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Chapter: 1
Introduction

General principles

Mechanics: Mechanics is a branch of physical sciences which describes or predicts

the conditions of rest or motion of bodies under the action of forces.

Mechanics: Mechanics is a branch of physical sciences that is concerned with the
state of rest or motion of bodies that are subjected to the action of forces.

Mechanics can be subdivided into three branches: rigid body mechanics-
deformable body mechanics- fluid mechanics
1- Rigid bodies: (i) Statics (ii) Dynamics 2-
Deformable bodies
3- Fluid Mechanics: (i) Compressible — gas (ii) incompressible - liquids
Here we will study only the rigid body Mechanics. In the first term we will study some
subjects in Statics
In Statics we will assume the bodies to be perfectly rigid, no deformation.
This is never true in the real world, everything deforms a little when a load is applied.
These deformations are small and will not significantly affect the conditions of

equilibrium or motion, so we will neglect the deformations.

Basic Quantities

Basic Concepts: There are four basic quantities in Mechanics space, time, mass,
force:
(1) - Length: Length is used to locate the position of a point and describe the size of
physical systems.
(2) - Time: Time is the measure of the succession of events and it is important in
Dynamics
(3) - Mass: Mass is a measure of a quantity of matter that is used to compare the action

of one body with that of another. This property manifests itself as a gravitational
attraction between two bodies and provides a measure of the resistance of matter to a

change in velocity.




(4) - Force: Force is push or pull exerted by one body on anther. This interaction can
occur when there is direct contact between the bodies, such as a person pushing on a
wall, or it can occur through a distance when the bodies are physically separated.
Idealizations: Models or idealizations are used in mechanics in order to simplify
application of the theory. Here we will consider three important idealizations.

(i) - Particle: A particle has a mass, but a size that can be neglected. For example, the
size of the earth is insignificant compared to the size of its orbit, and therefore the earth
can be modeled as a particle when studying its orbital motion.

(if) - Rigid Body: A rigid body is a combination of a large number of particles in
which all the particles remain at a fixed distance from one another, both before and after
applying a load

A rigid body is considered rigid when the relative movement between its parts is
negligible.

(ii) - Concentrated Force. A concentrated force represents the effect of a loading

which is assumed to act at a point on a body when the contact area is small compared
with the overall size. We can represent a load by a concentrated force, provided the area
over which the load is applied is very small compared to the overall size of the body.

An example would be the contact force between a wheel and the ground

Weight and Mass

Weight is the measure of how heavy an object

The unit of measurement for weight is that of force, which in the International System
of Units (SI) is the newton.

Mass is both a property of a physical body and a measure of its resistance to
acceleration (a change in its state of motion) when a net force is applied (The mass of an
object is the amount of material it contains. ). An object's mass also determines the
strength of its gravitational attraction to other bodies.

The unit of measurement for mass in the International System of Units (SI) is the

kilogram (kg).




Weight is not the same thing as mass. Mass is a literal representation of the amount of
matter in a particle or object, and is independent of external factors such as speed,
acceleration, or applied force (as long as relativistic effects are small enough to be
neglected). Weight has meaning only when an object having a specific mass is placed in
an acceleration field. At the Earth's surface, a kilogram mass weighs about 2.2 pounds,

for example. But on Mars, the same kilogram mass would weigh only about 0.8 pounds

Newton's Three Laws of motion:

Engineering Mechanics is formulated on the basis of Newton's three Laws of motion:

First Law (1% Law):

A particle originally at rest, or moving in a straight line with constant velocity, tends to
remain in this state provided the particle is not subjected to an unbalanced force.

A particle remains at rest or continues to move in a straight line with a constant speed if
there is no unbalanced force acting on it (resultant force = 0).

Second Law (2" Law):

A particle acted upon by an unbalanced force (F ) experiences an acceleration (a) that
has the same direction as the force and a magnitude that is directly proportional to the
force.

If (F) is applied to a particle of mass (M ), this law may be expressed mathematically
as F=Ma

Third Law (3" Law):

For every action there is an equal and opposite reaction.
The mutual forces of action and reaction between two particles are equal, opposite, and
collinear

The forces of action and reaction between interacting bodies are equal in magnitude,
opposite in direction, and act along the same line of action (Collinear).
Newton's Law of Gravitation Attraction

The gravitational attraction force between any two particles is

FgMm
r

F = mutual force of attraction between two particles

G = universal constant known as the constant of gravitation
M, m = masses of each of the two particles

I' = distance between the two particles

What am | talking about? Weight.

The weight of a particle is the gravitational force between a particle and earth;

By using the equation g= Gr':/' , Where




M = mass of earth, m = mass of a particle

r = radius of earth, g = acceleration of gravity at earth’s surface

_ GM gr?
= - G=
Using 9 2 M

2
Substituting into  F =G |v:2m , We have F= g,\; (erzm)

F=mg = weight is W =mg
Orusing  F=ma and at the surface of the Earth a=0
F=mg, then W=mg
g is dependent upon r. Most cases use g =9.81 m/s2=32.2 ft/ s?

Units of Measurement

A unit of measurement is a definite magnitude of a physical quantity.

There are two main measurement systems:

(1)- Metric system (International system Sl):

This system is based on three main units:

Meter — Kilogram — Second ( It is called mks System).

Sl is an abbreviation of French expression (Systeme International d’Unités) in English
(International system)

(2) — English system (British System or Imperial System or US Customary System)
This system is based on three main units:

Foot - Pond - Second (It is also called FPS system). See below Table

Name Length Time Mass Force

International Meter Second Kilogram Newton

system of Units

Y m S kg N kg

(S1) S
Foot Second Slug Pound

U. S. Customary :

FPS ft S N = Ib];ts Ib

Pound (Ib) , unit of avoirdupois weight, equal to 16 ounces, 7,000 grains, or 0.45359237
kg,




Newton

The newton is a unit to for measuring force equal to the force needed to move one
kilogram of mass at a rate of one meter per second squared.

The newton is the SI derived unit for force in the metric system. Newtons can be
abbreviated as N |, for example 1 newton can be written as1N .

Newtons can be expressed using the formula: (1) N =(1kg) (1m/s?).

Pound-Force

Pound-force is a unit of force equal to the force needed to move one pound of mass at a
rate of 32.174049. 32 foot per second squared.

The pound-force is a US customary and imperial unit of force. A pound-force is
sometimes also referred to as a pound of force. Pound-force can be abbreviated as
IbF or Ib- . For example, 1 pound-force can be written as 11bF or 11b. .

. f
Pound-force can be expressed using the formula: 11b=32.174049Ib S—E

How to convert kilograms to pounds
1 kilogram = 2.2046226218488 pounds
1 pound = 0.45359237 kilograms

If the mass
is 1 kilogram
The weight of 1 kg
— 2
9.8 newtons = Tkg x 9.8m/s* i ggnewtons
Weight Mass  Acceleration

of gravity 9.8N =2.2|bs

W = m-g

The weight of 1 sl
32.2pounds = 1slugx 32.2ft/s? :gegou:ds 19
Ifthe mass 3221b=143N
is 1slug

Force: Newton (N)

(1) N =(1kg) (1m/s?)

1 Newton is the force required to give a mass of 1 kg an acceleration of 1 m/ s2.

Weight is a force. The weight of 1 kg Mass is:
W=mg =W =(1kg) (9.81m/s?)= 9.81 N




Chapter: 2

Vectors Forces
Part 1: Vectors in 2D and 3D

Introduction
Statics: The study of bodies when they are at rest and all forces are in equilibrium.

Static equations are often used in truss problems. To solve a static equation, engineers

use a free body diagram. If an object is at rest, as it is in statics, the sum of the forces

acting upon the object will equal zero. The sum of the moments will also equal zero.

Scalars and Vectors

Scalar: A scalar is any positive or negative physical quantity that can be completely
specified by its magnitude

Examples: Examples of scalar quantities include length, mass, and time.

Vector: A vector is any physical quantity that requires both a magnitude and a

direction for its complete description.

Examples(For instance): Examples of vectors encountered in statics are force, position,
and moment.
Vector A vector is shown graphically by an arrow. The length of the arrow represents

the magnitude of the vector, and the angle between the vector and a fixed axis defines
the direction of its line of action . The head or tip of the arrow indicates the sense of

direction of the vector (see below Figure )

Line of action—.

Vector Addition:

All vector quantities obey the parallelogram law of Addition




St

R=A+B
Parallelogram law

(a) (b) (c)
R=A+B
Vector Subtraction. The resultant of the difference between two vectors A and B of

the same type may be expressed as

-B
A
Rr r\ or “ ,’\
B - - -B

Parallelogram law Triangle construction

Vector subtraction
R=A-B=+(-B)
Dot Product

The Dot Product gives a scalar (ordinary number) answer, and is sometimes called the

scalar product.

The Dot product define as A.B=ABcosd

Laws of Operation

=B.A

oo

1. Commutative law : A

2. Multiplication by a scalar 4 (A-B)=(1A).B=A.(18)=(A.E)x




3. Distribution law : A-(E D):(A B) (A f))

4. Cartesian Vector Formulation

Dot product of two vectors A=a,l +a,J +a,K and B -b, I +b,J+b,K ,
then.A-B=a.b, +ahb, +a,b,

5. Applications: The angle formed between two vectors given by

080 — é? B a, b, +a,b, +a,b,

W ‘B‘ - \/axz +a,’ +a22\/bx2 +b,%2+b,’

If A-B=0 — A perpendicular B
6- Dot product of Cartesian unit vectors i ]=T-E=|Z~T=O,While
i-i=i’=1 j-J=j*=1 k-k=k?®=1.

Cross Product

The Cross Product which gives a vector as an answer, and is sometimes called the
vector product. For two vectors define as AAB = ABsiné &  where € is unite

vector in the direction of AA B

X

Laws of Operation

1. Commutative law AAB=BAA but AAB=—AAB

2. Multiplication by a scalar A (AAB)=(1A)AB=AA(1B)=(AAE)A




3. Distribution law A (B+D)=(AAB)+(AA D)
4. Cartesian Vector Formulation

Cross product of two vectors A-a.l +a,J +a,K and B-b,I +b,J +b,K

K

a, |,

i
Then ArB=|a,
b b,

s &

5. Applications :

. : AAB
The angle formed between two vectors given by sind = |-‘ A J

6- Cross product of Cartesian unit vectors

~—1
?\_
—
>

A~
I

~|

AT =], while
I Al =0, TAT:O, EAlz:O-,seebelowfigure

/'_?’-"M\

>

Triple Scalar Product

For three vectors A, B, C the Triple Scalar Product define as

o O
>
o F
(®3
N

Note that
(1) A(BAC)=(BAC)-A

10




(4)- Triple Scalar Product represents the volume of parallelepiped
A- (B A C)— the volume of paralleleplped

Triple Vector Product

For three vectors A, B, C the Triple Vector Product define as A/\<l§ A C)

Note that

(1)- A/\(é/\ C) A/\(A ~B )
)8

(2)- A/\(B/\ C)— (A C ( )C ,( prove that this property?)

Unit vector

A unit vector is a vector that has a magnitude of 1
. Vector

Unit vector =

Magnitude of the vector

Example 1: Given a vector T =4i —3] , find the unit vector?
Solution

r=|F| = \/(4)? +(-3)* =16+ 9 = /25 =5

-5 5175
Cartesian vector

Introduction

The operations of vector algebra, when applied to solving problems in
three dimensions , are greatly simplified if the vectors are first represented in

Cartesian vector form. In this section we will present a general method for

11




doing this; then in the next section we will use this method for finding the
resultant force of a system of concurrent forces.
Right-Handed Coordinate System.

We will use a right-handed coordinate system to develop the theory of
vector algebra that follows. A rectangular coordinate system is said to be
right-handed if the thumb of the right hand points in the direction of the
positive z axis when the right-hand fingers are curled about this axis and

directed from the positive X towards the positive Y axis, as in Figure.

i

Position VVectors

Here we will introduce the concept of a position vector. It will be shown that
this vector is of importance in formulating a Cartesian force vector directed

between two points in space.
A position vector A is defined as a fixed vector which locates a point in
space relative to another point. For example, if A extends from the origin of

coordinates, O , to point P (X, Y, Z) (Fig. a), then A can be expressed in
Cartesian vector form as

A=al +a, J+a,k
Note how the head-to-tail vector addition of the three components yields

vector r (Fig. b) . Starting at the origin O , one “travels” X in the +I

12




direction, then ¥ inthe + j direction, and finally z inthe+k direction to

arrive at point P (X, Y, 2)

JR\\\ |

P P(x,y, 2) 7\ P(x,y,2)
A~ A7

o~ yi : o~ .
Xi \/ g Xi / ’

(a) (b)

Rectangular Components of a \VVector.

A vector A may have one, two, or three rectangular components along the

X,¥,Z coordinate axes, depending on how the vector is oriented relative to

the axes. In general, though, when A is directed within an octant of the

X, ¥,z frame ( see front Figure), then by two successive applications of the
parallelogram law, we may resolve the vector into components as A=A+ A,
and then A'=A +A Combining these equations, to eliminate A, A is
represented by the vector sum of its three rectangular components,

A:&+&+A

15




—; y
-
~
s
/ -
A, /

/ A

X

Cartesian Unit VVectors.

In three dimensions, the set of Cartesian unit vectors, i, j,k is used to
designate the directions of the X, Y,z axes, respectively. The sense (or

arrowhead) of these vectors will be represented analytically by a plus or
minus sign, depending on whether they are directed along the positive or
negative X,y or Z axes. The positive Cartesian unit vectors are shown in

Figure.

¥

Cartesian Vector Representation.

Since the three components of A in above equation act in the positive

i, j and k directions (see Figure) , we can write A in Cartesian vector

formas A=ai +a, j+a,Kk

14




Maagnitude of a Cartesian Vector.

The magnitude of a Cartesian vector is A= \/(ax)2+ (8,)2+(a,)® . The

magnitude of A is equal to the positive square root of the sum of the squares

of its components.

Direction of a Cartesian Vector.
We will define the direction of A by the coordinate direction angles a

a, B, v, measured between the tail of A and the positive X,Y,Z axes

provided they are located at the tail of A (see Figure). Note that regardless
of where A is directed, each of these angles will be between 0° and 180° .

a
The angles @, B, y given by ~ Cosa=—¢, cosf3 —Ky,
2

From this Eq. we have A’cosa =a;, A°cosf=a;, A°cosy=a;
Az(cosza+coszﬂ+coszy ):af +a;+a; =A’  Then

cos’a +cos’ f+cos”y =1

AkR

15




Note that, the unit vector given by

a,
A =X +K ] +Kk Also given by A, =cosai +cosf j +cosyk .

Then the direction of vector A given by

a a a
cosa =%, cosB=-—L, cosy=-2%
A A A

In the space represent the force as:

(1) If we know two angles with two axes

In this case COS” @ +€0S” B+ €0S° ¥ =1 and the force given by

F =Fcosai + Fcosp |+ Fcosyk

(2) If we know an angles with two axes in plane
In this case we resolve the force in the vertical axis and in the other plane

(3) If we know the unite vector in space

- a a, - a — re - - —
In this case A, = X Kyj Kk A, =cosal +cosp j +cosyk  and
a a a
cosa =%, cosBp=—r, cosy=-=%
A B A e

Example 2: Given avector I =12 -3j - 4k _find the unit vector?

Solution

J12)% +(=3)? + (-4)? =144+ 9+16 = /169 =13

f=
r_tap s34 E:i(lz,—3,4j
f 13 13" 13 13

r

<
Il

Example 3: Determine the length and its direction measured from B toward

as shown in Figure?

lo




A ol ~2m—>~
Va ¥
( 4m
4m 2m
Lo
1 mZ 6m
X
!; b
Solution

The coordinates of A and B are B(6,—1,4), A(4,2, —6)

{

=~ >

B=F=(6-4)i +(-1-2) j +(4—(-6))k
2i =37 +10k

7= V(2)? +(-3)? + (10)2 =4+ 9+100 = V113

10 K
V113

r =

COSx =

L COSﬂ_—i COS}/_ﬁ
V113 V113 V113

2
a =c0s™| —— |=79.1554523°,
( \/113J
3
=C0s ™| ———— [=106.39274®3°,
/ ( \/113J
y=cos™ 10 | _19.8136578°
V113

1/




Example 4: An elastic rubber band is attached to points A and B as shown in Figure

. Determine its length and its direction measured from A toward B ?

-
=

ot
=
]

(gl
“A

1 m

Solution
The coordinates A and B are A(1,0, —3)  B(-2,2, 3)

%

B=F=(—2—(-1))i +(2-0)j+ (3= (-3))k
F=-3+2]+6k
r=|F| = \(-3)*+(2)* +(6)* =~/9+4+36 = /49 =7

U_ﬁ_i__ir 25,.5¢
he T AB 7| 7 7 7

I_:x Fy r:z
direction of AB =F given by. cosa =", COS'B:T’ cosy =—"

3 2 6
Then COSa = = cosp = Cosy = ~ . This tends to

15




a=Ccos" (— %) =115.376°, p=cos”’ (37] =73.398°,

6
=cos?| — |=31°

19




Part 2: Vectors Forces in 2D and 3D
Resultant of Concurrent Coplanar Forces

How to calculate the resultant force acting on an object? Several
forces can act on a body or point, each force having different direction and magnitude.
In engineering the focus is on the resultant force acting on the body. The resultant of
concurrent forces (acting in the same plane) can be found using the parallelogram law,
the triangle rule or the polygon rule..  Two or more forces are concurrent is their

direction crosses through a common point. For example, two concurrent forces F, and
F, are acting on the same point P. In order to find their resultant F, we can apply either

the parallelogram law, triangle rule.

Fig. 1
A force is a vector quantity since it has magnitude and direction. There force, the force
addition will be according to the Parallelogram law

Parallelogram in 2D: Redraw a

half portion of the parallelogram to illustrate the triangular head-to-tail addition of the
components. From this triangle, the magnitude of the resultant force can be determined
using the law of Cosine, and its direction is determined from the law of Sine. The
magnitudes of two force components are determined from the law of Sine. The formulas
are given in Figure.

Cosine law

Parallelogram of force

20




From the triangle force, the resultant force is the vector sum between the components:
E-E+F

Cosine law is F= \/Flz +F/ —2FF, cosa
Sine law

Triangle force

F

F,

Fig. 2 (b)
F F _F
sine siny sing

Sine law is

Components
Also, we can find the resultant of Concurrent Coplanar Forces as
Step 1: to resolve each force into its x—y components.

Step 2: to add all the x components together and add all the y components together.

These two totals become the resultant vector.
Step 3: find the magnitude and the angle of the resultant vector.
. e, we calculate both > F and > F,, then the resultant is

F=JZRF+F)

The direction is 6= tan{&}

2F
Final, the results for two forces can calculate by
(Resultant)
a2 R
Parallelogram j: Components

Example 1: If =60°and F=450N, determine the magnitude of the resultant force and
its direction, measured counterclockwise from the positive x - axis.

21




TOON

Solution
We can draw the forces as in below Figure (Free-Body Diagrams)

3602707

Fig. (1)
Applying the law of Cosine to Fig. (1),This yields

F, = \/(700)2 +(450)® — 2(700) (450) cos45° =497N Again,
applying the law of Sine to Fig. (1), and using this result, yields
sin(f +30 ):sm45 B =9519°

700 497.01
Thus, the direction of angle of measured counterclockwise from the positive x - axis is
¢=a+60°=9519° +60° =155.19°
Solve this problem using the components method?
Example 2: The vertical force F acts downward at A on the two membered frame.
Determine the

magnitudes of the
two components of

F directed along
the axes of BA and
AC . Set F =5007?




