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Unit 1: Physics and Measurement

Like all other sciences, physics is based on experimental observations and quantitative
measurements. The main objective of physics is to find the limited number of fundamental
laws that govern natural phenomena and to use them to develop theories that

can predict the results of future experiments. The fundamental laws used in developing
theories are expressed in the language of mathematics, the tool that provides a bridge between
theory and experiment.

When a discrepancy between theory and experiment arises, new theories must be
formulated to remove the discrepancy. Many times a theory is satisfactory only under
limited conditions; a more general theory might be satisfactory without such limitations.
For example, the laws of motion discovered by Isaac Newton (1642-1727) in the

17th century accurately describe the motion of objects moving at normal speeds but do
not apply to objects moving at speeds comparable with the speed of light. In contrast,

the special theory of relativity developed by Albert Einstein (1879-1955) in the early
1900s gives the same results as Newton’s laws at low speeds but also correctly describes
motion at speeds approaching the speed of light. Hence, Einstein’s special theory of
relativity is a more general theory of motion.

A major revolution in physics, usually referred to as modern physics, began near the

end of the 19th century. Modern physics developed mainly because of the discovery that
many physical phenomena could not be explained by classical physics. The two most important
developments in this modern era were the theories of relativity and quantum

mechanics. Einstein’s theory of relativity not only correctly described the motion of objects
moving at speeds comparable to the speed of light but also completely revolutionized

the traditional concepts of space, time, and energy. The theory of relativity also

shows that the speed of light is the upper limit of the speed of an object and that mass

and energy are related. Quantum mechanics was formulated by a number of distinguished
scientists to provide descriptions of physical phenomena at the atomic level.

Scientists continually work at improving our understanding of fundamental laws,

and new discoveries are made every day. In many research areas there is a great deal of
overlap among physics, chemistry, and biology. Evidence for this overlap is seen in the
names of some subspecialties in science—biophysics, biochemistry, chemical physics,
biotechnology, and so on. Numerous technological advances in recent times are the result
of the efforts of many scientists, engineers, and technicians. Some of the most notable
developments in the latter half of the 20th century were

(1) Unmanned planetary explorations and manned moon landings,

(2) Micro circuitry and high-speed computers,

(3) Sophisticated imaging techniques used in scientific research and medicine, and 4

(4) Several remarkable results in genetic engineering. The impacts of such developments
and discoveries on our society have indeed been great, and it is very likely that future
discoveries and developments will be exciting, challenging, and of great benefit to humanity.

1.1 Standards of Length, Mass, and Time
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The laws of physics are expressed as mathematical relationships among physical quantities
that we will introduce and discuss throughout the book. Most of these quantities

are derived quantities, in that they can be expressed as combinations of a small number
of basic quantities. In mechanics, the three basic quantities are length, mass, and time.

All other quantities in mechanics can be expressed in terms of these three.

If we are to report the results of a measurement to someone who wishes to reproduce
this measurement, a standard must be defined. It would be meaningless if a visitor

from another planet were to talk to us about a length of 8 “glitches” if we do not know
the meaning of the unit glitch. On the other hand, if someone familiar with our system

of measurement reports that a wall is 2 meters high and our unit of length is defined

to be 1 meter, we know that the height of the wall is twice our basic length unit. Likewise,
if we are told that a person has a mass of 75 kilograms and our unit of mass is defined

to be 1 kilogram, then that person is 75 times as massive as our basic unit.1 Whatever

is chosen as a standard must be readily accessible and possess some property that

can be measured reliably. Measurements taken by different people in different places
must yield the same result.

In 1960, an international committee established a set of standards for the fundamental
quantities of science. It is called the SI (Systéme International), and its units of length,
mass, and time are the meter, kilogram, and second, respectively. Other SI standards
established by the committee are those for temperature (the kelvin), electric current (the
ampere), luminous intensity (the candela), and the amount of substance (the mole).

Length

In A.D. 1120 the king of England decreed that the standard of length in his country

would be named the yard and would be precisely equal to the distance from the tip of

his nose to the end of his outstretched arm. Similarly, the original standard for the foot
adopted by the French was the length of the royal foot of King Louis XIV. This standard
prevailed until 1799, when the legal standard of length in France became the meter,

defined as one ten-millionth the distance from the equator to the North Pole along

one particular longitudinal line that passes through Paris. Many other systems for

measuring length have been developed over the years, but the advantages of the French
system have caused it to prevail in almost all countries and in scientific circles everywhere.
As recently as 1960, the length of the meter was defined as the distance between two lines
on a specific platinum-iridium bar stored under controlled conditions in France. This
standard was abandoned for several reasons, a principal one being that the limited accuracy
with which the separation between the lines on the bar can be determined does not meet the
current requirements of science and technology. In the 1960s and 1970s, the meter was
defined as 1 650 763.73 wavelengths of orange-red light emitted from a krypton-86 lamp.
However, in October 1983, the meter (m) was redefined as the distance traveled by light in
vacuum during a time of 1/299 792 458 second. In effect, this latest definition establishes
that the speed of light in vacuum is precisely 299 792 458 meters per second. Table 1.1 lists
approximate values of some measured lengths. You should study this table as well as the next
two tables and begin to generate an intuition for what is meant by a length of 20 centimeters,
for example, or a mass of 100 kilograms or a time interval of 3.2 x 107 seconds.



Table 1.1 Tabhle 1.2

Approximate Values of Some Measured Lengths

Masses of Various Objecis
Length (m) (Approximate Valnes)

Distance from the Earth to the most remote known quasar 1.4 x 10% Mass (kg)
Distance from the Earth to the most remote normal galaxies 9 % 10”8 —
Distance from the Earth to the nearest large galaxy 2 x 1022 Observable ~10%2
(M 31, the Andromeda galaxy) Universe
Distance from the Sun to the nearest star (Proxima Centauri) 4 x 1016 l'\-i'llk}' “ra}r == 1{]49
One lightyear 9.46 X 103 galaxy
Mean orbit radius of the Earth about the Sun 1.50 X 101 Sun 1.99 % 1030
Mean distance from the Earth to the Moon 3.84 x 108 Fartl 5.08 % 102
Distance from the equator to the North Pole 1.00 x 107 Wit : -~
Mean radius of the Earth 6.37 % 108 Moon 7.36 % 10=
Typical alitde (above the surface) of a 2 X 10° Shark ~103

satellite orbiting the Earth Human ~102
Length of a football field 9.1 x 10! Frog —10-!
Length of a housefly 5% 1070 . 5
Size of smallest dust particles ~1074 Mosquito ~10 -
Size of cells of most living organisms ~1073 Bacterium —1X 107>
Diameter of a hydrogen atom ~10710 Hydrogen 1.67 % 107
Diameter of an atomic nucleus ~1071 atom
Diameter of a proton ~10715 Electron 9.11 = 10—3

Mass

The SI unit of mass, the kilogram (kg), is defined as the mass of a specific platinum-iridium
alloy cylinder kept at the International Bureau of Weights and Measures at Sevres, France.
This mass standard was established in 1887 and has not been changed since that time
because platinum-iridium is an unusually stable alloy. A duplicate of the Sevres cylinder is
kept at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland
(Fig. 1.1a). Table 1.2 lists approximate values of the masses of various objects.

Time

Before 1960, the standard of time was defined in terms of the mean solar day for the year
1900. (A solar day is the time interval between successive appearances of the Sun at the
highest point it reaches in the sky each day.) The second was defined as ( 1/60)( 1/60)
(1/24) of a mean solar day. The rotation of the Earth is now known to vary slightly with
time, however, and therefore this motion is not a good one to use for defining a time
standard. In 1967, the second was redefined to take advantage of the high precision
attainable in a device known as an atomic clock (Fig. 1.1b), which uses the characteristic
frequency of the cesium-133 atom as the “reference clock.” The second (s) is now defined as
9192 631 770 times the period of vibration of radiation from the cesium atom.



{a) (b)
Figure 1.1 (a) The National Standard Kilogram No. 20, an accurate copy of the
International Standard Kilogram kept at Sevres, France, is housed under a double bell jar in
a vault at the National Institute of Standards and Technology. (b) The nation’s primary time
standard is a cesium fountain atomic clock developed at the National Institute of Standards
and Technology laboratories in Boulder, Colorado. The clock will neither gain nor lose a
second in 20 million years.

To keep these atomic clocks—and therefore all common clocks and watches that are

set to them—synchronized, it has sometimes been necessary to add leap seconds to our

clocks.

Since Einstein’s discovery of the linkage between space and time, precise measurement

of time intervals requires that we know both the state of motion of the clock used to measure
the interval and, in some cases, the location of the clock as well. Otherwise, for example, global
positioning system satellites might be unable to pinpoint your location with sufficient accuracy,

should you need to be rescued. Approximate values of time intervals are presented in Table 1.3.
Table 1.4

Table 1.3 FPrefixes for Powers of Ten
Approximate Values of Some Time Intervals =
FPower Prefix Abbreviation

Time 10—24 yocto -
Interval (s) 10—21 repto =
= —18
Age of the Universe 5 1017 1 D_ - 2o 2
17 1o Femuoo £
Age of the Earth 1.3 % 10 1o—12 =
s pico P
Average age of a college student 6.3 x 10 10—9 EETETE) =
One year 3.2 % 107 10— % micro s
One day (time interval for one revolution of the Earth about its axis) 8.6 104 10 = milli sl
s =
One class period 3.0 % 103 ol . ;eﬂf_l (C:'l
Time interval between normal heartbeats 8 x 107! L 05 :3 =
! i ’ o= 10 kilo K
Period of audible sound waves ~10 105 e A
Period of typical radio waves ~1076 10% miga G
Period of vibration of an atom in a solid ~10-13 1012 tera T
Period of visible light waves ~1071% 10% pea B
18
Duration of a nuclear collision ~10722 u 02 = Sx= =
Time interval for light to cross a proton ~10~H b zerra =
g P 1021 yotta w

In addition to SI, another system of units, the U.S. customary system, is still used in the
United States despite acceptance of SI by the rest of the world. In this system, the units of
length, mass, and time are the foot (ft), slug, and second, respectively. In this text we shall
use SI units because they are almost universally accepted in science and industry. We shall
make some limited use of U.S. customary units in the study of classical mechanics.

6



In addition to the basic SI units of meter, kilogram, and second, we can also use
other units, such as millimeters and nanoseconds, where the prefixes milli- and nano
denote multipliers of the basic units based on various powers of ten. Prefixes for the
various powers of ten and their abbreviations are listed in Table 1.4. For example,
10-3 m is equivalent to 1 millimeter (mm), and 103 m corresponds to 1 kilometer

(km). Likewise, 1 kilogram (kg) is 103 grams (g), and 1
megavolt (MV) is 106 volts (V).

QUESTION 1: How many centimeters are there in one g

kilometer? How many millimeters £
in a kilometer? EE
QUESTION 2: How many microns are there in a fermi? ‘§§

QUESTION 3: How many microns are there in an angstrom?

(A) 106 (B) 104 (C) 10-4 (D) 10-©
There are 100 centimeters in a meter, and there are 1000
meters in a kilometer, so there are 100x1000 =10°
centimeters in a kilometer. Similarly, with 103 millimeters in a
meter, there are 103x103x106 millimeters in a kilometer

Apiece of
gold consists

of gold atoms.

1.2 Matter and Model Building e e
. . . . of each atom
If physicists cannot interact with some phenomenon directly, O S,

they often imagine a model for a physical system that is
related to the phenomenon. In this context, a model is a

system of physical components, such as electrons and protons I““‘gle e

in an atom. Once we have identified the physical components, ;:m;‘:‘: S

we make predictions about the behavior of the system, based (orange) and ¢
on the interactions among the components of the system mentrons
and/or the interaction between the system and the @ray).

environment outside the system. As an example, consider the
behavior of matter. A 1-kg cube of solid gold, such as that at

Protons and

the left of Figure 1.2, has a length of 3.73 cm on a side. Is this Z‘:I‘I‘l“‘”:;f; _ : :

cube nothing but wall-to-wall gold, with no empty space? If the qmi;’_ The E
cube is cut in half, the two pieces still retain their chemical quark ‘ @ u
identity as solid gold. But what if the pieces are cut again and C‘f’mP"s‘t‘-‘m; ¢ )
again, indefinitely? Will the smaller and smaller pieces always :h:f:%:;_s y @ ”

be gold? Questions such as these can be traced back to early
Greek philosophers. Two of them—Leucippus and his student
Democritus—could not accept the idea that such cuttings
could go on forever. They speculated that the process
ultimately must end when it produces a particle that can no
longer be cut. In Greek, atomos means “not sliceable.”

Figure 1.2 Levels of

organization in matter

From this comes our English word atom. Let us review briefly a number of historical models of
the structure of matter. The Greek model of the structure of matter was that all ordinary matter
consists of atoms, as suggested to the lower right of the cube in Figure 1.2. Beyond that, no
additional structure was specified in the model—atoms acted as small particles that interacted
with each other, but internal structure of the atom was not a part of the model. In 1897, ]. ].
Thomson identified the electron as a charged particle and as a constituent of the atom.



This led to the first model of the atom that contained internal structure.

Following the discovery of the nucleus in 1911, a model was developed inwhich each

atom is made up of electrons surrounding a central nucleus.

A nucleus is shown in Figure 1.2. This model leads, however, to a new

question—does the nucleus have structure? That is, is the nucleus a single particle

or a collection of particles? The exact composition of the nucleus is not known completely
even today, but by the early 1930s a model evolved that helped us understand how the
nucleus behaves. Specifically, scientists determined that occupying the nucleus is two basic
entities, protons and neutrons. The proton carries a positive electric charge, and a specific
chemical element is identified by the number of protons in its nucleus. This number is called
the atomic number of the element. For instance, the nucleus of a hydrogen atom contains one
proton (and so the atomic number of hydrogen is 1), the nucleus of a helium atom contains
two protons (atomic number 2), and the nucleus of a uranium atom contains 92 protons
(atomic number 92). In addition to atomic number, there is a second number characterizing
atoms—mass number, defined as the number of protons plus neutrons in a nucleus. The
atomic number of an element never varies (i.e., the number of protons does not vary) but the
mass number can vary (i.e., the number of neutrons varies). The existence of neutrons was
verified conclusively in 1932. A neutron has no charge and a mass that is about equal to that
of a proton. One of its primary purposes is to act as a “glue” that holds the nucleus together. If
neutrons were not present in the nucleus, the repulsive force between the positively charged
particles would cause the nucleus to come apart. But is this where the process of breaking
down stops? Protons, neutrons, and a host of other exotic particles are now known to be
composed of six different varieties of particles called quarks, which have been given the names
of up, down, strange, charmed, bottom, and top.
The up, charmed, and top quarks have electric charges of + 3/2 that of the proton, whereas
the down, strange, and bottom quarks have charges of - 1/3 that of the proton. The proton
consists of two up quarks and one down quark, as shown at the top in Figure 1.2. You can
easily show that this structure predicts the correct charge for the proton. Likewise, the
neutron consists of two down quarks and one up quark, giving a net charge of zero.

