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Unit 1: Physics and Measurement 

 
Like all other sciences, physics is based on experimental observations and quantitative 
measurements. The main objective of physics is to find the limited number of fundamental 
laws that govern natural phenomena and to use them to develop theories that 
can predict the results of future experiments. The fundamental laws used in developing 
theories are expressed in the language of mathematics, the tool that provides a bridge between 
theory and experiment. 
When a discrepancy between theory and experiment arises, new theories must be 
formulated to remove the discrepancy. Many times a theory is satisfactory only under 
limited conditions; a more general theory might be satisfactory without such limitations. 
For example, the laws of motion discovered by Isaac Newton (1642–1727) in the 
17th century accurately describe the motion of objects moving at normal speeds but do 
not apply to objects moving at speeds comparable with the speed of light. In contrast, 
the special theory of relativity developed by Albert Einstein (1879–1955) in the early 
1900s gives the same results as Newton’s laws at low speeds but also correctly describes 
motion at speeds approaching the speed of light. Hence, Einstein’s special theory of 
relativity is a more general theory of motion. 
A major revolution in physics, usually referred to as modern physics, began near the 
end of the 19th century. Modern physics developed mainly because of the discovery that 
many physical phenomena could not be explained by classical physics. The two most important 
developments in this modern era were the theories of relativity and quantum 
mechanics. Einstein’s theory of relativity not only correctly described the motion of objects 
moving at speeds comparable to the speed of light but also completely revolutionized 
the traditional concepts of space, time, and energy. The theory of relativity also 
shows that the speed of light is the upper limit of the speed of an object and that mass 
and energy are related. Quantum mechanics was formulated by a number of distinguished 
scientists to provide descriptions of physical phenomena at the atomic level. 
Scientists continually work at improving our understanding of fundamental laws, 
and new discoveries are made every day. In many research areas there is a great deal of 
overlap among physics, chemistry, and biology. Evidence for this overlap is seen in the 
names of some subspecialties in science—biophysics, biochemistry, chemical physics, 
biotechnology, and so on. Numerous technological advances in recent times are the result 
of the efforts of many scientists, engineers, and technicians. Some of the most notable 
developments in the latter half of the 20th century were 
 (1) Unmanned planetary explorations and manned moon landings,  
 (2) Micro circuitry and high-speed computers, 
 (3) Sophisticated imaging techniques used in scientific research and medicine, and 4 
 (4) Several remarkable results in genetic engineering. The impacts of such developments 
and discoveries on our society have indeed been great, and it is very likely that future  
discoveries and developments will be exciting, challenging, and of great benefit to humanity. 
 

1.1 Standards of Length, Mass, and Time 
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The laws of physics are expressed as mathematical relationships among physical quantities 
that we will introduce and discuss throughout the book. Most of these quantities 
are derived quantities, in that they can be expressed as combinations of a small number 
of basic quantities. In mechanics, the three basic quantities are length, mass, and time. 
All other quantities in mechanics can be expressed in terms of these three. 
If we are to report the results of a measurement to someone who wishes to reproduce 
this measurement, a standard must be defined. It would be meaningless if a visitor 
from another planet were to talk to us about a length of 8 “glitches” if we do not know 
the meaning of the unit glitch. On the other hand, if someone familiar with our system 
of measurement reports that a wall is 2 meters high and our unit of length is defined 
to be 1 meter, we know that the height of the wall is twice our basic length unit. Likewise, 
if we are told that a person has a mass of 75 kilograms and our unit of mass is defined 
to be 1 kilogram, then that person is 75 times as massive as our basic unit.1 Whatever 
is chosen as a standard must be readily accessible and possess some property that 
can be measured reliably. Measurements taken by different people in different places 
must yield the same result. 
In 1960, an international committee established a set of standards for the fundamental 
quantities of science. It is called the SI (Système International), and its units of length, 
mass, and time are the meter, kilogram, and second, respectively. Other SI standards  
established by the committee are those for temperature (the kelvin), electric current (the 
ampere), luminous intensity (the candela), and the amount of substance (the mole). 
 
Length 
In A.D. 1120 the king of England decreed that the standard of length in his country 
would be named the yard and would be precisely equal to the distance from the tip of 
his nose to the end of his outstretched arm. Similarly, the original standard for the foot 
adopted by the French was the length of the royal foot of King Louis XIV. This standard 
prevailed until 1799, when the legal standard of length in France became the meter, 
defined as one ten-millionth the distance from the equator to the North Pole along 
one particular longitudinal line that passes through Paris. Many other systems for  
measuring length have been developed over the years, but the advantages of the French 
 system have caused it to prevail in almost all countries and in scientific circles everywhere. 
 As recently as 1960, the length of the meter was defined as the distance between two lines  
on a specific platinum–iridium bar stored under controlled conditions in France. This  
standard was abandoned for several reasons, a principal one being that the limited accuracy 
 with which the separation between the lines on the bar can be determined does not meet the 
current requirements of science and technology. In the 1960s and 1970s, the meter was 
 defined as 1 650 763.73 wavelengths of orange-red light emitted from a krypton-86 lamp.  
However, in October 1983, the meter (m) was redefined as the distance traveled by light in 
vacuum during a time of 1/299 792 458 second. In effect, this latest definition establishes 
that the speed of light in vacuum is precisely 299 792 458 meters per second. Table 1.1 lists 
approximate values of some measured lengths. You should study this table as well as the next 
 two tables and begin to generate an intuition for what is meant by a length of 20 centimeters,  
for example, or a mass of 100 kilograms or a time interval of 3.2 x 107 seconds. 
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Mass 
The SI unit of mass, the kilogram (kg), is defined as the mass of a specific platinum–iridium 

 alloy cylinder kept at the International Bureau of Weights and Measures at Sèvres, France.  
This mass standard was established in 1887 and has not been changed since that time 
 because platinum–iridium is an unusually stable alloy. A duplicate of the Sèvres cylinder is 
 kept at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland 

 (Fig. 1.1a). Table 1.2 lists approximate values of the masses of various objects. 
EXAMPLE 2 
Time 
Before 1960, the standard of time was defined in terms of the mean solar day for the  year  
1900. (A solar day is the time interval between successive appearances of the Sun at the 
 highest point it reaches in the sky each day.) The second was defined as ( 1/60)( 1/60) 
( 1/24) of a mean solar day. The rotation of the Earth is now known to vary slightly with 
 time, however, and therefore this motion is not a good one to use for defining a time 
 standard. In 1967, the second was redefined to take advantage of the high precision  
attainable in a device known as an atomic clock (Fig. 1.1b), which uses the characteristic 
frequency of the cesium-133 atom as the “reference clock.” The second (s) is now defined as 
9 192 631 770 times the period of vibration of radiation from the cesium atom. 
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Figure 1.1 (a) The National Standard Kilogram No. 20, an accurate copy of the 
International Standard Kilogram kept at Sèvres, France, is housed under a double bell jar in 
a vault at the National Institute of Standards and Technology. (b) The nation’s primary time 
standard is a cesium fountain atomic clock developed at the National Institute of Standards 
and Technology laboratories in Boulder, Colorado. The clock will neither gain nor lose a 
second in 20 million years. 
 
