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Chapter one

Mathematical Induction



1. Mathematical Induction

1.1 Introduction

Mathematical induction is a technique for proving results or
establishing statements for natural numbers.

In 370 BC, Plato’s Parmenides may have contained an
early example of an implicit inductive proof. The earliest
clear use of mathematical induction may be found in Euclid’s
proof that the number of primes is infinite.

In India, early implicit proofs by mathematical induction
appear in Bhaskara’s "cyclic method", and in the al-Fakhri
written by al-Karaji around 1000 AD, who applied it to arith-
metic sequences to prove the binomial theorem and properties
of Pascal’s triangle.
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1.2 Mathematical Induction
In this section, we can use mathematical induction to prove
that a propositional function (a statement) P(n) is true for all
integers n≥ 1.

Definition 1.2.1 Principal of Mathematical Induction
Let P(n) be a propositional function (a statement) defined
for integers n, and a fixed integer a. Then, if these two
conditions are true

1. P(a) is true.
2. if P(k) is true for some integer k≥ a, then P(k+1)

is also true.
then the P(n) is true for all integers n≥ a.

Now, we can refine an induction proof into a 3-step proce-
dure:

1. Verify that P(1) is true.
2. Assume that P(k) is true for some integer k ≥ 1.
3. Show that P(k+1) is also true.

R

1. The first step, is called the basis step or the
anchor step or the initial step.

2. The second step, the assumption that P(k) is
true, is sometimes referred to as the induc-
tive hypothesis or induction hypothesis.

� Example 1.1 Use mathematical induction to prove that

1+2+3+ · · ·+n =
n(n+1)

2

Solution: Let the statement P(n) be

1+2+3+ . . . .+n =
n(n+1)

2
.
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1. We show that P(1) is true:

L.H.S = 1, R.H.S =
1(1+1)

2
= 1

Both sides of the statement are equal hence P(1) is
true.

2. We assume that P(k) is true:

1+2+3+ . . . .+ k =
k(k+1)

n
.

3. We show that P(k+1) is true:

L ·H ·S = 1+2+3+ . . .+ k+(k+1)

=
k(k+1)

2
+(k+1)

=
(k+1)

2
[k+2]

= R.H.S.

Thus, the statement P(n) is true for all positive integers
n.

�

� Example 1.2 Use mathematical induction to prove that

12 +22 +32 + . . . .+n2 =
n(n+1)(2n+1)

6

Solution Let the statement P(n) be

12 +22 +32 + . . . .+n2 =
n(n+1)(2n+1)

6
.

1. At n = 1

L.H.S.= 12 = 1, R.H.S.=
1(1+1)(2+1)

6
= 1,

therefore P(1) is true.
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2. Let n = k, then P(k) is true i.e.,

12 +22 +32 + . . . .+ k2 =
k(k+1)(2k+1)

6
.

3. At n = k+1

L.H.S.= 12 +22 +32 + . . .+ k2 +(k+1)2

=
k(k+1)(2k+1)

6
+(k+1)2

=
(k+1)

6
[k(2k+1)+6(k+1)]

=
(k+1)

6
[
2k2 + k+6k+6

]
=

(k+1)
6

[
2k2 +7k+6

]
=

(k+1)
6

[(2k+3)(k+2)]

=
(k+1)(k+2)(2k+3)

6
= R.H.S.

So P(k+1) is true and therefore, the statement P(n) is
true for all positive integers n.

�

� Example 1.3 Prove that
(
n3 +2n

)
is divisible by 3 for all

positive integers n.
Solution Suppose that P(n) be

"
(
n3 +2n

)
is divisible by 3" .

1. At n = 1

13 +2(1) = 3 is divisible by 3,

therefore P(1) is true.
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2. Let n = k, then P(k) is true i.e.,(
k3 +2k

)
is divisible by 3.

3. At n = k+1

(k+1)3 +2(k+1) =
(
k3 +3k2 +3k+1

)
+(2k+2)

= k3 +3k2 +5k+3

=
(
k3 +2k

)
+
(
3k2 +3k+3

)
=
(
k3 +2k

)
+3
(
k2 + k+1

)
(
k3 +2k

)
is divisible by 3 from (2), and 3

(
k2 + k+1

)
is also divisible by 3, therefore P(k+1) is true.
Thus, P(n) is true for all positive integers n.

�

� Example 1.4 Prove that 2n−1 ≤ n! for all positive integers
n.
Solution: Let P(n) be 2n−1 ≤ n!.

1. At n = 1, we get

21−1 = 20 = 1≤ 1! = 1,

then P(1) is true.
2. Let n = k, then P(k) is true i.e.,

2k−1 ≤ k!

3. At n = k+1, then we get

2k = (2)
(

2k−1
)
≤ (2)(k!)

⇒ (2)
(

2k−1
)
≤ (k+1)(k!)

⇒ 2k ≤ (k+1)!∀k ∈ Z+,

i.e., P(k+1) is true.
Thus, P(n) is true for all positive integers n.
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�

� Example 1.5 If P(n) : ”49n +16n +k is divisible by 64 for
n∈N” is true, then the least negative integral value of k is......
Solution For n = 1,P(1) : 65+ k is divisible by 64.
Thus k, should be -1 since, 65−1 = 64 is divisible by 64 �

� Example 1.6 State whether the following proof (by math-
ematical induction) is true or false for the statement.

P(n) : 12 +22 + . . .+n2 =
n(n+1)(n+1)

6

Solution False.
Since in the inductive step both the inductive hypothesis and
what is to be proved are wrong. �
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1.3 Exercises
(1) Prove each of the statements by the Principle of Mathe-
matical Induction:
(i) 4n−1 is divisible by 3, for each natural number n.
(ii) 23n−1 is divisible by 7, for all natural numbers n.
(iii) n3−7n+3 is divisible by 3, for all natural numbers n.
(iv) 32n−1 is divisible by 8, for all natural numbers n.
(v) 1+ 5+ 9+ ...+(4n− 3) = n(2n− 1) for all natural

numbers n.
(vi) 2+4+6+ ...+2n = n2 +n for all natural numbers n.

Fill in the blanks in the following :
(2) If 10n + 3.4n+2 + k is divisible by 9 for all n ∈ N, then
the least positive integral value of k is......
(3) If P(n) : 2n < n!,n ∈ N, then P(n) is true for all n≥.......
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Partial Fractions



2. Partial Fractions

An algebraic fraction is a fraction in which the numerator
and denominator are both polynomial expressions.
In this chapter, we study a fraction and convert it into a partial
fraction.
It useful give some definitions which help for understanding
this subject.

2.1 Introduction
Definition 2.1.1 A polynomial of degree n in one variable
x is an expression of the form

f (x) = a0 +a1x+ · · ·+anxn

= ∑
n
i=0 aixi,
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where ai, i = 0,1, . . . ,n ∈ R or C, are coefficients of
polynomial and the degree of polynomial deg f = n.

