
i Dr. Hazem Falah Sakeek  

 

 

 

 

 

 

 

 

LECTURES IN 
 

 

Electrostatic 
Principles and Applications 

 

 اعداد
 

سالم محمد دكتور/ أبوالوفا أبوالمعارف  

 كلية العلوم

قسم الفيزياء     

 

 العام الجامعي

0202/0200 

 



ii www.hazemsakeek.com  

Lecture in General Physics 
First Edition, 2001. 

All Rights Reserved. No part of this book may be reproduced, stored in a retrieval 

system, or transmitted, in any form or by any means, electronic, mechanical, 

photocopying, recording or otherwise, without the prior permission of the 

publisher. 

 كعاكبا ءنازكفنا فن ارت كحاض
 2001. ،كنولأا بعبطكا

ـزن كخ مئظـل أي فن للزخ أو ب،كقبئا ذام ازء تأ نك زءت أي اعطا وحكسك رغن .بوظكثف اعطكا وقثق تكنع
 أو بطــككغل طئار ــش أو بــلنروكقبإ ــتقئل ــواءس نكبــسو بــاأن أو بــمنئ بــنأ نــعك لــلقك أو ،تئعمئربــسوا تئــكوككعكا

 .اعطكا قث بصئث نك قبئان ذناإ لاإ مئرغن أو  بستن أو ئسبلسئخًا أو ،كنقئلنقنب
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 بــــــــكدككقا
ب سان عء ولأشنئود اتوقنفنب ن ل عءنبسئن لإلسئرع اشرض لأاث طكخكنقب عكن سة الشأذ كل
كعقل ا العكب هللا مكبعم ننذكا ركاشا دىك كنبوكفضا انعبطكا فعلدا نقئ لؤكبسئا ذام .مئودتو
وى قود توكن إانعب طكر امزو ظوانعن فل فإلل قئوخم وندكقن الإلسئاتمل ب اسان كقو .ركبفقنوا
 تلاقبشئفئوا تئظككلاثا نك دنزك كع نكقو .اقئئل نع كبوككسئا لمئأ ئلئظ مئدفعا ،كبوكتم قبرخئ

 ئبلطلشئ نان طارب بطاار كب نلنواق بثقكمئ انعبطكا أن أدرك رلاابقئوا ارع لاخبا كنإ كثئتبا فعودا
 مبمب كبنا ومكعكا نك وم ءنئزكفنا معكو .واءس دث عكن كثنا مكعئكوا دكتئكا مائكعئك علاقبلو نقإلسئ

 "كعئكبا ءنئزكفنا فن ارت كثئض" بقبئ ازء تأ فنو .نبركاشا كبدكخ مئربسخنو نلنواكقا لذسب مار دا
 .كتئكعنبا ثكبرككا فن بئكطكا سمئدرن كبنا ءنئزكفنا معك نك سئسنئًأ زءاً ت لوسلبلئ

 كةئلنا زءكتا رحش لونبلئ كعئكبا ءنئزكفنا فن ارت كثئض بقبئ نك كسئقلبا انبركقما دئكائ
 عكن زقنركبا مبو .ككعلنا وحض و رةكعائا كبوسم تعئوضوككا رضع فن تعنار دقو .انقئبمئطبو

 فصل قل لمئنب فنو وع،ضوككا ككذ عكن ضنثوكبا نك دنزكك وعضوك قل داع لأكةكبا نك دندكعا ثل
 لمئنب فن ككسئئلا كنإ ائلإضئفب ذام ،كفصلا ككذ نطبغ كبنا عبوككبلا ككسئئلا نك دندكعا ثل مب

 لوكفصا فن صئًوخصو انبركعا ككغبا عكن دلاعبكئا مب .سبلار د خلال كنثكمئ بئكطكك فصل قل
 نك دةكلاسبفئو لأكةكبا لوثك عكن قكبعكنا فن ككذقو ضنعواككا ضاع ضنثوب فن كنولأا اعبرلأا
 :كبئكنبا طواتكخا عائبائ نلصث بكقبئا ذام

 ودتوككا كثلا كنإ ظرائكل لاسبعئلبا دون بكقبئا فن كبوككثكا لأكةكبا ثل لوثئ. 
 داً تن لؤاكسا مفم نعطبسب ثبن ارت ك دةع لوككثكا كككةئل لؤاكسا صنغب رأقا. 
 لؤاكسا نك وبكطككا مة نكو تنئطككعا ددث. 
 نلنواكقوا تنئطككعا وءض عكن وبكطككا ككذ دنتئإ كنإ كصكوسب كبنا نقبطركا ددث. 
 كئئطخأ نك داً كسبفن بكقبئا فن ودتوككا كثلا كع كثك رنقئ. 
م ككفئمنا رضكغ كلمئ كنولأا كخكسبا لوكفصا تخصص ،لوفص ةكئلنب عكن بكقبئا وينثب

 خلال نكو انركقما دكتموا انركقما ككتئلوا انبركقما وىكقا من كبنوا كسئقلبا انبرككقم لأسئسنبا
 ككتئلا بثسئو تكشثلئا نان كبدككبائا انبركقما وىكقا دنتئإ نك نسلبكق وستئ ونقئلو ومكوق ونقئل
 ).كبصل أو كلفصل نعوزب ذات ءًً  واس( تكشثلئا نك عبوكتك أو شثلب نك كلئبتا انركقما

 ائئنركقما فككقةا كةل كسئقلبا انبركقما عكن دةككعبكا تانقئطككب كائقنبا كةلاةبا لوكفصات خصصو
 .رككسبكا ركبنئار ئودوا

 مفم عكن منعنلم كئ ضعواككبا كعكلا ذام خلال نك نسنداركا لأالئئلئ تكدق دق ونقأ أن كلآ
 .فبرككعا روعف نك رعكفا ذام بسبنعئوا

 دكقصا ارء و نك اللهوا
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We have all seen the strange device, known as a 

Van De Graaff Generator, that makes your hair 

stand on end. The device looks like a big 

aluminum ball mounted on a pedestal, and has 

the effect pictured on the right. Have you ever 

wondered what this device is, how it works, why 

it was invented, Surely it wasn't invented to make 

children's hair stand on end... Or have you ever 

shuffled your feet across the carpet on a dry 

winter day and gotten the shock of your life when 

you touched something metal? Have you ever 

wondered about static electricity and static cling? 

If any of these questions have ever crossed your 

mind, then here we will be amazingly interesting 

as we discuss Van de Graaff generators and static 

electricity in general. 
 

 

 

 

1.1 Understanding Static Electricity 

To understand the Van de Graaff generator and how it works, you need to 

understand static electricity. Almost all of us are familiar with static 

electricity because we can see and feel it in the winter. On dry winter days, 

static electricity can build up in our bodies and cause a spark to jump from 

our bodies to pieces of metal or other people's bodies. We can see, feel and 

hear the sound of the spark when it jumps. 

In science class you may have also done some experiments with static 

electricity. For example, if you rub a glass rod with a silk cloth or if you rub 

a piece of amber with wool, the glass and amber will develop a static charge 

that can attract small bits of paper or plastic. 

To understand what is happening when your body or a glass rod develops a 

static charge, you need to think about the atoms that make up everything we 

can see. All matter is made up of atoms, which are themselves made up of 

charged particles. Atoms have a nucleus consisting of neutrons and protons. 

They also have a surrounding "shell" which is made up electrons. Typically 

matter is neutrally charged, meaning that the number of electrons and 

protons are the same. If an atom has more electrons than protons, it is 

negatively charged. Likewise, if it has more protons than electrons, it is 
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positively charged. Some atoms hold on to their electrons more tightly than 

others do. How strongly matter holds on to its electrons determines its place 

in the Triboelectric Series. If a material is more apt to give up electrons 

when in contact with another material, it is more positive on the 

Triboelectric Series. If a material is more to "capture" electrons when in 

contact with another material, it is more negative on the Triboelectric 

Series. 

The following table shows you the Triboelectric Series for many materials 

you find around the house. Positive items in the series are at the top, and 

negative items are at the bottom: 

 Human Hands (usually too moist though) (very positive) 

 Rabbit Fur 

 Glass 

 Human Hair 

 Nylon 

 Wool 

 Fur 

 Lead 

 Silk 

 Aluminum 

 Paper 

 Cotton 

 Steel (neutral) 

 Wood 

 Amber 

 Hard Rubber 

 Nickel, Copper 

 Brass, Silver 

 Gold, Platinum 

 Polyester 

 Styrene (Styrofoam) 

 Saran Wrap 

 Polyurethane 

 Polyethylene (like scotch tape) 

 Polypropylene 

 Vinyl (PVC) 

 Silicon 

 Teflon (very negative) 

 
 

The relative position of two substances in the Triboelectric series tells you 

how they will act when brought into contact. Glass rubbed by silk causes a 

charge separation because they are several positions apart in the table. The 
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same applies for amber and wool. The farther the separation in the table, the 

greater the effect. 
 

When two non-conducting materials come into contact with each other, a 

chemical bond, known as adhesion, is formed between the two materials. 

Depending on the triboelectric properties of the materials, one material may 

"capture" some of the electrons from the other material. If the two materials 

are now separated from each other, a charge imbalance will occur. The 

material that captured the electron is now negatively charged and the 

material that lost an electron is now positively charged. This charge 

imbalance is where "static electricity" comes from. The term "static" 

electricity is deceptive, because it implies "no motion", when in reality it is 

very common and necessary for charge imbalances to flow. The spark you 

feel when you touch a doorknob is an example of such flow. 
 

You may wonder why you don't 

see sparks every time you lift a 

piece of paper from your desk. 

The amount of charge is 

dependent on the materials 

involved and the amount of 

surface area that is connecting 

them. Many surfaces, when 

viewed with a magnifying device, 

appear rough or jagged. If these 

surfaces were flattened to allow 

for more surface contact to occur, 

the charge (voltage) would most definitely increase. Another important 

factor in electrostatics is humidity. If it is very humid, the charge imbalance 

will not remain for a useful amount of time. Remember that humidity is the 

measure of moisture in the air. If the humidity is high, the moisture coats the 

surface of the material providing a low-resistance path for electron flow. 

This path allows the charges to "recombine" and thus neutralize the charge 

imbalance. Likewise, if it is very dry, a charge can build up to extraordinary 

levels, up to tens of thousands of volts! 
 

Think about the shock you get on a dry winter day. Depending on the type 

of sole your shoes have and the material of the floor you walk on, you can 

build up enough voltage to cause the charge to jump to the doorknob, thus 

leaving you neutral. You may remember the old "Static Cling" commercial. 

Clothes in the dryer build up an electrostatic charge. The dryer provides a 
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low moisture environment that rotates, allowing the clothes to continually 

contact and separate from each other. The charge can easily be high enough 

to cause the material to attract and "stick" to oppositely charged surfaces 

(your body or other clothes in this case). One method you could use to 

remove the "static" would be to lightly mist the clothes with some water. 

Here again, the water allows the charge to leak away, thus leaving the 

material neutral. 
 

It should be noted that when dirt is in the air, the air will break down much 

more easily in an electric field. This means that the dirt allows the air to 

become ionized more easily. Ionized air is 

actually air that has been stripped of its 

electrons. When this occurs, it is said to be 

plasma, which is a pretty good conductor. 

Generally speaking, adding impurities to air 

improves its conductivity. You should now 

realize that having impurities in the air has 

the same effect as having moisture in the air. 

Neither condition is at all desirable for 

electrostatics. The presence of these 

impurities in the air, usually means that they 

are also on the materials you are using. The 

air conditions are a good gauge for your 

material conditions, the materials will generally break down like air, only 

much sooner. 
 

[Note: Do not make the mistake of thinking that electrostatic charges are 

caused by friction. Many assume this to be true. Rubbing a balloon on your 

head or dragging your feet on the carpet will build up a charge. 

Electrostatics and friction are related in that they both are products of 

adhesion as discussed above. Rubbing materials together can increase the 

electrostatic charge because more surface area is being contacted, but 

friction itself has nothing to do with the electrostatic charge] 

 

 

For further information see appendix A (Understanding the Van de Graaff 

generator) 
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1.2 Properties of electrostatic 

1.2.1 Electric charge 

If a rod of ebonite is rubbed with fur, or a fountain pen with a coat-sleeve, it 

gains the power to attract light bodies, such as pieces of paper or tin foil. 

The discovery that a body could be made attractive by rubbing is attributed 

to Thales (640-548 B.C). He seems to have been led to it through the 

Greeks’ practice of spinning silk with an amber spindle; the rubbing of the 

spindle cause the silk to be attracted to it. The Greek world of amber is 

electron, and a body made attractive by rubbing is said to be electrified or 

charged. The branch of electricity is called Electrostatics. 

 

 
 

1.2.2 Conductor and insulator 

ثنل قئك ئكعئكك  16 ثبن ئكقرل Thales ئكقمرانب ئكسئقلب اعدل كل ئكبقدك ئكككثمظ فن كتئل قكن
Gilbert ئككعئدل كل لمع أن شثل كل نبكقل كك مكقلل ،ئكثرنر امئسطب ئكزتئت كل سئف اشثل 

 ثمئكن اعد مكقل .لكسبثن ئلأتسئك كل ئكلمع مذئ شثل أل أسبلبت ماذكق ،ئكثدند أم ئكلثئس لكة
 ئكثرنر أم ئكصمف امئسطب شثلل نكقل ئكثدند مأل خئطئ ئسبلبئتل أل ةاب (1700) عئك 100
 .ئكالاسبنق كل اقطعب ككسمقئ نقمل أل اشرط مكقل

ؤكن  ةك ئلإلسئل ند ؤكن ئكثدند كل لبلبق أل نكقل ئككقبساب ئكشثلب أل متد بتئرا عدب ماعد
 ئكالاسبنق امئسطب ئلإلسئل ند عل ئكثدند لعز ؤذئ ؤلا بكئكئ مائكبئكن بأةنرمئ سمف نخبفن ئلأرض
 ئككمصلاب من أقسئك ةلاةب ؤكن ئكقمرانب خمئصمئ ثسا قسكب ئككمئد فإل مائكبئكن .ئكدكق أةلئء
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 لئكعمئز فن انلكئ شئغر كمتمد ئكثرقب ثرب ئككمصلاب فن ئكقمرانب ئكشثلب بقمل عئكب اصفب
 .كقندب ئكشثلب فإل

 كسبمنئب عكن كمزعب طئقئب كمئ ئلإكقبرملئب solid ئكصكاب ئككمئد فن ألل 1.1 لئكشق فن نبضث
 Bands Energy بسكن طئقب ثزك ؤكن كقسكب ئككسبمنئب مذل level .Energy كثددب طئقب

مملئق لمعئل كل ثزك ئكطئقب  .ئككسئفئب انل ثزك ئكطئقب لا نكقل أل نمتد فنمئ أن ؤكقبرملئب
 Band Conduction لئكبمصن ثزكب مئلأخرم Band Valence ئكبقئفؤ اثزكب نعرف أثدمكئ

عكن  ئكقمرائئنل مبعبكد خئصنب ئكبمصن Eg Gap .Energy ـا منسكن ئكفرئغ انل ئكثزكبنل
مائكبئكن فإل ئككئدب ئكبن بقمل امذل ، ثبن ببكقل ئكشثلب كل ئكثرقبل ئكشمئغر فن ثزكب ئكبمصن

ل ثزكب قئكالاسبنق أم ئكخشا فإلل بقمل ئكخئصنب بقمل كمصكب ككقمرائء انلكئ فن ئككمئد ئكعمئز
 ؤكن نثبئتل ئكبمصن ؤكن ثزكب ئكبقئفؤ أن ؤكقبرمل كل ثزكبل مكقن نلبق، كككمءب بكئكئل ئكبمصن
 .كل ئكطئقب مذل بمفر كعدك عئزلاً سنقمل مائكبئكن Eg Gap Energy عكن نبغكا ثبن قانرب طئقب
 لئكبمصن ثزكب بقمل مفنمئ semiconductor بسكنل مئكعمئز ئككمصلاب انل مسط ثئكب بمتد

 كل كئ لمعئ قرناب ئكبقئفؤ ثزكب نسبطنع مائكبئكن بكئكئ ئككككمءب ؤكقبرمل امئسطب ئكقفز كل
 .لئكبمصن ثزكب ؤكن كنقفز energy thermal Absorbing ثرئرنب طئقب ئقبسئا

 
 

1.2.3 Positive and negative charge 

 سئف دكق طرنف عل فكةلاً .ئكشثلب كل كخبكفنل لمعنل ملئق أل ؤةائب نكقل ئكبتئرا امئسطب
 دكقل بك كشئامئ آخر سئقئً قرالئ فإذئ .لعئز اخنط مبعكنقمئ ئكثرنر كل قطعب امئسطب ئكزتئت كل

 كل أنضئ ائكثرنر ئكسئف فن نبثرق سمف فإلل ئككعكف ئبتئل ،كعئقس أل أن ئكسئقنل نبلئفرئل
.Repel نبثرق سمف ئككعكف ئكسئف فإل ئكصمف امئسطب دكقل بك ئكالاسبنق كل سئف مابقرنا 

 Attract. نبتئذائل ألمكئ أن ئكالاسبنق ئكسئف ائبتئل

 

Like charge repel one another and unlike charges attract one another as 

shown in figure 1.1 where a suspended rubber rod is negatively charged is 

attracted to the glass rod. But another negatively charged rubber rod will 

repel the suspended rubber rod. 
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Figure 1.2 

Unlike charges attract one another and like charge repel one another 
 

 

 ئلأكرنقن ئكعئكك سكن مقد Franklin ئكالاسبنق عكن ببقمل ئكبن ئكشثلب Negative سئكاب
 .ببتئذا ئككخبكفب مئكشثلئب ببلئفر ئككبشئامب ئكشثلئب أل مئسبلبت

 
 
 

1.2.4 Charge is conserved 

 ألمئ من كككمئد ئكثدنةب ئكلظرب ئكعئدنب ئكثئكب فن كبعئدكب Normal. ئككمئد مذل بثبمن عكن
 ئكثئكب مم قكئ ،)ئكشثل( ئكدكق عككنب أةلئء ئلأخر ؤكن مئثد كل لبلبق ئكشثلب كل كبسئمنب قكنئب

 دكق فن ئكزتئت ،ائكثرنر ئكزتئت فإل شثلب نقبسا كمتاب ئكثرنر كل انلكئ نصاث ئكثرنر
 ائكثفئظ نعرف كئ ممذئ .قمرانًئ لكبعئد كعئً مئكثرنر ئكزتئت كل قلاً مكقل ،سئكاب اشثلب كشثملئً

.Conservation of electric charge عكن ئكشثلب 
 
 

1.2.5 Charge and Matter 

 قمم كادئنئ من كككمئد عئكب اصفب أم ئكتزئن أم ئكذرم ئكبرقنا عل ئككسؤمكب ئككبائدكب ئكقمم
 ،قمرانًئ ئككشثملب ئكتسنكئب انل قمرائئنب من ئكتسنكئب ممذل مئكلنمبرملئب ئكارمبملئب

 .مئلإكقبرملئب

Rubber Rubber 

 

 

 
Glass 

 
Rubber 
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Particle 

  Proton  

Neutron 

  Electron  

Symbol 

p 

n 

e 

Charge Mass 

  1.610 C   1.6710  

0 27
K 

  -1.610 C   1.6710  

 لعكك مقكئ فإل ئلإكقبرمل شثلبل ,سئكاب مائكبئكن ئكلمئب كقملئب كع نبتئذا فإلل ممذل ،ئككمتاب
 من ئكقمم Atom. ئكذرب بقمنل عل ئككسؤمكب أل مقكئ ئكقمم ئكبن اعضمئ كع ئكذرئب براط

 ئكاعض كقملب ئكتزنئئب أنضئ من قمرانب بتئذا قمم ؤكن ائلإضئفب ئكقمم ئكبن براط انل
 .مئكسئئكب ئكصكاب ئككمئد كبقمل ئكتزنئئب

 :مئكقبكب ئكشثلب قنكب ثنة كل ككذرب ئلأسئسنب ئككقملئب خصئئص نمضث ئكبئكن (1) لئكتدم
 

 

Table 1.1 

 

 ئكاعض اعضمئ كع ئكلمئب كقملئب براط ئكبن ئكقمم كل آخر لمعئً ملئق أل ملئ للمل أل منتا
 ،ئكلممنب ئكقمم ممن ئكلمئب كبفبب مكملامئ انل ئكبتئذا قمم امئسطب ئلإكقبرمل .مئكارمبمل

 ئكلممنب ئكفنزنئء كقرر فن ئكقمم مذل مبدرس
1.2.6 Charge is Quantized 

 ئكعئكك عمد فن Franklin's ئلاعبقئد قئل األ ئكسئئد ئكقمرانب ئكشثلب شنء لقئكسمئئ لكبص
 .كةلا اعد مكقل ئقبشئف غنرب كككمئد ئكذرنب ئكلظرنب ئكلظرب مذل بكئكًئ أل بانل ثنة ئكشثلب
 عل عائرب ئكقمرانب ئكسئكاب ئلإكقبرملئب كل صثنث عدد ئكارمبملئب أم مائكبئكن ،ئككمتاب فإل
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1.6x10. مقنكبمئ كفرد ؤكقبرمل شثلب من عكنمئ لئكثصم نكقل شثلبأصغر 
-19

c ئكدكق معككنب 
 مبتراب .ئكسئف ؤكن ئكسئكاب كل ئكشثلب كعدد صثنث لعل ئلبقئ من عائرب ئكزتئت كل سئف كشثل

 .ئكخئصنب مذل بةاب كنكنقئل
 
 

 
 
 
 

 

 
 

 

 
 
 

 مولوآ نقانو
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Coulomb’s law 

 
2.1 Coulomb’s Law 

 
2.2 Calculation of the electric force 

 
2.2.1 Electric force between two electric charges 

2.2.2 Electric force between more than two electric charges 

 
2.3 Problems 

 

 

 

 

 

 
 

Coulomb’s law 

 قمكمك قالمل
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ئكقمم ئكلممنب مئكقمم  :ئكقمم ئككمجمدب فن ئكطبنعب من لةنجب لأربع قمم أساسنب من
مفن مذئ ئكجزء كل ئككقرر  .ئكقمربنب مئكقمم ئككغلاطنسنب مقمم ئكجاذبنب ئلأرضنب

 ةربط ئكةن من ئكقمربنب ئكقمب أل حنة.مخمئصما ئكقمربنب ئكقمم عكن لرقز سمف
 .مذئ بالإضافب إكن أمكنب ئكقمرباء فن حناةلا ئكعككنب، ئكلمئب بالإكقةرملاب كةقمل ئكذرب

 بنل ئككةبادكب ئكقمربنب ئكقمم نحسا قالمل لأم مم لئكفص مذئ كمضمع قمكمك مقالمل
 .ئكقمربنب ئكشحلاب
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2.1 Coulomb’s Law 

In 1785, Coulomb established the fundamental law of 

electric force between two stationary, charged 

particles. Experiments show that an electric force has 

the following properties: 

(1) The force is inversely proportional to the square 

of separation, r
2
, between the two charged particles. 

F  
1
 

r 2 

 

(2.1)
 

(2) The force is proportional to the product of charge          Figure 2.1 

q1 and the charge q2 on the particles. 

F  q1 q2 (2.2) 

(3) The force is attractive if the charges are of opposite sign and repulsive 

if the charges have the same sign. 

We can conclude that 

F  
q1 q2 

r 2 

 

 F  K 
q1 q2 

 

r 2 

 

(2.3) 

where K is the coulomb constant = 9  10
9
 N.m

2
/C

2
. 

The above equation is called Coulomb’s law, which is used to calculate the 

force between electric charges. In that equation F is measured in Newton 

(N), q is measured in unit of coulomb (C) and r in meter (m). 

The constant K can be written as 

K   
1 

4

where  is known as the Permittivity constant of free space. 

 = 8.85  10
-12

 C
2
/N.m

2
 

 

K   
1 

4
 

1 

4  8.85 10 

 
12

 
 9 10

9
N.m

2
 / C 

2
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2.2 Calculation of the electric force 

كعدب  كعنل بمزنع بأةنر كل أم أخرم شثلب عكن شثلب بأةنر كل لئبتب بقمل ئكقمرانب ئكقمم
 ئكشثلب بكق عكن ئككؤةرب ئكقمرانب ئكقمب مكثسئا ل،ئككةئل سان عكن q1 كعنلب عكن شثلب شثلئب

 :-ئكبئكنب ئكخطمئب لباع
 

2.2.1 Electric force between two electric charges 

 ئكثئكب .ئلأخرم عكن كشثلب ئكقمرانب ئكقمم بأةنر ثسئا مم مئككرئد فقط شثلبنل متمد ثئكبفن 
 قمب من ئكقمب ئككبائدكب سئكاب ثنة أم كمتاب شثلئب كبشئامب ؤكئ لبكة Figure (a)2.2لئكشق فن

.Repulsive force بلئفر 
 

q
1 q

2 
q1 q2 

  
 

Figure 2.2(a) Figure 2.2(b) 

 

ئكشثلب  عكن ئككؤةرب ئكقمب فإل
 قئلمل كل ئكقمب كقدئر مبثسا

 q2. مئكةئلنب q1 ئلأمكن ئكشثلب لسكن ئككبائدكب ئكقمب كقدئر كثسئا

q1 ئكشثلب لبنتب q2 بقبا F12 ئكبلئفر عل ئبتئل فن مبقمل .q2 

 :قئكبئكن قمكمك
 

F12 
 K 

q1 q2 

r 2 

 F21 ًكقدئرئ 

 

F12  F21 مئبتئمئ 

 .ئلابتئل فن مكبعئقسبئل ئككقدئر فن كبسئمنبئل ئكقمبنل أل أن
 

 قمب ئككبائدكب ئكقمب ثنة ،كخبكفبنل شثلبنل لنكة مئكذن Figure (b)2.2 لئكشق فن لئكثئ قذكق
 كبسئمنبنل ئكقمبئل مبقمل ئكسئاقب ئكخطمئب لفس لباع أنضئ مملئ force .Attractive بتئذا

 
F12  F21 

 .أنضئً ئلابتئل فن مكبعئقسبنل ئككقدئر فن

 

F
12 

  
F

21 
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q3 

q4 

 

 

q5 

 

 

 

 

 q1 

F
15 

F
12 

 
14 

 
Example 2.1 

Calculate the value of two equal charges if they repel one another with 

a force of 0.1N when situated 50cm apart in a vacuum. 
 

 

Solution 

 

 
 

Since q1=q2 

 

 
F  K 

 
 
q1 q2 

 

r 2 

 

0.1 
9 10

9
  q 

2
 

 
 

(0.5) 
2
 

q = 1.7x10
-6

C = 1.7C 

 0.1N. بسئمن ئككبائدكب ئكقمب لبتع ئكبن ئكشثلب قنكب من ممذل

 
2.2.2 Electric force between more than two electric charges 

 ئكقمم ثسئا مئككرئد شثلبنل كل أقةر كع لئكبعئك ثئكب فن
 ئكقكنب ئكقمرانب The resultant electric forces ئككؤةرب

 من ئكقمب مذل فإل Figure 2.3 لئكشق فن قكئ q1 شثلب عكن
F1 ئكشثلب كع ئككبائدكب ئكقمم كتكنع ئلابتئمن ئكتكع ممن                  q 

q1 أل أن 
r 

F1  F12  F13  F14  F15 (2.4) 

 

 :-ئكةاكنب ئكخطمئب لةبع F1 مئةجال قنكب مكحساا
 

Figure 2.3 q1 ئكشثلب كع ئككبائدكب ئكقمب كبتمئب ثدد 1) لئكشق عكن 
 ثسا مذكق ؤشئرب أل لعبار مككسممكب ئكشثلئب q1 ئكشثلب

 .ةئابب ئكشثلئب مائقن ككثرقب قئاكب

 ئكشثلب عل اعندئ ببثرق q1 ؤذئً .كمتابئل ئكشثلبنل أل ثنة أملا q1&q2 ئكشثلبنل لأخذ 2)
q2 ئككبتلانلمكئ منقمل  لمعكن ئكبدئد ئكخط ئكمئص F12 عكن ئكشثلب ئككؤةرب ئبتئل ئكقمب مم q1 
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(Fy)2 

 .ئكقمب كقدئر كع نبلئسا ئككبتل لمطم q2 ئكشثلب لبنتب ملثدد q1&q3 ئكشثلبنل لأخذ لمائككة
 .ممقذئ F14 لثدد ةك F13 ئكقمب ئبتئل

 ئككؤةرب ئكقمم لثسا لأللئ q4 & q3 & q2 ئكشثلئب انل ئككبائدكب ئكقمرانب ئكقمم للمك ملئ 3)
 q1. عكن

 

F12  K 

F13  K 

F14  K 

 :-قئكبئكن قمكمك قئلمل فن لعمض ثدل عكن لق ئكقمب كبتمئب كقدئر كثسئا 4)
q1 q2 

r 2 

q1 q3 

r 2 

q1 q4 

r 2 

 من ئكقمم مذل كثصكب بقمل 5) لئكشق عكن مئضث مم قكئ مكقل F1 فإل ئكقمم لعك خط
 نكن قكئ كرقابنل ؤكن ئككبتمئب لبثكن طرنقب لسبخدك مكذكق كخبكف

 
F1x = F12x + F13x + F14x 

F1y = F12y + F13y + F14y 

 

F1  (2.5) 

 
 

 ئكقمم كثصكب كقدئر 


 مئبتئممئ 

  tan

 
1
 
Fy

 

Fx 

 

(2.6) 

 

 

 ساف كئ عكن بطانقًئ بمضث ئكبئكنب مئلأكةكب ،كبتمب قكنب ئكقمرانب ئكقمب لأل ئكخطمئب مذل لباع
 .ذقرل

http://www.hazemsakeek.com/


Lectures in General Physics 

Dr. Hazem Falah Sakeek 

 

 

 

 

 
 
 

Example 2.2 

In figure 2.4, two equal positive charges q=2x10
-6

C interact with a third 

charge Q=4x10
-6

C. Find the magnitude and direction of the resultant 

force on Q 

q1 

 

 

 

 

 

 

 

 

 

 

q2                                                                                Figure 2.4 

Solution 

 ئكقمب كقدئر كثسئا قمكمك قئلمل لطاف Q ئكشثلب عكن ئككؤةرب ئكقمرانب ئكقمم كثصكب لإنتئد
 Q. ئكشثلب عكن شثلب لق امئ بؤةر ئكبن q1&q2 ئكشثلبنل أل ماكئ لفس مباعدئل كبسئمنبئل

 ئكقمب مقنكب كقدئر فن كبسئمنبئل ئكقمبنل فإل Q ئكشثلب عل ئككسئفب
qQ 9 (4  10 

6
 )(2  10 

6
 ) 

FQq 1   K 
r 

2
  9  10 

(0.5) 
2
 

 0.29 N  FQq 2 

 

 
Fx  F cos 


 0.29

 0.4  
 0.23 N 0.5 

 :نلبت كرقابنل ؤكن ئكقمب كبتل لابثكن

 

Fy   F sin   0.29
 0.3  

 0.17 N 0.5 
 

 للاثظ ئلابتئمن لمائكبثكن FQq2 ممن Qم q2 ئكشثلبنل انل ئككبائدكب ئكقمب ؤنتئد نكقل لمائككة
 .ئلابتئل فن مكبعئقسبئل ئككقدئر فن كبسئمنبئل y كرقابنأل 

0.5m 
Fy 

0.3m FQq2 

0.4m 
Q 

Fx 

0.3m 

0.5m Fy 
FQq1 
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 Fx 

 Fy 

 2  0.23  0.46 N 

 0 

 .ئككمتا x كثمر ئبتئل فن مئبتئممئ 0.46N من ئككثصكب ئكقمب كقدئر فإل مامذئ
 

 
Example 2.3 

In figure 2.5 what is the resultant force on the charge in the lower left 

corner of the square? Assume that q=110
-7

 C and a = 5cm 
 

q - q 
 

 
 

 

 

2 q 
 

F
12 

F
14 

- 2 q 

 

Figure 2.5 

Solution 

For simplicity we number the charges as shown in figure 2.5, then we 

determine the direction of the electric forces acted on the charge in the 

lower left corner of the square q1 
r 
F1  F12  F13 14 

F  K 
2qq 

 

12 
a2 

 

F  K 
2qq 

13 
2a2 

 

F  K 
2q2q 

 

14 
a2 
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(F )2
 (F )2

   

 ملئ لاثظ أللئ أمككلئ عل ئكبعمنض ؤشئرب .ئكقمم كقدئر ثسئا علد ئكشثلئب فن مائكبعمنض
 

F12 = 0.072 N, 

F13 = 0.036 N, 

F14 = 0.144 N 

 :أل نلبت ئككعئدلاب

مكذكق كثسئا ، ئكقمم كخبكفل لاثظ ملئ أللئ لا لسبطنع تكع ئكقمم ئكةلاة كائشرب لأل خط عك
 كبتل أن ئككثمرنل مذنل عكن بقع لا ئكبن ئكقمم لملثك x,y كبعئكدنل كثمرنل لفرض ئككثصكب

 كنصاث F13 ئكقمب
F13x = F13 sin 45 = 0.025 N & 

F13y = F13 cos 45 = 0.025 N 

 
Fx = F13x + F14 = 0.025 + 0.144 = 0.169 N 

Fy = F13y - F12 = 0.025 - 0.072 = -0.047 N 

 .ئكسئكا y كثمر ئبتئل فن ئكقمب كرقاب ئبتئل أل عكن لبد ئكسئكاب ئلإشئرب
 

The resultant force equals 
q 2 3 

- q 

F1  = 0.175 N 

The direction with respect to the x-axis 

equals 1 4 

  tan

 
1
 
Fy

 

Fx 

= -15.5
2 q Fx 

Fy F 

- 2 q 
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Example 2.4 

A charge Q is fixed at each of two opposite corners of a square as shown 

in figure 2.6. A charge q is placed at each of the other two corners. (a) 

If the resultant electrical force on Q is Zero, how are Q and q related. 
 

F
13 1 

Q 

F
14 

F
12 

2 
- q 

 
a 

 

 

 

- q a Q 
4 3 

 

Figure 2.6 

Solution 

 فإلل ،ككصفر كسئمنب ئلأخرم ئكشثلئب لبنتب Q ئكشثلب عكن ئكقمرانب ئكقمم كثصكب بقمل ثبن
 ،كةلا (1) رقك Q ئكشثلب علد ئلابتئل فن مكبعئقسب ئككقدئر فن كبسئمنب ئكقمم بكق بقمل ألنتا 

Q (1) م سئكاب (4) م (2) ئكشثلبنل قكبن أل لفرض ذكق نبثقف مثبن لعنل ةك كمتاب (3) م 
 (1). ئكشثلب عكن ئككؤةرب ئكقمم

 
 

 لئكشق عكن ئكقمم ئبتئمئب لثدد (2.6). ئكقمب كبتل لبثكن اعد F13 أراعب ملئق أل للاثظ
بسئمم  كثصكبمك بقمل أل نكقل مائكبئكن ،أدلئل لئكشق فن كمضث مم قكئ، كبتمئب قمم كبعئكدب

 ئكرأسنب ئككرقائب كثصكب مقذكق صفرئً بسئمم ئلأفقنب ئككرقائب كثصكب قئلب ؤذئ صفرئً
 
 

then 

Fx = 0  F12 - F13x = 0 

 

F12 = F13 cos 45 
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2a2
 2 2 2 

2a2
 2 2 2 

 

 

F13 sinO 
 

F13 cosO Q 1 F
12 

2 
- q 

 

F
14 

a 
 

 
 

- q a Q 
4 3 

 

 
 

K 
Qq 

 K 
QQ 1 

a2 

 q = 
Q

 

Fy = 0  F13y - F14 = 0 

F13 sin 45 = F14 

Q = 2 2 q 

K 
QQ 1 

 K 
Qq 

a2 

 q = 
Q

 

 

 

 أل كلاثظب كع صفر بسئمم Q عكن ئكقمم كثصكب لبتع ئكبن q م Q انل ئكعلاقب من ممذل
 أل أن Q ؤشئرب بعئقس q ؤشئرب

Q = - 2 q 
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F31 

3 1 2 
F32 

 10cm 

 
 

Example 2.5 

Two fixed charges, 1C and -3C are separated by 10cm as shown in 

figure 2.7 (a) where may a third charge be located so that no force acts 

on it? (b) is the equilibrium stable or unstable for the third charge? 
 

