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1 Electric Fields

The electromagnetic force between charged particles is one of the fundamental
forces of nature. We begin this chapter by describing some basic properties of one
manifestation of the electromagnetic force, the electric force. We then discuss
Coulomb’s law, which is the fundamental law governing the electric force between
any two charged particles. Next, we introduce the concept of an electric field asso-
ciated with a charge distribution and describe its effect on other charged particles.
We then show how to use Coulomb’s law to calculate the electric field for a given
charge distribution. The chapter concludes with a discussion of the motion of a

charged particle in a uniform electric field.

1.1 Properties of Electric Charges

A number of simple experiments demonstrate the existence of electric forces. For
example, after rubbing a balloon on your hair on a dry day, you will find that the
balloon attracts bits of paper. The attractive force is often strong enough to sus-
pend the paper from the balloon.

When materials behave in this way, they are said to be electrified or to have
become electrically charged. You can easily electrify your body by vigorously rub-
bing your shoes on a wool rug. Evidence of the electric charge on your body can
be detected by lightly touching (and startling) a friend. Under the right condi-
tions, you will see a spark when you touch and both of you will feel a slight tingle.
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Figure 1.1 (a) A negatively charged rubber rod suspended by a thread is attracted to a positively

charged glass rod. (b) A negatively charged rubber rod is repelled by another negatively charged
rubber rod.

(Experiments such as these work best on a dry day because an excessive amount of
moisture in the air can cause any charge you build up to “leak” from your body to
the Earth.)

In a series of simple experiments, it was found that there are two kinds of elec-
tric charges, which were given the names positive and negative by Benjamin
Franklin (1706-1790). Electrons are identified as having negative charge, while
protons are positively charged. To verify that there are two types of charge, sup-
pose a hard rubber rod that has been rubbed on fur is suspended by a sewing
thread as shown in Figure 1.1. When a glass rod that has been rubbed on silk is
brought near the rubber rod, the two attract each other (Fig. 1.1a). On the other
hand, if two charged rubber rods (or two charged glass rods) are brought near
each other as shown in Figure 1.1b, the two repel each other. This observation
shows that the rubber and glass have two different types of charge on them. On
the basis of these observations, we conclude that charges of the same sign repel
one another and charges with opposite signs attract one another.

Using the convention suggested by Franklin, the electric charge on the glass
rod is called positive and that on the rubber rod is called negative. Therefore, any
charged object attracted to a charged rubber rod (or repelled by a charged glass
rod) must have a positive charge, and any charged object repelled by a charged
rubber rod (or attracted to a charged glass rod) must have a negative charge.

Another important aspect of electricity that arises from experimental observa-
tions is that electric charge is always conserved in an isolated system. That is, when
one object is rubbed against another, charge is not created in the process. The elec-
trified state is due to a transfer of charge from one object to the other. One object
gains some amount of negative charge while the other gains an equal amount of
positive charge. For example, when a glass rod is rubbed on silk as in Figure 1.2,
the silk obtains a negative charge equal in magnitude to the positive charge on the
glass rod. We now know from our understanding of atomic structure that electrons
are transferred in the rubbing process from the glass to the silk. Similarly, when
rubber is rubbed on fur, electrons are transferred from the fur to the rubber, giving
the rubber a net negative charge and the fur a net positive charge. This process is
consistent with the fact that neutral, uncharged matter contains as many positive
charges (protons within atomic nuclei) as negative charges (electrons).

In 1909, Robert Millikan (1868-1953) discovered that electric charge always
occurs as integral multiples of a fundamental amount of charge ¢ (see Section
25.7). In modern terms, the electric charge ¢ is said to be quantized, where ¢ is the
standard symbol used for charge as a variable. That is, electric charge exists as dis-
crete “packets,” and we can write ¢ = * Ne, where N is some integer. Other experi-
ments in the same period showed that the electron has a charge —e and the pro-
ton has a charge of equal magnitude but opposite sign +e. Some particles, such as
the neutron, have no charge.

<« Electric charge is conserved

Figure 1.2 When a glass rod is
rubbed with silk, electrons are trans-
ferred from the glass to the silk.
Because of conservation of charge,
each electron adds negative charge to
the silk and an equal positive charge
is left behind on the rod. Also,
because the charges are transferred
in discrete bundles, the charges on
the two objects are ¢, or =2¢, or
*+3e¢, and so on.
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Figure 1.3  Charging a metallic
object by induction (that is, the two
objects never touch each other).

(a) A neutral metallic sphere, with
equal numbers of positive and nega-
tive charges. (b) The electrons on
the neutral sphere are redistributed
when a charged rubber rod is placed
near the sphere. (c) When the sphere
is grounded, some of its electrons
leave through the ground wire.

(d) When the ground connection is
removed, the sphere has excess posi-
tive charge that is nonuniformly
distributed. (e) When the rod is
removed, the remaining electrons
redistribute uniformly and there is a
net uniform distribution of positive
charge on the sphere.

Quick Quiz 1 Three objects are brought close to each other, two at a time.
When objects A and B are brought together, they repel. When objects B and C are
brought together, they also repel. Which of the following are true? (a) Objects A
and C possess charges of the same sign. (b) Objects A and C possess charges of
opposite sign. (c) All three objects possess charges of the same sign. (d) One
object is neutral. (e) Additional experiments must be performed to determine the
signs of the charges.

1.2 Charging Objects by Induction

It is convenient to classify materials in terms of the ability of electrons to move
through the material:

Electrical conductors are materials in which some of the electrons are free
electrons' that are not bound to atoms and can move relatively freely
through the material; electrical insulators are materials in which all electrons
are bound to atoms and cannot move freely through the material.

Materials such as glass, rubber, and dry wood fall into the category of electrical
insulators. When such materials are charged by rubbing, only the area rubbed
becomes charged and the charged particles are unable to move to other regions of
the material.

In contrast, materials such as copper, aluminum, and silver are good electrical
conductors. When such materials are charged in some small region, the charge
readily distributes itself over the entire surface of the material.

Semiconductors are a third class of materials, and their electrical properties are
somewhere between those of insulators and those of conductors. Silicon and ger-
manium are well-known examples of semiconductors commonly used in the fabri-
cation of a variety of electronic chips used in computers, cellular telephones, and
stereo systems. The electrical properties of semiconductors can be changed over
many orders of magnitude by the addition of controlled amounts of certain atoms
to the materials.

To understand how to charge a conductor by a process known as induction,
consider a neutral (uncharged) conducting sphere insulated from the ground as
shown in Figure 1.3a. There are an equal number of electrons and protons in the
sphere if the charge on the sphere is exactly zero. When a negatively charged rub-
ber rod is brought near the sphere, electrons in the region nearest the rod experi-
ence a repulsive force and migrate to the opposite side of the sphere. This migra-
tion leaves the side of the sphere near the rod with an effective positive charge
because of the diminished number of electrons as in Figure 1.3b. (The left side
of the sphere in Figure 1.3b is positively charged as if positive charges moved into
this region, but remember that it is only electrons that are free to move.) This
process occurs even if the rod never actually touches the sphere. If the same
experiment is performed with a conducting wire connected from the sphere to
the Earth (Fig. 1.3c), some of the electrons in the conductor are so strongly
repelled by the presence of the negative charge in the rod that they move out of
the sphere through the wire and into the Earth. The symbol —_L at the end of the

wire in Figure 1.3c indicates that the wire is connected to ground, which means a
reservoir, such as the Earth, that can accept or provide electrons freely with negli-
gible effect on its electrical characteristics. If the wire to ground is then removed

!'A metal atom contains one or more outer electrons, which are weakly bound to the nucleus. When
many atoms combine to form a metal, the free electrons are these outer electrons, which are not bound
to any one atom. These electrons move about the metal in a manner similar to that of gas molecules
moving in a container.
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Figure 1.4  (a) The charged object on the left induces a charge distribution on the surface of an insu-
lator due to realignment of charges in the molecules. (b) A charged comb attracts bits of paper because
charges in molecules in the paper are realigned.
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(Fig. 1.3d), the conducting sphere contains an excess of induced positive charge
because it has fewer electrons than it needs to cancel out the positive charge of
the protons. When the rubber rod is removed from the vicinity of the sphere (Fig.
1.3e), this induced positive charge remains on the ungrounded sphere. Notice
that the rubber rod loses none of its negative charge during this process.

Charging an object by induction requires no contact with the object inducing
the charge. That is in contrast to charging an object by rubbing (that is, by conduc-
tion), which does require contact between the two objects.

A process similar to induction in conductors takes place in insulators. In most
neutral molecules, the center of positive charge coincides with the center of nega-
tive charge. In the presence of a charged object, however, these centers inside
each molecule in an insulator may shift slightly, resulting in more positive charge
on one side of the molecule than on the other. This realignment of charge within
individual molecules produces a layer of charge on the surface of the insulator as
shown in Figure 1.4a. Your knowledge of induction in insulators should help you
explain why a comb that has been drawn through your hair attracts bits of electri-
cally neutral paper as shown in Figure 1.4b.

Quick Quiz 2 Three objects are brought close to one another, two at a time.
When objects A and B are brought together, they attract. When objects B and C
are brought together, they repel. Which of the following are necessarily true?
(a) Objects A and C possess charges of the same sign. (b) Objects A and C possess
charges of opposite sign. (c¢) All three objects possess charges of the same sign.
(d) One object is neutral. (e) Additional experiments must be performed to deter-
mine information about the charges on the objects.

1.3 Coulomb’s Law

Charles Coulomb measured the magnitudes of the electric forces between charged
objects using the torsion balance, which he invented (Fig. 1.5). The operating
principle of the torsion balance is the same as that of the apparatus used by
Cavendish to measure the gravitational constant (see Section 13.1), with the elec-
trically neutral spheres replaced by charged ones. The electric force between
charged spheres A and B in Figure 1.5 causes the spheres to either attract or
repel each other, and the resulting motion causes the suspended fiber to twist.
Because the restoring torque of the twisted fiber is proportional to the angle
through which the fiber rotates, a measurement of this angle provides a quantita-
tive measure of the electric force of attraction or repulsion. Once the spheres are
charged by rubbing, the electric force between them is very large compared with
the gravitational attraction, and so the gravitational force can be neglected.

——— Suspension
head

——— Fiber

1

Figure 1.5 Coulomb’s torsion bal-
ance, used to establish the inverse-
square law for the electric force
between two charges.
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Coulomb’s law »

Coulomb constant

CHARLES COULOMB

French physicist (1736—1806)

Coulomb’s major contributions to science were
in the areas of electrostatics and magnetism.
During his lifetime, he also investigated the
strengths of materials and determined the
forces that affect objects on beams, thereby
contributing to the field of structural mechan-
ics. In the field of ergonomics, his research pro-
vided a fundamental understanding of the
ways in which people and animals can best
do work.
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From Coulomb’s experiments, we can generalize the properties of the electric
force between two stationary charged particles. We use the term point charge to
refer to a charged particle of zero size. The electrical behavior of electrons and
protons is very well described by modeling them as point charges. From experi-
mental observations, we find that the magnitude of the electric force (sometimes
called the Coulomb force) between two point charges is given by Coulomb’s law:

|‘]1‘ ‘92|

e Tz

F,=k

¢ (1.1)
where £k, is a constant called the Coulomb constant. In his experiments, Coulomb
was able to show that the value of the exponent of rwas 2 to within an uncertainty
of a few percent. Modern experiments have shown that the exponent is 2 to within
an uncertainty of a few parts in 10'%. Experiments also show that the electric force,
like the gravitational force, is conservative.

The value of the Coulomb constant depends on the choice of units. The SI unit
of charge is the coulomb (C). The Coulomb constant k, in SI units has the value

k,= 89876 X 10°N- mQ/C2 (1.2)
This constant is also written in the form
k,= ! (1.3)
‘ dme, )

where the constant €, (Greek letter epsilon) is known as the permittivity of free
space and has the value
€ = 8.8542 X 1072 C?/N - m? (1.4)
The smallest unit of free charge ¢ known in nature,? the charge on an electron
(—e) or a proton (+e), has a magnitude

e=160218 X 107°C (1.5)

Therefore, 1 C of charge is approximately equal to the charge of 6.24 X 108 elec-
trons or protons. This number is very small when compared with the number of
free electrons in 1 cm? of copper, which is on the order of 10%*. Nevertheless, 1 C
is a substantial amount of charge. In typical experiments in which a rubber or
glass rod is charged by friction, a net charge on the order of 107° C is obtained. In
other words, only a very small fraction of the total available charge is transferred
between the rod and the rubbing material.

The charges and masses of the electron, proton, and neutron are given in
Table 1.1.

TABLE 1.1
Charge and Mass of the Electron, Proton, and Neutron
Particle Charge (C) Mass (kg)

9.109 4 X 1073
1.672 62 X 1077
1.674 93 X 10%7

—1.6021765 X 10719
Proton (p) +1.602 176 5 X 10719
Neutron (n) 0

Electron (e)

2 No unit of charge smaller than ¢ has been detected on a free particle; current theories, however, pro-
pose the existence of particles called quarks having charges —e¢/3 and 2¢/3. Although there is consider-
able experimental evidence for such particles inside nuclear matter, free quarks have never been
detected. We discuss other properties of quarks in Chapter 46.
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EXAMPLE 1.1 The Hydrogen Atom

The electron and proton of a hydrogen atom are separated (on the average) by a distance of approximately
5.3 X 107" m. Find the magnitudes of the electric force and the gravitational force between the two particles.

SOLUTION

Conceptualize Think about the two particles separated by the very small distance given in the problem statement.
In Chapter 13, we found the gravitational force between small objects to be weak, so we expect the gravitational
force between the electron and proton to be significantly smaller than the electric force.

Categorize The electric and gravitational forces will be evaluated from universal force laws, so we categorize this
example as a substitution problem.

(1.60 X 10719C)?

Use Coulomb’s law to find the magnitude of F,= kew = (8.99 X 10 N-m?/C?) EETRIY
the electric force: 4 (5.3 X107 m)
= 82X 108N
m,m,,
Use Newton’s law of universal gravitation and Fg =G—
Table 1.1 (for the particle masses) to find "
the magnitude of the gravitational force: (9.11 x 10731 kg)(l.67 X 10-27 kg)

(6.67 X 107" N - m?/kg?)

(5.3 X 107" m)?

3.6 X 100Y N

The ratio F,/F, = 2 X 10%. Therefore, the gravitational force between charged atomic particles is negligible when
compared with the electric force. Notice the similar forms of Newton’s law of universal gravitation and Coulomb’s
law of electric forces. Other than magnitude, what is a fundamental difference between the two forces?

When dealing with Coulomb’s law, remember that force is a vector quantity and
must be treated accordingly. Coulomb’s law expressed in vector form for the elec-
tric force exerted by a charge ¢, on a second charge ¢,, written Fyy, is
= N . .
Fio=k,~—5 T (1.6) <« Vector form of Coulomb’s
r
law
where 15 is a unit vector directed from ¢ toward ¢, as shown in Active Figure
6a. Because the electric force obeys Newton’s third law, the electric force
exerted by ¢, on ¢, is equal in magnitude to the force exerted by ¢, on ¢, and in

Fy,

ACTIVE FIGURE 1.6

Two point charges separated by a distance r exert a force on each other that is given by Coulomb’s law.
The force Fy; exerted by ¢, on ¢ is equal in magnitude and opposite in direction to the force Fiy
exerted by ¢; on ¢,. (a) When the charges are of the same sign, the force is repulsive. (b) When the
charges are of opposite signs, the force is attractive.

Sign in at www.thomsonedu.com and go to ThomsonNOW to move the charges to any position in two-
dimensional space and observe the electric forces on them.
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the opposite direction; that is, f‘Ql = —f‘m. Finally, Equation 6 shows that if ¢
and ¢, have the same sign as in Active Figure 1.6a, the product ¢,¢, is positive. If
¢, and ¢, are of opposite sign as shown in Active Figure 1.6b, the product ¢, ¢, is
negative. These signs describe the relative direction of the force but not the absolute
direction. A negative product indicates an attractive force, and each charge experi-
ences a force toward the other. A positive product indicates a repulsive force such
that each charge experiences a force away from the other. The absolute direction of
the force on a charge depends on the location of the other charge. For example,
if an x axis lies along the two charges in Active Figure 6a, the product  ¢¢, is
positive, but EQ points in the +x direction and fTQI points in the —x direction.

When more than two charges are present, the force between any pair of them is
given by Equation 6. Therefore, the resultant force on any one of them equals
the vector sum of the forces exerted by the other individual charges. For example,
if four charges are present, the resultant force exerted by particles 2, 3, and 4 on
particle 1 is

F, =Fy + Fg + Fy

Quick Quiz 3 Object A has a charge of +2 uC, and object B has a charge of
+6 ;_J;C. Whigh statement is_) true allout the_) electrif force_§ on tLle oblects?
(a) F_z}B = :3FBA (b) Fap = —Fps (c) 3Fap = —Fpy (d) Fap = 3Fpy (€) Frp = Fpy

(f) 3Fxp = Fpa

EXAMPLE 1.2 Find the Resultant Force

Consider three point charges located at the corners of a right triangle as shown in
Figure 1.7, where ¢ = ¢3 = 5.0 uC, ¢o = —2.0 uC, and ¢ = 0.10 m. Find the
resultant force exerted on ¢s.

SOLUTION

Conceptualize Think about the net force on ¢;. Because charge ¢, is near two
other charges, it will experience two electric forces.

Categorize Because two forces are exerted on charge ¢, we categorize this
example as a vector addition problem.

Figure 1.7

(Example 23.2) The

Analyze The directions of the individual forces exerted by ¢, and ¢, on ¢ are
shown in Figure 1.7. The force Foexerted by ¢, on g is attractive because ¢, and
g3 have opposite signs. In the coordinate system shown in Figure 1.7, the attrac-
tive force Fy; is to the left (in the negative x direction).

The force ﬁlg exerted by ¢, on ¢; is repulsive because both charges are positive.
The repulsive force Flg makes an angle of 45° with the x axis.

|90 3]
F23: ke 9
a

Use Equation 1.1 to find the magnitude
of Fog:

force exerted by ¢, on g5 is F;3. The
force exerted by ¢, on ¢ is Fos.
The resultant force Fs exerted on
g3 is the vector sum Fy5 + Fys.

(2.0 X 107°C) (5.0 X 107°C)

= (8.99 X 10 N-m?/C?)

Fiy=k ‘%H%‘

(V24a)?

Find the magnitude of the force flg:

=9.0N
(0.10 m)?

(5.0 X 1075 C) (5.0 X 107°C)

= (8.99 X 10° N-m?/C?)

[ = 11N
2(0.10 m)?
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Find the x and y components of the force f‘lgz

Find the components of the resultant force acting on ¢s:

Express the resultant force acting on ¢, in unit-vector
form:

Fig, = F3cos45° = 79N
F3, = Fi3sin 45° = 79N

Fy, = Fis, + Fy3, = 79N + (=9.0N) = —-1.IN

F,= (—11i+ 7.9))N

Finalize The net force on ¢, is upward and toward the left in Figure 1.7. If ¢, moves in response to the net force,
the distances between ¢y and the other charges change, so the net force changes. Therefore, ¢; can be modeled as a
particle under a net force as long as it is recognized that the force exerted on ¢ is not constant.

What If?
for Fy?

Answer
Therefore, the final result for F5 would be the same.

What if the signs of all three charges were changed to the opposite signs? How would that affect the result

The charge ¢; would still be attracted toward ¢, and repelled from ¢, with forces of the same magnitude.

EXAMPLE 1.3 Where Is the Net Force Zero?

Three point charges lie along the x axis as shown in Figure 1.8. The positive ‘
charge ¢, = 15.0 uCis at x = 2.00 m, the positive charge ¢, = 6.00 uC is at the ori-
gin, and the net force acting on ¢ is zero. What is the x coordinate of ¢5?

SOLUTION

Conceptualize Because ¢; is near two other charges, it experiences two electric ga|  TFa g5 Fp s
forces. Unlike the preceding example, however, the forces lie along the same line

in this problem as indicated in Figure 1.8. Because ¢ is negative while ¢, and ¢,

are positive, the forces F3 and Fy3 are both attractive.

Categorize Because the net force on ¢y is zero, we model the point charge as a

particle in equilibrium.

Analyze Write an expression for the net force on
charge g5 when it is in equilibrium:

Move the second term to the right side of the equa-
tion and set the coefficients of the unit vector i equal:

Eliminate k, and |¢,| and rearrange the equation:

Reduce the quadratic equation to a simpler form:

Solve the quadratic equation for the positive root:

Figure 1.8  (Example 23.3) Three
point charges are placed along the x
axis. If the resultant force acting on
qs is zero, the force F;; exerted by ¢,
on g3 must be equal in magnitude
and opposite in direction to the force
Fy; exerted by ¢, on ¢s.

= = = ‘QQHM 2 ‘71H%| 2
F3 = F23 + F13 = _ke XQ + ke(? OO — X)Q 1= 0
1921 |95] _ 11|
ke 9 A _ 9
x (2.00 — x)

(2.00 — x)*[gs| = x*|q:]
(4.00 — 4.00x + x?)(6.00 X 107°C) = x2(15.0 X 1076 C)

3.00x* + 8.00x — 8.00 = 0

x= 0.775m

Finalize The second root to the quadratic equation is x = —3.44 m. That is another location where the magnitudes
of the forces on ¢4 are equal, but both forces are in the same direction.
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What If?  Suppose ¢, is constrained to move only along the x axis. From its initial position at x = 0.775 m, it is
pulled a small distance along the x axis. When released, does it return to equilibrium, or is it pulled further from
equilibrium? That is, is the equilibrium stable or unstable?

Answer If ¢, is moved to the right, f’m becomes larger and F)Qg becomes smaller. The result is a net force to the
right, in the same direction as the displacement. Therefore, the charge ¢, would continue to move to the right and
the equilibrium is unstable. (See Section 7.9 for a review of stable and unstable equilibrium.)

If ¢4 is constrained to stay at a fixed x coordinate but allowed to move up and down in Figure 1.8, the equilibrium
is stable. In this case, if the charge is pulled upward (or downward) and released, it moves back toward the equilib-
rium position and oscillates about this point.

EXAMPLE 1.4 Find the Charge on the Spheres

Two identical small charged spheres, each having a mass of
3.0 X 1072 kg, hang in equilibrium as shown in Figure 1.9a.
The length of each string is 0.15 m, and the angle 6 is 5.0°.
Find the magnitude of the charge on each sphere.

T cos 6

SOLUTION

Conceptualize Figure 1.9a helps us conceptualize this
example. The two spheres exert repulsive forces on each
other. If they are held close to each other and released, they
move outward from the center and settle into the configura-
tion in Figure 1.9a after the oscillations have vanished due to
air resistance.

Categorize The key phrase “in equilibrium” helps us model Figure 1.9 (Example 1.4) (a) Two identical spheres, each
each sphere as a particle in equilibrium. This example is simi- carrying the same charge ¢, suspended in equilibrium. (b) The
lar to the particle in equilibrium problems in Chapter 5 with  free-body diagram for the sphere on the left of part (a).

the added feature that one of the forces on a sphere is an

electric force.

Analyze The free-body diagram for the left-hand sphere is shown in Figure 1.9b. The sphere is in equilibrium
under the application of the forces T from the string, the electric force F, from the other sphere, and the gravita-
tional force mg.

Write Newton’s second law for the left-hand sphere in (1) EFx =Tsing —F,=0 — Tsinf =F,

component form:
(2) Eﬂ =Tcos —mg=0 — Tcosh = mg

£,
Divide Equation (1) by Equation (2) to find £ tan 0 = ;g — F,= mgtan 0
Evaluate the electric force numerically: F,= (3.0 X 10"*kg)(9.80 m/s*) tan (5.0°) = 2.6 X 1072 N
Use the geometry of the right triangle in Figure 1.9a sin 0 = % — a= Lsin0

to find a relationship between ¢, L, and 0:

Evaluate a: a= (0.15m) sin (5.0°) = 0.013 m

i Fr* _ [E(20)°
Solve Coulomb’s law (Eq. 1.1) for the charge |¢| on F=k—~ — |q= W P
r e e

each sphere:
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. . (2.6 X 1072 N)[2(0.0183 m)]?
Substitute numerical values: lgl = 5 s = 44X%x108C
8.99 X 10° N - m%/C

Finalize We cannot determine the sign of the charge from the information given. In fact, the sign of the charge is
not important. The situation is the same whether both spheres are positively charged or negatively charged.

What If?  Suppose your roommate proposes solving this problem without the assumption that the charges are of
equal magnitude. She claims the symmetry of the problem is destroyed if the charges are not equal, so the strings
would make two different angles with the vertical and the problem would be much more complicated. How would
you respond?

Answer The symmetry is not destroyed and the angles are not different. Newton’s third law requires the magni-
tudes of the electric forces on the two charges to be the same, regardless of the equality or nonequality of the
charges. The solution to the example remains the same with one change: the value of |¢|? in the solution is replaced
by |¢,¢5| in the new situation, where ¢ and ¢, are the values of the charges on the two spheres. The symmetry of the
problem would be destroyed if the masses of the spheres were not the same. In this case, the strings would make dif-
ferent angles with the vertical and the problem would be more complicated.

1.4 The Electric Field

Two field forces—the gravitational force in Chapter 13 and the electric force
here—have been introduced into our discussions so far. As pointed out earlier,
field forces can act through space, producing an effect even when no physical con-
tact occurs between interacting objects. The gravitational field g at a point in space
due to a source particle was defined in Section 13.4 to be equal to the grav1tat10nal
force F acting on a test particle of mass m divided by that mass: g = F,/m. The
Concept of a field was developed by Michael Faraday (1791-1867) in the context
of electric forces and is of such practical value that we shall devote much attention
to it in the next several chapters. In this approach, an electric field is said to exist
in the region of space around a charged object, the source charge. When another
charged object—the test charge—enters this electric field, an electric force acts on
it. As an example, consider Figure 1.10, which shows a small positive test charge

¢y placed near a second object carrying a much greater positive charge Q. We
define the electric field due to the source charge at the location of the test charge This dramatic photograph captures

© Johnny Autery

to be the electric force on the test charge per unit charge, or, to be more specific, ~ lightning bolt striking a tree near
the electric field ¢ E t t defined the electric f F ¢ some rural homes. Lightning is asso-
e electric field vector E at a point in space is defined as the electric force F, act- . .4 with very strong electric fields
ing on a positive test charge ¢, placed at that point divided by the test charge:3 in the atmosphere.
= _F, _— o
E=— (1.7) <« Definition of electric field
Q)

The vector E has the SI units of newtons per coulomb (N/C). Note that E is the
field produced by some charge or charge distribution separate from the test charge;
it is not the field produced by the test charge itself. Also note that the existence of
an electric field is a property of its source; the presence of the test charge is not

9o
necessary for the field to exist. The test charge serves as a detector of the electric @—
field. P E

The direction of E as shown in Figure 1.10 is the direction of the force a posi- Test charge

tive test charge experiences when placed in the field. An electric field exists at a Source charge

point if a test charge at that point experiences an electric force. Figure 1.10 A small positive test
charge ¢, placed at point Pnear an

¥ When using Equation 1.7, we must assume the test charge ¢, is small enough that it does not disturb object carrying a much larger positive

the charge distribution responsible for the electric field. If the test charge is great enough, the charge gharge Q experiences an electric field

on the metallic sphere is redistributed and the electric field it sets up is different from the field it sets E at point P established by the source

up in the presence of the much smaller test charge. charge Q.
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PITFALL PREVENTION 1.1
Particles Only

Equation 1.8 is only valid for a
particle of charge ¢, that is, an
object of zero size. For a charged
object of finite size in an electric
field, the field may vary in magni-
tude and direction over the size of
the object, so the corresponding
force equation may be more
complicated.

Electric field due to a finite »
number of point charges

ACTIVE FIGURE 1.11

A test charge ¢, at point Pis a dis-
tance rfrom a point charge ¢.

(a) If ¢ is positive, the force on the
test charge is directed away from g.
(b) For the positive source charge,
the electric field at P points radially
outward from ¢. (c) If ¢ is negative,
the force on the test charge is
directed toward ¢. (d) For the nega-
tive source charge, the electric field
at P points radially inward toward g¢.
Sign in at www.thomsonedu.com and
go to ThomsonNOW to move point P
to any position in two-dimensional
space and observe the electric field
due to q.
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Equation 1.7 can be rearranged as

F, = ¢E (1.8)
This equation gives us the force on a charged particle ¢ placed in an electric field.
If g is positive, the force is in the same direction as the field. If ¢ is negative, the
force and the field are in opposite directions. Notice the similarity between Equa-
tion 1.8 and the corresponding equation for a particle with mass placed in a grav-
itational field, E, = mg (Section 5.5). Once the magnitude and direction of the
electric field are known at some point, the electric force exerted on any charged
particle placed at that point can be calculated from Equation 1.8.

To determine the direction of an electric field, consider a point charge ¢ as a
source charge. This charge creates an electric field at all points in space surround-
ing it. A test charge ¢, is placed at point P, a distance r from the source charge, as
in Active Figure 1.11a. We imagine using the test charge to determine the direc-
tion of the electric force and therefore that of the electric field. According to
Coulomb’s law, the force exerted by g on the test charge is

where £ is a unit vector directed from ¢ toward ¢, This force in Active Figure
1.11a is directed away from the source charge ¢. Because the electric field at P,
the position of the test charge, is defined by E= f‘,,/q(,, the electric field at P cre-
ated by ¢ is

=

E="Fk 5t (1.9)

r
If the source charge ¢ is positive, Active Figure 1.11b shows the situation with the
test charge removed: the source charge sets up an electric field at P, directed away
from ¢. If ¢ is negative, as in Active Figure 1.11c, the force on the test charge is
toward the source charge, so the electric field at P is directed toward the source
charge as in Active Figure 1.11d.

To calculate the electric field at a point P due to a group of point charges, we
first calculate the electric field vectors at P individually using Equation 1.9 and
then add them vectorially. In other words, at any point P, the total electric field
due to a group of source charges equals the vector sum of the electric fields of all
the charges. This superposition principle applied to fields follows directly from the
vector addition of electric forces. Therefore, the electric field at point P due to a
group of source charges can be expressed as the vector sum

o 9.
E= keET;ri (1.10)
)
e
/// P ﬁ
g -7 7 R

(b) (d)
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where 7, is the distance from the ith source charge ¢; to the point Pand t, is a unit
vector directed from ¢, toward P.

In Example 1.5, we explore the electric field due to two charges using the
superposition principle. Part (B) of the example focuses on an electric dipole,
which is defined as a positive charge g and a negative charge —¢ separated by a dis-
tance 2a. The electric dipole is a good model of many molecules, such as
hydrochloric acid (HCI). Neutral atoms and molecules behave as dipoles when
placed in an external electric field. Furthermore, many molecules, such as HCI,
are permanent dipoles. The effect of such dipoles on the behavior of materials
subjected to electric fields is discussed in Chapter 26.

Quick Quiz 1.4 A test charge of +3 uC is at a point P where an external elec-
tric field is directed to the right and has a magnitude of 4 X 105 N/C. If the test
charge is replaced with another test charge of —3 wC, what happens to the exter-
nal electric field at P? (a) It is unaffected. (b) It reverses direction. (c) It changes
in a way that cannot be determined.
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EXAMPLE 1.5 Electric Field Due to Two Charges

Charges ¢, and ¢, are located on the x axis, at distances a
and b, respectively, from the origin as shown in Figure
1.12.

(A) Find the components of the net electric field at the
point P, which is on the y axis.

SOLUTION

Conceptualize Compare this example to Example 1.2.
There, we add vector forces to find the net force on a
charged particle. Here, we add electric field vectors to find

Figure1.12  (Example 1.5) The

the net electric field at a point in space.

total electric ﬁeldﬁﬁ at Pequals the
vector sum E; + Ey, where E; is the
field due to the positive charge ¢,

Categorize We have two source charges and wish to find
the resultant electric field, so we categorize this example
as one in which we can use the superposition principle

and Ez is the field due to the nega-

represented by Equation 1.10.

Analyze Find the magnitude of the electric
field at P due to charge ¢;:

Find the magnitude of the electric field at P
due to charge ¢,:

Write the electric field vectors for each charge
in unit-vector form:

Write the components of the net electric field
vector:

tive charge ¢,. q qs
R 1
1 ¢ 7.]2 e (d2 + y2)
42| 42!
Eo=k,— =k, —5 ¢
S Gy
= |91 2 A S
E, = kem cos¢p1+ kem sin ¢ j
= ra 2 A A
E2 = kem cosf1— kgm s 0]
|91 |92
(1) Ex:E1x+E2x: kgm COS(ﬁ"r‘kem cos 0
il lgol
(2) Ey = Ely + Egy = kem S d) - kem sin 6
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(B) Evaluate the electric field at point Pin the y
special case that |¢| = |¢5| and a = b.

SOLUTION

Conceptualize Figure 1.13 shows the situa-
tion in this special case. Notice the symmetry
in the situation and that the charge distribu-
tion is now an electric dipole.

Categorize Because Figure 1.13 is a special
case of the general case shown in Figure
1.12, we can categorize this example as one
in which we can take the result of part (A)

and substitute the appropriate values of the Figure 1.13  (Example 1.5) When ;
the charges in Figure 1.12 are of /

variables. ‘ L
equal magnitude and equidistant 0
from the origin, the situation "

becomes symmetric as shown here. q

Analyze Based on the symmetry in Fig-  (3) E,= kL cosf + k S — cosf = leL cos 0
a” +y a” + +y

x e 2 2 e 2 2 2 2
ure 1.13, evaluate Equations (1) and ( ) ( ) (a )
(2) from part (A) with a = b, |¢;| = |¢s| = q . q .
¢, and ¢ = 0: Ey=kem Slne—kgm sin @ =

. . a a
From the geometry in Figure 1.13, (4) cos@ = T = 7( o 2)1/2
a )

evaluate cos 6:

q a 2qa
Substitute Equation (4) into Equation E =2k, =k,
(3): (@ + ) (a® + )2 (a + )2

(C) Find the electric field due to the electric dipole when point Pis a distance y =>> a from the origin.

SOLUTION

2qa
In the solution to part (B), because y >> q, neglect a? 5) E= kei3
compared with y? and write the expression for E in this Y
case:

Finalize From Equation (5), we see that at points far from a dipole but along the perpendicular bisector of the line
joining the two charges, the magnitude of the electric field created by the dipole varies as 1/r% whereas the more
slowly varying field of a point charge varies as 1/72 (see Eq. 1.9). That is because at distant points, the fields of the
two charges of equal magnitude and opposite sign almost cancel each other. The 1/7% variation in E for the dipole
also is obtained for a distant point along the x axis (see Problem 18) and for any general distant point.

1.5 Electric Field of a Continuous
Charge Distribution

Very often, the distances between charges in a group of charges are much smaller
than the distance from the group to a point where the electric field is to be calcu-
lated. In such situations, the system of charges can be modeled as continuous.
That is, the system of closely spaced charges is equivalent to a total charge that is
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continuously distributed along some line, over some surface, or throughout some
volume.

To set up the process for evaluating the electric field created by a continuous
charge distribution, let’s use the following procedure. First, divide the charge dis-
tribution into small elements, each of which contains a small charge Ag as shown
in Figure 1.14. Next, use Equation 1.9 to calculate the electric field due to one
of these elements at a point P. Finally, evaluate the total electric field at P due to
the charge distribution by summing the contributions of all the charge elements
(that is, by applying the superposition principle).

The electric field at P due to one charge element carrying charge Agq is
Aq

5 T
2

AE = &,
where ris the distance from the charge element to point P and r is a unit vector
directed from the element toward P. The total electric field at P due to all ele-
ments in the charge distribution is approximately

o Agi,
EzkeE 731‘;'

%

where the index i refers to the ith element in the distribution. Because the charge
distribution is modeled as continuous, the total field at Pin the limit Ag, — 0 is

. Ag; d
E =k, lim > Zfl:kej —gf (1.11)
r

Ag— 0775 1
where the integration is over the entire charge distribution. The integration in
Equation 1.11 is a vector operation and must be treated appropriately.

Let’s illustrate this type of calculation with several examples in which the charge
is distributed on a line, on a surface, or throughout a volume. When performing
such calculations, it is convenient to use the concept of a charge density along with
the following notations:

m If a charge Q is uniformly distributed throughout a volume V, the volume
charge density p is defined by

<1

p

where p has units of coulombs per cubic meter (C/m?).

m If a charge Q is uniformly distributed on a surface of area A, the surface
charge density o (Greek letter sigma) is defined by

Q

A

(o

where o has units of coulombs per square meter (C/m?).

m If a charge Q is uniformly distributed along a line of length €, the linear
charge density A is defined by

A

Q
¢

where A has units of coulombs per meter (C/m).

m If the charge is nonuniformly distributed over a volume, surface, or line, the
amounts of charge dg in a small volume, surface, or length element are

dg=pdV  dg= o dA dg= A dl
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P
f/? Ag

/
/
/

/
/
Ty

Figure 1.14  The electric field at P
due to a continuous charge distribu-
tion is the vector sum of the fields AE
due to all the elements Ag of the
charge distribution.

<« Electric field due to a con-
tinuous charge distribution

<« Volume charge density

<« Surface charge density

<« Linear charge density
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PROBLEM-SOLVING STRATEGY Calculating the Electric Field

The following procedure is recommended for solving problems that involve the
determination of an electric field due to individual charges or a charge distribution:

1. Conceptualize. Establish a mental representation of the problem: think carefully
about the individual charges or the charge distribution and imagine what type
of electric field they would create. Appeal to any symmetry in the arrangement
of charges to help you visualize the electric field.

2. Categorize. Are you analyzing a group of individual charges or a continuous
charge distribution? The answer to this question tells you how to proceed in the
Analyze step.

3. Analyze.

(a) If you are analyzing a group of individual charge, use the superposition princi-
ple: When several point charges are present, the resultant field at a point in
space is the vector sum of the individual fields due to the individual charges
(Eq. 1.10). Be very careful in the manipulation of vector quantities. It may
be useful to review the material on vector addition in Chapter 3. Example
1.5 demonstrated this procedure.