Repulsion Force

Negative elec \

Positive Nucl. Repulsion Forces Positive Nucll

O

MNegative elec.

Attraction Forces

First Atom Second Atom

What is the resultant Force?

This process of building models is one that you should develop as you study physics. You



will be challenged with many mathematical problems to solve in this study. One of the most
important techniques is to build a model for the problem identify a system of physical
components for the problem, and make predictions of the behavior of the system based on
the interactions among the components of the system and/or the interaction between the
system and its surrounding environment.

m The laser-ranging device shown in the chapter photo is capa-

ble of measuring the travel time of a light pulse to within better

than a billionth of a second. How far does light travel in one billionth of a second

(a nanosecond)?

SOLUTION: The distance light travels in a nanosecond is
[distance] = [speed] X [time]

= (2.997 924 58 X 10° ?) X (1.0 X 1072 s)
= (2.997 924 58 x 1.0) X (10% % 107%) x (% x ﬁf)
=~ 3.0 % (1071 % (m)

= 30 cm

or, in British units, almost one foot. The ruler drawn diagenally across this page

shows the distance light travels in 1 nanosecond.

1.3 Density and Atomic Mass

In Section 1.1, we explored three basic quantities in mechanics. Let us look now at an
example of a derived quantity—density. The density p(Greek letter rho) of any substance
is defined as its mass per unit volume:

m
p=—
V (1.1
For example, aluminum has a density of 2.70 g/cm3, and lead has a density of
11.3 g/cm3. Therefore, a piece of aluminum of volume 10.0 cm3 has a mass of 27.0 g,
whereas an equivalent volume of lead has a mass of 113 g. A list of densities for various
substances is given in Table 1.5.
The numbers of protons and neutrons in the nucleus of an atom of an element are related
to the atomic mass of the element, which is defined as the mass of a single atom of
the element measured in atomic mass units (u) where 1 u=1.660 538 7 x 10-27 kg.

Table 1.5

INensitbes of Varions Suabstances

Substance Density g {1 0 kg,..-"m‘?’}
Platinumm 21.45
Gold 19.5
ranium 18.7
Lead 11.5%
Copper 8.92
Iron FT.BG
AdurmiriierT 2.0
Mlaygnoesitonm 1.75
WMarer 1.00
Adr ac armospheric pressure OO 1Z

QU'Ck QL"Z 1.1 In a machine shop. two cams are produced, one of alu-
minum and one of iron. Both cams have the same mass. Which cam is larger? (a) the
aluminum cam (b) the iron cam (c) Both cams have the same size.



Example 2

Example 1.1 How Many Atoms in the Cube?

A solid cube of aluminum (density 2.70 g/-:ms) has a vol-
ume of 0.200 cm?. It is known that 27.0 g of aluminum con-
tains 6.02 X 10 atoms. How many aluminum atoms are
contained in the cube?

Solution Because density equals mass per unit volume, the
mass of the cube is

m = pV= (2.70 g/ca®)(0.200 car®) = 0.540 g

To solve this problem, we will set up a ratio based on the fact
that the mass of a sample of material is proportional to the
number of atoms contained in the sample. This technique
of solving by ratios is very powerful and should be studied
and understood so that it can be applied in future problem
solving. Let us express our proportionality as m = kN, where
m is the mass of the sample, Nis the number of atoms in the
sample, and % is an unknown proportionality constant. We

write this relationship twice, once for the actual sample of
aluminum in the problem and once for a 27.0-g sample, and
then we divide the first equation by the second:

Agample
Nozo E

starnple Msample _

Mzr0g

Msample =

myrog = kNojog

Notice that the unknown proportionality constant k cancels,
so we do not need to know its value. We now substitute the
values:

0.540g _ f\rsample
27.0g  6.02 X 102 atoms

(0.540 g)(6.02 X 10** atoms)
27.0g

Nam ple =

= 1.20 x 10?2 atoms

How many atoms are there in a 5-cent coin? Assume that the coin is made of nickel and has
amass of 5.2 10-3 kg, or 5.2 grams. Atomic masses is 58.69.

SOLUTION: We recall that the atomic mass is the mass of one atom expressed in u.
According to the periodic table of chemical elements in Appendix 8, the atomic mass
of nickel is 5‘8.69.|T11us, the mass of one nickel atom is 58.69 u, or, 58.69 X 1.66 X
10 % kg =9.74 X 102 kg. The number of atoms in our 5.2 X 107 kg is then

5.2 % 10 7 ke

9?4 h. 4 10_26 ‘k'gfaton]_

= 5.3 % 107 atoms
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1.4 Dimensional Analysis

The word dimension has a special meaning in physics. It denotes the physical nature of

a quantity. Whether a distance is measured in units of feet or meters or fathoms, it is

still a distance. We say its dimension is length.

The symbols we use in this book to specify the dimensions of length, mass, and time are L, M,
and T, respectively.3 We shall often use brackets [ ] to denote the dimensions of a physical
quantity. For example, the symbol we use for speed in this book is v, and in our notation the
dimensions of speed are written [v] = L/T. As another example, the dimensions of area A are
[A] =L2. The dimensions and units of area, volume, speed, and acceleration are listed in
Table 1.6. The dimensions of other quantities, such as force and energy, will be described as
they are introduced in the text. In many situations, you may have to derive or check a specific
equation. A useful and powerful procedure called dimensional analysis can be used to assist in the
derivation or to check your final expression. Dimensional analysis makes use of the fact that

Table 1.6
Units of Area, Volume, Velocity, Speed, and Acceleration
Area Yolume Speed Acceleration
System (LY (L3) (L/T) (L/T2)
SI m? m? m/s rn_f’s,E
U.S. customary 2 i fr/s fi,/s2

dimensions can be treated as algebraic quantities. For example, quantities can be
added or subtracted only if they have the same dimensions. Furthermore, the terms on
both sides of an equation must have the same dimensions. By following these simple
rules, you can use dimensional analysis to help determine whether an expression has
the correct form. The relationship can be correct only if the dimensions on both sides
of the equation are the same.
To illustrate this procedure, suppose you wish to derive an equation for the position
x of a car at a time t if the car starts from rest and moves with constant acceleration

a. We shall find that the correct expression is x = at 2. Let us use dimensional analysis
to check the validity of this expression. The quantity x on the left side has the dimension
of length. For the equation to be dimensionally correct, the quantity on the right side must also
have the dimension of length. We can performa dimensional check by substituting the
dimensions for acceleration, L/T?2 (Table 1.6), and time, T, into the equation. That is, the
dimensional form of the equation x=7ai’is

L
L=— -T=1L

g2
The dimensions of time cancel as shown, leaving the dimension of length on the right
Hand side. A more general procedure using dimensional analysis is to set up an expression
of the form

[@""] = L = LTt

The exponents of L and T must be the same on both sides of the equation. From the
exponents of L, we see immediately that n = 1. From the exponents of T, we see that
m - 2n = 0, which, once we substitute for n, gives us m = 2. Returning to our original
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expression )
. x o @'t we conclude that x « at?. This result differs by a factor of % from
the correct expression, which is x = % niz.‘

Qu ick Qu 1Z 1.2 True or False: Dimensional analysis can give you the numeri-

cal value of constants of proportionality that may appear in an algebraic expression.
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1.5 Conversion of Units
Sometimes it is necessary to convert units from one measurement system to another, or

Example 1.2 Analysis of an Equation

Show that the expression » = af is dimensionally correct, The same table gives us L/T? for the dimensions of accelera-
where v represents speed, a acceleration, and {an instant of tion, and so the dimensions of at are
time.
[a] L T L
all=—F = —
2 T

Solution For the speed term, we have from Table 1.6

Therefore, the expression is dimensionally correct. (If the

L
] ==

incorrect. Try it and see!)

Example 1.3 Analysis of a Power Law

expression were given as v = at? it would be dimensionally

Suppose we are told that the acceleration a of a particle This dimensional equation is balanced under the conditions

moving with uniform speed v in a circle of radius r is pro-

portional to some power of % say r”, and some power of v,

say v™. Determine the values of n and m and write the sim- ntm= 1 and m= 2
plest form of an equation for the acceleration.

Therefore n = — 1, and we can write the acceleration ex-

Solution Let us take ato be pression as
a= k"™

where k is a dimensionless constant of proportionality. N r
Knowing the dimensions of g, % and v, we see that the di-

mensional equation must be ‘When we discuss uniform circular motion later, we shall see
L L\m pLnrtm that k = 1 if a consistent set of units is used. The constant k
— =" (_) — would not equal 1 if, for example, v were in km/h and you

T? T i wanted a in m/s2.

to convert within a system, for example, from kilometers to meters. Equalities between
SI and U.S. customary units of length are as follows:
1mile=1609m=1.609km1ft=0.304 8m=30.48 cm

1m=39.37in.=3.281 ft 1 in. = 0.025 4 m = 2.54 cm (exactly)

A more complete list of conversion factors can be found in Appendix A.

Units can be treated as algebraic quantities that can cancel each other. For example,
suppose we wish to convert 15.0 in. to centimeters. Because 1 in. is defined as exactly

2.54 cm, we find that 54 cm )

2.
15.0in. = (15.0 in’.’}( - = 38.1 cm
1 inT

where the ratio in parentheses is equal to 1. Notice that we choose to put the unit of an
inch in the denominator and it cancels with the unit in the original quantity. The remaining
unit is the centimeter, which is our desired result.

Qu | Ck QU iZ 1 .3 The distance between two cities 1s 100 mi. The number of kilo-
meters between the two cities is (a) smaller than 100 (b) larger than 100 (c) equal to 100.

13



Example 1.4 Is He Speeding?

On an interstate highway in a rural region of Wyoming, a Figure 1.3 shows the speedometer of an automobile, with
car is traveling at a speed of 38.0 m/s. Is this car exceeding speeds in both mi/h and km/h. Can you check the conver-
the speed limit of 75.0 mi/h? sion we just performed using this photograph?

Solution We first convert meters to miles:

1 mi
. — | = 2. X ~Zmi
(SBGM/S)(IGOgm) 256 X 10~ mi/s
Now we convert seconds to hours:
60 60 it
(2.36 X 102 mi/%) (—g) (i) = 85.0 mi/h
1 min 1h

Thus, the car is exceeding the speed limit and should slow
down.

What If? What if the driver is from outside the U.5. and is
familiar with speeds measured in km/h? What is the speed
of the car in km/h?

il Boorman,/Getty images

Answer We can convert our final answer to the appropriate
units:

Figure 1.3 The speedometer of a vehicle that
shows speeds in both miles per hour and kilome-
ters per hour.

1.609 km
5 T =
(BJ.Om‘i/h)( 1 ) 137 km/h

For example, the ::l_ensit:}F of water is 1.000 X 10° kg/m”>. To express this
in g/cm”, we substitute 1 kg = 1000 g and 1 m = 100 cm, and we find

1000 10°
1.000 X 10352 — 1,000 X 10° X ———5_ = 1.000 X 10° X ——5-
m (100 cm) 10° cm
— 1.000 2
CIm

Example
We can obtain a rough estimate of the size of a molecule by means of the following simple
experiment. Take a droplet of oil and let it spread out on a smooth surface of water. When
the oil slick attains its maximum area, it consists of a monomolecular layer; that is, it consists
of a single layer of oil molecules which stand on the water surface side by side. Given that
an oil droplet of mass 8.4x10-7 kg and of density 920 kg/m3 spreads out into an oil slick of
maximum area 0.55 m?, calculate the length of an oil molecule.
SOLUTION: The volume of the oil droplet is
[mass]
[density]
_ 84X 10 kg
920 kg/m’

[volume] =

=91x10"1"0m?
The volume of the oil slick must be exactly the same. This latter volume can be
expressed in terms of the thickness and the area of the oil slick:
[volume] = [thickness] X [area]
Consequently,

[volume]

[thickness]
[area]

9.1 X 10719 m?
= = 17%x10m (1.12)
0.55 m
Since we are told that the oil slick consists of a single layer of molecules stand-
ing side by side, the length of a molecule is the same as the calculated thick-

ness, 1.7 X 107% m.



1.6 Estimates and Order-of-Magnitude Calculations

It is often useful to compute an approximate answer to a given physical problem even

when little information is available. This answer can then be used to determine whether or

not a more precise calculation is necessary. Such an approximation is usually based on certain
assumptions, which must be modified if greater precision is needed. We will sometimes refer
to an order of magnitude of a certain quantity as the power of ten of the number that describes
that quantity. Usually, when an order-of magnitude calculation is made, the results are reliable
to within about a factor of 10. If a quantity increases in value by three orders of magnitude,
this means that its value increases by a factor of about 103 = 1 000. We use the symbol ~ for “is
on the order of.” Thus, 0.008 6 ~ 102 0.0021 ~ 103720~ 103

The spirit of order-of-magnitude calculations, sometimes referred to as “guesstimates”

or “ball-park figures,” is given in the following quotation: “Make an estimate before every
calculation, try a simple physical argument. .. before every derivation, guess the answer to
every puzzle.”4 Inaccuracies caused by guessing too low for one number are often canceled out
by other guesses that are too high. You will find that with practice your guesstimates become
better and better. Estimation problems can be fun to work as you freely drop digits, venture
reasonable approximations for unknown numbers, make simplifying assumptions, and turn the
question around into something you can answer in your head or with minimal mathematical
manipulation on paper. Because of the simplicity of these types of calculations, they can be
performed on a small piece of paper, so these estimates are often called “back-of-the envelope
calculations.”

Example 1.5 Breaths In a Lifetime

Estimate the number of breaths taken during an average life

span.

in a year and the number of hours in a day are close
enough for our purposes. Thus, in 70 years there will be
(70 yr)(6 % 10° min/yr) = 4 3 107 min. At a rate of 10
Solution We start by guessing that the typical life span is

&
about 70 years. The only other estimate we must make in this Lixl0gbreaths

breaths/min, an individual would take

example is the average number of breaths that a person
takes in 1 min. This number varies, depending on whether
the person is exercising, sleeping, angry, serene, and so
forth. To the nearest order of magnitude, we shall choose 10
breaths per minute as our estimate of the average. (This is
certainly closer to the true value than 1 breath per minute or
100 breaths per minute.) The number of minutes in a year is
approximately

1 400 days 25 h 60 min — 6 % 10° mi
¥ 1yr 1 day 1h B un

Notice how much simpler it is in the expression above to
multiply 400 % 25 than it is to work with the more accurate
365 X 24. These approximate values for the number of days

in a lifetime, or on the order of 10? breaths.

What If? What if the average life span were estimated as
80 years instead of 707 Would this change our final estimate?

Answer We could claim that (80 yr)(6 X 10° min/yr) =
5 % 107 min, so that our final estimate should be 5 x 10%
breaths. This is still on the order of 107 breaths, so an order
ofmagnitude estimate would be unchanged. Furthermore,
80 years is 14% larger than 70 years, but we have overesti-
mated the total time interval by using 400 days in a year in-
stead of 365 and 25 hours in a day instead of 24. These two
numbers together result in an overestimate of 14%, which
cancels the effect of the increased life span!
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Example 1.6 It's a Long Way to San Jose
Estimate the number of steps a person would take walking
from New York to Los Angeles.