From the Cosine low F =./F?+F} —2F,F, cosa
F =./(6)% + (4)> - 2(6)(4 105° =./36+16—(48)(-0.2588
J(6)? +(4)? - 2(6)(4) cos J36+16— (48)( ) Erom the

=/52+12.423 =/64.423=8.03N

_F = _Fl - sina=isin105°:
sin105° sina F

i(o.9659) _3.8637
8.03 8.03
Then #=28.761-25=3.761°

Example 3: Determine the magnitude of the resultant force (see below Figure) and its

direction, measured counterclockwise from the positive x axis ?

Sine law
=0.4811—>a =28.761

500 1b

Solution

23




80075 ~
=

50016
From the Cosine low F =./F?+F2Z - 2FF, cosa
R =/(500)? + (800)° — 2(500)(800) c0s95° = ,/(500)° + (800)* — 2(500) (800) (~0.08715

= /250000+ 640000+ 69724594 = /959724594 = 979.65539=9801b
Using this result to apply the sine law
R 500 980 500 980 (0.9961j20.5082

- =— - — =— — sin@ =500—— =500
sin95°  siné@ sin95°  siné sin95°

6 =sin(0.5082) — @ =30.54495

Thus, the direction f of R measured counterclockwise from the positive x axis is
0=50-30.54495> =19.54°

Example 4: The force F has a magnitude of 80 Ib and acts within the octant shown.
Determine the magnitudes of the X, Yy, z components of F ?

Z

F=2801b

| B =45
1

-0 = 60

/

X

Solution
From the Figure clears that « =60° and g =45° and using the relation

cos’a +cos’ B +cos’ ¥ =1, we find that (cos(GOO))2 + (cos(45°))z +cos’y =1
2
(0.5 +(%j +c0s’y =1 — 0.25+0.5+c0os’y =1 — +co0s*y =0.25¢c08’y =+05 — y=60°

Or y=120°
By inspection it is necessary that y = 60° , since F, must be in the +x
Now using the relation F =Fcosai +Fcosg j+ Fcosyk, we have

24




F= 80(cos 60° T +c0s45° ] +c0s60° IZ)

_ .1 . . . \/2_ . -

F =80 0.5 +—— j +0.5k |=80| 0.5i + J+0.5k]
o5t To058)-od T 2

F =80(057+(0.5)(y2 ) j+05k)=40(i+ 2 j+k)

S0, Fx=40Ib, Fy =402 Ib, F,=40Ib

Not that F =40v1+2++1=40J4 = 40(2) =80 Ib

Example 5: The bolt is subjected to the force F, which has components acting along
the X, Y, Z axes as shown. If the magnitude of F is 80 N, « =60° and

y =45° determine the magnitudes of its components (see below Figure).

Solution
From the Figure clears that « =60° and y =45° and using the relation

cos’a +cos’ B+cos’ y =1, we find that (cos(60°))2 +cos’ /5’+(cos(45°))2 =1
2

(0.5) +coszﬂ+(%} =1 - 0.25+cos’B+05=1 — cos’ #=0.25

cos’ =405 — B=60° Or g=120°

By inspection it is necessary that g =120° , since F, must be in the +x
Now using the relation F = Fcosai +Fcosg j+ Fcosyk, we have

F =80(cos 60° T +cos120° j +cos45° IZ)

F =80(0.57—0.5 f+%l€}=80(0.57—0.5 j+(\/_7\/)2?ﬁ12}

F =80(0.57 —(05) j+05(y2 Jk)=40(i- j+2 k)

So, Fx=40N, Fy=40N, F;=40/2 N

Example 6: Express the force F shown in Figure as a Cartesian vector and its
direction?

29




4

F=1001b

60° -

45°

X

Solution
If we resolve the force as in Figure

100 N

100 sin 60° =5043 =86.6

50sin 45°

60~ Y

100cos60° =50
Q

50cos45°

X
Then F =(50cos45°  —50sin45° j+86.6K)
50 . 50 -
:(E i — N j+
F (3547354 ] +86.6K)
Not that F =,/(35.4) + (35.4)° + (86.6)° =+/10005=100 N
The direction of the force given by

F 86.6 IZ)

cosw—i cospg —5 cos _E
F Fr 7 TF
354 354 86.6
C0Sa¢ =——, COSff=———, COSy =——
100 100 100
o =cos?| 324 _ 69.3°, B =cos™ _354 =110.73°, y=cos™ 8661 _ 300
100 100 100

26




100N

X
Example 7: Two forces act on the hook shown in below Figure. Specify the
magnitude of F, and its coordinate direction angles so that the resultant force F, acts
along the positive y axis and has a magnitude of 800N .

z
F>
120°
|
7 g
6_{]’:-
Fi =300N
X
Solution
Free-Body Diagram. we can plot the Free-Body Diagram as in figure
z
Y

X F =300N
So, we can expresses F,as follows:

F, =300(cos45° T + cos60° ] +cos120°Kk ) F, =3oo( i +0.5]-0.5k ) 150 (V2 7+ k).

Sl

Also, F, =800 j
We require F, =F, + F, (see below Figure)

2/




]

F,=100N

Then
8007 =150 (V2 7 + ] K )+F, T +F,, J+F,, K
F,, =-150v2, F, =650, F,, =150

F, = (F ) +(F,, f +(F,, ) =/45000+ 422500+ 22500 = /490000 = 700 The direction of

F
F, given from cose, = FXZ, CoSp, =2 cosy, = Fer
2 FZ FZ
a, =Cos™ —M =107.64°, §, :cos‘l(%oj =21.8°% y,= cos‘l(@) =77.6°
700 700

Example 8: The screw eye is subjected to the two forces as shown below Figure.

Express each force in Cartesian vector form and then determine the resultant force. Find
the magnitude and coordinate direction angles of the resultant force.

e

F,=300N

F,=500N
Solution
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300sin 60° 300c0s 607 sin 45°
S F =300N

)

300cos 607

300co0s 60% cos 459

X

(— c0s 60°sin45° 1 +cos 60° cos45° | +sin60° E)
F = 300(— (0.5) (%) i +(0.5) (%) j+ ﬁ Ej

300(- (0.3538) T +(0.3535) j + 1. 732k)
( (106.07) 7 +106.07 J + 259.81K
|; 120°

Using the relation F = Fcosai + Fcosp j +Fcosyk , We have
F, = 500(cos60° i +c0s45° j +cos120° IZ)

F —500((0 5)|+\/_ j—(o. 5)kJ

F, = ((o 5) T + (0.7071) ] —(0.5) K)

F, =(250 T +(353.5542) ] -250K)

So, the resultant is given by

F, = F,+F, =(-(106.07) T +106.07 J + 259.81K )+ (250 T +(353.5542) ] -250K)
F, =(143.937 +459.62 ] + 9.81K)

F, =+ (143.93) +(459.62 } + (9.81) =481.73 N

F, =500N
bY
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143.93

cosa = =0.298777 — a =c0s(0.298777) = 72.6158°
481.73
459.62
cosp = =0.9541 - =C0s(0.9451) =17.42°
p 481.73 p ( )
osy =281 _ 5 0203 - =0s(0.0203) =88.833°
"= ag173 4 ' '

Example 9: Determine the coordinate direction angles of F .
. F,=300N

F,=500N
Solution

30051'1160? 300cos 607 sin 45°

y

X

F, =300(—cos 60°sin45° i + cos 60° cos45°  +sin60°K )

F = 300[— (0.5) (%) i +(0.5) (%) j+ V3

> Ej = =3oo(— (0.3535) i +(0.3535) i+1.73212)

K{0)




F =(— (106.07) i +106.07 j + 259.81k )

cosa=—10807 3569 a =cos*(~0.3569) =110.7056°
055 =19807 _ 4 3569 N S =cos™(0.3569) = 69.09°
cosy = 22281 _ 4 688033 N y =c0s*(0.688033 = 29.9990¢ = 30°

Example 10: A chandelier is supported by three chains which are concurrent at point
0. If the resultant force at O has a magnitude of 130 Ib and is directed along the

negative z — axis, determine the force in each chain.

Solution
Equations of Equilibrium. First we will express each force in Cartesian vector form.
Since the coordinates of points O, A, B and C are 0(0, 0, 6),
Figure) we havebelow (see A(24/3, -2, 0), B(-2+/3, -2, 0), C(0,4, 0)

sl




B(—4c0530,—4sin309,{]) 4 sin30

B(-2+/3.-2.0)
B
4cos30° 30° 4 \
/ o’ ~
. \
| '
4cos30° = lli 4 ,’II
30°
30° /
A(4c0s30?, —4sin307.0) ) -
A(243.-2.0) T
4sin30” |
.
OA—\/_(Z\/§| ~2]-6k)
237 -2 -6k
\/—( j —6k)
Foc = 47-6k
\/—( j—6k)
The magnltude of resultant force is, i. e. F, =|30A+|305+|fOC
F, =130k = 237 -27 - 237 -2] - 47-6k 1
R \/—( i \/—( i \/—( i-6k) (1)
From Eq. (1), we have
‘ﬂ(zﬂ J%( 2J3) > Fou=Fo, @)
Also, from Eq. (1) we have
I:OA

OZE(—Z) \/—( 2) + \/—(4) — 0=—F,, —Fos +2F

From Eq. (2) ,we have 0=-F,-F,, +2F,. — —2F, +2F,. =0
Foa= Foc (3)
From Egs. (2) and (3) , we have

FOA = FOB = I:oc (4)

Again from Eq. (1) we have

130_\/_( 6) + \/_( 6) + \/_( 6), and from Eq. (4), we have
130452
130=3[ \/_( 6)) For === =521

Then the force in each chainare F,,=F, =F,. =52.11b
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Example: 11 Express each of the forces in Cartesian vector form and determine the
magnitude and coordinate direction angles of the resultant force for the two forces act in
below figure ?

13412

F,=801b

251
&

4 ft A

Fy=3501b

ft

Ans.

Solution

Equations of Equilibrium. First we will express each force in Cartesian vector form.

Since the coordinates of points A, B are given A(0, 4,0), B(2,0,-6)
While, C is given as (see blow Figure) C(-2.5,0, %(2.5)) — C(-2.5,0, 6).

Since the force F,, acts across the two points A(0, 4,0) andB(2, 0, —6). So the unit
1
=—=(2,
h(

2,-4,-6 2,-4,-6
h( )= h( ).

Also, force F,. acts across the two points A(0, 4, 0) and rSo the unit vecto .C(-2.5,0, 6)

vector in this direction is &,; —-4,-6),1.e. Then

FAB = FAB éAB

. . . . . 1 .
in this direction is &,. = ——(-2.5,-4,6), 1. €. Then
AC \/T( )
- F
Fe=F, & Ac 2.5, -4, 6
ac €ac = 5825( , 6) = \/—( )
ﬁ:ﬁAB+ﬁAC
- 50 80
F=—"1(2 -4,-6)+——(-2.5,-4,6
\/%( ) \/58.25( )
~_(1oo_ 200 ]T_(200+ 320 jj+[_ 300 480 )E
J56 +/58.25 J56 +/58.25 J56 +/58.25
- ( 100 200)? ( 200 320 T ( 300 480j~
= — I — + ]+ - + k
7.4833 7.632 7.4833 7.632 7.4833  7.632
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F =(13.3511— 26.2054)i —(26.7261+41.9287)j +(—40.0892+62.893)k
F =(12.8543) i —(68.6548)] +(22.807)k

Then F =/(-12.8543] + (~ 68.6548) +(22.807)* = 73.5 Ib The
direction of F given from cosa :%, cosf :Fy’ COSyz%

Then

Cosa = _12.8543_ —-0.174049 > a =c0s '(0.8) =100.0233°

cosf = — 687'25548 =-0.934078 - B =cos™(~0.9340789 =159.0798°

cosy = 22'827 =0.310299 - 7 =05 (0.310299 = 71.9227°

Example: 12 The bracket is subjected to the two forces shown in below Figure.
Express each force in Cartesian vector form and then determine the resultant force Find
the magnitude and coordinate direction angles of the resultant force

Solution
F, =250 (cos35° sin25°1 +¢0s35° c0s25° j —sin35° IZ)
F= 250((0.81915 (0.42261) i + (0.81915(0.9063) j —(0.57357) k )
F, =(86.545) 7 +185.5989) ] -143.394K)
Using the relation F = Fcosai + Fcosg j+Fcosyk , we have
F, = 400(003120O i +cos45° J+cos60° IZ)

4

F, = 400((—0.5) i+ % j +(0.5) IZ)

F, =(- 2007 + (282.8427) j+200K)

So, the resultant given by

F, =F +F, =(86.5451 +185.5989 j —143.394K )+ (- 200 + 282.8427 | +200k)
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F, =(-113.4557 +468.44161 ] +56.606K

F, = (-113.455) +(468.44161) + (56.606 } = 485.3 N
a =c0s*(-0.23378 =103.5197°

113'455:—0.23378 N

COSx =—
485.3
053 = 20844161 _ 5 g6nrg BN S =cos™(0.96526) =15.1462°
485.3
cosy = 54652036 —0.11664 BN 7 = c0s(0.11664) = 83.3017°

Problems

(1) Express F1, F2, and F3 as Cartesian vectors.
_‘}.l

Fy=15kN
F>=26kN 407
13
5
12 . : X
Al dw, /30
Fy = 36 kN

(2) Determine the magnitude of the resultant force and its orientation
measured counterclockwise from the positive x axis

F;= 26 kN

F,= 36 kN

(3) Express F1 and F2 as Cartesian vectors.
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F,;=30kN
(4) Determine the magnitude of the resultant force and its direction measured
counterclockwise from the positive x axis.

F,=26kN ¥

Fy=30kN
(5) Determine the magnitude and coordinate direction angles of f3 so that the resultant of the three
forces acts along the positive y axis and has a magnitude of 600 Ib.

F>, =3001b

(6) Determine the magnitude and coordinate direction angles of F3 so that
the resultant of the three forces is zero

K[§)




F, =3001b
(7) The plate is suspended using the three cables which exert the forces
shown. Express each force as a Cartesian vector.

Fgy = 3501b

X
(8) Determine the magnitude and coordinates on angles of the resultant force.

Y




40 Ib
20 Ib —

A 36t —

(9) Express force F in Cartesian vector form if point B is located 3 m along
the rod end C.
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Chapter: 3

Condition for the Equilibrium of a particle
A particle is said to be in equilibrium if it remains at rest if originally at rest, or has a

constant velocity if originally in motion. Most often, however, the term “equilibrium”
or, more specifically, “static equilibrium” is used to describe an object at rest. To
maintain equilibrium, it is necessary to satisfy Newton’s first law of motion, which
requires the resultant force acting on a particle to be equal to zero . This condition may
be stated mathematically as

F=0 (1)

where F is the vector sum of all the forces acting on the particle.

Not only is F =0 a necessary condition for equilibrium, it is also a sufficient condition.
This follows from Newton’s second law of motion, which can be written as F =ma.
Since the force system satisfies Eq. (1) , then ma =0, and therefore the particle’s
accelerationa =0 Consequently, the particle indeed moves with constant velocity or

remains at rest.

Fig. 1

1. Coplanar Force Systems
plane, as in Fig. (2) , then each force can be resolved into its i and j components. For

equilibrium, these forces must sum to produce a zero
force resultant, i.e., > F=0 — > Fi+>F j=0

3Y




For this vector equation to be satisfied, the resultant force’s x and y components must

both be equal to zero. Hence,. > F, =0, > F, =0

These two equations can be solved for at most two unknowns, generally represented as
angles and magnitudes of forces shown on the particle’s free-body diagram.
When applying each of the two equations of equilibrium, we must account for the sense
of direction of any component by using an algebraic sign which corresponds to the
arrowhead direction of the component along the x or y axis. It is important to note that
if a force has an unknown magnitude , then the arrowhead sense of the force on the free-
body diagram can be assumed . Then if the solution yields a negative scalar , this
indicates that the sense of the force is opposite to that which was assumed.

y

F

Fig. 2
Example 1: The Crate has a weight of 550N = (=~ 55 kg) . Determine the tension in

each supporting cable in Figure

Solution

Applying the equations of equilibrium along the x and y axes, we have
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YF=0 - TACG)—TAB c0s30° =0 - TAc(gj_éTAB =0

2
SE=0 o T +Tesind0°-550=0 -  To[3]+1iT, =550
y AC 5 AB AC 5 2 AB
8T,.—5+3T, =0, (1), BT, +5T,g =5500 2)
TAC=M:518N (8+6+3)T,c=5500y3 — , Then 6+/3T,¢ +513T,, =5500\3
6+6v3)
In Eq. (1), we have g 5500/3 ~543T,5 =0 - BLOO—TAB:Q
B+6+3) 6+643)
T =000 _ 785N
8+63)

2. Three-dimensional force system
The necessary and sufficient condition for particle equilibriumis > F =0

In the case of a three-dimensional force system, as in Figure .

We can resolve the forces into their respective i, j, k components, so that
SFi+Fj+F k=0,
To satisfy this equation we require

F,=0, F,=0, F=0
These three equations state that the algebraic sum of the components of all the forces
acting on the particle along each of the coordinate axes must be zero. Using them we
can solve for at most three unknowns, generally represented as coordinate direction

angles or magnitudes of forces shown on the particle’s free-body diagram.
Example 2. If cable AD is tightened by a turnbuckle and develops a tension of

1300 Ib . Determine the tension developed in cables AB and AC and the force developed
along the antenna tower AE at point A.
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Free-Body Diagram. First we will express each force in Cartesian vector form. Since
the coordinates of points O, A, B and C are (See below Figure)
A(0, 0, 30), B(10,-15,0), C(-15-10,0), D(0,12.5,0), E(0,0, 0),

Form the Figure we can express T,,, T.., T.p and F as follows

Since the tension T,, acts across the two points A and B. So the unit vector in this

directionis §,, =B—- A= %(10, —15, -30) =%(2, -3,-6),1.e

1
———(10, 15, -30) =
\/1225( )
|
€4 = 7(2, —3,-6). Then

—

_ . T
TAB :TAB €re = €as :%(2’ -3, _6)-

Also, the tension T,. acts across the two points A and C. So the unit vector in this

direction is

1 1 1 .
€, c =C—-A=——(-15-10,-30) = —(-15,-10,-30) == (-3, -2, -6), I. €
AC #1225( ) 35( ) 7( )
€ac =%(—3, -2,-6). Then

— . T
TAC = TAC €ac = %(_37 -2, - 6)

A third time, the tension T,, acts across the two points A and D. So the unit vector in

this direction is
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&, —D-A=— 1 __(012.5,—30) = (0125 ~30) = —(0125 300),

AP \1056.5
I.e &, :%(0, 5,-12). Then

Tap =Tap Eap = AD(05 12)_@(05 ~12) =100(0, 5, -12)

F=Fk
Equations of Equilibrium: Equilibrium requires

SF=0 > T+Tpc+Tpo+F=0, i.€.

T%(2)+T§(—3)+100(0)+|:(0)=0 > 2T, —3T,.=0 (1)
T%(—3)+T§C(—2)+100(5)+|:(0)=o >  —3T,,—2T,. +3500=0 (2)

AB( —6) + AC( 6)+100(-12)+F(1)=0 — —6T,,-6T,.—8400+7F =0 (3)
From Eqg. (1) and Eq. (2), we have

0

3{2TAB — 3T, } + 2{ ~3T,, — 2T, +3500 }

3{— 3T, }+2{ — 2T, +3500 } =0 — 13T,. =7000 - T,. =538.461N

In Eg. (1), we have

T =oT,, = (gj 538.461 = 807.692 N — T, = 807.692 N

2
While in Eq. (3), we have

—6(807.692)—6(538.461)—8400+7F =0 — 7F = 6(807.692+538.461)+8400
F =2353.845N

Final
T, = 807.692 N, T, =538.461N, F =2353.845N.