(b) If you are analyzing a continuous charge distribution, replace the vector sums for
evaluating the total electric field from individual charges by vector integrals.
The charge distribution is divided into infinitesimal pieces, and the vector
sum is carried out by integrating over the entire charge distribution (Eq.
1.11). Examples 1.6 through 1.8 demonstrate such procedures.

Consider symmetry when dealing with either a distribution of point charges
or a continuous charge distribution. Take advantage of any symmetry in the sys-
tem you observed in the Conceptualize step to simplify your calculations. The
cancellation of field components perpendicular to the axis in Example 1.7 is
an example of the application of symmetry.

4. Finalize. Check to see if your electric field expression is consistent with the men-
tal representation and if it reflects any symmetry that you noted previously.
Imagine varying parameters such as the distance of the observation point from
the charges or the radius of any circular objects to see if the mathematical
result changes in a reasonable way.

EXAMPLE 1.6 The Electric Field Due to a Charged Rod

A rod of length ¢ has a uniform positive charge per unit length A )
and a total charge Q. Calculate the electric field at a point P that is dg=Adx
located along the long axis of the rod and a distance « from one dx
end (Fig. 1.15). 7 D N D
X

SOLUTION P ¢

a
Conceptualize The field dE at P due to each segment of charge

on the rod is in the negative x direction because every segment  Figure1.15  (Example 1.6) The electric field at_Pdue
to a uniformly charged rod lying along the x axis. The

magnitude of the field at P due to the segment of charge
dqis k, dq/x*. The total field at Pis the vector sum over all
Categorize Because the rod is continuous, we are evaluating the segments of the rod.

field due to a continuous charge distribution rather than a group
of individual charges. Because every segment of the rod produces an electric field in the negative x direction, the
sum of their contributions can be handled without the need to add vectors.

carries a positive charge.

Analyze Let’s assume the rod is lying along the x axis, dx is the length of one small segment, and dq is the charge
on that segment. Because the rod has a charge per unit length A, the charge dg on the small segment is dg = A dx.
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d, Adx
Find the magnitude of the electric field at P due to one dE = k; Z =k
segment of the rod having a charge dg: X X

{+a dx
Find the total field at P using* Equation 1.11: E= J kA —5

x
€+adx 1 {+a

Noting that k, and A = Q/{ are constants and can be E= k”/\J g = k”){_x}
removed from the integral, evaluate the integral: a % a

L 11\ kO
) E=k <a €+a)_ a(t + a)

Finalize If € goes to zero, Equation (1) reduces to the electric field due to a point charge as given by Equation
1.9, which is what we expect because the rod has shrunk to zero size.

What If?  Suppose point Pis very far away from the rod. What is the nature of the electric field at such a point?

Answer If P is far from the rod (a > {), then € in the denominator of Equation (1) can be neglected and
E = k,Q/d* That is exactly the form you would expect for a point charge. Therefore, at large values of a/¢, the
charge distribution appears to be a point charge of magnitude Q; the point Pis so far away from the rod we cannot
distinguish that it has a size. The use of the limiting technique (a/¢ — ) is often a good method for checking a
mathematical expression.

“To carry out integrations such as this one, first express the charge element dg in terms of the other variables in the integral. (In this example,
there is one variable, x, so we made the change dg = A dx.) The integral must be over scalar quantities; therefore, express the electric field in
terms of components, if necessary. (In this example, the field has only an x component, so this detail is of no concern.) Then, reduce your expres-
sion to an integral over a single variable (or to multiple integrals, each over a single variable). In examples that have spherical or cylindrical sym-
metry, the single variable is a radial coordinate.

EXAMPLE 1.7 The Electric Field of a Uniform Ring of Charge

A ring of radius a carries a uniformly distributed
positive total charge Q. Calculate the electric
field due to the ring at a point P lying a distance
x from its center along the central axis perpendi-
cular to the plane of the ring (Fig. 1.16a).

SOLUTION

Conceptualize Figure 1.16a shows the electric E, =
= .
field contribution dE at P due to a single seg- (a) (b)
ment of Charge at the top of the ring' This field Figure 1.16 (Example 1.7) A uniformly charged ring of radius «. (a) The
vector can be resolved into components dE, par- field at Pon the x axis due to an element of charge dg. (b) The total electric

field at Pis along the x axis. The perpendicular component of the field at P due

llel h is of the ring an rpendicu-
allel to the axis of the g and dE, perpendicu to segment 1 is canceled by the perpendicular component due to segment 2.

lar to the axis. Figure 23.16b shows the electric
field contributions from two segments on oppo-
site sides of the ring. Because of the symmetry of the situation, the perpendicular components of the field cancel.
That is true for all pairs of segments around the ring, so we can ignore the perpendicular component of the field
and focus solely on the parallel components, which simply add.

Categorize Because the ring is continuous, we are evaluating the field due to a continuous charge distribution
rather than a group of individual charges.
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d
Analyze Evaluate the parallel component of an elec- (1) dE,= k672q cos f = k(qu cos 0
tric field contribution from a segment of charge dg on " (a” + x%)
the ring:
From the geometry in Figure 1.16a, evaluate cos 0: (2) cosf = i: = -

Substitute Equation (2) into Equation (1): dE, =k

k,x k,x
All segments of the ring make the same .contribution to E, = J( 5 +' 232 dg = @+ 2)3/2qu
the field at P because they are all equidistant from this a X a X
point. Integrate to obtain the total field at P: k,x
@) E= (a2 + xZ)S/z Q

Finalize This result shows that the field is zero at x = 0. Is that consistent with the symmetry in the problem? Fur-
thermore, notice that Equation (3) reduces to k,Q /x? if x>> a, so the ring acts like a point charge for locations far
away from the ring.

What If? Suppose a negative charge is placed at the center of the ring in Figure 1.16 and displaced slightly by a
distance x << «a along the x axis. When the charge is released, what type of motion does it exhibit?

Answer In the expression for the field due to a ring of charge, let x << a, which results in

Therefore, from Equation 1.8, the force on a charge —g¢ placed near the center of the ring is

k.q
x ag X

Because this force has the form of Hooke’s law (Eq. 15.1), the motion of the negative charge is simple harmonic!

DONDRIER: BN The Electric Field of a Uniformly Charged Disk

dq
A disk of radius R has a uniform surface charge density o. Calculate the electric ‘
field at a point P that lies along the central perpendicular axis of the disk and a
distance x from the center of the disk (Fig. 1.17).
P

SOLUTION

Conceptualize If the disk is considered to be a set of concentric rings, we can
use our result from Example 1.7—which gives the field created by a ring of
radius a—and sum the contributions of all rings making up the disk. By symmetry,

the field at an axial point must be along the central axis. Figure1.17  (Example 1.8) A uni-
formly charged disk of radius R. The

. P . . lectric field at ial point Pi
Categorize Because the disk is continuous, we are evaluating the field due to a Siizc?cfd flonag 31?;12“2?;115 ;)Ser_

continuous charge distribution rather than a group of individual charges. pendicular to the plane of the disk.

Analyze Find the amount of charge dg on a ring of dg = odA = o(2mrdr) = 2mwordr
radius r and width dr as shown in Figure 1.17:
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Use this result in the equation given for E, in Exam- dE, =
ple 1.7 (with a replaced by rand Q replaced by dg)
to find the field due to the ring:

R
. . . 2r dr
To obtain the total field at P, integrate this expres- L, = kxmo J R ———
sion over the limits » = 0 to » = R, noting that xis a 0

constant in this situation:

(72 + x?)—l/Q R P
= k,xmo } = 27Tke0'|:l =

_1/2 0 (R2 4 x2)1/2

Finalize This result is valid for all values of x > 0. We can calculate the field close to the disk along the axis by
assuming that R >> x; therefore, the expression in brackets reduces to unity to give us the nearfield approximation

o

E,=2wk,oc = —
) 2€,

where € is the permittivity of free space. In Chapter 24, we obtain the same result for the field created by an infinite
plane of charge with uniform surface charge density.

1.6 Electric Field Lines

We have defined the electric field mathematically through Equation 1.7. Let’s
now explore a means of visualizing the electric field in a pictorial representation.
A convenient way of visualizing electric field patterns is to draw lines, called elec-
tric field lines and first introduced by Faraday, that are related to the electric field
in a region of space in the following manner:

m The electric field vector E is tangent to the electric field line at each point.
The line has a direction, indicated by an arrowhead, that is the same as that
of the electric field vector. The direction of the line is that of the force on a
positive test charge placed in the field.

m The number of lines per unit area through a surface perpendicular to the
lines is proportional to the magnitude of the electric field in that region.
Therefore, the field lines are close together where the electric field is strong
and far apart where the field is weak.

These properties are illustrated in Figure 1.18. The density of field lines
through surface A is greater than the density of lines through surface B. There-
fore, the magnitude of the electric field is larger on surface A than on surface B.

Furthermore, because the lines at different locations point in different directions,
the field is nonuniform. »

Is this relationship between strength of the electric field and the density of field >< s
lines consistent with Equation 1.9, the expression we obtained for [ using — __—
Coulomb’s law? To answer this question, consider an imaginary spherical surface — 1 — —

B

e

of radius r concentric with a point charge. From symmetry, we see that the magni- S
tude of the electric field is the same everywhere on the surface of the sphere. The
number of lines N that emerge from the charge is equal to the number that pene-
trate the spherical surface. Hence, the number of lines per unit area on the
sphere is N/4mr? (where the surface area of the sphere is 477?). Because Eis pro- ~ Figure1.18  Electric field lines

. 1 h b £ i . hat E . 1/ 2. thi penetrating two surfaces. The magni-
portional to the number of lines per unit area, we see that E varies as 1/7% this  {4e of the field is greater on surface
finding is consistent with Equation 1.9. A than on surface B.

A
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PITFALL PREVENTION 1.2
Electric Field Lines Are Not Paths
of Particles!

Electric field lines represent the
field at various locations. Except in
very special cases, they do not repre-
sent the path of a charged particle
moving in an electric field.

PITFALL PREVENTION 1.3
Electric Field Lines Are Not Real

Electric field lines are not material
objects. They are used only as a pic-
torial representation to provide a
qualitative description of the elec-
tric field. Only a finite number of
lines from each charge can be
drawn, which makes it appear as if
the field were quantized and exists
only in certain parts of space. The
field, in fact, is continuous, existing
at every point. You should avoid
obtaining the wrong impression
from a two-dimensional drawing of
field lines used to describe a three-
dimensional situation.

(a) (b) ©

Figure 1.19  The electric field lines for a point charge. (a) For a positive point charge, the lines are
directed radially outward. (b) For a negative point charge, the lines are directed radially inward. Notice
that the figures show only those field lines that lie in the plane of the page. (c) The dark areas are small
particles suspended in oil, which align with the electric field produced by a charged conductor at the
center.

Representative electric field lines for the field due to a single positive point
charge are shown in Figure 1.19a. This two-dimensional drawing shows only the
field lines that lie in the plane containing the point charge. The lines are actually
directed radially outward from the charge in all directions; therefore, instead of
the flat “wheel” of lines shown, you should picture an entire spherical distribution
of lines. Because a positive test charge placed in this field would be repelled by the
positive source charge, the lines are directed radially away from the source charge.
The electric field lines representing the field due to a single negative point charge
are directed toward the charge (Fig. 1.19b). In either case, the lines are along the
radial direction and extend all the way to infinity. Notice that the lines become
closer together as they approach the charge, indicating that the strength of the
field increases as we move toward the source charge.

The rules for drawing electric field lines are as follows:

m The lines must begin on a positive charge and terminate on a negative
charge. In the case of an excess of one type of charge, some lines will begin
or end infinitely far away.

m The number of lines drawn leaving a positive charge or approaching a nega-
tive charge is proportional to the magnitude of the charge.

m No two field lines can cross.

We choose the number of field lines starting from any positively charged object
to be Cq and the number of lines ending on any negatively charged object to be
C|q|, where Cis an arbitrary proportionality constant. Once Cis chosen, the num-
ber of lines is fixed. For example, in a two-charge system, if object 1 has charge Q,
and object 2 has charge Q,, the ratio of number of lines in contact with the

Douglas C. Johnson, California State Polytechnic

University, Pomona

(a) (b)

Figure 1.20  (a) The electric field lines for two point charges of equal magnitude and opposite sign
(an electric dipole). The number of lines leaving the positive charge equals the number terminating at
the negative charge. (b) Small particles suspended in oil align with the electric field.

Douglas C. Johnson, California State Polytechnic

University, Pomona
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Figure 1.21 (a) The electric field lines for two positive point charges. (The locations A, B, and Care

discussed in Quick Quiz 23.5.) (b) Small particles suspended in oil align with the electric field.

charges is No/N; = Q5/Q,. The electric field lines for two point charges of equal
magnitude but opposite signs (an electric dipole) are shown in Figure 1.20.
Because the charges are of equal magnitude, the number of lines that begin at the
positive charge must equal the number that terminate at the negative charge. At
points very near the charges, the lines are nearly radial. The high density of lines
between the charges indicates a region of strong electric field.

Figure 1.21 shows the electric field lines in the vicinity of two equal positive
point charges. Again, the lines are nearly radial at points close to either charge,
and the same number of lines emerge from each charge because the charges are
equal in magnitude. At great distances from the charges, the field is approximately
equal to that of a single point charge of magnitude 2g4.

Finally, in Active Figure 1.22, we sketch the electric field lines associated with a
positive charge +2¢ and a negative charge —¢. In this case, the number of lines
leaving +24 is twice the number terminating at —¢. Hence, only half the lines that
leave the positive charge reach the negative charge. The remaining half terminate
on a negative charge we assume to be at infinity. At distances much greater than
the charge separation, the electric field lines are equivalent to those of a single
charge +g¢.

Quick Quiz 1.5 Rank the magnitudes of the electric field at points A, B, and C
shown in Figure 1.21a (greatest magnitude first).

1.7 Motion of a Charged Particle
in a Uniform Electric Field

When a particle of charge ¢ and mass m is placed in an electric field E, the electric
force exerted on the charge is ¢E according to Equation 23.8. If that is the only
force exerted on the particle, it must be the net force and it causes the particle to
accelerate according to the particle under a net force model. Therefore,

F,= ¢E = md
and the acceleration of the particle is

gE

m

a= (1.12)
If E is uniform (that is, constant in magnitude and direction), the electric force on
the particle is constant and we can apply the particle under constant acceleration
model. If the particle has a positive charge, its acceleration is in the direction of
the electric field. If the particle has a negative charge, its acceleration is in the
direction opposite the electric field.
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ACTIVE FIGURE 1.22

The electric field lines for a point
charge +2¢ and a second point charge
—¢q. Notice that two lines leave +2¢
for every one that terminates on —g¢.

Sign in at www.thomsonedu.com and
go to ThomsonNOW to choose the
values and signs for the two charges
and observe the electric field lines for
the configuration you have chosen.

PITFALL PREVENTION 1.4
Just Another Force

Electric forces and fields may seem
abstract to you. Once F, is evalu-
ated, however, it causes a particle
to move according to our well-
established models of forces and
motion from Chapters 2 through 6.
Keeping this link with the past in
mind should help you solve prob-
lems in this chapter.



2 Gauss'’s Law

In Chapter 2, we showed how to calculate the electric field due to a given charge

distribution. In this chapter, we describe Gauss’s law and an alternative procedure
for calculating electric fields. Gauss’s law is based on the inverse-square behavior
of the electric force between point charges. Although Gauss’s law is a consequence
of Coulomb’s law, it is more convenient for calculating the electric fields of highly
symmetric charge distributions and makes it possible to deal with complicated

problems using qualitative reasoning.

2.1 Electric Flux

The concept of electric field lines was described qualitatively in Chapter 1. We
now treat electric field lines in a more quantitative way.

Consider an electric field that is uniform in both magnitude and direction as
shown in Figure 2.1. The field lines penetrate a rectangular surface of area A,
whose plane is oriented perpendicular to the field. Recall from Section 1.6 that
the number of lines per unit area (in other words, the line density) is proportional
to the magnitude of the electric field. Therefore, the total number of lines pene-
trating the surface is proportional to the product EA. This product of the magni-
tude of the electric field I and surface area A perpendicular to the field is called
the electric flux @, (uppercase Greek letter phi):

®,=FA (2.1)
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Area = A

=)

Figure2.1  Field lines representing
a uniform electric field penetrating a
plane of area A perpendicular to the
field. The electric flux @, through
this area is equal to EA.
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A ,

/

Figure2.2  Field lines representing
a uniform electric field penetrating
an area A that is at an angle 0 to the
field. Because the number of lines
that go through the area A, is the
same as the number that go through
A, the flux through A, is equal to

the flux through A and is given by
®, = EA cos 6.

Figure2.3 A small element of
surface area AA,. The electric field
makes an angle 0 with the vector AA,,
defined as being normal to the sur-
face element, and the flux through
the element is equal to E; AA, cos 6,.

Definition of electric flux »
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From the SI units of £ and A, we see that ® has units of newton meters squared
per coulomb (N -m?2/C). Electric flux is proportional to the number of electric
field lines penetrating some surface.

If the surface under consideration is not perpendicular to the field, the flux
through it must be less than that given by Equation 2.1. Consider Figure 2.2,
where the normal to the surface of area A is at an angle 6 to the uniform electric
field. Notice that the number of lines that cross this area A is equal to the number
of lines that cross the area A, which is a projection of area A onto a plane ori-
ented perpendicular to the field. Figure 2.2 shows that the two areas are related
by A, = A cos 6. Because the flux through A equals the flux through A, the flux
through A is

O, =FA, = EAcos¥ (2.2)

From this result, we see that the flux through a surface of fixed area A has a maxi-
mum value EA when the surface is perpendicular to the field (when the normal to
the surface is parallel to the field, that is, when 6 = 0° in Fig. 2.2); the flux is zero
when the surface is parallel to the field (when the normal to the surface is perpen-
dicular to the field, that is, when 6 = 90°).

We assumed a uniform electric field in the preceding discussion. In more gen-
eral situations, the electric field may vary over a large surface. Therefore, the defi-
nition of flux given by Equation 2.2 has meaning only for a small element of area
over which the field is approximately constant. Consider a general surface divided
into a large number of small elements, each of area AA. It is convenient to define
a vector AA whose magnitude represents the area of the ith element of the large
surface and whose direction is defined to be perpendicular to the surface element as
shown in Figure 2.3. The electric field Eat the location of this element makes an
angle 6, with the vector AA,. The electric flux A®,, through this element is

Ad,=E AA;cos 0, = El-- AAZ-

where we have used the definition of the scalar product of two vectors
(A B = ABcos 6; see Chapter 7). Summing the contributions of all elements gives
an approximation to the total flux through the surface:

If the area of each element approaches zero, the number of elements approaches
infinity and the sum is replaced by an integral. Therefore, the general definition
of electric flux is

(2.3)

surface

Equation 2.3 is a surface integral, which means it must be evaluated over the sur-
face in question. In general, the value of @, depends both on the field pattern and
on the surface.

We are often interested in evaluating the flux through a closed surface, defined as
a surface that divides space into an inside and an outside region so that one can-
not move from one region to the other without crossing the surface. The surface
of a sphere, for example, is a closed surface.

Consider the closed surface in Active Figure 2.4. The vectors AApomt in dif-
ferent directions for the various surface elements, but at each point they are nor-
mal to the surface and, by convention, always point outward. At the element
labeled @, the field lines are crossmg the surface from the inside to the outside
and 6 < 90°; hence, the flux Ad, = E- AA1 through this element is positive. For
element @, the field lines graze the surface (perpendicular to the vector AAZ)
therefore, # = 90° and the flux is zero. For elements such as ®, where the field
lines are crossing the surface from outside to inside, 180° > 6 > 90° and the flux
is negative because cos 0 is negative. The net flux through the surface is propor-
tional to the net number of lines leaving the surface, where the net number
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means the number of lines leaving the surface minus the number of lines entering the sur-
Jace. If more lines are leaving than entering, the net flux is positive. If more lines
are entering than leaving, the net flux is negative. Using the symbol § to represent
an integral over a closed surface, we can write the net flux @, through a closed
surface as

@Eziﬁﬁ-dxzjﬁEndA (2.4)

where E, represents the component of the electric field normal to the surface.

Quick Quiz 2.1 Suppose a point charge is located at the center of a spherical
surface. The electric field at the surface of the sphere and the total flux through
the sphere are determined. Now the radius of the sphere is halved. What happens
to the flux through the sphere and the magnitude of the electric field at the sur-
face of the sphere? (a) The flux and field both increase. (b) The flux and field
both decrease. (c) The flux increases, and the field decreases. (d) The flux
decreases, and the field increases. (e) The flux remains the same, and the field
increases. (f) The flux decreases, and the field remains the same.
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ACTIVE FIGURE 2.4

A closed surface in an electric field.
The area vectors are, by convention,
normal to the surface and point out-
ward. The flux through an area ele-
ment can be positive (element @),
zero (element @), or negative (ele-
ment @).

Sign in at www.thomsonedu.com and
go to ThomsonNOW to select any
segment on the surface and see the
relationship between the electric field
vector E and the area vector AA,.

EXAMPLE 2.1 Flux Through a Cube

Consider a uniform electric field E oriented

in the x direction in empty space. Find the

net electric flux through the surface of a

cube of edge length ¢, oriented as shown in

Figure 2.5.

Figure2.5 (Example

2.1) A closed surface in

the shape of a cube in a uni-

form electric field oriented
parallel to the x axis. Side @

SOLUTION

Conceptualize Examine Figure 2.5 care-
fully. Notice that the electric field lines pass I

h h £ dicularl d is the bottom of the cube,
through two faces perpendicularly and are and side @ is opposite side
parallel to four other faces of the cube. @.
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Categorize We evaluate the flux from its definition, so we categorize this example as a substltutlon problem.
The flux through four of the faces (@ ®, and the unnumbered ones) is zero because E is parallel to the four
faces and therefore perpendicular to dA on these faces.

@:

For face @, E is constant and directed inward but d;&l is
directed outward (6 = 180°). Find the flux through this 1 1

face:

For face @, E is constant and outward and in the same

Write the integrals for the net flux through faces @ and ¢, = J E-dA + J E-dA
1 2

J E-dA = JE(cos 180°) dA =

Jﬁ-aﬁz JE(cos0°) dAZEJdA: +EA = E€?

direction as drkg (6 = 0°). Find the flux through this 2 2 2
face:
Find the net flux by adding the flux over all six faces: G, =—-EC+EC+0+0+0+0= 0

KARL FRIEDRICH GAUSS
German mathematician and astronomer
(1777-1855)

Gauss received a doctoral degree in mathemat-
ics from the University of Helmstedt in 1799.
In addition to his work in electromagnetism,
he made contributions to mathematics and
science in number theory, statistics, non-
Euclidean geometry, and cometary orbital
mechanics. He was a founder of the German
Magnetic Union, which studies the Earth’s
magnetic field on a continual basis.

2.2 Gauss’'s Law

In this section, we describe a general relationship between the net electric flux
through a closed surface (often called a gaussian surface) and the charge enclosed
by the surface. This relationship, known as Gauss’s law, is of fundamental impor-
tance in the study of electric fields.

Consider a positive point charge g located at the center of a sphere of radius r as
shown in Figure 2.6. From Equation 1.9, we know that the magnitude of the elec-
tric field everywhere on the surface of the sphere is E = k,g/r?. The field lines are
directed radially outward and hence are perpendicular to the surface at every point
on the surface. That is, at each surface point, E is parallel to the vector AA repre-
senting a local element of area AA; surrounding the surface point. Therefore,

and, from Equation 2.4, we find that the net flux through the gaussian surface is
O, = j(ﬁ-d};: i{;EdA=Ei§ dA

where we have moved E outside of the integral because, by symmetry, E is constant
over the surface. The value of E is given by E = k,q/r?. Furthermore, because the
surface is spherical, §dA = A = 4mr% Hence, the net flux through the gaussian
surface is

D=k %(4777 ) = 4mkyg
Recalling from Section 1.3 that k, = 1/4me;, we can write this equation in the
form
By =+ (2.5)
€o

Equation 2.5 shows that the net flux through the spherical surface is propor-
tional to the charge inside the surface. The flux is independent of the radius r
because the area of the spherical surface is proportional to r%, whereas the electric
field is proportional to 1/r2. Therefore, in the product of area and electric field,
the dependence on r cancels.
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Spherical

\ / surface

r

E

q

Figure2.6 A spherical gaussian
surface of radius r surrounding a
point charge ¢. When the charge is at
the center of the sphere, the electric
field is everywhere normal to the sur-
face and constant in magnitude.

Figure 2.7  Closed surfaces of vari-
ous shapes surrounding a charge ¢.
The net electric flux is the same
through all surfaces.

Now consider several closed surfaces surrounding a charge ¢ as shown in Figure
2.7. Surface S, is spherical, but surfaces S, and S, are not. From Equation 2.5,
the flux that passes through §; has the value ¢/€,. As discussed in the preceding
section, flux is proportional to the number of electric field lines passing through a
surface. The construction shown in Figure 2.7 shows that the number of lines
through §, is equal to the number of lines through the nonspherical surfaces S,
and S;. Therefore, the net flux through any closed surface surrounding a point
charge q is given by q/¢€, and is independent of the shape of that surface.

Now consider a point charge located outside a closed surface of arbitrary shape
as shown in Figure 2.8. As can be seen from this construction, any electric field
line entering the surface leaves the surface at another point. The number of elec-
tric field lines entering the surface equals the number leaving the surface. There-
fore, the net electric flux through a closed surface that surrounds no charge is
zero. Applying this result to Example 2.1, we see that the net flux through the
cube is zero because there is no charge inside the cube.

Let’s extend these arguments to two generalized cases: (1) that of many point
charges and (2) that of a continuous distribution of charge. We once again use the
superposition principle, which states that the electric field due to many charges is
the vector sum of the electric fields produced by the individual charges. There-
fore, the flux through any closed surface can be expressed as

j(f]-dfxzj((EJrEJr---)-dK

where E is the total electric field at any point on the surface produced by the vec-
tor addition of the electric fields at that point due to the individual charges. Con-
sider the system of charges shown in Active Figure 2.9. The surface S surrounds
only one charge, ¢;; hence, the net flux through Sis ¢,/€,. The flux through § due
to charges ¢,, ¢;, and ¢, outside it is zero because each electric field line from
these charges that enters S at one point leaves it at another. The surface S’ sur-
rounds charges ¢, and ¢5;; hence, the net flux through it is (¢, + ¢3)/€,. Finally,
the net flux through surface S$” is zero because there is no charge inside this sur-
face. That is, all the electric field lines that enter §” at one point leave at another.
Charge ¢, does not contribute to the net flux through any of the surfaces because
it is outside all the surfaces.
Gauss’s law is a generalization of what we have just described and states that the
net flux through any closed surface is
o, = % E-aA = 1o
€o

(2.6)

where E represents the electric field at any point on the surface and ¢;, represents
the net charge inside the surface.
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Figure 2.8

A point charge located
oultside a closed surface. The number

of lines entering the surface equals
the number leaving the surface.

$ ® 74
° ® 92
q1
. ’
g3 =S
5

ACTIVE FIGURE 2.9

The net electric flux through any
closed surface depends only on

the charge inside that surface. The
net flux through surface Sis ¢,/¢€,
the net flux through surface S’ is

(g0 + ¢3) /€, and the net flux
through surface S” is zero. Charge

q4 does not contribute to the flux
through any surface because it is out-
side all surfaces.

Sign in at www.thomsonedu.com and
go to ThomsonNOW to change the
size and shape of a closed surface and
see the effect on the electric flux of
surrounding combinations of charge
with that surface.

<« Gauss'’s law
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PITFALL PREVENTION 2.1
Zero Flux Is Not Zero Field

In two situations, there is zero flux
through a closed surface: either
there are no charged particles
enclosed by the surface or there
are charged particles enclosed, but
the net charge inside the surface is
zero. For either situation, it is incor-
rect to conclude that the electric
field on the surface is zero. Gauss’s
law states that the electric fluxis
proportional to the enclosed
charge, not the electric field.
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When using Equation 2.6, you should note that although the charge ¢, is the
net charge inside the gaussian surface, E represents the total electric field, which
includes contributions from charges both inside and outside the surface.

In principle, Gauss’s law can be solved for E to determine the electric field due
to a system of charges or a continuous distribution of charge. In practice, however,
this type of solution is applicable only in a limited number of highly symmetric sit-
uations. In the next section, we use Gauss’s law to evaluate the electric field for
charge distributions that have spherical, cylindrical, or planar symmetry. If one
chooses the gaussian surface surrounding the charge distribution carefully, the
integral in Equation 2.6 can be simplified.

Quick Quiz 24.2 If the net flux through a gaussian surface is zero, the following
four statements could be true. Which of the statements must be true? (a) There are
no charges inside the surface. (b) The net charge inside the surface is zero. (c) The
electric field is zero everywhere on the surface. (d) The number of electric field
lines entering the surface equals the number leaving the surface.

CONCEPTUAL EXAMPLE 2.2 Flux Due to a Point Charge

A spherical gaussian surface surrounds a point charge ¢. Describe what happens to the total flux through the surface
if (A) the charge is tripled, (B) the radius of the sphere is doubled, (C) the surface is changed to a cube, and (D) the
charge is moved to another location inside the surface.

SOLUTION

(A) The flux through the surface is tripled because flux is proportional to the amount of charge inside the surface.

(B) The flux does not change because all electric field lines from the charge pass through the sphere, regardless of
its radius.

(C) The flux does not change when the shape of the gaussian surface changes because all electric field lines from
the charge pass through the surface, regardless of its shape.

(D) The flux does not change when the charge is moved to another location inside that surface because Gauss’s law
refers to the total charge enclosed, regardless of where the charge is located inside the surface.

2.3 Application of Gauss’s Law to Various
Charge Distributions

As mentioned earlier, Gauss’s law is useful for determining electric fields when the
charge distribution is highly symmetric. The following examples demonstrate ways of
choosing the gaussian surface over which the surface integral given by Equation 2.6

PITFALL PREVENTION 2.2
Gaussian Surfaces Are Not Real

A gaussian surface is an imaginary

surface you construct to satisfy the
conditions listed here. It does not
have to coincide with a physical sur-
face in the situation.

can be simplified and the electric field determined. In choosing the surface, always
take advantage of the symmetry of the charge distribution so that £ can be removed
from the integral. The goal in this type of calculation is to determine a surface for
which each portion of the surface satisfies one or more of the following conditions:

1. The value of the electric field can be argued by symmetry to be constant over
the portion of the surface.

2. The dot product in Equation 2.6 can be expressed as a simple algebraic
product I dA because E and dA are parallel.

3. The dot product in Equation 2.6 is zero because Eind dAare perpendicular.

4. The electric field is zero over the portion of the surface.

Different portions of the gaussian surface can satisty different conditions as
long as every portion satisfies at least one condition. All four conditions are used
in examples throughout the remainder of this chapter.
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EXAMPLE 2.3 A Spherically Symmetric Charge Distribution

An insulating solid sphere of radius @ has a uniform volume - =~

charge density p and carries a total positive charge Q (Fig. FANG .
2.10). / ' \
/
l

(A) Calculate the magnitude of the electric field at a point | Gaussian
. \
outside the sphere. \ J sphere
\ /
\
N AN
SOLUTION \\\\ " Gaussian
. . . T h
Conceptualize Note how this problem differs from our () sphere (b)
previous discussion of Gauss’s law. The electric field due to Figure2.10  (Example 2.3) A uniformly charged insulating

point charges was discussed in Section 2.2. Now we are con- sphere of radius a and total charge Q. (a) For points outside the
sidering the electric field due to a distribution of charge. We  sphere, alarge, spherical gaussian surface is drawn concentric

f d the field f . distributi f ch in Ch with the sphere. In diagrams such as this one, the dotted line rep-
ound t e 1€ 'Or various 1Str:l l?‘UOI?S ol ¢ arge m ap- resents the intersection of the gaussian surface with the plane of
ter 1 by itegrating over the distribution. In this chapter, the page. (b) For points inside the sphere, a spherical gaussian
we find the electric field using Gauss’s law. surface smaller than the sphere is drawn.

Categorize Because the charge is distributed uniformly throughout the sphere, the charge distribution has spheri-
cal symmetry and we can apply Gauss’s law to find the electric field.

Analyze To reflect the spherical symmetry, let’s choose a spherical gaussian surface of radius 7, concentric with
the sphere, as shown in Figure 2.10a. For this choice, condition (2) is satisfied everywhere on the surface and
E-dA = EdA.

Replace E- dA in Gauss’s law with E dA: P, = i; E-dA = %E dA = Eg
0
By symmetry, I is constant everywhere on the surface, jL EdA = E% dA = E(4mr?) = g
which satisfies condition (1), so we can remove E from €o
the integral:
Solve for E: (1) E= 2 5 = ke% (for r > a)
4meyr r

Finalize This field is identical to that for a point charge. Therefore, the electric field due to a uniformly charged
sphere in the region external to the sphere is equivalent to that of a point charge located at the center of the sphere.

(B) Find the magnitude of the electric field at a point inside the sphere.

SOLUTION

Analyze In this case, let’s choose a spherical gaussian surface having radius r < g, concentric with the insulating
sphere (Fig. 2.10b). Let V' be the volume of this smaller sphere. To apply Gauss’s law in this situation, recognize
that the charge ¢;, within the gaussian surface of volume V' is less than Q.

Calculate g, by using ¢,,= pV": Gw = pV' = p(zmr°)

Notice that conditions (1) and (2) are satisfied every- % EdA = Ei#; dA = E(4mr?) = in

where on the gaussian surface in Figure 24.10b. Apply €o
Gauss’s law in the region r < a:

g _ PG _ p
5= S

Solve for E and substitute for ¢;,: LE=

4meyr 47re,r’ 3¢,
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Ta
Substitute p = Q/%ﬂ'a?’ and €, = 1/4mk,: (2) E= (i(zl//lﬂki = ke;Qg r (forr < a)

Finalize This result for E differs from the one obtained in part (A). It shows that £ — 0 as r — 0. Therefore, the
result eliminates the problem that would exist at r = 0 if E varied as 1/7? inside the sphere as it does outside the
sphere. That is, if E « 1/7% for r < a, the field would be infinite at » = 0, which is physically impossible.

What If? Suppose the radial position r = a is approached from inside the sphere

and from outside. Do we obtain the same value of the electric field from both

directions?

|
|
Answer Equation (1) shows that the electric field approaches a value from the i
|

outside given by
E= lim<k6%) =k
r—a r

From the inside, Equation (2) gives

N
SHPS

E = lim <kng y) =k, % a=k, % Figure 2.11 (Example 2.3) A plot
r—a a a a of Eversus rfor a uniformly charged
. . insulating sphere. The electric field
Therefore, the value of the field is the same as the surface is approached from  inside the sphere (r< a) varies line-
both directions. A plot of E versus ris shown in Figure 2.11. Notice that the mag- arly with r. The field outside the

. . . sphere (r> a) is the same as that of
nitude of the field is continuous. a point charge Q located at r = 0.

EXAMPLE 2.4 A Cylindrically Symmetric Charge Distribution

Find the electric field a distance r from a line of positive
charge of infinite length and constant charge per unit  Gaussian
length A (Fig. 2.12a). surface

SOLUTION

=

Conceptualize The line of charge is infinitely long. There-
fore, the field is the same at all points equidistant from the
line, regardless of the vertical position of the point in Fig-
ure 2.12a.

Categorize Because the charge is distributed uniformly
along the line, the charge distribution has cylindrical sym-
metry and we can apply Gauss’s law to find the electric
field.

(a) (b)

Figure 2.12 (Example 2.4) (a) An infinite line of charge sur-

Anal Th £ the ch distrib rounded by a cylindrical gaussian surface concentric with the line.
ha yze ¢ symmetry ot the charge distri ution reql’ures (b) An end view shows that the electric field at the cylindrical sur-

that E be perpendlcular to the line Charge and directed face is constant in magnitude and perpendicular to the surface.
outward as shown in Figures 2.12a and b. To reflect the
symmetry of the charge distribution, let’s choose a cylindrical gaussian surface of radius r and length ¢ that is coaxial
with the line charge. For the curved part of this surface, E is constant in magnitude and perpendicular to the surface
at each point, satisfying conditions (1) and (2). Furthermore, the flux through the ends of the gaussian cylinder is
zero because E is parallel to these surfaces. That is the first application we have seen of condition (3).

We must take the surface integral in Gauss’s law over the entire gaussian surface. Because E - dA is zero for the flat
ends of the cylinder, however, we restrict our attention to only the curved surface of the cylinder.

= re in A
Apply Gauss’s law and conditions (1) and (2) for the Oy = jg E-dA = Ef% dA = EA = T _ AL
curved surface, noting that the total charge inside our €o €
gaussian surface is A€:
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. A
Substitute the area A = 2mr{ of the curved surface: E2mre) =
€
. . A A
Solve for the magnitude of the electric field: E= = 2k,— (2.7)
21eyr r

Finalize This result shows that the electric field due to a cylindrically symmetric charge distribution varies as 1/7,
whereas the field external to a spherically symmetric charge distribution varies as 1/r% Equation 2.7 can also be
derived by direct integration over the charge distribution. (See Problem 29 in Chapter 1.)

What If? What if the line segment in this example were not infinitely long?

Answer If the line charge in this example were of finite length, the electric field would not be given by Equation
2.7. A finite line charge does not possess sufficient symmetry to make use of Gauss’s law because the magnitude of
the electric field is no longer constant over the surface of the gaussian cylinder: the field near the ends of the line
would be different from that far from the ends. Therefore, condition (1) would not be satisfied in this situation. Fur-
thermore, E is not perpendicular to the cylindrical surface at all points: the field vectors near the ends would have a
component parallel to the line. Therefore, condition (2) would not be satisfied. For points close to a finite line
charge and far from the ends, Equation 2.7 gives a good approximation of the value of the field.