Definition 2.1.2 Let f (x) and g(x) be two polynomials,
then the quotient of two polynomials

h(x) =
f (x)
g(x)

,

where g(x) 6= 0 with no common factors, is called Ratio-
nal fraction, f (x) the numerator, and g(x) the denomi-
nator.

2.2 Partial fractions
To express a single rational fraction into the sum of two
or more single rational fractions are called partial fraction
resolution.
For example,

2x+ x2−1
x(x2−1)

=
1
x
+

1
x−1

− 1
x+1

.

A rational fraction is of two types:

2.2.1 Proper Fraction:

Definition 2.2.1 A rational fraction h(x)=
f (x)
g(x)

, is called

a proper fraction if the degree of numerator f (x) is less
than the degree of denominator g(x).

� Example 2.1 The following are proper fraction

(1) 9x2−9x+6
(x−1)(2x−1)(x+2) .
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(2) 6x+27
3x3−9x . �

2.2.2 Improper Fraction:

Definition 2.2.2 A rational fraction h(x)=
f (x)
g(x)

, is called

an improper fraction if the degree of numerator f (x) is
greater than or equal to the degree of denominator g(x).

� Example 2.2 The following are improper fraction

(1) 9x3−9x+6
(x−1)(2x−1)(x+2) .

(2) 6x4+27
3x3−9x . �

R An improper fraction can be expressed, by division,
as the sum of a polynomial and a proper fraction
i.e.,

f (x)
g(x)

= p(x)+
q(x)
g(x)

,

where degq(x) less than deg g(x).

� Example 2.3 The improper fraction

6x3 +5x2−7
3x2−2x−1

,

can be expressed, by division, as

6x3 +5x2−7
3x2−2x−1

= (2x+3)+
8x−4

x2−2x−1

�
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2.3 Process of Finding Partial Fraction

A proper fraction
f (x)
g(x)

can be resolved into partial fractions
as:
(1) The denominator factor as distinct or repeated linear
factors

The rational fraction The partial fractions
f (x)

(a1x+b1)(a2x+b2)...
A

a1x+b1
+ B

a2x+b2
+ . . .

f (x)
(ax+b)k

A1
(ax+b) +

A2
(ax+b)2 + . . .+ Ak

(ax+b)k

(2) The denominator factor as distinct or repeated quadratic
factors cannot be factored further

The rational fraction The partial fractions
f (x)

(a1x2+b1x+c1)(a2x2+b2x+c2)...
Ax+B

a1x2+b1x+c1
+ Cx+D

a2x2+b2x+c2
+ . . .

f (x)

(ax2+bx+c)
k

A1x+B1
(ax2+bx+c)

+ A2x+B2

(ax2+bx+c)
2 + . . .+ Akx+Bk

(ax2+bx+c)
k

where A,B,C,A1,A2, ....,Ak are constants whose values
are to be determined.
The evaluation of the coefficients of the partial fractions is
based on the following theorem:

Theorem 2.3.1 If two polynomials are equal for all values
of the variables, then the coefficients having same degree
on both sides are equal.
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� Example 2.4 Resolve

7x−25
x2−7x+12

into partial fractions.
Solution:

7x−25
(x−3)(x−4)

=
A

(x−3)
+

B
(x−4)

.

Multiplying both sides by (x−3)(x−4), we get

7x−25 = A(x−4)+B(x−3).

Comparing the coefficients of like powers of x on both sides,
we have

7 = A+B,

−25 =−4A−3B.

Solving these equation we get A = 3 and B = 4. Hence the
required partial fractions are:

7x−25
x2−7x+12

=
3

(x−3)
+

4
(x−4)

.

�

� Example 2.5 Resolve into partial fraction

8x−8
x3−2x2−8x

.

Solution:

8x−8
x3−2x2−8x

=
8x−8

x(x−4)(x+2)
=

A
x
+

B
(x−4)

+
C

(x+2)
.

Multiplying both sides by x(x−4)(x+2), we get

8x−8 = A(x−4)(x+2)+Bx(x+2)+Cx(x−4)



20 Chapter 2. Partial Fractions

Put x = 0 in the above equation, we have A = 1.
Put x = 4 in the above equation, we have B = 1.
Put x =−2 in the above equation, we have C =−2.
Hence the required partial fractions

8x−8
x3−2x2−8x

=
1
x
− 1

x−4
− 2

x+2

�

� Example 2.6 Resolve into partial fractions:

x2−3x+1
(x−1)2(x−2)

.

Solution:

x2−3x+1
(x−1)2(x−2)

=
A

x−1
+

B
(x−1)2 +

C
x−2

Multiplying both sides by (x−1)2(x−2), we get

x2−3x+1 = A(x−1)(x−2)+B(x−2)+C(x−1)2,

Put x = 1 in the above equation, we have B = 1.
Put x = 2 in the above equation, we have C =−1.
Comparing the coefficient of like powers of x on both sides
in the above equation, we get

A+C = 1⇒ A = 2.

.
Hence the required partial fractions

x2−3x+1
(x−1)2(x−2)

=
2

x−1
+

1
(x−1)2 +

(−1)
x−2

.

�
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� Example 2.7 Express the following in partial fractions:

x+1
x3 + x2−6x

.

Solution:
x+1

x3 + x2−6x
=

A
x
+

B
(x−2)

+
C

x+3

Multiplying both sides by x3 + x2−6x, we get

x+1 = A(x−2)(x+3)+Bx(x+3)+Cx(x−2),

Put x = 0 in the above equation, we have A =
−1
6

.

Put x = 2 in the above equation, we have B =
3

10
.

Put x =−3 in the above equation, we have B =
−2
15

.
Hence the required partial fractions

x+1
x3 + x2−6x

=

−1
6
x

+

3
10

(x−2)
+

−2
15

x+3
.

�

Now, we give some example when the denominator con-
tains ir-reducible (repeated) quadratic factors.

� Example 2.8 Resolve into partial fractions:

9x−7
(x+3)(x2 +1)

.

Solution:
9x−7

(x+3)(x2 +1)
=

A
(x+3)

+
Bx+C
(x2 +1)

.

Multiplying both sides by (x+3)(x2 +1), we get

9x−7 = A(x2 +1)+B(x2 +3x)+C(x+3),
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Put x =−3 in the above equation, we have A =
−17

5
.

Comparing the coefficient of like powers of x on both sides
in the above equation, we get

A+B = 0⇒ B =
17
5
.

3B+C = 9⇒C =
−6
5

.

Hence the required partial fractions

9x−7
(x+3)(x2 +1)

=

(−17)
5

(x+3)
+

17
5

x− 6
5

(x2 +1)
.

�

� Example 2.9 Resolve into partial fractions:

x2 + x+2
x2(x2 +3)2 .

Solution:

x2 + x+2
x2(x2 +3)2 =

A
x
+

B
X2 +

Cx+D
(x2 +3)

+
Ex+F
(x2 +3)2 .