Example 3: The crate has a mass of 130kg . Determine the tension developed in each
cable for equilibrium.
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Solution
Free-Body Diagram. First we will express each force in Cartesian vector form. Since

A(4,0.1), B(0,0,1), C(0,3,1), D(2,10)

Form the Figure we can express T,,, Tep, Tep and F as follows

Since the tension T,, acts across the two points A and D. So the unit vector in this

o 1
directionis &, =D- A:%(—Z, 1,-1). Then

T
Tao =Tap €ap =€np = %(_21 1,-1).
Since the tension T,, acts across the two points B and D. So the unit vector in this

directionis ¢&,=D-B :i(z, 1,-1). Then

J6
-I_;BD =Tap €ap =€4p \/— (2 1,-1).
Since the tension T, acts across the two points B and D. So the unit vector in this

o 1
directionis &,=D-C :E(Z’ 0,-1). Then

—

TC _TCD eCD _eCD \/‘ (2 O 1)

Equations of Equilibrium: Equilibrium requires

SF=0 > Tu+Tu+Tp+F=0, i.e

17




T2 2,3, -6) + 12.(-3,-2,-6) +100(0,5, ~12) +F (0, 0,) =0

T%(Z)+T%C(—3)+100(0)+F(0)=0 > 2T 3T, =0 1)
Tg(_a)ﬂg(-z)uoow)w(0):o > 3T, 2T, +3500=0  (2)

T%(—G)+T§(—6) +100(-12)+F()=0 — -6T,,—6T,.-8400+7F =0 (3)
From Eqg. (1) and Eq. (2), we have

S{ZTAB —3T,. }+ 2{ —3T,5 — 2T, +3500 } =0

3{— 3T\ }+2{ — 2T, +3500 } =0 — 13T,. =7000 — T,  =538.461N

In Eg. (1), we have

Ths :%TAC - (gj 538.461 = 807.692 N — T, = 807.692 N

While in Eqg. (3), we have

—6(807.692)—6(538.461)—8400+7F =0 — 7F = 6(807.692+538.461)+8400
F =2353.845N

Final

T, = 807.692 N, T, =538.461N, F=2353.845N.

Example 4: The soib chandelier is supported by three wires as shown. Determine

the force in each wire for equilibrium.
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Solution

-

(@)
90° | /1 f \B(-1124)
D(0.-1.2. I .
1ft 1/ '
ft
CTL
24
'fw T_«Ic T_ﬁ
X
4
8010

From this Figure we can organize the next three Figures (b-d)

-

®)

2.4

X -
— 24
JO + 247 =175.76 =26 Lecosa=77Tue

A

. 1
Tyesma =RT‘{C

80Ib

8]

(c)
rmsm,s=7iﬁrm 1 9q°
_/ v
T 24
24
X B | Tocosp=—"Tu
A
8016
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(d)

1 . B
WT"B sm 45

. 24 ¥ . 1
X T‘gcos,B:RT" /Tﬁsmy=ﬁrﬁ

1 s
—_ T cos45
26 4R Cos

801b

From Figure (b-d) we can find that

%TAC —%TAB sin45° =0 —  T,.-07071T,, =0 )
—%TAD +%TAB sin45° =0 —  T,,-0.7071T,;=0 )

24 24_ 24
SeTet Tt Tas ~80=0 o T T, 4T, =86666  (3)

Solving Egs. (1)- (3)

Subtracting Eq. (1) and (2), we have T,. =T,

Then substituting into Eq. (3)

T +Tac +T,s =86.666 — T, +%TAB =43.333 4)

Again substituting into Eq. (3) 0.7071T,, +0.5T,, =43333 — T,,=359 Ib

Then in Eq. (4), we have T,. +%(35.9) =43333—> T,.=2541b

Final T,;, =359, T,.=T,,=2541b (Ans.)
Example 5: If each wire can sustain a maximum tension of 120 Ib before it fails,

determine the greatest weight of the chandelier the wires will support in the position

shown.

a4/




Solution

From the above example

%TAC —%TAB sin45° =0 —  T,.-07071T,, =0 6
—%TAD + %TAB sind5° =0 —  T,,—0.7071T,;=0 )

2.4 2.4 2.4
iy iy i
26 " 26 " 26

Now if we put T,. =120 in Eq. (1), we get

T -W=0 o  Tu+Tp+T,s =1.08W 3)

120

s =————=169.7072>120 rejected solution
0.7071

120-0.7071T,, =0

Again, if we put T,, =120 in Eqg. (1) , we get
T,.-07071T,, =0 — T, =120(0.7071)=84.85<120 A reasonable solution

Then in Eq. (2), we have
T,,—-07071T,, =0 — T, =(120)(0.707)=84.85<120 A reasonable solution

In Eq. (3)
84.85+84.85+120=1.08W — 1.08W =289.7 — W =26824

Example 6:The 80ib ball is suspended from the horizontal ring using three springs

each having an unstretched length of 1.5 ft and stiffness of 50Ib/ ft. Determine the

vertical distance h from the ring to point A for equilibrium.
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15ft— 15 ft—-‘

120°|—

120°
120°L <

/T

@

Solution

x 807h

It clears that, the three springs are symmetric and subjected to a same tensile force. If
one realizes this forces to the z —axis, we have

F, cosy + F, cosy + F, cosy —80=0 - 3F, cosy =80 @

But we know that , the relation between spring force and stiffness ( k) given by

Fs =sk =k(|_—|_o)= 50 (£—1.5] = 75 (L_ J (2)
siny siny

Substituting from Eqg. (1) into Eq. (2)

80 5|t 4|87 80 4 Giny s 03555tany+sing=1 (3)
3cos y siny cos y 225
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4 0.3555tany siny 0.3555tany +siny =1
30 (0.3555)(0.5773) =0.20524 0.5 0.70524
40 (0.3555) (0.839) = 0.29829 0.6427 0.9299
42 (0.3559) (0.9) =0.32 0.6691 0.9891
42.5 (0.3555) (0.916) =0.32575 0.67559 1.0013
Then y =425°
Z
A 15
h - L |
14 t L5
any =—
! Y
(b)

From Fig. (b) we note that

15 1.5 1.5
tany =—

—> = 0 = =1.64 ft
h tan(42.5°) 0.916

Then, the vertical distance h from the ring to point A for equilibrium is 1.64 ft

oV




Problems

(1) The three cables are used to support the 40-kg flowerpot. Determine the force
developed in each cable for equilibrium ?

(2) The 25-kg flowerpot is supported at A by the three cords. Determine the force acting
in each cord for equilibrium ?

(3) If each cord can sustain a maximum tension of 50 N before it fails, determine the
greatest weight of the flowerpot the cords can support ?

ol




(4) If the maximum force in each rod can not exceed 1500 N, determine the greatest
mass of the crate that can be supported.

(5) If the tension developed in either cable AB or AC cannot exceed 1000 Ib, determine
the maximum tension that can be developed in cable AD when it is tightened by the
turnbuckle. Also, what is the force developed along the antenna tower at point A ?

(6) Determine the tension developed in cables AB, AC and AD required for
equilibrium of the 300-Ib crate.

YA




(7) Determine the maximum weight of the crate so that the tension developed in any
cable does not exceed 450 Ib.
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Moment and Couples Forces

I n this chapter we will obtain the moment of a force about a point or about an axis, reduction the
forces at a point.

¢ The Moment

The moment of a force is the tendency of some forces to cause rotation. The

moment of a force about a point is defined to be the product of the force
and the perpendicular distance of its line of action from the point. On the other

hand The moment of a force F about point O, or actually about the

moment axis passing through O and perpendicular to the plane containing

0 and F, as shown, can be expressed using the vector cross product, namely,
My =rAF
Here r represents a position vector directed from O to any point on the
line of action of F . Note that
|My|=|r ANF|=rFsin0 =h

So if the force F in Cartesian coordinates is F = F,i + F,j + F,kand the vector r is given by

r = xi + yj + zk, then o0

(2

S

@hj S o
N IR SN

xr
Fz

= (yF, — zF,)i — (zF, — zF,)j + (zF, — yF,)k

® Varginon's Theorem If a number of coplanar forces acting at a point of a rigid body have a resultant, then the

vector sum of the moments of the all forces about any arbitrary point is equal to the moments of the resultant
about the same point.

Proof.

Let the coplanar forces E, E,,......, F, acting at a

a rigid body have the resultant F .

Let O be an arbitrary pointand r, be the
position vector directed from O to any point on the line of action of

F . The sum of the moment of the forces E, E,,......, E, about O is

o4




S>rTAE =rANE+1rAF,+..+rAFE,
=r A F +F, +.... + F,
=rAFE

which is equal to the moment of the resultant about O.

Any system of forces, acting in one plane upon a rigid body, can be reduced to either a single force or a single
couple.

@ Three forces represented in magnitude, direction and position by the sides of a triangle taken the same way

round are equivalent to a couple.

4 Moment of a force about an axis

Thus if F be a force and L be a line which does not
intersect F, OA = h the shortest distance between F
and L, and @ the angle between F and a line through A

parallel to L, then Fsin@is the resolved part of F at

right anglesto L and Fhsin@ is the moment of F about

L notation by M. If F intersects the line L or is parallel to L, then the moment of F about L is zero,
because in the one case k = 0 and in the othersing = 0.

Oronthe otherhand M, = M, en 7 where i isa unit vector of axis L and M, represents the moment
of the force F about a point O (say) lies on the axis L, here

m
|My|=nerAF = y

38 S
NG IRV

Fy

= UyF, — zF,) — m(zF, — zF,) + n(zF, — yF,)

a

@ When two forces act at a point the algebraical sum
of their moments about any line is equal to the

moment of their resultant about this line.

4 In brief to calculate the moment of a force about an
axis, one does the following three steps

(i) Obtain a unit vector of the axis (say 7 )

(if) Determine the moment M of the force F

(iii) about a point lies on the axis, say O . V)

. . Axis of projection
(iv) The moment of a force about an axis is P e

20




ML:M"FLﬁ

o

@ Particular cases

The moment of a force F about X axisis Moy = M, e 1

The moment of a force F about Y axisis My = oj j

The moment of a force F about Z axisis My, = M, ek k

4 Couples

Couples play an important part in the general theory of systems of forces and we shall now establish some of
their principal properties. Since a couple consists of two equal and opposite parallel forces (unlike forces), the
algebraical sum of the resolved parts of the forces in every direction is zero, so that there is no tendency for the
couple to produce in any direction a displacement of translation of the body upon which it acts; and the couple
cannot be replaced by a single force. The effect of a couple must therefore be measured in some other way, and,
since it has no tendency to produce translation, we next consider what tendency it has to produce rotation.

Let the couple consist of two forces of magnitude F . It is of course assumed that they are both acting upon the
same rigid body. Let us take the algebraical sum of the moments of the forces about any point O in their plane
as the measure of their tendency to turn the body upon which they act about the

point O .

Moment plane

@ Forces completely represented by the sides of a plane polygon taken the same way round are equivalent to a
couple whose moment is represented by twice the area of the polygon.

4 Reduction a system of forces

When a number of forces and couple moments are acting on a body, it is easier to understand their overall effect
on the body if they are combined into a single force and couple moment having the same external effect. The

two force and couple systems are called equivalent systems since they have the same external effect on the

o0




body. Suppose a system of forces F,, E,,....., F,,...., E, is reduced at a chosen point O to a single force F and a

T

single couple M viz. the obtaining resultis M ,F where

M, =3 r, AF, F=3)F
=1

Once again if the system of these forces reduced at another point 0’ where the obtaining results is

n n
M, = 5 AE, F-E
i=1 =1

f the forces does not change while the

=3
o

That is when the point of reduction changed from O to 0’, the resultan

moment altered, such that

=1
My=M,—-LAF
Also it is obvious
. FM,=F. M,~LAF =F.M,— E/Lif(_f = F.M, = const.
The quantity F.M is called invariant quantity

®Wrench

Suppose a system of forces is reduced to a single force F and a single couple M such that the axis of the
couple is coincides with the line of action of the force F, then that line is called central axis. In addition, F
and M taken together are called wrench of the system and are written as (F, M). The single force F is called

the intensity of the wrench and the ratio M / F is called the pitch of the system and is denoted by X. Since F

and M, have the same direction so
M,=M,—rANF=M\F multiply by F using scalar product

— E.Mo _ FMO _ MO

F? F? F

= Fe M, —r ANF = \F? SO

Where X is known as the pitch of equivalent wrench
Alsosince F A M, = 0 multiply by F using cross product we have,

-.oE/\ MO_E/\E :E/\MO_E/\ EAE :Q
[ —
M

’
220

According to the properties of triple vector product
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FAM,— Fr— Fr F =0
FAM T.
r=="——0 ——F Or r=n+uF
F*? F*?
(S —— [Sy—}
L I

The previous equation represents the equation of the central axis or axis of equivalent wrench in vector form and
to get the Cartesian form let

r :(wvyvz)a n= (aab’c)v F = (szFyan)

Therefore, the Cartesian form of central axis is

F, F, F,
© Special Cases
(i) F.M, =0 and F=0,M, =0

The system reduced to a single force that acts along the line » = AF

(i) F.M, =0 and F=0,M,=0

The system reduced to a single moment

(iii) F.M, =0 and F=0M,=0

In this case M, will be perpendicular to F and the system can be reduced to wrench in which the central axis
is

FAM

IS
Il
[

L
+

!

(ivy F=0 and M, =0

The system of forces will be in equilibrium or it is a balanced system of forces.

M| llustrative Examples] W

O EXAMPLE 1
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Determine the moment of the force F = 2¢ + 35 + 4k acting at the point A(3,2,0) about the origin and the
point B(2,1,—1).
J SOLUTION

Since the moment is givenby M, = r A F where
r=0A=A4-0=(3,20—(0,0,0) =3 +2;

Therefore the moment of the given force about the origin is

8¢ — 125 + 5k

= O
I

Again, r = BA=A—B=(3,20)— (2L—1) =i + j+k

Hence, the moment f the given force about the point B(2,1,—1) is

1 3 k i j k
Mp=r'"AF=[3-2 2—-10+1/=(1 1 1|=¢—25+k
2 3 4 2 3 4

O EXAMPLE 2
Calculate the moment of the force of magnitude 1073 and passing through the point A(5,3,—3) to

B(4,4,—4) about the origin.
O SOLUTION

We have to write the force in vector form, to do this the unit vector in the direction of the force F', viz. from
point A(5,3,—3) to B(4,4,—4) SO

" AB=B—A=(44-4)—(53-3)=—i+j—k

. AB —i+j—Fk [—1 1 —1
>=FF===—<  =|— —.,—
AB J3 3°J3'V3
Therefore the force be
- F=FF= lﬂx/g{Lj_k} = —104 + 10 — 10k
J3

Choosing any point as an acting point of the force, then the moment of the force about the origin O (consider

A(5,3,—3) as an acting point)

-1 = (5,3,—3) — (0,0,0) = (5,3,—3)

i ik
=M, =rAF=|5 3 —3|=80j+80k
—10 10 —10

Also if we choose the point B(4,4,—4) as an acting point

oY




7 J k % j k
=M, =r'AF=|4 4 —4|=40/1 1 —1|=280j+80k
—10 10 —10 -1 1 -1

(3 EXAMPLE 3 0N

Determine the moment of the force as shown about point O.
(J SOLUTION

Taking horizontal axis X as shown, the force 500 can be reso

500 cos 45°7 + 500sin 45° § = 250723 + 7)

Therefore, the moment is given by,

M, = 25032 [ — 2502 [%] = 75072

3
3+ —=

ol
Or by cross product where

F = 500c0s45°% + 500sin45°j = 250v2(i + j)

3 3
= M,=rAF=250023+-"2 L 0|="150V2
V2 2
1 1 0
O EXAMPLE 4

Force F acts at the end of the angle bracket as shown.
Determine the moment of the force about point O.

3 SOLUTION

Using a Cartesian vector approach, the force and

position vectors are

r = 0.4i —0.2] 0
N N N N X
F = 400sin30°% — 400 cos 30°j = 2007 — 346.45 T

The moment is therefore,

400 =in 30° W

'Z 5 ]2: l——l:l.4 m
= M,=rAF =04 —02 0=—098.6k 400 cos 300N
200 —346.4 0

0 EXAMPLE 5
Find the sum of moment of the forces, F = 2:¢ acts at the origin, the force —%E actsat n, = 3; and the force
—%E acts at r, = 5k about the origin.

3 SOLUTION

As clear the resultant of these three forces is zero but the moment about the origin is given by

o0




3
= M, :Zfi/\zi =r ANF,+r, ANFy +173 NF;y
-1

7kl |t jk
3 0/+[0 0 5
0 0 |[—1 0 0
—55 + 3k and  |M,| =34

O EXAMPLE 6

The force 2: — 7 acts along the line that passing through the point (4,4,5) and the force 3k acting at the origin.

Find the pitch and axis of equivalent wrench.

3 SOLUTION

The two forces reduced at the origin to a resultant force £ and a moment M, so that

F=F +F, =2 —j+ 3k, S F? =14
Mo=nr,AF,+1, AF,=0+4 4 5|=5i+10j—12k
2 -1 0
. . .. FeM .
Thus the pitch of equivalent wrench is given by A= =—= that is
F
N FeM 25—3+3l€:-57€+105—12/€: 36 18
P 14 IR VR

In addition the equation of axis of wrench r =, + puF

7: o]
_FAM 1

F? 14

[SUI

5 10 —12

1 . R .
n = 180 +39] + 25k

Then the vector form of the axis becomes
r= i —18i + 395 + 25k + p(2i — j + 3k)

And Cartesian form is

IR VR
14 =y 14 _ 14 Or 14m+18:14y—39=14z—25
2 -1 3 2 -1 3

ol




O EXAMPLE 7
A force P acts along the axis of OX and another force nP acts along a generator of the cylinder

(acosO,asin®,0); show that the central axis lies on the cylinder

z’ +y* =a’at the point
n*(nx — z)* + (1+ n?)*y* = na’
0 SOLUTION

Generators of the cylinder are parallel to the axis of . Let one generator of it pass through the point and its unit

vector is and the force acts along this line. Also the force acts along axis then

F = Pi, acts at (0,0, 0) \
F, = nPk, actsat(a cos 6,asin 6,0) Z
F = P(i +nk), (F*=@1+n?P? _—

~— that

The system reduces to a single force and a moment so

M, =1 NF+1r, NF,
i J k i ik
“ M, =P10 0 0l+|acosf asinf 0
1 0 0 0 0 n

= anP(sin 0 — cos 63)

The pitch of equivalent wrench is given by A= ¥ that is
F

FoMi P i+ nk ean P(sin 0i — cos 05) an sin

A
F? (1 + n?)P? 1+ n?
In addition, the equation of axis of wrench r = r, + uF
FAM anP? J
n = > = 7 p 1 0 n
F (1 +n%) sinf@ —cosf 0

=9 cos6i + nsinej — cos Ok
1+ n?

Then the vector form of the axis becomes

W pcosOi + nsin@j — cosOk + p(i + k)

’L‘:

1+ n?
And Cartesian form is given by
_ an’® cos O _ an®sin 6 an cos 6
1+ n? _ 1+ n? _ 1+ n? Or
1 0 n
an®sin @ an? cos 6 an cos @
y— —— =0, nlr— =
1+ n? 1+ n? 1+ n?
2 an(1 + n*)cos 0
Yy = sin 6, neg—z=——"————
14+ n? 1+ n?