It is left for you to show (see Problem 27) that the electric field inside a uniformly charged rod of finite radius
and infinite length is proportional to r.

EXAMPLE 2.5 A Plane of Charge

Find the electric field due to an infinite plane of positive charge with uniform sur-
face charge density o.

SOLUTION

Conceptualize Note that the plane of charge is infinitely large. Therefore, the
electric field should be the same at all points near the plane.

Categorize Because the charge is distributed uniformly on the plane, the charge
distribution is symmetric; hence, we can use Gauss’s law to find the electric field.

G. < 1-
Analyze By _symmetry, E must be perpendicular to the plane at all points. The Suilfl;i?n

direction of E is away from positive charges, indicating that the direction of E on .

Figure 2.13 (Example 2.5) A
one side of the plane must be opposite its direction on the other side as shown in  ((lindrical gaussian surface penetrat-
Figure 2.13. A gaussian surface that reflects the symmetry is a small cylinder ing an infinite plane of charge. The
whose axis is perpendicular to the plane and whose ends each have an area A and fluxis £A through each end of the

gaussian surface and zero through its
are equidistant from the plane. Because E is parallel to the curved surface—and 2 ved surface.
therefore perpendicular to dA everywhere on the surface—condition (3) is satis-
fied and there is no contribution to the surface integral from this surface. For the
flat ends of the cylinder, conditions (1) and (2) are satisfied. The flux through each end of the cylinder is EA; hence,
the total flux through the entire gaussian surface is just that through the ends, ®, = 2FEA.

. . . qm agA
Write Gauss’s law for this surface, noting that the ®, = 2FA = =—
enclosed charge is ¢;, = oA: € €
o
Solve for E: E= — (2.8)
2¢

Finalize Because the distance from each flat end of the cylinder to the plane does not appear in Equation 2.8, we
conclude that E = 0/2¢, at any distance from the plane. That is, the field is uniform everywhere.
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What If?  Suppose two infinite planes of charge are parallel to each other, one positively charged and the other nega-
tively charged. Both planes have the same surface charge density. What does the electric field look like in this situation?

Answer The electric fields due to the two planes add in the region between the planes, resulting in a uniform field
of magnitude o/€,, and cancel elsewhere to give a field of zero. This method is a practical way to achieve uniform
electric fields.

CONCEPTUAL EXAMPLE 2.6 Don’t Use Gauss's Law Here!

Explain why Gauss’s law cannot be used to calculate the electric field near an electric dipole, a charged disk, or a tri-
angle with a point charge at each corner.

SOLUTION

The charge distributions of all these configurations do not have sufficient symmetry to make the use of Gauss’s law
practical. We cannot find a closed surface surrounding any of these distributions that satisfies one or more of condi-
tions (1) through (4) listed at the beginning of this section.

2.4 Conductors in Electrostatic Equilibrium

As we learned in Section 1.2, a good electrical conductor contains charges (elec-
trons) that are not bound to any atom and therefore are free to move about
within the material. When there is no net motion of charge within a conductor,
the conductor is in electrostatic equilibrium. A conductor in electrostatic equilib-
rium has the following properties:

Properties of a conductor P 1. The electric field is zero everywhere inside the conductor, whether the con-
in electrostatic equilibrium ductor is solid or hollow.

2. If an isolated conductor carries a charge, the charge resides on its surface.

3. The electric field just outside a charged conductor is perpendicular to the
surface of the conductor and has a magnitude o/¢€,, where o is the surface
charge density at that point.

4. On an irregularly shaped conductor, the surface charge density is greatest at
locations where the radius of curvature of the surface is smallest.

We verify the first three properties in the discussion that follows. The fourth
property is presented here (but not verified until Chapter 3) to provide a com-
plete list of properties for conductors in electrostatic equilibrium.

We can understand the first property by considering a conducting slab placed
in an external field E (Fig. 2.14). The electric field inside the conductor must be
zero assuming electrostatic equilibrium exists. If the field were not zero, free elec-
trons in the conductor would experience an electric force (F = qf*l) and would
accelerate due to this force. This motion of electrons, however, would mean that
the conductor is not in electrostatic equilibrium. Therefore, the existence of elec-
trostatic equilibrium is consistent only with a zero field in the conductor.

Let’s investigate how this zero field is accomplished. Before the external field is
applied, free electrons are uniformly distributed throughout the conductor. When
Figure2.14 A conducting slab in the external field is applied, the free electrons accelerate to the left in Figure
an external electric field E. The 2.14, causing a plane of negative charge to accumulate on the left surface. The
charges induced on the two surfaces movement of electrons to the left results in a plane of positive charge on the right
of the slab produce an electric field .. . C .

surface. These planes of charge create an additional electric field inside the con-

that opposes the external field, giving
aresultant field of zero inside the slab. ductor that opposes the external field. As the electrons move, the surface charge

=
=
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densities on the left and right surfaces increase until the magnitude of the inter-
nal field equals that of the external field, resulting in a net field of zero inside the
conductor. The time it takes a good conductor to reach equilibrium is on the
order of 1071% s, which for most purposes can be considered instantaneous.

If the conductor is hollow, the electric field inside the conductor is also zero,
whether we consider points in the conductor or in the cavity within the conductor.
The zero value of the electric field in the cavity is easiest to argue with the concept
of electric potential, so we will address this issue in Section 3.6.

Gauss’s law can be used to verify the second property of a conductor in electro-
static equilibrium. Figure 2.15 shows an arbitrarily shaped conductor. A gaussian
surface is drawn inside the conductor and can be very close to the conductor’s sur-
face. As we have just shown, the electric field everywhere inside the conductor is
zero when it is in electrostatic equilibrium. Therefore, the electric field must be
zero at every point on the gaussian surface, in accordance with condition (4) in
Section 2.3, and the net flux through this gaussian surface is zero. From this
result and Gauss’s law, we conclude that the net charge inside the gaussian surface
is zero. Because there can be no net charge inside the gaussian surface (which is
arbitrarily close to the conductor’s surface), any net charge on the conductor must
reside on its surface. Gauss’s law does not indicate how this excess charge is dis-
tributed on the conductor’s surface, only that it resides exclusively on the surface.

Let’s verify the third property. If the field vector E had a component parallel to
the conductor’s surface, free electrons would experience an electric force and
move along the surface; in such a case, the conductor would not be in equilib-
rium. Therefore, the field vector must be perpendicular to the surface. To deter-
mine the magnitude of the electric field, we use Gauss’s law and draw a gaussian
surface in the shape of a small cylinder whose end faces are parallel to the conduc-
tor’s surface (Fig. 2.16). Part of the cylinder is just outside the conductor, and
part is inside. The field is perpendicular to the conductor’s surface from the con-
dition of electrostatic equilibrium. Therefore, condition (3) in Section 2.3 is satis-
fied for the curved part of the cylindrical gaussian surface: there is no flux
through this part of the gaussian surface because E is parallel to the surface.
There is no flux through the flat face of the cylinder inside the conductor because
here E = 0, which satisfies condition (4). Hence, the net flux through the gauss-
ian surface is equal to that through only the flat face outside the conductor, where
the field is perpendicular to the gaussian surface. Using conditions (1) and (2) for
this face, the flux is EA, where E is the electric field just outside the conductor and
A is the area of the cylinder’s face. Applying Gauss’s law to this surface gives

in A
¢E=§EdA=EA=q =22

€ €y

where we have used ¢;, = gA. Solving for E gives for the electric field immediately
outside a charged conductor

E= (2.9)

o
€

Quick Quiz 2.3  Your younger brother likes to rub his feet on the carpet and
then touch you to give you a shock. While you are trying to escape the shock treat-
ment, you discover a hollow metal cylinder in your basement, large enough to
climb inside. In which of the following cases will you not be shocked? (a) You
climb inside the cylinder, making contact with the inner surface, and your charged
brother touches the outer metal surface. (b) Your charged brother is inside touch-
ing the inner metal surface and you are outside, touching the outer metal surface.
(c) Both of you are outside the cylinder, touching its outer metal surface but not
touching each other directly.
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Gaussian
surface

Figure 2.15 A conductor of arbi-
trary shape. The broken line repre-
sents a gaussian surface that can be
just inside the conductor’s surface.
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Figure2.16 A gaussian surface in
the shape of a small cylinder is used
to calculate the electric field immedi-
ately outside a charged conductor.
The flux through the gaussian sur-
face is KA. Remember that E is zero
inside the conductor.
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3 Electric Potential

The concept of potential energy was introduced in Chapter 7 in connection with
such conservative forces as the gravitational force and the elastic force exerted by
a spring. By using the law of conservation of energy when solving various problems
in mechanics, we were able to avoid working directly with forces. The concept of
potential energy is also of great value in the study of electricity. Because the elec-
trostatic force is conservative, electrostatic phenomena can be conveniently
described in terms of an electric potential energy. This idea enables us to define a
quantity known as electric potential. Because the electric potential at any point in an
electric field is a scalar quantity, we can use it to describe electrostatic phenomena
more simply than if we were to rely only on the electric field and electric forces.
The concept of electric potential is of great practical value in the operation of

electric circuits and devices that we will study in later chapters.

3.1 Electric Potential and
Potential Difference

When a test charge ¢, is placed in an electric field E created by some source
charge distribution, the electric force acting on the test charge is ¢E. The force
qoE is conservative because the force between charges described by Coulomb’s law
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is conservative. When the test charge is moved in the field by some external agent,
the work done by the field on the charge is equal to the negative of the work done
by the external agent causing the displacement. This situation is analogous to that
of lifting an object with mass in a gravitational field: the work done by the external
agent is mgh, and the work done by the gravitational force is —mgh.

When analyzing electric and magnetic fields, it is common practice to use the
notation ds to represent an infinitesimal displacement vector that is oriented tan-
gent to a path through space. This path may be straight or curved, and an integral
performed along this path is called either a path integral or a line integral (the two
terms are synonymous).

For an infinitesimal displacement ds of a point charge ¢, immersed in an elec-
tric field, the work done by the electric field on the charge is F-ds = qOE ds. As
this amount of work is done by the field, the potential energy of the charge-field

system is changed by an amount dU = —qOE ds. For a finite displacement of the
charge from point ® to point ®), the change in potential energy of the system AU =
U - U@ is
AU= —ygq, J E-ds (3.1) <« Change in electric potential
® energy of a system

The integration is performed along the path that ¢, follows as it moves from ® to
®. Because the force qOE is conservative, this line integral does not depend on the
path taken from ® to ®.

For a given position of the test charge in the field, the charge—field system has
a potential energy U relative to the configuration of the system that is defined as
U = 0. Dividing the potential energy by the test charge gives a physical quantity
that depends only on the source charge distribution and has a value at every point
in an electric field. This quantity is called the electric potential (or simply the
potential) V: The potential is characteristic of the

field only, independent of a charged
U test particle that may be placed in
9o

PITFALL PREVENTION 3.1
Potential and Potential Energy

V= (3.2) the field. Potential energy is character-

ustic of the charge-field system due to

. . . . . . an interaction between the field
Because potential energy is a scalar quantity, electric potential also is a scalar and a charged particle placed in

quantity. the field.
As described by Equation 25.1, if the test charge is moved between two positions

® and in an electric field, the charge—field system experiences a change in

potential energy. The potential difference AV = Vg — Vg between two points @

and ® in an electric field is defined as the change in potential energy of the sys-

tem when a test charge ¢, is moved between the points divided by the test charge:

E-ds (3.3) < Potential difference
® between two points

Just as with potential energy, only differences in electric potential are meaningful.
We often take the value of the electric potential to be zero at some convenient
point in an electric field.

Potential difference should not be confused with difference in potential energy.
The potential difference between ® and depends only on the source charge
distribution (consider points ® and without the presence of the test charge),
whereas the difference in potential energy exists only if a test charge is moved
between the points.

If an external agent moves a test charge from ® to without changing the
kinetic energy of the test charge, the agent performs work that changes the poten-
tial energy of the system: W = AU. Imagine an arbitrary charge ¢ located in an
electric field. From Equation 25.3, the work done by an external agent in moving
a charge ¢ through an electric field at constant velocity is

W= gAV (3.4)
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PITFALL PREVENTION 3.2
Voltage

A variety of phrases are used to
describe the potential difference
between two points, the most com-
mon being voltage, arising from
the unit for potential. A voltage
applied to a device, such as a tele-
vision, or across a device is the
same as the potential difference
across the device.

PITFALL PREVENTION 3.3
The Electron Volt

The electron volt is a unit of energy,
NOT of potential. The energy of
any system may be expressed in eV,
but this unit is most convenient for
describing the emission and absorp-
tion of visible light from atoms.
Energies of nuclear processes are
often expressed in MeV.

Figure3.1  (Quick Quiz 3.1) Two
points in an electric field.

Potential difference »
between two pointsin a
uniform electric field

Electric Potential
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Because electric potential is a measure of potential energy per unit charge, the
SI unit of both electric potential and potential difference is joules per coulomb,
which is defined as a volt (V):

1V=1J/C

That is, 1 ] of work must be done to move a 1-C charge through a potential differ-
ence of 1 V.

Equation 3.3 shows that potential difference also has units of electric field
times distance. It follows that the SI unit of electric field (N/C) can also be
expressed in volts per meter:

1N/C =1V/m

Therefore, we can interpret the electric field as a measure of the rate of change
with position of the electric potential.

A unit of energy commonly used in atomic and nuclear physics is the electron
volt (eV), which is defined as the energy a charge—field system gains or loses when
a charge of magnitude e (that is, an electron or a proton) is moved through a
potential difference of 1 V. Because 1 V = 1 J/C and the fundamental charge is
1.60 X 10719 C, the electron volt is related to the joule as follows:

1eV=160x10"9C-V=160x10""] (3.5)

For instance, an electron in the beam of a typical television picture tube may have
a speed of 3.0 X 107 m/s. This speed corresponds to a kinetic energy equal to
4.1 X 107'°J, which is equivalent to 2.6 X 10 eV. Such an electron has to be accel-
erated from rest through a potential difference of 2.6 kV to reach this speed.

Quick Quiz 3.1 In Figure 3.1, two points ® and are located within a
region in which there is an electric field. (i) How would you describe the potential
difference AV = Vg — Vg? (a) It is positive. (b) It is negative. (c) It is zero. (ii) A
negative charge is placed at @ and then moved to ®. How would you describe the
change in potential energy of the charge-field system for this process? Choose
from the same possibilities.

3.2 Potential Difference in
a Uniform Electric Field

Equations 3.1 and 3.3 hold in all electric fields, whether uniform or varying, but
they can be simplified for a uniform field. First, consider a uniform electric field
directed along the negative y axis as shown in Active Figure 3.2a. Let’s calculate
the potential difference between two points ® and separated by a distance
|S| = d, where s is parallel to the field lines. Equation 3.3 gives

V—V@=AV=—J E-d§=—J (EcosO")ds:—J E ds
® ® ®

Because FE is constant, it can be removed from the integral sign, which gives

AV=— j ds = —Ed (3.6)

®

The negative sign indicates that the electric potential at point is lower than at
point ®@; that is, Ve < V. Electric field lines always point in the direction of
decreasing electric potential as shown in Active Figure 3.2a.

Now suppose a test charge ¢, moves from ® to ®. We can calculate the change
in the potential energy of the charge—field system from Equations 3.3 and 3.6:

AU= gy AV = —q,Ed (3.7)
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ACTIVE FIGURE 3.2

(a) When the electric field E is directed downward, point
is at a lower electric potential than point ®. When a
positive test charge moves from point ® to point ®, the
clectric potential energy of the charge—field system
decreases. (b) When an object of mass m moves downward
) C) ip the directiQn of the grgvitatiopal ﬁf:ld g, the gravita-
tional potential energy of the object—field system decreases.
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\
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(
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le——— 2 ——>

Sign in at www.thomsonedu.com and go to ThomsonNOW
to observe and compare the motion of the charged object
in an electric field and an object with mass in a gravita-
tional field.

=)
ua)

() (b)

This result shows that if ¢, is positive, then U is negative. Therefore, a system con-
sisting of a positive charge and an electric field loses electric potential energy
when the charge moves in the direction of the field. Equivalently, an electric field
does work on a positive charge when the charge moves in the direction of the elec-
tric field. (That is analogous to the work done by the gravitational field on a
falling object as shown in Active Fig. 3.2b.) If a positive test charge is released
from rest in this electric field, it experiences an electric force qu in the direction
of E (downward in Active Fig. 3.2a). Therefore, it accelerates downward, gaining
kinetic energy. As the charged particle gains kinetic energy, the charge—field sys-
tem loses an equal amount of potential energy. This equivalence should not be
surprising; it is simply conservation of mechanical energy in an isolated system as
introduced in Chapter 8.

If ¢, is negative, then AU in Equation 3.7 is positive and the situation is
reversed. A system consisting of a negative charge and an electric field gains electric
potential energy when the charge moves in the direction of the field. If a negative
charge is released from rest in an electric field, it accelerates in a direction oppo-
site the direction of the field. For the negative charge to move in the direction of
the field, an external agent must apply a force and do positive work on the charge.

Now consider the more general case of a charged particle that moves between
® and in a uniform electric field such that the vector s is not parallel to the
field lines as shown in Figure 3.3. In this case, Equation 3.3 gives

—) = =
AV= —J E-ds = —E-J ds = —E-%

®

(3.8)

where again E was removed from the integral because it is constant. The change in
potential energy of the charge-field system is

AU= g, AV=—gE-§ (3.9)

Finally, we conclude from Equation 3.8 that all points in a plane perpendicular
to a uniform electric field are at the same electric potential. We can see that in Fig-
ure 3.3, where the potential difference Vg — Vi is equal to the potential differ-
ence Vg — V® (Prove this fact to yourself by working out two dot products for
E-s: one for s Sa_@> where the angle 6 between E and § is arbitrary as shown in
Figure 3.3, and one for Sg_gwhere 6 = 0.) Therefore, Vg = Vg. The name
equipotential surface is given to any surface consisting of a continuous distribu-
tion of points having the same electric potential.

The equipotential surfaces associated with a uniform electric field consist of a
family of parallel planes that are all perpendicular to the field. Equipotential sur-
faces associated with fields having other symmetries are described in later sections.

Quick Quiz3.2  The labeled points in Figure 3.4 are on a series of equipoten-
tial surfaces associated with an electric field. Rank (from greatest to least) the
work done by the electric field on a positively charged particle that moves from ®
to ®, from ® to ©, from © to ®, and from © to ®.
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Figure3.3 A uniform electric field
directed along the positive x axis.
Point ® is at a lower electric poten-
tial than point ®. Points ® and ©
are at the same electric potential.

<« Change in potential energy
when a charged particle is
moved in a uniform electric
field

W _®

8V ®
)

7V

6V

Figure3.4  (Quick Quiz 3.2) Four

equipotential surfaces.
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EXAMPLE 3.1 The Electric Field Between Two Parallel Plates of Opposite Charge

A battery has a specified potential difference AV between its terminals and estab-
lishes that potential difference between conductors attached to the terminals. A
12-V battery is connected between two parallel plates as shown in Figure 3.5. The

separation between the plates is d = 0.30 cm, and we assume the electric field
between the plates to be uniform. (This assumption is reasonable if the plate sepa-
ration is small relative to the plate dimensions and we do not consider locations
near the plate edges.) Find the magnitude of the electric field between the plates.

SOLUTION

Conceptualize In earlier chapters, we investigated the uniform electric field
between parallel plates. The new feature to this problem is that the electric field is
related to the new concept of electric potential.

Categorize The electric field is evaluated from a relationship between field and

Figure 3.5
battery connected to two parallel
plates. The electric field between the
plates has a magnitude given by the
potential difference AV divided by
the plate separation d.

(Example 3.1) A 12-V

potential given in this section, so we categorize this example as a substitution problem.

‘VB - VA| _

12V

Use Equation 3.6 to evaluate the magnitude of the E=
electric field between the plates:

d 030 X10%m

= 4.0 % 10°V/m

The configuration of plates in Figure 3.5 is called a parallel-plate capacitor and is examined in greater detail in

Chapter 4.

EXAMPLE 3.2 Motion of a Proton in a Uniform Electric Field

A proton is released from rest at point ® in a uniform electric field that has a
magnitude of 8.0 X 10* V/m (Fig. 3.6). The proton undergoes a displacement of
0.50 m to point ® in the direction of E. Find the speed of the proton after com-
pleting the 0.50 m displacement.

SOLUTION

Conceptualize Visualize the proton in Figure 3.6 moving downward through
the potential difference. The situation is analogous to an object falling through a
gravitational field.

Categorize The system of the proton and the two plates in Figure 3.6 does not
interact with the environment, so we model it as an isolated system.

Analyze Use Equation 3.6 to find the potential dif-
ference between points ® and ®:

Write the appropriate reduction of Equation 8.2, the
conservation of energy equation, for the isolated sys-
tem of the charge and the electric field:

Substitute the changes in energy for both terms:

Solve for the final speed of the proton:

=

ENENERERE

Figure3.6  (Example 3.2) A pro-
ton accelerates from ® to ® in the
direction of the electric field.

AV=—Ed= —(8.0 X 10'V/m)(0.50 m) = —4.0 X 10*V

AK+ AU=0

Gmv® — 0) + e AV=10

—2¢ AV
v=.—2=2Y
m



Chapter 3 Electric Potential

37

Substitute numerical values:

S
Il

\/—2(1.6 X 10719C)(—4.0 X 10'V)

1.67 X 107%" kg

2.8 X 10° m/s

Finalize Because AVis negative, AU is also negative. The negative value of AU means the potential energy of the
system decreases as the proton moves in the direction of the electric field. As the proton accelerates in the direction
of the field, it gains kinetic energy and the system loses electric potential energy at the same time.

Figure 3.6 is oriented so that the proton falls downward. The proton’s motion is analogous to that of an object
falling in a gravitational field. Although the gravitational field is always downward at the surface of the Earth, an elec-
tric field can be in any direction, depending on the orientation of the plates creating the field. Therefore, Figure
3.6 could be rotated 90° or 180° and the proton could fall horizontally or upward in the electric field!

3.3 Electric Potential and Potential
Energy Due to Point Charges

As discussed in Section 3.4, an isolated positive point charge ¢ produces an elec-
tric field directed radially outward from the charge. To find the electric potential
at a point located a distance r from the charge, let’s begin with the general expres-
sion for potential difference,

—)
V_V®:_j E'd§
®

where ® and ® are the two arbitrary points shown in Figure 3.7. At any point in
space, the electric field due to the point charge is E = (k,¢/r*)% (Eq. 3.9), where
T is a unit vector directed from the charge toward the point. The quantity E-ds
can be expressed as

E-ds=h 7. ds
r

Because the magnitude of t is 1, the dot product r - ds = ds cos 6, where 6 is the
angle between r and ds. Furthermore, ds cos 6 is the projection of ds onto F;
therefore, ds cos § = dr. That is, any displacement ds along the path from point ®
to point ® produces a change drin the magnitude of ¥, the position vector of the
point relative to the charge creating the field. Making these substitutions, we find
that E-ds = (k,g/r*)dr; hence, the expression for the potential difference
becomes

® dr '®
Vo — Va = — kg F_kf
7@ T@
1 1
V - V@ = keql: - % (3.10)

Equation 3.10 shows us that the integral of E - dsis independent of the path
between points ® and ®. Multiplying by a charge ¢, that moves between points ®
and ®, we see that the integral of qoﬁ - ds is also independent of path. This latter
integral, which is the work done by the electric force, shows that the electric force
is conservative (see Section 7.7). We define a field that is related to a conservative
force as a conservative field. Therefore, Equation 3.10 tells us that the electric
field of a fixed point charge is conservative. Furthermore, Equation 3.10
expresses the important result that the potential difference between any two

Figure3.7  The potential differ-
ence between points @ and ® due to
a point charge ¢ depends only on the
initial and final radial coordinates 7
and 7g. The two dashed circles repre-
sent intersections of spherical equi-
potential surfaces with the page.
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PITFALL PREVENTION 3.4
Similar Equation Warning

Do not confuse Equation 3.11 for
the electric potential of a point
charge with Equation 1.9 for the
clectric field of a point charge.
Potential is proportional to 1/7,
whereas the field is proportional to
1/72. The effect of a charge on the
space surrounding it can be
described in two ways. The charge
sets up a vector electric field E,
which is related to the force experi-
enced by a test charge placed in
the field. It also sets up a scalar
potential V, which is related to the
potential energy of the two-charge
system when a test charge is placed
in the field.

Electric potential dueto »
several point charges

Electric Potential

38

/
/ 

Electric potential (V)
<

Electric potential (V)
n

Yy 2 \
07
x o
(a) (b)
Figure3.8  (a) The electric potential in the plane around a single positive charge is plotted on the

vertical axis. (The electric potential function for a negative charge would look like a hole instead of a
hill.) The red line shows the 1/rnature of the electric potential as given by Equation 25.11. (b) The
electric potential in the plane containing a dipole.

points ® and in a field created by a point charge depends only on the radial
coordinates 7g and 7g. It is customary to choose the reference of electric potential
for a point charge to be V= 0 at 1z = . With this reference choice, the electric
potential created by a point charge at any distance r from the charge is

V==rk

EEES)

(3.11)

e

Figure 3.8a shows a plot of the electric potential on the vertical axis for a posi-
tive charge located in the xy plane. Consider the following analogy to gravitational
potential. Imagine trying to roll a marble toward the top of a hill shaped like the
surface in Figure 3.8a. Pushing the marble up the hill is analogous to pushing
one positively charged object toward another positively charged object. Similarly,
the electric potential graph of the region surrounding a negative charge is analo-
gous to a “hole” with respect to any approaching positively charged objects. A
charged object must be infinitely distant from another charge before the surface
in Figure 3.8a is “flat” and has an electric potential of zero.

We obtain the electric potential resulting from two or more point charges by
applying the superposition principle. That is, the total electric potential at some
point P due to several point charges is the sum of the potentials due to the individ-
ual charges. For a group of point charges, we can write the total electric potential
at Pas

V= k}j% (3.12)

where the potential is again taken to be zero at infinity and 7, is the distance from
the point P to the charge ¢; Notice that the sum in Equation 3.12 is an algebraic
sum of scalars rather than a vector sum (which we use to calculate the electric
field of a group of charges). Therefore, it is often much easier to evaluate V than
E. The electric potential around a dipole is illustrated in Figure 3.8b. Notice the
steep slope of the potential between the charges, representing a region of strong
electric field.

Now consider the potential energy of a system of two charged particles. If V; is
the electric potential at a point P due to charge ¢,, the work an external agent
must do to bring a second charge ¢, from infinity to P without acceleration is ¢, V,.
This work represents a transfer of energy into the system, and the energy appears
in the system as potential energy U when the particles are separated by a distance
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(a) (b)
ACTIVE FIGURE 3.9

(a) If two point charges are separated by a distance 7,5, the potential energy of the pair of charges is
given by k,q,4,/ 1. (b) If charge ¢, is removed, a potential k,q,/ 1, exists at point P due to charge ¢,.

Sign in at www.thomsonedu.com and go to ThomsonNOW to move charge ¢, or point Pand see the
result on the electric potential energy of the system for part (a) and the electric potential due to charge
gy for part (b).

1o (Active Fig. 3.9a). Therefore, the potential energy of the system can be
expressed as!
0192

U=k,—
N2

(3.13)
If the charges are of the same sign, Uis positive. Positive work must be done by an
external agent on the system to bring the two charges near each other (because
charges of the same sign repel). If the charges are of opposite sign, U is negative.
Negative work is done by an external agent against the attractive force between the
charges of opposite sign as they are brought near each other; a force must be
applied opposite the displacement to prevent ¢, from accelerating toward ¢,.

In Active Figure 3.9b, we have removed the charge ¢,. At the position this
charge previously occupied, point P, Equations 3.2 and 3.13 can be used to
define a potential due to charge ¢, as V= U/¢q, = k,q,/ 1. This expression is con-
sistent with Equation 3.11.

If the system consists of more than two charged particles, we can obtain the
total potential energy of the system by calculating U for every pair of charges and
summing the terms algebraically. For example, the total potential energy of the
system of three charges shown in Figure 3.10 is

. kﬂ(‘lﬂz KN qzqs)

N2 N3 To3

(3.14)

Physically, this result can be interpreted as follows. Imagine ¢, is fixed at the posi-
tion shown in Figure 3.10 but ¢, and ¢, are at infinity. The work an external
agent must do to bring ¢, from infinity to its position near ¢, is k,q,q./ 19, which is
the first term in Equation 3.14. The last two terms represent the work required to
bring ¢4 from infinity to its position near ¢; and ¢,. (The result is independent of
the order in which the charges are transported.)

Quick Quiz 3.3 In Active Figure 3.9a, take ¢, to be a negative source charge
and ¢, to be the test charge. (i) If ¢, is initially positive and is changed to a charge
of the same magnitude but negative, what happens to the potential at the position
of ¢, due to ¢? (a) It increases. (b) It decreases. (c) It remains the same.
(ii) When ¢, is changed from positive to negative, what happens to the potential
energy of the two-charge system? Choose from the same possibilities.

! The expression for the electric potential energy of a system made up of two point charges, Equation
3.13, is of the same form as the equation for the gravitational potential energy of a system made up of
two point masses, —Gmymy/r (see Chapter 13). The similarity is not surprising considering that both
expressions are derived from an inverse-square force law.
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PITFALL PREVENTION 3.5
Which Work?

There is a difference between work
done by one member of a system on
another member and work done on a
system by an external agent. In the dis-
cussion related to Equation 3.14,
we consider the group of charges
to be the system; an external agent
is doing work on the system to
move the charges from an infinite
separation to a small separation.

9 // \\
// \
g \23
- \
~—_ \
T To-o A
"0
93
Figure3.10  Three point charges

are fixed at the positions shown. The
potential energy of this system of
charges is given by Equation 25.14.
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EXAMPLE 3.3 The Electric Potential Due to Two Point Charges

As shown in Figure 3.11a, a charge ¢ = 2.00 uC is 6.00 Cy 6.00 Cy
located at the origin and a charge ¢, = —6.00 uC is e “—‘J} e ’LJ>
located at (0, 3.00) m.
3.00 m 3.00 m
(A) Find the total electric potential due to these charges l i
. . Q Py 1y Q O—x
at the point P, whose coordinates are (4.00, 0) m. 2.00 uC L 2.00 uC 3.00 uC
4.00 m —>] «—4.00 m —>|
SOLUTION @ ®
. . Figure 3.11 (Example 3.3) (a) The electric potential at P due to
Conceptualize Recognlze that the 2.00 wC and the two charges ¢, and ¢, is the algebraic sum of the potentials due
—6.00 uC charges are source charges and set up an elec- to the individual charges. (b) A third charge ¢; = 3.00 uC is brought

. . . . fi infinity t int P.
tric field as well as a potential at all points in space, rom intinity to poin

including point P.

Categorize The potential is evaluated using an equation developed in this chapter, so we categorize this example as
a substitution problem.

q q:
Use Equation 3.12 for the system of two source Ve = kp(r1 + TZ)
charges: ! 2
2.00 X 107°C —6.00 X 107°C
Substitute numerical values: Vo= (8.99 X 10°N - mQ/CQ)( + >
4.00 m 5.00 m

= —6.29 X 10°V

(B) Find the change in potential energy of the system of two charges plus a third charge ¢; = 3.00 wC as the latter
charge moves from infinity to point P (Fig. 3.11b).

SOLUTION

Assign U; = 0 for the system to the configuration U= qsVp
in which the charge ¢, is at infinity. Use Equa-

tion 3.2 to evaluate the potential energy for the

configuration in which the charge is at P:

Substitute numerical values to evaluate AU AU= U= U= ¢;Vp— 0= (3.00 X 107°C)(—6.29 X 10°V)
= —1.89 X 107?]

Therefore, because the potential energy of the system has decreased, an external agent has to do positive work to
remove the charge from point P back to infinity.

What If?  You are working through this example with a classmate and she says, “Wait a minute! In part (B), we
ignored the potential energy associated with the pair of charges ¢, and ¢,!” How would you respond?

Answer Given the statement of the problem, it is not necessary to include this potential energy because part (B)
asks for the change in potential energy of the system as ¢, is brought in from infinity. Because the configuration of
charges ¢; and ¢, does not change in the process, there is no AU associated with these charges. Had part (B) asked to
find the change in potential energy when all three charges start out infinitely far apart and are then brought to the
positions in Figure 3.11b, however, you would have to calculate the change using Equation 3.14.
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3.4 Obtaining the Value of the Electric Field
from the Electric Potential

The electric field E and the electric potential V are related as shown in Equation
3.3, which tells us how to find AV if the electric field E is known. We now show
how to calculate the value of the electric field if the electric potential is known in a
certain region.

From Equation 3.3, we can express the potential difference
points a distance ds apart as

dV between two

Av=—E-ds (3.15)

If the electric field has only one component £, then E-ds = E, dx. Therefore,
Equation 3.15 becomes dV = —E_ dx, or

dVv
E, = ——
dx

(3.16)
That is, the x component of the electric field is equal to the negative of the deriva-
tive of the electric potential with respect to x. Similar statements can be made
about the y and z components. Equation 3.16 is the mathematical statement of
the electric field being a measure of the rate of change with position of the elec-
tric potential as mentioned in Section 3.1.

Experimentally, electric potential and position can be measured easily with a
voltmeter (see Section 6.5) and a meterstick. Consequently, an electric field can
be determined by measuring the electric potential at several positions in the field
and making a graph of the results. According to Equation 3.16, the slope of a
graph of Vversus x at a given point provides the magnitude of the electric field at
that point.

When a test charge undergoes a displacement ds along an equipotential sur-
face, then dV'= 0 because the potential is constant along an equipotential surface.
From Equation 3.15, we see that dV = —E- ds = 0; therefore, E must be perpen-
dicular to the displacement along the equipotential surface. This result shows that
the equipotential surfaces must always be perpendicular to the electric field lines
passing through them.

As mentioned at the end of Section 3.2, the equipotential surfaces associated
with a uniform electric field consist of a family of planes perpendicular to the
field lines. Figure 3.12a shows some representative equipotential surfaces for this
situation.

If the charge distribution creating an electric field has spherical symmetry such
that the volume charge den51ty depends only on the radial distance 7, the electric
field is radial. In this case, E-ds = E, dr, and we can express dVas dV = —E, dr
Therefore,

E = _4v (3.17)
dr
For example, the electric potential of a point charge is V = k,g/r Because Vis a
function of r only, the potential function has spherical symmetry. Applying Equa-
tion 3.17, we find that the electric field due to the point charge is E, = kq/r% a
familiar result. Notice that the potential changes only in the radial direction, not
in any direction perpendicular to r. Therefore, V (like E,) is a function only of 7,
which is again consistent with the idea that equipotential surfaces are perpendicu-
lar to field lines. In this case, the equipotential surfaces are a family of spheres
concentric with the spherically symmetric charge distribution (Fig. 3.12b). The
equipotential surfaces for an electric dipole are sketched in Figure 3.12c.

(c)

Figure3.12  Equipotential surfaces
(the dashed blue lines are intersec-
tions of these surfaces with the page)
and electric field lines for (a) a uni-
form electric field produced by an
infinite sheet of charge, (b) a point
charge, and (c) an electric dipole. In
all cases, the equipotential surfaces
are perpendicular to the electric field
lines at every point.



Chapter 3 Electric Potential 42

In general, the electric potential is a function of all three spatial coordinates. If
V(r) is given in terms of the Cartesian coordinates, the electric field components
E,, E, and E, can readily be found from V(x, y, 2) as the partial derivatives®
v v %
Finding the electric field » E,=—— E =——— E,=—

x y z (3'18)
from the potential 9x 9y 9z

Quick Quiz 3.4 1In a certain region of space, the electric potential is zero
everywhere along the x axis. From this information, you can conclude that the x
component of the electric field in this region is (a) zero, (b) in the +x direction,
or (c) in the —x direction.

EXAMPLE 3.4 The Electric Potential Due to a Dipole

An electric dipole consists of two charges of equal magnitude and opposite sign Y
separated by a distance 2a as shown in Figure 3.13. The dipole is along the x axis

and is centered at the origin. a 5 @
(A) Calculate the electric potential at point P on the y axis. Q Q R .
q -9

SOLUTION

f—— x ——>

Conceptualize Compare this situation to that in part (B) of Example 1.5. It is
the same situation, but here we are seeking the electric potential rather than the

. Figure 3.13 (Example 25.4) An
electric field.

electric dipole located on the x axis.

Categorize Because the dipole consists of only two source charges, the electric
potential can be evaluated by summing the potentials due to the individual charges.

Analyze Use Equation 3.12 to find the electric poten- Vp= keE@ = ke( 1 + (—C] ( ) =0
tial at P due to the two charges: i T Va® + y? Va? + y?

(B) Calculate the electric potential at point R on the +x axis.

SOLUTION
i - 2k, qa

Use Equation 3.12 to find the electric potential at R Vi = kezz = ke< 1 + 1 > = _27112

7 i x—a x+a X" — a
due to the two charges: !
(C) Calculate Vand E, at a point on the x axis far from the dipole.
SOLUTION

) 2k qa 2k qa
For point R far from the dipole such that x =>> a, neglect Ve = 11>§1 e 2)T T e (x > a)

@ in the denominator of the answer to part (B) and
write Vin this limit:

N
2 In vector notation, E is often written in Cartesian coordinate systems as

- 20 20 A0
E=—VV=—<if+jf+kf>V
dx ay dz

where V is called the gradient operator.
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: : av_ _d( _2kgqa
Use Equation 3.16 and this result to calculate the x E, = I G
component of the electric field at a point on the x axis X X X
far from the dipole: d/1 4k,qa
leqa; )= 3 (x > a)
x b

Finalize The potentials in parts (B) and (C) are negative because points on the +x axis are closer to the negative
charge than to the positive charge. For the same reason, the x component of the electric field is negative. Compare
the result of part (C) to that of Problem 18 in Chapter 1, in which the electric field on the x axis due to a dipole
was calculated directly.