Multiplying both sides by x2(x2 +3)2, we get

x2+x+2=Ax(x2+3)2+B(x2+3)2+(Cx+D)x2(x2+3)+

(Ex+F)x2.

Putting x = 0 in the above equation, we have B =
2
9

.
Comparing the coefficient of like powers of x on both sides
in the above equation, we get Coefficient of x5

A+C = 0 . . . . . . . . . . . . . . . . . .(1)
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Coefficient of x4

B−D = 0 . . . . . . . . . . . . . . . . . .(2)

Coefficient of x3

6A+3C+E = 0 . . . . . . . . . . . .(3)

Coefficient of x2

6B+3D+F = 1 . . . . . . . . . . . .(4)

Coefficient of x

9A = 1 . . . . . . . . . . . . . . . . . . . . .(5)

Hence the required partial fractions

x2 + x+2
x2(x2 +3)2 =

1
9
x
+

2
9

X2 −
x+2

(x2 +3)
− x−1

(x2 +3)2 .

�

� Example 2.10 Resolve into partial fractions:

x2 +1
x4− x2 +1

.

Solution:

x2 +1
x4− x2 +1

=
Ax+B

(x2− x+1)
+

Cx+D
(x2 + x+1)

.

Multiplying both sides by x4 + x2 +1, we get

x2 +1 = (Ax+B)(x2 + x+1)+(Cx+D)(x2− x+1),

Comparing the coefficient of like powers of x, we have
Coefficient of x3:

A+C = 0 . . . . . . . . . . . . . . . . . . . . . . . .(1)
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Coefficient of x2:

A+B−C+D = 1 . . . . . . . . . . . . . . .(2)

Coefficient of x:

A+B+C−D = 0 . . . . . . . . . . . . . . .(3)

Constant:

B+D = 1 . . . . . . . . . . . . . . . . . . . . . . . .(4)

Subtract (4) from (2) we have

A =C . . . . . . . . . . . . . . . . . . . . . . . . . . .(5)

Adding (1) and (5), we have A = 0.
Putting the value of A and C in (3), we have

B = D . . . . . . . . . . . . . . . . . . . . . . . . . . .(6)

Adding (4) and (6)

B =
1
2

Hence the required partial fractions

x2 +1
x4− x2 +1

=

1
2

(x2− x+1)
+

1
2

(x2 + x+1)
.

�

Now, we give some example for improper rational frac-
tion.

� Example 2.11 Express the following in partial fractions:

x2 + x+1
x2 +2x+1

Solution:
The given fraction is improper rational fraction, then we
divide the numerator by the denominator
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�
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2.4 Exercises
Express each of the following in partial fractions:

1.
3x+4

x2 + x−6
.

2.
2x+4

x3 + x2 + x+1
.

3.
x+4

x3 + x2−2x
.

4.
4

x4 + x2−2
.

5.
x3−2x+2
x3−2x+1

.
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3. Matrices

In 1848, G.G. Sylvester introduces the concept of matrices
as the name of a group of numbers arranged in a rectangular
in the form of rows and columns. In 1855, Arthur Cayley
studied matrices from an algebraic perspective. In this study,
he defined the process of multiplying matrices using linear
transformations.

Definition 3.0.1 A matrix is a rectangular arrangement
of numbers (real or complex) which may be represented
as,

A = (ai j)m×n =

 a11 ... a1n

:
. . . :

am1 ... amn

 ,

the general form of a matrix with m rows and n columns.
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R Capital letters A,B, ... denote matrices, whereas
lower case letters a,b, ... denote elements.

� Example 3.1 Build a matrix A = (ai j)2×3, where

ai j =

 i+ j i f i < j
i i f i = j

i− j i f i > j

Solution:

A =

(
a11 a12 a13
a21 a22 a23

)
,

A =

(
1 3 4
1 2 5

)
,

�

� Example 3.2 Build a matrix B = (bi j)3×3 ;

bi j =


i+ j i f i < j
0 i f i = j
i2− j2 i f i > j

Solution:

B =

 b11 b12 b13
b21 b22 b23
b31 b32 b33

 ,

b11 = 0 , b12 = 1+2 = 3 , b13 = 1+3 = 4 ,
b21 = 22−12 = 3 , b22 = 0 , b23 = 2+3 = 5,
b31 = 32−12 = 8 , b32 = 32−22 = 5 , b33 = 0,

...B =

 0 3 4
3 0 5
8 5 0

 .

�
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Definition 3.0.2 Two matrices Am×n = (ai j) and Bp×q =
(bkl) are equal, if
1- m = p and n = q.
2- ai j = bkl ∀i, j,k, l.

� Example 3.3 Given

A =

(
a b
c d

)
,

B =

(
1 2 −1
3 0 1

)
,

and

C =

(
1 0
−1 2

)
,

disuss the possibility that
1. A = B .
2. B =C.
3. A =C .

Solution
1. A = B is impossible because A and B are of different

size.
2. Similarly, B =C is impossible.
3. A =C is possible.

�

Definition 3.0.3 A matrix whose elements are all zero is
called a zero matrix and denoted by 0 or O.

Definition 3.0.4 A matrix with the same number of rows
as columns is called a square matrix.
A square matrix with n rows and n columns is called a
n−square matrix.
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� Example 3.4 The matrix

A =

 1 −2 0
0 −4 −1
5 3 2

 ,

is a 3 square matrix. �

Definition 3.0.5 The main diagonal or simply diagonal of
a square matrix A = (ai j) is the numbers a11,a22, ...,ann.

� Example 3.5 In the above Example 3.4, the numbers along
the main diagonal are 1,−4,2. �

Definition 3.0.6 The square matrix with 1s along the
main diagonal and 0s elsewhere is called the unit ma-
trix or the identity matrix and will be denoted by I.
For any square matrix A, AI = IA = A.

� Example 3.6 The matrix

I3×3 =

 1 0 0
0 1 0
0 0 1

 ,

is a unit matrix of type 3×3. �

3.1 Matrix Addition
Definition 3.1.1 The sum of the two matrices A and B,
written A+B, is the matrix obtained by adding the corre-
sponding element from A and B i.e.,

A+B = (ai j +bi j).

R A+B have the same type as A and B.
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R The sum of two matrices with different types is not
defined.

� Example 3.7 Let A and B;

A =

 1 2 0
3 1 0
0 4 1

 ,

B =

 1 2 1
3 1 0
−1 4 1

 ,

be two matrices, then

A+B =

 2 4 1
6 2 0
−1 8 2

 .

�

� Example 3.8 Let

A =

(
1 −2 3
0 4 5

)
,

B =

(
3 0 −6
2 −3 1

)
,

C =

(
1 −2
3 4

)
,

and

D =

(
0 5 −2
1 −3 −1

)
.

Find A+B and C+D.
Solution

A+B =

(
4 −2 −3
2 1 6

)
,

and the sum of C+D is not defined. �
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Theorem 3.1.1 Let A, B and C be matrices with the same
type, then

1. (A+B)+C = A+(B+C).
2. A+B = B+A.
3. A+O = O+A = A.