Figure 2.7 

Solution 

 ئككؤةرب ئكقمرانب ئكقمم كثصكب بقمل اثنة ةئكةب شثلب مضع نكقل أنل مم لئكسؤئ كلئككطكما 
 ،صفرئً بسئمم عكنمئ أل أن بقمل ئبزئل مضع فن equilibrium. (لاثظ أل ئكشثلب لمع

 ئككؤةرب ئكقمم بقمل أل نتا فإلل مذئ نبثقف ثبن ).ئلابزئل لقطب بعننل فن نؤةر لا مكقدئرمئ
 أل نتا ئكةئكةب ئكشثلب فإل ئكشرط مذئ نبثقف مثبن .ئلابتئل فن مكبعئقسب ئككقدئر فن كبسئمنب

q3 ئلأصغر ئكشثلب كل مائكقرا ئكشثلبنل خئرت بمضع كمتاب شثلب لفرض كذكق فن قكئ. 
 .عكنمئ ئككؤةرب ئكقمم ئبتئل ملثدد ئكرسك

 

F31 = F32 

k 
q3 q1  k 

q3 q2 

2 

31 

 

110 

 
6
 

 
 

d 
2 

2 

32 

 

310 

 
6
 


(d  10)

2
 

 

 

(b) This equilibrium is unstable!! Why!! 

 d قنكب ملمتد ئككعئدكب مذل للث

 
 

r r 
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Example 2.6 

Two charges are located on the positive x-axis of a coordinate system, 

as shown in figure 2.8. Charge q1=2nC is 2cm from the origin, and 

charge q2=-3nC is 4cm from the origin. What is the total force exerted 

by these two charges on a charge q3=5nC located at the origin? 
 

F31 
q3 F32 q2 q1 

 
 

Figure 2.8 

Solution 

The total force on q3 is the vector sum of the forces due to q1 and q2 

individually. 
 

F31 
(9 10

9
 )(2 10

9
 )(5 10

9
 ) 

(0.02)
2
 

 2.25 10
4

 N 

 

F32 
(9 10

9
 )(3 10

9
 )(5 10

9
 ) 

(0.04)
2
 

 0.84 10
4

 N 

 

 مم قكئ مئبتئممئ F31 كقدئرمئ بلئفر اقمب q3 ئكشثلب عكن بؤةر فإلمئ كمتاب q1 ئكشثلب أل ثنة
 F32. كقدئرمئ بتئذا اقمب q3 ئكشثلب عكن بؤةر فإلمئ سئكاب q2 ئكشثلب أكئ ل،ئكشق فن كمضث

 :قئكبئكن ئلابتئمن ائكتكع ثسئامئ نكقل F3 ئككثصكب ئكقمب فإل مائكبئكن
 

F3  F31  F32 

4 4 4 

 F3  0.84 10  2.25 10  1.4110 N 
 

The total force is directed to the left, with magnitude 1.41x10
-4

N. 

 

                   

2cm 

4cm 
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2.3 Problems 
 

 

2.1) Two protons in a molecule are 

separated by a distance of 3.810
-
 

10
m. Find the electrostatic force 

exerted by one proton on the other. 

 

2.2) A 6.7C charge is located 5m 

from a -8.4C charge. Find the 

electrostatic force exerted by one 

on the other. 

 

2.3) Two fixed charges, +1.010
-6

C 

and -3.010
6
C, are 10cm apart. (a) 

Where may a third charge be 

located so that no force acts on it? 

(b) Is the equilibrium of this third 

charge stable or unstable? 

 
2.4) Each of two small spheres is 

charged positively, the combined 

charge being 5.010
-5

C. If each 

sphere is repelled from the other by 

a force of 1.0N when the spheres 

are 2.0m apart, how is the total 

charge distributed between the 

spheres? 

origin. Find the net force on the 

2.5C charge. 

 

2.7) A point charge q1= -4.3C is 

located on the y-axis at y=0.18m, a 

charge q2=1.6C is located at the 

origin, and a charge q3=3.7C is 

located on the x-axis at x= -0.18m. 

Find the resultant force on the 

charge q1. 

 

2.8) Three point charges of 2C, 

7C, and –4C are located at the 

corners of an equilateral triangle as 

shown in the figure 2.9. Calculate 

the net electric force on 7C 

charge. 

7C 

 

2.5) A certain charge Q is to be 

divided into two parts, q and Q-q. 

What is the relationship of Q to q if 

the two parts, placed a given 

 

2C 
 

 
Figure 2.9 

 
 4C 

distance apart, are to have a 

maximum Coulomb repulsion? 

 

2.6) A 1.3C charge is located on 

the x-axis at x=-0.5m, 3.2C charge 

is located on the x-axis at x=1.5m, 

and 2.5C charge is located at the 

2.9) Two free point charges +q and 
+4q are a distance 1cm apart. A 

third charge is so placed that the 

entire system is in equilibrium. 

Find the location, magnitude and 

sign of the third charge. Is the 

equilibrium stable? 

+ 

0.5m 

 

+ - 
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2.10) Four point charges are situated 

at the corners of a square of sides a 

as shown in the figure 2.10. Find 

the resultant force on the positive 

charge +q. 

 
- q - q 

2.13) Two similar conducting balls of 

mass m are hung from silk threads 

of length l and carry similar 

charges q as shown in the figure 

2.11. Assume that  is so small 

that tan can be replaced by sin. 

Show that 
 

 q2 l 
1 3 

x  

 2


mg 



+q a - q 

 

Figure 2.10 

 
2.11) Three point charges lie along 

the y-axis. A charge q1=-9C is at 

y=6.0m, and a charge q2=-8C is at 

y=-4.0m. Where must a third 

positive charge, q3, be placed such 

that the resultant force on it is zero? 

 

2.12) A charge q1 of +3.4C is 

located at x=+2m, y=+2m and a 

second charge q2=+2.7C is 

located at x=-4m, y=-4m. Where 

must a third charge (q3>0) be 

placed such that the resultant force 

on q3 will be zero? 

where x is the separation between 

the balls (b) If l=120cm, m=10g 

and x=5cm, what is q? 

 

 

 



L L 

 

 
+q x +q 

 

 
Figure 2.11 
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 ئكقمربن لئككجا
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Electric field 

 
3.1 The Electric Field 

 

3.2 Definition of the electric field 

 
3.3 The direction of E 

 
3.4 Calculating E due to a charged particle 

 
3.5 To find E for a group of point charge 

 

3.6 Electric field lines 
 

3.7 Motion of charge particles in a uniform electric field 
 

3.8 Solution of some selected problems 
 

3.9 The electric dipole in electric field 
 

3.10 Problems 
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ئكقمربن ئكلاشئ عل ئكشحلب أم ئكشحلاب ل كفممك ئككجال سلقمك بإدخال فن مذئ ئكفص
ئكقمربن مم ئكحنز ئككحنط باكشحلب ئكقمربنب مئكذن ةظمر فنل ةأتنر ل مئككجا، ئكقمربنب

 قمل أل حاكب فن شحلب عكن ئكقمربن لئككجا ةأتنر سلدرس قذكق  .ئكقمربنب ئكقمم
 .كةحرقب شحلب حاكب فن مقذكق صفرئً ةسامن ئلابةدئئنب ئكسرعب

 

 

 

 

 

 

 
 

Electric field 

 ئكقمربن لئككجا
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3.1 The Electric Field 

The gravitational field g at a point in space was defined to be equal to the 

gravitational force F acting on a test mass mo divided by the test mass 

g
r 
 

F 

m


(3.1) 

In the same manner, an electric field at a point in space can be defined in 

term of electric force acting on a test charge qo placed at that point. 

 

 
 

3.2 Definition of the electric field 
 

The electric field vector E at a point in space is defined as the electric force 
r 
F  acting on a positive test charge placed at that point divided by the 

magnitude of the test charge qo 

r F 
E  (3.2) 

q

The electric field has a unit of N/C 
 

qo مم قكئ E ئكقمران لئككتئ أل ملئ لاثظ ئكشثلب كل ئكلئشئ لئككتئ مكنس خئرتن لكتئ مم 
 عدك أم امتمد ئكفرئغ فن لقطب أنب علد قمران لكتئ ملئق نقمل مقد ،3.1 لئكشق فن كمضث

 ئكشثلب متمد ئكشثلب مضع مكقل qo علد qo أنب لقطب لئككتئ كثسئا مسنكب مم ئكفرئغ فن
 .عكنمئ ئككؤةرب ئكقمرانب ئكقمم لخلا كل ئكقمران

 
 
 
 

F 

q 

Figure 3.1 

qo 



Electric Field 

www.hazemsakeek.com 

 

 

If Q is +ve the electric field at point p in space is radially outward from Q as 

shown in figure 3.2(a). 

If Q is -ve the electric field at point p in space is radially inward toward Q 
as shown in figure 3.2(b). 

p 
E 

r 

E 

r p 

ل ئكشق فن قكئ ئكلقطب كل ئكخرمت ئبتئل فن كمتاب كشثلب كئ لقطب علد لئككتئ ئبتئل نقمل
3.2(a)، ئكشثلب ؤكن ئكلقطب كل لئكدخم ئبتئل فن سئكاب كشثلب كئ لقطب علد لئككتئ ئبتئل منقمل 

 (b)3.2. لئكشق فن قكئ

3.3 The direction of E 
 

 

 

 

 

 
 

Figure 3.2 (a) Figure 3.2 (b) 
 

 
 

 

 

 

 

 

3.4 Calculating E due to a charged particle 

Consider Fig. 3.2(a) above, the magnitude of force acting on qo is given by 

Coulomb’s law 
 

F   
1 

4

E  
F

 

q

E   
1 

4

Qq 

r 2 

 

 

 
Q 

r 2 

 

 

 

 

 

 
(3.3) 
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E 2  E2
   

q2 

 

+ 
- 

q4 

+ 

q1 

+ 
E2 

 

E1 

3.5 To find E for a group of point charge 

To find the magnitude and direction of the electric field due to several 

charged particles as shown in figure 3.3 use the following steps 

.كمئ ئكقمران لئككتئ ؤنتئد ئككرئد ئكشثلئب لرقك (1)
           q

 

 علد ثدل عكن شثلب لكق ئكقمران لئككتئ ئبتئل لثدد (2)
 ئككرئد ئكلقطب ؤنتئد مكبقل علدمئ لئككتئ كثصكب

 p ئكلقطب كل خئرتئً لئككتئ ئبتئل نقمل ،p ئكلقطب

 دئخلاً لئككتئ ئبتئل منقمل كمتاب ئكشثلب قئلب ؤذئ
 فن لئكثئ مم قكئ سئكاب ئكشثلب قئلب ؤذئ ئكلقطب ؤكن

 (2). رقكئكشثلب 

 لئككتئ نقمل (3) ئكقمران ئكقكن ئلابتئمن ئكتكع مم
E

4 E
3
 لئككتئ ككبتمئب 

Figure 3.3 

r 
Ep E1E2  E3  E4  ......... 

 

 
(3.4)

 ؤذئ (4) كرقابنل ؤكن كبتل لق للثك مئثد لعك خط لئككتئ كبتمئب نتكع لا قئل ئبتئل فن
 y م x كثمرن

 y. ئككثمر مكرقائب ثدل عكن x ئككثمر كرقائب لتكع (5)

Ex = E1x + E2x + E3x +E4x 

Ey = E1y + E2y + E3y +E4y 

 

  E       من p ئكلقطب علد ئكقمران لئككتئ قنكب بقمل (6)

  tan
1

 
Ey

 

Ex 

 مم لئككتئ ئبتئل نقمل (7)
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3 -8C 

50cm 

+2C 
50cm 

E3 +12C 

1 E2 p 

50cm 

E1 
2 

 
Example 3.1 

Find the electric field at point p in figure 3.4 due to the charges shown. 

 

 
Figure 3.4 

Solution 

r 
Ep E1E2  E3 

 

 

Ex = E1 - E2 = -3610
4
N/C 

Ey = E3 = 28.810
4
N/C 

 
Ep = (3610

4
)
2
+(28.810

4
)
2
 = 46.1N/C 

 = 141o
 

 

 

 

 

 

 

 

 

Figure 3.5 Shows the resultant electric field 

 

46 
28.8  = 141o 

36 p 
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Example 3.2 

Find the electric field due to electric dipole along x-axis at point p, 

which is a distance r from the origin, then assume r>>a 

The electric dipole is positive charge and negative charge of equal 

magnitude placed a distance 2a apart as shown in figure 3.6 
 

+q 1 
 

 
 

2a 
r
 

 
E2 sin  P E1 sin


-q 

2
 

E
2
 

 
Figure 3.6 

E2 cos E1 cos

1

 

Solution 

 عل ئكلئبت E2 لمئككتئ q1 ئكشثلب عل ئكلئبت E1 ئككتئكنل كثصكب مم p ئكلقطب علد ئكقكن لئككتئ
 أل أن q2 ئكشثلب

Ep E1E2 

 كبسئمنئل ئككتئلال ؤذئً كبسئمنبئل مئكشثلبئل ،ئككقدئر الفس ئكشثلبنل عل باعد p ئكلقطب أل مثنة
 ائكعلاقب بعطن لئككتئ مقنكب

 
E1 

1 

4

q 1 
 

 

a2  r 2 

 E2 

 .علدمئ لئككتئ ؤنتئد ئككرئد مئكلقطب ئكشثلب انل كئ من ئكفئصكب ئككسئفب أل ملئ لاثظ

 أعلال لئكشق فن قكئ كرقابنل ؤكن لئككتئ كبتل للثك
Ex = E1 sin - E2 sin
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a2  r2 

Ey = E1 cos + E2 cos = 2E1 cos

Ep = 2E1 cos


Ep 
1 

4

q 
 

 

a2  r 2 

cos

from the Figure 

cos  
a
 

 

Ep 
1 

4

q a 
 

 

a2  r 2 

 
Ep = 

2aq 
 

 

4 (r2  a2)
3
 
/
 
2
 

 
(3.5) 

 

 

The direction of the electric field in the -ve y-axis. 

 
The quantity 2aq is called the electric dipole momentum (P) and has a 

direction from the -ve charge to the +ve charge 
 

(b) when r>>a  
 

 E 


2aq 

4 r3 

 

 
(3.6) 

 
 

علد لقطب مئقعب عكن ئكعكمد  dipole electric ئكقمران ئكلئشئ علل نبضث ككئ ساف أل ئككتئ
مائكلساب  momentum dipole electric ئككلصف انل ئكشثلبنل نقمل ئبتئمل فن عقس ئبتئل

 نعلن ممذئ ،ئككسئفب كقعا كع عقسنئ نبلئسا لئككتئ فإل dipole electric عل ئكاعندب ككلقطب
 .فقط مئثدب شثلب ثئكب فن كلل أقار نقمل ئككسئفب كع لئككتئ بلئقصأل 

 
 

a2  r 2 
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Electric field lines due to -ve 
charge 

 

Electric field lines due to +ve 
charge 

 

Electric field lines due two 
surface charge 

 

 

 

 

 

 

 

Electric field lines due to +ve 
line charge 

3.6 Electric field lines 
The electric lines are a convenient way to visualize the electric filed 

patterns. The relation between the electric field lines and the electric 

field vector is this: 

(1) The tangent to a line of force at any point gives the direction of E at 

that point. 

(2) The lines of force are drawn so that the number of lines per unit 

cross-sectional area is proportional to the magnitude of E . 

 

Some examples of electric line of force 

 

 

Figure 3.7 shows some examples of electric line of force 
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One of the practical applications of this subject is a device called the 

(Oscilloscope) See appendix A (Cathode Ray Oscilloscope) for further 

information. 

Notice that the rule of drawing the line of force:- 

(1) The lines must begin on positive charges and terminates on negative 

charges. 

(2) The number of lines drawn is proportional to the magnitude of the 

charge. 

(3) No two electric field lines can cross. 

 

 

 

 
3.7 Motion of charge particles in a uniform electric field 

 
If we are given a field E , what forces will act on a charge placed in it? 

 

We start with special case of a point charge in uniform electric field E . 

The electric field will exert a force on a charged particle is given by 

F = qE 

The force will produce acceleration 

a = F/m 

where m is the mass of the particle. Then we can write 

F = qE = ma 

The acceleration of the particle is therefore given by 

a = qE/m (3.7) 

 

If the charge is positive, the acceleration will be in the direction of the 

electric field. If the charge is negative, the acceleration will be in the 

direction opposite the electric field. 
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كمضمع  ةغطن ئكةن لئككسائ كبعض حكملاً سلعرض ئكجزء مذئ فن

 ئكقمربنل ئككجا

 

 

 

3.8 Solution of some selected problems 
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V=0 

 

 

3.8 Solution of some selected problems 
 

 

 

Example 3.3 E
 

A positive point charge q of mass m is 

released from rest in a uniform electric 

field 
r 
E directed along the x-axis as shown 

in figure 3.8, describe its motion. 
 

 

 

 

 

Solution 

The acceleration is given by 

 

 

 
a = qE/m 

 
Figure 3.8 

 

Since the motion of the particle in one dimension, then we can apply the 

equations of kinematics in one dimension 
 

x-xo= v0t+ ½ at
2
 v = v0 + at v

2
=vo

2
 + 2a(x-xo) 

Taking xo = 0 and v0 = 0 

x = ½ at
2
 = (qE/2m) t

2
 

v = at = (qE/m) t 

v
2
 =2ax = (2qE/m)x (3.7) 

 

http://www.hazemsakeek.com/


Lectures in General Physics 

Dr. Hazem Falah Sakeek 

 

 

0 

 
 

Example 3.4 

In the above example suppose that a negative charged particle is 

projected horizontally into the uniform field with an initial velocity vo 

as shown in figure 3.9. 
 

 

 

 

 

 
X 

 

 

 

 

 

Figure 3.9 

Solution 

Since the direction of electric field E in the y direction, and the charge is 

negative, then the acceleration of charge is in the direction of -y. 

a = -qE/m 

The motion of the charge is in two dimension with constant acceleration, 

with vxo = vo & vyo = 0 

The components of velocity after time t are given by 

vx = vo =constant 

vy = at = - (qE/m) t 

The coordinate of the charge after time t are given by 

x = vot 

y = ½ at
2
 = - 1/2 (qE/m) t

2
 

Eliminating t we get 

y  
qE 

x 
2
 

2mv 
2
 

 

(3.8) 

we see that y is proportional to x
2
. Hence, the trajectory is parabola. 

 
 

 

(0,0) 
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Example 3.5 

Find the electric field due to electric dipole shown in figure 3.10 along 

x-axis at point p which is a distance r from the origin. then assume 

r>>a 
 

 

 

Solution 
+q 

Ep E1E2 

2a 

E1 = K 
(x  a)

2
 

-q 
E2 = K 

(x  a)
2
 

 
Ep = K 

q 

(x  a)
2
 
- 

q 

(x  a)
2
 

E2 

Ep = Kq 
4ax 

 
 

(x
2
  a 

2
 )

2
 E1 

When x>>a then Figure 3.10 
 

 E 
2aq 

4 x3 

 

(3.9) 

 

 

 كع عقسنئ لئككتئ نبلئسا ثنة 2a ئككسئفب كل قةنرئ أقار x بقمل علدكئ ئكلمئئنب ئلإتئاب لاثظ
 .ئككسئفب كقعا

 

 

x 

p 

q 

q 
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E
2x  E3 

 

 

 
2y 





E 

 
Example 3.6 

What is the electric field in the lower left corner of the square as shown 

in figure 3.11? Assume that q = 110
-7

C and a = 5cm. 

Solution 

First we assign number to the charges (1, 2, 3, 4) and then determine the 

direction of the electric field at the point p due to the charges. 
 

E   
1 q

 

 
  

1
 4 a2 +q 1 +q 

E2  
1 

4

1 

q 
 

 

2a2 

 
2q 

3
 4 a2 q 

 

Evaluate the value of E1, E2, & E3 

E1 = 3.610
5
 N/C, 

E2 = 1.8  10
5
 N/C, 

E2 

1 

Figure 3.11 

E3 = 7.2  10
5
 N/C 

Since the resultant electric field is the vector additions of all the fields i.e. 

r 
Ep E1E2  E3 

 

We find the vector E2 need analysis to two components  

E2x = E2 cos45  E2y = E2 sin45 

Ex = E3 - E2cos45 = 7.210
5
 - 1.8  10

5
 cos45 = 6  10

5
 N/C 
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E 2  E2
 x y 

1 - 
2 

+
   

a d 

 

Ey = -E1 - E2sin45 = -3.610
5
 - 1.8  10

5
 sin45 = - 4.8  10

5
 N/C 

E  = 7.7  10
5
 N/C 

 

  tan
1

 
Ey

 

Ex 

o 

= - 38.6 

 
 

 

 

 

 

 

 

Example 3.7 

In figure 3.12 shown, locate the point at which the electric field is zero? 

Assume a = 50cm 
 

 

 

 

 

Solution 

 

V 

 

-5q 

 
S 2q 

 
 

E P E 

 

 

 

 

Figure 3.12 

 

To locate the points at which the electric field is zero (E=0), we shall try all 

the possibilities, assume the points S, V, P and find the direction of E1 and 

E2 at each point due to the charges q1 and q2. 

 
The resultant electric field is zero only when E1 and E2 are equal in 

magnitude and opposite in direction. 

At the point S E1 in the same direction of E2 therefore E cannot be zero in 

between the two charges. 
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At the point V the direction of E1 is opposite to the direction of E2, but the 

magnitude could not be equal (can you find the reason?) 

 
At the point P the direction of E1 and E2 are in opposite to each other and 

the magnitude can be equal 
 

 
 

E1 = E2 

1 
 

 

4



2q 
 

 

(0.5  d )
2
 

 
 

1 

4


5 q 

 

 

(d) )
2
 

d = 30cm 
 

 

 

 ملئ لاثظ ألل ئكلقطب فإل ئككبشئامبنل ئكشثلبنل ثئكب فن ئكبن انل بقمل لئككتئ علدمئ نلعدك
 معكن ئكشثلبنل ؤثدم خئرت بقمل فإلمئ ئلإشئرب فن كخبكفبنل ئكشثلبئل قئلب ؤذئ أكئ ،ئكشثلبنل

 .ئلأصغر ئكشثلب كل مائكقرا انلمكئ لئكمئص ئكخط
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E 

T q 

E 



 
Example 3.8 

A charged cord ball of mass 1g is suspended 

on a light string in the presence of a uniform 

electric field as in figure 3.13. When 

E=(3i+5j) 10
5
N/C, the ball is in equilibrium 

at =37
o
. Find (a) the charge on the ball and q 

(b) the tension in the string. 

 

 
Solution 

 ئكقمرانب ئكقمب فإل كمتاب اشثلب كشثملب
 

 ئكقرب أل ثنة

Figure 3.13 

 .ئكقمران لئككتئ ئبتئل فن ئككشثملب ئكقرب عكن ئككؤةرب

 ئكقمم كثصكب فإل ئبزئل ثئكب فن ئككشثملب ئكقرب أل قكئ
qE             ئكةئلن لنمبل قئلمل ابطانف .صفر سبقمل ئكقرب عكن ئككؤةرب 

F=ma كرقائب عكن x م .y 
 

Ex = 310
5
N/C Ey = 5j10

5
N/C mg 

F = T+qE+Fg = 0 

Fx = qEx – T sin 37 = 0 (1) 

Fy = qEy + T cos 37 - mg= 0 (2) 

Substitute T from equation (1) into equation (2) 

q  
mg 

 
(110

3
 )(9.8)  1.09 10

8
 C 

 
E  

Ex 

5  

3  
10

5
 

 y  

 tan 37   tan 37 



To find the tension we substitute for q in equation (1) 

T  
qEx 

sin 37 
 5.44 10

3
 N 
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 ممذئ ككصفر كسئمنئ ئلازدمئت نقمل علدكئ equilibrium ئبزئل ثئكب فن ئكقطا ةلئئن نقمل
 )  , 0 =  ( بقمل علدكئ نبثقف

انلكئ  ،  =0 ئكمضع ؤكن سنرتع فئلل صغنرب ازئمنب أزنث ؤذئ لألل equilibrium stable كسبقر

 
 .  =  مكنس  =0 ئكمضع ؤكن

3.9 The electric dipole in electric field 

If an electric dipole placed in an external electric field E as shown in figure 

3.14, then a torque will act to align it with the direction of the field. 
 
 

qE 
 

 

 

 

 

 
 

Figure 3.14 
 


r 
 P  E 

 
(3.10) 

 = P E sin  (3.11) 

where P is the electric dipole momentum,  the angle between P and E 
 

 

 
 

    
E 

Figure 3.15 (ii) Figure 3.15 (i) 
 

                   

P 

P 

E 

-qE 
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3.10 Problems 
 

 

 

3.1) The electric force on a point 

charge of 4.0C at some point is 

6.910
-4

N in the positive x 

direction. What is the value of the 

electric field at that point? 

 
3.2) What are the magnitude and 

direction of the electric field that 

will balance the weight of (a) an 

electron and (b) a proton? 

(Use the data in Table l.) 

 

3.3) A point charge of -5.2C is 

located at the origin. Find the 

electric field (a) on the x-axis at 

x=3 m, (b) on the y-axis at y= -4m, 

(c) at the point with coordinates 

x=2m, y=2m. 

 
3.4) What is the magnitude of a 

point charge chosen so that the 

electric field 50cm away has the 

magnitude 2.0N/C? 

 
3.5) Two point charges of 

magnitude   +2.010
-7

C   and 

+8.510
-11

C are 12cm apart. (a) 

What electric field does each 

produce at the site of the other? (b) 

What force acts on each? 

 
3.6) An electron and a proton are 

each placed at rest in an external 

electric field of 520N/C. Calculate 

the speed of each particle after 

48nanoseconds. 

 

3.7) The electrons in a particle beam 

each have a kinetic energy of 

1.610
-17

J. What are the magnitude 

and direction of the electric field 

that will stop these electrons in a 

distance of 10cm? 

 
3.8) A particle having a charge of - 

2.010
-9

C is acted on by a 

downward electric force of 3.010
-
 

6
N in a uniform electric field. (a) 

What is the strength of the electric 

field? (b) What is the magnitude 

and direction of the electric force 

exerted on a proton placed in this 

field? (c) What is the gravitational 

force on the proton? (d) What is the 

ratio of the electric to the 

gravitational forces in this case? 

 
3.9) Find the total electric field 

along the line of the two charges 

shown in figure 3.16 at the point 

midway between them. 

 

 4.7C  9C 
 

Figure 3.16 

 
3.10) What is the magnitude and 

direction of an electric field that 

will balance the weight of (a) an 

electron and (b) a proton? 
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P 

3.11) Three charges are arranged in 

an equilateral triangle as shown in 

figure 3.17. What is the direction 

of the force on +q? 

+q 
a
 

 

P 
a 

 
-2q 

 
 

 
 

a 
 

+q 

-q a 

 

 

+2q 

 

 

+Q a -Q 

 

Figure 3.17 

 
3.12) In figure 3.18 locate the point at 

which the electric field is zero and 

also the point at which the electric 

potential is zero. Take q=1C and 

a=50cm. 

 
-5q +2q 

Figure 3.19 

 
3.14) Two point charges are a 

distance d apart (Figure 3.20). Plot 

E(x), assuming x=0 at the left-hand 

charge. Consider both positive and 

negative values of x. Plot E as 

positive if E points to the right and 

negative if E points to the left. 

Assume q1=+1.010
-6

C, 

q2=+3.010
-6

C, and d=10cm. 

 

 

 
Figure 3.18 

 

 
 

3.13) What is E in magnitude and 

direction at the center of the square 

shown in figure 3.19? Assume that 

q=1C and a=5cm. 

Figure 3.20 

3.15) Calculate E (direction and 

magnitude) at point P in Figure 

3.21. 

 
+q 

 
a 

 

+2q 
a 

+q 

Figure 3.21 

 
 

 
 

q
1
 

 
q

2
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3.16) Charges +q and -2q are fixed a 

distance d apart as shown in figure 

3.22. Find the electric field at 

points A, B, and C. 

 

 

released from rest at the surface of 

the negatively charged plate and 

strikes the surface of the opposite 

plate, 2.0cm away, in a time 

1.510
-8

s. (a) What is the speed of 

the electron as it strikes the second 

plate? (b) What is the magnitude of 

A +q B -2q 
C the electric field E? 

 

 

Figure 3.22 

 
3.17) A uniform electric field exists 

in a region between two oppositely 

charged plates.  An  electron is 
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 ئكقمربن ئكةدفف
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Electric Flux 

 
4.1 The Electric Flux due to an Electric Field 

 

4.2 The Electric Flux due to a point charge 
 

4.3 Gaussian surface 
 

4.4 Gauss’s Law 

 
4.5 Gauss’s law and Coulomb’s law 

 
4.6 Conductors in electrostatic equilibrium 

 
4.7 Applications of Gauss’s law 

 

4.8 Solution of some selected problems 
 

4.9 Problems 
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 .كةمزنع كعنل كل ئكشحلاب باسةخدئك قالمل قمكمكل درسلا سابقا قنفنب حساا ئككجا
ل ئكذن نسم "قالمل جامس"ئكقمربن باسةخدئك ل مملا سلقدك طرنقب أخرم كحساا ئككجا

ةمزنع طمكن أم سطحن أم ل كل ئكشحلب عكن شقل ئكقمربن كةمزنع كةصل حساا ئككجا
ل ئككجا كل ئكلاةج ئكقمربن ئكةدفف كفممك عكن أساسًا جامس قالمل نعةكد.حجكن

مكمذئ سلقمك أملاً بحساا ئكةدفف ئكقمربن ئكلاةج عل ، ئكقمربن أم ئكشحلب ئكقمربائنب
مكل ، متالنًا سلقمك بحساا ئكةدفف ئكقمربن ئكلاةج عل شحلب قمربنب، ئكقمربنل ئككجا

 لكجا فن ئكماكب ئكةطبنقاب بعض فن مئسةخدئكل جامس قالمل بإنجاد سلقمك تك
 .ئكساقلب ئكقمربنب

 

 

 

 

 

 

 

 

 

 

Electric Flux 

 لكھرتيا لتدفقا
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The Electric flux () is a measure of the number of electric field lines 

penetrating some surface of area A. 

4.1 The Electric Flux due to an Electric Field 

We have already shown how electric field can be described by lines of 

force. A line of force is an imaginary line drawn in such a way that its 

direction at any point is the same as the direction of the field at that point. 

Field lines never intersect, since only one line can pass through a single 

point. 
 

 

 

 

 

Case one: 

The electric flux for a plan surface perpendicular to a uniform electric 

field (figure 4.1) 

To calculate the electric flux we recall 

that the number of lines per unit area is 

proportional to the magnitude of the 

electric field. Therefore, the number of 

lines penetrating the surface of area A is 

proportional to the product EA. The 

product of the electric filed E and the 

surface area A perpendicular to the field 

is called the electric flux . 

Area = A 

 

 

 

 

 

 

E 

 

 

 

 

 

Figure 4.1 
 

 

  E.A 

 

(4.1) 
 
 

The electric flux  has a unit of N.m
2
/C. 

http://www.hazemsakeek.com/


Lectures in General Physics 

Dr. Hazem Falah Sakeek 

 

 

 

Case Two 

The electric flux for a plan surface make an angle  to a uniform electric 

field (figure 4.2) 

Note that the number of lines 

that cross-area is equal to the 

number that cross the projected 

area A`, which is perpendicular 

to the field. From the figure we 

see that the two area are related 

by A`=Acos. The flux is given 

by: 

Area = A 

 

 

 

 

 

 

E 

 

  E.A = E A cos



  E.A 

Where  is the angle between 

the  electric  field  E  and  the 

normal to the surface A . 

 
A`=Acos 

 

 

Figure 4.2 

 ذئ منقمل  = 0 أن لئككتئ عكن عكمدنئً ئكسطث نقمل علدكئ عظكن قنكب ذئ ئكفنض نقمل ؤذئً
 A ئككبتل أل ملئ لاثظ . = 90 علدكئ أن لكككتئ كمئزنئً ئكسطث نقمل علدكئ صغرم قنكب

 .ئككسئثب كقدئر عل نعار مطمكل ئككسئثب عكن دئئكئ عكمدن ممم ئككسئثب كبتل مم
 

Case Three 

In general the electric field is nonuniform over the surface (figure 4.3) 

The flux is calculated by integrating the normal 

component of the field over the surface in 

question. 

   E.A (4.2) 

 
 

The net flux through the surface is proportional 

to the net number of lines penetrating the 

surface 

Figure 4.3 

dA 
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2 

dA 

1 3 

Exercise 

Calculate the total flux for a cube immersed in uniform electric field E . 

 ئكشثلب قئلب ؤذئ( ئكسطث كل ئكخئرتب ئكخطمط عدد أن lines of number net ـا مئككقصمد
 ).سئكاب ئكشثلب قئلب ؤذئ( ئكسطث ؤكن ئكدئخكب ئكخطمط عدد - )كمتاب

 
 
 
 

Example 4.1 

What is electric flux  for closed cylinder of radius R immersed in a 

uniform electric field as shown in figure 4.4? 

dA 

 

 
 

dA E 

 

Figure 4.4 
 

 

 

Solution 

 

   E.dA 

 
 أعلال لئكشق فن ئككمضثب ئكةلاةب ئلأسطث عكن تئمس قئلمل لطاف

  E.dA   E.dA   E.dA 
(1) (2) (3) 

  E cos180dA   E cos 90dA   E cos 0dA 
(1) 

 

Since E is constant then 

( 2) (3) 

 = - EA + 0 + EA = zero 
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4.2 The Electric Flux due to a point charge 

To calculate the electric flux due to a point 

charge we consider an imaginary closed 

spherical surface with the point charge in the 

center figure 4.5, this surface is called gaussian 

surface. Then the flux is given by 
 

   E.dA = E  dA cos ( = 0) 

 = 
 q  

 dA = 
 q  

4r 
2
 

4 r 
2
 4 r 

2
 

 = 
 q  

(4.3) 


Figure 4.5 

Note that the net flux through a spherical gaussian surface is proportional to 

the charge q inside the surface. 
 

 

 
 

4.3 Gaussian surface 

Consider several closed surfaces as shown in 

figure 4.6 surrounding a charge Q as in the 

figure below. The flux that passes through 

surfaces S1, S2 and S3 all has a value q/ . 

Therefore we conclude that the net flux through 

any closed surface is independent of the shape of 

the surface. 

 

 

 
Consider a point charge located outside a closed 

surface as shown in figure 4.7. We can see that 

the number of electric field lines entering the 

surface equal the number leaving the surface. 

Therefore the net electric flux in this case is 

zero, because the surface surrounds no electric 

charge. 