To keep these atomic clocks—and therefore all common clocks and watches that are 
set to them—synchronized, it has sometimes been necessary to add leap seconds to our 
clocks. 
Since Einstein’s discovery of the linkage between space and time, precise measurement 
of time intervals requires that we know both the state of motion of the clock used to measure  
the interval and, in some cases, the location of the clock as well. Otherwise, for example, global 
positioning system satellites might be unable to pinpoint your location with sufficient accuracy, 
should you need to be rescued. Approximate values of time intervals are presented in Table 1.3. 

 
In addition to SI, another system of units, the U.S. customary system, is still used in the 
United States despite acceptance of SI by the rest of the world. In this system, the units of 
length, mass, and time are the foot (ft), slug, and second, respectively. In this text we shall 
use SI units because they are almost universally accepted in science and industry. We shall 
make some limited use of U.S. customary units in the study of classical mechanics. 
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In addition to the basic SI units of meter, kilogram, and second, we can also use 
other units, such as millimeters and nanoseconds, where the prefixes milli- and nano  
denote multipliers of the basic units based on various powers of ten. Prefixes for the 
various powers of ten and their abbreviations are listed in Table 1.4. For example, 
10-3 m is equivalent to 1 millimeter (mm), and 103 m corresponds to 1 kilometer 
(km). Likewise, 1 kilogram (kg) is 103 grams (g), and 1 
megavolt (MV) is 106 volts (V). 
QUESTION 1: How many centimeters are there in one 
kilometer? How many millimeters 
in a kilometer? 
QUESTION 2: How many microns are there in a fermi? 
QUESTION 3: How many microns are there in an angstrom? 

                           (A) 106 (B) 104 (C) 10-4 (D) 10-6 

There are 100 centimeters in a meter, and there are 1000 
meters in a kilometer, so there are 100x1000 =105 
centimeters in a kilometer. Similarly, with 103 millimeters in a 
meter, there are 103x103x106 millimeters in a kilometer 

 1.2 Matter and Model Building 
If physicists cannot interact with some phenomenon directly,        
they often imagine a model for a physical system that is 
related  to the phenomenon. In this context, a model is a 
system of  physical components, such as electrons and protons 
in an atom. Once we have identified the physical components, 
we make predictions about the  behavior of the system, based 
on the interactions among the components of the system 
and/or the  interaction between the system and the 
environment outside the system. As an example, consider the 
behavior of matter. A 1-kg cube of solid gold, such as that at 
the left of Figure 1.2, has a length of 3.73 cm on a side. Is this 
cube nothing but wall-to-wall gold, with no empty space? If the 
cube is cut in half, the two pieces still retain their chemical 
identity as solid gold. But what if the pieces are cut again and 
again, indefinitely? Will the smaller and smaller pieces always 
be gold? Questions such as these can be traced back to early 
Greek philosophers. Two of them—Leucippus and his student 
Democritus—could not accept the idea that such cuttings  
could go on forever. They speculated that the process                 Figure 1.2 Levels of   organization in matter 
ultimately must end when it produces a particle that can no 
 longer be cut. In Greek, atomos means “not   sliceable.”  
From this comes our English word atom.  Let us review briefly a number of historical models of 
the structure of matter. The Greek model of the structure of matter was that all ordinary matter 
consists of atoms, as suggested to the lower right of the cube in Figure 1.2. Beyond that, no 
additional structure was specified in the model—atoms acted as small particles that interacted 
with each other, but internal structure of the atom was not a part of the model. In 1897, J. J. 
Thomson identified the electron as a charged particle and as a constituent of the atom.  
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This led to the  first model of the atom that contained internal structure.   
 Following the discovery of the nucleus in 1911, a model was developed inwhich each   
atom is made up of electrons surrounding a  central nucleus.  
           A nucleus is  shown in Figure 1.2. This model leads, however, to a new  
question—does the nucleus have structure? That is, is the nucleus a single particle  
or a collection of particles? The exact composition of the nucleus is not known completely 
 even today,  but by the early 1930s a  model evolved that helped us understand how the  
 nucleus behaves. Specifically, scientists determined that occupying the nucleus is two  basic 
entities, protons and neutrons. The proton carries a positive electric charge, and a  specific 
chemical element is identified by  the number of protons in its nucleus. This number is called  
the atomic number of the element. For instance, the nucleus of a hydrogen atom contains one 

proton (and so the atomic number of hydrogen is 1), the nucleus of a helium atom contains  
two protons (atomic number 2), and  the nucleus of a uranium atom contains  92 protons  
(atomic number 92). In addition to atomic number, there is a second number characterizing 
atoms—mass number, defined as the number  of protons plus neutrons in a nucleus. The  
atomic number of an element never varies (i.e., the number of protons does not  vary) but the 
mass number can vary (i.e., the number of neutrons varies). The existence of neutrons was 
verified conclusively in 1932. A neutron has  no charge and a  mass that is about equal to that  
of a proton. One of its primary purposes is to act as a “glue” that holds the nucleus together. If 
neutrons were not present in the nucleus, the repulsive force between the positively charged 
particles would cause the nucleus to come apart. But is this where the process of breaking  
down stops? Protons, neutrons, and a host of other exotic particles are now known to be 
composed of six different varieties of particles called quarks, which have been given the names  
of up, down, strange, charmed, bottom, and top.  
The up, charmed, and top quarks have electric charges of + 3/2 that of the proton, whereas  
the down, strange, and bottom quarks have charges of – 1/3 that of the proton. The proton 
consists of two up quarks and one down quark, as shown at the top in Figure 1.2. You can  
easily show that this structure predicts the correct charge for the proton. Likewise, the  
neutron consists of two down quarks and one up quark, giving a net charge of zero. 
 

 
This process of building models is one that you should develop as you study physics. You  
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will be challenged with many mathematical problems to solve in this study. One of the most 
important techniques is to build a model for the problem identify a system of physical  
components for the problem, and make predictions of the behavior of the system based on 
 the interactions among the components of the system and/or the interaction between the 
 system and its surrounding environment. 