Where O is a zero matrix with the same type of A.

Proof. Let A=(ai j)m×n, B=(bi j)m×n andC =(ci j)m×n, then

(i) (A+B)+C = [(ai j)+(bi j)]+(ci j)
= (ai j +bi j)+ ci j
= (ai j +bi j + ci j)
= (ai j)+(bi j + ci j)
= A+(B+C)

(ii) A+B = (ai j)+(bi j)
= (ai j +bi j)
= (bi j +ai j)
= (bi j)+(ai j).

(iii) Trivial. �

� Example 3.9 Solve(
3 2
−1 1

)
+X =

(
1 0
−1 2

)
,

where X is a matrix.
Solution:
To solve (

3 2
−1 1

)
+X =

(
1 0
−1 2

)
,

simply subtract the matrix(
3 2
−1 1

)
,
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from both sides to get

X =

(
1 0
−1 2

)
−
(

3 2
−1 1

)
=

(
−2 −2
0 1

)
.

�

3.2 Scalar Multiplication
Definition 3.2.1 The product of a scalar k and a matrix
A, written kA is the matrix obtained by multiplying each
element of A by k, i.e.,

kA = (kai j)m×n.

� Example 3.10 3
(

1 −2 0
4 3 −3

)
=

(
3 −6 0

12 9 −15

)
.

�

� Example 3.11 If kA = 0, show that either k = 0 or A = 0.
Solution:
Write A = (ai j), so that kA = 0, means kai j = 0, for all i and
j. If k = 0, there is nothing to do. If k 6= 0, then kai j = 0
implies that ai j = 0, for all i and j; that is, A = 0. �

3.3 Matrix Multiplication
Definition 3.3.1 Le Am×n = (ai j) and Bn×q =

(
b jk
)
, then

Cm×p = AB = (
n

∑
j=0

ai jb jk).

� Example 3.12 Let

A =

(
1 2
3 4

)
,

B =

(
1 −1
5 0

)
,
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C =

(
1 −2 3
0 4 5

)
,

and

D =

 1 4
2 −5
3 6

 ,

then find
(1) AB.
(2) AC.
(3) AD.
Solution
(1) AB =

(
1 2
3 4

)(
1 −1
5 0

)
=

(
12 −1
23 −3

)
.

(2) AC =

(
1 2
3 4

)(
1 −2 3
0 4 5

)
=

(
1 −6 13
3 10 29

)
.

(3) AD =

(
1 2
3 4

) 1 4
2 −5
3 6

 is not defined. �

Theorem 3.3.1 Let A, B and C be matrices with the same
type, then

(i) (AB)C = A(BC)
(ii) A(B+C) = AB+AC
(iii) (B+C)A = BA+CA
(iv) k(AB) = (kA)B = A(kB) where k is a scalar.

Proof. Let A=(ai j)m×n, B=(b jk)n×p andC =(ckl)p×q, then
(i) L.H.S = (AB)C

= (∑n
j=0 ai jb jk).(ckl)

= (∑
p
k=0[(∑

n
j=0 ai jb jk).ckl ])

= (∑
p
k=0 ∑

n
j=0 ai jb jk.ckl).

R.H.S = A(BC)
= (ai j)(∑

p
k=0 b jkckl)
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= (∑n
j=0 ai j[(∑

p
k=0 b jkckl)]

= (∑n
j=0 ∑

p
k=0 ai jb jkckl).

Assuming I have written these correctly, we can make
two observations: first, the summands are equivalent, as
multiplication is associative. Second, the order of the sum-
mations doesn’t matter when we’re summing a finite number
of entries. Thus, (AB)C = A(BC).

(ii) Let A = (ai j)m×n, B = (b jk)n×n andC = (c jk)n×n, then
L.H.S = A(B+C)

= (∑n
j=1 ai j

(
b jk + c jk

)
)

= (∑n
j=1(ai jb jk +ai jc jk))

= (∑n
j=1 ai jb jk)+(∑n

j=1 ai jc jk)

= AB+AC.

(iii) In the same way.
(iv) Trivial.

�

R The matrix product is not commutative in general
i.e.,

AB 6= BA.

� Example 3.13 Simplify the expression

A(BC−CD)+A(C−B)D−AB(C−D).

Solution
A(BC−CD)+A(C−B)D−AB(C−D) = A(BC)−A(CD)+
(AC−AB)D−(AB)C+(AB)D =ABC−ACD+ACD−ABD−
ABC+ABC = 0. �

� Example 3.14 Show that AB = BA if and only if

(A−B)(A+B) = A2−B2.
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Solution
In general the following hold

(A−B)(A+B)=A(A+B)−B(A+B)=A2+AB−BA−B2.

Hence if AB = BA, then (A−B)(A+B) = A2−B2. Con-
versely, if this last equation holds, then equation becomes

(A−B)(A+B)=A(A+B)−B(A+B)=A2+AB−BA−B2.

This gives 0 = AB−BA, and then AB = Bc. �
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3.4 Transpose
Definition 3.4.1 The transpose of a matrix

A = (ai j)m×n,

written by AT is the matrix obtained by writing the rows
of A, in order, as columns, i.e.,

AT = (a ji)n×m.

� Example 3.15 Let

A =

(
1 2 3
4 −5 6

)
,

then

AT =

 1 4
2 −5
3 6

 .

�

The transpose operation on a matrix satisfies the following
properties:

Theorem 3.4.1 Let A and B be matrices with the same
type, then

1. (A+B)T = AT +BT .
2. (AT )T = A.
3. (kA)T = kAT , f or k a scalar.
4. (AB)T = BT AT .

Proof. Let A = (ai j)m×n, B = (b jk)m×n , then
1. L.H.S = (A+B)T

= (ai j +bi j)
T

= (a ji +b ji)
= (a ji)+(b ji)
= AT +BT

= R.H.S.
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2. L.H.S =
(
AT
)T

=
(
(ai j)

T
)T

= (a ji)
T

= (ai j)
= A = R.H.S.

3. Exercise.
4. Exercise.

�

Definition 3.4.2 A matrix A is called symmetric if

A = AT .

Definition 3.4.3 A matrix A is called skew-symmetric if

A =−AT .

R A symmetric matrix A is necessarily square.

� Example 3.16 If A and B are symmetric n× n matrices,
show that A+B is symmetric.
Solution:
Since A = AT and BT , so, we have

(A+B)T = AT +BT = A+B.

Hence A+B is symmetric. �

� Example 3.17 Let A be a square matrix satisfies,

A = 2AT .

show that necessarily A = 0.
Solution:
If we iterate the given equation, gives

A = 2AT .
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= 2(2AT )T .

= 2((2AT )T ).

= 4A.