Solution Without looking up the distance between these
two cities, you might remember from a geogmphy class that
they are about 3 000 mi apart. The next approximation we
must make is the length of one step. Of course, this length
depends on the person doing the walking, but we can esti-
mate that each step covers about 2 ft. With our estimated
step size, we can determine the number of steps in 1 mi. Be-
cause this is a rough calculation, we round 5 280 ft/mi to
5000 ft/mi. (What percentage error does this introduce?)
This conversion factor gives us

5000 f/mi

= 2500 i
2 fstep 2 500 steps/mi

Example 1.7 How Much Gas Do We Use?

Estimate the number of gﬂllons of gasoline used each year
by all the cars in the United States.

Solution Because there are about 280 million people in
the United States, an estimate of the number of cars in the
country is 100 million (guessing that there are between two
and three people per car). We also estimate that the average

Now we switch to scientific notation so that we can do the
calculation mentally:

(3 % 10* pii) (2.5 ¥ 107 steps/mi)
= 7.5x 10% steps ~ 107 steps

So if we intend to walk across the United States, it will take
us on the order of ten million steps. This estimate is almost
certainl}' too small because we have not accounted for cur-
ing roads and going up and down hills and mountains.
Nonetheless, it is probably within an order of magnitude of
the correct answer.

distance each car travels per year is 10 000 mi. If we assume
a gasoline consumption of 20 mi/gal or 0.05 gal/mi, then
each car uses about 500 gal/yr. Multiplying this by the total
number of cars in the United States gives an estimated total

consumption of 5 X 10! gal ~ 10!l gal.

16



Unit 2: Vectors

2.1 Coordinate Systems 10 s

Many aspects of physics involve a description of a location in space.

The mathematical description of an object’s motion requires a method Q. i °r P 5.3)

for describing the object’s position at various times. In two dimensions, 24 T

this description is accomplished with the use of the Cartesian o é lll} *
coordinate system,in which perpendicular axes intersect at a point Figure 3.1 Designation of points

. . . in a Cartesian coordinate system.
defined as the origin O (Fig. 3.1). Cartesian coordinates are also called  Eyery point is labeled with coordi-

nates (x, y).

rectangular coordinates.

2.2 Vector and Scalar Quantities

A scalar quantity A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction
associated with it.

Magnitude — A numerical value with units. Others, such as temperature, can have either positive or
negative values.

A vector quantity A VECTOR is ANY quantity in physics that has BOTH MAGNITUDE and
DIRECTION. Vectors are typically illustrated by drawing an ARROW above the symbol. The arrow is
used to convey direction and magnitude.. The magnitude of a vector is always a positive humber.

Acceleration is an example for the vector quantities.

Quick Quiz 3.1 Which of the following are vector quantities and which are scalar quantities?
(a) your age (b) acceleration (c) velocity (d) speed (e) mass.
Note Please be informed with the difference between the distance and the displacement
The displacement vector tells us only where the final position (P>) is in relation to the initial position
(Py); it does not tell us what path the ship followed between the two positions.

* Tim covered a distance of (3m + 4m) = 5m

and a displacement of 5 m, NE m

5m -‘% N

2.3 Some Properties of Vectors /
Equal Vectors : have the same length and direction, and /
must represent the same quantity (such as force or velocity). /
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Inverse Vectors have the same length, but opposite direction.

Adding Vectors: If A& Barevectorsithen A + B =B + A
(known as the commutative law of B addition). Adding
vectors can be done by
4 different methods:

P Parallelogram Method - For a quick assessment. Good for concurrent forces.

P Tip-to-Tail Method - Drawing vectors to scale on paper to find an answer.

Good for displacements.
» Mathematical Method - Determining an answer using trigonometry. The vectors
need to be at right angles to one another.
P Geometric construction - for summing more than two vectors.

The following examples are helpful for understanding the pre- mentioned methods.

1-Parallelogram Method

SR A ——
Draw K,
then add .
Figure 3.8, This construction A

shows that A + = + A or in
other words, that vecror addition is
commutative,

2-Tip-to-Tail Method
» Draw vectors, tip to tail
» Using your scale, measure length of R

castail of A
on head of B.

& ;?.? Imls
Yy
B
.
16 m/s Tail of B on head
i of A gives same
. resultant...

Figure 3.6 When vector B is

3 B 18
added to vector A, the resultant R is

t&e vector that runs from the tail of
X tothe tipof B.



3-Mathematical Method

When 2 vectors are perpendicular, you must use the next example:
-A man walks 95 km, East then 55 km, north. Calculate his RESULTANT DISPLACEMENT.

The hypotenuse in Physics
is called the RESULTANT.

=a?+bh sec=Ja' +b*
55 km, N
Verlical ¢ =Resultant = /957 + 357

Component

\ ¢ =+/12050 =109.8 km
Harizontal Component
iﬁ 95 km,E \

The LEGS of the triangle are called the COMPONENTS )
4- Geometric

construction

We can add 3 or more vectors by placing them tip to tail in any order, so long as they are of the
same type (force, velocity, displacement, etc.).

/ 4
——
c
E
_—
Figure 3.7 Geometric construc-
/o tion for summing four vectors. The
A resnltant vector R is by definition
blue + green + black the one that completes the polygon.

SubtractingVectors:
In order to subtract vectors, we define the negative of a vector, which has the same
magnitude but points in the opposite direction.Then we add the negative vector:

—

\Y \Y \Y -V
/_ 1 - T2 oy 1 -

Multiplication of a VVector by a Scalar Number
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A vector V can be multiplied by a scalar c; the result is a vector cV that has the same
direction but a magnitude cV. If c is negative, the resultant vector points in the opposite
direction.

Dot Product
The dot product (also called the scalar product) of two vectors A and B is denoted
by A.B. This quantity is simply the product of the magnitudes of the two vectors and the

cosine of the angle between them

A-B=ABcos ¢

Thus, the dot product of two vectors simply gives a number, that is, a scalar rather than a
vector.

Cross Product

In contrast to the dot product of two vectors, which is a scalar, the cross product (also
called the vector product) of two vectors is a vector. The cross product of two vectors
A and B is denoted by A _B. The magnitude of this vector is equal to the product of
the magnitudes of the two vectors and the sine of the angle between them. Thus if we
write the vector resulting from the cross product as C = A xB

then the magnitude of this vectoris €= 4Bsiné

Direction of C=A X B

is perpendicular to
plane of A and B.

=

Angle between two \
vectors means vertex
angle @ when vectors
are tail to tail.
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The direction of the vector C is defined to be along the perpendicular to the plane
formed by A and B (Fig.). The direction of C along this perpendicular is given

by the right-hand rule: put the fingers of your right hand along A (Fig.), and curl

them toward B in the direction of the smaller angle from A to B (Fig.); the thumb then
points along C. Note that the fingers must be curled from the first vector in the product
toward the second. Thus, AxB is not the same as BxA. For the latter product, the fingers
must be curled from B toward A (rather than vice versa); hence,

the direction of the vector BXA is opposite to that of AXB: g, a= A xB
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Unit 3: Properties of Matter

(Elasticity )

3.1 Elastic Properties of Solids

Except for our discussion about springs in earlier chapters, we have assumed

objects remain rigid when external forces act on them. In Section 9.8, we explored
deformable systems. In reality, all objects are deformable to some extent. That is, it

is possible to change the shape or the size (or both) of an object by applying external
forces. As these changes take place, however, internal forces in the object resist

the deformation.

We shall discuss the deformation of solids in terms of the concepts of stress and

strain. Stress is a quantity that is proportional to the force causing a deformation;

more specifically, stress is the external force acting on an object per unit cross-sectional
area. The result of a stress is strain, which is a measure of the degree of deformation. It is
found that, for sufficiently small stresses, stress is proportional to strain; the constant of
proportionality depends on the material being deformed and on the nature of the deformation.
We call this proportionality constant the elastic modulus. The elastic modulus is therefore
defined as the ratio of the stress to the resulting strain:

Elastic modulus = stress /strain

The elastic modulus in general relates what is done to a solid object (a force is

applied) to how that object responds (it deforms to some extent). It is similar to the
spring constant k in Hooke’s law that relates a force applied to a spring and

the resultant deformation of the spring, measured by its extension or compression.

We consider three types of deformation and define an elastic modulus for each:

1. Young’'s modulus measures the resistance of a solid to a change in its length.

2. Shear modulus measures the resistance to motion of the planes within a solid parallel
to each other.

3. Bulk modulus measures the resistance of solids or liquids to changes in their volume.

3.2 Young’s Modulus: Elasticity in Length

Consider a long bar of cross-sectional area A and initial length L; that is clamped at
one end as in Figure 2.1. When an external force is applied perpendicular to the
cross section, internal molecular forces in the bar resist distortion (“stretching”),
but the bar reaches an equilibrium situation in which its final length Lt is greater
than L;j and in which the external force is exactly balanced by the internal forces.

In such a situation, the bar is said to be stressed. We define the tensile stress as the
ratio of the magnitude of the external force F to the cross-sectional area A, where
the cross section is perpendicular to the force vector. The tensile strain in this

case is defined as the ratio of the change in length DL to the original length L;. We
define Young’s modulus by a combination of these two ratios:

Y = tensile stress/tensile strain = (F/A) /( AL/Li )

Young’s modulus is typically used to characterize a rod or wire stressed under either
tension or compression. Because strain is a dimensionless quantity, Y has units of
force per unit area. For relatively small stresses, the bar returns to its initial length
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when the force is removed. The elastic limit of a substance is defined as the maximum

stress that canbe applied to the substance before it becomes permanently deformed and

does not return to its initial length. It is possible to exceed the elastic limit of a substance by
applying a sufficiently large stress as seen in Figure 2. 2. Initially, a stress-versus strain

curve is a straight line. As the stress increases, however, the curve is no longer a straight line.
When the stress exceeds the elastic limit, the object is permanently distorted and does not
return to its original shape after the stress is removed. As the stress is increased even further,

the material ultimately breaks.

The amount by F;{ :,:;
which the length
of the bar changes 400 -
due to the applied Flastic .
force is AL, w00 |- . iimi[ .Er{.u{{-;ing
| point
: 200 - '
|"‘--..,‘ 2 100 Elastic
g ¥ ¥ behavior
T |,:‘\ [ T — Strain
AL 0 0002 000 0006 0008 0.0l

Figure 2.1 A force F is applied to the free end Figure 2. 2 Stress-versus-strain curve for elastic

of a bar clamped at the other end.

EXAMPLE B

solid

The lifting cable of a tower crane is made of steel, with a diam-
eter of 5.0 cm. The length of this cable, from the ground to the

horizontal arm, across the horizontal arm, and down to the load, is 160 m {(Fig.
14.28). By how much does this cable stretch in excess of its initial length when

carrying a load of 60 tons?

-
s
s
oy
s
it
"b'

W

Y
L

FIGURE *= _o Elongstion
of a tower crane cable

SOLUTIOMN: The cross-sectional area of the cable is

Totzl cable D:l'lzr.h
is IED m_

A=ar’=m % (0025 m)f = 20 = 10 F m’

and the force per unit area is

F (60000 kg % 9.81 mfs7)
o 2.0 x 1073 m®

= 2.9 = 10° N/m*

Since we are dealing with an elongation, the relevant elastic modulus is the Youngs
modulis. According to Table 14.1, the Youngs modulus of steel is 22 < 10" N/m
Hence Eq. (14.18) yields

AL 1F 1

- - - B w2
.~ va 25 2 10 T/ 2.9 = 107 MNYm

=13 » 1077

The change of length is therefore

AL =13 107 x L =13 107% x 160 m
=021 m
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3.3 Shear Modulus: Elasticity of Shape
Another type of deformation occurs when an object is subjected to a force parallel

to one of its faces while the opposite face is held fixed by another force (Fig.2. 3a). The stress

in this case is called a shear stress. If the object is originally a rectangular block, a shear stress
results in a shape whose cross section is a parallelogram. A book pushed sideways as shown in
Figure 2. 3b is an example of an object subjected to a shear stress. To a first approximation

(for small distortions), no change in volume occurs with this deformation. We define the shear
stress as F/A, the ratio of the tangential force to the area A of the face being sheared. The shear
strain is defined as the ratio Ax/h, where Ax is the horizontal distance that the sheared face moves
and h is the height of the object. In terms of these quantities, the shear modulus is

S = shear stress/shear strain = (F/A) /( Ax/h) (2.7)

Like Young’s modulus, the unit of shear modulus is the ratio of that for force to that for area.

The shear
S
of the block
i

reladve to
the bottom.

The shear
stress causes
the front
cover of the
book to move
to the right
relative to the
back cover.

Figure 2. 3 (a) A shear deformation in which a rectangular block is distorted by two forces of equal
magnitude but opposite directions applied to two parallel faces. (b) A book is under shear stress
when a hand placed on the cover applies a horizontal force away from the spine.

3.4 Bulk Modulus: Volume Elasticity

Bulk modulus characterizes the response of an object to changes in a force of uniform
magnitude applied perpendicularly over the entire surface of the object as shown in Figure 2. 4.
(We assume here the object is made of a single substance.) such a uniform distribution of forces
occurs when an object is immersed in a fluid. An object subject to this type of deformation
undergoes a change in volume but no change in shape. The volume stress is defined as the ratio
of the magnitude of the total force F exerted on a surface to the area A of the surface.

The quantity P = F/A is called pressure . If the pressure on an object changes by an amount AP =
AF /A, the object experiences a volume change AV. The volume strain is equal to the change in
volume AV divided by the initial volume Vi. Therefore, from Equation 2.5, we can characterize

a volume (“bulk”) compression in terms of the bulk modulus, which is defined as

B = volume stress/volume strain AF/A AV/V; = APAV/V; (2.8)

A negative sign is inserted in this defining equation so that B is a positive number.

This maneuver is necessary Because an increase in pressure (positive AP) causes

adecrease in volume (negative AV) and vice versa. The reciprocal of the bulk modulus is

called the compressibility of the material.
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-\ e 1
Figure 2. 4 A cube is under uniform pressure and is therefore Fiep | .
. ) ) e | ~Se———
compressed on all sides by forces normal to its six faces. ! D
. | #
The arrowheads of force vectors on the sides of the cube gﬁm/ <, ar
that are not visible are hidden by the cube. 777 h}: /

The cube undergoes a change in
volume but no change in shape.

Quick Quiz 2.1 For the three parts of this Quick Quiz, choose
from the following choices the correct answer for the elastic modulus that describes the
relationship between stress and strain for the system of interest, which is in italics:

(a) Young’s modulus

(b) shear modulus

(c) bulk modulus

(d) none of those
choices
(i) A block of iron is sliding across a horizontal floor. The friction force between the sliding block
and the floor causes the block to deform.

(ii) A trapeze artist swings through a circular arc. At the bottom of the swing, the wires
supporting the trapeze are longer than when the trapeze artist simply hangs from the trapeze due
to the increased tension in them.

(iii) A spacecraft carries a steel sphere to a planet on which atmospheric pressure is much higher
than on the Earth. The higher pressure causes the radius of the sphere to decrease.