(¥4



Squaring these equations

2 2
Yy = nz[ ] sin’ 0, (nx—2)* = (1+n2)2[ ] cos® 0

1+ n? 1+ n?

then multiply first equation by (1 + n?)* and the second by =»? then adding the result we get

2

(1+ n?)*y? +n2(nw—z)2=n2(1+n2)2[1+ S| =a'n
n

O EXAMPLE 8
Three forces each equal to P act on a body, one at point (a,0,0) parallel to OY , the second at the point (0, 5,0)

parallel to OZ and the third at the point (0,0,c) parallel to OX, the axes being rectangular. Find the resultant

wrench.
0 SOLUTION 7

As given we see (0,d,¢)

F = P, actsat (0,0, c)

F, = Pj, acts at (a,0,0) P
F, = Pk, actsat (0, b,0)

F=Pi+j+k), (F* = 3P?)

The system reduces to a single force and a p
moment so that X

M=y ANF +ry ANFy +13 ANFy

~

-~
So

0

o

S

+

S
S T Sy
- o &

i j k
M _=Pil0 0 c|+|a
1 00 0

-
o
o

= P(bi + cj + ak)
. . o FeM .
The pitch of equivalent wrench is given by A= — that is
F

N E’M_P 1?+_;+]:1 ’P(b{+cj+“];’)_a+b+c
F? 3p? 3

In addition the equation of axis of wrench r =, + puF

~ ~

7 k
FAM P?
n=="=="_l111
F? 3p?
b c a
1 - 2 -
=§(a—c)z+(b—a)]+(c—b)k

Then the vector form of the axis becomes

r=-(a—cli+(b—a)j+(c—bk +p@+j+k)

b3




and Cartesian form is

1 1 1
:c—g(a—c)_y—g(b—a):z—g(c—b) o

1 1 1
3 y—x =b+c—2a and 3z—y =a+c—2b

O EXAMPLE 9
Forces X,Y,Z act along three lines given by the equations

y=02z=c z=0,x=a; r=0y=0>
Prove that the pitch of the equivalent wrench is

(@YZ +bZX + cXY) /(X2 +Y? + Z?)

If the wrench reduces to a single force, show that the line of the action of the force lies on the hyperboloid

(z —a)(y —b)(z —c) = ayz

(J SOLUTION
F = Xi, acts at (0,0, c)
As g F, = Y7, acts at (a,0,0)
S glven S
g F, =Zk  actsat(0,b,0)
F = Xi + Y] + Zk, F?=X?+Y?+2?

The system reduces to a single force and a moment so that

M, =1 ANF +71y, ANFy +173 ANFy

i 7 k|l |10 i j k
“M,=[0 0 ¢c|+|a 0 0/+[0 b ©
X 00 |0Y o (00 Z

=bZi + cXj+aYk

The pitch of equivalent wrench is given by A= % that is
F

FoM (Xi + Y]+ Zk)e bZi + cXj + aYk

A

F? X2+Y%2+ 22

_ bXZ +cXY +aYZ
X?+Y?+2°

Besides, the equation of axis of wrench r = r, + puF

FAM Pk
A ! X Y zZ

n =
2 2 2 2
F (X*+Y +Z)bZ X aY

1 . 5 R
(aY? — cXZ)i + (bZ2 — aXY)j + (cX2 —bYZ)k
(X2 +Y?+ 2%

Then the vector form of the axis becomes

o4




(aY? — cXZ)i + (bZ? — aXY)j + (cX? —bYZ)k .
+ w(Xi + Yj + Zk)

18
I

(X2 +Y? + 2% And Cartesian form is
aY? —cXZ bZ? —aXY cX? —bYZ
" 2 2 L — 2 2 l— 2 2
X4+ 42 _ O X4V 4+ 22 X4V +Z or
X Y VA

_ bZ* —aXY

aY? —cXZ
Y = X|y-— 22 —927
X +Yi+ 272

w_—
X +Vvi4+ 272

2 2 _
om0 ) o
X 4+Y " +7 X"+Y°“+7
O EXAMPLE 10
Two forces each equal to P act along the lines £ T 2089 _ ¥ = 0sinb _ 2z oo that the axis of equivalent

asin @ Fbcosb c

wrench lays on the surface y[E + E] = b[2 + 5]
z T C a

3 SOLUTION

—acosl y—bsinh =z

First line is Z = £ passing through (acos®,bsin 6,0)
C

asin@ —bcosb

z+acosf y — bsinb

the second line is =2 passing (—a cos 0,bsin 6,0)
C

asin@ bcosO

The unit vector of first line is
A 1
L=
\/(12 sin? 0 + b? cos? 0 + c?
= 1 asinf; — bcosB_; + ck

(asinB,—bcos,c)

u
The unit vector of second line is
. 1 .
n, = (asin,bcosb,c)
\/a2 sin? @ + b% cos? 0 + ¢
-1 asin@i + bcos0j + ck (p:\/azsin20+b2c0520+c2)

7

Therefore,
. P ., - - -
F = Pn, = — asinfi — bcosOj + ck
u
~ P . N i3 r
F, = Pn, = — asin6i + bcosOj + ck
o

The system reduces to a single force and a moment so that

6o




F=F+F

= P asin 07 —bcos@j'+cl% +£ asin013+bcosej+clgz
u

o
2
:E asin 07 + ck and F? :ﬂ a?sin? 0 + c?
/\
P k i j  k
—1lacos@ bsmO 0| +|—acos@ bsinf@ 0
K asin@ —bcosf c asin@ bcosf ¢
M =— cbsin0i — abk
o

since the equation of axis of equivalent wrench is r = r, + pF

1 ¢ 2 +a? bsinHA'

a’sin? 6 + 2

k
c

asin@

2

J
0
cbsin® 0 —ab a’sin* 0 + c*

Then the vector form of the axis becomes

w +l‘l’ as]n01+ck

r=
a? sin? 6 + ¢?
While the Cartesian form is
_ (c* + a*)bsing
z—0 a’sinf@+c¢* _z—0
asin@ 0 c
Thus we can deduce from these equation
2 2 . 0 .
_ (¢" +a’)bsin and z _ asinf
a? sin? 6 + ¢? z c
y a’sin?0 +c¢® = ¢? +a® bsin6
2
= y|a’sinf + — ]:b c® +a’
sin 6
. . in 0
Dividing by ac and substituting < = 2327 we get
A z C a
o2
z r a (&

O EXAMPLE 11
Two forces each equal to F act along the sides of a cube of length b as shown, Fin the axis of equivalent

wrench.

0 SOLUTION
By calculating the unit vectors of the forces, we get,

bb




~ ]. a i}
LT =(b,b,b)—(0,0,b):T(z+]) (0,0,b)
P ! F

F, = F#, =$(z+_7) i B D)

And for the second force : (0| b,0)
Jmmmmmm - L _ Y

~ 1 ° et /l/ F
n, = (0,b,0) — (b,0,0) = E(—z +37) (b,0,

E, = Fi —ﬂ(—2+5)

0 2 «/5 X
The system reduces to a single force and a moment at the origin so that
R=F +F, = 2Fj . R? = 2F?

i 7 k| i j k
Fb Fb . + -
2Mlo 0 1| |1 o0 0 2

Here we choose the point (0,0,b) as an acting point of first force and the point (b,0,0) of the second force. The

pitch of equivalent wrench is given by A= ¥ that is
F

NDY Ry
aoBM R TR
R? 2F? 2

since the equation of axis of equivalent wrench is r = r; + pF o
0 1 0
1 -1 —1

_RAM _ F%

AT TR o

Then the vector form of the axis becomes

b - - -
1::—5 t+k +pj

While the Cartesian form is given by

b b
T+ - z+ -
2 —Y_

0 1

o/




PROBLEMS

O3 If the force F = 3i — j + 7k acts at the origin, determine its moment about the point (4,4,6) .

O A force of magnitude 100 acts along the line passing through the point (0,1,0) to (1,0,0). Obtain its moment
about the origin point and about the axes.

O The three forces 2¢+2j, j—2k, —i+25+k act at the points (0,1,0), (1,0,0), (0,0,1)

respectively, Find the pitch of the equivalent wrench.

1 1 z—2 —2 1 z—1 _
_yrl_=z and =2 _¥*1_2-1 [g

O Two forces each equal to 3F act along the lines z ; > 1 1 2

the equivalent wrench.

O The magnitude of two forces is F,, F, act along the lines (z = —¢, y = —ztana) and (z = ¢, y = ztana).

Determine the central axis of equivalent wrench.

bo
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INTRODUCTION

he subject of Dynamics is generally divided into two branches:

Tthe first one, is called Kinematics, is concerned with the
geometry of motion apart from all considerations of force, mass or energy; the
second, is called Kinetics, is concerned with the effects of forces on the motion

of bodies.
In order to describe the motion of a particle (or point) two things are needed,

(i) a frame of reference,

(ii) a time-keeper.

It is not possible to describe absolute motion, but only motion relative to
surrounding objects; and a suitable frame of reference depends on the kind of
motion that it is desired to describe. Thus if the motion is rectilinear the
distance from a fixed point on the line is a sufficient description of the position
of the moving point; and in more general cases systems of two or of three
rectangular axes may be chosen as a frame of reference. For example, in the
case of a body projected from the surface of the Earth a set of axes with the
origin at the point of projection would be suitable for the description of motion
relative to the Earth. But, for the description of the motion of the planets, it
would be more convenient to take a frame of axes with an origin at the Sun's

center (Polar co-ordinates).

B Definitions

1. Mass: The mass of a body is the quantity of matter in the body. The unit of
mass used in England is a pound and is defined to be the mass of a certain

piece of platinum kept in the Exchequer Office.
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2. A Particle (point): is a portion of matter which is indefinitely small in size,
or which, for the purpose of our investigations, is so small that the distances
between its different parts may be neglected.

3. A Body: may be regarded as an indefinitely large number of indefinitely

small portions, or as a conglomeration of particles.

4. A Rigid Body is a body whose parts always preserve an invariable position

with respect to one another,

5. Space is the boundless, three-dimensional extent in which objects and events
occur and have relative position and direction. Two-dimensional space is

described with two coordinates (z,y) , while three-dimensional space (physical

reality) is described in three coordinates (z,y, z) .

6. Time is a part of the measuring system used to sequence events, to compare
the durations of events and the intervals between them, and to quantify rates of
change such as the motions of object (not related to analysis of statics

problems).

7. Force is any influence that causes an object to undergo a change in speed, a
change in direction, or in a change in shape. Force can also be described by
intuitive concepts such as a push or pull that can cause an object with mass to
change its velocity, i.e. accelerate. A force has both magnitude and direction,

which is a vector quantity.



KINEMATICS IN ONE DIMENSION

RECTILINEAR MOTION

Ithough motion in a straight line or rectilinear motion constitute

Athe simplest of dynamical problems, yet it is very important
because many physical problems reduce to this category, e.g., simple harmonic
motion, motion under inverse square law, motion in a resisting medium and
motion of a rocket. Therefore, in this chapter, we first proceed to determine the
solution of the one dimensional equation of motion with subject to initial
conditions. When a point (or particle) moves along a straight line, its motion is
said to be a rectilinear motion. Here in this chapter we shall discuss the motion
of a point (or particle) along a straight line which may be either horizontal or
vertical. When a point (or particle) moves along a straight line, its motion is
said to be a rectilinear motion. Here in this chapter we shall discuss the motion
of a point (or particle) along a straight line which may be either horizontal or

vertical.

B Velocity and Acceleration

Suppose a particle moves along a straight line OX where O represents a fixed
point on the line. Let P be the position of the particle at time ¢, where OP = x
and P' be the position of the particle at time ¢+ dt, with OP' = z + dz.
Therefore /8t represents the average rate of displacement or the average
velocity during the interval 6t . If this ratio be independent of the interval ¢,
i.e. if it has the same value for all intervals of time, then the velocity is constant
or uniform, and equal distances will be traversed in equal times. Whether the

ratio 6z / 6t be constant or not, its limiting value as &t tends to zero is

defined to be the measure of the velocity (also known as instantaneous
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velocity) of the moving point at time ¢. But this limiting value is the
differential coefficient of = with regard to ¢, so that if we denote the velocity

by v, we have

. Oz dx
v=lim —=—=
5t—0 Ot dt
- L — > o
~-—-——-——-——-——-—=-—-—=--= > X
] i+ e

Again, Acceleration is similarly defined as the rate of change of velocity. Thus,

if v, v+ dv denote the velocities of the moving point at times ¢, ¢ + d¢, then

dvis the change of velocity in time 6t and dv/dt is the average rate of change

of velocity during the interval 6t . If this ratio is independent of the interval 8¢ ,
then the acceleration is constant or uniform, or equal increments of velocity

take place in equal intervals. Whether the ratio dv/8t be constant or not, its

limiting value as &t tends to zero is defined to be the measure of the
acceleration of the moving point at time ¢. But this limiting value is the
differential coefficient of v with regard to ¢, so that if we denote the

acceleration by a , we have

. v _dv
a= lim =— = =—
5t—0 Ot dt

dt\ dt dt?

B Other Expression for Acceleration

Let v = % . We can write (using chain rule in Differentiation)

. _d*x _d|d=x

A = L — =—m— | —
de?  dt\dt
_dv _dv_dx _ dv
— — X — T ) —

T dt  de dt dx

v



2
Therefore, d—f, D oand v are three expressions for representing the

dt?  dt dz
acceleration and any one of them can be used to suit the convenience in

working out the problems.

B Remember

The law of acceleration in a particular problem may be given by expressing the
acceleration as a function of the time ¢, or the distance z, or the velocity v.
The problem of further investigating the motion can then be solved as follows:

> If acceleration is given as a function of the time ¢ say ¢(¢) so

And then vov= fgo(t)dt +¢ === fcp(t)dt +c
=dz=[e@t)dt+c, dt

STo= f fcp(t)dt +¢ dt+ec,
> If acceleration is given as a function of the distance = say f(x) so

dv

a = f(x) = 'vd— = f(=z) = vdv = f(z)dx
x
= v’ = ZIf(m)dw +c
Further, vt = 2ff(m)dsc + ¢4
i%:q: ¢2ff(m)dw+c3
e dx — dt

4’2f_f(:c)d:c+c3
_ dx
T _q:f,’2ff(w)da:+c3
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» Again, Acceleration is given as a function of velocity v say ¢(v)

dv
a = v = — v
p(v) " ¢(v)
= v _ g by integrating
p(v
=>t= dv + ¢4
¢(v)

or we may connect velocity with distance by writing

dv vdv vdv
v—=p(v) = —=dx L= | —+4c
da o (v) J pv)  °

where, ¢, — ¢, are constants of integration.
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Il Example »

A car moves along a straight line such that its displacement = from a fixed
point on the line (origin) at time ¢ is given by z =t —9¢* + 24t + 6.
Determine the instant when the acceleration becomes zero, the position of the

car at this instant and the velocity of the particle then.

Il Solution »
Since, = = t3 — 9¢* + 24t + 6 . Differentiating with respect to time (w.r.t),

dx

the velocity v=—= 3t2 — 18t + 24,
and the acceleration is a= % = 6t — 18 é E —_— i

Now the acceleration vanishes i.e. a = 0 when 66 —18=0 =1¢t=3
Whent = 3, the position is given by z = 3% — 9(3%) + 24(3) + 6 = 24 units.
Again when ¢ = 3 the velocity is given by v = 3(3%) — 18(3) + 24 = —3, this

means that at ¢ =3 the velocity of the particle equals 3 units and in the
opposite direction of z .

Il Example »

If at time ¢ the displacement =z of a particle moving away from the origin is

given by z = Acost + Bsint, where A, B are constants. Find the velocity and

acceleration of the particle at in terms of time.

Il Solution »
Given that & = Acost + Bsint

Differentiating with respect to time (w.r.t), we obtain the velocity of the

particle
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v = dz = Bcost — Asint

Differentiating again, one get the acceleration at any time,

a = v = —Acost — Bsint

dt
= —(Acost + Bsint)

T
= —I

Note that the acceleration proportional to the displacement.

Il Example »
A man moves along a straight line where its distance = from a fixed point on

the line is given by = = Acos(ut + €) . Prove that its acceleration varies as the

distance measured from the origin and is directed towards the origin.

Il Solution » "

Since we have x = Acos(ut + )

Differentiating w.r.t x = Acos(ut + €), we get
dr . T X
— = —pAsin(ut + €)
dt
2
Differentiation again iz _ —p? Acos(pt + ¢) = —p’z

T

That is the acceleration varies as the distance = from the origin. The negative
sign “-“ indicates that it is in the negative sense of the z -axis, i.e., towards the

origin.
Il Example »

A truck moves along a straight line such that its distance = from a fixed point

on it and the velocity v are related by v* = u(b®> —x?). Prove that the

acceleration varies as the distance from the origin and is directed towards the

origin.



Il Solution »
Since we have v? = p(b? — z?) ﬂw
X~ —— =

Differentiating w.r.t =, we obtain

dv dv
20— = u(—2x V=— = a = —UT
= H(—2z) T H

Hence the acceleration varies as the distance = from the origin. The negative
sign “-*“ indicates that it is in the direction of =z decreasing, i.e., towards the

origin.
Il Example »

A particle moves along a straight line such that its distance = from a fixed
point on it and the time at any time ¢ are related by =z = 2(1 — e™*). Find the

velocity in terms of distance and the acceleration in terms of velocity.

Il Solution »
In order to obtain the velocity with differentiating the function of position =

with respect to time, we get

r=21—e! =wv= 9 _9et  Note dief(m) = f(x)ef®
x

_E_
cr—2=-2""¢ =v=2—=x

This equation illustrates the relation between velocity and distance.

Now to get the relation between acceleration and velocity

e = v@ =wv(—1)=—v  Note o _ -1 a=-—v
dz dx
Il Example »

A car moves along a straight line such that its acceleration at any time ¢ is

given by 6t + 2. Initially the mass at rest placed at the origin point. Determine
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the velocity and distance as a function of time. Determine the position of the
car after 5 sec.

Il Solution »
Since we have a = 6t + 2, a=% :@:Gt-i-z
dt dt
Thus, by separation of variables we get
dv= 6t+2 dt = [dv= [ 6t+2dt

Lv=3t+2t+¢

From initial conditions at ¢t =0, v =1then ¢, =0 X
Again, . v = 3t> 4+ 2t this equation gives the relation between velocity and

time. Since v = dz that is
dt

% =3t + 2t =dx = 3t +2t dt (Separation variables)

[do= [ 362 +2t at o  z=8++¢
From initial conditions at ¢ =0, = = 0then ¢, =0, i.e.

z =1t +1t
this equation gives the relation between distance and time.

The position at ¢ =5 is |, __ =5 +5° =150

Il Example »

A point moves along a straight line according t0 v = w + bz, where u,b are

constants. Find the velocity and acceleration in terms of time and the

acceleration in terms of distance and also as a function of velocity.

Il Solution »
Velocity and acceleration can be obtained by differentiation the function of

position and then velocity with respect to time, therefore
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v=1u+ bz éa:@—b@—

= = bv = b(u + bx) = a = b(u + bx)
dt dt

This equation gives the acceleration as a function of velocity a = bv and as a
function of distance a = b(u + bx)
Again to get the velocity and acceleration as functions of time

dx
u + bx

v =u+ bz #%:b(u+bw) = = bdt

Multiply the previous relation by & and then integrate

1l bdx =fb2dt = In(u + bz) = bt + C
u + bx

Where C is integration constant , the last relation can be rewritten as

“In(u+bz)=b*t+C =Ilv=0bt+C Or

= v=Ae", A=¢C
This is the relation between velocity and time, also the acceleration given by
a = bv = bAe

Il Example »
A plane flies along a straight line with retardation a = —2+*. Find the position
at any instance if the point starts from origin with initial velocity equals unity.