This lead to 3A = O and hence A = 0. �

� Example 3.18 If A and B are two skew symmetric matrices
of same order, then AB issymmetric matrix if ........
Solution
AB = BA. �
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3.5 The inverse of a matrix
The inverse of a square n×n matrix A is another n×n matrix
denoted by A−1 such that

AA−1 = A−1A = I.

where I is the n× n identity matrix. That is, multiplying a
matrix by its inverse produces an identity matrix. Not all
square matrices have an inverse matrix. If the determinant
of the matrix is zero, then it will not have an inverse, and
the matrix is said to be singular. Only non-singular matrices
have inverses.

Definition 3.5.1 If A is a square matrix, a matrix B is
called an inverse of A if and only if

AB = I and BA = I.

� Example 3.19 Show that

B =

(
−1 1
1 0

)
is an inverse of

A =

(
0 1
1 1

)
.

Solution:
Compute AB and BA.

AB =

(
0 1
1 1

)(
−1 1
1 0

)
=

(
1 0
0 1

)
,

BA =

(
−1 1
1 0

)(
0 1
1 1

)
=

(
1 0
0 1

)
.

Hence AB = I = BA, so B is indeed an inverse of A. �

� Example 3.20 If

A =

(
0 −1
1 −1

)
,
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show that A3 = I and so find A−1. Solution:
We have

A2 =

(
0 −1
1 −1

)(
0 −1
1 −1

)
=

(
−1 1
−1 0

)
,

and so

A3 =

(
−1 1
−1 0

)(
0 −1
1 −1

)
=

(
1 0
0 1

)
.

Hence A3 = I, as asserted. This can be written as

A2A = AA2 = I,

so it shows that A2 is the inverse of A. That is,

A−1 = A2 =

(
−1 1
−1 0

)
.

�

3.5.1 Adjoint of a square matrix
Let A = (ai j)n×n be a square matrix of order n and let ci j be
the cofactor of ai j in the determinant |A|, then the adjoint
of A, denoted by adj (A), is defined as the transpose of the
matrix, formed by the cofactors of the matrix.

Theorem 3.5.1 Given any non-singular matrix A, its in-
verse can be found from the formula

A−1 =
ad j A
|A|

.

where ad j A is the adjoint matrix and |A| is the determinant
of A.

� Example 3.21 Find A−1 where

A =

 1 2 2
2 1 −2
2 −2 1

 .
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Solution:
We calculate the value of the determinant of the matrix

|A|=

∣∣∣∣∣∣
1 2 2
2 1 −2
2 −2 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 2 2
0 −3 −6
0 −6 −3

∣∣∣∣∣∣
= 1

∣∣∣∣ −3 −6
−6 −3

∣∣∣∣
=−27 6= 0 .

The cofactors of the matrix

∆11 = (−1)1+1
∣∣∣∣ 1 −2
−2 1

∣∣∣∣=−3,

∆12 = (−1)1+2
∣∣∣∣ 2 −2

2 1

∣∣∣∣=−6,

∆13 = (−1)1+3
∣∣∣∣ 2 1

2 −2

∣∣∣∣=−6,

∆21 = (−1)2+1
∣∣∣∣ 2 2
−2 1

∣∣∣∣=−6,

∆22 = (−1)2+2
∣∣∣∣ 1 2

2 1

∣∣∣∣=−3,

∆23 = (−1)2+3
∣∣∣∣ 1 2

2 −2

∣∣∣∣= 6,

∆31 = (−1)3+1
∣∣∣∣ 2 2

1 −2

∣∣∣∣=−6,

∆32 = (−1)3+2
∣∣∣∣ 1 2

2 −2

∣∣∣∣= 6,
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∆33 = (−1)3+3
∣∣∣∣ 1 2

2 1

∣∣∣∣=−3.

So,

Ã=(∆i j)=

 −3 −6 −6
−6 −3 6
−6 6 −3

=−3

 1 2 2
2 1 −2
2 −2 1

 ,

and

ad jA = (Ã)t =−3

 1 2 2
2 1 −2
2 −2 1

 ,

thus
A−1 =

ad jA
|A|

=
−3
−27

 1 2 2
2 1 −2
2 −2 1


=

1
9

 1 2 2
2 1 −2
2 −2 1

 .

�

Theorem 3.5.2 All the following matrices are square ma-
trices of the same size.

1. I is invertible and I−1 = I.
2. If A is invertible, so is A−1, and

(
A−1

)−1
= A.

3. If A and B are invertible, so is AB, and

(AB)−1 = B−1A−1

.
4. If A is invertible, then

(
AT
)−1

=
(
A−1

)T .
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3.6 Exercises
1- Prove that
(i) (kA)T = kAT , f or k a scalar.
(ii) (AB)T = BT AT .
(iii) I is invertible and I−1 = I.
(iv) If A is invertible, so is A−1, and

(
A−1

)−1
= A.

(v) If A and B are invertible, so is AB, and (AB)−1 = B−1A−1.
(vi) If A is invertible, then

(
AT
)−1

=
(
A−1

)T .
2- Build matrices A = (ai j)3×2 , B = (bi j)2×3 ;

ai j =

 i+ j i f i < j
i i f i = j

i− j i f i > j
, bi j =

{
2i−1 i f i = j
i+ j−2 i f i 6= j

3- If A=

(
2 −1 0
1 0 −3

)
, B=

 1 −4 0 1
2 −1 3 −1
4 0 −2 0

.

Compute AB.

4- If A =

 1 0 2
2 −1 3
4 1 8

 , B =

 −11 −4 6
2 0 −1
2 1 −1

.

Compute ABt .

6- If A =

 1 2 1
1 1 −1
1 0 −2

 , B =

 2 −1 1
−4 3 −2

3 −2 1

.

Compute ABt .
7- Find the inverse of the matrices

(i)
(
−2 3
−5 −6

)
.

(ii)
(

3 5
7 9

)
.

(iii)

 1 1 3
2 2 1
3 2 1

.



Chapter Four

Complex numbers



4. Complex Numbers

Complex numbers evolved through the work of Caspar Wes-
sel (1745–1818), Jean-Robert Argand (1768–1822), and Carl
Friedrich Gauss (1777–1855).

Definition 4.0.1 A complex number is a number consist-
ing of a real and imaginary part. Its standard form is

z = x+ iy

where x,y ∈ R, Re(z) = x, Im(z) = y and i =
√
−1.

R The set of all complex number denoted by C
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Definition 4.0.2 Two complex numbers are equal if their
real parts are equal and their imaginary parts are equal,
i.e., if z1 = x1 + iy1 equal z2 = x2 + iy2, then x1 = x2 and
y1 = y2.

Definition 4.0.3 The complex conjugate of a complex
number z = x+ iy, denoted by z is given by

z = x− iy.

Definition 4.0.4 Let z1 = x1 + iy1 and z2 = x2 + iy2 be
two complex number, then the addition of z1,z2 is given
by

z1 + z2 = (x1 + x2)+ i(y1 + y2).

Definition 4.0.5 The absolute value or modulus of a com-
plex number z = x+ iy is

|z|=
√

x2 + y2.