 

 

 

 

 

 
 

Figure 4.6 

 

 

 

 

 

Q 

 

 

 

 

Figure 4.7 

 

 
 

 

 

 

 

 

 

 

DdA 
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E 

DdA 

Q 

 

 

 

Example 4.2 

In figure 4.8 two equal and opposite charges of 

2Q and -2Q what is the flux  for the surfaces 

S1, S2, S3 and S4. 

 

Solution 

For S1 the flux  = zero 

For S2 the flux  = zero 

For S3 the flux  = +2Q/ o 

For S4 the flux  = -2Q/ o 

 

 

 
S

1
 

 

 

 

 

Figure 4.8 

 

 
 

 

 

 

4.4 Gauss’s Law 

Gauss law is a very powerful theorem, which 

relates any charge distribution to the resulting 

electric field at any point in the vicinity of the 

charge. As we saw the electric field lines 

means that each charge q must have q/o flux 

lines coming from it. This is the basis for an 

important equation referred to as Gauss’s 

law. Note the following facts: 

1. If there are charges q1, q2, q3,   qn inside 

a closed (gaussian) surface, the total 

number of flux lines coming from these 

charges will be 

 

 

 
 

 

Figure 4.9 

 

 

(q1 + q2 + q3 + ....... +qn)/o (4.4) 

 

2Q 

 

-2Q S
4
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

Gauss’s law states that the net electric flux through any closed gaussian 

surface is equal to the net electric charge inside the surface divided by 

the permittivity. 

2. The number of flux lines coming out of a closed surface is the integral of 
r r 

E.dA over the surface,  E.dA 

We can equate both equations to get Gauss law which state that the net 

electric flux through a closed gaussian surface is equal to the net charge 

inside the surface divided by o 
r r qin 

 E.dA 


Gauss’s law (4.5) 

where qin is the total charge inside the gaussian surface. 
 

 

 

 

 

 

4.5 Gauss’s law and Coulomb’s law 

We can deduce Coulomb’s law from Gauss’s 

law by assuming a point charge q, to find the 

electric field at point or points a distance r 

from the charge we imagine a spherical 

gaussian surface of radius r and the charge q at 

its center as shown in figure 4.10. 
 

r r qin 

 E.dA 




E cos 0dA  
qin

 





Because E is 

constant for all points on the sphere, it can be factored from the inside of the 

integral sign, then 
 

E dA  
qin 


EA  

qin
 


 E(4r 

2
 )  

qin
 



E 

DdA 

Q 






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

 E 
1 q 

 
 

4 r2
 

 
(4.6) 

 

Now put a second point charge qo at the point, which E is calculated. The 

magnitude of the electric force that acts on it F = Eqo 
 

 F 
1 

4

qqo 

r2 

 
 

4.6 Conductors in electrostatic equilibrium 

A good electrical conductor, such as copper, contains charges (electrons) 

that are free to move within the material. When there is no net motion of 

charges within the conductor, the conductor is in electrostatic equilibrium. 

 
 

Conductor in electrostatic equilibrium has the following properties: 

 

1. Any excess charge on an isolated conductor must reside entirely on its 

surface. (Explain why?) The answer is when an excess charge is placed 

on a conductor, it will set-up electric field inside the conductor. These 

fields act on the charge carriers of the conductor (electrons) and cause 

them to move i.e. current flow inside the conductor. These currents 

redistribute the excess charge on the surface in such away that the 

internal electric fields reduced to become zero and the currents stop, and 

the electrostatic conditions restore. 

 

2. The electric field is zero everywhere inside the conductor. (Explain 

why?) Same reason as above 
 

 

In figure 4.11 it shows a conducting slab 

in an external electric field E. The 

charges induced on the surface of the slab 

produce an electric field, which opposes 

the external field, giving a resultant field 

of zero in the conductor. 

Figure 4.11 
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Steps which should be followed in solving problems 

 

 

1. The gaussian surface should be chosen to have the same symmetry 

as the charge distribution. 
 

2. The dimensions of the surface must be such that the surface 

includes the point where the electric field is to be calculated. 
 

3. From the symmetry of the charge distribution, determine the 

direction of the electric field and the surface area vector dA, over 

the region of the gaussian surface. 
 

4. Write E.dA as E dA cos and divide the surface into separate 

regions if necessary. 
 

5. The total charge enclosed by the gaussian surface is dq = dq, 

which is represented in terms of the charge density ( dq = dx for 

line of charge, dq = dA for a surface of charge, dq = dv for a 

volume of charge). 
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4.7 Applications of Gauss’s law 
 

 أل ؤكئ ئكبمزنع ممذئ ،ئكشثلب كل لكبص بمزنع عكن نطاف تئمس قئلمل فإل سئاقئ ذقرلئ قكئ
 .ثتكنئً بمزنعئً أم سطثنئً بمزنعئً أم طمكنئً بمزنعئً نقمل فن لكثكم لكةئ ثئكب لق عكن نمتد

 .ئكمئكب ئكلقئط اعض اذقر ملئ سلقبفن ئكقبئا
 

ئكقمران علد لقطب باعد كسئفب عل سكق كشثمل قكئ ل ؤذئ أردلئ ثسئا ئككتئل ئككةئل عكن سان
مغئكائ لفبرض أل بمزنع ، ملئ فن مذل ئكثئكب ئكشثلب كمزعب اطرنقب كبصكب، 4.12 لفن ئكشق
 علئصر ؤكن ئكسكق لقسك ئككشقكب مذل لكة لمكث ،(C/m) ئكبمزنع اقةئفب منعطن كلبظك ئكشثلب

 (p) لقطب علد ئكلئشئ dE لئككتئ ملثسا dx كلمئ قلا لطم صغنرب
 
 
 
 
 
 
 

     

x dx 

 

 

Figure 4.12 
 
 

 

dE  K 
dq 

r 
2
  x 

2
 
 K  

dx 

r 
2
  x 

2
 

 فن ئكبن ئكرأسنب ئككرقاب ئبتئل فن بقمل مئككثصكب ببلاشن ئلأفقنب ئككرقائب أل لتد لئكبكئة مكل
 y ئبتئل

dEy = dE cos Ey =  dE y 

 



=  cos  dE 
 

dE 



r 
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0 



Gauss’s law can be used to calculate the electric field if the symmetry of 

the charge distribution is high. Here we concentrate in three different 

ways of charge distribution 


 2  dx 

E = 2  cos dE 
0 

4
 cos 

r 
2 
 x 

2
 

 :نكن قكئ dx مئككبغنر x ئككبغنر عل ئكبعمنض نكقل ئكملدسن لئكشق كل
x = y tan  dx = y sec

2
 d

 2 

E = 
2  cos d

0 

 
 لئكبقئك ثدمد ؤكن ئلبال

E = 
    

2 r 

 كذكق ،ككشثلب لئككبص ئكبمزنع ثئكب فن قمكمك قئلمل ائسبخدئك لئكث صعماب لاثظب ألق لاشق
 ئكذن تئمس قئلمل سلدرس كل عئكنب درتب امئ مئكبن ئكثئلاب مذل لكة فن قةنرًئ لئكث لنسم

 .لئكبكئة
 

 
 
 
 

 
 

 1 2 3 

Charge distribution Linear Surface Volume 

Charge density   

Unit C/m C/m
2
 C/m

3
 


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

A linear charge distribution 

In figure 4.13 calculate the electric field at a distance r from a uniform 

positive line charge of infinite length whose charge per unit length is 

=constant. 

E 

 

Figure 4.13 

 
The electric field E is perpendicular to the line of charge and directed 

outward. Therefore for symmetry we select a cylindrical gaussian surface 

of radius r and length L. 

The electric field is constant in magnitude and perpendicular to the surface. 

The flux through the end of the gaussian cylinder is zero since E is parallel 

to the surface. 

The total charge inside the gaussian surface is L. 

Applying Gauss law we get r r qin 

 E.dA 


E dA  
L

 



E2rL  
L

 



 E  
   

 
2 r 

 

 

 

 

 
(4.7) 

 قئلمل ابطانف كمئ بمصكلئ ئكبن ئكلبنتب لفس عكن لسلثص تئمس قئلمل ائسبخدئك ألل ملئ للاثظ
 .لأسم ماطرنقب قمكمك

 

 


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A surface charge distribution 

In figure 4.4 calculate the electric field due to non-conducting, infinite plane 

with uniform charge per unit area . 
 

 

 

 

 

 

 
 

E 

 

 

 

Figure 4.14 

 

The electric field E is constant in magnitude and perpendicular to the plane 

charge and directed outward for both surfaces of the plane. Therefore for 

symmetry we select a cylindrical gaussian surface with its axis is 

perpendicular to the plane, each end of the gaussian surface has area A and 

are equidistance from the plane. 

 

The flux through the end of the gaussian cylinder is EA since E is 

perpendicular to the surface. 

 

The total electric flux from both ends of the gaussian surface will be 2EA. 

Applying Gauss law we get 
 

r r qin 

 E.dA 


2EA  
A

 



 E  
 


2










(4.8) 

 
 


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Conductor 

E 

An insulated conductor. 

 ،فقط لئككمص سطث عكن بمزع ئكشثلب أل سئاقئ ذقرلئ مائكبئكن كئدب لدئخ لئككتئ قنكب فإل

 
E  






 بسئمم لئككمص خئرت لئككتئ مقنكب ،صفرئً بسئمم لئككمص

 
(4.9) 

 

 ملئ لاثظ لئككتئ أل نسئمم لئككمص ثئكب فن ضعف لئككتئ قنكب ئكلالمئئن ئكسطث ثئكب فن
 لق انلكئ ل،ئككمص غنر ئكسطث ثئكب فن ئكسطثنل كل بخرت لئككتئ خطمط لأل مذكق ،ئككشثمل

 .لئككمص ثئكب فن ئكخئرتن ئكسطث كل بخرت لئككتئ خطمط
 
 

 

Figure 4.15 
 

 

ئكشثلب  أل ثنة فنض كل تئمس كسطث ئلأكئكن ئكمتل أل للاثظ 4.15 أعلال ئككمضثل ئكشق فن
 نخبرف ئكذن ئكخكفن ككسطث ككصفر كسئمنئً ئكفنض نقمل انلكئ ،ئكخئرتن ئكسطث عكن بسبقر

 .صفرئً بسئمن لئككمص لدئخ ئكشثلب لأل مذكق لئككمص
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

A volume charge distribution 

In figure 4.16 shows an insulating sphere of radius a has a uniform charge 

density  and a total charge Q. 

1) Find the electric field at point outside the sphere (r>a) 

2) Find the electric field at point inside the sphere (r<a) 

 

 

 

 
For r>a 

 

 

 

 

E 

 

Figure 4.16 

 
 

We select a spherical gaussian surface of radius r, concentric with the 

charge sphere where r>a. The electric field E is perpendicular to the 

gaussian surface as shown in figure 4.16. Applying Gauss law we get 
 

r r qin 

 E.dA 


E  A  E(4r 
2
 )  

 Q
 



 E 
Q 

4 r 
2
 

(for r>a) (4.10) 

 

Note that the result is identical to appoint charge. 

 

 

 


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

3 

For r<a 
 

 

 

 

E 

Figure 4.17 
 

We select a spherical gaussian surface of radius r, concentric with the 

charge sphere where r<a. The electric field E is perpendicular to the 

gaussian surface as shown in figure 4.17. Applying Gauss law we get r r qin 

 E.dA 




It is important at this point to see that the charge inside the gaussian surface 

of volume V` is less than the total charge Q. To calculate the charge qin, we 

use qin=V`, where V`=4/3r
3
. Therefore, 

qin =V`=(4/3r
3
) (4.11) 

 

E A  E(4r 
2
 )  

qin
 


q   4 r 

3
 

E   in    3   r  

(4.12) 

 

since 

4 r 
2
 

  
Q

 

4 a3 

4 r 
2
 3

 E 
Qr 

4 a
3
 

(for r<a) (4.13) 

 

 

Note that the electric field when 

r<a is proportional to r, and when 

r>a the electric field is proportional 

to 1/r
2
. 

 

1.2 

 

0.8 

 

0.4 

 
 
 
 
 
 
 
 

 

1.0 2.0 3.0 

r 10-10m 

 

 

E
 1

0
1
3
N

/C
 


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جامس  قالمل ئسةخدئك ةغطن ئكةن لئككسائ كبعض حكملاً سلعرض ئكجزء مذئ فن

 ئكقمربنل لإنجاد ئككجا

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

4.8 Solution of some selected problems 
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Example 4.4 

4.8 Solution of some selected problems 

Example 4.3 

If the net flux through a gaussian surface is zero, which of the following 

statements are true? 

1) There are no charges inside the surface. 

2) The net charge inside the surface is zero. 

3) The electric field is zero everywhere on the surface. 

4) The number of electric field lines entering the surface equals the 

number leaving the surface. 

 

Solution 

Statements (b) and (d) are true. Statement (a) is not necessarily true since 

Gauss' Law says that the net flux through the closed surface equals the net 

charge inside the surface divided by o. For example, you could have an 

electric dipole inside the surface. Although the net flux may be zero, we 

cannot conclude that the electric field is zero in that region. 
 

 

 
 

A spherical gaussian surface surrounds a point charge q. Describe what 

happens to the: flux through the surface if 

1) The charge is tripled, 

2) The volume of the sphere is doubled, 

3) The shape of the surface is changed to that of a cube, 

4) The charge is moved to another position inside the surface; 

 

Solution 

1) If the charge is tripled, the flux through the surface is tripled, since the 

net flux is proportional to the charge inside the surface 

2) The flux remains unchanged when the volume changes, since it still 

surrounds the same amount of charge. 

3) The flux does not change when the shape of the closed surface changes. 
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4) The flux through the closed surface remains unchanged as the charge 

inside the surface is moved to another position. All of these conclusions 

are arrived at through an understanding of Gauss' Law. 

 

 

 

 

Example 4.5 

A solid conducting sphere of 

radius a has a net charge +2Q. A 

conducting spherical shell of 

inner radius b and outer radius c 

is concentric with the solid sphere 

and has a net charge –Q as shown 

in figure 4.18. Using Gauss’s law 

find the electric field in the 

regions labeled 1, 2, 3, 4 and find 

the charge distribution on the 

spherical shell. 

 

A-- Q 
 

 

 

 

 
 

 

 

 

 

 

 
Figure 4.18 

 

 
 

Solution 

 كلئطف علد ئكقمران لئككتئ كبعننل كذكق ،قرمن لبكئة ئكشثلب عكن ئكقربنل كمئ بمزنع أل للاثظ
 r. قطرل لصف لئكشق قرمن تئمس سطث أل سلفرض فإللئ كخبكفب

 

Region (1) r < a 

To find the E inside the solid sphere of radius a we construct a gaussian 

surface of radius r < a 

E = 0 since no charge inside the gaussian surface. 

 
 

Region (2) a < r < b 

we construct a spherical gaussian surface of radius r r r qin 

 E.dA 


  2Q  

 

  


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مأل  2Q ئكدئخكنب ئككمصكب ئكقرب شثلب من تئمس سطث لدئخ ئككثصمرب ئكشثلب أل ملئ لاثظ
 ةئاب لئككتئ م  = 0 أن تئمس سطث كل مخئرتل ئلأقطئر ألصئف ئبتئل فن لئككتئ خطمط
 .ئكسطث عكن ئككقدئر

E 4r
2
 = 

2Q
 



 E 
1 2Q 

 
 

4 r2
 

a < r < b 

 

 

 

Region (4) r > c 

we construct a spherical gaussian surface of radius r > c, the total net charge 

inside the gaussian surface is q = 2Q + (-Q) = +Q Therefore Gauss’s law 

gives r r qin 

 E.dA 


E 4r
2
 = 

Q
 



 E  
1 Q

 
 

 

 
 

r > c 

4 r 2 

 

Region (3) b > r < c 

 لئككتئ فن ئكقمران صفرئً نقمل أل نتا ئككلطقب مذل كمصكب ئكقرمنب ئكقشرب لأل ،أنضئ ملأل
عكن  Q- ؤذئ لسبلبت أل ئكشثلب .نتا أل بسئمم صفرئً b<r<c سطث تئمسل ئكشثلب ئكقكنب دئخ

 اثنة ئكقرمنب ككقشرب ئكخئرتن مئكسطث ئكدئخكن ئكسطث عكن شثلب بمزنع لبنتب من ئكقرمنب ئكقشرب
 Q- ئككثصكب بقمل مائكبئكن ئكسطث عكن شثلب ائكثة ببقمل ئكدئخكن كسئمنب ككقشرب ئككقدئر فن

 كمئ مكخئكفب ئكدئخكنب ئكقرب عكن ككشثلب ئلإشئرب فن أن 2Q- قكئ ألل مثنة لئكسؤئ كعطنئب فن
 أل نتا ئكقرمنب ككقشرب ئكخئرتن ئكسطث عكن أل لسبلبت Q- من ئكقرمنب ئكقشرب عكن ئكقكنب ئكشثلب
 Q+ بقمل

 



http://www.hazemsakeek.com/


Lectures in General Physics 

Dr. Hazem Falah Sakeek 

 

 

 
Example 4.6 

A long straight wire is surrounded by a hollow cylinder whose axis 

coincides with that wire as shown in figure 4.19. The solid wire has a 

charge per unit length of +, and the hollow cylinder has a net charge 

per unit length of +2. Use Gauss law to find (a) the charge per unit 

length on the inner and outer surfaces of the hollow cylinder and (b) the 

electric field outside the hollow cylinder, a distance r from the axis. 
 

 

 

 

 

Solution 

(a) Use a cylindrical Gaussian surface S1 within + 

the conducting cylinder where E=0 
 

 Thus  
r r 

 
qin = 0 

E.dA 


and the charge per unit length on the inner surface 

must be equal to 
inner = -

Also inner + outer = 2

thus outer = 3


(b) For a gaussian surface S2 outside the 

conducting cylinder 
r r qin 

 E.dA 


Figure 4.19 

E (2rL) = 
1  

( -  + 3)L 


 E  
 3  

2 r 
 

+2 




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Example 4.7 

Consder a long cylindrical charge distribution of radius R with a 

uniform charge density . Find the electric field at distance r from the 

axis where r<R. 
 

 

 

 

Solution 

If we choose a cilindrical gaussian surface of length L and radius r, Its 

volume is r
2
L, and it enclses a charge r

2
L. By applying Gauss’s law we 

get, 
 

r r q r 
2
 L 

E.dA   
in
  




Q  dA  2rL 

becomes 

 

 
therefore 

E  dA 


E(2rL) 



r 
2
 L 

 
 


Thus 

 

E  
  r 

2










radially outward from the cylinder axis 

 

Notice that the electric field will increase as  increases, and also the 

electric field is proportional to r for r<R. For thr region outside the cylinder 

(r>R), the electric field will decrese as r increases. 
 
 


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Example 4.8 

Two large non-conducting sheets of +ve charge face each other as 

shown in figure 4.20. What is E at points (i) to the left of the sheets (ii) 

between them and (iii) to the right of 

the sheets? 

Solution 

We know previously that for each sheet, 

the magnitude of the field at any point 

is 

E  
   

2

(a) At point to the left of the two 

parallel sheets 

E = -E1 + (-E2) = -2E 

 E   





(b) At point between the two sheets 

E = E1 + (-E2) = zero 

(c) At point to the right of the two parallel sheets 

E = E1 + E2 = 2E 

 E  





Figure 4.20 
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S1 

S4 

-2Q S  

+Q 

-Q 

S2 

4.9 Problems 
 
 

 

4.1) An electric field of intensity 

3.5103N/C is applied the x-axis. 

Calculate the electric flux through a 

rectangular plane 0.35m wide and 

0.70m long if (a) the plane is 

parallel to the yz plane, (b) the 

plane is parallel to the xy plane, 

and (c) the plane contains the y axis 

and its normal makes an angle of 

40
o
 with the x axis. 

 

4.2) A point charge of +5C is 

located at the center of a sphere 

with a radius of 12cm. What is the 

electric flux through the surface of 

this sphere? 

 

4.3) (a) Two charges of 8C and - 

5C are inside a cube of sides 

0.45m. What is the total electric 

flux through the cube? (b) Repeat 

(a) if the same two charges are 

inside a spherical shell of radius 0. 

45 m. 

 
4.4) The electric field everywhere 

on the surface of a hollow sphere 

of radius 0.75m is measured to be 

equal to 8.9010
2
N/C and points 

radially toward the center of the 

sphere. (a) What is the net charge 

within the surface? (b) What can 

you conclude about charge inside 

the nature and distribution of the 

charge inside the sphere? 

4.5) Four closed surfaces, S1, 

through S4, together with the 

charges -2Q, +Q, and -Q are 

sketched in figure 4.21. Find the 

electric flux through each surface. 

 

 
Figure 4.21 

 

 
 

4.6) A conducting spherical shell of 

radius 15cm carries a net charge of 

-6.4C uniformly distributed on its 

surface. Find the electric field at 

points (a) just outside the shell and 

(b) inside the shell. 

 
4.7) A long, straight metal rod has a 

radius of 5cm and a charge per unit 

length of 30nC/m. Find the electric 

field at the following distances 

from the axis of the rod: (a) 3cm, 

(b) 10cm, (c) 100cm. 
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4.8) A square plate of copper of 

sides 50cm is placed in an extended 

electric field of 810
4
N/C directed 

perpendicular to the plate. Find (a) 

the charge density of each face of 

the plate and (b) the total charge on 

each face. 

 
4.9) A solid copper sphere 15cm in 

radius has a total charge of 40nC. 

Find the electric field at the 

following distances measured from 

the center of the sphere: (a) 12cm, 

(b) 17cm, (c) 75cm. (d) How would 

your answers change if the sphere 

were hollow? 

 
4.10) A solid conducting sphere of 

radius 2cm has a positive charge of 

+8C. A conducting spherical 

shell d inner radius 4cm and outer 

radius 5cm is concentric with the 

solid sphere and has a net charge of 

-4C. (a) Find the electric field at 

the following distances from the 

center of this charge configuration: 

(a) r=1cm, (b) r=3cm, (c) r=4.5cm, 

and (d) r=7cm. 

 
4.11) A non-conducting sphere of 

radius a is placed at the center of a 

spherical conducting shell of inner 

radius b and outer radius c, A 

charge +Q is distributed uniformly 

through the inner sphere (charge 

density C/m
3
) as shown in figure 

4.22. The outer shell carries -Q. 

Find E(r) (i) within the sphere 

(r<a) (ii) between the sphere and 

the shell (a<r<b) (iii) inside the 

shell (b<r<c) and (iv) out side the 

shell and (v) What is the charge 

appear on the inner and outer 

surfaces of the shell? 

 
A-- Q 

 
 

Figure 4.22 

 

 
 

4.12) A solid sphere of radius 40cm 

has a total positive charge of 26C 

uniformly distributed throughout its 

volume. Calculate the electric field 

intensity at the following distances 

from the center of the sphere: (a) 0 

cm, (b) 10cm, (c) 40cm, (d) 60 cm. 

 
4.13) An insulating sphere is 8cm in 

diameter, and carries a +5.7C 

charge uniformly distributed 

throughout its interior volume. 

Calculate the charge enclosed by a 

concentric spherical surface with 

the following radii: (a) r=2cm and 

(b) r=6cm. 

 
4.14) A long conducting cylinder 

(length l) carry a total charge +q is 

surrounded by a conducting 

cylindrical shell of total charge -2q 

as shown in figure 4.23.  Use 

 Q 

 

 c 
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Gauss’s law to find (i) the electric 

field at points outside the 

conducting shell and inside the 

conducting shell, (ii) the 

distribution of the charge on the 

conducting shell, and (iii) the 

electric field in the region between 

the cylinder and the cylindrical 

shell? 

4.16) A large plane sheet of charge 

has a charge per unit area of 

9.0C/m
2
. Find the electric field 

intensity just above the surface of 

the sheet, measured from the sheet's 

midpoint. 

 
4.17) Two large metal plates face 

each other and carry charges with 

surface density + and - 

respectively, on their inner surfaces 

as shown in figure 4.24. What is E 

at points (i) to the left of the sheets 

(ii) between them and (iii) to the 

right of the sheets? 
 

 

 

 

 

 

 

 

Figure 4.23 
 

 

4.15) Consider a thin spherical shell 

of radius 14cm with a total charge 

of 32C distributed uniformly on 

its surface. Find the electric field 

for the following distances from the 

center of the charge distribution: 

(a) r=10cm and (b) r =20cm. 

 

 
Figure 4.24 
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Electric Potential 

5.1 Definition of electric potential difference 

5.2 The Equipotential surfaces 

5.3 Electric Potential and Electric Field 

5.4 Potential difference due to a point charge 

5.5 The potential due to a point charge 

5.6 The potential due to a point charge 

5.7 Electric Potential Energy 

5.8 Calculation of E from V 
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The Electric Potential 
 

 

 

 ئكفرئغ فن ئكقمران ئكبأةنر أم ئكقمرانب ئكقمم عل ئكبعانر نكقل قنف ئكسئاقب لئكفصم فن بعككلئ
 قكنب مم ئكقمران لئككتئ أل لعكك مقكئ .ئكقمران لئككتئ كفممك أقةر ائسبخدئك أم اشثلب ئككثنط
 تئمس قئلمل عكنلئ لسم مقد .تئمس مقئلمل قمكمك قئلمل كل قلا كثسئال ئسبخدكلئ مقد كبتمب
 ئكشثلب كل لكبص كبمزنع ئكقمران لئككتئ ؤنتئد أةلئء مئتمبلئ ئكبن ئكرنئضنب ئكبعقندئب كل ئكقةنر

 .قمكمك قئلمل ائسبخدئك

 أم اشثلب ئككثنط ئكفرئغ فن ئكقمران ئكبأةنر عل ئكبعانر نكقللئ قنف لبعكك سمف لئكفص مذل فن
 ئكتمد أل مثنة potential electric .The ئكقمران ئكتمد بسكن قنئسنب قكنب امئسطب أقةر

 ئكقمران قنئسنب قكنب مائكبئكن كعل لئكبعئك فسنقمل لأسم ئكبأةنر عل ئكبعانر فن كل ئكقمران
 .ئكقمران لئككتئ

 
 :-ئكةاكنب ئككمئضنع سلدرس ئككمضمع مذئ فن

 .ئكقمران ئكتمد بعرنف

 .ئكقمران لائككتئ ئكقمران ئكتمد علاقب

 .ئكفرئغ فن كشثلب ئكقمران ئكتمد ثسئا

 .ئكقمران ئكتمد كل ئكقمران لئككتئ ثسئا

 .كثكمكب لمكسئئ أكةكب

(1) 

(2) 

(3) 

(4)  

(5)  
 

 
 لكجا فن لقطةنل بنل ئكقمربن ئكجمد فرف أصح بكعلن أم ئكقمربن ئكجمد بةعرنف لبدأ أل لقب

 .ئكةمضنحنب ئلأكتكب بعض لضرا سمف ئكفرئغ فن شحلب

http://www.hazemsakeek.com/


Lectures in General Physics 

Dr. Hazem Falah Sakeek 

 

 

 (1) ةمضنحن لكتا

 بك )كمتائ( خئرتنئ شغلا أل للقم فإللئ ئلأرض سطث فمف h ئربفئع ؤكن m قبكبل تسك رفع علد
 مضع طئقب ؤكن لنبثم سمف لئكشغ ممذئ ،ئلأرضنب ئكتئذانب عتكب ضد ئكتسك كبثرنق اذكل

 ئككسئفب ائزدنئد بزدئد مذل ئكمضع مطئقب .مئلأرض m ئكتسك كل ئككقملب ئككتكمعب فن كخبزلب
h ئكتسك عكن لئككاذم لئكشغ بأةنر لزئ ؤذئ .لئككاذم لئكشغ سنزدئد ائكطاع لألل m سنبثرق فإلل 
 نصاث ثبن ئككلخفضب ئكمضع طئقب ذئب ئككلئطف ؤكن ئككربفعب ئكمضع طئقب ذئب ئككلئطف كل

 .ككصفر كسئمنئً ئكمضع طئقب فرف
 
 
 
 

 (2) ةمضنحن لكتا

 . 5.1 لال كئء قكئ فن شق U ثرفل لفرض ؤلئء عكن شق
طئقب  كل أقار B ئكلقطب علد ئككئء كتزإ ئكمضع طئقب بقمل

 ئككئء فإل S ئكصلامر فبث ؤذئ مكذكق A ئكلقطب علد ئكمضع
 نبدفف سمف A ئكلقطب ئبتئل فن فن ئكفرف نصاث أل ؤكن

 
 

Figure 5.1 

 .ككصفر كسئمنئ A&B ئكلقطبنل انل ئكمضع طئقبن

 
 
 

 (3) ةمضنحن لكتا

A&B ثئكب ملئق كشئامب ئكسئاقبنل ككثئكبنل بكئكئ ،ئكقمرانب فن ثنة أل لفبرض ئكلقطبنل 
 ؤذئ . 5.2 لشق فن قكئ لئككةئ لسان عكن Q كمتاب شثلب كل لئبت قمران لكتئ فن كمتمدبئل

 كتزإ مقذكق ئلأرضنب ئكتئذانب عتكب لكتئ فن m ككتسك كلئظرب( qo ئخبائر شثلب ملئق قئلب
qo ئكشثلب كل ائكقرا كمتمدب ئكشثلب فإل سمف Q ئكلقطب علد ئككئء )ئكسئاف لئككةئ فن B 

 لقطب ؤكن ئكشثلب كل قرناب لقطب كل ببثرق أن اعدئً أقةر B كل A ؤكن أل للقم مفنزنئئنئ
 .كلخفض قمران تمد ذئب كلئطف ؤكن كربفع قمران تمد ذئب كلئطف كل بثرقب qo ئكشثلب



Electric Potential Difference 

www.hazemsakeek.com 

 

 

فمذئ نعلن إلما إذئ كا مصكب فن دئئرب  1.5volt إذئ قالب ملاكق بطارنب فرف ئكجمد بنل قطبنما
فن  حدة قكا .ئككلخفض ئكجمد إكن ئككرةفع ئكجمد كل ئككمجبب سةةحرق ئكشحلاب فإل ،قمربنب

 قطبن بنل ئكجمد فرف نصبح حةن ئكشحلاب حرقب مسةسةكر U ئلألبمبب فن ئكصلبمر فةح حاكب
 .ككصفر كسامناً ئكبطارنب

 E شدبل قمران لكتئ فن مئقعبنل A&B لقطبنل انل ئكقمران ئكتمد فرف بعرنف نقمل مكذكق

 خئرتنب قمب امئسطب لئككاذم لئكشغ اثسئا (Fex) ئكقمرانب ئكقمم ضد (qE) شثلب كبثرنق
 ).عتكب ادمل ئكبثرنق أن ( ئبزئل ثئكب فن دئئكئ بقمل اثنة B ؤكن A كل qo ئخبائر

 
 

Figure 5.2 
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5.1 Definition of electric potential difference 

We define the potential difference between two points A and B as the work 

done by an external agent in moving a test charge qo from A to B i.e. 

VB-VA = WAB / qo (5.1) 

 

 
The unit of the potential difference is (Joule/Coulomb) which is known as 

Volt (V) 

 

Notice 

Since the work may be (a) positive i.e VB > VA 

(b) negative i.e VB < VA 

(c) zero i.e VB = VA 

 

You should remember that the work equals 
 

W  Fex .l  Fex cos l 
 
 

 If 0 <  < 90  cos  is +ve and therefore the W is +ve 

 If 90 <  < 180  cos  is -ve and therefore W is -ve 

 If  = 90 between Fex and l  therefore W is zero 

 

The potential difference is independent on the path between A and B. Since 

the work (WAB) done to move a test charge qo from A to B is independent on 

the path, otherwise the work is not a scalar quantity. (see example 5.2) 
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Figure 5.3 (a) Figure 5.3 (b) 

E 

5.2 The Equipotential surfaces 

As the electric field can be represented graphically by lines of force, the 

potential distribution in an electric field may be represented graphically by 

equipotential surfaces. 

The equipotential surface is a surface such that the potential has the same 

value at all points on the surface. i.e. VB -VA = zero for any two points on 

one surface. 

The work is required to move a test charge between any two points on an 

equipotential surface is zero. (Explain why?) 

In all cases the equipotential surfaces are at right angles to the lines of force 

and thus to E. (Explain why?) 
 

 

 

 

 

 

 

Figure 5.3 shows the equipotential surfaces (dashed lines) and the electric 

field lines (bold lines), (a) for uniform electric field and (b) for electric 

field due to a positive charge. 
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5.3 Electric Potential and Electric Field 

Simple Case (Uniform electric field): 

The potential difference between two points A and B in a Uniform electric 

field E can be found as follow, 

Assume that a positive test charge qo is moved by an external agent from A 

to B in uniform electric field as shown in figure 5.4. 

The test charge qo is affected by electric 

force of qoE in the downward direction. To 

move the charge from A to B an external 

force F of the same magnitude to the 

electric force but in the opposite direction. 

The work W done by the external agent is: 

B 

 

 

F 

Ddl 

 

WAB 

 

= Fd = qoEd (5.2) 

Oq
o
 

D   

O  q
o
E  

 

The potential difference VB-VA is 

A 

VB  VA  
WAB

 

qo 

 Ed (5.3) 
E 

Figure 5.4 
 

 

 

 

This equation shows the relation between the potential difference and the 

electric field for a special case (uniform electric field). Note that E has a 

new unit (V/m). hence, 
 

 
 

Volt  



Meter 

Newton 

Coulomb 
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The relation in general case (not uniform electric field): 
 

If the test charge qo is moved along a curved path from A to B as shown in 

figure 5.5. The electric field exerts a force qoE on the charge. To keep the 

charge moving without accelerating, an external agent must apply a force F 

equal to -qoE. 

If the test charge moves distance dl 

along the path from A to B, the work B 

done is F.dl. The total work is given 

by, 
 

B 
r r B 

r r 

WAB   F.dl 
A 

 qo 
A 

E.dl (5.4) 

 

The potential difference VB-VA is, 
 

W 
B 

r r 

VB  VA    
AB

    E.dl (5.5) 
qo A  

Figure 5.5 
 

 

 

 

 dl ئلإزئثب كبتل ئبتئل مكلل ئككسئر بثدد ئكبن من B ؤكن A كل لئكبقئك ثدمد أل ملئ لاثظ

 .ئكقمران لئككتئ مكبتل ئلإزئثب كلبتل انل ئككثصمرب ئكزئمنب من  ئكزئمنب مبقمل

If the point A is taken to infinity then VA=0 the potential V at point B is, 
 

B 
r r 

VB   E.dl 


(5.6) 

 

This equation gives the general relation between the potential and the 

electric field. 

 

 qo 
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Example 5.1 

Derive the potential difference between points A and B in uniform 

electric field using the general case. 
 

 

 

 
 

Solution  

B r r B 

 
B 

VB  VA   E.dl 
A 

  E cos180 
A 

dl   Edl 
A 

(5.7) 

 

E is uniform (constant) and the integration over the path A to B is d, 

therefore 
 

B 

VB  VA  E  dl  Ed 
A 

 

(5.8) 

 

 

 

 

 

 

 

 

Example 5.2 

 

B Ddl 

F 

C 

Oq
o
 

F 

In figure 5.6 the test charge moved 

from A to B along the path shown. 

Calculate the potential difference 

between A and B. 

Oq
o
E  

 

 

Dd 

Ddl 
O  

o
 

 

 

Oq
o
E  

 

 

A 

E 

 

Figure 5.6 
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2 

E 

 

The Electron Volt Unit 

 
A widely used unit of energy in atomic physics is the electron volt (eV). 

ELECTRON VOLT, unit of energy, used by physicists to express the 

energy of ions and subatomic particles that have been accelerated in particle 

accelerators. One electron volt is equal to the amount of energy gained by 

an electron traveling through an electrical potential difference of 1 V; this is 

equivalent to 1.60207 x 10
–19

J. Electron volts are commonly expressed as 

million electron volts (MeV) and billion electron volts (BeV or GeV). 