Example 1.2 Stage Design

We analyzed a cable used to support an actor as he swings onto the stage. Now suppose the
tension in the cable is 940 N as the actor reaches the lowest point. What diameter should a 10-m-
long steel cable have if we do not want it to stretch more than 0.50 cm under these conditions?
Conceptualize Look back at Example 8.2 to recall what is happening in this situation. We ignored
any stretching of the cable there, but we wish to address this phenomenon in this example.
Categorize We perform a simple calculation, so we categorize this example as a substitution
problem.

Solve Equation 12.6 for the cross-sectional A=——
area of the cable:

| A f' FL,
Assuming the cross section is circular, find the d=2r=2,|—=2, | ——
w TYAL

diameter of the cable from d = 2rand A = 7r%

=35%x 1073 m = 3.5 mm

Substitute numerical values:

g g\f (940 N)(10 m)
"V (20 % 10" N/m?*)(0.005 0 m)

To provide a large margin of safety, you would probably use a flexible cable made up of many smaller wires having a
total cross-sectional area substantially greater than our calculated value.
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Example 2.2 Squeezing a Brass Sphere

A solid brass sphere is initially surrounded by air, and the air pressure exerted on it is 1.0 X 10° N/m? (normal atmo-
spheric pressure). The sphere is lowered into the ocean to a depth where the pressure is 2.0 X 107 N/m?. The volume of
the sphere in air is 0.50 m®. By how much does this volume change once the sphere is submerged?

SOLUTION

Conceptualize Think about movies or television shows you have seen in which divers go to great depths in the water
in submersible vessels. These vessels must be very strong to withstand the large pressure under water. This pressure
squeezes the vessel and reduces its volume.

Categorize We perform a simple calculation involving Equation 12.8, so we categorize this example as a substitution
problem.

VAP
Solve Equation 12.8 for the volume change of the sphere: Av= - '—E

0.50 m*)(2.0 X 10" N/m’ — 1.0 X 10° N/m*
Substitute numerical values: AV=— ( X / /m’)

6.1 % 10 N/m?
= -L6X101m3

The negative sign indicates that the volume of the sphere decreases.

EXAMPLE © What pressu‘re must you exert on a sample of water if you want
to compress its volume by 0.109¢?

SOLUTION: For volume compression, the relevant elastic modulus is the bulk
modulus B. By Eq. (14.20), the pressure, or the force per unit area, is

F AV
- _p=_
A ¥V

For 0.10% compression, we want to achieve a fractional change of volume of
AF/¥ = —0.0010. Since the bulk modulus of water is 0.22 x 10" N/m?, the
required pressure is

F
7= 0.22 x 10" N/m® % 0.0010 = 2.2 X 10° N/m?
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QUESTION 1: When a tension of 70 N is applied to a piano wire of length 1.8 m, it
stretches by 2.0 mm. If the same tension is applied to a similar piano wire of length
3.6 m, by how much will it stretch?

QUESTION 2: Is it conceivable that a long cable hanging vertically might snap under
its own weight? If so, does the critical length of the cable depend on its diameter?
QUESTION 3: The bulk modulus of copper is about twice that of aluminum. Suppose
that a copper and an aluminum sphere have exactly equal volumes at normal atmo-
spheric pressure. Suppose that when subjected to a high pressure, the volume of the alu-
minum sphere shrinks by (1.01%. By what percentage will the copper sphere shrink at
the same pressure?

QUESTION 4: While lifting a load, the steel cable of a crane stretches by 1 em. If you
want the cable to stretch by only 0.5 cm, by what factor must you increase its diameter?

(A) V2 (B)2 (C) 22 (D) 4

3-5 General Review Examplrs

Formulae:

Applied force
Arca of cross-scction

Longitudinal stress =

mg

]TI.'I'z

ey F
Longitudinal stress = — =

Longitudinal strain = M:

!
Original length L

Longitudinal stress
Longitudinal strain

Y:E’

Al
mgL
nril

Y =
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Example — 1

A wire 2 mlong and 2 mm in diameter, when stretched by weight
of 8 kg has its length increased by 0.24 mm. Find the stress,
strain and Young’s modulus of the material of the wire. g = 9.8
m/s?

Given: Imitial length of wire = L = 2 m Diameter of wire = 2 mm
Radius of wite 2/2 = 1 mm = 1 % 10™ m, Weight attached = m = 2 kg,
Increase m length =1 =024 mm =024 X 107 m, e=98m/s

To Find: Stress =7 Strain =7 Young’s modulus of matenial =Y =7
Solution:

Stress =F /A =mg /4
~ Stress = (8% 0.8) /(3.142 x(1 x 10793
~ Stress = (8% 9.8) /(3142 x 1 x 10°%)
» Stress = 2.5% 10" N/m?
Strain=1/L= 024 %107 /2
~ Strain =0.12 x 107 =12 x 107
Now, Young’s modulus of elasticity= Y = Stress / Strain

2Y = (25% 109 / (12x107%
~Y =208 x 101 N/m?
Ans.: Stress = 2.5% 10" N/m?, Strain =1.2 x 10, Yong’s modulus
of elasticity= 2.08 x 10" N/m?
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Example — 2:

A wire of length 2 m and cross-sectional area 107 m? is stretched
by a load 102 ke. The wire is stretched by 0.1 cm. Calculate
longitudinal stress, longitudinal strain and Young's modulus of

the material of wire.

Given: Trutial length of wire = L = 2 m, Cross-sectional area = A = 107
* m Stretching weight = 102 ke wt = 102 x 9.8 N, Increase in length =
1=01em=01%x102m=1x10%m, g=98m/s2

-

To Find: Stress =7 Strain = 7, Young’s modulus of material =Y =2
Solution:

Stress =F / A =mg /A
=~ Stress = (102 % 9.8) /107
~ Stress = 1 % 10" N/m?
Strain=1/L= 1x102/2
+ Strain = 0.5 % 107 = 5 % 107
Now, Young’s modulus of elasticity= Y = Stress / Strain = (1 x 107) /
(5% 10%
Y =2x 10" N/m?
Ans.: Stress = 1 x 107 N/m?2, Strain = 5 x 107 , Young’s modulus of
elasticity=Y = 2 x 1019 N/m?
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Example — 3:

A mild steel wire of radiuns (.5 mm and length 3 m is stretched by
a force of 49 N. calculate a) longitudinal stress, b) longitudinal
strain c} elongation produced in the body if Y for steelis 2.1 X
10" N/m?.

Given: Irutial length of wire = L = 3 m_ radus of wire = 0.5 mm = 0.5
x 10~ m = 5 % 10~ m Force applied =49 N, Young’s modulus for steel
=Y =21x 10" N/m?

To Find: Stress =7 Strain =2 elongation =
Solution:

Stress =F /A =mg /n¢°
~ Stress = 49 /(3142 x(5 x 10799
. Stress = 49 /(3.142 x 25 x 10°8)
~ Stress = 6.238 % 107 N/m?
Now, Y = Stress / Strain
. Strain = Stress / Y = (6.238 x 107) / (2.1 x 101
= Strain = 2.970 x 107
Now, Strain=1/L
s 1= 5Strain XL
= 1=2970 = 10%* %3
~1=891%x10% m=0.891 x 10° m = 0891 mm
Ans. Stress = 6.238 % 107 N/m?, Strain = 2.970 % 10 Elongation =
0.891 mm
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Example — 4:

A metal wire 1m long and of 2 mm diameter is stretched by a
load of 40 kg. If Y = 7 % 10" N/m? for the metal, find the (1)

stress (2) strain and (3) force constant of the material of the wire.

Given: Initial length of wire = L = 1 m, Diameter of wire = 2 mm,
Radius of wite = 2/2 = 1 mm =1 X 107 m, Load attached = m = 40
ko, Young’s modulus of materal =Y = 7 x 101 N/m?.

To Find: Stress =¢ Strain = 7, Force constant = 2

Solution:

Stress=F /A =mg /n1
~ Stress = (40 % 9.8) /(3.142 X(1 x 109
o Stress= (40X 98) /3.142x 1 X lt}'ﬁj
~ Stress = 125 X 10° N/m?
Now, Y = Stress [/ Strain
+ Strain = Stress /Y = 125 x10° /7 x 10%°
Strain = 1.78 x 107
Now, Strain =1 /L
- extension = 1= Strain X L
A 1=178%10° % 1
A~ 1=178%10%m
MNow, force constant K = F/l =g/l = (40 % 9.8) /(1.78 ¥ 1[]'3}
. Force constant K = 2.2 ¥ 10° N/m
Ans.: Stress = 1.25 % 105 N/m#, Strain = 1.78 X 10°%, Force
constant = 2.2 ¥ 10° N/m
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Example — 5:

What must be the elongation of a wire 3m long so that the strain
is 1% of 0.17 If the wire has cross-selection of lmm?® and is

stretched by 10 kg-wt, what is the stress?

Given: Initial length of wire = L =5 m, Strain = 1% 0f 0.1 =1 X 107
x01=1X ID'E': Area of cross-section = 1 mm? = 1 x 107 m*, Load
attached =F = 10 kg-wt =10 X 98 N .

To Find: Elongation =1 =7 Stress = ¢,
Solution:

Strain =1 /L
- extension =1 = Stramn X L
nl=1x10% %3
~1=3x10"m=35mm
Stress =F / A =myg /n1°
~ Stress= (10%9.8) /(1 x 109
o Stress = 9.8 X 107 N/m?

Ans.: Extension = 5 mm and Stress = 9.8 x 100 N/m?
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Example-06:

A brass wire of length 2 m has its one end, fixed to a rigid
support and from the other end a 4 kg wt is suspended. If the
radius of the wire is 0.35 mm, find the extension produced in the
wire. g=9.83m/s°, Y =11 ¥ 101" N/ m?

Givern: Initial length of wire = L. = 2 m, Radius of wire = 035 mm =
0.35 % 107 m =35 % 10*m, Load attached =F =4 kg wt = 4 X 9.8
N, z=981m/s> Y =11 X 10°° N/m?

To Find: Extenzion =r
Splution:

Y =FL /Al
< 1=FL/n*Y
2 1=(4 X 9.8 X 2) /(3.142 X (3.5 x 1077 x 11 x 10!")
A 1=(4X98 X2) /(3142 %1225 x 10 x 11 x 101
A 1=185%10% m= 0185 x10% m=0.185 cm

Ans.: Bxtension of wire 13 0.185 m
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Example-7:

A wire of length 1.5 m and of radius 0.4 mm is stretched by 1.2
mm on loading, If the Young’s modulus of its material is 12.5 X
10" Ni/m2. , find the stretching force.

Given: Initial length of wire = L = 1.3 m, Radius of wite = 0.4 mm =
04X 10°m=4x ID'Lm? Extension =1= 1.2 mm = 1.2 x 107 m g
= 9.8 m/s*, Young™s modulus =Y = 125 X 10192 /m2.

To Find: Stretching force = F =

Solution:

Y =FL /Al
s~ F=AY1/L
~F=72£%1/L

A F=(3142x 4 x 10742 x 123 x 107 x 1.2 % 109 /1.5
- F=(3142% 16 X 108 x 125 % 101 x 12 x 10°%) /1.5

 F=3027TN —

Ans.: Stretching force required = 30.27 N
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Example — 8:

What force is required to stretch a steel wire 1 cm?2 in cross-
section to double its length? Y = 2X 101 N /m?. Assume Hooke®s

laww.

Given: Imitial length of wire = L, Final length = 21, Hence extension
ofwiwe =1=2L—-L =L, Area of cross-section = 1 cm® = 1 X 107
e Young’s medulus of elastcity = Y = 2 101 N/m2.

To Find: Stretching force = F =2
Solution:

YT =FL /Al
~F=AY1/L
2 F=1x10*x2x 10! x L) /L
A F=2x10
Ans: Stretchung force required = 2 X 10' N
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Example — 9:

Find the maximum load which may be placed on a tungsten wire
of diameter 2 mm so that the permitted strain not exceed
1/1000. Young’s modulus for tungsten = Y = 35 x 101 N/m?.

Given: Strain = 1,/1000 = 107, Young’s modulus of elasticity =Y =
35 % 101% N/m?, Diameter of wire = 2 mm, Radius of wite = 2/2 =1

mm=1x 107 I,
To Find: Mazxitmim load = F =¢
Solution:

Y = Stress /Strain = (F/A)/Strain
Y =F/{A ¥ strain)
s F=ar* XY strain
w F=3142 % (1 x 107%2 % 35 x 101%% 1073
+ F=3142 %1 xX10°x 35 x 10'%% 107
~ F=1100N
Ans.: Maximum load can be placed 13 1100 N
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Problem — 10:

A masze of 2kg is hung from a steel wire of radiue 0.3 nom and
length 3m. Compute the extenzion produced. What should be the
rainirmm radive of wire so that elastic liomit iz not exceeded?
Elaztic limit for steel ia 2.4 = 10° M/m®, Y forsteel = ¥ = 20 =
10 W me

Given: Rzdiv: of wire=05mm =03 % 107 m = 3 % 10" m. Inigal
lenoth of wire = L= dom, Mas: attacked =m =2k Y for steel =Y =
20 3 10 N

To Find: Extznszion =1=7, Admsrmen rzdin: of wire = =7
Eolution:
Part-I:

Y=FL/al
~1=FL/AY
~l=megl/zrY
= 1=(2 %05 % 3) /(31421 % {3 10753 20 = 107y
=~ 1=(2% 08 % 3 /3142 x 23x 108 = 20 % 10M)

= 1=3743 % 10 m=03743 mm
Part - II:

Given: Ela:dr Frodr for stesl = Steezs = 24 3 10° 20/, s
attacked =m = 2k,

To Find: Bzdin: of oire at elazfde mit = x =2

Sme:z=F fA=F/nr#
- r*=mer/ (T A Smess)
- = (2xOE) (3042 x 28w 10R
» = 2300w 108
s or=1612¢ 10% m = 0.1812% 107 m = 01612 mm

Ana.: Part — [iChanes in lenoth of wire iz 053743 nun
Part —IT: Fadins ofwire at slz:tic lomiz = 01612 mn
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Example — 11:

A wire is stretched by the application of a force of 50 kg wt/sq.
cm. What is the percentage increase in the length of the wire? Y
=17 % 101 N/m* g =98 m/s*

Given: Stress = 50 ko wi/sq.em=30X 98N/ 109 m*=30%98:
10* N/m?, Young’s modulus of elasticity =Y =7 X 1019 N/m?2 g =
9.8 m/s?

To Find: % elongation = % 1/L =2
Solution:

Now, ¥ = Stresz / Strain
» Strain = Stress / Y = (50 X 9.8 X 101/ (7 x 10'%)
Strain = 7 X 107
%o elongation = Strain X 100 = 7 X 107 X 100
%o elongation = Strain X 100 = 0.007
Ans.: Elongation 15 0.007 percent
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Problem — 12:

A compressive force of 4 % 104 N is exerted at the end of a bone
of length 30 cm and 4 cmn® square cross-sectional area. What will
happen to the boner Calculate the change in length of a bone.
Compressive strength of bone is 7.7 % 10° N/m? and Young’s
modulus of bone is 1.5 X 10%¥ N/m?