 
1.3 Density and Atomic Mass 
In Section 1.1, we explored three basic quantities in mechanics. Let us look now at an 
example of a derived quantity—density. The density ρ(Greek letter rho) of any substance 
is defined as its mass per unit volume: 

                                                                                                                                               (1.1) 
For example, aluminum has a density of 2.70 g/cm3, and lead has a density of 
11.3 g/cm3. Therefore, a piece of aluminum of volume 10.0 cm3 has a mass of 27.0 g, 
whereas an equivalent volume of lead has a mass of 113 g. A list of densities for various 
substances is given in Table 1.5. 
The numbers of protons and neutrons in the nucleus of an atom of an element are related 
to the atomic mass of the element, which is defined as the mass of a single atom of 
the element measured in atomic mass units (u) where 1 u = 1.660 538 7 x 10-27 kg. 
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Example 2 

How many atoms are there in a 5-cent coin? Assume that the coin is made of nickel and has 
 a mass of 5.2 10-3 kg, or 5.2 grams. Atomic masses is 58.69. 
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1.4 Dimensional Analysis 
The word dimension has a special meaning in physics. It denotes the physical nature of 
a quantity. Whether a distance is measured in units of feet or meters or fathoms, it is 
still a distance. We say its dimension is length. 
The symbols we use in this book to specify the dimensions of length, mass, and time are L, M,  
and T, respectively.3 We shall often use brackets [ ] to denote the dimensions of a physical 
quantity. For example, the symbol we use for speed in this book is v, and in our notation the 
dimensions of speed are written [v]  = L/T. As another example, the dimensions of area A are 
 [A]  =L2. The dimensions and units of area, volume, speed, and acceleration are listed in  
Table 1.6. The dimensions of other quantities, such as force and energy, will be described as 
 they are introduced in the text. In many situations, you may have to derive or check a specific 
equation. A useful and powerful procedure called dimensional analysis can be used to assist in the 
derivation or to check your final expression. Dimensional analysis makes use of the fact that 
 
 
 
 
 
 
 
 
dimensions can be treated as algebraic quantities. For example, quantities can be 
added or subtracted only if they have the same dimensions. Furthermore, the terms on 
both sides of an equation must have the same dimensions. By following these simple 
rules, you can use dimensional analysis to help determine whether an expression has 
the correct form. The relationship can be correct only if the dimensions on both sides 
of the equation are the same. 
To illustrate this procedure, suppose you wish to derive an equation for the position 
x of a car at a time t if the car starts from rest and moves with constant acceleration 

a. We shall find that the correct expression is x = at 2. Let us use dimensional analysis 
 to check the validity of this expression. The quantity x on the left side has the dimension  
of length. For the equation to be dimensionally correct, the quantity on the right side must also 
have the dimension of length. We can performa dimensional check by substituting the 
 dimensions for acceleration, L/T2  (Table 1.6), and time, T, into the equation. That is, the 
dimensional form of the equation 
 
 
 
The dimensions of time cancel as shown, leaving the dimension of length on the right  
Hand side. A more general procedure using dimensional analysis is to set up an expression  
of the form  
 
The exponents of L and T must be the same on both sides of the equation. From the 
exponents of L, we see immediately that n = 1. From the exponents of T, we see that 
m - 2n = 0, which, once we substitute for n, gives us m = 2. Returning to our original 
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expression  
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1.5 Conversion of Units 
Sometimes it is necessary to convert units from one measurement system to another, or 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

to convert within a system, for example, from kilometers to meters. Equalities between 
SI and U.S. customary units of length are as follows: 
1 mile = 1 609 m = 1.609 km 1 ft = 0.304 8 m = 30.48 cm 
1 m = 39.37 in. = 3.281 ft 1 in. = 0.025 4 m = 2.54 cm (exactly) 
A more complete list of conversion factors can be found in Appendix A. 
Units can be treated as algebraic quantities that can cancel each other. For example, 
suppose we wish to convert 15.0 in. to centimeters. Because 1 in. is defined as exactly 
2.54 cm, we find that 
 
where the ratio in parentheses is equal to 1. Notice that we choose to put the unit of an 
inch in the denominator and it cancels with the unit in the original quantity. The remaining 
unit is the centimeter, which is our desired result. 
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Example 
We can obtain a rough estimate of the size of a molecule by means of the following simple 
experiment. Take a droplet of oil and let it spread out on a smooth surface of water. When  
the oil slick attains its maximum area, it consists of a monomolecular layer; that is, it consists  
of a single layer of oil molecules which stand on the water surface side by side. Given that 
an oil droplet of mass 8.4x10-7 kg and of density 920 kg/m3 spreads out into an oil slick of 
maximum area 0.55 m2, calculate the length of an oil molecule. 
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1.6 Estimates and Order-of-Magnitude Calculations 
It is often useful to compute an approximate answer to a given physical problem even 
when little information is available. This answer can then be used to determine whether or  
not a more precise calculation is necessary. Such an approximation is usually based on certain 
assumptions, which must be modified if greater precision is needed. We will sometimes refer 
 to an order of magnitude of a certain quantity as the power of ten of the number that describes 
that quantity. Usually, when an order-of magnitude calculation is made, the results are reliable 

 to within about a factor of 10. If a quantity increases in value by three orders of magnitude,  
this means that its value increases by a factor of about 103 = 1 000. We use the symbol ~ for “is  
on the order of.” Thus,  0.008 6 ~ 10-2  0.002 1 ~ 10-3 720 ~ 103 
The spirit of order-of-magnitude calculations, sometimes referred to as “guesstimates” 
or “ball-park figures,” is given in the following quotation: “Make an estimate before every 
calculation, try a simple physical argument . . . before every derivation, guess the answer to 
every puzzle.”4 Inaccuracies caused by guessing too low for one number are often canceled out  
by other guesses that are too high. You will find that with practice your guesstimates become 
better and better. Estimation problems can be fun to work as you freely drop digits, venture 
reasonable approximations for unknown numbers, make simplifying assumptions, and turn the 
question around into something you can answer in your head or with minimal mathematical 
manipulation on paper. Because of the simplicity of these types of calculations, they can be 
performed on a small piece of paper, so these estimates are often called “back-of-the envelope 
calculations.” 
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Unit 2: Vectors 

2.1 Coordinate Systems 

Many aspects of physics involve a description of a location in space. 

The mathematical description of an object’s motion requires a method 

for describing the object’s position at various times. In two dimensions, 

this description is accomplished with the use of the Cartesian 

coordinate  system,in which perpendicular axes intersect at a point 

defined as the origin O (Fig. 3.1). Cartesian coordinates are also called 

rectangular coordinates. 

2.2 Vector and Scalar Quantities 

A scalar quantity A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction 

associated with it. 

Magnitude – A numerical value with units. Others, such as temperature, can have either positive or 

negative values. 

A vector quantity A VECTOR is ANY quantity in physics that has BOTH MAGNITUDE and 

DIRECTION. Vectors are typically illustrated by drawing an ARROW above the symbol. The arrow is 

used to convey direction and magnitude.. The magnitude of a vector is always a positive number. 

Acceleration is an example for the vector quantities. 

Quick Quiz 3.1 Which of the following are vector quantities and which are scalar quantities? 