 
 

Solution 
 

VB-VA=(VB-VC)+(VC-VA) 
 

 
 

For the path AC the angle  is 135
o
, 

 

C r r C 

 E
 

VC  VA   E.dl 
A 

  E cos135 
A 

dl   dl 
A 

 

The length of the line AC is 2 d 

 

VC  VA  ( 2d )  Ed 

 

For the path CB the work is zero and E is perpendicular to the path 

therefore, VC-VA = 0 

VB  VA  VC  VA  Ed 
 
 

 

 

 

2 

C 
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

E B F   A 

 

  

 

5.4 Potential difference due to a point charge 

Assume two points A and B near to a positive charge q as shown in figure 

5.7. To calculate the potential difference VB-VA we assume a test charge qo 

is moved without acceleration from A to B. 
 

Figure 5.7 

In the figure above the electric field E is directed to the right and dl to the 

left. 
r r 




E.dl  E cos180 dl  Edl (5.10) 

However when we move a distance dl to the left, we are moving in a 

direction of decreasing r. Thus 
r 

dl 

Therefore 

 dr
r
 (5.11) 

-Edl=Edr (5.12) 
B 

r r rB r r
 

VB  VA   E.dl 
A 

  E.dr 
rA 

(5.13) 

Substitute for E 

1 q 
Q E  

4 r 
2
 

(5.14)

 

We get 
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q 
rB dr q  1 1 

VB  VA  4  r 2 4   r r (5.15) 

 rA
   B A 




 أل ملئ لاثظ نسبخدك ئكقئلمل مذئ لإنتئد فرف ئكتمد انل ئكقمران فن لقطبنل ئككثنط ئكفرئغ
 q. اشثلب

 
 
 
 

5.5 The potential due to a point charge 

If we choose A at infinity then VA=0 (i.e. rA  ) this lead to the potential 

at distance r from a charge q is given by 
 

V  
1 q 

4 r 

 

(5.16) 

 

 

This equation shows that the 

equipotential surfaces for a charge 

are spheres concentric with the 

charge as shown in figure 5.8. 

 

 

 

 

 

 

 

 
Figure 5.8 

 

 

 
 

 نبلئسا ئكقمران ئكتمد انلكئ ،ئككسئفب كراع كع عقسنئ نبلئسا كشثلب ئكقمران لئككتئ أل لاثظ
 .ئككسئفب كع عقسنئ

http://www.hazemsakeek.com/


Lectures in General Physics 

Dr. Hazem Falah Sakeek 

 

 

5.6 The potential due to a point charge 

 ئكتكع طرنف عل أقةر أم شثلب عل باعد كلقطب ئكقمران ئكتمد ؤنتئد ئكقئلمل مذئ ائسبخدئك نكقل
 ئكتارن ككتمد ئكقمران ثدل عكن شثلب لق عل ئكلئشئ ئككرئد ئكلقطب علد ؤنتئد ئكقكن ئكتمد

 
V = V1 + V2 + V3 + ...........+ Vn (5.17) 

 أن علدمئ

 

V  V  
 1   

 
qn 

 
(5.18) 

n
 4



n  rn 

 

 مكنس ملئ تارنًئ تكعئً بتكع لألق ،ئكثسائل فن ئلإشئرب بأخذ q ئكشثلب قنكب عل ئكبعمنض علد
 .ئكرسك عكن ئلابتئل ئلإشئرب بثدد ثنة ئكقمران لئككتئ فن للفع قلئ قكئ ئبتئمنًئ تكعئً

 
 
 
 
 
 

Example 5.3 

What must the magnitude of an isolated positive charge be for the 

electric potential at 10 cm from the charge to be +100V? 
 

 

 

Solution 

V  
1 q 

 

4 r 

 q  V 4 r 
2
  100  4  8.9 10

12
  0.1  1.110

9
 C 

 

 

n 
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Example 5.4 

What is the potential at the center of the square shown in figure 5.9? 

Assume that q1= +1 10
-8

C, q2= -210
-8

C, q3=+310
-8

C, q4=+210
-8

C, 

and a=1m. 
 

Solution 

Q  q
1 a 

 
P 

Q2q
2

 

q  q  q  q Aa 
Aa 

V  V  
 1 1 2 3 4  

n
 4 r 

The distance r for each charge from P is 0.71m 

9 10
9
 (1  2  3  2) 10

8
 

Q  q
4
 

Aa 

Figure 5.9 

Qq
3
 

V 
0.71 

 500V 

 
 

 

 

Example 5.5 

Calculate the electric potential due to an electric dipole as shown in 

figure 5.10. 

P 
 

+q 

 

2a 
 
 

-q 
 

 

 

 

 

 

Figure 5.10 

r1 

r 

r2 
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Solution 
 
 

V =  Vn = V1 + V2 

 
 q q  r2  r1 

V = K 
r 
   Kq 

r r r  1 2  2 1 

 
 

When r>>2a, 

 

r2 - r1  2acos and r1 r2  r
2
, 

 

V = Kq 
2a cos 

 K 
 p cos


(5.19) 

r 2 r 2 

 

 

where p is the dipole momentum 

 

Note that V = 0 when =90
o 

but V has the maximum positive value when 

=0
o 

and V has the maximum negative value when =180
o

. 
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

 

5.7 Electric Potential Energy 

The definition of the electric potential energy of a system of charges is the 

work required to bring them from infinity to that configuration. 

To workout the electric potential energy for a system of charges, assume a 

charge q2 at infinity and at rest as shown in figure 5.11. If q2 is moved from 

infinity to a distance r from another charge q1, then the work required is 

given by 
 

W=Vq2 

QV  
1 q1

 

q1 q2 

 

4 r 

Substitute for V in the equation of work 

1 q q Figure 5.11 
U  W   1  2 (5.20) 

 
U  

 q1q2  

4 r 

4 r12 
 

 
(5.21) 

To calculate the potential energy for systems containing more than two 

charges we compute the potential energy for every pair of charges 

separately and to add the results algebraically. 

U  
 qiqj  

4 rij 

 

(5.22)

 

مكقل ؤذئ قئلب ئككتكمعب ئككرئد ؤنتئد طئقب ئكمضع ، نطاف فن ثئكب شثلبنل فقطل ئكقئلمل ئلأم
 شثلبنل لق انل ئككخبزلب ئكطئقب لمتد ثنة ئكةئلن ئكقئلمل لسبخدك شثلبنل كل أقةر كمئ ئكقمران

 ثدل عكن أن ،تارنئ تكعئ لتكع ةك ائكثسائل ئلإشئرب ملأخذ ئكشثلب قنكب عل لعمض لق فن
 .كرب

 

If the total electric potential energy of a system of charges is positive this 

correspond to a repulsive electric forces, but if the total electric potential 

energy is negative this correspond to attractive electric forces. (explain 

why?) 

r 
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Example 5.6 

Three charges are held fixed as 

shown in figure 5.12. What is the 

potential energy? Assume that 

q=1 10
-7

C and a=10cm. 

 

-4q 

 

Solution 

U=U12+U13+U23 

 
+1q 

 

Aa 

 

Figure 5.12 

 
+2q 

 

 

U  
1
 (q)(q) 

 
(q)(2q) 

 
(4q)(2q) 

4 

 a a a 







U  
10  q 

2
 

 
 

4 a 
 

 

 
U  

9 10
9
 (10)(110

7
 )

2
 

0.1 

 
 9 10

3
 J 

 

 

 
 

 

 

 
 .ةلافر قمب من ئكشحلاب
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 

 

5.8 Calculation of E from V 

As we have learned that both the electric field and the electric potential can 

be used to evaluate the electric effects. Also we have showed how to 

calculate the electric potential from the electric field now we determine the 

electric field from the electric potential by the following relation. 

E   
dV

 
dl 

 

(5.23) 

New unit for the electric field is volt/meter (v/m) 
 
 

 لئككتئ انل  ئكرنئضنب ئكعلاقب أل لاثظ ئكقمران مئكتمد من ئكقمران لمبقئك لبفئض علاقب
 أل مبذقر .ئكقمران لؤنتئد ئككتئ لعككنب ئكبفئض اإترئء ئكتمد ئكقمران نكقل ؤذئ عككلئ مائكبئكن

 surfaces .equipotential ئكتمد كبسئمنب أسطث عكن عكمدنب ئكقمران لئككتئ خطمط

 

 
Example 5.7 

Calculate the electric field for a point charge q, using the equation 

V  
1 q 

4 r 
 

 

Solution 

 

E   
dV

 
dl 

 
  

d  1 
 


E   

q
 

dr  4 r 


d  1  

 
1 q 

4   dr  r 
 

 4 r 
2
 

    
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كمضمع  ةغطن ئكةن لئككسائ كبعض حكملاً سلعرض ئكجزء مذئ فن
 ئكقمربنل ئكجمد ئكقمربن مئككجا






5.9 Solution of some selected problems 
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Example 5.8 

Two charges of 2C and -6C are 

located at positions (0,0) m and (0,3) m, 

respectively as shown in figure 5.13. (i) 

Find the total electric potential due to 

these charges at point (4,0) m. 

(ii) How much work is required to 

bring a 3C charge from  to the point 

P? 

(iii) What is the potential energy for 

the three charges? 

 

 

-6 (0,3) 

 

 

 

+2 
(0,0) 

 

Figure 5.13 

 

 

 

 

 

 

 
(4,0) 

P 

 

Solution 

Vp = V1 + V2 

V  
1
  q1 

 
q2 

4

 r1 r 2 




9 2 10 

 
6
 6 10


 
6
  3 

V  9 10 
 4 

 
5 

 
 6.310 volt 

 

(ii) the work required is given by 

W = q3 Vp = 3  10
-6

  -6.3  10
3
 = -18.9  10

-3
 J 

The -ve sign means that work is done by the charge for the movement from 

 to P. 

 
(iii) The potential energy is given by 

U = U12 + U13 + U23 
 

 

(2 10

 
6
 )(6 10


 
6
 ) (2 10


 

6
)(310


 

6
 ) (6 10


 
6
 )(310


 
6
 ) 

U  k 
 3 

 
4 

 
5 




U  5.5 10

 
2
 Joule 
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Example 5.9 

A particle having a charge q=310
-9

C moves from point a to point b 

along a straight line, a total distance d=0.5m. The electric field is 

uniform along this line, in the direction from a to b, with magnitude 

E=200N/C. Determine the force on q, the work done on it by the 

electric field, and the potential difference Va-Vb. 
 

 

 

Solution 

The force is in the same direction as the electric field since the charge is 

positive; the magnitude of the force is given by 

F =qE = 310
-9

  200 = 60010
-9

N 

The work done by this force is 

W =Fd = 60010
-9

  0.5 = 30010
-9

J 

The potential difference is the work per unit charge, which is 

Va-Vb = W/q = 100V 

Or 

Va-Vb = Ed = 200  0.5 = 100V 
 
 

 

 
Example 5.10 

Point charge of +1210
-9

C and 

-1210
-9

C are placed 10cm part as 

shown in figure 5.14. Compute the 

potential at point a, b, and c. 

Compute the potential energy of a 

point charge +410
-9

C if it placed at 

points a, b, and c. 

A  c 

 

 

 

 

 

 

q
2
 

 

Figure 5.14 
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Solution 

We need to use the following equation at each point to calculate the 

potential, 

V  V  
  1   

 
qi 

n 

n 

 

At point a 

 

4 ri 

9 12 10
9

  12 10
9

 
Va  9 10 



At point b 


0.06 0.04 

  900V 



9  12 10
9

  12 10
9

 
Vb  9 10 



At point c 


0.04 0.14 

  1930V 



9  12 10
9

  12 10
9

 
Vc  9 10 




0.1 0.14 

  0V 


We need to use the following equation at each point to calculate the 

potential energy, 

U = qV 

At point a 

Ua = qVa = 410
-9
(-900) = -3610

-7
J 

At point b 

Ub = qVb = 410
-9
1930 = +7710

-7
J 

At point c 

Uc = qVc = 410
-9
0 = 0 
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A   

 
 

Example 5.11 

A charge q is distributed throughout a nonconducting spherical volume 

of radius R. (a) Show that the potential at a distance r from the center 

where r < R, is given by 

 

V 

Solution 

 انل ئكتمد فرف لثسا سمف فإللئ كةلا
 

VB  V   E.dl 

q(3R
2
  r 

2
) 

8 R
3
 

 

 A لقطب علد ئككمصكب غنر ئكقرب لدئخ ئكتمد لانتئد

 A. مئكلقطب كئلالمئنب فن كمضع

 مثنة كل لعكك قكئ مدئخكمئ ئكقرب خئرت كخبكفبنل قنكبنل لكككتئ أل كسأكب لكسئئ كل سئاقب

 
Eout 



q 
 

 

4 r
2
 

 
 

Ein 



qr 
 

 

4 R
3
 

 .تئمس قئلمل

VA - V = (VA - VB) + (VB - V ) 

VA  V   E in .dl   E out .dl 

 من E & dl انل ئكزئمنب أل للاثظ
180

o 1- أل أن cos180= أنضئ مكقل -dr = dl 

V  - V  = - 
 qr 

 
4 R

3
 

dr - 
 q  

dr 
4 r

2
 

q  r 
2
  q 1  q(3R

2
  r 

2
) 

= - 
4 R3  2  

+ 4  r  
= 

 
 

8 R
3

 
V  

q
 

4 R 

ؤةائبل  ئككطكما ممم A ئكلقطب علد ئكتمد مم ممذئ

 ئكثئكب مذل فن ئكتمد فإل ئكقرب سطث عكن A قئلب ؤذئ

 .ئكفرئغ فن كشثلب ئكقمران قئكتمد أن
 

 


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Example 5.12 

For the charge configuration shown in figure 5.15, Show that V(r) for 

the points on the vertical axis, assuming r >> a, is given by 

V  
1
  q 

 
2aq 



Solution 

Vp = V1 + V2 + V3 

q q 

4






q 


 r r 2 



P 

V  
4 (r  a) 

 
 

4 r 


4 (r  a) 

q(r  a)  q(r  a) 

4 (r 2  a2) 

+q 

 
  q  

4 r 
+q 

2aq 



4 r2 (1  a2 / r2) 

when r>>a then a
2
/r

2
 <<1 

q a 

4 r -q 

 

V   
2aq 

4 r2 

(1  a2 / r 2)

 
1
 

q 
 

 

4 r 
Figure 5.15 

 تند قبقرنا فقط ثدنل لاأم مئلاثبفئظ ئكثدنل ذئب الظرنب ئكقمسنل فق نكقل
(1 + x)

n
 = 1 + nx when x<<1 

 

V   
2aq 

4 r2 

(1  a2 / r 2) 
q 

 
 

4 r 

 

a لؤمكئ منكقل
2
/r

 1 ـك ائكلساب 2

V  1  q 
 

2aq 

4

 r

 r 2 







r 

a 
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2a 2a a  







Example 5.13 

Derive an expression for the work 

required to put the four charges together 

as indicated in figure 5.16. 

 

 

 
Q  +q 

 

Q -q 
A 

a 
Aa 

 

 

 

Solution 

The work required to put these charges 

together is equal to the total electric potential 

energy. 

 

U = U12 + U13 + U14 + U23 + U24 + U34 

 
Q -q 

 

Aa 

 

Figure 5.16 

 

 
Q  +q 

 

U  
1
  q2 


 q2  

 
q2 

 
q2 


 q2  

 
q2 

4 
 

a a a 





U  
1
  4q2 

 
2q2 

4


U  

1
 





 24q2  2q2  

 
 0.2q

2
 

 
 

4 


2a 




 a 

 

The minus sign indicates that there is attractive force between the charges 

 

 

 

 

 

 

In Example 5.13 assume that if all the charges are positive, prove that 

the work required to put the four charges together is 

U  
1
 5.41q

2
 

2a 



 

 

a 
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4  a 
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q3 

 



 
 

Example 5.14 

In the rectangle shown in figure 5.17, q1 = -5x10
-6

C and q2 = 2x10
-6

C 

calculate the work required to move a charge q3 = 3x10
-6

C from B to A 

along the diagonal of the rectangle. 
 

 

q1 
15cm A 

 
5cm 

 

B q2
 

Figure 5.17 
 

 

Solution 

from the equation VB-VA = WAB / qo 

VA= V1 + V2 & VB = V1 + V2 

V 
q  5 10 


 
6
 2 10 


 
6
  = 6  10

4
 V 

A 
4  0.15 


0.05 



V 
q  5 10 


 
6
 2 10 


 
6
  = -7.8  10

4
 V 

B 
4  0.05 


0.15 



WBA = (VA- VB) q3 

 
=(6  10

4
 + 7.8  10

4
) 3  10

-6
 = 0.414 Joule 
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Example 5.15 

Two large parallel conducting plates are 10 cm a part and carry equal 

but opposite charges on their facing surfaces as shown in figure 5.18. 

An electron placed midway between the two plates experiences a force 

of 1.6  10
-15

 N. 

What is the potential difference between the plates? 
 

 

 

 

 

Solution  

V -V =Ed 
B A 

 ئككؤةربل ئككتئ ثسئا نكقل ئكقمران ئكقمرانب ئكقمم طرنف عل
 ئلإكقبرمل عكن

 

F = eE  E = F/e 

 

V -V = 10000  0.1 = 1000 volt 
B A 

 

10cm 

Figure 5.18 

 

 

                   

A B 

E 
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5.10 Problems 
 

 

5.1) What potential difference is 

needed to stop an electron with an 

initial speed of 4.210
5
m/s? 

 
5.2) An ion accelerated through a 

potential difference of 115V 

experiences an increase in potential 

energy of 7.3710
-17

J. Calculate the 

charge on the ion. 

 
5.3) How much energy is gained by 

a charge of 75 C moving through 

a potential difference of 90V? 

 
5.4) An infinite charged sheet has a 

surface charge density  of 1.010
-
 

7
 C/m

2
. How far apart are the 

q1=5C, q2=-10C, a=0.4m, and 

b=0.5m. 

 
 

q2 

 

 

 

 

 

 

 
Figure 5.19 

 
5.8) Two point charges are located 

as shown in Figure 5.20, where 
q =+4C, q =-2C, a=0.30m, and 

equipotential surfaces whose 
l 

2

 

potentials differ by 5.0 V? 

 
5.5) At what distance from a point 

charge of 8C would the potential 

equal 3.610
4
V? 

 
5.6) At a distance r away from a 

point charge q, the electrical 

potential is V=400V and the 

magnitude of the electric field is 

E=150N/C. Determine the value of 

q and r. 

 
5.7) Calculate the value of the 

electric potential at point P due to 

the charge configuration shown in 

Figure  5.19.  Use  the values 

b =0.90m. Calculate the value of 

the electrical potential at points P1, 

and P2. Which point is at the 

higher potential? 

 
y 

 

 

 

 

x 

 

 

 

 

 

 

 

 

Figure 5.20 

q1 

 

  

 

 

 

  

q1  q2 

q1 

 

q2 

a 

 
b a 

P1 

b 

 

P2 
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5.9) Consider a point charge with 

q=1.510
-6

C. What is the radius of 

an equipotential surface having a 

potential of 30V? 

 
5.10) Two large parallel conducting 

plates are 10cm apart and carry 

equal and opposite charges on their 

facing surfaces. An electron placed 

midway between the two plates 

experiences a force of 1.610
15

N. 

What is the potential difference 

between the plates? 

 

5.11) A point charge has q=1.010
-
 

6
C. Consider point A which is 2m 

distance and point B which is 1m 

distance as shown in the figure 

5.21(a). (a) What is the potential 

difference VA-VB? (b) Repeat if 

points A and B are located 

differently as shown in figure 

5.21(b). 

5.12) In figure 5.22 prove that the 

work required to put four charges 

together on the corner of a square 

of radius a is given by (w=- 

0.21q
2
/  a). 

 
+q - q 

 

 
a 

 

 

 
- q a +q 

Figure 5.22 

 

5.13) Two charges q=+210
-6

C are 

fixed in space a distance d=2cm) 

apart, as shown in figure 5.23 (a) 

What is the electric potential at 

point C? (b) You bring a third 

charge q=2.010
-6

C very slowly 

from infinity to C. How much 

work must you do? (c) What is the 

potential  energy  U  of the 
B A configuration when the third charge 

q is in place? 

 

Figure 5.21(a) C 
 
 

 
q 

 

Figure 5.21(b) 

q O q 

Figure 5.23 
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5.14) Four equal point charges of 

charge q=+5C are located at the 

corners of a 30cm by 40cm 

rectangle. Calculate the electric 

potential energy stored in this 

charge configuration. 

5.15) Two point charges, Q1=+5nC 

and Q2=-3nC, are separated by 

35cm. (a) What is the potential 

energy of the pair? What is the 

significance of the algebraic sign of 

your answer? (b) What is the 

electric potential at a point midway 

between the charges? 
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[1] Two small beads having positive charges 3 and 1 are fixed on the 

opposite ends of a horizontal insulating rod, extending from the origin to the 

point x=d. As in Figure 1, a third small, charged bead is free to slide on the 

rod. At what position is the third bead in equilibrium? 
+3q +q 

 

 

Figure 1 

a. x = 0.366d 

b. x = 0.634d 

c. x = 0.900d 

d. x = 2.37d 

 

[2] Two identical conducting small spheres are placed with their centers 

0.300m apart. One is given a charge of 12.0nC and the other one a charge of 

18.0nC. (a) Find the electrostatic force exerted on one sphere by the other. 

(b) The spheres are connected by a conducting wire. After equilibrium has 

occurred, find the electrostatic force between the two. 

 

a. (a) 2.16  10
-5

 N attraction; (b) 0 N repulsion 

b. (a) 6.47  10
-6

 N repulsion; (b) 2.70  10
-7

 N attraction 

c. (a) 2.16  10
-5

 N attraction; (b) 8.99  10
-7

 N repulsion 

d. (a) 6.47  10
-6

 N attraction; (b) 2.25  10
-5

 N repulsion 

 

[3] An electron is projected at an angle of 40.0
o
 above the horizontal at a 

speed of 5.20  10
5
 m/s in a region where the electric field is E = 3 50 j N/C. 

Neglect gravity and find (a) the time it takes the electron to return to its 

maximum height, (h) the maximum height it reaches and (c) its horizontal 

displacement when it reaches its maximum height. 

 

a. (a) 1.09  10
-8

 s; (b) 0.909 mm; (c) 2.17 m 

b. (a) 1.69  10
-8

 s; (b) 2.20 mm; (c) 4.40 m 

c. (a) 1.09  10
-8

 s; (b) 4.34 mm; (c) 0.909 m 

d. (a) 1.30  10
-8

 s; (b) 1.29 mm; (c) 2.17 m 

 

[4] Two identical metal blocks resting on a frictionless horizontal surface are 

connected by a light metal spring for which the spring constant is k 175 N/m 

and the unscratched length is 0.350 m as in Figure 2a. 
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m m m m 

 

k k 

a b 

 

Figure 2 

A charge Q is slowly placed on the system causing the spring to stretch to an 

equilibrium length of 0.460 m as in Figure 2b. Determine the value of Q, 

assuming that all the charge resides in the blocks and that the blocks can be 

treated as point charges. 

a. 64.8 C 

b. 32.4 C 

c. 85.1 C 

d. 42.6 C 

 

[5] A small plastic ball 1.00 g in mass is suspended by a 24.0 cm long string 

in a uniform electric field as shown in Figure P23.52. 

y 

 

 
E=1.5x10

3
i N/C 

 
 
 
 
 
 

m=1g 
 

Figure 3 

 

If the ball is in equilibrium when the string makes a 23.0
o
 angle with the 

vertical, what is the net charge on the ball? 

 

a. 36.1 C 

b. 15.4 C 

c. 6.5 3 C 

d. 2.77 C 

 

[6] An object having a net charge of 24.0 C is placed in a uniform electric 

field of 6 10 N/C directed vertically. What is the mass of the object if it 

"floats" in the field? 
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a. 0.386 g 

b. 0.669 g 

c. 2.59 g 

d. 1.49 g 

 

[7] Four identical point charges (q = +14.0 C) are located on the corners of 

a rectangle as shown in Figure 4. 
q q 

 

 
W 

 

q L q 

Figure 4 
 

The dimensions of the rectangle are L = 55.0 cm and W= 13.0 cm. 

Calculate the magnitude and direction of the net electric force exerted on the 

charge at the lower left corner by the other three charges. (Call the lower left 

corner of the rectangle the origin.) 

 

a. 106 mN @ 264
o
 

b. 7.58 mN @ 13.3
o
 

c. 7.58 mN @ 84.0
o
 

d. 106 mN @ 193
o
 

 

[8] An electron and proton are each placed at rest in an electric field of 720 

N/C. Calculate the speed of each particle 44.0 ns after being released. 

 

a. ve = 1.27  10
6
 m/S, vp = 6.90  10

3
 m/s 

b. ve = 5.56  10
6
 m/S, vp= 3.04  10

3
 

m/s   

c. ve. = 1.27  10
14

 m/S, vp = 6.90  10
10

 m/s 

d. ve = 3.04  10
3
 m/S, vp = 5.56  10

6
 m/s 

 

 

 
 

[9] Three point charges are arranged as shown in Figure 5. 
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y 

 

 

x 

 
 
 

 

Figure 5 

 

(a) Find the vector electric field that the 4.00 nC and -2.00 nC charges 

together create at the origin. (b) Find the vector force on the 3.00 nC charge. 

 

a. (a) (0.144i - 0.103 j) kN/C; (b) (0.432i - 0.308j) N 

b. (a) (-0.575i - 0.587j ) kN/C; (b) (-1.73i- 1.76j) N 

c. (a) (-0.144i - 0.103j) kN/C; (b) (-0.432i - 0.308j) N 

d. (a) (-0.575i + 0.587j) kN/C; (b) (-1.73i + 1.76j) N 

 

[10] Two 1.00 C point charges are located on the x axis. One is at x = 0.60 

m, and the other is at x = -0.60 m. (a) Determine the electric field on the y 

axis at x = 0.90 m. (b) Calculate the electric force on a -5.00 C charge 

placed on the y axis at y = 0.90 m. 

 

a. (a) (8.52  10
3
i +1.28  l0

4
j)N/C; (b) (-4.62  l0

-2
i – 6.39  10

-2
j)N 

b. (a) 8.52  10
3
j N/C; (b) -4.26  10

-2
j N 

c. (a) 1.28  10
4
j N/C; (b) -6.39  10

-2
j N 

d. (a) -7.68  10
3
N/C; (b) 3.84  10

-2
j N 

 

[11] A 14.0C charge located at the origin of a cartesian coordinate system 

is surrounded by a nonconducting hollow sphere of radius 6.00 cm. A drill 

with a radius of 0.800 mm is aligned along the z-axis, and a hole is drilled 

in the sphere. Calculate the electric flux through the hole. 

 

a. 176 Nm
2
/C 

b.4.22 Nm
2
/C 

c. 0 Nm
2
/C 

d. 70.3 Nm
2
/C 

 

[12] An electric field of intensity 2.50 kN/C is applied along the x-axis. 

Calculate the electric flux through a rectangular plane 0.450 m wide and 

3 nC 0.250 m 4 nC 

0.175 m 

-2 nC 
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0.800 m long if (a) the plane is parallel to the yz plane; (b) the plane is 

parallel to the xy plane; (c) the.plane contains the y-axis and its normal 

makes an angle of 30.0
o
 with the x-axis. 

 

a. (a) 900 Nm
2
/C; (b) 0 Nm

2
/C; (c) 779 Nm

2
/C 

b. (a) 0 Nm
2
/C; (b) 900 Nm

2
/C; (c) 779 Nm

2
/C 

c. (a) 0 Nm
2
/C; (b) 900 Nm

2
/C; (c) 450 Nm

2
/C 

d. (a) 900 Nm
2
/C; (b) 0 Nm

2
/C; (c) 450 Nm

2
/C 

 

[13] A conducting spherical shell of radius 13.0 cm carries a net charge of - 

7.40 C uniformly distributed on its surface. Find the electric field at 

points (a) just outside the shell and (b) inside the shell. 

 

a. (a) (-7.88 mN/C)r; (b) (-7.88 mN/C)r 

b. (a) (7.88 mN/C)r; (b) (0 mN/C)r 

c. (a) (-3.94 rnN/C)r; (b) (0 mN/C)r 

d. (a) (3.94 mN/C)r; (b) (3.94 mN/C)r 

 

[14] A point charge of 0.0562 C is inside a pyramid. Determine the total 

electric flux through the surface of the pyramid. 

 

a.1.27  10
3
 Nm

2
/C

2
 

b.6.35  10
3
 Nm

2
/C

2
 

c. 0 Nm
2
/C

2
 

d. 3.18  10
4
 Nm

2
/C

2
 

 

[15] A large flat sheet of charge has a charge per unit area of 7.00 C/m
2
. 

Find the electric field intensity just above the surface of the sheet, measured 

from its midpoint. 

 

a. 7.91  10
5
 N/C up 

b. 1.98  10
5
 N/C up 

c. 3.95  10
5
 N/C up 

d. 1.58  10
6
 N/C up 

 

 

 

[16] The electric field on the surface of an irregularly shaped conductor 

varies from 60.0 kN/C to 24.0 kN/C. Calculate the local surface charge 
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density at the point on the surface where the radius of curvature of the 

surface is (a) greatest and (b) smallest. 

 

a. 0.531 C/m
2
; (b) 0.2l2, C/m

2
 

b. l.06, C/m
2
; (b) 0.425 C/m

2
 

c. 0.425, C/m
2
 ; (b) 1.06C/m

2
 

d. 0.212 C/m
2
; (b) 0.531 C/m

2
 

 

[17] A square plate of copper with 50.0 cm sides has no net charge and is 

placed in a region of uniform electric field of 80.0 kN/C directed 

perpendicular to the plate. Find (a) the charge density of each face of the 

plate and (b) the total charge on each face. 

 

a. (a)  = ± 0.708 C/m
2
; (b) Q =± 0.0885 C 

b. (a)  = ± 1.42 C/m
2
; (b) Q = ± 0.354 C 

c. (a)  = ± 0.708 C/m
2
; (b) Q = ± 0.177 C 

d. (a)  = ± 1.42 C/m
2
; (b) Q = ± 0.177 C 

 

[18] The following charges are located inside a submarine: 5.00C, -9.00C, 

27.0C and -84.0C. (a) Calculate the net electric flux through the 

submarine. (b) Is the number of electric field lines leaving the submarine 

greater than, equal to, or less than the number entering it? 

 

a. (a) 1.41  10
7
 Nm

2
/C;  (b) greater than 

b. (a) -6.89  10
6
 Nm

2
/C; (b) less than 

c. (a) -6.89  10
6
 Nm

2
/C; (b) equal to 

d. (a) 1.41  10
7
 Nm

2
/C;  (b) equal to 

 

[19] A solid sphere of radius 40.0 cm has a total positive charge of 26.0C 

uniformly distributed throughout its volume. Calculate the magnitude of the 

electric field at 90.0 cm. 

 

a. (2.89  10
5
 N/C)r 

b. (3.29  10
6
 N/C)r 

c. 0 N/C 

d. (1.46  10
6
 N/C)r 
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[20] A charge of 190 C is at the center of a cube of side 85.0 cm long. (a) 

Find the total flux through each face of the cube. (b) Find the flux through 

the whole surface of the cube. 

 

a. (a) 3.58  10
6
 Nm

2
/C;  (b) 2.15  10

7
 Nm

2
/C 

b. (a) 4.10  10
7
 Nm

2
/C;  (b) 4.10  10

7
 Nm

2
/C 

c. (a) 1.29  10
8
 Nm

2
/C;  (b) 2.15  10

7
 Nm

2
/C 

d. (a) 6.83  10
6
 Nm

2
/C;  (b) 4.10  10

7
 Nm

2
/C 

 

[21] A 30.0 cm diameter loop is rotated in a uniform electric field until the 

position of maximum electric flux is found. The flux in this position is 

found to be 3.20 x 105 Nm2/C. What is the electric field strength? 

 

a. 3.40  10
5
 N/C 

b. 4.53  10
6
 N/C 

c. 1.13  10
6
N/C 

d. 1.70  10
5
 N/C 

 

[22] Consider a thin spherical shell of radius 22.0 cm with a total charge of 

34.0C distributed uniformly on its surface. Find the magnitude of the 

electric field (a) 15.0 cm and (b) 30.0 cm from the center of the charge 

distribution. 

 

a. (a) 6.32  10
6
 N/C; (b) 3.40  10

6
 N/C 

b. (a) 0 N/C; (b) 6.32  10
6
 N/C 

c. (a) 1.36  10
7
 N/C; (b) 3.40  10

6
 N/C 

d. (a) 0 N/C; (b) 3.40  10
6
 N/C 

 

[23] A long, straight metal rod has a radius of 5.00 cm and a charge per unit 

length of 30.0 nC/m. Find the electric field 100.0 cm from the axis of the 

rod, where distances area measured perpendicular to the rod. 

 

a. (1.08  10
4
 N/C)r 

b. (2.70  10
2
 N/C)r 

c. (5.39  10
2
 N/C)r 

d. (0 N/C)r 
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[24] A solid conducting sphere of radius 2.00 cm has a charge of 8.00 C. A 

conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm 

is concentric with the solid sphere and has a charge of -4.00 C. Find the 

electric field at r = 7.00 cm from the center of this charge configuration. 

 

a. (2.20  10
7
 N/C)r 

b. (4.32  10
7
 N/C)r 

c. (7.34  10
6
 N/C)r 

d. (1.44  10
7
 N/C)r 

 

[25] The electric field everywhere on the surface of a thin spherical shell of 

radius 0.650 m is measured to be equal to 790 N/C and points radially 

toward the center of the sphere. (a) What is the net charge within the sphere's 

surface? (b) What can you conclude about the nature and distribution of the 

charge inside the spherical shell? 

 

a. (a) 3.7110
-8

C; (b) The charge is negative, its distribution is 

spherically symmetric. 

b. (a) 3.71  10
-8

 C; (b) The charge is positive, its distribution 

is uncertain. 

c. (a) 1.9310
-4

 C; (b) The charge is positive, its distribution is 

spherically symmetric. 

d. (a) 1.9310
-4

 C; (b) The charge is negative, its distribution 

is uncertain. 

 

[26] Four identical point charges (q = +16.0 C) are located on the corners 

of a rectangle, as shown in Figure 6. 
 

q q 

 

 
W 

 

q L q 

Figure 6 
 

The dimensions of the rectangle are L 70.0 cm and W= 30.0 cm. Calculate 

the electric potential energy of the charge at the lower left corner due to the 

other three charges. 

 

a. 14.9 J 
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4 cm 

2 cm 

b. 7.94 J 

c. 14.0 J 

d. 34.2 J 

 

[27] The three charges in Figure 7 are at the vertices of an isosceles triangle. 
 

q 
 

-q -q 

Figure 7 
 

Calculate the electric potential at the midpoint of the base, taking q=7.00 C. 

a. -14.2 mV 

b. 11.0 mV 

c. 14.2 mV 

d. -11.0mV 

 

 

 

 

[28] An insulating rod having a linear charge density = 40.0 C/m and linear 

mass density 0.100 kg/m is released from rest in a uniform electric field 

E=100 V/m directed perpendicular to the rod (Fig. 8). 
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E 
E

 

  

 

 

Figure 8 

 

(a)  Determine the speed of the rod after it has traveled 2.00 m. (b) 

How does your answer to part (a) change if the electric field is not 

perpendicular to the rod? 