Il Solution »

The motion under retardation where a = —2v? but we knowa = % , SO

2 $@:—2’U2
dt A
—. "/

By separation of variables and integrate, we obtain ”

ca=—2v

—fd—::f2dt+cl :%:2t+cl
v
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The integration constant ¢, can be evaluated as » =1 when ¢ =0, hence
1=2(0)+¢, ..¢ =1 then the velocity can be obtained by

l=2t+1 but v:@ .'.ﬂ=2t+1 Or dt =
v dt dz 2t +1

Again by integrating we get

2dt =2dr =I(2t+1) =2x+c,
2t+1

From initial condition =0 when ¢=0 then ¢, =0 and the relation

between distance and time becomes

2 = %m(zt +1)

Il Example »
A particle starts from rest at a distance h from the origin O with retardation

—4x=%. Prove that the particle reach to distance ¢ from O in time

gx/hz — £% and then find its velocity at this position.

Il Solution »
Since we have been given the retardation as a = —16z=® and a = vj—v
L
therefore,
v@ = —4g73 = vdv = —4x 73 dx

dx
By integrating, we obtain
,'.f’vd’v:—f4a:_3 dx + c; Or %v2:%+cl Or v2:§+c

The integration constant ¢ can be evaluated as » =0 when z = h, hence

4 . 4
0= o) +cie ¢ = Y and then we get
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- b e =

2 _ 4 4 4R -2 2 Vh? — 2?
x>  h? z2h? h T

We will consider the minus sign since the motion of the particle towards the

L . dx
origin —in decreasing x - and use v = o
dx 2Vh? — 2? xdx 2
=2 = ————=—dt Or
dt h =z W _g2 h

xdx 2
p R
= Vh? — 2? :%t+c2

To obtain the constant ¢, when « = h as ¢ = 0 and then ¢, = 0 so

2

hz—a:2=ht Or t=g h? — 22

The spent time to reach to a distance ¢ from origin pointis ¢ = %«/iﬁ —

to determine the velocity at this position, we put = = £ in velocity relation,
that is

_2n - ¢
Ve = g

Il Example »

A car moves along a straight line according to the relationv = (1 + 2?)t . Find

the distance as a function of time if the point starts its motion from the origin.
Il Solution »

Since v = (1 + z?)t thus

A ..

= tdt
dt 1+ 2?2
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1
f da =ftdt+c1 étan_lar:Z—t2+c1
1+ 2? 2

From initial condition where the point starts its motion at origin

-'.tall_IOZ%()2+c1 =0=0+c¢c ..¢c, =0 .'.w:tan[étzl
Note that
s
fdm — tan_lf
1+ f2
Il Example »

If ¢t be regarded as a function of velocity v, prove that the rate of decrease of
Lo 5 d’t . .
acceleration is given by a — . a being the acceleration.
dv
Il Solution »

Let a be the acceleration at time ¢. Then a = % . Now the rate of decrease

. da
of acceleration = ——

at
d (dv d{dt)"
_——[— = ——|—| regarded t as a function of v
at | dt at | dv
_| () o _|(de) " dt |
av | dv dt dv dv? | dt
2 9 3 12 2
_|[do) @t |do _ (do)" dt _ o dt
dt) do?|dt dt) do? dv?

a

Il Example »

Prove that if a point moves with a velocity varying as any power (not less than
unity) of its distance from a fixed point which it is approaching, it will never
reach that point.
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Il Solution »

If  is the distance of the particle from the fixed point O at any time ¢, then its
speed wvat this time is given by v = kz™, where kis a constant and = is not
less than 1. Since the particle is moving towards the fixed point i.e., in the
direction decreasing, therefore

dr dr

— =—v or — = —kz" wee(1)
dt dt
Case 1. If n =1, then from (1), we have
dz = —kzx or dt= _ldz
dt k x
Integrating, t = —%lnm + A where A is a constant.

Putting = = 0 then the time ¢ to reach the fixed point O is given by
1
t=——In0+ A =c0
k

i.e., the particle will never reach the fixed point O

Case 2. If n > 1, then from (1), we have

dt = —la:_"da:
k

1—n
Integrating, ¢ = —~X 4 B where B is a constant.
kl—n
1
Or t=—  _+B
k(n — 1)zt

Putting = = 0 then the time ¢ to reach the fixed point O is given by
t=oc0+ B =00
i.e., the particle will never reach the fixed point O

Hence if n > 1, the particle will never reach the fixed point, it is approaching.
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PROBLEMS

O A particle moving in a straight line is subject to a resistance which produces

the retardation kv®, where v is the velocity and & is a constant. Show that »

and t (the time) are given in terms of =z (the distance) by the equations

u

v = b= Lia? 4 2 , Where w« is the initial velocity.
kux + 1 2 u

O If the relation between z and t is of the form ¢ = ba? + kx, find the

velocity v as a function of z, and prove that the retardation of the particle is

2003 .

O A particle is projected vertically upwards with speed u and moves in a
vertical straight line under uniform gravity with no air resistance. Find the
maximum height achieved by the particle and the time taken for it to return to

its starting point.
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Kinematics in Two Dimensions

B Velocity in Cartesian Coordinates

The velocity vector of a particle (or point) moving along a curve is the rate of

change of its displacement with respect to time.

Let P and Q be the positions of a particle moving along a curve at times ¢ and

t + ot respectively. With respect to O as the origin of vectors, let OP = r
and 0Q =r+6r Then PQ =0Q — OP = ér represents the displacement
of the particle in time &t and i—f indicates the average rate of displacement
(or average velocity) during the interval 6¢. The limiting value of the average
velocity (;—7-; as dttends to zero (6t — 0) is the velocity. Therefore if the

vector v represents the velocity of the particle at time ¢ then

. O0r dr
v=Ilm—=====7
5t—0 5t dt y

Where r is the position vector of the particle. A , ?.5'-

:,é 4 ﬂ.l'\ =
Now, if r=zi+yjJ S,X/// v

// //’ :
dr 4 dy JoeT
S dt dt dt Y " -
v, v,

Note that (z,y)are called the components or resolved parts of the velocity v

along the axes = and y respectively. The speed of the particle at P is given by

dz

2 2
d
+[_y] _ds
dt

dt dt

2] =

Also the angle @ which the direction of v makes with OX is
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B Acceleration in Cartesian Coordinates

The acceleration vector of a particle moving along a curve is defined as the rate

of change of its velocity vector.
if v and v+ dv are the velocities of a particle moving along a curve at times

t and t + dtrespectively, then dv is the change in velocity vector in time ot

and i—f is the average and then

. 0v dv g|dr d*r
a=lim—==—==—=|—=| = —=
= st—0 4t dt dt|dt dt?
Substituting for » = 9%7 4+ @j we have,
= dt dt
. . 2. . d?y - . .
= dtldt dt dt? dt?
Clm G/y

Here, (&,4)are called the components of the acceleration g along the axes =

and y respectively. The magnitude of the acceleration is given by

|e|=J

Again, the angle ¢ which the direction of ¢ makes with OX is

2 2
d’z

dt?

d2y
dt*

+

2 2
tanp = ﬁ / M
dt? = dt?
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( M Illustrative Examples W |

Il Example »
A point moves along the curve = = +1, y =1t> where, t is the time.

Determine the components of velocity and accelerationat ¢ =1

Il Solution »

Let r be the position vector of the particle at time ¢, therefore
2:mi+y5:(t3 +1)i+t2j

Then the velocity vector is

d o R o o o o
d—£=3t2i+2tj and o], =301%%+20)j=3i+2j
" _

I
Il

Again the vector of acceleration is

=6(1)i+25=6i+27

IS}

NPy d
_z_ t1+27 an gItZI

Il Example »

The position of a moving point at time ¢ is given by x = 3cost, y = 2sint

Find its path velocity and acceleration vectors.

Il Solution »

Since the parametric equations are = 3cost, y = 2sint then

2

2|+

3

2 2 2
[E] = cos’ t, [%] =sin’t = ﬂ] =1 or 4z +9y® = 36

3

2

This is a the path equation which represents an Ellipse

Velocity vector is v = —3sint i + 2cost j

While the acceleration vector is
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a = —3cost i —2sint j = —(3cost i + 2sint j) = —r

T

Il Example »

A particle moves along the curve y = 2z* such that its horizontal component

of velocity is constant and equals 2 . Calculate the components of acceleration
and velocity when y = 8.

Il Solution »
Since the horizontal component of velocity equals 2, i.e. & = 2, therefore by
differentiating w.r.t ¢ we get

t=0and y=22) = y=4xz=8x .. i§=8:=16

That is the acceleration vector is given by

a=16j
and the velocity components are & = 2 and y = 8=

Sinceas y = 8 gives = = +2 thus, v =21 +8(%2)j, |z| =260

Il Example »

A particle describes a plane curve such that its components of acceleration

equal (0,—u / y?)with initial velocity «f2,u/b parallel to X-axis and the

initial position (0,b) . Find the path equation.

Il Solution »

Here we are given that

d*x d’y 7

£, 2J__ £

dt? dt? 2

y
2 .
Note that &% = i[@] = i[ﬂ] x % — 5% chain rule
2 dt dy
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Y Yy Yy
2p . dy]
2
= -4 Y = —
! [ dt
Initially = = 0 when y = b, thus (:1:—27”
y b y b y b) b y
Hence

dy __ 20—y
Ut E\/ y @

(Negative sign has been taken because the particle is moving in the direction of

y decreasing)

Again from dz_, dz_ cs
dt?
Initially when ¢ = 0, 4% = /2—“ thus ¢, = fz_“
dt b b
dz _ |21
) - 2
" dt b )

By dividing the two equations (1) and (2) we get

dy_ _|b-y = / dy = —dz , then by integrating
de Yy
[Sll’l \F \/;«f

Hint to get the integration f /bL dy let us use the transformation
-y

—x+c,
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y = bsin®? @ = dy = 2bsin B cos 0 dbO

. 2
f Ldy:f M%sin@cos@d@
\jb—y \Ab—bsinm
. 2
:f M%sin@cos@d@
\Abcos29

= f sin 0 2bsm9w(do = 2bfsin29d9

- sin? @ :l 1 — cos26

= 2bfsin29d9 = 2bf% 1 — cos20 d@

:bf 1— cos20 d9:b[9—
f —Y_dy = b|sin! \/Q
b—y b

sin 20
2

The initial conditionis ¢t =0 = = 0, y = b then from the equation

b sin_l\jg—\/g‘ll—g
b b b

~b

=—z+c, :>(:2:b1

2
1 \/ﬁ
b

sin™

_\/Qfl_y —pZ _

b b

jsin_ljz:ﬁ 1-&-’-1-2
b bJ b 2 b

Yy

= =sin 2pbt

Rt

= cos w—ﬁJl—g
b b
b\J b

y = bcos?
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B Relative motion of two particles

Motion does not happen in isolation. If you’re riding in a train moving at
10 ms™ east, this velocity is measured relative to the ground on which you’re
traveling. However, if another train passes you at 15 ms™ east, your velocity
relative to this other train is different from your velocity relative to the ground.
Your velocity relative to the other train is 5 ms™ west. To explore this idea

further, we first need to establish some terminology.

4 Reference Frames

To discuss relative motion in one or more dimensions, we first introduce the
concept of reference frames. When we say an object has a certain velocity, we
must state it has a velocity with respect to a given reference frame. In most
examples we have examined so far, this reference frame has been Earth. If you
say a person is sitting in a train moving at 10 m/s east, then you imply the
person on the train is moving relative to the surface of Earth at this velocity,
and Earth is the reference frame. We can expand our view of the motion of the
person on the train and say Earth is spinning in its orbit around the Sun, in
which case the motion becomes more complicated. In this case, the solar
system is the reference frame. In summary, all discussion of relative motion
must define the reference frames involved. We now develop a method to refer

to reference frames in relative motion.

For two particles A and B moving in plane as shown, we
considered the relative motion of B with respect to A, or

more precisely, with respect to a moving frame attached

to A and in translation with A. Denoting by rp , the

relative position vector of B with respect to A, we had

T =Ty +Tpa or Ty =Tp—Ty
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Denoting by vy ,and ap 4, respectively, the relative velocity and the relative

acceleration of B with respect to A, we also showed that
Differentiating previous equation with respect to time
drpa _dry dry,

dt  dt dt
Differentiating previous equation with respect to time

or UBja = Vg — Uy

dvps _ dvg  dy,
dt dt  dt

or  apy = A4 — Qy
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( M Ilustrative Examples W |

Il Example »

Two points A and B are moving along a straight line such that =, = ¢* — 2t

and z = 2t* +¢* — 5. Find the relative velocity v, and accelerationay, .

Il Solution »
Since the relative position of point B with respect to point A, Tpia is given by
Lpia = Lp — Ly
=z, =2+ —5)—(* —2t)=t" +1* +2t -5
Hence the relative velocity vy, is obtained by

dx
ZBIA _ 342 4 2t 4+ 2

Upja =
Again the relative acceleration ay, is given by

“a _ 6t + 2

Apla =

Il Example »

A car A is traveling south at a speed of 70 km/h toward an
intersection. A car B is traveling east toward the intersection at a
speed of 80 km/h, as shown. Determine the velocity of the car B
relative to the car A.

Il Solution »

According to the given data the velocity of car Ais v, = —70 j and velocity of
car Bis v = 804 then

Upja =Yg — Uy
= 805 — (—70)
= 80 + 705

= |vpa| = J(80)2 + (70)? = V11300 ~ 106.3 kmh!
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And make an angle @ with the velocity direction of car B obtained by

80 8 8
Il Example »

A pilot must fly his plane due north to reach his destination. The plane can fly
at 300 km/h in still air. A wind is blowing out of the northeast at 90 km/h.
Calculate the speed of the plane relative to the ground and in what direction

must the pilot head her plane to fly due north.

Il Solution »

The pilot must point her plane somewhat east of north to
compensate for the wind velocity. We need to construct a
vector equation that contains the velocity of the plane with
respect to the ground, the velocity of the plane with respect to
the air, and the velocity of the air with respect to the ground.
Since these last two quantities are known, we can solve for the

velocity of the plane with respect to the ground. We can graph

the vectors and use this diagram to evaluate the magnitude of
the plane’s velocity with respect to the ground. The diagram will also tell us
the angle the plane’s velocity makes with north with respect to the air, which is

the direction the pilot must head her plane.
From the given data the velocity of plane P is v, = 300(sin@i + cos6 5) and
velocity of air Ais v, = —90(cos45°% + sin45°j) and vp; = vp g J then

Vpic = Vpja T Vyc
= 300(sin 04 + cos8 j) + —90(cos 45°% + sin 45° 7)
= (300sin8 — 90 cos45° )i + (300 cos & — 90sin 45°);
= 300sin6 — 90cos 45" = 0

_a5\2

300

sin@ And vp; = 300cos6 — 90sin45° =~ 230 kmh!
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PROBLEMS

O The position of a moving point at time ¢ is given by = = at?, y = 2at

Find its velocity and acceleration

O A particle moves with constant velocity parallel to the axis of Y and a
velocity proportional to y parallel to the axis of X . Prove that it will describe

a parabola

O A particle is acted on by a force parallel to the axis of Y whose acceleration

is Ay and is initially projected with a velocity ax parallel to the axis of X at
a point where y=a. Prove that it will describe the catenary

y = acosh(z / a)

3 A boat heads north in still water at 4.5 ms™ directly across a river that is

running east at 3.0 ms™. Find the velocity of the boat with respect to Earth.



POLAR COORDINATES

POLAR COORDINATES

In some problems it is convenient to employ
another coordinates not Cartesian coordinates as

polar coordinates. Let the position of a point P be

defined by its distance r from a fixed origin O and
the angle 6 that OP makes with a fixed axisOX .
The Cartesian coordinates (z,y) of P are connected with the polar coordinates

(r,0) by the relations x = rcosf, y = rsiné.

Note that # and @ represent unit vectors in direction of increasing » and

normal to = in the direction of increasing @ as illustrated in the figure.

B Anqgular Velocity and Acceleration

Let P be a moving point in a plane. If O be a fixed point (pole) and OX is a
fixed line through O in the plane of motion, then the angular velocity of the
moving point P about O (or the line OP in the plane XOP) is the rate of
change of the angle XOP Figure.

Let P andQ be the positions of a moving particle at times ¢ and t + 6t
respectively such that £ZPOX = 6 and ZQOX = 0 + §0. Therefore, the angle
turned by the particle in time 6t is 660 . That is the average rate of change of

the angle of P about O is ‘;—‘Z

Then the angular velocity of the point Pabout O is

i 00 _ do
1IN =— = =—
6t—0 Ot dt
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Where the dot placed over 8 denotes differentiation with respect to time, and
the units of angular velocity is radian/sec.

Now the rate of change of angular velocity is called angular acceleration

That is the angular acceleration

. 00 _do _ d(de) _ d*e _
Im —=—=—=|—=|==—=20
3t—0 5t dt dt\ dt dt?

The units of angular acceleration is radian/sec?

B Velocity and Acceleration in Polar Coordinates

Let the position of a point P be defined by its

distance r from a fixed origin O and the angle 6

that OP makes with a fixed axis OX .

The Cartesian coordinates (x,y) of P are connected with the polar coordinates
(r,0) by the relations =z = rcosf, y = rsinf.
Let v,, v, denote the components of velocity of P in the direction OP and at

right angles to OP in the sense in which 6 increases. The resultant of the

components wv,., v, is also the resultant of the components z, ¢ . Therefore by
resolving parallel to OX and OY we get

v, cosf —v,sinf = x = %(rcos@)

= rcosf — rOsind

And

v, sinf + v, cosf =y = %(rsin@)

= 7sin + r6 cos
Solving these equations for » and v clearly gives (comparing)
v, =T, vy = ré,

and these are the polar components of velocity.
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In like manner if a,, a, denote the components of acceleration along and at

right angles to OP, since these have the same resultant as # and i , we get
d2
a, cosf — a,sinf = & = —(rcos0)
dt* . .
= #—17r0% cosf — 70 + 270 sinb
Again for 4 we have
d2
a, sinf + a, cos@ = jj = —(rsinb)
e . .
= #—r0* sinf+ 70+ 270 cosf
giving on solution a, =i —r6* and a, = 76 + 270
These components constitute a third representation of the velocity and
acceleration of a point moving in a plane; they are sometimes called radial and

transverse components, and we note that the transverse component of

acceleration may also be written

a, = 70 + 270 = li 20
rdt

B Special Case: If the particle moves in a circle with radius £, ie. r=£
then #» = # = 0 and hence the velocity of the particle is given by v = €66 and
its direction will be along the normal to tangent to the circle and also the

acceleration willbe ~ a = —¢8%7 + £60.

Fixed line
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B Another method for Velocity and Acceleration in Polar Coordinates

We will now evaluate the two derivatives;i—; and %. These will be needed

when we derive the formulae for the velocity and acceleration of P in polar co-

ordinates. First we expand (7, §) in terms of the Cartesian basis vectors (, 7).

This gives
7 = cos@i +sinfj, 6 = —sinbi + coshj

Since 7,6 are now expressed in terms of the constant vectors(s, 7), the

differentiations with respect to 6 are simple and give

- )

Suppose now that P is a moving particle with polar co-ordinates r,8 that are
functions of the time ¢ . The position vector of P relative to O has magnitude
OP = r and direction +and can therefore be written

r=r 2)
In what follows, one must distinguish carefully between the position vector r,
which is the vector OP , the co-ordinate » , which is the distance OP, and the
polar unit vector 7.