What If? Suppose you want to find the electric field at a point P on the y axis. In part (A), the electric potential was
found to be zero for all values of y. Is the electric field zero at all points on the y axis?

Answer No. That there is no change in the potential along the y axis tells us only that the y component of the elec-
tric field is zero. Look back at Figure 1.13 in Example 1.5. We showed there that the electric field of a dipole on
the y axis has only an x component. We could not find the x component in the current example because we do not
have an expression for the potential near the y axis as a function of «x.

3.5 Electric Potential Due to Continuous
Charge Distributions

The electric potential due to a continuous charge distribution can be calculated in
two ways. If the charge distribution is known, we consider the potential due to a
small charge element dg, treating this element as a point charge (Fig. 3.14). From
Equation 3.11, the electric potential dV at some point P due to the charge ele-
ment dgq is

dq
v =k~ (3.19)

where ris the distance from the charge element to point P. To obtain the total
potential at point P, we integrate Equation 3.19 to include contributions from all

elements of the charge distribution. Because each element is, in general, a differ-
ent distance from point P and £, is constant, we can express V as

d
V=rk, J 7q (3.20) < Electric potential due to
a continuous charge
In effect, we have replaced the sum in Equation 25.12 with an integral. In this distribution

expression for V, the electric potential is taken to be zero when point Pis infinitely
far from the charge distribution.

If the electric field is already known from other considerations such as Gauss’s dgq
law, we can calculate the electric potential due to a continuous charge distribution ﬂ
using Equation 3.3. If the charge distribution has sufficient symmetry, we first ,
evaluate E using Gauss’s law and then substitute the value obtained into Equation p’
3.3 to determine the potential difference AV between any two points. We then //
choose the electric potential V to be zero at some convenient point. y{

r
Calculating Electric Potential
The following procedure is recommended for solving problems that involve the P
determination of an electric potential due to a charge distribution. Figure3.14  The electric potential
at point P due to a continuous charge

1. Conceptualize. Think carefully about the individual charges or the charge distri-  distribution can be calculated by

bution you have in the problem and imagine what type of potential would be  dividing the charge distribution into

. elements of charge dg and summing
created. Appeal to any symmetry in the arrangement of charges to help you ¢ electric potential contributions

visualize the potential. over all elements.
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Categorize. Are you analyzing a group of individual charges or a continuous
charge distribution? The answer to this question will tell you how to proceed in
the Analyze step.

Analyze. When working problems involving electric potential, remember that it
is a scalar quantity, so there are no components to consider. Therefore, when
using the superposition principle to evaluate the electric potential at a point,
simply take the algebraic sum of the potentials due to each charge. You must
keep track of signs, however.

As with potential energy in mechanics, only changes in electric potential are
significant; hence, the point where the potential is set at zero is arbitrary. When
dealing with point charges or a finite-sized charge distribution, we usually
define V= 0 to be at a point infinitely far from the charges. If the charge distri-
bution itself extends to infinity, however, some other nearby point must be
selected as the reference point.

(@) If you are analyzing a group of individual charges: Use the superposition princi-
ple, which states that when several point charges are present, the resultant
potential at a point in space is the algebraic sum of the individual potentials
due to the individual charges (Eq. 3.12). Example 25.4 demonstrated this
procedure.

(b) If you are analyzing a continuous charge distribution: Replace the sums for evalu-
ating the total potential at some point P from individual charges by integrals
(Eq. 3.20). The charge distribution is divided into infinitesimal elements of
charge dg located at a distance r from the point P. An element is then
treated as a point charge, so the potential at P due to the element is dV =
k, dg/r. The total potential at P is obtained by integrating over the entire
charge distribution. For many problems, it is possible in performing the
integration to express dg and rin terms of a single variable. To simplify the
integration, give careful consideration to the geometry involved in the prob-
lem. Examples 3.5 through 3.7 demonstrate such a procedure.

To obtain the potential from the electric field: Another method used to obtain the
potential is to start with the definition of the potential difference given by Equa-
tion 3.3. If Eis known or can be obtained easily (such as from Gauss’s law),
the line integral of E - ds can be evaluated.

Finalize. Check to see if your expression for the potential is consistent with the
mental representation and reflects any symmetry you noted previously. Imagine
varying parameters such as the distance of the observation point from the
charges or the radius of any circular objects to see if the mathematical result
changes in a reasonable way.

EXAMPLE 3.5 Electric Potential Due to a Uniformly Charged Ring

(A) Find an expression for the electric potential at a point P located on the per-
pendicular central axis of a uniformly charged ring of radius « and total charge Q.

SOLUTION

Conceptualize Study Figure 3.15, in which the ring is oriented so that its plane
is perpendicular to the x axis and its center is at the origin.

Categorize Because the ring consists of a continuous distribution of charge
rather than a set of discrete charges, we must use the integration technique repre-
sented by Equation 3.20 in this example.

Analyze We take point P to be at a distance x from the center of the ring as
shown in Figure 3.15. Notice that all charge elements dg are at the same distance
Va? + x? from point P.

Figure 3.15 (Example 3.5) A uni-
formly charged ring of radius a lies in
a plane perpendicular to the x axis.
All elements dq of the ring are the
same distance from a point Plying
on the x axis.
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d d
Use Equation 3.20 to express Vin terms of the geometry: V==k, J @ k, J B
r 2%+ x2
. . 9 |, 9 - kg k?Q
Noting that @ and x are constants, bring Va2 + x? in V=——— | d= —F/—— (3.21)
front of the integral sign and integrate over the ring: a’ + x° a® + x°
(B) Find an expression for the magnitude of the electric field at point P.
SOLUTION
. P~ av d 2 2\ —1/2
From symmetry, notice that along the x axis E can have E, = Tk —nga (a® + x%)

only an x component. Therefore, apply Equation 3.16
to Equation 3.21:

—kQ(=1) (@ + ) (23)

_ k,x

Finalize The only variable in the expressions for Vand E, is x. That is not surprising because our calculation is valid
only for points along the x axis, where y and z are both zero. This result for the electric field agrees with that
obtained by direct integration (see Example 1.7).

EXAMPLE 3.6 Electric Potential Due to a Uniformly Charged Disk

A uniformly charged disk has radius R and surface charge density o.

(A) Find the electric potential at a point P along the perpendicular central
axis of the disk.

SOLUTION

Conceptualize If we consider the disk to be a set of concentric rings, we can
use our result from Example 3.5—which gives the potential created by a ring
of radius e—and sum the contributions of all rings making up the disk.

Figure 3.16 (Example 25.6) A uni-
formly charged disk of radius R lies in a
plane perpendicular to the x axis. The cal-
Categorize Because the disk is continuous, we evaluate the potential due to  culation of the electric potential at any

a continuous charge distribution rather than a group of individual charges. point Pon the xaxis is simplified by divid-
ing the disk into many rings of radius rand

width dr, with area 27r dr.

Analyze Find the amount of charge dgq on a ring of dg= odA = o2mrdr) = 2mwordr
radius r and width dr as shown in Figure 3.16:

Use this result in th ion given for V in Exampl av= e _ k2mordr
se this result in the equation given for Vin Example = =
3.5 (with areplaced by rand Q replaced by dg) to find Vr? 4 Vor? 4
the potential due to the ring:
R R
. . . . 2rdr 2 2\—1/2
To obtain the total potential at P, integrate this expres- V=mk,o N wk,0 (r* + x7) 2r dr
sion over the limits » = 0 to r = R, noting that x is a 0o Vritx 0
constant:
This integral is of the common form [«" du and has the V= 2wko[(R*+ x*)2 — «] (3.23)
value w1/ (n + 1), where n = —§ and u = 2 + x% Use

this result to evaluate the integral:
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(B) Find the x component of the electric field at a point P along the perpendicular central axis of the disk.

SOLUTION

As in Example 3.5, use Equation 3.16 to find the elec- E.=—= 2nko|l ——F— (3.24)
. . s dx ( RQ + x2)1/2
tric field at any axial point:

Finalize Compare Equation 3.24 with the result of Example 1.8. The calculation of Vand E for an arbitrary
point off the x axis is more difficult to perform, and we do not treat that situation in this book.

EXAMPLE 3.7 Electric Potential Due to a Finite Line of Charge y

A rod of length € located along the x axis has a total charge Q and a uniform
linear charge density A = Q/¢. Find the electric potential at a point P located Pe
on the y axis a distance « from the origin (Fig. 3.17). AN
\\
\\
SOLUTION a N
\

. . . \
Conceptualize The potential at P due to every segment of charge on the rod is N
positive because every segment carries a positive charge. \\l

| s B
. . . . 0
Categorize Because the rod is continuous, we evaluate the potential due to a X ———>] dx Fj
continuous charge distribution rather than a group of individual charges. ¢ |

. . . . Figure3.17  (Example 3.7) A uni-
Analyze In Figure 3.17, the rod lies along the x axis, dx is the length of one form line charge of length € located

small segment, and dg is the charge on that segment. Because the rod has a  along the xaxis. To calculate the electric

. . _ potential at P, the line charge is divided
charge per unit length A, the charge dg on the small segment is dg = A dx. into segments each of length dx and

each carrying a charge dg = A dx.

dq A dx
Find the potential at P due to one segment of the rod: av=~Fk,— =k, —F——

¢
Ad
Find the total potential at P by integrating this expres- V= J k, a
sion over the limits x = 0 to x = ¢: 0

¢
Noting that k, and A = Q/€ are constants and can be V==kA J’ ——— =k,
removed from the integral, evaluate the integral with 0 a

the help of Appendix B:

¢+ Va+ €
Evaluate the result between the limits: V= % In(€+ Va+ ) —Inal= k ?ln ( a ) (3.25)

What If? What if you were asked to find the electric field at point P? Would that be a simple calculation?

Answer Calculating the electric field by means of Equation 1.11 would be a little messy. There is no symmetry to
appeal to, and the integration over the line of charge would represent a vector addition of electric fields at point P.
Using Equation 3.18, you could find E| by replacing a with y in Equation 3.25 and performing the differentiation
with respect to y. Because the charged rod in Figure 3.17 lies entirely to the right of x = 0, the electric field at point
Pwould have an x component to the left if the rod is charged positively. You cannot use Equation 3.18 to find the «x
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component of the field, however, because the potential due to the rod was evaluated at a specific value of x (x = 0)
rather than a general value of x. You would have to find the potential as a function of both x and y to be able to find

the x and y components of the electric field using Equation 3.25.

3.6 Electric Potential Due to
a Charged Conductor

In Section 2.4, we found that when a solid conductor in equilibrium carries a net
charge, the charge resides on the conductor’s outer surface. Furthermore, the
electric field just outside the conductor is perpendicular to the surface and the
field inside is zero.

We now show that every point on the surface of a charged conductor in equilib-
rium is at the same electric potential. Consider two points @ and ® on the surface
of a charged conductor as shown in Figure 3.18. Along a surface path connecting
these points, E is always perpendicular to the displacement ds; therefore
E-ds = 0. Using this result and Equation 25.3, we conclude that the potential dif-
ference between ® and ® is necessarily zero:

This result applies to any two points on the surface. Therefore, Vis constant every-
where on the surface of a charged conductor in equilibrium. That is,

the surface of any charged conductor in electrostatic equilibrium is an
equipotential surface. Furthermore, because the electric field is zero inside
the conductor, the electric potential is constant everywhere inside the con-
ductor and equal to its value at the surface.

Because of the constant value of the potential, no work is required to move a test
charge from the interior of a charged conductor to its surface.

Consider a solid metal conducting sphere of radius R and total positive charge
Q as shown in Figure 3.19a. As determined in part (A) of Example 2.3, the elec-
tric field outside the sphere is k,Q/r* and points radially outward. Because the
field outside of a spherically symmetric charge distribution is identical to that of a
point charge, we expect the potential to also be that of a point charge, k,Q/r. At
the surface of the conducting sphere in Figure 3.19a, the potential must be
k,Q/R. Because the entire sphere must be at the same potential, the potential at
any point within the sphere must also be k,Q/R. Figure 3.19b is a plot of the elec-
tric potential as a function of 7, and Figure 3.19c shows how the electric field
varies with r.

When a net charge is placed on a spherical conductor, the surface charge den-
sity is uniform as indicated in Figure 3.19a. If the conductor is nonspherical as in

Figure 3.18  An arbitrarily shaped conductor carrying a positive
charge. When the conductor is in electrostatic equilibrium, all the
charge resides at the surface, E = 0 inside the conductor, and the direc-

:\\: I tion of E immediately outside the conductor is perpendicular to the sur-
\ Fe face. The electric potential is constant inside the conductor and is equal
\x — to the potential at the surface. Notice from the spacing of the positive
\ 32— signs that the surface charge density is nonuniform.
N4 =
L d
—4 +
—t |
X
-G X“@\

PITFALL PREVENTION 3.6
Potential May Not Be Zero

The electric potential inside the
conductor is not necessarily zero in
Figure 3.18, even though the elec-
tric field is zero. Equation 3.15
shows that a zero value of the field
results in no changein the potential
from one point to another inside
the conductor. Therefore, the
potential everywhere inside the
conductor, including the surface,
has the same value, which may or
may not be zero, depending on
where the zero of potential is
defined.

()

o N
|
|

(©)

Figure 3.19 (a) The excess charge
on a conducting sphere of radius Ris
uniformly distributed on its surface.
(b) Electric potential versus distance
rfrom the center of the charged con-
ducting sphere. (c) Electric field
magnitude versus distance r from the
center of the charged conducting
sphere.
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Figure 3.18, however, the surface charge density is high where the radius of cur-
vature is small (as noted in Section 2.4) and low where the radius of curvature is
large. Because the electric field immediately outside the conductor is proportional
to the surface charge density, the electric field is large near convex points having
small radii of curvature and reaches very high values at sharp points. In Example
3.8, the relationship between electric field and radius of curvature is explored
mathematically.

EXAMPLE 3.8 Two Connected Charged Spheres

Two spherical conductors of radii r; and », are separated by a distance much
greater than the radius of either sphere. The spheres are connected by a conduct-
ing wire as shown in Figure 3.20. The charges on the spheres in equilibrium are
¢, and ¢,, respectively, and they are uniformly charged. Find the ratio of the mag-
nitudes of the electric fields at the surfaces of the spheres.

SOLUTION

Conceptualize Imagine that the spheres are much farther apart than shown in
Figure 3.20. Because they are so far apart, the field of one does not affect the
charge distribution on the other. The conducting wire between them ensures that

N

both spheres have the same electric potential.

Categorize Because the spheres are so far apart, we model the charge distribu-

Figure3.20  (Example 3.8) Two
charged spherical conductors con-
nected by a conducting wire. The

tion on them as spherically symmetric, and we can model the field and potential spheres are at the same electric poten-

outside the spheres to be that due to point charges. tial V.
. . T q2
Analyze Set the electric potentials at the surfaces of V= k”? = kﬂT
1 9

the spheres equal to each other:

r
Solve for the ratio of charges on the spheres: (1) % = 71
2 2
. . . . X T | 92
Write expressions for the magnitudes of the electric Ey =k —5 and FE, =k, —
fields at the surfaces of the spheres: 1 "2
. E ¢
Evaluate the ratio of these two fields: =
Ey, g2 m
E 2
. . . 1N " s
Substitute for the ratio of charges from Equation (1): 2) —=—7—== —
E, 71non n

Finalize The field is stronger in the vicinity of the smaller sphere even though the electric potentials at the surfaces

of both spheres are the same.

A Cavity Within a Conductor

Suppose a conductor of arbitrary shape contains a cavity as shown in Figure 3.21.
Let’s assume no charges are inside the cavity. In this case, the electric field inside
the cavity must be zero regardless of the charge distribution on the outside surface
of the conductor as we mentioned in Section 2.4. Furthermore, the field in the
cavity is zero even if an electric field exists outside the conductor.

To prove this point, remember that every point on the conductor is at the same
electric potential; therefore, any two points ® and ® on the cavity’s surface must
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4 Capacitance and Dielectrics

PITFALL PREVENTION 4.1
Capacitance Is a Capacity

To understand capacitance, think
of similar notions that use a similar
word. The capacity of a milk carton
is the volume of milk it can store.
The heat capacity of an object is the
amount of energy an object can
store per unit of temperature dif-
ference. The capacitance of a capaci-
tor is the amount of charge the
capacitor can store per unit of
potential difference.

722

In this chapter, we introduce the first of three simple circuit elements that can be
connected with wires to form an electric circuit. Electric circuits are the basis for
the vast majority of the devices used in our society. Here we shall discuss capacitors,
devices that store electric charge. This discussion is followed by the study of resis-
tors in Chapter 27 and inductors in Chapter 32. In later chapters, we will study more
sophisticated circuit elements such as diodes and transistors.

Capacitors are commonly used in a variety of electric circuits. For instance, they
are used to tune the frequency of radio receivers, as filters in power supplies, to
eliminate sparking in automobile ignition systems, and as energy-storing devices in

electronic flash units.

4.1 Definition of Capacitance

Consider two conductors as shown in Figure 4.1. Such a combination of two con-
ductors is called a capacitor. The conductors are called plates. If the conductors
carry charges of equal magnitude and opposite sign, a potential difference AV
exists between them.

What determines how much charge is on the plates of a capacitor for a given volt-
age? Experiments show that the quantity of charge Q on a capacitor! is linearly pro-

! Although the total charge on the capacitor is zero (because there is as much excess positive charge on
one conductor as there is excess negative charge on the other), it is common practice to refer to the
magnitude of the charge on either conductor as “the charge on the capacitor.”
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Figure 4.1 A capacitor consists of
two conductors. When the capacitor
is charged, the conductors carry
charges of equal magnitude and
opposite sign.
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portional to the potential difference between the conductors; that is, Q « AV. The
proportionality constant depends on the shape and separation of the conductors.?
This relationship can be written as Q = C AVif we define capacitance as follows:

The capacitance C of a capacitor is defined as the ratio of the magnitude of
the charge on either conductor to the magnitude of the potential difference
between the conductors:

C 4.1)

<
AV

By definition capacitance is always a positive quantity. Furthermore, the charge Q
and the potential difference AV are always expressed in Equation 4.1 as positive
quantities.

From Equation 4.1, we see that capacitance has SI units of coulombs per volt.
Named in honor of Michael Faraday, the SI unit of capacitance is the farad (F):

1F=1C/V

The farad is a very large unit of capacitance. In practice, typical devices have
capacitances ranging from microfarads (107° F) to picofarads (107! F). We shall
use the symbol uF to represent microfarads. In practice, to avoid the use of Greek
letters, physical capacitors are often labeled “mF” for microfarads and “mmF” for
micromicrofarads or, equivalently, “pF” for picofarads.

Let’s consider a capacitor formed from a pair of parallel plates as shown in Fig-
ure 4.2. Each plate is connected to one terminal of a battery, which acts as a
source of potential difference. If the capacitor is initially uncharged, the battery
establishes an electric field in the connecting wires when the connections are
made. Let’s focus on the plate connected to the negative terminal of the battery.
The electric field in the wire applies a force on electrons in the wire immediately
outside this plate; this force causes the electrons to move onto the plate. The
movement continues until the plate, the wire, and the terminal are all at the same
electric potential. Once this equilibrium situation is attained, a potential differ-
ence no longer exists between the terminal and the plate; as a result no electric
field is present in the wire and the electrons stop moving. The plate now carries a
negative charge. A similar process occurs at the other capacitor plate, where elec-
trons move from the plate to the wire, leaving the plate positively charged. In this
final configuration, the potential difference across the capacitor plates is the same
as that between the terminals of the battery.

2 The proportionality between AVand Q can be proven from Coulomb’s law or by experiment.
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Figure4.2 A parallel-plate capaci-
tor consists of two parallel conduct-
ing plates, each of area A, separated
by a distance d. When the capacitor is
charged by connecting the plates to
the terminals of a battery, the plates
carry equal amounts of charge. One
plate carries positive charge, and the
other carries negative charge.

<« Definition of capacitance

PITFALL PREVENTION 4.2
Potential Difference Is AV, Not V

We use the symbol AVfor the
potential difference across a circuit
element or a device because this
notation is consistent with our defi-
nition of potential difference and
with the meaning of the delta sign.
Itis a common but confusing prac-
tice to use the symbol Vwithout the
delta sign for both a potential and
a potential difference! Keep that in
mind if you consult other texts.

PITFALL PREVENTION 4.3
Too Many (s
Do not confuse an italic Cfor

capacitance with a nonitalic C for
the unit coulomb.
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Capacitance ofan »
isolated charged sphere

Capacitance of »
parallel plates

Quick Quiz 4.1 A capacitor stores charge Q at a potential difference AV. What
happens if the voltage applied to the capacitor by a battery is doubled to 2AV?
(a) The capacitance falls to half its initial value, and the charge remains the same.
(b) The capacitance and the charge both fall to half their initial values. (c) The
capacitance and the charge both double. (d) The capacitance remains the same,
and the charge doubles.

4.2 Calculating Capacitance

We can derive an expression for the capacitance of a pair of oppositely charged
conductors having a charge of magnitude Q in the following manner. First we cal-
culate the potential difference using the techniques described in Chapter 3. We
then use the expression C = Q/AV to evaluate the capacitance. The calculation is
relatively easy if the geometry of the capacitor is simple.

Although the most common situation is that of two conductors, a single con-
ductor also has a capacitance. For example, imagine a spherical, charged conduc-
tor. The electric field lines around this conductor are exactly the same as if there
were a conducting, spherical shell of infinite radius, concentric with the sphere
and carrying a charge of the same magnitude but opposite sign. Therefore, we can
identify the imaginary shell as the second conductor of a two-conductor capacitor.
The electric potential of the sphere of radius a is simply k,Q/a, and setting V = 0
for the infinitely large shell gives

Q Q a

— = 4mepa (4.2)

CT AV hoja n,

This expression shows that the capacitance of an isolated, charged sphere is pro-
portional to its radius and is independent of both the charge on the sphere and
the potential difference.

The capacitance of a pair of conductors is illustrated below with three familiar
geometries, namely, parallel plates, concentric cylinders, and concentric spheres. In
these calculations, we assume the charged conductors are separated by a vacuum.

Parallel-Plate Capacitors

Two parallel, metallic plates of equal area A are separated by a distance d as shown
in Figure 4.2. One plate carries a charge +Q, and the other carries a charge — Q.
The surface charge density on each plate is 0 = Q/A. If the plates are very close
together (in comparison with their length and width), we can assume the electric
field is uniform between the plates and zero elsewhere. According to the What If?
feature of Example 2.5, the value of the electric field between the plates is
g _ 2
€ €A
Because the field between the plates is uniform, the magnitude of the potential
difference between the plates equals Iid (see Eq. 25.6); therefore,
Qd

AV=Ed=——
€0A

Substituting this result into Equation 26.1, we find that the capacitance is

_e_ ¢
AV Qd/eA

€A

d

C

C= (4.3)



Chapter 4 Capacitance and Dielectrics
That is, the capacitance of a parallel-plate capacitor is proportional to the area of
its plates and inversely proportional to the plate separation.

Let’s consider how the geometry of these conductors influences the capacity of
the pair of plates to store charge. As a capacitor is being charged by a battery, elec-
trons flow into the negative plate and out of the positive plate. If the capacitor
plates are large, the accumulated charges are able to distribute themselves over a
substantial area and the amount of charge that can be stored on a plate for a given
potential difference increases as the plate area is increased. Therefore, it is reason-
able that the capacitance is proportional to the plate area A as in Equation 26.3.

Now consider the region that separates the plates. Imagine moving the plates
closer together. Consider the situation before any charges have had a chance to
move in response to this change. Because no charges have moved, the electric
field between the plates has the same value but extends over a shorter distance.
Therefore, the magnitude of the potential difference between the plates AV = Ed
(Eq. 3.6) is smaller. The difference between this new capacitor voltage and the
terminal voltage of the battery appears as a potential difference across the wires
connecting the battery to the capacitor, resulting in an electric field in the wires
that drives more charge onto the plates and increases the potential difference
between the plates. When the potential difference between the plates again
matches that of the battery, the flow of charge stops. Therefore, moving the plates
closer together causes the charge on the capacitor to increase. If d is increased,
the charge decreases. As a result, the inverse relationship between C and d in
Equation 4.3 is reasonable.

Quick Quiz 26.2 Many computer keyboard buttons are constructed of capaci-
tors as shown in Figure 4.3. When a key is pushed down, the soft insulator
between the movable plate and the fixed plate is compressed. When the key is
pressed, what happens to the capacitance? (a) It increases. (b) It decreases. (c) It
changes in a way you cannot determine because the electric circuit connected to
the keyboard button may cause a change in AV.
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Movable plate ——> L' ]
Dielectric 4t ’ J‘

Fixed plate —>

Figure4.3  (Quick Quiz 4.2) One
type of computer keyboard button.

EXAMPLE 4.1 The Cylindrical Capacitor

A solid, cylindrical conductor of radius @ and charge Q
is coaxial with a cylindrical shell of negligible thickness, T
radius b > a, and charge —Q (Fig. 4.4a). Find the I

capacitance of this cylindrical capacitor if its length is €.

SOLUTION

Conceptualize Recall that any pair of conductors qual-
ifies as a capacitor, so the system described in this exam-
ple therefore qualifies. Figure 4.4b helps visualize the
electric field between the conductors.

Categorize Because of the cylindrical symmetry of the
system, we can use results from previous studies of cylin-

drical systems to find the capacitance. (@)

&

X
\

Gaussian
surface

Q

(b)

Analyze Assuming € is much greater than a and b, we
can neglect end effects. In this case, the electric field is
perpendicular to the long axis of the cylinders and is
confined to the region between them (Fig. 4.4b).

Write an expression for the potential difference between
the two cylinders from Equation 3.3:

Figure 4.4 (Example 4.1) (a) A cylindrical capacitor consists of a
solid cylindrical conductor of radius « and length ¢ surrounded by a
coaxial cylindrical shell of radius 4. (b) End view. The electric field
lines are radial. The dashed line represents the end of the cylindrical
gaussian surface of radius rand length €.
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b b
d b
Apply Equation 2.7 for the electric field outside a cylin- v,—-V,= - j E.dr= —2k,A J’ L —2k,A In ()
drically symmetric_charge distribution and notice from a o’ “
Figure 4.4b that Eis parallel to dsalong a radial line:

Q Q ¢

Substitute the absolute value of AV into Equation 4.1 C=—+= = (4.4)
and use A = Q/¢: 1 AV (2k,Q/€) In (b/a) 2k, In (b/a)

Finalize The capacitance is proportional to the length of the cylinders. As you might expect, the capacitance also
depends on the radii of the two cylindrical conductors. Equation 4.4 shows that the capacitance per unit length of
a combination of concentric cylindrical conductors is

C 1

— = 4.5

¢~ hn (4a) (4.5)
An example of this type of geometric arrangement is a coaxial cable, which consists of two concentric cylindrical con-
ductors separated by an insulator. You probably have a coaxial cable attached to your television set or VCR if you are
a subscriber to cable television. The coaxial cable is especially useful for shielding electrical signals from any possible
external influences.

What If?  Suppose b = 2.00q for the cylindrical capacitor. You would like to increase the capacitance, and you can do
so by choosing to increase either € by 10% or a by 10%. Which choice is more effective at increasing the capacitance?

Answer According to Equation 4.4, Cis proportional to €, so increasing € by 10% results in a 10% increase in C.
For the result of the change in a, let’s use Equation 4.4 to set up a ratio of the capacitance C’ for the enlarged
cylinder radius a' to the original capacitance:

¢’ €/2k,In (b/d') 1n (b/a)

C  €/2,In (bla) In (bla')

We now substitute » = 2.00a and ¢ = 1.10q, representing a 10% increase in a:

¢ _ I @2004/a) 200
C  In(2004/1.10a) In1.82

which corresponds to a 16% increase in capacitance. Therefore, it is more effective to increase a than to increase {.

Note two more extensions of this problem. First, it is advantageous to increase a only for a range of relationships
between a and b. If b > 2.854, increasing € by 10% is more effective than increasing a (see Problem 66). Second, if b
decreases, the capacitance increases. Increasing a or decreasing b has the effect of bringing the plates closer
together, which increases the capacitance.

EXAMPLE 4.2 The Spherical Capacitor

A spherical capacitor consists of a spherical conducting shell of radius & and
charge —Q concentric with a smaller conducting sphere of radius ¢ and charge Q
(Fig. 4.5). Find the capacitance of this device.

SOLUTION

Conceptualize As with Example 4.1, this system involves a pair of conductors
and qualifies as a capacitor.

. . Figure4.5 (Example 4.2) A
Categorize Because of the spherical symmetry of the system, we can use results spherical capacitor consists of an

from previous studies of spherical systems to find the capacitance. inner sphere of radius « surrounded
by a concentric spherical shell of
Analyze As shown in Chapter 2 , the magnitude of the electric field outside a ~ radius b. The electric field between
. . . . . . . . the spheres is directed radially out-
spherically symmetric charge distribution is radial and given by the expression £ = ward when the inner sphere is posi-

k,Q/r% In this case, this result applies to the field between the spheres (a < r < b). tively charged.



Chapter 4 Capacitance and Dielectrics 54
b
Write an expression for the potential difference between V,-V,= — J E-ds
the two conductors from Equation 3.3: a
’ " dr 17
Apply the result of Example 2.3 for the electric field V,—V,= — J E.dr=—kQ | — = keQ[r]
r a

outside a spherically symmetric charge distribution and a
note that E is parallel to ds along a radial line:

Q

Substitute the absolute value of AVinto Equation 4.1: C

AV V-V k(- a)

(4.6)

Finalize The potential difference between the spheres in Equation (1) is negative because of the choice of signs on
the spheres. Therefore, in Equation 4.6, when we take the absolute value, we change a — bto b — a. The result is a

positive number because b > a.
What If?

Answer In Equation 4.6, we let b — oo

C= 1 ab ab a 4
= l1m = = — = €
e k(b—a) k(b)) ko

If the radius b of the outer sphere approaches infinity, what does the capacitance become?

Notice that this expression is the same as Equation 4.2, the capacitance of an isolated spherical conductor.

4.3 Combinations of Capacitors

Two or more capacitors often are combined in electric circuits. We can calculate
the equivalent capacitance of certain combinations using methods described in
this section. Throughout this section, we assume the capacitors to be combined
are initially uncharged.

In studying electric circuits, we use a simplified pictorial representation called a
circuit diagram. Such a diagram uses circuit symbols to represent various circuit ele-
ments. The circuit symbols are connected by straight lines that represent the wires
between the circuit elements. The circuit symbols for capacitors, batteries, and
switches as well as the color codes used for them in this text are given in Figure 4.6.
The symbol for the capacitor reflects the geometry of the most common model for a
capacitor, a pair of parallel plates. The positive terminal of the battery is at the
higher potential and is represented in the circuit symbol by the longer line.

Parallel Combination

Two capacitors connected as shown in Active Figure 4.7a are known

as a parallel combination of capacitors. Active Figure 4.7b shows a circuit diagram
for this combination of capacitors. The left plates of the capacitors are connected
to the positive terminal of the battery by a conducting wire and are therefore both
at the same electric potential as the positive terminal. Likewise, the right plates are
connected to the negative terminal and so are both at the same potential as the
negative terminal. Therefore, the individual potential differences across capacitors
connected in parallel are the same and are equal to the potential difference
applied across the combination. That is,

AV, = AV, = AV

where AVis the battery terminal voltage.

Capacitor
symbol

Battery |
symbol — I +
Swith ~ Open
symbol - _ o=,
Closed
Figure 4.6  Circuit symbols for

capacitors, batteries, and switches.
Notice that capacitors are in blue and
batteries and switches are in red. The
closed switch can carry current,
whereas the open one cannot.
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Capacitors in parallel

>

G AV, =AV,=AV
+ - T
1 Ceq=C1+ Cy
Q
Il
Co ;
+ - T
1
Q,
I I
T |= =
AV AV

(a) (b) (c)
ACTIVE FIGURE 4.7

(a) A parallel combination of two capacitors in an electric circuit in which the potential difference
across the battery terminals is AV. (b) The circuit diagram for the parallel combination. (c) The equiva-
lent capacitance is given by Equation 4.8.

Sign in at www.thomsonedu.com and go to ThomsonNOW to adjust the battery voltage and the individ-
ual capacitances and see the resulting charges and voltages on the capacitors. You can combine up to
four capacitors in parallel.

After the battery is attached to the circuit, the capacitors quickly reach their
maximum charge. Let’s call the maximum charges on the two capacitors Q; and
Q,. The total charge Q ., stored by the two capacitors is

Qo= Q11 Q 4.7)

That is, the total charge on capacitors connected in parallel is the sum of the
charges on the individual capacitors.

Suppose you wish to replace these two capacitors by one equivalent capacitor hav-
ing a capacitance g as in Active Figure 4.7c. The effect this equivalent capacitor
has on the circuit must be exactly the same as the effect of the combination of the
two individual capacitors. That is, the equivalent capacitor must store charge Q.
when connected to the battery. Active Figure 4.7c shows that the voltage across
the equivalent capacitor is AV because the equivalent capacitor is connected
directly across the battery terminals. Therefore, for the equivalent capacitor,

Qe = Ceq AV
Substituting for the charges in Equation 26.7 gives
Ceq AV = C AV, + G, AV,
Ceq = Cy + Cy (parallel combination)

where we have canceled the voltages because they are all the same. If this treat-
ment is extended to three or more capacitors connected in parallel, the equivalent
capacitance is found to be

Cqq = C + Cy+ G5+ -+ (parallel combination) (4.8)

Therefore, the equivalent capacitance of a parallel combination of capacitors is
(1) the algebraic sum of the individual capacitances and (2) greater than any of the
individual capacitances. Statement (2) makes sense because we are essentially com-
bining the areas of all the capacitor plates when they are connected with conduct-
ing wire, and capacitance of parallel plates is proportional to area (Eq. 4.3).
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11,1
G Cy Q=0Q=0Q Ceq € Gy
AV, AV, (on Cy
— I
AV, AV,
[y \
+17= o L
AV AV

(b) (c)

ACTIVE FIGURE 4.8

(a) A series combination of two capacitors. The charges on the two capacitors are the same. (b) The cir-
cuit diagram for the series combination. (c) The equivalent capacitance can be calculated from Equa-
tion 4.10.

Sign in at www.thomsonedu.com and go to ThomsonNOW to adjust the battery voltage and the individ-
ual capacitances and see the resulting charges and voltages on the capacitors. You can combine up to
four capacitors in series.

Series Combination

Two capacitors connected as shown in Active Figure 4.8a and the equivalent cir-
cuit diagram in Active Figure 4.8b are known as a series combination of capaci-
tors. The left plate of capacitor 1 and the right plate of capacitor 2 are connected
to the terminals of a battery. The other two plates are connected to each other
and to nothing else; hence, they form an isolated system that is initially uncharged
and must continue to have zero net charge. To analyze this combination, let’s first
consider the uncharged capacitors and then follow what happens immediately
after a battery is connected to the circuit. When the battery is connected, electrons
are transferred out of the left plate of C; and into the right plate of C,. As this
negative charge accumulates on the right plate of C,, an equivalent amount of
negative charge is forced off the left plate of C,, and this left plate therefore has
an excess positive charge. The negative charge leaving the left plate of C, causes
negative charges to accumulate on the right plate of C;. As a result, all the right
plates end up with a charge —(Q and all the left plates end up with a charge +Q.
Therefore, the charges on capacitors connected in series are the same:

Qi=0Q:=0Q
where Qis the charge that moved between a wire and the connected outside plate
of one of the capacitors.

Active Figure 4.8a shows that the total voltage AV, across the combination is
split between the two capacitors:

AV, = AV, + AV, (4.9)

where AV, and AV, are the potential differences across capacitors C; and C,,
respectively. In general, the total potential difference across any number of capaci-
tors connected in series is the sum of the potential differences across the individ-
ual capacitors.

Suppose the equivalent single capacitor in Active Figure 4.8c has the same
effect on the circuit as the series combination when it is connected to the battery.
After it is fully charged, the equivalent capacitor must have a charge of —Q on its
right plate and a charge of +Q on its left plate. Applying the definition of capaci-
tance to the circuit in Active Figure 4.8c gives

Q
Ceq

AV =

56
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Substituting for the voltages in Equation 4.9, we have

L _, @
Cq Ci G
Canceling the charges because they are all the same gives
1 1 . -
—— =— + — (series combination)
Cq G G

When this analysis is applied to three or more capacitors connected in series, the
relationship for the equivalent capacitance is

11 1 1
=— 4+ — 4+ —+ -
O € € @

(series combination) (4.10)

This expression shows that (1) the inverse of the equivalent capacitance is the alge-
braic sum of the inverses of the individual capacitances and (2) the equivalent
capacitance of a series combination is always less than any individual capacitance
in the combination.

Quick Quiz 4.3  Two capacitors are identical. They can be connected in series
or in parallel. If you want the smallest equivalent capacitance for the combination,
how should you connect them? (a) in series (b) in parallel (c) either way

because both combinations have the same capacitance

EXAMPLE 4.3 Equivalent Capacitance

Find the equivalent capacitance between a and b for the
combination of capacitors shown in Figure 4.9a. All
capacitances are in microfarads.

SOLUTION

Conceptualize Study Figure 4.9a carefully and make
sure you understand how the capacitors are connected.

Categorize Figure 4.9a shows that the circuit con-
tains both series and parallel connections, so we use the
rules for series and parallel combinations discussed in
this section.

Analyze Using Equations 4.8 and 4.10, we reduce
the combination step by step as indicated in the figure.

The 1.0-uF and 3.0-uF capacitors in Figure 4.9a are in
parallel. Find the equivalent capacitance from Equation
4.8:

The 2.0-uF and 6.0-uF capacitors in Figure 4.9a are
also in parallel:

The circuit now looks like Figure 4.9b. The two 4.0- uF
capacitors in the upper branch are in series. Find the
equivalent capacitance from Equation 4.10:

The two 8.0-uF capacitors in the lower branch are also
in series. Find the equivalent capacitance from Equation
4.10:

(@) (b) () (d)

Figure4.9  (Example 4.3) To find the equivalent capacitance of the
capacitors in (a), we reduce the various combinations in steps as indi-
cated in (b), (c), and (d), using the series and parallel rules described
in the text.