                    (a) your age (b) acceleration (c) velocity (d) speed (e) mass. 

Note  Please be informed with the difference between the distance and the displacement 

The displacement vector tells us only where the final position (P2) is in relation to the initial position 

(P1); it does  not tell us what path the ship followed between the two positions. 

 

2.3 Some Properties of Vectors 

Equal Vectors : have the same length and direction, and          

 must represent the same quantity (such as force or velocity). 
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Inverse Vectors  have the same length, but opposite direction. 

 

Adding Vectors: If A & B are vectors ;then   

(known as the commutative law of addition). Adding 

vectors can be done by 

4 different methods: 

 Parallelogram Method - For a quick assessment.  Good for concurrent forces. 

 Tip-to-Tail Method -  Drawing vectors to scale on paper to find an answer.   

  Good for displacements. 

 Mathematical Method -  Determining an answer using trigonometry.  The vectors 

need to be at right angles to one another. 

 Geometric construction - for summing more than two vectors. 

 

The following examples are helpful for understanding the pre- mentioned methods. 

1-Parallelogram Method       

 

 

2-Tip-to-Tail Method 

 Draw vectors, tip to tail 

 Using your scale, measure length of R 
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3-Mathematical Method 

When 2 vectors are perpendicular, you must use the next example: 
-A man walks 95 km, East then 55 km, north. Calculate his RESULTANT DISPLACEMENT. 
 
 

 

 

 

 

4- Geometric 

construction 

We can add 3 or more vectors by placing them tip to tail in any order, so long as they are of the 

same type (force, velocity, displacement, etc.). 

 

             

 

 

 

 

 

 

 

SubtractingVectors: 

In order to subtract vectors, we define the negative of a vector, which has the same 

magnitude but points in the opposite direction.Then we add the negative vector: 

 
 

 Multiplication of a Vector by a Scalar Number 
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A vector V can be multiplied by a scalar c; the result is a vector cV that has the same 

direction but a magnitude cV. If c is negative, the resultant vector points in the opposite 

direction. 

 

 

 

 
 

 

 
Dot Product 

The dot product (also called the scalar product) of two vectors A and B is denoted 

by A.B. This quantity is simply the product of the magnitudes of the two vectors and the 

cosine of the angle between them  
 

Thus, the dot product of two vectors simply gives a number, that is, a scalar rather than a  

vector. 

 

Cross Product 

In contrast to the dot product of two vectors, which is a scalar, the cross product (also 

called the vector product) of two vectors is a vector. The cross product of two vectors 

A and B is denoted by A_B. The magnitude of this vector is equal to the product of 

the magnitudes of the two vectors and the sine of the angle between them. Thus if we 

write the vector resulting from the cross product as  C = A xB  

then the magnitude of this vector is  
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The direction of the vector C is defined to be along the perpendicular to the plane 

formed by A and B (Fig.). The direction of C along this perpendicular is given 

by the right-hand rule: put the fingers of your right hand along A (Fig.), and curl 

them toward B in the direction of the smaller angle from A to B (Fig.); the thumb then 

points along C. Note that the fingers must be curled from the first vector in the product 

toward the second. Thus, AxB is not the same as BxA. For the latter product, the fingers 

must be curled from B toward A (rather than vice versa); hence, 

the direction of the vector BxA is opposite to that of AxB: 
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Unit 3: Properties of Matter  

                                                       (Elasticity ) 
3.1 Elastic Properties of Solids 

Except for our discussion about springs in earlier chapters, we have assumed 
objects remain rigid when external forces act on them. In Section 9.8, we explored 
deformable systems. In reality, all objects are deformable to some extent. That is, it 
is possible to change the shape or the size (or both) of an object by applying external 
forces. As these changes take place, however, internal forces in the object resist 
the deformation. 
We shall discuss the deformation of solids in terms of the concepts of stress and 
strain. Stress is a quantity that is proportional to the force causing a deformation; 
more specifically, stress is the external force acting on an object per unit cross-sectional 
area. The result of a stress is strain, which is a measure of the degree of deformation. It is 
 found that, for sufficiently small stresses, stress is proportional to strain; the constant of 
proportionality depends on the material being deformed and on the nature of the deformation. 
 We call this proportionality constant the elastic modulus. The elastic modulus is therefore 
 defined as the ratio of the stress to the resulting strain: 
Elastic modulus  = stress /strain                                                                                     
The elastic modulus in general relates what is done to a solid object (a force is 
applied) to how that object responds (it deforms to some extent). It is similar to the 
spring constant k in Hooke’s law that relates a force applied to a spring and 
the resultant deformation of the spring, measured by its extension or compression. 
We consider three types of deformation and define an elastic modulus for each: 
1. Young’s modulus measures the resistance of a solid to a change in its length. 
2. Shear modulus measures the resistance to motion of the planes within a solid parallel 
 to each other. 
3. Bulk modulus measures the resistance of solids or liquids to changes in their volume. 
 
3.2 Young’s Modulus: Elasticity in Length 
Consider a long bar of cross-sectional area A and initial length Li that is clamped at 
one end as in Figure 2.1. When an external force is applied perpendicular to the 
cross section, internal molecular forces in the bar resist distortion (“stretching”), 
but the bar reaches an equilibrium situation in which its final length Lf is greater 
than Li and in which the external force is exactly balanced by the internal forces. 
In such a situation, the bar is said to be stressed. We define the tensile stress as the 
ratio of the magnitude of the external force F to the cross-sectional area A, where 
the cross section is perpendicular to the force vector. The tensile strain in this 
case is defined as the ratio of the change in length DL to the original length Li. We 
define Young’s modulus by a combination of these two ratios: 
Y = tensile stress/tensile strain = (F/A) /( ΔL/Li  )                                                     
Young’s modulus is typically used to characterize a rod or wire stressed under either 
tension or compression. Because strain is a dimensionless quantity, Y has units of 
force per unit area. For relatively small stresses, the bar returns to its initial length  
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when the force is removed. The elastic limit of a substance is defined as the maximum  
stress that canbe applied to the substance before it becomes permanently deformed and 
 does not return to its initial length. It is possible to exceed the elastic limit of a substance by 
applying a sufficiently large stress as seen in Figure 2. 2. Initially, a stress-versus strain 
curve is a straight line. As the stress increases, however, the curve is no longer a straight line. 
When the stress exceeds the elastic limit, the object is permanently distorted and does not  
return to its original shape after the stress is removed. As the stress is increased even further,  
the material ultimately breaks.  

