, A A|=0
B, B, B,

O EXAMPLE 9

For any four vectors A, B,C and D prove that

De AN BA CAD = BD CAD-A
0O SOLUTION
LHS.=DeyAAN BA CAD ’
———
i
=DeiAAN BeD C — BeC D Triple-cross product

= (BsD){D+(A N C)} — (B+C){D+(A A D)}

— (B-D){D+(A A C)} '

= (B:D){4+(C A D)} = RHS.

L.H.S. means Left hand side, R.H.S. means Right hand side

O EXAMPLE 10
Determine the magnitude and direction of the

resultant force for the forces acting on the hook.
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O SOLUTION

The forces can be in written Cartesian coordinates as
F, = 3004,

F, = 400cos 304 + 400sin 30 j,= 200\/3i + 200

F, = —250 0.8 7 + 250(0.6)7 = —200; + 1503

Therefore the resultant is

F = 100 + 200v/3 i + 3505

O ExXAMPLE 11

ABCDETF is a regular hexagon, prove that AB+AC+AE+ AF = 2AD

0 SOLUTION
According to the triangle law, we have -
.~ AD = AC+CD, and AD = AE+ED
F §
". 2AD = AC+AE+CD + ED
AF  AB
but AB=ED, and AF=CD i

Therefore, AB+AC+AE+AF = 2AD

0O EXAMPLE 12

Let a’,b’,c’ be the middle points of the sides of the triangle abc prove that
Oa’+ Ob’+ Oc’ = Oa+ Ob + Oc

For any arbitrary point b’.

0 SOLUTION

By applying the A-ptheorem in (a’ divides

bc by aratio 1:1, etc.)
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AObc = 20a’ = Ob +0c
AOQac = 20b’ = Oa+ Oc
AOab = 20c’ =0a+ Ob
Adding these three equations we get

2 0a’ + Ob’+0Oc¢’ = 0a+ Ob + Oa+ Oc + Ob +0c
=2 Oa+ Ob+0c

Dividing by 2, we have

-.0a’+ Ob’+ Oc’ = Oa + Ob + Oc

0O EXAMPLE 13

Let S be a median point of a triangle abc , show that for any arbitrary point O
Oa+ Ob + Oc=308

0 SOLUTION

By applying the A-ptheorem in (b divides be by a ratio 1:1)

AQOaS = 0a = OS +8Sa
AObS = Ob = 0S+ Sb

AOcS = Oc = 0S+ Sc

By adding these three equations

Oa +0b +0c =08+ Sc + OS+ Sb + OS +8a

= 30S + Sa + Sb +Sc = 30S + Sa + 2Sa’ = 30S
e

28a’ 0

Since S divides any median of the triangle by a ratio 2:1.
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PROBLEMS

O Determine the components of a vector whose its magnitude is 18 and acts

along the line passing through the point (2,3,— 1) to point (— 2,12,7).

03 Obtain a unit vector of the nonzero vector8: + 75 — 12k.

O Calculate the angle between the two vectorsA = 2i —5j5 + 6k,
B=4i—2j—3k.

3 For any two vectors 4, B, show that| AN §|2 + (AsB)* = A’B*.

O Evaluate the constant A so that the three vectors A = 2i + j — 2k «

B=1i+j+3k « C =14+ \j becoplanar.

O Determine the vector z that satisfy the equation a Az

Il
19
>
1S
QD
5
o

asz =0.

(O Determine the vector z that satisfies the equation (z A a) + (z.b)c = d in
terms of the known vectorsa, b, c,d .

O Prove that (a A b) A c ={(a Ab)n}(n Ac), where nis a unit vector
perpendicular to the plane that contains the vectors a,b .
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3 Solve, for vector z , the equation kz +a A z = b where k is a scalar.

O3 For any three vectors a, b, ¢, deduce that

()(a A b)e{(b A c)A(c Aa)} ={(aAb)ec)

(i) {aA (@A)} Ac=(asc)(bAc)

O ABCD is a quadrilateral, the points P,M are bisected the sides AC,BD
respectively, prove that AB + CD + AD + CB = 4PM.

O The load at A creates a force of 60 N in wire AB. Express this force as a

Cartesian vector acting on A and directed toward B as shown.




MOMENTS AND COUPLES

I n this chapter we will obtain the moment of a force about a point or

about an axis, reduction the forces at a point.

4 The Moment

The moment of a force is the tendency of some forces to
cause rotation. The moment of a force about a point is
defined to be the product of the force and the

perpendicular distance of its line of action from the

point. On the other hand The moment of a force F

about point O, or actually about the moment axis
passing through O and perpendicular to the plane containing O and F, as
shown, can be expressed using the vector cross product, namely,
My=rNF

Here r represents a position vector directed from O to any point on the
line of action of F . Note that

|My|=|r AF|=rFsing =h
So if the force F in Cartesian coordinates is F = F.i + ij' + Fkand the

vector r is given by r = zi + yj + 2k, then

~

~.

My=rANF=|z
F.

xr

@"‘:‘ < o
Nhj N

= (yF, — zF, )i — (zF, — ze)j + (zF, — sz)Igz
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@ Theorem If a number of coplanar forces acting at a point of a rigid body

have a resultant, then the vector sum of the moments of the all forces about any

arbitrary point is equal to the moments of the resultant about the same point.

Proof.

Let the coplanar forces F,,E,,......, E, acting at a

a rigid body have the resultant F .

Let O be an arbitrary point and r, be the
position vector directed from O to any point on

the line of action of F . The sum of the moment

of the forces E, F,,......, F,, about O is

which is equal to the moment of the resultant about O. Any system of forces,

acting in one plane upon a rigid body, can be reduced to either a single force or

a single couple.

@ Three forces represented in magnitude, direction and position by the sides of

a triangle taken the same way round are equivalent to a couple.

4 Moment of a force about an axis

Thus if F be a force and L be a line which does not
intersect F, OA = h the shortest distance between F
and L, and 6 the angle between F and a line through
A parallel to L, then Fsin@is the resolved part of F 3
at right angles to L and Fhsin® is the moment of F

about L notation by M. If F intersects the line L

S Lsind
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or is parallel to L , then the moment of F about L is zero, because in the one
case h = 0and in the othersin® = 0.
Or onthe other hand M, = (M,sn)n where 7 is a unit vector of axis L
and M, represents the moment of the force F about a point O (say) lies on
the axis L, here

m
| M| = ne(r A F) = y
F

08 o
<
NG R

= UyF, — zF,) — m(zF, — zF,) + n(zF, — yF,)

€ When two forces act at a point the algebraical sum
of their moments about any line is equal to the

moment of their resultant about this line.

4 In brief to calculate the moment of a force about an
axis, one does the following three steps

Q) Obtain a unit vector of the axis (say 7 )

(i) Determine the moment M of the force

F about a point lies on the axis, say O .

(ilf) ~ The moment of a force about an axis is Asisof projections

M, = (M,*n)n

@ Particular cases

The moment of a force F about X axis is Myx = (M i)
The moment of a force F about Y axisis Moy = (M,e7)7

The moment of a force F about Z axis is My = (M, ek)k
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4 Couples

Couples play an important part in the general theory of systems of forces and
we shall now establish some of their principal properties. Since a couple
consists of two equal and opposite parallel forces (unlike forces), the
algebraical sum of the resolved parts of the forces in every direction is zero, so
that there is no tendency for the couple to produce in any direction a
displacement of translation of the body upon which it acts; and the couple
cannot be replaced by a single force. The effect of a couple must therefore be
measured in some other way, and, since it has no tendency to produce
translation, we next consider what tendency it has to produce rotation.

Let the couple consist of two forces of magnitude 7. It is of course assumed
that they are both acting upon the same rigid body. Let us take the algebraical
sum of the moments of the forces about any point O in their plane as the
measure of their tendency to turn the body upon which they act about the

point O.

Moment plane

@ Forces completely represented by the sides of a plane polygon taken the
same way round are equivalent to a couple whose moment is represented by

twice the area of the polygon.
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4 Reduction a system of forces

Suppose a system of forces F,, F,,....., E,,...., E,, is reduced at a chosen point O

L35 'Ltn
to a single force F and a single couple M viz. the obtaining result is (M, F)
where

!

n n
Mo = Eﬁ A 37 E = E‘Ez
i=1 1=1

Once again if the system of these forces reduced at another point O’ where the
obtaining results is

n

M, =31/ AF, F=3F
1=1

i=1
That is when the point of reduction changed from O to O’, the resultant of the

forces does not change while the moment altered, such that

My =3 NE,

1=1

y =F.(M, —LAF)=F.M, — FAL~F) = F.M, = const.

The quantity F.M, is called invariant quantity

J.IL:E-_ A
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@Wrench

Suppose a system of forces is reduced to a single force F and a single couple
M such that the axis of the couple is coincides with the line of action of the
force F, then that line is called central axis. In addition, F and M taken
together are called wrench of the system and are written as (F,M). The single
force F is called the intensity of the wrench and the ratio M / F is called the
pitch of the system and is denoted by A. Since F and M, have the same
direction so

M,=M,—r ANF =\F multiply by F using scalar product

_ FeM, _ FMO _ Mo
F*? F? F

= Feo{M, — 1 A F} = AF? A

Where X is known as the pitch of equivalent wrench
Alsosince F A M, = 0 multiply by F using cross product we have,

L FAM,—rAF)=FAM,—FA(rAF)=0

My
According to the properties of triple vector product
FA(r ANF)=(E.F)r —(Exr)F = F’r — (Er)F
" FAM, —{F*r — (Er)F} =0

FAM, (r.F)
F? + F?

S =

I3
=
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The previous equation represents the equation of the central axis or axis of

equivalent wrench in vector form and to get the Cartesian form let
£=(ﬂ¢,’yaz), 5] :(aab’c)v E:(Fm’Fy’FZ)
Therefore, the Cartesian form of central axis is

r—a _y—b z-—c

F F F

x Y z
@ Special cases
(i) F.M, =0 and F=0,M, =0

The system reduced to a single force that acts along the line r = AF
(i) F.M, =0 and F=0,M,=0

The system reduced to a single moment

(iii) F.M, =0 and F=0,M, =0

In this case M, will be perpendicular to F and the system can be reduced to

wrench in which the central axis is

FAM
Lr==——+pF
F

(iv) F=0 and M, =0

The system of forces will be in equilibrium or it is a balanced system of forces.
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Im lllustrative Examples |

O EXAMPLE 1

Determine the moment of the force F = 2: + 3j + 4k acting at the point
A(3,2,0) about the origin and the point B(2,1,—1).

0 SOLUTION

Since the moment is givenby M_ = r A F where
r=0A4=A-0=(320)—(0,0,0) =3 +2j

Therefore the moment of the given force about the origin is

M

i j k
,=rAF=1[3 2 0|=8i—12j+ 5k
2 3 4
. ’ ~ ~ ~
Again,r =BA=A—-B=(3,20—(2L,-1)=i+j+k

Hence, the moment f the given force about the point B(2,1,—1) is

i 3 k i j k
Mp=7"AF=[3—2 2—-1 04+1|=[1 1 1|=:—-2j+k
2 3 4 2 3 4

O EXAMPLE 2

Calculate the moment of the force of magnitude 10v/3 and passing through the
point A(5,3,—3) to B(4,4,—4) about the origin.
0 SOLUTION

We have to write the force in vector form, to do this the unit vector in the

direction of the force F', viz. from point A(5,3,—3) to B(4,4,—4) SO

wAB=B-A=(44-4)—(53,—-3) = —i + .; —k

:ﬁ:AzB:LJ—"’E[—_li—_l]

V3’3’3
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Therefore the force be

- F=FF = 10«5{L]_k} = —10; + 10 — 10k

V3

Choosing any point as an acting point of the force, then the moment of the

force about the origin O (consider A(5,3,—3) as an acting point)

o1 = (5,3,—3) — (0,0,0) = (5,3,—3)

~ ~ ~

i 7k
=M, =rAF=|5 3 —3|=280j+80k
—10 10 —10

Also if we choose the point B(4,4,—4) as an acting point

~ ~ ~ ~ ~ ~

ik i 7k
=M, =r'AF=|4 4 —4|=40[1 1 —1|=80j+80k
—10 10 —10 -1 1 -1

3 EXAMPLE 3 N

Determine the moment of the force as shown about point O.

0 SOLUTION

Taking horizontal axis X as shown, the force 500 can be reso

500 cos 457 + 500sin45° 7 = 250v/2(3 + ;)

Therefore, the moment is given by,

_250«/_[3+—]—250x/_[

7 ] = 750\2

3
NEy

Or by cross product where

= 3+i]z’+—j
F = 500c0s45%; + 500sin45°j = 250:2(i + j)
= M, =rAF=25032[3+ > 3 0| = 50V2k
V2 2
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O EXAMPLE 4

Force F acts at the end of the angle bracket as shown.

Determine the moment of the force about point O.

O SOLUTION

Using a Cartesian vector approach, the force and

position vectors are

The moment is therefore,

~ ~

% J k
=M,=rAF=[04 —02 0 =—0986k
200 —346.4 0

O EXAMPLE 5

N O

F=400N

l

02m
400 sin 30° N

I 400 cos 30PN

Find the sum of moment of the forces, F = 2: acts at the origin, the force

—éE actsat n, = 35 and the force —%E acts at

0 SOLUTION

= 5k about the origin.

As clear the resultant of these three forces is zero but the moment about the

origin is given by

3
=M, zzfi/\gi = AF, +1, AFy +13 A

=1

7 k i j k
= 3 0/+(0 0 5
00 |—10 0
“M,=|0 3 5|=-—5j+3k and |
—10 0

Fy
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O EXAMPLE 6

The force 2: — j acts along the line that passing through the point (4,4,5) and

the force 3k acting at the origin. Find the pitch and axis of equivalent wrench.
O SOLUTION

The two forces reduced at the origin to a resultant force £ and a moment M,

so that
F=F+F =2 —j+ 3k S Fr =14
i j k
Mo=n1,AF,+1, AF,=0+|4 4 5|=5;+10j—12k
2 -1 0
. . . FeM .
Thus the pitch of equivalent wrench is given by x= =—= that is
F

_ FeM (26 — j + 3k)e(5i + 105 — 12k) 36 _ 18

F? 14 14 7

A

In addition the equation of axis of wrench r =, + uF
i 7k
- 3

_FAM _1
T 14

1 R R .
= (180 + 39 + 25k)
5 10 —12

Then the vector form of the axis becomes
r :ﬁ 185 + 397 + 25k + (28 — } + 3K)
And Cartesian form is

L8 3 B
T _ YT T o Wz+18 14y—39 14225
2 —1 3 2 —1 3
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O EXAMPLE 7

A force P acts along the axis of OX and another force nP acts along a
generator of the cylinder z? + y* = a®at the point (acos8,asin6,0); show

that the central axis lies on the cylinder n?(nz — z)? + (1 + n?)*y* = n'a’

O SOLUTION

Generators of the cylinder are parallel to the axis of . Let one generator of it
pass through the point and its unit vector is and the force acts along this line.

Also the force acts along axis then \

F = Pi, acts at (0,0,0)

F, = nPk, actsat(a cos8,asin6,0)

F = P(i + nk), (F* =1+ n?P?

The system reduces to a single force and a moment so
that

T

.

M, =1 ANF, +1y AF,

~“M,=P10 0 0|+ |acosf asinf 0
1 00 0 0 n

= anP(sin0i — cos07)
. . L FeM .
The pitch of equivalent wrench is given by A= — that is
F

= FoM P(i + nk)eanP(sin0i — cos}) _ ansin®

F? (1+ n?)P? 1+ n?

In addition the equation of axis of wrench r = r; + uF

FAM anP?
n = y 7 p 1 0 n
F (1 +n7) sin@ —cosf 0

an

= n (ncosi + nsinBj — cosOk)
14+n

Then the vector form of the axis becomes

(@ cos @, asin 8,0)
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an

1+ n?

r:

(ncosi + nsin0j — cosOk) + p(i + k)

And Cartesian form is given by

_ an® cos @ y— an?sin @ » an cos @
2 2 2
14+ n — 14+ n — 14+ n Or
1 0 n
an?sin@ an? cos @ ancos@
y——=0, nie— =
1+ n? 1+ n? 1+ n?
an® an(l + n?)cos @
y = sin 8, ne—z=——————
1+ n? 1+ n?
Squaring these equations
2
y? =n? sin’ @, (nx — 2)? = (1 +n?)? [ cos” @
14+ n? 14 n?

then multiply first equation by (1 + n?)* and the second by n? then adding
the result we get

2
an

1+ n?

1+ n?)?y* +n’(nz — 2)* = n?(1 + n?)? =a’n

O EXAMPLE 8

Three forces each equal to P act on a body, one at point (a,0,0) parallel to
0Y, the second at the point (0,b,0) parallel to OZ and the third at the point

(0,0,c) parallel to OX, the axes being rectangular. Find the resultant wrench.

0 SOLUTION
As given we see i ki)
E = Pi, actsat (0,0, c)
F, = Pj, acts at(a,0,0)
F, = Plg:, actsat (0, b,0)
F=P@+j+k),

E
|
w
T
-

. {1, 3, 1)
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The system reduces to a single force and a moment so that

M, =1y ANFy+1, NFy +13 ANFy
i g3 k| |i k| |t gk
M,=P10 0 c/|+|la 0 0/+|0 b 0
1 0 0 01 0 0 0 1
= P(bi + cj + ak)
. . .. FeM .
The pitch of equivalent wrench is given by A= — that is
F

e FoM P+ j+Ek)ePbi+cj+ak) 41p4c
F? 3p? 3

In addition the equation of axis of wrench r =, + uF

i k
FAM P? J
n == — =—/1 1 1
F? 3P?
b ¢ a

= %((a — )i + (b — a)] + (c — b))
Then the vector form of the axis becomes

(@a—c)i +(b—a)j+(c—bk +pE+]+k)

1_":

o | =

and Cartesian form is

y—x =b+c—2a and 32—y =a+c—2b

O EXAMPLE 9
Forces X,Y,Z act along three lines given by the equations

y=02z=c z=0z=a; r=0y=0>
Prove that the pitch of the equivalent wrench is

(@YZ 4+ bZX + cXY) /| (X? +Y?* + Z?)
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If the wrench reduces to a single force, show that the line of the action of the

force lies on the hyperboloid (z — a)(y — b)(z — ¢) = zyz

0O SOLUTION

As given
F = Xi, acts at (0,0, c)
F, = Y7, acts at (a,0,0)

F, = Zk acts at (0,b,0)
F = Xi +Yj + Zk, F2=X>4+Y2+ 22

The system reduces to a single force and a moment so that

M, =1y ANFy+1, NFy +13 ANFy
i gkl |t j k| |t ] k
“M,=|0 0 c/+|la 0 O/+|0 b O
X 00 [0 Y o (00 Z
=bZi + cXj +aYk
The pitch of equivalent wrench is given by A= ¥ that is
F
FeM  (Xi 4+ Y] + ZE)e(bZi + cXj + aYE)
A:__:
F? X2 4Y*4+2°

_ bXZ +cXY +aYZ
X +Yi4+ 272

Besides, the equation of axis of wrench r = r; + uF

FAM Pk
A ! X Y Z

5= 2 2 2 2
F (X*+Y +Z)bZ X aY

1 - . .
= aY? —cXZ)i + (bZ? —aXY)j+ (cX? —bYZ)k
v )i+ ( )i+ ( )

Then the vector form of the axis becomes
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2 2 2 _ 3 2 _ . R N N
p = (@Y = cXZ)i + (bZ* — aXV)j + (cX* —bYZ) v\ v\ i
(X*+Y? + 2%

And Cartesian form is

aY? —cXZ bZ? —aXY cX? —-bYZ
e etz o, 04 —adr o, 4 TOXL
X2+Y2+22: X2+Y2+ZZZ X2 +Y?24+ 22 Or
X Y Z

2 2
Y[ aY? — cXZ ]:X[ _ b7 —aXY |

r — e
X2+Y*:+ 2% X2 +Y*+ 22

cX? —-bYZ bZ? — aXY
Y|iz—m— "~ |(=Z|ly———"-"T""
X2+Y%2+ 2?2 X24+Y%+ 22

Complete

O ExXAMPLE 10

Two forces each equal to P act along the lines 2 F @088 _ y —bsind _ 2
asin@ Fbcosb c

show that the axis of equivalent wrench lays on the surface

0 SOLUTION

First line is £— ‘.LC;SB =Y _bbm;e = £ passing through (a cos, bsin 6,0)
a sim —0 CO0S C

the second line is 2+ acosf _y—bsinb _ z

= Z passing (—acos@,bsin 6,0
asin@ bcosO c P 9 ’ 0)

The unit vector of first line is

« 1
n, =
\/&2 sin? 8 + b? cos® 8 + c?

= 1 asin@; — bcosej + ck
u

(asin@,—bcosb,c)

The unit vector of second line is
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n, = ! (asin8,b cos b,c)
\/a2 sin? @ + b% cos® 0 + 2
-1 asinBi + beos8j + ck (u:\/a2sin20+b2cos29+c2)
u
Therefore,

E =Pn = E(asin@’i — beos8j + ck)
©

F, = Pn, = B(asin@'z + beos 8] + ck)
©

The system reduces to a single force and a moment so that

F=F+F
P . < “ " P . < el -
= —(asinfi — bcosOj + ck) + —(asinO: + bcos 05 + ck)
u u
. . 2
= E(a sin 67 + ck) and F? = i(a,2 sin? 8 + c?)

M=nANE+nAE

P i j k i j  k
= —1{lacosf® bsin@ 0|+ |—acos@ bsinf 0
K asin@ —bcosf c asinf bcosO c

E(cb sin@i — abk)
7

since the equation of axis of equivalent wrench is r = r; + pF

i k
. (c® + a®)bsin@ -

a? sin? 6 + c?

j

FAM 1
=== asing 0
0

F? a’ sin? 0 + c?

cbsin @ —ab

Then the vector form of the axis becomes

(c® + a*)bsin@ -

r= 7 + u(asini + ck)
a®sin® 0 + c?

While the Cartesian form is

_ (¢® + a®)bsin@
z—0 a’sin’@+c2 _z—0

asing 0 c
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Thus we can deduce from these equation

_ (¢ +a’)bsing asing

a’sin? 0 + ¢?

T
and — =
z

y(a®sin® 8 + c?) = (c® + a®)bsin @

02

= y|a®sin0 + = b(c® + a?)

sin @

x asin@

Dividing by ac and substituting = = we get
z
[E + E = b[E + 2
z r a C

0O ExXAMPLE 11

Two forces each equal to F act along the sides of a cube of length b as
shown, Fin the axis of equivalent wrench.

0 SOLUTION

By calculating the unit vectors of the forces we get,

N 1 - -
n, = (b,b,b) - (0,0,b) = ﬁ(z + .7) (o
F . - .
B =Fn = —=(+)) !
' 2 | (B0, B)
And for the second force E
I [0k, 1)
N 1 s AT = .
n, = (09ba0) - (b,0,0) = %(_7’ + .7) Ty o
F A
F, = Fii, = (=i + j)
2 2 \/5
The system reduces to a single force and a moment at the origin so that
R =F, +F, =2Fj . R = 2F?
i g k| |1 J k
Fb Fb . + -
M:Q/\Fl+_2/\F2—T110+—110 :T(z—j—k)
2o 0 1] |1 0 0 2
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Here we choose the point (0,0,b) as an acting point of first force and the point

(b,0,0) of the second force. The pitch of equivalent wrench is given by

A= FMthatls
F?
~ Fb » ~ =
2Fj)e . — 37—k
A_E-M_(f”ﬁ(’ i=h
R 2F? T2

since the equation of axis of equivalent wrench is r = r; + uF so

L _RAM _ F"{b bz
R 2F{ 11 2

Then the vector form of the axis becomes

b - =~ -
r=— 2 i+ k +upj
While the Cartesian form is given by

m+9 z+9
2_y-0_ 2 Or z:—gandm:——
0 1 0 2 2
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PROBLEMS

O3 If the force F = 3: — j + 7k acts at the origin, determine its moment about

the point(4,4,6).

O A force of magnitude 100 acts along the line passing through the point

(0,1,0) to (1,0,0). Obtain its moment about the origin point and about the axes.

O The three forces (2i + 2j), (j — 2k), (—% + 27 + k) act at the points

(0,1,0), (1,0,0), (0,0,1) respectively, Find the pitch of the equivalent wrench.

1 y4+1_ z—2
o2 1

O Two forces each equal to 3F act along the Iinesw;

r—2 y+1 =z
1 —2

and

; ! Find the equivalent wrench.

O The magnitude of two forces is F,, F;, act along the lines
(z=—¢, y = —ztana) and (z = ¢, y = xtan). Determine the central axis

of equivalent wrench.



EQUILIBRIUM OF FORCES

Study of Statics and the whole study of Mechanics is actually the
study about the actions of forces or force systems and the effect
of these actions on bodies. So it is important to understand the action of forces,
characteristics of force systems, and particular methods to analyze them. A
particle is said to be in equilibrium if it remains at rest if originally at rest, or
has a constant velocity if originally in motion. Most often, however, the term
“equilibrium” or, more specifically, “static equilibrium” is used to describe an

object at rest.

4 Triangle of Forces

If three forces, acting at a point, be represented in magnitude and
direction by the sides of a triangle, taken in order, they will be in

equilibrium.

4 Lami's Theorem

If three forces acting at a point are in equilibrium, then each
force is proportional to the sine of the angle between the

other two that is

F,

1

F, F,

_ T2 _ 13
sina sin8 sinvy

4 Theorem

< If three forces, acting in one plane upon a rigid body, keep it

in equilibrium, they must either meet in a point or be parallel.
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<@ If two forces acting at a point are represented in magnitude and direction by
the sides of a parallelogram drawn from that point, then their resultant is
represented by the diagonal of the parallelogram drawn from that point. In
addition the magnitude of the resultant can be obtain by
wF=F +F, = FoF = (F, + F))o(F, + F,)

F? = F? + F} + 2F,F, cos
where o« is the angle between the two forces. The resultant £ makes an angle

6 to the force F, determined by

since Fcos® = F, + Fycosc, and Fsin@ = F,sinc
s . . F,sina
Therefore by dividing these two relations, tang = —2 ——
F, + F,cosx

4 Polygon of forces

If any number of forces, acting on a particle be represented, in
magnitude and direction, by the sides of a polygon, taken in

order, then the forces are in equilibrium.

4 Theorem

If a system of forces act in one plane upon a rigid body, and if the algebraic
sum, of their moments about each of three points in the plane (not lying in

the same straight line) vanish separately, the system of forces is in equilibrium.

4 Theorem

A system of forces, acting in one plane upon a rigid body, is in equilibrium, if
the sum of their components parallel to each of two lines in their plane be zero,

and if the algebraic sum of their moments about any point be zero also.

4 Two important trigonometric theorems -

There are two trigonometrical theorems which are useful

in There are two Statical Problems. If a line CD be

Tre I L
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drawn through the vertex C of a triangle ABC meeting the opposite side AB in

point D and dividing it into two parts = and n and the angle C into two parts

o and 3, and if ZCDB = 0then

(1) (m + n)cot@ = mcot o — ncot 3
(i) (m + n)cot@ = ncot A — mcot B

Proof

..m _AD _ ADXDC_ sin o ><sinLB
"m DB DC DB sinZA sing
sin o % sin(0 + B)

sin(6 — ) sin

_ sina(sin@cos B + cosfsin3)  cot B +

, LDBC =180° — (8 + 0)

cot@

" sin B(sin @ cos o — cos P sin «x) "~ cota —

= m(cot @ — cot ) = n(cot 3 + coth)

(m + n)cot® = mcotx — ncot 3

Again
.m _ sin/ACD _sin/B

= X
n sinZDAC sin 3
_ sin(@ — A) sin B
sin A sin(@ + B)’

cot@

or

_ sin B(sinfcos A — cos@sin A)  cot A — cotd

sin A(sin@ cos B + cos@sin B)  cot B + cotd
= m(cot B + cot8) = n(cot A — cot ) or

(m + n)cotd® = ncot A — mcot B

4 Conditions for rigid-body Equilibrium

In this section, we will develop both the necessary
and sufficient conditions for the equilibrium of the
rigid body. As shown, this body is subjected to an
external force and couple moment system that is the
result of the effects of gravitational, electrical, ¥,
magnetic, or contact forces caused by adjacent

bodies. The internal forces caused by interactions

M, (a)

’q’\—”\l'_\

\n
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between particles within the body are not shown in this figure because these
forces occur in equal but opposite collinear pairs and hence will cancel out, a
consequence of Newton’s third law.

Using the methods of the previous chapter, the force and couple moment
system acting on a body can be reduced to an equivalent resultant force and
resultant couple moment at any arbitrary point O on or off the body. If this
resultant force and couple moment are both equal to zero, then the body is said
to be in equilibrium. Mathematically, the equilibrium of a body is expressed as

E=2n:1_7,~=97 Mo:Zn:Mi:Q
=1 i=1

These relations can be rewritten in Cartesian form as

s
i M:
[
o]
8
Il
R
.
i M:
n
e
<
Il
N
- .
M3 i M:
[

NE
X
Il

-
=
Il

Il
—
~
I
—
~
Il
—

%

4 Particular cases

@ Forces act along the same line

In this case the equation of equilibrium tends to ZE = 0 since there is no
i=1

rotation.

© Parallel forces system

If the acting forces are parallel then the rigid body may be in equilibrium if the
resultant of acting forces is zero and the sum of moment of acting forces about

a chosen point is zero too so that the two following equations are satisfying

n
Y F, =0, Y M; =0
i =1

@ Coplanar forces system

If the acting forces are coplanar then the rigid body may be in equilibrium if
the three following equations are satisfied (the forces considered to be in XY

plane)
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Note the moment will be in a direction normal to the XY plane i.e. Z-axis

@ Spatial forces system

If the acting forces are in space then the rigid body may be in equilibrium if the
following equations are satisfied

If two equal and inverse moments are acting on a body

then the body will be in equilibrium

4 Reactions at Joints

There are a large number of problems in which two bodies are described as
smoothly hinged' at a point. In such a case the hinge may be regarded as a pin
passing through cylindrical holes in the bodies, closely fitting and so smooth
that each body can turn about the pin without friction. When the hinge or joint
is smooth the reaction of the pin on either body reduces to a single force,
because, no matter how many points of contact there may be between the pin
and the cylindrical hole in the body, the reaction at each of these points acts
along the common normal and therefore passes through the center of the pin
(considering only forces in one plane) and all such forces can be combined into
a single force through the center of the pin. When the pin connects two bodies
A and B only, then the pin is subject to two forces only, namely the reactions of
A and B upon it, and in equilibrium these must be equal and opposite. But the

reactions of the pin on the bodies are equal and opposite to the former forces,

M
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so that the result of the smooth joint is to set up equal and opposite forces on
the bodies A and B and it is unnecessary to consider the precise form of the
joint, because it is sufficient to know that, as the result of the smooth joint,
there is a pair of equal and opposite forces between the bodies at a certain

point and that the bodies are so constrained that the only possible relative

motion is one of turning about this point.
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W lllustrative Examples W

O EXAMPLE 1
If the resultant of the forces F,2F perpendicular to F . Determine the angle

between the two forces.

O SOLUTION

Let « be the angle between the two forces F,2F then from the law

tan @ = 2F sin — tan90 = 2sin o

F 4+ 2F cosa 1+ 2cosax
=14+ 2cosa =10

= a = cos_l{—é} Or a=120°

0O EXAMPLE 2
The resultant of two forces Pand @ is equal to ﬁQ and makes an angle of

30° with the direction of P : show that P is either equal to, or is double of @ .
J SOLUTION & w2
\/EQ c0s30 = P + Qcosax (1) : f::n

\/gQ sin30 = @sin (2) I

Equation (2) leads t0 a =60 or a =m —60° therefore, from

equation (1) we get

P=Q(\Ecos30—cosa) when =60 = P=Q

when o =120 = P =2Q

O EXAMPLE 3
The greatest resultant which two forces can have is P and the least is P’.

Show that if they act an angle € the resultant is of magnitude

\/P2 cos? %0 + P"?sin? %9
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0 SOLUTION

Let the magnitude of the two forces be F and F’ the resultant of the forces is
greatest when they act in the same direction and is equal F + F’. Also the
resultant is least when they act in opposite directions and is equal F — F’,
consider F > F' therefore,

P=F+F, P =F—F

Solving for F, F’ we get F:é P+ P F’:% P—P
Then the magnitude of the resultant of the forces F and F’when they act at an
angle @ is given by

R?> = F* + F'? + 2FF’ cos®

= R? = 1(P+P’)2 + 1(P — P’y + 1(P+ P)(P — P')cos@

4 4 2
= %PZ(I + cosf) + %P'z(l — cos )

1 1
= p? cosZEO + P”? sin259

= R= \/P2 cos? %9 + P’? sin? %9
0O EXAMPLE 4
Two forces P,Q act at a point along two straight lines making an angle «.
with each other and R is their resultant: two other forces P’,Q’ acting along

the same two lines have a resultant R’. Find the angle between the lines of

action of the resultants.

0 SOLUTION

Let the resultants R, R’ make angles 8,8’ with the line of action of P and

P’ . By resolving along and perpendicular to this line, we get

Rcos@ = P + Qcosa, Rsinf = Qsina
R’ cos8’ = P’ + Q’ cos o, R’sin®’ = Q' sina

Multiplying two equations, we have
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RR' cosBcos8’ = (P + Qcos a)(P’ + Q' cos o)

RR/sin0sin@’ = QQ’sin? o

By adding these two equations we get

RR/(cosOcos8’ + sinOsin8’) = (P + Qcos @) (P’ + Q' cos @) + QQ’sin*

Or RR'cos(0 — 0') = (P + Qcosa)(P’ + Q' cos @) + QQ’ sin®

Therefore,
cos(6 — 0') = (P + Qcosa)(P’ +RQ',cos ) + QQ’sin* o
0— 0 — cosl (P 4+ Qcosa)(P’ + Q' cosa) + QQ’sin”®
RR'
— eos! [PP' +QQ’ + cos(PQ’ + P’Q)]
RR’

0O EXAMPLE 5

A rod whose center of gravity divides it into two portions, whose lengths are a
and b, has a string, of length £, tied to its two ends and the string is slung over
a small smooth peg ; find the position of equilibrium of the rod, in which it is

not vertical.