C:e = C] + C2 = 40/.LF

Coi = C, + Cy = 8.0uF

4 _r 1+ 1 1
Cq €1 Cy 40pF  40uF  20uF
Coq = 2.0uF
11 1 1 1 1

= —+ =
C c, Cy, 80uF 8O0uF 4.0uF

€q

Coq = 4.0uF
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The circuit now looks like Figure 4.9c. The 2.0- uF and Ceq = C + Cy= 6.0uF
4.0-uF capacitors are in parallel:

Finalize This final value is that of the single equivalent capacitor shown in Figure 4.9d. For further practice in
treating circuits with combinations of capacitors, imagine that a battery is connected between points @ and b so that
a potential difference AVis established across the combination. Can you find the voltage across and the charge on
each capacitor?

4.4 Energy Stored in a Charged Capacitor

Because positive and negative charges are separated in the system of two conduc-
tors in a capacitor, electric potential energy is stored in the system. Many of those
who work with electronic equipment have at some time verified that a capacitor
can store energy. If the plates of a charged capacitor are connected by a conductor
such as a wire, charge moves between each plate and its connecting wire until the
capacitor is uncharged. The discharge can often be observed as a visible spark. If
you accidentally touch the opposite plates of a charged capacitor, your fingers act
as a pathway for discharge and the result is an electric shock. The degree of shock
you receive depends on the capacitance and the voltage applied to the capacitor.
Such a shock could be fatal if high voltages are present, as in the power supply of
a television set. Because the charges can be stored in a capacitor even when the set
is turned off, unplugging the television does not make it safe to open the case and
touch the components inside.

Active Figure 4.10a shows a battery connected to a single parallel-plate capaci-
tor with a switch in the circuit. Let us identify the circuit as a system. When the
switch is closed (Active Fig. 4.10b), the battery establishes an electric field in the
wires and charges flow between the wires and the capacitor. As that occurs, there is

Separation
of charges
Electrons move represents
from the plate - potential Electrons
to the wire,
leavine the plat cnergy move
caving the piate A from the
positively n wire to
charged I the plate
= E 55}
Flectric || Electric field =
field in || between plates Electric
wire field in

wire

energy in
battery is
(b) reduced

ACTIVE FIGURE 4.10

(a) A circuit consisting of a capacitor, a battery, and a switch. (b) When the switch is closed, the battery
establishes an electric field in the wire that causes electrons to move from the left plate into the wire and
into the right plate from the wire. As a result, a separation of charge exists on the plates, which repre-
sents an increase in electric potential energy of the system of the circuit. This energy in the system has
been transformed from chemical energy in the battery.

Sign in at www.thomsonedu.com and go to ThomsonNOW to adjust the battery voltage and see the
resulting charge on the plates and the electric field between the plates.
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Figure4.11 A plot of potential dif-

ference versus charge for a capacitor
is a straight line having slope 1/C.
The work required to move charge dq
through the potential difference AV
existing at the time across the capaci-
tor plates is given approximately by
the area of the shaded rectangle. The
total work required to charge the
capacitor to a final charge Qis the tri-
angular area under the straight line,
W= 3QAV. (Don’t forget that 1 V =
1]/C; hence, the unit for the triangu-
lar area is the joule.)

Energy storedina »
charged capacitor
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a transformation of energy within the system. Before the switch is closed, energy is
stored as chemical energy in the battery. This energy is transformed during the
chemical reaction that occurs within the battery when it is operating in an electric
circuit. When the switch is closed, some of the chemical energy in the battery is
converted to electric potential energy associated with the separation of positive
and negative charges on the plates.

To calculate the energy stored in the capacitor, we shall assume a charging
process that is different from the actual process described in Section 4.1 but that
gives the same final result. This assumption is justified because the energy in the
final configuration does not depend on the actual charge-transfer process.® Imag-
ine that you transfer the charge mechanically through the space between the
plates as follows. You grab a small amount of positive charge on the plate con-
nected to the negative terminal and apply a force that causes this positive charge
to move over to the plate connected to the positive terminal. Therefore, you do
work on the charge as it is transferred from one plate to the other. At first, no
work is required to transfer a small amount of charge dg from one plate to the
other,' but once this charge has been transferred, a small potential difference
exists between the plates. Therefore, work must be done to move additional
charge through this potential difference. As more and more charge is transferred
from one plate to the other, the potential difference increases in proportion and
more work is required.

Suppose ¢ is the charge on the capacitor at some instant during the charging
process. At the same instant, the potential difference across the capacitor is AV =
g/ C. From Section 3.1, we know that the work necessary to transfer an increment
of charge dgq from the plate carrying charge —gq to the plate carrying charge ¢
(which is at the higher electric potential) is

dW= AVdqg = 1 dq
C
This situation is illustrated in Figure 26.11. The total work required to charge the
capacitor from ¢ = 0 to some final charge ¢ = Qs

Qq 1 Q 2
W= | “dg=-| qdg=
ch chq 2C

The work done in charging the capacitor appears as electric potential energy U

stored in the capacitor. Using Equation 26.1, we can express the potential energy

stored in a charged capacitor as
QQ

U=—=3QAV=3C(AV)?

= 5c (4.11)

This result applies to any capacitor, regardless of its geometry. For a given capaci-
tance, the stored energy increases as the charge and the potential difference
increase. In practice, there is a limit to the maximum energy (or charge) that can
be stored because, at a sufficiently large value of AV, discharge ultimately occurs
between the plates. For this reason, capacitors are usually labeled with a maximum
operating voltage.

We can consider the energy in a capacitor to be stored in the electric field cre-
ated between the plates as the capacitor is charged. This description is reasonable
because the electric field is proportional to the charge on the capacitor. For a
parallel-plate capacitor, the potential difference is related to the electric field

3 This discussion is similar to that of state variables in thermodynamics. The change in a state variable
such as temperature is independent of the path followed between the initial and final states. The
potential energy of a capacitor (or any system) is also a state variable, so it does not depend on the
actual process followed to charge the capacitor.

* We shall use lowercase ¢ for the time-varying charge on the capacitor while it is charging to distin-
guish it from uppercase Q, which is the total charge on the capacitor after it is completely charged.
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through the relationship AV = Ed. Furthermore, its capacitance is C = €,A/d (Eq.

4.3). Substituting these expressions into Equation 4.11 gives
1 €0A

U=34—(E*d®) = §(e,Ad)E?

y (4.12)

Because the volume occupied by the electric field is Ad, the energy per unit volume
up = U/Ad, known as the energy density, is

(4.13)

1 5
uE = QeoEz

Although Equation 4.13 was derived for a parallel-plate capacitor, the expression
is generally valid regardless of the source of the electric field. That is, the energy
density in any electric field is proportional to the square of the magnitude of the
electric field at a given point.

Quick Quiz 4.4  You have three capacitors and a battery. In which of the fol-
lowing combinations of the three capacitors is the maximum possible energy
stored when the combination is attached to the battery? (a) series (b) parallel
(c) no difference because both combinations store the same amount of energy
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<« Energy density inan
electric field

PITFALL PREVENTION 4.4
Not a New Kind of Energy

The energy given by Equation

4.13 is not a new kind of energy.
The equation describes familiar
electric potential energy associated
with a system of separated source
charges. Equation 4.13 provides a
new interprelation, or a new way of
modeling the energy. Furthermore,
the equation correctly describes
the energy associated with any elec-
tric field, regardless of the source.

EXAMPLE 4.4 Rewiring Two Charged Capacitors

Two capacitors C; and C, (where C, > C,) are charged
to the same initial potential difference AV,. The charged I
capacitors are removed from the battery, and their
plates are connected with opposite polarity as in Figure a
4.12a. The switches S | and S, are then closed as in Fig- s S,
ure 4.12b.

(A) Find the final potential difference AV, between a
and b after the switches are closed.
(a)

SOLUTION Figure 4.12

C
Qi 1
+1=

]

o— —e
a b
S, S,
+ —

Qor Cy

(b)

(Example 4.4) (a) Two capacitors are charged to the

same initial potential difference and connected together with plates of

Conceptualize Figure 4.12 helps us understand the
initial and final configurations of the system.

Categorize

opposite sign to be in contact when the switches are closed. (b) When
the switches are closed, the charges redistribute.

In Figure 4.12b, it might appear as if the capacitors are connected in parallel, but there is no battery

in this circuit to apply a voltage across the combination. Therefore, we cannot categorize this problem as one in
which capacitors are connected in parallel. We can categorize it as a problem involving an isolated system for electric
charge. The left-hand plates of the capacitors form an isolated system because they are not connected to the right-

hand plates by conductors.

Analyze Write an expression for the total charge on
the left-hand plates of the system before the switches
are closed, noting that a negative sign for Q,; is neces-
sary because the charge on the left plate of capacitor
C, is negative:

(1)

After the switches are closed, the charges on the indi-
vidual capacitors change to new values Q, and Q,,
such that the potential difference is again the same
across both capacitors, AVf. Write an expression for the
total charge on the left-hand plates of the system after
the switches are closed:

(2)

Q=0+ Qy= Ci AV, — G, AV, = (Cl - CQ)AVz‘

Q,= Qi+ Qo= C AV, + G, AV, = (C, + C,y) AV,



61

5Current and Resistance

We now consider situations involving electric charges that are in motion through
some region of space. We use the term electric current, or simply current, to describe
the rate of flow of charge. Most practical applications of electricity deal with elec-
tric currents. For example, the battery in a flashlight produces a current in the fil-
ament of the bulb when the switch is turned on. A variety of home appliances
operate on alternating current. In these common situations, current exists in a
conductor such as a copper wire. Currents can also exist outside a conductor. For
instance, a beam of electrons in a television picture tube constitutes a current.
This chapter begins with the definition of current. A microscopic description of
current is given, and some factors that contribute to the opposition to the flow of
charge in conductors are discussed. A classical model is used to describe electrical
conduction in metals, and some limitations of this model are cited. We also define
electrical resistance and introduce a new circuit element, the resistor. We conclude

by discussing the rate at which energy is transferred to a device in an electric circuit.

5.1 Electric Current

In this section, we study the flow of electric charges through a piece of material.
The amount of flow depends on both the material through which the charges are
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passing and the potential difference across the material. Whenever there is a net
flow of charge through some region, an electric current is said to exist.

It is instructive to draw an analogy between water flow and current. In many
localities, it is common practice to install low-flow showerheads in homes as a
water-conservation measure. We quantify the flow of water from these and similar
devices by specifying the amount of water that emerges during a given time inter-
val, often measured in liters per minute. On a grander scale, we can characterize a
river current by describing the rate at which the water flows past a particular loca-
tion. For example, the flow over the brink at Niagara Falls is maintained at rates
between 1 400 m?/s and 2 800 m?/s.

There is also an analogy between thermal conduction and current. In Section
20.7, we discussed the flow of energy by heat through a sample of material. The
rate of energy flow is determined by the material as well as the temperature differ-
ence across the material as described by Equation 20.15.

To define current more precisely, suppose charges are moving perpendicular to
a surface of area A as shown in Figure 5.1. (This area could be the cross-sectional
area of a wire, for example.) The current is the rate at which charge flows through
this surface. If AQ is the amount of charge that passes through this surface in a
time interval A, the average current [, is equal to the charge that passes through
A per unit time:

AQ
Lyg A (5.1)
If the rate at which charge flows varies in time, the current varies in time; we
define the instantaneous current / as the differential limit of average current:

dQ
== 5.
dt (5.2)
The SI unit of current is the ampere (A):
1A=1C/s (5.3)

That is, 1 A of current is equivalent to 1 C of charge passing through a surface
in1s.

The charged particles passing through the surface in Figure 5.1 can be posi-
tive, negative, or both. It is conventional to assign to the current the same direc-
tion as the flow of positive charge. In electrical conductors such as copper or alu-
minum, the current results from the motion of negatively charged electrons.
Therefore, in an ordinary conductor, the direction of the current is opposite the
direction of flow of electrons. For a beam of positively charged protons in an
accelerator, however, the current is in the direction of motion of the protons. In
some cases—such as those involving gases and electrolytes, for instance—the cur-
rent is the result of the flow of both positive and negative charges. It is common to
refer to a moving charge (positive or negative) as a mobile charge carrier.

If the ends of a conducting wire are connected to form a loop, all points on the
loop are at the same electric potential; hence, the electric field is zero within and
at the surface of the conductor. Because the electric field is zero, there is no net
transport of charge through the wire; therefore, there is no current. If the ends of
the conducting wire are connected to a battery, however, all points on the loop are
not at the same potential. The battery sets up a potential difference between the
ends of the loop, creating an electric field within the wire. The electric field exerts
forces on the conduction electrons in the wire, causing them to move in the wire
and therefore creating a current.

Microscopic Model of Current

We can relate current to the motion of the charge carriers by describing a micro-
scopic model of conduction in a metal. Consider the current in a conductor of

@
@ @

—>I

Figure5.1  Charges in motion
through an area A. The time rate at
which charge flows through the area
is defined as the current /. The direc-
tion of the current is the direction in
which positive charges flow when free
to do so.

<« Electric current

PITFALL PREVENTION 5.1
“Current Flow” Is Redundant

The phrase current flow is com-
monly used, although it is techni-
cally incorrect because current is a
flow (of charge). This wording is
similar to the phrase heat transfer,
which is also redundant because
heat is a transfer (of energy). We
will avoid this phrase and speak of
Sflow of charge or charge flow.

PITFALL PREVENTION 5.2
Batteries Do Not Supply Electrons

A battery does not supply electrons
to the circuit. It establishes the
electric field that exerts a force on
clectrons already in the wires and
elements of the circuit.
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Figure5.2 A section of a uniform
conductor of cross-sectional area A.
The mobile charge carriers move
with a speed v, and the displacement
they experience in the x direction in
a time interval Azis Ax = v, At. If we
choose At to be the time interval dur-
ing which the charges are displaced,
on average, by the length of the cylin-
der, the number of carriers in the sec-
tion of length Ax is nAv, A, where n
is the number of carriers per unit
volume.

Current in a conductorin »
terms of microscopic
quantities

cross-sectional area A (Fig. 5.2). The volume of a section of the conductor of
length Ax (the gray region of the conductor shown in Fig. 5.2) is A Ax. If n repre-
sents the number of mobile charge carriers per unit volume (in other words, the
charge carrier density), the number of carriers in the gray section is nA Ax. There-
fore, the total charge AQ in this section is

AQ = (nA Ax)q

where ¢ is the charge on each carrier. If the carriers move with a speed v,, the dis-
placement they experience in the x direction in a time interval Azis Ax = v, At.
Let At be the time interval required for the charge carriers in the cylinder to move
through a displacement whose magnitude is equal to the length of the cylinder.
This time interval is also the same as that required for all the charge carriers in
the cylinder to pass through the circular area at one end. With this choice, we can
write AQ as

AQ = (nAv,At)q

Dividing both sides of this equation by A¢, we find that the average current in the
conductor is
AQ
Ly = AL = nquA (5.4)

The speed of the charge carriers v, is an average speed called the drift speed.
To understand the meaning of drift speed, consider a conductor in which the
charge carriers are free electrons. If the conductor is isolated—that is, the poten-
tial difference across it is zero—these electrons undergo random motion that is
analogous to the motion of gas molecules. The electrons collide repeatedly with
the metal atoms, and their resultant motion is complicated and zigzagged as in
Active Figure 5.3a. As discussed earlier, when a potential difference is applied
across the conductor (for example, by means of a battery), an electric field is set
up in the conductor; this field exerts an electric force on the electrons, producing
a current. In addition to the zigzag motion due to the collisions with the metal
atoms, the electrons move slowly along the conductor (in a direction opposite that
of E) at the drift velocity v, as shown in Active Figure 5.3b.

You can think of the atom—electron collisions in a conductor as an effective
internal friction (or drag force) similar to that experienced by a liquid’s molecules
flowing through a pipe stuffed with steel wool. The energy transferred from the
electrons to the metal atoms during collisions causes an increase in the atom’s
vibrational energy and a corresponding increase in the conductor’s temperature.

3

-~
U,
-~

U,

(a) (b)
ACTIVE FIGURE 5.3

(a) A schematic diagram of the random motion of two charge carriers in a conductor in the absence of
an electric field. The drift velocity is zero. (b) The motion of the charge carriers in a conductor in the
presence of an electric field. Notice that the random motion is modified by the field and the charge car-
riers have a drift velocity opposite the direction of the electric field. Because of the acceleration of the
charge carriers due to the electric force, the paths are actually parabolic. The drift speed, however, is
much smaller than the average speed, so the parabolic shape is not visible on this scale.

Sign in at www.thomsonedu.com and go to ThomsonNOW to adjust the electric field and see the result-
ing effect on the motion of an electron.
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Quick Quiz 5.1  Consider positive and negative charges moving horizontally
through the four regions shown in Figure 5.4. Rank the current in these four
regions from lowest to highest.

o o

- =

) -—Q o=
(b) (c) (d)

Figure5.4  (Quick Quiz 5.1) Charges move through four regions.

EXAMPLE 5.1 Drift Speed in a Copper Wire

The 12-gauge copper wire in a typical residential building has a cross-sectional area of 3.31 X 107° m? It carries a
constant current of 10.0 A. What is the drift speed of the electrons in the wire? Assume each copper atom con-
tributes one free electron to the current. The density of copper is 8.92 g/cm?.

SOLUTION

Conceptualize Imagine electrons following a zigzag motion such as that in Active Figure 5.3a, with a drift motion
parallel to the wire superimposed on the motion as in Active Figure 5.3b. As mentioned earlier, the drift speed is
small, and this example helps us quantify the speed.

Categorize We evaluate the drift speed using Equation 5.4. Because the current is constant, the average current
during any time interval is the same as the constant current: [, = I

Analyze The periodic table of the elements in Appendix C shows that the molar mass of copper is 63.5 g/mol.
Recall that 1 mol of any substance contains Avogadro’s number of atoms (6.02 X 10%%).

63.5¢g

T 0 712em’
p 892g/cm®

Use the molar mass and the density of copper V=
to find the volume of 1 mole of copper:

. 6.02 X 10% electrons [ 1.00 X 10° cm®
From the assumption that each copper atom n = - 3 e
contributes one free electron to the current, 12 cm m
find the electron density in copper: = 846 X 10%8 electrons/m3
Solve Equation 5.4 for the drift speed: _ s T
olve Equation 5.4 for the drift speed: vd_nqA_nqA
I 10.0 A
Substitute numerical values: vy =

neA (846 X 10% m ) (1.60 X 107 C)(3.31 X 10" m?)
= 223X 10 *m/s

Finalize This result shows that typical drift speeds are very small. For instance, electrons traveling with a speed of
2.23 X 107* m/s would take about 75 min to travel 1 m! You might therefore wonder why a light turns on almost
instantaneously when its switch is thrown. In a conductor, changes in the electric field that drives the free electrons
travel through the conductor with a speed close to that of light. So, when you flip on a light switch, electrons already
in the filament of the lightbulb experience electric forces and begin moving after a time interval on the order of
nanoseconds.
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GEORG SIMON OHM

German physicist (1789-1854)

0Ohm, a high school teacher and later a profes-
sor at the University of Munich, formulated the
concept of resistance and discovered the pro-
portionalities expressed in Equations 27.6 and
27.7.
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Figure5.5 A uniform conductor of
length € and cross-sectional area A. A
potential difference AV=V, — V,
maintained across the conductor sets
up an electric field E, and this field
produces a current / that is propor-
tional to the potential difference.
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5.2 Resistance

In Chapter 2, we found that the electric field inside a conductor is zero. This
statement is true, however, only if the conductor is in static equilibrium. The pur-
pose of this section is to describe what happens when the charges in the conduc-
tor are not in equilibrium, in which case there is an electric field in the conductor.

Consider a conductor of cross-sectional area A carrying a current /. The current
density Jin the conductor is defined as the current per unit area. Because the cur-
rent I = nqu,A, the current density is

I
J= AT v (5.5)

where [ has SI units of amperes per meter squared. This expression is valid only if
the current density is uniform and only if the surface of cross-sectional area A is
perpendicular to the direction of the current.

A current density and an electric field are established in a conductor whenever
a potential difference is maintained across the conductor. In some materials, the
current density is proportional to the electric field:

J=ok (5.6)
where the constant of proportionality o is called the conductivity of the conduc-
tor.! Materials that obey Equation 5.6 are said to follow Ohm’s law, named after
Georg Simon Ohm. More specifically, Ohm’s law states the following:

For many materials (including most metals), the ratio of the current density
to the electric field is a constant o that is independent of the electric field
producing the current.

Materials that obey Ohm’s law and hence demonstrate this simple relationship
between E and [ are said to be ohmic. Experimentally, however, it is found that not
all materials have this property. Materials and devices that do not obey Ohm’s law
are said to be nonohmic. Ohm’s law is not a fundamental law of nature; rather, it is
an empirical relationship valid only for certain materials.

We can obtain an equation useful in practical applications by considering a seg-
ment of straight wire of uniform cross-sectional area A and length ¢ as shown in
Figure 5.5. A potential difference AV = V, — V_is maintained across the wire, cre-
ating in the wire an electric field and a current. If the field is assumed to be uni-
form, the potential difference is related to the field through the relationship?

AV=E¢
Therefore, we can express the current density in the wire as

AV
]:O'E:O'T

Because | = I/A, the potential difference across the wire is

AV = ﬁ = <€)I— RI
0'] oA

I Do not confuse conductivity o with surface charge density, for which the same symbol is used.

2 This result follows from the definition of potential difference:

b b
Vb—Va=—J E-ds=E J dx = E(

a a
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The quantity R = €/0A is called the resistance of the conductor. We define the

resistance as the ratio of the potential difference across a conductor to the current

in the conductor:

AV
1

R

(5.7)

We will use this equation again and again when studying electric circuits. This
result shows that resistance has SI units of volts per ampere. One volt per ampere
is defined to be one ohm (£2):

10=1V/A

This expression shows that if a potential difference of 1 V across a conductor
causes a current of 1 A, the resistance of the conductor is 1 ). For example, if an
electrical appliance connected to a 120-V source of potential difference carries a
current of 6 A, its resistance is 20 ().

Most electric circuits use circuit elements called resistors to control the current
in the various parts of the circuit. Two common types are the composition resistor,
which contains carbon, and the wire-wound resistor, which consists of a coil of wire.
Values of resistors in ohms are normally indicated by color coding as shown in Fig-
ure 5.6 and Table 5.1.

The inverse of conductivity is resistivity® p:

(5.8)

p=— (5.9)
o
where p has the units ohm meters (£} - m). Because R = €/0 A, we can express the

resistance of a uniform block of material along the length ¢ as

4
R=p 1 (5.10)
Every ohmic material has a characteristic resistivity that depends on the properties of
the material and on temperature. In addition, as you can see from Equation 5.10,
the resistance of a sample depends on geometry as well as on resistivity. Table 5.2

gives the resistivities of a variety of materials at 20°C. Notice the enor-

mous range, from very low values for good conductors such as copper and silver to
very high values for good insulators such as glass and rubber. An ideal conductor
would have zero resistivity, and an ideal insulator would have infinite resistivity.

TABLE 5.1
Color Coding for Resistors
Color Number Multiplier Tolerance
Black 0 1
Brown 1 10!
Red 2 102
Orange 3 103
Yellow 4 104
Green 5 10°
Blue 6 106
Violet 7 107
Gray 8 108
White 9 10°
Gold 107! 5%
Silver 1072 10%
Colorless 20%

% Do not confuse resistivity p with mass density or charge density, for which the same symbol is used.

SuperStock
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PITFALL PREVENTION 5.3
Equation 5.7 Is Not Ohm’s Law

Many individuals call Equation 5.7
Ohm’s law, but that is incorrect.
This equation is simply the defini-
tion of resistance, and it provides
an important relationship between
voltage, current, and resistance.
Ohm’s law is related to a propor-
tionality of Jto £ (Eq. 5.6) or,
equivalently, of 7to AV, which,
from Equation 5.7, indicates that
the resistance is constant, inde-
pendent of the applied voltage.

<« Resistivity is the inverse of
conductivity

<« Resistance of a uniform
material along the length ¢

Figure5.6  The colored bands on a

resistor represent a code for deter-
mining resistance. The first two col-
ors give the first two digits in the
resistance value. The third color rep-
resents the power of 10 for the multi-
plier of the resistance value. The last
color is the tolerance of the resist-
ance value. As an example, the four
colors on the circled resistors are red
(= 2), black (= 0), orange (= 10%),
and gold (= 5%), and so the resis-
tance value is 20 X 10% Q = 20 kQ
with a tolerance value of 5% = 1 k().
(The values for the colors are from
Table 5.1.)
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PITFALL PREVENTION 5.4
Resistance and Resistivity

Resistivity is a property of a sub-
stance, whereas resistance is a prop-
erty of an object. We have seen
similar pairs of variables before.
For example, density is a property
of a substance, whereas mass is a
property of an object. Equation
5.10 relates resistance to resistivity
and Equation 1.1 relates mass to
density.

TABLE 5.2

Resistivities and Temperature Coefficients of Resistivity
for Various Materials

Temperature
Material Resistivity* (Q -m) Coefficient® a[(°C)™!]
Silver 1.59 X 1078 3.8 X 1073
Copper 1.7 X 1078 3.9 X 1073
Gold 2.44 X 1078 3.4 X 1073
Aluminum 2.82 X 1078 3.9 X 1073
Tungsten 5.6 X 1078 4.5 %1073
Iron 10 X 1078 5.0 X 1073
Platinum 11 X 1078 3.92 X 1073
Lead 22 X 1078 39X 1073
Nichrome¢ 1.50 X 1076 0.4 X 1073
Carbon 3.5 X 1075 —0.5 X 1073
Germanium 0.46 —48 X 1073
Silicon4 2.3 X 10° —75 X 1073
Glass 10 to 10'*
Hard rubber ~1013
Sulfur 101
Quartz (fused) 75 X 1016

* All values at 20°C. All elements in this table are assumed to be free of impurities.
> See Section 27.4.
¢ A nickel-chromium alloy commonly used in heating elements.

4 The resistivity of silicon is very sensitive to purity. The value can be changed by several orders of
magnitude when it is doped with other atoms.

Equation 5.10 shows that the resistance of a given cylindrical conductor such
as a wire is proportional to its length and inversely proportional to its cross-
sectional area. If the length of a wire is doubled, its resistance doubles. If its cross-
sectional area is doubled, its resistance decreases by one half. The situation is anal-
ogous to the flow of a liquid through a pipe. As the pipe’s length is increased, the
resistance to flow increases. As the pipe’s cross-sectional area is increased, more
liquid crosses a given cross section of the pipe per unit time interval. Therefore,
more liquid flows for the same pressure differential applied to the pipe, and the
resistance to flow decreases.

Ohmic materials and devices have a linear current—potential difference rela-
tionship over a broad range of applied potential differences (Fig. 5.7a). The
slope of the Fversus-AV curve in the linear region yields a value for 1/R.
Nonohmic materials have a nonlinear current—potential difference relationship.
One common semiconducting device with nonlinear Eversus-AV characteristics is
the junction diode (Fig. 5.7b). The resistance of this device is low for currents in
one direction (positive AV) and high for currents in the reverse direction (nega-
tive AV). In fact, most modern electronic devices, such as transistors, have nonlin-

-1
Slope = R

AV AV
A (a) (b)

Figure 5.7 (a) The current—potential difference curve for an ohmic material. The curve is linear, and
the slope is equal to the inverse of the resistance of the conductor. (b) A nonlinear current—potential
difference curve for a junction diode. This device does not obey Ohm’s law.
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ear current—potential difference relationships; their proper operation depends on
the particular way they violate Ohm’s law.

Quick Quiz 5.2 A cylindrical wire has a radius r and length €. If both r and ¢
are doubled, does the resistance of the wire (a) increase, (b) decrease, or
(¢) remain the same?

Quick Quiz 5.3 In Figure 5.7b, as the applied voltage increases, does the
resistance of the diode (a) increase, (b) decrease, or (c) remain the same?

EXAMPLE 5.2 The Resistance of Nichrome Wire

The radius of 22-gauge Nichrome wire is 0.321 mm. (A) Calculate the resistance per unit length of this wire.

SOLUTION

Conceptualize Table 5.2 shows that Nichrome has a resistivity two orders of magnitude larger than the best con-
ductors in the table. Therefore, we expect it to have some special practical applications that the best conductors may
not have.

Categorize We model the wire as a cylinder so that a simple geometric analysis can be applied to find the resistance.

p 15X 1050 -m
=—= = 4.6
mr®  w(0.321 X 107" m)® /m

~|w

Analyze Use Equation 5.10 and the resistivity of
Nichrome from Table 5.2 to find the resistance per
unit length:

SRS

(B) If a potential difference of 10 V is maintained across a 1.0-m length of the Nichrome wire, what is the current in
the wire?

SOLUTION

Analyze Use Equation 5.7 to find the current: 1= M = Av = 10V = 22A
R (4.6 Q/m)¢ (4.6 Q/m)(1.0 m)

Finalize A copper wire of the same radius would have a resistance per unit length of only 0.053 0/m. A 1.0-m
length of copper wire of the same radius would carry the same current (2.2 A) with an applied potential difference
of only 0.12 V.

Because of its high resistivity and resistance to oxidation, Nichrome is often used for heating elements in toasters,
irons, and electric heaters.

EXAMPLE 5.3 The Radial Resistance of a Coaxial Cable dr Current

Coaxial cables are used extensively for cable television and A direction
other electronic applications. A coaxial cable consists of L

two concentric cylindrical conductors. The region between

the conductors is completely filled with polyethylene plas-  poyethylene
tic as shown in Figure 5.8a. Current leakage through the
plastic, in the radial direction, is unwanted. (The cable is
designed to conduct current along its length, but that is
not the current being considered here.) The radius of the
inner conductor is @ = 0.500 cm, the radius of the outer
conductor is » = 1.75 cm, and the length is L = 15.0 cm.

End view
(b)

Figure5.8  (Example
5.3) A coaxial cable.

(a) Plastic fills the gap
between the two conduc-
tors. (b) End view, show-

Inner Outer
The resistivity of the plastic is 1.0 X 10'® Q- m. Calculate  conductor conductor

the resistance of the plastic between the two conductors. (a) ing current leakage.



Chapter 5 Current and Resistance 69

SOLUTION

Conceptualize Imagine two currents as suggested in the text of the problem. The desired current is along the
cable, carried within the conductors. The undesired current corresponds to charge leakage through the plastic, and
its direction is radial.

Categorize Because the resistivity and the geometry of the plastic are known, we categorize this problem as one in
which we find the resistance of the plastic from these parameters, using Equation 5.10. Because the area through
which the charges pass depends on the radial position, we must use integral calculus to determine the answer.

Analyze We divide the plastic into concentric elements of infinitesimal thickness dr (Fig. 5.8b). Use the differen-
tial form of Equation 5.10, replacing <€ with r for the distance variable: dR = p dr/A, where dR is the resistance of
an element of plastic of thickness dr and surface area A. In this example, our representative element is a concentric
hollow plastic cylinder of radius r, thickness dr, and length L as in Figure 5.8. Any charge passing from the inner
to the outer conductor must move radially through this concentric element. The area through which this charge
passes is A = 27rrL (the curved surface area—circumference multiplied by length—of our hollow plastic cylinder of
thickness dr).

Write an expression for the resistance of our hollow dR = dr
. . 2mrL
cylinder of plastic:
b
I te thi ion f r=b (1) R JdR P J r_ P (b>
— ] : = = _— = nl —
ntegrate this expression from r = a to r oL r = oml p

a

Substitute the values given:

1.0 X 10® Q- m ( 1.75 cm
= n

= 1.33 X 102 Q
277 (0.150 m) 0.500 Cm)

Finalize Let’s compare this resistance to that of the inner copper conductor of the cable along the 15.0-cm length.

0.150 m
)2

4
Use Equation 5.10 to find the resistance of the copper R=p i (1.7 X 107% Q- m){ (5.00 X 10°°
(5. m

cylinder:
=32xX107°Q

This resistance is 18 orders of magnitude smaller than the radial resistance. Therefore, almost all the current corre-
sponds to charge moving along the length of the cable, with a very small fraction leaking in the radial direction.

What If? Suppose the coaxial cable is enlarged to twice the overall diameter with two possible choices: (1) the ratio
b/ a is held fixed or (2) the difference b — a is held fixed. For which choice does the leakage current between the
inner and outer conductors increase when the voltage is applied between them?

Answer For the current to increase, the resistance must decrease. For choice (1), in which 4/« is held fixed, Equa-
tion (1) shows that the resistance is unaffected. For choice (2), we do not have an equation involving the difference
b — a to inspect. Looking at Figure 5.8b, however, we see that increasing b and a while holding the voltage constant
results in charge flowing through the same thickness of plastic but through a larger area perpendicular to the flow.
This larger area results in lower resistance and a higher current.

5.3 A Model for Electrical Conduction

In this section, we describe a classical model of electrical conduction in metals that
was first proposed by Paul Drude (1863-1906) in 1900. This model leads to Ohm’s
law and shows that resistivity can be related to the motion of electrons in metals.
Although the Drude model described here has limitations, it introduces concepts
that are applied in more elaborate treatments.
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Consider a conductor as a regular array of atoms plus a collection of free elec-
trons, which are sometimes called conduction electrons. The conduction electrons,
although bound to their respective atoms when the atoms are not part of a solid,
become free when the atoms condense into a solid. In the absence of an electric
field, the conduction electrons move in random directions through the conductor
with average speeds on the order of 10° m/s (Active Fig. 5.3a). The situation is
similar to the motion of gas molecules confined in a vessel. In fact, some scientists
refer to conduction electrons in a metal as an electron gas.

When an electric field is applied, the free electrons drift slowly in a direction
opposite that of the electric field (Active Fig. 5.3b), with an average drift speed v,
that is much smaller (typically 107* m/s) than their average speed between colli-
sions (typically 10° m/s).

In our model, we make the following assumptions:

1. The electron’s motion after a collision is independent of its motion before
the collision.

2. The excess energy acquired by the electrons in the electric field is lost to the
atoms of the conductor when the electrons and atoms collide.

With regard to assumption (2), the energy given up to the atoms increases their
vibrational energy, which causes the temperature of the conductor to increase.

We are now in a position to derive an expression for the drift velocity. When a
free electron of mass m, and charge ¢ (= —e) is subjected to an electric field E it
experiences a force F = qE The electron is a particle under a net force, and its
acceleration can be found from Newton’s second law, > F = ma:
2F (E

m

—
a=

= - (5.11)

e

Because the electric field is uniform, the electron’s acceleration is constant, so the
electron can be modeled as a particle under constant acceleration. If v; is the elec-
tron’s initial velocity the instant after a collision (which occurs at a time defined as
t = 0), the velocity of the electron at a very short time ¢ later (immediately before
the next collision occurs) is, from Equation 4.8,

Vi=vitat=v,+ —1 (5.12)

Let’s now take the average value of v, for all the electrons in the wire over all pos-
sible collision times ¢ and all possible values of v, Assuming the initial velocities
are randomly distributed over all possible values, the average value of v, is zero.
The average value of the second term of Equation 5.12 is (¢E/m,)7, where 7 is
the average time interval between successive collisions. Because the average value of v,is
equal to the drift velocity,

- N (5.13)

\4 favg = Vg = T .

favg d m,
The value of 7 depends on the size of the metal atoms and the number of elec-
trons per unit volume. We can relate this expression for drift velocity in Equation
5.13 to the current in the conductor. Substituting the magnitude of the velocity
from Equation 5.13 into Equation 5.5, the current density becomes

anE

J=nqu, = T (5.14)

e

where 7 is the number of electrons per unit volume. Comparing this expression
with Ohm’s law, | = o E, we obtain the following relationships for conductivity and
resistivity of a conductor:

ng 27

(5.15)

g =
m

e

<
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Drift velocity in terms of
microscopic quantities

Current density in terms of
microscopic quantities

Conductivity in terms of
microscopic quantities
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Resistivity in terms of »
microscopic quantities

Variation of p with  »
temperature

Temperature coefficient  »
of resistivity

Figure5.9  Resistivity versus tem-
perature for a metal such as copper.
The curve is linear over a wide range
of temperatures, and p increases

with increasing temperature. As T'
approaches absolute zero (inset), the
resistivity approaches a finite value p,,.

1 m,

p_;_anT

(5.16)

According to this classical model, conductivity and resistivity do not depend on the
strength of the electric field. This feature is characteristic of a conductor obeying
Ohm’s law.

5.4 Resistance and Temperature

Over a limited temperature range, the resistivity of a conductor varies approxi-
mately linearly with temperature according to the expression

p=pll +a(T— 1] (5.17)

where p is the resistivity at some temperature 7" (in degrees Celsius), p, is the resis-
tivity at some reference temperature 7;, (usually taken to be 20°C), and « is the
temperature coefficient of resistivity. From Equation 27.17, the temperature coef-
ficient of resistivity can be expressed as

_ 1 A

a= AT (5.18)
0

where Ap = p — p, is the change in resistivity in the temperature interval AT =
T— T,

The temperature coefficients of resistivity for various materials are given in Table
5.2. Notice that the unit for « is degrees Celsius™! [(°C) ~!]. Because resistance is
proportional to resistivity (Eq. 5.10), the variation of resistance of a sample is

R=RJ[l +a(T—T,)] (5.19)

where R, is the resistance at temperature 7j. Use of this property enables precise
temperature measurements through careful monitoring of the resistance of a
probe made from a particular material.

For some metals such as copper, resistivity is nearly proportional to temperature
as shown in Figure 5.9. A nonlinear region always exists at very low temperatures,
however, and the resistivity usually reaches some finite value as the temperature
approaches absolute zero. This residual resistivity near absolute zero is caused pri-
marily by the collision of electrons with impurities and imperfections in the metal.
In contrast, high-temperature resistivity (the linear region) is predominantly char-
acterized by collisions between electrons and metal atoms.