                    
Figure 2.1 A force F is applied to the free end    Figure 2. 2 Stress-versus-strain curve for elastic             
of a bar clamped at the other end.                                                solid     
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3.3 Shear Modulus: Elasticity of Shape 
Another type of deformation occurs when an object is subjected to a force parallel 
to one of its faces while the opposite face is held fixed by another force (Fig.2. 3a). The stress 
 in this case is called a shear stress. If the object is originally a rectangular block, a shear stress 
results in a shape whose cross section is a parallelogram. A book pushed sideways as shown in 
Figure 2. 3b is an example of an object subjected to a shear stress. To a first approximation  
(for small distortions), no change in volume occurs with this deformation. We define the shear 
stress as F/A, the ratio of the tangential force to the area A of the face being sheared. The shear 
strain is defined as the ratio Δx/h, where Δx is the horizontal distance that the sheared face moves 
and h is the height of the object. In terms of these quantities, the shear modulus is 
S =  shear stress/shear strain = (F/A) /( Δx/h)                                                                                 (2.7) 
 Like Young’s modulus, the unit of shear modulus is the ratio of that for force to that for area. 

 
 
Figure 2. 3 (a) A shear deformation in which a rectangular block is distorted by two forces of equal 
magnitude but opposite directions applied to two parallel faces. (b) A book is under shear  stress 
when a hand placed on the cover applies a horizontal force away from the spine. 

 
3.4 Bulk Modulus: Volume Elasticity 
Bulk modulus characterizes the response of an object to changes in a force of uniform 
magnitude applied perpendicularly over the entire surface of the object as shown in Figure 2. 4. 
(We assume here the object is made of a single substance.) such a uniform distribution of forces 
occurs when an object is immersed in a fluid. An object subject to this type of deformation 
undergoes a change in volume but no change in shape. The volume stress is defined as the ratio 
of the magnitude of the total force F exerted on a surface to the area A of the surface. 
The quantity P = F/A is called pressure . If the pressure on an object changes by an amount ΔP = 
ΔF/A, the object experiences a volume change ΔV. The volume strain is equal to the change in 
volume ΔV divided by the initial volume Vi. Therefore, from Equation 2.5, we can characterize 
a volume (“bulk”) compression in terms of the bulk modulus, which is defined as 
B = volume stress/volume strain ΔF/A ΔV/Vi  = ΔPΔV/Vi                                                        (2.8) 
A negative sign is inserted in this defining equation so that B is a positive number.  
This maneuver is necessary Because  an increase in pressure (positive ΔP) causes  
adecrease in volume (negative ΔV) and vice versa. The reciprocal of the  bulk modulus is  
called the compressibility of the material. 
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Figure 2. 4 A cube is under uniform pressure and is therefore 
compressed on all sides by forces normal to its six faces. 
 The arrowheads  of force vectors on the sides of the cube 
 that are not visible are hidden by the cube.  
 
 
Quick Quiz 2.1 For the three parts of this Quick Quiz, choose  
from the following choices the correct answer for the elastic modulus that describes the 
relationship between stress and strain for the system of interest, which is in italics: 
 (a) Young’s modulus 
 (b) shear modulus 
 (c) bulk modulus  
 (d) none of those 
choices  
(i) A block of iron is sliding across a horizontal floor. The friction force between the sliding block 
and the floor causes the block to deform. 
 (ii) A trapeze artist swings through a circular arc. At the bottom of the swing, the wires  
supporting the trapeze are longer than when the trapeze artist simply hangs from the trapeze due 
to the increased tension in them.  
(iii) A spacecraft carries a steel sphere to a planet on which atmospheric pressure is much higher 
than on the Earth. The higher pressure causes the radius of the sphere to decrease. 
 
Example 1.2 Stage Design 

We analyzed a cable used to support an actor as he swings onto the stage. Now suppose the 
tension in  the cable is 940 N as the actor reaches the lowest point. What diameter should a 10-m-
long steel cable have if we do not want it to stretch more than 0.50 cm under these conditions? 
Conceptualize Look back at Example 8.2 to recall what is happening in this situation. We ignored 
any stretching of the cable there, but we wish to address this phenomenon in this example. 
Categorize We perform a simple calculation, so we categorize this example as a substitution 
problem. 
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Example 2.2 Squeezing a Brass Sphere 
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3-5 General Review Examplrs  
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Unit 4 : Fluid Mechanics 
Matter is normally classified as being in one of three states: solid, liquid, or gas. From 
everyday experience we know that a solid has a definite volume and shape, a liquid has a 
definite volume but no definite shape, and an unconfined gas has neither a definite volume 
nor a definite shape. These descriptions help us picture the states of matter, but they are 
somewhat artificial. For example, asphalt and plastics are normally considered solids, but 
over long time intervals they tend to flow like liquids. Likewise, most substances can be a 
solid, a liquid, or a gas (or a combination of any of these three), depending on the temperature 
and pressure. In general, the time interval required for a particular substance to change 
its shape in response to an external force determines whether we treat the substance as a 
solid, a liquid, or a gas. 
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A fluid is a collection of molecules that are randomly arranged and held together by 
weak cohesive forces and by forces exerted by the walls of a container. Both liquids and 
gases are fluids. 
In our treatment of the mechanics of fluids, we’ll be applying principles and analysis 
models that we have already discussed. First, we consider the mechanics of a fluid at rest, 

that is, fluid statics, and then study fluids in motion, that is, fluid dynamics. 14.1 3 

.4.1 Pressure 
Fluids do not sustain shearing stresses or tensile stresses such as those discussed  therefore, the 
only stress that can be exerted on an object submerged in a static fluid is one that tends to 
compress the object from all sides. In other words, the force 
exerted by a static fluid on an object is always perpendicular to 
the surfaces of the object as shown in Figure 3.1. 

The pressure in a fluid can be measured with the device pictured 
in Figure 3.2.The device consists of an evacuated cylinder that 
encloses a light piston connected to a spring. As the device is 
submerged in a fluid, the fluid presses on the top of the piston 
and compresses the spring until the inward force exerted by the 
fluid is balanced by the outward force exerted by the spring. The 
fluid pressure can be measured directly if the spring is calibrated  
in advance. If F is the magnitude of the force exerted on the 
piston and A is the surface area of the piston, the pressure P of 
the fluid at the level to which the device has been submerged is 
defined as the ratio of the force to the area: P =F /A  

                                                                                                                      Figure 4.2 The forces exerted 

                                                                                                                     by a fluid on the surfaces of a 

                                          submerged object.       
 

 

 

 

 

Figure 4.3 A simple device for measuring the pressure exertedby a fluid.                                                                                                               
Pressure is a scalar quantity because it is proportional to the magnitude of the force on the piston.  
 
If the pressure varies over an area, the infinitesimal force dF on  an infinitesimal surface element 
of area dA is          dF = P dA  
where P is the pressure at the location of the area dA. To calculate  the total force exerted on a 
surface of a container, we must integrate  Equation over the surface.The units of pressure are 
newtons per  square meter (N/m2) in the SI system. Another name for the SI unit of pressure  
is the pascal (Pa): 1 Pa ; 1 N/m2 
For a tactile demonstration of the definition of pressure, hold a tack between your thumb  
and forefinger, with the point of the tack on your thumb and the head of the tack on your 
forefinger. Now gently press your thumb and forefinger together. Your thumb will begin 
 to feel pain immediately while your forefinger will not. The tack is exerting the same force  
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on both your thumb and forefinger, but the pressure on your thumb is much larger because 
 of the small area over which the force is applied. 
 