Given: Imtial length of wire = L = 50 cm = 0.50 m, Area of cross-
section = 4 cm® = 4X 10*m? Load attached = F =4 X 10* N .Y =
1.5 x 109 N/m?. Maximum Stress = 7.7 X 10° N/me.

To Find: Effect of loading =2 Change in length =1=7,
Solution:

Applied Stress = Applied force / Area of cross-section
Applied Stress = (4 ¥ 10*)/ (4x 10%) = 1 x 108 N/m?

'This stress is less than the maximmum allowable stress (7.7 X 10° N/m3)
Hence the bone will not break but will get compressed and its length
decreases
¥T=FL /Al
o 1= (4 x10% % 0.3) /4% 107 x 1.5 x 1014
A 1=2%10°m=2mm
Ans.: The length of bone decreases by 2 mm
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Example — 13:

The radius of a copper bar is 4 mm. What force is required to
stretch the rod by 20% of its length assuming that the elastic
limit is not exceeded? Y =12 x 101 N/m?".

Given: Radius of wire = r = 4 mm = 4 X 10 m, % elongation =
Strain = 20% = 20 x 107, Young's moduolus of elasticity = % = 12X
10'% N/m?

To Find: Stretching force = F =2
Solution:

Y = Stress /Strain = (F/A)/Strain
Y = F/(A X strain)
- B =AY stramn
W F=mf XY X ostran
F=3142 x (4% 107 x 12x 101° % 20 x 102
o F=3142 % 16 X 107% x 12 1019 % 20 x 107
. F=1207x 10°N
Ans.: Stretching force required = 1.207x 10°N
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Example — 14:

Find the change in length of a wire 5m leng and 1 mm® in cross-
section when the stretching force is 10 kg-wt. Y = 4.9 X 101
N/m?, and g=9.8 m/s°

* Splution:

* Given: Imitial length of wite = L = 5 m, Area of cross-section = 1
mm? = 1 X 10° m?, Load attached = F = 10 Erwt=10X98N.Y
=49 % 101! N/m? and g=9.8 m/s~

* To Find: Change inlength =1=

Y =FL /Al
#1=FL/AY
21= (10X 98X 5) / (1 X109 x 49 x 10%)
2 1=1X10°m=1mm

Ans.: Change in length of wire is 1 mm
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Example — 15:

Elastic limit is exceeded when the strain in a wire (Y=14 X 10t
me’) exceeds 1/2000. If the area of the cross-section of the wire
is (.02 cm’, find the maximum load that can be used for

stretching the wire without causing a permanent set.

Given: Strain = 1/2000 =5 x 107, Youngs modulus of elasticity = Y
=14 % 101 N/m?, Area of cross section = A = 002 em® = 0.02 X 10
fmr=2% 100 me

To Find: Stretching force = F =2
Solution:

Y = Stress /Strain = (F/A)/Strain
Y =F/[A ¥ strain)
=~ F =AY strain
A F=2x10%x 14101 2 5 x 107
s F=1400N
Ans.: Stretching force required = 1400 N
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Unit 4 : Fluid Mechanics

Matter is normally classified as being in one of three states: solid, liquid, or gas. From

everyday experience we know that a solid has a definite volume and shape, a liquid has a
definite volume but no definite shape, and an unconfined gas has neither a definite volume
nor a definite shape. These descriptions help us picture the states of matter, but they are

somewhat artificial. For example, asphalt and plastics are normally considered solids, but
over long time intervals they tend to flow like liquids. Likewise, most substances can be a

solid, a liquid, or a gas (or a combination of any of these three), depending on the temperature

and pressure. In general, the time interval required for a particular substance to change
its shape in response to an external force determines whether we treat the substance as a
solid, a liquid, or a gas.

liquid in
larger beaker
liquid in
beaker
s
solid T

AT

(2) (b) (@

Molecules are loosely packed and
have some freedom to wander about,
although they frequently collide.

together and locked into a

have freedom to move, and spread
rigid array.

out over all available volume.

{ Molecules are tightly packed]

[ Molecules are widely dispersed,

FIGURE Molecules in (a) a solid, (b) a liquid, and (c) a gas.

Repulsion Force

Negative elec \

Positive Nucl. Repulsion Forces Positive Nucll

O

Negative elec,

Attraction Forces

First Atom Second Atom

What is the resultant Force?
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A fluid is a collection of molecules that are randomly arranged and held together by
weak cohesive forces and by forces exerted by the walls of a container. Both liquids and
gases are fluids.

In our treatment of the mechanics of fluids, we’ll be applying principles and analysis
models that we have already discussed. First, we consider the mechanics of a fluid at rest,

that is, fluid statics, and then study fluids in motion, that is, fluid dynamics.

4.1 Pressure

Fluids do not sustain shearing stresses or tensile stresses such as those discussed therefore, the
only stress that can be exerted on an object submerged in a static fluid is one that tends to
compress the object from all sides. In other words, the force

exerted by a static fluid on an object is always perpendicular to At any point on the surface of
the surfaces of the object as shown in Figure 3.1. the object, the force exerted by
The pressure in a fluid can be measured with the device pictured BTG LU s s S T
. . . . . surface of the obhject.
in Figure 3.2.The device consists of an evacuated cylinder that

encloses a light piston connected to a spring. As the device is
submerged in a fluid, the fluid presses on the top of the piston
and compresses the spring until the inward force exerted by the
fluid is balanced by the outward force exerted by the spring. The
fluid pressure can be measured directly if the spring is calibrated l‘ )

in advance. If F is the magnitude of the force exerted on the = j
piston and A is the surface area of the piston, the pressure P of ol
the fluid at the level to which the device has been submerged is T
defined as the ratio of the force to the area: P =F /A
A .
§ ‘ /. Figure 4.2 The forces exerted
Vacuum g7 / F by a fluid on the surfaces of a
» submerged object.

Figure 4.3 A simple device for measuring the pressure exertedby a fluid.
Pressure is a scalar quantity because it is proportional to the magnitude of the force on the piston.

If the pressure varies over an area, the infinitesimal force dF on an infinitesimal surface element
of area dA is dF =P dA

where P is the pressure at the location of the area dA. To calculate the total force exerted on a
surface of a container, we must integrate Equation over the surface.The units of pressure are
newtons per square meter (N/m2) in the SI system. Another name for the SI unit of pressure

is the pascal (Pa): 1 Pa; 1 N/m?

For a tactile demonstration of the definition of pressure, hold a tack between your thumb

and forefinger, with the point of the tack on your thumb and the head of the tack on your
forefinger. Now gently press your thumb and forefinger together. Your thumb will begin

to feel pain immediately while your forefinger will not. The tack is exerting the same force
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on both your thumb and forefinger, but the pressure on your thumb is much larger because
of the small area over which the force is applied.

Quiz 3.1 Suppose you are standing directly behind someone who steps back and
accidentally stomps on your foot with the heel of one shoe. Would you be better off if
that person were (a) a large, male professional basketball player wearing sneakers or
(b) a petite woman wearing spike-heeled shoes?

Example 4.1. The Water Bed
The mattress of a water bed is 2.00 m long by 2.00 m wide and 30.0 cm deep.

(A) Find the weight of the water in the mattress.

(B) Find the pressure exerted by the water bed on the floor when the bed rests in its normal
position. Assume the entire lower surface of the bed makes contact with the floor.

SOLUTION

When the water bed is in its normal position, the area in P
contact with the floor is 4.00 m® Use Equation 14.1 to
find the pressure:

What if the water bed is replaced by a 300-Ib regular bed that is supported by four legs? Each leg hasa
circular cross section of radius 2.00 cm. What pressure does this bed exert on the floor?

_ 118 X 10*N

o 2.94 X 10°Pa
U

Answer The weight of the regular bed is distributed over four circular cross sections at the bottom of the legs. There-
fore, the pressure is

_F_ mg _ 300lb ( 1N )
A 4(mr®)  47(0.020 0m)? \0.225 b
=2.65 X 10°Pa

This result is almost 100 times larger than the pressure due to the water bed! The weight of the regular bed, even
though it is much less than the weight of the water bed, is applied over the very small area of the four legs. The high
pressure on the floor at the feet of a regular bed could cause dents in wood floors or permanently crush carpet pile.
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4.2 Variation of Pressure with Depth
As divers well know, water pressure increases with depth. Likewise, atmospheric pressure
decreases with increasing altitude; for this reason, aircraft flying at high altitudes must have
pressurized cabins for the comfort of the passengers. We now show how the pressure in
a liquid increases with depth. As Equation describes, the density of a substance is defined
as its mass per unit volume. See a lists the densities of various substances. These values
vary slightly with temperature because the volume of a substance is dependent on temperature
Under standard conditions (at 0°C and at atmospheric pressure), the densities of gases are
-about 1/1000 the densities of solids and liquids. This difference in densities implies
that the average molecular spacing in a gas under these conditions is about ten times greater
than that in a solid or liquid.

The parcel of fluid is in Now consider a liquid of density p at rest as shown in Figure . 3. We assume p

equilibrium, 5o the net is uniform throughout the liquid, which means the liquid is incompressible. Let us
force on it i zero. select a parcel of the liquid contained within an imaginary block of cross-sectional
f area A extending from depth 4 to depth d + k. The liquid external to our parcel

\ exerts forces at all points on the surface of the parcel, perpendicular to the surface.

Q \_ PAj P The pressure exerted by the liquid on the bottom face of the parcel is F, and the pres-
| —~—rr—71— sure on the top face is F. Therefore, the upward force exerted by the outside fluid on
l ’ [‘1 the bottom of the parcel has a magnitude P4, and the downward force exerted on the

a top has a magnitude P, A. The mass of liquid in the parcel is M = pV= pAh; therefore,

remains at rest, it can be modeled as a particle in equilibrium, so that the net force

i the weight of the liquid in the parcel is Mg = pAhg Because the parcel is at rest and
acting on it must be zero. Choosing upward to be the positive y direction, we see that

~Mgj IP‘*J' ST =PAj- BA] - Mgj =0
> -/ or

PA— P,A— pAhg=10
Figure 4.3 A parcel of ot T pAlE

fluid in a larger volume P=P, + pgh

of fluid is singled out.
That is, the pressure Pat a depth f below a point in the liquid at which the pressure
is P, is greater by an amount pgh. If the liquid is open to the atmosphere and P, is
the pressure at the surface of the liquid, then P, is atmospheric pressure. In our
calculations and working of end-of-chapter problems, we usually take atmospheric
pressure to be

P, =100atm = 1.013 X 10°Pa

Equation 14.4 implies that the pressure is the same at all points having the same
depth, independent of the shape of the container.

Because the pressure in a fluid depends on depth and on the value of P, any
increase in pressure at the surface must be transmitted to every other point in the
fluid. This concept was first recognized by French scientist Blaise Pascal (1623—
1662) and is called Pascal’s law: a change in the pressure applied to a fluid is trans-
mitted undiminished to every point of the fluid and to the walls of the container.

An Important application of Pascal’s law is the hydraulic press illustrated
in Figure 14.4a. A force of magnitude F, is applied to a small piston of surface
area A,. The pressure is transmitted through an incompressible liquid to a larger
piston of surface area A;. Because the pressure must be the same on both sides,
P=F /A = F,/A; Therefore, the force F; is greater than the force | by a factor of
Az/A). By designing a hydraulic press with appropriate areas A, and A,, a large out-
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Because the increase in
pressure is the same on
the two sides, a small
force f, at the left
produces a much greater
force F; at the right.

Sam Jordash/ Digital Vision/ Getty Imagas

Figure 4.3 (a) Diagram of a hydraulic press. (b) A vehicle undergoing repair is supported by a hydraulic
lift in a garage.

put force can be applied by means of a small input force. Hydraulic brakes, car lifts,
hydraulic jacks, and forklifts all make use of this principle (Fig. .

Because liquid is neither added to nor removed from the system, the volume of lig-
uid pushed down on the left in Figure 14.4a as the piston moves downward througha
displacement Ax; equals the volume of liquid pushed up on the right as the right pis-
ton moves upward through a displacement Ax,. That is, A; Ax; = A; Ax;; therefore,
As/A; = Ax, /Ax,. We have already shown that A,/A, = F,/F,. Therefore, F,/F, =
Ax; /Axs, s0 F} Axy = F; Axs. Each side of this equation js the work done by the force
on its respective piston. Therefore, the work done by F)l on the input piston equals
the work done by F; on the output piston, as it must to conserve energy. ( The process
can be modeled as a special case of the nonisolated system model: the nonisolated
system in steady state. There is energy transfer into and out of the system, but these
energy transfers balance, so that there is no net change in the energy of the system.)

Quiz 14.2 The pressure at the bottom of a filled glass of water (p = 1 000 kg/m3) is P.
The water is poured out, and the glass is filled with ethyl alcohol

(p = 806 kg/m3). What is the pressure at the bottom of the glass?

(a) smallerthan P

(b) equal to P

(c) larger than P

(d) indeterminate
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Example 4.2 The Car Lift
In a car lift used in a service station, compressed air exerts a force on a small piston that has a circular

cross section of radius 5.00 cm. This pressure is transmitted by a liquid to a piston that has a radius of
15.0 cm.

(A)  What force must the compressed air exert to lift a car weighing 13 300 N?

SOLUTION

Conceptualize Review the material just discussed about Pascal’s law to understand the operation of a car lift.

Categorize This example is a substitution problem.

Al) w(5.00 X 107 m)?
Solve F, /A, = F,/A, for F;: F=|=—)F/= 1.33 x 10*N
VA = By for by ! (Ag *7 w(15.0 x 107° m}E( )
= 148 X 1®N
(B) What air pressure produces this force?
F, 1.48 X 10°N
Use Equation 14.1 to find the air pressure that produces P= A_l = Y
this force: 1 w(5.00 X107 m)
= 1.88 x 10° Pa

This pressure is approximately twice atmospheric pressure.

Example 4.3 A Pain in Your Ear

Estimate the force exerted on your eardrum due to the water when you are swimming at the bottom of a
pool that is 5.0 m deep.

Conceptualize As you descend in the water, the pressure increases. You may have noticed this increased pressure in
your ears while diving in a swimming pool, a lake, or the ocean. We can find the pressure difference exerted on the

eardrum from the depth given in the problem; then, after estimating the ear drum’s surface area, we can determine
the net force the water exerts on it.

Categorize This example is a substitution problem.

The air inside the middle ear is normally at atmospheric pressure Fy. Therefore, to find the net force on the eardrum,
we must consider the difference between the total pressure at the bottom of the pool and atmospheric pressure. Let’s
estimate the surface area of the eardrum to be approximately 1 cm? =1 X 107t m®.