To obtain the polar formula for the velocity of P, we differentiate formula (2)

with respect to time ¢ . This gives

dr d, .. dr. dp i
v=—=—(rf)=—7+r—
dt dt dt dte
. did 3 )
=rr+r—— r
do dt N7 _
6 6 o
= rr + r00

We used the chain rule and formula (1), which is the polar formula for the

velocity of P.
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In order to obtain the polar formula for acceleration, we differentiate the

velocity formula v = 7 + 86 with respect to ¢ again. This gives

C_I,Z@Zi F + 10
dt

dt X
= i‘f*+7"@ﬁ+(r§+ﬁé)4§+r9ﬁd—e
do dt do dt
6 6 ) . 7 8

= (¥ — r0*)7 + (rf + 270)0

which is the polar formula for the acceleration of P.

The formula v = 7 + 786 shows that the velocity of P is the vector sum of

an outward radial velocity 7 and a transverse velocity =8 ; in other words v is
just the sum of the velocities that P would have if » and @ varied separately.
This is not true for the acceleration as it will be observed that adding together

the separate accelerations would not yield the term 276 8 . This ‘Coriolis term’

is certainly present however, but is difficult to interpret intuitively.
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INTRINSIC COORDINATES

Let P be the position of a moving particle at time ¢ and r its position vector

with respect to the origin O. Let AP =S and let ¢» be the angle which the
tangent at P to the path of the particle makes with OX . Then (S,i) are the

intrinsic coordinates of P.

Let ¢ denote the unit vector along the tangent at in the direction of S

increasing and n be the unit vector normal at P in the direction of <

increasing i.e., in the direction of inwards drawn normal.

In the same manner we will now evaluate the two derivativesj—; and Z—Z.

These will be needed when we derive the formulae for the velocity and
acceleration of P in intrinsic co-ordinates. First we expand (¢, ) in terms of
the Cartesian basis vectors (z, 7). This gives

{ = cosypi +sinvpj, N =—sinvpi+cosipj

Since (£, n) are now expressed in terms of the constant vectors(z, 7), the

differentiations with respect to ¢ are simple and give

Lop, o (1)
dy dy
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Since the velocity be in tangent so
ds -
v=—1 2
v="" @)
Now, in order to obtain the polar formula for acceleration, we differentiate the

velocity formula v = %E with respect to time ¢ . This leads to

dv d|dS .
a=—=—|—t
- dt dt| dt

2 R

_ &S, dsdi

di? dt dt

_d’S;  dS di dydS i
dt2 | dt dip dS dt

2 2 e .
_ 425, (S| didy N | L
di? dt | dy dS NP .
a 1/p st
d:s . v .
=——t+—n
dt* p

Where p[= %] is the radius of curvature at the point Pwhich is the

2 2
tangential a, = 4’5 _ 4v _ % and normal a, = T acceleration at P.
de2 dt dS p

The formula v = %i illustrates that the velocity of P is in the tangent at P,

while the acceleration has two components (a,,a,)and the resultant of

acceleration is a = /a? + a2 =

2 2

+

’02

P

dv
dt
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M 1LLUSTRATIVE EXAMPLES W

Il Example »

A point P describes, with a constant angular velocity about the origin and

r = ae? Obtain the radial and transverse acceleration of P.

Il Solution »

Since ‘- a= #—1r8* #+ ré+2-0 6 and given % = w (constant)

then by differentiating » = ae’ with respect to time we have

7 = ae’0 = awe? = wr and = i = awlhe’ = aw?e’ = Wir
do d*o : .
Also il = =— =0 then the radial o, and transverse a, acceleration are
t dt
va, = Wwr —rw? = 0, a, =0+ 202r

Thatis a = 20210

Il Example »

The velocities of a particle along and perpendicular to the radius vector are

constants. Prove that the acceleration inversely varies as the radius .

Il Solution »

Since » = A and r0 = B where A,B are constants then by differentiating

with respect to time we have

F=A =#F=0 and =B =r0+70=0

. . . . B2 B2
then, the radial accelerationis -~ a, =% —7r6*> thus a, =0——=—=—
r r

And for transverse acceleration a,
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ay = 76 + 270 thus a, = P = ==

The magnitude of acceleration is given by

C =\B!'+ A’B?

that is the acceleration inversely varies as the radius vector r.

Il Example »
A particle moves along the circle » = 2cos@ in such a way that its acceleration
perpendicular to the radius vector is always zero. Find the velocity of the

moving particle in terms of .

Il Solution »
Since r = 2cos & then by differentiating with respect to time we have

r = 2cos@ = 5 = —2sinf 6

Also we have that the acceleration towards the origin is always zero i.e.,

ag =0 :>lir29 =0
rdt
=d r’8 =0

= %0 = h (const.)

Therefore the velocity magnitude is

|1_1| = \/vz +v) = \/1‘2 + (rf)?
= [(=25in86)? + (r6)?
:,¢4sin20+ r?
= \/4(1—cos2 0)+1r*0
:\/4—4005204—1“29

=J4a—r?+r20=260 ==
h/r? r



Kinematics of a Particle 78

Il Example »

A particle describes a curve with constant velocity and its angular velocity
about a given fixed point O varies inversely as its distance from O . Find the

path equation.

Il Solution »
Let the velocity of the particle be equal to v (constant). Given that the angular

velocity d@ / dt of the particle about a fixed point O varies inversely as its

distance » from O, we have

@ 1 40 _k (k is constant)
dt r dt r
dr)’ do\’
Since v = || £ | +[r£2| =X (X isconstant)
dt dt
2 2
=2 = |90 (98] =z
dt dt
dr) k)
== || +|rZ| = A2
dt r
2
ﬁ — AZ _kZ
dt
dr 2 2
dt #
deo dt dor r k

By integrating

sonr = ’—1:0 +Inec (Inc is integration constant)

'.lnE:EB :r:ce”/ke

C

This is the equation of equiangular spiral
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Il Example »
Find the path equation of a point P which possesses two constant velocities
U and V, the first of which is in OX direction and the other is perpendicular

to the radius OP drown from a fixed point O .

Il Solution »
Take the fixed point O as the pole and the fixed direction as the initial line
OX. Let P(r,0) be the position of the particle at any time. Resolve the

velocities in the direction of and perpendicular to the radius OP we have

%:UcosH and TQ:V—UsinH

dt

Dividing these two equations we have

dr _ _Ucosé iﬁ— U cos @

= —_—df
rd@ V —Usin@ T V —Usin@

By integrating we get

Inr =—In(V —UsinB)+Inc

or InE =In(V — Usin®) (Inc is integration constant)
r

- £~V _—Usin®
IS

Il Example »
A particle moves in a plane curve so that its tangential acceleration is constant,
and the magnitude of tangential velocity and normal acceleration are in a

constant ratio. Find the intrinsic equation of the curve.

Il Solution »
In our problem it is given that

tangential acceleration % =X (a constant) and (8]
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tangential velocity

=—_=£_ (aconstant) )
normal acceleration 2 /p v
Since v = d—S, p= as
dt di
Then from formula (2)
d d
4 = M =pu = ﬁ = Or ﬂ = l
v dS/dt dap dt p
From formula (1)
@:ﬂxﬂzk Or ﬂ:)\/,L = dv = pAdy
dt dy dt dy
1/p
By integrating v=pXp+c

Where ¢, is a constant, again from equation (2)

P = pv ﬁ%:uuk¢+cl Or dS=p pxp+c diy

Integrating
_ 1 9y 9
S—Eu X + pep +C Or

S = Ay? + By + C, A:%A/ﬁ, B = pe,

Il Example »

A particle moves in a catenary s = ctantp, the direction of its acceleration at

any point makes equal angles with the tangent and normal to the path at the

point. If the speed at the vertex (¢» =0) be w, show that the velocity and

acceleration at any other point ¢ are ue* and (V2 / ¢)u2e?” cos? 1.

Il Solution »
It is given that the direction of acceleration at any point makes equal angles
with the tangent and normal to the path at the point. Therefore the tangential

and normal accelerations will be equal at any time
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l.e Vo =
ds p
2
vﬂ:v— :@pzv or
ds p ds
ds dafs di v
Inv = v+ ¢ from the initial conditions (v =u, ¥ =0 s.c=Inu)
SJIhnv=%+nu :>1n2:¢ = v = ue¥
U

which gives the velocity of the particle at any point 1 .

Further it is given that the path of the particle is the catenary s = ctan

= ds _ csec® 1
dyp

And since the acceleration magnitude is given by

2 2

2 )2 2\? 2
ds P P P
2 2
= \/5 = \/Euzez’/’ L = —u?e? cos? 1)
p csec? c

Il Example »

The relation between the velocity of a particle moving in a plane v and its

tangent acceleration a, is a, = . Find the relation between »,S and wv,t

+ v

if the particle start from rest at the position S = 0.

Il Solution »

To obtain the relation between v,t where a, = % then

dv _ 1

dt 1+

= (1+ v)dv = dt
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By integrating v+ §v2 =t+c

The integration constant ¢, can be evaluated from initial conditions, i.e. v =0
at t = 0 and hence ¢, = 0 then the last formula becomes

v+lv2 =t
2

Again since, a, = v:—; and therefore,

v — L o (v o)d = dS
das 1+wv
. . 1 2 1 3
Integration again SV =S+g

Where ¢, is a constant where » =0 at S =0 and hence ¢, =0 then the

relation between v, S is éqﬂ + év?' =5

Il Example »

A particle describes a curve (for which and vanish simultaneously) with
uniform wv, if acceleration at any point § be uv? /(S* + u?) . Find the

intrinsic equation of the curve.

Il Solution »
It is given that the velocity is constant i.e.,

2
v—ﬁ:c :dS

= 22 _
dt dt*
And since the resultant of acceleration is
ds 2 v? v?
a=,|l=—| +|—| ==—
dt? P P

But it is given that
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= Ho = ’U_ = Hv
S+ pu? p 8?4+t
d _ _n
ds SZ +u2
N ndS _ dy
S% + p?
. 1_ds R
11 [S]
J7i
By integrating
tan™! [ﬁ] =1 +C Cisaconstant
7

Given that ¢» = 0 when § =0, gives C =0

Therefore, tan™! [ﬁ] =1 Or S = ptan(v)

7!
Il Example »

A particle moves over a circle with radius 2 ft according to a constant tangent

acceleration 4 ftsec™2. If initially, the particle at the point A on a circumference

and have zero velocity. Find the velocity of the particle after it returns to the

point A and time spent to reach. Find its acceleration after return to point a.

Il Solution »

It’s given that a, = 4 thus

%:4 = dv = 4dt =v=4t+¢
t

To get the constant ¢, we apply the initial conditions i.e. v =0 when ¢ =0
SO ¢, =0
Then the last equation turns into v =4t

Again since v = % hence
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ds _

~ 4 =dS=4tdt = S=2+c,

Again To get the constant ¢, we apply the initial conditions i.e. S =0 when
t =05s0 ¢, =0 (consider A be the fixed point) then the relation between S,¢
is S = 2t?

From this equation we can obtain the tome spent to reach to the point A again —

note S = 4 - thus the time ar =22 - t=A2m

And its velocity is v = 427

Moreover the acceleration has two components namely tangential component

a, = 4ftsec”? and normal component a,, , where

2 16(2
a :L:%:lﬁﬂ' ftsec™> (note p = 2 ft)

n
P



85

MOTION UNDER CONSTRAINT

particle may be constrained to move along a given curve or
Asurface, and the constraint may be one-sided, as for example

when a heavy particle slides on the inside of a spherical surface and is free to
break contact with the surface on the inside of the sphere but cannot get
outside. There will then be a normal pressure inwards exerted by the sphere on
the particle so long as contact persists, and the pressure will vanish at the point
where the particle leaves the surface. On the other hand if the constraint is two-
sided as when a particle moves in a fine tube, or a bead moves along a wire,
then the normal reaction may vanish and change sign but the particle persists in

the prescribed path.

Bl Motion of a Heavy Particle on a Smooth Curve in a Vertical Plane

The motion is determined by the tangential and normal components of
acceleration. The beginner may find it useful in such problems as this to make
two diagrams, one showing the components of acceleration multiplied by the
mass and the other showing the forces. It is then only necessary to realize that
the two diagrams are equivalent representations of the same vector, so that the

resolved parts in any assigned direction in the two diagrams are equal.
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If m is the mass of the particle, the forces acting on it are the weight mg and

the reaction R along the normal. The components of acceleration are i

ds

2
along the tangent and X~ along the inward normal. Hence, by resolving along
P

the tangent, we get

mvﬁ = —mgsiny= —mgﬂ,

ds ds

therefore, by integration,

1 -
=mv? = ¢ — mgy

2

or, if w is the velocity when the ordinate is y, , we have

1 2 .2 _ _ 1

Sm v Ul =mg oy, —y 1)
This is the equation of energy and might have been written down at once; for
since the curve is smooth no work is done by the reaction R in any
displacement, so the increase in kinetic energy is equal to the work done by the
weight.

Again, resolving along the normal, we get

o2
m=— = R — mgcos 2
p

Substituting for v from equation (1), we have
R=mgcosp +m u® +29(y, —y) /p (3)
Assuming that the form of the curve is given, the values of p and 4 at any

point can be determined, and thus R is known; and if we equate to zero the
value of R we shall have an equation to determine the point, if any, at which

the particle leaves the curve.
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H Motion of a Heavy Particle, placed on the outside of a Smooth Circle in
a Vertical Plane and allowed to slide down

If the particle starts with zero initial velocity from position Q at an angular
distance a = ZA0Q from the highest point A, and a is the radius of the circle

and v the velocity at P where the angular distance from A is € = ZAOP, then,
v? = 2ga(cos & — cos 0)

Also by resolving along the inward normal
,02
m— = R — mgcos@
a
where R is the outward reaction of the curve.

Therefore R = mg(3cos@ — 2cos o)

showing that the pressure vanishes, and that the particle

flies off the curve, when cos@ = %cosa .

B Motion in a Vertical Plane of a Heavy Particle attached by a Pine String
to a Fixed Point

Suppose that the particle starts with velocity « from its lowest position B. If v
is the velocity at P and 6 is the angle that the string makes with the vertical,

the equation of energy is
=m v’ —u® = —mga 1— cosf (D)

and by resolving along the inward normal

’U2

m=— =T — mgcos0
a

where T is the tension of the string.

Therefore
T = m(3gcos® — 2g + u® / a) 2
In order to find the height of ascent we put » = 0 in (1), and get

2gacos @ = 2ga — u? 3
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and by putting T = 0 in equation (2), we find that the tension vanishes when
3gacosd = 2ga — u® 4)

Now we have the following cases:

(i) Ifu? < 2ga, the string does not reach the horizontal position and the

tension does not vanish.

(ii) Ifu® = 2ga, the string just reaches the horizontal position, the tension
vanishes for 6 = % and the particle swings through a quadrant on each side of
the vertical.

(iii) If 2ga < u® < 5ga, we find that there is a value of @, an obtuse angle,
given by (4) smaller than that given by (3), so that the string becomes slack
before the velocity vanishes and the particle will fall away from the circular
path and move in a parabola till the string again becomes taut.

(iv) If u?> = 5ga, the tension just vanishes in the highest position, but v does

not vanish, so that circular motion persists.

(v) Ifu® > 5ga, neither v nor T vanish. This is an example of a one-sided
constraint; if instead of the problem of a particle attached to a string, we
consider that of a bead sliding on a wire, we find that if «?> = 4ga the bead

will reach the highest point of the wire and for any greater value of « it will

describe the complete circle.

B Circular pendulum:

A mass hangs from a massless string of length ¢
Conditions have been set up so that the mass swings
around in a horizontal circle, with the string making an

angle « with the vertical (see Figure).

-~




89

The mass travels in a circle, so the horizontal radial
force must be

2

F =m
£sin

w22 sin? & 2, .
£sina

directed radially inward. The forces on the mass are the tension in the string, T
, and gravity, mg as illustrated. There is no acceleration in the vertical
direction, so F = ma in the vertical and radial directions give, respectively,
T cosa = mg and T'sin @ = muw?Lsin o

Solving for w gives

g
£Lcosx

w =

Note that ifa ~ 0, then w = \E, which equals the frequency of a plane

pendulum of length £. And if a ~ 90, then w — oo, which makes sense.
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Im lllustrative Examples |

Il Example »
A heavy particle of weight mg, attached to a fixed point by a light
inextensible string with length £, describes a circle in a vertical plane. The

tension in the string has the values nmg and n’mg, respectively, when the
particle is at the highest and lowest points in its path. Show that n’=n + 6.
Il Solution »

The equation of motion along and perpendicular to the
radius r Sl R

med? = T — mgcosO (1) / N

me = —mgsinf = 0 = —gsin0 2 ! \

40_d0d9 _ 4db 4nq

Since we have 6 = &= = .
dt do dt do v !

substituting in formula (1) and integrate . o
. N 4 :[j:l"rl.# o
5y do . Sso -7 SS
= L0 — = —gsinf RRE EE

=9 Y

= £0d6 = —gsin 0d0

= (6 = 2gcosB+ ¢ 3

Where ¢ the integration constant and substituting from equation (3) in
equation (1) we get

T = m(2gcos0+ ¢) + mgcos@ = 3mgcosd + C 4

It’s given that the tension at highest position is nmgi.e. at point B and at the

lowest position n’mg i.e. at point A then

n mg = 3mgcosm+ C = C = (n+3)mg and
n’ mg =3mgcos0+C = C =(n —3)mg

Therefore, by subtracting n —n’+6=0 Or n'=n+6

The reader can resolve this problem by using intrinsic coordinates.
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Il Example »

A particle slides outside a smooth vertical circle with radius. At time ¢ = 0 the

particle was at the top of the circle and has zero initial velocity. Determine the

velocity at any position and the reaction of the circle the find the position that

the particle will leave the circle.

Il Solution »
The forces acting on the particle are mg the
weight and reaction R as illustrated in the figure 3

(J

The equation of motion along perpendicular to the \

radius is
mvﬂ = mgsinty Or 'uﬂﬂ = gsin [d_S = b]
ds diy dS dy

= vdv = bgsin dip
By integration
v’ = C — 2bgcosp
Since v =0 at t = 0 thus C = 2bg then v® = 2bg(1 — cosp)
The equation of motion along the radius we get

v’ v’
m? =mgcostp— R = R =mgcosy — m?

= R= mgcosy — 2mg(l — cos)
= mg(3costp — 2)

The last equation gives the reaction of the circle at any position and the particle

will leave the circle when the reaction vanishes, i.e.

mg(3cosp —2) =0 :cosqug

That is the particle will leave the circle after sliding a vertical distance equals
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Il Example »
Prove that the simple pendulum executes simple harmonic motion and

determine the periodic time.

Il Solution »
If a heavy particle is tied to one end of a light 5 .
inextensible string the other end of which is :§

fixed, and oscillates in a vertical circle, we have
what is called a Simple Pendulum
We now obtain the time of oscillation of such a

pendulum when it is allowed to oscillate \ I R
|oTre e

_-

through a small angle only. Let O be the fixed @ "=--a-- o<
) 1y

point, A the lowest position of the particle, and
P any position such that ZAOP=60

Since in polar co-ordinate
(a, =70+2/0=LO (r=L .. 7=0))
The equations of motion in @ direction is
mL = —mgsinf = 6= —%sin@

When the angle 8 is small enough so the approximation sin6 =~ 6 can be

applied and the equation of motion, 6 = —%sine becomes 8 = —%0

Which is similar to § = —w?@ , with w? = % Or w= %

So, a simple pendulum moves like a SHM with periodic time of motion equals

2 /L
g
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PROBLEMS

O A point starts from the origin in the direction of the initial line with velocity

L and moves with angular velocity « about the origin and with constant

W

negative radial acceleration « . Find the equation of path
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3 A point describes the cycloid S = 4asin ) with uniform speed ». Find its

acceleration at any point.
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O If the tangential and normal acceleration of a particle describing a plane

curve be constant throughout, prove that the radius of curvature p at any point

is given by p = (at + b)?, where a, b are constants
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O The velocities of a particle along and perpendicular to the radius vector are

Arand p@ respectively. Find the path equation and obtain the accelerations

along and perpendicular to the radius vector.