� Example 4.1 Find Re(z), Im(z), z, −z and z−1 for each
comlex number z of the following:

1−2i, 2+ i, i,
1

1+ i
, −2

Solution �
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comlex number 1−2i 2+ i i
1

1+ i
−2

Re(z) = x 1 2 0
1
2

−2

Im(z) −2 1 1
−1
2

0

z 1+2i 2− i −i
1+ i

2
−2

−z −1+2i −2− i −i
−1+ i

2
2

z−1 1+2i
5

−... −i ...
−1
2

4.1 The polar form of a complex number
Definition 4.1.1 Let z= x+ iy be a complex number, then
the polar form of a complex number defined as follow

z = r(cos θ + i sin θ)

where
x = r cos θ , y = r sin θ ,

and
r = |z|=

√
x2 + y2 , θ = tan−1 y

x
.

The number r is the absolute value or modulus of z, and
θ is an argument of z; denoted by arg(z).

R The principal argument of z is −π ≤ θ ≤ π .

Now, we show how to determined, the principal argument
according to in which quarterlies.
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1.jpg 1.jpg

� Example 4.2 Write each of the following comlex number
z in polar

1. 1+ i.
2. −

√
3+ i.

3. −1− i
√

3.
4. 1− i.

Solution:
1. z = 1+ i.

Since x = 1, and y = 1, then

r =
√

x2 + y2 =
√

1+1 =
√

2 ,

sin θ = y
r =

1√
2
,

cosθ = x
r =

1√
2
,

tanθ = y
x = 1

1 = 1 .

...θ =
π

4
,

...1+ i =
√

2(cos
π

4
+ i sin

π

4
).

2. z =−
√

3+ i.
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Since x = 1, and y = 1, then

r =
√

x2 + y2 =
√

3+1 = 2 ,
sin θ = y

r =
1
2 ,

cosθ = x
r =

−
√

3
2 ,

tanθ = y
x = 1

−
√

3
.

...θ = π− π

6
=

5π

6
,

...−
√

3+ i = 2 [cos(
5π

6
)+ i sin(

5π

6
) ].

3. z =−1− i
√

3.
Since x = 1, and y = 1, then

r =
√

x2 + y2 =
√

1+3 = 2 ,

sin θ = y
r =

−
√

3
2 ,

cosθ = x
r =

−1
2 ,

tanθ = y
x = −

√
3

−1 =
√

3 .

...θ =
π

3
−π =−2π

3
,

...−1− i
√

3 = 2 [cos(−2π

3
)+ i sin(−2π

3
) ].

4. z = 1− i.
Since x = 1, and y = 1, then

r =
√

x2 + y2 =
√

1+1 =
√

2 ,

sinθ = y
r =

−1√
2
,

cosθ = x
r =

1√
2
,

tanθ = y
x = −1

1 =−1 .

...θ =−π

4
,

...1− i =
√

2 [cos(−π

4
)+ i sin(−π

4
) ].

�
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4.1.1 Multiplication and Division of Complex Numbers
The polar form of (trigonometric form for) a complex num-
bers is particularly convenient for multiplying and dividing
complex numbers.

Theorem 4.1.1 Let z1 = r1(cosθ1 + i sinθ1) and z2 =
r2(cosθ2 + i sinθ2), then

1. z1.z2 = r1r2[cos(θ1 +θ2)+ i sin(θ1 +θ2)].

2.
z1

z2
=

r1

r2
[cos(θ1−θ2)+ i sin(θ1−θ2)].

Proof. Suppose that z1 = r1(cosθ1+i sinθ1) and z2 = r2(cosθ2+
i sinθ2), then

1. z1.z2 = r1(cosθ1 + i sinθ1).r2(cosθ2 + i sinθ2)
= r1r2[(cosθ1cosθ2− sinθ1sinθ2)+ i(cosθ1sinθ2+

cosθ2sinθ1)]
= r1r2[cos(θ1 +θ2)+ i sin(θ1 +θ2)].

2. Exercise. �

� Example 4.3 Use an algebraic method to express the prod-
uct of and in standard form.Approximate exact values with a
calculator when appropriate.

z1 = 25
√

2(cos
−π

4
+ i sin

−π

4
)

and
z2 = 14(cos

π

3
+ i sin

π

3
).

Solution:
z1.z2 = 14(25

√
2)(cos(

−π

4
+

π

3
)+ i sin(

−π

4
+

π

3
))

= 350
√

2(cos
π

12
+ i sin

π

12
)

≈ 478.11+128.11i. �

� Example 4.4 Use an algebraic method to express the prod-
uct

z1

z2
in standard form. Approximate exact values with a
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calculator when appropriate.

z1 = 2
√

2(cos135◦+ i sin 135◦)

and
z2 = 6(cos300◦+ i sin300◦).

Solution
z1

z2
=

2
√

2(cos135◦+ i sin 135◦)
6(cos300◦+ i sin300◦)

=
2
√

2
6

(cos(135◦−300◦)+ i sin (135◦−300◦))

=

√
2

3
(cos−165◦+ i sin −165◦)

≈−0.46−0.12i. �
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4.2 De Moivre‘s Theorem
Theorem 4.2.1 Let z = r(cos θ + i sinθ) be a complex
number and n be any real number. Then

zn = rn(cos nθ + i sin nθ)

.

Proof. We can prove this theorem by using Mathematical
Induction. �

� Example 4.5 Using De Moivre‘s Theorem, find the value
of

(1+ i)8.

Solution:
We put the complex number z = 1+ i in the polar form as
follows:

r =
√

1+1 =
√

2,

θ = tan−1 1
1
= tan−1 1 =

π

4

...z =
√

2(cos
π

4
+ i sin

π

4
),

so

...z8 =(
√

2)8(cos
π

4
+i sin

π

4
)8 = 16(cos2π+i sin2π)= 16.

�

� Example 4.6 Using De Moivres‘ Theorem, reduce the
complex number:

z =
(cos2θ − i sin2θ)5(cos3θ + i sin3θ)7

(cos4θ + i sin4θ)11(cos5θ − i sin5θ)9 ,

and find its value at
θ =

π

6
.
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Solution: We rewrite z as follow:

z =
[cos(−2θ)+ i sin(−2θ)]5[cos3θ + i sin3θ ]7

[cos4θ + i sin4θ ]11[cos(−5θ)+ i sin(−5θ)]9

=
[cosθ + i sinθ ]−10[cosθ + i sinθ ]21

[cosθ + i sinθ ]44[cosθ + i sinθ)]−45

= (cosθ + i sinθ)12

= cos 12θ + i sin 12θ .

and when θ = π

6 we find

z = cos(12
π

6
)+ isin(12

π

6
) = cos2π + isin2π = 1.

�

� Example 4.7 Using De Moivre‘s Theorem, reduce the
complex number:

(1+ i tanθ)5

(1− i tanθ)7 ,

and find its value at
θ =

π

6
.

