
Python for Everybody

Exploring Data Using Python 3

Charles R. Severance

Credits

Editorial Support: Elliott Hauser, Sue Blumenberg

Cover Design: Aimee Andrion

Printing History

• 2016-Jul-05 First Complete Python 3.0 version

• 2015-Dec-20 Initial Python 3.0 rough conversion

Copyright Details

Copyright ~2009- Charles Severance.

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License. This license is available at

http://creativecommons.org/licenses/by-nc-sa/3.0/

You can see what the author considers commercial and non-commercial uses of this
material as well as license exemptions in the Appendix titled “Copyright Detail”.

iii

Preface

Remixing an Open Book

It is quite natural for academics who are continuously told to “publish or perish”
to want to always create something from scratch that is their own fresh creation.
This book is an experiment in not starting from scratch, but instead “remixing”
the book titled Think Python: How to Think Like a Computer Scientist written
by Allen B. Downey, Jeff Elkner, and others.

In December of 2009, I was preparing to teach SI502 - Networked Programming at
the University of Michigan for the fifth semester in a row and decided it was time to
write a Python textbook that focused on exploring data instead of understanding
algorithms and abstractions. My goal in SI502 is to teach people lifelong data
handling skills using Python. Few of my students were planning to be professional
computer programmers. Instead, they planned to be librarians, managers, lawyers,
biologists, economists, etc., who happened to want to skillfully use technology in
their chosen field.

I never seemed to find the perfect data-oriented Python book for my course, so I
set out to write just such a book. Luckily at a faculty meeting three weeks before
I was about to start my new book from scratch over the holiday break, Dr. Atul
Prakash showed me the Think Python book which he had used to teach his Python
course that semester. It is a well-written Computer Science text with a focus on
short, direct explanations and ease of learning.

The overall book structure has been changed to get to doing data analysis problems
as quickly as possible and have a series of running examples and exercises about
data analysis from the very beginning.

Chapters 2–10 are similar to the Think Python book, but there have been major
changes. Number-oriented examples and exercises have been replaced with data-
oriented exercises. Topics are presented in the order needed to build increasingly
sophisticated data analysis solutions. Some topics like try and except are pulled
forward and presented as part of the chapter on conditionals. Functions are given
very light treatment until they are needed to handle program complexity rather
than introduced as an early lesson in abstraction. Nearly all user-defined functions
have been removed from the example code and exercises outside of Chapter 4. The
word “recursion”1 does not appear in the book at all.

In chapters 1 and 11–16, all of the material is brand new, focusing on real-world
uses and simple examples of Python for data analysis including regular expressions
for searching and parsing, automating tasks on your computer, retrieving data
across the network, scraping web pages for data, object-oriented programming,
using web services, parsing XML and JSON data, creating and using databases
using Structured Query Language, and visualizing data.

The ultimate goal of all of these changes is a shift from a Computer Science to an
Informatics focus is to only include topics into a first technology class that can be
useful even if one chooses not to become a professional programmer.

1Except, of course, for this line.

iv

Students who find this book interesting and want to further explore should look
at Allen B. Downey’s Think Python book. Because there is a lot of overlap be-
tween the two books, students will quickly pick up skills in the additional areas of
technical programming and algorithmic thinking that are covered in Think Python.
And given that the books have a similar writing style, they should be able to move
quickly through Think Python with a minimum of effort.

As the copyright holder of Think Python, Allen has given me permission to change
the book’s license on the material from his book that remains in this book from the
GNU Free Documentation License to the more recent Creative Commons Attribu-
tion — Share Alike license. This follows a general shift in open documentation
licenses moving from the GFDL to the CC-BY-SA (e.g., Wikipedia). Using the
CC-BY-SA license maintains the book’s strong copyleft tradition while making it
even more straightforward for new authors to reuse this material as they see fit.

I feel that this book serves an example of why open materials are so important
to the future of education, and want to thank Allen B. Downey and Cambridge
University Press for their forward-looking decision to make the book available
under an open copyright. I hope they are pleased with the results of my efforts
and I hope that you the reader are pleased with our collective efforts.

I would like to thank Allen B. Downey and Lauren Cowles for their help, patience,
and guidance in dealing with and resolving the copyright issues around this book.

Charles Severance
www.dr-chuck.com
Ann Arbor, MI, USA
September 9, 2013

Charles Severance is a Clinical Associate Professor at the University of Michigan
School of Information.

Contents

1 Why should you learn to write programs? 1

1.1 Creativity and motivation . 2

1.2 Computer hardware architecture 3

1.3 Understanding programming . 4

1.4 Words and sentences . 5

1.5 Conversing with Python . 6

1.6 Terminology: interpreter and compiler 8

1.7 Writing a program . 10

1.8 What is a program? . 10

1.9 The building blocks of programs . 11

1.10 What could possibly go wrong? . 12

1.11 The learning journey . 14

1.12 Glossary . 14

1.13 Exercises . 16

2 Variables, expressions, and statements 19

2.1 Values and types . 19

2.2 Variables . 20

2.3 Variable names and keywords . 21

2.4 Statements . 21

2.5 Operators and operands . 22

2.6 Expressions . 23

2.7 Order of operations . 23

2.8 Modulus operator . 24

2.9 String operations . 24

2.10 Asking the user for input . 24

v

vi CONTENTS

2.11 Comments . 25

2.12 Choosing mnemonic variable names 26

2.13 Debugging . 28

2.14 Glossary . 29

2.15 Exercises . 30

3 Conditional execution 31

3.1 Boolean expressions . 31

3.2 Logical operators . 32

3.3 Conditional execution . 32

3.4 Alternative execution . 33

3.5 Chained conditionals . 34

3.6 Nested conditionals . 35

3.7 Catching exceptions using try and except 36

3.8 Short-circuit evaluation of logical expressions 37

3.9 Debugging . 39

3.10 Glossary . 39

3.11 Exercises . 40

4 Functions 43

4.1 Function calls . 43

4.2 Built-in functions . 43

4.3 Type conversion functions . 44

4.4 Random numbers . 45

4.5 Math functions . 46

4.6 Adding new functions . 47

4.7 Definitions and uses . 48

4.8 Flow of execution . 49

4.9 Parameters and arguments . 50

4.10 Fruitful functions and void functions 51

4.11 Why functions? . 52

4.12 Debugging . 52

4.13 Glossary . 53

4.14 Exercises . 54

CONTENTS vii

5 Iteration 57

5.1 Updating variables . 57

5.2 The while statement . 57

5.3 Infinite loops . 58

5.4 “Infinite loops” and break . 58

5.5 Finishing iterations with continue 59

5.6 Definite loops using for . 60

5.7 Loop patterns . 61

5.7.1 Counting and summing loops 61

5.7.2 Maximum and minimum loops 62

5.8 Debugging . 64

5.9 Glossary . 64

5.10 Exercises . 65

6 Strings 67

6.1 A string is a sequence . 67

6.2 Getting the length of a string using len 68

6.3 Traversal through a string with a loop 68

6.4 String slices . 69

6.5 Strings are immutable . 70

6.6 Looping and counting . 70

6.7 The in operator . 71

6.8 String comparison . 71

6.9 string methods . 71

6.10 Parsing strings . 74

6.11 Format operator . 74

6.12 Debugging . 75

6.13 Glossary . 76

6.14 Exercises . 78

7 Files 79

7.1 Persistence . 79

7.2 Opening files . 80

7.3 Text files and lines . 81

7.4 Reading files . 82

viii CONTENTS

7.5 Searching through a file . 83

7.6 Letting the user choose the file name 85

7.7 Using try, except, and open . 86

7.8 Writing files . 87

7.9 Debugging . 88

7.10 Glossary . 88

7.11 Exercises . 89

8 Lists 91

8.1 A list is a sequence . 91

8.2 Lists are mutable . 92

8.3 Traversing a list . 92

8.4 List operations . 93

8.5 List slices . 94

8.6 List methods . 94

8.7 Deleting elements . 95

8.8 Lists and functions . 96

8.9 Lists and strings . 97

8.10 Parsing lines . 98

8.11 Objects and values . 99

8.12 Aliasing . 100

8.13 List arguments . 100

8.14 Debugging . 102

8.15 Glossary . 105

8.16 Exercises . 106

9 Dictionaries 109

9.1 Dictionary as a set of counters . 111

9.2 Dictionaries and files . 112

9.3 Looping and dictionaries . 113

9.4 Advanced text parsing . 115

9.5 Debugging . 116

9.6 Glossary . 117

9.7 Exercises . 118

CONTENTS ix

10 Tuples 119

10.1 Tuples are immutable . 119

10.2 Comparing tuples . 120

10.3 Tuple assignment . 122

10.4 Dictionaries and tuples . 123

10.5 Multiple assignment with dictionaries 124

10.6 The most common words . 125

10.7 Using tuples as keys in dictionaries 126

10.8 Sequences: strings, lists, and tuples - Oh My! 126

10.9 Debugging . 127

10.10Glossary . 128

10.11Exercises . 129

11 Regular expressions 131

11.1 Character matching in regular expressions 132

11.2 Extracting data using regular expressions 133

11.3 Combining searching and extracting 136

11.4 Escape character . 139

11.5 Summary . 140

11.6 Bonus section for Unix / Linux users 141

11.7 Debugging . 141

11.8 Glossary . 142

11.9 Exercises . 143

12 Networked programs 145

12.1 HyperText Transport Protocol - HTTP 145

12.2 The World’s Simplest Web Browser 146

12.3 Retrieving an image over HTTP 147

12.4 Retrieving web pages with urllib 150

12.5 Parsing HTML and scraping the web 151

12.6 Parsing HTML using regular expressions 151

12.7 Parsing HTML using BeautifulSoup 152

12.8 Reading binary files using urllib . 154

12.9 Glossary . 156

12.10Exercises . 156

x CONTENTS

13 Using Web Services 159

13.1 eXtensible Markup Language - XML 159

13.2 Parsing XML . 160

13.3 Looping through nodes . 161

13.4 JavaScript Object Notation - JSON 162

13.5 Parsing JSON . 162

13.6 Application Programming Interfaces 163

13.7 Google geocoding web service . 165

13.8 Security and API usage . 167

13.9 Glossary . 172

13.10Exercises . 172

14 Object-Oriented Programming 173

14.1 Managing Larger Programs . 173

14.2 Getting Started . 174

14.3 Using Objects . 174

14.4 Starting with Programs . 175

14.5 Subdividing a Problem - Encapsulation 177

14.6 Our First Python Object . 178

14.7 Classes as Types . 180

14.8 Object Lifecycle . 181

14.9 Many Instances . 182

14.10Inheritance . 183

14.11Summary . 184

14.12Glossary . 185

15 Using databases and SQL 187

15.1 What is a database? . 187

15.2 Database concepts . 187

15.3 Database Browser for SQLite . 188

15.4 Creating a database table . 188

15.5 Structured Query Language summary 191

15.6 Spidering Twitter using a database 193

15.7 Basic data modeling . 198

15.8 Programming with multiple tables 199

CONTENTS xi

15.8.1 Constraints in database tables 202

15.8.2 Retrieve and/or insert a record 203

15.8.3 Storing the friend relationship 204

15.9 Three kinds of keys . 205

15.10Using JOIN to retrieve data . 206

15.11Summary . 208

15.12Debugging . 209

15.13Glossary . 209

16 Visualizing data 211

16.1 Building a Google map from geocoded data 211

16.2 Visualizing networks and interconnections 213

16.3 Visualizing mail data . 216

A Contributions 223

A.1 Contributor List for Python for Everybody 223

A.2 Contributor List for Python for Informatics 223

A.3 Preface for “Think Python” . 223

A.3.1 The strange history of “Think Python” 223

A.3.2 Acknowledgements for “Think Python” 225

A.4 Contributor List for “Think Python” 225

B Copyright Detail 227

xii CONTENTS

Chapter 1

Why should you learn to
write programs?

Writing programs (or programming) is a very creative and rewarding activity. You
can write programs for many reasons, ranging from making your living to solving
a difficult data analysis problem to having fun to helping someone else solve a
problem. This book assumes that everyone needs to know how to program, and
that once you know how to program you will figure out what you want to do with
your newfound skills.

We are surrounded in our daily lives with computers ranging from laptops to cell
phones. We can think of these computers as our “personal assistants” who can take
care of many things on our behalf. The hardware in our current-day computers is
essentially built to continuously ask us the question, “What would you like me to
do next?”

What

Next?

What

Next?

What

Next?

What

Next?

What

Next?

What

Next?

Figure 1.1: Personal Digital Assistant

Programmers add an operating system and a set of applications to the hardware
and we end up with a Personal Digital Assistant that is quite helpful and capable
of helping us do many different things.

Our computers are fast and have vast amounts of memory and could be very helpful
to us if we only knew the language to speak to explain to the computer what we
would like it to “do next”. If we knew this language, we could tell the computer
to do tasks on our behalf that were repetitive. Interestingly, the kinds of things
computers can do best are often the kinds of things that we humans find boring
and mind-numbing.

1

2 CHAPTER 1. WHY SHOULD YOU LEARN TO WRITE PROGRAMS?

For example, look at the first three paragraphs of this chapter and tell me the
most commonly used word and how many times the word is used. While you were
able to read and understand the words in a few seconds, counting them is almost
painful because it is not the kind of problem that human minds are designed to
solve. For a computer the opposite is true, reading and understanding text from
a piece of paper is hard for a computer to do but counting the words and telling
you how many times the most used word was used is very easy for the computer:

python words.py

Enter file:words.txt

to 16

Our “personal information analysis assistant” quickly told us that the word “to”
was used sixteen times in the first three paragraphs of this chapter.

This very fact that computers are good at things that humans are not is why you
need to become skilled at talking “computer language”. Once you learn this new
language, you can delegate mundane tasks to your partner (the computer), leaving
more time for you to do the things that you are uniquely suited for. You bring
creativity, intuition, and inventiveness to this partnership.

1.1 Creativity and motivation

While this book is not intended for professional programmers, professional pro-
gramming can be a very rewarding job both financially and personally. Building
useful, elegant, and clever programs for others to use is a very creative activity.
Your computer or Personal Digital Assistant (PDA) usually contains many dif-
ferent programs from many different groups of programmers, each competing for
your attention and interest. They try their best to meet your needs and give you a
great user experience in the process. In some situations, when you choose a piece
of software, the programmers are directly compensated because of your choice.

If we think of programs as the creative output of groups of programmers, perhaps
the following figure is a more sensible version of our PDA:

Pick

Me!

Pick

Me!

Pick

Me!

Pick

Me!

Pick

Me!

Buy

Me :)

Figure 1.2: Programmers Talking to You

For now, our primary motivation is not to make money or please end users, but
instead for us to be more productive in handling the data and information that we
will encounter in our lives. When you first start, you will be both the programmer
and the end user of your programs. As you gain skill as a programmer and pro-
gramming feels more creative to you, your thoughts may turn toward developing
programs for others.

1.2. COMPUTER HARDWARE ARCHITECTURE 3

1.2 Computer hardware architecture

Before we start learning the language we speak to give instructions to computers
to develop software, we need to learn a small amount about how computers are
built. If you were to take apart your computer or cell phone and look deep inside,
you would find the following parts:

Input and
Output
Devices

Software

Main
Memory

Central
Processing

Unit

What
Next?

Network

Secondary

Memory

Figure 1.3: Hardware Archicture

The high-level definitions of these parts are as follows:

• The Central Processing Unit (or CPU) is the part of the computer that is
built to be obsessed with “what is next?” If your computer is rated at 3.0
Gigahertz, it means that the CPU will ask “What next?” three billion times
per second. You are going to have to learn how to talk fast to keep up with
the CPU.

• The Main Memory is used to store information that the CPU needs in a
hurry. The main memory is nearly as fast as the CPU. But the information
stored in the main memory vanishes when the computer is turned off.

• The Secondary Memory is also used to store information, but it is much
slower than the main memory. The advantage of the secondary memory is
that it can store information even when there is no power to the computer.
Examples of secondary memory are disk drives or flash memory (typically
found in USB sticks and portable music players).

• The Input and Output Devices are simply our screen, keyboard, mouse, mi-
crophone, speaker, touchpad, etc. They are all of the ways we interact with
the computer.

• These days, most computers also have a Network Connection to retrieve
information over a network. We can think of the network as a very slow
place to store and retrieve data that might not always be “up”. So in a sense,
the network is a slower and at times unreliable form of Secondary Memory.

While most of the detail of how these components work is best left to computer
builders, it helps to have some terminology so we can talk about these different
parts as we write our programs.

4 CHAPTER 1. WHY SHOULD YOU LEARN TO WRITE PROGRAMS?

As a programmer, your job is to use and orchestrate each of these resources to
solve the problem that you need to solve and analyze the data you get from the
solution. As a programmer you will mostly be “talking” to the CPU and telling
it what to do next. Sometimes you will tell the CPU to use the main memory,
secondary memory, network, or the input/output devices.

Input and
Output
Devices

Software

Main
Memory

Central
Processing

Unit

What
Next?

Network

Secondary

Memory

Figure 1.4: Where Are You?

You need to be the person who answers the CPU’s “What next?” question. But it
would be very uncomfortable to shrink you down to 5mm tall and insert you into
the computer just so you could issue a command three billion times per second. So
instead, you must write down your instructions in advance. We call these stored
instructions a program and the act of writing these instructions down and getting
the instructions to be correct programming.

1.3 Understanding programming

In the rest of this book, we will try to turn you into a person who is skilled in the art
of programming. In the end you will be a programmer - perhaps not a professional
programmer, but at least you will have the skills to look at a data/information
analysis problem and develop a program to solve the problem.

In a sense, you need two skills to be a programmer:

• First, you need to know the programming language (Python) - you need to
know the vocabulary and the grammar. You need to be able to spell the
words in this new language properly and know how to construct well-formed
“sentences” in this new language.

• Second, you need to “tell a story”. In writing a story, you combine words
and sentences to convey an idea to the reader. There is a skill and art in
constructing the story, and skill in story writing is improved by doing some
writing and getting some feedback. In programming, our program is the
“story” and the problem you are trying to solve is the “idea”.

Once you learn one programming language such as Python, you will find it much
easier to learn a second programming language such as JavaScript or C++. The

1.4. WORDS AND SENTENCES 5

new programming language has very different vocabulary and grammar but the
problem-solving skills will be the same across all programming languages.

You will learn the “vocabulary” and “sentences” of Python pretty quickly. It will
take longer for you to be able to write a coherent program to solve a brand-new
problem. We teach programming much like we teach writing. We start reading
and explaining programs, then we write simple programs, and then we write in-
creasingly complex programs over time. At some point you “get your muse” and
see the patterns on your own and can see more naturally how to take a problem
and write a program that solves that problem. And once you get to that point,
programming becomes a very pleasant and creative process.

We start with the vocabulary and structure of Python programs. Be patient as
the simple examples remind you of when you started reading for the first time.

1.4 Words and sentences

Unlike human languages, the Python vocabulary is actually pretty small. We call
this “vocabulary” the “reserved words”. These are words that have very special
meaning to Python. When Python sees these words in a Python program, they
have one and only one meaning to Python. Later as you write programs you will
make up your own words that have meaning to you called variables. You will have
great latitude in choosing your names for your variables, but you cannot use any
of Python’s reserved words as a name for a variable.

When we train a dog, we use special words like “sit”, “stay”, and “fetch”. When
you talk to a dog and don’t use any of the reserved words, they just look at you
with a quizzical look on their face until you say a reserved word. For example, if
you say, “I wish more people would walk to improve their overall health”, what
most dogs likely hear is, “blah blah blah walk blah blah blah blah.” That is because
“walk” is a reserved word in dog language. Many might suggest that the language
between humans and cats has no reserved words1.

The reserved words in the language where humans talk to Python include the
following:

and del global not with

as elif if or yield

assert else import pass

break except in raise

class finally is return

continue for lambda try

def from nonlocal while

That is it, and unlike a dog, Python is already completely trained. When you say
“try”, Python will try every time you say it without fail.

We will learn these reserved words and how they are used in good time, but for
now we will focus on the Python equivalent of “speak” (in human-to-dog language).
The nice thing about telling Python to speak is that we can even tell it what to
say by giving it a message in quotes:

1http://xkcd.com/231/

http://xkcd.com/231/

6 CHAPTER 1. WHY SHOULD YOU LEARN TO WRITE PROGRAMS?

print('Hello world!')

And we have even written our first syntactically correct Python sentence. Our
sentence starts with the function print followed by a string of text of our choosing
enclosed in single quotes.

1.5 Conversing with Python

Now that we have a word and a simple sentence that we know in Python, we need
to know how to start a conversation with Python to test our new language skills.

Before you can converse with Python, you must first install the Python software
on your computer and learn how to start Python on your computer. That is too
much detail for this chapter so I suggest that you consult www.py4e.com where
I have detailed instructions and screencasts of setting up and starting Python on
Macintosh and Windows systems. At some point, you will be in a terminal or
command window and you will type python and the Python interpreter will start
executing in interactive mode and appear somewhat as follows:

Python 3.5.1 (v3.5.1:37a07cee5969, Dec 6 2015, 01:54:25)

[MSC v.1900 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

The >>> prompt is the Python interpreter’s way of asking you, “What do you want
me to do next?” Python is ready to have a conversation with you. All you have
to know is how to speak the Python language.

Let’s say for example that you did not know even the simplest Python language
words or sentences. You might want to use the standard line that astronauts use
when they land on a faraway planet and try to speak with the inhabitants of the
planet:

>>> I come in peace, please take me to your leader

File "<stdin>", line 1

I come in peace, please take me to your leader

^

SyntaxError: invalid syntax

>>>

This is not going so well. Unless you think of something quickly, the inhabitants
of the planet are likely to stab you with their spears, put you on a spit, roast you
over a fire, and eat you for dinner.