O The velocities of a particle along and perpendicular to the radius vector are
Arfand p@? respectively. Find the path equation and obtain the accelerations

along and perpendicular to the radius vector.



KINETICS OF A PARTICLE

his chapter is concerned with the foundations of dynamics and
Tgravitation. Kinematics is concerned purely with geometry of
motion, but dynamics seeks to answer the question as to what motion will
actually occur when specified forces act on a body. The rules that allow one to
make this connection are Newton’s laws of motion. These are laws of physics
that are founded upon experimental evidence and stand or fall according to the
accuracy of their predictions. In fact, Newton’s formulation of mechanics has
been astonishingly successful in its accuracy and breadth of application, and
has survived, essentially intact, for more than three centuries. The same is true
for Newton’s universal law of gravitation which specifies the forces that all

masses exert upon each other.

Taken together, these laws represent virtually the entire foundation of classical
mechanics and provide an accurate explanation for a vast range of motions

from large molecules to entire galaxies.

Bl Newton’s Laws

Isaac Newton’s* three famous laws of motion were laid down in Principia,
written in Latin and published in 1687. These laws set out the founding
principles of mechanics and have survived, essentially unchanged, to the
present day. Even when translated into English, Newton’s original words are
hard to understand, mainly because the terminology of the seventeenth century
is now archaic. Also, the laws are now formulated as applying to particles, a
concept never used by Newton. A particle is an idealized body that occupies
only a single point of space and has no internal structure. True particles do not
exist in nature, but it is convenient to regard realistic bodies as being made up
of particles. Using modern terminology, Newton’s laws may be stated as
follows:
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»First Law: When all external influences on a particle are removed, the
particle moves with constant velocity. {This velocity may be zero in which
case the particle remains at rest.}

»Second Law: When a force F acts on a particle of mass m , the particle
moves with instantaneous acceleration a given by the formula
F = ma

where the unit of force is implied by the units of mass and acceleration.

>Third Law: When two particles exert forces upon each other, these forces
are (i) equal in magnitude, (ii) opposite in direction, and (iii) parallel to the

straight line joining the two particles.

Bl The Law of Gravitation

Physicists recognize only four distinct kinds of interaction forces that exist in
nature. These are gravitational forces, electromagnetic forces and weak/strong
nuclear forces. The nuclear forces are important only within the atomic nucleus
and will not concern us at all. The electromagnetic forces include electrostatic
attraction and repulsion, but we will encounter them mainly as ‘forces of
contact” between material bodies. Since such forces are intermolecular, they
are ultimately electromagnetic although we will make no use of this fact! The
present section however is concerned with gravitation.

It is an observed fact that any object with mass attracts any other object with
mass with a force called gravitation. When gravitational interaction occurs
between particles, the Third Law implies that the interaction forces must be
equal in magnitude, opposite in direction and parallel to the straight line
joining the particles. The magnitude of the gravitational interaction forces is

given by:

The gravitational forces that two particles exert upon each other each have

magnitude
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Mm -

F=y—¢<F )
R

where M, m are the particle masses, R is the distance between the particles,

and ~, the constant of gravitation, is a universal constant. Since ~ is not

dimensionless, its humerical value depends on the units of mass, length and

force.

This is the famous inverse square law of gravitation originally suggested by

Robert Hooke, a scientific contemporary (and adversary) of Newton. In SI

units, the constant of gravitation is given approximately by
~ = 6.67 x 107! Nm’kg~?

this value being determined by observation and experiment. There is presently

no theory (general relativity included) that is able to predict the value of ~.

Indeed, the theory of general relativity does not exclude repulsion between

masses!

To give some idea of the magnitudes of the forces involved, suppose we have
two uniform spheres of lead, each with mass 5000 kg (five metric tons). Their
common radius is about 47 cm which means that they can be placed with their
centers 1 m apart. What gravitational force do they exert upon each other when
they are in this position? We will show later that the gravitational force
between uniform spheres of matter is exactly the same as if all the mass of each
sphere were concentrated at its center. Given that this result is true, we can find
the force that each sphere exerts on the other simply by substituting
M =m =5000 and R =1 into equation (1). This gives F = 0.00167N

approximately, the weight of a few grains of salt! Such forces seem
insignificant, but gravitation is the force that keeps the Moon in orbit around
the Earth, and the Earth in orbit around the Sun. The reason for this disparity is
that the masses involved are so much larger than those of the lead spheres in

our example. For instance, the mass of the Sun is about 2 x 10% kg.
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Bl Motion Through a Resisting Medium

When a body moves in a medium like air or any other fluid, it experiences a
resistance to its motion. The resistance which we have been neglecting so far,
generally varies with the velocity. For small velocities the resistance is
approximately proportional to the velocity, for greater velocities it varies as the
square of the velocity and for still greater velocities, the resistance varies as the
cube or even a higher power of the velocity. The forces of resistance being
non-conservative, the principle of Conservation of Energy is not applicable to
such cases.

B Bodies Falling Vertically in a Resisting Medium

Suppose a particle with mass m is allowed to fall vertically subject to a
resistance proportional to some power of the velocity », e.g. a resistance force
pmu, then we have the equation of motion

dv @

m-— = mg — umuv Or

= — Uv
dt dt g—#

where pm is the constant of proportionality and g, the acceleration due to
gravity, is supposed to remain constant. The equation shows that the

acceleration of the particle decreases as its velocity increases and that it

vanishes when g / p . Separation of variables for the previous equation we get

g o= MW g

g— v g— v

Integration we have

In(g — pv) = —pt + ¢
If the initial velocity is u therefore, the constant ¢, may be obtained as
In(g — pu) = ¢ then

Nl
g— pu

In(g — pv) = —put + In(g — pu) =1 = —pt
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1
= g—mw=(g—pue™ Or v=T_ (g puje
poop

The value £ is the greatest velocity attainable by the particle and is called the
7

limiting or terminal velocity.

To get the height since v = % then

dy_g —l(g—uu)e_“t =dy = g—l(g—ﬂu)e_”t dt
T

dt p p
And integrate we get

1
y = Iy 4 —2(g — pu)e ™ + ¢,
koop

Where ¢, = —iz(g — pu) sine y = 0 when ¢ = 0 that is
7

2

1
y:2t+—(g—uu) e M —1
K 1Y

Subsequently the particle moves uniformly with this limiting velocity. The
velocity for the rain drops at the surface of the earth cannot, therefore, give us
any idea of the height from which they might have fallen, for after moving for
some time they acquire the terminal velocity and continue to move uniformly

with that velocity.
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Im lllustrative Examples H|

Il Example »

A particle with mass m moves horizontally through a resisting medium where
its resistance proportional to » and the proportional constant is am . If the
particle starts its motion from the origin point with initial velocity « . Find the

distance after time ¢ .

Il Solution »
The equation of motion of the particle is (horizontally)

m@ = —amv = @ = —adt
dt v

By integrating we have In(v) =¢ — ot 1)
The constant ¢, can be determined from the initial conditions, v =u at
t = 0, therefore ¢, = Inw and equation (1) becomes

In(v) =lnu — ot Or v=ue™ (2)

Equation (2) gives the velocity of the particle at any instance, and the position

of the particle = can be obtained as follows

@ = ye~ = dz = ue ¥dt
dt
v
= fda: = fue_atdt +¢, Or
r=—Leot +c, 3)
a

Where ¢, is integration constant that can be calculated from the initial
conditions, « =0 at ¢t = 0, therefore ¢, = % and equation (3) turns into
«

u —at
r=—1—e
o
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Il Example »

A moving point with mass equals unity subject to a resistance Av + pv? If the

resisting force is the only force acting on the point. Find the distance where u

is the initial velocity of the point.

Il Solution »
Equation of motion is (m = 1) — Note resisting force is the only acting force-

v@ = —(Av + pv?) = pdv —pdz
dr A+ pv

By integration we get
In(A + pv) = ¢, — px (1)

Where ¢, represents integration constant and can be obtained from the initial

conditions, v = u at x = 0, therefore ¢, = In(A + pu) and equation (1) turns

into

In(A + pv) = In(\ + pu) — px Or ln[A+“u]:,u;1: 2
A+ pv

Again from the last equation we can obtain the position of the point as the

velocity vanishes

v=0 uw N o pY
Il Example »

Two equal particles with mass m projected downwards from the same point

and at the same instance with initial velocities w,, u, subject to a resistance

pwmo If u/, u; are the velocities of the particles after timeT . Prove that

W~ = (uy — u)e
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Il Solution »
With respect the first particle we suppose that its velocity at any time is v
therefore, the equation of motion is

d d —pd
m—v:mg—um'v = Y _dt oOr L = —udt
dt g— pv g — pv

By integration we have

In(g — pv) =c —pt
look ¢ indicates the integration constant which can be calculated from the
initial conditions, » = u, when ¢ = 0, therefore ¢ = In(g — pu,) and the last

equation become
In(g — pv) = In(g — puy) —pt~ Or g — pw = (g — puy)e™
Now after time T, the velocity become w«, that is
g— pu = (g — pu,)e " (1)

Now with respect the second particle we suppose that its velocity at any time is

v’ therefore, the equation of motion is
dv’ dv’ —pdv’

!/
m— = mg — umv’ = =
dt gk g — pv g — pv’

By integration we have

In(g — pv’) =c’ — ut
where ¢ refers to the integration constant which can be obtained from the
initial conditions, v" = u,when ¢ =0, therefore ¢’ = In(g — pu,) and the
previous equation converted to
In(g — p’) = In(g — pw,) —pt~ Or g — po’ = (g — pu,)e ™

Again, Now after time T, the velocity become w, that is

g — puy = (g — pu,)e #" )
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By subtracting Equations (1) and (2) we obtain

,_

pou —uy = p(u, — uy)e T Or u —uy = (u, —u,)e

Il Example »

A point with mass m is projected vertically upwards with initial velocity

«f gur~! and the resistance of air produces retardation per unit mass pv? where

v is the velocity and p is constant. Find the highest position and the time

spent to reach is
4 gp

Il Solution »
The equation of motion — let the projection point be the origin-then

mv@ = —mg — pmv® = vdy =—dy Or 2uvdv. = —2udy
dy g+ pv? g+ pv?

By integration we get

In(g + pv?) = ¢; — 2py ()

Note ¢, indicates the integration constant which can be obtained from the
initial conditions, v = \/gu_l when y = 0, therefore ¢, = In2g and equation

(1) be

In(g + pv) = In2g —2uy  Or y:iln 29 (2)
2p g+ po

Equation (2) gives the position of the point at any instance ¢ and at highest

position the velocity is zero » = 0 and then

ilnz—g éY:iln2

y:
2p g 2p

And this is the highest position and to evaluate the spent time to reach since
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d d ’Edv
m% = —mg — pm? = Y —_at or — Y9 _
dt g + pv’

By integration we obtain

F’l’
g

Note ¢, is the integration constant which its value can be evaluated by the

tan !

:cz—\/g_l,l,t (3)

initial conditions, v = \fgu_l when ¢ = 0, therefore ¢, = % and equation (3)

turn into

-1

tan Lt
g

Jee

This equation gives the velocity at any time ¢, and when » = 0 then ¢

= 0= Ftan[z— gut]
7 4

= [E— gut]:O Or t=

:z—\fgp,t Or v=\/£tan[z— g,ut]
4 7 4

Il Example »

A point with mass m is projected vertically upwards where the resistance of
air produces a retardation muwv where v is the velocity and g is constant. If
the velocity vanish at time T with a height ¢ from the point of projection
Show that the initial velocity of the point is p€ + gT .

Il Solution »

The equation of motion —the point of projection is chosen to be the origin

point-
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d d
m—v:—mg—p,m'u = pav = —udt
dt g+ pv

By integration we get

In(g +~yv) = ¢, — put @
here ¢, gives the integration constant which can be obtained from the initial
conditions, v =« when ¢ =0, -we suppose that the initial velocity is u
which we need to obtain- therefore ¢, = In(g+ pu) and equation (1) takes the
following formula

In(g + pw) = In(g + pu) —pt ~ Or g+ pv = g+ pu e

at t=T, v=0 = g= g+ pu el (2)

In order to determine the height of the point we have

— 1 —
g+ = (g + pu)e or v=— (g+pue " —g
I
Butvzd—y then
dt

dy 1 - 1 _
Fogrpwe™ —g  Sdy=— (g+puwe " —g dt
dt Iz

By integration we get

_1({(g + pu) e
el n

Yy = t+gt +c, 3)

here ¢, gives the integration constant which can be obtained from the initial

conditions, y =0 when ¢t =0, therefore ¢, = M and equation (2)
7

become

_gtpu_ 1((g+ pu)

e +gt
p? 7 7

Y

Now let y = £ when ¢t =T
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¢ 9tpu_(gt+pu) —ur  gT

w’ I Iz
iwe-” :H#_ﬂ_e Or %:ﬁ#_ﬂ_g
Iz 7 K Iz Iz K
We use equation (2)
T

p? w? Iz

Il Example »

A point with mass m is projected vertically upwards with initial velocity
and the resistance of air produces a retardation m~v?> where v is the velocity

and ~ is constant. Show that the velocity with which the point will return to
/
the point of projection is ——=%_ where u’ = /gy " .
u2 + ulz
Il Solution »
To determine the velocity with which the point will return to the point of
projection, we will consider the motion of the point upwards until it stop then it
return.
The equation of motion of the point — consider Y axis to be vertically and the

point of projection is chosen to be the origin point-

mv@ = —mg — ymv® = M = —2~dy
dy g+ yv?
By integration we get
In(g + yv*) = ¢, — 2vy (1)

Where ¢, points out integration constant which can be obtained from the

initial conditions, v = at y = 0, therefore ¢, = In(g + vy«*) and equation
(1) takes the following formula
g+ v

1
In(g +v*) =In(g + yu*) —2vy Or y=_—In .
g+ v

2y
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The point will stop as » = 0, therefore

= iln

2

g+ yu?
g

1
y|v=0 =Y = Eln

Now by taking the motion where the point moves downwards, let the highest
position represents the new origin point and the Y axis is chosen to be
vertically downward. Moreover, the initial condition will be v = 0when

y = 0 where v is the velocity. The equation of motion

mv@ = mg — 'ymv2 = M = —2~vdy
dy g— v’
By integration we get
In(g — vv*) = ¢, — 27y o)

Constant of integration ¢, can be obtained from the initial conditions, v = 0

at y = 0, therefore ¢, = Ing and equation (2) becomes

In(g —yv*) =lng—2vy Or y:ziln
Y

_ 9
g— v’

And the velocity of the point with which the point will return to the point of

2

. . . . 1
projection is thatisat y = ¥ = —In|1 + 2~ | hence
2,.), ulz
1 2 1 2
—In 1+u—, =—In g Or 1+—,= g
2y u’? 2y |lg—v u?  g—
12 2 12 2
u”+u" g .2 gu 2 _ ___gu
’”2 - 2 = gTv =, , =g
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4
uu 2 _
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PROBLEMS

O3 A particle is projected with velocity V along a smooth horizontal plane in a

medium whose resistance per unit mass is yv, ~ s a constant. Obtain the

velocity v and the distance after a time ¢ .
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O A particle is projected vertically upwards with velocity » and the resistance
of the air produces a retardation kv where v is the velocity. Determine the

velocity with which the particle will return to the point of projection.
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O A particle P moving along a horizontal straight line has retardation pv,

where v is the velocity at time ¢. Whent = 0, the particle is at O and has

velocity . Show that w — v is proportional to OP .
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O A particle subject to gravity describes a curved path in a resisting medium
which causes retardationhv. Show that the resultant acceleration has a

constant direction, and equals a,e™™ where @, is the acceleration when

t=0.



PROJECTILE MOTION

I et us consider that «,v denote the resolved parts of the velocity
of the particle parallel to the axes at time ¢ and u + du, v + dv
refer to the resolved parts at time ¢+ ot then the resolved parts of the

acceleration are given as

d’z

ou _ du d

st—0 5t dt  dt

dx

dt

dt?

The consideration of component velocities and accelerations is of great
importance when we have to deal with cases of motion where the path is not a

straight line.

Bl Equations of Motion of a Particle Moving in a Plane

The position of a point in a straight line being determined by one co-ordinate,
only one equation of motion is sufficient to determine the motion completely.
In the case of a particle moving in a plane, two equations of motion are
required in order to obtain the two co-ordinates which define the position of a
point in a plane. The two equations of motion are obtained by resolving the
forces in any two convenient directions at right angles to one another. If the
two directions are taken parallel to the co-ordinate axes the equations of

motion, as deduced from the second law of motion, will be of the form

2
’InM = Fz and M —— =
dt?
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where F,, F, are the sums of the resolved parts of the forces parallel to the

axesof z and y:

B Projectiles

As an example of motion in two dimension is the projectile motion. Recall that
a particle has a mass but negligible size and shape. Therefore, we must limit
application to those objects that have dimensions that are of no consequence in
the analysis of the motion. In most problems, we will be focused in bodies of
finite size, such as rockets, projectiles, or
vehicles. Each of these objects can be
considered as a particle, as long as the
motion is characterized by the motion of
its mass center and any rotation of the
The free-flight

motion of a projectile is often studied in

body is neglected.

terms of its rectangular components. The

acceleration is of  approximately

Each picture in this sequence is tnken
alter the same time interval, The red ball
falls from rest, whereas the yellow ball is

given o horizontal velocity when released
Both balls accelerate downward at the
same rote, nnd 50 they remain at the same
clevation at any instant. This ncceleration
causes the difference inelevation between
the balls (o increase botween successive

9.81 ms?or 32.2 fts™
We will discuss the motion of a particle

projected in the field of gravity. We now

photos. Also, note the horizontal distance
between successive photos of the yellow
ball is constant since the velocity in the
horizontal direction remains constant

consider the motion of a projectile, that
is, the motion of a body which is small
enough to be regarded as a particle and which is projected in a direction
oblique to the direction of gravity. A body that moves freely under uniform
gravity, and possibly air resistance, is called a projectile. Projectile motion is
very common. In ball games, the ball is a projectile, and controlling its
trajectory is a large part of the skill of the game. On a larger scale, artillery
shells are projectiles, but guided missiles, which have rocket propulsion, are

not.
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Note: Near the Earth’s surface, we assume that the downward acceleration due
to gravity is constant and the effect of air resistance is negligible.

We shall suppose the body to be projected in vacuum near the surface of the
earth or, in other words, we shall suppose the resistance due to air and the
slight variation in the force of gravity to be negligible. A particle of mass m is
projected into the air with velocity w, in a direction making an angle o with
the horizontal, to find its motion and the path described.