Solution:
We rewrite z as follow:

z =
(1+ i tanθ)5

(1− i tanθ)7 ,

=
(1+ i sinθ

cosθ
)5

(1− i sinθ

cosθ
)7

=
(cosθ)2(cosθ + i sinθ)5

(cosθ − i sinθ)7

=
(cosθ)2(cosθ + i sinθ)5

(cosθ + isinθ)−7
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= (cosθ)2(cosθ + i sinθ)12

= (cosθ)2[cos(12θ)+ i sin(12θ)].

and when θ = π

6 , we find

z = (cos(
π

6
))2[cos(12

π

6
)+ i sin(12

π

6
)]

= (

√
3

2
)2[cos2π + isin2π] =

3
4
.

�

4.2.1 Roots of Complex Numbers
Definition 4.2.1 A complex number u = x+ iy is an nth

root of z if
un = 1.

If z = 1, then u is an nth root of unity.

Now, we find nth roots of a complex number as follow

Definition 4.2.2 Ifz= r(cosθ + isinθ), then the n distinct
complex numbers

r
1
n (cos

θ +2πk
n

+ isin
θ +2πk

n
),

where k = 0,1,2, ...,n−1, are the nth roots of the complex
number z.

� Example 4.8 Find the fourth roots of

z = 5(cos
π

3
+ isin

π

3
).

Solution:
The fourth roots of z are the complex numbers

5
1
4 (cos

π

3
+2πk

n
+ isin

π

3
+2πk

n
),
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where k = 0,1,2,3.
When k = 0,

z1 = 5
1
4 (cos

π

3
+2π(0)

n
+ isin

π

3
+2π(0)

n
),

= 5
1
4 (cos

π

12
+ isin

π

12
).

When k = 1,

z2 = 5
1
4 (cos

π

3
+2π(1)

n
+ isin

π

3
+2π(1)

n
),

= 5
1
4 (cos

7π

12
+ isin

7π

12
).

When k = 2,

z3 = 5
1
4 (cos

π

3
+2π(2)

n
+ isin

π

3
+2π(2)

n
),

= 5
1
4 (cos

13π

12
+ isin

13π

12
).

When k = 3,

z4 = 5
1
4 (cos

π

3
+2π(3)

n
+ isin

π

3
+2π(3)

n
),

= 5
1
4 (cos

19π

12
+ isin

19π

12
).

�
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4.3 Exercises
A- Write the complex number z = 2

1+i in the form z = x+ iy,
and find

1. Re(z).
2. Im(z).
3. z.
4. |z|.
5. arg(z).

B- Write the complex number z = 4
−
√

3+i
in the form z =

x+ iy, and find
1. Re(z).
2. Im(z).
3. z.
4. |z|.
5. arg(z).

C Prove Theorem 4.2.1.
D Using De Moivre‘s Theorem, find the value of

1. (1+ i
√

3)6.
2. (
√

3 + i)12.



Chapter Five

Series



5. Series

In mathematics a series is defined as the sum of a sequence of
numbers. It can be express by using the notation ∑an, where
∑ represents “sum” and an is the nth term of the sum, which
is a generalized way of expressing the terms of the sum.

5.1 Sequence
Definition 5.1.1 A sequence is a mapping from N to a
non-empty set X i.e.,

f :N→ X ,

and we can write sequence terms in the form a1,a2, . . . ,an, . . .
where



58 Chapter 5. Series

a1 = f (1) ,a2 = f (2) , . . . ,an = f (n) , . . .

We call a1 the first term and an the general term.

5.2 Serie
Definition 5.2.1 A serie is a summation of sequence
terms.
Infinite serie:

∞

∑
r=1

ar =a1 +a2 + · · ·+an + . . .

Finite serie:

n

∑
r=1

ar =a1 +a2 + · · ·+an.

5.3 Geometric series
Definition 5.3.1 For r 6= 0, the sum of the first n terms of
a geometric series is:

n

∑
r=1

ar =a+ar+ar2 + · · ·+arn−1 =
a(dn−1)

d−1
.

Where adn−1 is a basis.

5.4 Arithmetic Series
Definition 5.4.1 Let

a+(a+d)+(a+2d)+ · · ·+(a+(n−1)d),
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the the summation is

n

∑
r=1

ar =
n
2
[2a+(n−1)d],

where d is a basis (a+(n−1)d) or d = (ar+1−ar).

Now, we introduce a method of differences which it used to
sum of finite series

5.5 The method of differences
Theorem 5.5.1 In a series

n

∑
r=1

ar =a1 +a2 + · · ·+an.

If we can write the general term in the series in the form

ar = f (r+1)− f (r).

Then the summation is

n

∑
r=1

ar = f (n+1)− f (1).

Proof. Let r = 1,2,3, . . . ,n in ar = f (r+1)− f (r) , then we
obtain

a1 = f (2)− f (1).

a2 = f (3)− f (2).

...

an = f (n+1)− f (n).

So the summation is
n

∑
r=1

ar = f (n+1)− f (1).
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�

� Example 5.1 Find the summation of series

1+2+3+ · · ·+n.

Solution:
The general term is ar = r and we apply the Theorem 5.5.1

r (r+1)− (r−1)r = r [r+1− r+1] = 2ar.

Thus,

ar =
1
2
[r (r+1)− (r−1)r].

So the summation:
n

∑
r=1

ar = f (n+1)− f (1) =
1
2

n(n+1) .

�

� Example 5.2 Find the summation of series

1×2+2×3+3×4+ . . . to n term.

Solution:
The general term is

ar=r (r+1) ,

and we apply the Theorem 5.5.1

r (r+1)(r+2)−(r−1)r (r+1)= r (r+1) [r+2− r+1] = 3ar.

Thus,

ar =
1
3
[r (r+1)(r+2)− (r−1)r (r+1)].

So the summation:
n

∑
r=1

ar = f (n+1)− f (1) =
1
3

n(n+1)(n+2).

�
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� Example 5.3 Find the summation of series

1×2×3+2×3×4+3×4×5+ . . . to n term

Solution:
The general term is

ar = r (r+1)(r+2) ,

and we apply the Theorem 5.5.1

r (r+1)(r+2)(r+3)− (r−1)r (r+1)(r+2) = 4ar.

Thus,

ar =
1
4
[r (r+1)(r+2)(r+3)− (r−1)r (r+1)(r+2)].

So the summation:

n

∑
r=1

ar = f (n+1)− f (1) =
1
4

n(n+1)(n+2)(n+3).

�

Theorem 5.5.2 In a series

n

∑
r=1

ar =a1 +a2 + · · ·+an.

If we can write the general term in this series in the form

ar = f (r)− f (r+1) .

Then the summation is

n

∑
r=1

ar = f (1)− f (r+1)
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� Example 5.4 Find the summation of series

1
1×2

+
1

2×3
+ . . . to n term.