Luckily you brought a copy of this book on your travels, and you thumb to this
very page and try again:

>>> print('Hello world!')

Hello world!

http://www.py4e.com

1.5. CONVERSING WITH PYTHON 7

This is looking much better, so you try to communicate some more:

>>> print('You must be the legendary god that comes from the sky')

You must be the legendary god that comes from the sky

>>> print('We have been waiting for you for a long time')

We have been waiting for you for a long time

>>> print('Our legend says you will be very tasty with mustard')

Our legend says you will be very tasty with mustard

>>> print 'We will have a feast tonight unless you say

File "<stdin>", line 1

print 'We will have a feast tonight unless you say

^

SyntaxError: Missing parentheses in call to 'print'

>>>

The conversation was going so well for a while and then you made the tiniest
mistake using the Python language and Python brought the spears back out.

At this point, you should also realize that while Python is amazingly complex and
powerful and very picky about the syntax you use to communicate with it, Python
is not intelligent. You are really just having a conversation with yourself, but using
proper syntax.

In a sense, when you use a program written by someone else the conversation is
between you and those other programmers with Python acting as an intermediary.
Python is a way for the creators of programs to express how the conversation is
supposed to proceed. And in just a few more chapters, you will be one of those
programmers using Python to talk to the users of your program.

Before we leave our first conversation with the Python interpreter, you should prob-
ably know the proper way to say “good-bye” when interacting with the inhabitants
of Planet Python:

>>> good-bye

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'good' is not defined

>>> if you don't mind, I need to leave

File "<stdin>", line 1

if you don't mind, I need to leave

^

SyntaxError: invalid syntax

>>> quit()

You will notice that the error is different for the first two incorrect attempts. The
second error is different because if is a reserved word and Python saw the reserved
word and thought we were trying to say something but got the syntax of the
sentence wrong.

The proper way to say “good-bye” to Python is to enter quit() at the interactive
chevron >>> prompt. It would have probably taken you quite a while to guess that
one, so having a book handy probably will turn out to be helpful.

8 CHAPTER 1. WHY SHOULD YOU LEARN TO WRITE PROGRAMS?

1.6 Terminology: interpreter and compiler

Python is a high-level language intended to be relatively straightforward for hu-
mans to read and write and for computers to read and process. Other high-level
languages include Java, C++, PHP, Ruby, Basic, Perl, JavaScript, and many more.
The actual hardware inside the Central Processing Unit (CPU) does not under-
stand any of these high-level languages.

The CPU understands a language we call machine language. Machine language is
very simple and frankly very tiresome to write because it is represented all in zeros
and ones:

001010001110100100101010000001111

11100110000011101010010101101101

...

Machine language seems quite simple on the surface, given that there are only zeros
and ones, but its syntax is even more complex and far more intricate than Python.
So very few programmers ever write machine language. Instead we build various
translators to allow programmers to write in high-level languages like Python or
JavaScript and these translators convert the programs to machine language for
actual execution by the CPU.

Since machine language is tied to the computer hardware, machine language is not
portable across different types of hardware. Programs written in high-level lan-
guages can be moved between different computers by using a different interpreter
on the new machine or recompiling the code to create a machine language version
of the program for the new machine.

These programming language translators fall into two general categories: (1) inter-
preters and (2) compilers.

An interpreter reads the source code of the program as written by the programmer,
parses the source code, and interprets the instructions on the fly. Python is an
interpreter and when we are running Python interactively, we can type a line of
Python (a sentence) and Python processes it immediately and is ready for us to
type another line of Python.

Some of the lines of Python tell Python that you want it to remember some value
for later. We need to pick a name for that value to be remembered and we can use
that symbolic name to retrieve the value later. We use the term variable to refer
to the labels we use to refer to this stored data.

>>> x = 6

>>> print(x)

6

>>> y = x * 7

>>> print(y)

42

>>>

In this example, we ask Python to remember the value six and use the label x so
we can retrieve the value later. We verify that Python has actually remembered

1.6. TERMINOLOGY: INTERPRETER AND COMPILER 9

the value using print. Then we ask Python to retrieve x and multiply it by seven
and put the newly computed value in y. Then we ask Python to print out the
value currently in y.

Even though we are typing these commands into Python one line at a time, Python
is treating them as an ordered sequence of statements with later statements able
to retrieve data created in earlier statements. We are writing our first simple
paragraph with four sentences in a logical and meaningful order.

It is the nature of an interpreter to be able to have an interactive conversation
as shown above. A compiler needs to be handed the entire program in a file,
and then it runs a process to translate the high-level source code into machine
language and then the compiler puts the resulting machine language into a file for
later execution.

If you have a Windows system, often these executable machine language programs
have a suffix of “.exe” or “.dll” which stand for “executable” and “dynamic link
library” respectively. In Linux and Macintosh, there is no suffix that uniquely
marks a file as executable.

If you were to open an executable file in a text editor, it would look completely
crazy and be unreadable:

^?ELF^A^A^A^@^@^@^@^@^@^@^@^@^B^@^C^@^A^@^@^@\xa0\x82

^D^H4^@^@^@\x90^]^@^@^@^@^@^@4^@ ^@^G^@(^@$^@!^@^F^@

^@^@4^@^@^@4\x80^D^H4\x80^D^H\xe0^@^@^@\xe0^@^@^@^E

^@^@^@^D^@^@^@^C^@^@^@^T^A^@^@^T\x81^D^H^T\x81^D^H^S

^@^@^@^S^@^@^@^D^@^@^@^A^@^@^@^A\^D^HQVhT\x83^D^H\xe8

....

It is not easy to read or write machine language, so it is nice that we have inter-
preters and compilers that allow us to write in high-level languages like Python or
C.

Now at this point in our discussion of compilers and interpreters, you should be
wondering a bit about the Python interpreter itself. What language is it written
in? Is it written in a compiled language? When we type “python”, what exactly
is happening?

The Python interpreter is written in a high-level language called “C”. You can look
at the actual source code for the Python interpreter by going to www.python.org
and working your way to their source code. So Python is a program itself and it
is compiled into machine code. When you installed Python on your computer (or
the vendor installed it), you copied a machine-code copy of the translated Python
program onto your system. In Windows, the executable machine code for Python
itself is likely in a file with a name like:

C:\Python35\python.exe

That is more than you really need to know to be a Python programmer, but
sometimes it pays to answer those little nagging questions right at the beginning.

http://www.python.org

10 CHAPTER 1. WHY SHOULD YOU LEARN TO WRITE PROGRAMS?

1.7 Writing a program

Typing commands into the Python interpreter is a great way to experiment with
Python’s features, but it is not recommended for solving more complex problems.

When we want to write a program, we use a text editor to write the Python
instructions into a file, which is called a script. By convention, Python scripts
have names that end with .py.

To execute the script, you have to tell the Python interpreter the name of the file.
In a Unix or Windows command window, you would type python hello.py as
follows:

csev$ cat hello.py

print('Hello world!')

csev$ python hello.py

Hello world!

csev$

The “csev$” is the operating system prompt, and the “cat hello.py” is showing us
that the file “hello.py” has a one-line Python program to print a string.

We call the Python interpreter and tell it to read its source code from the file
“hello.py” instead of prompting us for lines of Python code interactively.

You will notice that there was no need to have quit() at the end of the Python
program in the file. When Python is reading your source code from a file, it knows
to stop when it reaches the end of the file.

1.8 What is a program?

The definition of a program at its most basic is a sequence of Python statements
that have been crafted to do something. Even our simple hello.py script is a
program. It is a one-line program and is not particularly useful, but in the strictest
definition, it is a Python program.

It might be easiest to understand what a program is by thinking about a problem
that a program might be built to solve, and then looking at a program that would
solve that problem.

Lets say you are doing Social Computing research on Facebook posts and you are
interested in the most frequently used word in a series of posts. You could print out
the stream of Facebook posts and pore over the text looking for the most common
word, but that would take a long time and be very mistake prone. You would be
smart to write a Python program to handle the task quickly and accurately so you
can spend the weekend doing something fun.

For example, look at the following text about a clown and a car. Look at the text
and figure out the most common word and how many times it occurs.

the clown ran after the car and the car ran into the tent

and the tent fell down on the clown and the car

1.9. THE BUILDING BLOCKS OF PROGRAMS 11

Then imagine that you are doing this task looking at millions of lines of text.
Frankly it would be quicker for you to learn Python and write a Python program
to count the words than it would be to manually scan the words.

The even better news is that I already came up with a simple program to find the
most common word in a text file. I wrote it, tested it, and now I am giving it to
you to use so you can save some time.

name = input('Enter file:')

handle = open(name, 'r')

counts = dict()

for line in handle:

words = line.split()

for word in words:

counts[word] = counts.get(word, 0) + 1

bigcount = None

bigword = None

for word, count in list(counts.items()):

if bigcount is None or count > bigcount:

bigword = word

bigcount = count

print(bigword, bigcount)

Code: http://www.py4e.com/code3/words.py

You don’t even need to know Python to use this program. You will need to
get through Chapter 10 of this book to fully understand the awesome Python
techniques that were used to make the program. You are the end user, you simply
use the program and marvel at its cleverness and how it saved you so much manual
effort. You simply type the code into a file called words.py and run it or you
download the source code from http://www.py4e.com/code3/ and run it.

This is a good example of how Python and the Python language are acting as an
intermediary between you (the end user) and me (the programmer). Python is a
way for us to exchange useful instruction sequences (i.e., programs) in a common
language that can be used by anyone who installs Python on their computer. So
neither of us are talking to Python, instead we are communicating with each other
through Python.

1.9 The building blocks of programs

In the next few chapters, we will learn more about the vocabulary, sentence struc-
ture, paragraph structure, and story structure of Python. We will learn about the
powerful capabilities of Python and how to compose those capabilities together to
create useful programs.

http://www.py4e.com/code3/

12 CHAPTER 1. WHY SHOULD YOU LEARN TO WRITE PROGRAMS?

There are some low-level conceptual patterns that we use to construct programs.
These constructs are not just for Python programs, they are part of every program-
ming language from machine language up to the high-level languages.

input Get data from the “outside world”. This might be reading data from a
file, or even some kind of sensor like a microphone or GPS. In our initial
programs, our input will come from the user typing data on the keyboard.

output Display the results of the program on a screen or store them in a file or
perhaps write them to a device like a speaker to play music or speak text.

sequential execution Perform statements one after another in the order they
are encountered in the script.

conditional execution Check for certain conditions and then execute or skip a
sequence of statements.

repeated execution Perform some set of statements repeatedly, usually with
some variation.

reuse Write a set of instructions once and give them a name and then reuse those
instructions as needed throughout your program.

It sounds almost too simple to be true, and of course it is never so simple. It is like
saying that walking is simply “putting one foot in front of the other”. The “art” of
writing a program is composing and weaving these basic elements together many
times over to produce something that is useful to its users.

The word counting program above directly uses all of these patterns except for
one.

1.10 What could possibly go wrong?

As we saw in our earliest conversations with Python, we must communicate very
precisely when we write Python code. The smallest deviation or mistake will cause
Python to give up looking at your program.

Beginning programmers often take the fact that Python leaves no room for errors
as evidence that Python is mean, hateful, and cruel. While Python seems to like
everyone else, Python knows them personally and holds a grudge against them.
Because of this grudge, Python takes our perfectly written programs and rejects
them as “unfit” just to torment us.

>>> primt 'Hello world!'

File "<stdin>", line 1

primt 'Hello world!'

^

SyntaxError: invalid syntax

>>> primt ('Hello world')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

1.10. WHAT COULD POSSIBLY GO WRONG? 13

NameError: name 'primt' is not defined

>>> I hate you Python!

File "<stdin>", line 1

I hate you Python!

^

SyntaxError: invalid syntax

>>> if you come out of there, I would teach you a lesson

File "<stdin>", line 1

if you come out of there, I would teach you a lesson

^

SyntaxError: invalid syntax

>>>

There is little to be gained by arguing with Python. It is just a tool. It has no
emotions and it is happy and ready to serve you whenever you need it. Its error
messages sound harsh, but they are just Python’s call for help. It has looked at
what you typed, and it simply cannot understand what you have entered.

Python is much more like a dog, loving you unconditionally, having a few key words
that it understands, looking you with a sweet look on its face (>>>), and waiting
for you to say something it understands. When Python says “SyntaxError: invalid
syntax”, it is simply wagging its tail and saying, “You seemed to say something
but I just don’t understand what you meant, but please keep talking to me (>>>).”

As your programs become increasingly sophisticated, you will encounter three gen-
eral types of errors:

Syntax errors These are the first errors you will make and the easiest to fix. A
syntax error means that you have violated the “grammar” rules of Python.
Python does its best to point right at the line and character where it noticed
it was confused. The only tricky bit of syntax errors is that sometimes the
mistake that needs fixing is actually earlier in the program than where Python
noticed it was confused. So the line and character that Python indicates in
a syntax error may just be a starting point for your investigation.

Logic errors A logic error is when your program has good syntax but there is
a mistake in the order of the statements or perhaps a mistake in how the
statements relate to one another. A good example of a logic error might be,
“take a drink from your water bottle, put it in your backpack, walk to the
library, and then put the top back on the bottle.”

Semantic errors A semantic error is when your description of the steps to take
is syntactically perfect and in the right order, but there is simply a mistake
in the program. The program is perfectly correct but it does not do what you
intended for it to do. A simple example would be if you were giving a person
directions to a restaurant and said, “. . . when you reach the intersection with
the gas station, turn left and go one mile and the restaurant is a red building
on your left.” Your friend is very late and calls you to tell you that they are
on a farm and walking around behind a barn, with no sign of a restaurant.
Then you say “did you turn left or right at the gas station?” and they say, “I
followed your directions perfectly, I have them written down, it says turn left

14 CHAPTER 1. WHY SHOULD YOU LEARN TO WRITE PROGRAMS?

and go one mile at the gas station.” Then you say, “I am very sorry, because
while my instructions were syntactically correct, they sadly contained a small
but undetected semantic error.”.

Again in all three types of errors, Python is merely trying its hardest to do exactly
what you have asked.

1.11 The learning journey

As you progress through the rest of the book, don’t be afraid if the concepts don’t
seem to fit together well the first time. When you were learning to speak, it was
not a problem for your first few years that you just made cute gurgling noises.
And it was OK if it took six months for you to move from simple vocabulary to
simple sentences and took 5-6 more years to move from sentences to paragraphs,
and a few more years to be able to write an interesting complete short story on
your own.

We want you to learn Python much more rapidly, so we teach it all at the same time
over the next few chapters. But it is like learning a new language that takes time to
absorb and understand before it feels natural. That leads to some confusion as we
visit and revisit topics to try to get you to see the big picture while we are defining
the tiny fragments that make up that big picture. While the book is written
linearly, and if you are taking a course it will progress in a linear fashion, don’t
hesitate to be very nonlinear in how you approach the material. Look forwards
and backwards and read with a light touch. By skimming more advanced material
without fully understanding the details, you can get a better understanding of the
“why?” of programming. By reviewing previous material and even redoing earlier
exercises, you will realize that you actually learned a lot of material even if the
material you are currently staring at seems a bit impenetrable.

Usually when you are learning your first programming language, there are a few
wonderful “Ah Hah!” moments where you can look up from pounding away at
some rock with a hammer and chisel and step away and see that you are indeed
building a beautiful sculpture.

If something seems particularly hard, there is usually no value in staying up all
night and staring at it. Take a break, take a nap, have a snack, explain what you
are having a problem with to someone (or perhaps your dog), and then come back
to it with fresh eyes. I assure you that once you learn the programming concepts
in the book you will look back and see that it was all really easy and elegant and
it simply took you a bit of time to absorb it.

1.12 Glossary

bug An error in a program.

central processing unit The heart of any computer. It is what runs the software
that we write; also called “CPU” or “the processor”.

1.12. GLOSSARY 15

compile To translate a program written in a high-level language into a low-level
language all at once, in preparation for later execution.

high-level language A programming language like Python that is designed to
be easy for humans to read and write.

interactive mode A way of using the Python interpreter by typing commands
and expressions at the prompt.

interpret To execute a program in a high-level language by translating it one line
at a time.

low-level language A programming language that is designed to be easy for a
computer to execute; also called “machine code” or “assembly language”.

machine code The lowest-level language for software, which is the language that
is directly executed by the central processing unit (CPU).

main memory Stores programs and data. Main memory loses its information
when the power is turned off.

parse To examine a program and analyze the syntactic structure.

portability A property of a program that can run on more than one kind of
computer.

print function An instruction that causes the Python interpreter to display a
value on the screen.

problem solving The process of formulating a problem, finding a solution, and
expressing the solution.

program A set of instructions that specifies a computation.

prompt When a program displays a message and pauses for the user to type some
input to the program.

16 CHAPTER 1. WHY SHOULD YOU LEARN TO WRITE PROGRAMS?

secondary memory Stores programs and data and retains its information even
when the power is turned off. Generally slower than main memory. Examples
of secondary memory include disk drives and flash memory in USB sticks.

semantics The meaning of a program.

semantic error An error in a program that makes it do something other than
what the programmer intended.

source code A program in a high-level language.

1.13 Exercises

Exercise 1: What is the function of the secondary memory in a computer?

a) Execute all of the computation and logic of the program
b) Retrieve web pages over the Internet
c) Store information for the long term, even beyond a power cycle
d) Take input from the user

Exercise 2: What is a program?

Exercise 3: What is the difference between a compiler and an interpreter?

Exercise 4: Which of the following contains “machine code”?

a) The Python interpreter
b) The keyboard
c) Python source file
d) A word processing document

Exercise 5: What is wrong with the following code:

>>> primt 'Hello world!'

File "<stdin>", line 1

primt 'Hello world!'

^

SyntaxError: invalid syntax

>>>

Exercise 6: Where in the computer is a variable such as “X” stored after the
following Python line finishes?

x = 123

1.13. EXERCISES 17

a) Central processing unit
b) Main Memory
c) Secondary Memory
d) Input Devices
e) Output Devices

Exercise 7: What will the following program print out:

x = 43

x = x + 1

print(x)

a) 43
b) 44
c) x + 1
d) Error because x = x + 1 is not possible mathematically

Exercise 8: Explain each of the following using an example of a human capability:
(1) Central processing unit, (2) Main Memory, (3) Secondary Memory, (4) Input
Device, and (5) Output Device. For example, “What is the human equivalent to a
Central Processing Unit”?

Exercise 9: How do you fix a “Syntax Error”?

18 CHAPTER 1. WHY SHOULD YOU LEARN TO WRITE PROGRAMS?

Chapter 2

Variables, expressions, and
statements

2.1 Values and types

A value is one of the basic things a program works with, like a letter or a number.
The values we have seen so far are 1, 2, and “Hello, World!”

These values belong to different types: 2 is an integer, and “Hello, World!” is a
string, so called because it contains a “string” of letters. You (and the interpreter)
can identify strings because they are enclosed in quotation marks.

The print statement also works for integers. We use the python command to start
the interpreter.

python

>>> print(4)

4

If you are not sure what type a value has, the interpreter can tell you.

>>> type('Hello, World!')

<class 'str'>

>>> type(17)

<class 'int'>

Not surprisingly, strings belong to the type str and integers belong to the type
int. Less obviously, numbers with a decimal point belong to a type called float,
because these numbers are represented in a format called floating point.

>>> type(3.2)

<class 'float'>

What about values like “17” and “3.2”? They look like numbers, but they are in
quotation marks like strings.

19

20 CHAPTER 2. VARIABLES, EXPRESSIONS, AND STATEMENTS

>>> type('17')

<class 'str'>

>>> type('3.2')

<class 'str'>

They’re strings.

When you type a large integer, you might be tempted to use commas between
groups of three digits, as in 1,000,000. This is not a legal integer in Python, but
it is legal:

>>> print(1,000,000)

1 0 0

Well, that’s not what we expected at all! Python interprets 1,000,000 as a comma-
separated sequence of integers, which it prints with spaces between.

This is the first example we have seen of a semantic error: the code runs without
producing an error message, but it doesn’t do the “right” thing.

2.2 Variables

One of the most powerful features of a programming language is the ability to
manipulate variables. A variable is a name that refers to a value.

An assignment statement creates new variables and gives them values:

>>> message = 'And now for something completely different'

>>> n = 17

>>> pi = 3.1415926535897931

This example makes three assignments. The first assigns a string to a new variable
named message; the second assigns the integer 17 to n; the third assigns the
(approximate) value of π to pi.

To display the value of a variable, you can use a print statement:

>>> print(n)

17

>>> print(pi)

3.141592653589793

The type of a variable is the type of the value it refers to.

>>> type(message)

<class 'str'>

>>> type(n)

<class 'int'>

>>> type(pi)

<class 'float'>

2.3. VARIABLE NAMES AND KEYWORDS 21

2.3 Variable names and keywords

Programmers generally choose names for their variables that are meaningful and
document what the variable is used for.

Variable names can be arbitrarily long. They can contain both letters and numbers,
but they cannot start with a number. It is legal to use uppercase letters, but it is
a good idea to begin variable names with a lowercase letter (you’ll see why later).

The underscore character (_) can appear in a name. It is often used in names with
multiple words, such as my_name or airspeed_of_unladen_swallow. Variable
names can start with an underscore character, but we generally avoid doing this
unless we are writing library code for others to use.

If you give a variable an illegal name, you get a syntax error:

>>> 76trombones = 'big parade'

SyntaxError: invalid syntax

>>> more@ = 1000000

SyntaxError: invalid syntax

>>> class = 'Advanced Theoretical Zymurgy'

SyntaxError: invalid syntax

76trombones is illegal because it begins with a number. more@ is illegal because
it contains an illegal character, @. But what’s wrong with class?