Let O, the point of projection, be taken as the origin and let the horizontal and
the vertical lines through be taken as the axes of X and Y . Again, let P be the
position of the moving point, after time ¢ . During the motion of the projectile,
the only force acting on it is its weight acting downwards. The equations of

motion, therefore, are

- 1
\
THG
D(_/_V _______________________ > -
2 2
m%Z — and m&Y - —mg
at? dt?
Or in other formula
2 2
dt? dt?
Integrating these equations, we get
2
dz _ ¢ and L_c g 1)
dt dt?

where C,,C, are integration constants
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Initially at O whent = 0, &L — ycosa and —=Z —usina  then

Equation (1) becomes

9L _ yeosa and ﬂ:usina—gt (2)

Integrating these equations again and applying initial conditions, viz., when

t=0, x =1y =0, weobtain

T =ucosxt and y:usinc\et—%gt2 3)

Equation (2) gives the components of the velocity and (3) the displacements of
the particle in the horizontal and vertical directions at any time ¢. These
equations could also be written down at once by regarding the particle to be
projected with a constant velocity ucosc in the horizontal direction and with
an initial velocity wsina under a retardation g in the vertical direction.

Eliminating the time t the two parts of Equation (3) we have,

2

1 qgx
Yy = ztan ¥ — = ——— 4
2 4% cos?

We now deduce the following facts from the five equations just obtained:

Bl The Path Equation of Projectile

Equation (4) is of the second degree and the second degree term z? is a perfect
square. It follow, therefore, that the path of the particle is a parabola.

Equation (4) can be re-written in the form

2

. u? sin? & _ —g [:v . u? sin 2cx
2g 2u? cos? a

2g

It shows that the latus-rectum of the parabolic path= 2u?cos’a / g.

In the particular case when the particle is projected horizontally, « =0, and

the Equation (4) of the path reduces to
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y= I

2u?
which is obviously a parabola the length of whose latus-rectum is 2u* / g. The

path of a projectile is called its trajectory.

Bl The Time of Flight

Let T, represents the time which the particle takes in reaching the horizontal
plane through the point of projection.
Putting v = 0, in the second part of Equation (3) we get either ¢ = 0(at O)
And ¢ = Zusine g _ Zusino

g g
B Greatest Height

This is also obtained either by finding by differentiation, the, maximum value
of y from the second part of Equation (3) or by the fact that at the greatest
height the vertical component of the velocity must vanish, i.e. from the second
part of Equation (2)

YW usina—gt=0 = ¢=usne

dt g
Substituting this in Equation (3) and simplifying we get

u? sin’ o

29

Y =

Bl Horizontal Range

The range R = OB, on the horizontal plane through the point of projection the
horizontal distance described by the particle in the time of flight T .

2Qusina _ u?sin2cx
R =wucosa.T = ucosa =

g g

R can also be obtained by putting y = 0 in Equation (4).
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; u? sin 2c : :
Since, R = ——=— s0 R can be obtained by two values of projected angles
g
because sin 2a = sin(7 — 2a) = sin 2 % — a] (c, % —a)

B Maximum Horizontal Range

The range R is maximum when sin2a =1, i.e.,, when o = Z Or o = 45°
4

u2

therefore, the maximum range R, = —.
9

For a given velocity of projection, the horizontal range is the greatest when the

angle of projection is 45°.

Bl Range on an Inclined Plane

Let a particle be projected from a point O on a plane of inclination 3, in the

vertical plane through OP, the line of greatest slope of the inclined plane.
Let the velocity of projection be w at an elevation « to the horizontal. The
equation to the path of the particle is
2
y::ctana—lL (10)

2 4% cos?

If the particle strikes the inclined Q plane at the point P, the distance, OP is
called the range on the inclined plane. If OP = R then the co-ordinates of P
(R cos 3, Rsin 3) must satisfy Equation (10).

1gr?cos’ 3

2

Rsin8 = RcosBtana —
2 42 cos’ o

Then the range r

R= 2u? (cosBtana —sinB)cos’ a 242 sin(a — B)cos

g cos’ B g cos’ 3
2
sin(2a — @) —sin 8

N gcos® B
The range down the plane may be obtained by putting —3 for 8 in this case

the slope of the inclined plane is downwards.
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B Maximum Range on an Inclined Plane

u and 8 being known, the range varies with «, and it will be maximum
when sin(2ac — @) is maximum. When 2o — 38 = % Or a—pfB= % —a
Hence for maximum range, the direction of projection must bisect the angle
between the vertical and the inclined plane. If OT be the direction of
projection, then OT is tangent to the path at O, and the vertical through is
perpendicular to the directrix. OT being equally inclined to OP and the vertical,
the focus to the path must, therefore, lie on the line OP of the inclined plane,
i.e., in the case of maximum range the focus lies in the range. The value of the

maximum range is

2 .
R :u(l—sm,6’)

max

gcos® 3

_ w1 —sinf)

g(1 — sin® B)

B u%l;si(ﬁ)

g(1 + sin B) (1L ==sin B3)

u2

- g(1 + sin B)
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Im 1llustrative Examples W

Il Example »

If the maximum height for a projectile is 900 ft and the horizontal range is
400 ft. Find the velocity and its direction.

Il Solution »

Since the maximum height and horizontal range are given by formulas

Y:uzsinza, R:uzsin2a
29 g

Then using given values we get

900 = uzsin2a’ 400 = 2u? sin cx cos o

29 g
Then by dividing these two equations

9 u’sin’a , 2u’sinacosa 9 tano 1
-= / =>-=—— .. .a=tan
2g g 4 4

9

which gives the angle of projection and the magnitude of the velocity of

projection by using first equation

2
81 1800 x 82 X 32.2
900 = L x 22 = 4 = Or u = 242.23 (g = 32.2 ftsec™?)
29 82 81
Il Example »

If the ratio between the magnitude of the velocity at maximum height and a

height equals half of maximum height is \E. Show that the angle of projection

is 30°.
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Il Example »

As it is obtained that y = (usina) t — % gt?

2 3.2
Let the point A be the maximum height and hence v, = 2=2= Szm a
g
And B be the point where its height equals half of maximum height i.e.,
Y, = lYA _ u? sin® o
2 4g

The time spent from the projection of the particle reach point B is given by
u? sin® o

. 1 .5
= (usina) t — =gt
4g ( ) 2

Rewrite this equation again as (multiply by 4g)
2(gt)? — 4(gt)usina + u® sin’> @ = 0 =gt = [I—JL_]usina
2

The components of velocity at point B are

. 1 .
usina = —=usina

J2

. . . . 1
Tp = ucoso, Yp = usina— gt = usina — [1 - —

V2

2

The resultant of the velocity at point B
Lusina = iv’l + cos’

vp = \Ep + U5 = \/(ucosa)z +
B B B \/E \/5
Since at the maximum height &, = ucosa, 3, = 0 then
v, =34 + 94 = ucosa

But as given 24 _ \/g therefore,

Up

\Eu Cos 6

uN'1 + cos? 7

COS (¢ 3

i_: -
V1 + cos?
2

3
 _csa _3

1+cos’ax 7

=

-3
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7cos’ a= 3 + 3cos’ = 4cos’a =3

Ny

icosa:? Or a=30"

Il Example »

A particle is projected with a velocity of 24 ft sec™ at an angle of elevation 60.
Find (a) the equation to its path, (b) the greatest height attained, (c) the time for
the range, (d) the length of the range.,

Il Solution »
Sinceu =24 and o = 60°, g =~ 32.2 ftsec?

() the equation to the path is

2
y:a:tana—lL, therefore y:x/ga;—la:2
2 u? cos® 9

u?sin’a _ 24x24 _ 3

(b) The maximum height = = X = =~ 6.71 ft
2g 2x322 4

() The time for the range = 2¥sine _ 2X24 NE 1.29 sec
g 32.2 2

3\3

(d) the length of the ran = ucosa T = 24 X % X e ~ 15.49 ft

Il Example »

Find the maximum horizontal range of cricket ball projected with a velocity of
48 ft. per sec. If the ball is to have a range of 363 ft., find the least angle of

projection and the least time taken (let g ~ 32 ftsec™2).

Il Solution »

We have u = 48 and o = 45°, g =~ 32 ftsec 2

R = — =R ~ 72 ft

max max

u? _48x48
32

&

2 3643 x 32
If R= Y sin2x g0 /o o Gog— e
g 48 x 48 2
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Then 2c¢ = 60° or 120° thatis a« =30° or 60°

Thus, the least angle of projection o = 30°

and the least time taken = 2usine _ 2x48 1

g 32

~ 1.5 sec

Il Example »

A ball is projected from a point on the ground distant a from the foot of a
vertical wall of height b, the angle of projection being « to the horizontal. If
the ball just clears the wall prove that the greatest height reached is

a’ tan? o
4(atanx — b)

Il Solution »

Let u be the velocity of projection, then since the ball passes through the top
of the wall, a point (a,b), we have

2 2
b=atana — —2& Or atana — b = ga

2u? cos? o 2u? cos®

2
a
-l = g

2(atan a — b)cos® o

Now the greatest height Y reached by the ball

2 302
U sim-
Y:_

2g
sin’ o ga’
29 2(atano — b)cos’ a
a’ tan’ o
4(atancx — b)

Il Example »

If T be the time taken to reach the other common point A of its path and 7’

the time to reach the horizontal plane through the point of projection. Find the
height of the point A.
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Il Solution »
2 .
Since z = wcosa t and the time of flight is T + T’ also R = %-32%
g
2 .
Hence wcosa (T + T') = Z¥cosasina .\ o = ég(T + 1)
g

: 1 2 1 N1 0 1 ,
vyl susima T —=gT* = y|, =-gT(T+T")—-gT" ==gTT
IA > 4T3 ( ) 5 >

Il Example »

A particle is projected with a velocity « so as just to pass over the highest
possible post at a horizontal distance ¢ from the point of projection O . Prove
that the greatest height above O attained by the particle in its flight is

uﬁ

2g(u* + g*£%)

Il Solution »
Taking 0 as the angle of projection and substituting ¢ for = the equation to

the path, we have

2 2
y = Ltan0 — gt :Etan@—i(1+tan20)
2u? cos? 2u?
2 2
. @ = Lsec’ 6 — ﬁtané’se(:zO = £sec29[1 —ﬂtanBJ
de 'u,2 uz

2 4
ﬂ=0=>tan49=u— or sinf = —t
do gﬂ u4+g2£2

y being positive and its minimum value being zero, the value of 6 given in
previous equation gives the maximum value of y. Now the greatest height

attained by the particle

2 22 2
u” sin” 0 u
Y:_:—

2g 29

u4

u4 + 92e2

uﬁ

- 29 ut + g€
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Il Example »

Two particles are projected from the same point in the same vertical plane with

equal velocities. If ¢, ¢ be the times taken to reach the common point of their

paths and T, T’ the times to the highest point, show that tT +¢'T’ is

independent of the directions of projection

Il Solution »
Let «, 3 be the directions of projection

T = T,_usin@
= ==, =

g g

If = isthe horizontal distance of the common point, then

I4
T =ucosaat, t =ucos3t

AT 4T = % usmaw usinB x40
ucosax g ucos3 g g
Now the equations of the two- paths arc
2 02 2 2
y:mtana—lgm sec a’ y:mtan@—lgm sec” B
u? 2
Subtracting we have,
1 gz’ 2 2 1 ga’ 2 2
z(tano — tan B) = ==— sec* o —sec* 3 = ==— tan‘ a — tan* 8
'LL2 2
2
Z(tana + tan B) = 2u
g g°

Hence from Equation (*)

2
S tT+ T = 2L2 which is independent of the directions of projection.

g
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Il Example »
A particle is projected with velocity » from a point on an inclined plate. If v,
be its velocity on striking the plane when the range up the plane is maximum

and v, the velocity on striking the plane when the range down the plane is

maximum, prove that u? = v,v,

Il Solution »

Let R be the maximum range up the plane and «be the inclination of the

plane, then
R = _U2 d v? = u? .2 Rsi
"~ g(l+sina)’ and o = u” — 29y = u” — 2gRsmo
2 _ .
'-"’12:U2—2gsina><u_: 2 1—sina
g(1 + sina) 1+ sina

Similarly, by changing the sign of «, we have

. vg = u? % ltsina Hence ut = ,v12,U; Or u?= vV,
1—sinox
Il Example »

A particle is projected and it paths through the two points (12,12) and (36,12)

Find its velocity and the direction of projection.

Il Solution »
. S gz’
The trajectory or path equation is y=ztanax — —2-——
2u? cos? o
The two points (12,12) and (36,12) lies on the path so that
2
With regard the point (36,12) 12 = 36tana — 936
2u? cos? o
2
With regard the point (12,12) 12 = 12tan o — _ 912"
2u? cos?

By multiplying the second equation by 9 then subtracting, we have
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96 = T2tanar = tanor = 20 = 4
2 3

which gives the direction of velocity of projection, and to obtain the magnitude

of the projection velocity, from first equation

= 36

=12 = 36[é] _ B8  _ g(36)°

3 2 2
Sl
5 5

= u’ =50g Or u =542g

2u?

Il Example »
A particle is projected and it paths through the two points (a,b) and (b,a)

2 2
where (a,b) and (b,a) Prove that the range is given by #.
a+
Il Solution »
2
The trajectory or path equation is y=ztana — — 3=
2u? cos?
The two points (a,b) and (b,a) lies on the path so that
2
With regard the point (a,b) a=btana——9°
2u? cos?
With regard the point (b,a) b=atano — —I
2u? cos? a

By multiplying the first equation by a and the second by b then subtracting,

we have
Y L — ) = a+b=—9%
—_— 2 2 T 9,2, 2
(a+b)(a=<B) ~ 2U” COS” 2u” cos” a
Or ab _ 2u*cos’ «
a+b g

Once again by multiplying the first equation by a* and the second by b2 then

subtracting, we have
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a® — b :abMtana = abtana = a® + ab + b*
(a® +ab+b?)(a~B)
. o 2 sin2
Since the range is given by R =2 %% therefore,
g
R= u? sin 2a _ 2u? cos asin o
g g
2u? cos® o ab a®’> + ab + b®
= ——tano = tan =
g a+b a+b
ab/(a+b)
“R= a® + ab + b*
a+b
Il Example »

A particle is projected to reach a certain object located in the same horizontal
plate of projection point, when it projected with angle « it falls down before
the object by distance £ and when it projected with angle 3 it falls down after

the object by distance £. Find the exact angle to reach the object.

Il Solution »
Let u be the velocity of projection and R is the exact range of the object then

the range in first case is R — £ and the range in second case is R + £ therefore

R_g¢-Wsin2a o oo, ulsin28
g g

By addition the two equations, we get

u2 . . ’U,2 . .
2R = — sin2a + sin23 = R = — sin2a + sin203

g 29

2 .

Now, let 6 be the exact angle to reach the object so R = u sin26

g
By comparing (or dividing) the last two equations then

u? sin 20 _ u_2
g 29

= sin2a + sin23

sin 2 + sin23
2

= sin20 = 1 .n_l[sm2a+sm26]

= 0 = =si
2 2
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B Projectiles with Resistance

We now proceed to include the effect of air resistance. From our earlier
discussion of fluid drag, it is evident that in most practical instances of
projectile motion through the Earth’s atmosphere, it is the quadratic law of
resistance that is appropriate. On the other hand, only the linear law of
resistance gives rise to linear equations of motion and simple analytical
solutions. This explains why mechanics textbooks contain extensive coverage
of the linear case, even though this case is almost never appropriate in practice;
the case that is appropriate cannot be solved! In the following example, we

treat the linear resistance case.

Now suppose that the motion is opposed by a force proportional to the

velocity. Thus if m denote the mass and v the velocity, let m~wv denote the

magnitude of the resistance. Therefore the components of the resistance
parallel to horizontal and vertical axesOX ,0Y are

—mﬁi', - mﬁ’:l)

Let « denote the initial velocity in a direction making an angle o with the

horizontal. The equations of motion give
t=—yx and Y=-—g-—7Y
By integrating we obtain

=c, — "t

Iné=e¢, —~t and 1n[y +2
4
since initially £ =y =0 and & = ucosa, y = usine,then ¢, = nucosa

usina + 2|, and hence

Y

and ¢, = In

et 9
84

usina+2
Y

= ucosax et and gy =
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Once again integrate the previous formula

ucosor 1
r=————¢€ " +¢c and y=——
Y 2l

usina-l—g

e 7t — gt +c,
Y

Y

Where, ¢,,c, are constant,and z = y = 0 at ¢t = 0 so that

_ucosa _
= . cy =—
Y Y

usino + e
Y

C3

So the last equation becomes

U Cos «x

r=—— 1—¢e and y=l usinoz+g 1—et — 94
B Y Y Y
» The time spent to reach the maximum height is
T = lln Yu sin o +1]
Y g
» The maximum height is
_ usina_iln 1+ ~u sin o
Y ~? g9
» The time of flight is
T — 1[yusine N 1] P
Y g
» The path equation is
— g ’)"U,Sll‘la+1m+£ln1_ Yr
Yu cos o g ~2 U cos o

For instance to evaluate the spent time to reach the maximum height

2 3
Since ln(1+$):x—m—+m—— .....
2 3
this is true for |m| < 1,and now let v — 0 in formula
T = lln Yu sin n 1]
y g

We get
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T = lm 1|yu sin o _ ~2u? sin? o n ~3u? sin® o g
=0yl g 2g° 3g
— im u sin o _ ~u? sin? o n ~u? sin® a 4ol= u sin o
=0 g 2g° 3g g9

This result obtained before when we neglected the resistance of air.

Il Example »
A particle of mass m is projected with initial velocity » at an angle of
elevation « through a resisting medium where its resistance proportional to v

and the proportional constant is pm . Prove that the direction of the velocity

makes an angle « with the horizontal Thal1+ PY (sina + cos )
M g

Il Solution »
By writing the equation of motion in OX, OY and then integrating and use the

initial conditions as illustrated before we obtain the components of velocity of

the particle at any instance

e M _ g
M

usin o +g
7

= ucosax e ¥ and gy =

Since the angle of projection is o and the angle that the direction of velocity
makes with the horizontal axis decreases until vanish at the highest position

then it reverse to be « again downwards after time ¢ which determines from

) usinoz+g]e_‘“t 9
tan—azgz s P~ _tan o
T ucosax e Mt
That is
usina+2]e_“t—£:—usina e = 2usina+g]e_“t =9
m m m "
2 i 1 2 i
[ pusin o +1]: ot _ ¢ = 1, [2pusine +1]
g H g
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PROBLEMS

O3 A body, projected with a velocity of 120 ft sec™ just clears a vertical wall

72 ft high and 360 ft. distant, find the two possible angles of projection and the

corresponding horizontal ranges.

O A particle is projected so as just to clear a wall of height b at a horizontal

distance a, and to have a range ¢ from the point of projection, show that the

velocity of projection V is given by

2v?  a’(c — a)’ + bc?

g ab(c — a)

3 A projectile is fired with an initial velocity of
Va = 150 m/s off the roof of the building.
Determine the range R where it strikes the

ground at B.

vy =150m/s

i

e

150 m
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O A stone is projected with velocity V and elevation from a point O on level
ground so as to hit a mark P on a wall whose distance from O is a, the height of

P above the ground being 6. Prove that

2V?%(asin6 cos@ — bcos® ) = ga’.

O A particle in projected with a velocity of 120 ft. per sec. at an angle of 60
with the horizontal from the foot of an inclined plane of inclination 30. Find

the time of flight and the range on the inclined plane.

O A particle is projected from a point on a plane of inclination B with

velocity u. Show that the maximum range down the plane is

11,2

g

1+ sin 3

cos? B3
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T O A ball is thrown from A. If it is required to
\/ clear the wall at B, determine the minimum
o 8ft
g" ' magnitude of its initial velocity Va.

Al L’_ \

3 A boy throws a ball at 0 in the air with a
speed Vo at an angle 6,. If he then throws
another ball with the same speed vy at an
angle 6, < 6, determine the time between

the throws so that the balls collide in midair
at B.

B