Use Equation 14.4 to find this pressure Py — Fy=pgh

difference: "
= (1.00 % 10% kg/m*)(9.80 m/s%) (5.0 m) = 4.9 X 10* Pa

Use Equation 14.1 to find the magnitude of the F= (P, — F)A= {49 X 101 Pa)(1 X 107*m?) = 5N
net force on the ear:

Because a force of this magnitude on the eardrum is extremely uncomfortable, swimmers often “pop their ears” while

under water, an action that pushes air from the lungs into the middle ear. Using this technique equalizes the pressure
on the two sides of the eardrum and relieves the discomfort.
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%N Pressure Measurements

During the weather report on a television news program, the barometric pressure is B

often provided. This reading is the current local pressure of the atmosphere, which

varies over a small range from the standard value provided earlier. How is this pres- L A

sure measured? Al
One instrument used to measure atmospheric pressure is the common barom-

eter, invented by Evangelista Torricelli (1608-1647). A long tube closed at one end

is filled with mercury and then inverted into a dish of mercury (Fig. 14.6a). The

closed end of the tube is nearly a vacuum, so the pressure at the top of the mer-

cury column can be taken as zero. In Figure 14.6a, the pressure at point A, due a]

to the column of mercury, must equal the pressure at point B, due to the atmo-

=

sphere. If that were not the case, there would be a net force that would move mer- h
cury from one point to the other until equilibrium is established. Therefore, P, = T"‘
Prggh. where py is the density of the mercury and A is the height of the mercury A h
column. As atmospheric pressure varies, the height of the mercury column varies, L ] 1
so the height can be calibrated to measure atmospheric pressure. Let us determine - AH —|43
the height of a mercury column for one atmosphere of pressure, P, = 1 atm = L /-l /
1013 X 10° Pa: \—/
B L. R 1.013 X 10°Pa B D

o = Pt ! Prgf (13.6 x 10° ]{g;"ms)(g.BO m/s’) 0700 Figure 14.6 Two devices for
Based on such a calculation, one atmosphere of pressure is defined to be the pres- ~ Measuring pressure: {a) a mercury

. . . . o barometer and (b) an open-tube
sure equivalent of a column of mercury that is exactly 0.760 0 m in height at 0°C. —

A device for measuring the pressure of a gas contained in a vessel is the open-
tube manometer illustrated in Figure 14.6b. One end of a U-shaped tube containing
a liquid is open to the atmosphere, and the other end is connected to a container of
gas at pressure P. In an equilibrium situation, the pressures at points A and B must
be the same (otherwise, the curved portion of the liquid would experience a net
force and would accelerate), and the pressure at A is the unknown pressure of the
gas. Therefore, equating the unknown pressure P to the pressure at point B, we see

that P= P, + pgh. Again, we can calibrate the height / to the pressure P.

The difference in the pressures in each part of Figure 14.6 (that is, P — P) is
equal to pgh. The pressure Pis called the absolute pressure, and the difference
P — P, is called the gauge pressure. For example, the pressure you measure in your
bicycle tire is gauge pressure.

.~.. Quiz 14.% Several common barometers are built, with a variety of fluids.
: For which of the following fluids will the column of fluid in the barometer be

& the highest? (a) mercury (b) water (c) ethyl alcohol (d) benzene
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4.3 INCOMPRESSIBLE STEADY FLOW; STREAMLINES

We will deal with steady flow, for which the velocity at any given point of space remains
constant in time. Thus, in steady flow, each small parcel of fluid that starts at any given point
follows exactly the same path as a small parcel that passes through the same point at an earlier (or

later) time. For example, Fig. 3.5 shows velocity vectors

Velocity is largest where
streamlines are densest.

for the steady flow of water around a cylindrical obstacle,
say, the flow of the water of a broad river around a

lindrical piling placed in the mi — =
cylindrical piling placed in the middle. The water enters A

the picture in a broad stream from the left, and disappears

in a similar broad stream toward the right. For the steady M
flow of an incompressible fluid, such as water, the picture Mff
of velocity vectors can be replaced by an alternative graphical FIGURE  Streamlines for vater flow-

ing around a cylinder. The densest stream-
representation. Suppose we focus our attention on a small lines are found just above and just belorw the

cylinder.
volume of water, say, 1 mm3 of water, and we observe ’
the path of this 1 mm3 from the source to the sink. 7he path traced out by the small volume of
fluid is called a streamline. Neighboring small volumes will trace out neighboring
streamlines. In Fig. 18.6 we show the pattern of streamlines for the same steady flow
of water that we already represented in Fig. 3.5 by means of velocity vectors. The
streamlines on the far left (and far right) of Fig. 18.6 are evenly spaced to indicate the
uniform and parallel flow in this region.
The steady flow of an incompressible fluid is often called streamline flow. Note
that streamlines never cross. A crossing of two streamlines would imply that a small
parcel of water moving along one of these streamlines has to penetrate through a small
parcel of water moving along the other streamline. This is impossible—it would lead
to disruption of both the small parcels and to destruction of the steadiness of flow.
Because the streamlines for steady incompressible flow never cross, such flow is also
called laminar flow, which refers to the layered arrangement of the streamlines.

If we know the velocity of flow throughout the fluid, we can trace out the motion

of small parcels of fluid and therefore construct the streamlines. But the converse is
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also true—if we know the streamlines, we can reconstruct the velocity of flow.We can
do this by means of the following rule:

The direction of the velocity at any one point is tangent to the streamline, and the
magnitude of the velocity is proportional to the density of streamlines.

The first part of this rule is self-evident, since the direction of

. - . Atrea along stream
motion of a small parcel of fluid is tangent to the streamline. tube can vary.

: To conserve volume, ends
3 of stream tube segment
must move diﬂ'erem
distances in time df.

To establish the second part, consider a bundle of streamlines
forming a pipelike region, called a stream tube.Any fluid inside
the stream tube will have to move along the tube; it cannot cross
the surface of the tube because streamlines never cross. The tube

therefore plays the same role as a pipe made of some impermeable

material—it serves as a conduit for the fluid. If we consider
atube that is very narrow, so its cross-sectional area is very small, FIGURE A stream tube.
the velocity of flow will vary only along the length of the tube,

and we can assume it will be the same at all points on a given cross-sectional area. For instance, on the area

A1 (see Fig.) the velocity is v1, and on the area Az the velocity is vz. In a time dt, Eq. impliesthat the
fluid volume that enters across the area A1 is dV1 = v141 dt and the fluid volume that leaves across

the area A;is dV2 = vy 42 dt. The amount of fluid that enters must match the amount that leaves,
since, under steady conditions, fluid cannot accumulate in the segment of tube between A1 and Ao.
Hence dV1 = dV>, and or, canceling the factor dt on both sides of the equation, =4 = =

This relation is called the continuity equation. It shows that along any stream tube the speed of

flow is inversely proportional to the cross-sectional area of the stream tube.
The density of streamlines inside the stream tube is the number of such lines divided

by the cross-sectional area; since the number of streamlines entering 4, is necessarily
the same as that leaving .4,, the density of streamlines is inversely proportional to the
cross-sectional area. This implies that the speed at any point in the fluid is directly pro-
portional to the density of streamlines at that point. For example, in Fig. 18.6, the speed
of the water is larpe at the top and bottom of the obstacle (large density of streamlines)
and smaller to the left and right (smaller density of streamlines]).

In experiments on fluid flow, the streamlines of a fluid can be made directly vis-
ible by several clever techniques. If the fluid is water, we can place grains of dye at
diverse points within the volume of water; the dye will then be carried along by the
flow, and it will mark the streamlines. The photograph in Fig. 18.8 shows a pattern
of streamlines made visible by this technique. The water emerges from a pointlike
source on the left and disappears into a pointlike sink on the right. The colored
streamers were created by small grains of potassium permanganate dissolving in the
water.
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If the fluid is air, we can make the streamlines visible by releasing smoke from
small jets at diverse points within the flow of air. The photograph in Fig. 18.9 shows
fine trails of smoke marking the streamlines in air flowing past a scale model of the
wing of an airplane in a wind tunnel. The experimental investigation of such stream-
line patterns plays an important role in airplane design. Incidentally: Under some con-
ditions, the flow of air can be regarded as nearly incompressible, provided that the
speed of flow is well below the speed of sound (331 m/s). Although the air will suffer
some changes of density in its flow around obstacles, the changes are usually small
enough to be neglected.

Finally, Fig. 18.10 shows an example of turbulent flow. In the repion behind
the wing, the streamers of smoke become twisted and chaotic. This is due to the
generation of vortices, or swirls of air, in this region. As the vortices form, grow,
break away, and disappear in quick succession, the velocity of flow fluctuates vio-
lently. The flow of the fluid becomes unsteady and irregular. The formation of vor-
tices and the onset of turbulence have to do with viscosity in the fluid (see Problem
73). It is a general rule that vortices and turbulence will develop in a fluid of given
viscosity whenever the velocity of flow, the length of the flow, or both exceed a cer-
tain limit. We can see the transition from steady flow to turbulent flow in the ascend-
ing smoke trail from a cigarette (see Fig. 18.11). The flow starts out steady, with
smoke particles moving along well-defined streamlines; but at some height above
the ciparette, where the length of the flow exceeds the critical limit, the flow becomes
turbulent.

FIGURE Fine trails of smoke indicate FIGURE Here, the wing is in a partial stall, and the
the streamlines in air flowing around the wing of an aircraft. flow behind the wing has become turbulent
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Thus far, our study of fluids has been restricted to fluids at rest. We now turn our
attention to fluids in motion. When fluid is in motion, its flow can be characterized
as being one of two main types. The flow is said to be steady, or laminar, if each
particle of the fluid follows a smooth path such that the paths of different particles
never cross each other as shown in Figure 14.13. In steady flow, every fluid particle
arriving at a given point in space has the same velocity.

Above a certain critical speed, fluid flow becomes turbulent. Turbulent flow is
irregular flow characterized by small whirlpool-like regions as shown in Figure 14.14.

The term viscosity is commonly used in the description of fluid flow to charac-
terize the degree of internal friction in the fluid. This internal friction, or viscous
Joree, is associated with the resistance that two adjacent layers of fluid have to mov-
ing relative to each other. Viscosity causes part of the fluid’s kinetic energy to be
transformed to internal energy. This mechanism is similar to the one by which the
kinetic energy of an object sliding over a rough, horizontal surface decreases as
discussed in Sections 8.3 and 8.4.

Because the motion of real fluids is very complex and not fully understood, we
make some simplifying assumptions in our approach. In our simplification model
of ideal fluid flow, we make the following four assumptions:

1. The fluid is nonviscous. In a nonviscous fluid, internal friction is neglected.
An object moving through the fluid experiences no viscous force.

2. The flowis steady. In steady (laminar) flow, all particles passing through a
point have the same velocity.

3. The fluid is incompressible. The density of an incompressible fluid is
constant.

4. The flow is irrotational. In irrotational flow, the fluid has no angular
momentum about any point. If a small paddle wheel placed anywhere in the
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The path taken by a fluid particle under steady flow is called a streamline. The
velocity of the particle is always tangent to the streamline as shown in Figure 14.15.
A set of streamlines like the ones shown in Figure 14.15 form a fube of flow. Fluid
particles canmot flow into or out of the sides of this tbe; if they could, the stream:-
lines would cross one another,

Consider ideal fluid flow through a pipe of nonuniform size as illustrated in Fig-
ure 14.16. Let's focus our attention on a segment of fluid in the pipe. Figure 14.16a
shows the segment at time ¢ = [ consisting of the gray portion between point 1 and
point 2 and the short blue portion to the left of point 1. At this time, the Duid in the
short blue portion is flowing through a cross section of area A, at speed v,. During
the time interval Af, the small length dx; of fluid in the blue portion moves past
point 1. During the same time interval, fluid at the right end of the segment moves
past point 2 in the pipe. Figure 14.16b shows the situation at the end of the time
interval AL The Blue portion at the right end represents the fluid that has meved
past point 2 through an area A at a speed oy,

The mass of NMuid contained in the blue portion in Figure 14.16a is given by my =
pd; Ax, = pd, o At where p is the (unchanging) density of the ideal fluid. Similarly,
the fluid in the blue portion in Figure 14.16b has a mass wy = pdy Axy = pAavy AL
Because the fluid is incompressible and the flow is steady, however, the mass of fluid

that passes point 1 in a time interval Af must equal the mass that passes point 2 in
the same time interval. That is, m;, = mg or pAyvy A2 = pAyvy Af, which means that

A = J!z!ﬂz = constant

This expression is called the equation of continuity for fluids. It states that the
product of the area and the fluid speed at all points along a pipe is constant for an

incompressible fluid. Equation 14.7 shows that the speed is high where the wube
is constricted (small A) and low where the tube is wide (large A). The product Ay,
which has the dimensions of volume per unit time, is called either the volwme flux or
the flow rate. The condition Av = constant is equivalent to the statement that the vol-
ume of fluid that enters one end of a tube in a given time interval equals the volume
leaving the other end of the tube in the same time interval if no leaks are present.
You demonstrate the equation of continuity each time you water your garden
with your thumb over the end of a garden hose as in Figure 14.17. By partially block-

Figure 1417 The speed of water spraying from
the end of a garden hose increases as the size of
the opening is decreased with the thumb.
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In the !‘juma.n circulat«.'fry s:.}fstem, the blood flows ouF of the

heart via the aorta, which is connected to other arteries that
branch out into a multitude of small capillaries (see Fig. 18.12). In the average
adult, the aorta has a radius of 1.2 cm, and the speed of flow of the blood is
0.20 m/s. The radius of each capillary is about 3 X 107 m, and the number of
open capillaries, under conditions of rest, is about 1 X 10", Calculate the speed
of flow of the blood in the capillaries.

SOLUTION: The cross-sectional area of the aorta is
Ay = =7 % (0012 m)* = 45 x 10 * m?
and the net cross-sectional area of all the capillaries is
A, = [number of capillaries] X [area of each]
=1x10"x i =1x10"x 7 x 3% 10°m)? =3 x 107 'm’
From the continuity equation (18.5), with =, = 0.20 m/s, we then find that the
speed of flow in the capillaries is

A 45 % 104 m?
Lo = T % 0.20m/s

2T A T 310 ' m

=3 % 10 *m/s = 0.3 mm/s
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4.4 Buoyant Forces and Archimedes’s Principle

Have you ever tried to push a beach ball down under water (Fig. 4.3a)? Itis extremely difficul
to do because of the large upward force exerted by the water on the ball. The upward force
exerted by a fluid on any immersed object is called

ff__,..r 5 H‘\‘\x The buoyant force B
& y on a beach ball that
\ | replaces this parcel

!I h of water is exactly the
u, o i same as the buoyant
l“‘-, £ e force on the parcel.

a

&

Figure 14.7 (a) Aswimmer pushes a beach ball under water. (b) The forces on a beach ball-sized
parcel of water.

a buoyant force. We can determine the magnitude of a buoyant force by applying
some logic. Imagine a beach ball-sized parcel of water beneath the water surface
as in Figure 14.7b. Because this parcel is in equilibrium, there must be an upward
force that balances the downward gravitational force on the parcel. This upward
force is the buoyant force, and its magnitude is equal to the weight of the water in
the parcel. The buoyant force is the resultant force on the parcel due to all forces
applied by the fluid surrounding the parcel.