It turns out that class is one of Python’s keywords. The interpreter uses keywords
to recognize the structure of the program, and they cannot be used as variable
names.

Python reserves 33 keywords:

and del from None True

as elif global nonlocal try

assert else if not while

break except import or with

class False in pass yield

continue finally is raise

def for lambda return

You might want to keep this list handy. If the interpreter complains about one of
your variable names and you don’t know why, see if it is on this list.

2.4 Statements

A statement is a unit of code that the Python interpreter can execute. We have
seen two kinds of statements: print being an expression statement and assignment.

When you type a statement in interactive mode, the interpreter executes it and
displays the result, if there is one.

22 CHAPTER 2. VARIABLES, EXPRESSIONS, AND STATEMENTS

A script usually contains a sequence of statements. If there is more than one
statement, the results appear one at a time as the statements execute.

For example, the script

print(1)

x = 2

print(x)

produces the output

1

2

The assignment statement produces no output.

2.5 Operators and operands

Operators are special symbols that represent computations like addition and mul-
tiplication. The values the operator is applied to are called operands.

The operators +, -, *, /, and ** perform addition, subtraction, multiplication,
division, and exponentiation, as in the following examples:

20+32 hour-1 hour*60+minute minute/60 5**2 (5+9)*(15-7)

There has been a change in the division operator between Python 2.x and Python
3.x. In Python 3.x, the result of this division is a floating point result:

>>> minute = 59

>>> minute/60

0.9833333333333333

The division operator in Python 2.0 would divide two integers and truncate the
result to an integer:

>>> minute = 59

>>> minute/60

0

To obtain the same answer in Python 3.0 use floored (// integer) division.

>>> minute = 59

>>> minute//60

0

In Python 3.0 integer division functions much more as you would expect if you
entered the expression on a calculator.

2.6. EXPRESSIONS 23

2.6 Expressions

An expression is a combination of values, variables, and operators. A value all by
itself is considered an expression, and so is a variable, so the following are all legal
expressions (assuming that the variable x has been assigned a value):

17

x

x + 17

If you type an expression in interactive mode, the interpreter evaluates it and
displays the result:

>>> 1 + 1

2

But in a script, an expression all by itself doesn’t do anything! This is a common
source of confusion for beginners.

Exercise 1: Type the following statements in the Python interpreter to see what
they do:

5

x = 5

x + 1

2.7 Order of operations

When more than one operator appears in an expression, the order of evaluation
depends on the rules of precedence. For mathematical operators, Python follows
mathematical convention. The acronym PEMDAS is a useful way to remember
the rules:

• Parentheses have the highest precedence and can be used to force an expres-
sion to evaluate in the order you want. Since expressions in parentheses are
evaluated first, 2 * (3-1) is 4, and (1+1)**(5-2) is 8. You can also use
parentheses to make an expression easier to read, as in (minute * 100) /

60, even if it doesn’t change the result.

• Exponentiation has the next highest precedence, so 2**1+1 is 3, not 4, and
3*1**3 is 3, not 27.

• Multiplication and Division have the same precedence, which is higher than
Addition and Subtraction, which also have the same precedence. So 2*3-1

is 5, not 4, and 6+4/2 is 8.0, not 5.

• Operators with the same precedence are evaluated from left to right. So the
expression 5-3-1 is 1, not 3, because the 5-3 happens first and then 1 is
subtracted from 2.

When in doubt, always put parentheses in your expressions to make sure the com-
putations are performed in the order you intend.

24 CHAPTER 2. VARIABLES, EXPRESSIONS, AND STATEMENTS

2.8 Modulus operator

The modulus operator works on integers and yields the remainder when the first
operand is divided by the second. In Python, the modulus operator is a percent
sign (%). The syntax is the same as for other operators:

>>> quotient = 7 // 3

>>> print(quotient)

2

>>> remainder = 7 % 3

>>> print(remainder)

1

So 7 divided by 3 is 2 with 1 left over.

The modulus operator turns out to be surprisingly useful. For example, you can
check whether one number is divisible by another: if x % y is zero, then x is
divisible by y.

You can also extract the right-most digit or digits from a number. For example,
x % 10 yields the right-most digit of x (in base 10). Similarly, x % 100 yields the
last two digits.

2.9 String operations

The + operator works with strings, but it is not addition in the mathematical sense.
Instead it performs concatenation, which means joining the strings by linking them
end to end. For example:

>>> first = 10

>>> second = 15

>>> print(first+second)

25

>>> first = '100'

>>> second = '150'

>>> print(first + second)

100150

The output of this program is 100150.

2.10 Asking the user for input

Sometimes we would like to take the value for a variable from the user via their
keyboard. Python provides a built-in function called input that gets input from
the keyboard1. When this function is called, the program stops and waits for the
user to type something. When the user presses Return or Enter, the program
resumes and input returns what the user typed as a string.

1In Python 2.0, this function was named raw_input.

2.11. COMMENTS 25

>>> input = input()

Some silly stuff

>>> print(input)

Some silly stuff

Before getting input from the user, it is a good idea to print a prompt telling the
user what to input. You can pass a string to input to be displayed to the user
before pausing for input:

>>> name = input('What is your name?\n')

What is your name?

Chuck

>>> print(name)

Chuck

The sequence \n at the end of the prompt represents a newline, which is a special
character that causes a line break. That’s why the user’s input appears below the
prompt.

If you expect the user to type an integer, you can try to convert the return value
to int using the int() function:

>>> prompt = 'What...is the airspeed velocity of an unladen swallow?\n'

>>> speed = input(prompt)

What...is the airspeed velocity of an unladen swallow?

17

>>> int(speed)

17

>>> int(speed) + 5

22

But if the user types something other than a string of digits, you get an error:

>>> speed = input(prompt)

What...is the airspeed velocity of an unladen swallow?

What do you mean, an African or a European swallow?

>>> int(speed)

ValueError: invalid literal for int() with base 10:

We will see how to handle this kind of error later.

2.11 Comments

As programs get bigger and more complicated, they get more difficult to read.
Formal languages are dense, and it is often difficult to look at a piece of code and
figure out what it is doing, or why.

For this reason, it is a good idea to add notes to your programs to explain in
natural language what the program is doing. These notes are called comments,
and in Python they start with the # symbol:

26 CHAPTER 2. VARIABLES, EXPRESSIONS, AND STATEMENTS

compute the percentage of the hour that has elapsed

percentage = (minute * 100) / 60

In this case, the comment appears on a line by itself. You can also put comments
at the end of a line:

percentage = (minute * 100) / 60 # percentage of an hour

Everything from the \# to the end of the line is ignored; it has no effect on the
program.

Comments are most useful when they document non-obvious features of the code.
It is reasonable to assume that the reader can figure out what the code does; it is
much more useful to explain why.

This comment is redundant with the code and useless:

v = 5 # assign 5 to v

This comment contains useful information that is not in the code:

v = 5 # velocity in meters/second.

Good variable names can reduce the need for comments, but long names can make
complex expressions hard to read, so there is a trade-off.

2.12 Choosing mnemonic variable names

As long as you follow the simple rules of variable naming, and avoid reserved
words, you have a lot of choice when you name your variables. In the beginning,
this choice can be confusing both when you read a program and when you write
your own programs. For example, the following three programs are identical in
terms of what they accomplish, but very different when you read them and try to
understand them.

a = 35.0

b = 12.50

c = a * b

print(c)

hours = 35.0

rate = 12.50

pay = hours * rate

print(pay)

x1q3z9ahd = 35.0

x1q3z9afd = 12.50

x1q3p9afd = x1q3z9ahd * x1q3z9afd

print(x1q3p9afd)

2.12. CHOOSING MNEMONIC VARIABLE NAMES 27

The Python interpreter sees all three of these programs as exactly the same but
humans see and understand these programs quite differently. Humans will most
quickly understand the intent of the second program because the programmer has
chosen variable names that reflect their intent regarding what data will be stored
in each variable.

We call these wisely chosen variable names “mnemonic variable names”. The word
mnemonic2 means “memory aid”. We choose mnemonic variable names to help us
remember why we created the variable in the first place.

While this all sounds great, and it is a very good idea to use mnemonic variable
names, mnemonic variable names can get in the way of a beginning programmer’s
ability to parse and understand code. This is because beginning programmers have
not yet memorized the reserved words (there are only 33 of them) and sometimes
variables with names that are too descriptive start to look like part of the language
and not just well-chosen variable names.

Take a quick look at the following Python sample code which loops through some
data. We will cover loops soon, but for now try to just puzzle through what this
means:

for word in words:

print(word)

What is happening here? Which of the tokens (for, word, in, etc.) are reserved
words and which are just variable names? Does Python understand at a funda-
mental level the notion of words? Beginning programmers have trouble separating
what parts of the code must be the same as this example and what parts of the
code are simply choices made by the programmer.

The following code is equivalent to the above code:

for slice in pizza:

print(slice)

It is easier for the beginning programmer to look at this code and know which parts
are reserved words defined by Python and which parts are simply variable names
chosen by the programmer. It is pretty clear that Python has no fundamental
understanding of pizza and slices and the fact that a pizza consists of a set of one
or more slices.

But if our program is truly about reading data and looking for words in the data,
pizza and slice are very un-mnemonic variable names. Choosing them as variable
names distracts from the meaning of the program.

After a pretty short period of time, you will know the most common reserved words
and you will start to see the reserved words jumping out at you:

word *in* words*:*\ *print* word

The parts of the code that are defined by Python (for, in, print, and :) are in
bold and the programmer-chosen variables (word and words) are not in bold. Many

2See http://en.wikipedia.org/wiki/Mnemonic for an extended description of the word
“mnemonic”.

http://en.wikipedia.org/wiki/Mnemonic

28 CHAPTER 2. VARIABLES, EXPRESSIONS, AND STATEMENTS

text editors are aware of Python syntax and will color reserved words differently
to give you clues to keep your variables and reserved words separate. After a while
you will begin to read Python and quickly determine what is a variable and what
is a reserved word.

2.13 Debugging

At this point, the syntax error you are most likely to make is an illegal variable
name, like class and yield, which are keywords, or odd~job and US$, which
contain illegal characters.

If you put a space in a variable name, Python thinks it is two operands without
an operator:

>>> bad name = 5

SyntaxError: invalid syntax

>>> month = 09

File "<stdin>", line 1

month = 09

^

SyntaxError: invalid token

For syntax errors, the error messages don’t help much. The most common mes-
sages are SyntaxError: invalid syntax and SyntaxError: invalid token,
neither of which is very informative.

The runtime error you are most likely to make is a “use before def;” that is, trying
to use a variable before you have assigned a value. This can happen if you spell a
variable name wrong:

>>> principal = 327.68

>>> interest = principle * rate

NameError: name 'principle' is not defined

Variables names are case sensitive, so LaTeX is not the same as latex.

At this point, the most likely cause of a semantic error is the order of operations.
For example, to evaluate 1/2π, you might be tempted to write

>>> 1.0 / 2.0 * pi

But the division happens first, so you would get π/2, which is not the same thing!
There is no way for Python to know what you meant to write, so in this case you
don’t get an error message; you just get the wrong answer.

2.14. GLOSSARY 29

2.14 Glossary

assignment A statement that assigns a value to a variable.

concatenate To join two operands end to end.

comment Information in a program that is meant for other programmers (or
anyone reading the source code) and has no effect on the execution of the
program.

evaluate To simplify an expression by performing the operations in order to yield
a single value.

expression A combination of variables, operators, and values that represents a
single result value.

floating point A type that represents numbers with fractional parts.

integer A type that represents whole numbers.

keyword A reserved word that is used by the compiler to parse a program; you
cannot use keywords like if, def, and while as variable names.

mnemonic A memory aid. We often give variables mnemonic names to help us
remember what is stored in the variable.

modulus operator An operator, denoted with a percent sign (%), that works on
integers and yields the remainder when one number is divided by another.

operand One of the values on which an operator operates.

operator A special symbol that represents a simple computation like addition,
multiplication, or string concatenation.

rules of precedence The set of rules governing the order in which expressions
involving multiple operators and operands are evaluated.

30 CHAPTER 2. VARIABLES, EXPRESSIONS, AND STATEMENTS

statement A section of code that represents a command or action. So far, the
statements we have seen are assignments and print expression statement.

string A type that represents sequences of characters.

type A category of values. The types we have seen so far are integers (type int),
floating-point numbers (type float), and strings (type str).

value One of the basic units of data, like a number or string, that a program
manipulates.

variable A name that refers to a value.

2.15 Exercises

Exercise 2: Write a program that uses input to prompt a user for their name and
then welcomes them.

Enter your name: Chuck

Hello Chuck

Exercise 3: Write a program to prompt the user for hours and rate per hour to
compute gross pay.

Enter Hours: 35

Enter Rate: 2.75

Pay: 96.25

We won’t worry about making sure our pay has exactly two digits after the decimal
place for now. If you want, you can play with the built-in Python round function
to properly round the resulting pay to two decimal places.

Exercise 4: Assume that we execute the following assignment statements:

width = 17

height = 12.0

For each of the following expressions, write the value of the expression and the
type (of the value of the expression).

1. width//2

2. width/2.0

3. height/3

4. 1 + 2 * 5

Use the Python interpreter to check your answers.

Exercise 5: Write a program which prompts the user for a Celsius temperature,
convert the temperature to Fahrenheit, and print out the converted temperature.

Chapter 3

Conditional execution

3.1 Boolean expressions

A boolean expression is an expression that is either true or false. The following
examples use the operator ==, which compares two operands and produces True if
they are equal and False otherwise:

>>> 5 == 5

True

>>> 5 == 6

False

{}

True and False are special values that belong to the class bool; they are not
strings:

>>> type(True)

<class 'bool'>

>>> type(False)

<class 'bool'>

The == operator is one of the comparison operators; the others are:

x != y # x is not equal to y

x > y # x is greater than y

x < y # x is less than y

x >= y # x is greater than or equal to y

x <= y # x is less than or equal to y

x is y # x is the same as y

x is not y # x is not the same as y

Although these operations are probably familiar to you, the Python symbols are
different from the mathematical symbols for the same operations. A common error
is to use a single equal sign (=) instead of a double equal sign (==). Remember
that = is an assignment operator and == is a comparison operator. There is no
such thing as =< or =>.

31

32 CHAPTER 3. CONDITIONAL EXECUTION

3.2 Logical operators

There are three logical operators: and, or, and not. The semantics (meaning) of
these operators is similar to their meaning in English. For example,

x > 0 and x < 10

is true only if x is greater than 0 and less than 10.

n%2 == 0 or n%3 == 0 is true if either of the conditions is true, that is, if the
number is divisible by 2 or 3.

Finally, the not operator negates a boolean expression, so not (x > y) is true if
x > y is false; that is, if x is less than or equal to y.

Strictly speaking, the operands of the logical operators should be boolean expres-
sions, but Python is not very strict. Any nonzero number is interpreted as “true.”

>>> 17 and True

True

This flexibility can be useful, but there are some subtleties to it that might be
confusing. You might want to avoid it until you are sure you know what you are
doing.

3.3 Conditional execution

In order to write useful programs, we almost always need the ability to check condi-
tions and change the behavior of the program accordingly. Conditional statements
give us this ability. The simplest form is the if statement:

if x > 0 :

print('x is positive')

The boolean expression after the if statement is called the condition. We end the
if statement with a colon character (:) and the line(s) after the if statement are
indented.

x > 0

print(‘x is postitive’)

Yes

Figure 3.1: If Logic

3.4. ALTERNATIVE EXECUTION 33

If the logical condition is true, then the indented statement gets executed. If the
logical condition is false, the indented statement is skipped.

if statements have the same structure as function definitions or for loops1. The
statement consists of a header line that ends with the colon character (:) followed
by an indented block. Statements like this are called compound statements because
they stretch across more than one line.

There is no limit on the number of statements that can appear in the body, but
there must be at least one. Occasionally, it is useful to have a body with no
statements (usually as a place holder for code you haven’t written yet). In that
case, you can use the pass statement, which does nothing.

if x < 0 :

pass # need to handle negative values!

If you enter an if statement in the Python interpreter, the prompt will change
from three chevrons to three dots to indicate you are in the middle of a block of
statements, as shown below:

>>> x = 3

>>> if x < 10:

... print('Small')

...

Small

>>>

3.4 Alternative execution

A second form of the if statement is alternative execution, in which there are two
possibilities and the condition determines which one gets executed. The syntax
looks like this:

if x%2 == 0 :

print('x is even')

else :

print('x is odd')

If the remainder when x is divided by 2 is 0, then we know that x is even, and the
program displays a message to that effect. If the condition is false, the second set
of statements is executed.

Since the condition must either be true or false, exactly one of the alternatives will
be executed. The alternatives are called branches, because they are branches in
the flow of execution.

1We will learn about functions in Chapter 4 and loops in Chapter 5.

34 CHAPTER 3. CONDITIONAL EXECUTION

x%2 == 0

print(‘x is even’)

Yes

print(‘x is odd’)

No

Figure 3.2: If-Then-Else Logic

3.5 Chained conditionals

Sometimes there are more than two possibilities and we need more than two
branches. One way to express a computation like that is a chained conditional:

if x < y:

print('x is less than y')

elif x > y:

print('x is greater than y')

else:

print('x and y are equal')

elif is an abbreviation of “else if.” Again, exactly one branch will be executed.

x < y print(‘less’)
!��

x > y print (‘greater’)
!��

print(‘equal’)

Figure 3.3: If-Then-ElseIf Logic

There is no limit on the number of elif statements. If there is an else clause, it
has to be at the end, but there doesn’t have to be one.

if choice == 'a':

print('Bad guess')

elif choice == 'b':

print('Good guess')

elif choice == 'c':

print('Close, but not correct')

3.6. NESTED CONDITIONALS 35

Each condition is checked in order. If the first is false, the next is checked, and so
on. If one of them is true, the corresponding branch executes, and the statement
ends. Even if more than one condition is true, only the first true branch executes.

3.6 Nested conditionals

One conditional can also be nested within another. We could have written the
three-branch example like this:

if x == y:

print('x and y are equal')

else:

if x < y:

print('x is less than y')

else:

print('x is greater than y')

The outer conditional contains two branches. The first branch contains a simple
statement. The second branch contains another if statement, which has two
branches of its own. Those two branches are both simple statements, although
they could have been conditional statements as well.

x == y
No

print(‘equal’)

Yes

x < y

print’‘greater’)

No

print(‘less’)

Yes

Figure 3.4: Nested If Statements

Although the indentation of the statements makes the structure apparent, nested
conditionals become difficult to read very quickly. In general, it is a good idea to
avoid them when you can.

Logical operators often provide a way to simplify nested conditional statements.
For example, we can rewrite the following code using a single conditional:

if 0 < x:

if x < 10:

print('x is a positive single-digit number.')

The print statement is executed only if we make it past both conditionals, so we
can get the same effect with the and operator:

36 CHAPTER 3. CONDITIONAL EXECUTION

if 0 < x and x < 10:

print('x is a positive single-digit number.')

3.7 Catching exceptions using try and except

Earlier we saw a code segment where we used the input and int functions to read
and parse an integer number entered by the user. We also saw how treacherous
doing this could be:

>>> prompt = "What...is the airspeed velocity of an unladen swallow?\n"

>>> speed = input(prompt)

What...is the airspeed velocity of an unladen swallow?

What do you mean, an African or a European swallow?

>>> int(speed)

ValueError: invalid literal for int() with base 10:

>>>

When we are executing these statements in the Python interpreter, we get a new
prompt from the interpreter, think “oops”, and move on to our next statement.

However if you place this code in a Python script and this error occurs, your script
immediately stops in its tracks with a traceback. It does not execute the following
statement.

Here is a sample program to convert a Fahrenheit temperature to a Celsius tem-
perature:

inp = input('Enter Fahrenheit Temperature: ')

fahr = float(inp)

cel = (fahr - 32.0) * 5.0 / 9.0

print(cel)

Code: http://www.py4e.com/code3/fahren.py

If we execute this code and give it invalid input, it simply fails with an unfriendly
error message:

python fahren.py

Enter Fahrenheit Temperature:72

22.22222222222222

python fahren.py

Enter Fahrenheit Temperature:fred

Traceback (most recent call last):

File "fahren.py", line 2, in <module>

fahr = float(inp)

ValueError: could not convert string to float: 'fred'

3.8. SHORT-CIRCUIT EVALUATION OF LOGICAL EXPRESSIONS 37

There is a conditional execution structure built into Python to handle these types
of expected and unexpected errors called “try / except”. The idea of try and
except is that you know that some sequence of instruction(s) may have a problem
and you want to add some statements to be executed if an error occurs. These
extra statements (the except block) are ignored if there is no error.

You can think of the try and except feature in Python as an “insurance policy”
on a sequence of statements.

We can rewrite our temperature converter as follows:

inp = input('Enter Fahrenheit Temperature:')

try:

fahr = float(inp)

cel = (fahr - 32.0) * 5.0 / 9.0

print(cel)

except:

print('Please enter a number')

Code: http://www.py4e.com/code3/fahren2.py

Python starts by executing the sequence of statements in the try block. If all goes
well, it skips the except block and proceeds. If an exception occurs in the try

block, Python jumps out of the try block and executes the sequence of statements
in the except block.

python fahren2.py

Enter Fahrenheit Temperature:72

22.22222222222222

python fahren2.py

Enter Fahrenheit Temperature:fred

Please enter a number

Handling an exception with a try statement is called catching an exception. In
this example, the except clause prints an error message. In general, catching an
exception gives you a chance to fix the problem, or try again, or at least end the
program gracefully.

3.8 Short-circuit evaluation of logical expressions

When Python is processing a logical expression such as x >= 2 and (x/y) > 2, it
evaluates the expression from left to right. Because of the definition of and, if x is
less than 2, the expression x >= 2 is False and so the whole expression is False

regardless of whether (x/y) > 2 evaluates to True or False.