Quiz 3.1 Suppose you are standing directly behind someone who steps back and 
 accidentally stomps on your foot with the heel of one shoe. Would you be better off if  
that person were (a) a large, male professional basketball player wearing sneakers or  
(b) a petite woman wearing spike-heeled shoes? 
 
Example 4.1.1 The Water Bed 

The mattress of a water bed is 2.00 m long by 2.00 m wide and 30.0 cm deep. 
(A) Find the weight of the water in the mattress. 
(B) Find the pressure exerted by the water bed on the floor when the bed rests in its normal 
position. Assume the  entire lower surface of the bed makes contact with the floor. 
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4.2 Variation of Pressure with Depth 

As divers well know, water pressure increases with depth. Likewise, atmospheric pressure 
decreases with increasing altitude; for this reason, aircraft flying at high altitudes must have 
pressurized cabins for the comfort of the passengers. We now show how the pressure in 
 a liquid increases with depth. As Equation  describes, the density of a substance is defined  
as its mass per unit volume. See a  lists the densities of various substances. These values  
vary slightly with temperature because the volume of a substance is dependent on temperature 
 Under standard conditions (at 0oC and at atmospheric pressure), the densities of gases are 
 about 1/1000 the densities of solids and liquids. This difference in densities implies  
that the average molecular spacing in a gas under these conditions is about ten times greater  
 than that in a solid or liquid. 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3 A parcel of  

fluid in a larger volume  

of fluid is singled out. 
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Figure 4.3 (a) Diagram of a hydraulic press. (b) A vehicle undergoing repair is supported by a hydraulic 

lift in a garage.  
 

 

 

 

 

 

 

 

 

Quiz 14.2 The pressure at the bottom of a filled glass of water (ρ = 1 000 kg/m3) is P.  
The water is poured out, and the glass is filled with ethyl alcohol 
(ρ = 806 kg/m3). What is the pressure at the bottom of the glass?  
(a) smallerthan P  
(b) equal to P  
(c) larger than P  
(d) indeterminate 
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Example 4.2 The Car Lift 
In a car lift used in a service station, compressed air exerts a force on a small piston that has a circular 

cross section of radius 5.00 cm. This pressure is transmitted by a liquid to a piston that has a radius of 

15.0 cm. 

(A) What force must the compressed air exert to lift a car weighing 13 300 N? 

 
 
(B) What air pressure produces this force? 

 
 

Example 4.3 A Pain in Your Ear 

Estimate the force exerted on your eardrum due to the water when you are swimming at the bottom of a 

pool that is 5.0 m deep. 
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4.3 INCOMPRESSIBLE STEADY FLOW; STREAMLINES 

We will deal with steady flow, for which the velocity at any given point of space remains  

constant in time. Thus, in steady flow, each small parcel of fluid that starts at any given point 

 follows exactly the same path as a small parcel that passes through the same point at an earlier (or 

later) time. For example, Fig. 3.5 shows velocity vectors       

 for the steady flow of water around a cylindrical obstacle, 

say, the flow of the water of a broad river around a  

cylindrical piling placed in the middle. The water enters  

the picture in a broad stream from the left, and disappears 

in a similar broad stream toward the right. For the steady  

flow of an incompressible fluid, such as water, the picture 

 of velocity vectors can be replaced by an alternative graphical  

representation. Suppose we focus our attention on a small  

volume of water, say, 1 mm3 of water, and we observe  

the path of this 1 mm3 from the source to the sink. The path traced out by the small volume of 

fluid is called a streamline. Neighboring small volumes will trace out neighboring 

streamlines. In Fig. 18.6 we show the pattern of streamlines for the same steady flow 

of water that we already represented in Fig. 3.5 by means of velocity vectors. The 

streamlines on the far left (and far right) of Fig. 18.6 are evenly spaced to indicate the 

uniform and parallel flow in this region. 

The steady flow of an incompressible fluid is often called streamline flow. Note 

that streamlines never cross. A crossing of two streamlines would imply that a small 

parcel of water moving along one of these streamlines has to penetrate through a small 

parcel of water moving along the other streamline. This is impossible—it would lead 

to disruption of both the small parcels and to destruction of the steadiness of flow. 

Because the streamlines for steady incompressible flow never cross, such flow is also 

called laminar flow, which refers to the layered arrangement of the streamlines. 

If we know the velocity of flow throughout the fluid, we can trace out the motion 

of small parcels of fluid and therefore construct the streamlines. But the converse is 
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also true—if we know the streamlines, we can reconstruct the velocity of flow.We can 

do this by means of the following rule: 

The direction of the velocity at any one point is tangent to the streamline, and the 

magnitude of the velocity is proportional to the density of streamlines. 

The first part of this rule is self-evident, since the direction of  

 motion of a small parcel of fluid is tangent to the streamline.  

To establish the second part, consider a bundle of streamlines 

 forming a pipelike region, called a stream tube.Any fluid inside 

the stream tube will have to move along the tube; it cannot cross  

the surface of the tube because streamlines never cross. The tube 

 therefore plays the same role as a pipe made of some impermeable 

 material—it serves as a conduit for the fluid. If we consider 

a tube that is very narrow, so its cross-sectional area is very small,  

the velocity of flow will vary only along the length of the tube,  

and we can assume it will be the same at all points on a given cross-sectional area. For instance, on the area 

A1 (see Fig.)  the velocity is v1, and on the area A2 the velocity is v2. In a time dt, Eq. impliesthat the 
fluid volume that enters across the area A1 is dV1 = v1A1 dt and the fluid volume that leaves across 

the area  A2 is dV2 = v2 A2  dt. The amount of fluid that enters must match the amount that leaves, 

since, under steady conditions, fluid cannot accumulate in the segment of tube between A1 and A2.  
Hence dV1 = dV2, and or, canceling the factor dt on both sides of the equation,  
This relation is called the continuity equation. It shows that along any stream tube the speed of 
flow is inversely proportional to the cross-sectional area of the stream tube. 
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FIGURE Fine trails of smoke indicate                                                  FIGURE Here, the wing is in a partial stall, and the 
 the streamlines in air flowing around the wing of an aircraft.                           flow behind the wing has become turbulent 
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4.4 Buoyant Forces and Archimedes’s Principle 

Have you ever tried to push a beach ball down under water (Fig. 4.3a)? Itis extremely difficul 

 to do because of the large upward force exerted by the water on the ball. The upward force  

exerted by a fluid on any immersed object is called 
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4. 8 Surface Tension  

The cohesive forces between liquid molecules are responsible for the phenomenon 
known as surface tension. The molecules at the surface do not have other like 
molecules on all sides of them and consequently they cohere more strongly to those 
directly associated with them on the surface. This forms a surface "film" which 
makes it more difficult to move an object through the surface than to move it when 
it is completely submersed. 