 

a. (a) 0.200 m/s; (b) decreases 

b. (a) 0.400 m/s; (b) the same 

c. (a) 0.400 m/s; (b) decreases 

d. (a) 0.200 m/s; (b) increases 

 

[29] A spherical conductor has a radius of 14.0 cm and a charge of 26.0C. 

Calculate the electric field and the electric potential at r = 50.0 cm from the 

center. 

 

a. 9.35  10
5
 N/C, 1.67 mV 

b. 1.19  10
7
 N/C, 0.468 mV 

c. 9.35  10
5
 N/C, 0.468 mV 

d. 1.19  10
7
 N/C, 1.67 mV 

 

[30] How many electrons should be removed from an initially unchanged 

spherical conductor of radius 0.200 m to produce a potential of 6.50 kV at 

the surface? 

 

a. 1.81  10
11

 

b. 2.38  10
15

 

c. 9.04  10
11

 

d. 1.06  10
15

 

 
 

[31] An ion accelerated through a potential difference of 125 V experiences 

an increase in kinetic energy of 9.37  10
-17

 J. Calculate the charge on the 

ion. 
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a. 1.33  10
18

 C 

b. 7.50  10
-19

 C 

c. 1. 17  10
-14

 C 

d. 1.60  10
-19

 C 

 

[32] How much work is done (by a battery, generator, or some other source 

of electrical energy) in moving Avagadro's number of electrons from an 

initial point where the electric potential is 9.00 V to a point where the 

potential is -5.00 V? (The potential in each case is measured relative to a 

common reference point.) 

 

a. 0.482 MJ 

b. 0.385 MJ 

c. 1.35 MJ 

d. 0.867 MJ 

 

[33] At a certain distance from a point charge, the magnitude of the electric 

field is 600 V/m and the electric potential is -4.00 kV. (a) What is the 

distance to the charge? (b) What is the magnitude of the charge? 

 

a. (a) 0.150 m; (b) 0.445 C 

b. (a) 0.150 m; (b) -1.50 C 

c. (a) 6.67 m; (b) 2.97 C 

d. (a) 6.67 m; (b) -2.97 C 

 

[34] An electron moving parallel to the x-axis has an initial speed of 3.70  

10
6
 m/s at the origin. Its speed is reduced to 1.40  10

5
 m/s at the point x = 

2.00 cm. Calculate the potential difference between the origin and that 

point. Which point is at the higher potential? 

 

a. -38.9 V, the origin 

b. 19.5 V, x 

c. 38.9 V, x 

d. -19.5 V, the origin 
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Solution of the multiple choice questions 
 

 
 

 

Q. No. Answer  Q. No. Answer 

1 b  18 b 

2 c  19 a 

3 a  20 a 

4 d  21 b 

5 d  22 d 

6 d  23 c 

7 a  24 c 

8 b  25 a 

9 b  26 c 

10 c  27 d 

11 d  28 b 

12 a  29 c 

13 c  30 c 

14 b  31 b 

15 c  32 c 

16 d  33 d 

17 c  34 a 

 

 

 

 

 



 

 

 



Capacitors and capacitance 

www.hazemsakeek.com 

 

 

Applications of Electrostatic 

 

 
 

 
 

 

 

 

 

Part 2 

http://www.hazemsakeek.com/


Lectures in General Physics 

Dr. Hazem Falah Sakeek 

 

 

 

 

 
 

 

 

 

 

 

لكھرتي المكثف ا

 لكھرتيحا لسعحوا
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Capacitors and Capacitance 

 
6.1 Capacitor 

 

6.2 Definition of capacitance 
 

6.3 Calculation of capacitance 
 

6.3.1 Parallel plate capacitor 

6.3.2 Cylindrical capacitor 

6.3.3 Spherical capacitor 

 

6.4 Combination of capacitors 
 

6.4.1 Capacitors in parallel 

6.4.2 Capacitors in series 

 

4.5 Energy stored in a charged capacitor (in electric field) 
 

6.6 Capacitor with dielectric 
 

6.7 problems 
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Capacitors and Capacitance 

 لكھرتيحا لسعحوا لكھرتيا لمكثفا
 

 

 

 

 

 

 

 
 

 يعتثر لفصلا اذه تطثيقاً على سآسنر حيث ،نحآلساا للكھرتيح لأساسيحا يمهلمفاا على

 تخلو لا لتيا لكھرتيحا جلأجھسا من يوه Capacitors خلمكثفاا خصائص على فلتعرا

 .ھرتيحآ جئردا يحأ منھا .لكھرتيحا للطاقح نمخس تمثاتح لمكثفا يعدو عن رجعثا لمكثفوا

 .لحزعا دجما تينھما يفصلموصلين 
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6.1 Capacitor 

A capacitor consists of two conductors separated by 

an insulator Figure 6.1. The capacitance of the 

capacitor depends on the geometry of the 

conductors and on the material separating the 

charged conductors, called dielectric that is an 

insulating material. The two conductors carry equal 

and opposite charge +q and -q. 

 

6.2 Definition of capacitance 

The capacitance C of a capacitor is defined 

 
 

Insulator 

 

Conductor 

 

Figure 6.1 

 

 
 

Electric field 

as the ratio of the magnitude of the charge 

on either conductor to the magnitude of the 

potential difference between them as shown 

in Figure 6.2. 

Capacitor 

C  
q
 

V 

 

(6.1) 

 

 
 
 

Battery 

The capacitance C has a unit of C/v, which 

is called farad F 

F = C/v 

Figure 6.2 

The farad is very big unit and hence we use submultiples of farad 

1F = 10
-6

F 

1nF = 10
-9

F 

1pF = 10
-12

F 

 

The capacitor in the circuit is represented by the symbol shown in Figure 

6.3. 

Figure 6.3 
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6.3 Calculation of capacitance 

The most common type of capacitors are:- 

 Parallel-plate capacitor 

 Cylindrical capacitor 

 Spherical capacitor 

We are going to calculate the capacitance of parallel plate capacitor using 

the information we learned in the previous chapters and make use of the 

equation (6.1). 

 

6.3.1 Parallel plate capacitor 

Two parallel plates of equal area A are separated by distance d as shown in 

figure 6.4 bellow. One plate charged with +q, the other -q. 
 

 

 

 

Gaussian 
surface 

 

Figure 6.4 

The capacitance is given by C  
q
 

V 

First we need to evaluate the electric field E to workout the potential V. 

Using gauss law to find E, the charge per unit area on either plate is 

 = q/A. (6.2) 

 E  
 

 
q
 
 

(6.3), (4.9) 
 

  A 

The potential difference between the plates is equal to Ed, therefore 
 

V  Ed 
qd 

 
 

 A 

 

(6.4) 

The capacitance is given by 
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C  
q 


V 

 
(6.5) 

 C  
 A 

d 

 
(6.6) 

 
 

Notice that the capacitance of the parallel plates capacitor is depends on the 

geometrical dimensions of the capacitor. 

The capacitance is proportional to the area of the plates and inversely 

proportional to distance between the plates. 

 ئككعئدكب (6.6) سعب أل ثنة ،كل ئكملدسنب ئلأاعئد لخلا كل ئككقةف سعب ثسئا كل بكقللئ
 .ئككمثنل انل ئككسئفب كع معقسنئً ئككمثنل انل ئككشبرقب ئككسئثب كع طردنئً ببلئسا ئككقةف

 
 
 
 

Example 6.1 

An air-filled capacitor consists of two plates, each with an area of 

7.6cm
2
, separated by a distance of 1.8mm. If a 20V potential difference 

is applied to these plates, calculate, 

(a) the electric field between the plates, 

(b) the surface charge density, 

(c) the capacitance, and 

(d) the charge on each plate. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

q 

qd  A 
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Solution 

(a) E  
V

 
d 
 

20 

1.8 10
3

 
 1.1110

4
 V m 

(b)    E  (8.85 10
12

 )(1.1110
4
 )  9.83 10

8
 C m

2
 

 
(c) C 

 A 



d 

(8.85 10
12

 )(7.6 10
4

 ) 

1.8 10
3

 

 
 3.74 10 

 
12 F 

(d) q  CV  (3.74 10
12

 )(20)  7.48 10
11

 C 
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lnb 

6.3.2 Cylindrical capacitor 

In the same way we can calculate the capacitance of cylindrical capacitor, 

the result is as follow 

C  
2 l 

 
(6.7) 

 

Where l is the length of the cylinder, a is the radius of the inside cylinder, 

and b the radius of the outer shell cylinder. 

 

 

 
6.3.3 Spherical Capacitor 

In the same way we can calculate the capacitance of spherical capacitor, the 

result is as follow 

C  
4 ab 

b  a 

 
(6.8) 

Where a is the radius of the inside sphere, and b is the radius of the outer 

shell sphere. 
 

 

 

Example 6.2 

An air-filled spherical capacitor is constructed with inner and outer 

shell radii of 7 and 14cm, respectively. Calculate, 

(a) The capacitance of the device, 

(b) What potential difference between the spheres will result in a 

charge of 4C on each conductor? 
 

 
 

Solution 

(a) C  
4 ab 

b  a 
 

(4  8.85 10
12

 )(0.07)(0.14) 

(0.14  0.07) 

 

 1.56 10 

 

11 F 

q 4 10
6 5 

(b) V  
C 
 

1.56 10
11

 
 2.56 10 V 
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q 

 
، ئكبطارنب جمد كفرف كسامناً

 
 .كقتف لق سعب

 

6.4 Combination of capacitors 

Some times the electric circuit consist of more than two capacitors, which 

are, connected either in parallel or in series the equivalent capacitance is 

evaluated as follow 

 

 

6.4.1 Capacitors in parallel: 

In parallel connection the capacitors are connected as shown in figure 6.5 

below where the above plates are connected together with the positive 

terminal of the battery, and the bottom plates are connected to the negative 

terminal of the battery. 
 

 
 

V 

 

Figure 6.5 

 
 

In this case the potential different across each capacitor is equal to the 

voltage of the battery V 

 

 
The charge on each capacitor is 

q1  C1V1 ; 

The total charge is 

q  q1  q2  q3 

q  (C1  C2  C3 )V 

 
Q C  

V
 

The Equivalent capacitance is 

i.e. V=V1=V2=V3 

 

 
q2  C2V2 ; 

 

 

 
q3  C3V3 

 

(6.9) 

 

 

 

 

 

 

C  C1  C2  C3 
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6.4.2 Capacitors in series: 

In series connection the capacitors are connected as shown in figure 6.6 

below where the above plates are connected together with the positive 

 

V
1 

V
2 

V
3
 

 

V 

Figure 6.6 

 

In this case the magnitude of the charge must be the same on each plate with 

opposite sign 

i.e. q=q1=q2=q3 

 
The potential across each capacitor is 

V1  q / C1 ; V2  q / C2 ; V3  q / C3 

The total potential V is equal the sum of the potential across each capacitor 

V  V1  V2  V3 

 1 1 1 
V  q   C C C 

  1 2 3 

q 1 
C  

V  1    1    1  

C1 C2 C3 

The Equivalent capacitance is 

(6.10) 

 ئكجمد
 .ئكبطارنب جمدفرف 

  
1 


1
  

 

C C1 C2 C3 
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Example 6.3 

Find the equivalent capacitance between points a and b for the group of 

capacitors shown in figure 6.7 . C1=1F, C2=2F, C3=3F, C4=4F, 

C5=5F, and C6=6F. 
 

 

 

 

 

 

aa 

 

 

(i) 

Figure 6.7 
 

 

Solution 

First the capacitor C3 and C6 are connected in series so that the equivalent 

capacitance Cde is 

1  
 

1 
 

1 
; C  2F 

Cde 6 3 

Second C1 and C5 are connected in parallel 

Ckl=1+5=6F 

The circuit become as shown below 
 

 
2 

 

 

 

 

 

 

(ii) 

Continue with the same way to reduce the circuit for the capacitor C2 and 

Cde to get Cgh=4F 
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4 4 

 

 

 

 

 

(iii) 

 

Capacitors Cmg and Cgh are connected in series the result is Cmh=2F, The 

circuit become as shown below 
 

 
2 

 

 

 

 

 

(iv) Cap

acitors Cmh and Ckl are connected in parallel the result is 

8 

 

(v)  
 

 

 

Ceq=8F. 
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Example 6.4 

In the above example 6.3 determine the potential difference across each 

capacitor and the charge on each capacitor if the total charge on all the 

six capacitors is 384C. 
 

 

 

Solution 

First consider the equivalent capacitor Ceq to find the potential between 

points a and b (Vab) 

 
Vab 

 
Qab 

Cab 

 
384 

 48V 
8 

Second notice that the potential Vkl=Vab since the two capacitors between k 

and l are in parallel, the potential across the capacitors C1 and C5 = 48V. 

V1=48V and Q1=C1V1=48C 

 
And for C5 

V5=48V and Q5=C5V5=240C 

 
For the circuit (iv) notice that Vmh=Vab=48V, and 

Qmh=CmhVmh=228=96C 

Since the two capacitors shown in the circuit (iii) between points m and h 

are in series, each will have the same charge as that of the equivalent 

capacitor, i.e. 

Qmh=Qgh=Qmh=96C 

 
Vmg 

 

Vgh 

 
Qmg 

Cmg 

 
Qgh 

Cgh 

 

 
96 

 24V 
4 

 

 
96 

 24V 
4 

Therefore for C4, V4=24 and Q4=96C 

In the circuit (ii) the two capacitor between points g and h are in parallel so 

the potential difference across each is 24V. 
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Therefore for C2, V2=24V and Q2=C2V2=48C 

Also in circuit (ii) the potential difference 

Vde=Vgh=24V 

And  

Qde=CdeVde=224=48C 

The two capacitors shown in circuit (i) between points d and a are in series, 

and therefore the charge on each is equal to Qde. 

Therefore for C6, Q6=48C 

V   
Q6

 
6 

C
 

 

 8V 
6 

 

For C3, Q3=48C and V3=Q3/C3=16V 

 
 

The results can be summarized as follow: 
 

 

Capacitor 
Potential 

Difference (V) 

Charge 

(C) 

C1 48 48 

C2 24 48 

C3 16 48 

C4 24 96 

C5 48 240 

C6 8 48 

Ceq 48 384 
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4.5 Energy stored in a charged capacitor (in electric field) 

If the capacitor is connected to a power supply such as battery, charge will 

be transferred from the battery to the plates of the capacitor. This is a 

charging process of the capacitor which mean that the battery perform a 

work to store energy between the plates of the capacitor. 

Consider uncharged capacitor is connected to a battery as shown in figure 

6.8, at start the potential across the plates is zero and the charge is zero as 

well. 
 
 

S 

 

 

 

Figure 6.8 

 

If the switch S is closed then the charging process will start and the potential 

across the capacitor will rise to reach the value equal the potential of the 

battery V in time t (called charging time). 

 فـئككقت محنـك بنل ئكجمد فرف نصبح حةن ئككقتف شحل عككنب ةسةكر S ئككفةح إغلاف بعد
 .ئكبطارنب جمد كفرف كسامناً

Suppose that at a time t a charge q(t) has been transferred from the battery 

to capacitor. The potential difference V(t) across the capacitor will be 

q(t)/C. For the battery to transferred another amount of charge dq it will 

perform a work dW 

dW  Vdq 
q 

dq 
C 

 

(6.11) 

The total work required to put a total charge Q on the capacitor is 

Q q Q 
2
 

W   dW  0 dq 
C 2C 

(6.12) 

 
 

Using the equation q=CV 
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

 

W  U  
Q

 
2C 

1 Q 
2 

1 
U 

 

 
 
QV 



1 
CV 

2
 

 

(6.13) 

 

(6.14) 
2 C 2 2 

The energy per unit volume u (energy density) in parallel plate capacitor is 

the total energy stored U divided by the volume between the plates Ad 

u  
U

 
Ad 

 

1 CV 2 

  2  

Ad 

 

 
(6.15) 

For parallel plate capacitor C  
 A 

d 

   V 
2
 

u    
 

 (6.16) 
2  d 

u  
1 
 E 

2
 

2 



(6.17) 

 

Therefore the electric energy density is proportional with square of the 

electric field. 

 

 ئكطاقب باسةخدئك علما ئكةعبنر نكقل ئككقتف كمحن بنل ئككخزلب ئكقمربنب ئكطاقب أل ملا لاحظ
 u. ئكطاقب قتافب لخلا كل أم U ئكقكنب ئككحصمر ئكحجك فن ئكطاقب قتافب ةسامن ئكقكنب ئكطاقب

 .ئككقتف كمحن بنل

 ئككعادكةال رقك (6.14)&(6.17) فن ئككخزلب ئكطاقب ممم ئككمضمع مذئ علمئل ةمضحال
 .ئكقمربن لئككجا فن أم ئككقتف


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Example 6.5 

Three capacitors of 8F, 10F and 14F are connected to a battery of 

12V. How much energy does the battery supply if the capacitors are 

connected (a) in series and (b) in parallel? 
 

 

 

Solution 

(a) For series combination 

1 
 

1 
 

1 
 

1 

C C1 C2 C3 

1 
 

1 
 

1 
 

1 

C 8 10 14 

This gives 

C = 3.37 F 

Then the energy U is 

U  
1 

CV 
2
 

2 

U = 1/2 (3.3710
-6

) (12)
2
 = 2.4310

-4
J 

(b) For parallel combination 

C  C1  C2  C3 

C= 8+10+14=32F 

The energy U is 

U = 1/2 (3210
-6

) (12)
2
 = 2.310

-3
J 
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o
 

 

 

Example 6.6 

A capacitor C1 is charged to a 

potential difference Vo. This V
o 

charging battery is then removed 

and the capacitor is connected as 

shown in figure 6.9 to an 

uncharged capacitor C2, 

 
S 

 

 

 

Figure 6.9 

 

(a) What is the final potential difference Vf across the 

combination? 

(b) What is the stored energy before and after the switch S is 

closed? 

Solution 

(a) The original charge qo is shared between the two capacitors since they 

are connected in parallel. Thus 

q  q1  q2 

q=CV 

C1V  C1Vf  C2Vf

V f  V

1 
C1 

 C2 

(b) The initial stored energy is Uo 

U   1 C V 
2
 

 2 1 


The final stored energy Uf=U1+U2  
 V C 

2

 
U   1 C V 

2
   1 C V 

2
   1 (C  C )  


 

1
  

f 2 1  f 2 2 f 
2
 

1
 

2
  C  C 




U f  C  C 

 

 U

  1 2 

  1 2 


Notice that Uf is less than Uo (Explain why) 

 

C1 
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Example 6.7 

Consider the circuit shown in figure 6.10 where 

C1=6F, C2=3F, and V=20V. C1 is first charged 

by closing switch S1. S1 is then opened, and the 

charged capacitor C1 is connected to the 

uncharged capacitor C2 by closing the switch S2. 

Calculate the initial charge acquired by C1 and 

the final charge on each of the two capacitors. 
 

 
 

 

Solution 

When S1 is closed, the charge on C1 will be 

Q1=C1V1=6F  C 

Figure 6.10 

 
 

When S1 is opened and S2 is closed, the total charge will remain constant 

and be distributed among the two capacitors, 

Q1=120C-Q2 

 

The potential across the two capacitors will be equal, 

V  
Q1

 

C1 

 
Q2 

C2 

120F  Q2 


6F 

Q2 
 

3F 

Therefore, 

Q2 = 40C 

 
Q1=120C-40C=80C 
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Example 6.8 

Consider the circuit shown in figure 

6.11 where C1=4F, C2=6F, C3=2F, 

and V=35V. C1 is first charged by 

closing switch S to point 1. S is then 

connected to point 2 in the circuit. 

(a) Calculate the initial charge 

acquired by C1, 

1 2 

 

Figure 6.11 

(b) Calculate the final charge on each of the three capacitors. 

(c) Calculate the potential difference across each capacitor after 

the switch is connected to point 2. 

 

Solution 

When switch S is connected to point 1, the potential difference on C1 is 

35V. Hence the charge Q1 is given by 

Q1 = C1xV=4x35 =140C 

 

When switch S is connected to point 2, the charge on C1 will be distributed 

among the three capacitors. Notice that C2 and C3 are connected in series, 

therefore 

1 
 

1 
 

1 
 

1 
 

1 
 

4 

C  C2 C3 6 2 6 

C   1.5F 

 

We know that the charges are distributed equally on capacitor connected in 

series, but the charges are distributed with respect to their capacitance when 

they are connected in parallel. Therefore, 
 

Q1 
140 

 
 

4  1.5 
 4  101.8C 

But the charge Q on the capacitor C is 

Q  140  101.8  38.2C 
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Since C1 and C2 are connected in series then 

Q2=Q3= Q=38.2C 

 

To find the potential difference on each capacitor we use the relation 

V=Q/C 

Then, 

V1=25.45V 

V2=6.37V 

V3=19.1V 

 

 

 

 

 
 

Example 6.9 

Consider the circuit shown in figure 6.12 where C1=6F, C2=4F, 

C3=12F, and V=12V. 
 
 

Figure 6.12 

 

(a) Calculate the equivalent capacitance, 

(b) Calculate the potential difference across each capacitor. 

(c) Calculate the charge on each of the three capacitors. 
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

 
 

Solution 

C2 and C3 are connected in parallel, therefore 

C =C2+C3=4+12=16F 

Now C is connected in series with C1, therefore the equivalent capacitance 

is 

1 1 
 

1 

C C  C1 

 
1 
 

1 

6 16 
 

11 

48 
 

C = 4.36F 

 
The total charge Q =CV = 4.36x12 = 52.36C 

The charge will be equally distributed on the capacitor C1 and C

Q1= Q =Q=52.36C 

But Q = C  V’, therefore 

V  = 52.36/16=3.27 volts 

The potential difference on C1 is 

V1=12-3.27=8.73volts 

The potential difference on both C2 and C3 is equivalent to V  since they 

are connected in parallel. 

V2 = V3 =3.27volts 

Q2 = C2V2 = 13.08C 

Q3 = C3V3 = 39.24C 
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Example 6.9 

Four capacitors are connected as shown in Figure 6.13. (a) Find the 

equivalent capacitance between points a and b. (b) Calculate the charge 

on each capacitor if Vab=15V. 

15uF 3uF 

 

aa 

 

 

 

6uF 

 

Figure 6.13 

Solution 

(a) We simplify the circuit as shown in the figure from (a) to (c). 
 

 

2.5uF 

 

 

 

Ab a 

 

2.5uF 24uF 

 

 

5.96uF 

a 

 

 

6uF  

(a) (b) (c) 
 

 

Firs the 15F and 3F in series are equivalent to 

1 
 2.5F 

(1/15)  (1/ 3) 

Next 2.5F combines in parallel with 6F, creating an equivalent 

capacitance of 8.5F. 

The 8.5F and 20F are in series, equivalent to 

1 
 5.96F 

(1/ 8.5)  (1/ 20) 

 

24uF 

 

24uF 
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(b) We find the charge and the voltage across each capacitor by working 

backwards through solution figures (c) through (a). 

For the 5.96F capacitor we have 

Q  CV  5.96 15  89.5C 

In figure (b) we have, for the 8.5F capacitor, 
 

 

V  
Q 
 

89.5 
 10.5V 

  

ac 
C

 
8.5 

and for the 20F in figure (b) and (a) Q20  89.5C 
 

V  
Q 
 

89.5 
 4.47V 

  

cb
 C 20 

Next (a) is equivalent to (b), so Vcb  4.47V and Vac  10.5V 
 

Thus for the 2.5F and 6F capacitors V  10.5V 

Q2.5  CV  2.5 10.5  26.3C 

Q6  CV  6 10.5  63.2C 

Therefore 

Q15  26.3C Q3  26.3C 
 

For the potential difference across the capacitors C15 and C3 are 

V  
Q 
 

26.3 
 1.75V 

  

15 C 15 

V  
Q 
 

26.3 
 8.77V 

  

3
 C 3 
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 Vo 
 

   

 
 

6.6 Capacitor with dielectric 

A dielectric is a non-conducting material, such as rubber, glass or paper. 

Experimentally it was found that the capacitance of a capacitor increased 

when a dielectric material was inserted in the space between the plates. The 

ratio of the capacitance with the dielectric to that without it called the 

dielectric constant  of the material. 

  
C

 

C



(6.18) 

In figure 6.14 below two similar capacitors, one of them is filled with 

dielectric material, and both are connected in parallel to a battery of 

potential V. It was found that the charge on the capacitor with dielectric is 

larger than the on the air filled capacitor, therefore the Cd>Co, since the 

potential V is the same on both capacitors. 
 
 

 

 

Figure 6.14 

 

If the experiment repeated in different way by placing the same charge Qo 

on both capacitors as shown in figure 6.15. Experimentally it was shown 

that Vd<Vo by a factor of 1/. 
 
 

 

 

V   
V


d 




Figure 6.15 

 
 

(6.19) 
 

Since the charge Qo on the capacitors does not change, then 
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C  
Q 

Vd 

  
Q



V


(6.20) 

 

For a parallel plate capacitor with dielectric we can write the capacitance. 

C   
 A 

d 

 
(6.21) 

 

 

 

 

 

Example 6.10 

A parallel plate capacitor of area A and separation d is connected to a 

battery to charge the capacitor to potential difference Vo. Calculate the 

stored energy before and after introducing a dielectric material. 
 

 

 

Solution 

The energy stored before introducing the dielectric material, 
 

U    1 C V 
2
 

o 2 o  o 
 

The energy stored after introducing the dielectric material, 
 

C  Co and V   
V


d 






 V  
2 

U 
U   1 CV 

2
   1 C    o       o  

2 2 o 

   


Therefore, the energy is less by a factor of 1/. 

 

Q

V 
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Example 6.11 

A Parallel plate capacitor of area 0.64cm
2
. When the plates are in 

vacuum, the capacitance of the capacitor is 4.9pF. 

(a) Calculate the value of the capacitance if the space between the 

plates is filled with nylon (=3.4). 

(b)  What is the maximum potential difference that can be applied 

to the plates without causing discharge (Emax=1410
6
V/m)? 

 

 

 

Solution 

(a) C  Co = 3.44.9 = 16.7pF 

(b) Vmax=Emaxd 

 

To evaluate d we use the equation 

d  
 A 

Co 

 
8.85 10

12
  6.4 10

5
 

4.9 10
12

 

 

 1.16 10
4

 m 

Vmax = 110
6
1.1610

-4
=1.6210

3
 V 

 
 

 

 

 

 

Example 6.12 

A parallel-plate capacitor has a 

capacitance Co in the absence of 

dielectric. A slab of dielectric material of 

dielectric constant  and thickness d/3 is 

inserted between the plates as shown in 

Figure 6.16. What is the new capacitance 

when the dielectric is present? 

 
1/3 

dd 

2/3 dd 

 

 

 

dd 

 

 

 

 

 

Figure 6.16 

K 
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d 3 2d 3 

d 3 

 

  

  

   

 
 

Solution 

We can assume that two parallel plate capacitor are connected in series as 

shown in figure 6.17, 

C  
 A 

 

and C   
 A

 
 

1/3 dd  

C
1 

 

 

1 
 

1 
 

1 

C C1 C2 

 
 
 A 

 
 A 

2/3 dd  C
2

 

 

1 
 

d 
 1 

 2
 



d  1  2 
Figure 6.17 

 
 

C 3A 
 


 
3 

 
 






C  
  3    A 

 C  
  3   

C
  

2  1
 

d 
 

2  1
 



   






                   

2d 3 
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6.7 Problems 
 

 

6.1) Two capacitors, C1=2F and 

C2=16F, are connected in parallel. 

What is the value of the equivalent 

capacitance of the combination? 

 
6.2) Calculate the equivalent 

capacitance of the two capacitors in 

the previous exercise if they are 

connected in series. 

 
6.3) A 100pF capacitor is charged to 

a potential difference of 50V, the 

charging battery then being 

disconnected. The capacitor is then 

connected in parallel with a second 

(initially uncharged) capacitor. If 

the measured potential difference 

drops to 35V, what is the 

capacitance of this second 

capacitor? 

 
6.4) A parallel-plate capacitor has 

circular plates of 8.0cm radius and 

1.0mm separation. What charge 

will appear on the plates if a 

potential difference of 100V is 

applied? 

 
6.5) In figure 6.18 the battery 

supplies 12V. (a) Find the charge 

on each capacitor when switch S1 is 

closed, and (b) when later switch S2 

is also closed. Assume C1=1F, 

C2=2F, C3=3F, and C4=4F. 

 

 

 

Figure 6.18 

 
6.6) A parallel plate capacitor has a 

plate of area A and separation d, 

and is charged to a potential 

difference V. The charging battery 

is then disconnected and the plates 

are pulled apart until their 

separation is 2d. Derive expression 

in term of A, d, and V for, the new 

potential difference, the initial and 

final stored energy, and the work 

required to separate the plates. 

 

6.7) A 6.0F capacitor is connected 

in series with a 4.0F capacitor and 

a potential difference of 200 V is 

applied across the pair. (a) What is 

the charge on each capacitor? (b) 

What is the potential difference 

across each capacitor? 

 
6.8) Repeat the previous problem 

for the same two capacitors 

connected in parallel. 

 
6.9) Show that the plates of a 

parallel-plate capacitor attract each 

other with a force given by 
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q 2 

F 
2 A 

 
6.10) A parallel-plate air capacitor 

having area A (40cm
2
 ) and spacing 

d (1.0 mm) is charged to a potential 

V (600V). Find (a) the capacitance, 

(b) the magnitude of the charge on 

each plate, (c) the stored energy, 

(d) the electric field between the 

plates and (e) the energy density 

between the plates. 

 

6.11) How many 1F capacitors 

would need to be connected in 

parallel in order to store a charge 

1C with potential of 300V across 

the capacitors? 

 
6.12) In figure 6.19 (a)&(b) find the 

equivalent capacitance of the 

combination. Assume that 

C1=10F, C2=5F, and C3=4F. 

Calculate the total stored energy in 

the system. 

 
6.14) A 16pF parallel-plate capacitor 

is charged by a 10V battery. If 

each plate of the capacitor has an 

area of 5cm
2
, what is the energy 

stored in the capacitor? What is the 

energy density (energy per unit 

volume) in the electric field of the 

capacitor if the plates are separated 

by air? 

 
6.15) The energy density in a 

parallel-plate capacitor is given as 

2.1 l0
-9

J/m
3
. What is the value of 

the electric field in the region 

between the plates? 

 
6.16) (a) Determine the equivalent 

capacitance for the capacitors 

shown in figure 6.20. (b) If they 

are connected to 12V battery, 

calculate the potential difference 

across each capacitor and the 

charge on each capacitor 
 

 
 

Figure 6.19(a) 

3 F 6 F 
 

 

 

 

V 

 

 

 

Figure6.19(b) 

 

6.13) Two capacitors (2.0F and 

4.0F) are connected in parallel 

across a 300V potential difference. 

 
Figure 6.20 

 
6.17) Evaluate the effective 

capacitance of the configuration 

shown in Figure 6.21. Each of the 

capacitors is identical and has 

capacitance C. 
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c 4uF  6uF  

 

 
 

 
c 

8uF  2uF  
 

 
Figure 6.21 

 
6.18) A parallel plate capacitor is 

constructed using a dielectric 

material whose dielectric constant 

is 3 an whose dielectric strength is 

210
8
V/m The desired capacitance 

is 0.25F, and the capacitor must 

withstand a maximum potential 

difference of 4000V. Find the 

maximum area of the capacitor 

plate. 

 
6.19) In figure 6.19(b) find (a) the 

charge, (b) the potential difference, 

(c) the stored energy for each 

capacitor. With V=100V. 

 
6.20) (a) Figure 6.22 shows a 

network of capacitors between the 

terminals a and b. Reduce this 

network to a single equivalent 

capacitor. (b) Determine the charge 

on the 4F and 8F capacitors 

when the capacitors are fully 

charged by a 12V battery 

connected to the terminals. (c) 

Determine the potential difference 

across each capacitor. 

Figure 6.22 

6.21) A uniform electric field 

E=3000V/m exists within a certain 

region. What volume of space 

would contain an energy equal to 

10
-7

J? Express your answer in 

cubic meters and in litters. 

 
6.22) A capacitor is constructed from 

two square metal plates of side 

length L and separated by a 

distance d (Figure 6.23). One half 

of the space between the plates (top 

to bottom) is filled with 

polystyrene (=2.56), and the other 

half is filled with neoprene rubber 

(=6.7). Calculate the capacitance 

of the device, taking L=2cm and 

d=0.75mm. (Hint: The capacitor 

can be considered as two capacitors 

connected in parallel.) 
Dd 

 

 

 

 

 

 

L 

Figure 6.23 

 
 

24uF 
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6.23) A parallel plate capacitor is 

constructed using three different 

dielectric materials, as shown in 

figure 6.24. (a) Find an expression 

for the capacitance in terms of the 

plate area A and 1, 2, and 3. (b) 

Calculate the capacitance using the 

L 

 
 

dd 

 

 
 

L/ 2 

 
 

Dd/2 

value  A=1cm
2
,  d=2mm,  1=4.9, 

2=5.6, and 3=2.1. 

Figure 6.24 
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Current and Resistance 

 
7.1 Current and current density 

 

7.2 Definition of current in terms of the drift velocity 
 

7.3 Definition of the current density 
 

7.4 Resistance and resistivity (Ohm’s Law) 
 

7.5 Evaluation of the resistance of a conductor 
 

7.6 Electrical Energy and Power 
 

7.7 Combination of Resistors 
 

7.7.1 Resistors in Series 

7.7.2 Resistors in Parallel 

 
7.8 Solution of some selected problems 

 

7.9 Problems 
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Current and Resistance 

 بــمئككقامك  ئكةنار
 
 
 
 
 

                                                  
 

 مذئ مفن ،ئكساقلب باكشحلب ئككةعكقب ئكقمربنب ئكظمئمر بعض ئكسابقب لئكفصم فن درسلا
 حنة ".قمربن ةنار" أن حرقب حاكب فن ئكقمربنب ئكشحلاب عكن درئسةلا سلرقز لئكفص
 كرمر لخلا كل لةعك ئكةن ئكقمربنب ئلأجمزب كل ئكعدند كع ئكعككنب حناةلا فن للةعاك

 لكنز أل منجا .ئلأخرم ئلأكتكب كل مغنرما مئكضمء ئكبطارنب لكت فنما قمربنب شحلاب
 ئككقرر مذئ مفن ،ئككةردد مئكةنار ئكتابب ئكةنار ممكا ئكقمربن ئكةنار كل لمعنل بنل

 .ئكتابب ئكةنار عكن سلرقز
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7.1 Current and current density 

ئكقمران ثنة ببرئقك  ئككقةف ئكسئاف بأةنر فرف ئكتمد ئكصئدر كل اطئرنب عكنل درسلئ فن ئكفص
 لئككبص ئككمت عكن ئكسئكاب مئكشثلئب ئككمتا ائكقطا لئككبص ئككمت عكن ئككمتاب ئكشثلئب
 .ئككقةف كمثن انل ئكفرئغ فن قمران لكتئ بقمل ؤكن أدم ممذئ ،ككاطئرنب ئكسئكا ائكقطا
 ئككعئدكب لخلا كل C ئكسعب معرفلئ

C  
q
 

V 

 لكة قمران لكمص طرفن عكن قمرانب اطئرنب كل صئدر قمران تمد فرف ابطانف ملئ سلقمك
 A. كقطعب كسئثب ئكلثئس كل سكق ئكقمران ئكبنئر لكة تدندب فنزنئئنب ظمئمر عكن مسلبعرف

 .مئككقئمكب
 
 

Conductor 
Electric field 

 

 

 

 

 

 

 

 

 

Battery 

Figure 7.1 

 

As shown in figure 7.1 above the electric field produces electric force 

(F=qE), this force leads the free charge in the conductor to move in one 

direction with an average velocity called drift velocity. 