0 SOLUTION

Since there are only three forces acting on the
body they must meet in a point. And the two
tensions pass through O ; hence the line of
action of the weight W must pass through O
. The tension of the string is not altered, since
the string passes round a smooth peg; that is

the weight W balances the resultant of two

equal forces, so it must bisected the angle
between them.
ZAOC = ZBOC = « (say)
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Hence z_AC _aqa
y OCB b
Also z+y=1~¢

Solving these equations we obtain

Again from the triangle AOB, we have

(@ +b)? =z + y> — 2zycos2a = (z + y)? — 2zy(1 + cos2a)

2
= (z +y)* —4zycos’ a = £* — 4la cos? o
(a + b)
2 2 2
:>cos2a:£ (a+b)*(a+0b)
402 ab
Let be the inclination of the rod to the horizontal, so that
Z0OCA =90° + 0
From the triangle ACO we have
sm(90+9):AO:§: £ Since T _y_ £
sin o AC a a+b a b a+bd
— cosf = £sin
a+b

0 EXAMPLE 6

A Dbeam whose center of gravity
divides it into two portions of lengths
a and b respectively, rests in
equilibrium with its ends resting on
two smooth planes inclined at angles

a, 3 respectively to the horizon, the

planes intersecting in a horizontal

line; find the inclination of the beam
to the horizon and the reactions of

the planes.
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O SOLUTION

Let N and N'be the reactions at A and B perpendicular to the inclined planes,
let & be the inclination of the beam to the horizon.

Resolving vertically and horizontally, we have

Ncosa+ N'cosB =W 1)
Nsina = N'sin3 (2)

Also, by taking moments about G, we get
N.GAsinGAO' = N'.GBsinGBO’
Now ZGAO' =90° — ZBAO = 90° — (v — )
and ZGBO’' =90° — ZABO = 90° — (3 + 0)
Hence the equation of moments becomes
Nacos(a — 8) = N'bcos(3 + 6) (3)

From equation (2) we have

N N’  Ncosa+N'cosB = W

sin B " sina sin 3 cos & + sin cx cos 3 - sin(a + B)

fromEq.(1)

These equations gives IV and N’; also substituting for N and N’in Eq. (3)
we obtain

asin B cos(a — 8) = bsin acos(B + 0);

= asin8 cosacosf + sinasind = bsina cos B3cosf — sin Bsin ;

= (a + b)sin asin 3sin @ = cos O(bsin cxcos 3 — a cos asin G);
= (a+ b)tan® = beot B3 — acot

O EXAMPLE 7
A heavy uniform rod, of length 2a, rests partly within and partly without a
fixed smooth hemispherical bowl, of radius r ; the rim of the bowl is

horizontal, and one point of the rod is in contact with the rim; if 6 be the

inclination of the rod to the horizon, show that 2r cos20 = acos .



Equilibrium 48

O SOLUTION
Since OC and AE are parallel,

ZOCA=/ZCAE =190
Since OC=0A, ZOAC =/Z0CA =6
Also ZGDC =90" — ZDGC =6
Now. AFE = AGcos8 = acosb,,
and AE = ADcos20 = 2rcos 26,

= 2rcos20 = acosf

Hence, if v and N’ are the reactions,

by Lami's Theorem

N N W

sin20 sin@® sin@

= N' =W, N =2Wcos

0O EXAMPLE 8

A bead of weight W can slide on a smooth circular wire in a vertical plane. The
bead is attached by a light thread to the highest point of the wire, and in
equilibrium the thread is taut and makes an angle @ Find the tension of the

thread and the reaction of the wire on the bead.

0 SOLUTION

Let B be the bead, AB the thread, AOC the vertical
diameter of the circle, and O the center. Then the angle
Z0OBA = Z0AB =6 and ZBOC = 260 0

Hence, if T denotes the tension and N the reaction, by

Lami's Theorem

T N W W

sin20 sin@® sin@

Therefore, we get T =2Wcos, N=W
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0O EXAMPLE 9

A beam whose center of gravity divides it into two portions, is placed inside a
smooth spherical bowl, show that if 8 be its inclination to the horizontal in the
position of equilibrium and 2« be the angle subtended by the beam at the
center of the sphere, then

—a

b
tan@ = tan o

+ a

O SOLUTION

Let a beam AB of weight W be in equilibrium inside a
smooth sphere of center O and radius = (say) . If G
is the center of gravity of the beam then AG = a and
BG =1b. As clear, the beam AB is in equilibrium
under the action of the following forces

4 N, the reaction at point A along the normal to the

sphere at A and so passing through the center,

4 W, the weight of the beam vertically downwards and

« N’ the reaction at point B along the normal BO to the sphere at B
It is given that ZAOB = 2« and according to the trigonometric theorem in
triangle AOAB we get

(a + b)cot(90 — 8) = bcot(90 — ) — acot(90 — )

—a
tan o

=>ta.n9=b
b+a

O EXAMPLE 10
A rigid wire, without weight, in the form of the arc of a circle subtending an
angle «at its center and having two weights w and w’ at its extremities, rests
with its concavity downwards, upon a smooth horizontal plane. Show that, if @
be the inclination to the vertical of the radius to the end at which w is
suspended, then

w’ sin o

tané):—,
w—+ w cosa
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O SOLUTION

The wire is in equilibrium under the action of
following three forces

w, the weight at A and weight w’at B

vertically downwards and the reaction
N at the point of contact C, acting at
right angle to the horizontal plane where
the line of action of the reaction will pass
through the center of the circle,

Given that LZAOC = 6 then ZBOC = o — 0. To avoid the reaction , taking

moments of all the forces about , we have

> M, =0 = w(AA") —w'(BB’) =

= wasind = w’'asin(a — 6)

. 1/ . .
= wsinf = w'(sinwcos @ — sin O cos @)

Dividing by cos@ then we obtain

7 . /7
wtanf = w’ sina — w’ tan 6 cos o

w’ sin o
= tan0 = —_—F
w+ w cosa

O EXAMPLE 11

A uniform beam, of length 2a, rests in equilibrium against a smooth vertical

wall and upon a peg as a distance b from the wall,

prove that the inclination of the beam to the vertical is

0 SOLUTION
The beam is in equilibrium under the action of the

forces namely, N, the reaction at point A along the

normal to the vertical, W, the weight of the beam




51

vertically downwards and N’ the reaction at peg along the normal AB. Let 6
be the inclination of the beam to the vertical and since in

!
AACO’  sinf = ig,,
!
AAOO0’ sinf = A0 R
AO
AAGO sin@ = A0
AG

Multiplying these three formulas we get

CO’ A0’ _AO_CO b

7 X A A
AO AO AG AG a

sin® @ =

1/3

a

1/3
= sinf = [—] or 6 = sin!
a

0O EXAMPLE 12
Two small rings of weights W; and W, each capable of sliding freely on a
smooth circular hoop fixed in the vertical plane are connected by a light string,

show that in the position of equilibrium in which the string be straight and
inclined at angle 6 to the horizontal (W, + W,)tan8 = (W, —VVZ)tanéa

where « is the angle subtended by the string at the center.
0 SOLUTION

The ring at A is in equilibrium under the following
forces, weight of the ring W, acting vertically
downwards, Tension T in the string along AB and the

reaction IV along the normal OA passing through the

center of the circle. The string is inclined at an angle 6

to the horizontal and ZAOB = «, therefore by Lami’s

theorem at point A, we have



Equilibrium 52

T __w
sin /NAW,  sin ZBAN
T _ W
sin(m — (@ +a/2) sin(w/2+a/2)
:>T:s1n(9+oz/2)vv1 )

cos(ax / 2)

in the same manner for ring at B we have

T -
sin /N'BW,  sin ZABN’
T W,
= =
sin(m —(@¢/2—0)) sin(w/2+a/2)
o p-sin(@/2=0)y 2)
cos(ax / 2)

From Egs. (1) and (2)
sin(a/Z—H)W _ sin(@ + a/2)W

cos(a / 2) 2 cos(a / 2) !

W,

2 =W,

1

1 1 1 1
sin0cos5a+cos0sin§a sinEacose—cosiasinO

Dividing by cos8 cos(cx / 2), we get

W,

tan 6 + tan%a] =W

tan%a — tanH]

Or (W, + W,)tan6 = (W, — VVz)tania

0O EXAMPLE 13

Two equal rods, each of length 2¢ and weight w, are freely jointed at and the
others ends of the rods are suspended from a fixed point, If the lengths of each
string is 2¢€ and the angle between the rods is 260, a disk of weight 3w and

radius a is putted between the rods in equilibrium in a vertical plane, show that
a = 6£sin’? Gtan 6

O SOLUTION

3w
2sin @

With respect to the disk, 3w = 2N sin @ = N
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The equations of equilibrium for the whole figure (i) in vertical direction

5w = 2T cos @ =T= sw
2cos @

Considering one of the rods (right one say) and taking moment about the point
0, reaction is reaction of the disk on the rod which equals the reaction of the
rod on the disk but in opposite direction, we get

Nacot8 + wlsin@ = T cos 6(2£sin @) + T sin 6(2£ cos B)

5w

cos @

ac0t0+'w£sin9:{ ]» 2£ cosOsin @

2sin @
. dacos0

c. + £sin@® = 10£sin 8
2sin® @

. 3a = 18€tanOsin? 0 -.a = 6Ltan0Osin’ 0
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0O EXAMPLE 14

A hexagon ABCDEFis formed of six equal rods of the same weight W
smoothly jointed at their extremities. It is suspended from the point A and the
regular form is maintained by light rods bf andce . Prove that the thrust in the

former BFis five times that in the latter CE.

0 SOLUTION

Suppose that the rod BF is attached to the two upper rods and the rod GE to the
two lower rods. Let P’ and P denote the thrusts in BF and CE. Then since
the only effect of these rods is to produce thrusts at their ends, we may ignore
these rods if instead of them we suppose horizontal forces P’ to act outwards
on AB at B and on AF at F, and horizontal forces P to act outwards on CD at
C and on DE at E. Begin by inserting these forces in the figure. Then consider
the equilibrium of the rod CD. The reaction at D is horizontal because there is
symmetry about the vertical through D. But the only horizontal forces on CD
are the force P at C and the reaction at D, so that this reaction at D must be
equal and opposite to P . Then as regards vertical forces: the weight W acts
vertically downwards through the middle point of CD and the only other
vertical force can be at C, therefore there is a reaction at C which acts vertically
upwards and is equal to W. Insert this in the figure; and, since it is produced by
the rod CB, also insert an equal and opposite force W downwards acting at C
on CB We can now express P in terms of W by taking moments for the rod
CD about C or about D, or, what is the same thing, equating the moments of

the two couples that act upon the rod. We find that

W

'

W
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w

PCDsin30° = W[%CDcosiiO"] = P= ?
Then, returning to the figure, consider the rod BC. It is in equilibrium under the
action of its weight W, a downward force W at C and the reaction at B. This
latter force must therefore act vertically upwards and be equal to 2W. Insert
this force in the figure and also the equal and opposite reaction 2W at B on AB.
Then consider the rod AB. It is in equilibrium under the action of its weight W,
the horizontal and vertical forces P’ and 2W at B and the reaction at A. It is
not necessary to specify the latter because we can take moments about A; by so
doing we find that

P’ ABsin30° = gW ABcos30° = P'= 5[W\/7§] =5P
O EXAMPLE 15
A regular pentagon ABODE formed of five uniform rods, each of weight W,
freely hinged to each other at their ends is placed in a vertical plane with CD
resting on a horizontal plane and the regular pentagonal form is maintained by
means of a string joining the middle points of the rods BC and DE. Prove that

the tension in the string is

cot% + 3c0t2?ﬂ-]W

0 SOLUTION

It is only necessary to consider the reactions at the corners A and B. By
symmetry that at A is horizontal and equal say to X. The rod AB is also acted
on by its weight W and the reaction at B. The latter must therefore have a
horizontal component X and a vertical component W upwards. Insert in the
diagram forces at B acting upon BC in the opposite senses. Then by taking
moments about B for the rod AB, since the rod AB makes an angle \n with the

horizontal, we get
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XsinzlecosE (1)
5 2 5

after dividing by the length of the rod. Again if T denotes the tension in the
string which joins the middle points of BC and DE, by taking moments about C
for the rod BC, which makes an angle £n with the horizontal, we get

1 2 1 2 2 2
“Tsin"" = ~Wcos—— + Wcos—— + X sin—— (2)
2 5 2 5 5 5

after dividing by the length of the rod. On substituting for X in terms of W
from (1), we find that

T=Ww

by 27
cot— + 3 cot—
5 5

P
N
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PROBLEMS

O If two forces P and Q act at such an angle that R=P, show that, if P be

doubled, the new resultant is at right angles to Q.

O The resultant of two forces P and Q acting at an angle @ is equal to

(2m+1)JP2 + @Q?; when they act at an angle 90 —@, the resultant is

(2m — 1)«/P2 + @? ; prove that tang = ;:
m

3 The resultant of forces P and Q is R; if Q be doubled R is doubled, whilst, if
Q be reversed, R is again doubled; showthat P:Q: R =2 :V3 : V2

O The sides BC and DA of a quadrilateral ABCD are bisected in F and H
respectively; show that if two forces parallel and equal to AB and DC act on a

particle, then the resultant is parallel to HF and equal to 2HF.

3 A solid hemisphere is supported by a string fixed to a point on its rim and to
a point on a smooth vertical wall with which the curved surface of the

hemisphere is in contact. If 6, ¢ are the inclinations of the string and the plane

base of the hemisphere to the vertical, prove that

tanp = g + tan @

3 The sides AB, BC, CD, and DA of a quadrilateral ABCD are bisected at E,
F, G, and H respectively. Show that the resultant of the forces acting at a point
which are represented in magnitude and direction by EG ana HF is represented

in magnitude and direction by AC.
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3 Two uniform rods AB, BC, rigidly jointed at B so that ABC is a right angle,
hang freely in equilibrium from a fixed point at A. The lengths of the rods are
a, b and their weights are wa andwb . Prove that, if AB makes an angle @

with the vertical, then a? + 2ab tan6 = b®

O Two equal rods, AB and AC, each of length 2b, are freely jointed at A and
rest on a smooth vertical circle of radius a, show that if 20 be the angle

between the rods then bsin® @ = acosé

O Weights w,,W, are fastened to alight inextensible string ABC at the points

B, C the end A being fixed. Prove that, if a horizontal force P is applied at C

and in equilibrium AB, BC are inclined at angles 8, « to the vertical then

P = (W, + W,)tan6 = W, tanx

3 A sphere, of given weight W, rests between two smooth planes, one vertical
and the other inclined at a given angle « to the vertical; find the reactions of

the planes.

3 A picture frame, rectangular in shape, rests against a smooth vertical wall,
from two points in which it is suspended by parallel strings attached to two
points in the upper edge of the back of the frame, the length of each string
being equal to the height of the frame. Show that, if the center of gravity of the

frame coincide with its center of figure, the picture will hang against the wall at

an angle 6 = tan™* 3ito the vertical, where a is the height and b the thickness
a

of the picture.



FRAMEWORK

framework is an assembly of bars connected by hinged or
Apinned joints and intended to carry loads at the joints only. Each

hinge joint is assumed to rotate freely without friction; hence all the bars in the
frame exert direct forces only and
are therefore in tension or
compression. A tensile load is

taken as positive and a member

carrying tension is called a tie. A

compressive load is negative and a member in compression is called a strut.
The bars are usually assumed to be light compared with the applied loads. In
practice the joints of a framework may be riveted or welded but the direct
forces are often calculated assuming pin-joints. This assumption gives values
of tension or compression which are on the safe side. In order that the
framework shall be stiff and capable of carrying a load, each portion forms a
triangle, the whole frame being built up of triangles. Note that the wall ad
forms the third side of the triangle. The forces in the members of a pin-jointed
stiff frame can be obtained by the methods of statics, i.e. using triangle and
polygon of forces, resolution of forces and principle of moments. The system

of forces in such a frame is said to be statically determinate.

4 Free-Body Diagrams

Successful application of the equations of equilibrium requires a complete
specification of all the known and unknown external forces that act on the
body. The best way to account for these forces is to draw a free-body diagram.

This diagram is a sketch of the outlined shape of the body, which represents it
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as being isolated or “free” from its surroundings, i.e., a “free body.” On this
sketch it is necessary to show all the forces and couple moments that the
surroundings exert on the body so that these effects can be accounted for when
the equations of equilibrium are applied. A thorough understanding of how to
draw a free-body diagram is of primary importance for solving problems in
mechanics.

© Support Reactions

Before presenting a formal procedure as to how to draw a free-body diagram,
we will first consider the various types of reactions that occur at supports and
points of contact between bodies subjected to coplanar force systems. As a
general rule. A support prevents the translation of a body in a given direction
by exerting a force on the body in the opposite direction. A support prevents
the rotation of a body in a given direction by exerting a couple moment on the
body in the opposite direction. Here, other common types of supports for
bodies subjected to coplanar force systems. (In all cases the angle @ is

assumed to be known.)

4 One unknown. The reaction is a
D { . .
Y “;/ tension force which acts away from the
"

member in the direction of the cable.

¢ One unknown. The

[ 1
reaction is a force which = “‘; or ”;
i i

acts along the axis of the

link.
4 One unknown. The reaction is a force
which acts perpendicular to the surface at
é/ ﬁ,z} the point of contact.

rolles

4 One unknown. The reaction is a force

which acts perpendicular to the surface at of z/?“l' B!
the point of contact. S— ¥

rocker
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P | 4 Two unknowns. The

. reactions are two components
Ae T__’ % é of force, or the magnitude
r, and direction of the resultant
force. Note that and are not

necessarily equal [usually

SK

smooth pin or hinge

not, unless the rod shown is a link as in (2)].

¢ One unknown. The
reaction is a force which acts

~
perpendicular to the slot.

roller or pin in
ronfined smooth slot

g} o ? 4 One unknown. The
-~ reaction is a force which
LIS L : h acts perpendicular to the

membr pin connected rod.
to collar on smooth rod
4 One unknown. The reaction is a force
which acts perpendicular to the surface at .
the point of contact. of Ll
smooth contacting I
surface
¢ : ¢ Three unknowns. The
' reactions are the couple
F, /{' moment and the two force
or e Ipy
components, or the couple

M M moment and the magnitude and

fixed support direction of the resultant force.

4 Two unknowns. The reactions
are the couple moment and the

force which acts perpendicular to
the rod.

/

member fixed connected
to collar on smooth rod
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B A TRUSS

A truss is a structure composed of slender members joined together at their end
points. The members commonly used in construction consist of wooden struts
or metal bars. In particular, planar trusses lie in a single plane and are often
used to support roofs and bridges. The truss shown in the figure is an example
of a typical roof-supporting truss. In this figure, the roof load is transmitted to
the truss at the joints by means of a series of purlins. Since this loading acts in
the same plane as the truss, the analysis of the forces developed in the truss
members will be two-dimensional \/

To design both the members and the

connections of a truss, it is necessary \ '/
first to determine the force developed A

in each member when the truss is [ Roof truss
subjected to a given loading. To do

this we will make two important assumptions:

@ All loadings are applied at the joints. In most situations, such as for
bridge and roof trusses, this assumption is true. Frequently the weight of the
members is neglected because the force supported by each member is usually
much larger than its weight. However, if the weight is to be included in the
analysis, it is generally satisfactory to apply it as a vertical force, with half of

its magnitude applied at each end of the member.

@ The members are joined together by smooth pins. The 3 /./
N
\ S L

joint connections are usually formed by bolting or welding the \#\y —

ends of the members to a common plate, called a gusset plate, .=

as shown in the figure, or by simply passing a large bolt or pin

/
through each of the members, as shown. We can assume these ™\ 4
connections act as pins provided the center lines of the joining \\/L
- /

members are concurrent, as shown.

A
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Because of these two assumptions, each truss member will act r c
as a two force member, and therefore the force acting at each
end of the member will be directed along the axis of the
member. If the force tends to elongate the member, it is a
tensile force (T), as in the figure; whereas if it tends to shorten

the member, it is a compressive force (C), Fig. 6-4b. In the T c
actual design of a truss it is important to state whether the ompresen
nature of the force is tensile or compressive. Often, compression members
must be made thicker than tension members because of the buckling or column

effect that occurs when a member is in compression.

4 Simple Truss

If three members are pin connected at their ends, they form a triangular truss
that will be rigid, as shown. Attaching two more members and connecting
these members to a new joint D forms a larger truss, as shown. This procedure
can be repeated as many times as desired to form an even larger truss. If a truss
-can be constructed by expanding the basic triangular truss in this way, it is
called a simple truss. The basic equation between numbers of members of a

truss mm and numbers of joints n so that m = 2n — 3

4 The Method of Joints

In order to analyze or design a truss, it is necessary to determine the force in
each of its members. One way to do this is to use the method of joints. This
method is based on the fact that if the entire truss is in equilibrium, then each
of its joints is also in equilibrium. Therefore, if the free-body diagram of each

joint is drawn, the force equilibrium equations can then be used to obtain the
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member forces acting on each joint. Since the members of a plane truss are

straight two-force members lying in a single plane, each joint is subjected to a

force system that is coplanar and concurrent. As a result, only > F, =0 and

EFy = 0 are need to be satisfied for equilibrium.

When using the method of joints, always start at a joint having at least one

known force and at most two unknown forces. In this way, application of

> F, =0and ) F, = oyields two algebraic equations which can be solved

for the two unknowns. When applying these equations, the correct sense of an

unknown member force can be determined using one of two possible methods.

© The correct sense of direction of an unknown member force can, in many
cases, be determined “by inspection.” In more complicated cases, the sense of
an unknown member force can be assumed; then, after applying the
equilibrium equations, the assumed sense can be verified from the numerical
results. A positive answer indicates that the sense is correct, whereas a negative
answer indicates that the sense shown on the free-body diagram must be

reversed.

© Always assume the unknown member forces acting on the joint’s free-body
diagram to be in tension; i.e., the forces “pull” on the pin. If this is done, then
numerical solution of the equilibrium equations will yield positive scalars for
members in tension and negative scalars for members in compression. Once an
unknown member force is found, use its correct magnitude and sense (T or C)

on subsequent joint free-body diagrams.

4 Zero-Force Members

Truss analysis using the method of joints is greatly simplified if we can first
identify those members which support no loading. These zero-force members
are used to increase the stability of the truss during construction and to provide
added support if the loading is changed. The zero-force members of a truss can

generally be found by inspection of each of the joints.
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€ The Method of Sections
When we need to find the force in only a few members of a truss, we can

analyze the truss using the method of sections. It is based on the principle that
if the truss is in equilibrium then any segment of the truss is also in
equilibrium. When applying the equilibrium equations, we should carefully
consider ways of writing the equations so as to yield a direct solution for each
of the unknowns, rather than having to solve simultaneous equations. This
ability to determine directly the force in a particular truss member is one of the
main advantages of using the method of sections

4 Space Trusses

A space truss consists of members joined together at their il \
ends to form a stable three-dimensional structure. The
simplest form of a space truss is a tetrahedron, formed by J
connecting six members together, as shown. Any additional
members added to this basic element would be redundant in | A
supporting the force P. A simple space truss can be built o

from this basic tetrahedral element by adding three additional members and a
joint, and continuing in this manner to form a system of multi connected
tetrahedrons. Assumptions for Design. The members of a space truss may be
treated as two-force members provided the external loading is applied at the
joints and the joints consist of ball-and-socket connections. These assumptions
are justified if the welded or bolted connections of the joined members
intersect at a common point and the weight of the members can be neglected.
In cases where the weight of a member is to be included in the analysis, it is
generally satisfactory to apply it as a vertical force, half of its magnitude

applied at each end of the member.
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Im lllustrative Examples |

500N
0O EXAMPLE 1 s
4
Draw the free-body diagram of the object as shown. A 48
O SOLUTION )‘— im ———Im
Free-Body Diagram. The supports are
removed, and the free-body diagram of the 500 N
A

beam is shown in the figure below. Since the ' | /

A - - h - P .
support at is pin, the pin exerts two 4 ; & 1

reactions on the beam, denoted as A, and A,. A, | 4‘
|-— - im — 2m

The magnitudes of these reactions are W

unknown, and their sense has been assumed.

The weight of the beam, W N, acts through the beam’s center of gravity G,
which is 2.5 m from A since the beam is uniform. The tension in the string as
illustrated.

0O EXAMPLE 2 R T . )

Draw the free-body diagram of the uniform beam shown

in the figure. The beam has a mass of 100 kg.
O SOLUTION :

The free-body diagram of the beam is shown in figure behind. Since the
support at A is fixed, the wall exerts three reactions on the beam, denoted as
A, A, and M, . The magnitudes of these reactions are unknown, and their
sense has been assumed. The weight of the beam, W = 100(9.81) N = 981 N,

acts through the beam’s center of gravity G, which is 3 m from A since the

beam is uniform.

¥ 1200 N
- 2m .
x Ay Effect of applied
j force acting on beam
) AL - G

Effect of fixed ~ . |A

support acting M =

on beam A2 ~VATk

981N

Effect of gravity (weight)
acting on beam
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0O EXAMPLE 3 e

a0 N U0 N

Determine the horizontal and vertical X
components of reaction on the beam &

‘ ’D

2m i im ‘ 2m—

as shown. Neglect the weight of the beam.

caused by the pin at B and the rocker at A | ]

0O SOLUTION ok
ot

The supports are removed, and the free-body ¥
diagram of the beam is shown in figure 600 sin 45° N )
besides. For simplicity, the 600-N force is . .css n] 02m AN
represented by its z and y components as A4 ;r —

shown.

—Ilm—

Equations of Equilibrium. A B,
Summing forces in the = direction yields

+ Y F_ =0, 600cos45 — B, = 0, = B, =424 N

A direct solution for 4, can be obtained by applying the moment

equation » M, =0 about point B.

SoM, =0, 100(2) + 600sin 45(5) — 600 cos 45(0.2) — A (7) =0
= A =319N

Summing forces in the y direction, using this result, gives

+ 1 sz =0, 319—6005in45—100—200+By =0, :By = 405

NOTE: Remember, the support forces in the figure are the result of pins that

act on the beam. The opposite forces act on the pins

O EXAMPLE 3 000N

Determine the support reactions on the member in - £ sy .
4 Il m
1°

the figure. The collar at A is fixed to the member 3 E
S00N - m 2

and can slide vertically along the vertical shaft.
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0O SOLUTION

Free-Body Diagram. Removing the SON

supports, the free-body diagram of the - aed i j i :
X | w m

member is shown. The collar exerts a —\,‘A_'U;a
horizontal force A_ and moment M, on | \?g
the member. The reaction N of the roller

on the member is vertical.

Equations of Equilibrium. The forces A, and N, can be determined directly
from the force equations of equilibrium.

+ EFE =0, A, =0

+1 ) F =0, N, —900=0 = N, =900 N

The moment M , can be determined by summing moments either about point

A or point B.

YoM, =0 M, — 500 + 900((1.5) + (1) cos45) = 0
= M, = —1486 N

orB

Y M, =0, M, +900((1.5) + (1) cos 45) — 500 = 0

= M, = —1486 N
The negative sign indicates that M, has the opposite sense of rotation to that
shown on the free-body diagram.
O EXAMPLE 5

Determine the force in each member of the truss as shown 2m

and indicate whether the members are in tension or

compression.

2m

0 SOLUTION |
Since we should have no more than two unknown forces at the joint and at

least one known force acting there, we will begin our analysis at joint B.
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@Joint B. The free-body diagram of the joint at B is shown. j’;}—\‘*-{“"”
Applying the equations of equilibrium, we have Pt Fa

+ > F =0, 500 — Fpsind5 =0 = Fy, =T07.1N

+1 ) F =0, Fpocos45—Fp, =0 = Fp, =500 N

Since the force in member BC has been calculated, we can proceed —
to analyze joint C to determine the force in member CA and the |:i£ C
support reaction at the rocker. T‘_

@ Joint C. From the free-body diagram of joint C, as shown, we

have

+ Y F =0 —Fg +7071cosd5=0 = F,y =500 N
+T2Fy=0, C, — 707.1sin45 = 0 = C, =500 N

@®Joint A. Although it is not necessary, we can determine the Fpa= 500N
components of the support reactions at joint A using the results _J

— |r.'I 4= S00 ™

of F,,and Fy, . From the free-body diagram, we have

+ Y F =0, 500—A, =0 = A =500N
+T2Fy:0, 500 — A, =0 = A, =500 N
B 500 M
NOTE: The results of the analysis are summarized in last s....N:{:..m N
450 -

figure. Note that the free-body diagram of each joint (or pin)

shows the effects of all the connected members and external

forces applied to the joint, whereas the free-body diagram of -*"'N: A Tension 4 NLUMIN
S00 ar -:;Il‘l‘- ;:I'I L—

each member shows only the effects of the end joints on the Nﬁ.f,g : oA s

member.

0O EXAMPLE 5 400N

Determine the force in each member of the truss shown in B S

the figure. Indicate whether the members are in tension or

compression

0 SOLUTION -4% ‘ e
—3m 3m
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400N C,

Support Reactions. No joint can be analyzed until the l 'fl
1 [
support reactions are determined, because each joint has at
least three unknown forces acting on it. A free-body 4m
diagram of the entire truss is given in the figure. Applying l
A —
the equations of equilibrium, we have 1‘ 6m | ™
A,

+ Y F_ =0, 600—C,=0 = C, =600 N
+T2Fy:0, 600 — 400 —C, =0 = C, =200 N

Y M, =0, —A/(6)+4003)+6004)=0 = A =600N

The analysis can now start at either joint A or C. The choice is
arbitrary since there are one known and two unknown member

forces acting on the pin at each of these joints.

@ Joint A. As shown on the free-body diagram, F,  is assumed

to be compressive and F, ,is tensile. Applying the equations of 600 M

equilibrium, we have

4
+1 Y F, =0, 600 — —F,p =0 = F,, =750 N
+ > F =0, FAD—§(750):O = F,, =730 N

@ Joint D. Using the result for F,;and summing forces in

the horizontal direction, we have P —
4500 D a0

£t > F =0, —450+§FDB+600:0 = Fpp = —250 N

The negative sign indicates that Facts in the opposite
200N

sense to that supposed. To determine F,,,, we can either ien C¥ . 600N

correct the sense of F,,, on the free body diagram, and then N
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apply F, = 0, or apply this equation and retain the negative sign for Fy, i.e.,

4
+1YF =0, —Fy —(=250) =0 = Fp, =200 N
@ \]Olnt C 400 N 200 M
+ SF =0, Fpy — 600 = 0 3123"3‘.. Comprerden E'I:I-glq—ﬂ.lt.-N
= Fgp = 600 N 0N /\‘ 250N 200N
+T2Fy:0, 200 — 200 = 0 '
& N o
& %, £
NOTE: The analysis is summarized in o N i
last figure, which shows the free body \ i
d- .- TS0 N / NG Tj
iagram for each joint and member. / B[ONy, (200N
Tension
Ai— e — s LN
T 450N 450N D
600N
O EXAMPLE 6
o a E

Determine the force in members GE, GC, and BC -li — 400N
L 1 \
Im ]

of the truss shown in the figure. Indicate whether _]_4

B ﬁ C
. - . - - I} -D
the members are in tension or compression. l— 2
|-—-‘4 m—f—4m—}—4 m—l
0 SOLUTION .
1200 N
Section aa in the figure has been chosen since it cuts
— 400 N
through the three members whose forces are to be |

Am

determined. In order to use the method of sections, |4 D
il —

however, it is first necessary to determine the T fm | 4m;[
i D,

t'.'

external reactions at A or D. Why? A free-body : 12000 N

diagram of the entire truss is shown in second figure. Applying the equations

of equilibrium, we have

+ > F =0, 400 — A, =0 = A, =400 N
> M, =0, —1200(8) — 400(3) + D,(12)=0 = D, =900 N
+1T) F, =0, A, —1200 + 900 = 0 = A, =300 N
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For the analysis the free-body diagram of the left portion

of the sectioned truss will be used, since it involves the |

least number of forces. Summing moments about point G l_q

eliminates F,, and F yields a direct solution for Fy, . . HON ]__

> Mg =0,

— 300(4) — 400(3) + Fy,(3)=0 = Fg, :

O
-1m—“—4m—1

300N

In the same manner, by summing moments about point C we obtain a direct

solution for F, .

> Mg =0,

—3008) — Fy(3)=0 = F, =800 N

Since Fy,and F,,have no vertical components, summing forces in the y

direction directly yields F,, i.e.,

3
300 — - Foo =0

0,

+1) F,

= F,, =500 N

NOTE: Here it is possible to tell, by inspection, the proper direction for each

unknown member force. For example, > M, = 0requires

F,, to be

compressive because it must balance the moment of the 300-N force about C.

0 EXAMPLE 7 1000 N
3000 ™ 1000 N
Determine the force in member EB of the roof B YE b
L0600 I f,.
truss shown in the figure. Indicate whether F H D
the member is in tension or compression. A i | c
7 B [
0O SOLUTION | |
—2m | 2m 2 m | 2m—
Free-Body Diagrams. By the method of s T ——
. ] . . 1000 N
sections, any imaginary section that
cuts through EB, as shown, will also 000N 75
S
have to cut through three other 1000N =
. Fep~
members for which the forces are FEY BT
i ae f % 1Ven ~ € Fppcos 3iF
. . . o L
unknown. For example, section aa cuts
T | Fp B T
-—2m | 2m 4m |

4000 N

Fpp sin 30F
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through ED, EB, FB, and AB. If a free-body diagram of the left side of this
section is considered, it is possible to obtain Fy, by

summing moments about B to eliminate the other three

1000 N
unknowns; however, F,,cannot be determined from

E

the remaining two equilibrium equations. One possible g.;;ﬂ.k [ P
Fer Fpp = 3000 N

x

way of obtaining Fygis first to determine Fy, from
section aa, then use this result on section bb, which is e

shown in the figure. Here the force system is concurrent and our sectioned free-
body diagram is the same as the free-body diagram for the joint at E. In order
to determine the moment of Fy, about point B, we will use the principle of

transmissibility and slide the force to point C and then resolve it into its

rectangular components as shown. Therefore,

S M, =0, 1000(4) + 3000(2) — 4000(4) + Fy, sin30(4)= 0

Considerin
= Fpp = 3000 N g
now the free-body diagram of section bb, we have
+ EFw =0, Fpp cos30 — 3000cos 30 = 0 = Fg = 3000 N
+ 1 ZFy =0, 2(3000sin 30) — 1000 — Fp; =0 = Fpp =2000 N

O EXAMPLE 7

Determine the forces acting in the members of the
space truss shown in the figure. Indicate whether

the members are in tension or compression.