Notice that three of the « values in Table 5.2 are negative, indicating that the
resistivity of these materials decreases with increasing temperature. This behavior is
indicative of a class of materials called semiconductors, first introduced in Section 1.2,
and is due to an increase in the density of charge carriers at higher temperatures.

Because the charge carriers in a semiconductor are often associated with impu-
rity atoms, the resistivity of these materials is very sensitive to the type and concen-
tration of such impurities.

Quick Quiz 5.4 When does a lightbulb carry more current, (a) immediately
after it is turned on and the glow of the metal filament is increasing or (b) after it
has been on for a few milliseconds and the glow is steady?

5.5 Superconductors

There is a class of metals and compounds whose resistance decreases to zero when
they are below a certain temperature 7, known as the critical temperature. These
materials are known as superconductors. The resistance—temperature graph for a
superconductor follows that of a normal metal at temperatures above 7', (Fig. 5.10).
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R(Q) TABLE 5.3
015 g Critical Temperatures for Various
P Superconductors
0.10 ¥
N Material T, (K)
0.05 / HgBa,Ca,Cu,Oy 134
’
1. . TI—Ba—Ca—Cu—O 125
0.00 i — Cu—
40 2.9 14 Bi—Sr—Ca—Cu—0O 105
T (K) YBa,Cu,O, 92
. . NbsGe 23.2
Figure 5.10  Resistance versus tem- 7
perature for a sample of mercury Nb;Sn 18.05
(Hg). The graph follows that of a Nb 9.46
normal metal above the critical tem-
perature T,. The resistance drops to Pb 7.18
zero at T, which is 4.2 K for mercury. Hg 4.15
Sn 3.72
Al 1.19
In 0.88

When the temperature is at or below 7, the resistivity drops suddenly to zero. This
phenomenon was discovered in 1911 by Dutch physicist Heike Kamerlingh-Onnes
(1853-1926) as he worked with mercury, which is a superconductor below 4.2 K.
Measurements have shown that the resistivities of superconductors below their 7,
values are less than 4 X 107 - m, or approximately 10'7 times smaller than the
resistivity of copper. In practice, these resistivities are considered to be zero.

Today, thousands of superconductors are known, and as Table 5.3 illustrates,
the critical temperatures of recently discovered superconductors are substantially
higher than initially thought possible. Two kinds of superconductors are recog-
nized. The more recently identified ones are essentially ceramics with high critical
temperatures, whereas superconducting materials such as those observed by
Kamerlingh-Onnes are metals. If a room-temperature superconductor is ever iden-
tified, its effect on technology could be tremendous.

The value of T, is sensitive to chemical composition, pressure, and molecular
structure. Copper, silver, and gold, which are excellent conductors, do not exhibit
superconductivity.

One truly remarkable feature of superconductors is that once a current is set up
in them, it persists without any applied potential difference (because R = 0). Steady
currents have been observed to persist in superconducting loops for several years
with no apparent decay!

An important and useful application of superconductivity is in the development
of superconducting magnets, in which the magnitudes of the magnetic field are
approximately ten times greater than those produced by the best normal electro-
magnets. Such superconducting magnets are being considered as a means of stor-
ing energy. Superconducting magnets are currently used in medical magnetic res-
onance imaging, or MRI, units, which produce high-quality images of internal
organs without the need for excessive exposure of patients to x-rays or other harm-
ful radiation.

5.6 Electrical Power

In typical electric circuits, energy is transferred from a source such as a battery,
to some device such as a lightbulb or a radio receiver. Let’s determine an expres-
sion that will allow us to calculate the rate of this energy transfer. First, consider
the simple circuit in Active Figure 5.11 , where energy is delivered to

a resistor. (Resistors are designated by the circuit symbol —AAM——.) Because

Courtesy of IBM Research Laboratory
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A small permanent magnet levitated
above a disk of the superconductor

YBa,CuzO;, which is in liquid nitro-

gen at 77 K.
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ACTIVE FIGURE 5.11

A circuit consisting of a resistor of
resistance R and a battery having a
potential difference AVacross its ter-
minals. Positive charge flows in the
clockwise direction.

Sign in at www.thomsonedu.com and
go to ThomsonNOW to adjust the
battery voltage and the resistance and
see the resulting current in the cir-
cuit and power delivered to the
resistor.

PITFALL PREVENTION 27.5
Charges Do Not Move All the Way
Around a Circuit in a Short Time

Because of the very small magni-
tude of the drift velocity, it might
take hours for a single electron to
make one complete trip around
the circuit. In terms of understand-
ing the energy transfer in a circuit,
however, it is useful to imagine a
charge moving all the way around
the circuit.

PITFALL PREVENTION 5.6
Misconceptions About Current

Several common misconceptions
are associated with current in a cir-
cuit like that in Active Figure 5.11.
One is that current comes out of
one terminal of the battery and is
then “used up” as it passes through
the resistor, leaving current in only
one part of the circuit. The current
is actually the same everywherein the
circuit. A related misconception
has the current coming out of the
resistor being smaller than that
going in because some of the cur-
rent is “used up.” Yet another mis-
conception has current coming out
of both terminals of the battery, in
opposite directions, and then
“clashing” in the resistor, delivering
the energy in this manner. That is
not the case; charges flow in the
same rotational sense at all points
in the circuit.
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the connecting wires also have resistance, some energy is delivered to the wires
and some to the resistor. Unless noted otherwise, we shall assume the resistance of
the wires is small compared with the resistance of the circuit element so that the
energy delivered to the wires is negligible.

Imagine following a positive quantity of charge Q moving clockwise around the
circuit in Active Figure 5.11 from point « through the battery and resistor back to
point a. We identify the entire circuit as our system. As the charge moves from « to
b through the battery, the electric potential energy of the system increases by an
amount Q AV while the chemical potential energy in the battery decreases by the
same amount. (Recall from Eq. 3.3 that AU = ¢ AV.) As the charge moves from ¢
to d through the resistor, however, the system /loses this electric potential energy
during collisions of electrons with atoms in the resistor. In this process, the energy
is transformed to internal energy corresponding to increased vibrational motion
of the atoms in the resistor. Because the resistance of the interconnecting wires is
neglected, no energy transformation occurs for paths b¢ and da. When the charge
returns to point a, the net result is that some of the chemical energy in the battery
has been delivered to the resistor and resides in the resistor as internal energy
associated with molecular vibration.

The resistor is normally in contact with air, so its increased temperature results
in a transfer of energy by heat into the air. In addition, the resistor emits thermal
radiation, representing another means of escape for the energy. After some time
interval has passed, the resistor reaches a constant temperature. At this time, the
input of energy from the battery is balanced by the output of energy from the
resistor by heat and radiation. Some electrical devices include heat sinks* con-
nected to parts of the circuit to prevent these parts from reaching dangerously
high temperatures. Heat sinks are pieces of metal with many fins. Because the
metal’s high thermal conductivity provides a rapid transfer of energy by heat away
from the hot component and the large number of fins provides a large surface
area in contact with the air, energy can transfer by radiation and into the air by
heat at a high rate.

Let’s now investigate the rate at which the system loses electric potential energy
as the charge Q passes through the resistor:

aQ

du
= (QAV) =~ “AV=1AV

d
dt  dt
where Iis the current in the circuit. The system regains this potential energy when
the charge passes through the battery, at the expense of chemical energy in the
battery. The rate at which the system loses potential energy as the charge passes
through the resistor is equal to the rate at which the system gains internal energy
in the resistor. Therefore, the power %, representing the rate at which energy is
delivered to the resistor, is
P =1IAV (5.20)

We derived this result by considering a battery delivering energy to a resistor.
Equation 5.20, however, can be used to calculate the power delivered by a voltage
source to any device carrying a current / and having a potential difference AV
between its terminals.

Using Equation 5.20 and AV = IR for a resistor, we can express the power
delivered to the resistor in the alternative forms

(AV)*
R

®=I°R= (5.21)

* This usage is another misuse of the word heat that is ingrained in our common language.
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When [is expressed in amperes, AVin volts, and R in ohms, the SI unit of power is
the watt, as it was in Chapter 8 in our discussion of mechanical power. The process
by which power is lost as internal energy in a conductor of resistance R is often
called joule heating;® this transformation is also often referred to as an IR loss.
When transporting energy by electricity through power lines such as those
shown in the opening photograph for this chapter, you should not assume that the
lines have zero resistance. Real power lines do indeed have resistance, and power is
delivered to the resistance of these wires. Utility companies seek to minimize the
energy transformed to internal energy in the lines and maximize the energy deliv-
ered to the consumer. Because % = I AV, the same amount of energy can be trans-
ported either at high currents and low potential differences or at low currents and
high potential differences. Utility companies choose to transport energy at low cur-
rents and high potential differences primarily for economic reasons. Copper wire is
very expensive, so it is cheaper to use high-resistance wire (that is, wire having a
small cross-sectional area; see Eq. 5.10). Therefore, in the expression for the
power delivered to a resistor, = I 2R, the resistance of the wire is fixed at a rela-
tively high value for economic considerations. The /2R loss can be reduced by keep-
ing the current / as low as possible, which means transferring the energy at a high
voltage. In some instances, power is transported at potential differences as great as
765 kV. At the destination of the energy, the potential difference is usually reduced
to 4 kV by a device called a transformer. Another transformer drops the potential dif-
ference to 240 V for use in your home. Of course, each time the potential differ-
ence decreases, the current increases by the same factor and the power remains the
same. We shall discuss transformers in greater detail in Chapter 33.

Quick Quiz 5.5 For the two lightbulbs shown in Figure 5.12, rank the cur-
rent values at points a through ffrom greatest to least.
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PITFALL PREVENTION 5.7
Energy Is Not “Dissipated”

In some books, you may see Equa-
tion 5.21 described as the power
“dissipated in” a resistor, suggesting
that energy disappears. Instead, we
say energy is “delivered to” a resis-
tor. The notion of dissipation arises
because a warm resistor expels
energy by radiation and heat, so
energy delivered by the battery
leaves the circuit. (It does not dis-
appear!)

o
S
=

\

[t
‘I

AV

Figure 5.12 (Quick Quiz 5.5) Two
lightbulbs connected across the same
potential difference.

EXAMPLE 5.4 Power in an Electric Heater

An electric heater is constructed by applying a potential difference of 120 V across a Nichrome wire that has a total
resistance of 8.00 (). Find the current carried by the wire and the power rating of the heater.

SOLUTION

Conceptualize As discussed in Example 5.2, Nichrome wire has high resistivity and is often used for heating ele-
ments in toasters, irons, and electric heaters. Therefore, we expect the power delivered to the wire to be relatively

high.

Categorize We evaluate the power from Equation 5.21, so we categorize this example as a substitution problem.

AV

Use Equation 5.7 to find the current in the wire: [=——=

Find the power rating using the expression
% = I’R from Equation 5.21:

What If?

120V
R 8.000Q

15.0 A

P = I*R= (15.0A)%(8.00 Q) = 1.80 X 10°W = 1.80 kW

What if the heater were accidentally connected to a 240-V supply? (That is difficult to do because the

shape and orientation of the metal contacts in 240-V plugs are different from those in 120-V plugs.) How would that

affect the current carried by the heater and the power rating of the heater?

51t is commonly called joule heating even though the process of heat does not occur when energy deliv-
ered to a resistor appears as internal energy. This is another example of incorrect usage of the word
heat that has become entrenched in our language.
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Answer If the applied potential difference were doubled, Equation 5.7 shows that the current would double.
According to Equation 5.21, @ = (AV)2/R, the power would be four times larger.

EXAMPLE 5.5 Linking Electricity and Thermodynamics

An immersion heater must increase the temperature of 1.50 kg of water from 10.0°C to 50.0°C in 10.0 min while
operating at 110 V.

(A) What is the required resistance of the heater?

SOLUTION

Conceptualize An immersion heater is a resistor that is inserted into a container of water. As energy is delivered to
the immersion heater, raising its temperature, energy leaves the surface of the resistor by heat, going into the water.
When the immersion heater reaches a constant temperature, the rate of energy delivered to the resistance by electri-
cal transmission is equal to the rate of energy delivered by heat to the water.

Categorize This example allows us to link our new understanding of power in electricity with our experience with
specific heat in thermodynamics (Chapter 20). The water is a nonisolated system. Its internal energy is rising because
of energy transferred into the water by heat from the resistor: AE;, = Q. In our model, we assume the energy that
enters the water from the heater remains in the water.

Analyze To simplify the analysis, let’s ignore the initial period during which the temperature of the resistor
increases and also ignore any variation of resistance with temperature. Therefore, we imagine a constant rate of
energy transfer for the entire 10.0 min.

AV)?

Set the rate of energy delivered to the resistor P = (4v) = Ag
equal to the rate of energy Q entering the water by R !
heat:

(AV)*  mcAT (AV)2A¢
Use Equation 20.4, Q = mc AT, to relate the energy R A — R= e AT
input by heat to the resulting temperature change me
of the water and solve for the resistance:

(110 V)*(600 s)

Substitute the values given in the statement of the R= = 2890

broblem: (1.50 kg) (4 186 J/kg - °C) (50.0°C — 10.0°C)

(B) Estimate the cost of heating the water.

SOLUTION

. . (Av)? (110V)* 1h
Multiply the power by the time interval to find the P At= At = (10.0 min){ ————

amount of energy transferred: R 28.9Q 60.0 min
= 69.8 Wh = 0.069 8 kWh

Find the cost knowing that energy is purchased at an Cost = (0.069 8 kWh)($0.1/kWh) = $0.007 = 0.7¢
estimated price of 10¢ per kilowatt-hour:

Finalize The cost to heat the water is very low, less than one cent. In reality, the cost is higher because some energy
is transferred from the water into the surroundings by heat and electromagnetic radiation while its temperature is
increasing. If you have electrical devices in your home with power ratings on them, use this power rating and an
approximate time interval of use to estimate the cost for one use of the device.
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DEFINITIONS

The electric current /in a conductor is defined as

The current density |
in a conductor is the

ao .
1= ’ (5.2) current per unit area:
where dQis the charge that passes through a cross section of the conductor in a time J= £l (5.5)
interval d¢. The SI unit of current is the ampere (A), where 1 A =1 C/s. A4
The resistance R of a conductor is defined as
AV
R= T (57)

where AVis the potential difference across it and 7is the current it carries. The SI unit of resistance is volts per
ampere, which is defined to be 1 ohm (Q); thatis, 1 Q = 1V/A.

CONCEPTS AND PRINCIPLES

The average current in a conductor is
related to the motion of the charge
carriers through the relationship

I, = nqu,A (5.4)

'c\Vg
where 7 is the density of charge carri-
ers, ¢ is the charge on each carrier, v,
is the drift speed, and A is the cross-
sectional area of the conductor.

The current density in an ohmic conductor is proportional to the elec-
tric field according to the expression

J=oE (5.6)

The proportionality constant o is called the conductivity of the material
of which the conductor is made. The inverse of o is known as resistivity
p (thatis, p = 1/0). Equation 27.6 is known as Ohm’s law, and a mate-
rial is said to obey this law if the ratio of its current density to its applied
electric field is a constant that is independent of the applied field.

For a uniform block

of material of cross-
sectional area A and
length ¢, the resistance
over the length € is

Rng (5.10)

where p is the resistivity
of the material.

In a classical model of electrical conduction in metals, the electrons are treated as
molecules of a gas. In the absence of an electric field, the average velocity of the elec-
trons is zero. When an electric field is applied, the electrons move (on average) with a
drift velocity v, that is opposite the electric field. The drift velocity is given by

.
v-
T,

(5.13)

where ¢is the electron’s charge,m, is the mass of the electron, and 7 is the average
time interval between electron—atom collisions. According to this model, the resistivity
of the metal is

m

‘ (5.16)

P anT

where n is the number of free electrons per unit volume.

The resistivity of a conductor
varies approximately linearly with
temperature according to the
expression

p=poll +a(lT—-T,)]

where p, is the resistivity at some
reference temperature 7; and a is
the temperature coefficient of
resistivity.

(5.17)

If a potential difference AVis maintained across a circuit element, the
power, or rate at which energy is supplied to the element, is

P =TIAV (5.20)

Because the potential difference across a resistor is given by AV = IR, we
can express the power delivered to a resistor as

(Av)?
R

The energy delivered to a resistor by electrical transmission appears in the
form of internal energy in the resistor.

P =I°R=

(5.21)




6 Direct Current Circuits

In this chapter, we analyze simple electric circuits that contain batteries, resistors,
and capacitors in various combinations. Some circuits contain resistors that can be
combined using simple rules. The analysis of more complicated circuits is simpli-
fied using Kirchhoff’s rules, which follow from the laws of conservation of energy
and conservation of electric charge for isolated systems. Most of the circuits ana-
lyzed are assumed to be in steady state, which means that currents in the circuit are
constant in magnitude and direction. A current that is constant in direction is
called a direct current (DC). We will study alternating current (AC), in which the cur-
rent changes direction periodically, in Chapter 33. Finally, we describe electrical
meters for measuring current and potential difference and then discuss electrical

circuits in the home.

6.1 Electromotive Force

In Section 5.6, we discussed a circuit in which a battery produces a current. We

will generally use a battery as a source of energy for circuits in our discussion.
Because the potential difference at the battery terminals is constant in a particular
circuit, the current in the circuit is constant in magnitude and direction and is
called direct current. A battery is called either a source of electromotive force or, more
commonly, a source of emf. (The phrase electromotive force is an unfortunate historical
term, describing not a force, but rather a potential difference in volts.) The emf €
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ACTIVE FIGURE 6.1

(a) Circuit diagram of a source of
emf & (in this case, a battery), of
internal resistance r, connected to

an external resistor of resistance R.
(b) Graphical representation showing
how the electric potential changes

as the circuit in (a) is traversed
clockwise.

Sign in at www.thomsonedu.com and
go to ThomsonNOW to adjust the
emf and resistances rand R and see
the effect on the current and on the
graph in part (b).

PITFALL PREVENTION 6.1
What Is Constant in a Battery?

Itis a common misconception that
a battery is a source of constant
current. Equation 6.3 shows that is
not true. The current in the circuit
depends on the resistance R con-
nected to the battery. It is also not
true that a battery is a source of
constant terminal voltage as shown
by Equation 6.1. A battery is a
source of constant emf.
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of a battery is the maximum possible voltage the battery can provide between its
terminals. You can think of a source of emf as a “charge pump.” When an electric
potential difference exists between two points, the source moves charges “uphill”
from the lower potential to the higher.

We shall generally assume the connecting wires in a circuit have no resistance.
The positive terminal of a battery is at a higher potential than the negative termi-
nal. Because a real battery is made of matter, there is resistance to the flow of
charge within the battery. This resistance is called internal resistance r. For an ide-
alized battery with zero internal resistance, the potential difference across the bat-
tery (called its terminal voltage) equals its emf. For a real battery, however, the ter-
minal voltage is not equal to the emf for a battery in a circuit in which there is a
current. To understand why, consider the circuit diagram in Active Figure 6.1a.
The battery in this diagram is represented by the dashed rectangle containing an
ideal, resistance-free emf € in series with an internal resistance r. A resistor of
resistance R is connected across the terminals of the battery. Now imagine moving
through the battery from a to d and measuring the electric potential at various
locations. Passing from the negative terminal to the positive terminal, the potential
increases by an amount €. As we move through the resistance », however, the
potential decreases by an amount Ir, where 7 is the current in the circuit. Therefore,
the terminal voltage of the battery AV =V, — V_is

AV=E - Ir (6.1)

From this expression, notice that € is equivalent to the open-circuit voltage, that
is, the terminal voltage when the current is zero. The emf is the voltage labeled on
a battery; for example, the emf of a D cell is 1.5 V. The actual potential difference
between a battery’s terminals depends on the current in the battery as described
by Equation 6.1.

Active Figure 6.1b is a graphical representation of the changes in electric poten-
tial as the circuit is traversed in the clockwise direction. Active Figure 6.1a shows
that the terminal voltage AV must equal the potential difference across the external
resistance R, often called the load resistance. The load resistor might be a simple
resistive circuit element as in Active Figure 28.1a, or it could be the resistance of
some electrical device (such as a toaster, electric heater, or lightbulb) connected to
the battery (or, in the case of household devices, to the wall outlet). The resistor rep-
resents a load on the battery because the battery must supply energy to operate the
device containing the resistance. The potential difference across the load resistance
is AV = IR. Combining this expression with Equation 6.1, we see that

E=IR+Ir (6.2)
Solving for the current gives
E
1= 6.3
R+r 6.3)

Equation 6.3 shows that the current in this simple circuit depends on both the
load resistance R external to the battery and the internal resistance r. If R is much
greater than 7, as it is in many real-world circuits, we can neglect .

Multiplying Equation 6.2 by the current [7in the circuit gives

IE = IR+ I*r (6.4)

Equation 6.4 indicates that because power % = I AV (see Eq. 5.20), the total
power output /E of the battery is delivered to the external load resistance in the
amount /%R and to the internal resistance in the amount /2r.

Quick Quiz 6.1 To maximize the percentage of the power that is delivered
from a battery to a device, what should the internal resistance of the battery be?
(a) It should be as low as possible. (b) It should be as high as possible. (c) The
percentage does not depend on the internal resistance.
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EXAMPLE 6.1 Terminal Voltage of a Battery

A battery has an emf of 12.0 V and an internal resistance of 0.05 {). Its terminals are connected to a load resistance
of 3.00 (.

(A) Find the current in the circuit and the terminal voltage of the battery.

SOLUTION

Conceptualize Study Active Figure 6.1a, which shows a circuit consistent with the problem statement. The battery
delivers energy to the load resistor.

Categorize This example involves simple calculations from this section, so we categorize it as a substitution problem.

& 12.0V
Use Equation 6.3 to find the current in the circuit: 1= = 2 = 3.93A
R+7r (3.000Q + 0.050Q)
Use Equation 6.1 to find the terminal voltage: AV=E& — Ir=12.0V — (3.93A)(0.06 Q) = 11.8V
To check this result, calculate the voltage across the load AV=1IR= (393A)(3.00Q) =118V

resistance R:

(B) Calculate the power delivered to the load resistor, the power delivered to the internal resistance of the battery,
and the power delivered by the battery.

SOLUTION

Use Equation 5.21 to find the power delivered to the Pr=I"R= (393 A)%3.00Q) = 46.3W
load resistor:

Find the power delivered to the internal resistance: P, = I*r= (3.93A)%(0.05 Q) = 0.772W
Find the power delivered by the battery by adding these P=Pr+ P, =463W + 0.772W = 471 W
quantities:

What If?  As a battery ages, its internal resistance increases. Suppose the internal resistance of this battery rises to
2.00 Q toward the end of its useful life. How does that alter the battery’s ability to deliver energy?

Answer Let’s connect the same 3.00-() load resistor to the battery.

12.0V
Find the new current in the battery: I= & 2 =240A
R+7r (3000 + 2.000Q)
Find the new terminal voltage: AV=8E — Ir= 120V — (240A)(2.00Q) =72V
Find the new powers delivered to the load resistor and Pr=TI’R= (240 A)*(3.00 Q) = 17.3W

int I resist : . .
Hierhal resistance P, = I*r= (240 A)%(2.00 Q) = 11.5W

The terminal voltage is only 60% of the emf. Notice that 40% of the power from the battery is delivered to the inter-
nal resistance when ris 2.00 ). When ris 0.05 ) as in part (B), this percentage is only 1.6%. Consequently, even
though the emf remains fixed, the increasing internal resistance of the battery significantly reduces the battery’s abil-
ity to deliver energy.
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EXAMPLE 6.2 Matching the Load o

Find the load resistance R for which the maximum power is delivered to the load
resistance in Active Figure 6.1a. P max =

SOLUTION

Conceptualize Think about varying the load resistance in Active Figure 6.1a

and the effect on the power delivered to the load resistance. When R is large,

there is very little current, so the power /2R delivered to the load resistor is small.

When R is small, the current is large and there is significant loss of power I%r as : 1R

energy is delivered to the internal resistance. Therefore, the power delivered to

the load resistor is small again. For some intermediate value of the resistance R,  '19ure6-2  (Example 6.2) Graph
gain. of the power & delivered by a battery

the power must maximize. to a load resistor of resistance Ras a
function of R. The power delivered to
the resistor is a maximum when the
load resistance equals the internal

Categorize The circuit is the same as that in Example 6.1. The load resistance R

in this case, however, is a variable. resistance of the battery.

. . . 9 E’R
Analyze Find the power delivered to the load resis- (1) »=IR=-—"3
. . i : : ; (R+ 1)
ance using Equation 5.21, with [ given by Equation
6.3:

dP d E’R d

Differentiate the power with respect to the load resis- — = {2 = —[ER(R+1r7%]=0
tance R and set the derivative equal to zero to maximize drR  dRL(R+ 1) dR
the power: [EX(R+ 1) 2] + [E2R(—2)(R+ 1) %] = 0

EXR+ r)_ 2&2R _EQ(T—R)_O
(R+17)°  (R+7>  (R+n>

Solve for R: R= r

Finalize To check this result, let’s plot % versus R as in Figure 6.2. The graph shows that % reaches a maximum
value at R = r. Equation (1) shows that this maximum value is ? . = E%/4r.

6.2 Resistors in Series and Parallel

When two or more resistors are connected together as are the lightbulbs in Active
Figure 6.3a, they are said to be in a series combination. Active Figure 6.3b is the
circuit diagram for the lightbulbs, shown as resistors, and the battery. In a series
connection, if an amount of charge Q exits resistor R;, charge Q must also enter
the second resistor R,. Otherwise, charge would accumulate on the wire between
the resistors. Therefore, the same amount of charge passes through both resistors
in a given time interval and the currents are the same in both resistors:

I=1 =1,

where 7is the current leaving the battery, /; is the current in resistor R;, and I, is
the current in resistor R,.

The potential difference applied across the series combination of resistors
divides between the resistors. In Active Figure 6.3b, because the voltage drop !

! The term wollage drop is synonymous with a decrease in electric potential across a resistor. It is often
used by individuals working with electric circuits.



Chapter 6

Direct Current Circuits

{
%

81

Req=Ry+ Ry

eq

ACTIVE FIGURE 6.3

(a) A series combination of two lightbulbs with resistances R; and R,. (b) Circuit diagram for the two-resistor circuit. The current in R, is the same

as that in R,. (c) The resistors replaced with a single resistor having an equivalent resistance R, = R; + R,.

Sign in at www.thomsonedu.com and go to ThomsonNOW to adjust the battery voltage and resistances R, and R, and see the effect on the currents

and voltages in the individual resistors.

from a to b equals I} R, and the voltage drop from b to ¢ equals I,R,, the voltage
drop from a to cis

AV= LR, + LR,

The potential difference across the battery is also applied to the equivalent resis-
tance R, in Active Figure 6.3c:

AV= IR,

where the equivalent resistance has the same effect on the circuit as the series
combination because it results in the same current / in the battery. Combining
these equations for AV, we see that we can replace the two resistors in series with a
single equivalent resistance whose value is the sum of the individual resistances:
AV=IR,= LR + LRy — R,=R + R, (6.5)
where we have canceled the currents /, I}, and I, because they are all the same.

The equivalent resistance of three or more resistors connected in series is

Rg=R + Ry + Ry + - (6.6)
This relationship indicates that the equivalent resistance of a series combination
of resistors is the numerical sum of the individual resistances and is always greater
than any individual resistance.

Looking back at Equation 6.3, we see that the denominator is the simple alge-
braic sum of the external and internal resistances. That is consistent with the inter-
nal and external resistances being in series in Active Figure 6.1a.

If the filament of one lightbulb in Active Figure 6.3 were to fail, the circuit
would no longer be complete (resulting in an open-circuit condition) and the sec-
ond lightbulb would also go out. This fact is a general feature of a series circuit: if
one device in the series creates an open circuit, all devices are inoperative.

Quick Quiz 6.2  With the switch in the circuit of Figure 6.4a

closed, there is no current in R, because the current has an alternate zero-resist-
ance path through the switch. There is current in R;, and this current is measured
with the ammeter (a device for measuring current) at the bottom of the circuit. If
the switch is opened (Fig. 6.4b), there is current in R,. What happens to the

The equivalent resistance
of a series combination of
<« resistors

PITFALL PREVENTION 6.2
Lightbulbs Don’t Burn

We will describe the end of the life
of a lightbulb by saying the filament
fails rather than by saying the light-
bulb “burns out.” The word burn
suggests a combustion process,
which is not what occurs in a light-
bulb. The failure of a lightbulb
results from the slow sublimation
of tungsten from the very hot fila-
ment over the life of the lightbulb.
The filament eventually becomes
very thin because of this process.
The mechanical stress from a sud-
den temperature increase when the
lightbulb is turned on causes the
thin filament to break.
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PITFALL PREVENTION 6.3
Local and Global Changes

A local change in one part of a cir-
cuit may result in a global change
throughout the circuit. For exam-
ple, if a single resistor is changed in
a circuit containing several resistors
and batteries, the currents in all
resistors and batteries, the terminal
voltages of all batteries, and the
voltages across all resistors may
change as a result.

PITFALL PREVENTION 6.4
Current Does Not Take the Path of Least
Resistance

You may have heard the phrase
“current takes the path of least
resistance” (or similar wording) in
reference to a parallel combination
of current paths such that there are
two or more paths for the current
to take. Such wording is incorrect.
The current takes all paths. Those
paths with lower resistance have
larger currents, but even very high
resistance paths carry some of the
current. In theory, if current has a
choice between a zero-resistance
path and a finite resistance path, all
the current takes the path of zero-
resistance; a path with zero resis-
tance, however, is an idealization.
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reading on the ammeter when the switch is opened? (a) The reading goes up. (b)
The reading goes down. (c) The reading does not change.

Ry Ry

B

)
®

(a) (b)

Figure 6.4  (Quick Quiz 6.2) What happens when the switch is opened?

Now consider two resistors in a parallel combination as shown in Active Figure
6.5. Notice that both resistors are connected directly across the terminals of the
battery. Therefore, the potential differences across the resistors are the same:

AV= AV, = AV,

where AVis the terminal voltage of the battery.

When charges reach point @ in Active Figure 6.5b, they split into two parts,
with some going toward R, and the rest going toward R,. A junction is any such
point in a circuit where a current can split. This split results in less current in each
individual resistor than the current leaving the battery. Because electric charge is
conserved, the current / that enters point ¢ must equal the total current leaving
that point:

I=1,+1I,

where /) is the current in R, and I, is the current in R,.
The current in the equivalent resistance R, in Active Figure 6.5¢ is

_Av
R

€q

1

where the equivalent resistance has the same effect on the circuit as the two resis-
tors in parallel; that is, the equivalent resistance draws the same current / from the

AV = AVy= AV 1 11
'
Ry R, R, Ry

a¢——NNN——9)

Battery T
() (b) ()
ACTIVE FIGURE 6.5

(a) A parallel combination of two lightbulbs with resistances R; and R,. (b) Circuit diagram for the two-
resistor circuit. The potential difference across R, is the same as that across R,. (c) The resistors
replaced with a single resistor having an equivalent resistance given by Equation 6.7.

Sign in at www.thomsonedu.com and go to ThomsonNOW to adjust the battery voltage and resistances
R, and R, and see the effect on the currents and voltages in the individual resistors.
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battery. Combining these equations for 7, we see that the equivalent resistance of
two resistors in parallel is given by
_AV AV AW 1 1 1

=—14 - ——=—+ (6.7)

R, R R R, R R

where we have canceled AV, AV;, and AV, because they are all the same.
An extension of this analysis to three or more resistors in parallel gives
1 1 1 1

— B —=—dp—qr = oo (6.8)

Rq R Ry Ry
This expression shows that the inverse of the equivalent resistance of two or more
resistors in a parallel combination is equal to the sum of the inverses of the indi-
vidual resistances. Furthermore, the equivalent resistance is always less than the
smallest resistance in the group.

Household circuits are always wired such that the appliances are connected in
parallel. Each device operates independently of the others so that if one is
switched off, the others remain on. In addition, in this type of connection, all the
devices operate on the same voltage.

Let’s consider two examples of practical applications of series and parallel cir-
cuits. Figure 6.6 illustrates how a three-way lightbulb is constructed to provide
three levels of light intensity.? The socket of the lamp is equipped with a three-way
switch for selecting different light intensities. The lightbulb contains two filaments.
When the lamp is connected to a 120-V source, one filament receives 100 W of
power and the other receives 75 W. The three light intensities are made possible
by applying the 120 V to one filament alone, to the other filament alone, or to the
two filaments in parallel. When switch S, is closed and switch S, is opened, current
exists only in the 75-W filament. When switch S, is open and switch S, is closed,
current exists only in the 100-W filament. When both switches are closed, current
exists in both filaments and the total power is 175 W.

If the filaments were connected in series and one of them were to break, no
charges could pass through the lightbulb and it would not glow, regardless of the
switch position. If, however, the filaments were connected in parallel and one of
them (for example, the 75-W filament) were to break, the lightbulb would con-
tinue to glow in two of the switch positions because current exists in the other
(100-W) filament.

As a second example, consider strings of lights that are used for many ornamen-
tal purposes such as decorating Christmas trees. Over the years, both parallel and
series connections have been used for strings of lights. Because series-wired light-
bulbs operate with less energy per bulb and at a lower temperature, they are safer
than parallel-wired lightbulbs for indoor Christmas-tree use. If, however, the fila-
ment of a single lightbulb in a series-wired string were to fail (or if the lightbulb
were removed from its socket), all the lights on the string would go out. The pop-
ularity of series-wired light strings diminished because troubleshooting a failed
lightbulb is a tedious, time-consuming chore that involves trial-and-error substitu-
tion of a good lightbulb in each socket along the string until the defective one is
found.

In a parallel-wired string, each lightbulb operates at 120 V. By design, the light-
bulbs are brighter and hotter than those on a series-wired string. As a result, they
are inherently more dangerous (more likely to start a fire, for instance), but if one
lightbulb in a parallel-wired string fails or is removed, the rest of the lightbulbs
continue to glow.

To prevent the failure of one lightbulb from causing the entire string to go out,
a new design was developed for so-called miniature lights wired in series. When
the filament breaks in one of these miniature lightbulbs, the break in the filament

2 The three-way lightbulb and other household devices actually operate on alternating current (AC), to
be introduced in Chapter 33.

83

<« The equivalent resistance
of a parallel combination of
resistors

100-W filament

120V

Figure 6.6 A three-way lightbulb.
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(b)
Figure 6.8  (Quick Quiz 6.3)

What happens when the switch is
closed?

AR
\Filament
s]umper

Glass insulator

e

© Thomson Learning/George Semple

() (b) ()

Figure 6.7  (a) Schematic diagram of a modern “miniature” holiday lightbulb, with a jumper connec-
tion to provide a current path if the filament breaks. When the filament is intact, charges flow in the fil-
ament. (b) A holiday lightbulb with a broken filament. In this case, charges flow in the jumper
connection. (c) A Christmas-tree lightbulb.

represents the largest resistance in the series, much larger than that of the intact
filaments. As a result, most of the applied 120 V appears across the lightbulb with
the broken filament. Inside the lightbulb, a small jumper loop covered by an insu-
lating material is wrapped around the filament leads. When the filament fails and
120 V appears across the lightbulb, an arc burns the insulation on the jumper and
connects the filament leads. This connection now completes the circuit through
the lightbulb even though its filament is no longer active (Fig. 6.7).

When a lightbulb fails, the resistance across its terminals is reduced to almost
zero because of the alternate jumper connection mentioned in the preceding
paragraph. All the other lightbulbs not only stay on, but they glow more brightly
because the total resistance of the string is reduced and consequently the current
in each lightbulb increases. Each lightbulb operates at a slightly higher tempera-
ture than before. As more lightbulbs fail, the current keeps rising, the filament of
each lightbulb operates at a higher temperature, and the lifetime of the lightbulb
is reduced. For this reason, you should check for failed (nonglowing) lightbulbs in
such a series-wired string and replace them as soon as possible, thereby maximiz-
ing the lifetimes of all the lightbulbs.

Quick Quiz 6.3  With the switch in the circuit of Figure 6.8a open, there is no
current in R,. There is current in R;, however, and it is measured with the amme-
ter at the right side of the circuit. If the switch is closed (Fig. 6.8b), there is cur-
rent in R,. What happens to the reading on the ammeter when the switch is
closed? (a) The reading increases. (b) The reading decreases. (c) The reading
does not change.

Quick Quiz 6.4 Consider the following choices: (a) increases, (b) decreases,
(c) remains the same. From these choices, choose the best answer for the follow-
ing situations. (i) In Active Figure 6.3, a third resistor is added in series with the
first two. What happens to the current in the battery? (ii) What happens to the ter-
minal voltage of the battery? (iii) In Active Figure 6.5, a third resistor is added in
parallel with the first two. What happens to the current in the battery? (iv) What
happens to the terminal voltage of the battery?

CONCEPTUAL EXAMPLE 6.3 Landscape Lights

A homeowner wishes to install low-voltage landscape lighting in his back yard. To save money, he purchases inexpen-
sive 18-gauge cable, which has a relatively high resistance per unit length. This cable consists of two side-by-side wires
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separated by insulation, like the cord on an appliance.
He runs a 200-foot length of this cable from the power
supply to the farthest point at which he plans to position
a light fixture. He attaches light fixtures across the two
wires on the cable at 10foot intervals so that the light fix-
tures are in parallel. Because of the cable’s resistance, the
brightness of the lightbulbs in the fixtures is not as
desired. Which of the following problems does the home-
owner have? (a) All the lightbulbs glow equally less
brightly than they would if lowerresistance cable had
been used. (b) The brightness of the lightbulbs decreases
as you move farther from the power supply.

SOLUTION

85

Resistance of Resistance in
light fixtures wires of cable
Ry R
AAA AAA AAA AKA
YVv VVy VVy YVy ‘
P T > >
owe :; Rl :: RQ e o o
supply < <
Ry Rp
AAA AAA AAA ANA
\AA} \AA} \AA} \AA}

Figure 6.9  (Conceptual Example 6.3) The circuit diagram for a
set of landscape light fixtures connected in parallel across the two
wires of a two-wire cable. The horizontal resistors represent resis-
tance in the wires of the cable. The vertical resistors represent the
light fixtures.