Now imagine replacing the beach ball-sized parcel of water with a beach ball
of the same size. The net force applied by the fluid surrounding the beach ball is
the same, regardless of whether it is applied to a beach ball or to a parcel of water.
Consequently, the magnitude of the buoyant force on an object always equals the
weight of the fluid displaced by the object. This statement is known as Archime-
des’s principle.

With the beach ball under water, the buoyant force, equal to the weight of a
beach ball-sized parcel of water, is much larger than the weight of the beach ball.
Therefore, there 1s a large net upward force, which explains why it is so hard to hold
the beach ball under the water. Note that Archimedes’s principle does not refer to
the makeup of the object experiencing the buoyant force. The object’s composition
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is not a factor in the buoyant force because the buoyant force is exerted by the sur-
rounding fluid.

To better understand the origin of the buoyant force, consider a cube of solid
material immersed in a liquid as in Figure 14.8. According to Equation 14.4, the
pressure Py, at the bottom of the cube is greater than the pressure P, at the top
by an amount pg .4 gh, where h is the height of the cube and pg 4 is the density of
the fluid. The pressure at the bottom of the cube causes an upward force equal to
P, A, where A is the area of the bottom face. The pressure at the top of the cube
causes a downward force equal to P A. The resultant of these two forces is the
buoyant force B with magnitude

B = (Pyo = Pop)A = (ppuaghA

B= pnuldgvdlsp

where V., = Ahis the volume of the fluid displaced by the cube. Because the prod-
uct pryiqVaisp is equal to the mass of fluid displaced by the object,

B= Mg

where Mg is the weight of the fluid displaced by the cube. This result is consistent
with our initial statement about Archimedes’s principle above, based on the discus-
sion of the beach ball.

Under normal conditions, the weight of a fish in the opening photograph for
this chapter is slightly greater than the buoyant force on the fish. Hence, the fish
would sink if it did not have some mechanism for adjusting the buoyant force. The

The buoyant force on the
cube is the resultant of the
forces exerted on its top and
bottom faces by the liquid.

The external forces
acting on an immersed cube are
the gravitational force ?E and the
buoyant force E.
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fish accomplishes that by internally regulating the size of its air-filled swim bladder
to increase its volume and the magnitude of the buoyant force acting on it, accord-
ing to Equation 14.5. In this manner, fish are able to swim to various depths.

Before we proceed with a few examples, it is instructive to discuss two common
situations: a totally submerged object and a floating (partly submerged) object.

Case 1: Totally Submerged Object When an object is totally submerged in a fluid
of density pgy 4, the volume Vy, of the displaced fluid is equal to the volume V,,; of
the object; so, from Equation 14.5, the magnitude of the upward buoyant force is
B = paiag Vory- If the object has a mass M alnd d.ensiqf Papy 1ts weight is equal to F, =
Mg = p ;g Vo> and the net force on the objectis B — F, = (pgyyq — Popi) € Vopy- Henee,
if the density of the object is less than the density of the fluid, the downward gravi-
tational force is less than the buoyant force and the unsupported object accelerates
upward (Fig. 14.9a). If the density of the object is greater than the density of the
fluid, the upward buoyant force is less than the downward gravitational force and
the unsupported object sinks (Fig. 14.9b). If the density of the submerged object
equals the density of the fluid, the net force on the object is zero and the object
remains in equilibrium. Therefore, the direction of motion of an object submerged
in a fluid is determined only by the densities of the object and the fluid.

Case 2: Floating Object Now consider an object of volume V,;; and density p, <
Priuia I static equilibrium floating on the surface of a fluid, that is, an object that
is only partially submerged (Fig. 14.10). In this case, the upward buovant force is
balanced by the downward gravitational force acting on the object. If Vy,, is the
volume of the fluid displaced by the object (this volume is the same as the volume
of that part of the object beneath the surface of the fluid), the buoyant force has a
magnitude B = pgqgVyep Because the weight of the objectis F, = Mg = poy, 2 Vo
and because F, = B, we see that payia g Vaisp = Ponj Vonj» OF

Vaip _ Pory
Vobj  Phuia
This equation shows that the fraction of the volume of a floating object that is

below the fluid surface is equal to the ratio of the density of the object to that of
the fluid.

=l Quiz . You are shipwrecked and floating in the middle of the ocean on
a raft. Your cargo on the raft includes a treasure chest full of gold that you found
before your ship sank, and the raft is just barely afloat. To keep you floating as
high as possible in the water, should you (a) leave the treasure chest on top of
the raft, (b) secure the treasure chest to the underside of the raft, or (¢) hang
the treasure chest in the water with a rope attached to the raft? (Assume throw-
. ing the treasure chest overboard is not an option you wish to consider.)

Because the object floats
in equilibrium, 8= Fg,

VY

Figure 14.9 (a) A totally submerged object that is less dense than

the fluid in which it is submerged experiences a net upward force Figure 1410 An object floating on the
and rises to the surface after it is released. (b) A totally submerged surface of a fluid experiences two forces,
object that is denser than the fluid experiences a net downward the gravitational force ?g and the bucyant
force and sinks. force B.
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Example 14.5 Eurekal

Archimedes supposedly was asked to determine whether a crown
made for the king consisted of pure gold. According to legend, he
solved this problem by weighing the crown first in air and then
in water as shown in Figure 14.11. Suppose the scale read 7.84 N
when the crown was in air and 6.84 N when it was in water. What
should Archimedes have told the king?

SOLUTION

T
Conceptualize Figure 14.11 helps us imagine what is happening l

)
]
]
¥
H
]

=

-

e |

in this example. Because of the buoyant force, the scale reading is
smaller in Figure 14.11b than in Figure 14.11a.

Categorize This problem is an example of Case 1 discussed ear-
lier because the crown is completely submerged. The scale read-
ing is a measure of one of the forces on the crown, and the crown fg
is stationary. Therefore, we can categorize the crown as a particle

- I B8 b

in equilibrivm.

.......................................................................... Figure 14.11 (Example 14.5) (a) When the crown
Analyze When the crown is suspended in air, the scale reads the is suspended in air, the scale reads its true weight

.
Ty
i.z

becanse T, = F, (the buoyancy of air is negligible).

(b} When the crown is immersed in water, the buoyant

force B changes the scale reading to a lower value

true weight T, = F."r (neglecting the small buoyant force due to the
surrounding air). When the crown is immersed in water, the buoy-

ant force B reduces the scale reading to an apparent weight of T,=F,- B

L, =F—-B&

Apply the particle in equilibrinum model to the crown in M F=B+T,- F=0
water:
Solve for B: B=F, - T,

Because this buoyant force is equal in magnitude to the weight of the displaced water, 8= p_ gV, .. where ¥y, . is the
volume of the displaced water and p,, is its density. Also, the volume of the crown ¥ is equal to the volume of the dis-
placed water because the crown is completely submerged, so B = p, gV.

_m._mg mg _ mgp,  mgp,
=N T Vg (B/p) B E—-T

Find the density of the crown from Equation 1.1:

_ (7.84 N)(1 000 kg/m®)
Pe= T 8AN — 684N

Substitute numerical values: = 7.84 X 10° l-ag,r’m5

Finalize From Table 14.1, we see that the density of gold is 19.3 X 10° kg/m?>. Therefore, Archimedes should have
reported that the king had been cheated. Either the crown was hollow, or it was not made of pure gold.

m Suppose the crown has the same weight but is indeed pure gold and not hollow. What would the scale
reading be when the crown is immersed in water?

Answer Find the buoyant force on the crown: B=p. gV, = p.gV= pmg’(%) = pm(n;g)

784N

— = 0406N
19.3 X 10° kg/m

Substitute numerical values: B=(100x 10*kg/m%)

Find the tension in the string hanging from the scale: L,=F,—-B=T784N-0406N = 743N
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Bernoulli’s Equation

You have probably experienced driving on a highway and having a large truck pass
vouat high speed. In this situation, vou may have had the frightening feeling thatvour
car was being pulled in toward the truck as it passed. We will investigate the origin
of this effect in this section.

As a fluid moves through a region where its speed or elevation above the
Earth’s surface changes, the pressure in the fluid varies with these changes. The
relationship between fluid speed, pressure, and elevation was first derived in 1738
by Swiss physicist Daniel Bernoulli. Consider the flow of a segment of an ideal
fluid through a nonuniform pipe in a time interval At as illustrated in Figure
14.18. This figure is very similar to Figure 14.16, which we used to develop the
continuity equation. We have added two features: the forces on the outer ends of
the blue portions of fluid and the heights of these portions above the reference
position y = 0.

The force exerted on the segment by the fluid to the left of the blue portion in
Figure 14.18a has a magnitude P 4,. The work done by this force on the segment
in a time interval Azis W, = F; Axy = P4, Ax, = BV where Vis the volume of the
blue portion of fluid passing point 1 in Figure 14.18a. In a similar manner, the
work done on the segment by the fluid to the right of the segment in the same time
interval Atis W, = —PoA; Axy = —PBgV, where Vis the volume of the blue portion of
fluid passing point 2 in Figure 14.18b. (The volumes of the blue portions of fluid in
Figures 14.18a and 14.18b are equal because the fluid is incompressible.) This work
is negative because the force on the segment of fluid is to the left and the displace-
ment of the point of application of the force is to the right. Therefore, the net work
done on the segment by these forces in the time Interval Atis

W= (P, — PV

The pressure at
point 1is Py.

PAi

n i vy Point 2
J— The pressure at
point 2 is Fs. ?E
Figure 14.18 A fiuid in laminar =

flow through a pipe. (a) A segment
of the fluid at time ¢ = 0. A small
portion of the blue-colored fluid
is at height y, above a reference
position. (b) After a time interval
At, the entire segment has moved
to the right. The bluecolored por-
tion of the fluid is that which has
passed point 2 and is at height ys. b
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Part of this work goes into changing the kinetic energy of the segment of fluid, and
part goes into changing the gravitational potential energy of the segment-FEarth
system. Because we are assuming streamline flow, the kinetic energy K a of the
gray portion of the segment is the same in both parts of Figure 14.13. ﬁlerefone,
the change in the kinetic energy of the segment of fluid is

AR = {%mvf + KEE,Y) - (%mﬂf + Kgrav:' = %mvf - %-mﬂlz

where m is the mass of the blue portions of fluid in both parts of Figure 14.18.
(Because the volumes of both portions are the same, they also have the same mass.}

Considering the gravitational potential energy of the segment-Earth system,
once again there is no change during the time interval for the gravitational poten-
tial energy UET.E? a:ssociated wi.th the gray portion of t_he fluid. Consequently, the
change in gravitational potential energy of the system is

AU = (mgy; + Upzy) — (mgy + Upy) = mgy: — mgy

From Equation 8.2, the total work done on the system by the fluid outside the
segment is equal to the change in mechanical energy of the system: W= AKX+ AU
Substituting for each of these terms gives

(Pl — PE:IV= %mvf — %mﬂf + mgyy; — mgy

If we divide each term by the portion volume Vand recall that p = m/V, this expres-
sion reduces to

P, — P, = {pvi — tpvi + poys — pon
Rearranging terms gives
P+ %pvlz + pgy, = B + %pvf + pays (14.8)

which is Bernoulli’s equation as applied to an ideal fluid. This equation is often
expressed as

P+ ipv® + pgy = constant (14.9)
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Bernoulli’s equation shows that the pressure of a fluid decreases as the speed of
the fluid increases. In addition, the pressure decreases as the elevation increases.
This latter point explains why water pressure from faucets on the upper floors of a
tall building is weak unless measures are taken to provide higher pressure for these
upper floors.

When the fluid is at rest, »; = v, = 0 and Equation 14.8 becomes

P — P = pgly: — m) = pgh

This result is in agreement with Equation 14.4.

Although Equation 14.9 was derived for an incompressible fluid, the general
behavior of pressure with speed is true even for gases: as the speed increases, the
pressure decreases. This Bernoulli effect explains the experience with the truck on
the highway at the opening of this section. As air passes between you and the truck,
it must pass through a relatively narrow channel. According to the continuity equa-
tion, the speed of the air is higher. According to the Bernoulli effect, this higher-
speed air exerts less pressure on your car than the slowermoving air on the other
side of your car. Therefore, there is a net force pushing you toward the truck!

@LII(:I( Quiz 14.5 You observe two helium balloons floating next to each other at
the ends of strings secured to a table. The facing surfaces of the balloons are
separated by 1-2 cm. You blow through the small space between the balloons.
‘What happens to the balloons? {(a) They move toward each other. (b) They move

& away from each other. {c) They are unaffected.

Example 14.8 The Venturi Tube

The horizontal constricted pipe illustrated in Figure 14.18,
known as a Venturi tube, can be used to measure the flow speed
of an incompressible fluid. Determine the flow speed at point
2 of Figure 14.19a if the pressure difference P, — F, is known.

SOLUTION

Conceptualize Bernoulli’s equation shows how the pressure of a] b
an ideal fluid decreases as its speed increases. Therefore, we
should be able to calibrate a device to give us the fluid speed if

@ Cengage Learning/Charles D, Winters

Categorize Because the problem states that the fluid is incom-

mt

Figure 14.19 (Example 14.8) (a} Pressure P, is greater
than pressure P, because v, < w,. This device can be used
We Can Mmeasure pressure. to measure the speed of fluid flow. (b) A Venturi tube,

located at the top of the photograph. The higher level of
fluid in the middle column shows that the pressure at the

pressible, we can categorize it as one in which we can use the top of the column, which is in the constricted region of

equation of continuity for fluids and Bernoulli’s equation. the Venwuri tbe, is lower.

Analyze Apply Equation 14.8 wo points 1 and 2, noting (1) P +dpe?=P + ipv)t
that y; = y; because the pipe is horizontal:

Ay
Solve the equation of continuity for v = A—' thy
L
A‘F ?
Substitute this expression into Equation (1): P+ ép(f) v =P+ v}pvgg
1
20h —
Solve for v, ty = A ( :! .Rgi
pla” — Ay)
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Finalize From the design of the tube (areas A, and A,) and measurements of the pressure difference P, — P,, we can
calculate the speed of the flnid with this equation. To see the relationship between fluid speed and pressure differ-
ence, place two empty soda cans on their sides about 2 cm apart on a table. Gently blow a stream of air horizontally
between the cans and watch them roll together slowly due to a modest pressure difference between the stagnant air on
their outside edges and the moving air between them. Now blow more strongly and watch the increased pressure dif-
ference move the cans together more rapidly.