0 SOLUTION

Since there are one known force and three unknown

forces acting at joint A, the force analysis of the

truss will begin at this joint.
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@ Joint A. Expressing each force acting on the free-body diagram of joint A

as a Cartesian vector, we have

~

P = —40005, Fap=Fupir  Fac=—Fyck

T AR For

F,,=F, = F,5(0.577% + 0.5775 — 0.577k)

TAE

equilibrium,

Y F =0, P+F p+F c+Fyup =0

= —4000j + F,pj— F,ck+ 0.57TF, ;1 + 0.577TF, .5 — 0.57TTF. k
> F, =0y, 0.577F,, =0 =F,, =0
>.F, =0, — 4000 + F,, + 0.577F,, =0 =F,, = 4000 N

> F, =0, —F,o —057TF,, =0 =F,;, =0

Since F,is known, joint B can be analyzed next.

© Joint B.

1
ZFZ =0, TFBE =0 =Fp, =0

2

1
> F,=0, —4000+ JTEFCB =0 = F,p = 5650 N
1 1

D>F, =0, —2000+ Fy), —EFBE +$FCB =0 =Fp, =2000N

The scalar equations of equilibrium can now be applied to the forces acting on

the free-body diagrams of joints D and C. Show that

Fpp = Fpe = Fop =0
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PROBLEMS

O Determine the magnitude of force at the
pin A and in the cable BC needed to
support the 500-Ib load. Neglect the

weight of the boom AB.

O In each case, calculate the support reactions and then draw the free-body

diagrams of joints A, B, and C of the truss.

o

D

a0 Ik

I ;

a0 Ih

B0 1b

O Determine the force in each member of the truss.
State if the members are in tension or compression.

3 Identify the zero-force members in the truss.

|3kN
2

} 2m

o

sl

F . /"
e
G ,/';"/’ \:‘\ 4n
e \‘\\\
T"m Y
i \ X
A g‘/ ] o
B C n M

I—— 2m— 2m ——2m—

YN
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3- Arthur Stanley Ramsey, Statics A Text-Book, Cambridge University
Press.

4- R. C. Hibbeler, Engineering Mechanics, Statics, 14Edition.

5- S. L. Loney, The elements of Statics and Dynamics, Part I, Cambridge
University Press.
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Mathematical Induction 1 Dr. Saad Shargawy

Mathematical Induction:
is a special method of proof used to prove a Statement, a Theorem,
or a Formula, that is asserted about every natural number.

The natural numbers are the counting numbers: 1,2,3,4,... etc. , also

called positive integers.
Principle of Mathematical Induction:

Let P(n) be a statement involving the positive integer N .

IF the statement is true when n=1, and whenever the statement is true

for n=K , then itis also true for N =Kk +1, Then the statement is true for all
integers N>1.

There is nothing special about the integer 1 in the statement above.

It can be replaced (in both places it occurs) by any other positive integer,
and the Principle still works.

Steps of Mathematical Induction:

(STEP 1): We show that P(1) is true.
(STEP 2): We assume that P(K) is true.

(STEP 3): We show that P(k +1) is true.

As shown in the following examples:
1- Use mathematical induction to prove that:

l+2+3+....+n:@_
Solution: Let the statement P(n) be 1+2+3+....+Nn :—n(n2+l)

(STEP 1): We show that P(1) is true:

1(1+1)

LHS.=1 , RHS.= =1

Both sides of the statement are equal hence P (1) is true.
(STEP 2): We assume that P(K) is true:

k(k +1)

T

(STEP 3): We show that P(k +1) is true:
LHS.=1+2+3+...+k+(k+1)

1+2+3+....+k=

:@+(k+l)

:(k—;l)[mz]

=R.H.S.
Which is the statement P(k +1) .
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L) Mathematical Induction 2 Dr. Saad Shargawy

Then the statement P(n) is true for all positive integers N .
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Mathematical Induction 3

Dr. Saad Shargawy

We can rewrite the solution as follow:

Solution: Let P(n) be 1+2+3+...+n= n(n+1)

1) at n=1:
LHS.=1 , RHS.=

- P(Q) is true.
2 let n=Kk:

1+42+3+....+k =

10+1) _,

k(k +1)

(3)at n=k+1:
LHS. =1+2+3+...+k+(k+1)

=@+(k+l)
(k

;1) k+2]

=R.H.S.
S P(k+1) is true.
Then P(n) is true for all positive integers N .
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Mathematical Induction 4 Dr. Saad Shargawy

2- Use mathematical induction to prove that:
2 N(n+1)(2n+1)
= 5 )

Solution: Let P(n) be 1 +2° + 3% +....+n

1?+22+3%+....+n

2 _ n(n+1)(2n+1)

6
(atn=1: LHS.=12=1 | R'H'S':w:l
- PQ) is true.
(2) let n:k: 12 +22+32 +----+k2 — k(k +l)(2k +1) '

6
B)at n=Kk+1:

LHS. =1 +2°+3 +...+k* +(k+1)° = k(k+1)6(2k 1) +(k +1)*

(k

gl) [k(2K +1) + 6(k +1)]

:@[W K + 6k + 6]
(k

gl)[2k2+7k+6]

gl) [(2k +3)(k + 2)]
_ (k+D(k+2)(2k +3)
6

(k

=R.H.S.
S P(k+1) is true.

Then P(n) is true for all positive integers N .
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Mathematical Induction 5 Dr. Saad Shargawy

3- Prove that (n® +2n) is divisible by 3 for all positive integers .
Solution: Let P(n) be "(n®+2n) is divisible by 3"

D) at n=1:

1° +2(1) = 3 is divisible by 3.

- PQ) is true.

2 let n=K:

"(k® +2K) is divisible by 3"

@ at n=k+1:

K+ +2(k +2) = (k®+3k* + 3k +1) + (2k + 2)
=k®+3k*+5k +3
= (k® +2k) + (3k* + 3k +3)
= (k® +2k) +3(k* +k +1)

(k® + 2Kk) is divisible by 3 from (2), and 3(k® +k +1) is also divisible by 3
2 P(k+1) is true.
Then P(n) is true for all positive integers N .

4- Prove that 2" <nl! for all positive integers N .
Solution: Let P(n) be 2" <n!

1) at n=1:

27 =2=1<1=1

- PQ) is true.

2 letn=Kk:

24T <kt

(@) at n=k+1:

2T <kl = (22 < QK) = Q) <k +)(K) = 2" < (k+1)! ;
2<k+1VkeZ’

. P(k+1) is true.

Then P(n) is true for all positive integers N .



0_Algebra%20I%20Content.pdf
0_Algebra%20I%20Content.pdf
0_Algebra%20I%20Content.pdf
0_Algebra%20I%20Content.pdf
2_Partial%20Fractions.pdf
2_Partial%20Fractions.pdf

Next Content Back

Mathematical Induction 6 Dr. Saad Shargawy

H.W:
1- Use mathematical induction to prove that:
(i) 2+4+6+...+2n=n(n+1).

(i) 1+%+%+...+ 2n1—1 =2- an_l .

2- Prove that (X" —1) is divisible by (X —1) for all positive integers n .
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Mathematical Induction 7 Dr. Saad Shargawy

Exercises:
1- Use mathematical induction to prove that:

(i) 1+3+5+...+(2n-1)=n’
(i) 1+4+7+...+(3n—=2) :@
n(n+1)(n+2)
3
2- Prove that (3n° —n) is divisible by 2 for all positive integers N .

(iii) 2+6+12+....+n(n+1) =

3- Prove that (7" —2") is divisible by 5 for all positive integers n .
4- Prove that (X" —y") is divisible by (X—Y) for all positive integers n .



0_Algebra%20I%20Content.pdf
0_Algebra%20I%20Content.pdf
0_Algebra%20I%20Content.pdf
0_Algebra%20I%20Content.pdf
2_Partial%20Fractions.pdf
2_Partial%20Fractions.pdf

Next Content Back

Partial Fractions 1 Dr. Saad Shargawy

Rational Fraction:
The algebraic formula p(X) = a,Xx" +a,Xx"™" +...+a, is called a polynomial

of a variable X of degree N, the coefficients a,, a,,..., @, are real numbers.
P
q(x)

of these two polynomials is called Rational Fraction,
p(X) the numerator, and q(X) the denominator.

We have two types of Rational Fraction:

1. Proper Rational Fraction.

2. Improper Rational Fraction.

Proper Rational Fraction:

If the degree of the numerator of the rational fraction is less than the degree

of the denominator of the rational fraction, then that fraction is called the proper
rational fraction.

Improper Rational Fraction:

If the degree of the numerator of the rational fraction is equal or greater than
the degree of the denominator of the rational fraction, then that fraction is called
the improper rational fraction. Suppose, the improper fraction is reducible to an
integer added to a proper fraction, then the improper rational fraction can be
reduced as a sum of polynomial and a proper rational fraction.

If p(x) and g(X) are two polynomials, then the ratio

Let us take if is a improper rational fraction, then —— PG) ) h(x) + pl( )
q(x) ax) q(x)
X
Where, h(X) is a polynomial and pl(( )) is a proper rational fraction.
g(Xx

Partial-Fraction Decompaosition
You have added and simplified rational expressions, such as:

2 1  2(x+1)+x 3x+2

X X+1  x(x+1)  xX2+x

Partial-fraction decomposition is the process of starting with the simplified
answer and taking it back apart, of "decomposing" the final expression into
its initial polynomial fractions.
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Partial Fractions y) Dr. Saad Shargawy

Partial-fraction decomposition rules:

The following tables indicates the simpler partial fractions associated to proper
rational fractions.

1- The denominator factor as distinct linear factors:

Form of the rational fraction Form of the partial fractions
f(x) A B
+ +...
(a,x+b)(a,x+h,)... ax+b ax+b,

2- The denominator factor as repeated linear factors:

Form of the rational fraction Form of the partial fractions
) A A LA
(ax+b)~ (ax+b) (ax+Db)? (ax+b)

3- The denominator factor as distinct quadratic factors can not be factored
further:

Form of the rational fraction Form of the partial fractions
f(x) Ax+B N Cx+D
(a,x* +bx+¢)(@x* +b,x+¢,)... | ax®+bx+c  ax’ +bx+c,

4- The denominator factor as repeated quadratic factors:

Form of th? Form of the partial fractions
rational fraction
f(x) AX+B, N Ax+B, - A X+ B,
(@ +bx+c)* | (@ax®+bx+c) (ax®+bx+c)> T (ax®+bx+c)"

In the above tables A,B,C and D are real numbers to be determined suitably.

To decompose the improper fraction:
Divide the numerator by the denominator, and then use the above rules to
decompose the remainder (be proper fraction).
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Partial Fractions ﬂ Dr. Saad Shargawy
Examples:

(1) Express the following in partial fractions:
3X+2

X2+ X

Solution: To decompose a fraction, you first factor the denominator X% + X ,

which factors as X(X +1).
3x+2 A B N 3x+2  A(x+1)+Bx

Ux(X+D) x o x+1 0 x(x+1)  x(x+1)
= 3x+2=A(X+1)+ Bx
=3x+2=(A+B)x+A

For the two sides of the equation "3X+ 2 = (A+ B)x+ A" to be equal,

the coefficients of the two polynomials must be equal.

. 3=A+B
So you "equate the coefficients of X" to get: 5 A

There is another method for solving for the values of A and B :

A=2
B=1

The equation "3Xx + 2 = A(X+1) + Bx " is supposed to be true for any value

of X, we can "pick useful values of X", and find the values for A and B .
Looking at the equation "3X + 2 = A(X+1) + BX ", you can see that,

if X =0, then we quickly find that 2= A , and

if X=—1, then we easily get —3+2=—-B,so B=1.
3x+2 2 1

L—=—t :
X“+X X XxX+1

(2) Express the following in partial fractions:
4x* —3x+5

(x-1)%(x+2)

Solution:
Ax* -3x+5 A B C

(x=1)2(x+2) (x-1) " (x—1)2 " (X+2)
4x* -3x+5  A(X-D(x+2)+B(x+2)+C(x-1)?

(x—1)%(x+2) (x-1)%(x+2)
= 4x% —3x+5= A(x=1)(x+2) + B(x+2) + C(x—1)°.
Pick useful values of X:

X=1=6=3B=>B=2, x=2=27=9C=C=3,

and equate the coefficients of X* to get: 4= A+C =>4=A+3= A=1.
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Partial Fractions 4 Dr. Saad Shargawy

4x* —3x+5 1 2 3

= + + .
(x-D*(x+2) (x-1) (x-1)° (x+2)

(3) Express the following in partial fractions:
X+1

x* +Xx* —6X

Solution: X* +X* —6X = X(X* + X—6) = X(X— 2)(x +3)

X+1 X+1 A B C

3 3 = = 4
X"+ X" —6Xx X(Xx—2)(x+3) X x—-2 Xx+3

- X+1 _ A(x—=2)(x+3)+ Bx(x+3)+Cx(x—2)
X(X—=2)(x+3) X(X=2)(x+3)

= X+1=A(Xx-2)(x+3)+Bx(x+3)+Cx(x—2).

Pick useful values of X:

X=0=>1=-6A=> A:—% ,

X:2:>3:108:>B:i ,
10

X=-3=-2-16C=C=—2
15

X+1 -1 3 -2
X+ X°—6x 6x 10(x—2) 15(x+3)

(4) Express the following in partial fractions:
1

x* -1

Solution: x*—1=(x*-1)(x*+1) = (xX-D(x+D(x* +1)

._.1: 1 :A+B+CX+D
X' =1 (x=D(x+D(x*+1) (x-1 (x+1) (x*+1)

N 1 CAXHD (X +1) + B(x =) (x* +1) + (Cx + D)(x* - 1)
(x=D(x+1)(x*+1) (X =D (x+1)(x*+1)

=1=AX+1D)(X* +1) + B(x=1)(x* +1) + (Cx + D)(x* -1).
Pick useful values of X:

Xx=1=1=4A= A:%

x=—1:>1:—4B:>B:—%,
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and equate the coefficients of x*and x*to get:
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O:A+B+C:>0:%—%+C:>C:O,

O:A—B+D:>O:£+1+D:>D:—1.
4 4 2

o1 1 1
Uxt -1 4(x-1) A(x+D) 2% +1)

(5) Express the following in partial fractions:
X2 +x +1

X% +2x +1

Solution: the given fraction is improper rational fraction, then we divide the

numerator by the denominator:

X2 +2x+1 X2+ x+1

1 X2 +2x+1

—X

CX X+l X
X +2x+1 x> +2x+1 "

We decompose the proper fraction as follow:

X2 +2x+1

X X A B  AXx+1)+B
X+2x+1 (x+1)?  x+1 (x+1)?  (x+1)?
= x=A(x+1) + B.
Equate the coefficients of X and x° (constant terms) to get:
l1=Aand 0=A+B=A=1,B=-1

, X 21 1
UxP+2x+1 x+1 (x+D)7
x2+x+1_1 1 1

S =1- + 5
X" +2x+1 X+1 (x+1)
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(6) Express the following in partial fractions:
X —xP+x*P-x-1
XX —x*+x-1

Solution: the given fraction is improper rational fraction, then we divide the
numerator by the denominator:

=P+ xP—x-1

3x* —3x® +3x% —3x

X2 —x?+x-1

3X+2 2x3 —2x2 +2x-1
2x3 —2x% +2x -2

0O0+0+0+1

X x4+ x*—x-1
=@BX+2)+—4——7-——"7",
X} —x?+x-1 ( ) XX —x?+x-1
We decompose the proper fraction ——————
XT=x"+x-1
XX =2+ x=1=x*(x=1) + (x=1) = (Xx=D(x* +1).

as follow:

_ 1 _ 1 __ A BxsC

T —xPx-1 (x-D(X*+1)  (x-1) (x*+1)

. 1 _ A(x* +1)+ (Bx+C)(x-1)
(x-D(x* +1) (x=D(x*+1)

=1=A(X* +1)+ (Bx+C)(x-1).
Pick useful values of X:

X=1=1=2A=> A:%,

and equate the coefficients of x*and X to get:

O=A+B:>0=1+B:>B:—£,
2 2

i)

O=—B+C:>O=%+C:>C=—%.

_ 11 x4
T3 —xPx-1 2(x-1) 2(x*+1)°
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1 x+1
2(x=1) 2(x*+1)°

O3 x4+ xP—x

x3—x2+x—1_1:(3x+2)+
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Exercises:

Express each of the following in partial fractions:

3x+4 2X+1

) .. Xx+1
) — i) ————— i) ——
()x2+x—6 ()x3+x2+x+1 ( )x3+x2—2x
) 1 x3—2x+2
V) —— V) —— =
( )x4+x2—2 ()x3—2x+1
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Matrices:

A matrix is a rectangular array of numbers (elements), the general form
of a matrix with m rows and n columns is:

&y 8 e &
Ay Ay e a,,
a'ml amz """ amn

We denote such a matrix by (a;),,, or simply (a;), and the type of the
matrix is mxn.

1 -3 4
Examplel: consider the 2x3 matrix {0 5 ZJ'

Its rows are (1,—-3,4) and (0,5,-2) , and its columns are ((1)](_3(_ g
Capital letters A, B,... denote matrices, whereas lower case letters a,b,...
denote elements.
i+] if i<j
Example2: build a matrix A=(a;),., ; &; =4I if 1=]
i—j if i>]
Solution:
A:(all &, aisj , a,=1,a,=1+2=3,a,=1+3=4,

ay, Ay, ayu a,=2-1=1,a,=2,a,=2+3=5
13 4
A= .
125
i+j if i<j
Example3: build a matrix B = (b;)4,5 ; b; =40 if i=]
iZ—j2 if i>j
Solution:
b, b, by, b,=0,b,=1+2=3,b,=1+3=4,
B=|by, b, by|, b,=2°-1=3,b,=0,b,=2+3=5
by by by) b,=3"-1"=8,b,=3"-2=5,b,=0
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0 3 4
B=(3 0 5|
8 5 0

v" Two matrices Aand B are equal, if they have the same number of
rows and the number of columns.

v" A matrix whose elements are all zero is called a zero matrix, and
denoted by 0.

Matrix Addition:

The sum of the two matrices Aand B, written A+ B, is the matrix
obtained by adding corresponding element from AandB .

Note that: A+ B have the same type as Aand B,

The sum of two matrices with different types is not defined.

. I 1 -2 3 . 3 0 -6 4 -2 -3
xample: = ,
0 4 5 2 -3 1 2 1 6

1 -2 0 5 -2). ,
The sum + is not defined.
3 4 1 -3 -1

Properties: For matrices A,B and C (with the same type),
) (A+B)+C=A+(B+C)

(i) A+B=B+A

(iii) A+0=0+ A=A
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Scalar Multiplication:

The product of a scalar k and a matrix A, written KA is the matrix
obtained by multiplying each element of A by k.

£ e 3 1 -2 0 3 -6 0

=ramee (4 3 —3j {12 9 —15)

Matrix Multiplication:

Let Aand B be matrices such that the number of columns of A is equal
to the number of rows of B . Then the product of Aand B, written AB,
Is the matrix with the same number of rows as A and of columns as B,
and whose element in the i_th row and the j th column is obtained by

multiplying the i_th row of A by the j th columnof B.

£ | 1 21 -1 12 -1
xample: = ,
3 4) 5 0 23 -3
1 21 -2 3 B 1 -6 13
3 4\0 4 5) (3 10 29)
4
2 . .
4 —5 1 is not defined ,
6
1 -2 3Y3 0 -6) . .
also is not defined.
0O 4 52 -3 1
Properties:

Matrix Multiplication does,however, satisfy the following properties:
(i) (AB)C = A(BC)

(i) A(B+C)=AB+ AC
(iii) (B+C)A=BA+CA
(iv) k(AB) = (kA)B = A(kB) where k is a scalar.
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Square Matrix: A matrix with the same number of rows as columns
is called a square matrix. A square matrix with n_rows and n_columns

is called an n_square matrix. The main diagonal or simply diagonal of
a square matrix A=(g;) is the numbers a,;,ay,...,,, .

The square matrix with 1's along the main diagonal and 0's elsewhere
is called the unit matrix or the identity matrix and will be denoted by | .
For any square matrix A, Al =1A=A.

1 -2 0
Example: The matrix |0 —4 -1 is 3_square matrix,
5 3 2
the numbers along the main diagonal are 1,—4,2.
1 00
And the matrix |0 1 0] is a unit matrix.
0 01

Transpose: The transpose of a matrix A, written by A' is the matrix
obtainad by writting the rows of A, in order, as columns.

¢ (1 4

E pl L2 3 2 -5
xample: = -51.

4 -5 6 3 6

Properties:
The transpose operation on a matrices satisfies the following properties:

(i) (A+B)' =A"+B'

(i) (A) = A

(iii) (kA)' =kA" , for k a scalar
(iv) (AB)' = B'A'
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Exercises:
1- Build a matrices A=(3;)s,, » B=(b;),s ;

i+] ifi<] . o
) L 2i-1 if i=]
;=1 I ifi=j , b=, . L
C e i+]-2 ifi=#]
i—j ifi>]
1 -4 0 1
2 -1 0
1-If A= ,B=|2 -1 3 -1|.Compute AB
1 0 -3
4 0 -2 O
1 0 2 -11 -4 6
2-1f A=|2 -1 3|,B=| 2 0 -1 /|.Compute AB',
4 1 8 2 1 -1
where B' the transpose of B.
1 2 1 2 -1 1

3-fA=|1 1 -1|,B=[-4 3 -2 |.Compute AB'
1 0 -2 3 -2 1
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Determinants:

To every square matrix there is assigned a specific number called
determinant of the matrix.

We write det(A) or |A| for the determinant of the square matrix A.

Usually a square matrix is said to be singular if its determinant is zero,
and nonsingular otherwise.

Determinants of order two:

a b
The determinant of the 2x 2 square matrix ( dj is denoted and
c

! a b
defined as follows: g ‘ =ad -bc
Example:
4
) 3‘=(5)(3)—(4)(2)=15—8=7,

2 1
‘_4 6 ‘:(2)(6)—(1)(—4)=12+4:16 _

Determinants of order three:

The determinant of the 3x3 square matrix is defined as follows:

a b ¢

az b2 Cz — (_1)1+1a1 bZ CZ +(_1)1+2b1 22 C2 + (_1)1+3Cl a’Z b2
a3 b3 C3 3 3 3 3 3 3
_ b, ¢, b, a, G, ie, a, b,
b3 C3 a3 C3 a3 b3
Example:
2 3 -4

The determinant of a matrix A=|0 -4 2| is:
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2 3 -4
-4 2 0 2 0 -4
0 -4 2|=2 -3 +(~4)
-1 5 15 1 -1
1 -1 5

=2(-20+2)—3(0—2) — 4(0 + 4)
=-36+6-16=-46
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also,
2 3 4 2 3 -4| | 3 -4
0 -4 2|=2 -0 +
-1 5 -1 5 -4 2
1 -1 5

=2(-20+2) + (6-16)
= -36-10=-46
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Linear equations in three unknowns and determinants:
Consider three linear equations in the three unknowns X,y and z:

ax+by+cz=d,
ax+b,y+c,z=d,

a;X+by+c,z=d,
The above system has a unique solution iff the determinant of the matrix
of coefficients is not zero;

& b ¢
D=|a, b, ¢, |#0
a3 b3 C3

In this case, the unique solution of the system can be expressed
as quotients of determinants,

Nx Ny Nz
X= ' y =" I=—=
D D D
Where the denominator D in each quotient is the determinant of

the matrix of coefficients,as avove,and the numerators N, ,N, and N,

are obtained by replacing the column of coefficients of the unknown
in the matrix of coefficients by the column of constant terms:

dl bl c:l a:l. dl Cl a’l bl dl
N,=|d, b, ¢|,N,=la, d, ¢|, N,=la, b, d,
d3 b3 C3 a3 d3 CB a3 bS d3

We emphasize that if the determinant D of the matrix of coefficients
is zero then the system has either no solution or an infinite number of
solutions.
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Example: Solve the following system by determinants.

2X+y—-z=3
X+y+z=1
X—2y-3z=4
Solution:
2 1 -1
D=|1 1 1/=2(-3+2)-1(-3-1)-1(-2-1)=-2+4+3=5 ,
1 -2 -3
3 1 -1
N, =1 1 1|=3(-3+2)-1(-3-4)-1(-2-4)=-3+7+6=10,
4 -2 -3
2 3 -1
N, =1 1 1|=2(-3-4)-3(-3-1)-1(4-1)=-14+12-3=-5,
1 4 -3
2 1
N,=[1 1 1{=2(4+2)-1(4-)+3(-2-1)=12-3-9 =0
1 -2
X = N, =E=2, y=—y=—5=—1, z= N, =—=0
D 5 D D
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Invertible matrices and determinants:

A square matrix A is said to be invertible if there exists a matrix B with
the property that AB = BA =1, the identity matrix,

we call such a matrix B the inverse of A and denote it by A™.
Observe that the above relation is symmetric; that is, if B is the inverse
of A, then A is also the inverse of B.

-11 2 2 1 0 2
Example: The matrix | —4 0 1 |istheinverseof |2 -1 3
6 -1 -1 4 1 8

1 0 2)/-11 2 2 1 00
Suchthat| 2 -1 3 -4 0 11|={0 1 O
4 1 8 6 -1 -1 0 01

Minors and cofactors: Consider an n_square matrix A= (a;) .

Let M denote (n—1)_square submatrix of A obtained by deleting
its i_th row and j_th column.

The determinant ‘Mij‘ is called the minor of the element a;; of A, and

we define the cofactor of a; to be the "signed" minor (-1)"’

M| =4y

(Aij) is called the matrix of cofactors of A, and will be denoted by A.

2 3 -4
Example: Let A=|0 -4 2 |. The cofactors of A are:

1 -1 5
A 8 2‘:_18 __‘o 2‘: 0 —4‘:4
11 _1 5 ' 12 1 5 13 l —l '
A =3 _4‘=—11 A, =4 2 _4‘=14 ——‘2 3‘:5
21 _1 5 ' 22 1 5 ’ 23 l _1 ’
Ay =d] O _4‘=—10 A ‘2 _4‘ PN 3‘——8.
31 _4 2 ' 32 O 2 33 0 _4

—-18 2 4
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The transpose of the matrix of cofactors of A is called the adjoint of A,
denoted adj A= (A)'. And the inverse of a nonsingular matrix A is to be

2 3 -4
For the matrix A= 0 -4 2 | in the above example:
1 -1 5
2 3 -4
IA=[0 -4 2(=2(-20+2)+(6-16)=-36-10=—46 ,
1 -1 5
(’&)t 1 -18 -11 -10
=—— 2 14 -4

A8 s

-8
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Exercises:

1- Compute the determinant of each matrix:

1 2 3 4 -1 -2 2 -3 4
|4 -2 3 o 2 -3 gl . 2 -3
0 5 -1 5 2 1 -1 -2 5
2x+3y—-z=1
2- Solve the following system by determinants: 3x+5y+2z =8
X—2y-3z=-1
2 3 -1 7 -8 5
3- Verify that the inverseof A= 1 2 1 |is|-4 5 -3
-1 -1 3 1 -1 1
2t ifi<j
4- Verify that the inverse of amatrix A=(g;)s,; &; =11 ifi=]
2] ifi>]
-10 2 4

isAl:% 2 -1 0
4 0 -2
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Definition: A complex number is a number consisting of a real and
imaginary part.

Its standard formis z=x+iy ; i=+4/-1, Re(z)=x, Im(z)=Yy.

v The complex conjugate of a complex number z = x+1y, denoted by z
is given by z = X—iy.

v The complex number —z =—X—1Iy is the addition inverse of a complex
number z = X+1iy, and the multiplication inverse of a complex number

0#z=X+iyis 2‘1:1:1_: _X_Iy = );_Iyz .
z 2z (x+iy)(x—=1y) X°+y

Examples: Find Re(z), Im(z), z, —z, z* for each comlex number z
of the following:
1-2i, 2+i, i, 2, —, -1
1+1
Solution: z=1-2i
Re(z)=1,Im(z)=-2,z2=1+2i,-z=-1+2i,

a 1 1+2i 1+2i

7o _ L4

1-2i  (1-2i)1+2i) 1°—(2i)’ 5

v Two complex numbers are equal if their real parts are equal and their
imaginary parts are equal

(i.e. If X, +1y, =X, +1y, Then x, =X, and y, =Y, ).
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The polar form of a complex humber:

z=r(cos@d+isind) is called the polar form of a comlex number
Z =X+1y such that:

Xx=rcosf, y=rsing , r=[z|=x*+y? o=ty
X

6 is called the argument of z, denoted by arg(z) .

The principal argument of z is —7<0<rx
(determined according to in which quarter lies?)
As shown in the following diagram:

r
2
7[_90 l\
quarterll uarterl
Sin+ / All +
- > O 27
0, —r
uarterl\/
quarterlll
Tan+ Cos+
3_;r
2

“ All Students Take Calculus ”

- rad)

( 6, will be one of the famous angles —,—,—,Z .
6 3 4 4

In other words:
v The comlex number z = x+1y lies in quarterl.

v The comlex number z =—x+1y lies in quarterll.
v' The comlex number z =—x—1y lies in quarterlll.
v The comlex number z =X —1iy lies in quarterlV.
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Examples: Write each of the following comlex number z in polar form:

1+i , —v3+i , -1-iv/3 , 1-

1) z=1+i

r=yx2+y2 =1+1=+/2,

. y 1
sing=2=—,
r 2
X 1
cosf=-=——,
ro A2
ano=Y=1_1
X 1
0=
4

.'.1+i=\/§(cos%+isin%).

(2) z=—+3+i
r=yx’+y?=+3+1=2,

sinezlz L

L3+ = 2[cos(5§) +isin(5?ﬂ)].
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(3) z=-1-i3

r=yx’+y?> =41+3=2,
y_-\3

sing=2 ="

~—1-i/3= 2[cos(—%”)+isin(—%”)].

4) z=1-i
r=yx2+y2 =+1+1=+/2,
. y -1
sinf ===—,

roV2
1
cosf=—=—,
V2
tanezlz_—l:—l.
x 1
o=_"
i 1

sl-i= \/E[cos(—%)ﬂsin(—%)].

v H.W:
1- Write the complex nhumber z :1—2_ in the form z =x+1y, and find
+1
Re(z),, Im(z) , z, |7 , arg(z).
4

2- Write the complex number z =

- in the form z = x+1y, and find
—~/3+i
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Re(z), Im(z) , z, 2| , arg(z).
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De Moivre's Theorem: Let z =r(cosé +isind) be a complex number
and n be any real number. Then z" =r"(cosn@+isinné).

Examples:
(1) Using De Moivre's Theorem, find the value of (1+1i)®

Solution:
we put the complex number z =1+1i in the polar form as follows:

r :\/1+1:\/§,9:tan1%:tan11:%

.'.1+i:\/§ cos£+isin£ ,
( 2 4)

S (L+0) = (V2)° (cos% +i sin%)8 =16(cos2z +isin27x) =16.

(2) Using De Moivres™ Theorem, reduce the complex number:

L (c0s20 —isin 26)°(cos36 +isin36)’
(cos46 +isin46)" (cos50 —isin56)°

Solution:

L [cos(-26) +isin(-268)T[cos38 +isin36]’
[cos46 +isin46]"[cos(-50) +isin(-50)T°

, and find its value at ¢ :% .

_ [cos@+isin@] *°[cos +ising]*
[cos@ +isind]*[cos@ +isind)] ™
= (cos@+isind)*? =cos120 +isin126.

and at @ =%: 7= cos(lZ)(%) i sin(lZ)(%) = cos2z +isin2z =1
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(3) Using De Moivre's Theorem, reduce the complex number:

H 5
w , and find its value at @ :% .

(1-itan @)’
Solution:
. sing s
,_ (@it 0)° _ (L4 cpse)
cosé
_ (cos8)?(cos +isin)°®
(cos@ —isin@)’
_ (cosf)?(cosO +isin®)®
(cos@ +ising)”’
= (cosd)*(cosh +isinh)*
= (cos#)’[cos(126) +isin (126)].
andat =2
.

3

7= (cos(%))z[cos(lz)(%) i sin(lZ)(%)] - (7)2[00327z +isin27] :% .

v H.W:
Using De Moivre's Theorem, find the value of (1+iv/3)° , (v/3+i)®
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Chapter 1

Real Functions

One of the important themes in calculus is the analysis of relationships be-
tween physical or mathematical quantities. Such relationships can be described in
terms of graphs, formulas, numerical data, or words. In this chapter we will de-
velop the concept of a function, which is the basic idea that underlies almost all
mathematical and physical relationships, regardless of the form in which they are
expressed. We will study properties of some of the most basic functions that oc-
cur in calculus.

Let us begin with some illustrative examples.

e Thearea A of acircle depends on its radius r by the equation A = 7r?,
so we say that A is a function of r.

e Volume of a sphere depends on its radius by the equation V = %wr?’.

e Surface area of a cube depends on the length of its side by the equation

S = 62>

e The velocity A of a ball falling freely in the Earth’s gravitational field in-
creases with time A until it hits the ground, so we say that A is a function
of A.

This idea is captured in the following definition:

Definition 1.

If a variable y depends on a variable z in such a way that each value of z de-
termines exactly one value of y, then we say that y is a function of x.

In the mid-eighteenth century the mathematician Euler conceived the idea of
denoting functions by letters of the alphabet, thereby making it possible to de-
scribe functions without stating specific formulas, graphs, or tables.

This suggests the following definition:
Definition 2.

A function f is a rule that associates a unique output with each input. If the input
is denoted by z, then the output is denoted by f(z) (read " f of z").

This output is sometimes called the value of f at x or the image of x un-
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der f. Sometimes we will want to denote the output by a single letter, say v,
and write

y = f(z)
This equation expresses y as a function of z. The variable z is called the inde-

pendent variable of f , and the variable y is called the dependent variable of f.

This terminology is intended to suggest that z is free to vary, but that once = has
a specific value a corresponding value of y is determined. For now, we will only

consider functions in which the independent and dependent variables are real
numbers, in which case we say that f is a real-valued function of a real variable.

In the previous definition the term unique means "exactly one". Thus, a
function cannot assign two different outputs to the same input.

For example, the following equation

y=aVz? -9

describes y as a function of X because each input x in the interval —3 < x < 3

produces exactly one output y = zvVz? — 9.

Definition 3.

A function f fromset A toset B (writtenas f : A — B) isa rule of corre-
spondence that associates to each element of A, one and only one element of B.
(A function is also called a mapping from A to B.)