When Python detects that there is nothing to be gained by evaluating the rest
of a logical expression, it stops its evaluation and does not do the computations
in the rest of the logical expression. When the evaluation of a logical expression

38 CHAPTER 3. CONDITIONAL EXECUTION

stops because the overall value is already known, it is called short-circuiting the
evaluation.

While this may seem like a fine point, the short-circuit behavior leads to a clever
technique called the guardian pattern. Consider the following code sequence in the
Python interpreter:

>>> x = 6

>>> y = 2

>>> x >= 2 and (x/y) > 2

True

>>> x = 1

>>> y = 0

>>> x >= 2 and (x/y) > 2

False

>>> x = 6

>>> y = 0

>>> x >= 2 and (x/y) > 2

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ZeroDivisionError: division by zero

>>>

The third calculation failed because Python was evaluating (x/y) and y was zero,
which causes a runtime error. But the second example did not fail because the
first part of the expression x >= 2 evaluated to False so the (x/y) was not ever
executed due to the short-circuit rule and there was no error.

We can construct the logical expression to strategically place a guard evaluation
just before the evaluation that might cause an error as follows:

>>> x = 1

>>> y = 0

>>> x >= 2 and y != 0 and (x/y) > 2

False

>>> x = 6

>>> y = 0

>>> x >= 2 and y != 0 and (x/y) > 2

False

>>> x >= 2 and (x/y) > 2 and y != 0

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ZeroDivisionError: division by zero

>>>

In the first logical expression, x >= 2 is False so the evaluation stops at the and.
In the second logical expression, x >= 2 is True but y != 0 is False so we never
reach (x/y).

In the third logical expression, the y != 0 is after the (x/y) calculation so the
expression fails with an error.

In the second expression, we say that y != 0 acts as a guard to insure that we
only execute (x/y) if y is non-zero.

3.9. DEBUGGING 39

3.9 Debugging

The traceback Python displays when an error occurs contains a lot of information,
but it can be overwhelming. The most useful parts are usually:

• What kind of error it was, and

• Where it occurred.

Syntax errors are usually easy to find, but there are a few gotchas. Whitespace
errors can be tricky because spaces and tabs are invisible and we are used to
ignoring them.

>>> x = 5

>>> y = 6

File "<stdin>", line 1

y = 6

^

IndentationError: unexpected indent

In this example, the problem is that the second line is indented by one space. But
the error message points to y, which is misleading. In general, error messages
indicate where the problem was discovered, but the actual error might be earlier
in the code, sometimes on a previous line.

In general, error messages tell you where the problem was discovered, but that is
often not where it was caused.

3.10 Glossary

body The sequence of statements within a compound statement.

boolean expression An expression whose value is either True or False.

branch One of the alternative sequences of statements in a conditional statement.

chained conditional A conditional statement with a series of alternative
branches.

comparison operator One of the operators that compares its operands: ==, !=,
>, <, >=, and <=.

conditional statement A statement that controls the flow of execution depend-
ing on some condition.

40 CHAPTER 3. CONDITIONAL EXECUTION

condition The boolean expression in a conditional statement that determines
which branch is executed.

compound statement A statement that consists of a header and a body. The
header ends with a colon (:). The body is indented relative to the header.

guardian pattern Where we construct a logical expression with additional com-
parisons to take advantage of the short-circuit behavior.

logical operator One of the operators that combines boolean expressions: and,
or, and not.

nested conditional A conditional statement that appears in one of the branches
of another conditional statement.

traceback A list of the functions that are executing, printed when an exception
occurs.

short circuit When Python is part-way through evaluating a logical expression
and stops the evaluation because Python knows the final value for the ex-
pression without needing to evaluate the rest of the expression.

3.11 Exercises

Exercise 1: Rewrite your pay computation to give the employee 1.5 times the
hourly rate for hours worked above 40 hours.

Enter Hours: 45

Enter Rate: 10

Pay: 475.0

Exercise 2: Rewrite your pay program using try and except so that your pro-
gram handles non-numeric input gracefully by printing a message and exiting the
program. The following shows two executions of the program:

Enter Hours: 20

Enter Rate: nine

Error, please enter numeric input

Enter Hours: forty

Error, please enter numeric input

3.11. EXERCISES 41

Exercise 3: Write a program to prompt for a score between 0.0 and 1.0. If the
score is out of range, print an error message. If the score is between 0.0 and 1.0,
print a grade using the following table:

Score Grade

>= 0.9 A

>= 0.8 B

>= 0.7 C

>= 0.6 D

< 0.6 F

~~~

Enter score: 0.95 A ~~

Enter score: perfect

Bad score

Enter score: 10.0

Bad score

Enter score: 0.75

C

Enter score: 0.5

F

Run the program repeatedly as shown above to test the various different values for
input.



42 CHAPTER 3. CONDITIONAL EXECUTION



Chapter 4

Functions

4.1 Function calls

In the context of programming, a function is a named sequence of statements that
performs a computation. When you define a function, you specify the name and
the sequence of statements. Later, you can “call” the function by name. We have
already seen one example of a function call:

>>> type(32)

<class 'int'>

The name of the function is type. The expression in parentheses is called the
argument of the function. The argument is a value or variable that we are passing
into the function as input to the function. The result, for the type function, is the
type of the argument.

It is common to say that a function “takes” an argument and “returns” a result.
The result is called the return value.

4.2 Built-in functions

Python provides a number of important built-in functions that we can use without
needing to provide the function definition. The creators of Python wrote a set of
functions to solve common problems and included them in Python for us to use.

The max and min functions give us the largest and smallest values in a list, respec-
tively:

>>> max('Hello world')

'w'

>>> min('Hello world')

' '

>>>

43



44 CHAPTER 4. FUNCTIONS

The max function tells us the “largest character” in the string (which turns out to
be the letter “w”) and the min function shows us the smallest character (which
turns out to be a space).

Another very common built-in function is the len function which tells us how many
items are in its argument. If the argument to len is a string, it returns the number
of characters in the string.

>>> len('Hello world')

11

>>>

These functions are not limited to looking at strings. They can operate on any set
of values, as we will see in later chapters.

You should treat the names of built-in functions as reserved words (i.e., avoid using
“max” as a variable name).

4.3 Type conversion functions

Python also provides built-in functions that convert values from one type to an-
other. The int function takes any value and converts it to an integer, if it can, or
complains otherwise:

>>> int('32')

32

>>> int('Hello')

ValueError: invalid literal for int() with base 10: 'Hello'

int can convert floating-point values to integers, but it doesn’t round off; it chops
off the fraction part:

>>> int(3.99999)

3

>>> int(-2.3)

-2

float converts integers and strings to floating-point numbers:

>>> float(32)

32.0

>>> float('3.14159')

3.14159

Finally, str converts its argument to a string:

>>> str(32)

'32'

>>> str(3.14159)

'3.14159'



4.4. RANDOM NUMBERS 45

4.4 Random numbers

Given the same inputs, most computer programs generate the same outputs every
time, so they are said to be deterministic. Determinism is usually a good thing,
since we expect the same calculation to yield the same result. For some applica-
tions, though, we want the computer to be unpredictable. Games are an obvious
example, but there are more.

Making a program truly nondeterministic turns out to be not so easy, but there
are ways to make it at least seem nondeterministic. One of them is to use al-
gorithms that generate pseudorandom numbers. Pseudorandom numbers are not
truly random because they are generated by a deterministic computation, but just
by looking at the numbers it is all but impossible to distinguish them from random.

The random module provides functions that generate pseudorandom numbers
(which I will simply call “random” from here on).

The function random returns a random float between 0.0 and 1.0 (including 0.0
but not 1.0). Each time you call random, you get the next number in a long series.
To see a sample, run this loop:

import random

for i in range(10):

x = random.random()

print(x)

This program produces the following list of 10 random numbers between 0.0 and
up to but not including 1.0.

0.11132867921152356

0.5950949227890241

0.04820265884996877

0.841003109276478

0.997914947094958

0.04842330803368111

0.7416295948208405

0.510535245390327

0.27447040171978143

0.028511805472785867

Exercise 1: Run the program on your system and see what numbers you get. Run
the program more than once and see what numbers you get.

The random function is only one of many functions that handle random numbers.
The function randint takes the parameters low and high, and returns an integer
between low and high (including both).

>>> random.randint(5, 10)

5

>>> random.randint(5, 10)

9



46 CHAPTER 4. FUNCTIONS

To choose an element from a sequence at random, you can use choice:

>>> t = [1, 2, 3]

>>> random.choice(t)

2

>>> random.choice(t)

3

The random module also provides functions to generate random values from con-
tinuous distributions including Gaussian, exponential, gamma, and a few more.

4.5 Math functions

Python has a math module that provides most of the familiar mathematical func-
tions. Before we can use the module, we have to import it:

>>> import math

This statement creates a module object named math. If you print the module
object, you get some information about it:

>>> print(math)

<module 'math' (built-in)>

The module object contains the functions and variables defined in the module. To
access one of the functions, you have to specify the name of the module and the
name of the function, separated by a dot (also known as a period). This format is
called dot notation.

>>> ratio = signal_power / noise_power

>>> decibels = 10 * math.log10(ratio)

>>> radians = 0.7

>>> height = math.sin(radians)

The first example computes the logarithm base 10 of the signal-to-noise ratio. The
math module also provides a function called log that computes logarithms base e.

The second example finds the sine of radians. The name of the variable is a hint
that sin and the other trigonometric functions (cos, tan, etc.) take arguments in
radians. To convert from degrees to radians, divide by 360 and multiply by 2π:

>>> degrees = 45

>>> radians = degrees / 360.0 * 2 * math.pi

>>> math.sin(radians)

0.7071067811865476



4.6. ADDING NEW FUNCTIONS 47

The expression math.pi gets the variable pi from the math module. The value of
this variable is an approximation of π, accurate to about 15 digits.

If you know your trigonometry, you can check the previous result by comparing it
to the square root of two divided by two:

>>> math.sqrt(2) / 2.0

0.7071067811865476

4.6 Adding new functions

So far, we have only been using the functions that come with Python, but it is also
possible to add new functions. A function definition specifies the name of a new
function and the sequence of statements that execute when the function is called.
Once we define a function, we can reuse the function over and over throughout our
program.

Here is an example:

def print_lyrics():

print("I'm a lumberjack, and I'm okay.")

print('I sleep all night and I work all day.')

def is a keyword that indicates that this is a function definition. The name of
the function is print_lyrics. The rules for function names are the same as for
variable names: letters, numbers and some punctuation marks are legal, but the
first character can’t be a number. You can’t use a keyword as the name of a
function, and you should avoid having a variable and a function with the same
name.

The empty parentheses after the name indicate that this function doesn’t take any
arguments. Later we will build functions that take arguments as their inputs.

The first line of the function definition is called the header ; the rest is called
the body. The header has to end with a colon and the body has to be indented.
By convention, the indentation is always four spaces. The body can contain any
number of statements.

The strings in the print statements are enclosed in quotes. Single quotes and double
quotes do the same thing; most people use single quotes except in cases like this
where a single quote (which is also an apostrophe) appears in the string.

If you type a function definition in interactive mode, the interpreter prints ellipses
(. . . ) to let you know that the definition isn’t complete:

>>> def print_lyrics():

... print("I'm a lumberjack, and I'm okay.")

... print('I sleep all night and I work all day.')

...



48 CHAPTER 4. FUNCTIONS

To end the function, you have to enter an empty line (this is not necessary in a
script).

Defining a function creates a variable with the same name.

>>> print(print_lyrics)

<function print_lyrics at 0xb7e99e9c>

>>> print(type(print_lyrics))

<class 'function'>

The value of print_lyrics is a function object, which has type “function”.

The syntax for calling the new function is the same as for built-in functions:

>>> print_lyrics()

I'm a lumberjack, and I'm okay.

I sleep all night and I work all day.

Once you have defined a function, you can use it inside another function. For exam-
ple, to repeat the previous refrain, we could write a function called repeat_lyrics:

def repeat_lyrics():

print_lyrics()

print_lyrics()

And then call repeat_lyrics:

>>> repeat_lyrics()

I'm a lumberjack, and I'm okay.

I sleep all night and I work all day.

I'm a lumberjack, and I'm okay.

I sleep all night and I work all day.

But that’s not really how the song goes.

4.7 Definitions and uses

Pulling together the code fragments from the previous section, the whole program
looks like this:

def print_lyrics():

print("I'm a lumberjack, and I'm okay.")

print('I sleep all night and I work all day.')

def repeat_lyrics():

print_lyrics()

print_lyrics()



4.8. FLOW OF EXECUTION 49

repeat_lyrics()

# Code: http://www.py4e.com/code3/lyrics.py

This program contains two function definitions: print_lyrics and repeat_lyrics.
Function definitions get executed just like other statements, but the effect is to
create function objects. The statements inside the function do not get executed
until the function is called, and the function definition generates no output.

As you might expect, you have to create a function before you can execute it. In
other words, the function definition has to be executed before the first time it is
called.

Exercise 2: Move the last line of this program to the top, so the function call
appears before the definitions. Run the program and see what error message you
get.

Exercise 3: Move the function call back to the bottom and move the definition of
print_lyrics after the definition of repeat_lyrics. What happens when you
run this program?

4.8 Flow of execution

In order to ensure that a function is defined before its first use, you have to know
the order in which statements are executed, which is called the flow of execution.

Execution always begins at the first statement of the program. Statements are
executed one at a time, in order from top to bottom.

Function definitions do not alter the flow of execution of the program, but re-
member that statements inside the function are not executed until the function is
called.

A function call is like a detour in the flow of execution. Instead of going to the next
statement, the flow jumps to the body of the function, executes all the statements
there, and then comes back to pick up where it left off.

That sounds simple enough, until you remember that one function can call another.
While in the middle of one function, the program might have to execute the state-
ments in another function. But while executing that new function, the program
might have to execute yet another function!

Fortunately, Python is good at keeping track of where it is, so each time a function
completes, the program picks up where it left off in the function that called it.
When it gets to the end of the program, it terminates.

What’s the moral of this sordid tale? When you read a program, you don’t always
want to read from top to bottom. Sometimes it makes more sense if you follow the
flow of execution.



50 CHAPTER 4. FUNCTIONS

4.9 Parameters and arguments

Some of the built-in functions we have seen require arguments. For example, when
you call math.sin you pass a number as an argument. Some functions take more
than one argument: math.pow takes two, the base and the exponent.

Inside the function, the arguments are assigned to variables called parameters.
Here is an example of a user-defined function that takes an argument:

def print_twice(bruce):

print(bruce)

print(bruce)

This function assigns the argument to a parameter named bruce. When the func-
tion is called, it prints the value of the parameter (whatever it is) twice.

This function works with any value that can be printed.

>>> print_twice('Spam')

Spam

Spam

>>> print_twice(17)

17

17

>>> import math

>>> print_twice(math.pi)

3.141592653589793

3.141592653589793

The same rules of composition that apply to built-in functions also apply to
user-defined functions, so we can use any kind of expression as an argument for
print_twice:

>>> print_twice('Spam '*4)

Spam Spam Spam Spam

Spam Spam Spam Spam

>>> print_twice(math.cos(math.pi))

-1.0

-1.0

The argument is evaluated before the function is called, so in the examples the
expressions “Spam ’*4andmath.cos(math.pi)‘ are only evaluated once.

You can also use a variable as an argument:

>>> michael = 'Eric, the half a bee.'

>>> print_twice(michael)

Eric, the half a bee.

Eric, the half a bee.

The name of the variable we pass as an argument (michael) has nothing to do
with the name of the parameter (bruce). It doesn’t matter what the value was
called back home (in the caller); here in print_twice, we call everybody bruce.



4.10. FRUITFUL FUNCTIONS AND VOID FUNCTIONS 51

4.10 Fruitful functions and void functions

Some of the functions we are using, such as the math functions, yield results;
for lack of a better name, I call them fruitful functions. Other functions, like
print_twice, perform an action but don’t return a value. They are called void
functions.

When you call a fruitful function, you almost always want to do something with
the result; for example, you might assign it to a variable or use it as part of an
expression:

x = math.cos(radians)

golden = (math.sqrt(5) + 1) / 2

When you call a function in interactive mode, Python displays the result:

>>> math.sqrt(5)

2.23606797749979

But in a script, if you call a fruitful function and do not store the result of the
function in a variable, the return value vanishes into the mist!

math.sqrt(5)

This script computes the square root of 5, but since it doesn’t store the result in
a variable or display the result, it is not very useful.

Void functions might display something on the screen or have some other effect,
but they don’t have a return value. If you try to assign the result to a variable,
you get a special value called None.

>>> result = print_twice('Bing')

Bing

Bing

>>> print(result)

None

The value None is not the same as the string “None”. It is a special value that has
its own type:

>>> print(type(None))

<class 'NoneType'>

To return a result from a function, we use the return statement in our function.
For example, we could make a very simple function called addtwo that adds two
numbers together and returns a result.



52 CHAPTER 4. FUNCTIONS

def addtwo(a, b):

added = a + b

return added

x = addtwo(3, 5)

print(x)

# Code: http://www.py4e.com/code3/addtwo.py

When this script executes, the print statement will print out “8” because the
addtwo function was called with 3 and 5 as arguments. Within the function, the
parameters a and b were 3 and 5 respectively. The function computed the sum of
the two numbers and placed it in the local function variable named added. Then
it used the return statement to send the computed value back to the calling code
as the function result, which was assigned to the variable x and printed out.

4.11 Why functions?

It may not be clear why it is worth the trouble to divide a program into functions.
There are several reasons:

• Creating a new function gives you an opportunity to name a group of state-
ments, which makes your program easier to read, understand, and debug.

• Functions can make a program smaller by eliminating repetitive code. Later,
if you make a change, you only have to make it in one place.

• Dividing a long program into functions allows you to debug the parts one at
a time and then assemble them into a working whole.

• Well-designed functions are often useful for many programs. Once you write
and debug one, you can reuse it.

Throughout the rest of the book, often we will use a function definition to explain
a concept. Part of the skill of creating and using functions is to have a function
properly capture an idea such as “find the smallest value in a list of values”. Later
we will show you code that finds the smallest in a list of values and we will present
it to you as a function named min which takes a list of values as its argument and
returns the smallest value in the list.

4.12 Debugging

If you are using a text editor to write your scripts, you might run into problems with
spaces and tabs. The best way to avoid these problems is to use spaces exclusively
(no tabs). Most text editors that know about Python do this by default, but some
don’t.

Tabs and spaces are usually invisible, which makes them hard to debug, so try to
find an editor that manages indentation for you.



4.13. GLOSSARY 53

Also, don’t forget to save your program before you run it. Some development
environments do this automatically, but some don’t. In that case, the program
you are looking at in the text editor is not the same as the program you are
running.

Debugging can take a long time if you keep running the same incorrect program
over and over!

Make sure that the code you are looking at is the code you are running. If you’re
not sure, put something like print("hello") at the beginning of the program and
run it again. If you don’t see hello, you’re not running the right program!

4.13 Glossary

algorithm A general process for solving a category of problems.

argument A value provided to a function when the function is called. This value
is assigned to the corresponding parameter in the function.

body The sequence of statements inside a function definition.

composition Using an expression as part of a larger expression, or a statement
as part of a larger statement.

deterministic Pertaining to a program that does the same thing each time it
runs, given the same inputs.

dot notation The syntax for calling a function in another module by specifying
the module name followed by a dot (period) and the function name.

flow of execution The order in which statements are executed during a program
run.

fruitful function A function that returns a value.

function A named sequence of statements that performs some useful operation.
Functions may or may not take arguments and may or may not produce a
result.

function call A statement that executes a function. It consists of the function
name followed by an argument list.



54 CHAPTER 4. FUNCTIONS

function definition A statement that creates a new function, specifying its name,
parameters, and the statements it executes.

function object A value created by a function definition. The name of the func-
tion is a variable that refers to a function object.

header The first line of a function definition.

import statement A statement that reads a module file and creates a module
object.

module object A value created by an import statement that provides access to
the data and code defined in a module.

parameter A name used inside a function to refer to the value passed as an
argument.

pseudorandom Pertaining to a sequence of numbers that appear to be random,
but are generated by a deterministic program.

return value The result of a function. If a function call is used as an expression,
the return value is the value of the expression.

void function A function that does not return a value.

4.14 Exercises

Exercise 4: What is the purpose of the “def” keyword in Python?

a) It is slang that means “the following code is really cool”
b) It indicates the start of a function
c) It indicates that the following indented section of code is to be stored for later
d) b and c are both true
e) None of the above

Exercise 5: What will the following Python program print out?



4.14. EXERCISES 55

def fred():

print("Zap")

def jane():

print("ABC")

jane()

fred()

jane()

a) Zap ABC jane fred jane
b) Zap ABC Zap
c) ABC Zap jane
d) ABC Zap ABC
e) Zap Zap Zap

Exercise 6: Rewrite your pay computation with time-and-a-half for overtime and
create a function called computepay which takes two parameters (hours and rate).

Enter Hours: 45

Enter Rate: 10

Pay: 475.0

Exercise 7: Rewrite the grade program from the previous chapter using a function
called computegrade that takes a score as its parameter and returns a grade as a
string.

Score Grade

> 0.9 A

> 0.8 B

> 0.7 C

> 0.6 D

<= 0.6 F

Program Execution:

Enter score: 0.95

A

Enter score: perfect

Bad score

Enter score: 10.0

Bad score

Enter score: 0.75

C

Enter score: 0.5

F

Run the program repeatedly to test the various different values for input.



56 CHAPTER 4. FUNCTIONS



Chapter 5

Iteration

5.1 Updating variables

A common pattern in assignment statements is an assignment statement that up-
dates a variable, where the new value of the variable depends on the old.

x = x + 1

This means “get the current value of x, add 1, and then update x with the new
value.”

If you try to update a variable that doesn’t exist, you get an error, because Python
evaluates the right side before it assigns a value to x:

>>> x = x + 1

NameError: name 'x' is not defined

Before you can update a variable, you have to initialize it, usually with a simple
assignment:

>>> x = 0

>>> x = x + 1

Updating a variable by adding 1 is called an increment; subtracting 1 is called a
decrement.

5.2 The while statement

Computers are often used to automate repetitive tasks. Repeating identical or
similar tasks without making errors is something that computers do well and people
do poorly. Because iteration is so common, Python provides several language
features to make it easier.

One form of iteration in Python is the while statement. Here is a simple program
that counts down from five and then says “Blastoff!”.

57



58 CHAPTER 5. ITERATION

n = 5

while n > 0:

print(n)

n = n - 1

print('Blastoff!')

You can almost read the while statement as if it were English. It means, “While
n is greater than 0, display the value of n and then reduce the value of n by 1.
When you get to 0, exit the while statement and display the word Blastoff!”

More formally, here is the flow of execution for a while statement:

1. Evaluate the condition, yielding True or False.

2. If the condition is false, exit the while statement and continue execution at
the next statement.

3. If the condition is true, execute the body and then go back to step 1.

This type of flow is called a loop because the third step loops back around to the
top. We call each time we execute the body of the loop an iteration. For the above
loop, we would say, “It had five iterations”, which means that the body of the loop
was executed five times.

The body of the loop should change the value of one or more variables so that
eventually the condition becomes false and the loop terminates. We call the vari-
able that changes each time the loop executes and controls when the loop finishes
the iteration variable. If there is no iteration variable, the loop will repeat forever,
resulting in an infinite loop.

5.3 Infinite loops

An endless source of amusement for programmers is the observation that the di-
rections on shampoo, “Lather, rinse, repeat,” are an infinite loop because there is
no iteration variable telling you how many times to execute the loop.

In the case of countdown, we can prove that the loop terminates because we know
that the value of n is finite, and we can see that the value of n gets smaller each
time through the loop, so eventually we have to get to 0. Other times a loop is
obviously infinite because it has no iteration variable at all.

5.4 “Infinite loops” and break

Sometimes you don’t know it’s time to end a loop until you get half way through
the body. In that case you can write an infinite loop on purpose and then use the
break statement to jump out of the loop.

This loop is obviously an infinite loop because the logical expression on the while

statement is simply the logical constant True:



5.5. FINISHING ITERATIONS WITH CONTINUE 59

n = 10

while True:

print(n, end=' ')

n = n - 1

print('Done!')

If you make the mistake and run this code, you will learn quickly how to stop
a runaway Python process on your system or find where the power-off button is
on your computer. This program will run forever or until your battery runs out
because the logical expression at the top of the loop is always true by virtue of the
fact that the expression is the constant value True.

While this is a dysfunctional infinite loop, we can still use this pattern to build
useful loops as long as we carefully add code to the body of the loop to explicitly
exit the loop using break when we have reached the exit condition.

For example, suppose you want to take input from the user until they type done.
You could write:

while True:

line = input('> ')

if line == 'done':

break

print(line)

print('Done!')

# Code: http://www.py4e.com/code3/copytildone1.py

The loop condition is True, which is always true, so the loop runs repeatedly until
it hits the break statement.

Each time through, it prompts the user with an angle bracket. If the user types
done, the break statement exits the loop. Otherwise the program echoes whatever
the user types and goes back to the top of the loop. Here’s a sample run:

> hello there

hello there

> finished

finished

> done

Done!

This way of writing while loops is common because you can check the condition
anywhere in the loop (not just at the top) and you can express the stop condition
affirmatively (“stop when this happens”) rather than negatively (“keep going until
that happens.”).

5.5 Finishing iterations with continue

Sometimes you are in an iteration of a loop and want to finish the current iteration
and immediately jump to the next iteration. In that case you can use the continue



60 CHAPTER 5. ITERATION

statement to skip to the next iteration without finishing the body of the loop for
the current iteration.

Here is an example of a loop that copies its input until the user types “done”, but
treats lines that start with the hash character as lines not to be printed (kind of
like Python comments).

while True:

line = input('> ')

if line[0] == '#':

continue

if line == 'done':

break

print(line)

print('Done!')

# Code: http://www.py4e.com/code3/copytildone2.py

Here is a sample run of this new program with continue added.

> hello there

hello there

> # don't print this

> print this!

print this!

> done

Done!

All the lines are printed except the one that starts with the hash sign because
when the continue is executed, it ends the current iteration and jumps back to
the while statement to start the next iteration, thus skipping the print statement.

5.6 Definite loops using for

Sometimes we want to loop through a set of things such as a list of words, the lines
in a file, or a list of numbers. When we have a list of things to loop through, we
can construct a definite loop using a for statement. We call the while statement
an indefinite loop because it simply loops until some condition becomes False,
whereas the for loop is looping through a known set of items so it runs through
as many iterations as there are items in the set.

The syntax of a for loop is similar to the while loop in that there is a for

statement and a loop body:

friends = ['Joseph', 'Glenn', 'Sally']

for friend in friends:

print('Happy New Year:', friend)

print('Done!')



5.7. LOOP PATTERNS 61

In Python terms, the variable friends is a list1 of three strings and the for loop
goes through the list and executes the body once for each of the three strings in
the list resulting in this output:

Happy New Year: Joseph

Happy New Year: Glenn

Happy New Year: Sally

Done!

Translating this for loop to English is not as direct as the while, but if you think
of friends as a set, it goes like this: “Run the statements in the body of the for
loop once for each friend in the set named friends.”

Looking at the for loop, for and in are reserved Python keywords, and friend

and friends are variables.

for friend in friends:

print('Happy New Year:', friend)

In particular, friend is the iteration variable for the for loop. The variable friend

changes for each iteration of the loop and controls when the for loop completes.
The iteration variable steps successively through the three strings stored in the
friends variable.

5.7 Loop patterns

Often we use a for or while loop to go through a list of items or the contents of
a file and we are looking for something such as the largest or smallest value of the
data we scan through.

These loops are generally constructed by:

• Initializing one or more variables before the loop starts

• Performing some computation on each item in the loop body, possibly chang-
ing the variables in the body of the loop

• Looking at the resulting variables when the loop completes

We will use a list of numbers to demonstrate the concepts and construction of these
loop patterns.

5.7.1 Counting and summing loops

For example, to count the number of items in a list, we would write the following
for loop:

1We will examine lists in more detail in a later chapter.



62 CHAPTER 5. ITERATION

count = 0

for itervar in [3, 41, 12, 9, 74, 15]:

count = count + 1

print('Count: ', count)

We set the variable count to zero before the loop starts, then we write a for loop
to run through the list of numbers. Our iteration variable is named itervar and
while we do not use itervar in the loop, it does control the loop and cause the
loop body to be executed once for each of the values in the list.

In the body of the loop, we add 1 to the current value of count for each of the
values in the list. While the loop is executing, the value of count is the number
of values we have seen “so far”.

Once the loop completes, the value of count is the total number of items. The
total number “falls in our lap” at the end of the loop. We construct the loop so
that we have what we want when the loop finishes.

Another similar loop that computes the total of a set of numbers is as follows:

total = 0

for itervar in [3, 41, 12, 9, 74, 15]:

total = total + itervar

print('Total: ', total)

In this loop we do use the iteration variable. Instead of simply adding one to the
count as in the previous loop, we add the actual number (3, 41, 12, etc.) to the