A circuit diagram for the system appears in Figure 6.9. The horizontal resistors with letter subscripts (such as R,)
represent the resistance of the wires in the cable between the light fixtures, and the vertical resistors with number
subscripts (such as R;) represent the resistance of the light fixtures themselves. Part of the terminal voltage of the
power supply is dropped across resistors R, and Rj. Therefore, the voltage across light fixture R, is less than the ter-
minal voltage. There is a further voltage drop across resistors R, and R;,. Consequently, the voltage across light fix-
ture R, is smaller than that across R,. This pattern continues down the line of light fixtures, so the correct choice is
(b). Each successive light fixture has a smaller voltage across it and glows less brightly than the one before.

EXAMPLE 6.4 Find the Equivalent Resistance

Four resistors are connected as shown in Figure 6.10a.

(A) Find the equivalent resistance between points a and .

SOLUTION

Conceptualize Imagine charges flowing into this combina-
tion from the left. All charges must pass through the first
two resistors, but the charges split into two different paths
when encountering the combination of the 6.0-Q) and the
3.0-Q) resistors.

Categorize Because of the simple nature of the combina-
tion of resistors in Figure 6.10, we categorize this example
as one for which we can use the rules for series and parallel
combinations of resistors.

Analyze The combination of resistors can be reduced in
steps as shown in Figure 6.10.

Find the equivalent resistance between a and b of the
8.0-Q) and 4.0-Q resistors, which are in series:

Find the equivalent resistance between b and ¢ of the
6.0-Q2 and 3.0-Q) resistors, which are in parallel:

The circuit of equivalent resistances now looks like Fig-
ure 6.10b. Find the equivalent resistance from a to c:

Figure6.10 (Exam-

ple 6.4) The original 111’4.—0\@\
network of resistors is (c) \
reduced to a single a \ / c
equivalent resistance. ~._-’

Ry =800+ 400 =1200Q

1_ 1 .1 3
Ry 600 300 600
6.0 O
Ry=—5— =200

Rq=1200+200 = 1400

This resistance is that of the single equivalent resistor in Figure 6.10c.

(B) What is the current in each resistor if a potential difference of 42 V is maintained between « and ¢?
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SOLUTION

86

The currents in the 8.0-(2 and 4.0-() resistors are the same because they are in series. In addition, they carry the same
current that would exist in the 14.0-0) equivalent resistor subject to the 42-V potential difference.

Use Equation 5.7 ( R = AV/I) and the result from part
(A) to find the current in the 8.0-Q) and 4.0-() resistors:

Set the voltages across the resistors in parallel in Figure
6.10a equal to find a relationship between the currents:

Use I} + I, = 3.0 A to find I;:

Find I

Finalize As a final check of our results, note that AV, =

36 V; therefore, AV, = AV, + AV, = 42V, as it must.

AV, 4
p= Ve B2V _ g
R, 1400
AV, = AV, — (6.0Q), = (300, — I,=2I

L+, =30A — I,+2,=30A — I,= 10A

I, =21, =2(1.0A) = 20A

(6.0 )1, = (3.0 O)I, = 6.0 Vand AV, = (12.0 Q)T =

EXAMPLE 6.5 Three Resistors in Parallel

Three resistors are connected in parallel as shown in
Figure 6.11a. A potential difference of 18.0 V is main-
tained between points @ and b.

(A) Calculate the equivalent resistance of the circuit.

SOLUTION

Conceptualize Figure 6.11a shows that we are dealing
with a simple parallel combination of three resistors.

Categorize Because the three resistors are connected

in parallel, we can use Equation 6.8 to evaluate the
equivalent resistance.

Analyze Use Equation 6.8 to find R

(B) Find the current in each resistor.

SOLUTION

The potential difference across each resistor is 18.0 V.
Apply the relationship AV = IR to find the currents:

18OV 500 ] 6.000)] 9.00 ()
b
(a) (b)
Figure 6.11 (Example 6.5) (a) Three resistors connected in parallel.

The voltage across each resistor is 18.0 V. (b) Another circuit with three
resistors and a battery. Is it equivalent to the circuit in (a)?

1_ 1,1 1 110
R, 3.00Q 6000 9000 18.00Q
18.0 O
R., = = 1.640Q
1 11.0
AV 180V
I =— = = 6.00A
R, 3.000Q
AV 180V
L=—= = 3.00A
Ry, 6.00Q
= AV _ 180V 2.00 A
TRy 9.000 =

(C) Calculate the power delivered to each resistor and the total power delivered to the combination of resistors.
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SOLUTION
Apply the relationship ? = I’R to each resistor using 3.00-Q: P, = I,’R, = (6.00 A)?(3.00 Q) = 108 W
the currents calculated in part (B): 0 0
6.00-Q: Py = I2R, = (3.00 A)2(6.00 Q) = 54.0W
9.00-Q: Py = IRy = (2.00 A)2(9.00 Q) = 36.0 W

Finalize Part (C) shows that the smallest resistor receives the most power. Summing the three quantities gives a
total power of 198 W. We could have calculated this final result from part (A) by considering the equivalent resistance
as follows: = (AV)*/R,, = (18.0V)?/ 1.64 O = 198 W.

What If?  'What if the circuit were as shown in Figure 6.11b instead of as in Figure 68.11a? How would that affect
the calculation?

Answer There would be no effect on the calculation. The physical placement of the battery is not important. In
Figure 6.11b, the battery still maintains a potential difference of 18.0 V between points « and b, so the two circuits
in the figure are electrically identical.

6.3 Kirchhoff's Rules

As we saw in the preceding section, combinations of resistors can be simplified
and analyzed using the expression AV = IR and the rules for series and parallel
combinations of resistors. Very often, however, it is not possible to reduce a circuit
to a single loop. The procedure for analyzing more complex circuits is made possi-
ble by using the two following principles, called Kirchhoff’s rules.

1. Junction rule. At any junction, the sum of the currents must equal zero:

S 1=0 (6.9)

junction

2. Loop rule. The sum of the potential differences across all elements
around any closed circuit loop must be zero:

> AV=0 (6.10)

closed loop

Kirchhoff’s first rule is a statement of conservation of electric charge. All
charges that enter a given point in a circuit must leave that point because charge I
cannot build up at a point. Currents directed into the junction are entered into Flow in
—_— Flow out

the junction rule as +/, whereas currents directed out of a junction are entered as

— 1. Applying this rule to the junction in Figure 6.12a gives
—_—

11_12_[320
(b)

Figure 6.12b represents a mechanical analog of this situation, in which water Figure6.12  (a) Kirchhoff’s junc-
flows through a branched pipe having no leaks. Because water does not build up  tion rule. Conservation of charge
anywhere in the pipe, the flow rate into the pipe on the left equals the total flow  requires thatall charges enteringa
. junction must leave that junction.
rate out of the two branches on the right. Therefore, I, — I — I, = 0. (b) A
Kirchhoff’s second rule follows from the law of conservation of energy. Let’s mechanical analog of the junction
imagine moving a charge around a closed loop of a circuit. When the charge  rule: The amountofwater flowing
. . . . out of the branches on the right must
returns to the starting point, the charge-circuit system must have the same total g1 the amount flowing into the
energy as it had before the charge was moved. The sum of the increases in energy  single branch on the left.
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Figure6.13  Rules for determining
the potential differences across a
resistor and a battery. (The battery is
assumed to have no internal resis-
tance.) Each circuit element is tra-
versed from a to b, left to right.

AIP ESVA/W. F. Meggers Collection

GUSTAV KIRCHHOFF

German Physicist (1824-1887)

Kirchhoff, a professor at Heidelberg, and Robert
Bunsen invented the spectroscope and founded
the science of spectroscopy, which we shall
study in Chapter 42. They discovered the ele-
ments cesium and rubidium and invented
astronomical spectroscopy.

as the charge passes through some circuit elements must equal the sum of the
decreases in energy as it passes through other elements. The potential energy
decreases whenever the charge moves through a potential drop —IR across a resis-
tor or whenever it moves in the reverse direction through a source of emf. The
potential energy increases whenever the charge passes through a battery from the
negative terminal to the positive terminal.

When applying Kirchhoff’s second rule, imagine traveling around the loop and
consider changes in electric potential rather than the changes in potential energy
described in the preceding paragraph. Imagine traveling through the circuit ele-
ments in Figure 6.13 toward the right. The following sign conventions apply
when using the second rule:

m Charges move from the high-potential end of a resistor toward the low-
potential end, so if a resistor is traversed in the direction of the current, the
potential difference AV across the resistor is — IR (Fig. 6.13a).

m If a resistor is traversed in the direction opposite the current, the potential dif-
ference AV across the resistor is + /R (Fig. 6.13b).

m If a source of emf (assumed to have zero internal resistance) is traversed in
the direction of the emf (from negative to positive), the potential difference
AVis +& (Fig. 6.13c).

m If a source of emf (assumed to have zero internal resistance) is traversed in
the direction opposite the emf (from positive to negative), the potential dif-
ference AVis —& (Fig. 6.13d).

There are limits on the numbers of times you can usefully apply Kirchhoff’s
rules in analyzing a circuit. You can use the junction rule as often as you need as
long as you include in it a current that has not been used in a preceding junction-
rule equation. In general, the number of times you can use the junction rule is
one fewer than the number of junction points in the circuit. You can apply the
loop rule as often as needed as long as a new circuit element (resistor or battery)
or a new current appears in each new equation. In general, to solve a particular
circuit problem, the number of independent equations you need to obtain from
the two rules equals the number of unknown currents.

Complex networks containing many loops and junctions generate great num-
bers of independent linear equations and a correspondingly great number of
unknowns. Such situations can be handled formally through the use of matrix
algebra. Computer software can also be used to solve for the unknowns.

The following examples illustrate how to use Kirchhoff’s rules. In all cases, it is
assumed the circuits have reached steady-state conditions; in other words, the cur-
rents in the various branches are constant. Any capacitor acts as an open branch in
a circuit; that is, the current in the branch containing the capacitor is zero under
steady-state conditions.

PROBLEM-SOLVING STRATEGY Kirchhoff’s Rules

The following procedure is recommended for solving problems that involve circuits
that cannot be reduced by the rules for combining resistors in series or parallel.

1. Conceptualize. Study the circuit diagram and make sure you recognize all ele-
ments in the circuit. Identify the polarity of each battery and try to imagine the
directions in which the current would exist in the batteries.

2. Categorize. Determine whether the circuit can be reduced by means of combin-
ing series and parallel resistors. If so, use the techniques of Section 28.2. If not,
apply Kirchhoff’s rules according to the Analyze step below.

3. Analyze. Assign labels to all known quantities and symbols to all unknown quan-
tities. You must assign directions to the currents in each part of the circuit.
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Although the assignment of current directions is arbitrary, you must adhere rig-
orously to the directions you assign when you apply Kirchhoff’s rules.

Apply the junction rule (Kirchhoff’s first rule) to all junctions in the circuit
except one. Now apply the loop rule (Kirchhoff’s second rule) to as many loops
in the circuit as are needed to obtain, in combination with the equations from
the junction rule, as many equations as there are unknowns. To apply this rule,
you must choose a direction in which to travel around the loop (either clock-
wise or counterclockwise) and correctly identify the change in potential as you
cross each element. Be careful with signs!

Solve the equations simultaneously for the unknown quantities.

4. Finalize. Check your numerical answers for consistency. Do not be alarmed if
any of the resulting currents have a negative value. That only means you have
guessed the direction of that current incorrectly, but its magnitude will be correct.

EXAMPLE 6.6 A Single-Loop Circuit
£,=60V

A single-loop circuit contains two resistors and two batteries as shown in Figure - — I
6.14. (Neglect the internal resistances of the batteries.) Find the current in the
circuit.

R, =800

SOLUTION

Conceptualize Figure 6.14 shows the polarities of the batteries and a guess at
the direction of the current. -
g,=12V
Categorize We do not need Kirchhoff’s rules to analyze this simple circuit, but Figure6.14  (Example 6.6) A
let’ hem an impl h h r lied. There are no junction series circuit containing two batteries
let’s use them anyway simply to see how they are app ed here are no junctions "t ors, where the polarities
in this single-loop circuit; therefore, the current is the same in all elements. of the batteries are in opposition.
Analyze Let’s assume the current is clockwise as shown in Figure 6.14. Traversing the circuit in the clockwise direc-
tion, starting at a, we see that a — b represents a potential difference of +&,, b — c¢represents a potential difference
of —IR,, c— drepresents a potential difference of —&,, and d — «a represents a potential difference of —IR,.

Apply Kirchhoff’s loop rule to the single loop in the AV=0 - & — IR, —E, — IR, =0
circuit:

& -& 60V-12V _
R +R, 80Q+100Q

Solve for I and use the values given in Figure 28.14: (1) —0.33 A

Finalize The negative sign for 7 indicates that the direction of the current is opposite the assumed direction. The
emfs in the numerator subtract because the batteries in Figure 28.14 have opposite polarities. The resistances in the
denominator add because the two resistors are in series.

What If? What if the polarity of the 12.0-V battery were reversed? How would that affect the circuit?
Answer Although we could repeat the Kirchhoff’s rules calculation, let’s instead examine Equation (1) and modify

it accordingly. Because the polarities of the two batteries are now in the same direction, the signs of €, and &, are
the same and Equation (1) becomes

,_E1 8 _60VHI2V _

= = =1.0A
R +R, 800+10Q
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EXAMPLE 6.7 A Multiloop Circuit

14.0V
Find the currents /;, I, and I in the circuit shown in Figure 6.15. e A9/
SOLUTION 400 11
2
Conceptualize We cannot simplify the circuit by the rules associated with com-

.. . . . . — + —»[l
bining resistances in series and in parallel. (If the 10.0-V battery were not present, be—]| X
we could reduce the remaining circuit with series and parallel combinations.) looy 60 1 I
Categorize Because the circuit is not a simple series and parallel combination of
resistances, this problem is one in which we must use Kirchhoff’s rules. 0 AAA >

2.0Q
Analyze We arbitrarily choose the directions of the currents as labeled in Figure Figure6.15  (Example 6.7) A cir-

6.15.

Apply Kirchhoff’s junction rule to junction c:

We now have one equation with three unknowns: 7;, I,,
and /,. There are three loops in the circuit: abcda, befcb,
and aefda. We need only two loop equations to deter-
mine the unknown currents. (The third loop equation
would give no new information.) Let’s choose to tra-
verse these loops in the clockwise direction. Apply
Kirchhoff’s loop rule to loops abcda and befch:

Solve Equation (1) for /3 and substitute into Equation

(2):

Multiply each term in Equation (3) by 4 and each term
in Equation (4) by 3:

Add Equation (6) to Equation (5) to eliminate /; and
find 7,:

Use this value of I, in Equation (3) to find /;:

Use Equation (1) to find /s

cuit containing different branches.

(1)
10.0V — (6.0 Q)I, — (2.0 )T, =0

L+1—1=0
abcda: (2)
befcb:

(3) —24.0V + (6.0 Q)], — (40Q)I, =0

100V — (6.00Q)1, — (20Q) (I, + I,) = 0
(4) 100V — (8.0Q)1, — (20Q), = 0

(5) —96.0V + (24.0 Q)I, — (16.0 Q)L, = 0
(6) 30.0V — (24.0 )T, — (6.0 Q)I, = 0

—66.0V — (22.0 Q)I, =0

I,= —30A

—240V + (6.00Q), — (4.0Q)(—3.0A) =0
—24.0V + (6.0 Q)I, + 12.0V = 0

L=I+1,=20A-30A= —10A

—(4.0Q)1, =140V + (6.0 Q)I, — 10.0V = 0

Finalize Because our values for [, and /5 are negative, the directions of these currents are opposite those indicated
in Figure 6.15. The numerical values for the currents are correct. Despite the incorrect direction, we must continue
to use these negative values in subsequent calculations because our equations were established with our original
choice of direction. What would have happened had we left the current directions as labeled in Figure 6.15 but tra-

versed the loops in the opposite direction?

6.4

RC Circuits

So far, we have analyzed direct current circuits in which the current is constant. In
DC circuits containing capacitors, the current is always in the same direction but
may vary in time. A circuit containing a series combination of a resistor and a
capacitor is called an RC circuit.
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Charging a Capacitor
Active Figure 6.16 shows a simple series RC circuit. Let’s assume the capacitor in
this circuit is initially uncharged. There is no current while the switch is open
(Active Fig. 6.16a). If the switch is thrown to position a at t = 0 (Active Fig.
6.16b), however, charge begins to flow, setting up a current in the circuit, and the
capacitor begins to charge.® Notice that during charging, charges do not jump
across the capacitor plates because the gap between the plates represents an open
circuit. Instead, charge is transferred between each plate and its connecting wires
due to the electric field established in the wires by the battery until the capacitor is
fully charged. As the plates are being charged, the potential difference across the
capacitor increases. The value of the maximum charge on the plates depends on
the voltage of the battery. Once the maximum charge is reached, the current in
the circuit is zero because the potential difference across the capacitor matches
that supplied by the battery.

To analyze this circuit quantitatively, let’s apply Kirchhoff’s loop rule to the cir-
cuit after the switch is thrown to position a. Traversing the loop in Active Figure
6.16b clockwise gives

q
€-—-IR=0
C

(6.11)
where ¢/ C is the potential difference across the capacitor and /R is the potential
difference across the resistor. We have used the sign conventions discussed earlier
for the signs on € and IR. The capacitor is traversed in the direction from the pos-
itive plate to the negative plate, which represents a decrease in potential. There-
fore, we use a negative sign for this potential difference in Equation 6.11. Note
that ¢ and [ are instantaneous values that depend on time (as opposed to steady-
state values) as the capacitor is being charged.

We can use Equation 6.11 to find the initial current in the circuit and the
maximum charge on the capacitor. At the instant the switch is thrown to position
a (t = 0), the charge on the capacitor is zero. Equation 6.11 shows that the ini-
tial current /; in the circuit is a maximum and is given by

€
J =—
R

i (6.12)

(current at ¢ = 0)

At this time, the potential difference from the battery terminals appears entirely
across the resistor. Later, when the capacitor is charged to its maximum value Q,
charges cease to flow, the current in the circuit is zero, and the potential differ-
ence from the battery terminals appears entirely across the capacitor. Substituting
I = 0 into Equation 6.11 gives the maximum charge on the capacitor:

0= C& (6.13)

(maximum charge)

To determine analytical expressions for the time dependence of the charge and
current, we must solve Equation 6.11, a single equation containing two variables
g and I The current in all parts of the series circuit must be the same. Therefore,
the current in the resistance R must be the same as the current between each
capacitor plate and the wire connected to it. This current is equal to the time rate
of change of the charge on the capacitor plates. Therefore, we substitute I = dq/dt
into Equation 6.11 and rearrange the equation:

dg & ¢

dt R RC

In previous discussions of capacitors, we assumed a steady-state situation, in which no current was
present in any branch of the circuit containing a capacitor. Now we are considering the case before the
steady-state condition is realized; in this situation, charges are moving and a current exists in the wires
connected to the capacitor.

a C
o Il
b
§R
I
€
p C
b
I §R
I
)
C
—— |
b
I R
|
\

(©)
ACTIVE FIGURE 6.16

(a) A capacitor in series with a resis-
tor, switch, and battery. (b) When

the switch is thrown to position a,

the capacitor begins to charge up.

(c) When the switch is thrown to posi-
tion b, the capacitor discharges.

Sign in at www.thomsonedu.com and
go to ThomsonNOW to adjust the val-
ues of Rand Cand see the effect on
the charging and discharging of the
capacitor.
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Charge as a function of »

time for a capacitor being
charged

Current as a function of »

time for a capacitor being
charged

ce

0.632C€E

pe
(b)

Figure 6.17 (a) Plot of capacitor
charge versus time for the circuit
shown in Active Figure 6.16. After a
time interval equal to one time con-
stant 7 has passed, the charge is
63.2% of the maximum value CE.
The charge approaches its maximum
value as ¢ approaches infinity. (b) Plot
of current versus time for the circuit
shown in Active Figure 6.16. The
current has its maximum value /; =
E/Rat t = 0 and decays to zero expo-
nentially as # approaches infinity.
After a time interval equal to one
time constant 7 has passed, the cur-
rent is 36.8% of its initial value.
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To find an expression for ¢, we solve this separable differential equation as follows.
First combine the terms on the right-hand side:

dg _ce q  q-CE

i RC RC  RC
Multiply this equation by d¢ and divide by ¢ — CE:

dq 1

—a = — ot
qg— CE RC

Integrate this expression, using ¢ = 0 at ¢ = 0O:

[ sl
== | @
, ¢— CE  RC

1<q_C8)— ;
"\"“ce )T " Re

From the definition of the natural logarithm, we can write this expression as

q(t) = CE(1 — ¢ VRC) = Q(1 — ¢ RC) (6.14)

where e is the base of the natural logarithm and we have made the substitution
from Equation 6.13.
We can find an expression for the charging current by differentiating Equation
6.14 with respect to time. Using I = dgq/dt, we find that
E

I(1) = = o7VF

- (6.15)

Plots of capacitor charge and circuit current versus time are shown in Figure
6.17. Notice that the charge is zero at ¢ = 0 and approaches the maximum value
CE as t — ». The current has its maximum value [, = E/R at t = 0 and decays
exponentially to zero as t — . The quantity RC, which appears in the exponents
of Equations 6.14 and 6.15, is called the time constant 7 of the circuit:

T = RC (6.16)

The time constant represents the time interval during which the current decreases
to 1/e of its initial value; that is, after a time interval 7, the current decreases to
1= e_lll- = 0.3687,. After a time interval 27, the current decreases to I = e_QIi =
0.1357;, and so forth. Likewise, in a time interval 7, the charge increases from zero
to CE[1 — ¢'] = 0.632CE.

The following dimensional analysis shows that 7 has units of time:

-] - [ -0

Because 7 = RC has units of time, the combination ¢/RC is dimensionless, as it
must be to be an exponent of ¢in Equations 6.14 and 28.15.

The energy output of the battery as the capacitor is fully charged is Q€ = CE2.
After the capacitor is fully charged, the energy stored in the capacitor is Q& =
5CE?, which is only half the energy output of the battery. It is left as a problem
(Problem 52) to show that the remaining half of the energy supplied by the bat-
tery appears as internal energy in the resistor.

Discharging a Capacitor

Imagine that the capacitor in Active Figure 6.16b is completely charged. A poten-
tial difference Q /C exists across the capacitor and there is zero potential differ-
ence across the resistor because 7 = 0. If the switch is now thrown to position b at
t = 0 (Active Fig. 6.16c), the capacitor begins to discharge through the resistor.
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At some time ¢ during the discharge, the current in the circuit is / and the charge
on the capacitor is ¢. The circuit in Active Figure 6.16¢ is the same as the circuit
in Active Figure 6.16b except for the absence of the battery. Therefore, we elimi-
nate the emf € from Equation 6.11 to obtain the appropriate loop equation for
the circuit in Active Figure 6.16c:

q

1 _r= 1
C R=0 (6.17)

When we substitute / = dg/dt into this expression, it becomes

d
R4

da C
d 1
Y.
q RC

g(1) = Qe "¢ (6.18)

Differentiating Equation 6.18 with respect to time gives the instantaneous current
as a function of time:
1) = ——2 pine 6.19

() = —2c (6.19)
where Q/RC = I; is the initial current. The negative sign indicates that as the
capacitor discharges, the current direction is opposite its direction when the
capacitor was being charged. (Compare the current directions in Figs. 6.16b and
6.16¢.) Both the charge on the capacitor and the current decay exponentially at a
rate characterized by the time constant 7 = RC.

Quick Quiz 6.5 Consider the circuit in Figure 6.18 and assume the battery
has no internal resistance. (i) Just after the switch is closed, what is the current in
the battery? (a) 0 (b) €/2R (c) 2E/R (d) E/R (e) impossible to determine
(ii) After a very long time, what is the current in the battery? Choose from the
same choices.

93

<« Charge as a function of

time for a discharging
capacitor

<« Current as a function of

time for a discharging
capacitor

;
i

Figure 6.18  (Quick Quiz 6.5)
How does the current vary after the
switch is closed?

CONCEPTUAL EXAMPLE 6.8 Intermittent Windshield Wipers

Many automobiles are equipped with windshield wipers that can operate intermittently during a light rainfall. How
does the operation of such wipers depend on the charging and discharging of a capacitor?

SOLUTION

The wipers are part of an RC circuit whose time constant can be varied by selecting different values of R through a
multiposition switch. As the voltage across the capacitor increases, the capacitor reaches a point at which it dis-
charges and triggers the wipers. The circuit then begins another charging cycle. The time interval between the indi-

vidual sweeps of the wipers is determined by the value of the time constant.
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EXAMPLE 6.9 Charging a Capacitor in an RC Circuit

An uncharged capacitor and a resistor are connected in series to a battery as shown in Active Figure 28.16, where
E =120V, C=5.00 uF, and R = 8.00 X 10° Q. The switch is thrown to position a. Find the time constant of the cir-
cuit, the maximum charge on the capacitor, the maximum current in the circuit, and the charge and current as
functions of time.

SOLUTION

Conceptualize Study Active Figure 6.16 and imagine throwing the switch to position « as shown in Active Figure
28.16b. Upon doing so, the capacitor begins to charge.

Categorize We evaluate our results using equations developed in this section, so we categorize this example as a
substitution problem.

Evaluate the time constant of the circuit from Equation 7= RC= (8.00 X 10°Q)(5.00 X 107 °F) = 4.00s
6.16:
Evaluate the maximum charge on the capacitor from Q= C& = (5.00 uF)(12.0V) = 60.0 uC

Equation 6.13:

E 12.0
Evaluate the maximum current in the circuit from Equa- l,=—= i = 15.0 uA
. . " R 8.00 X10°Q
tion 6.12:
Use these values in Equations 6.14 and 6.15 to find q() = (60.0uC)(1 — ¢ 7490%)

the charge and current as functions of time:

I(t) = (15.0 wA)e 740

DINHRNREEN Discharging a Capacitor in an RC Circuit

Consider a capacitor of capacitance C that is being discharged through a resistor of resistance R as shown in Active
Figure 6.16c.

(A) After how many time constants is the charge on the capacitor one-fourth its initial value?

SOLUTION

Conceptualize Study Active Figure 6.16 and imagine throwing the switch to position & as shown in Active Figure
6.16¢c. Upon doing so, the capacitor begins to discharge.

Categorize We categorize the example as one involving a discharging capacitor and use the appropriate equations.

Analyze Substitute ¢({) = Q/4 into Equation 6.18: ZQ: Qe_‘/RC
% — eft/RC
t
Take the logarithm of both sides of the equation and —In4=—-——
solve for t: RC

t=RCIn4=139RC= 1.397

(B) The energy stored in the capacitor decreases with time as the capacitor discharges. After how many time con-
stants is this stored energy one-fourth its initial value?
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SOLUTION
2 2
1 Q —21/RC

Use Equations 4.11 and 6.18 to express the energy (1) U@ = °c ™ 9c

stored in the capacitor at any time ¢

2 2
Substitute U(#) = $(Q%/2C) into Equation (1): &< ¢ 2RC

t2c  2c¢

31 — eﬂt/h’(:
. . . 2t
Take the logarithm of both sides of the equation and —In4=—-——
solve for : RC

t=3RC In4 = 0.693RC = 0.6937

Finalize Notice that because the energy depends on the square of the charge, the energy in the capacitor drops
more rapidly than the charge on the capacitor.

What If? What if you want to describe the circuit in terms of the time interval required for the charge to fall to one-
half its original value rather than by the time constant 72 That would give a parameter for the circuit called its half-
life t; 5. How is the half-life related to the time constant?

Answer In one halflife, the charge falls from Q to Q /2. Therefore, from Equation 28.18,

Q_ o/ RC

2

N %: ¢ p/RC

which leads to

lyy = 0.6937

The concept of halflife will be important to us when we study nuclear decay in Chapter 44. The radioactive decay of
an unstable sample behaves in a mathematically similar manner to a discharging capacitor in an RC circuit.

EXAMPLE 6.11 Energy Delivered to a Resistor

A 5.00-uF capacitor is charged to a potential difference of 800 V and then discharged through a resistor. How much
energy is delivered to the resistor in the time interval required to fully discharge the capacitor?

SOLUTION

Conceptualize In Example 6.10, we considered the energy decrease in a discharging capacitor to a value of one-
fourth of the initial energy. In this example, the capacitor fully discharges.

Categorize We solve this example using two approaches. The first approach is to model the circuit as an isolated
system. Because energy in an isolated system is conserved, the initial electric potential energy U, stored in the capac-
itor is transformed into internal energy E, , = Ej in the resistor. The second approach is to model the resistor as a

nonisolated system. Energy enters the resistor by electrical transmission from the capacitor, causing an increase in
the resistor’s internal energy.

Analyze We begin with the isolated system approach.

Write the appropriate reduction of the conservation of AU+ AE,, =0
energy equation, Equation 8.2:

Substitute the initial and final values of the energies: 0—-Uy) + (Ep —0)=0 — E,=1U;
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Use Equation 26.11 for the electric potential energy in Ep = 3CE?

the capacitor:

Substitute numerical values:

Ep=3%(5.00 X 10°°F)(800V)? = 1.60 ]

The second approach, which is more difficult but perhaps more instructive, is to note that as the capacitor dis-
charges through the resistor, the rate at which energy is delivered to the resistor by electrical transmission is 7%R,
where /is the instantaneous current given by Equation 6.19.

. . dE -
Evaluate the energy delivered to the resistor by P = P — Ep= j P dt
integrating the power over all time because it t 0
takes an infinite time interval for the capacitor to
completely discharge:
Substitute for the power delivered to the resistor: Ep= J I?Rdi
0

) 9 2 0 9 o
Substitute for the current from Equation 28.19: Ep= J <—Q e_t/RC> Rdt = QJ e 2RC gy = SRJ e 2RC gy
0 0

RC RC? )
&€* (RC
Substitute the value of the integral, which is Ep = 3 <2> =3ce?

RC/2 (see Problem 30):

Finalize This result agrees with that obtained using the isolated system approach, as it must. We can use this second
approach to find the total energy delivered to the resistor at any time after the switch is closed by simply replacing
the upper limit in the integral with that specific value of .

l
\

o ==

Figure 6.19  Current can be mea-

sured with an ammeter connected in
series with the elements in which the
measurement of a current is desired.

An ideal ammeter has zero resistance.

6.5 Electrical Meters

In this section, we discuss various electrical meters that are used in the electrical
and electronics industries to make electrical measurements.

The Galvanometer

The galvanometer is the main component in analog meters for measuring current
and voltage. (Many analog meters are still in use, although digital meters, which
operate on a different principle, are currently more common.) One type, called
the D’Arsonval galvanometer; consists of a coil of wire mounted so that it is free to
rotate on a pivot in a magnetic field provided by a permanent magnet. The deflec-
tion of a needle attached to the coil is proportional to the current in the gal-
vanometer. Once the instrument is properly calibrated, it can be used in con-
junction with other circuit elements to measure either currents or potential
differences.

The Ammeter

A device that measures current is called an ammeter. Because the charges consti-
tuting the current to be measured must pass directly through the ammeter, the
ammeter must be connected in series with other elements in the circuit as shown
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in Figure 6.19. When using an ammeter to measure direct currents, you must
connect it so that charges enter the instrument at the positive terminal and exit at
the negative terminal.

Ideally, an ammeter should have zero resistance so that the current being mea-
sured is not altered. In the circuit shown in Figure 6.19, this condition requires
that the resistance of the ammeter be much less than R, + R,. Because any amme-
ter always has some internal resistance, the presence of the ammeter in the circuit
slightly reduces the current from the value it would have in the meter’s absence.

A typical off-the-shelf galvanometer is often not suitable for use as an ammeter
primarily because it has a resistance of about 60 (). An ammeter resistance this
great considerably alters the current in a circuit. Consider the following example.
The current in a simple series circuit containing a 3-V battery and a 3-() resistor is
1 A. If you insert a 60-() galvanometer in this circuit to measure the current, the
total resistance becomes 63 () and the current is reduced to 0.048 Al

A second factor that limits the use of a galvanometer as an ammeter is that a
typical galvanometer gives a full-scale deflection for currents on the order of 1 mA
or less. Consequently, such a galvanometer cannot be used directly to measure cur-
rents greater than this value. It can, however, be converted to a useful ammeter by
placing a shunt resistor R, in parallel with the galvanometer as shown in Active
Figure 6.20. The value of R, must be much less than the galvanometer resistance
so that most of the current to be measured is directed to the shunt resistor.

The Voltmeter

A device that measures potential difference is called a voltmeter. The potential dif-
ference between any two points in a circuit can be measured by attaching the ter-
minals of the voltmeter between these points without breaking the circuit as shown
in Figure 6.21. The potential difference across resistor R, is measured by con-
necting the voltmeter in parallel with R,. Again, it is necessary to observe the
instrument’s polarity. The voltmeter’s positive terminal must be connected to the
end of the resistor that is at the higher potential, and its negative terminal must be
connected to the end of the resistor at the lower potential.

An ideal voltmeter has infinite resistance so that no current exists in it. In Fig-
ure 6.21, this condition requires that the voltmeter have a resistance much
greater than R,. In practice, corrections should be made for the known resistance
of the voltmeter if this condition is not met.

A galvanometer can also be used as a voltmeter by adding an external resistor R,
in series with it as shown in Active Figure 6.22. In this case, the external resistor
must have a value much greater than the resistance of the galvanometer to ensure
that the galvanometer does not significantly alter the voltage being measured.

Galvanometer

ACTIVE FIGURE 6.22

When the galvanometer is used as a
voltmeter, a resistor R, is connected
in series with the galvanometer.

Figure 6.21  The potential differ-
ence across a resistor can be mea-
sured with a voltmeter connected in
parallel with the resistor. An ideal
voltmeter has infinite resistance.

Sign in at www.thomsonedu.com and
go to ThomsonNOW to predict the
value of R needed to cause full-scale
deflection in the circuit of Figure
6.21 and test your result.

© Thomson Learning/Charles D. Winters
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Galvanometer

L

MWy

Ry

o o
ACTIVE FIGURE 6.20

A galvanometer is represented here
by its internal resistance of 60 .
When a galvanometer is to be used
as an ammeter, a shunt resistor R,
is connected in parallel with the
galvanometer.

Sign in at www.thomsonedu.com and
go to ThomsonNOW to predict the
value of R, needed to cause full-scale
deflection in the circuit of Figure
6.19 and test your result.

A digital multimeter is used to mea-
sure a voltage across a circuit element.
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° 120V
Live

-~ Meter

Neutral

Circuit
breaker

R% %RQ %R
-l— (1A%

Figure 6.23  Wiring diagram for a
household circuit. The resistances
represent appliances or other electri-
cal devices that operate with an
applied voltage of 120 V.

(a)

+120V -120V

(b)

Figure6.24  (a) An outlet for con-
nection to a 240-V supply. (b) The
connections for each of the openings
in a 240-V outlet.

© Thomson Learning/George Semple

6.6 Household Wiring and Electrical Safety

Many considerations are important in the design of an electrical system of a home
that will provide adequate electrical service for the occupants while maximizing
their safety. We discuss some aspects of a home electrical system in this section.

Household Wiring

Household circuits represent a practical application of some of the ideas pre-
sented in this chapter. In our world of electrical appliances, it is useful to under-
stand the power requirements and limitations of conventional electrical systems
and the safety measures that prevent accidents.

In a conventional installation, the utility company distributes electric power to
individual homes by means of a pair of wires, with each home connected in paral-
lel to these wires. One wire is called the live wire* as illustrated in Figure 6.23, and
the other is called the neutral wire. The neutral wire is grounded; that is, its electric
potential is taken to be zero. The potential difference between the live and neutral
wires is approximately 120 V. This voltage alternates in time, and the potential of
the live wire oscillates relative to ground. Much of what we have learned so far for
the constant-emf situation (direct current) can also be applied to the alternating
current that power companies supply to businesses and households. (Alternating
voltage and current are discussed in Chapter 33.)

To record a household’s energy consumption, a meter is connected in series
with the live wire entering the house. After the meter, the wire splits so that there
are several separate circuits in parallel distributed throughout the house. Each cir-
cuit contains a circuit breaker (or, in older installations, a fuse). The wire and cir-
cuit breaker for each circuit are carefully selected to meet the current require-
ments for that circuit. If a circuit is to carry currents as large as 30 A, a heavy wire
and an appropriate circuit breaker must be selected to handle this current. A cir-
cuit used to power only lamps and small appliances often requires only 20 A. Each
circuit has its own circuit breaker to provide protection for that part of the entire
electrical system of the house.

As an example, consider a circuit in which a toaster oven, a microwave oven,
and a coffee maker are connected (corresponding to R, R,, and Ry in Fig. 6.23).
We can calculate the current in each appliance by using the expression ¥ = I AV.
The toaster oven, rated at 1 000 W, draws a current of 1 000 W/120 V = 8.33 A.
The microwave oven, rated at 1 300 W, draws 10.8 A, and the coffee maker, rated
at 800 W, draws 6.67 A. When the three appliances are operated simultaneously,
they draw a total current of 3.8 A. Therefore, the circuit must be wired to handle
at least this much current. If the rating of the circuit breaker protecting the circuit
is too small—say, 20 A—the breaker will be tripped when the third appliance is
turned on, preventing all three appliances from operating. To avoid this situation,
the toaster oven and coffee maker can be operated on one 20-A circuit and the
microwave oven on a separate 20-A circuit.

Many heavy-duty appliances such as electric ranges and clothes dryers require
240V for their operation. The power company supplies this voltage by providing a
third wire that is 120 V below ground potential (Fig. 6.24). The potential differ-
ence between this live wire and the other live wire (which is 120 V above ground
potential) is 240 V. An appliance that operates from a 240-V line requires half as
much current compared with operating it at 120 V; therefore, smaller wires can be
used in the higher-voltage circuit without overheating.