We observe that

e Each element of B need not be in the association, but every element of A
must be involved in it. Hence, a function is a one way pairing process.
(Every element of A pairs off with some element of B but not converse-

ly.)
e One element of A cannot be associated to more than one element of B,
but one element of B may correspond to two or more elements of A.

The correspondence from the elements of set A to set B, shown in Figs 1.1-1.3
represents function(s) whereas that shown in Figs 1.4 and 1.5 does not represent
functions.
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\/

Fig 1.4

Example (1)

For f(z) = 2> — 2z, find and simplify
(@) f(4), (b) f(4+h), (¢) f(4+h)— f(4)

(d) [f(4 + h)

Solution

— f(4)] / h, where h = 0,

fA)=4-24)=16-8=38

fld+h) =

f(4+h)

[f(4+h) —

(4 + h)? —

2(4 + h)

=(16+8h+h2)_(8+2h)
=8+ 6h + I’

— f(4)=846h +h* -8
= 6h + b’

F@)1/ h=

(6h+h?) / h=6+h

NN
[
) U



Domain and Range of a Function

Definition 4.

Let f beafunction fromset Atoset B (f: A — B), then
e The (entire) set A is called the domain of f.
e The (entire) set B is called the codomain of f.

e Anelement y of B that corresponds to some element z of A is denoted
by f(x), and itis called the image of = under f.

e The set of all images constitute the range of f. The range of f is denoted
by f(A) and it is a subset of set B. In other words f(A) C B.
Definition 5.

If y = f(x)then the set of all possible inputs (z -values) is called the domain of
f , and the set of outputs (y -values) that result when x varies over the domain is
called the range of f.

For example, consider the equations

y=2x
and

y=a> z>2

In the first equation there is no restriction on z, so we may assume that any real
value of z is an allowable input. Thus, the equation defines a function f(z) = z

with domain —oo < z < co. In the second equation, the inequality z > 2 re-
stricts the allowable inputs to be greater than or equal to 2, so the equation de-

2

fines a function g(z) = 2%, x > 2 with domain 2 < z < occ.

As z varies over the domain of the function f(z) = 22, the values of y = 22

vary over the interval 0 < y < oo, so this is the range of f. By comparison, as
« varies over the domain of the function g(z) = z% 2 > 2, the values of y = 2
vary over the interval 4 < y < o0, so this is the range of ¢ . It is important to
understand here that even though f(z) = 2% and g(x) = 2*,z > 2 involve the

same formula, we regard them to be different functions because they have differ-
ent domains. In short, to fully describe a function you must not only specify the

4



rule that relates the inputs and outputs, but you must also specify the domain, that
IS, the set of allowable inputs.

Example (2)
Find the domain of :

z) = 2° b) f(z) = 1
@ ) ) @)= 5

(€) f(z) =tanz (d) f(x) = Ja? — 5z +6

Solution
(a) The function f has real values for all real z, so its domain is the interval
(—00,00).

(b) The function f has real values for all real x, except z = land =z = 3,
where divisions by zero occur. Thus, the domain is
{12z € Rz = landz = 3} = (—oq,1) U(L,3) U(3,00).

sin x

(c)Since f(z) = tanz = , the function f has real values except where

COST

cosz = 0, and this occurs when z is an odd integer multiple of g Thus,

the domain consists of all real numbers except z = 5 %ﬂ %ﬂ

(d) The function f has real values, except when the expression inside the rad-
ical is negative. Thus the domain consists of all real numbers z such that

2? — 52 4+ 6 = (z — 3)(x — 2) > 0. This inequality is satisfied if z < 2
or x > 3, so the natural domain of f is (—o0,2] U[3,00).

Example (3)

Find the domain and range of

@ f@)=2+Vz—1 (b) flz) = 21

—_

Solution
(@) The domain of f(z) is [1,00). As x varies over the interval [1,00), the value

of ¥z — 1varies over the interval [0,00), so the value of f(z) = 2 + vz — 1 var-
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ies over the interval [2,00), which is the range of f(x).

(b) The given function f(z) is defined for all real = = 1, so the domain of f(x)
IS (—oo,1) U (1,00). To determine the range it will be convenient to introduce a
dependent variable

z+1
z—1

y:

we solve (*) for x in terms of

zy—y=x+1
y—r=9y+1
2y—1)=y+1
oo Ul
y—1
So, the range of the function f(z)is (—oo,1) U (1,00).
Example (4)
Find the domain for ¢(t) = Jo—#2 .
Solution

Here, we must restrict ¢ so that 9 — 2 > 0, in order to avoid nonreal values

for V9 — ¢2 . This is achieved by requiring that t> < 9 or —3 < ¢ < 3. Thus,
the domain of ¢(t) is {t € R : —3 <t < 3}. In interval notation, we can write
the domain as [—3,3].

Example (5)

Determine the domains of the functions

@y=vi—a? 0)y="a? 16 () y= ——

T —2

)y =

©y=—0
22 —9 72 +4

Solution

a. Since y must be real, 4 — 2> > 0 or 22 < 4. The domain is the interval
6



—2<zx<2.

b. Here, 2> —16 > 0, or 2> > 16. The domain consists of the intervals
x> 4and z < —4.

c. The function is defined for every value of z except 2.

d. The function is defined for x = +3.

e. Since z? + 4 = Ofor all z, the domain is the set of all real numbers.
Example (6)
Determine the domain of each of the following functions:

@y=a*+4 ) y="al+4 @ y="al —4 @ y=—

+3

2x 1 2 —1 x
©v=ory M= @v=T =

Solution

(@), (b), (9) all values of z (c) |z| >2 (d) z =3 () z = —1,2 (f)
3<z<3 (ho<z<2.

Example (7)

Find the domains and ranges of the following functions:

r—1 if0<z<1

2x ifx >1

@ﬂ@—xﬂlwﬂ@—{

() f(z) =|=|= the greatest integer less than or equal to z

@y—xj@wm—wﬁawm=4@

@ f(z)=|z—3| () fla) =4 /2 () f(z) =|z|/ =

z ifz >0

s == Jaf 0 s =5 177G

Solution
(a) domain, all numbers; range, y <1
(b) domain, z > 0; range, —1 <y < 0or y > 2
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(c) domain, all numbers; range, all integers
(d) domain, =z = 2; rangey = 4

(e) domain, all numbers; range, y < 5

(f) domain, z > 0; range, y < 0

(g) domain, all numbers; range, y < 0

(h) domain, z = 0; range, y = 0

(i) domain, x = 0;range, y = —1,1

(j) domain, all numbers; range, y < 0

(K) domain, all numbers; range, y > 0

Example (8)
Find the domains and ranges of the following functions:
[z +2 if—1<x<0b 21w
@FD=1.  to<ae<1 OTD=1,
'xz —1
if 2
© f@)=1z-2 ""7
4 ife =2
Solution

(a) domain = (—1,1], range = [0,2)
(b) domain = (0,2) U [3,4], range = (0,3)
(c) domain and range = set of all real numbers

Types of Functions
(A) One-One Function

Hfo<x <2
if3<z<4

A function is one-one provided distinct elements of the domain are relat-
ed to distinct element of the range. In other words, a function f: A — B

is defined to be one-one if the images of distinct element of A under f
are distinct, that is, for every a,,a, € A, f(a,) = f(a,) = a, = a,.
[It also means that, f(a,) = f(a,) = a, = a,]. A one-one function is al-

so called injective function (Figure 1.6 and 1.7).



Fig. 1.6 Fig. 1.7

(B) Many-One Function
If the range of the function has at least one element, which is the image
for two or more elements of the domain, then the function is said to be
many-one function (Figure 2.8a and b). It means that there is at least one

pair of distinct elements, a;,a, € A, suchthat f(a,;) = f(a,) though
a, = a,. A constant function is a special case of many-one function
(Figures 1.8 and 1.9).

Fig. 1.9 Constant function
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(C) Onto Function
A function f: A — B is called an onto function if each element of the
codomain is involved in the relation. (Here, range of f = codomain B.)
In other words, a function f : A — B is said to be onto if every element
of B is the image of some element of A, under f, that is, for every
b € B, there exist an element a € A such that f(a) = b (Figure 1.10
and 1.11). Onto function is also called surjective function.

A B A f B

-
—
I
|

Fig. 1.10 Fig. 1.11
(D) Bijective Function (or One-to-One Correspondence)
The most important functions are those which are both one-one and onto.
In a function that is one-one and onto, each image corresponds to exactly
one element of the domain and each element of codomain is involved in
the relation as shown in Figure 1,12. Such a function is also called one-
to-one correspondence or a bijective function.

A f B

One—one and onto function

Fig. 12
Example (9)

Consider the function y = f(z) = 2. Here, for every value of = € R, there
corresponds a single value of ¥, and, conversely, to each y € R, there corre-

sponds a single value of x given by z» = i’,@ Therefore, f specifies a one-to-
one mapping, from R onto R.
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Example (10)
Consider the function y = g(z) = x*. Here, for every value of z € R, there
corresponds a single value of y € (0,00). However, to every y > 0, there corre-

spond two values of z : x = ++/y . Therefore, " ¢ " is not one-to-one corre-
spondence.
Example (11)

Consider the exponential functiony y = f(z) = e”. It can be shown that the
function y = f(x) = e”is one-to-one mapping from (—oo, c0)onto (0,~c). Note
that for z; = z,, we have e” = e", where z,z, € Rx1,,and ¢",e™ € R .
Consider €™ /e™ =1 =" ™ = lor " ™ = ¢° (since e’ = 1)

r, —z, = 0 =z, = x,. Inother words, e™ = e™ = z, = z,. Thus,

T, = ¥, < e = e". Therefore, " f" defines a one-to-one correspondence
from (—oo, 00)onto (0,00).
Classification of Functions

Even and Odd Functions
(1)  Afunction is an even function if for every z in the domain of f

f(=z) = f(z).
(i) A function is an odd function if for every z in the domain of f
f(=z) = =f().

Example (12)

I. A polynomial function of the following form is an even function:

f(x)=a,+ax’+ax*+---+ax”
Observe that the power of X in each term is an even integer.
1. We have , that cos(—x ) =cosx for allX . Thus, the cosine function is an
even function.

[11. A constant function is always even (why?).

Example (13)

. It can be easily verified that the functions f (X) =X and f (X ) =X >are

odd functions. In fact, any polynomial function in which the power of each
term is an odd integer is an odd function.

I1. We have for all X , Sin(—x ) =—sinX and tan(—x ) = —tanXx . Thus, the
11



sine and the tangent functions are odd functions.
Note

The property of functions whether even or odd is very useful. In particular, it
helps in drawing graph of such functions.

Definition 6.

A function f :IR — IR is said to be periodic, if there exists a real number
p(p #0) suchthat f (x +p)=f (x) forallx e R.

Period of a Periodic Function

If a function f is periodic, then the smallest p > 0, if it exists such that

f (x +p)=f (x) forall X ,is called the period of the function.

Obviously, the period of the sine and cosine functions is 27 . It can be shown
that the period of the tangent function (and that of the cotangent function) is 7z .

Remark

Aperiodic function may not have a period. Note that a constant function f is peri-
odicas f (x +p) =T (x)=constant for all p > 0, however, there is no smallest

p > O for which the relation holds. Hence, there is no period of this function,
though it is periodic by definition.
Algebraic operation on functions

Functions are not numbers. But, just as two numbers a and b can be added to
produce a new number (a + b), two functions f and ¢ can be added to produce

a new function (f + g). This is just one of the several operations on functions.
(a) Sums, Differences, Products and Quotients of Functions

Let f and g be functions. We define the sum f + g, the difference f — g,
and the product f.gto be the functions whose domains consist of all those
numbers that are common in the domains of both f and g and whose
rules are given by

(f +9)(@) = f(z) + g(x)
(f — 9)(z) = f(x) — g(x)
(f-9)(x) = f(z).9(x).

In each case, the domain is consisting of those values of x for which both
f(x)and g(x)are defined.
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Next, because division by 0 is excluded, we give the definition of quotient

f

of two functions separately as follows: The quotient =is the function
g

whose domain consists of all numbers z in the domains of both f(z) and
g(x) for which g(z) = 0, and whose rule is given by

Ligy =19 gy = 0
g g(z)
Example (14)

Let f(z) = 1 and g(z) = \z . Find the domain and rule of f+g.
X

Solution
The domain of fis z € R:x = 0 and the domain of g(X)
reER:2>0 .

The only numbers in both domains are the positive numbers, which constitute the
domain of f + g.

For the rule, we have
(f +9)(=) = f(z) + g(z) =§+\/;, z > 0.

Example (15)
Let f(z) = V4 — z® and g(x) = ¥z — 1. Find the domain and rule of f- g.

Solution:

The domain of f(x) is the interval [—2,2] and the domain of g(z) is the interval
[1,00). The domain of f- g = [—2,2]N[l,00) = [1,2]. The rule of f- ¢ is given
by

(f-9)(x) = f(z).9(z) = N4 — 2’z —1
=\/(4—x2)(x—1) for 1<z<2

Caution

This example illustrates a surprising fact about the domain of functions combi-
nation . We found that the domain of f(x)- g(z)is the interval [1,2]. Now observe
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that the expression \f(4 — %) (x — 1) is also meaningful for z in (—oo,—2].

This is true because (4 — z°)(z —1) > 0 =z < —2. However, (—oo,—2] can-

not be considered a part of the domain of f(z).g(z). By definition, the domain of
the resulting function f(z) - g(x)consists of those values of z common to do-
mains of f(z) and g(z). Itis not to be determined from the expression (or the

rule) for f(z).g(x).

Similar comments hold for the domains of f(z) + g(z)and f(x) — g(x).

For the domain of f(z) / g(x), there is an additional requirement that the values
of z, for which g(z) = 0, are excluded.

Example (16)

Let f(x) =« + 3 and g(z) = (z — 3)(x + 2). Let us find the domain and rule

of f(z) / g(x).

Solution

Observe that the domains of f(x) and g(x)are all real numbers, but g(x) = 0, for
r =3 and x = —2. It follows that the domain of f(z) / g(x)consists of all real
numbers except z = —2 and x = 3. The

rule of f(z) / g(x)is given by
(i) f(x) r+3

T = = for t = —2and z = 3
g g(z)  (z—-3)(z+2)
Note

We can add or multiply more than two functions. For example, if f,g, and h are
functions, then for all z common to the domains of f, g, and h, we have (

(f + 9+ h)z = f(z) + g(z) + h(z) and (f.g.h)z = f(z).g(z).h(z).
(b)Composition of Functions

Given the two function f and g, the composite function denoted by (
g o f)is defined by

(9 © ))(@) = g(f(x))
and the domain of g(f(z))is the set of all numbers z in the domain of f
such that f(z)is in the domain of g(x). The definition indicates that when
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computing (f o g)(z), we first apply ¢ to = and then the function fto
g(z). We write

(f ° 9)(z) = f(g(z))
Example (17)

t—3 and g(z) = Ja . We may composite them as follows:

Let f(z) =

I (g0 f)(z) = g(f(z)) = g ) =

I (f o g)(z) = f(Nz) =

Remark

Note that (g o f)(z) = (f o ¢)(x)). Thus, composition of functions is not
commutative, (g o f)(x)and (f o g)(x) are usually different.

Domain of a Composite Function

We must be more careful in describing the domain of a composite func-
tion. Let f(x) and g(z) be defined for certain values of x. Then, the do-

main of (g o f)(z) is that part of the domain of f(x) (i.e., those values of
x X) for which g can accept f(x) as input. In the above example, the do-

main of (g o f)(z)is [3,oo , since & must be greater than or equal to 3 in
r—3

order to give a nonnegative number for g to work on.

Example (18)

Consider the function ¢(z) = vz + 7.
We can express ¢(z) as the composition of the two functions g(z) and

f(x), givenby f(z) = 2° + 7and g(z) = Vz.
Now, we have ¢(z) = (g o f)(2) = g(f(z)) = g(a® +7) =Na® + 7

Next, we can also express ¢(z)as the composition of another pair of func-
tions g and f given by f(z) = 2% and g(z) = Vz + 7.
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Consider ¢(z) = (g o f)(z) = g(f(x)) = g(z*) = g(Nz* + 7).
Example (19)

1
Va® + 3 |

Express ¢(z) as the composition of two function f and g in two ways:

Given ¢(z) =

(i) The function f containing the radical.
(if) The function g containing the radical.

Solution

To solve such problems, it is necessary to develop the ability of decompos-
ing the given function into composite pieces.

l. We choose f(z) = and g(z) = 2°.

1
N
Now, 0(a) = = )(2) = floe)) = f=) = —

(Observe that to express f (g (X)) first we insert the expres-
sion for g (X ) and obtainf (t) , where t stands forg (X ).
Next, we write the expression for f (t) and replace t by

g(x))

Il. Now, we choose f(z) = 1 and g(x) = No* + 3. Then,
T
1

N
(Here again, to express T (g (X)), first we insert the expres-
sion for g (X )and obtain f (t), where f (t) stands for
g (X ). Now we look at the expression for f (t), which sug-
gests that we must take the reciprocal of 1.)

Example (20)

¢(z) = (f 0 9)(z) = flg(z)) = f(N2* +3) =

Let f(z) = vz —1 and g(z) = 1 . We shall determine the functions
T
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gofand fog,andthenfind g(f(5)) and f f(g(i))

Solution
The functionis (g of )(x) given by
1

vz —1

[1,00) . Therefore, the domain of g o f consists of those numbers zin
[1,00) for which g can accept f(x)as input. This demands that

(go f)(z) = g(f(z)) = gNz —1) = . The domain of f(z)is

1

g[\/x—l]:\/xl—l

Therefore, the domain of g o f is (1,00).

must be defined, which requires that = = 1.

The rule for f o gis given by

1 1
(fog)(z) = flg(z)) = f(;) =\ —1
The domain of g(x)is the set of nonzero numbers, that is(—oo,0) U (0,00)
Therefore, the domain of f o g consists of those numbers X in the above

domain for which f can accept g (X) as input. This demands that

f(l) = «/l — 1 must be defined.
T T

. 1 1
It requires thatl —1> 0= = > 1(z must be positive with — > 1).
T T T

So, The domain is (0,1].

Inverse Function f!
If a function "f " is one-to-one and onto, then the correspondence associating
the same pairs of elements in the reverse order is also a function. This reverse

function is denoted by f~*, and we call it the inverse of the function f . Note
that, f~'is also one-to one and onto. See figure 1.13

Remark

A function f has an inverse provided that there exists a function, f~!such that

. the domain of #'is the range of f

. f(z) = y ifand only if f~!(y) = x forall X in the domain of "f "and

17



forall y in the range of "f ",

Note
Not every function has an inverse. If a function f : A — B has an inverse, then

f~1: B — Aisdefined, such that, the domain of £ 'is the range of f , and the
range of £~ 'isthe domain of f , associating the same pairs of elements.

f:A>B fiB—>A
One—one and onto One—one and onto

Fig. 1.13

It can be shown that if f has an inverse, then the inverse function is uniquely
determined. Sometimes, we can give a formula for f~*. For example
y = f(z) = 22, then z — f1(y) = %y Similarly, if y — f(z) = 2° — 1, then

z = f'(y) = Vv’ + 1. In each case, we simply solve the equation that deter-
mines X intermsof y . The formulain y expresses the (new) function f!.
We cannot always give the formula for f~1. For example, consider the function

y = f(z) = #° + 22 + 1. It is beyond our capabilities to solve this equation for

X.
Note that, in such cases, we cannot decide whether a given function has an in-
verse or not.

Fortunately, there are criteria that tell whether a given function y = f(z)has an
inverse, irrespective of whether we can solve it for X .

In this notation, the letter X stands for the independent variable and the letter y

the dependent variable for both the mutually inverse functions. Thus the func-

18



tions y =X % and y = f/x_ , represent a pair of mutually inverse functions. Al-

so Yy =10" and y =log,, X are mutually inverse functions.

There is a simple relationship between the graphs of two mutually inverse func-
tions y =f (x) and y =f (X)) . They are symmetric with respect to the line
Yy =X (see Figure 1.14 and 1.15).

Fig. 1.15
In the case of simple functions (like linear functions, etc.) there is a three-step
process that gives a formula for the inverse.
Step (1): Solve the equation y = f(x)for X, interms of y .

Step (2): Use the symbol f~!to name the resulting expression in y .
Step (3): Replace y by X to get the formula for f~'(z).

19



Example (21)
Consider the function y = f(z) = 3z — 2, x € R, and let us find its inverse

function.

Solution

Step(1): y = f(x) =3z -2 =z = yTH

Step (2): /1(y) = L1

Step (3): /(@) = 1

Example (22)

Let us find the formula for f~'(z)if y = f(z) = : °
— T

Step (1): y = f(z) = —— = 2= —2—

1—=z _1+y
Step (2): /() = - W= D
Step (3): /(2) = - i ~(z = 1)

20



Algebraic Functions and Their Combinations
(a) Constant Function:

A function of the form f(z) = a, where "a " is a nonzero real number

(i.e.,, a = 0), is called a constant function. The range of a constant func-
tion consists of only one nonzero number.

(b) Identity Function:

The function f(z) = z is called the identity function . The range of iden-

tity function is all real number. From the functions at (a) and (b) above, we
can build many important functions of calculus: polynomials, rational
functions, power functions, root functions, and so on.

(c) Polynomial Function:

Any function, that can be obtained from the constant functions and the
identity function by using the operations of addition, subtraction, and mul-
tiplication, is called a polynomial function. This amounts to say that " f(z)

" is a polynomial function, if it is of the form
f(@)=a 2" +a, 2" " +.. .+ a2’ +az+a,

where a,,a ., 0y, 0,0, are real numbers (a, = 0)and n isa

ST
nonnegative integer. If the coefficient a, = 0, then "n " (in 2"), the

nonnegative integral exponent of z, is called the degree of the polynomial.
Obviously, the degree of constant functions is zero.

I. Linear Function: Polynomials of degree 1 are called linear functions.
They are of the form f(z) = a,z + a,, with a; = 0. Note that, the

identity function [ f(x) = z] is a particular linear function.

1. f(z) = a2:1:2 + a,z + a,is a second degree polynomial, called a

quadratic function. If the degree of the polynomial is 3, the function
is called a cubic function.

I11.Rational Functions: Quotients of polynomials are called rational
functions. Examples are as follows:

(@) :x—12, fz) =% +\5z; f(z) = 933;_2‘”6”
_ 2 4+ —2
f(x)_a:2+5:c—6.
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Example (23)

2 J—
Let f(z) = £ T2 =2 Find the domain of f.
2> + 51 —6
Solution
We have z? 4 5z — 6 = (z — 1)(z + 6). Therefore, the denominator is 0 for

x =1 and z = —6. Thus, the domain of f consists of all numbers except 1
and —6.

Remark

Sometimes, it may happen that both the numerator and the denominator have
a common factor. For example, we have 22 +z —2 = (z — 1)(x + 2), and
2?4+ 515 — 6 = (v —1)(z + 6). So, we have

o) — 2t o —2 :(x—l)(x—i—Q)
) 56 @-D@+o)

T+ 2
r+ 6

which may be simplified to read , provided = = 1. Note that, while the ex-

T+ 2

pression is meaningful for z = 1, the number 1 is not in the domain of

x4+ 6
function f. (This again suggests that the domain of a combination of functions

must be determined from the original description of the function(s), and not from
their simplified form.)

(d) Power Functions

These are functions, of the form f(z) = z*, where « is real number. Ex-

amples are AL e I e I 3

(e) Root Functions
I. Square root function

Consider the relation y? = . We write itas y = Nz or y = z'/2

and call it the square root function of z. We know that there is no
real number whose square is a negative number. Hence, we define

square root function f(x) = Jz that assigns to each nonnegative
number z the nonnegative number f(x). We emphasize that

22



f(z) = Jz is defined only for > Oand that f(x) > 0, for all
x > 0. Accordingly, it is meaningful to write \/g,\/l /3 ,and Jo,

and so on, but ¥—5 has no meaning. Furthermore, while V4 = 42,
we write V4 = 2 and we never write V4 = —2.
I1. Cube Root Function

Consider the relation 3° = z. We write itas y = ¥z or y = 2'/3,

and call it the cube root function. It assigns to any number z, the

unique number y such that y® = z. Of course, our interest lies only

in real roots. In contrast to the square root function, the cube root
function has in its domain all real numbers, including negative num-

bers. For example, Y-8 = -2, Y1 =—1and

327 /64 = —3 /4. Similarly ¥/8 = 2; ¥—125 = -5, and

Y125 = 5. Thus cube root of any negative number is a negative

number and that of any positive number is a positive number.
[11. nth Root Function

We note that cube root function " f(x) = ¥z "is defined for all real
numbers z, whereas square root function " f(z) = Jz " is defined

only for z > 0 with the understanding that Vo >0 (i.e., only
nonnegative square roots are accepted). By extending these concepts
to the roots of higher order, we get that if n is odd, then nth root

function Q/E is defined for all real numbers, and on the other
hand, if n is even, then "% is defined only for z > 0
Note

In view of the above, the expressions¥/—1; ¥—32 and ¥—128 are

meaningful, whereas the expressions V-1; ¥Y-64;and -9 /4
are meaningless. For every positive integer n, we also have

Y1=1% =o.
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Non-algebraic Functions and Their Combinations
I. Trigonometric functions
Let a point p(x,y) moves along a circle perimeter with radius 7 = 1 and
6 is the angle that the revolving line OP makes with the x-axis (see figure
1.16). Then, we can define the sine and cosine functions of @ by:

. T
sinf = =, cos = <

P(cos@.sinb)

5 5
x°+y- =l

Fig. 1.16
Here , it is important to keep in mind that the angle # can be of any mag-
nitude and sign. Therefore, the terminal side OP can be in any quadrant.
Thus, the angle # that the revolving line makes with the x-axis need not
be acute. However, we define the trigonometric function of the angle ¢
with reference to the right-angled triangle in which the revolving line (as
hypotenuse) makes the angle 6 with the x-axis. Obviously, § may be
acute or obtuse or negative.
There are four other basic trigonometric functions that are defined in terms
of sinf and cos#, we define

tanf = sin 0 , cotf = c‘osﬂ
cos sin 6
1
secl = , cosect = —
cos 6 sin 6

The values of these functions can be quickly computed from the corre-
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sponding values of sin# and cos#.
Properties of trigonometric functions
1. Sine function
Sine function has the following properties(Fig. 1.17)
a.sin: R— R

b. Its domain is R and its range is [—1,1]

c. It is periodic function with period 27, that is
sin(f + 27) = sin 6.

d. It is odd function, that is, sin(—z) = —sinz.

e. Sine function is not one-to-one function.

y=sinx

3Ir

-"
! 3 :
/--\_f[_% %-\ﬂ 5 ;
2 _3g Nl 0z N1/

Fig. 1.17
2. Cosine function

Cosine function has the following properties (see Fig. 1.18)
a.cos: R— R
b. Its domain is R and its range is [—1,1]
c. It is periodic function with period 27, that is
cos(z + 2m) = cosx .
d. It is even function, that is, cos(—x) = cos .
e. Cosine function is not one-to-one function.

y=COSX

AN 7 B 2Tf/TZ}\ “
D NN CANZanan




3. Tangent function
Tangent function has the following properties (see Fig. 1.19)

a. tan:R—{kw+g}—>R,k€Z.

b. Its domain is R — {km + g}, k € Z anditsrangeis R .

c. It is periodic function with period 7, that is tan(z + 7) = tanx.
d. It is odd function, that is, tan(—z) = —tanz.
e. It is not one-to-one function.

y =tanx AY

Y =

l»)|\|
s

Fig. 1.19
4. Secant function
Secant function has the following properties (see Fig. 1.20).

a sec:R—{kw+g}—>R,keZ.

b. Its domain is R — {km + g}, k € Z and its range is

(—o0,—1] U [1,00).
c. It is periodic function with period 27, that is
sec(x + 2m) = secz.
d. It is even function, that is, sec(—z) = secx.
e. It is not one-to-one function.
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¥ =secx

(TP

>NN

Fig. 1.20

5. Cosecant function
Cosecant function has the following properties (see Fig. 1.21)

a. cosec: R—{kr} - R ke Z

b. Its domain is R — {kr}, k € Z and its range is
(—o0,—1] U [1,00)

c. It is periodic function with period 27, that is
cosec(x + 2m) = cosec .

d. It is odd function, that is, cosec(—z) = —cosec x.

e. It is not one-to-one fynction.

y )y =cosecx
A

Y

Fig. 1.21

6. Cotangent function
Cotangent function has the following properties (see Fig. 1.22).
a.cot: R—{kn} - R k € Z.

b. Its domain is R — {kn}, k € Z and its range is R.
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c. It is periodic function with period 7, that is cot(z + m) = cotx .

d. It is odd function, that is, cot(—x) = —cotz.
e. It is not one-to-one function.
¥ =cotx
“‘\ K
—T 0 Eﬂ' >
Fig. 1.22

Some Values of Trigonometric Functions

T T T T 27 3z S5z
X 0 — — — = — — — T
6 4 3 2 3 4 6
sinx O E Q ﬁ 1 ﬁ Q E 0
2 2 2 2 2 2
cosx 1 ﬁ vz 1 0 1 —ﬁ —ﬁ -1
2 2 2 2 2 2

sin(x +7z)=—-sinx

Cos(X + ) =—CosX

Trigonometric ldentities

2r =1

2 1+ tan’z = sec’x

3. 1+ cot?x = cosec? z

4. sin(z + y) = sinzcosy + sinycosx

1. sin®z + cos

5. cos(x £ y) = cosxcosy Fsinzsiny

6 tan(z + y) — tanz 4 tany

1 F tanztany
28



7. sin2x = 2sinx cosx

2 2

r=1-—2sin’z =2cos’z — 1

8. cos2r = cos”z — sin
. 9 1 —cos2z
9. sin“x = ——
2
9 14 cos2z
10. cOS" T = ————
2
: 1. . :
11, smxcosy:5[81n(x—|—y)—|—sm(x—y)]
. . 1
12 smxsmyzé[cos(x—y)—cos(x%—y)]
1

13. COSTCOSY = i[cos(x + y) + cos(z — y)]

I1. Trigonometric Functions (With Restricted Domains) and Their In-
verses

We begin with the sine function y =SinX , whose graph appears in
Figure 1.17. Observe from the figure that the sine function is strictly in-

creasing on the mterval{—;,z} . Consequently, the function

f (x)=sinx , for which

. /A
f (x)=sinx, X e[—??}

IS one-to-one, and hence it does have an inverse in this interval. The graph

of is sketched in figure 1.23. Its domain is [—%,%} and its range is

[—1,1] . The inverse of this function is called the inverse sine function.
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y=sinx

.
~
.
~
~
)
1
‘I
’
-
-~
-
.=
’I
.
-“"
L=
Y =
Y =

: ; 0
L) Y |
\ __ﬂ. / ﬂ. \ ] I l
\“ . - . _;ﬂ': 3”
\‘ \~~ I
|
______________ _]
; . T | ; ; [ = =
Domain restricted to {_T’Ti f(x)=sinx, x ’c[—:,;
Fig. 1.23

1 . Inverse Sine Function
The inverse sine function, denoted by sin ! is defined by

y=sin"'z,ifandonlyif z = siny and y € [_g,g],
The domain of sin~' z is the closed interval|—1,1] and the range
is the closed interval _E’Z (see Fig. 1.24).
Ay
in

) 0 :

_|] 1 -

____________ 1 - y=sinlx

Fig. 1.24
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Remarks

.1 s . T
sin (—1) = —— as sin(——) = —1.
(1) =~ as sin(~ )

sin 1(0) = 0 as sin(0) = 0
Sinfl(l) =T assinl = 1
26 6 2
sin () = +7 as sin(+5) = £,
20 4 4 2

.1 v . T
sin” (1) = — as sin(—) = 1.
(1) = 7 as sin(7)
The use of the symbol "-1" to represent the inverse sine function

makes it necessary to denote the reciprocal of sinz by(sinz)™' | to

avoid confusion.
A similar convention is applied when using any negative exponent

with a trigonometric function. For instance, = (tanz)!
tanz
1 -1
= (cosz) "~ and so on.
COST

The terminology arc sine is sometimes used in place of inverse sine,
and the notation arc sine is then used instead of sin 'z .

. Inverse Cosine Function
The graph of cosine function Yy =COSX , appears in Figure 1.18.

Observe from the figure that the cosine function is strictly decreas-
ing on the interval [0, 7] . Consequently, the function
f (Xx)=cosx , for which

f (x)=cosx, x €[0,7]
IS one-to-one, and hence it does have an inverse in this interval. The
graph of is sketched in figure 1.25. Its domain is [O, 72] and its
range is [—1,1] . The inverse of this function is called the inverse
cosine function.
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Domain restricted to [0,7] F ) =cosx.x€ [O"T]

Fig. 1.25
The inverse cosine function, denoted by cos !z , is defined by
y =cos 1z ,ifandonlyif z = cosy and y € [0,71’] . The do-
main of cos™' z is the closed interval |—1,1] and the range is the
closed interval [0, |(see Fig. 1.26).

@Liiiere T -

-1 0 1

y=cos~\x

Fig. 1.26
cos '(—1) = 7 as cos(w) = —1.
cos 1(0) = Z as cos(Z) = 0.
0) =2 a5 cos(?)

cos (=) = T as cos— = 1
2 3 3 2

cos_l(ii) = i% as cos(i%) =+ L

Nk
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cos '(1) = 0 as cos(0) = 1.
3 . Inverse Tangent Function
The inverse tangent function, denoted by tan!, is defined by

y = tan 'z , ifand only if, z = tany and —g <y < g . The

domain of tan !z isthe set R of real numbers and the range is

the open interval (_Z I) . The graph of the inverse tangent func-

Y

tion is shown in Figure 1.27.

AY

[

Y =

o 7
|
o
o -1+

y=tan"lx, (-Lir<x<in

Fig. 1.27

4 . Inverse Cotangent Function
To define the inverse cotangent function, we use the identity

_ _ T .
tan 'z +cot la = 7 where X is any real number.

The inverse cotangent function, denoted by cot™! , is defined by

_ s _ .
y =cot lz = 5" tan~'z where X is any real number.

The domain of cot ' z is the set R of real numbers. To obtain the
range, we write the equation in the definition as

cot lz = g —tan 'z (%)

We know that;
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L ctanlz <= (**%)
2 2
Using (**) in (***), we get

T s 1 s
—— < ——cot "z < —
2 2 2

Subtracting g from each member, we get

—1 < —cot 'z <0
Now, multiplying each member by —1 , we get

O<cotlz<m
The range of the inverse cotangent function is therefore the open in-

terval (0,7)(see Fig. 1.28).