Other Applications of Fluid Dynamics

Consider the streamlines that flow around an airplane wing as shown in Figure
14.21 on page 434. Let’s assume the airstream approaches the wing horizontally
from the right with a velocity ¥,. The tilt of the wing causes the airstream to be
deflected downward with a velocity ¥,. Because the airstream is deflected by the
wing, the wing must exert a force on the airstream. According to Newton’s third
law, the airstream exerts a force T on the wing that is equal in magnitude and

] ] opposite in direction. This force has a vertical component called lift (or acrody-
The air approaching from

the right is deflected namic lift) and a horizontal component called drag. The lift depends on several
downward by the wing. factors, such as the speed of the airplane, the area of the wing, the wing's curva-
ture, and the angle between the wing and the horizontal. The curvature of the wing

Drag surfaces causes the pressure above the wing to be lower than that below the wing

due to the Bernoulli effect. This pressure difference assists with the lift on the
wing. As the angle between the wing and the horizontal increases, turbulent flow
can set in above the wing to reduce the lift.
In general, an object moving through a fluid experiences lift as the result of any
effect that causes the fluid to change its direction as it flows past the object. Some
A factors that influence lift are the shape of the object, its orientation with respect to
/—_—_"" the fluid flow, any spinning motion it might have, and the texture of its surface. For
E example, a golf ball struck with a club is given a rapid backspin due to the slant of
the club. The dimples on the ball increase the friction force between the ball and

Lift

1)

Figure 14.21 Streamline flow the air so that air adheres to the ball’s surface. Figure 14.22 shows air adhering to the
around a moving airplane wing. ball and being deflected downward as a result. Because the ball pushes the air down,
By Newton's third law, the air the air must push up on the ball. Without the dimples, the friction force is lower and

deflected by the wing results in h If ball d el as far. 1 . L . h
an upward force on the wing from the golt ball does not travel as lar. It may seem counterintuitive to increase the range

the air: fift. Because of air resis- by increasing the friction force, but the lift gained by spinning the ball more than

tance, there is also a force oppo- compensates for the loss of range due to the effect of friction on the translational

site the velocity of the wing: drag. motion of the ball. For the same reason, a baseball’s cover helps the spinning ball
“grab” the air rushing by and helps deflect it when a “curve ball” is thrown.

A number of devices operate by means of the pressure differentials that result
from differences in a fluid’s speed. For example, a stream of air passing over one
end of an open tube, the other end of which is immersed in a liquid, reduces the
pressure above the tube as illustrated in Figure 14.23. This reduction in pressure
causes the liquid to rise into the airstream. The liquid is then dispersed into a fine
spray of droplets. You might recognize that this afomizer is used in perfume bottles
and paint sprayers.
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Figure 14.22 Because of the
deflection of air, a spinning golf

ball experiences a lifting force that Figure 14.23 A stream of air pass-
allows it to travel much farther than ing over a tube dipped into a liquid
it would if it were not spinning. causes the liquid to rise in the tube.
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4. 8 Surface Tension

The cohesive forces between liquid molecules are responsible for the phenomenon
known as surface tension. The molecules at the surface do not have other like
molecules on all sides of them and consequently they cohere more strongly to those
directly associated with them on the surface. This forms a surface "film" which
makes it more difficult to move an object through the surface than to move it when

it is completely submersed. e o
, ' Qe gp ! k % O
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Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum
surface area possible.

Surface tension, property of a liquid surface displayed by its acting as if it were a
stretched elastic membrane. This phenomenon can be observed in the nearly
spherical shape of small drops of liquids and of soap bubbles. Because of this
property, certain insects can stand on the surface of water.

Examples of Surface Tension

Insects walking on water. Floating a needle on the surface of the water. Rainproof
tent materials where the surface tension of water will bridge the pores in the tent
material.

Surface tension is the energy, or work, required to increase the surface area of a
liquid due to intermolecular forces.

Surface tension is given by the equation 3 = (phga/2)
where S is the surface tension, p (or rho) is the density
S = Surpace tension " of the liquid you are measuring, h is the height the liquid

f:__ ?ﬁ;ﬁ{, : rises in the tube, g is the acceleration due to gravity
~Qqccelaration . . 5 _ _

g o to Q‘Wif)‘ (98ms) acting on the liquid (9.6 m/s<) and a Is the radius of the

a—-radius capillary tube.
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4-9 Problems

1. A small piece of unknown material is placed on water. It has a length of 2 cm and a mass of 0.2 N.
Calculate the surface tension.

2. A water strider is observed on the lake. The water strider has a length of 2 cm. The surface tension of the
water was determined to be 20 N/m. What is the force applied by the water strider?

3. If an object exerts a force of 1 N and its surface tension on the water is measured to be 5 N/m, then what
is the length of the object?

Note S =F/d

Solutions
1. The surface tension is 10 N/m. In order to solve this question, the length of 2 cm is converted to m, which
is equal to 0.02 m. Then, the force of 0.2 N is divided by the length to obtain the surface tension value.

2. The force is equal to 0.4 N. This value is obtained by multiplying the length of the water strider (in m) by
the surface tension.

3. The length of the object is 0.2 m.

Adhesive Forces

Forces of attraction between a liquid and a solid surface are called adhesive forces. The
difference in strength between cohesive forces and adhesive forces determine the behavior
of a liquid in contact with a solid surface.

o Water does not wet waxed surfaces because the cohesive forces within the drops
are stronger than the adhesive forces between the drops and the wax.

o Water wets glass and spreads out on it because the adhesive forces between the
liquid and the glass are stronger than the cohesive forces within the water.

Formation of a Meniscus

When liquid water is confined Mercury does not wet glass the cohesive forces within the drops are
in a tube, its surface (meniscus) stronger than the adhesive forces between the drops and glass. When

has a concave shape because liquid mercury is confined in a tube, its surface (meniscus) has a
water wets the surface and convex shape because the cohesive forces in liquid mercury tend to
creeps up the side. draw it into a drop.
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¢ When we suspend the wire frame on a stand, the gravitational force will act perpendicular to the bar. The
gravitational force is directly proportional to the mass of the bar and the weight we can hang on the bar.

(7 3

F

F

http:/ /physicsexperiments.eu,/

If the gravitational force F, is smaller than the surface force F, the membrane retracts and the bar moves
upwards quickly.

If the gravitational force is equal to the surface force, the net force acting on the bar is zero and the bar
stays at rest.

If the bar is too heavy or if we hang a heavy weight on it, the gravitational force is greater than the surface
force, and the bar moves downwards quickly.

We assume that the bar can move freely and without friction.

e Tools

o soap water
o wire frame with a moving bar
o weights that can be hung on the bar (we used a coiled wire as a weight)

o laboratory scales (if you want to measure the surface tension of soap water)
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1. Immerse the wire frame into the soap water.
2. Hang the frame on the stand (or you can just hold it in your hand).
3. Drag the movable bar downwards to increase the surface of the soap membrane. Then let

the bar go and watch the membrane retract.

4. Drag the bar again to extend the membrane surface and then hang the weights on the bar so
that the gravitational force acting on the bar with the weights equals the surface force of the
membrane acting on the bar. The bar remains at rest.

5. Hang a heavier weight on the bar so that it moves downwards.

Calculation of surface tension of soap water

We can measure the length of the bar and weigh the bar and the weights that hold the membrane extended
and at rest. From this data we can determine the surface tension of soap water.

Sample result:

length of the bar /=58 mm =5.8-10"m



mass of the bar m,=0.078¢g
mass of weights m,=0.137¢g

mass of the bar and weight together m,,=0.215g=2.15-10"kg

The bar acts on the membrane with gravitational force F,

Fg=mb+w-g="2-10-4-10=2-10-3 N.Fg=mb+w-g="2-10-4-10=2-10-3 N.
The bar is in balance. The membrane must have a surface force F. of the same size as the gravitational force
but in the opposite direction

Fs=Fg.Fs=Fg.

The surface force the membrane acts on the bar is

Fs="2:10-3 N.Fs="2:10-3 N.

Surface force can be calculated according to (1) as

Fs=2cl.Fs=20l.

From this relationship we express the surface tension
o0=Fg2l.0=Fg2l.
We insert the measured values and calculate the surface tension of soap water
6="2-10-32-5.8:10-2 N-m-16="2-10-32-5.8-10-2 N-m-1
0="1.7-10-2 N-m-1.0="1.7-10-2 N-m-1.
Soap water we used in our experiment had a surface tension of about 1.7-10- N-m-..

The solved part of the soap membrane can be found here: Soap Film in a Wire Frame with a Movable
Crossbar.
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4-10 Applications of the surface tension

Different ways of breathing ﬁ

Respil"atory system, the system in living 5:% 7 5 //Q" - _
organisms that takes up oxygen and ) V ‘ L
discharges carbon dioxide in order / /C‘ AQ A A~

to satisfy energy requirements. In the g’

living organism, energy is liberated, along
with carbon dioxide, through the
oxidation of molecules containing carbon.
The term respiration denotes the
exchange of the respiratory gases

(oxygen and carbon dioxide) between the g ,f:':'"a'm\,'_,_
organism and the medium in which ALl L
it lives and between the cells of the body spiices om0 Ecesesa B

and the tissue fluid that bathes them.

The variations in the characteristics of air and water suggest the many problems
with which the respiratory systems of animals must cope in procuring enough
oxygen to sustain life.

Respiratory structures are tailored to the need for oxygen.

Organisms too large to satisfy their oxygen needs from the environment by
diffusion are equipped with special respiratory structures in the form of gills,
lungs, specialized areas of the intestine or pharynx (in certain fishes), or tracheae
(air tubes penetrating the body wall, as in insects).

Two common respiratory organs of invertebrates are trachea and gills.

An elegant solution to the problem of bubble exhaustion during submergence has
been found by certain beetles that have a high density of cuticular hair over much
of the surface of the abdomen and thorax. The hair pile is so dense that it resists
wetting, and an air space forms below it, creating a plastron, or air shell, into which
the tracheae open. As respiration proceeds, the outward diffusion of nitrogen and
consequent shrinkage of the gas space are prevented by the surface tension —a
condition manifested by properties that resemble those of an elastic skin under
tension—between the closely packed hairs and the water. Since the plastron hairs
tend to resist deformation, the beetles can live at considerable depths without
compression of the plastron gas.

The respiratory structures of spiders consist of peculiar “book lungs,” leaf like
plates over which air circulates through slits on the abdomen.
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In most vertebrates the organs of external respiration are thin-walled structures
well supplied with blood vessels. There are three major types of respiratory
structures in the vertebrates: gills, integumentary exchange areas, and lungs.

The maximum capacity of human lungs is about six litres.

The gills of fishes are supported by a series of gill arches encased within a
chamber formed by bony plates (the operculum).

The lungs of vertebrates range from simple saclike structures found in

the Dipnoi (lungfishes) to the complexly subdivided organs of mammals and
birds. An increasing subdivision of the airways and the development of greater
surface area at the exchange surfaces appear to be the general evolutionary trend
among the higher vertebrates.

An important characteristic of lungs is their elasticity. An elastic material is one
that tends to return to its initial state after the removal of a deforming force.
Elastic tissues behave like springs. As the lungs are inflated, there is an
accompanying increase in the energy stored within the elastic tissues of the lungs,
just as energy is stored in a stretched rubber band. The conversion of this stored,
or potential, energy into kinetic, or active, energy during the deflation process
supplies part of the force needed for the expulsion of gases. A portion of the
energy put into expansion is thus recovered during deflation. The elastic
properties of the lungs have been studied by inflating them with air or liquid and
measuring the resulting pressures. Muscular effort supplies the motive power for
expanding the lungs, and this is translated into the pressure required to produce
lung inflation. It must be great enough to overcome (1) the elasticity of the lung
and its surface lining; (2) the frictional resistance of the lungs; (3) the elasticity of
the thorax or thoraco-abdominal cavity; (4) frictional resistance in the body-wall
structures; (5) resistance inherent in the contracting muscles; and (6) the airway
resistance. The laboured breathing of the asthmatic is an example of the added
muscular effort necessary to achieve adequate lung inflation when airway
resistance is high, owing to narrowing of the tubes of the airways.

Studies of the pressure—volume relationship of lungs filled with salt solution or
air have shown that the pressure required to inflate the lungs to a given volume is
less when the lungs are filled with liquid than when they are filled with air. In the
case of the latter, the pressure—volume relationship represents the combined
effects of the elastic properties of the lung wall plus the surface tension of the film,
or surface coating, lining the lungs. Surface tension is the property, resulting
from molecular forces, that exists in the surface film of all liquids and tends to
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contract the volume into a form with the least surface area; the particles in the
surface are inwardly attracted, thus resulting in tension. Surface tension is nearly
zero in the fluid-filled lung.

The alveoli of the lungs are elastic bodies of nonuniform size. If their surfaces had
a uniform surface tension, small alveoli would tend to collapse into large ones.
The result in the lungs would be an unstable condition in which some alveoli
would collapse and others would over expand. This does not normally occur in
the lung because of the properties of its surface coating (surfactant), a complex
substance composed of lipid and protein. Surfactant causes the surface tension to
change in a nonlinear way with changes in surface area. As a result, when the
lungs fill with air, the surface tensions of the inflated alveoli are less than those of
the relatively undistended alveoli. This results in a stabilization of alveoli of
differing sizes and prevents the emptying of small alveoli into larger ones. It has
been suggested that compression wrinkles of the surface coating and attractive
forces between adjacent wrinkles inhibit expansion. Surfactants have been
reported to be present in the lungs of birds, reptiles, and amphibians.

4-1 1Training Activities

You may be requested to write a Report/Article on or more of the following:

- Converting units.

- Dimensional Analysis.

- Origen of surface tension.

- Improvement of the properties of solids.
- Elasticity.

- Applications of the surface tension.

- Fluid Mechanics.
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EXAMPLE - 1

Let 2 .4x10™* J of work is done to increase the area of a film of soap bubble from 50 cm?
to 100 cm?. Calculate the value of surface tension of soap solution.

Solution:

A soap bubble has two free surfaces, therefore increase in surface area
AA = A,-A, = 2(100-50) x 10-4m2 = 100 x 10“m".

Since, work done W =TxAA =T =

—4
LA O
AA  100x10~"m

EXAMPLE -2

If excess pressure is balanced by a column of oil (with specific gravity 0.8) 4 mm high,
where R = 2.0 cm, find the surface tension of the soap bubble.

Solution
The excess of pressure inside the soap bubble is

AP:P,—R=£
2 R

But AP=P -P =pgh=¢-pgh=%
—  Surface tension,

__ pghR _ (800)(9.8)(4x107°)(2x107%)
4 4

L

T=1568x10">Nm"

T=15.68x10 Nm™
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EXAMPLE -3

Water rises in a capillary tube to a height of 2.0cm. How much will the water rise
through another capillary tube whose radius is one-third of the first tube?

Solution
we have
h < 1/r =hr =constant

Consider two capillary tubes with radius r; and r, which on placing in a liquid, capillary
rises to height h, and h,, respectively. Then,

hlrl = h2r2 = constant

2x107%m|xr
= h2=m=( ) = h,=6x10"m

2

L4
3

EXAMPLE -4

Mercury has an angle of contact equal to 140° with soda lime glass. A narrow tube of
radius 2 mm, made of this glass is dipped in a trough containing mercury. By what
amount does the mercury dip down in the tube relative to the liquid surface outside?.
Surface tension of mercury 7=0.456 N m™; Density of mercury p = 13.6 x 10° kg m™

Solution

Capillary descent,
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_2Tcos®  2x(0.465Nm ' )(cos140°)
T rpg (2x107°m)(13.6x10°)(9.8ms %)

=>h=-689x%x10*m

h

where, negative sign indicates that there is fall of mercury (mercury is depressed) in
glass tube.
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