Electrical Safety

When the live wire of an electrical outlet is connected directly to ground, the cir-
cuit is completed and a short-circuit condition exists. A short circuit occurs when

* Live wire is a common expression for a conductor whose electric potential is above or below ground
potential.
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almost zero resistance exists between two points at different potentials, and the
result is a very large current. When that happens accidentally, a properly operating
circuit breaker opens the circuit and no damage is done. A person in contact with
ground, however, can be electrocuted by touching the live wire of a frayed cord or
other exposed conductor. An exceptionally effective (and dangerous!) ground
contact is made when the person either touches a water pipe (normally at ground
potential) or stands on the ground with wet feet. The latter situation represents
effective ground contact because normal, nondistilled water is a conductor due to
the large number of ions associated with impurities. This situation should be
avoided at all cost.

Electric shock can result in fatal burns or can cause the muscles of vital organs
such as the heart to malfunction. The degree of damage to the body depends on
the magnitude of the current, the length of time it acts, the part of the body
touched by the live wire, and the part of the body in which the current exists. Cur-
rents of 5 mA or less cause a sensation of shock, but ordinarily do little or no dam-
age. If the current is larger than about 10 mA, the muscles contract and the person
may be unable to release the live wire. If the body carries a current of about 100
mA for only a few seconds, the result can be fatal. Such a large current paralyzes
the respiratory muscles and prevents breathing. In some cases, currents of approxi-
mately 1 A can produce serious (and sometimes fatal) burns. In practice, no con-
tact with live wires is regarded as safe whenever the voltage is greater than 24 V.

Many 120-V outlets are designed to accept a three-pronged power cord. (This
feature is required in all new electrical installations.) One of these prongs is the
live wire at a nominal potential of 120 V. The second is the neutral wire, nominally
at 0 V, which carries current to ground. Figure 6.25a shows a connection to an
electric drill with only these two wires. If the live wire accidentally makes contact
with the casing of the electric drill (which can occur if the wire insulation wears
off), current can be carried to ground by way of the person, resulting in an elec-
tric shock. The third wire in a three-pronged power cord, the round prong, is a

“Ouch!”
Motor  Wall
outlet [ “Neutral”
; - Ey
7 T T 1e0v
- . Circuit
=~ Hot breaker
Ground =
(a)
“Neutral”
Motor  3-wire
outlet | “GFOUH?” -\I‘
Y 5
T 120 V
N . Circuit
7 Hot breaker

Figure 6.25  (a) A diagram of the circuit for an electric drill with only two connecting wires. The nor-
mal current path is from the live wire through the motor connections and back to ground through the
neutral wire. In the situation shown, the live wire has come into contact with the drill case. As a result,
the person holding the drill acts as a current path to ground and receives an electric shock. (b) This
shock can be avoided by connecting the drill case to ground through a third ground wire. In this situa-
tion, the drill case remains at ground potential and no current exists in the person.
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7 Magnetic Fields

Many historians of science believe that the compass, which uses a magnetic needle,
was used in China as early as the 13th century BG, its invention being of Arabic or
Indian origin. The early Greeks knew about magnetism as early as 800 BC. They
discovered that the stone magnetite (FesO,) attracts pieces of iron. Legend
ascribes the name magnetite to the shepherd Magnes, the nails of whose shoes and
the tip of whose staff stuck fast to chunks of magnetite while he pastured his
flocks.

In 1269, Pierre de Maricourt of France found that the directions of a needle
near a spherical natural magnet formed lines that encircled the sphere and passed
through two points diametrically opposite each other, which he called the poles of
the magnet. Subsequent experiments showed that every magnet, regardless of its
shape, has two poles, called north (N) and south (S) poles, that exert forces on
other magnetic poles similar to the way electric charges exert forces on one
another. That is, like poles (N-N or S-S) repel each other, and opposite poles
(N-S) attract each other.

The poles received their names because of the way a magnet, such as that in a
compass, behaves in the presence of the Earth’s magnetic field. If a bar magnet is

suspended from its midpoint and can swing freely in a horizontal plane, it will
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rotate until its north pole points to the Earth’s geographic North Pole and its
south pole points to the Earth’s geographic South Pole.!

In 1600, William Gilbert (1540-1603) extended de Maricourt’s experiments to a
variety of materials. He knew that a compass needle orients in preferred direc-
tions, so he suggested that the Earth itself is a large, permanent magnet. In 1750,
experimenters used a torsion balance to show that magnetic poles exert attractive
or repulsive forces on each other and that these forces vary as the inverse square
of the distance between interacting poles. Although the force between two mag-
netic poles is otherwise similar to the force between two electric charges, electric
charges can be isolated (witness the electron and proton), whereas a single mag-
netic pole has never been isolated. That is, magnetic poles are always found in
pairs. All attempts thus far to detect an isolated magnetic pole have been unsuc-
cessful. No matter how many times a permanent magnet is cut in two, each piece
always has a north and a south pole.?

The relationship between magnetism and electricity was discovered in 1819
when, during a lecture demonstration, Hans Christian Oersted found that an elec-
tric current in a wire deflected a nearby compass needle.® In the 1820s, further
connections between electricity and magnetism were demonstrated independently
by Faraday and Joseph Henry (1797-1878). They showed that an electric current
can be produced in a circuit either by moving a magnet near the circuit or by
changing the current in a nearby circuit. These observations demonstrate that a
changing magnetic field creates an electric field. Years later, theoretical work by
Maxwell showed that the reverse is also true: a changing electric field creates a
magnetic field.

This chapter examines the forces that act on moving charges and on current-
carrying wires in the presence of a magnetic field. The source of the magnetic
field is described in Chapter 30.

7.1 Magnetic Fields and Forces

In our study of electricity, we described the interactions between charged objects
in terms of electric fields. Recall that an electric field surrounds any electric
charge. In addition to containing an electric field, the region of space surround-
ing any moving electric charge also contains a magnetic field. A magnetic field also
surrounds a magnetic substance making up a permanent magnet.

Historically, the symbol B has been used to represent a magnetic field, and we
use this notation in this book. The direction of the magnetic field B at any loca-
tion is the direction in which a compass needle points at that location. As with the
electric field, we can represent the magnetic field by means of drawings with mag-
netic field lines.

Active Figure 7.1 shows how the magnetic field lines of a bar magnet can be
traced with the aid of a compass. Notice that the magnetic field lines outside the

!'The Earth’s geographic North Pole is magnetically a south pole, whereas the Earth’s geographic
South Pole is magnetically a north pole. Because opposite magnetic poles attract each other, the pole on
a magnet that is attracted to the Earth’s geographic North Pole is the magnet’s north pole and the pole
attracted to the Earth’s geographic South Pole is the magnet’s south pole.

2There is some theoretical basis for speculating that magnetic monopoles—isolated north or south
poles—may exist in nature, and attempts to detect them are an active experimental field of investigation.

% The same discovery was reported in 1802 by an Italian jurist, Gian Domenico Romagnosi, but was
overlooked, probably because it was published in an obscure journal.

North Wind Picture Archives
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HANS CHRISTIAN OERSTED
Danish Physicist and Chemist (1777-1851)
QOersted is best known for observing that a
compass needle deflects when placed near a
wire carrying a current. This important discov-
ery was the first evidence of the connection
between electric and magnetic phenomena.
Oersted was also the first to prepare pure
aluminum.

o—

ACTIVE FIGURE 7.1

Compass needles can be used to trace
the magnetic field lines in the region
outside a bar magnet.

Sign in at www.thomsonedu.com and
go to ThomsonNOW to move the
compass around and trace the mag-
netic field lines for yourself.
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Properties of the magnetic »
force on a charge moving
in a magnetic field
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(a) (b) ()

Figure7.2  (a) Magnetic field pattern surrounding a bar magnet as displayed with iron filings.
(b) Magnetic field pattern between opposite poles (N-S) of two bar magnets. (c) Magnetic field pattern
between like poles (N-N) of two bar magnets.

magnet point away from the north pole and toward the south pole. One can dis-
play magnetic field patterns of a bar magnet using small iron filings as shown in
Figure 7.2.

We can define a magnetic field B at some point in space in terms of the mag-
netic force Fj, that the field exerts on a charged particle moving with a velocity v,
which we call the test object. For the time being, let’s assume no electric or gravita-
tional fields are present at the location of the test object. Experiments on various
charged particles moving in a magnetic field give the following results:

The magnitude I of the magnetic force exerted on the particle is propor-
tional to the charge ¢ and to the speed v of the particle.

When a charged particle moves parallel to the magnetic field vector, the
magnetic force acting on the particle is zero.

When the particle’s velocity vector makes any angle 6 # 0 with the magnetlc
field, the magnetic force acts in a direction perpendlcular to both Vv and B
that is, FB is perpendicular to the plane formed by v and B (Fig. 7.3a).

The magnetic force exerted on a positive charge is in the direction opposite
the direction of the magnetic force exerted on a negative charge moving in
the same direction (Fig. 7.3b).

The magnitude of the magnetic force exerted on the moving particle is pro-
portional to sin 0, where 0 is the angle the particle’s velocity vector makes
with the direction of B.

|
|

<l

(a) (b)

Figure 7.3  The direction of the magnetic force FB acting on a charged particle movmg with a velocity
v in the presence of a magnetic field B. (a) The magnetic force is perpendicular to both v and B. (b) Op-
positely directed magnetic forces FB are exerted on two oppositely charged particles moving at the same
velocity in a magnetic field. The dashed lines show the paths of the particles, which are investigated in
Section 7.2.
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Figure 7.4  Two right-hand rules for determmmg the direction of the magnetic force FB = gv X B
acting on a partlcle with charge ¢ moving with a velocity v in a magnetic field B. (a) In this rule, your
fingers point in the direction of ¥, with B ‘coming out of your palm, so that you can curl your fingers in
the direction of B. The direction of v X B, and the force on a positive charge, is the direction in which
your thumb points. (b) In this rule, the vector v is in the direction of your thumb and B in the direction
of your fingers. The force Fyona positive charge is in the direction of your palm, as if you are pushing
the particle with your hand.

We can summarize these observations by writing the magnetic force in the form
Fy,=¢v x B (7.1)

which by definition of the cross product (see Section 11.1) is perpendicular to
both v and B. We can regard this equation as an operational definition of the mag-
netic field at some point in space. That is, the magnetic field is defined in terms of
the force acting on a moving charged particle.

Figure 7.4 reviews two right-hand rules for determining the direction of the
cross product v X B and determining the direction of Fj. The rule in Figure 7.4a
depends on our right-hand rule for the cross product in Figure 11.2. Point the
four fingers of your right hand along the direction of v with the palm facing B and
curl them toward B. Your extended _thumb, which is at a right angle to your fin-
gers, points in the direction of v X B. Because Fj = qv X B, F is in the direction
of your thumb if ¢ is positive and is opposite the direction of your thumb if ¢ is
negative. (If you need more help understanding the cross product, you should
review Section 11.1, including Fig. 11.2.)

An alternative rule is shown in Figure 7.4b. Here the thumb points in the
direction of v and the extended fingers in the direction of B. Now, the force Fon
a positive charge extends outward from the palm. The advantage of this rule is
that the force on the charge is in the direction that you would push on something
with your hand: outward from your palm. The force on a negative charge is in the
opposite direction. You can use either of these two right-hand rules.

The magnitude of the magnetic force on a charged particle is

= |g|vBsin 6 (7.2)

where 6 is the smaller angle between v and B From this expression, we see that I,
is zero when V is parallel or antiparallel to B (6 = 0 or 180°) and maximum when
v is perpendicular to B (60 = 90°).

Electric and magnetic forces have several important differences:

m The electric force vector is along the direction of the electric field, whereas
the magnetic force vector is perpendicular to the magnetic field.

m The electric force acts on a charged particle regardless of whether the parti-
cle is moving, whereas the magnetic force acts on a charged particle only
when the particle is in motion.

m The electric force does work in displacing a charged particle, whereas the
magnetic force associated with a steady magnetic field does no work when a
particle is displaced because the force is perpendicular to the displacement.

From the last statement and on the basis of the work—kinetic energy theorem,
we conclude that the kinetic energy of a charged particle moving through a mag-
netic field cannot be altered by the magnetic field alone. The field can alter the
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< Vector expression for the
magnetic force on a
charged particle moving
in a magnetic field

<« Magnitude of the magnetic
force on a charged particle
moving in a magnetic field
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TABLE 7.1
Some Approximate Magnetic Field Magnitudes
Source of Field Field Magnitude (T)
Strong superconducting laboratory magnet 30
Strong conventional laboratory magnet 2
Medical MRI unit 1.5
Bar magnet 1072
Surface of the Sun 1072
Surface of the Earth 0.5x107*
Inside human brain (due to nerve impulses) 10713

The tesla »

direction of the velocity vector, but it cannot change the speed or kinetic energy of
the particle.

From Equation 7.2, we see that the SI unit of magnetic field is the newton per
coulomb-meter per second, which is called the tesla (T):

1T=1
C-m/s

Because a coulomb per second is defined to be an ampere,

N
=lim
A non-SI magnetic-field unit in common use, called the gauss (G), is related to the

tesla through the conversion 1 T = 10* G. Table 7.1 shows some typical values of
magnetic fields.

Quick Quiz7.1  An electron moves in the plane of this paper toward the top
of the page. A magnetic field is also in the plane of the page and directed toward
the right. What is the direction of the magnetic force on the electron? (a) toward
the top of the page (b) toward the bottom of the page (c) toward the left edge
of the page (d) toward the right edge of the page (e) upward out of the page

(f) downward into the page

EXAMPLE 7.1 An Electron Moving in a Magnetic Field

An electron in a television picture tube moves toward the front of the tube with a
speed of 8.0 X 10° m/s along the x axis (Fig. 7.5). Surrounding the neck of the
tube are coils of wire that create a magnetic field of magnitude 0.025 T, directed at
an angle of 60° to the x axis and lying in the xy plane. Calculate the magnetic
force on the electron.

SOLUTION

Conceptualize Recall that the magnetic force on a charged particle is perpendi-
cular to the plane formed by the velocity and magnetic field vectors. Use the right-
hand rule in Figure 7.4 to convince yourself that the direction of the force on the
electron is downward in Figure 7.5.

Categorize We evaluate the magnetic force using an equation developed in this
section, so we categorize this example as a substitution problem.

60°| B

<

Fy

Figure 7.5 (Example 7.1) The
magnetic force Fyacting on the elec-
tron is in the negative z direction
when v and B lie in the xy plane.
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Use Equation 7.2 to find the magnitude of the mag- Fy = |q|vBsin 6

netic force:

28 X 107N

105

(1.6 X 1071 C) (8.0 X 10° m/s)(0.025 T) (sin 60°)

For practice using the vector product, evaluate this force in vector notation using Equation 7.1.

7.2 Motion of a Charged Particle
in a Uniform Magnetic Field

Before we continue our discussion, some explanation of the notation used in this
book is in order. To indicate the direction of B in illustrations, we sometimes pre-
sent perspective views such as those in Figure 29.5. If B lies in the plane of the
page or is present in a perspective drawing, we use green vectors or green field
lines with arrowheads. In nonperspective illustrations, we depict a magnetic field
perpendicular to and directed out of the page with a series of green dots, which
represent the tips of arrows coming toward you (see Fig. 7.6a). In this case, the
field is labeled B,,. If B is directed perpendicularly into the page, we use green
crosses, which represent the feathered tails of arrows fired away from you, as in
Flgure 7.6b. In this case, the field is labeled B, where the subscript “in” indicates
“into the page.” The same notation with crosses and dots is also used for other
quantities that might be perpendicular to the page such as forces and current
directions.

In Section 7.1, we found that the magnetic force acting on a charged particle
moving in a magnetic field is perpendicular to the particle’s velocity and conse-
quently the work done by the magnetic force on the particle is zero. Now consider
the special case of a positively charged particle moving in a uniform magnetic field
with the initial velocity vector of the particle perpendicular to the field. Let’s
assume that the direction of the magnetic field is into the page as in Active Figure

7.7. As the particle changes the direction of its velocity in response to the mag-
netic force, the magnetic force remains perpendicular to the velocity. As we found
in Section 6.1, if the force is always perpendicular to the velocity, the path of the
particle is a circle! Active Figure 7.7 shows the particle moving in a circle in a
plane perpendicular to the magnetic field.

The particle moves in a circle because the magnetic force Fis perpendicular to v
and B and has a constant magnitude quB. As Active Figure 7.7 illustrates, the rota-
tion is counterclockwise for a positive charge in a magnetic field directed into the
page. If ¢ were negative, the rotation would be clockwise. We use the particle
under a net force model to write Newton’s second law for the particle:

2 F=F;= ma
Because the particle moves in a circle, we also model it as a particle in uniform cir-

cular motion and we replace the acceleration with centripetal acceleration:

1’I’L'U2

FBZQ‘I}BZT

This expression leads to the following equation for the radius of the circular path:
r=— (7.3)

That is, the radius of the path is proportional to the linear momentum mv of the

particle and inversely proportional to the magnitude of the charge on the particle

and to the magnitude of the magnetic field. The angular speed of the particle
(from Eq. 10.10) is

(7.4)

B out of page:

(a)

Binto page:

X X X X X X X
X X X X X X X
X X X X X X X
X X X X X X X
X X X X X X X
X X X X X X X

Figure7.6  (a) Magnetic field lines
coming out of the paper are indi-
cated by dots, representing the tips of
arrows coming outward. (b) Magnetic
field lines going into the paper are
indicated by crosses, representing the
feathers of arrows going inward.

X X q X X

ACTIVE FIGURE 7.7

When the velocity of a charged parti-
cle is perpendicular to a uniform
magnetic field, the particle moves in
a circular path in a plane perpendic-
ular to B. The magnetic force Fyact-
ing on the charge is always directed
toward the center of the circle.

Sign in at www.thomsonedu.com and
go to ThomsonNOW to adjust the
mass, speed, and charge of the parti-
cle and the magnitude of the mag-
netic field and observe the resulting
circular motion.
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Helical

/] ]

z

ACTIVE FIGURE 7.8

A charged particle having a velocity
vector that has a component parallel
to a uniform magnetic field moves in
a helical path.

Sign in at www.thomsonedu.com and
go to ThomsonNOW to adjust the x
component of the velocity of the par-
ticle and observe the resulting helical
motion.

106

The period of the motion (the time interval the particle requires to complete one
revolution) is equal to the circumference of the circle divided by the speed of the
particle:

2wy 2w 2mm

T " ® p (7.5)
These results show that the angular speed of the particle and the period of the cir-
cular motion do not depend on the speed of the particle or on the radius of the
orbit. The angular speed w is often referred to as the cyclotron frequency because
charged particles circulate at this angular frequency in the type of accelerator
called a ¢yclotron, which is discussed in Section 7.3.

If a charged particle moves in a uniform magnetic field with its velocity at some
arbitrary angle with respect to B, its path is a helix. For example, if the field is
directed in the x direction as shown in Active Figure 7.8, there is no component
of force in the x direction. As a result, a, = 0, and the x component of velocity
remains constant. The magnetic force gv X B causes the components v, and v, to
change in time, however, and the resulting motion is a helix whose axis is parallel
to the magnetic field. The projection of the path onto the yz plane (viewed along
the x axis) is a circle. (The projections of the path onto the xy and xz planes are
sinusoids!) Equations 7.3 to 7.5 still apply provided v is replaced by
v, = \/va + v2

Quick Quiz 7.2 A charged particle is moving perpendicular to a magnetic
field in a circle with a radius r. (i) An identical particle enters the field, with v per-
pendicular to B, but with a higher speed than the first particle. Compared with the
radius of the circle for the first particle, is the radius of the circular path for the
second particle (a) smaller, (b) larger, or (c) equal in size? (ii) The magnitude of
the magnetic field is increased. From the same choices, compare the radius of the
new circular path of the first particle with the radius of its initial path.

EXAMPLE 7.2 A Proton Moving Perpendicular to a Uniform Magnetic Field

A proton is moving in a circular orbit of radius 14 cm in a uniform 0.35-T magnetic field perpendicular to the veloc-
ity of the proton. Find the speed of the proton.

SOLUTION

Conceptualize From our discussion in this section, we know that the proton follows a circular path when moving in

a uniform magnetic field.

Categorize We evaluate the speed of the proton using an equation developed in this section, so we categorize this
example as a substitution problem.

Solve Equation 7.3 for the speed of the particle: v

Substitute numerical values:

qBr

my

(1.60 X 107 C)(0.85 T)(0.14 m)
1.67 X 107%" kg

v =

= 4.7 X 10°m/s

What If? What if an electron, rather than a proton, moves in a direction perpendicular to the same magnetic field
with this same speed? Will the radius of its orbit be different?
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Answer An electron has a much smaller mass than a proton, so the magnetic force should be able to change its
velocity much more easily than that for the proton. Therefore, we expect the radius to be smaller. Equation 7.3
shows that r is proportional to m with ¢, B, and v the same for the electron as for the proton. Consequently, the
radius will be smaller by the same factor as the ratio of masses m,/ m,.

EXAMPLE 7.3 Bending an Electron Beam

In an experiment designed to measure the magnitude of a uniform magnetic
field, electrons are accelerated from rest through a potential difference of 350 V
and then enter a uniform magnetic field that is perpendicular to the velocity vec-
tor of the electrons. The electrons travel along a curved path because of the mag-
netic force exerted on them, and the radius of the path is measured to be 7.5 cm.
(Such a curved beam of electrons is shown in Fig. 7.9.)

(A) What is the magnitude of the magnetic field?

Henry Leap and Jim Lehman

SOLUTION

. . . . . . Figure 7.9  (Example 7.3) The
Conceptualize With the help of Figures 7.7 and 7.9, visualize the circular begnding ofan(electr(l))n bearzl ina

motion of the electrons. magnetic field.

Categorize This example involves electrons accelerating from rest due to an electric force and then moving in a
circular path due to a magnetic force. Equation 7.3 shows that we need the speed v of the electron to find the mag-
netic field magnitude, and v is not given. Consequently, we must find the speed of the electron based on the poten-
tial difference through which it is accelerated. To do so, we categorize the first part of the problem by modeling an
electron and the electric field as an isolated system. Once the electron enters the magnetic field, we categorize the
second part of the problem as one similar to those we have studied in this section.

Analyze Write the appropriate reduction of the con- AK+ AU=0
servation of energy equation, Equation 8.2, for the
electron—electric field system:

Substitute the appropriate initial and final energies: (Gmo* —0) + (¢gAV) =0

—2¢ AV
Solve for the speed of the electron: v = T

\/—2(—1.60 X 10-9.C) (350 V)
0=
9.11 X 107" kg

Substitute numerical values: =1.11 X 10" m/s

Now imagine the electron entering the magnetic field B=—"
with this speed. Solve Equation 7.3 for the magni-
tude of the magnetic field:

(9.11 X 10*" kg)(1.11 X 10" m/s)
Substitute numerical values: B= _— = 84X107*'T
(1.60 X 107" C)(0.075 m)

(B) What is the angular speed of the electrons?

SOLUTION

Use Equation 10.10 w = = L x 177 /S = 15X 1081ad
q t AU .
s ! r 0.075 m /S
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Finalize The angular speed can be represented as @ = (1.5 X 108 rad/s) (1 rev/2m rad) = 2.4 X 107 rev/s. The
electrons travel around the circle 24 million times per second! This answer is consistent with the very high speed
found in part (A).

What If? What if a sudden voltage surge causes the accelerating voltage to increase to 400 V? How does that affect
the angular speed of the electrons, assuming the magnetic field remains constant?

Answer The increase in accelerating voltage AV causes the electrons to enter the magnetic field with a higher
speed v. This higher speed causes them to travel in a circle with a larger radius ». The angular speed is the ratio of v
to ». Both v and r increase by the same factor, so the effects cancel and the angular speed remains the same. Equa-
tion 7.4 is an expression for the cyclotron frequency, which is the same as the angular speed of the electrons. The
cyclotron frequency depends only on the charge ¢, the magnetic field B, and the mass m,, none of which have
changed. Therefore, the voltage surge has no effect on the angular speed. (In reality, however, the voltage surge may
also increase the magnetic field if the magnetic field is powered by the same source as the accelerating voltage. In
that case, the angular speed increases according to Equation 7.4.)

Path of When charged particles move in a nonuniform magnetic field, the motion is
particle complex. For example, in a magnetic field that is strong at the ends and weak in
the middle such as that shown in Figure 7.10, the particles can oscillate between
two positions. A charged particle starting at one end spirals along the field lines
until it reaches the other end, where it reverses its path and spirals back. This con-
figuration is known as a magnetic bottle because charged particles can be trapped
within it. The magnetic bottle has been used to confine a plasma, a gas consisting
of ions and electrons. Such a plasma-confinement scheme could fulfill a crucial
Figure7.10 A charged particle r(?le in the control of nuclear fusion, a process that could supply us in the futu're
moving in a nonuniform magnetic with an almost endless source of energy. Unfortunately, the magnetic bottle has its
field (a magnetic bottle) spiralsabout  problems. If a large number of particles are trapped, collisions between them
Lﬁ%ﬁgﬁiﬁgiﬂgﬁigi%ﬁi: the cause the particles to eventually leak from the system.
exerted on the particle near either The Van Allen radiation belts consist of charged particles (mostly electrons and
end of the botde has a component protons) surrounding the Earth in doughnutshaped regions (Fig. 7.11). The par-
Eg‘i;;utf; E}C}Egimde o spiral back ticles, trapped by the Earth’s nonuniform magnetic field, spiral around the field
lines from pole to pole, covering the distance in only a few seconds. These parti-
cles originate mainly from the Sun, but some come from stars and other heavenly
objects. For this reason, the particles are called cosmic rays. Most cosmic rays are
deflected by the Earth’s magnetic field and never reach the atmosphere. Some of
the particles become trapped, however, and it is these particles that make up the
Van Allen belts. When the particles are located over the poles, they sometimes col-
lide with atoms in the atmosphere, causing the atoms to emit visible light. Such
collisions are the origin of the beautiful Aurora Borealis, or Northern Lights, in
the northern hemisphere and the Aurora Australis in the southern hemisphere.
Auroras are usually confined to the polar regions because the Van Allen belts are
nearest the Earth’s surface there. Occasionally, though, solar activity causes larger
numbers of charged particles to enter the belts and significantly distort the normal
Figure7.11 = The Van Allen belts magnetic field lines associated with the Earth. In these situations, an aurora can
are made up of charged particles . .
trapped by the Earth’s nonuniform sometimes be seen at lower latitudes.
magnetic field. The magnetic field

lines are in green, and the particle
paths are in brown.

7.3 Applications Involving Charged
Particles Moving in a Magnetic Field

A charge moving with a velocity v in the presence of both an electric field E and a
magnetic field B experiences both an electric force gE and a magnetic force
gv X B. The total force (called the Lorentz force) acting on the charge is

Lorentzforce » F = qﬁ + gv X B (7.6)
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Velocity Selector

In many experiments involving moving charged particles, it is important that all
particles move with essentially the same velocity, which can be achieved by apply-
ing a combination of an electric field and a magnetic field oriented as shown in
Active Figure 7.12. A uniform electric field is directed to the right (in the plane
of the page in Active Fig. 7.12), and a uniform magnetic field is applied in the
direction perpendicular to the electric field (into the page in Active Fig. 7.12). If
q is positive and the Veloc1ty v is upward, the magnetic force ¢v X B is to the left
and the electric force qE is to the right. When the magnitudes of the two fields are
chosen so that ¢ff = guB, the charged particle is modeled as a particle in equilib-
rium and moves in a straight vertical line through the region of the fields. From
the expression ¢If = quB, we find that

(7.7

Only those particles having this speed pass undeflected through the mutually per-
pendicular electric and magnetic fields. The magnetic force exerted on particles
moving at speeds greater than that is stronger than the electric force, and the par-
ticles are deflected to the left. Those moving at slower speeds are deflected to the
right.

The Mass Spectrometer

A mass spectrometer separates ions according to their mass-to-charge ratio. In one
version of this device, known as the Bainbridge mass spectrometer, a beam of ions first
passes through a velocity selector and then enters a second uniform magnetic field B,
that has the same direction as the magnetic field in the selector (Active Fig.
7.13). Upon entering the second magnetic field, the ions move in a semicircle of
radius r before striking a detector array at P. If the ions are positively charged, the
beam deflects to the left as Active Figure 7.13 shows. If the ions are negatively
charged, the beam deflects to the right. From Equation 7.3, we can express the
ratio m/q as

m_ 1By
q o
Using Equation 7.7 gives
ﬂ _ TB()B (7 8)
g E '

Therefore, we can determine m/¢ by measuring the radius of curvature and know-
ing the field magnitudes B, B, and E. In practice, one usually measures the masses
of various isotopes of a given ion, with the ions all carrying the same charge ¢. In
this way, the mass ratios can be determined even if ¢ is unknown.

A varijation of this technique was used by J. J. Thomson (1856-1940) in 1897 to
measure the ratio ¢/m, for electrons. Figure 7.14a shows the basic
apparatus he used. Electrons are accelerated from the cathode and pass through
two slits. They then drift into a region of perpendicular electric and magnetic
fields. The magnitudes of the two fields are first adjusted to produce an unde-
flected beam. When the magnetic field is turned off, the electric field produces a
measurable beam deflection that is recorded on the fluorescent screen. From the
size of the deflection and the measured values of £ and B, the charge-to-mass ratio
can be determined. The results of this crucial experiment represent the discovery
of the electron as a fundamental particle of nature.

The Cyclotron

A cyclotron is a device that can accelerate charged particles to very high speeds.
The energetic particles produced are used to bombard atomic nuclei and thereby
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A velocity selector. When a positively
charged particle is moving with veloc-
ity v in the presence of a magnetic
field directed into the page and an
electric field directed to the righi,

it experiences an electric force ¢E

to the right and a magnetic force

qv X B to the left.

Sign in at www.thomsonedu.com and
go to ThomsonNOW to adjust the
electric and magnetic fields and try to
achieve straight-line motion for the
charge.
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ACTIVE FIGURE 7.13

A mass spectrometer. Positively
charged particles are sent first
through a velocity selector and then
into a region where the magnetic
field BO causes the particles to move
in a semicircular path and strike a
detector array at P.

Sign in at www.thomsonedu.com and
go to ThomsonNOW to predict
where particles will strike the detec-
tor array.
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<— Magnetic field coil

Deflected electron beam

Bell Telephone Labs/Courtesy of Emilio Segre Visual Archives

(a) (b)

Figure 7.14  (a) Thomson’s apparatus for measuring ¢/ m,. Electrons are accelerated from the cathode, pass through two slits, and are deflected
by both an electric field and a magnetic field (directed perpendicular to the electric field). The beam of electrons then strikes a fluorescent screen.
(b) J.J. Thomson (left) in the Cavendish Laboratory, University of Cambridge. The man on the right, Frank Baldwin Jewett, is a distant relative of
John W. Jewett, Jr., coauthor of this text.

PITFALL PREVENTION 7.1
The Cyclotron Is Not State-of-the-Art
Technology

The cyclotron is important histori-
cally because it was the first particle
accelerator to produce particles
with very high speeds. Cyclotrons
are still in use in medical applica-
tions, but most accelerators cur-
rently in research use are not
cyclotrons. Research accelerators
work on a different principle and
are generally called synchrotrons.

(a)

produce nuclear reactions of interest to researchers. A number of hospitals use
cyclotron facilities to produce radioactive substances for diagnosis and treatment.
Both electric and magnetic forces play a key role in the operation of a
cyclotron, a schematic drawing of which is shown in Figure 7.15a. The charges
move inside two semicircular containers D; and D,, referred to as dees because of
their shape like the letter D. A high-frequency alternating potential difference is
applied to the dees, and a uniform magnetic field is directed perpendicular to
them. A positive ion released at P near the center of the magnet in one dee moves
in a semicircular path (indicated by the dashed brown line in the drawing) and
arrives back at the gap in a time interval 7/2, where T'is the time interval needed
to make one complete trip around the two dees, given by Equation 7.5. The fre-
quency of the applied potential difference is adjusted so that the polarity of the
dees is reversed in the same time interval during which the ion travels around one
dee. If the applied potential difference is adjusted such that D, is at a lower elec-
tric potential than D, by an amount AV, the ion accelerates across the gap to D,
and its kinetic energy increases by an amount ¢ AV. It then moves around D, in a
semicircular path of greater radius (because its speed has increased). After a time
interval 7/2, it again arrives at the gap between the dees. By this time, the polarity
across the dees has again been reversed and the ion is given another “kick” across

Alternating AV

Particle exits here

North pole of magnet

Courtesy of Lawrence Berkeley Laboratory/University of California

(b)

Figure 7.15 (a) A cyclotron consists of an ion source at P, two dees D; and D, across which an alternating potential difference is applied, and a
uniform magnetic field. (The south pole of the magnet is not shown.) The brown, dashed, curved lines represent the path of the particles. (b) The
first cyclotron, invented by E. O. Lawrence and M. S. Livingston in 1934.
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the gap. The motion continues so that for each half-circle trip around one dee,
the ion gains additional kinetic energy equal to ¢ AV. When the radius of its path
is nearly that of the dees, the energetic ion leaves the system through the exit slit.
The cyclotron’s operation depends on 7 being independent of the speed of the
ion and of the radius of the circular path (Eq. 7.5).

We can obtain an expression for the kinetic energy of the ion when it exits the
cyclotron in terms of the radius R of the dees. From Equation 7.3 we know that
v = gBR/m. Hence, the kinetic energy is

2 p2 p2
K= %va = ﬂ (7.9)
2m

When the energy of the ions in a cyclotron exceeds about 20 MeV, relativistic
effects come into play. (Such effects are discussed in Chapter 39.) Observations
show that T increases and the moving ions do not remain in phase with the
applied potential difference. Some accelerators overcome this problem by modify-
ing the period of the applied potential difference so that it remains in phase with
the moving ions.

7.4 Magnetic Force Acting on
a Current-Carrying Conductor

If a magnetic force is exerted on a single charged particle when the particle moves
through a magnetic field, it should not surprise you that a current-carrying wire
also experiences a force when placed in a magnetic field. The current is a collec-
tion of many charged particles in motion; hence, the resultant force exerted by
the field on the wire is the vector sum of the individual forces exerted on all the
charged particles making up the current. The force exerted on the particles is
transmitted to the wire when the particles collide with the atoms making up the
wire.

One can demonstrate the magnetic force acting on a current-carrying conduc-
tor by hanging a wire between the poles of a magnet as shown in Figure 7.16a.
For ease in visualization, part of the horseshoe magnet in part (a) is removed to
show the end face of the south pole in parts (b), (c), and (d) of Figure 7.16. The
magnetic field is directed into the page and covers the region within the shaded
squares. When the current in the wire is zero, the wire remains vertical as in Fig-
ure 7.16b. When the wire carries a current directed upward as in Figure 7.16c,
however, the wire deflects to the left. If the current is reversed as in Figure 7.16d,
the wire deflects to the right.

Let’s quantify this discussion by considering a straight segment of wire of length
L and cross-sectional area A carrying a current / in a uniform magnetic field B as in

7

X X X X X X

() (b) (©) (d)

Figure7.16  (a) A wire suspended vertically between the poles of a magnet. (b) The setup shown in
(a) as seen looking at the south pole of the magnet so that the magnetic field (green crosses) is directed
into the page. When there is no current in the wire, the wire remains vertical. (c) When the current is
upward, the wire deflects to the left. (d) When the current is downward, the wire deflects to the right.
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Force on a segment of b
current-carrying wire in a
uniform magnetic field

FB

- A

Bi n
X X X X X X

7

q
X X X X X X
) L L

Figure7.17 A segment of a current-
carrying wire in a magnetic field B.
The magnetic force exerted on each
charge ‘making up the current is

qvg X B, and the net force on the
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Figure7.18 A wire segment of
arbitrary shape carrying a current /in
a magnetic field B experiences a mag-
netic force. The magnetlc force on
any segment ds is /ds X B and is
directed out of the page. You should
use the right-hand rule to confirm
this force direction.

segment of length L is IL x B.

Flgure 7.17. The magnetic force exerted on a charge ¢ moving with a drift veloc-
1ty v, is qu x B. To find the total force acting on the wire, we multiply the force
qvy X B exerted on one charge by the number of charges in the segment. Because
the volume of the segment is AL, the number of charges in the segment is nAL,
where 7 is the number of charges per unit volume. Hence, the total magnetic
force on the wire of length L is

Fu = (qv, X B)nAL

We can write this expression in a more convenient form by noting that, from
Equation 5.4, the current in the wire is I = nqu,A. Therefore,

F,=IL x B (7.10)

where L is a vector that points in the direction of the current / and has a magni-
tude equal to the length L of the segment. This expression applies only to a
straight segment of wire in a uniform magnetic field.

Now consider an arbitrarily shaped wire segment of uniform cross section in a
magnetic field as shown in Figure 7.18. It follows from Equation 7.10 that the
magnetic force exerted on a small segment of vector length ds in the presence of
a field B is

dF,=1ds x B (7.11)

where dFy is directed out of the page for the directions of B and ds _in Figure
7.18. Equation 7.11 can be considered as an alternative definition of B That is,
we can define the magnetic field B in terms of a measurable force exerted on a
current element, where the force is a maximum when B is perpendicular to the
element and zero when B is parallel to the element.

To calculate the total force ¥y acting on the wire shown in Figure 7.18, we inte-
grate Equation 7.11 over the length of the wire:

b
F,= IJ ds x B (7.12)
where a and b represent the endpoints of the wire. When this integration is car-
ried out, the magnitude of the magnetic field and the direction the field makes
with the vector ds may differ at different points.

Quick Quiz 7.3 A wire carries current in the plane of this paper toward the
top of the page. The wire experiences a magnetic force toward the right edge of
the page. Is the direction of the magnetic field causing this force (a) in the plane
of the page and toward the left edge, (b) in the plane of the page and toward the
bottom edge, (c) upward out of the page, or (d) downward into the page?