running total during each loop iteration. If you think about the variable total, it
contains the “running total of the values so far”. So before the loop starts total is
zero because we have not yet seen any values, during the loop total is the running
total, and at the end of the loop total is the overall total of all the values in the
list.

As the loop executes, total accumulates the sum of the elements; a variable used
this way is sometimes called an accumulator.

Neither the counting loop nor the summing loop are particularly useful in practice
because there are built-in functions len() and sum() that compute the number of
items in a list and the total of the items in the list respectively.

5.7.2 Maximum and minimum loops

[maximumloop] To find the largest value in a list or sequence, we construct the
following loop:

largest = None

print('Before:', largest)

for itervar in [3, 41, 12, 9, 74, 15]:

if largest is None or itervar > largest :

largest = itervar

print('Loop:', itervar, largest)

print('Largest:', largest)



5.7. LOOP PATTERNS 63

When the program executes, the output is as follows:

Before: None

Loop: 3 3

Loop: 41 41

Loop: 12 41

Loop: 9 41

Loop: 74 74

Loop: 15 74

Largest: 74

The variable largest is best thought of as the “largest value we have seen so far”.
Before the loop, we set largest to the constant None. None is a special constant
value which we can store in a variable to mark the variable as “empty”.

Before the loop starts, the largest value we have seen so far is None since we have
not yet seen any values. While the loop is executing, if largest is None then we
take the first value we see as the largest so far. You can see in the first iteration
when the value of itervar is 3, since largest is None, we immediately set largest

to be 3.

After the first iteration, largest is no longer None, so the second part of the
compound logical expression that checks itervar > largest triggers only when
we see a value that is larger than the “largest so far”. When we see a new “even
larger” value we take that new value for largest. You can see in the program
output that largest progresses from 3 to 41 to 74.

At the end of the loop, we have scanned all of the values and the variable largest

now does contain the largest value in the list.

To compute the smallest number, the code is very similar with one small change:

smallest = None

print('Before:', smallest)

for itervar in [3, 41, 12, 9, 74, 15]:

if smallest is None or itervar < smallest:

smallest = itervar

print('Loop:', itervar, smallest)

print('Smallest:', smallest)

Again, smallest is the “smallest so far” before, during, and after the loop executes.
When the loop has completed, smallest contains the minimum value in the list.

Again as in counting and summing, the built-in functions max() and min() make
writing these exact loops unnecessary.

The following is a simple version of the Python built-in min() function:

def min(values):

smallest = None

for value in values:

if smallest is None or value < smallest:

smallest = value

return smallest



64 CHAPTER 5. ITERATION

In the function version of the smallest code, we removed all of the print statements
so as to be equivalent to the min function which is already built in to Python.

5.8 Debugging

As you start writing bigger programs, you might find yourself spending more time
debugging. More code means more chances to make an error and more places for
bugs to hide.

One way to cut your debugging time is “debugging by bisection.” For example, if
there are 100 lines in your program and you check them one at a time, it would
take 100 steps.

Instead, try to break the problem in half. Look at the middle of the program,
or near it, for an intermediate value you can check. Add a print statement (or
something else that has a verifiable effect) and run the program.

If the mid-point check is incorrect, the problem must be in the first half of the
program. If it is correct, the problem is in the second half.

Every time you perform a check like this, you halve the number of lines you have
to search. After six steps (which is much less than 100), you would be down to
one or two lines of code, at least in theory.

In practice it is not always clear what the “middle of the program” is and not
always possible to check it. It doesn’t make sense to count lines and find the exact
midpoint. Instead, think about places in the program where there might be errors
and places where it is easy to put a check. Then choose a spot where you think
the chances are about the same that the bug is before or after the check.

5.9 Glossary

accumulator A variable used in a loop to add up or accumulate a result.

counter A variable used in a loop to count the number of times something hap-
pened. We initialize a counter to zero and then increment the counter each
time we want to “count” something.

decrement An update that decreases the value of a variable.

initialize An assignment that gives an initial value to a variable that will be
updated.

increment An update that increases the value of a variable (often by one).

infinite loop A loop in which the terminating condition is never satisfied or for
which there is no terminating condition.



5.10. EXERCISES 65

iteration Repeated execution of a set of statements using either a function that
calls itself or a loop.

5.10 Exercises

Exercise 1: Write a program which repeatedly reads numbers until the user enters
“done”. Once “done” is entered, print out the total, count, and average of the
numbers. If the user enters anything other than a number, detect their mistake
using try and except and print an error message and skip to the next number.

Enter a number: 4

Enter a number: 5

Enter a number: bad data

Invalid input

Enter a number: 7

Enter a number: done

16 3 5.333333333333333

Exercise 2: Write another program that prompts for a list of numbers as above
and at the end prints out both the maximum and minimum of the numbers instead
of the average.



66 CHAPTER 5. ITERATION



Chapter 6

Strings

6.1 A string is a sequence

A string is a sequence of characters. You can access the characters one at a time
with the bracket operator:

>>> fruit = 'banana'

>>> letter = fruit[1]

The second statement extracts the character at index position 1 from the fruit

variable and assigns it to the letter variable.

The expression in brackets is called an index. The index indicates which character
in the sequence you want (hence the name).

But you might not get what you expect:

>>> print(letter)

a

For most people, the first letter of “banana” is b, not a. But in Python, the index
is an offset from the beginning of the string, and the offset of the first letter is zero.

>>> letter = fruit[0]

>>> print(letter)

b

So b is the 0th letter (“zero-eth”) of “banana”, a is the 1th letter (“one-eth”), and
n is the 2th (“two-eth”) letter.

You can use any expression, including variables and operators, as an index, but
the value of the index has to be an integer. Otherwise you get:

>>> letter = fruit[1.5]

TypeError: string indices must be integers

67



68 CHAPTER 6. STRINGS

b
[0]

a
[1]

n
[2]

a
[3]

n
[4]

a
[5]

Figure 6.1: String Indexes

6.2 Getting the length of a string using len

len is a built-in function that returns the number of characters in a string:

>>> fruit = 'banana'

>>> len(fruit)

6

To get the last letter of a string, you might be tempted to try something like this:

>>> length = len(fruit)

>>> last = fruit[length]

IndexError: string index out of range

The reason for the IndexError is that there is no letter in ’banana’ with the index
6. Since we started counting at zero, the six letters are numbered 0 to 5. To get
the last character, you have to subtract 1 from length:

>>> last = fruit[length-1]

>>> print(last)

a

Alternatively, you can use negative indices, which count backward from the end of
the string. The expression fruit[-1] yields the last letter, fruit[-2] yields the
second to last, and so on.

6.3 Traversal through a string with a loop

A lot of computations involve processing a string one character at a time. Often
they start at the beginning, select each character in turn, do something to it, and
continue until the end. This pattern of processing is called a traversal. One way
to write a traversal is with a while loop:

index = 0

while index < len(fruit):

letter = fruit[index]

print(letter)

index = index + 1



6.4. STRING SLICES 69

This loop traverses the string and displays each letter on a line by itself. The
loop condition is index \< len(fruit), so when index is equal to the length of
the string, the condition is false, and the body of the loop is not executed. The
last character accessed is the one with the index len(fruit)-1, which is the last
character in the string.

Exercise 1: Write a while loop that starts at the last character in the string and
works its way backwards to the first character in the string, printing each letter on
a separate line, except backwards.

Another way to write a traversal is with a for loop:

for char in fruit:

print(char)

Each time through the loop, the next character in the string is assigned to the
variable char. The loop continues until no characters are left.

6.4 String slices

A segment of a string is called a slice. Selecting a slice is similar to selecting a
character:

>>> s = 'Monty Python'

>>> print(s[0:5])

Monty

>>> print(s[6:12])

Python

The operator returns the part of the string from the “n-eth” character to the
“m-eth” character, including the first but excluding the last.

If you omit the first index (before the colon), the slice starts at the beginning of
the string. If you omit the second index, the slice goes to the end of the string:

>>> fruit = 'banana'

>>> fruit[:3]

'ban'

>>> fruit[3:]

'ana'

If the first index is greater than or equal to the second the result is an empty string,
represented by two quotation marks:

>>> fruit = 'banana'

>>> fruit[3:3]

''

An empty string contains no characters and has length 0, but other than that, it
is the same as any other string.

Exercise 2: Given that fruit is a string, what does fruit[:] mean?



70 CHAPTER 6. STRINGS

6.5 Strings are immutable

It is tempting to use the operator on the left side of an assignment, with the
intention of changing a character in a string. For example:

>>> greeting = 'Hello, world!'

>>> greeting[0] = 'J'

TypeError: 'str' object does not support item assignment

The “object” in this case is the string and the “item” is the character you tried
to assign. For now, an object is the same thing as a value, but we will refine that
definition later. An item is one of the values in a sequence.

The reason for the error is that strings are immutable, which means you can’t
change an existing string. The best you can do is create a new string that is a
variation on the original:

>>> greeting = 'Hello, world!'

>>> new_greeting = 'J' + greeting[1:]

>>> print(new_greeting)

Jello, world!

This example concatenates a new first letter onto a slice of greeting. It has no
effect on the original string.

6.6 Looping and counting

The following program counts the number of times the letter a appears in a string:

word = 'banana'

count = 0

for letter in word:

if letter == 'a':

count = count + 1

print(count)

This program demonstrates another pattern of computation called a counter. The
variable count is initialized to 0 and then incremented each time an a is found.
When the loop exits, count contains the result: the total number of a’s.

Exercise 3:

Encapsulate this code in a function named count, and generalize it so that it
accepts the string and the letter as arguments.



6.7. THE IN OPERATOR 71

6.7 The in operator

The word in is a boolean operator that takes two strings and returns True if the
first appears as a substring in the second:

>>> 'a' in 'banana'

True

>>> 'seed' in 'banana'

False

6.8 String comparison

The comparison operators work on strings. To see if two strings are equal:

if word == 'banana':

print('All right, bananas.')

Other comparison operations are useful for putting words in alphabetical order:

if word < 'banana':

print('Your word,' + word + ', comes before banana.')

elif word > 'banana':

print('Your word,' + word + ', comes after banana.')

else:

print('All right, bananas.')

Python does not handle uppercase and lowercase letters the same way that people
do. All the uppercase letters come before all the lowercase letters, so:

Your word, Pineapple, comes before banana.

A common way to address this problem is to convert strings to a standard format,
such as all lowercase, before performing the comparison. Keep that in mind in case
you have to defend yourself against a man armed with a Pineapple.

6.9 string methods

Strings are an example of Python objects. An object contains both data (the actual
string itself) and methods, which are effectively functions that are built into the
object and are available to any instance of the object.

Python has a function called dir which lists the methods available for an object.
The type function shows the type of an object and the dir function shows the
available methods.



72 CHAPTER 6. STRINGS

>>> stuff = 'Hello world'

>>> type(stuff)

<class 'str'>

>>> dir(stuff)

['capitalize', 'casefold', 'center', 'count', 'encode',

'endswith' , 'expandtabs', 'find', 'format', 'format_map',

'index' , 'isalnum', 'isalpha', 'isdecimal', 'isdigit',

'isidentifier' , 'islower', 'isnumeric', 'isprintable',

'isspace' , 'istitle', 'isupper', 'join', 'ljust', 'lower',

'lstrip' , 'maketrans', 'partition', 'replace', 'rfind',

'rindex' , 'rjust', 'rpartition', 'rsplit', 'rstrip',

'split' , 'splitlines', 'startswith', 'strip', 'swapcase',

'title' , 'translate', 'upper', 'zfill']

>>> help(str.capitalize)

Help on method_descriptor:

capitalize(...)

S.capitalize() -> str

Return a capitalized version of S, i.e. make the first character

have upper case and the rest lower case.

>>>

While the dir function lists the methods, and you can use help to get some simple
documentation on a method, a better source of documentation for string methods
would be https://docs.python.org/3.5/library/stdtypes.html#string-methods.

Calling a method is similar to calling a function (it takes arguments and returns
a value) but the syntax is different. We call a method by appending the method
name to the variable name using the period as a delimiter.

For example, the method upper takes a string and returns a new string with all
uppercase letters:

Instead of the function syntax upper(word), it uses the method syntax
word.upper().

>>> word = 'banana'

>>> new_word = word.upper()

>>> print(new_word)

BANANA

This form of dot notation specifies the name of the method, upper, and the name
of the string to apply the method to, word. The empty parentheses indicate that
this method takes no argument.

A method call is called an invocation; in this case, we would say that we are
invoking upper on the word.

For example, there is a string method named find that searches for the position
of one string within another:

https://docs.python.org/3.5/library/stdtypes.html#string-methods


6.9. STRING METHODS 73

>>> word = 'banana'

>>> index = word.find('a')

>>> print(index)

1

In this example, we invoke find on word and pass the letter we are looking for as
a parameter.

The find method can find substrings as well as characters:

>>> word.find('na')

2

It can take as a second argument the index where it should start:

>>> word.find('na', 3)

4

One common task is to remove white space (spaces, tabs, or newlines) from the
beginning and end of a string using the strip method:

>>> line = ' Here we go '

>>> line.strip()

'Here we go'

Some methods such as startswith return boolean values.

>>> line = 'Have a nice day'

>>> line.startswith('Have')

True

>>> line.startswith('h')

False

You will note that startswith requires case to match, so sometimes we take a line
and map it all to lowercase before we do any checking using the lower method.

>>> line = 'Have a nice day'

>>> line.startswith('h')

False

>>> line.lower()

'have a nice day'

>>> line.lower().startswith('h')

True

In the last example, the method lower is called and then we use startswith to
see if the resulting lowercase string starts with the letter “h”. As long as we are
careful with the order, we can make multiple method calls in a single expression.

Exercise 4:

There is a string method called count that is similar to the function
in the previous exercise. Read the documentation of this method at
https://docs.python.org/3.5/library/stdtypes.html#string-methods and write an
invocation that counts the number of times the letter a occurs in “banana”.

https://docs.python.org/3.5/library/stdtypes.html#string-methods


74 CHAPTER 6. STRINGS

6.10 Parsing strings

Often, we want to look into a string and find a substring. For example if we were
presented a series of lines formatted as follows:

From stephen.marquard@ uct.ac.za Sat Jan 5 09:14:16 2008

and we wanted to pull out only the second half of the address (i.e., uct.ac.za)
from each line, we can do this by using the find method and string slicing.

First, we will find the position of the at-sign in the string. Then we will find the
position of the first space after the at-sign. And then we will use string slicing to
extract the portion of the string which we are looking for.

>>> data = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008'

>>> atpos = data.find('@')

>>> print(atpos)

21

>>> sppos = data.find(' ',atpos)

>>> print(sppos)

31

>>> host = data[atpos+1:sppos]

>>> print(host)

uct.ac.za

>>>

We use a version of the find method which allows us to specify a position in
the string where we want find to start looking. When we slice, we extract the
characters from “one beyond the at-sign through up to but not including the space
character”.

The documentation for the find method is available at

https://docs.python.org/3.5/library/stdtypes.html#string-methods.

6.11 Format operator

The format operator, % allows us to construct strings, replacing parts of the strings
with the data stored in variables. When applied to integers, % is the modulus
operator. But when the first operand is a string, % is the format operator.

The first operand is the format string, which contains one or more format sequences
that specify how the second operand is formatted. The result is a string.

For example, the format sequence “%d” means that the second operand should be
formatted as an integer (d stands for “decimal”):

>>> camels = 42

>>> '%d' % camels

'42'

https://docs.python.org/3.5/library/stdtypes.html#string-methods


6.12. DEBUGGING 75

The result is the string “42”, which is not to be confused with the integer value
42.

A format sequence can appear anywhere in the string, so you can embed a value
in a sentence:

>>> camels = 42

>>> 'I have spotted %d camels.' % camels

'I have spotted 42 camels.'

If there is more than one format sequence in the string, the second argument has
to be a tuple1. Each format sequence is matched with an element of the tuple, in
order.

The following example uses “%d” to format an integer, “%g” to format a floating-
point number (don’t ask why), and “%s” to format a string:

>>> 'In %d years I have spotted %g %s.' % (3, 0.1, 'camels')

'In 3 years I have spotted 0.1 camels.'

The number of elements in the tuple must match the number of format sequences
in the string. The types of the elements also must match the format sequences:

>>> '%d %d %d' % (1, 2)

TypeError: not enough arguments for format string

>>> '%d' % 'dollars'

TypeError: %d format: a number is required, not str

In the first example, there aren’t enough elements; in the second, the element is
the wrong type.

The format operator is powerful, but it can be difficult to use. You can read more
about it at

https://docs.python.org/3.5/library/stdtypes.html#printf-style-string-formatting.

6.12 Debugging

A skill that you should cultivate as you program is always asking yourself, “What
could go wrong here?” or alternatively, “What crazy thing might our user do to
crash our (seemingly) perfect program?”

For example, look at the program which we used to demonstrate the while loop
in the chapter on iteration:

while True:

line = input('> ')

1A tuple is a sequence of comma-separated values inside a pair of brackets. We will cover
tuples in Chapter 10

https://docs.python.org/3.5/library/stdtypes.html#printf-style-string-formatting


76 CHAPTER 6. STRINGS

if line[0] == '#':

continue

if line == 'done':

break

print(line)

print('Done!')

# Code: http://www.py4e.com/code3/copytildone2.py

Look what happens when the user enters an empty line of input:

> hello there

hello there

> # don't print this

> print this!

print this!

>

Traceback (most recent call last):

File "copytildone.py", line 3, in <module>

if line[0] == '#':

IndexError: string index out of range

The code works fine until it is presented an empty line. Then there is no zero-th
character, so we get a traceback. There are two solutions to this to make line three
“safe” even if the line is empty.

One possibility is to simply use the startswith method which returns False if
the string is empty.

if line.startswith('#'):

Another way is to safely write the if statement using the guardian pattern and
make sure the second logical expression is evaluated only where there is at least
one character in the string.:

if len(line) > 0 and line[0] == '#':

6.13 Glossary

counter A variable used to count something, usually initialized to zero and then
incremented.

empty string A string with no characters and length 0, represented by two quo-
tation marks.

format operator An operator, %, that takes a format string and a tuple and gen-
erates a string that includes the elements of the tuple formatted as specified
by the format string.



6.13. GLOSSARY 77

format sequence A sequence of characters in a format string, like %d, that spec-
ifies how a value should be formatted.

format string A string, used with the format operator, that contains format
sequences.

flag A boolean variable used to indicate whether a condition is true or false.

invocation A statement that calls a method.

immutable The property of a sequence whose items cannot be assigned.

index An integer value used to select an item in a sequence, such as a character
in a string.

item One of the values in a sequence.

method A function that is associated with an object and called using dot notation.

object Something a variable can refer to. For now, you can use “object” and
“value” interchangeably.

search A pattern of traversal that stops when it finds what it is looking for.

sequence An ordered set; that is, a set of values where each value is identified by
an integer index.

slice A part of a string specified by a range of indices.

traverse To iterate through the items in a sequence, performing a similar opera-
tion on each.



78 CHAPTER 6. STRINGS

6.14 Exercises

Exercise 5: Take the following Python code that stores a string:‘

str = ’X-DSPAM-Confidence:0.8475’

Use find and string slicing to extract the portion of the string after the colon
character and then use the float function to convert the extracted string into a
floating point number.

Exercise 6:

Read the documentation of the string methods at

https://docs.python.org/3.5/library/stdtypes.html#string-methods

You might want to experiment with some of them to make sure you understand
how they work. strip and replace are particularly useful.

The documentation uses a syntax that might be confusing. For example, in
find(sub[, start[, end]]), the brackets indicate optional arguments. So sub

is required, but start is optional, and if you include start, then end is optional.

https://docs.python.org/3.5/library/stdtypes.html#string-methods


Chapter 7

Files

7.1 Persistence

So far, we have learned how to write programs and communicate our intentions to
the Central Processing Unit using conditional execution, functions, and iterations.
We have learned how to create and use data structures in the Main Memory. The
CPU and memory are where our software works and runs. It is where all of the
“thinking” happens.

But if you recall from our hardware architecture discussions, once the power is
turned off, anything stored in either the CPU or main memory is erased. So up to
now, our programs have just been transient fun exercises to learn Python.

Input and
Output
Devices

Software

Main 
Memory

Central
Processing

Unit

What
Next?

Network

Secondary

Memory

Figure 7.1: Secondary Memory

In this chapter, we start to work with Secondary Memory (or files). Secondary
memory is not erased when the power is turned off. Or in the case of a USB flash
drive, the data we write from our programs can be removed from the system and
transported to another system.

79



80 CHAPTER 7. FILES

We will primarily focus on reading and writing text files such as those we create in
a text editor. Later we will see how to work with database files which are binary
files, specifically designed to be read and written through database software.

7.2 Opening files

When we want to read or write a file (say on your hard drive), we first must
open the file. Opening the file communicates with your operating system, which
knows where the data for each file is stored. When you open a file, you are asking
the operating system to find the file by name and make sure the file exists. In
this example, we open the file mbox.txt, which should be stored in the same
folder that you are in when you start Python. You can download this file from
www.py4e.com/code3/mbox.txt

>>> fhand = open('mbox.txt')

>>> print(fhand)

<_io.TextIOWrapper name='mbox.txt' mode='r' encoding='cp1252'>

If the open is successful, the operating system returns us a file handle. The file
handle is not the actual data contained in the file, but instead it is a “handle” that
we can use to read the data. You are given a handle if the requested file exists and
you have the proper permissions to read the file.

From stephen.m..
Return-Path: <p..
Date: Sat, 5 Jan ..
To: source@coll..
From: stephen...
Subject: [sakai]...
Details: http:/...
…Your

Program

H
A
N
D
L
E

open

close

read

write

Figure 7.2: A File Handle

If the file does not exist, open will fail with a traceback and you will not get a
handle to access the contents of the file:

>>> fhand = open('stuff.txt')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

FileNotFoundError: [Errno 2] No such file or directory: 'stuff.txt'

Later we will use try and except to deal more gracefully with the situation where
we attempt to open a file that does not exist.

http://www.py4e.com/code3/mbox.txt


7.3. TEXT FILES AND LINES 81

7.3 Text files and lines

A text file can be thought of as a sequence of lines, much like a Python string can
be thought of as a sequence of characters. For example, this is a sample of a text
file which records mail activity from various individuals in an open source project
development team:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Return-Path: <postmaster@collab.sakaiproject.org>

Date: Sat, 5 Jan 2008 09:12:18 -0500

To: source@collab.sakaiproject.org

From: stephen.marquard@uct.ac.za

Subject: [sakai] svn commit: r39772 - content/branches/

Details: http://source.sakaiproject.org/viewsvn/?view=rev&rev=39772

...

The entire file of mail interactions is available from

www.py4e.com/code3/mbox.txt

and a shortened version of the file is available from

www.py4e.com/code3/mbox-short.txt

These files are in a standard format for a file containing multiple mail messages.
The lines which start with “From” separate the messages and the lines which start
with “From:” are part of the messages. For more information about the mbox
format, see en.wikipedia.org/wiki/Mbox.

To break the file into lines, there is a special character that represents the “end of
the line” called the newline character.

In Python, we represent the newline character as a backslash-n in string constants.
Even though this looks like two characters, it is actually a single character. When
we look at the variable by entering “stuff” in the interpreter, it shows us the \n

in the string, but when we use print to show the string, we see the string broken
into two lines by the newline character.

>>> stuff = 'Hello\nWorld!'

>>> stuff

'Hello\nWorld!'

>>> print(stuff)

Hello

World!

>>> stuff = 'X\nY'

>>> print(stuff)

X

Y

>>> len(stuff)

3

You can also see that the length of the string X\nY is three characters because the
newline character is a single character.

So when we look at the lines in a file, we need to imagine that there is a special
invisible character called the newline at the end of each line that marks the end of
the line.

http://www.py4e.com/code3/mbox.txt
http://www.py4e.com/code3/mbox-short.txt
en.wikipedia.org/wiki/Mbox


82 CHAPTER 7. FILES

So the newline character separates the characters in the file into lines.

7.4 Reading files

While the file handle does not contain the data for the file, it is quite easy to
construct a for loop to read through and count each of the lines in a file:

fhand = open('mbox-short.txt')

count = 0

for line in fhand:

count = count + 1

print('Line Count:', count)

# Code: http://www.py4e.com/code3/open.py

We can use the file handle as the sequence in our for loop. Our for loop simply
counts the number of lines in the file and prints them out. The rough translation
of the for loop into English is, “for each line in the file represented by the file
handle, add one to the count variable.”

The reason that the open function does not read the entire file is that the file might
be quite large with many gigabytes of data. The open statement takes the same
amount of time regardless of the size of the file. The for loop actually causes the
data to be read from the file.

When the file is read using a for loop in this manner, Python takes care of splitting
the data in the file into separate lines using the newline character. Python reads
each line through the newline and includes the newline as the last character in the
line variable for each iteration of the for loop.

Because the for loop reads the data one line at a time, it can efficiently read and
count the lines in very large files without running out of main memory to store
the data. The above program can count the lines in any size file using very little
memory since each line is read, counted, and then discarded.

If you know the file is relatively small compared to the size of your main memory,
you can read the whole file into one string using the read method on the file handle.

>>> fhand = open('mbox-short.txt')

>>> inp = fhand.read()

>>> print(len(inp))

94626

>>> print(inp[:20])

From stephen.marquar

In this example, the entire contents (all 94,626 characters) of the file