  

Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum 
surface area possible. 

Surface tension, property of a liquid surface displayed by its acting as if it were a 
stretched elastic membrane. This phenomenon can be observed in the nearly 
spherical shape of small drops of liquids and of soap bubbles. Because of this 
property, certain insects can stand on the surface of water. 
 

Examples of Surface Tension 

Insects walking on water. Floating a needle on the surface of the water. Rainproof 
tent materials where the surface tension of water will bridge the pores in the tent 
material. 
Surface tension is the energy, or work, required to increase the surface area of a 
liquid due to intermolecular forces. 
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4-9 Problems 

1. A small piece of unknown material is placed on water. It has a length of 2 cm and a mass of 0.2 N. 
Calculate the surface tension. 

2. A water strider is observed on the lake. The water strider has a length of 2 cm. The surface tension of the 
water was determined to be 20 N/m. What is the force applied by the water strider? 

3. If an object exerts a force of 1 N and its surface tension on the water is measured to be 5 N/m, then what 
is the length of the object? 

Note   S = F/d 

Solutions 

1. The surface tension is 10 N/m. In order to solve this question, the length of 2 cm is converted to m, which 
is equal to 0.02 m. Then, the force of 0.2 N is divided by the length to obtain the surface tension value. 

2. The force is equal to 0.4 N. This value is obtained by multiplying the length of the water strider (in m) by 
the surface tension. 

3. The length of the object is 0.2 m. 

Adhesive Forces 

Forces of attraction between a liquid and a solid surface are called adhesive forces. The 

difference in strength between cohesive forces and adhesive forces determine the behavior 

of a liquid in contact with a solid surface. 

 Water does not wet waxed surfaces because the cohesive forces within the drops 
are stronger than the adhesive forces between the drops and the wax. 

 Water wets glass and spreads out on it because the adhesive forces between the 
liquid and the glass are stronger than the cohesive forces within the water. 

Formation of a Meniscus 

 

 

 

 

 

 

When liquid water is confined 

in a tube, its surface (meniscus) 

has a concave shape because 

water wets the surface and 

creeps up the side. 

Mercury does not wet glass the cohesive forces within the drops are  

stronger than the adhesive forces between the drops and glass. When 

 liquid mercury is confined in a tube, its surface (meniscus) has a 

 convex shape because the cohesive forces in liquid mercury tend to  

draw it into a drop. 
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 When we suspend the wire frame on a stand, the gravitational force will act perpendicular to the bar. The 
gravitational force is directly proportional to the mass of the bar and the weight we can hang on the bar. 

 

If the gravitational force Fg is smaller than the surface force Fs, the membrane retracts and the bar moves 
upwards quickly. 

If the gravitational force is equal to the surface force, the net force acting on the bar is zero and the bar 
stays at rest. 

If the bar is too heavy or if we hang a heavy weight on it, the gravitational force is greater than the surface 
force, and the bar moves downwards quickly. 

We assume that the bar can move freely and without friction. 

 Tools 

o soap water 

o wire frame with a moving bar 

o weights that can be hung on the bar (we used a coiled wire as a weight) 

o laboratory scales (if you want to measure the surface tension of soap water) 
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 Procedure 

1. Immerse the wire frame into the soap water. 

2. Hang the frame on the stand (or you can just hold it in your hand). 

3. Drag the movable bar downwards to increase the surface of the soap membrane. Then let 
the bar go and watch the membrane retract. 

4. Drag the bar again to extend the membrane surface and then hang the weights on the bar so 
that the gravitational force acting on the bar with the weights equals the surface force of the 
membrane acting on the bar. The bar remains at rest. 

5. Hang a heavier weight on the bar so that it moves downwards. 

 Sample result 

 Comment 

Calculation of surface tension of soap water 

We can measure the length of the bar and weigh the bar and the weights that hold the membrane extended 
and at rest. From this data we can determine the surface tension of soap water. 

Sample result: 

length of the bar l = 58 mm = 5.8·10−2 m 
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mass of the bar mb = 0.078 g 

mass of weights mw = 0.137 g 

mass of the bar and weight together mb+w = 0.215 g = 2.15·10−4 kg 

 

The bar acts on the membrane with gravitational force Fg 

Fg=mb+w⋅g=˙2⋅10−4⋅10=2⋅10−3 N.Fg=mb+w·g=˙2·10−4·10=2·10−3 N. 

The bar is in balance. The membrane must have a surface force Fs of the same size as the gravitational force 
but in the opposite direction 

Fs=Fg.Fs=Fg. 

The surface force the membrane acts on the bar is 

Fs=˙2⋅10−3 N.Fs=˙2·10−3 N. 

Surface force can be calculated according to (1) as 

Fs=2σl.Fs=2σl. 

From this relationship we express the surface tension 

σ=Fg2l.σ=Fg2l. 

We insert the measured values and calculate the surface tension of soap water 

σ=˙2⋅10−32⋅5.8⋅10−2 N⋅m−1σ=˙2·10−32·5.8·10−2 N·m−1 

σ=˙1.7⋅10−2 N⋅m−1.σ=˙1.7·10−2 N·m−1. 

Soap water we used in our experiment had a surface tension of about 1.7·10−2 N·m−1. 

The solved part of the soap membrane can be found here: Soap Film in a Wire Frame with a Movable 
Crossbar. 

 

 

 

 

 

http://physicsexperiments.eu/2126/soap-membrane-in-frame-with-moving-bar#eqref-1
http://physicsexperiments.eu/2108/soap-film-in-a-wire-frame-with-a-movable-crossbar
http://physicsexperiments.eu/2108/soap-film-in-a-wire-frame-with-a-movable-crossbar
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4-10 Applications of the surface tension 

Respiratory system, the system in living 
organisms that takes up oxygen and 
discharges carbon dioxide in order  
to satisfy  energy requirements. In the 
living organism, energy is liberated, along 
with carbon dioxide, through the 
oxidation of molecules containing carbon. 
The term respiration denotes the 
exchange of the respiratory gases  
(oxygen and carbon dioxide) between the 
organism and the medium in which  
it lives and between the cells of the body 
and the tissue fluid that bathes them. 
The variations in the characteristics of air and water suggest the many problems 
with which the respiratory systems of animals must cope in procuring enough 
oxygen to sustain life. 
 
Respiratory structures are tailored to the need for oxygen.  

Organisms too large to satisfy their oxygen needs from the environment by 
diffusion are equipped with special respiratory structures in the form of gills, 
lungs, specialized areas of the intestine or pharynx (in certain fishes), or tracheae 
(air tubes penetrating the body wall, as in insects). 