The current is defined by the net charge flowing across the area A per unit 

time. Thus if a net charge Q flow across a certain area in time interval t, 

the average current Iav across this area is 

I  
Q

 
av 

t
 

 
(7.1) 

 

In general the current I is 
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 .ئكدئئرب عبر ئكساكا ئكقطا إكن ئككمجا ئكقطا كل نقمل مئكذن ئكدئئرب فن ئككمجبب ئكشحلاب
 حرقب ئةجال ممم ئلاصطلاحن ئكةنار باةجال ئكقمربنب ئكدئئرب فن ئكقمربن ئكةنار ئةجال نحدد

I  
dQ 

dt 

 
(7.2) 

Current is a scalar quantity and has a unit of C/t, which is called ampere. 
 
 

 
 

7.2 Definition of current in terms of the drift velocity 

Consider figure 7.1 shown above. Suppose there are n positive charge 

particle per unit volume moves in the direction of the field from the left to 

the right, all move in drift velocity v. In time t each particle moves 

distance vt the shaded area in the figure, The volume of the shaded area in 

the figure is equal nAvt, the charge Q flowing across the end of the 

cylinder in time t is 

Q = nqvAt (7.3) 

where q is the charge of each particle. 

Then the current I is 

I  
Q 

 nqvA 
t 

(7.4) 

 

 

 

 

 

7.3 Definition of the current density 

The current per unit cross-section area is called the current density J. 

J  
I 

A 

 

 nqv 

 

(7.5) 

The current density is a vector quantity. 
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Example 7.1 

A copper conductor of square cross section 1mm
2
 on a side carries a 

constant current of 20A. The density of free electrons is 8 10
28

 electron 

per cubic meter. Find the current density and the drift velocity. 
 

 

 

Solution 

The current density is 

J  
I 

A 

 

 10 10
6
 A / m

2
 

The drift velocity is 

J 

 

20 10
6
 3 

v  
nq 

 
 

(8 10
28

 )(1.6 10
9

 ) 
 1.6 10 m / s 

 

 

 

 

 
 

This drift velocity is very small compare with the velocity of propagation 

of current pulse, which is 3 108m/s. The smaller value of the drift 
velocity is due to the collisions with atoms in the conductor. 
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7.4 Resistance and resistivity (Ohm’s Law) 

The resistance R of a conductor is defined as the ratio V/I, where V is the 

potential difference across the conductor and I is the current flowing in it. 

Thus if the same potential difference V is applied to two conductors A and 

B, and a smaller current I flows in A, then the resistance of A is grater than 

B, therefore we write, 

R  
V

 
I 

 

Ohm’s law (7.6) 

This equation is known as Ohm’s law, which show that a linear relationship 

between the potential difference and the current flowing in the conductor. 

Any conductor shows the lineal behavior its resistance is called ohmic 

resistance. 

The resistance R has a unit of volt/ampere (v/A), which is called Ohm ( ). 

From the above equation, it also follows that 

V = IR and I  
V

 
R 

The resistance in the circuit is drown using this symbol 

 

Fixed resistor Variable resistor Potential divider 

 
 

Each material has different resistance; therefore it is better to use the 

resistivity , it is defined from 

  
E

 
J 

The resistivity has unit of .m 

 

(7.8) 

The inverse of resistivity is known as the conductivity , 

  





(7.9) 
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Notice that the resistance of a conductor depends on the geometry of the 
conductor, and the resistivity of the conductor depends only on the 
electronic structure of the material. 

7.5 Evaluation of the resistance of a conductor 

Consider a cylindrical conductor as shown in figure 7.2, of cross-sectional 

area A and length l , carrying a current I. If a potential difference V is 

connected to the ends the conductor, the electric field and the current 

density will have the values 

E 

 

 

 

I 
 

 

 
 

 

 

 

and 

 
E  

V
 
l 

Figure 7.2  

 

(7.10) 

J  
I 

A 

The resistivity  is 

  
E 


J 

But the V/I is the resistance R this leads to, 

R   
l
 

A 

 

 
(7.11) 

 

 

 
(7.12) 

Therefore, the resistance R is proportional to the length l of the conductor 

and inversely proportional the cross-sectional area A of it. 
 

 

 

V I 

I A 
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Example 7.2 

Calculate the resistance of a piece of aluminum that is 20cm long and 

has a cross-sectional area of 10
-4

m
2
. What is the resistance of a piece of 

glass with the same dimensions? Al=2.8210
-8
.m, glass=10

10
.m. 

 

 

 

Solution 

The resistance of aluminum 

R   
l
  2.82 10

8
 
 0.1  

 2.82 10
5

 
Al 

A
  

10
4 

 



The resistance of glass 

R   
l
  10

10
 
 0.1  

 10
13

 
glass 

A
  

10
4 

 

Notice that the resistance of aluminum is much smaller than glass. 
 

 

 

Example 7.3 

A 0.90V potential difference is maintained across a 1.5m length of 

tungsten wire that has a cross-sectional area of 0.60mm
2
. What is the 

current in the wire? 
 

 

 

Solution 

From Ohm’s law 

I  
V

 
R 

 

 

 
where 

 

R   
l
 

A 

therefore, 

 

I 


VA 




l 

 

(0.90)(6.0 10
7

 ) 
 

 

(5.6 10
8

 )(1.5) 

 

 
 6.43A 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Material 

Silver 

Copper 

Gold 

Aluminum 

Tungesten 

Iron 

Platinum 

Lead 

Nichrome 

Carbon 

Germanium 

Silicon 

Glass 

Resistivity (.m) 

8 
8 

8 
8 

8 
8 
8 
8 

8 
5 

0.46 

640 

1014 

 
 

 
 

Example 7.4 

(a) Calculate the resistance per unit length of a 22 nichrome wire of 

radius 0.321mm. (b) If a potential difference of 10V is maintained cross 

a1m length of nichrome wire, what is the current in the wire. 

nichromes=1.510
-6
.m. 

Solution 

(a) The cross sectional area of the wire is 

A = r
2
 =  (0.32110

-3
)
2
 = 3.2410

-7
m

2
 

The resistance per unit length is R/ l 
R 
 
 
 1.5 10

6
  
 




 

l A 3.24 10
7

 
4.6 / m 

(b) The current in the wire is 

I  
V

 
R 
 

10 
 2.2 A 

4.6 

Nichrome wire is often used for heating elements in electric heater, toaster and irons, since 

its resistance is 100 times higher than the copper wire. 
 

 

 

Table (7.1) Resistivity of various materials at 20
o
C 
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b 

a 

V 

7.6 Electrical Energy and Power 

The current can flow in circuit when a 

battery is connected to an electrical device 

through conducting wire as shown in 

figure 7.3. If the positive terminal of the 

battery is connected to a and the negative 

terminal of the battery is connected to b of 

the device. A charge dq moves through 

the device from a to b. The battery 

perform a work dW = dq Vab. This work 

is by the battery is energy dU transferred 

to the device in time dt therefore, 

 
 

I 

I 
I
 

 

 
 

I I 
 
 

 
Figure 7.3 

 

dU=dW= dq Vab =I dt Vab (7.13) 

 
The rate of electric energy (dU/dt) is an electric power (P). 

 

P  
dU 

dt 
 IVab 

 

(7.14) 

 

Suppose a resistor replaces the electric device, the electric power is 

 
P = I

2
 R (7.15) 

 

2 

P  (7.16) 
R 

 

The unit of power is (Joule/sec) which is known as watt (W). 

 

I 
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Example 7.5 

An electric heater is constructed by applying a potential difference of 

110volt to a nichrome wire of total resistance 8. Find the current 

carried by the wire and the power rating of the heater. 
 

 

 

Solution 

Since V = IR 

 I  
V

 
R 

The power P is 

 

 
110 

 13.8A 
8 

P = I
2
R = (13.8)

2
8=1520W 

 

 

 

 

 

Example 7.6 

A light bulb is rated at 120v/75W. The bulb is powered by a 120v. Find 

the current in the bulb and its resistance. 
 

 

 

Solution 

P = IV 

 I  
P 


V 

The resistance is 

 

75 
 0.625A 

120 

R  
V

 
I 
 

120 

0.625 

 

 192



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7.7 Combination of Resistors 

Some times the electric circuit consist of more than two resistors, which are, 

connected either in parallel or in series the equivalent resistance is evaluated 

as follow: 

 
 

7.7.1 Resistors in Series: 

The figure 7.4 shows three resistor in series, carrying a current I. 
 

 
R1 R2 R3 

A B C D 
 

V
AB 

V
BC 

V
CD 

V
AD 

Figure 7.4 

 

For a series connection of resistors, the current is the same in each 

resistor. 

 

If VAD is the potential deference across the whole resistors, the electric 

energy supplied to the system per second is IVAD. This is equal to the 

electric energy dissipated per second in all the resistors. 

IVAD = IVAB + IVBC + IVCD (7.17) 

Hence 

VAD = VAB + VBC + VCD (7.18) 

The individual potential differences are 

VAB = IR1, VBC = IR2, VCD = IR3 

Therefore 

VAD = IR1 + IR2 + IR3 (7.19) 

VAD = I (R1 + R2 + R3) (7.20) 

The equivalent resistor is 

R = R1 + R2 + R3 (7.21) 
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1 

7.7.2 Resistors in Parallel: 

The figure 7.5 shows three resistor in parallel, between the points A and B, 

A current I enter from point A and leave from point B, setting up a potential 

difference VAB. 
 

R1 

 I1     

 
 

VAB 

Figure 7.5 

 
For a parallel connection of resistors, the potential difference is equal 

across each resistor. 

 

The current branches into I1, I2, I3, through the three resistors and, 

I=I1+I2+I3 (7.22) 

The current in each branch is given by 

I  
VAB , 

1 

VAB 
 

2 

2 

VAB 
 

3 

3 

 1 1 1 

 I  VAB  
R 

 
R  

 
R 

 (7.23) 

  1 2 3 

The equivalent resistance is 
 

 
1 


R 

1 
 

1 
 

1 

R1 R2 R3 

 

(7.24) 

 I 
R2  

2 

I3 

R3 

R 


R 
 ,  
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Notice that parallel resistors combine in the same way that series 

capacitors combine, and vice versa. 

 

 

Physical facts for the series and parallel 

combination of resistors 

 
 

No. Series combination Parallel combination 

1 
Current is the same through all 

resistors 

Potential difference is the same 

through all resistors 

2 
Total potential difference = sum of 

the individual potential difference 

Total Current = sum of the 

individual current 

 

3 

Individual potential difference 

directly proportional to the 

individual resistance 

Individual current inversely 

proportional to the individual 

resistance 

4 
Total resistance is greater than 

greatest individual resistance 

Total resistance is less than least 

individual resistance 
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Example 7.6 

Find the equivalent resistance for the circuit shown in figure 7.6. 

R1=3, R2=6, and R3=4. 
 
 

R2 

 

Figure 7.6 

Solution 

Resistance R1 and R2 are connected in parallel therefore the circuit is 

simplify as shown below 
 
 

R3 R1&R2 R 

   

 
 

1 
 

1 
 

1 

R R1 R2 

1 
 

1 
 

1 
 

3 

R 3 6 6 

R = 2


Then the resultant resistance of R1&R2 ( R ) are connected in series with 

resistance R3 

 

R= R +R3=2+4=6






Example 7.7 

Find the equivalent resistance for the circuit shown in figure 7.7. 

R1=4, R2=3, R3=3, R4=5, and R5=2.9. 

 

 



Current & Resistance 
 

 

R= R +  R5+R4=2.1+5+2.9=10
a 

Example 7.8 

Three resistors are connected in 

parallel as in shown in figure 7.8. A 

   

18V  
 

 
 

 
 

potential difference of 18V is 

maintained between points a and b. 

 

 

R4 R2 

 

Figure 7.7 

Solution 

Resistance R1 and R2 are connected in series therefore the circuit is simplify 

as shown below 
 

R4 R4 

 
R 

 
 
 
 

 

R =R1+R2=4+3=7

Then the resultant resistance of R1&R2 ( R ) are connected in parallel with 

resistance R3 

1 
 

1 
 

1 
 

1 
 

1 
 

10 
      

R R R3 7 3 21 

R =2.1

The resultant resistance R for R5&R4& R are connected in series. 
 

I 

 

 
 

 
 
 
 
 
 

www.hazemsbakeek.com 
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 R1&R2 

 

R1&R2&R3 
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1 

(a) find the current in each resistor. (b) Calculate the power dissipated 

by each resistor and the total power dissipated by the three resistors. 

(c) Calculate the equivalent resistance, and the from this result find the 

total power dissipated. 
 

 

 

Solution 

To find the current in each resistors, we make use of the fact that the 

potential difference across each of them is equal to 18v, since they are 

connected in parallel with the battery. 

Applying V=IR to get the current flow in each resistor and then apply P = 

I
2
R to get the power dissipated in each resistor. 

I  
V 

R1 

 
18 

 6 A 
3 

 P1 = I1
2
 R1=108W 

 

I 2 
2 

 

I3 
3 

 
18 

 3A 
6 

 
18 

 2 A 
9 

 

 P2 = I2
2
 R2=54W 

 
 P3 = I3

2
 R3=36W 

The equivalent resistance Req is 

1  
 

1 
 

1 
 

1 
 

11 

Req 3 6 9 18 

Req = 1.6 



V 

R 

V 

R 
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

















7.8 Solution of some selected problems 
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7.8 Solution of some selected problems 
 

Example 7.9 

Two wires A and B of circular cross section are made of the same metal 

and have equal length, but the resistance of wire A is three times 

greater than that of wire B. What is the ratio of their cross-sectional 

area? How do their radii compare? 
 

 

 

Solution 

Since R=L/A, the ratio of the resistance RA/RB=AA/AB. Hence, the ratio is 

three times. That is, the area of wire B is three times that of B. 

The radius of wire b is 3 times the radius of wire B. 
 

 

 

 

 

 

 
 

Example 7.10 

Two conductors of the same length and radius are connected across the 

same potential difference. One conductor has twice the resistance of 

the other. Which conductor will dissipate more power? 
 

 

 

Solution 

Since the power dissipated is given by P=V
2
/R, the conductor with the lower 

resistance will dissipate more power. 
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Example 7.11 

Two light bulbs both operate from 110v, but one has power rating 25W 

and the other of 100W. Which bulb has the higher resistance? Which 

bulb carries the greater current? 
 

 

 

Solution 

Since P=V
2
/R, and V is the same for each bulb, the 25W bulb would have 

the higher resistance. Since P=IV, then the 100W bulb carries the greater 

current. 
 

 

 

 

 

 

 
 

Example 7.12 

The current I in a conductor depends on time as I=2t2-3t+7, where t is in 

sec. What quantity of charge moves across a section through the 

conductor during time interval t=2sec to t=4sec? 
 

 

 

Solution 

I  
dQ 

; dQ=I dt 
dt 

 
4 

Q   Idt  (2t 
2
  3t  7)dt 

2 

Q  2t 
3
  3t 

2
  7t

4 

 33.3C 
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Example 7.13 

A 2.4m length of wire that is 0.031cm
2
 in cross section has a measured 

resistance of 0.24. Calculate the conductivity of the material. 
 

 

 

Solution 

R   
L

 
A 

 

and 

 
  






therefore 

  
L 


RA 

2.4 

(0.24)(3.110
6

 ) 

 

 3.23 10
6
 / .m 

 
 

 

 

 

 

 

 
 

Example 7.14 

A 0.9V potential difference is maintained across a 1.5m length of 

tungsten wire that has cross-sectional area of 0.6mm
2
. What is the 

current in the wire? 
 

 

 

Solution 

From Ohm’s law, 

I  
V

 
R 

VA 

 

 

 
where 

 
0.9  6 10

7
 

 

R   
L

 
A 

 

 

 
therefore 

I  
L 

 
5.6 10

8
 1.5 

 6.43A
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b a 

ra 

rb 

L 

 
 

Example 7.15 

A resistor is constructed by forming a material of resistivity  into the 

shape of a hollow cylinder of length L and inner and outer radii ra and 

rb respectively as shown in figure 7.9. In use, a potential difference is 

applied between the ends of the cylinder, producing a current parallel 

to the axis. (a) Find a general expression for the resistance of such a 

device in terms of L, , ra, and rb. (b) Obtain a numerical value for R 

when L=4cm, ra=0.5cm, rb=1.2cm, and =3.510
5
.m. 

 
 

 

Figure 7.9 
 

 

 

 

(a) 

Solution 

R   
L 


A 

 
L 

 
 

 (r 
2
  r 

2
 ) 

 

(b) R 

b 

 

L 



a 

 

(3.5 10
5
 )(0.04) 

 

 3.74 10
7
 




 (r 
2
  r 

2
 )  (0.012)

2
  (0.005)

2
 





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PR 125  55 





Example 7.16 

If a 55 resistor is rated at 125W, what is the maximum allowed 

voltage? 
 

 

 

Solution 

V 2 

P 
R 

V    82.9V 
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7.9 Problems 
 

 

 

7.1) A current of 5A exists in a 10  

resistor for 4min. (a) How many 

coulombs, and (b) how many 

electrons pass through any cross 

section of the resistor in this time? 

 
7.2) A small but measurable current 

of 1.0 10
-10

 A exists in a copper 

wire whose diameter is 0.10in. 

Calculate the electron drift speed. 

 
7.3) A square aluminum rod is 1.0m 

long and 5.0mm on edge. (a) What 

is the resistance between its ends? 

(b) What must be the diameter of a 

circular 1.0m copper rod if its 

resistance is to be the same? 

 
7.4) A conductor of uniform radius 

1.2cm carries a current of 3A 

produced by an electric field of 

120V/m. What is the resistivity of 

the material? 

 
7.5) If the current density in a 

copper wire is equal to 

5.810
6
A/m

2
, calculate the drift 

velocity of the free electrons in this 

wire. 

 
7.6) A 2.4m length of wire that is 

0.031cm
2
 in cross section has a 

measured resistance of 0.24. 

Calculate the conductivity of the 

material. 

7.7) Aluminium and copper wires of 

equal length are found to have the 

same resistance. What is the ratio 

of their radii? 

 
7.8) What is the resistance of a 

device that operates with a current 

of 7A when the applied voltage is 

110V? 

 
7.9) A copper wire and an iron wire 

of the same length have the same 

potential difference applied to 

them. (a) What must be the ratio of 

their radii if the current is to be the 

same? (b) Can the current density 

be made the same by suitable 

choices of the radii? 

 
7.10) A 0.9V potential difference is 

maintained across a 1.5m length of 

tungsten wire that has a cross- 

sectional area of 0.6mm
2
. What is 

the current in the wire? 

 
7.11) A wire with a resistance of 

6.0 is drawn out through a die so 

that its new length is three times its 

original length. Find the resistance 

of the longer wire, assuming that 

the resistivity and density of the 

material are not changed during the 

drawing process. 

 
7.12) A wire of Nichrome (a nickel- 

chromium alloy commonly used in 
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heating elements) is 1.0 m long and 

1.0mm
2
 in cross-sectional area. It 

carries a current of 4.0A when a 

2.0V potential difference is applied 

between its ends. What is the 

conductivity , of Nichrome? 

 
7.13) A copper wire and an iron wire 

of equal length l and diameter d are 

joined and a potential difference V 

is applied between the ends of the 

composite wire. Calculate (a) the 

potential difference across each 

wire. Assume that l=10m, 

d=2.0mm, and V=100V. (b) Also 

calculate the current density in each 

wire, and (c) the electric field in 

each wire. 

 
7.14) Thermal energy is developed in 

a resistor at a rate of 100W when 

the current is 3.0A. What is the 

resistance in ohms? 

 
7.15) How much current is being 

supplied by a 200V generator 

delivering 100kW of power? 

7.16) An electric heater operating at 

full power draws a current of 8A 

from 110V circuit. (a) What is the 

resistance of the heater? (b) 

Assuming constant R, how much 

current should the heater draw in 

order to dissipate 750W? 

 
7.17) A 500W heating unit is 

designed to operate from a 115V 

line. (a) By what percentage will its 

heat output drop if the line voltage 

drops to 110V? Assume no change 

in resistance. (b) Taking the 

variation of resistance with 

temperature into account, would 

the actual heat output drop be 

larger or smaller than that 

calculated in (a)? 

 
7.18) A 1250W radiant heater is 

constructed to operate at 115V. (a) 

What will be the current in the 

heater? (b) What is the resistance of 

the heating coil? 
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Direct Current Circuits 
 

8.1 Electromotive Force 
 

8.2 Finding the current in a simple circuit 
 

8.3 Kirchhoff’s Rules 
 

8.4 Single-Loop Circuit 
 

8.5 Multi-Loop Circuit 
 

8.6 RC Circuit 

8.6.1 Charging a capacitor 

8.6.2 Discharging a capacitor 
 

8.7 Electrical Instruments 

8.7.1 Ammeter and Voltmeter 

8.7.2 The Wheatstone Bridge 

8.7.3 The potentiometer 
 

8.8 Problems 
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Direct Current Circuits 

 لمستمرا رلتياا ئردوا
 

 

 

 

 

 

 

 
 

 .فѧمكثو حѧمومقاو حѧيرتطا ىѧعل يوѧتحت يѧلتا حѧلكھرتيا ئروالدا مع لفصلا اذه في سنتعامل

 rule Kirchhoff's فوѧيرشآ جدѧقاع ىѧعل دينѧمعتم حѧلكھرتيا ئروادѧلا ذهه تتحليل مسنقو

 .حѧلكھرتيا جئرادѧلا عناصر من عنصر لآ في رلماا لكھرتيا رلتياا بلحسا فنتعرѧس حѧياتدو

 force .Electromotive لكھرتيحا فعحالدا جلقوا ممفھو على
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8.1 Electromotive Force 

In any electrical circuit it must exist a device to provide energy to force the 
charge to move in the circuit, this device could be battery or generator; in 

general  it  is  called  electromotive  force  (emf)  symbol  ( ).   The 

electromotive force are able to maintain a potential difference between two 

points to which they are connected. 

 

Then electromotive force (emf) ( ) is defined as the work done per unit 

charge. 

  
dW 

dq 

The unit of  is joule/coulomb, which is volt. 

 

(8.1) 

The device acts as an emf source is drawn in the circuit as shown in the 

figure below, with an arrow points in the direction which the positive charge 

move in the external circuit. i.e. from the -ve terminal to the +ve terminal of 

the battery 

 

 









When we say that the battery is 1.5volts we mean that the emf of that battery 

is 1.5volts and if we measure the potential difference across the battery we 

must find it equal to 1.5volt. 

 
A battery provide energy through a chemical reaction, this chemical 

reaction transfer to an electric energy which it can be used for mechanical 

work Also it is possible to transfer the mechanical energy to electrical 

energy and the electric energy can be used to charge the battery is chemical 

reaction. This mean that the energy can transfer in different forms in 

reversible process. 

Chemical  Electrical  Mechanical 

 

See appendix (A) for more information 
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

8.2 Finding the current in a simple circuit 

Consider the circuit shown in figure 

8.1(a) where a battery is connected to 
a r b 

a resistor R with connecting wires 
assuming the wires has no resistance. 

In the real situation the battery itself I I
 

has some internal resistance r, hence it 
is drawn as shown in the rectangle box 

R
 

in the diagram. d c
 

Assume a +ve charge will move from 

point a along the loop abcd. In the 
V

 

graphical representation figure 8.1(b) 
it shows how the potential changes as 

the charge moves. 


IR 

When the charge cross the emf from 
point a to b the potential increases to a 

the value of emf  , but when it cross 

the internal resistance r the potential a 

decreases by value equal Ir. Between 

the point b to c the potential stay 

constant since the wire has no 

resistance. From point c to d the 

potential decreases by IR to the same 

value at point a. 

Figure 8.1(a) 

 

 

 

 

 

 

 

 
b c d 

Figure 8.1(b) 

The potential difference across the batter between point a and b is given by 

Vb-Va =  - Ir (8.2) 

 

Note that the potential difference across points a and b is equal to the 

potential difference between points c and d i.e. 

Vb-Va = Vd-Vc = IR (8.3) 

Combining the equations 

IR =  - Ir (8.4) 

Or 

 = IR + Ir (8.5) 
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Therefore the current I is 

I  
    

(8.6) 
R  r 

This equation shows that the current in simple circuit depends on the 

resistors connected in series with the battery. 

 

 

 
We can reach to the same answer using this rule 

The algebraic sum of the changes in potential difference across each 

element of the circuit in a complete loop is equal to zero. 

 

By applying the previous rule on the circuit above starting at point a and 

along the loop abcda 
 

Here in the circuit we have three elements (one emf and two resistors r&R) 

applying the rule we get, 

+ - Ir - IR = 0 (8.7) 

The +ve sine for  is because the change in potential from the left to the 

right across the battery the potential increases, the -ve sign for the change in 

potential across the resistors is due to the decrease of the potential as we 

move in the direction abcda. 

 I  
    

(8.8) 
R  r 
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R1 R2  

 

 

 

 
 

Example 8.1 

In figure 8.2 find the current flow in the branch if the potential 

difference Vb-Va=12v. Assume  1=10v,  2=25v, R1=3, and R2=5. 

 
1 

2 

 

Figure 8.2 

 

Solution 

We must assume a direction of the current flow in the branch and suppose 

that is from point b to point a. 

 

To find the current in the branch we need to add all the algebraic changes in 

the potential difference for the electrical element as we move from point a 

to point b. 
 

Vb-Va = +  1 + IR1 + IR2 -  2 
 

 لكهربيا لجهدا قفر أنعلى  معتمدين لكوذ b. لنقطةا لىإ a لنقطةا من رلمساا خترناا نناأ ناه لاحظ

Vb-Va لنقطةا من لتحريك شحنةول لمبذا لشغلاو ه a لنقطةالى إ .b 
 

Solving for I 

 

I  
(Vb  Va )  ( 2  1 )  

(12)  (25  10) 
 3.375A

 

R1  R2 8 
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1 2 3 

 
 

Example 8.2 

Find the potential difference Va-Vb for the branches shown in figure 8.3 

& figure 8.4. 
 

 

 

Solution 

10v 12v 
 

1 2 

Figure 8.3 

 

To find the potential difference Va-Vb we should add the algebraic change in 

the potential difference for the two batteries as we move from point b to 

point a. 

Va-Vb = +  2 -  1 = 12 - 10 = 2v 
 

 

30v 15v 5v 

 

Figure 8.4 

 
Va-Vb = +  3 +  2 -  1 = 5 + 15 - 30 = -10v 

 لجهدا من ييسر لكهربيا رلتياا أن حيثو a لنقطةا من علىأ جهد لها b لنقطةا أن يعني اذوه

 سطةابو شحن حالة في نتكونا 2 يةرلبطاوا  3 يةرلبطاا نفإ الذ لمنخفضا لجهدا لىإ لمرتفعا

 .  1 يةرلبطاا
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8.3 Kirchhoff’s Rules 

A practical electrical circuit is usually complicated system of many 

electrical elements. Kirchhoff extended Ohm’s law to such systems, and 

gave two rules, which together enabled the current in any part of the circuit 

to be calculated. 

 

Statements of Kirchhoff’s Rules 

(1) The algebraic sum of the currents entering any junction must equal the 

sum of the currents leaving that junction. 

 Ii  0 
i 

at the junction (8.9) 

 
 

(2) The algebraic sum of the changes in potential difference across all of the 

elements around any closed circuit loop must be zero. 

Vi  0 
i 

for the loop circuit (8.10) 

Note that the first Kirchhoff’s rule is for the current and the second for the 

potential difference. 

 

Applying the first rule on the junction shown below (figure 8.5) 
 
 

 

Figure 8.5 

 
I1 = I2 + I3 
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
 

b a 




 

Applying the second rule on the following cases 

(1) If a resistor is traversed in the direction of the current, the change in 

potential difference across the resistor is -IR. 

 

I 
 

a 
V -V =-IR 

b
 

 

(2) If a resistor is traversed in the direction opposite the current, the change 

in potential difference across the resistor is +IR. 

 

I 

 

a b 
Vb-Va=+IR 

 

(3) If a source of emf is traversed in the direction of the emf (from - to + on 

the terminal), the change in potential difference is + . 
 



Vb-Va=+ 


(4) If a source of emf is traversed in the direction opposite the emf (from + 

to - on the terminal), the change in potential difference is - . 
 




 
Vb-Va=- 


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















Hints for solution of problems using Kirchhoff’s rules 
 

 
 

 :لتاليحا اخلخطوا عتثاا يجة فيرشوآ جقاعد املاستخد
 

 
 

 من متجه بسهم لكهربيةا ةئرالدا في يةربطا لكل emf لكهربيةا فعةالدا ةلقوا تجاها دحد (1)

 .يةرللبطا لموجبا لقطبا لىإ لسالبا لقطبا
 

 مةولمقاا مثل لكهربيةا ةئرالدا عناصر من عنصر لكل لكهربائيا رلتياا تجاها دحد (2)

 لحلا ناآ ذافإ  .فيرشوآ قاعدتي تطبيق من تتمكن حتى رللتيا دمحد تجاها اضبافتر

 رلتياارة شات إظهرإذا ما ، أصحيحًاض لمفترالاتجاه ن ايكور موجبة للتيارة شاإلنهائي يظهر ا

 للاتجاه سآلمعاا لاتجاها في رلتياا تجاها لكنو ،صحيحة رلتياا قيمة نفإ سالبة

 .ضلمفترا
 

 نتكو بحيث لكهربيةا ةئرالدا في دةلموجوا ةلعقدا عند فلكيرشو لىولأا ةلقاعدا نطبق (3)

 .سالبة ةلعقدا من جةرلخاوا موجبة ةلعقدا على خلةالدا راتلتياا رةشاإ
 

 لكهربيةا ةئرالدا عفرأ من عفر لكل دمحد مغلق رمسا على فلكيرشو لثانيةا ةلقاعدا نطبق (4)

 سالباً ناآ إذا لكهربيةا ةئرالدا عناصر من عنصر لآ على لجهدا قفر في لتغيرا عيانرو

 .موجباً أو
 

 .جبريًا حلاً (4)و (3) لخطوتينا تطبيق من نتجت لتيا لرياضيةا تلادلمعاا نحل (5)
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8.4 Single-Loop Circuit 

In a single-loop circuit there is no junctions and the current is the same in all 

elements of the circuit, therefore we use only the second Kirchhoff rule. 
 

 

 

Example 8.3 

Two battery are connected in opposite in a circuit contains two resistors 

as shown in figure 8.6 the emf and the resistance are  1=6v,  2=12v, 

R1= 8, and R2=10 . (a) Find the current in the circuit. (b) What is 

the power dissipated in each resistor? 

1 

 

 

 

 

R2 R1 

 
 
 
 

2 

Figure 8.6 

Solution 

From figure 8.6 the circuit is a single-loop circuit. We draw an arrow for 

each emf in the circuit directed from the -ve to +ve terminal of the emf. If 

we assume the current in the circuit is in the clockwise direction (abcda). 

Applying the second Kirchhoff’s rule along arbitrary loop (abcda) we get 

Vi  0 
i 

 

Starting at point (a) to point (b) we find the direction of the loop is the same 

as the direction of the emf therefore  1 is +ve, and the direction of the loop 

from point (b) to point (c) is the same with the direction of the current then 

the change in potential difference is -ve and has the value -IR1. Complete 

the loop with the same principle as discussed before we get; 
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+  1 - IR1 -  2 + IR2 = 0 

Solving for the current we get 

I  
 1   2  

6  12 
  

1 
A

 
   

R1  R2 8  10 3 

The -ve sign of the current indicates that the correct direction of the current 

is opposite the assumed direction i.e. along the loop (adba) 

The power dissipated in R1 and R2 is 

P1 = I
2
 R1 = 8/9W 

P2 = I
2
 R2 = 10/9W 

In this example the battery  2 is being charged by the battery  1. 
 

 

 

Example 8.4 

Three resistors are connected in series with battery as shown in figure 

8.7, apply second Kirchhoff’s rule to (a) Find the equivalent resistance 

and (b) find the potential difference between the points a and b. 

a R
1 

 
 
 

 R
2 

 

 

b R
3 

Figure 8.7 

Solution 

Applying second Kirchhoff’s rule in clockwise direction we get 

- IR1 - IR2 - IR3 +  = 0 

or 

I  
   

R1  R2  R3 
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
Q I  

R
 

therefore, 

R = R1 + R2 + R3 

This is the same result obtained in section 7.1.1 

 

 
To find the potential difference between points a and b Vab (=Va-Vb) we use 

the second Kirchhoff’s rule along a direction starting from point (b) and 

finish at point (a) through the resistors. We get 

 
Vb + IR = Va 

Where R is the equivalent resistance for R1, R2 and R3 

 
Vab = Va - Vb = + IR 

The +ve sign for the answer means that Va > Vb 

 

Substitute for the current I using the equation 

I  



R 

we get 

 
Vab = 

This means that the potential difference between points a and b is equal to 

the emf in the circuit (when the internal resistance of the battery is 

neglected). 
 

 

 

 

Example 8.5 

In the circuit shown in figure 8.8 let  1 and  2 be 2v and 4v, 

respectively; r1 ,r2 and R be 1, 2, and 5, respectively. (a) What is 
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the current in the circuit? (b) What is the potential difference Va-Vb and 

Va-Vc? 
 

 

 

 

 

 

 

 

 

I 

Figure 8.8 

Solution 

Since the emf  2 is larger than  1 then  2 will control the direction of the 

current in the circuit. Hence we assume the current direction is 

counterclockwise as shown in figure 8.8. Applying the second Kirchhoff’s 

rule in a loop clockwise starting at point a we get 

-  2 + Ir2 + IR + Ir1 + 1 = 0 

Solving the equation for the current we get 
 

I  
 2  1 

R  r1  r2 

 
4  2 

5  1  2 

 

 0.25A 

 

The +ve sign for the current indicates that the current direction is correct. If 

we choose the opposite direction for the current we would get as a result 

-0.25A. 
 

The potential difference Va-Vb we apply second Kirchhoff’s rule starting at 

point b to finishing at point a. 

 

Va-Vb = - Ir2 + 2 = (-0.252)+4=+3.5v 

 r1  r2  

1 2 

R 
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Note that same result you would obtain if you apply the second Kirchhoff’s 

rule to the other direction (the direction goes through R, r1, and  1) 

 

 
The potential difference Va-Vc we apply second Kirchhoff’s rule starting at 

point c to finishing at point a. 

 

Va-Vb = + 1 + Ir1 = +2+(-0.251) = +2.25v 

 
Note that same result you would obtain if you apply the second Kirchhoff’s 

rule to the other direction (the direction goes through R, r2, and  2) 
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R3 

 

  

8.5 Multi-Loop Circuit 

Some circuits involving more than one current loop, such as the one shown 

in figure 8.9. Here we have a circuit with three loops: a left inside loop, a 

right inside loop, and an outside loop. There is no way to reduce this multi- 

loop circuit into one involving a single battery and resistor. 
 

 

 

 

 

 

 
R1 

R2 

 
 

 

d 

Figure 8.9 

In the circuit shown above there are two junctions b and d and three 

branches connecting these junctions. These branches are bad, bcd, and bd. 

The problem here is to find the currents in each branch. 

A general method for solving multi-loop circuit problem is to apply 

Kirchhoff’s rules. 

 

You should always follow these steps: 

(1) Assign the direction for the emf from the -ve to the +ve terminal of the 

battery. 