mbox-short.txt are read directly into the variable inp. We use string slic-
ing to print out the first 20 characters of the string data stored in inp.

When the file is read in this manner, all the characters including all of the lines
and newline characters are one big string in the variable inp. Remember that this



7.5. SEARCHING THROUGH A FILE 83

form of the open function should only be used if the file data will fit comfortably
in the main memory of your computer.

If the file is too large to fit in main memory, you should write your program to
read the file in chunks using a for or while loop.

7.5 Searching through a file

When you are searching through data in a file, it is a very common pattern to read
through a file, ignoring most of the lines and only processing lines which meet a
particular condition. We can combine the pattern for reading a file with string
methods to build simple search mechanisms.

For example, if we wanted to read a file and only print out lines which started with
the prefix “From:”, we could use the string method startswith to select only those
lines with the desired prefix:

fhand = open('mbox-short.txt')

count = 0

for line in fhand:

if line.startswith('From:'):

print(line)

# Code: http://www.py4e.com/code3/search1.py

When this program runs, we get the following output:

From: stephen.marquard@uct.ac.za

From: louis@media.berkeley.edu

From: zqian@umich.edu

From: rjlowe@iupui.edu

...

The output looks great since the only lines we are seeing are those which start with
“From:”, but why are we seeing the extra blank lines? This is due to that invisible
newline character. Each of the lines ends with a newline, so the print statement
prints the string in the variable line which includes a newline and then print adds
another newline, resulting in the double spacing effect we see.

We could use line slicing to print all but the last character, but a simpler approach
is to use the rstrip method which strips whitespace from the right side of a string
as follows:

fhand = open('mbox-short.txt')

for line in fhand:

line = line.rstrip()

if line.startswith('From:'):



84 CHAPTER 7. FILES

print(line)

# Code: http://www.py4e.com/code3/search2.py

When this program runs, we get the following output:

From: stephen.marquard@uct.ac.za

From: louis@media.berkeley.edu

From: zqian@umich.edu

From: rjlowe@iupui.edu

From: zqian@umich.edu

From: rjlowe@iupui.edu

From: cwen@iupui.edu

...

As your file processing programs get more complicated, you may want to structure
your search loops using continue. The basic idea of the search loop is that you are
looking for “interesting” lines and effectively skipping “uninteresting” lines. And
then when we find an interesting line, we do something with that line.

We can structure the loop to follow the pattern of skipping uninteresting lines as
follows:

fhand = open('mbox-short.txt')

for line in fhand:

line = line.rstrip()

# Skip 'uninteresting lines'

if not line.startswith('From:'):

continue

# Process our 'interesting' line

print(line)

# Code: http://www.py4e.com/code3/search3.py

The output of the program is the same. In English, the uninteresting lines are
those which do not start with “From:”, which we skip using continue. For the
“interesting” lines (i.e., those that start with “From:”) we perform the processing
on those lines.

We can use the find string method to simulate a text editor search that finds lines
where the search string is anywhere in the line. Since find looks for an occurrence
of a string within another string and either returns the position of the string or -1
if the string was not found, we can write the following loop to show lines which
contain the string “@uct.ac.za” (i.e., they come from the University of Cape Town
in South Africa):

fhand = open('mbox-short.txt')

for line in fhand:

line = line.rstrip()

if line.find('@uct.ac.za') == -1: continue

print(line)

# Code: http://www.py4e.com/code3/search4.py



7.6. LETTING THE USER CHOOSE THE FILE NAME 85

Which produces the following output:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

X-Authentication-Warning: set sender to stephen.marquard@uct.ac.za using -f

From: stephen.marquard@uct.ac.za

Author: stephen.marquard@uct.ac.za

From david.horwitz@uct.ac.za Fri Jan 4 07:02:32 2008

X-Authentication-Warning: set sender to david.horwitz@uct.ac.za using -f

From: david.horwitz@uct.ac.za

Author: david.horwitz@uct.ac.za

...

7.6 Letting the user choose the file name

We really do not want to have to edit our Python code every time we want to
process a different file. It would be more usable to ask the user to enter the file
name string each time the program runs so they can use our program on different
files without changing the Python code.

This is quite simple to do by reading the file name from the user using raw_input

as follows:

fname = input('Enter the file name: ')

fhand = open(fname)

count = 0

for line in fhand:

if line.startswith('Subject:'):

count = count + 1

print('There were', count, 'subject lines in', fname)

# Code: http://www.py4e.com/code3/search6.py

We read the file name from the user and place it in a variable named fname and
open that file. Now we can run the program repeatedly on different files.

python search6.py

Enter the file name: mbox.txt

There were 1797 subject lines in mbox.txt

python search6.py

Enter the file name: mbox-short.txt

There were 27 subject lines in mbox-short.txt

Before peeking at the next section, take a look at the above program and ask
yourself, “What could go possibly wrong here?” or “What might our friendly user
do that would cause our nice little program to ungracefully exit with a traceback,
making us look not-so-cool in the eyes of our users?”



86 CHAPTER 7. FILES

7.7 Using try, except, and open

I told you not to peek. This is your last chance.

What if our user types something that is not a file name?

python search6.py

Enter the file name: missing.txt

Traceback (most recent call last):

File "search6.py", line 2, in <module>

fhand = open(fname)

FileNotFoundError: [Errno 2] No such file or directory: 'missing.txt'

python search6.py

Enter the file name: na na boo boo

Traceback (most recent call last):

File "search6.py", line 2, in <module>

fhand = open(fname)

FileNotFoundError: [Errno 2] No such file or directory: 'na na boo boo'

Do not laugh. Users will eventually do every possible thing they can do to break
your programs, either on purpose or with malicious intent. As a matter of fact,
an important part of any software development team is a person or group called
Quality Assurance (or QA for short) whose very job it is to do the craziest things
possible in an attempt to break the software that the programmer has created.

The QA team is responsible for finding the flaws in programs before we have
delivered the program to the end users who may be purchasing the software or
paying our salary to write the software. So the QA team is the programmer’s best
friend.

So now that we see the flaw in the program, we can elegantly fix it using the
try/except structure. We need to assume that the open call might fail and add
recovery code when the open fails as follows:

fname = input('Enter the file name: ')

try:

fhand = open(fname)

except:

print('File cannot be opened:', fname)

exit()

count = 0

for line in fhand:

if line.startswith('Subject:'):

count = count + 1

print('There were', count, 'subject lines in', fname)

# Code: http://www.py4e.com/code3/search7.py

The exit function terminates the program. It is a function that we call that never
returns. Now when our user (or QA team) types in silliness or bad file names, we
“catch” them and recover gracefully:



7.8. WRITING FILES 87

python search7.py

Enter the file name: mbox.txt

There were 1797 subject lines in mbox.txt

python search7.py

Enter the file name: na na boo boo

File cannot be opened: na na boo boo

Protecting the open call is a good example of the proper use of try and except

in a Python program. We use the term “Pythonic” when we are doing something
the “Python way”. We might say that the above example is the Pythonic way to
open a file.

Once you become more skilled in Python, you can engage in repartee with other
Python programmers to decide which of two equivalent solutions to a problem
is “more Pythonic”. The goal to be “more Pythonic” captures the notion that
programming is part engineering and part art. We are not always interested in
just making something work, we also want our solution to be elegant and to be
appreciated as elegant by our peers.

7.8 Writing files

To write a file, you have to open it with mode “w” as a second parameter:

>>> fout = open('output.txt', 'w')

>>> print(fout)

<_io.TextIOWrapper name='output.txt' mode='w' encoding='cp1252'>

If the file already exists, opening it in write mode clears out the old data and starts
fresh, so be careful! If the file doesn’t exist, a new one is created.

The write method of the file handle object puts data into the file, returning the
number of characters written. The default write mode is text for writing (and
reading) strings.

>>> line1 = "This here's the wattle,\n"

>>> fout.write(line1)

24

Again, the file object keeps track of where it is, so if you call write again, it adds
the new data to the end.

We must make sure to manage the ends of lines as we write to the file by explicitly
inserting the newline character when we want to end a line. The print statement
automatically appends a newline, but the write method does not add the newline
automatically.

>>> line2 = 'the emblem of our land.\n'

>>> fout.write(line2)

24



88 CHAPTER 7. FILES

When you are done writing, you have to close the file to make sure that the last
bit of data is physically written to the disk so it will not be lost if the power goes
off.

>>> fout.close()

We could close the files which we open for read as well, but we can be a little sloppy
if we are only opening a few files since Python makes sure that all open files are
closed when the program ends. When we are writing files, we want to explicitly
close the files so as to leave nothing to chance.

7.9 Debugging

When you are reading and writing files, you might run into problems with whites-
pace. These errors can be hard to debug because spaces, tabs, and newlines are
normally invisible:

>>> s = '1 2\t 3\n 4'

>>> print(s)

1 2 3

4

The built-in function repr can help. It takes any object as an argument and
returns a string representation of the object. For strings, it represents whitespace
characters with backslash sequences:

>>> print(repr(s))

'1 2\t 3\n 4'

This can be helpful for debugging.

One other problem you might run into is that different systems use different char-
acters to indicate the end of a line. Some systems use a newline, represented \n.
Others use a return character, represented \r. Some use both. If you move files
between different systems, these inconsistencies might cause problems.

For most systems, there are applications to convert from one format to another.
You can find them (and read more about this issue) at wikipedia.org/wiki/Newline.
Or, of course, you could write one yourself.

7.10 Glossary

catch To prevent an exception from terminating a program using the try and
except statements.

newline A special character used in files and strings to indicate the end of a line.

wikipedia.org/wiki/Newline


7.11. EXERCISES 89

Pythonic A technique that works elegantly in Python. “Using try and except is
the Pythonic way to recover from missing files”.

Quality Assurance A person or team focused on insuring the overall quality of
a software product. QA is often involved in testing a product and identifying
problems before the product is released.

text file A sequence of characters stored in permanent storage like a hard drive.

7.11 Exercises

Exercise 1: Write a program to read through a file and print the contents of the
file (line by line) all in upper case. Executing the program will look as follows:

python shout.py

Enter a file name: mbox-short.txt

FROM STEPHEN.MARQUARD@UCT.AC.ZA SAT JAN 5 09:14:16 2008

RETURN-PATH: <POSTMASTER@COLLAB.SAKAIPROJECT.ORG>

RECEIVED: FROM MURDER (MAIL.UMICH.EDU [141.211.14.90])

BY FRANKENSTEIN.MAIL.UMICH.EDU (CYRUS V2.3.8) WITH LMTPA;

SAT, 05 JAN 2008 09:14:16 -0500

You can download the file from

www.py4e.com/code3/mbox-short.txt

Exercise 2: Write a program to prompt for a file name, and then read through the
file and look for lines of the form:

X-DSPAM-Confidence:0.8475

When you encounter a line that starts with “X-DSPAM-Confidence:” pull apart
the line to extract the floating-point number on the line. Count these lines and
then compute the total of the spam confidence values from these lines. When you
reach the end of the file, print out the average spam confidence.

Enter the file name: mbox.txt

Average spam confidence: 0.894128046745

Enter the file name: mbox-short.txt

Average spam confidence: 0.750718518519

Test your file on the mbox.txt and mbox-short.txt files.

Exercise 3: Sometimes when programmers get bored or want to have a bit of fun,
they add a harmless Easter Egg to their program Modify the program that prompts
the user for the file name so that it prints a funny message when the user types in
the exact file name “na na boo boo”. The program should behave normally for all
other files which exist and don’t exist. Here is a sample execution of the program:

http://www.py4e.com/code3/mbox-short.txt


90 CHAPTER 7. FILES

python egg.py

Enter the file name: mbox.txt

There were 1797 subject lines in mbox.txt

python egg.py

Enter the file name: missing.tyxt

File cannot be opened: missing.tyxt

python egg.py

Enter the file name: na na boo boo

NA NA BOO BOO TO YOU - You have been punk'd!

We are not encouraging you to put Easter Eggs in your programs; this is just an
exercise.



Chapter 8

Lists

8.1 A list is a sequence

Like a string, a list is a sequence of values. In a string, the values are characters;
in a list, they can be any type. The values in list are called elements or sometimes
items.

There are several ways to create a new list; the simplest is to enclose the elements
in square brackets ([ and ]):

~~ {.python} [10, 20, 30, 40][‘crunchy frog’, ‘ram bladder’, ‘lark vomit’] ~~

{.python}

The first example is a list of four integers. The second is a list of three strings.
The elements of a list don’t have to be the same type. The following list contains
a string, a float, an integer, and (lo!) another list:

['spam', 2.0, 5, [10, 20]]

A list within another list is nested.

A list that contains no elements is called an empty list; you can create one with
empty brackets, [].

As you might expect, you can assign list values to variables:

>>> cheeses = ['Cheddar', 'Edam', 'Gouda']

>>> numbers = [17, 123]

>>> empty = []

>>> print(cheeses, numbers, empty)

['Cheddar', 'Edam', 'Gouda'] [17, 123] []

91



92 CHAPTER 8. LISTS

8.2 Lists are mutable

The syntax for accessing the elements of a list is the same as for accessing the
characters of a string: the bracket operator. The expression inside the brackets
specifies the index. Remember that the indices start at 0:

>>> print(cheeses[0])

Cheddar

Unlike strings, lists are mutable because you can change the order of items in a
list or reassign an item in a list. When the bracket operator appears on the left
side of an assignment, it identifies the element of the list that will be assigned.

>>> numbers = [17, 123]

>>> numbers[1] = 5

>>> print(numbers)

[17, 5]

The one-eth element of numbers, which used to be 123, is now 5.

You can think of a list as a relationship between indices and elements. This rela-
tionship is called a mapping; each index “maps to” one of the elements.

List indices work the same way as string indices:

• Any integer expression can be used as an index.

• If you try to read or write an element that does not exist, you get an
IndexError.

• If an index has a negative value, it counts backward from the end of the list.

The in operator also works on lists.

>>> cheeses = ['Cheddar', 'Edam', 'Gouda']

>>> 'Edam' in cheeses

True

>>> 'Brie' in cheeses

False

8.3 Traversing a list

The most common way to traverse the elements of a list is with a for loop. The
syntax is the same as for strings:

for cheese in cheeses:

print(cheese)



8.4. LIST OPERATIONS 93

This works well if you only need to read the elements of the list. But if you want
to write or update the elements, you need the indices. A common way to do that
is to combine the functions range and len:

for i in range(len(numbers)):

numbers[i] = numbers[i] * 2

This loop traverses the list and updates each element. len returns the number of
elements in the list. range returns a list of indices from 0 to n − 1, where n is
the length of the list. Each time through the loop, i gets the index of the next
element. The assignment statement in the body uses i to read the old value of the
element and to assign the new value.

A for loop over an empty list never executes the body:

for x in empty:

print('This never happens.')

Although a list can contain another list, the nested list still counts as a single
element. The length of this list is four:

['spam', 1, ['Brie', 'Roquefort', 'Pol le Veq'], [1, 2, 3]]

8.4 List operations

The + operator concatenates lists:

>>> a = [1, 2, 3]

>>> b = [4, 5, 6]

>>> c = a + b

>>> print(c)

[1, 2, 3, 4, 5, 6]

Similarly, the operator repeats a list a given number of times:

>>> [0] * 4

[0, 0, 0, 0]

>>> [1, 2, 3] * 3

[1, 2, 3, 1, 2, 3, 1, 2, 3]

The first example repeats four times. The second example repeats the list three
times.



94 CHAPTER 8. LISTS

8.5 List slices

The slice operator also works on lists:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']

>>> t[1:3]

['b', 'c']

>>> t[:4]

['a', 'b', 'c', 'd']

>>> t[3:]

['d', 'e', 'f']

If you omit the first index, the slice starts at the beginning. If you omit the second,
the slice goes to the end. So if you omit both, the slice is a copy of the whole list.

>>> t[:]

['a', 'b', 'c', 'd', 'e', 'f']

Since lists are mutable, it is often useful to make a copy before performing opera-
tions that fold, spindle, or mutilate lists.

A slice operator on the left side of an assignment can update multiple elements:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']

>>> t[1:3] = ['x', 'y']

>>> print(t)

['a', 'x', 'y', 'd', 'e', 'f']

8.6 List methods

Python provides methods that operate on lists. For example, append adds a new
element to the end of a list:

>>> t = ['a', 'b', 'c']

>>> t.append('d')

>>> print(t)

['a', 'b', 'c', 'd']

extend takes a list as an argument and appends all of the elements:

>>> t1 = ['a', 'b', 'c']

>>> t2 = ['d', 'e']

>>> t1.extend(t2)

>>> print(t1)

['a', 'b', 'c', 'd', 'e']

This example leaves t2 unmodified.

sort arranges the elements of the list from low to high:



8.7. DELETING ELEMENTS 95

>>> t = ['d', 'c', 'e', 'b', 'a']

>>> t.sort()

>>> print(t)

['a', 'b', 'c', 'd', 'e']

Most list methods are void; they modify the list and return None. If you acciden-
tally write t = t.sort(), you will be disappointed with the result.

8.7 Deleting elements

There are several ways to delete elements from a list. If you know the index of the
element you want, you can use pop:

>>> t = ['a', 'b', 'c']

>>> x = t.pop(1)

>>> print(t)

['a', 'c']

>>> print(x)

b

pop modifies the list and returns the element that was removed. If you don’t
provide an index, it deletes and returns the last element.

If you don’t need the removed value, you can use the del operator:

>>> t = ['a', 'b', 'c']

>>> del t[1]

>>> print(t)

['a', 'c']

If you know the element you want to remove (but not the index), you can use
remove:

>>> t = ['a', 'b', 'c']

>>> t.remove('b')

>>> print(t)

['a', 'c']

The return value from remove is None.

To remove more than one element, you can use del with a slice index:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']

>>> del t[1:5]

>>> print(t)

['a', 'f']

As usual, the slice selects all the elements up to, but not including, the second
index.



96 CHAPTER 8. LISTS

8.8 Lists and functions

There are a number of built-in functions that can be used on lists that allow you
to quickly look through a list without writing your own loops:

>>> nums = [3, 41, 12, 9, 74, 15]

>>> print(len(nums))

6

>>> print(max(nums))

74

>>> print(min(nums))

3

>>> print(sum(nums))

154

>>> print(sum(nums)/len(nums))

25

The sum() function only works when the list elements are numbers. The other
functions (max(), len(), etc.) work with lists of strings and other types that can
be comparable.

We could rewrite an earlier program that computed the average of a list of numbers
entered by the user using a list.

First, the program to compute an average without a list:

total = 0

count = 0

while (True):

inp = input('Enter a number: ')

if inp == 'done': break

value = float(inp)

total = total + value

count = count + 1

average = total / count

print('Average:', average)

# Code: http://www.py4e.com/code3/avenum.py

In this program, we have count and total variables to keep the number and
running total of the user’s numbers as we repeatedly prompt the user for a number.

We could simply remember each number as the user entered it and use built-in
functions to compute the sum and count at the end.

numlist = list()

while (True):

inp = input('Enter a number: ')

if inp == 'done': break

value = float(inp)



8.9. LISTS AND STRINGS 97

numlist.append(value)

average = sum(numlist) / len(numlist)

print('Average:', average)

# Code: http://www.py4e.com/code3/avelist.py

We make an empty list before the loop starts, and then each time we have a number,
we append it to the list. At the end of the program, we simply compute the sum
of the numbers in the list and divide it by the count of the numbers in the list to
come up with the average.

8.9 Lists and strings

A string is a sequence of characters and a list is a sequence of values, but a list
of characters is not the same as a string. To convert from a string to a list of
characters, you can use list:

>>> s = 'spam'

>>> t = list(s)

>>> print(t)

['s', 'p', 'a', 'm']

Because list is the name of a built-in function, you should avoid using it as a
variable name. I also avoid the letter l because it looks too much like the number
1. So that’s why I use t.

The list function breaks a string into individual letters. If you want to break a
string into words, you can use the split method:

>>> s = 'pining for the fjords'

>>> t = s.split()

>>> print(t)

['pining', 'for', 'the', 'fjords']

>>> print(t[2])

the

Once you have used split to break the string into a list of words, you can use the
index operator (square bracket) to look at a particular word in the list.

You can call split with an optional argument called a delimiter that specifies
which characters to use as word boundaries. The following example uses a hyphen
as a delimiter:

>>> s = 'spam-spam-spam'

>>> delimiter = '-'

>>> s.split(delimiter)

['spam', 'spam', 'spam']



98 CHAPTER 8. LISTS

join is the inverse of split. It takes a list of strings and concatenates the elements.
join is a string method, so you have to invoke it on the delimiter and pass the list
as a parameter:

>>> t = ['pining', 'for', 'the', 'fjords']

>>> delimiter = ' '

>>> delimiter.join(t)

'pining for the fjords'

In this case the delimiter is a space character, so join puts a space between words.
To concatenate strings without spaces, you can use the empty string, “”, as a
delimiter.

8.10 Parsing lines

Usually when we are reading a file we want to do something to the lines other than
just printing the whole line. Often we want to find the “interesting lines” and then
parse the line to find some interesting part of the line. What if we wanted to print
out the day of the week from those lines that start with “From”?

From stephen.marquard@uct.ac.zaSat Jan 5 09:14:16 2008

The split method is very effective when faced with this kind of problem. We can
write a small program that looks for lines where the line starts with “From”, split

those lines, and then print out the third word in the line:

fhand = open('mbox-short.txt')

for line in fhand:

line = line.rstrip()

if not line.startswith('From '): continue

words = line.split()

print(words[2])

# Code: http://www.py4e.com/code3/search5.py

Here we also use the contracted form of the if statement where we put the
continue on the same line as the if. This contracted form of the if functions the
same as if the continue were on the next line and indented.

The program produces the following output:

Sat

Fri

Fri

Fri

...

Later, we will learn increasingly sophisticated techniques for picking the lines to
work on and how we pull those lines apart to find the exact bit of information we
are looking for.



8.11. OBJECTS AND VALUES 99

8.11 Objects and values

If we execute these assignment statements:

a = 'banana'

b = 'banana'

we know that a and b both refer to a string, but we don’t know whether they refer
to the same string. There are two possible states:

a

b

‘banana’

‘banana’

a

b
‘banana’

Figure 8.1: Variables and Objects

In one case, a and b refer to two different objects that have the same value. In the
second case, they refer to the same object.

To check whether two variables refer to the same object, you can use the is oper-
ator.

>>> a = 'banana'

>>> b = 'banana'

>>> a is b

True

In this example, Python only created one string object, and both a and b refer to
it.

But when you create two lists, you get two objects:

>>> a = [1, 2, 3]

>>> b = [1, 2, 3]

>>> a is b

False

In this case we would say that the two lists are equivalent, because they have the
same elements, but not identical, because they are not the same object. If two
objects are identical, they are also equivalent, but if they are equivalent, they are
not necessarily identical.

Until now, we have been using “object” and “value” interchangeably, but it is more
precise to say that an object has a value. If you execute a = [1,2,3], a refers to
a list object whose value is a particular sequence of elements. If another list has
the same elements, we would say it has the same value.



100 CHAPTER 8. LISTS

8.12 Aliasing

If a refers to an object and you assign b = a, then both variables refer to the same
object:

>>> a = [1, 2, 3]

>>> b = a

>>> b is a

True

The association of a variable with an object is called a reference. In this example,
there are two references to the same object.

An object with more than one reference has more than one name, so we say that
the object is aliased.

If the aliased object is mutable, changes made with one alias affect the other:

>>> b[0] = 17

>>> print(a)

[17, 2, 3]

Although this behavior can be useful, it is error-prone. In general, it is safer to
avoid aliasing when you are working with mutable objects.

For immutable objects like strings, aliasing is not as much of a problem. In this
example:

a = 'banana'

b = 'banana'

it almost never makes a difference whether a and b refer to the same string or not.

8.13 List arguments

When you pass a list to a function, the function gets a reference to the list. If
the function modifies a list parameter, the caller sees the change. For example,
delete_head removes the first element from a list:

def delete_head(t):

del t[0]

Here’s how it is used:

>>> letters = ['a', 'b', 'c']

>>> delete_head(letters)

>>> print(letters)

['b', 'c']



8.13. LIST ARGUMENTS 101

The parameter t and the variable letters are aliases for the same object.

It is important to distinguish between operations that modify lists and operations
that create new lists. For example, the append method modifies a list, but the +

operator creates a new list:

>>> t1 = [1, 2]

>>> t2 = t1.append(3)

>>> print(t1)

[1, 2, 3]

>>> print(t2)

None

>>> t3 = t1 + [3]

>>> print(t3)

[1, 2, 3]

>>> t2 is t3

False

This difference is important when you write functions that are supposed to modify
lists. For example, this function does not delete the head of a list:

def bad_delete_head(t):

t = t[1:] # WRONG!

The slice operator creates a new list and the assignment makes t refer to it, but
none of that has any effect on the list that was passed as an argument.

An alternative is to write a function that creates and returns a new list. For
example, tail returns all but the first element of a list:

def tail(t):

return t[1:]

This function leaves the original list unmodified. Here’s how it is used:

>>> letters = ['a', 'b', 'c']

>>> rest = tail(letters)

>>> print(rest)

['b', 'c']

Exercise 1:

Write a function called chop that takes a list and modifies it, removing the first
and last elements, and returns None.

Then write a function called middle that takes a list and returns a new list that
contains all but the first and last elements.



102 CHAPTER 8. LISTS

8.14 Debugging

Careless use of lists (and other mutable objects) can lead to long hours of debugging.
Here are some common pitfalls and ways to avoid them:

1. Don’t forget that most list methods modify the argument and return None.
This is the opposite of the string methods, which return a new string and
leave the original alone.

If you are used to writing string code like this:

word = word.strip()

It is tempting to write list code like this: ~~ {.python} t = t.sort() #
WRONG! ~~

Because sort returns None, the next operation you perform with t is likely
to fail.

Before using list methods and operators, you should read the documentation
carefully and then test them in interactive mode. The methods and
operators that lists share with other sequences (like strings) are documented
at https://docs.python.org/2/library/stdtypes.html#string-methods. The
methods and operators that only apply to mutable sequences are documented
at https://docs.python.org/2/library/stdtypes.html#mutable-sequence-types.

2. Pick an idiom and stick with it.

Part of the problem with lists is that there are too many ways to do things.
For example, to remove an element from a list, you can use pop, remove, del,
or even a slice assignment.

To add an element, you can use the append method or the + operator. But
don’t forget that these are right:

t.append(x)

t = t + [x]

And these are wrong:

t.append([x]) # WRONG!

t = t.append(x) # WRONG!

t + [x] # WRONG!

t = t + x # WRONG!

Try out each of these examples in interactive mode to make sure you under-
stand what they do. Notice that only the last one causes a runtime error;
the other three are legal, but they do the wrong thing.

3. Make copies to avoid aliasing.

If you want to use a method like sort that modifies the argument, but you
need to keep the original list as well, you can make a copy.

orig = t[:]

t.sort()

https://docs.python.org/2/library/stdtypes.html#string-methods
https://docs.python.org/2/library/stdtypes.html#mutable-sequence-types


8.14. DEBUGGING 103