Two common respiratory organs of invertebrates are trachea and gills.  
An elegant solution to the problem of bubble exhaustion during submergence has 
been found by certain beetles that have a high density of cuticular hair over much 
of the surface of the abdomen and thorax. The hair pile is so dense that it resists 
wetting, and an air space forms below it, creating a plastron, or air shell, into which 
the tracheae open. As respiration proceeds, the outward diffusion of nitrogen and 
consequent shrinkage of the gas space are prevented by the surface tension  —a  
condition manifested by properties that resemble those of an elastic skin under 
tension—between the closely packed hairs and the water. Since the plastron hairs 
tend to resist deformation, the beetles can live at considerable depths without 
compression of the plastron gas. 

The respiratory structures of spiders consist of peculiar ―book lungs,‖ leaf like 
plates over which air circulates through slits on the abdomen.  
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In most vertebrates the organs of external respiration are thin-walled structures 
well supplied with blood vessels. There are three major types of respiratory 
structures in the vertebrates: gills, integumentary exchange areas, and lungs.  

The maximum capacity of human lungs is about six litres.  

The gills of fishes are supported by a series of gill arches encased within a 
chamber formed by bony plates (the operculum).  

The lungs of vertebrates range from simple saclike structures found in 
the Dipnoi (lungfishes) to the complexly subdivided organs of mammals and 
birds. An increasing subdivision of the airways and the development of greater 
surface area at the exchange surfaces appear to be the general evolutionary trend 
among the higher vertebrates. 

An important characteristic of lungs is their elasticity. An elastic material is one 
that tends to return to its initial state after the removal of a deforming force. 
Elastic tissues behave like springs. As the lungs are inflated, there is an 
accompanying increase in the energy stored within the elastic tissues of the lungs, 
just as energy is stored in a stretched rubber band. The conversion of this stored, 
or potential, energy into kinetic, or active, energy during the deflation process 
supplies part of the force needed for the expulsion of gases. A portion of the 
energy put into expansion is thus recovered during deflation. The elastic 
properties of the lungs have been studied by inflating them with air or liquid and 
measuring the resulting pressures. Muscular effort supplies the motive power for 
expanding the lungs, and this is translated into the pressure required to produce 
lung inflation. It must be great enough to overcome (1) the elasticity of the lung 
and its surface lining; (2) the frictional resistance of the lungs; (3) the elasticity of 
the thorax or thoraco-abdominal cavity; (4) frictional resistance in the body-wall 
structures; (5) resistance inherent in the contracting muscles; and (6) the airway 
resistance. The laboured breathing of the asthmatic is an example of the added 
muscular effort necessary to achieve adequate lung inflation when airway 
resistance is high, owing to narrowing of the tubes of the airways. 

Studies of the pressure–volume relationship of lungs filled with salt solution or 
air have shown that the pressure required to inflate the lungs to a given volume is 
less when the lungs are filled with liquid than when they are filled with air. In the 
case of the latter, the pressure–volume relationship represents the combined 
effects of the elastic properties of the lung wall plus the surface tension of the film, 
or surface coating, lining the lungs. Surface tension is the property, resulting 
from molecular forces, that exists in the surface film of all liquids and tends to 

https://www.britannica.com/science/blood-vessel
https://www.britannica.com/science/branchial-arch
https://www.britannica.com/animal/lungfish
https://www.britannica.com/science/elasticity-physics
https://www.britannica.com/science/muscle
https://www.merriam-webster.com/dictionary/inherent
https://www.britannica.com/science/breathing
https://www.britannica.com/science/asthma
https://www.britannica.com/science/surface-tension
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contract the volume into a form with the least surface area; the particles in the 
surface are inwardly attracted, thus resulting in tension. Surface tension is nearly 
zero in the fluid-filled lung. 

The alveoli of the lungs are elastic bodies of nonuniform size. If their surfaces had 
a uniform surface tension, small alveoli would tend to collapse into large ones. 
The result in the lungs would be an unstable condition in which some alveoli 
would collapse and others would over expand. This does not normally occur in 
the lung because of the properties of its surface coating (surfactant), a complex 
substance composed of lipid and protein. Surfactant causes the surface tension to 
change in a nonlinear way with changes in surface area. As a result, when the 
lungs fill with air, the surface tensions of the inflated alveoli are less than those of 
the relatively undistended alveoli. This results in a stabilization of alveoli of 
differing sizes and prevents the emptying of small alveoli into larger ones. It has 
been suggested that compression wrinkles of the surface coating and attractive 
forces between adjacent wrinkles inhibit expansion. Surfactants have been 
reported to be present in the lungs of birds, reptiles, and amphibians. 
 
 

4-11Training Activities 

You may be requested to write a Report/Article on or more of the following: 

-    Converting units. 

- Dimensional Analysis. 

- Origen of surface tension. 

- Improvement of the properties of solids. 

- Elasticity. 

- Applications of the surface tension. 

- Fluid Mechanics. 

 

 

https://www.britannica.com/science/surfactant
https://www.merriam-webster.com/dictionary/adjacent
https://www.merriam-webster.com/dictionary/inhibit
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EXAMPLE - 1 

Let 2 .4×10−4 J of work is done to increase the area of a film of soap bubble from 50 cm2 
to 100 cm2. Calculate the value of surface tension of soap solution. 

Solution: 

A soap bubble has two free surfaces, therefore increase in surface area 
∆A = A2−A1 = 2(100-50) × 10-4m2 = 100 × 10-4m2. 

Since, work done W = T ×ΔA ⇒T = 

 

EXAMPLE -2  

If excess pressure is balanced by a column of oil (with specific gravity 0.8) 4 mm high, 
where R = 2.0 cm, find the surface tension of the soap bubble. 

Solution 

The excess of pressure inside the soap bubble is 

 

T = 15.68 ×10− 2 N m−1
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EXAMPLE -3 

Water rises in a capillary tube to a height of 2.0cm. How much will the water rise 
through another capillary tube whose radius is one-third of the first tube? 

Solution 

we have 

h ∝ 1/r ⇒hr =constant 

Consider two capillary tubes with radius r1 and r2 which on placing in a liquid, capillary 
rises to height h1 and h2, respectively. Then, 

 

  

EXAMPLE -4  

Mercury has an angle of contact equal to 140° with soda lime glass. A narrow tube of 
radius 2 mm, made of this glass is dipped in a trough containing mercury. By what 
amount does the mercury dip down in the tube relative to the liquid surface outside?. 
Surface tension of mercury T=0.456 N m-1; Density of mercury ρ = 13.6 × 103 kg m-3

 

Solution 

Capillary descent, 
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where, negative sign indicates that there is fall of mercury (mercury is depressed) in 
glass tube. 
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