Solution:
The general term is

ar =
1

r(r+1)
,

and by using Partial Fraction we find

ar =
1
r
− 1

r+1
,

we apply the Theorem 5.5.2
n

∑
r=1

ar = f (1)− f (n+1) =
n

n+1
.

�

� Example 5.5 Find the summation of series

1
2×3×4

+
1

3×4×5
+ . . . to n term.

Solution:
The general term is

ar =
1

(r+1)(r+2)(r+3)
,

and by using Partial Fraction we find

ar =
1
2

(r+1)(r+2)
−

1
2

(r+2)(r+3)
,

we apply the Theorem 5.5.2
n

∑
r=1

ar = f (1)− f (n+1) =
n(n+5)

12(n+2)(n+3)
.

�
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� Example 5.6 Find the summation of series

1
2!

+
2
3!

+ . . . to n term.

Solution:
The general term is

ar =
r

(r+1)!
,

=
r+1−1
(r+1)!

=
r+1

(r+1)!
− 1

(r+1)!

=
1
r!
− 1

(r+1)!

we apply the Theorem 5.5.2

n

∑
r=1

ar = f (1)− f (n+1) = 1− 1
(n+1)!

.

R We can use some laws to find the summation some
series:

1. ∑
n
r=1 r = 1

2 n(n+1).
2. ∑

n
r=1 r2 = 1

6 n(n+1)(2n+1).
3. ∑

n
r=1 r3 = 1

4 n2(n+1)2.

�

� Example 5.7 Find the summation of series

20

∑
r=11

r2

Solution:
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20

∑
r=11

r2 =
20

∑
r=1

r2−
10

∑
r=1

r2 =2485.

�
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5.6 Exercise
A.Find the summation of series

1. 1×5 + 3×8 + 5×11 + . . . to n terms.
2. 1×3 + 2×5 + 3×7 + . . . to n terms.
3. 1×4 + 4×7 + 7×10 + . . . to n terms.
4. 1×4×7 + 4×7×10 + 7×10×13 + . . . to n terms.
5. 3×4×5 + 4×5×6 + 5×6×7 + . . . to n terms.
6. 1×1!+2×2!+3×3!+ . . . to n terms.

B. Prove that

1
(1)(3)

+
1

(3)(5)
+

1
(5)(7

+ ...+
1

(2n−1)(2n+1)
=

n
2n+1

.



66 Chapter 5. Series

5.7 Convergence or Divergence of Serie
Definition 5.7.1 Let Sn be nth partial sum of the Serie,
then the Serie is Convergence if

lim
n→∞

Sn = L ,

where L is constant.
Let Sn be nth partial sum of the serie, then the serie is
divergence if

lim
n→∞

Sn =±∞ .

Necessary condition for convergence

Definition 5.7.2 Let ∑
∞
n=1 an be convergence serie, then

lim
n→∞

an = 0 .

� Example 5.8 Study convergence or divergence series

∞

∑
n=1

n
3n+1

.

Solution:

lim
n→∞

n
3n+1

=
1
3
6= 0.

So the series is divergence. �
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5.8 Tests of convergence and divergence
5.8.1 Comparison test

Definition 5.8.1 Let ∑
∞
n=1 an and ∑

∞
n=1 bn be series, then

1. If an≤ bn and ∑
∞
n=1 bn is convergence, then ∑

∞
n=1 an is

convergence.
2. If an≥ bn and ∑

∞
n=1 bn is divergence, then ∑

∞
n=1 anis

divergence.

� Example 5.9 Study convergence or divergence series

∞

∑
n=1

1
n
.

Solution:

∞

∑
n=1

1
n
= 1+

1
2
+

1
3
+

1
4
+

1
5
+

1
6
+

1
7
+

1
8
+ . . .

= 1+
1
2
+(

1
3
+

1
4
)+(

1
5
+

1
6
+

1
7
+

1
8
)+ . . .

We comparison by

∞

∑
n=1

bn = 1+
1
2
+

1
2
+

1
2
+ . . .

We find an ≥ bn and ∑
∞
n=1 bn divergence, so ∑

∞
n=1 an is diver-

gence.
�
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5.8.2 Limit Comparison Test
Definition 5.8.2 Consider two series ∑

∞
n=1 an, and ∑

∞
n=1 bn,

where
an ≥ 0 , bn ≥ 0 ∀n

If
lim
n→∞

an

bn
= k,

where k nonzero, positive or negative number, then ∑
∞
n=1 an

and ∑
∞
n=1 bn are convergent or divergent together.

� Example 5.10 Study Convergence or divergence series

∞

∑
n=1

3n2 +2n+7
n5 +4

.

Solution:
We compare the series

∞

∑
n=1

3n2 +2n+7
n5 +4

with a series
∞

∑
n=1

bn =
∞

∑
n=1

1
n3 ,

then
lim
n→∞

an

bn
= 3

So ∑
∞
n=1 an is Convergence. �

� Example 5.11 Discuss the convergence or divergence of a
series

∞

∑
n=1

1
n

Solution
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We compare the series

∞

∑
n=1

1
n

with a series
∞

∑
n=1

log(1+
1
n
),

an =
1
n

, bn = log(1+
1
n
),

... lim
n→∞

an

bn
= lim

n→∞

1
n

log(1+ 1
n )

= lim
n→∞

1
log(1+ 1

n )
n
=

1
log e

= 1,

and the series ∑
∞
n=1 log(1+ 1

n ) is divergent, then also ∑
∞
n=1

1
n

is divergent. �
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5.8.3 Root test
Definition 5.8.3 Let ∑

∞
n=1 an , the root test be

limn→∞
n
√

an = L =

 L < 1 convergence
L > 1 divergence

L = 1 f aild

� Example 5.12 Study convergence or divergence series

∞

∑
n=1

xn

nn .

Solution:

lim
n→∞

n

√
xn

nn = 0 < 1.

So the Serie is convergence �

� Example 5.13 Study Convergence or divergence series

sum∞
n=1

1
(logn)n .

Solution:

lim
n→∞

n

√
1

(logn)n = 0 < 1.

So the Serie is convergence �
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5.8.4 Ratio test
Definition 5.8.4 Let ∑

∞
n=1 an, an ≥ 0, the ratio test be

limn→∞
an+1

an
= L =

 L < 1 convergence
L > 1 divergence

L = 1 f aild

� Example 5.14 Study convergence or divergence series

∞

∑
n=1

3n

n2 .

Solution:

lim
n→∞

an+1

an
= lim

n→∞

3n+1

(n+1)2

3n

n2

= 3 > 1.

So the serie is divergence. �
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5.9 Exercise
A. Study Convergence or divergence series

1. ∑
∞
n=1

2n+7
n+4 .

2. ∑
∞
n=1

3n2+2n+7
5n3+8 .

3. ∑
∞
n=1

1
9n+4 .

4. ∑
∞
n=1

33n

5n3+8 .
5. ∑

∞
n=1

n
43 .

6. ∑
∞
n=1

3
√

nn

n! .



Wish you all the best,
    Dr.A.Elrawy
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