1 
 

2 

c 

 
 

Figure 8.10 
 
 

(2) Assign the direction of the currents in each branch assuming arbitrary 

direction. 
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I1 R3 I3 I2 

1 
 

2 

 

 

 

 

 

R1 
R2 

 
 

 

d 

Figure 8.11 

 

 

 
After solving the equations the +ve sign of the current means that the 

assumed direction is correct, and the -ve sign for the current means that the 

opposite direction is the correct one. 

 

 

 
(3) Chose one junction to apply the first Kirchhoff’s rule. 

 I i  0 
i 

 
 

At junction d current I1 and I3 is approaching the junction and I2 leaving the 

junction therefore we get this equation 

I1 + I3 - I2 = 0 (1) 

 

 
 

(4) For the three branches circuit assume there are two single-loop circuits 

and apply the second Kirchhoff’s rule on each loop. 
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I1 R3 I3 I2 

The current can be either positive or negative, depending on the 

relative sizes of the emf and of the resistances. 

1 
 

2 

 

 

 

 

 

R1 
R2 

 
 

 

d 

Figure 8.12 

 

For loop a on the left side starting at point b we get 

 
+  1 - I1R1 + I3R3 = 0 (2) 

 

For loop b on the left side starting at point b we get 

 
- I3R3 - I2R2 -  2= 0 (3) 

 

Equations (1), (2), and (3) can be solved to find the unknowns currents I1, I2, 

and I3. 
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 1A 
 

2

I 6A 

 
 

Example 8.6 

In the circuit shown in figure 8.13, find the unknown current I, 

resistance R, and emf  . 
 

18v 













R a 2



Figure 8.13 

 

Solution 

At junction a we get this equation 
 

I + 1 -6 = 0 
 

Therefore the current 
 

I = 5A 
 

To determine R we apply the second Kirchhoff’s rule on the loop (a), we get 

18 - 5 R + 1  2 = 0 

R = 4

To determine  we apply the second Kirchhoff’s rule on the loop (a), we 

get 

 + 6  2 + 1  2 = 0 

 = -14v 
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12v 





I
1
 

I
3
 



I
2
 



 
 

Example 8.7 

In the circuit shown in figure 8.14, (a) 

find the current in the 2 resistor, (b) the 

potential difference between points a and 

b. a b 

(Use the current as labeled in the figure 

8.14). 

 

Solution 

At junction a we get 

8v 

Figure 8.14 

 

I1 = I2 + I3 (1) 

For the top loop 
 

12 - 2I3 - 4I1 = 0 (2) 

For the bottom loop 
 

8 - 6I2 + 2I3 = 0 (3) 

From equation (2) 
 

I1 = 3 - 1/2 I3 

From equation (2) 
 

I2 = 4/3 - 1/3 I3 

Substituting these values in equation (1), we get 
 

I3 = 0.909A the current in the resistor 2 

The potential difference between points a and b 

Va - Vb = I3R = 0.9092=1.82v Va > Vb 
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Example 8.8 

In the circuit shown in figure 8.15, (a) find the current I1, I2, and I3, (b) 

the potential difference between points a and b. Use these values, 

 1=10v,  2=6v,  3=4v, R1=6, R2=2, R3=1, and R4=4. 

(Use the current as labeled in the figure below). 

 

a R
2 

 
1 

 
R1 

I
1 

I
3 

I
2
 

2 

(a) 

R3 

 
 
3 

(b) 

R4 

 

b 
 

Figure 8.15 

Solution 

For the junction at the top we get 

I1 + I2 - I3 = 0 (1) 

 
For loop a on the left side we get 

+  1 - I1R2 -  2 + I2R3 - I1R1 = 0 

+10 - 2I1 - 6 + I2 - 6I1 = 0 

+4 - 8I1 + I2 = 0 (2) 

 
For loop b on the right side we get 

- I2R3 + 2 -  2 + I3R4 = 0 

- I2 + 6 - 4 - 4I3 = 0 

+2 - I2 - 4I3 = 0 (3) 
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From equation (2) 

 
I1 = 

4  I 2 
 

8 

 
(4) 

From equation (3) 

 
I3 = 

2  I 2 
 

4 

 
(5) (5) 

Substitute in equation (1) from equations (4)&(5) we get 

4  I 2  I
 

8 
2 

I2 = 0 

 
2  I 2  0

 

4 

 

From equation (4) 
 

I1 = 0.5A 

 
From equation (4) 

 

I3 = 0.5A 

 

 
The potential difference between points a and b we use the loop (a) 

Vb - Va = - 1 + I1R2 

Vb - Va = - 1 + I1R2 

Vb - Va= 10 - 0.56 = -7v (Vb < Va) 
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 

 
 

Example 8.9 

Consider the circuit shown in Figure 8.16. Find (a) the current in the 

20.0  resistor and (b) the potential difference between points a and b. 
 

10Ohm 25 V 

 

 

 

 

 
5Ohm 

20Ohm 

 

 

Figure 8.16 

 

Solution 

Turn the diagram ion figure 8.16 on its side, we 

find that the 20 and 5 resistors are in series, 

so the first reduction is as shown in (b). In 

addition, since the 10, 5, and 25 resistors 

are then in parallel, we can solve for their 

equivalent resistance as 

 

 

 

 

 

 

 

(a) 

 

Req 

 


 1 
 
10 

1 

 
1 


5 

 
1 



25 





 2.94

This is shown in figure (c), which in turn 

reduces to the circuit shown in (d). 

 

Next we work backwards through the diagrams, 

applying I=V/R and V=IR. The 12.94 resistor 

is connected across 25V, so the current through 

the voltage source in every diagram is 

 

 

(b) 
 

 
(c) 

I  
V

 
R 
  

25 
 1.93A 

12.94 

 

 

(d) 

a b 

 

 

 

 

 

 

1
0
O

h
m

 2
5
 V

 
1
0
O

h
m

 2
5
 V

 

2
5
 V

 
1
0
O

h
m

 2
5
 V

 

1
0
O

h
m

 
1
0
O

h
m

 

5
O

h
m

 
5
O

h
m

 

1
2
.9

4
O

h
m

 
2
.9

4
O

h
m

 

2
5
O

h
m

 
5
O

h
m

 
2
0
O

h
m

 



Direct Current Circuits 

www.hazemsakeek.com 

 

 

 1

1

 

I1 I2 

In figure (c), the current 1.93A goes through the 2.94 equivalent resistor 

to give a voltage drop of: 

V = IR = (1.93)(2.94) = 5.68V 

From figure (b), we see that this voltage drop is the same across Vab, the 

10 resistor, and the 5 resistor. 

Therfore 

Vab = 5.68V 

Since the current through the 20 resistor is also the current through the 

25

I = Vab/Rab = 5.68/25 = 0.227A 
 

Example 8.10 

Determine the current in each of the branches of the circuit shown in figure 

8.17. 
 

3




8



12V 

 

 

 

Figure 8.17 
 

 

Solution 

First we should define an arbitrary direction for the 

current as shown in the figure below. I3 

 

I3 = I1 + I2 (1) 

By the voltage rule the left-hand loop 
 

+I1(8)-I2(5)-I2(1)-4V=0 (2) 
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For the right-hand loop 
 

4V+I2(5+1)+I3(4)-12V=0 (3) 

Substitute for I3 from eqn. (1) into eqns. (2)&(3) 

8I1-6I2-4=0 (4) 

4+6I2+4(I1+I2)-12=0 (5) 

Solving eqn. (4) for I2 
 

I   
8I1  4 

2 
6
 

 

Rearranging eqn. (5) we get 
 

I  
10 

I   
8
 

1 
4 

2 
4
 

 

Substitute for I2 we get 

I1+3.33I1-1.67=2 
 

Then, 
 

I1=0.846A 

I2=0.462A 

I3=1.31A 
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8.6 RC Circuit 

In the previous section we studied either circuits with resistors only or with 

capacitors only, now we will deal with circuits contains both the resistors 

and capacitors together, these circuits are time dependent circuit where the 

current in the is varying with time. 

In the circuit shown in figure 8.18 we have connected an emf with resistor R 

and uncharged capacitor C using a switch S. 
 

 

 

 








Figure 8.18 

 

8.6.1 Charging a capacitor 

When the switch S is connected to point (a) the battery will force charges to 

move to the capacitor this called charging process of the capacitor. Note 

that the current will not flow through the capacitor since there is no way for 

the charge to jump from one plate to the other. However a positive charge 

will accumulate on the plate connected with the positive terminal of the 

battery. The same number of a negative charge will accumulate on the other 

plate. 

The current must stop after the capacitor will become fully charged and its 

potential difference equals the emf. 

 يتناقص لزمنا وربمرو حلمفتاا غلق عند عظمى قيمة ذا نيكو رلتياا أن لحالةا ذهه في ناه نلاحظ

 .تملآا قد لمكثفا شحن نيكو اهعندو .لصفرا لىإ يصل أن ليإ رلتياا

To analyze this circuit let’s assume that in time dt a charge dq moves 

through the resistor and the capacitor. Apply the first Kirchhoff’s rule in a 

direction from the battery to the resistor to the capacitor we get, 

 - IR - 
q 

= 0 (8.11) 
C 

Where IR is the potential difference across the resistor and q/C is the 

potential difference across the capacitor. 
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Q  C

The current I and the charge q are varying with time. Substitute for 
 

I = 
dq 

(8.12) 
dt 

 

  R 
dq 

 
q 
 0 

 
(8.13) 

dt C 
 

By solving the differential equation to find the q as a function of time we 

get, 
 

q  C (1  e
t

 
RC

 ) (8.14) 
 

The quantity C is the maximum charge Q in the capacitor. 
 

q  Q(1  e
t

 
RC

 ) (8.15) 
 

 

The current I is 
 

I  
dq 

 






et RC 

 

 

 
(8.16) 

dt R 
 

q I (A) 

 

Q I
o
 

 

 

 

 

 

 

t (sec) 

 

Figure 8.19 

t (sec) 

Plots of the charge Q and the current I as a function of 

time in the charging process 

I  

 
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Ohm.Farad= Ohm. 
Coulomb 

 Ohm. 
Amp.Sec 

 
Volt.Sec 

 Sec 
Volt Volt Volt 

Note that the quantity RC in the equation has a unit of time (sec). Therefore 

it is called the time constant of the circuit. 

Unit of RC is Ohm . Farad=Sec 
 

 

 

 

 

 

8.6.2 Discharging a capacitor 

When the switch S is connected to point (b) the battery is disconnected and 

now the charged capacitor plays the role of emf. Therefore the capacitor 

will force a charge q to move through the resistor R this called discharging 

process of the capacitor. 
 

Apply the first Kirchhoff’s rule in a direction from the resistor to the 

capacitor we get, 
 

 

- IR - 
q 

= 0 (8.17) 
C 

 

The current I and the charge q are varying with time. Substitute for 
 

I = 
dq 

(8.18) 
dt 

 

R 
dq 

 
q 
 0 

 
(8.19) 

dt C 
 

By solving the differential equation to find the q as a function of time we 

get, 
 

q  Qet RC (8.20) 
 

 

The current I during the discharging process is 
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o 

In the end we found that charging and discharging process of the 

capacitor is exponentially depends on the time constant (RC). 

I  
dq 

 
dt 

Q 
et RC 

RC 

 
(8.21) 

 

 

The -ve sign indicates that the direction of the current in the discharging 

process is in the opposite direction of the charging process. 

 

 
The quantity Q/RC is equal to the initial current Io (i.e. when t=0) 

 

I  I et RC (8.22) 
 

 

 

I (A) 
q 

Q 

 

 

 

 

 

 

Io 

 
Figure 8.20 

 

t (sec) 

Plots of the charge Q and the current I as a function of 

time in the discharging process 
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Example 8.11 

Consider an RC circuit in which the capacitor is being charged by a battery 

connected in the circuit. In five time constants, what percentage of the final 

charge is on the capacitor? 
 

 

 

Solution 

From equation (8.20) 

q  Q(1  e
t

 
RC

 ) 

t = 5RC 

q 
 1  et RC 

Q 

q 
 1  e5RC RC 

Q 

 

 

 
 1  e

5
 = 99.3% 

 
 

 

 

 

Example 8.12 

In figure 8.21 (a) find the time constant of the circuit and the charge on the 

capacitor after the switch is closed. (b) find the current in the resistor R at a 

time 10sec after the switch is closed. Assume R=110
6
 , emf=30Vand 

C=510
-6
F. 

R 
 

 
 

C 
 

 

 

 
 

Figure 8.21 
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1
2 

4V 

  
1 

 

8V 
1  

    

 
 

Solution 

(a) The time constant = RC = (110
-6

)(510
-6

) = 5sec 

The charge on the capacitor = Q = C = (510
-6

)(30) = 150 C 

 
(b) The current in charging of the capacitor is given by 

I  



R 
et RC 

 
 10 

30  (1106 )(5106 )  6 

I  
110

6
 
e
 

  4.06 10 A 

 
 

 

 

Example 8.13 

Determine the potential difference Vb-Va for the circuit shown in figure 8.22 
 

12V 

 

Solution 

The current is zero in the 

middle branch since 

there is discontinuity at 

the points a and b. 

Applying the second 

Kirchhoff’s rule for the 

outside loop we get, 

 
10




5












Figure 8.22 

+12 - 10I - 5I - 8 - 1/2I - 1/2I = 0 

+4 - 16I = 0 

I = 4A 

The potential difference Vb-Va is found by applying the second Kirchhoff’s 

rule at point a and move across the upper branch to reach point b we get, 

Vb-Va = +10I - 12 + 1/2I + 4 

Vb-Va = - 8 + 10.5I = - 8 + (10.54) = 34volt 
 


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1 8

 

4 2

 

 
 

Example 8.14 

The circuit has been connected as shown in figure 8.23 for a long time. (a) 

What is the voltage across the capacitor? (b) If the battery is disconnected, 

how long does it take for the capacitor to discharge to 1/10 of its initial 

voltage? The capacitance C=1F. 
 

 

 

 

 

 

 

 

10V a 

 
 
 
 
 
 

Figure 8.23 

Solution 

After long time the capacitor would be fully charged and the current in the 

branch ab equal zero. 

The resistors in the left hand (1, and 4) are connected in series and 

assume the current in this branch cbd is I1. The resistors in the right hand 

(8, and 2) are connected in series and assume the current in this branch 

cad is I2. 

The potential difference across the points c and d is the same as the emf = 

10volt. Therefore, 

I1 
10 

 
 

1  4 
 2 A I 2 

10 
 

 

2  8 
 1A 

The total current, 

I = I1 + I2 = 3A 
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The potential difference across the capacitor Vb-Va is 

Vb-Va = 8I2 - 1I1 = 8  1 - 1  2 = 6volt 

 

To find the answer of (b) we need to find the equivalent resistance, 

1 
 

1 
 

1 

R R1 R2 

 
1 
 

1 
 

3 

5 10 10 

Where R1 is the equivalent resistance for (1, and 4), and R2 is the 

equivalent resistance for (2, and 8) 

R=3.3

From equation 8.17 
 

q  Qet RC 

 

Divide by the capacitance C, therefore 
 

q 
 

Q 
et RC 

C C 
 

v  Vet RC 

 

 
v 
 et RC 

V 
 

The time for the capacitor to discharge to 1/10 of its initial voltage 
 

1 
 et RC 

10 
 

Ln1 - Ln10 = -t/RC 
 

t = Ln10RC 

t = 7.7s 
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8.7 Electrical Instruments 

8.7.1 Ammeter and Voltmeter 

A device called ammeter is used to measure the current flow in a circuit, the 

ammeter must connected in series in the circuit so that the current to be 

measured actually passes through the meter. In order that the ammeter will 

not affect the current in the circuit it must has very small resistance. 

A device called voltmeter is used to measure the potential difference 

between two points, and its terminal must be connected to these points in 

parallel. 
 

I 
 

 

 R
2
 

 

r c 

a 
R V 

A 1 

b 

d 

 

Figure 8.24 

 

In figure 8.24 shows an ammeter (A) measure the current I in the circuit. 

Voltmeter (V), measure the potential difference across the resistor R1, (Vc- 

Vd). In order that the voltmeter will not affect the current in the circuit it 

must has very large resistance. 

Note that the ammeter is connected in series is the circuit and the voltmeter 

is connected in parallel with the points to measure the potential difference 

across them. 
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8.7.2 The Wheatstone Bridge 

This is a circuit consist of four resistors, emf, and galvanometer. The 

Wheatstone bridge circuit is used to measure unknown resistance. In figure 

8.25 show three resistors R1, R2, and R3 are known with R1 is a variable 

resistance and resistor Rx is the unknown one. 
 

 

 

 

 

 
 

b 

 
 
 
 
 
 
 
 

 

Figure 8.25 

 

To find the resistance Rx the bridge is balanced by adjusting the variable 

resistance R1 until the current between a and b is zero and the galvanometer 

reads zero. At this condition the voltage across R1 is equal the voltage 

across R2 and the same for R3 and Rx. Therefore, 

I1R1 = I2R2 

I1R2 = I2Rx 

Dividing the to equation and solving for Rx we get, 

R   
R2 R3 

R1 

 
(8.23) 

This shows how unknown resistor can be determined using the Wheatstone 

bridge. 

  

I1  I2 

   
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R 
x 

8.7.3 The potentiometer 

This circuit is used to measure potential differences by comparison with a 
slandered voltage source. The circuit is shown in figure 8.26 where the 

working emf is  w and the unknown emf is  x.  The current flow in the 

circuit is I in the left branch and Ix is the current in the right branch and I-Ix 

is the current flow in the variable resistor. Apply second Kirchhoff’s rule 

on the right branch abcd we get, 
 

I 
a 

I
x b

 

 
I - I

x 
x 

R 

w 

d 
c 

 
 

 

Figure 8.26 

 

-(I-Ix)Rx+ x = 0 

When the variable resistance adjusted until the galvanometer reads zero, this 

mean that Ix=0. 

 x = IRx 

In the next step the emf  x is replaced with standard emf  s, and adjusted 

the resistance until the galvanometer reads zero, therefore, 

 s = IRx 

Where the current I remains the same, divide the two equations we get, 

  
Rx 

s 

 
(8.24) 

This shows how unknown emf can be determined using known emf. 
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8.8 Problems 
 

 

 

8.1) A battery with an emf of 12V 

and internal resistance of 0.9 is 

connected across a load resistor R. 

If the current in the circuit is 1.4A, 

what is the value of R? 

 
8.2) What power is dissipated in the 

internal resistance of the battery in 

the circuit described in Problem 

8.1? 

 
8.3) (a) What is the current in a 

5.6 resistor connected to a battery 

with an 0.2 internal resistance if 

the terminal voltage of the battery 

is 10V? (b) What is the emf of the 

battery? 

 
8.4) If the emf of a battery is 15V 

and a current of 60A is measured 

when the battery is shorted, what is 

the internal resistance of the 

battery? 

 
8.5) The current in a loop circuit 

that has a resistance of R1 is 2A. 

The current is reduced to 1.6A 

when an additional resistor R2=3 

is added in series with R1. What is 

the value of R1? 

 
8.6) A battery has an emf of 15V. 

The terminal voltage of the battery 

is 11.6V when it is delivering 20W 

of power to an external load 

resistor R. (a) What is the value of 

R? (b) What is the internal 

resistance of the battery? 

 
8.7) A certain battery has an open- 

circuit voltage of 42V. A load 

resistance of 12 reduces the 

terminal voltage to 35V. What is 

the value of the internal resistance 

of the battery? 

 
8.8) Two circuit elements with fixed 

resistances R1 and R2 are connected 

in series with a 6V battery and a 

switch. The battery has an internal 

resistance of 5, R1= 32, and 

R2=56. (a) What is the current 

through R1 when the switch is 

closed? (b) What is the voltage 

across R2 when the switch is 

closed? 

 
8.9) The current in a simple series 

circuit is 5.0A. When an additional 

resistance of 2.0 is inserted, the 

current drops to 4.0 A. What was 

the resistance of the original 

circuit? 

 

8.10) Three resistors (10, 20, and 

30) are connected in parallel. 

The total current through this 

network is 5A. (a) What is the 

voltage drop across the network (b) 

What is the current in each 

resistor? 
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7

4 9

10

12 24V 

 12  

6

r
1
 r

2
 

8.11) (a) Find the equivalent 

resistance between points a and b in 

Figure 8.27. (b) A potential 

difference of 34V is applied 

between points a and b in Figure 

28.28. Calculate the current in each 

resistor. 

8.14) Consider the circuit shown in 

Figure 8.30. Find (a) the current in 

the 20 resistor and (b) the 

potential difference between points 

a and b. 

 

 

 

 

6 20
a b 

 

Figure 8.27 

 
8.12) Evaluate the effective 

resistance of the network of 

identical resistors, each having 

resistance R, shown in figure 8.28. 

 
R 

 
Figure 8.30 

 
8.15) (a) In Figure 8.31 what value 

must R have if the current in the 

circuit is to be 0.0010A? Take & 

 1=2.0V,  2=3.0V, and 

r1=r2=3.0. (b) What is the rate of 

thermal energy transfer in R? 
 
 

1 2 

Figure 8.28 
 

8.13) Calculate the power dissipated 

in each resistor in the circuit of 

figure 8.29. 

 
2

R 

 

Figure 8.31 

 
8.16) In Figure 8.32 (a) calculate the 

potential difference between a and 
 

18V 
1 c by considering a path that 

contains R and  2. 

 

 

Figure 8.29 

a   b 

   




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2 3 

 
6

3

1
24 

6V 

 1

I2 
4

 

8.19) (a) Find the potential difference 

between points a and b in the 

circuit in Figure 8.35. (b) Find the 
currents I , I , and I in the circuit. 

 

 
I 

 

Figure 8.32 

 
8.17) In Figure 8.33 find the current 

in each resistor and the potential 

difference between a and b. Put 

 1=6.0V,    2=5.0V,    3=4.0V, 

R1=100 and R2 =50. 

 
1 

1 2 3 

 

3 10V 

 

 

 

 

I1 I3 

 

Figure 8.35 

 
8.20) Determine the current in each 

of the branches of the circuit shown 

in figure 8.36. 

R2 

a 
3




R1 

 
Figure 8.33 

 
8.18) (a) Find the three currents in 

Figure 8.34. (b) Find Vab. Assume 

that R1=1.0, R2=2.0,  1=2.0 V, 

and  2= 3=4.0V. 

10


V 

 

 

 
Figure 8.36 

 
8.21) Calculate the power dissipated 

in each resistor in the circuit shown 

in figure 8.37. 

R1 a R1 

3 

1 

R1 

 
R1 

b 

 
I1 I3 

 

 
16V 

 

 

Figure 8.34 
Figure 8.37 

     

  

 

 
R2 

 

2 

  

 
 

I2 
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8.22) Consider a series RC circuit for 

which  R=1M,  C=5F,  and 

=30V. Find (a) the time constant 

of the circuit and (b) the maximum 

charge on the capacitor after the 

take for the capacitor to become 

fully charged? 

 
Close at t =0 

switch is closed. (c) If the switch 

in the RC circuit is closed at t=0. 

Find the current in the resistor R at 

a time 10s after the switch is 

closed. 

emf 
C 

 

 
R 

 

Figure 8.38 
 

8.23) At t=0, an unchanged capacitor 

of capacitance C is connected 

through a resistance R to a battery 

of constant emf (Figure 8.38). (a) 

How long does it take for the 

capacitor to reach one half of its 

final charge? (b) How long does it 

8.24) A 4M resistor and a 3F 

capacitor are connected in series 

with a 12V power supply. (a) What 

is the time constant for the circuit? 

(b) Express the current in the 

circuit and the charge on the 

capacitor as a function of time. 
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Attempt the following question after the 

completion of part 2 
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[1] (a) How much charge is on a plate of a 4.00F capacitor when it is 

connected to a 12.0 V battery? (b) If this same capacitor is connected to a 

1.50 V battery, what charge is stored? 

 

a. (a) 3.00 C; (b) 2.67 C 

b. (a) 3.00 C; (b) 0.375 C 

c. (a) 0.333 C; (b) 2.67 C 

d. (a) 48.00 C; (b) 6.00 C 

 

[2] Calculate the equivalent capacitance between points a and b in Figure 1. 

aa aa  
3uF 

 

 

1uF 3uF 

 

 

1uF 

Figure 1 

A bA b  

Note that this is not a simple series or parallel combination. (Hint: Assume a 

potential difference V between points a and b. Write expressions for Vab 

in terms of the charges and capacitances for the various possible pathways 

from a to b, and require conservation of charge for those capacitor plates that 

are connected to each other.) 

 

a. 4.68 F 

b. 15.0 F 

c. 0.356 F 

d. 200 F 
 

[3] Two capacitors Cl = 27.0 F and C2 = 7.00 F, are connected in parallel 

and charged with a 90.0 V power supply. (a) Calculate the total energy 

stored in the two capacitors. (b) What potential difference would be required 

across the same two capacitors connected in series in order that the 

combinations store the same energy as in (a)? 

 

a. (a) 0.0225 J; (b) 25.7 V 

b. (a) 0.0225 J; (b) 36.4 V 

c. (a) 0.138 J; (b) 223 V 

d. (a) 0.13 8 J; (b) 157 V 
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[4] Each capacitor in the combination shown in Figure 2 has a breakdown 

voltage of 19.0V. 

24uF 24uF 

 
24uF  

Figure 2 

24uF 

What is the breakdown voltage of the combination? 

 

a. 57.0 V 

b. 28.5 V 

c. 95.0 V 

d. 19.0 V 

 

[5] When a potential difference of 190 V is applied to the plates of a parallel 

plate capacitor, the plates carry a surface charge density of 20.0 nC/cm
2
. 

What is the spacing between the plates? 

 

a. 8.41 m 

b. 0.119 m 

c. 0.429 m 

d. 2.3 3 m 

 

[6] A parallel plate capacitor is constructed using a dielectric material whose 

dielectric constant is 4.00 and whose dielectric strength is 2.50  10
8
 V/m. 

The desired capacitance is 0.450F, and the capacitor must withstand a 

maximum potential difference of 4000V. Find the minimum area of the 

capacitor plates. 

 

a. 3.25 m
2
 

b. 0.203 m
2
 

c. 0.795 m
2
 

d. 0.814 m
2
 

 

 

 

12uF 
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6uF 

 7uF  

3uF 
4uF 

[7] Find the equivalent capacitance between points a and b in the 

combination of capacitors shown in Figure 3. 

Figure 3 

 

a. 1.12 F 

b. 1.94 F 

c. 1.12 F 

d. 20.0 F 

 

[8] The inner conductor of a coaxial cable has a radius of 0.500 mm, and the 

outer conductor's inside radius is 4.00 mm. The space between the 

conductors is filled with polyethylene, which has a dielectric constant of 

2.30 and a dielectric strength of 20.0  10
6
 V/m. What is the maximum 

potential difference that this cable can withstand? 

 

a. 30.4 kV 

b. 70.0 kV 

c. 20.8 kV 

d. 166 kV 

 

[9] Two capacitors when connected in parallel give an equivalent 

capacitance of 27.0 pF and give an equivalent capacitance of 4.00 pF when 

connected in series. What is the capacitance of each capacitor? 

 

a. 10.4 pF, 16.6 pF 

b. 9.76 pF, 44.2 pF 

c. 9.77 pF, 17.23 pF 

d. 4.88 pF, 22.12 pF 

 

[10] An isolated capacitor of unknown capacitance has been charged to a 

potential difference of 100 V. When the charged capacitor is then connected 

in parallel to an unchanged 10.0 F capacitor, the voltage across the 

combination is 30.0 V. Calculate the unknown capacitance. 

a. 7.00 F 
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b. 2.31 F 

c. 4.29 F 

d. 13.0 F 
 

[11] Four capacitors are connected as shown in Figure 4. 
 

19uF 5uF 

 
Figure 4 

 

(a) Find the equivalent capacitance between points a and b. (b) Calculate the 

charge on each capacitor if Vab = 11.0 V. 

a. (a) 28.8 F; (b) q19 = 1254, q5 = 330, q6 = 396, q24 = 317 

b. (a) 7.04 F; (b) q19 = 30.8, q5 = 30.8, q6 = 46.7, q24 = 77.4 

c. (a) 28.8 F; (b) q19 = 1584, q5 = 1584, q6 = 396, q24 = 317 

d. (a) 7.04 F; (b) q19 = 148, q5 = 38.9, q6 = 46.7, q24 = 77.4 
 

[12] A 40.0F spherical capacitor is composed of two metal spheres one 

having a radius four times as large as the other. If the region between the 

spheres is a vacuum, determine the volume of this region. 

a. 5.18  10
18

 m
3
 

b. 1.46  10
13

 m
3
 

c. 1.37  10
13

 m
3
 

d. 5.26  10
18

 m
3
 

 

[13] A 18.0 m metal wire is cut into five equal pieces that are then connected 

side by side to form a new wire the length of which is equal to one-fifth the 

original length. What is the resistance of this new wire? 

a. 90.0 

b. 3.60 

c. 0.720 

d. 19.0 


  

6uF 

24uF 
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[14] A small sphere that carries a charge of 8.00 nC is whirled in a circle at 

the end of an insulating string. The angular frequency of rotation is 100 

rad/s. What average current does the rotating rod represent? 

 

a. 251 nA 

b. 400 nA 

c. 127 nA 

d. 160 nA 

 

[15] An aluminun wire with a cross sectional area of 4.00  10
-6

 m
2
 carries a 

current of 5.00A. Find the drift speeds of the electrons in the wire. The 

density of aluminum is 2.70 g/cm
3
. (Assume that one electron is supplied by 

each atom.) 

 

a. 9.45  10
-4

 m/s 

b. 1.30  10
-4

 m/s 

c. 1.78  10
-7

 m/s 

d. 7.71  10
-3

 m/s 

 

[16] A 16.0 V battery is connected to a 100  resistor. Neglecting the 

internal resistance of the battery, calculate the power dissipated in the 

resistor. 

 

a. 0.0625 W 

b. 1.60 W 

c. 16.0 W 

d. 0.391 W 

 

[17] An electric current is given by I(t) = 120.0 sin(l.10t), where I is in 

amperes and t is in seconds. What is the total charge carried by the current 

from t = 0 to t = 1/220 s? 

 

a. 0.347 C 

b. 120 C 

c. 415 C 

d. 1.09 C 
 

 

 

[18] A resistor is constructed of a carbon rod that has a uniform cross 

sectional area of 3.00mm When a potential difference of 19.0 V is applied 
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across the ends of the rod, there is a current of 2.00  10
-3

 A in the rod. Find 

(a) the resistance of the rod and (b) the rod's length. 

 

a. (a) 1.05 k; (b) 998 mm 

b. (a) 9.50 k; (b) 111 mm 

c. (a) 9.50 k; (b) 814 mm 

d. (a) 1.05 k; (b) 902 mm 

 

[19] A copper cable is designed to carry a current of 500 A with a power loss 

of 1.00 W/m. What is the required radius of this cable? 

 

a. 3.68 cm 

b. 6.76 cm 

c. 13.5 cm 

d. 7.36 cm 

 

[20] In a certain stereo system, each speaker has a resistance of 6.00 Q. The 

system is rated at 50.0 W in each channel, and each speaker circuit includes 

a fuse rated at 2.00 A. Is the system adequately protected against overload? 

a. yes 

b. no 

c. n/a 

d. n/a 
 

[21] Compute the cost per day of operating a lamp that draws 1.70 A from a 

110 V line if the cost of electrical energy is $0.06kWh. 

 

a. 0.458 cents/day 

b. 45.8 cents/day 

c. 1.12 cents/day 

d. 26.9 cents/day 
 

 

 

 

 

 

 

[22] Calculate the power dissipated in each resistor of the circuit of Figure 5. 
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3Ohm 

 

2Ohm 

 
18V 1Ohm 

 
4Ohm 

 

Figure 5 

 
a. P2 = 14.2 W, P4 = 28.4 W, P3 = 1.33 W, P1 = 4.00 W 

b. P2 = 162 W, P4 = 81 0 W, P3 = 60.8 W, P1 = 20.3 W 

c. P2 = 14.2 W, P4 = 28.4 W, P3 = 12.0 W, P1 = 0.444 W 

d. P2 = 162 W, P4 = 81.0 W, P3 = 20.3 W, P1 = 60.8 W 
 
 

 

[23] When two unknown resistors are connected in series with a battery, 225 

W is dissipated with a total current of 7.00 A. For the same total current, 

45.0 W is dissipated when the resistors are connected in parallel. Determine 

the values of the two resistors. 

 

a. 3.32 , 2.40 

b. 3.32 , 7.92 

c. 1.27 , 5.86 

d. 1.27 , 3.32 





[24] A fully charged capacitor stores 14.0 J of energy. How much energy 

remains when its charge has decreased to half its original value? 

 

a. 3.50 J 

b. 7.00 J 

c. 56.0 J 

d. 14.0 J 
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[25] For the current shown in Figure 6, calculate (a) the current in the 1.00 

resistor and (b) the potential difference between the points a and b. 

 
18 V  

6Ohm 

 

 
b 

 

a 

 
 
 
 

Figure 6 
 

a. (a) 2.90 A; (b) -2.90 V 

b. (a) 1.74 A; (b) -1.74 V 

c. (a) 1.74 A; (b) 1.74 V 

d. (a) 2.90 A; (b) 2.90 V 

 

[26] Three 4.00  resistors are connected as in Figure 7. 
 

4Ohm 

4Ohm 

Figure 7 

 

Each can dissipate a maximum power of 34.0 W without being excessively 

heated. Determine the maximum power the network can dissipate. 

 

a. 434 W 

b. 22.7 W 

c. 51.0 W 

d. 102 W 

 

 

 

[27] Consider the circuit shown in Figure 8. 

1Ohm 

6 V 
8Ohm 
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18Ohm 5 V 

 

 

 

 
5Ohm 

12Ohm 

 

 

Figure 8 

 

Find (a) the current in the 12.0  resistor and (b) the potential difference 

between points a and b. 

 

a. (a) 0.0554 A; (b) 0.665 V 

b. (a) 0.294 A; (b) 5.00 V 

c. (a) 0.250 A; (b) 4.25 V 

d. (a) 0.0442 A; (b) 0.751 V 

 

[28] Two resistors connected in series have an equivalent resistance of 590 

. When they are connected in parallel, their equivalent resistance is 125 . 

Find the resistance of each resistor. 

 

a. 327 , 263 

b. 327 , 202 

c. 180 , 410 

d. 180 , 54.8 









  

 

 

http://www.hazemsakeek.com/


Lectures in General Physics 

 

 

 
 

Solution of the multiple choice questions 
 

 

 
 

Q. No. Answer  Q. No. Answer 

1 d  15 b 

2 d  16 c 

3 c  17 a 

4 b  18 c 

5 a  19 a 

6 b  20 a 

7 c  21 d 

8 c  22 a 

9 d  23 d 

10 c  24 a 

11 b  25 b 

12 a  26 c 

13 c  27 d 

14 b  28 c 
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 Light – Wave or stream of  

 

 

 

 

Answer: Yes! As we’ll see below, there is experimental evidence for both interpretations, although 

they seem contradictory. 

1.1.1 What is a wave? 

More familiar types of waves are sound, or waves on a surface of water. In both cases, there is a 

perturbation with a periodic spatial pattern which propagates, or travels in space. In the case 

of sound waves in air for example, the perturbed quantity is the pressure, which oscillates about 

the mean atmospheric pressure. In the case of waves on a water surface, the perturbed quantity 

is simply the height of the surface, which oscillates about its stationary level. Figure 1.1 shows 

an example of a wave, captured at a certain instant in time. It is simpler to visualize a wave by 

drawing the “wave fronts”, which are usually taken to be the crests of the wave. In the case of 

Figure 1.1 the wave fronts are circular, as shown below the wave plot. 