AY

Y =

[ o
)
o 4=

y= cot™' x

Fig. 1.28
llustration

(@) tan (1) = %

(b) tan '(—1) = _%
(¢) cot (1) = g — tan"}(1) = Z
(d) cot (1) = g —tan }(—1) = %T
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5 . Inverse secant Function
The inverse secant function, denoted by sec™!, is defined by

y = sec 'z ,ifand only if, x = secy and y € [0,7] — {g} . The
domain of sec !z isthe set R — (—1,1) of real numbers and the

range is [0, 7] — {g} . The graph of the inverse secant function is

shown in Figure 1.29.

P =

-1 I 2

y =secTx
Fig. 1.29
6 . Definition of the Inverse cosecant Function
The inverse secant function, denoted by cosec™!, is defined by
y = cosec Lz , if and only if, x = cosecy and

Y € [—g,g] — {0} . The domain of cosec ! z is the set

R — (—1,1) of real numbers and the range is [—g,g] — {0} .
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The graph of the inverse cosecant function is shown in Figure 1.30.

1
\

\

> X

| | | |
2 1 1 2

I e 4

P EOSEET
Fig. 1.30

I11. Exponential Function
The product 2x2x2x2x2x2 =64, is conveniently written in the form

2° =64 , to mean that the number is multiplied by itself, six times. In the

expression 2° , the number "2 “is called the base and "6 " is called the ex-
ponent. We say that the number 64 is expressed in the exponential form as

2° . Similarly, we can write 4> =64 and64" = 64 , which are two other
exponential forms for 64.
In fact, any positive number can be expressed in any number of exponential
form(s), by choosing a positive base and an appropriate exponent.
Definition
The exponential function is defined as

y=fx)=a"a>0a=1

The domain of exponential function is the set of all real numbers R and its
range is the set of positive numbers. This function monotonically increases,
if the base is a > 1 and monotonically decreases if 0 < a <1 (see Fig.
1.31).
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AY

y=a

O<a<l

"ﬂ
Y =

0 0

Fig. 1.31

The Natural Exponential Function
The exponential function to the base e is called the natural exponential

and is usually denoted by y =f (X) =e" (see Fig. 1.32).

AY

Y =

0

Fig. 1.32
Laws of Exponents (or Laws of Indices) for real exponents
For any positive real numbers a #1,b #1, m,n natural numbers and real
variables X,y , the following laws are valid:

. a*. a’ =a*"
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||.a—:ax Y oa#0
ay

m. - (a )y —aY

Iv. (ab) =a*.b"

v.a’ =

1
VI n/am :am/n
The Exponential Series

Now, we will show that,

x? x3® x4

. X
e =1l+—+—+—+—+..
1 2t 31 41

Proof.
1 nx

Consider the expression (1+ —j , by making use of the binomial theo-
n

rem, we can expand this expression and get
1\ nx 1 nx(nx-=1) 1
( j =1+ —+ ( )

1+—

n 1! n 21 n?
N nx (nx —1)(nx _2)i+...
3! n’
X n’(x-1/n) 1
=1+—+
1! 2! n’
3
+n X (X =1/n)(x —2/n)i+m
3! n’
:1+£+x(x —1/n)+x(x —1/n)(x —2/n)+m
1! 2! 3!

But,asn — oo , the terms 1/ N, 2/n , and so on approach O . Therefore,

the right-hand side simplifies to the following:

x x?2 x¥ x*

RHS.=1+—+ +—+ +...
mn 21 31 41

Moreover, the number of terms (being N +1 ) becomes infinitely large as
n — oo , whatever X may be. Hence, the series continues to infinity.
Also,
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IimL.H.S.:Iim(l+l) =£Iim[1+ljJ =e”
n—oo n—oo n n—oo n

We get,
. X
e’ =1+ —+—+—+—+..
i 2t 31 4l

IV. The Logarithmic Function
Firstly, we introduce the concept of logarithm of a positive real number. If
three numbers a,b , and ¢ are so related that
a’ =c
then the exponent "b " is called the logarithm of "C " to the base "a"
We write
log,c =b
It may be noted that the logarithm of a number can be different for different
bases. In the system of logarithms, which we use in our day-to-day calcula-
tions (such as those in the field of engineering, etc.), the base 10 is found
to be most useful. Logarithms to the base 10 are called common loga-
rithms. Once the base "10 " is chosen, it has to be raised with a suitable re-
al number "b "(positive, zero, or negative) so that, it represents the given

(positive) number C , exactly or very close to it.
Thus, we write,

10" =c or 10° ~c where the symbol "~" stands for "very close to".

For example,
log,,100 =2, log,,1000 =3 .

These values of logarithms are exact, since 10 =100 and10® =1000.
On other hand,

log,, 5=0.669, log,,27.8=1.4453
These values of logarithms are not exact, but they are very close to

the numbers in equations, since (10)0'699 ~5, (10)1'4453 ~27.8.

In common logarithms, the base is always10 , so that, if no base is men-
tioned, the base 10 is always understood. However, it is useful only while
dealing with arithmetical calculations.

Important in calculus are logarithms to the base "e ", called natural loga-
rithms . The number™”e ", (which is the base for natural logarithms) is a typ-
ical irrational number, lying between 2 and 3 (e =2.71828. . .).
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The notation for "natural logarithm" is "In ™.

Definition of the logarithm

The logarithm of a given number to a given base, is equal to the power to
which, the base should be raised to get the given number.

We know that  Therefore we say that we write
2°=64 log of 64 to the base 2=6  log,64=6
4°=64 log of 64 to the base 4=3  log,64=3
64'=64 log of 64 to the base 64=1  log,,64=1
52=25 log of 25 to the base 5=2 log, 25=2
5°=1/125  log of 1/125 to the base 5=-3 log, (1/125)=-3
a’=1,(a=0) log of 1 to the base a=0 log,1=0

a'=a log of a to the base a=1 log,a=1

Note

I. From the first three illustrations, we observe that the logarithm of a (posi-
tive) number is different for different bases.

I1.The logarithm of 1 to any base is zero.

1. The logarithm of any number to the same base (as the number itself)

isl (ie. log,a=1 log,,10=1, log, e =1.)
Definition
the general logarithmic function is defined as
y =f (x)=log,x, a>0, a=1
and defined by the condition
y =log,x < a’ =x
The domain of the logarithmic function y =1log, X is the set of all posi-
tive real numbers (0,00), and its range is the open interval (—o,0).

This function monotonically increases if & >1 , and monotonically de-
creases if 0 <a <1 (see Fig. 1.33).
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The logarithmic function, y

function y =a*.
The Natural Logarithm
The logarithmic function to

function and is usually deno

10

P'=(1.609,5)

N

P'=(0.1)
P'=(—I.().3(w8)\

A

Fig. 1.33

=log, X is the inverse of the exponential

the base e is called the natural logarithmic
ted by Inx (orlog, X ) see Fig. 1.34.

y=x

P=(5.1.609)

1

=)

-5

// 1
L P=(1,0)
P =(0.368. -1)

10

Fig. 1.34
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The Common Logarithm
The logarithmic function to the base 10 is called the common logarithmic

function and sometimes denoted by logXx .
The fundamental Laws of Logarithms
(i) log,b* =xlog,b

Proof.

Let b=a" = log,b =u

. L.H.S.=log, (au )X :Ioga(aux)

=uXx =xlog,b =R.H.S.
(i1) log,(x y) =log, x +log, y

(ii)log, (1] =log, x —log, Yy
y

Change of Base

We will now show that, if we are given the logarithm of a number, to any
base, then we can easily compute the logarithm of that number to any other
base. The following relation states the rule.

log, X
log, a

log, X =

(1)

Proof.
Let

x =b’, a=b°* =>x =a’"
The left hand side of (1)

L.H.S.=log, x =log,a’" _Y (2)
C
The right hand side of (1)

log,a log,b® ¢
Comparing (2) and (3) we have the result.

y
RHS — log,x log,b” vy 3)
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Relation Between Exponential Function and Logarithmic Function
Now, it is easy to show that

aIogax — X

Proof.
Let

a|Oga X _ t (1)

Taking the logarithm to base a for both sides of (1), we have
log,a%* =log,t = log, x =log,t
So, we have
t =X
Corollaries
.y =Inx < x =e” .

Ly =a* = Iny =xIna.

In X
1. log,x =—.

Ina
V. Ine” =x .
V.e™ =x .

V.Hyperbolic Functions and Their Properties

Certain special combinations of € and e ™ appear so often in both math-
ematics and science that they are given special names.

Definitions

The functions

: e’ —e™” e’ +e”
sinhx =———, coshx =— (1)
2 2
are respectively, called the hyperbolic sine and hyperbolic cosine.
the parametric equations X =cosht , y =sinht describe the right

branch of the unit hyperbola X = y 2=1 [which is the special case of the
2 2

X
hyperbola—-— )b/—z =1 ](Figure 1.35). Moreover, the parameter 1t is re-
a

lated to the shaded area S by t =2S.
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Fig. 1.35

There are six basic hyperbolic functions. The other four hyperbolic func-
tions are defined in the terms of the hyperbolic sine and hyperbolic cosine.
Definitions

The functions

sinhx e" —e
tanhx = =—
coshx e” +e
coshx e* +e™
cothx =— =—
sinhx e”* —e
1 2
sechx = =—
coshx e” +e
1 2
cosechx = =

sinhx e* —e™

are respectively called the hyperbolic tangent, the hyperbolic cotangent, the
hyperbolic secant, and the hyperbolic cosecant.

Hyperbolic functions are connected by a number of algebraic relations simi-
lar to those connecting trigonometric functions. In particular, the fundamen-
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tal identity for the hyperbolic functions is
cosh®x —sinh*x =1
1—tanh®x =sech®x
1—coth? x =—cosech?®x
cosh(x £y )=coshx coshy +sinhx sinhy
sinh(x +y )=sinhx coshy +sinhy coshx
If y is replaced by X in these identities we obtain,
cosh(2x ) =cosh”x +sinh*x
sinh(2x ) = 2sinhx coshx

Note
From the definitions (1) , we can obtain

sinhx +coshx =e*
coshx —sinhx =e™
It is, therefore, apparent that any combination of the exponentials €” and

e ™ can be replaced by a combination of sinhx and coshx and con-
versely.
The important hyperbolic identities

cosh®x —sinh?x =1

sinh2x = 2sinhx cosh x

cosh 2x = cosh?x —sinh®x

sech®x =1-tanh®x

cosech®x =coth®x —1

sinh(x £y )=sinhx coshy +sinhy coshx

cosh(x £y )=coshx coshy #sinhx sinhy

Note

Hyperbolic functions are defined in terms of exponential functions. This is
very different from the way we defined trigonometric functions. However,
if you study complex analysis, you will discover that trigonometric func-
tions can also be defined in terms of exponential functions of a complex
variable.
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The Properties of Hyperbolic Functions

The graphs of hyperbolic cosine and hyperbolic sine are shown in Figs.
1.36 and 1.37.

At X =0, coshx =1 andsinhx =0 . Note that these value are same as
in the case of corresponding trigonometric functions atX =0 . Therefore,
all the hyperbolic functions have the same values at X =0 that the corre-
sponding trigonometric functions have.

Further, note that

sinh(—x)ze 2—e __f —2e = —sinhx
cosh(—x)ze_ ;e _¢ +2e‘ = cosh x

Thus, hyperbolic sine is an odd function and the hyperbolic cosine is an
even function. So the graph of sinh X is symmetric with respect to the
origin and that of coshX is symmetric about the y —axis .

AY

4 +

-

v =sinhx
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S
|

-
o
o T

v =coshx

Fig. 1.37

. The domain of the function SinhX is the set of all real numbers
R and its range is (—o0,0) (Fig. 1.36).

. The domain of the function coshX is the set of all real numbers
R and its range is [1,00) (Fig. 1.37).

. The domain of the function tanhXx is the set of all real numbers
R and its range is (—1,1) (Fig. 1.38).

. The domain of the function cothX is the set of all real numbers
R exceptat x =0 (R—{0}) and its range is

R —[-11] = (=00, 1) U (1, 0) (Fig. 1.39).

. The domain of the function sechx is the set of all real numbers
R and its range is (0,1] (Fig. 1.40).

. The domain of the function cothX is the set of all real numbers
R exceptat X =0 (R —{0}) and its range is (R —{0})

(Fig. 1.41).
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Fig. 1.39
A
—o—
X
° ® >
-1 0 1
-1
Fig. 1.40
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_af v =cosechx

Fig. 1.41

V1. Inverse Hyperbolic Functions

1.

Inverse Hyperbolic Sine Function.

From the graph of the hyperbolic sine in Figure 1.36, observe that
the hyperbolic sine is one-to-one. Furthermore, the hyperbolic sine is
continuous and increasing on its domain. Thus, this function has an
inverse that we now define.

Definition (A): The inverse hyperbolic sine function denoted by

sinh™ X , is defined as follows:
y =sinh™x , ifand only if, X =sinhy , where y is any real
number (Figure 1.42).

Both, the domain and range of sinh™x , are the set R of real
numbers. From the definition (A),

sinh(sinh™*x ) =x and sinh*(sinhy ) =y
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y =sinh™ x

Fig.1.42

. Inverse Hyperbolic Cosine Function
As in the case of inverse trigonometric functions, we restrict the do-

main and define a new function f (X ) =coshx, X >0 as follows:
The domain of this function is the interval [0,0) and the range is the
interval[1,00) . Because f (X ) is continuous and increasing on its

domain, it has an inverse, called the inverse hyperbolic cosine func-

tion.
Definition (B): The inverse hyperbolic cosine function denoted by

cosh™x , is defined as follows:
y =cosh™x, ifandonlyif x =coshy, y >0

The domain of cosh™ X is in the interval [1,00) and the range is in
the interval [0,0) ( See Fig. 1.43) . From the definition (B),

cosh(cosh‘lx ) —xif x >1,

and cosh™(coshy )=y if y >0

50



Y =
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|
0 : 5

y =cosh™ x

Fig. 1.43

3. Inverse Hyperbolic Tangent Function
The hyperbolic tangent function is one-to-one and has an inverse.
Definition (C): The inverse hyperbolic tangent function denoted by

tanh™" x is defined as follows:
y =tanh™x ifand only if, x =tanhy,
where y is any real number.

The domain of the inverse hyperbolic tangent function is the interval
(—o0,00) and the range is the set R of real numbers. The graph of

tanh™ x appears in Figure 1.44.

_—— - g

PRI 1
1 B 1

y =tanh™ x

|
|
|
I
I
=] |- '
Fig.1.44
4. Inverse Hyperbolic Cotangent Function.

The hyperbolic cotangent function is one-to-one and has an inverse.

The graphsof y = coth™x is given in Figures 1.45.
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5.

The domain of the inverse hyperbolic cotangent function is
(—0,1) U (1,0) and the range is (—o0,0) W (0,0).

A

|

|

|

|

o 1
4 -2 I
|

|

|

: y =coth™ x

- S Y N —

Fig. 1.45
Inverse Hyperbolic Secant Function.
We restrict the domain of hyperbolic secant function and define a

new function f (X ) =sechx, x >0 as follows:
The domain of this function is the interval [0, 00) and the range is the

interval (0,1] . Because f (X ) is continuous and increasing on its

domain, it has an inverse, called the inverse hyperbolic secant func-
tion.
Definition (D): The inverse hyperbolic secant function denoted by

sech™ X , is defined as follows:
y =sech™x, ifandonlyif x =coshy, y >0
The domain of sech™ X is the interval (0,1] and the range is the in-

terval [0, 00) (see Fig. 1.46).
From the definition (D),

sech(sech‘lx):x if 0<x <1

and sech™(sechy )=y if y >0
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Fig. 1.46
Inverse Hyperbolic Cosecant Function.
The hyperbolic cosecant function is one-to-one and has an inverse.
The graphs of Y =cosech™X is given in Figures 1.47.
The domain of the inverse hyperbolic cotangent function is
(—0,0) U (0,0) and the range is (—o0,0) W (0,0).

y =cosech™ x

Fig. 1.47
Logarithm Equivalents of the Inverse Hyperbolic Functions
Since the hyperbolic functions are defined in terms of €* and e ™ ,
it is not too surprising that the inverse hyperbolic functions can be
expressed in terms of the natural logarithm. Following are these ex-
pressions for the six inverse hyperbolic functions we have discussed.
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sinh ' x :In(x +x/x2+1), X eR
cosh™x =In(x +»\/x2—1), X >1

tanh™ x =1In 1+x x| <1
2 1-x
coth™x :lln x+1 x| >1
2 X —1
’ . 2
sech™*x =In[uj,0<x <1
X
, 2
cosech™x =In[ﬂ}|x|>0
X

To prove
sinh'x = In(x + /X2 +1), X eR

Let y =sinh™ X
From definition (A)

y y
: —e
X =sinhy =

e’y 4o’

J1+x2 =\fl+sinh2y =coshy = 5

AX +1+x2 =e”
U
y =sinh™x :In(x +\/1+7)
To prove

cosh™x = In(x NG —1), x| =1

Let y =cosh™x
From definition (B)
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e’ +e”’
X =coshy =——

y _e_y

Jx? —1=\/cosh2y —1=sinhy & -c

X +Axi-1=¢’
U

y =cosh™'x = In(x N —1)

To prove
1, (1+X
tanh™x ==In| —— |, x| <1
2 \1-x
Let y =tanh™x
From definition (C)
e’ —e”’ e¥ -1
X =tanhy = —=—
e’ +e” e +1

X (e2y +1):e2y ~1=e¥ (x -1)=—x -1

o2y _1+x e g /1+x
1-X 1—X

But €” >0 , we have

oV — 1+X
1-X

y —lln(lﬂ()
2 \1-X

The other relations can be proved in similar way.
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Chapter 2

Limits of Real Functions

Introduction

Addition, subtraction, multiplication, division, raising
to a power, extracting a root, taking a logarithm, or a modu-
lus are operations of elementary mathematics. In order to
pass from elementary mathematics to higher mathematics,
we must add to this list one more mathematical operation,
namely, "finding the limit of a function".

The notion of limit is an important new idea that lies at
the foundation of Calculus. In fact, we might define Calcu-
lus as the study of limits. It is, therefore, important that we
have a deep understanding of this concept. Although the
topic of limit is rather theoretical in nature, we shall try to
represent it in a very simple and concrete way.

Useful Notations
e Meaning of the notation X —a Let X be a variable
and "a" be a constant. If X assumes values nearer and
nearer to "a" (without assuming the value "a" itself),
then we say X tends to a (or X approaches a) and we
write X —a. In other words, the procedure of giving
values to X (from the domain of "f ") nearer and
nearer to "a", but not permitting X to assume the val-
ue "a", is denoted by the symbol "X —a". Thus,
X — 1 means, we assign values to X which are nearer
and nearer to 1 (but not permitting X to assume the
value 1), which means that X comes closer and closer
to "1" reducing the distance between "X " and "1", in
the process. Thus, by the statement "X " tends to "a",
we mean that:
= X #4a,
= (X assumes values nearer and nearer to a, and
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= The way in which x should approach a is not spec-
ified. (Different ways of approaching “a” are given
below.)

Meaning of X —>a

If we consider X to be approaching closer and closer to
"a" from the left side (i.e., through the values less than
"a"), then we denote this procedure by writing

X —>a andreaditas "X "tendsto "a minus".

Meaning of X —a”

If we consider X approaching closer and closer to "a™
through the values greater than "a " (i.e., X approach-
ing "a" from the right side), then this procedure is de-

noted by writing X —>a" and we read it as "X "
tends to "a plus".

Example (1)
Consider the function

f (x)=3x +5, x €(2,3)U(3,5]

Note the following points
1. "4" is in the domain of f ,and it can be approached

2.

from both the sides. Therefore, we can writeX —4 .
"5 "isin the domain of f ,but X can approach 5 ,
only from the left of 5 (i.e., through values of X <5).

Thus, in this case, it is meaningful to write X —>5
but we cannot write X — 5.

"2"is not in the domain of f , but X can approach “2”,
from the right of " 2" (i.e., through values ofX > 2).

Thus, in this case, it is meaningful to write X — 2" , but
we cannot write X — 2~ or X — 2.

4. "3 "isnotinthe domain of f ,but X can approach "

3 " from both the sides of "3 ". Thus, we can write
X >3 and X >3 orx >3

Notes
1. If X can approach "a " from both sides, then for an

57



arbitrary small 6 >0 , X always belongs to the

o -neighborhood of "a", thatis, X € (@—0J,a+0) with
X #a. This is equivalent to assigning values to "X ", clos-
er and closer to "a"from both sides of "a". (This proce-
dure is useful for studying the values of a function in the
neighborhood of the given point "a".)

: ® ° ® {

a-o0 x—> a —x a+o

2. If X —>a (i.e., if approaches "a"from the left) then,
for an arbitrary small & > 0 , X always belongs

(@a-o,a)

T T ®
=0 Xy a

3. 1f X —>a’ (i.e., if x approaches “a” from the right)
then, for an arbitrary smallé >0 , X always belongs to

(a,a+9)

® ° °
a —x a+ o

Definition of the limit

Let f(x) be a function. If x assumes values nearer and near-
er to the number "a "except possibly the value "a" and f(x)
assumes the values nearer and nearer tol , which is a finite
real number, then we say that f(x) tends to the limit | as x
tends to a, and we write

limf (x) =1

X—a

Notice that the function f need not even be defined at "a".
If T (X) assumes the values nearer and nearer to | as X
approaches closer and closer to "a" from the left side, then
the number "l " is the limit of f (X ) as X approaches "a
"from the left and we write
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limf (x) =1

X—a
If f (X) assumes the values nearer and nearer to | as x
approaches closer and closer to "a" from the right side,
then the number "l " is the limit of T (X) as X approach-

es "a"from the right and we write
Iimf (x)=1

x —a*

Since "a" may be approached from both the sides of a
(i.e., left side and right side of a) when we say that

limf (x) =1
X —a
we really mean to say that
imf (x)=1=1limf (x)
X —a~ x —a*

If these conditions are not satisfied simultaneously, we say
that limf (x) does not exist.

X—a

Example (2)
Consider
X2 —
f(x)= , X #2
X —2
Find limf (x).
X —>2
Solution

We prepare the following calculations, by choosing succes-
sive values of x from a small neighborhood of 2 (say
o0 =0.1is neighborhood of 2) and compute correspond-

ing valuesf (X) . Fromthe calculations, we get the data of
our interest, which is given in Table 2.1.
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X f(x) X f(x)

1.91 3.91 2.1 4.1

1.92 3.92 2.01 4.01

1.96 3.96 2.001 4.001

1.99 3.99 2.0001 4.0001

1.997 3.997 2.00001 4.00001

1.9998 3.9998 2.000001 4.000001

1.999998 3.999998 2.0000001 4.0000001

1.99999999 3.99999999 | 2.00000001 4.00000001

2 Not defined | 2 Not defined
Table 2.1

From the table, we observe that as X approaches 2, f (X)
takes up values closer and closer to 4.We, therefore, say
that the limit of f (X ) as X approaches 2, is 4. In symbols,

we write
limf (x)=4

X —2

Note that the preparation of Table 2.1 is time consuming
and tedious. On the other hand, we have

2
F(x)= X —4 _ (x =2)(x +2)
X —2 (x =2)

Note that, if (X —2) =0, (i.e., if X # 2) then we can
cancel the factor (X —2 ) from the numerator and the de-
nominator of the above expression on the right-hand side of
Equation (1), and get,

f(X)=x+2,x #2 (2)
Thus, we have two Equations (1) and (2), both representing
the same function f (X ) , when X # 2 . We may choose

X #2 (1)
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any of them for computing the limit of the function in ques-
tion. Obviously, the Equation (2) is simpler to handle in

view of the difficulty observed in connection with the ex-
2

, X # 2, in listing the values of f (X) in

pression >
X —
the neighborhood of 2. Hence, we choose the expression
(f (Xx) =X +2) for computing the limit in question. We
get
2

limf (x) = lim2—= x 22

X —2 x>2 X 4+ 2
:Iirr;(x +2), X #2
=2+2=4

Note that whereas f (2) does not exist (since 2 is not in

the domain of "f "), Iirr;f (x) exists, and it is given by
X —>

the number 4. This shows that the existence or nonexist-

ence of the limit of a function at a point does not depend on
the existence or nonexistence of the value of the function at

that point.
Example (3)
Consider
G(x)=x +2,x # 2
X =2
Note that this function is defined for all real values of X,

. X +2
except X =2 . However, the limit Ilrr; > X #2
X—> X —

does not exist (see Fig. 2.1).
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-4

This is because, as X — 2" , the numerator (X +2 ) ap-
proaches the number 4 whereas the denominator approach-

es the number "0" from right, so that G (X ) approaches

positive large values. On the other hand, as X — 2" , the
numerator (X + 2 ) approaches the number 4 whereas the
denominator approaches the number "0 "from left, so that

G (X ) approaches negative large values. Whenever such a

situation arises, we say that the limit of the function does
not exist. Later , we shall introduce infinity as limit of a
function.

Example (4)

Let

X+5 x>0
f(x)=
X+2, x<0
Find Iirrgf (x).
Solution
Observe that f (0) is not defined. Let us study the values

f (x) asof x — 0. We note that as
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X >0 =fXx)>2.
On the other hand, as
X >0"=f (x)—>5.
Thus
limf (x)=limf (x).
x—0" x —0*
When this happens, we say that the limit of the function

does not exist.
Example (5)

2Xx -1, 1<x<?2
f(x)=
4x -5, 2<x <3
Observe that f (2) is not defined. Let us study the values
of f (X) asx — 2 . We prepare Table 2.2.

X f (x) X f (x)
1.9 2.8 2.1 3.4
1.99 2.98 2.01 3.04
1.999 2.998 2.001 3.004
1.9999 2.9998 2.0001 3.0004
1.9999 2.99998 2.00001 3.00004

Asx »>2° f(x) >3 Asx —>2" f(x) >3

Table 2.2
From Table 2.2, we observe that
limf (x)=3
X2
And
limf (x)=3

x =2+
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Thus, the left-hand limit of f (x) at X =2 is equal to its
right-hand limit atXx =2 . In this case, we say
that the limitof f (X) as x =2 exists, and we write

I|rr21f (x) =

Example (6)
Let

X, X <1

f(x) =12, X =1

X+2, x>1
Find IIrqf (x)
Solution

We have the following observations:
(@ limf (x)=1 (left-hand limit)

X -1
(b) Iir[lf (x) =3 (right-hand limit)
© f@ =2
Thus
limf (x) =1= Ilmf (x)=3

X =1

Obviously, IIrrllf (X) does not exist.
X —

Example (7)
Let

1
f (x —x;tl
(X) —

Find limf (x)

X —1

Solution

Observe thatas X — 1" (as X assumes values closer and
closer to 1 from the right hand side) f (X ) gets larger and

larger positive values. On the other hand, when X — 1" (as
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X assumes values closer and closer to 1 from the left hand
side), T (x) gets larger and larger negative values (see
Fig. 2.2).
Thus, limf (x) does not exist.

X —1

10

=
Ln

i
I
I
I
I
[
- -3 . 5 10
-
H\-I
-0.5 I
B
“1ok b
1

fx) = Lx #1
x —1
Fig. 2.2
Example (8)
Evaluate the following limit
. _sinx : .
lim——, (x inradians)
x—=>0 X
Solution

Here, there is no way of canceling terms in the numerator
and denominator. Since SinX — 0 asx — 0, the quo-

. SInX
tient

: 0
might appear to approach6 . But, we know

0
that 6 is undefined, so if the above limit exists, then we

must find it by a different technique. Since we do not have
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. ... SInX )
any other simpler way of rewriting to obtain the

X
sin X
X

values of x close to 0 and angles x (in sin x) in radians.
(Other methods of finding this limit will be discussed later.)

limit, we use a calculator to find the values of for

i sin X
X sin X -
X

-0.10  0.0998333 0.99833
-0.09 0.0898785 0.99865
-0.05 0.0499792 0.99958
-0.03  0.0299955 0.99985
-0.02  0.0199987 0.99993
-0.01 0.00999983  0.999983
0.00  0.00000 Not defined
0.01 0.00999983  0.999983
0.02  0.0199987 0.99993
0.03  0.0299955 0.99985

Table 2.3
From Table 2.3, it is obvious that, asx — O , either from

SIN X
the right or from the left, the value of

approaches

closer and closer to the number 1. We, therefore, agree to
write

. sinXx

Iim——=1

x=0 X

This limit is used very often to find the limits of many trig-
onometric functions (including various functions involving
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trigonometric functions), and plays a very important role in
deriving many useful results.

Simpler and Powerful Rules for Finding Limits (Alge-
bra of Limits)

Limits are extremely important throughout Calculus. A
general method, we can prepare a table listing values of X
, closer and closer to “a”, and the corresponding values

f (X) . Such atable may help us guess a number to which
f (X) approaches, suggesting the limitof f (X) ,as
X — a. However, such a process of finding the values of

“f”as X —a is both time consuming and generally very
tedious.

Let N be a positive integer, K be a constant, andf (X) ,
g(x) and h(x) be functions, such that limf (x) |

X —a

limg(x) and limh(x) exist. Then
X —a X —a

1. limk =k
X —a

2. imx =a
X —a

3 !(ILT; [f (x)J_rg(x)]:IXiLr;f (x)ilxiigg(x)
4. limk .f (x) =k.IXiLr;f (x)

5, E'ETZ [f (x).g(x)]:lxig;f (x).IXiLr;g(x)
limf

jim %) _ s 0 Climg(x) %0

<2 g(x)  limg(x) ' o

7. IXirg[f x)]" :[Ixin;f (x)]"

8. limy/f (x) :Q/Iimf (x) provided limf (x) >0

X—a

when n is even.
im(f 2g)(x) =limf (g(x))=f (limg(x))

(o]
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10. If £ (x) <g(x) <h(x) forall x near a, except

possibly ata. If limf (x) =limh(x) =1, then
X —a X—a
limg(x) =1I.
X—a
Example (9)
Find the following limit
jim X1
x —1 X1/3 -1

Solution
Here, we observe that the indices of x are fractions. Hence,
it is not possible to factorize both numerator and denomina-

tor. We substituteX = y12 . Required limit is
va 3
fim* T jim Y~
x->lx¥ e -1 y-il y -1
Cim Y =Dy +1)
LY =Dy +y S +y +1)
2
_lim 3y +2y +1 :E
yoly +y +y +1 4

Example (10)
Determine the following limit

J1+x -1

lim
x =0 X
Solution
Puty =1+X ,thenasx 0=y — 1. Hence, the lim-
y1/2 _1
it reduces to the form lim
y -l y -1
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Example (11)
One can show that lim \/x_ =0 but it must be clear that

x —0*

neither lim~/x nor lim /X exists (because JX s not

x—0 X —0"
defined to the left of 0).
Methods for Evaluating Limits of VVarious Algebraic
Functions
1. Direct Method [or Method of Direct Substitution]
This method is applicable in the case of very simple
functions, in which the value of the function and the lim-
it of the function both are the same.
Example (12)
lim[x % +3]=limx 2 +1im3=4+3=7

X —2 X —2 X —2
Example (13)
x —142 Iing\/x —1+Iirr22
Ilm[ ]= X —> X —>
x=5" \[x +31 lim«/x +31

X—5
Example (14)

wWIiN

_4_
6

2

limX =2 y %3
x—>1x_3

lim(x % —9)

_ x>l

= X —4
lim(x —3)

X —1

2. Factorization Method

. f(x
For computing limit(s) of the type, lim x) , Where

x-a (X )
f (@) =0andg(a) =0, the direct substitution method

fails. In such cases, we search for a common factor
(X —a ) in f(x) and g(x) by factorizing them and cancel-
ing this factor to reduce the quotient to the simplest form
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and then apply the direct method to obtain the limit.
[Remember that X — a means thatX #a , at any stage.

In other words (X —a) = 0 , at any stage. This permits

us to cancel the common factor (x — a) from both numer-
ator and denominator.
Example (15)
Evaluate
. X2—4x +3
lim

x-1 X2 42X —3

Solution
2
lim x2 4x +3:”m(x 3)(x -1)
x-l X “ 42X =3 x=1(x +3)(X —1)

:—%, [(x —1) = 0]

Note: For evaluating lim , we may also follow
x-a (X )
the following steps:
l. Putx =a+h (~.x >aas h—-0)
I1. Simplify numerator and denominator and cancel the
common factorh .

l11. Put h =0, in the remaining expression in h and ob-
tain the limit.
Example (16)
Evaluate
. x°—8x?%+16x
lim

x4 x°—x -60

Solution
o x3-8x2+16x
lim -
x=4  X*—x —60
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_ X (X —8x +16)
:“m 3 2 2

x=4 X°—4x“+4x° -16x +15x —-60
- X (X * —4x —4x +16)

x=>4 (X —A)[(x —4) +4x +15]

B X(X —=4)(x —4)
x4 (X —AD[(x —4) +4x +15]
X (X —4)

TXoa[(X —4)+4x +15]

An Important Standard Limit

n n
: —a g} :
lim =na"™", nisnaturalnumber (*)
X—a X_a
Example (17)
Evaluate

Iimxn X" X" X3+ X2+X =N

. nisnatural number

X1 x -1

Solution

Iimxn X" X"+ X X2 +X —n

X1 x -1

_lim XX XX T+ X —(L4+1+1+....ntimes)
x -1 X -1

_ Iim(xn D+ X" =D+ 4+ (X -D+(X*-D+(x -1
x -1 x -1

71



o (x"=1D . (x"'-1) .. (x"?-1
:Ilmgﬂlmgﬂlmg
x —0 X—l x =0 X—l x =0 X—l
3 2
. (x° -1 . (x-1 . (x -1
o lim & i & i 2D
x =0 X—l x —0 X—l x =0 X_]_
n
=n+n-1+n-2+..+1=——
n(n+1)
The above formula can be used to evaluate limits of the
x"—-a"
Iim ——
X —a Xm_a”
For this purpose, we write
x"—-a" x"—-a" x™—a™
Iim——=lim—+lim—

x—a X" —q" x-a X —a x=0 X —a
and apply the standard limit to obtain
o x"=a" n .
Ilm—m - =—a"™" (**)
x>ax " —a"  m
Example (18)

Evaluate
ox°-a’
lim I
X—)B.X _a
Solution
5 5
X _a 5 5_3
| 5 =-a
x-a x°—a® 3
Remark

Formula (*) has been proved for natural numbers n and m.
However, the result is true for rational values of n and m.
The following examples tell how this is justified.
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Example (19)
Evaluate
X 14 _ 1]]4

lim————

Note : In such cases the important point is that the given
limit can be converted in the form (*) by substitution as fol-
lows.