1.1.2 Evidence for wave properties of light 

There are certain things that only waves can do, for example interfere. Ripples in a pond caused 

by two pebbles dropped at the same time exhibit this nicely: Where two crests overlap, the waves 

reinforce each other, but where a crest and a trough coincide, the two waves actually cancel. This 

is illustrated in Figure 1.2. If light is a wave, two sources emitting waves in a synchronized fashion1 

should produce a pattern of alternating bright and dark bands on a screen. Thomas Young tried 

the experiment in the early 1800’s, and found the expected pattern. 

The wave model of light has one serious drawback, though: Unlike other wave phenomena such as 

sound, or surface waves, it wasn’t clear what the medium was that supported light waves. Giving 

it a name – the “luminiferous aether” – didn’t help. James Clerk Maxwell’s (1831 - 1879) theory of 

electromagnetism, however, showed that light was a wave in combined electric and magnetic fields, 

which, being force fields, didn’t need a material medium. 
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1.1.3 Evidence for light as a stream of particles 

 
One of the earliest proponents of the idea that light was a stream of particles was Isaac Newton 

himself. Although Young’s findings and others seemed to disprove that theory entirely, surprisingly 

other experimental evidence appeared at the turn of the 20th. century which could only be explained 

by the particle model of light! The photoelectric effect, where light striking a metal dislodges 

electrons from the metal atoms which can then flow as a current earned Einstein the Nobel prize 

for his explanation in terms of photons. 

We are forced to accept that both interpretations of the phenomenon of light are true, although 

they appear to be contradictory. One interpretation or the other will serve better in a particular 

context. For our purposes, in understanding how optical instruments work, the wave theory of light is 

entirely adequate. 

1.2 Features of a wave 
We’ll consider the simple case of a sine wave in 1 dimension, as shown in Figure 1.3. The distance 

between successive wave fronts is the wavelength. 

As the wave propagates, let us assume in the positive x direction, any point on the wave pattern 

is displaced by dx in a time dt (see Figure 1.4). We can speak of the propagation speed of the 

wave 

v 
dx 

(1.1) 
dt 

As the wave propagates, so do the wavefronts. A stationary observer in the path of the wave 

would see the perturbation oscillate in time, periodically in “cycles”. The duration of each cycle is 

the period of the wave, and the number of cycles measured by the observer each second is the 

frequency2. There is a simple relation between the wavelength λ, frequency f , and propagation 

speed v of a wave: 

v = fλ (1.2) 

Electromagnetic waves in vacuum always propagate with speed c = 3.0 108 m/s. In principle, 

electromagnetic waves may have any wavelength, from zero to arbitrarily long. Only a very narrow 

range of wavelengths, approximately 400 - 700 nm, are visible to the human eye. We perceive 

wavelength as colour; the longest visible wavelengths are red, and the shortest are violet. Longer 
 

2The SI unit of frequency is the Hertz (Hz), equivalent to s
−1. 
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than visible wavelengths are infrared, microwave, and radio. Shorter than visible wavelengths are 

ultraviolet, X rays, and gamma rays. 
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Figure 1.1: A wave 
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Figure 1.2: Interference 
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Figure 1.3: A sine wave 
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Figure 1.4: Wave propagation 
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2.1 Huygens’ Principle 

 
In the 1670’s Christian Huygens proposed a mechanism for the propagation of light, nowadays 

known as Huygens’ Principle: 

 
All points on a wavefront act as sources of new waves, and the envelope of these sec- ondary 

waves constitutes the new wavefront. 

 
Huygens’ Principle states a very fundamental property of waves, which will be a useful tool to 

explain certain wave phenomena, like refraction below. 

 
 

2.2 Refraction 

 
When light propagates in a transparent material medium, its speed is in general less than the 

speed in vacuum c. An interesting consequence of this is that a light ray will change direction when 

passing from one medium to another. Since the light ray appears to be “broken”, the phenomenon 

is known as refraction. 

Huygens’ Principle explains this nicely. See Figure 2.1. A plane wavefront (dashed line) approaches 

the interface between two media. At one end, a new wavefront propagates outwards reaching the 
interface in a time t according to Huygens’ principle, so its radius is v1t. At the other end a new 

wavefront is propagating into medium 2 more slowly, so that in the same time t it has reached a 

radius v2t. Now consider the angle of incidence θi and the angle of refraction θr between the 

incident wavefront and the interface, and between the refracted wavefront and the interface. From 

the figure we see that 

sin θ = 
v1t 

and sin θ 
= 

v2t ⇒ 
sin θi = 

v1 (2.1) 
i 

x 
r 

x
 
sin θr v2 

This result is usually written in terms of the index of refraction of each medium, which is defined 

as 
n = 

v 

so that 

 

(2.2) 

n1 sin θi = n2 sin θr (2.3) 

a result which is known as Snell’s law. 

Refractive indices are greater than 1 (only vacuum has an index of 1). Water has an index of 

refraction of 1.33; diamond’s index of refraction is high, about 1.5. It is tempting to think that the 
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medium 1 (e.g. air) v_1 t 
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Figure 2.1: Refraction 
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index of refraction might be associated with the density of the material, but that is not the case. 

The idea lingers in the term optical density, a property of a material that the index of refraction 

measures. 

 
 

2.3 Total internal reflection 

 
One important consequence of Snell’s law of refraction is the phenomenon of total internal reflection. If 

light is propagating from a more dense to a less dense medium (in the optical sense), i.e. n1 > n2, 

then sin θr > sin θi. Since sin θ 1, the largest angle of incidence for which refraction is still possible 

is given by 

sin θi 
n2 
≤ 

n1
 (2.4) 

For larger angles of incidence, the incident ray does not cross the interface, but is reflected back 

instead. This is what makes optical fibres possible. Light propagates inside the fibre, which is 

made of glass which has a higher refractive index than the air outside. Since the fibre is very 

thin, the light beam inside strikes the interface at a large angle of incidence, large enough that it 

is reflected back into the glass and is not lost outside. Thus fibres can guide light beams in any 

desired direction with relatively low losses of radiant energy. 

http://www.hazemsakeek.com/


 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3 

 
Images 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

13 



14 www.hazemsakeek.com 

14 CHAPTER 3. IMAGES 
 

 

 

3.1 Images 
 

An optical system creates an image from an object. For example, a slide projector shows an 

image of a slide on a screen. There are two types of images, real and virtual. 

Since an extended object may be treated as a collection of point sources of light, we are specially 

interested in the images of point objects. 

 

 

 

3.1.1 Real images 
 

The formation of a real image is shown schematically in Figure 3.1. A point object emits light rays 
 

 

 

screen 
 
 

 

object  
image 

 
 
 
 
 
 
 
 

projector 
 

Figure 3.1: Formation of a real image 

 

 
in all directions. Some are redirected by the optical elements in the projector so that they converge to 
a point image. If a screen is placed there, the image may be seen as the light concentrated there is 

scattered by the screen. 
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3.1.2 Virtual images 

 
The reflection from a plane mirror is a good example of a virtual image. See Figure 3.2. The rays 

reflected by the mirror seem to come from a point behind the mirror. When those rays enter the 

mirror 
 
 
 
 

object image 

 
 
 
 
 
 
 

 

Figure 3.2: Virtual image formed by a plane mirror 

 
eye of an observer or the objective of a camera, they will be seen as coming from a point. In that 

sense, we see the image of the object, but there is of course nothing actually there. If we placed a 

screen behind the mirror, nothing would be projected on it. 

 
 

3.2 Curved mirrors 

 
Curved mirrors are a key element of telescopes. They are usually parabolic in cross-section, for 

reasons to be discussed below. A spherical mirror is a good approximation if the curvature is low. 

A key property which is satisfied exactly by a parabolic mirror and approximately by a spherical 

one is the ability to focus a beam of light parallel to the optical axis – the axis of symmetry of 

the mirror – to a point, known as the mirror’s focal point (see Figure 3.3). 

 
 

3.3 Ray tracing with mirrors 

 
To locate an image formed by a curved mirror, particular auxiliary rays from the object may be 

constructed. Consider the situation shown in Figure 3.4. Ray (1) from the object is parallel to the 
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axis 
 
 
 
 
 
 
 
 

 

Figure 3.3: Focal point of a curved mirror 

 

 
optical axis, and therefore passes through the focal point F after reflection. Ray (2) passes through 

F, and therefore is reflected parallel to the axis, according to the principle of reversibility of light. 

Ray (3) is reflected at the vertex of the mirror, so the reflected ray is symmetrical to the incoming 

ray with respect to the axis of the mirror. The image is formed at the intersection of the three 

rays. In fact, to locate the image we only need to construct two of the three possible auxiliary rays: 

Where they intersect is where the image is formed. 

If we are dealing with an extended object, the whole image may be constructed this way. In the 

present example we can characterize the image as real, inverted (as opposed to upright), and 

enlarged (as opposed to reduced). 

 

 
3.4 The mirror equation 

 
The location of the image may be calculated from the position of the object and of the mirror’s 

focal point by means of the mirror equation, which we shall derive shortly. These positions are 

measured by the following coordinates, illustrated in Figure 3.4: the object distance p measured 

along the axis from the vertex of the mirror, where the axis intersects the mirror; the image 

distance i, and the focal length f, measured in the same way. By convention, we draw the 

diagram so that the light is incident from the left, and all three lengths are counted as positive 

towards the left as indicated in the figure. 

 optical 
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i 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4: Image formation by a curved mirror 

 

 
Our mirror equation presupposes that the curvature of the mirror is very small, which is true if 

the object is relatively small and close to the optical axis. In that case, we can draw the mirror as 

approximately flat. The situation is depicted in Figure 3.5. The triangles OPF and FQI are 

similar (check this). This means that the following ratios are equal: 
 

p − f f 
= 

f 

i − f 
(3.1) 

After some manipulation, this expression reduces to 

1 
+ 

1 
= 

1 

p i f 

 
(3.2) 

 

 

 
Exercise 3.4.1 Derive equation (3.2) from equation (3.1). 

 

 

object (1) 

(3) 

(2)  vertex 

image 
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Figure 3.5: Derivation of the mirror equation 
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n_1 n_2 

normal 
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







 

 

  

 

 

4.1 Introduction 

 
Mirrors, which form images by reflection, are important components of telescopes; lenses, which 

form images by refraction, are also important components of many optical systems, including 

(refracting) telescopes. Next, we shall see how an image is formed as light rays from an object pass 

through two interfaces, generally air/glass and glass/air. Our first task is to locate the image of a 

point after passing through a single spherical interface. 

 

 

4.2 Refraction at a spherical interface 

 
We will restrict ourselves to those cases where the curvature of the interface is very small, so that 

we can represent it as a flat surface (albeit with a finite radius of curvature!) as shown in Figure 

4.1. In the figure, a point object at O emits a ray of light along the optical axis, and another ray 

 

 

Figure 4.1: Refraction at a spherical surface 

 
of light which is refracted at the interface and intersects the first one to form an image at I. The 

radius of curvature of the interface is r; as usual, the object distance to the interface is p and the 

image distance is i, butnote the following important caveat: 
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The sign convention for refraction is different from the one for mirrors: object distances are 

counted as positive when the object is in front of the interface, but image distances are 

positive when the image is formed behind the interface. The radius of curvature follows the 

same convention as the image distances. 

 
In the case of Fig. 4.1, the surface is convex, so the centre of curvature C lies to the right, and r 

is positive. 

 
For the oblique ray, the incidence angle is θ and the refracted angle is φ. Then, by the exterior 
angle theorem, 6 PCO = θ − α and 6 PIC = θ − α − φ. 

In the small angle approximation (see Appendix A), Snell’s law becomes 

n1θ = n2φ (4.1) 

and we can also approximate the angles as follows: 
x 

α = 

θ − α = 

θ − α − φ = 

and substituting θ and φ in Snell’s law, we get after cancelling x 

n1 
+ 

n1 
= 

n2 
− 

n2 

(4.2) 
 

(4.3) 
 

(4.4) 

 
 
(4.5) 

which can be rearranged more meaningfully to 

n1 
+ 

n2 
= 

n2 − n1 

 
 
(4.6) 

p i r 

If the light is passing from air of refractive index n1 = 1 to glass of index n2 = n, equation 4.6 

becomes 
1 n

 

+ 
p i 

= 
n − 1 

r 

 
(4.7) 

 
 

4.3 A lens 

 
4.3.1 Locating the image 

 
In a lens, there are two consecutive refractions, one from air to glass, and then from the glass back 

into the air. Figure 4.2 shows the process. Applying eq. (4.6) to the first refraction, we get 

x 
  

 
 

 

 

 

 
 p 

x 
 

 

     

 

http://www.bbc.co.uk/education/gcsebitesize/maths/shape_and_space_i_h/straight_lines_angles_and_polygons_rev.shtml
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 I’  

 i’ 

L−i’  

 

L 
 

 

 

Figure 4.2: Two consecutive refractions 

 
n1 

+ 
n2 

= 
n2 − n1 

 
 

(4.8) 
p i0 r1 

where r1 is the curvature radius of the first surface. The image formed after the first refraction is 

the object of the second refraction, and its distance from the second surface is 

p0 = L − i0 (4.9) 

so that the final image is formed at a distance i from the second surface given by 

   n2    
+ 

n1 
= 

n1 − n2 (4.10) 

L − i0 i r2 

In the thin lens approximation, L → 0 so that eq. (4.10) is reduced to 

− 
n2 

+ 
n1 

= 
n1 − n2 

 

(4.11) 
i0 i r2 

To eliminate the intermediate image and arrive at a single relation between object and image 

distances, add the two equations (4.8) and (4.11): 

n1 
+ 

n1 
= (n — n )

  
 1

 — 
 1

 

(4.12) 2 
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p
−   

r
 

   

 1 2 

 

4.3.2 The lensmaker’s equation 

 
Almost always, of course, the outside medium is air – n1 = 1 – , and the material of the lens is 

glass, with a refractive index n2 = n depending on the particular type of glass used. In this case, 

eq.(4.12) 

1 1 
 

 1  1
 
 

 

Notice that the right-hand side only depends on the characteristics of the lens: What it’s made of, 

and the curvature radii of its surfaces. It has dimensions of (length)−1; and what is more, when the 

object is at infinity, so that the incident rays are parallel to the axis, the image is formed at a 

distance from the lens equal to the inverse of the right-hand side. All this indicates that we can 

define a focal length for the lens 

1 
= (n − 1)

  
 1 

− 
 1

 

(4.14) 
 

This is the lensmaker’s equation. It tells a lensmaker what curvature radii he should achieve 

when he grinds a lens to obtain a desired focal length f , given that he’s working with a particular 

type of glass of refractive index n. 

 
 

4.3.3 The thin lens equation 

 
When we substitute f from equation (4.14) in equation (4.12), we get the following very simple 

recipe for locating the image formed by a lens: 

1 
+ 

1 
= 

1 

p i f 

 
(4.15) 

 

We wil call this the thin-lens equation. It is identical to the mirror equation (3.2)! But beware: 

The sign convention is not the same. 

 
 

4.3.4 Converging and diverging lenses 

 
If the focal length is positive, the image of an object at infinity is formed by rays converging at a 

point behind the lens. Such a lens is called converging. On the other hand, if the focal length is 

negative, the rays from an object at infinity diverge after passing through the lens, appearing to 

come from a point somewhere in front of the lens. This is called a diverging lens. 
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Figure 4.3: Ray tracing with a converging lens. 

 

 
Exercise 4.3.1 Use the lensmaker’s equation to show that a converging lens is thicker in the 
middle, and a diverging lens is thinner in the middle. 

 
 

4.3.5 Ray tracing with lenses 

 
For the purposes of ray tracing, every lens is said to have two focal points, a primary focal point 
and a secondary focal point. A converging lens has its primary focal point on the side from 

where the light is coming (usually drawn on the left), and the secondary focal point is symmetrically on 

the other side of the lens. The opposite is true of a diverging lens. 

As with mirrors, we can locate an image formed by a lens graphically, with the help of three 

auxiliary rays (see Figures 4.3 and 4.4): 
 

A ray parallel to the axis passes through (or appears to pass through) the secondary focal point 

F2. (Ray 1 in the figures). 

 
A ray passing through (or when extended, appearing to pass through) the primary focal point 

F1 emerges from the lens parallel to the axis. (Ray 2 in the figures). 

• A ray falling on the lens at its centre passes through undeflected. (Ray 3 in the figures). 

(1) 

F1 (3) F2 

(2) 
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 −  

 

 
 

Figure 4.4: Ray tracing with a diverging lens. 

 

 

4.3.6 Real and virtual images 
 

In Figure 4.4 the image was formed at the intersection not of the light rays emerging from the lens, 

but of their extension backwards. This means that the image is virtual: It cannot be projected on a 

screen. In fact, the image is formed behind the lens, so if a screen were placed there, the light 

would be blocked and would not be able to pass through the lens at all! 

It is possible to tell whether an image is real or virtual from the thin-lens equation, without having 

to locate it by ray tracing. In the case of Figure 4.4 the thin-lens equation is 

 
1 1 1 

p 
+ 

i 
= −

|f | 
(4.16) 

where we have emphasized that the focal length of the lens is negative by writing it as f . Then 

the position of the image is 
 

= 
 p|f|  

0 (4.17) 

p + |f | 

The image is virtual if and only if i is negative. 

(1) 

(2) 

F2 F1 

(3) 
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Figure 4.5: Lateral magnification by a lens. 

 
 

4.3.7 Lateral magnification 

 
Figure 4.5 illustrates how an image may be located by ray tracing. The optical axis has been marked 

off in units of the focal length f . Notice also that we have drawn a y axis, positive upwards. Clearly, 

the image is larger than the object, and also inverted. We can also get this information directly 

from the lateral magnification 

m = 
yi

 

yo 
(4.18) 

where yi is the height of the image and yo is the height of the object. These heights are measured 

along the y axis, so in this case yo > 0 but yi < 0. In this way, the absolute value of m measures 

how much bigger (or smaller) the image is compared with the object, and the sign of m tells us 

whether the image is upright or inverted relative to the object. 

It is evident from the figure, using ray ABC, that 
 

m = − 
p 

(4.19) 

Given the position of the object p, from the thin-lens equation we can calculate i, and hence also 

the lateral magnification m. For example, in the case of the figure, if we let f = 1, then p = 3/2, 

so 
2 1

 

3 
+ 

i 
= 1 ⇒ i = 3 ⇒ m = −2 (4.20) 

which is confirmed by ray tracing. 
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5.1 Single-lens systems 

 
To see how the analytical tools developed in the previous chapter may be applied to the design of 

some simple optical systems, we study first systems formed by a single lens. You may find it useful 

to reproduce these examples using our virtual optical bench. 

 

5.1.1 A magnifying glass 

 
Angular size 

 
What we perceive as the “size” of an object is the angle that it subtends in our field of vision. (See 

Figure 5.1). Clearly, to increase the angular size of a small object in order to see it better, we need 
 

 

Figure 5.1: Angular size 

 
to bring it as close to the eye as possible. But there is a limit to how close we can bring it: Beyond a 

certain distance, called the near-point distance, we can no longer focus the eye to create a 

sharp image on the retina. A magnifying glass is a converging lens which creates an image of an 

object very close to the eye at the near point, or slightly beyond it, so that the image may be seen 

sharply in focus. 

Since the image is formed behind the lens, it is a virtual image. A ray-tracing analysis of the 

magnifying glass is shown in Figure 5.2. If the height of the original object is y, its angular size in 

the small-angle approximation is essentially the same as the tangent of the angle, 
y 

θ = (5.1) 
p 

The eye is most relaxed when it is focused at infinity, so we want to form the image with the glass 

as far away as possible. This means that p must be very slightly under the focal length f , so we 

may write equation 5.1 as 

θ = (5.2) 
f 

http://www.hazemsakeek.com/
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Figure 5.2: Image formation by a magnifying glass 

 
and this is also the angular size of the image. 

If we were obliged to look at the object at the near point distance dN with the naked eye, its 

angular size would be 

θ0 = 
y 

dN 

so the angular magnification of the magnifying glass is 

(5.3) 

m = 
θ
 

θ θ0 = 
dN 

f 

 
(5.4) 

Clearly, a magnifying glass should have a small focal length in comparison with dN , which is 

normally estimated as 25 cm. 

 
 

5.2 Compound optical systems 

 
Many useful instruments consist of two or more lenses aligned on a common axis. In this section 

we will discuss two-lens systems. The same ray-tracing techniques, and the same thin-lens formulas 

may be applied, bearing in mind that the image formed by the first lens becomes an object for the 
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 i’ p’ = L − i’  

I’ = O’ 

 

second lens. Figure 5.3 shows such a system schematically. The first image is formed at a distance 

 

L 
 

 

L1 L2 
 

 

Figure 5.3: A two-lens system 

 

i0 from the first lens L1 given by  
1 

+ 
1 

= 
1 

 

 
(5.5) 

p i0 f1 

 

and as an object for the second lens, its object distance is p0 = L i0. The final image is formed at 

a distance i from the second lens, given by 

 

1 
+ 

1 
= 

1 

L − i0 i f2 

 

(5.6) 

 

Eliminating i0 between these two equations, a single equation may be obtained relating i, p, and 

the two focal lengths f1 and f2. 

As a practical application of a two-lens system, we will discuss one particular instrument here, the 

refracting telescope. 
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5.3 The refracting telescope 

 
Although real refracting telescopes have complex lens combinations to correct the image, for the 

purpose of understanding how they work it is sufficient to regard a telescope as consisting of two 

elements, the objective and the eyepiece, or ocular. 

Figure 5.4 shows how an image is formed by a telescope. The object is very distant, and the 

objective forms an image of it at an image distance equal to its focal length. The eyepiece is set 

up so that its focal point practically coincides with that of the objective, so that the intermediate 

image will form an image at infinity as shown. But because the focal length of the eyepiece is 

smaller, the angular size of the final image is larger than the angular size of the object. 

To calculate the angular magnification of the telescope, mθ = θ0/θ, we note first that 
 

h 
θ 6 BAD 6 BAD 
o 

(5.7) 

Here fo is the focal length of the objective, and h is the height of the image formed by the objective. 

Notice how the sign conventions apply here: h is negative because the image is oriented downwards, so 

θ = h/fo is also negative, since fo > 0 for a converging lens. This is consistent with the convention 

that angles are counted as positive going counterclockwise, so the angle θ0 from the optical axis to 

the light ray is negative. 

As for θ0, 

θ0 = 6 BCD ≈ tan 6 BCD = − 
 h
 (5.8) 

Here fe is the focal length of the eyepiece. The minus sign is necessary to make θ positive, because 

h < 0. 

Now we can calculate the angular magnification as 
 

θ0 fo 
mθ = 

θ 
= − 

f
 (5.9) 

 

The telescope forms an inverted image, which is sometimes undesirable. The spyglass, or terres- 
trial telescope, is used to observe objects closer to the observer. It is a variation on the telescope 

which produces an upright image. The essential difference is that the eyepiece is a diverging lens. 
Figure 5.5 shows the paths of the rays in this case. 

Notice that the intermediate image formed by the objective lens falls to the right of the eyepiece. 

When this happens, this image is said to be a virtual object for the eyepiece. All this means is 
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Figure 5.4: A refracting telescope. 

 

 
that an image would be formed there if the eyepiece didn’t exist. For the purpose of calculation, 

the object distance for the eyepiece is negative. 

Remarkably, equations (5.7) and (5.8) still hold, so the angular magnification is still given by 

equation (5.9). But, since fe < 0, the angular magnification is positive, which means that the final 

image is upright. 

 
Exercise 5.3.1 Verify that equations (5.7) and (5.8) still hold even for the spyglass. Pay special 
attention to the signs of the angles. Remember that in this case fe < 0.
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Figure 5.5: A spyglass. 
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6.1 Wave phenomena 

 
6.1.1 Introduction 

 
Geometrical optics allows us to understand and even to design a wide variety of optical instru- 

ments. Certain optical phenomena, however, can only be explained in terms of the wave properties 

of light. In this chapter we focus on two such phenomena, interference and diffraction. 

 

6.1.2 Interference 

 
Thomas Young (1773 – 1829) performed a now classical experiment that showed up the wave 

properties of light. By splitting up a light beam into two, he effectively created two very close, 

coherent sources of light, emitting waves of identical wavelength and in step with each other. As 

the wavefronts spread out in space, they combined with each other, producing interference. At 

certain locations, the two waves would arrive in step and enhance each other; at certain other 

locations, the waves would arrive exactly out of step and cancel each other. This simulation shows 

interference produced in a “ripple tank” with surface waves in a liquid. 

 

Location of interference maxima 

 
We limit our analysis to the formation of interference patterns very far from the sources. Consider 

the situation illustrated in Figure 6.1. Two rays meeting at a distant point with direction θ 

with respect to the symmetry axis of the two sources, will interfere destructively or constructively 

depending on the optical path difference (OPD in the figure). If OPD = mλ, where m is a whole 

number, then the waves from the two sources will arrive in step where they meet, and interfere 

constructively, creating a bright point of light at that location. From the figure we see immediately 

that the possible directions of interference maxima are given by 

d sin θ = mλ (6.1) 

where m = 0, ±1, ±2, . . .. 

 
6.1.3 Diffraction 

 
More intriguing perhaps is that we observe bright and dark bands even when light passes through 

a single slit. This is because accoridng to Huygens’ principle, each point along the aperture acts as 

http://www.hazemsakeek.com/
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To point on distant screen 
 
 
 
 
 
 
 
 
 
 
 
 

 

d 
 
 
 
 

 

Figure 6.1: Two-slit interference 

 

 
a new source of circular wave fronts, all of which will combien to produce an interference pattern 

far away. (See Figure 6.2). 

 

 
Location of diffraction minima from a single slit 

 
Of all the countless point sources along the aperture, consider a particular pair: One point on the 

edge of the aperture, and another exactly halfway across the aperture, as shown in Figure 6.3. 

These will interfere destructively if the OPD = λ/2. Similarly, all other pairs of points across the 

aperture separated by a/2 will also interfere destructively. So the first dark fringe will be formed 

in a direction given by 
a 

sin θ = 
λ
 

  

(6.2) 
2 2 

or more simply 

a sin θ = λ (6.3) 




OPD 
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Figure 6.2: Waves emerging from an aperture. 

 

 
The next minimum is formed when pairs of sources separated by a/4 interfere destructively, i.e. 

when a 
sin θ = 

λ
 (6.4) 

4 2 

that is, when 

a sin θ = 2λ (6.5) 

In general, diffraction minima may be found in the directions given by 
 

a sin θ = mλ (6.6) 

where m = ±1, ±2, . . .. 

 
Diffraction by a circular aperture 

 

A slit will produce a diffraction pattern consisting of bright and dark fringes parallel to the slit. 

Different shape apertures will produce accordingly different shape diffraction patterns. For example, a 

circular aperture produces a very bright central spot, surrounded by alternating birght and dark 
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Figure 6.3: Formation of diffraction minima by a single slit. 

 

 
rings. (See this image). A more complex calculation shows that the direction of the first dark ring, 

which is practically the same as the edge of the central spot, is given by 
 

sin θ = 1.22 
λ
 

d 
(6.7) 

 

Resolution of an optical instrument 

 
Any optical instrument gathers light through an aperture, so a poitn source of light will be imaged 

not as a point, but as a diffraction pattern, of which most is contained in the central spot. This 

limits the resolution of the instrument, that is, the ability to distinguish sufficient detail. For 

example, a telescope may not be able to distinguish two stars that are very close together, because 

their diffraction patterns overlap. (See this image). Rayleigh’s criterion states that two points 

may not be resolved if their angular separation is less than 

θ = arcsin

  
1.22λ

  

≈ 
1.22λ 

 
(6.8) 



http://www.phas.ucalgary.ca/phys323/fall/airy.gif
http://www.phas.ucalgary.ca/phys323/fall/airy2.jpg
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Thus the bigger the aperture of a telescope, the better is its resolving power. (Also, it gathers 

more light so it is capable of registering fainter objects than a smaller instrument). Another good 

example of the use of a large aperture to improve resolution is the unusually large eye of predatory 

birds like eagles or owls. 

 
 

6.1.4 Diffraction gratings 

 
One of the most important applications of interference is spectrometry, based on the interference 

pattern produced not by one or two, but by very many thin slits close together. Such devices 

are called diffraction gratings. Interference maxima will be produced in the same directions as 

with only two slits. Thus, if the separation between adjacent slits is d, the maxima will be in the 

directions 

d sin θ = mλ (6.9) 

where m = 0, 1, 2, . . .. 
 

The important feature of a diffraction grating is that the interference maxima will not be in the 

form of broad bands but rather very thin, bright lines. We can show this by calculating the half- 

width of the central maximum. (Figure 6.4 shows what we mean by half-width). The brightness 

of the line drops to zero in the direction in which the N slits have an interference minimum. As N 

is usually a very large number, the situation is very similar to diffraction by a single slit of width 

Nd. So the first interference minimum is in the direction ∆θhw, given by 

(Nd) sin ∆θhw = λ (6.10) 
 

and in the small-angle approximation 

 
 
In general, for any order of interference m, 

 
∆θhw = 

Nd 

 

(6.11) 

 

∆θhw = 
λ 

N cos θ d 
(6.12) 

 

 

Spectrometry: Application of a diffraction grating 

 
All atoms and molecules are capable of emitting electromagnetic radiation when they absorb en- 

ergy, at very distinct wavelengths, characteristic of each particular substance. Thus the “emission 

spectrum”, as the set of wavelengths of the emitted light is called, is an important analytical tool. 

 

http://www.hazemsakeek.com/
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Figure 6.4: The half-width of the central interference line produced by a diffraction grating. 

 

 
The light emitted by a sample of a substance may be split up effectively by passing it through a 

diffraction grating, since the direction of each interference maximum depends on wavelength. More 

than one complete spectrum may be formed in principle, one for each order of interference. 

An interesting variation on this theme is when a relatively cool gas is illuminated by light with a 

broad continuous spectrum (such as the uppermost layers of a star). In this case, the gas absorbs 

light at characteristic wavelengths, leaving dark lines in the resulting spectrum. Again, the chemical 

composition of this gas is revealed by which wavelengths are absent from the original continuous 

spectrum. 

For example in astrophysics the chemical composition of distant objects may be revealed by spec- 

trometry. 

 

 
Dispersion and resolving power of a diffraction grating 

 
We use a diffraction grating to measure the wavelength of a light emission by measuring the direction 

in which a bright line is formed. In practice, an uncertainty in the direction of the bright line will 

Intensity 



h
w

 



http://home.achilles.net/~jtalbot/data/index.html


42 www.hazemsakeek.com 

42 CHAPTER 6.  INTERFERENCE AND DIFFRACTION 
 

 

  (6.13) 

 

 

 

 

 

result in an uncertainty in the wavelength. According to the error propagation formula, 

dλ 
λ 

dθ 
θ 

Two properties of the grating contribute to ∆λ. One is the dispersion of the grating, 
 

D =  dλ  (6.14) 

and the other is the minimum separation ∆θ between two lines that the grating can resolve. Now 

we have seen that the interference maxima occur at angles θ given by 
 

d sin θ = mλ (6.15) 
 

where m = 0, ±1, ±2, .......... Therefore  
D = 

d cos θ 

 
(6.16) 

Clearly to reduce the uncertainty ∆λ we want a high value of the dispersion. A small d is helpful. 

The other contribution to the uncertainty in λ is that lines have a finite half-width. So if two 

lines are very close in wavelength, so that their separation is less than their half-width, they will 

overlap. To estimate the minimum ∆λ that the instrument can resolve, we’ll substitute ∆θhw 

from equation (6.12): 

∆λ = 
dcosθ 

m 

The resolution of the grating is defined as 

λ λ 
 

 

N cos θd mN 
(6.17) 

 

R = 
∆λ 

= Nm (6.18) 

The higher the resolution, the smaller the uncertainty ∆λ. Increasing the number of slits will do 

the trick. 

 

 

6.2 Summary of formulas in this chapter 
 
Two-slit interference: The directions of interference maxima are given by 

d sin θ = mλ (6.19) 

where m = 0, ±1, ±2, ................... d is the separation between the slits. 
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Diffraction by a single slit: The directions of diffraction minima are given by 

a sin θ = mλ (6.20) 

where m = ±1, ±2, .................... a is the width of the slit. 

Diffraction by a circular aperture: The angular half-width of the central diffraction spot is 

given by 

sin θ = 1.22 
λ
 

d 
(6.21) 

Rayleigh’s criterion: Two points on an object may be resolved by an optical instrument of 

aperture diameter d in light of wavelength λ if their angular separation is at least 

θ = arcsin

  
1.22λ

  

≈ 
1.22λ 

(6.22) 

Diffraction grating: A diffraction grating produces bright lines in directions θ given again by 

d sin θ = mλ (6.23) 

where m = 0, ±1, ±2, . . .. 

The half-width of a line is 

 

 

∆θhw 

 
 

= 
λ 

Nd cos θ 

 
 
 
(6.24) 

where N is the number of slits in the grating. 

The dispersion of the grating is 
D = 

m
 

 

 

 
(6.25) 

 

and the resolution is 

d cos θ 

 
R = 

∆λ 
= Nm (6.26) 
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46 APPENDIX A. SMALL ANGLE APPROXIMATION 

 

A.1 Small angle approximation 

 
For small values of θ, the functions sin θ and tan θ take on particularly simple forms. Consider a 
very “thin” right triangle, as shown in Figure A.1. Since a ≈ h, 
 

 

s 
 

 

a 

Figure A.1: A thin right triangle 
 

sin θ ≈ tan θ (A.1) 

Also, to a very good approximation the triangle resembles a circular wedge, with o replaced by the 
arc s, so that o/h ≈ s/h = θ (if θ is measured in radians). Putting everything together, 

θ ≈ sin θ ≈ tan θ (A.2) 

 

 


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48 APPENDIX B. DERIVATIONS FOR THE EXAM 

 

B.1 Derivations for the Module 7 exam 
 

1. Snell’s Law: Two transparent media (call them 1 and 2) are separated by a plane interface. 

Waves travel in each medium with speed v1 or v2. A plane wavefront propagating in medium 

1 reaches the interface at an angle θi, and propagates into medium 2 at a different angle θr 

with respect to the interface. Show that 

sin θi 
= 

sin θr 

v1 v2 
 

Answer: See Figure B.1. The line PR is part of the incident wave front, and QS is part of the 

refracted wave front. In a time t, point P propagates to Q in medium 1. The distance PQ is v1t. In 

the same time, point R propagates inside medium 2 to another point S, a distance v2t from R. In 

fact, because Q and S are on the same wave front, S must be where it is shown in the figure. In 

triangle PQR, we have that 
 

P 

S 

Figure B.1: Derivation of the law of refraction. 
 

 
 

 
and in triangle QRS, 

sin θi 

 
 
sin θ 

= 
v1t 

x 

 
= 

v2t 

(B.1) 

 

 
(B.2) 

r 
x
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and therefore 
sin θ

 sin θ 
 i =  r (B.3) 
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v1 v2 

2. Mirror equation: Derive the mirror equation 

1 
+ 

1 
= 

1 

i p f 

where i is the image distance, p is the object distance, and f is the focal length of the mirror. 

Answer: See Section 3.4. Please note that all the steps must be completed 

explicitly, includ- ing the notes say “after some algebraic manipulation...”. 

3. Young’s experiment: Light of wavelength λ illuminates two thin 

slits, separated by a distance d. On a distant screen an interference 

pattern is produced. Define an axis from the slits to the central 

maximum. Show that every other maximum lies in a direction at an 

angle θm with respect to this axis, given by 
 

d sin θm = mλ 

where m = 0, ±1, ±2, . . .. 

Answer: See section 6.1.2. 
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