Here, the indices of x are fractions and hence we cannot
factorize. The denominators of these indices are 4 and 3.
Their L.C.M. is 12. Therefore, we use the substitution

X =t*?, for our purpose.
Solution

Put x =t (t >1lasx —1)
Xl/4 _11/4 - t3_13 _3

IXIEQ x V3 _q13 - tl_r)?t4 14 Z
Note
We can also apply Corollary (**) directly and obtain the

limit as follows:
x“—f4_U41m4&{§

lim

olx B 173 4
Example (20)
Find
x5 g5
!(I_rg X 1/2 . 31/2
Solution
lim x 2 3% _ 215 32512 _ ﬂ 3-U10
xo3 x 232 1/2 5
Example (21)
Evaluate
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x -2

lim
X —2 X—2
Solution
—3_ -3 .
IimX 2 = 3_2—3—1:_3_2—4:_3
x=2 X —2 1 16

Note : To evaluate limits of this type, it is always useful to

convert the given limit to the standard form as follows:
ox7P=27 1/x*-1/2°
lim———=1Iim
x>2 X —2 X —2 X —2

1 x°*-2° 1 . oas 3

== Ilm 3 = ——3_2 = ——
x—>2 —8X° X —2 64 16
Example (22)
Evaluate
lim (x +2)° —(a+2)"°
X —a X _a
Solution
lim (x +2)° —(a+2)"°
X—a X _a
im X 2)® —(a+2)*"*
X +2—>a+2 (X + 2) _ (a 4 2)
5
_2(a+?2 5/3-1
3( )
Example (23)
Evaluate
C1-x718
lem 1_ X -2/3
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Solution

“ml -1/3 _I (X]./3_1)/X1/3
X—>11—X 2/3 X —1 (X 2/3_1)/X2/3
1/3 1/3 1/3
i x"=1D) 5, x7-1
=1m 2/3 I™lim 213
X —1 X — x—1 X -1
1
2

Method of Simplification

Sometimes it is required to simplify the given function and
then evaluate the limit.

Example (24)

Evaluate
i 1 5
lim —
H5(x -5 x2—5x)
Solution
: 1 5 : X —5
lim = =lim(————
H5(x -5 x2—5x) Hs(x2—5x)
: X —5 .1 1
=lim——=lim—==

x—>Ox(X _5)_x—>5)( 5
Example (25)

Evaluate
) 1
lim (— +—
x>2'X“4+5x +6 X +3X +2

Solution

We have
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. 1
lim (— +—
Xx>2'X“+b5X +6 X" +3X +2
1
= lim[ + ]
x>2°(x +2)(x +3) (X +2)(x +1)
_ lim (X +D)+(x +3)
o2 (X +2)(X +2)(X +3)
2(X +2)
= lim
x>=2 (X +1)(Xx +2)(x +3)

) 2
= lim =2
x>2(x +1)(X +3)
Method of Rationalization
If the numerator or the denominator or both contain func-

tions of the type [/f (X) —g(x)] or
[\ff (x) - \/g (x )] and the direct method fails to give the
limit, we rationalize the given

function by multiplying and dividing by [/f (x) +g(x)]
or [\/f (x)+ \/g (x)], as the case may be. After simpli-

fication of the function, we evaluate the limit by the earlier
methods.

Example (26)

Evaluate

lim

X
=0 1+x —1
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Solution
Consider

im—%_ _lim X »\/1+x +1
H0«/’1+x —1 *01+x -1 x/l+x +1

pim XV HD e X +1) = 2

x—>0 (1+X) -1 x —>0
Example (27)

lim—__ X 3
X3 X —2 —4—x
Solution
Consider
lim___ X ~3
93X —2 —J4—X
im X —3 »\/x 2 +4-X

o3 X —2 —Ja—x Jx—2+J4 X
(X - (WX -2 +J4-x)

alt (x =2)—-(4-x)

(X - (WX -2 +J4-x)

it 2(x —3)

_) m(x/X —2-|2-°\/4—X)

X—3

=1

Example (28)
Evaluate

Ja+x —Ja—x
H‘)\/b +x —+/b —x
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Solution
im Ja+x —+Ja—x
x>0 b +x —b —x

:Ixigg{(\/a+x —Ja—x )x ya+Xx +va—x }

Ja+XxX ++4a—x

. B~ ><\/b+x+\/b—x
Tllm{(Jb+X b X) Jb +x +\/b+x}

—Iim{ 2X . 2X }
0| Ja+x +4¥a—-x  Jb+x ++b—x
2db b

2da Va

78



Infinite Limits
So far we have considered the cases whereas X —a (a
finite number), f (x) — 1 , (a finite number).

But, it may happenthatas x —a , f (X) increases (or

decreases) endlessly. Symbolically, we express these
statements as follows:
limf (x)=o0, lImf (x) =00

x—at

X—a

Or
limf (x) =0, limf (x) =—oo

X —a

1
Consider the graph of f (x) = ry as shown in Figure

2.3. Note that it makes no sense to ask lim (why?),
X2 —2

but we think it is reasonable to write lim = —o0 and

x—>2" X —2

lim
X2t X —2
this situation.

= 00. The following definition relates to
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Definition (Infinite Limits)
We say that limf (x)=oo ,if f (X) gets larger and

X—a

larger without bound, when X assumes values nearer and
nearer to "a". On other hand, we say that

limf (x)=—o0 ,if f (X) ispermitted to assume

X—a

smaller and smaller values endlessly, when X assumes
values nearer and nearer to "a".
Example (29)

Find
. 1 :
lim ——— and lim ———
x>2" (X —2) x>2" (X —2)
Solution
1
The graph of f (X)) =-——— isshown in Figure 2.4.
(x —2)
sof :
[ I
25F 1
[ |
!
fx)= G2
Fig. 2.4

We think it is quite clear that
X—2" (X — 2)
And
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lim ————=©

X 2% (X —2)

Since both limits areco , we could also write
] 1
|Im—2 =00

X —>2 (X _2)

Example (30)

Find
) X +1
lim >
x-2"X“+5X +6

Solution
) X +1 ) X +1
lim > = lim

x>2"X°=BbX +6 x-2" (X —2)(Xx —3)

As X —>2" 'weseethat X +1—>3,x —3—>-1,and
X —2 — 0 . Thus, the numerator is approaching 3, but the
denominator is negative and approaching 0. We conclude
that

X +1
im =
x-2" (X —2)(x —3)

Asymptotes
Definition: An asymptote to a curve is defined as a straight
line, which has the property that the distance from a point
on the curve to the line tends to zero as the distance of this
point to the origin increases without bound. There are verti-
cal, horizontal asymptotes.
Vertical Asymptotes
The graph of the function y =f (X ) has a vertical asymp-
tote forx —a , if limf (x) =00 or limf (x)=—o0

X —a

X—a
(see Figure 3.3a and b). The equation of the vertical asymp-
tote has the formx =a . (In Figure 2.5a, itisx =0 , and
in Figure 2.5b itisXx =a .)
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Y =

Fig. 2.5
Horizontal Asymptotes
The graph of the function y =f (X ) for X — oo or for

X — —oo , has a horizontal asymptote, if

limf (x)=b Or limf (x)=Db ,where b is a finite

X —>00 X —>—00

number. It may happen that either only one or none of these
limits is finite. Then, the graph has either one or no hori-
zontal asymptote. Of course, the graph of a function may
have two horizontal asymptotes. The equation of the hori-
zontal asymptote has the formy =a . (In Figure 2.6a, it is

y =Db , and in Figure 2.6b the two asymptotes are y =+1
)
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y=f(x)

__—po ﬁ v
O 0 =

y=b pi=

X | el
0 g T
Fig. 2.6
Example (31)
Find the asymptotes to the curve
y = 1
X —3
Solution:
We have
i 1
lim ——=0
X0 X — 3

Therefore, the curve has a horizontal asymptote at y =0
Further, we observe that

] 1
lim——=-w
x—=3" X —3
and
) 1
lim—=w
x—3" X —3

Hence, the curve has a vertical asymptote at X =3 (see
Figure 2.7).
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\ Y

Fig. 2.7
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Limit at Infinity
The symbol for infinity is “co . In modern mathematics,
the symbol “oo ” is not a number, and not all algebraic op-
erations are defined for this symbol.
Often we shall have to study the behavior of functions of
X, as X becomes infinitely large, that is, when x is permitted
to assume larger and larger values exceeding any bound K,
no matter how big K is chosen.
For example, take

f(n)=

Then if n takes the values 1, 2, 3, .. ., 100, the class, or set,
consisting of the values off (n) , for various values of n

consisting of the fractions( 1, 1/2, 1/3, . .. 1/100).
We wish to discuss the behavior of this function for very

L
.

. : : 1
large values of n. It is immediately obvious that f (n) =—
n
becomes very small when n is very large.
. 1
Note: It is wrong to say that — =0 whenn =oo . Remem-
n
ber that oo is not a number, so it cannot be equated to any
1
number, howsoever large. Further, — can never be equat-
n
ed to zero, however big n is chosen. However, it makes

: 1
sense to say that the function f (n) =— tends to zero for
n

values of n that tend to infinity.
If we now consider the function
f (n)=n?,
it is clear that this function can be made as large as we

please by taking sufficiently large values of n. We may
therefore, say that the function
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f (n)=n®
tends to infinity when n tends to infinity.
Now, let us consider the function

f (n)=-n®
In this case, we say that f(n) tends to —oo when n tends to

oo . We would usually write these statements briefly as
given below:

N2 >0 as N —>ow

—n®-—>—-0w as N —w
Consider the function

f(x)=

We ask the question:
What happensto f (X ) as X gets larger and larger? In

symbols, we ask for the value limf (x)

X —00

We use the symbol X — oo as a shorthand way of saying
that X gets larger and larger without bound.

(When we writeX — oo , we are not implying that some-
where far, far to the right on the x-axis, there is a number
bigger than all other numbers to which x is approaching.
Rather, we use X — oo to say that x is permitted to assume
larger and larger values endlessly.)

In Table 2.4, we have listed values off (X ) , for larger and

larger values of x, for several values of X .

X
1+x2
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X

s )= x°+1
10 0.099
100 0.010
1000 0.001
10,000 0.0001
\! \!
00 0

Table 2.4

It appears that f (X ) gets smaller and smaller as x gets
larger and larger. Therefore, we

=0

lim—
xoo X “+1
Experimenting with large negative values of x, would again
lead us to write
lim ——=0
x—>—o X © +1
Definitions of Limits X — 400
If f (X) gets closer and closer to the value | as X is

permitted to assume larger and larger values endless-
ly(without bound). In symbols, we write

limf (x) =1

X —00
Definitions of Limits X — —o0
If f (X) gets closer and closer to the value | as X is
permitted to assume larger and larger negative values end-
lessly(without bound). In symbols, we write

limf (x)=I

X —>—00
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Simpler and Powerful Rules for Finding Limits
X — Fo0

1. limx" =

X —00

2. limx" =00, (niseven)

X —>1o0

3. lim x" =—o0, (nisodd)

.1

4. lim —=0
X >0 ¥

5. 1fF f (x)=ax" +ax" +ax"?+..+a, ,then
limf (x)=a, lim x"

X —>+o0 X —Fo0

x"+ax"t+ax"?+..+a
If f(x)= 0% AT :

6. — — — , then
beX ™ +b X" +b,x" " +...+b,,
_ lim x "
limf (x)=—2>—
X >0 b, lim x
X —>t00
Example (31)
Find
.2
lim >
x—>—0] 4 X
Solution

Here we use a standard trick: dividing numerator and de-
nominator by the highest power of x that appears in the de-
nominator.
. o2x° . 2x° [ x° .2
lim > = lim s = lim ——=2
xo>-2]4 X7 xomel[/XT4XT/XT xoe(0+1
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Exercise
Evaluate the following limits

(i) lim 2X 2 —4x +5
x> 3X°—X +7

(i) lim (2x =1)*(3x -1*
xoo(2x +1)%

(iii)lim(m—&)

X —0
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Limits of Trigonometric Functions
We shall be using the following basic trigonometric limits:

(i)Iirrcl)sinx =0 (ii)Iirrgcosx =1

(iii)lingﬂ _1 (iwlim ¥ =ty
x—0 X

x—0 X

A

| \ C =(cos x, sin x)

X

ofM~————"5 \ A

Cos x

Y

I —cosx

Fig.2.8

In Figure 2.8, let C be any point on the unit circle (placed
in the standard position) such that it is at the end of the arc
length x. Since this arc length subtends an angle of x radi-
ans at the center, we identify the point C as a function of
the angle x . We recall the definitions of the sine and cosine
functions as follows:

sinx =y —coordinateof C

CcosX =X —coordinateof C

Since C (cos X ,sinX ) can move endlessly around the unit
circle (with positive or negative arc length), the domain of
both sine and cosine functions is (—oo, ) . The largest val-

ue either function may have is 1 and the smallest value is
—1 . Also, observe that both these functions assume all
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values between —1 and 1. Hence, the range of both the
functions is [-1,1] .

Note that asX — O , the point P(COSX ,SinX ) moves to-
ward (1, 0) so that we get
limcosx =1, limsinx =0

x—0 x—0

Thus, we have shown the correctness of the results (i) and
(i1). Now, onward, we shall be using results (i) and (ii)
freely in solving problems and obtaining other results.
Now, our next goal is to show that for any real number “a”,

limsinx =sina

X—a

and
limcosx =cosa

X—a
We know that, if “a” is a fixed numberand X =a+h
then

limf (x)=1 ifandonlyif limf (a+h)=I

X—a

Therefore, in order to prove the result(s) at (1) above, we
can instead show that

limsin(a+h)=sina and limcos(a + h) =cosa
h—0 h—0
So,
limsin(a+h) =Ilim[sinacosh +cosasinh]
h—0 h—0
=sinalimcosh +cosalimsinh
h—0 h—0
=sina
And
limcos(a +h) =lim[cosacosh —sinasinh]
h—0 h—0
=cosalimcosh +sinalimsinh

h—0 h—0

= C0Sa
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... SInX _ L :
To prove (iii) , (Ilrrg— =1 consider a unit circle with
X —> X

center “O”, placed at the origin, and let the radian measure
of angle AOC be x radians (Figure 2.9).
Using Figure 3a.4, we obtain the following equations,

which are valid for 0 < X < %

= tan x

O

COs X

Fig. 2.9
Area of triangle OAC
~LoalBc |21 1sinx =51X
2 2 2

Area of sector

Area of triangle OAD

:%|OA .|AD |=%.1.tanx _ lanx

It is geometrically clear that
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Area of AOAC <area of sector OAC <area of AOAD
So that,

InX
S <£ tan x

2 2 2

So, we have

sinx
cosx <——<1
X

But limcosx =1 and liml=1, it follows from the

x—0 x—0
squeezing theorem

. sinx
Iim——=1
X =0 X
. cosx -1 .. cosx —1 cosx +1
Iim———=1lim .
x—0 X x =0 X cosx +1
cos’x —1 ..  —sin®’x
=lim =lim
H0x (cosx +1) x-0x(cosx +1)
sin X —sin X 0
=lim——.lim =1. =0
x-0 ¥ Hocosx +1 1+1
Corollaries
- X fan x X
M lim——=1 (||)I|m——1 @@lim——=1
x—0 SlN X x-0 X x—>otanx
1— cosx X 2
(iv)lim ——() im——=2
x =0 x—>0]_ COS X
Proposmon.

If f (X) is a bounded function, and if limg(x)=0

X—a
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Then,
limf (x).g(x)=0

X—a

Example (32)

Evaluate
| sinx
LU

Solution
Note that —1<sinx <1 for all x

] 1
..sinX is a bounded function. Also lim—=0

X—>ooX
. Sinx 1.
Iim——=Ilim=.limsinx =0
X —00 X X—)OOX X —00
Example (33)
Evaluate
. sin(1/x
I|m¥
x —0 1/)(
Solution
. sin(l/x) . .1
Iim———Z2 =Ilimx.sin—
X —0 1/)( X —0 X

We know that
—1<sinx <1 forall x

.1
.. SIN— is a bounded function.
X

Next,
limx =0

X —0
.'.Iingx sin(L/x)=0
~lim %) g
x>0 1/x
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Example (34)

Evaluate
. SIn3x
lim
x —0 X
Solution
. Sin3x . Sin3x
lim =lim 3
x =0 X x =0 3)(

Note thatasx — 0, 3x — 0 . If we put3X =t , we get
the given limit as
. sin . sint .
Ilmu.B:hmu.llm3:1.3:3

t—>0 { t->0 t—0

Example (35)

Evaluate
. X COSX +sinXx
lim
x->0 X +fanXx
Solution
COSX + SinX
. X COSX +sinx . X
Ilrrg - Ilrrg tan x
X > X >
X +tanx 1+
X
1+1
= —— :1
1+1
Example (36)
Evaluate
. Ccosec2x —cot2x
lim -
x—0 sinx
Solution
1 COS 2X

. cosec2x —cot2x . Qi i
lim _ —lim sm2x_ sin 2x
x—0 sin X x—0 sSin X
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. 1—c0s2x . 2sin? x
= lim— — =lim—
x->08IN2X SINX  x—02SIN° X COSX

=lim =1
x—0 COS X
Example (37)

Evaluate

lim \/§—x/1+ COS 2X

X0 sin® x

Solution

lim \/E—\/1+ COS 2X

X0 sin®x

_lim \/E—x/1+ C0S 2X .\/§+ 1+ cos2x
X0 sin?x J2 + 1+ cos 2x

_lim 2 —1-c0s2x
-05in? X (v2 + 1+ 052X )
_lim 2sin’ x
-05in? X (v2 + 1+ 052X )
2 2 1 2

x>0 \[2 + 1+ cos2x :2\/52 2 2

Example (38)

Evaluate
. 1-cos4x
X =0 X
Solution
. 1-cos4x . 1-cosd4x 1+cosdx
Iim———=1Ilim

x>0 x 2 x50 x2  14c0s4x
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~ 1—cos® 4x lim sin” 4x

x>0 2(1+ cos4x ) X0y ?(1+cos4x)

)
lim ¥ 1ehim— L —116.2
x>0 (4x) x—01+ cos4x 2
Example (39)
Evaluate
. 3sinx —sin3x
lim -
x—0 X
Solution

Since sin3x = 3sinx—4sin®x

. 3sinx —sin3x .. 4sin®x
S lim > =|lim > =4
X —0 X X —0 X
Example (40)
Evaluate
. Cosax —coshx
lim
x—0 COSCX — CcOSdx
Solution
Since
X +Y . X —
COSX —COSYy =—2SIn 2y sin 2y

. cosax —cosbx
lim
x—=0 COSCX — cOosdx

(a+b)x sin (@a-b)x

—lim 2
0 o (c +d)x sin (c —2d )X

—2sin
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(@ +2b)x (@ —2b)x
= Im—G+b)x @=b)x
2 2
(c+d)x (c—d)x
: 2 2
x| lim
x—>OSin (C+d)X sin (C—d)X
2 2
" (@a+b)x (@a—-b)x |
: 2 2
NN X = d)x
2 2

_a’-b’
c?—d?

Example (41)
Evaluate

Iimsinx —sina
X —a
Solution
Iimsinx —sina :”msinx —sina.«/x_+\/§
X V& Jx—a Jx+va
:"m(sinx —sina)(\/x_+«/a_)

X—a X —a

Let X —a=t =X =t+a

AsXx -a, t—>0
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lim (sinx —sina)(»\/x_+\/5)

X — X _a
i [sin(t +a) —sina]( t +a++/a)
— t
But
sinx —siny = 2cos( )sm( )
So,

[2003(2 +a)sin }(\/t +a++/a)

lim
t—0 t
:Itingcos(%+ )S'””Z( ra+a)

= cos(a+ O).l.(2\/a_) = 2\/5 cosa

Example (42)

Evaluate
. ~J2+cosx —1
lim >
X —>1 (72-_)()
Solution
Put X — =t

Note that X > 7, t >0
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\/2+cosx 1 i J2+cos(t +7) -1

X—>7z (72-_)() t—>0 t2

\J2 —cost -1 x/2 cost 1x/2 cost +1
t2

=|lim
t—0 t—)O t2 /2 COS +1
1-cost 1-cost . 1
=lim=————.lim

HOt 2J2—cost +1 SUNNE t-0 2 —cost +1

11 1

22 4
Example (43)
Evaluate
lim 1-tanx
x—>— 1- \/_smx
Solution
) 1-tanx . COSX —sinx 1
lim = lim

Hgl—\/fsinx > COSX 1-/2sinx

. COSX —Sinx 1 1+\/§sinx
=lim : —, _
H% COS X 1—\/§smx 1+»\/§smx

_ i COSX —sinx 1+/2sinx
«>T  COSX "cos? X —sin?x

_lim 1+\/§sinx _2_2
x> COSX (cosX +sinx ) 1

Example (44)
Evaluate

—-3X +2
lim
x-1x 2 —X +sin(x —1)
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Solution

: X2 —3X +2

lim— :

x-LX < =X +sin(x —1)
(x =D(x —2)

x>1x (X —1) +sin(x —1)

Put X —1=t =—asx -»>1t >0

lim (X _1)(X- _2)
x>1x (X —1) +sin(x —1)
tt -1
=lim _
t-0 (t +1)(t) +sint
t-1 -1 1

t-0t +14+sint/t 0+1+1 2

Limits of exponential and logarithmic functions
. 1Y
(1) I|m(1+—j =e
X —>00 X
(i) lim(1+x )" =e

(iii) |im(1+3jx e
X

X —0

Iff (x) >0,asx —0, then

(iv) lim (L+kf (x))kfl(x) —e,k 20

x —0
Iff (Xx) —> o0, asX —> oo, then
kf (x)
(V) lim| 1+ =e,k =0
X =0 kf (x)
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1 X
lim(1+x )x =e and Iim[1+£j —e

x—0 X —0 X

It follows that

X

(vi)lim2

=Ina
x—0 X
By replacing a with € in (vi), we get
. B —
(vii) lim =lne =1
x—=0 X

Letf (x) >0as X —>0.1f kK 0, then any number
t=k.f (x) >0asx —0.
We have

kf(x) t
wiiilim&— =2 _im® =1 _n a
x—0 k f (X) t->0

Example (45)

Solution
) 1 2X 1/x
C(32x Y|P
lim =1lim
x—0\ 3—2Xx X —0 1_27X
3

1/x
IIm(1+2X) i, _1
e =m{u3¥jjm@—ﬁj
3 3

Ux x—0 x—0
Iim(l—zx)
3

x—0

First consider
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1/x
|im(1+2—xj
x =0 3

2X 3 1
(If we put? =t , then2— = — . Furthermore, note that
X

as X »>0,t -0 and%—>oo )

:[Iim(l+t)m TB =e”?

t—0
Next, consider,

-1/x
Iim(l—z—xj
X —0 3
_312x %13 o/
=|:||m(l—2—xj :l =|:|im(l—t)_1/t:| :62/3
x =0 3 t—0
Thus,
Iim(3+2X jﬂx =e*®
x-0\ 3—2X
. (2x +3JX+1
lim
xox| 2X =1
Solution

(22X +3Y" L (2x+3) . (2x +3
lim = lim dim
x-o| 2x =1 X0 2X =1 ) x-o=\ 2X -1

Example (46)
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1+2 2+ —
T X - X
=lim 1 lim 1
2X X

143 ) lim 1+3j
:|im 2X X —>00 2X

X —00 1 1 | 1 1 X
T Al Im| 1-—

2X X —0 ZXJ

First consider

Iim[1+i)
X —>0 2X

3 X 1
(If we put— =1 , then— = — . Furthermore, note that

as X —oo,t —0))

X 2x 13
Iim(l+ i) = Iim(1+ ij
X = 2X X =00 2X

:[Iim(ljtt)”t T/Z =g ¥?

t >

3/2

Next, consider

Thus
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C(2x +3) @
lim —=g?
xom| 2X =1

Example (47)
Evaluate

limx Y&

X —1
Solution
PutX —1=t . Therefore,X =1+t . Note that, as
X ->1t—>0,

limx D =lim(1+t)" =e

X—1 t—0

Example (48)

Evaluate;
. 1/(x —
lim(x —3) (=4)

X —4
Solution
Put X —4 =t . Therefore,X =t +4 . Note that, as
X —>4t—->0,

lim(x —=3)"" ¥ =lim(1+t)" =e

X —4 t—0

Example (49)

Evaluate
. Inx =In3
Iim—
X —3 X _3

Solution

PutX —3=t . Therefore,X =t + 3. Note that as
X >3 t—>00.

Thus,
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. Inx =In3 . In({t+3)-In3
lim——  =Iim
x->3 X —3 t—0 t

1t
:limlm(ﬁj:nmln(lﬂ—j
t—0 t 3 t—0 3

13

3/t
:In{lim(Ht—j } :Inel’S:E
t—0 3 3

Example (50)

Evaluate
. Inx -1
lim
X —e X _e
Solution
Let

Put X —e =t . Therefore, X =t +e . Also, note that as
X —»e, t -0

. Inx =1 . In(t +e)—Ine
lim =lim

x—>e X —e t—0 t

1t
- |im1|n(1+ t—j - Iimln(1+ t—j
t—0 ¢ e t—0 e

1/e

elt
:In{lim(lﬁ—j } = Ine'® _1
t—0 e e

Example (51)
Evaluate

lim IN10+In(x +0.1)

x—0 X

Solution
Consider
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IN10+ In(x+0.1) = InlO+In(1OX +1)

=In10+1In(10x +1)—In10=1In(10x +1)
Therefore, the given limit can be expressed in the form

jim MO+ 0D i L (10x +1)

x—0 X X—)OX

~limIn(10x +1)"" =In] lim(10x +1)”‘1°”J10

X —0 x—0
=Ine® =10
Example (52)
Evaluate
a* —b”*
lim
X —0 X
Solution
at=b* . @ -D-0b* -1
lim :Ilm( )~ ( )
x—0 X X —0 X
. @ -1y ,. (bb*-1 a
:Ilm( )—Ilm( ):Ina—lnb:In—
x—0 X X —0 X
Example (53)
Evaluate
31
lim
x =0 X
Solution

Put 8X =t.Then,x >0, t 0.
31 3 -1

lim =lim

X —0 X t—0 t /8
t —

=8.lim =8In3

t—0 t
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Example (54)

Evaluate
. et —e™
lim——
x=0  sinX
Solution
e’ —e™ e -1
[im————=1Iim —
x=0 SN X x=0@” SIN X
2X
. e =1 x 2
=lim —.—=1Ine .1.2=2
x>0 2X SInX e

Example (55)

Evaluate
i @) —a* —b* +1
x—=0 X 2
Solution
Consider

(ab) —a" —b™* +1

=a'b* —a" -b* +1

=a* (b* -1)-(b* -1)

(o 1) -1
The required limit

jim @) & —b +1_ |im(ax _1)'£bx -1)
x =0 X x—0 X

@), ()

=lim Jdim =Ina.lnb
x =0 X x =0 X
Example (56)
Evaluate
. at+at =2
lim >
X =0 X
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Solution

Consider
o a” +1-2a*
a +a’ —2= -
a
X 2
Ca¥ -2a 41 (a0 -1)
a* a*
The required limit
X 2
_a*tar -2 . (a"-1)
||m > :||mﬁ
X =0 X X =0 a X
a-1) . 1
. - . 2 2
—!(ILT(])( " j.lxlm)a—x_(lna) .1_(Ina)
Example (57)
Evaluate
I |
lim
x-0 tan 3x
Solution
3 -1 . 3F*¥_1 bx
lim =lim .
x->0tgn3x x>0 5x  tan3x
5. 3 -1 3x 5 5
=—lim . =—In3.1==In3
3x->0 B5x tan3x 3 3

Example (58)

Evaluate
127 +4 -3 -1
lim
X —0 X
Solution
120+ 4 -3 -1
lim

x—0 X
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(12" —1) + (4" —1)— (3 -1)

=lim

X —0 X
=|im(12 _1)+Iim(4 _1)—Iim(3 -1
x —0 X x —0 X X —0 X
=In12+In4-In3=1In16
Example (59)
Evaluate
12" -4 -3 +1
lim -
X —0 X Sin X
Solution
12" -4 -3 +1 . 453 -4 -3 +1
lim _ =lim :
X —0 X Sin X x—0 X Sin X
X QX _ pX _ X 4 (3 -1)—(3" -1
_imAS o4 23 4 ( ) (3-Y)
X —0 X Sinx X0 X Sin X
4 -1).(3" -1
i )_( ) x
X —0 X Sin X X

40 -1, 3 -1 .. X
=[lim Jdim dim——
x—0 X x—0 X x—=0 SN X

=In4.In3.1=1In4.In3
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Chapter 3

Continuity of Real Functions
Introduction
We can introduce the concept of continuity proceeding from a graphic repre-
sentation of a function.
A function is continuous if its graph is unbroken, i.e., free from sudden
jumps or gaps.
Suppose a function is defined on an interval | . We say that the function is
continuous on the interval | , if its graph consists of one continuous curve,
so that it can be drawn without lifting the pencil. There is no break in any of
the graphs of continuous functions (Figure 3.1a-b).

."v

f f f f f
/ I 3 ('
filx)=2x+3 fHl)=x2

(a) (b)

Fig. 3.1
If the graph of a function is broken at any point "a" of an interval, we say
that the function is not continuous (or that it is discontinuous) at “a”.
The Natural Domain
If the domain of the given function is not specified, we take the domain as
the largest set of real numbers for which the rule of the function makes sense
and gives real-number values. This is called the natural domain of the func-
tion.
To understand the concept of continuity better, it is useful to study the fol-
lowing graphs of functions, which represent discontinuous functions.

The graph of the function f, (X ) appears in Figure 3.2a. It consist of all
points on the line Yy =2Xx + 3, except(2,5). The graph has a break at the
point (1, 5). Here f (X ) is not continuous at X =1 since “1” is not in the
domain of f (X ). We say that f,(x) is not defined at X =1 .We can
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Y =

I / I O { 1 0
fi)=2x+3,x# 1 Hx)= l x#0
Fig. 3.2
also say that f,(x)is continuous for all X , except forx =1 . It is also cor-
rect to say that f (X ) is discontinuous at X =1(or that it is discontinuous in
any interval containing “1”).

Now consider the functionf ,(Xx) = ,X #0. Its graph appears in the

X2

1
Figure 3.2b. Observe that asX — 0, — —> o , which means that f,(x)
X

1
does not exist at X =0 or that f,(X ) = — is not defined atx =0 .We say
X

that in any interval containing "0*", the function f (X )is discontinuous

at the pointx =0 .
Note
We say that a function f (X ) is not defined at X =a if either "a " is not in

the domainof f (X) or f (X) > asx —a.

We give below some more situations when a function may be discontinuous
“at a point", in the interval of its definition. The functions f (X ) is defined
for allX . Note that the point (1, 5) is torn out from the graph of f,(X) and
shifted to the location (1, 2). Here, the point (1, 5) of the graph jumps out
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from the height 5 to 2, creating a break in the graph at X =1 (Figures 3.3
and 3.4).

The graph of the function f,(X ), shows a break at the pointx =1 . Here, a

portion of the graph has a finite vertical jump at X =1 making the graph
discontinuous at X =1.

AY

Y =

I/I 0 1

. 2x+3 if x#1
(x) = B2
£ {2 it %=l

Rl 34x ifx<l

X)=

ik 3_x ifx>1
Fig.3.4

Next, consider the graph of the function f (X ) (Fig. 3.5). The function
f5(x) isnot defined at X =0 but it is defined for all other values of x. We

113



1 1
observe thatas X - 0", — —> o0 ,andas X >0, — — —o0. Thus,
X X

f<(x) is discontinuous at the point X =0.

ALY

=

Fig. 3.5

From the above discussion (and the graphs), it is clear that the question of
continuity must be considered only for those points, which are in the domain
of the function. However, a point of discontinuity may or may not be in the
domain of the function.
Definition
Let a function “f (x) ” be defined in an intervall , and let “a > be any
pointinl . The function “f ” is said to be continuous at the point “a”, if and
only if the following three conditions are met:

(i) f (x) isdefinedatx =a

(ii) lin;f (x )exists

(i) limf (x)=f (@)
x —0
In fact, these three conditions of continuity “at a point™, are summed up in
the following short definition.
A function f(x) is said to be continuous at a pointx =a , if the limit of the
function asX —a , is equal to the value of the function forx =a , which
we express by the statement,

limf (x)=f (a) (*)
X —a
There is another way to express continuity of a function at a point “a”. In the
statement (*), if we replace X bya+h ,thenasx —a , we have h — 0.
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Thus, the statement
Lingf (@+h)=f (a)

defines continuity of the function “f ” at “a”.
Remark
I. f(x) is defined at X =a means, the value f(a) is a finite number.

I1. f(x) is not defined at X =a means, either the point (a,f (a)) is
missing from the graph (which also means that “a” is not in the do-
main of “f ) or f(a) is not finite [i.e., asx —a ,f (x) >+ ].

1. limf (x) exists means XIirgl_f (x) =Xlir£1+f (x) and both being fi-

X —a
nite
Note
It is important to remember that the value f(a) and Ixingf (x )are two differ-
-

ent concepts and hence even when both the numbers exist, they may be dif-
ferent. The concept of continuity of the function (at any pointx =a , in its
domain) is based on the existence and equality of these
two values, at “a”.
Definition [Discontinuity]
We can say that, a function defined on an interval | is discontinuous at a
point & € | , if at least one of the following
conditions occur at the point X =a.

I. The function f(x) is not defined atx =a ,

1. limf (x) does not exist [which  means that

X—a

limf (x)= limf (x) or at least one of the one-sided limits is infi-
x—a’

X—a
nite],
Hi.limf (x)=f (@) , in the arbitrary approach of X —a (which

X—a

means that the expressions on the right and the left both exist but they
are unequal).
One-Sided Continuity
In Chapter 2, the concept of limit of a function was extended to include one-
sided limits (and limits involving oo). The importance of one-sided limits
has since been seen in testing the continuity of a function at any point and in
identifying the type of discontinuity at that point.
Now, we extend the concept of limit to define the concept of one-sided con-
tinuity, which is useful in defining continuity in a closed interval.
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Example(1)
Consider the function f (X ) = JX . We know that the domain of the square
root function f (X) =X is [0,00) Therefore, the limf (x) does not

X —0
exist. As a consequence, under the definition of continuity, the square root
function f (x) = JX is not continuous at X =0 (Why?).
However, it has a right-hand limit at O . We express this fact by saying that

the square root function f (X ) = JX is continuous from the right of “0”.We

can give the following definitions of one-sided continuity.
Definition [Continuity from the Right]
A function f(x) is continuous from the right at a point “a” in its domain, if

limf (x)=f (a)

Definition [Continuity from the Left]
A function f(x) is continuous from the left at a point “a” in its domain, if

limf (x)=f (a)

X—a
In view of the above definitions a function whose domain is a singleton is
considered continuous at that point.
Continuity on An Interval
We say that a function is continuous on an open interval if it is continuous at
each point there. It must be clear that each point in the interval has to satisfy
all the three conditions of continuity at a point as stated in the definition (1).

When we consider a closed interval [a,b] we face a problem as we have

seen in the case of the square root functionf (x) = NG
We overcome this situation by agreeing as follows: we say that “f ™ is con-
tinuous on closed interval [a,b], if it is continuous at each point of (a,b)

and if the following limits exist:
Iimf (x)=f (@) and ILT-f (x)=f (b)

Example (2)
Given

X
f(x)=——.
() =>"—
Test the continuity of the function in the intervals (1, 2), [1, 2], and (1, 3).
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Solution
Note that, f(x) is not defined for X =2 . Accordingly, f(x) is continuous
In any interval which does not contain 2. Thus, “f ” is continuous on (1, 2),
but it is discontinuous on [1, 2] and on (1, 3).
Some Theorems on Continuity (Without Proof)
l. If f (x) and g(x) are two functions continuous at the number “a”,

f(x)
g(x)

then f (x)£g(x), f (x).g(x) are continuous at “a” and is
continuous at “a”, provided thatg (a) = 0.

I1. Continuity of a Composite Function: If the function g (X ) is continu-
ous at “a” and the function f (X) is continuous atg(a), then the
composite function (f o g)(X) is continuous at “a”.

Continuity of Some Elementary Functions
It can be shown that
I. A constant function is continuous for all x.

1. A polynomial function f (x)=ax" +ax "™ +...+a_ is continuous
for all values of x on (—o0,0) .

1. x", n >0 is continuous for all values of x.
IV. A rational function is continuous at every point in its domain.

1 . :
V. —,n> 0 is continuous for all values of x, exceptX =0 .
X

VI. Trigonometric functions: f (x)=sinx and g(x)=cosx are con-
tinuous on (—o0,00) . Other trigonometric functions (i.e., tan x, cot X,

sec X, cosec x) are continuous for all values of x for which they are de-

fined.
VII. Inverse trigonometric functions are continuous for all values of x for

which they are defined.
VIII.The exponential function: ff (X )=a" is continuous on(—o0,0). (In

particular, f (X)=e”™ is continuous for all x.)
IX. The logarithmic function:f (x)=1log,Xx , (@>0) is continuous o
(0,00).
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Example (3)
Discus the continuity of the function

f (x):m at X =0.
X

Solution
The arrows at the ends of the rectilinear portions of the graph mean that for
X =0, the function is not defined but for the values of x less than zero the
value of the function is “—1 >, and for the values of x exceeding zero, it is
equal to “1”. Hence, the function has no limit asx = 0. Thus, the function
f (x) discontinuous at X =0.
Example (4)
The greatest integer function of X denoted by f (X ) =[x ] is defined as:
[X ] = the greatest integer less than or equal to X . Thus, for all numbers X

less than 2 but near 2, [X ] =1, and for all numbers greater than 2 but near 2,

[x]=2.
The graph of [X Jtakes a jump at each integer as clear from the graph (Fig.
3.6).

Now, for any integer number K , we have
lim[x]=k =1, butwhen lim[x]=k.

x —k~ x—k*

Thus, Iinl'(l[x] does not exist. Thus, [ ] is not continuous for any integer
X —>

X.

— o ) ESN I
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Example (5)
Find any points of discontinuity for the function f (X ) given by
X' =3x*+2x -1

P ="

Solution
The denominator is zero when X =+2 . Hence “f (X )” is not defined at

+2 and accordingly it is discontinuous at these points. Otherwise, the func-
tion is “well behaved”. In fact, any rational function (i.e., any quotient of
polynomials) is discontinuous at points where the denominator becomes 0,
but it is continuous at all other points.
Example (6)
Check whether the function

2 11

f(x)=
() V% 42

is continuous atx =0.
Solution
Note that the function f (X ) is not defined at X =0 . To check whether this

function is continuous at X =0 , we compute its one-sided limits.

As X >0, 1—>—oo,sothat 2" 0.
X
1/x
limf (x)=lim 22 _0+1 1

K0 x>0 22 41 042 2

1
However, as X — 0", — — o0, so that 2 — 0.
X

Ux 1/x =1/x
Slimf (x) = lim 22 = jim 2 4¥22 )
X —>0" x>0t 29 411 x>0t 2 X(l-|—2 X)
. 14227 140
= lim = =1

00 14279140
Therefore, the f (X ) is discontinuous at X =0 .
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Example (7)
Prove that the function defined by
.1 .
xsin—, ifx #0
f(x)= X
0, ifx =0
is continuous at X =0.
Solution

We shall compute the left-hand limit and right-hand limit of this function, at
X =0.

limf (x)= Iimxsinlz(lim x)(Iimsinl):O

x—0" x—0" X x—0" x—0" X

limf (x)=limx sinlz(lim x)(lim sinl) =0
x —0" X x —0" x—0" X

x —0*

.1
(Since SIn— is a bounded function, which lies between —1 and 1.)

X
As limf (x)=1limf (x)=f (0), f (x) is continuous atx =0 .
x—0~ x —0"
Example (8)
1.
sin—,ifx #0
f(x)= X

0, ifx =0
Test the continuity of f(x) atx =0.
Solution

.1
Note that f(x) is defined for all X . Ilrrgsm— does not exist. [Indeed, the
X—> X

.1 ) : : .
limsin— oscillates between —1 and 1]. Hence, the given function f(x) is

X —0 X
not continuous at X =0 .
Note

.1
The function sin— is defined for all values of X except forx =0 . It does
X

not approach either a finite limit or infinity asXx — O . The graph of this
function is shown below (Fig. 3.7).
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y=sine:
- X

X
21 (oM s /2 g
VS 4 T ¥/
-1
Fig. 3.7
Example (9)
xzsinl, if x 20
f(x)= X
0, if x =0
Test the continuity of f (x) atx =0.
Solution
Note that f (X )is defined for all X . We have
. f(0)=0
1. limf (x)=|imxzsin£=0
x—0 x—0 X
III.Iirrgf (x)=f (0)=0

Thus, f (x) is continuous at X =0.

Example (10)
Test the continuity/discontinuity of the following function atx =0 .

e
F(x)= et ifx =0
0, ifx =0
Solution
Observe that,
. £(0)=0
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el 0

1. limf (x)=Ilim =0 and
X0 0 L1e? 140
1/x 1/x
limf (x)=lim = lim
x —0* ( ) x—>0+:|_-|-e]'/X x—>0+ellx (e—]Jx+1)
1 1

= lim —;
H0+(e X+1) 0+1

Thus, IIrrgf (x ) does not exist. We conclude that f(x) is discontinuous at
X —>

X =0.
Example (11)

sin 2x y
f(x)=< x
1 X =0

#0

Is f (x) continuous at X =0 ?

Solution

Note that the function is defined for all x. To find whether f(x) is continuous
at X =0 or not, we check the left-hand and the right-hand limits atX =0.

L f(0)=1

0 timf (x) = lim 32X 5 4ng limf (x) = lim sin2x _ .
x—0" x=>00 X x-0" X
Thus, IIrrgf (x)=2

limf (x)#f (0)

We conclude that f(x) is discontinuous at X =0.
Example (12)
Let
sm X

f(x)=
Define a function g (X) which is contlnuous, and g(x)=f (x) forall
X #0.
Solution

sin X
We have limf (x)=lim——=1

X —0 x —0 X
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Let
sinx
g(x)=17 x
1
Then, g(x) is continuous at “0”. Since Iirrg g (x)=g(0) =1. Furthermore,

X =0

g(x)=f (x) forallx =0, as was desired.
Note

SINX
The graph (Fig. 3.8)of the function

Is given below. It gives a feel of

how it becomes continuous when we redefine itat X =0 as 1.

AY

Fig. 3.8
Example (13)
Discuss the continuity of the function

X 2
: (& -1 X 20
f (x)=<sinx In(1+x)
2In3, x =0
Solution:
Given f (0)=2In3
X _ 1)2
limf (x)=lim— (3 -1)
X0 x-0sinx In(1+x)

(3X _1j2
~ X RUE 2
—0sink n@+x) | 11 =(In3)
X X
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Thus, we have Iirrgf (x) =Tt (0). Hence, f (x) is discontinuous at
X —>

X =0.
Example (14)
Find the value of K , if
1—coskx
f (x)=< xsinx
2, X =0

X %0

IS continuous.
Solution
Since f (X ) is continuous atX =0 ,

limf (x)=f (0) =2

Hence our problem reduces to computing the limit of f(x) asx — 0.
Consider,

. 5 kX
: . 1-coskx . 2sin
limf (x)=liMm—— =lim——=
X —0 x=0 X SINX X —0 XZSIHX
X
., kX
2
_Ilm 28|n - k2 21_ k2
_x—>0(kX)2 4 sinx 4 1 - 2
27 k?* x
Thus,
2
7:2:k =i2
Example (15)
(SX —ZX).X
If f(x)= c 3 , for X #0, is continuous atX =0, find
COSOX —COSoX
f (0).
Solution

It is given that f (X ) is continuous atX =0 . Therefore, by definition, we
have,
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limf (x)=f (0)

Thus, our problem is reduced to computing the Iirrgf (x) .
X —>

Now,
_ _ (5X -2 ).x
limf (x)=1lim
x—0 x—0 COS5X — C0S3X
5¢-2")x —
=lim ( . ) (since cosA—cosB :—ZsinA +B sinA B
x—>0 —28IN4X .sIN X 2 2
5 -1 2" -1
. X X IN5—-1In2 1.5
=lim-~— ——~ = =——In—
X -0 _8sm4x sinXx -8 8
AX X
Example (16)
The function f (X)) is defined by
e TITX v x0
fx)=4 *
1
—, x =0
(2
is continuous atX =0 . What is Iirrgf (x)?

Solution
If the problem is read carefully, it must be clear that we do not have to com-

pute Iirr(}f (x)]. Since, f (x) is continuous at X =0 ,

i 1
IXILTgf (x)=f (0) :E
Example (17)
Discus the continuity of the function
f(x)= % atx =2

Solution
Since f (X) is not defined at X =2 . Hence, f (X ) is discontinuous at 2.
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Again, IirrZ]f (x ) does not exist (see Fig. 3.9) (Why?).
X—

.V
1

for=—1

0

Fig. 3.9
1 2
f(X)= xj..\’t._
3; =2
Fig. 3.10
Example (18)
Discus the continuity of the function
—, X #2
f(x)=9x-2
3, X =2
at X =2
Solution

Here , the graph of f (X ) has a break at 2 (see Fig.3.10 ).We check
the conditions of f (X ), at X =2 . Observe that
. f(2)=3
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I lim —— = —oo.and  lim

=00, Thus, lim does not
o2 X 2 o2 X 2 12X —2
exist.
Obviously, f (x) is discontinuous atx = 2.
Example (19)
Discus the continuity of the function
x -3, x #3
f(x)=
2, X =3
Solution
We check the three conditions of continuity atX =3
. T (3)=2
1. limf (x)=1lim(B3—-x)=0,and limf (x)=lim(x —3)=0.
X —3~ X —3" x —3" x —3"
Thus, lim|x —3| exists and equals O (see Fig. 3.11).

X —0

nlimf (x) #f (3)

Thus, f (X ) is discontinuous at 3.

Fig. 3.11

Example (20)
Discus the continuity of the function

2
F(x) = X“+2, x>1
bx -1, x <1

Solution

The functions having values X > +2 and 5x —1are polynomials and are
therefore continuous everywhere. Thus, the only number at which continuity
Is questionable is 1. We check the three conditions for continuity at “1”.
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. £ (Q)=4.Thus, f (1) exists.
. limf (x)—Ilm(x +2) =3 and Ilmf (x)—llm(5x -1)=4

X -1

Thus, limf (x) = limf (x). Therefore, Iquf (X) does not exist,
X —1" x —1* X =

and so “f (x) ”is discontinuous atX =1.

Example (21)
Discus the continuity of the function

{x +6, X >3
f(x)=

X, X <3
Solution
We observe that,
l. f(3)—9
Cdimf (x)=limx?=9, and Ilmf x)= I|m(x +3)=9,
X —3 X—3

Thus, Ier;f (x)=f () and f (x) is contlnuous at X =3

Example (22)
Discus the continuity of the function

X+2, X>2
f(X){
X 2, X <2

Solution
Since “f (x) > is not defined atx = 2 , it is discontinuous there. (It is con-

tinuous for all other x.). Note that
limf (x)= I|m(x )=4 and I|mf (x)= I|m(x +2)=4

X—2"
Thus limf (x) =4 exists.

X—2

Example (23)
Discus the continuity of the function

2
<
f(x)={x . X <1
X, x>1

Solution
Note that
. f()=1
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I limf (x) = lim(x2) =1 and limf (x) = lim(x ) =1. Thus
X =1~ X =1 x =1t x -1

limf (x) =1 exists (see Fig. 3.12).

X —1

i limf (<) =f @) =1

L[ s
f@) '.\', x>1

Fig. 3.12
Example (24)
Discus the continuity of the function

f(x)=

X2

1+x 2

Solution
Here again “f (x ) is a rational function, but its denominator (1+ X * ) is
never 0. Thus, “f (x)” is defined for all x and therefore “f ” is continuous

for every real value of x.

Example (25)

Show that the function f (X ) =5 is continuous for every value of X .
Solution

We must verify that the conditions for continuity at arbitrary point X =a
are satisfied.

. f (@)=5
I limf (x)=5and limf (x)=5.Thus, limf (x)=5

i limf (x) =f (a)

Therefore, f (X ) is continuous atx =a.
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Example (26)

Let
-1 x <0
f (x)=sgnx =<0, x =0
1, x>0

Discus the continuity of f (X).

Solution
The function f(x) is called signum function (or sign function) denoted by

sgnx and read “signumof x > (Figure 3.13). (It gives the sign of X .)
Note that the function sgn X is defined for all X .

II :

« -'T
Fig. 3.13
Because
sgnx =-1, Ifx <0,sgnx =0, Ifx =0and sgn x =1, If x >0,
we have
limsgnx = lim (-1) =-1, Iinolsgnx = Iirg(l)zl

x—0" x—0"

Thus, the left-hand limit and the right-hand limit are not equal, which means
that limsgnx does not exist. Accordingly, f(x) is discontinuous atX =0.

x—0
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Chapter 4

Differentiation of Real Functions
Let y =f (X) be a given function defined in an open interval (a, b). Let
the points X and (X + AX ) both belong to the domain of function f (X )

where AX is an arbitrary nonzero number. From the function f(x), we form
a new function

Af (X +Ax)—f (X
sx) = AT+ A0 -1 ()
AX AX
The limit of this ratio, asAX — 0 , may or may not exist. If
Iimf (X +Ax)—f (x)

Ax—0 AX
exists, then we call it the derivative of f (X ) with respect to X . It is de-
dy df
noted by f '(X) or y_a
dx dx

Derivative of a Function at a Particular Point

The derivative of a function y =f (X ) at a particular point X =X, in the
domain of f (X ) is given by the limit

- f (x,+Ax)—f (x,)

li
AXx —0 AX

if this limit exists. It is denoted by f '(X,).
If we replace (X, + AX ) by X , and accordingly AX =X —X, , then the de-
rivative of f (X) at x, is given by
. F(x)—1f (x
f I(Xl): ||m ( ) ( 1)

X —Xq X —X,

if this limit exists.

In all cases, the number X, at which f ’ is evaluated is held fixed during
the limit operation. Here, X is the variable and X, is regarded as a constant.
Note

Observe that if f '(X,) exists, then the letter X in (C) can be replaced by
any other letter. For example, we can write
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f /(a) = lim =T @) (*)
b2 t-a

Example (1)
Let
2

X
f (x)=—+1.
(x) 1

Find f (1) and f '(3)
Solution
Using (*), we obtain

5
214)+1-%
(x“14)+ 2

f'(=1) = lim
( ) X —>—1 X_(_]_)
x* 1
— 1/4)(x?-1
i 44 _ i ¢ (x*-1)
x>-1 x +1  x-o-1 X +1
1/ 2
—(x°-1
_lim 4( ): lim 1/ 4)(x +D(x -1
x>-1 X +1 x—>-1 X +1
. 1
= lim@/4)(x ~1) ==
(x2/4)+1-13
f'(3) =lim 4
X —3 X —3
2 _ 1/4)(x?* -9
@ AxT-9era )(x*-9)
X —3 X —3 X —3 X —3
1/4)(x2-1 _
i € )( ):"m(l/4)(x £3)(x —3)
X —3 X —3 X —3 X —3

. 1
= lim(@/ 4)(x +3) =~
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Next, we give the following formal definitions.

Differentiability of Functions
I. Functions differentiable at a point

If a function has a derivative at X, of its domain, then it is said to be

differentiable atX, .
Il. Functions differentiable in an open interval
A function is differentiable in an open interval (a,b) if it is differen-

tiable at every number in the open interval.

I11.Functions differentiable in a closed interval
If f(X) is defined in a closed interval [a, b], then the definitions of the
derivatives at the end points are modified so that the point ( X + AX)

lies in the interval [a,b ] Hence, we define the one side derivative at
the end points as follows:
The right-hand derivative
. f(x)-f (a
f/(@)=Ilim -7 @
x—a* X —a
The left-hand derivative
. fFx)-f @
f'(b)=Ilim (x) (b)
X —a" X —=b

IVV. Differentiable Function
If a function is differentiable at every number in its domain, it is
called a differentiable function.

Note

The above definition appears to be quite simple, but certain situations might
create confusion. Hence, to get a clear idea of a differentiable function, it is
useful to consider the following example:

Example (2)

Check the differentiability of the function f (X )= JX atx =0

Solution
The right-hand derivative

f 10) = lim T ) =F @ _ o VX -0

X —0" X —0 x=0" X —0

lim L
= — =00
x —0" */X

The left-hand derivative
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£ 10) = tim L= @ _ i ¥x =0

X —0" X —0 x>0~ X —0

= lim —= doesnotexist
X —0" 4/

Here, the domain of f (X ) is [0,00) but f '(x) does not existatx =0 .
Thus, T (X) is not differentiable at “O », which is in the domain of f (x).
Therefore, we will say that f (X ) is not a differentiable function.

However, if we define the function f (X ) = JX in the open interval (0,00),
then it becomes a differentiable function.
In view of the above, we agree to say that if the domain of f '(x ) is the

same as that of (X ) , then f (X ) is a differentiable function.

Nearly every function we will encounter is differentiable at all numbers or

all but finitely many numbers in its domain.

Note

To obtain the derivative of a function, by using the definition of the deriva-
tive, is known as the method of finding the derivative from the first princi-

ple.
Notation for Derivative

We know that differentiation of y =f (X ) by the first principle involves
two steps:
f (x +Ax)—f (x)

AX

. (X +Ax)—f (X
II. Second, the evaluation of the limit AIlmo ( A ) ( )
X —> X

(X +Ax)—f (X
L1, If the limit, lim ( )T ()
AX —0 AX
, d : o :
the symbol f '(x) or d—y and call it the derivative of the function
X
f(x).
Note
We can look at the process of differentiation as an operation. The operation
of obtainingf '(x) , fromf (X ) , is called differentiation of f (X ) . The

I. First, the formation of the difference quotient

exists, then we denote it by
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d . : : : : :
symbol e Is assigned for this operation. We call it the operator of differ-
X
entiation.

: .. d
The Operator of Differentiation d_
X

: . : d
In view of the above discussion, we can say that the symbol d_ stands for
X

the operation of computing the derivative of a given function by the first

. d :
principle. In other words, we agree to say that d_ constructs from the dif-
X

f (X +Ax)—f (x)
AX

(treating the difference quotient as a function of variable AX )
Note

ference quotient , and determines its limitas AX —0

. d . . : .
The notation d_ should be interpreted as a single entity and not as a ratio.
X

(It reads “d over dx™). It is also used in a formula to stand

d
for the phrase “the derivative of ”. Thus, the symbol d_ Is used to define
X

the derivatives of combinations of functions.

Derivatives of Simple Algebraic Functions

Now, we proceed to evaluate the derivatives of some simple algebraic func-
tions by definition.

Example (3)

Let y =f (X)=x", n eN. Then, we have

oy dy df (x) (X +AX)-f (X)
1:(X)_dx -~ dx _AIXITO AX
_Iim (X +Ax) —x o
Ax —0 AX

Example (4)
Lety =f (X)=Xx“, & €R . Then, we have
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oy dy df (x) o f (X +AX)-f (X)
f(x)_dx_ dx _AIXITO AX
i X)X
Ax—0 AX

Remark

o (x +AXx ) —x“°
To obtain, the limit lim ( )

, by making use of binomial
Ax —0 AX

(X +Ax )" —x“
as follows:

theorem , we can expand the amount

AX
X +AX ) =x% x“(1+Ax Ix) —=x* |
( ) = ( ) (smceA—X<1)
AX AX X
2 3
“ l+gAX+a(a—l) AX +05(05—1)(05—2) AX oy
1 x 2! X 3! X
N AX
a-1 . a-2 . . a-3
ax (AX)+a(a 1)x (Ax)z+a(a D(a —2)x (AX)3+...
_ 2! 3!
AX
a-1 . a-2 . . a-3
_ax Jr05(05 1)x (AX)+05(05 D(ax —2)x (AX)2+...
1! 2! 3!
So, we have
X +AX ) —=x*
lim ( )
AXx —0 AX
a-1 . a-2 . . a-3
:"m(ax +05(05 1)x (AX)+a(a D(a —2)x (AX)2+...]
ax—ol 1]l 2! 3!
— aX a-1
Note

Later, where the method of logarithmic differentiation is discussed, we shall
show prove the above formula by using logarithmic differentiation .
Example (5)

Find the derivative of Yy :\fx_
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Solution

dx dx dx 2
1o 1
2 2%

Now, Let Us Consider the Derivative of a Constant, y =f (x)=C.
d_y_“mf (X +Ax)—f (x)

dx x-0 AX
~lim&—=% ¢
x—=0  AX
Example (6)
Find the derivative of
f (X)=+3Xx +7
Solution
f ,(X):“mf (x +h)—f (x)
h—0 h

- Iim\/g(x +h)+7-3x +7
B h—0 h
By rationalizing the numerator, we get

f '(X)=Iim\/3(x +h)+7 -3 +7 J3(x +h)+7 +3x +7

h—>0 h 3 )+ 7 +/3x +7
. 3(x+h)+7-(3x +7)
=lim
=0 f3(X +h)+7 +/3x +7
. 3h
=lim
=0 f3(X +h)+7 ++/3x +7
: 3
=lim
*HO\/B(X +h)+7 +3x +7
3

2 3x +7

134



Example (7)
1
Find the derivative of f (X)=—.

X
f(x+h)—f (x)
h

Solution

f'(x)=Ilim

h—0

=lim

1/ (x +h)=1//x
h—0 h

By rationalizing the numerator, we get

, X +h =1/x 170X +h +1/Jx
f'(x)=1Ilim :
h—>0 h /X +h +1/x

1/(x +h)-1/x

=lim
H’h(l/«/x +h +1/Jx_)
X —X —h
_lim X (x +h)
H’h(l/«/x +h +1/Jx_)
-1
. X(x +h)
=lim
“O(llx/x +h +1/Jx_)
-1 1 1

X220 2

Rules of Differentiation of Functions

d
We find the result of applying the operator d_ to certain combinations of
X

differentiable functions, namely, sums, products, and ratios. (It turns
out that the rules for differentiating such combinations of functions are easi-
ly established in terms of the derivatives of the constituent functions).

I. Derivative of a sum (or difference) of functions

Let f,(x) and f,(X) be differentiable functions of X , with the
same domain, then
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dx [f,()+f,(x)]= d o (x)+ —,(0)

This rule can be extended to the derlvatlve of the sum (or difference)
of any finite number of differentiable functions, with the same do-
main. Thus,

;_X[fl(x)ifz(x)i---ifn(x)]

d d d
=—Ff (X)) x—Ff. (xX)xt...£—F (X
dxl()dxz() OIXn()

The Constant Rule for Derivatives
If k isanyconstant, f (X) is any differentiable function, then

d d
ok f 0] =k - ()

The derivative of product of two functions
Let f,(x) and f,(X) be differentiable functions of X , then

d—x[fl(x).fz(x)] f(x) )+, (X) F(x)

This rule can be extended to the product of more than two functions
(and in general for a product of finite number of differentiable func-
tions). Thus,

[f (x)f,(x)f,(x)]= [(f (x)f,(x)) ()]

=(f,(x)f, (X)) Fa(x)+T, (X) (fl(X)-fz(X))

=(f,(x)f, (X)) f(x)+f, (X)|:f (X) f ,(X)+f, (x) f(x)}

V. The derlvatlve of quotient of two functlons

Let f,(x) and f,(X) be differentiable functions of X, then

q (fl(x)j f (X) L Fa(x)= f(X) L T2()
fa(x) [f,00)]
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Example (8)

IX +1+x -1 dy
, find —

IX +1-+/x -1 dx

If y=

Solution

VX HLEX =L X L EX -1
T VO R S Y
C(x+D)+(x 1)+ 2Vx +1Vx -1
- (x +1)—(x -1)
=X +4X +1Jx -1
Jdy \/ﬁ Jx -1
Tox F 2% +1

X

|

=1+

Example (9)

Jad¥
N

Solution

o (Hf ) ( 2 e+
dx [ \/5 _ \/x_ ]
Ak e
- 2 2
[Va—x | x[Va—x ]
The Derivative of a Composite Function
We have already introduced the concept of composite functions in Chapter

1. Many of the functions we encounter in mathematics and in applications
are composite functions. Consider the following examples:

Ify =

_ 3 10 . 3 3 . .
.y —(X +1) is a function of X°+1,and X~ +1 isa function of
X .
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10
So, Yy = (X 3 +1) can be considered as a composition of two func-

tions as follows
y =u" u=x>+1=(y ou)(x)

:y(u(x)):y(x3+1):(x3+1)10
1.y =3/x*+1 isafunctionof x* +1,and x * +1 is a function of

X . S0, y =3/x*+1can be considered as a composition of two
functions as follows

y =3, u =X*+1=(y ou)(x)
Sy ) =y xf+D) =P 11

X 10 X 10 X 10
1. y :7(E+lj is a function of (E+lj : (E+lj is a func-

tion of £+1, and XE+1 is a function of X .

10
Thus, Y :()(3 +1)10 Y =3xt+1y = Y'I(XE_H) and so on are ex-

amples of composite functions of X . If we could discover a general rule for
the derivative of a composite function in terms of the component functions,
then we would be able to find its derivative without resorting to the defini-
tion of the derivative.

To find the derivative of a composite function, we apply the chain rule,
which is one of the important computational theorems in calculus. It as-
sumes a very suggestive form in the Leibniz notation .

The Chain Rule

If y =f (U) is a differentiable function of u and U =g (x) is a differen-

tiable functions of X , such that the composite function

y =(f og)(x)=f (g(x)) is defined, then g—y is given by
X
dy dy du
dx du dx
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d
If y isafunction of u , definedby y =f (U) and & exists, and if U is

du
a function of X defined by u =g (X ) and j—u exists, then y
X
dy dy du *)
dx du dx

Note
Here, it is important to note that in the product of derivatives on RHS, there

: . d d
are two separate operators of differentiation, namely, d_ andd—. Hence,
u X

dy . : . .

d—y is not obtained by canceling du from the numerator and the denomina-
X

tor.

Extension of Chain Rule (i.e. The Compound Chain Rule)

In general, if y =f (t), t=g(),and u=h(x), where :j—)t/, g—t and
u

du d
— exist, then y isa function of X and & exists, given by
dx dx
dy dy dt du
dx dt du dx
Thus, the derivative of Yy is obtained in a chain-like fashion. In practice, it
is convenient to identify the functions t, U , and so on at different stages of

differentiation.
Remark
In formula (*), y is represented in two different ways: once as a function of

. . dy . .
X and once as a function of U . The expression & is the derivative of y ,

dx

dy

when Y is regarded as a function of X . In the same way, au Is the deriva-
u

tive of y , when Yy is regarded as a function of u . Formula (*) is especially
useful when y is not given explicitly in terms of X , but is given in terms
of an intermediate variable .
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Example (10)

If y =,/X_2,ﬁnd dy
X +2 dx

Solution
Letu =>_= —y=U.
X +1
Then,
dy 1 du_ 4
du 2Ju dx (x +2)2
dy dydu 1 4
— — : ;
dx du dx 5 X =1 (x +1)
X +1

Example (11)
Iy =(x*+3), find dy

dx
Solution
Letu=x°+3 =y =u’.
Then,

d—y=5u4, d—u:3x2
du dx

dy _dy du :5(X3+3)4-3X2215X2(X3+3)4

dx du dx
Derivatives of Trigonometric Functions
By using the basic trigonometric limits and applying the definition of the de-
rivative, we can compute the derivatives of all basic trigonometric functions.
The Derivatives of SinX and cosx (From the First Principle)
To find the derivative of f (X)=sinx , using the definition of the deriva-

tive. We have,

F/(x) = Iimf (X +Ax)—1f (x)
AXx —0 AX
provided the limit on the RHS exists.
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d . . sin(X +AXx )—sinx
—(sinx )= lim ( )
dx AX —0 AX
_ lim SiNX COSAX +COSX SiNAX —Sinx
_Ax—>0 AX

("~ sin(x +y)=sinx cosy +cosx siny )

sin x (cosAx —1)+sin AX COSX

d—(sinx): lim

dx AX —0 AX
_sinx (cosAx —1 ) In AX . (cosAx -1
= |lim ( )+cosx lim > .+ lim ( )=O}
Ax—0 AX Ax—0  AX Ax—0 AX

=04+ C0OSX =C0SX

Similarly we can find the derivative of f (X)=C0SX , using the defini-
tion of the derivative. We have,
(X +AX)—f (X
AX —0 AX
provided the limit on the RHS exists.

d _ Cos(X + AX ) —COSX
—(cosx ) = lim cos
dx Ax—0 AX
_ i SOSX COSAX —SinX sin AX —CosX
_Ax—>0 AX

("~ cos(x +y)=cosx cosy —sinxsiny )

d—(cosx): jim COSX (cosAx —1)—sinx sin Ax

dX AX =0 AX
. CcosX (cosAx -1 ) ] i . COSAX —1
= |lim ( )—smx lim Sin AX .+ lim ( ):O}
AX —0 AX AX —0 AX AX —0 AX

=0-sinXx =-sinXx.

141



Theorem
If f (x) is adifferentiable function of X ,

:—X[sin(f (x))]:cos[f (x)]-;—xf (x) [bychainrule]
=f '(x)[ cos(f (x))]

;—X[cos(f (x)) |=-sin[f (x)]-;—xf (x) [oychainrule]
=—f '(x)[sin(f (x))]

The Derivative of tanx
d oy 9 (sinx j_(cosx)(cosx)—(—sinx)(sinx)

dx dx \ cosx cos® X
COS’ X +5Sin° X 1 ,
= _ =———=sec’X
cos? X cos? X

The Derivative of cOtX

d d (cosxj (—sinx )(sinx ) —(cosx )(cosx )
—Ccotx = _ = :
dx dx \ sinx sin®x

cos® X +sin’x 1 ,
=— — = ———— =—C0Sec” X
SIn“ X SIn“ X
The Derivative of secXx

A oy = [ 1 j_o.(cosx)—(—sinx).l

dx dx \ cosx cos? X

sinx 1 sinx
= — = =secx tanx
COS“X  COSX COSX

The Derivative of cosecXx

d d 1 0.(sinx )—(cosx ).1
—COSEeCX =—| —— | = —

dx X \ sinX sin” x

COS X 1 cosx
=—— = - = —C0Secx cotx
sSin“ x sinx sinx
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Theorem
If f (x) is adifferentiable function of X ,

;—X[tan(f (x)) |=sec?[f (x)]-%f (x) [bychainrule]

=1 '(x)[ sec’(f (x))]
éi—[cot(f(x))]::—cosecz[f(x)]-é%—f(x) [by chain rule]

=—f '(x)[ cosec? (f (x)) |
:_X[Sec(f (X))]:sec[f (x)]-tan[f (x)]-%f (x) [bychainrule]

=f '(x)[ sec(f (x))-tan(f (x))]
a cosec(f (x)) |=—cosec|f (x)|-cot|f O()-ji—f(x) [bychainrule]
o Lcosee( 60))]=—coseelf (0)]-cotf ()] o

=—f '(x)[ cosec(f (x))-cot(f (x))]

Example (12)
Differentiate

y :(x3 +5X 2)sinx .
Solution

d—y:(x3+5x2).d—sinx +sinx.d—(x3+5x2)
dx dx dx
:(x3+5x2).cosx +s.inx.(3x2 +10x)

Example (13)

1-sinx

£y = [F2SNX g
1+sinXx dx

Solution
1-sinx

Letu = - , then y :\/u_and
1+sinx

dy dy du
dx du dx
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dy 1
du 2vu’
du (—cosx )(1+sinx )—(cosx )(1-sinx )
dx (1+sinx )’
—2C0SX
(1+sinx )’

.dy 1 | —2cosx
Cdx o 2Ju | (1+sinx )’

_ /1+sinx COS X
1-sinx | (1+sinx )’

Example (14)

tanx +secx d
Ify = find -

tanx —secx dx
Solution:

dy (sec’x +secx tanx )(tanx —secx )

dx (tanx —secx )’

(SeCZX —Secx tanx )(tanx +SeCcX )

(tanx —secx )2

_ 2secx tan®x —2sec’ X

(tanx —secx )’

_ 2secx (tanx +secx )
B (tanx —secx )
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Derivative of Exponential Function
To find the derivative of the exponential function y =f (x)=a", we use
the principal definition

d_y:f ) = lim f (x +Ax)—f (x)
dx Ax =0 AX
a.x+Ax _ax axan _ax
=lim—=Ilm—
AX —0 AX AX —>0 AX
. a.x (an _1) . aAX _1
= lim =a" lim
Ax =0 AX AX =0 AX
=a“Ina
So, we have
d
—a* =a"Ina
dx
Also, we have

d
—e* =e" Ine =¢”
dx

Derivatives of Logarithmic Function

To find the derivative of the natural logarithmic function y =f (X ) =1Inx,
we use the principal definition
d . f(x+Ax)-f (X
=1 (x)= fim (x +4x) -1 )
X

Ax —0 AX

1/Ax
_ lim iln(u A—Xj _ limIn| 1+ A—Xj
Ax—0 AX X Ax —0 X

x/ax VX B X | AX
I |imK1+A—Xj } —In Iim(1+A—Xj }
AX =0 X AX =0 X

— Ine¥ _1
X
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So, we have

—Inx =—
X X
Also, we have
d (nxj
—log, X =—| —
X X \Ina
1 d 1 1
=——Inx =—.=—
Ina dx Ina x

Example (15)

SinX —cosX ) —COSX +SinX

X3 +7X —5):3x2+7

X

5

1
(ax —tanx +Inx):aX Ina—sec’x +—
(x +e” —secx ):5x“+eX —secx tanx

o o o o
><|Q_><|Q_><|Q_ |o_
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Exercise

Find the derivative of
the following functions
with respect to X

Answer

log,, X

e’ (sinx —cosx )
sin® x

a* n
— Ina——
X X

(cosx —x sinx )Inx —cosx

2
(Inx)
COSX +X sinx Inx
X COS X

Example (16)
Differentiate
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Solution

dy d d
< =3 —log.x +log. x —3*
dx dx Js Js dx
11
=3 —=|+1log.x (3 In3
(In5 X )Jr Js ( )

Example (17)
Differentiate with respect to X , the function

y =log, a
Solution
We have,
Ina
y = Iogx a=—-
In x
d_y:| d_i:| a -1/
dx dx Inx [|nx]
~ —Ina
X [Inx]2
Exercise Answer
(1) Differentiate x Inx 1+Inx
(2) If 'y =(x*+2x)3", find g_y atx =2 36(1+2In3)
X
(3) Ify:6xtanx,findd—yatx:0 0

dx

Theorem
If f (X) is a differentiable function of X ,

d f (x) f (x) d .

—la =a -Ina-—f (x) [bychainrule

"] —f (x) Dby ]
=a' % .Ina-f '(x)
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d f (x) f(x) d .
—le —=e -—f (x) [bychainrule
e T (x) [y ]

=f '(x)-af )
1 d .
—[loga [f 0)]]= Ina T OIXf(x) [bychainrule]
1 f'(x)
Ina f(x)
d 1 d
d—x[ln[f (x)]]:T o
_F'(x)
- f(x)

f (x) [bychainrule]

Example (18)

: _dy
If y =In(In(sinx)) find— .
y =In(In(sinx ) find_~
Solution

Let t =sinx, u =In(sinx) . Then, y =Inu and u =Int.
So, we have

dy dy du dt
dx du dt dx
dy 1 du 1 dt
—_— =, — =—, —:COSX
du u dt t dx
dy 11 1 1
2 =Z.2.cosXx =—— .———.COSX
dx u't In(sinx ) sinx
_ cotx
In(sinx )

Example (19)

If y =+/secv/X : find j—y
X
Solution:

Let t=+/X,U=secy/Xx .Theny =+Ju, u=sect
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dy dy du dt 1
= — —= sect tant.—
dx du dt ‘dx 2Ju 2J_
—_.Sec J_ tan J_
2 sec\/x_ '\/_

_Sec \/x_ tan \/x_
4\/x_ sec\/x_

Example (20)

£y = In ,1+s!nmx fddy
1—sinmx dx

Solution
Let t:w u :‘/wfhen y =Inu, u =\/t_
1—sinmx 1—sin mx
dy dy du dt
dx du dt dx
1 1 mcosmx (1-sinmx )+mcosmx (1+sinmx )
u 2+t (1-sinmx )’

_\/1—sinmx 1\/1—sinmx 2m cosmx
1+sinmx 2\ 1+sinmx '(l—sin MX )2
mcosmx _ mcosmx _ m

— — — > = =m Secmx
1-sIin“mx COS” mX cosmx

Simpler method for other similar problems:

When computing derivatives by the chain rule, we do not actually write the
function t, U and so on, but bear them in mind, and keep on obtaining the

derivatives of the component functions, stepwise, as shown in the following

solved examples.

Example (21)
: ., dy
If y =In(sinx?) find —=.
y ( ) " dx
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Solution

g—i = ;—X[In(sinx 2)}

d .
= ——.—Ssinx
sinx “ dx
1 d
=— 2.cosxz.—(x"‘)
sinx dx

1
=———.C0SX *.2X =2X COtx *
sinx

Note
Observe that when we differentiate a function by using the chain rule, we

differentiate from the outside inward. Thus, to differentiatesin(3x +5) ,
we first differentiate the outer function sSinX (at3x +5 ) and then differen-
tiate the inner function3x +5 atx . Similarly, to differentiateCOSX , we
first differentiate the outer function cosx (atx *) and then

differentiate the inner functionx ’ , at X . The chain rule can be applied to
even longer composites. The procedure is always the same:

Differentiate from outside inward and multiply the resulting derivatives
(evaluated at the appropriate numbers).

For example,

;—X[sin(cos(tanS X ))}
= [cos(cos(tan5 X ))}[—sin(taﬁx )}(Stan4 X )sec? x
Example (22)

iy =In(In(Inx)) findg—y.
X
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Solution
We have

) In(llnx)ddx (In(lnx))

1 1 d
= . —Inx
In(Inx ) Inx dx

1 11
In(Inx) Inx x
B 1

_x(mx)[m(MX)]

Example (23)
If y =|n(|n(|nx3)) fing 2.

dx
Solution
We have
dy d
v d—x[ln(ln(lnx 3))}
1 d
:Inﬂnx3)dx(h10nX3))
1 1 d 3

=|n0nx3)1nxgdxlnx
1.1.1dx3
In(Inx ) Inx® x* dx
1 1 1

_ . ——.3x 2
In(lnx"’)lnx3 X3
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Example (24)

x3 . dy
If y =" , find—
y in i
Solution
We have,
dy _d we_ e d
dx dx dx
:ex3(3x2):3x2e
Example (25)
If y =+cos/X , find jl
X
Solution
We have,
b = | Yoos
— = —4/COSVX
dx dx \/_
1
= cos\/_
2/cos/x dx
1
-~ (-sinx
2 cos\/x_( )
1
——_—  (=sinVx
2\/005\/X_( )

sian_

4\/ X COS \/x_

Example (26)
If y =sin(log,,x ) ; find

dy
dx
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We have,

d d .
%za(sm(logmx )

d
=cos(log,, x )d—x(logmx)

1

_ cos(log,,x )

X In10
Example (27)
If y =In[sinx +cosx |[; findj—i .
Solution
We have Gy d
d—de—X(In[smx +cosX |)
1

d , .
= — (sinx +cosx )
SinX +Ccosx dx

1 :
= — (cosx —sinx )
SiNX + COSX
_ COSX —sinx
SINX + COSX
Example (28)
» _dy
If y =2"cos(3x —2) ; find—=.
dx
Solution
We have

dy d .,
v 2 cos(3x—2)]
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= 2" ;—X[cos(?,x —2) |+ cos(3x —2)]%2X

= 2" [ —sin(3x —2)}%(3x —~2)+[cos(3x —2)](2*In2)
= 2" [ =sin(3x —2) |(3)+| cos(3x —Z)J(ZX In 2)
=2"[In2cos(3x —2)—3sin(3x —2) ]

Example (29)

If y= 1 ;findd—y.
X Inx dx

Solution
dy d 1
dx dx | xInx

We have
(0)(x Inx )—(1)d(x Inx )
_ dx

(x Inx)2
x(i)+(lnx)(l) _ 1+Inx
- (x Inx)2 - (x Inx)2

Summary of Differentiation Rules
Derivative of a sum (difference) of functions)

d d d

— I, (x)xf, (x)|[=—1F,(x)x—F (X
OIX[1() »(x)] o 1()dx 2(X)
Derivative of a constant multiple of a function

d d

— |k f (x)[=k —f (x

dx [k 00l dx 0
Derivative of a product of functions

d d d
&[fl(x)fz(x)] :fl(x)&fz(x)"'fz(x)&fl(x)

Derivative of ratio of functions
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5 _fl(X)} f (x) fi00- f(x) fa(x)
dx | T,(x) [f,00)]

Derivative of comp03|te functlons (the chain rule)

o[ (060)]= 5[ @I g 0]
Summary of basic functlons derivatives.
y dy

dx
[f ()], @R aff ()] 7[F ()]

f'(x
JHe) 2 f((z )
sin[f (x)] cos[f (x)] (f '(x))
cos[f (x)] —sin[f (x)](f "(x))
tan[f '(x)] sec’[f (x)](f '(x))
cot[f (x)] —cosec’[f (x)](f '(x))
sec[f (x)] sec[f (x)]tan[f (x)](f '(x))
cosec[f (x)] —cosec[f (x)]cot[f (x)](f '(x))
y dy
a' ® a f<x>][f '(x)][Ina]
e ) [e ™ ](f(x))
f'(

In[f (x)] f (
e L




Exercise : Differentiate the following functions w.r.t. X :

@ y =In(In(sinx )) (2) y :[In(ln(lnx))}4 (3)y =+sinVx

(4)y =cos(x%e*) (8 y = S‘DX_& 6)y =e*

X 1+ cosx
7))y =22 8) v =log. (lo 9Q)y =In, |————
(7 y (8) y =log, (log;x) (9)y «/1_0083)(

Implicit Functions and Their Differentiation
First, let us distinguish between explicit and implicit functions. Functions of

the form, y =f (X)) in which y (alone) is directly expressed in terms of

the function(s) of X , are called explicit functions.
Example (30)

Yy =X’+3x -2, y =sinx +2* ,y = X +3;
1+X

y =cosX +In(L+x?) and so on.

Not all functions, however, can be defined by equations of this type. For ex-
ample, we cannot solve the following equations for y (alone) in terms of

the functions of X .
Examples (31)

X*+y®=2xy, y>+3y*—2x*+2=0, x°+y*=36

siny =xsin(@a+y), y®+7y =x>andso on.

Such relations connecting X and Yy are called implicit relations. An implic-
it relation (in X andy ) may represent jointly two or more functions X .

As an example, the relation X “ 4+ y °=36 jointly represents two functions:

Yy =436—x% and y =—/36—-x"7.

Remark

Every explicit function ¥ =T (X ) can also be expressed as an implicit
function. For example, we may write the above equation in the form

y —f (X) =0 and call it an implicit function of X . Thus, the term explicit

157



function and implicit function do not characterize the nature of a function
but merely the way a function is defined.
The Differentiation of implicit Functions
The technique of implicit differentiation is based on the chain rule.
For example, consider the equation
y 47y =x°
Differentiating both the sides with respectto X , treating y as a function of
X , we get (via the rule for differentiating a composite function)

dy _dy 2

3y? 2L 72 —3x *

y dx dx )
dy

Now solving (*) for d_ , We get
X

2
Y (ay247)=ax - Do
dx dx. 3y +7
Note that, the above expression for j—y involves both X andy . Ifitis re-
X

quired to find the value of the derivative of an implicit function for a given
value of X , then we have to first find the corresponding value of y , using

d
the given relation . This will help in computing the value of d—y at those
X
points.
Example (32)
dy

Find —— ,if y°+3y*—2x*=-4.
dx

Solution
Differentiating both sides of the given equation “with respect to X ” (using
the chain rule), we obtain

5y4d—y+6y dy 4x =0

dx dx
dy .
We now solve for d_x , Obtaining
(5y4+6y)d—y=4x P 44X
dx dx 5y”+6y
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Derivatives of the Inverse Trigonometric Functions
I. Derivative of the Inverse Sine Function

Let y =sin~" X , which is equivalent to

. T T
X =siny andy e{——,—}

2 2
Differentiating both the sides of this equation with respect to X , we
obtain
d d 1
1=[cosy | y W
dx dx cosy

T T . .
Ify e [—E,E} COS Y is non-negative.

Here, we have to write the right-hand side in terms of X .
Since, Siny =X , we have

cosy =+1-sin’y =+yJ1-x?

Of these two values for cosy , we should take COSY =~/1—X?,
: T T
since Y e[—— —]

22
So, we have
d—y:d—[sin‘lx]z t 1
dx dx cosy 1—x2
—[sin‘lx]: !
X 1-x?

Theorem (A): If f (X) is a differentiable function of X

L -d f (x) [bychainrule]

d .

—|sin(f (x)) |=

om0 L 2
F(x)
1-[f (x)]
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Example (33)
Fing 2 Jif y =sinT'x?
dx
Solution

dy :d—sin‘lx 22X

dx dx N 4
Derivative of the Inverse Cosine Function
Lety = cOS ™" X , which is equivalent to

x =cosy andy €[0,7]

Differentiating both the sides of this equation with respect to X , we
obtain

. d d 1
1=[-siny] y & __ _
dx  dx siny
If y €[0,7], siny is non-negative.
Here, we have to write the right-hand side in terms of X .
Since, COSy =X , we have

siny =+/1-cos’y =+1-x2

Of these two values for Siny , we should take Siny =+/1—x 2,
since y €[0,7].

So, we have
d—y:d—[cos‘lx]:— 1
dx dx siny 1—x 2
—[cosx |=- L
X 1-x°

Theorem (B): If f (X) is a differentiable function of X ,

d 1 d :
— | cosH(f (X)) |=— .—f (x) [bychainrule]

f'(x)
1-[f ()]
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Example (34)
d

Find ,if y =cose*
dx

Solution

2X
e P

dx dx N

Derivative of the Inverse Tangent Function
Let y =tan~'x , which is equivalent to

/4
X =tany and - —
y y{ : 2}

Differentiating both the sides of this equation with respect to X , we
obtain

dy _ dy
1=/ sec® — 2 =
[ y ]dx dx sec’y

Here, we have to write the right-hand side in terms of X .
Since, X =tany, , we have

sec’y =1+tan’y =1+x°

So, we have
dy d . 1 1
—:—[tanlx]: = — = >
dx dx sec’y 1+tan“y 1+X
d 4
—|tan—"x |=
dx[ ] 1+x°

Theorem (C): If f (X) is a differentiable function of X ,

:—X[tan‘l(f (X))] = 1+[f1(x)]2 .ddx f (x) [bychainrule]
f'(x)
1+ [f ()T
Example (35)
Find dy Jif y —tant_1

dx 1+ X
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Solution
B 1

nl( 1 j_ (1+x)” 1

14X )

dy d

dx dx

+( 1 jz (x +1)° +1
1+X

IVV. The Derivative of Inverse Cotangent function
From the definition of inverse cotangent function, we have

y =cot™'x =%—tan‘1x

Differentiating both sides with respect toX , we get

dy _ d_cot‘lx - d—(%) —d—tan‘lx

dx dx dx dx 1
A 1 _ 1
1+x% 1+x°
Theorem (D): If T (X ) is a differentiable function of X |,
d—cot‘l[f (x)]=- 1 Z-d f(x)
dx 1+[f (x)] dx
X))
1+[f ()]

V. Derivative of the Inverse Secant Function
Let y =Sec™ X , which is equivalent to

X =secy andy e[O,ﬂ]—{%}

Differentiating both the sides of this equation with respect to X , we
obtain

1:[secytany]0Iy :>dy = 1
dx dx secytany

Ify e [O,ﬂ']—{g}, secy tany is non-negative.
Here, we have to write the right-hand side in terms of X .
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VI.

Since, X =Secy , we have

secy tany =secy./sec’y —1=x+x’-1

So, we have
d—yzd—[sec‘lx]= 1 = L
dx dx Secy fan y secy SeC2 y -1
1

Xx?%-1

d_[sec—lx]:;
dx xyx2-1

Theorem (E): If f (X) is a differentiable function of X ,

d 1 d
—secH[f (x)]= —f (x)
e 1100 £ Oy[f )] -1 9
)
f o[ )] -1

The Derivative of Inverse Cosecant function
From the definition of inverse cosecant function, we have

_ 7 _
y =CO0Sec X = —sec Lx

Differentiating both sides with respect toX , we get

dy d 1 d (ﬂ'j d 1
— =—C0SeC "X =—| — |——sec " x
dx dx dx \ 2 .

1 1
_0— __
X4Xx2-1 xa/x?-1

Theorem (D): If T (X) is a differentiable function of X ,
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1 LI
£ ()y[f 0O -1 I

f'(x)
f)y[f ()] -1

d . o
o COSEC [f (x)]=

Example (36)

If y =tan1(1+—xj , find dy
1-X

Solution

dy 1 d {1+x}

14X 2

Example (37)

_ a2x
If y =cos™ = ° | find dy
1+e* dx

Solution
We have,
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B 1 .{(—Zezx (1+e>) (227 )(1-e” )]
1_[1—e“ T (1+e™ )
_ 2eX2X

Example (38)

J1+x2%-1

J with respect to X .
X

Differentiate y = tanl(

Solution
We have,

2 (1 +x? )
Example (39)
Differentiate

y =sin”* (x Vi-x ~x N7
Solution
dy _ L [ﬂ-fﬂ}
o J (x|
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1

:\/1—(Xx/1—7x—\/X_*/l—T)2
><{(x )(Zﬁ—x}(m)@‘(JX_)(JJ—XTJ_(;X_)(W)}

) 1 2 —3x 3x° -1
_Jl—(xm—ﬁﬂ)z L\/l_x +2\/X_\/1_7}

Example (40)

If y =sec™ 1+4 , find dy
1—4* dx

Solution

1-4 J\(1-4*

di: 1+ 4" 11 g Y dx(ij:]
d [ + j\/( + ] _1d
e

(#nae) (e s)

(1-4")
- 2x+1 |n 2
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Derivatives of Hyperbolic Functions

The formulas for the derivatives of the hyperbolic sine and hyperbolic cosine
functions are obtained by considering their definitions, and differentiating
the expressions involving exponential functions. Thus,

d—(sinhx)z dje -e” | (e +e’ — cosh x
dx dx 2 2
d—(COShX)= de +e — i =sinh X
dx dx 2 2

From these formulas and the chain rule we have the following theorem.
Theorem (A): If T (X) is a differentiable function of X ,

;—X[sinh(f (x))]=[cosh(f (x))]f "(x)

;—X[cosh(f (x))]=[sinh(f (x))]f "(x)

The derivative of tanhX may be found from the exponential definition or

we may use the above result(s) (i.e., the derivatives of sinhx andcoshx ).
Since

tanhx — sinh x
cosh x
Then,
h?x —sinh?®x 1
OI—[tanhx]=COS ZS = — =sech”x
dx cosh” x cosh” x

The formulas for the derivatives of the remaining three hyperbolic functions
are

a4 coth x ] = —cosech’x,

dx -

d .

— sechx]:—sechx tanh x ,

dx -

dd—'cosechx | =—cosechx cothx.
l
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From these formulas and the chain rule, we have the following theorem.
Theorem (B): If f (X) is a differentiable function of X,

9 rtanhf (x)]=|sech®f (x) |f '(x)

dx * To-

OI—'cothf (x)]=| —cosech?f (X)]f '(x)

dx - -

;—X:sechf (x)]=[-sechf (x)tanhf (x)]f '(x)
;—X:cosechf (x)]=[-cosechf (x)cothf (x)]f '(x)

Differentiation of Inverse Hyperbolic Functions
Inverse hyperbolic functions correspond to inverse circular functions, and
their derivatives are found by similar methods.

. Derivative of y =sinh™X
Let y =sinh™x . Then X =sinhy
Differentiating both sides w.r.t. X

1:[coshy]3—y
X

dy 1 1 1
— = = =
dx coshy [i+sinh?y 1+x’
1. Derivative of y =cosh™x

Let y =cosh™X . Then X =coshy
Differentiating both sides w.r.t. X

: dy
1= hy [—=—
[sm y ]dx

dy 1 1 1

— = — = =
dx sinhy Jeosh?y -1 +/x2-1
1. Derivative of y =tanh™x

Let y =tanh™x . Then X =tanhy
Differentiating both sides w.r.t. X
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_ dy
1= [sech2 y ]dx

dy 1 1 1

dx sech’y 1—tanh®x 1-x°?
The differential coefficient of the reciprocals of the above can be found by
the same methods.

They are,
y =sech™x dy___ 1
dX  x1-x?2
y =cosech™x dy___ 1
dX  x1+x?
. dy 1
=coth™*x L =-
y dx  x°-1

From these formulas and the chain rule, we can obtain the following results.
If f (X) is a differentiable function of X

el (0 ()] - \/[ff(;(())(])z +1
;—X:cosh‘l(f (x))]z [ff()’((>)<])2 — f(x)>1
;—X:tanh‘l(f (x))] =ﬁ, f (x)|<1
sl ] fllfx[f) O]
Lo e )Jflix[f) T
;—X:coth‘l(f (x))]:—[fle(%, [ o)[>1
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Example (41)
dy

Find - if y =tanh™(cos2x ) .
X
Solution
We have,
dy d 1
—— =—| tanh™(cos 2x
dx dx[ ( )]
1 .
= =-(—2sin 2x)
1—(cos2x )
:—2_3|2n X __ : 2 = —2C0Sec2X
sin“ 2X sin 2x
Example (42)
o dy I
Find— ,if y =sinh™(tanx ) .
VL (tanx )
Solution

dy dr.  _
d7:d_x[smh *(tanx )]

2
,  Secx

1
= -SEC” X

V1+tan®x ) [secx |

=|secx|
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Derivatives Higher Orders
We have studied several methods of finding derivatives of differentiable

functions. If y =f (X) is a differentiable function of X , then its deriva-
tive is denoted by

d—yorf '(x) or y'

dx

The notation f "(X) suggests that the derivative of f (X) is also a function
of X . Ifthe function f '(x) is in turn differentiable, its derivative is called
the second derivative (or the derivative of the second order) of the original
function f (X ) and is denoted byf (X ) . This leads us to the concept of
the derivatives of higher orders.

, vt e T+ AX) T (x)

f(x)=[f"(x)] —A|)!r_1>’]o o

d (dyj:dzy or —d(f (X)):f”(x) ory"”
dx \dx / dx? dx

2

dcy
dx 2

We write,

Similarly, we can find the derivative of provided it exists, and is de-

3

d’y
dx ®
y =f (X) and so on.

r

noted by [or f "'(X) ory

], called the third derivative of
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Notations for Derivatives of y =f (X)

Order of Derivative Prime Notation (') Leibniz Notation
1st y'orf'(x) dy
dx
d?y
2nd "orf "(x
y (x) 0 2
'y
3rd " orf "'(x
y (x) VE
. . d 4y
4th Yoorf Y (x
y (x) v
nth y ™ orf ™M (x) d Sn/
dx

Example (43)
If y =2x°—x°+3, then

2

Y _toxt2x, 9Y _sox-2
dx X

3 4
9Y _1o0x2, 9 _ 40
dx dx
d®y d°y d"y

L — 240, L =0, —2=0
dx dx dx

Note that, for a polynomial function f (x ) of degree 5, f ™ (x) =0 for

n >6 . More generally, the (n +1)™ and all higher derivatives of any pol-
ynomial of degree n are equal to 0.

However, there are functions [like SinX , cosx , e , Inx , and their ex-
tended forms, [that is sin(ax +b) , cos(ax +b),e™ , In(ax +b)or
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more general ones likesin(f (x)) , e' ™’ and log, (f (x)) ]that can be

differentiated any number of times and f (X ) is never 0.
Example (44)
Let us find the nth derivatives of the following:

(i)x" (ii)e”

Gija*  (iv)sinx

Solution
l. Lety =Xx"
. d_y_ n-1 dzy _ _ n-2 dsy _ . . n-3
..dx_nx , OIXZ_n(n 1)x ,dx3_n(n 1)(n—-2)x
d"y

. Lety =e”
2 3
_..d_y_ex’ dy _e* d’y o
dx dx 2 dx*
d’y _ o«
dx "
lll.Lety =a*
. dy X dzy X 2 d3y X 3
=R Ina, 3 =(a )(Ina) T =(a )(Ina)
d"y

V. Lety =sinx
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Ly
" dx
2

d°y ﬁj : ( ﬁj T . ( 7[)
> =COS| X +— |=sIn| | X +— |+ = |=SIN| X +2-—
dx 2 2) 2 2

3
>;:cos x+2-£j:sin (x +2-£j+z :sin(x +3-£j
dx 2 2) 2 2

d )n/ :COS(X +(n —1)-£jzsin((x _|_(n _1).£)_|_£j:sin(x +n.£j

Exercise
find the nth derivatives of the following:

(1) cosx (2)Xl

. T
= COSX :sm(x —l—Ej,

o

(3)Inx
Derivatives of Higher Orders: Product of Two Functions (Leibniz For-

mula)
It helps us to find the nth derivative of the product of two functions.

Let f (x)andg(x) be functionsof X andy =f (X)-g(x).
Then, the nth derivative of y is
y " =Cof W(x)-g(x)+Cf "P(x)-g'(x)
+CIF D(x)-9"()+CF “0(x)-9"(X)

+-+Cf (x)-g ™ (x).

Where,

n n!

“ ki(n-k)!
Note
When one of the functions in the above theorem is of the formx ™, m e N,
then we should choose it as (the second function) g (X ) , and the other as
(the first function)f (x) , because X ™, m e N shall have only m deriva-
tives (and not more).
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Example (45)
Ify =e*x?  findy ™.

Solution

f(x)=e” g(x)=x"

f'(x)=ae® g'(x)=2x

f"(x)=a%™ g"(x)=2

fOx)=ae™  g"(x)=0=g“(x)=--=g"(x)

y ™ =a"e*x?+2na"e*x +(n)(n-1)a" %™

Example (46)
Let us compute the 100th  derivative of the functiony =X >sinXx .

Solution
We have

y 4 = (sinx )" x 2 + 200(sinx )™ x +(100)(99)(sinx )

All the subsequent terms are omitted here since they are identically equal to
zero. Consequently,

y ¢ =x Zsin(x +1oo-%j+200x sin(x +99-%)+99003in(x +98-%)

(98)

=x %sinx —200x cosx —9900sinx

The Method of Logarithmic Differentiation
For (complicated) functions such as general exponential functions and other
expressions involving products, quotients, and powers of functions.)

d (x")
dx

;_X(Xn):nx n-1

Recall that to find the derivative , We use the power rule

Also, we get

d n n-1,,
d—X[f o))" =n[f O "(x)

using power rule and the chain rule.
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.. d
But, we cannot use the power rule to find —(ex ) . Thus,

dx
d X X -1
—(e*)#x e
(&)
d o . .
Recall that, d—(ax ) =a”* Ina, which is the differentiation formula for the
X
exponential function.
Thus, we get,

d
—e" =e*Ine =e”
dx

and

d
—[af (X)] =a'®.f'(x)-Ina
dx
using differentiation formula for exponential function and the chain rule.

: _ d
Now, we ask the question; what can we write for d—(x X )?
X

. o d -
Of course, it would be sheer nonsense to wrlted—(x X ) =% -x <1,
X

It is for these types of functions, and more generally for functions of the type

g(x)
y =[f (x)]
where both f (X ) and g (X ) are differentiable functions of X , that we can

use the technique of logarithmic differentiation for computing their deriva-
tives. This technique is also used to simplify differentiation of many (com-
plicated) functions involving products, quotients, and powers of different
functions. We list below the right technique for differentiating each of the
following forms of functions:

[f (x)]"— Power rule
a' *) — Differentiation formula for exponential functions

[f )™ — Logarithmic differentiation

Remark
The technique of logarithmic differentiation is so powerful that it can be
used for each of these forms.
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Procedure of Logarithmic Differentiation

The procedure of logarithmic differentiation involves taking natural loga-
rithm of each side of the given equation. After simplifying (by using proper-
ties of logarithms), we differentiate both sides w.r.t. X .

The usefulness of the process is due to the fact that the differentiation of the
product of functions is reduced to that of a sum; of their quotients to that of a
difference; and of the general exponential to that of the product of simpler
functions.

The following solved examples will illustrate the process of logarithmic dif-
ferentiation.

First, we start with the differentiation of certain (complicated) function in-
volving products, quotients, and powers of functions.

Example (47)

: d
If y =esin2x cosx , find Y
dx
Solution

Taking the natural logarithm of both sides, we get

Iny =5Ine” +Insin2x +Incosx
Differentiating w.r.t. X , we get

ldy _5 X +— -(2c052x)—smx

ydx e* sin 2x COS X
=5+2cot2x —tanx

j—y:y[5+2cot2x —tanx |

X

=e ™ sin2x cosx [5+2cot2x —tanx ]
Example (48)
. d
If y =e™ sin®x tan®x , find—-.
dx
Solution
Taking the natural logarithms of both sides, we get

Iny =4Ine* +2Insinx +3Intanx
Differentiating w.r.t. X , we get
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1dy e* 2cosx 3sec’x
———=4—+— +
y dx e’  sinx tan x
=4+ 2Cc0otX +—
Sin X COSX
OI—y:y[4+200tx +_—}
dx sin X COSX

=e*™sin®x tan®x | 4+ 2cotx +—
sSin X cosX

Example (49)
oy [E02) oy
(1-x)(2—x) dx

Solution
Taking natural logarithm of both sides, we get

Iny =%[In(1+x)+ln(2+x)—In(l—x)—ln(2—x)]

Differentiating w.r.t. X , we get
1 dy l{ 1 1 1 1 }
——=— + + +
ydx 2[1+x 2+x 1l-x 2-X

_1{ 2 4 }
2|1-x? 4-x?
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|

:\/(1+x)(2+x)[ 63X’ }
(1-x)(2-x)| (1-x?)(4-x?)

]Q(X).

Now, we consider functions of the type [f (x)
Example (50)

ify =5 find 3.
dx
Solution
Taking natural logarithm of each side, we get
Iny =tanx In5

Differentiating w.r.t. X , we get

ld—yzseczx In5
y dx

dy 2
—=vy|secxIn5
dx y[ ]

=5 sec’x In5 |
Example (51)

If x*, findd—y.
dx
Solution
Taking the natural logarithm of each side, we obtain
Iny =xInx

Differentiating both sides w.r.t. X , we have
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id_y:X .£+1-Inx =1+Inx

y dx X
dy x
d—X:y[1+Inx]:x [1+Inx ]
Example (52)
If y=x* | find dy
dx
Solution
Taking the natural logarithm of each side, we get

Iny =x" Inx
Differentiating both sides w.r.t. X , we get

id_yz(xx )(lj+(lnx )[xX (1+Inx )]

y dx X
3—i=)’{xx_l+(lnx)[xx (1+Inx)]}

=x* {xx‘qu(Inx)[xX (1+Inx)]}
Example (53)
Ity =(x*)",then findj—i.
Solution

We have Yy =(xX )X =x*

Taking natural logarithm of both sides, we get
Iny =x?Inx

Differentiating w.r.t. X , we get

id—y:xz(l)qt(xz)lnx
y dx X
dy _

o y[x +x2Inx]

2
=x* [x +x2Inx]
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Example (54)

Ity =(Inx)" find .

dx
Solution
Taking natural logarithm of both the sides, we get
Iny =x In[Inx ]

Differentiating both sides w.r.t. X, we get

id_y:x (i-ijﬂ-ln(lnx)
y dx

Inx X

dy 1

— =y |—+In(l

dx y{Inx " n( nx)}

_(Inx [%Hn(lnx)}
Example (55)
ity =(cosx ™ find 2.
dx

Solution
Taking natural logarithm of both sides, we get

Iny =sinx Incosx
Differentiating both sides w.r.t. X , we get

ldy . [ sinx }
——Z =sinx |- +cosx (Incosx )
y dx COS X

dy { { sinx} }
—— =y Jsinx | - +cosx (Incosx )
dx COSX

. H
=(cosx )™ {cosx (Incosx ) - 2= }

COSX
Example (56)

Inx . dy

If y =(tanx find —.

y =(tanx)™ find -
Solution

Taking natural logarithm of each side, we get
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Iny =Inx -tanx
Differentiating both sides w.r.t. X , we get

2
id_yzlnx-seC X +£In(tanx)
y dx tanx X

In(t
d_y:y{ | Inx n(anx)}
dx SINX COSX X

:(tanx)m{ Inx +In<tanx>}

Sin X COSX X
Example (57)

. tanx . dy
If y =(SInX , find —.
v = ) dx
Solution
Taking the natural logarithm of each side, we get
Iny =tanx -In(sinx )

Differentiating both sides w.r.t. X , we have

id_y:tanx _ X fsec?x Insinx
y dx Sin X
dy

oY [1+seczx .Insinx]
= (sinx )™ [1+seczx -Insinx}
Example (58)

Inx . dy
If y =(COSX , find —
y ( ) dx
Solution
Taking the natural logarithm of each side, we get

y =Inx -Incosx
Differentiating both sides w.r.t. X , we get
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1 dy —sinx 1
—— =Inx - +—Incosx
y dx COSX X

d—y:y[ilncosx —tanx -Inx}
dx X

1
= (cosx )InX [—In COSX — tanx -Inx}
X

Example (59)
d
If x¥-y*=1,find &
dx
Solution
Taking natural logarithm of both sides, we get

InxY +Iny* =0

yinx +xIny =0
Differentiating w.r.t. X , we get

y -£+(Inx)d—y+x -id—y+lny =0

X dx y dx
d—y(lnx +£]:—l—lny
dx y X

y
dy __X+Iny
alx Inx + %
y

_y+x:Iny  y(y+x-iny)

(me)

y
Example (60)

find d_y

dx
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Solution
Puttingu =X’ and Vv =y * , we get

u+v =a’
Differentiating w.r.t. X , we have

LA *
dx dx
Now, consider u =X’
Taking natural logarithm of both sides, we get
Inu=y Inx
Differentiating both sides w.r.t X , we get
ldu 1 dy

udx X dx

du u{l+d—y-lnx}
dx X dx

:xy{l+d—y-lnx} (**)
X dx

Now, consider v =y *

Taking natural logarithm of both sides, we get

Inv =xIny
Differentiating both sides w.r.t . X , we get
1dv 1ldy
——=X- +Iny
v dx y dx
d—V:v x dy +Iny
dx y dx
x d
=y {——yﬂny} (**)
y dx

Using (**) and (***) in (*), we get
xy[l+d—y-lnx} y” —d—y+lny
X dx y dx
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d_y X7 Inx +yxi}:{xyl+yX Iny}
dx y X

cdy  xP(y/x)+y*iny
Tdx - x)Inx +y*(x1y)
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