In this example you could also use the built-in function sorted, which returns
a new, sorted list and leaves the original alone. But in that case you should
avoid using sorted as a variable name!

4. Lists, split, and files

When we read and parse files, there are many opportunities to encounter
input that can crash our program so it is a good idea to revisit the guardian
pattern when it comes writing programs that read through a file and look
for a “needle in the haystack”.

Let’s revisit our program that is looking for the day of the week on the from
lines of our file:

From stephen.marquard@uct.ac.zaSatJan 5 09:14:16 2008

Since we are breaking this line into words, we could dispense with the use
of startswith and simply look at the first word of the line to determine if
we are interested in the line at all. We can use continue to skip lines that
don’t have “From” as the first word as follows:

fhand = open('mbox-short.txt')

for line in fhand:

words = line.split()

if words[0] != 'From' : continue

print(words[2])

This looks much simpler and we don’t even need to do the rstrip to remove
the newline at the end of the file. But is it better?

python search8.py

Sat

Traceback (most recent call last):

File "search8.py", line 5, in <module>

if words[0] != 'From' : continue

IndexError: list index out of range

It kind of works and we see the day from the first line (Sat), but then the
program fails with a traceback error. What went wrong? What messed-up
data caused our elegant, clever, and very Pythonic program to fail?

You could stare at it for a long time and puzzle through it or ask someone
for help, but the quicker and smarter approach is to add a print statement.
The best place to add the print statement is right before the line where the
program failed and print out the data that seems to be causing the failure.

Now this approach may generate a lot of lines of output, but at least you will
immediately have some clue as to the problem at hand. So we add a print of
the variable words right before line five. We even add a prefix “Debug:” to
the line so we can keep our regular output separate from our debug output.

for line in fhand:

words = line.split()

print('Debug:', words)

if words[0] != 'From' : continue

print(words[2])



104 CHAPTER 8. LISTS

When we run the program, a lot of output scrolls off the screen but at the
end, we see our debug output and the traceback so we know what happened
just before the traceback.

Debug: ['X-DSPAM-Confidence:', '0.8475']

Debug: ['X-DSPAM-Probability:', '0.0000']

Debug: []

Traceback (most recent call last):

File "search9.py", line 6, in <module>

if words[0] != 'From' : continue

IndexError: list index out of range

Each debug line is printing the list of words which we get when we split

the line into words. When the program fails, the list of words is empty [].
If we open the file in a text editor and look at the file, at that point it looks
as follows:

X-DSPAM-Result: Innocent

X-DSPAM-Processed: Sat Jan 5 09:14:16 2008

X-DSPAM-Confidence: 0.8475

X-DSPAM-Probability: 0.0000

Details: http://source.sakaiproject.org/viewsvn/?view=rev&rev=39772

The error occurs when our program encounters a blank line! Of course there
are “zero words” on a blank line. Why didn’t we think of that when we were
writing the code? When the code looks for the first word (word[0]) to check
to see if it matches “From”, we get an “index out of range” error.

This of course is the perfect place to add some guardian code to avoid check-
ing the first word if the first word is not there. There are many ways to
protect this code; we will choose to check the number of words we have
before we look at the first word:

fhand = open('mbox-short.txt')

count = 0

for line in fhand:

words = line.split()

# print 'Debug:', words

if len(words) == 0 : continue

if words[0] != 'From' : continue

print(words[2])

First we commented out the debug print statement instead of removing it,
in case our modification fails and we need to debug again. Then we added
a guardian statement that checks to see if we have zero words, and if so, we
use continue to skip to the next line in the file.

We can think of the two continue statements as helping us refine the set of
lines which are “interesting” to us and which we want to process some more.
A line which has no words is “uninteresting” to us so we skip to the next line.
A line which does not have “From” as its first word is uninteresting to us so
we skip it.



8.15. GLOSSARY 105

The program as modified runs successfully, so perhaps it is correct. Our
guardian statement does make sure that the words[0] will never fail, but
perhaps it is not enough. When we are programming, we must always be
thinking, “What might go wrong?”

Exercise 2: Figure out which line of the above program is still not properly guarded.
See if you can construct a text file which causes the program to fail and then modify
the program so that the line is properly guarded and test it to make sure it handles
your new text file.

Exercise 3: Rewrite the guardian code in the above example without two if state-
ments. Instead, use a compound logical expression using the and logical operator
with a single if statement.

8.15 Glossary

aliasing A circumstance where two or more variables refer to the same object.

delimiter A character or string used to indicate where a string should be split.

element One of the values in a list (or other sequence); also called items.

equivalent Having the same value.

index An integer value that indicates an element in a list.

identical Being the same object (which implies equivalence).

list A sequence of values.

list traversal The sequential accessing of each element in a list.

nested list A list that is an element of another list.

object Something a variable can refer to. An object has a type and a value.

reference The association between a variable and its value.



106 CHAPTER 8. LISTS

8.16 Exercises

Exercise 4: Download a copy of the file from www.py4e.com/code3/romeo.txt

Write a program to open the file romeo.txt and read it line by line. For each line,
split the line into a list of words using the split function.

For each word, check to see if the word is already in a list. If the word is not in
the list, add it to the list.

When the program completes, sort and print the resulting words in alphabetical
order.

Enter file: romeo.txt

['Arise', 'But', 'It', 'Juliet', 'Who', 'already',

'and', 'breaks', 'east', 'envious', 'fair', 'grief',

'is', 'kill', 'light', 'moon', 'pale', 'sick', 'soft',

'sun', 'the', 'through', 'what', 'window',

'with', 'yonder']

Exercise 5: Write a program to read through the mail box data and when you
find line that starts with “From”, you will split the line into words using the split

function. We are interested in who sent the message, which is the second word on
the From line.

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

You will parse the From line and print out the second word for each From line,
then you will also count the number of From (not From:) lines and print out a
count at the end.

This is a good sample output with a few lines removed:

python fromcount.py

Enter a file name: mbox-short.txt

stephen.marquard@uct.ac.za

louis@media.berkeley.edu

zqian@umich.edu

[...some output removed...]

ray@media.berkeley.edu

cwen@iupui.edu

cwen@iupui.edu

cwen@iupui.edu

There were 27 lines in the file with From as the first word

Exercise 6: Rewrite the program that prompts the user for a list of numbers and
prints out the maximum and minimum of the numbers at the end when the user
enters “done”. Write the program to store the numbers the user enters in a list
and use the max() and min() functions to compute the maximum and minimum
numbers after the loop completes.

http://www.py4e.com/code3/romeo.txt


8.16. EXERCISES 107

Enter a number: 6

Enter a number: 2

Enter a number: 9

Enter a number: 3

Enter a number: 5

Enter a number: done

Maximum: 9.0

Minimum: 2.0



108 CHAPTER 8. LISTS



Chapter 9

Dictionaries

A dictionary is like a list, but more general. In a list, the index positions have to
be integers; in a dictionary, the indices can be (almost) any type.

You can think of a dictionary as a mapping between a set of indices (which are
called keys) and a set of values. Each key maps to a value. The association of a
key and a value is called a key-value pair or sometimes an item.

As an example, we’ll build a dictionary that maps from English to Spanish words,
so the keys and the values are all strings.

The function dict creates a new dictionary with no items. Because dict is the
name of a built-in function, you should avoid using it as a variable name.

>>> eng2sp = dict()

>>> print(eng2sp)

{}

The curly brackets, {}, represent an empty dictionary. To add items to the dictio-
nary, you can use square brackets:

>>> eng2sp['one'] = 'uno'

This line creates an item that maps from the key ’one’ to the value “uno”. If we
print the dictionary again, we see a key-value pair with a colon between the key
and value:

>>> print(eng2sp)

{'one': 'uno'}

This output format is also an input format. For example, you can create a new
dictionary with three items. But if you print eng2sp, you might be surprised:

>>> eng2sp = {'one': 'uno', 'two': 'dos', 'three': 'tres'}

>>> print(eng2sp)

{'one': 'uno', 'three': 'tres', 'two': 'dos'}

109



110 CHAPTER 9. DICTIONARIES

The order of the key-value pairs is not the same. In fact, if you type the same
example on your computer, you might get a different result. In general, the order
of items in a dictionary is unpredictable.

But that’s not a problem because the elements of a dictionary are never indexed
with integer indices. Instead, you use the keys to look up the corresponding values:

>>> print(eng2sp['two'])

'dos'

The key ’two’ always maps to the value “dos” so the order of the items doesn’t
matter.

If the key isn’t in the dictionary, you get an exception:

>>> print(eng2sp['four'])

KeyError: 'four'

The len function works on dictionaries; it returns the number of key-value pairs:

>>> len(eng2sp)

3

The in operator works on dictionaries; it tells you whether something appears as
a key in the dictionary (appearing as a value is not good enough).

>>> 'one' in eng2sp

True

>>> 'uno' in eng2sp

False

To see whether something appears as a value in a dictionary, you can use the
method values, which returns the values as a list, and then use the in operator:

>>> vals = list(eng2sp.values())

>>> 'uno' in vals

True

The in operator uses different algorithms for lists and dictionaries. For lists, it
uses a linear search algorithm. As the list gets longer, the search time gets longer
in direct proportion to the length of the list. For dictionaries, Python uses an
algorithm called a hash table that has a remarkable property: the in operator
takes about the same amount of time no matter how many items there are in a
dictionary. I won’t explain why hash functions are so magical, but you can read
more about it at wikipedia.org/wiki/Hash_table.

Exercise 1: [wordlist2]

Write a program that reads the words in words.txt and stores them as keys in
a dictionary. It doesn’t matter what the values are. Then you can use the in

operator as a fast way to check whether a string is in the dictionary.

wikipedia.org/wiki/Hash_table


9.1. DICTIONARY AS A SET OF COUNTERS 111

9.1 Dictionary as a set of counters

Suppose you are given a string and you want to count how many times each letter
appears. There are several ways you could do it:

1. You could create 26 variables, one for each letter of the alphabet. Then you
could traverse the string and, for each character, increment the corresponding
counter, probably using a chained conditional.

2. You could create a list with 26 elements. Then you could convert each
character to a number (using the built-in function ord), use the number as
an index into the list, and increment the appropriate counter.

3. You could create a dictionary with characters as keys and counters as the
corresponding values. The first time you see a character, you would add
an item to the dictionary. After that you would increment the value of an
existing item.

Each of these options performs the same computation, but each of them implements
that computation in a different way.

An implementation is a way of performing a computation; some implementations
are better than others. For example, an advantage of the dictionary implementa-
tion is that we don’t have to know ahead of time which letters appear in the string
and we only have to make room for the letters that do appear.

Here is what the code might look like:

word = 'brontosaurus'

d = dict()

for c in word:

if c not in d:

d[c] = 1

else:

d[c] = d[c] + 1

print(d)

We are effectively computing a histogram, which is a statistical term for a set of
counters (or frequencies).

The for loop traverses the string. Each time through the loop, if the character c

is not in the dictionary, we create a new item with key c and the initial value 1
(since we have seen this letter once). If c is already in the dictionary we increment
d[c].

Here’s the output of the program:

{'a': 1, 'b': 1, 'o': 2, 'n': 1, 's': 2, 'r': 2, 'u': 2, 't': 1}

The histogram indicates that the letters ’a’ and “b” appear once; “o” appears
twice, and so on.



112 CHAPTER 9. DICTIONARIES

Dictionaries have a method called get that takes a key and a default value. If the
key appears in the dictionary, get returns the corresponding value; otherwise it
returns the default value. For example:

>>> counts = { 'chuck' : 1 , 'annie' : 42, 'jan': 100}

>>> print(counts.get('jan', 0))

100

>>> print(counts.get('tim', 0))

0

We can use get to write our histogram loop more concisely. Because the get

method automatically handles the case where a key is not in a dictionary, we can
reduce four lines down to one and eliminate the if statement.

word = 'brontosaurus'

d = dict()

for c in word:

d[c] = d.get(c,0) + 1

print(d)

The use of the get method to simplify this counting loop ends up being a very
commonly used “idiom” in Python and we will use it many times in the rest of the
book. So you should take a moment and compare the loop using the if statement
and in operator with the loop using the get method. They do exactly the same
thing, but one is more succinct.

9.2 Dictionaries and files

One of the common uses of a dictionary is to count the occurrence of words in a
file with some written text. Let’s start with a very simple file of words taken from
the text of Romeo and Juliet.

For the first set of examples, we will use a shortened and simplified version of
the text with no punctuation. Later we will work with the text of the scene with
punctuation included.

But soft what light through yonder window breaks

It is the east and Juliet is the sun

Arise fair sun and kill the envious moon

Who is already sick and pale with grief

We will write a Python program to read through the lines of the file, break each
line into a list of words, and then loop through each of the words in the line and
count each word using a dictionary.

You will see that we have two for loops. The outer loop is reading the lines of the
file and the inner loop is iterating through each of the words on that particular
line. This is an example of a pattern called nested loops because one of the loops
is the outer loop and the other loop is the inner loop.



9.3. LOOPING AND DICTIONARIES 113

Because the inner loop executes all of its iterations each time the outer loop makes
a single iteration, we think of the inner loop as iterating “more quickly” and the
outer loop as iterating more slowly.

The combination of the two nested loops ensures that we will count every word on
every line of the input file.

fname = input('Enter the file name: ')

try:

fhand = open(fname)

except:

print('File cannot be opened:', fname)

exit()

counts = dict()

for line in fhand:

words = line.split()

for word in words:

if word not in counts:

counts[word] = 1

else:

counts[word] += 1

print(counts)

# Code: http://www.py4e.com/code3/count1.py

When we run the program, we see a raw dump of all of the counts in unsorted
hash order. (the romeo.txt file is available at www.py4e.com/code3/romeo.txt)

python count1.py

Enter the file name: romeo.txt

{'and': 3, 'envious': 1, 'already': 1, 'fair': 1,

'is': 3, 'through': 1, 'pale': 1, 'yonder': 1,

'what': 1, 'sun': 2, 'Who': 1, 'But': 1, 'moon': 1,

'window': 1, 'sick': 1, 'east': 1, 'breaks': 1,

'grief': 1, 'with': 1, 'light': 1, 'It': 1, 'Arise': 1,

'kill': 1, 'the': 3, 'soft': 1, 'Juliet': 1}

It is a bit inconvenient to look through the dictionary to find the most common
words and their counts, so we need to add some more Python code to get us the
output that will be more helpful.

9.3 Looping and dictionaries

If you use a dictionary as the sequence in a for statement, it traverses the keys of
the dictionary. This loop prints each key and the corresponding value:

counts = { 'chuck' : 1 , 'annie' : 42, 'jan': 100}

for key in counts:

print(key, counts[key])

http://www.py4e.com/code3/romeo.txt


114 CHAPTER 9. DICTIONARIES

Here’s what the output looks like:

jan 100

chuck 1

annie 42

Again, the keys are in no particular order.

We can use this pattern to implement the various loop idioms that we have de-
scribed earlier. For example if we wanted to find all the entries in a dictionary
with a value above ten, we could write the following code:

counts = { 'chuck' : 1 , 'annie' : 42, 'jan': 100}

for key in counts:

if counts[key] > 10 :

print(key, counts[key])

The for loop iterates through the keys of the dictionary, so we must use the index
operator to retrieve the corresponding value for each key. Here’s what the output
looks like:

jan 100

annie 42

We see only the entries with a value above 10.

If you want to print the keys in alphabetical order, you first make a list of the keys
in the dictionary using the keys method available in dictionary objects, and then
sort that list and loop through the sorted list, looking up each key and printing
out key-value pairs in sorted order as follows:

counts = { 'chuck' : 1 , 'annie' : 42, 'jan': 100}

lst = list(counts.keys())

print(lst)

lst.sort()

for key in lst:

print(key, counts[key])

Here’s what the output looks like:

['jan', 'chuck', 'annie']

annie 42

chuck 1

jan 100

First you see the list of keys in unsorted order that we get from the keys method.
Then we see the key-value pairs in order from the for loop.



9.4. ADVANCED TEXT PARSING 115

9.4 Advanced text parsing

In the above example using the file romeo.txt, we made the file as simple as possi-
ble by removing all punctuation by hand. The actual text has lots of punctuation,
as shown below.

But, soft! what light through yonder window breaks?

It is the east, and Juliet is the sun.

Arise, fair sun, and kill the envious moon,

Who is already sick and pale with grief,

Since the Python split function looks for spaces and treats words as tokens sep-
arated by spaces, we would treat the words “soft!” and “soft” as different words
and create a separate dictionary entry for each word.

Also since the file has capitalization, we would treat “who” and “Who” as different
words with different counts.

We can solve both these problems by using the string methods lower, punctuation,
and translate. The translate is the most subtle of the methods. Here is the
documentation for translate:

line.translate(str.maketrans(fromstr, tostr, deletestr))

Replace the characters in fromstr with the character in the same position in tostr

and delete all characters that are in deletestr. The fromstr and tostr can be
empty strings and the deletestr parameter can be omitted.

We will not specify the table but we will use the deletechars parameter to delete
all of the punctuation. We will even let Python tell us the list of characters that
it considers “punctuation”:

>>> import string

>>> string.punctuation

'!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'

The parameters used by translate were different in Python 2.0.

We make the following modifications to our program:

import string

fname = input('Enter the file name: ')

try:

fhand = open(fname)

except:

print('File cannot be opened:', fname)

exit()

counts = dict()

for line in fhand:

line = line.rstrip()



116 CHAPTER 9. DICTIONARIES

line = line.translate(line.maketrans('', '', string.punctuation))

line = line.lower()

words = line.split()

for word in words:

if word not in counts:

counts[word] = 1

else:

counts[word] += 1

print(counts)

# Code: http://www.py4e.com/code3/count2.py

Part of learning the “Art of Python” or “Thinking Pythonically” is realizing that
Python often has built-in capabilities for many common data analysis problems.
Over time, you will see enough example code and read enough of the documentation
to know where to look to see if someone has already written something that makes
your job much easier.

The following is an abbreviated version of the output:

Enter the file name: romeo-full.txt

{'swearst': 1, 'all': 6, 'afeard': 1, 'leave': 2, 'these': 2,

'kinsmen': 2, 'what': 11, 'thinkst': 1, 'love': 24, 'cloak': 1,

a': 24, 'orchard': 2, 'light': 5, 'lovers': 2, 'romeo': 40,

'maiden': 1, 'whiteupturned': 1, 'juliet': 32, 'gentleman': 1,

'it': 22, 'leans': 1, 'canst': 1, 'having': 1, ...}

Looking through this output is still unwieldy and we can use Python to give us
exactly what we are looking for, but to do so, we need to learn about Python tuples.
We will pick up this example once we learn about tuples.

9.5 Debugging

As you work with bigger datasets it can become unwieldy to debug by printing and
checking data by hand. Here are some suggestions for debugging large datasets:

Scale down the input If possible, reduce the size of the dataset. For example
if the program reads a text file, start with just the first 10 lines, or with the
smallest example you can find. You can either edit the files themselves, or
(better) modify the program so it reads only the first n lines.

If there is an error, you can reduce n to the smallest value that manifests the
error, and then increase it gradually as you find and correct errors.

Check summaries and types Instead of printing and checking the entire
dataset, consider printing summaries of the data: for example, the number
of items in a dictionary or the total of a list of numbers.

A common cause of runtime errors is a value that is not the right type. For
debugging this kind of error, it is often enough to print the type of a value.



9.6. GLOSSARY 117

Write self-checks Sometimes you can write code to check for errors automati-
cally. For example, if you are computing the average of a list of numbers, you
could check that the result is not greater than the largest element in the list
or less than the smallest. This is called a “sanity check” because it detects
results that are “completely illogical”.

Another kind of check compares the results of two different

computations to see if they are consistent. This is called a

"consistency check".

Pretty print the output Formatting debugging output can make it easier to
spot an error.

Again, time you spend building scaffolding can reduce the time you spend debug-
ging.

9.6 Glossary

dictionary A mapping from a set of keys to their corresponding values.

hashtable The algorithm used to implement Python dictionaries.

hash function A function used by a hashtable to compute the location for a key.

histogram A set of counters.

implementation A way of performing a computation.

item Another name for a key-value pair.

key An object that appears in a dictionary as the first part of a key-value pair.

key-value pair The representation of the mapping from a key to a value.

lookup A dictionary operation that takes a key and finds the corresponding value.

nested loops When there are one or more loops “inside” of another loop. The
inner loop runs to completion each time the outer loop runs once.

value An object that appears in a dictionary as the second part of a key-value
pair. This is more specific than our previous use of the word “value”.



118 CHAPTER 9. DICTIONARIES

9.7 Exercises

Exercise 2: Write a program that categorizes each mail message by which day of
the week the commit was done. To do this look for lines that start with “From”,
then look for the third word and keep a running count of each of the days of the
week. At the end of the program print out the contents of your dictionary (order
does not matter).

Sample Line:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Sample Execution:

python dow.py

Enter a file name: mbox-short.txt

{'Fri': 20, 'Thu': 6, 'Sat': 1}

Exercise 3: Write a program to read through a mail log, build a histogram using
a dictionary to count how many messages have come from each email address, and
print the dictionary.

Enter file name: mbox-short.txt

{'gopal.ramasammycook@gmail.com': 1, 'louis@media.berkeley.edu': 3,

'cwen@iupui.edu': 5, 'antranig@caret.cam.ac.uk': 1,

'rjlowe@iupui.edu': 2, 'gsilver@umich.edu': 3,

'david.horwitz@uct.ac.za': 4, 'wagnermr@iupui.edu': 1,

'zqian@umich.edu': 4, 'stephen.marquard@uct.ac.za': 2,

'ray@media.berkeley.edu': 1}

Exercise 4: Add code to the above program to figure out who has the most
messages in the file.

After all the data has been read and the dictionary has been created, look through
the dictionary using a maximum loop (see Section [maximumloop]) to find who
has the most messages and print how many messages the person has.

Enter a file name: mbox-short.txt

cwen@iupui.edu 5

Enter a file name: mbox.txt

zqian@umich.edu 195

Exercise 5: This program records the domain name (instead of the address) where
the message was sent from instead of who the mail came from (i.e., the whole email
address). At the end of the program, print out the contents of your dictionary.

python schoolcount.py

Enter a file name: mbox-short.txt

{'media.berkeley.edu': 4, 'uct.ac.za': 6, 'umich.edu': 7,

'gmail.com': 1, 'caret.cam.ac.uk': 1, 'iupui.edu': 8}



Chapter 10

Tuples

10.1 Tuples are immutable

A tuple1 is a sequence of values much like a list. The values stored in a tuple can
be any type, and they are indexed by integers. The important difference is that
tuples are immutable. Tuples are also comparable and hashable so we can sort lists
of them and use tuples as key values in Python dictionaries.

Syntactically, a tuple is a comma-separated list of values:

>>> t = 'a', 'b', 'c', 'd', 'e'

Although it is not necessary, it is common to enclose tuples in parentheses to help
us quickly identify tuples when we look at Python code:

>>> t = ('a', 'b', 'c', 'd', 'e')

To create a tuple with a single element, you have to include the final comma:

>>> t1 = ('a',)

>>> type(t1)

<type 'tuple'>

Without the comma Python treats (’a’) as an expression with a string in paren-
theses that evaluates to a string:

>>> t2 = ('a')

>>> type(t2)

<type 'str'>

Another way to construct a tuple is the built-in function tuple. With no argument,
it creates an empty tuple:

1Fun fact: The word “tuple” comes from the names given to sequences of numbers of varying
lengths: single, double, triple, quadruple, quituple, sextuple, septuple, etc.

119



120 CHAPTER 10. TUPLES

>>> t = tuple()

>>> print(t)

()

If the argument is a sequence (string, list, or tuple), the result of the call to tuple

is a tuple with the elements of the sequence:

>>> t = tuple('lupins')

>>> print(t)

('l', 'u', 'p', 'i', 'n', 's')

Because tuple is the name of a constructor, you should avoid using it as a variable
name.

Most list operators also work on tuples. The bracket operator indexes an element:

>>> t = ('a', 'b', 'c', 'd', 'e')

>>> print(t[0])

'a'

And the slice operator selects a range of elements.

>>> print(t[1:3])

('b', 'c')

But if you try to modify one of the elements of the tuple, you get an error:

>>> t[0] = 'A'

TypeError: object doesn't support item assignment

You can’t modify the elements of a tuple, but you can replace one tuple with
another:

>>> t = ('A',) + t[1:]

>>> print(t)

('A', 'b', 'c', 'd', 'e')

10.2 Comparing tuples

The comparison operators work with tuples and other sequences. Python starts by
comparing the first element from each sequence. If they are equal, it goes on to the
next element, and so on, until it finds elements that differ. Subsequent elements
are not considered (even if they are really big).

>>> (0, 1, 2) < (0, 3, 4)

True

>>> (0, 1, 2000000) < (0, 3, 4)

True



10.2. COMPARING TUPLES 121

The sort function works the same way. It sorts primarily by first element, but in
the case of a tie, it sorts by second element, and so on.

This feature lends itself to a pattern called DSU for

Decorate a sequence by building a list of tuples with one or more sort keys
preceding the elements from the sequence,

Sort the list of tuples using the Python built-in sort, and

Undecorate by extracting the sorted elements of the sequence.

[DSU]

For example, suppose you have a list of words and you want to sort them from
longest to shortest:

txt = 'but soft what light in yonder window breaks'

words = txt.split()

t = list()

for word in words:

t.append((len(word), word))

t.sort(reverse=True)

res = list()

for length, word in t:

res.append(word)

print(res)

# Code: http://www.py4e.com/code3/soft.py

The first loop builds a list of tuples, where each tuple is a word preceded by its
length.

sort compares the first element, length, first, and only considers the second el-
ement to break ties. The keyword argument reverse=True tells sort to go in
decreasing order.

The second loop traverses the list of tuples and builds a list of words in descending
order of length. The four-character words are sorted in reverse alphabetical order,
so “what” appears before “soft” in the following list.

The output of the program is as follows:

['yonder', 'window', 'breaks', 'light', 'what',

'soft', 'but', 'in']

Of course the line loses much of its poetic impact when turned into a Python list
and sorted in descending word length order.



122 CHAPTER 10. TUPLES

10.3 Tuple assignment

One of the unique syntactic features of the Python language is the ability to have
a tuple on the left side of an assignment statement. This allows you to assign more
than one variable at a time when the left side is a sequence.

In this example we have a two-element list (which is a sequence) and assign the first
and second elements of the sequence to the variables x and y in a single statement.

>>> m = [ 'have', 'fun' ]

>>> x, y = m

>>> x

'have'

>>> y

'fun'

>>>

It is not magic, Python roughly translates the tuple assignment syntax to be the
following:2

>>> m = [ 'have', 'fun' ]

>>> x = m[0]

>>> y = m[1]

>>> x

'have'

>>> y

'fun'

>>>

Stylistically when we use a tuple on the left side of the assignment statement, we
omit the parentheses, but the following is an equally valid syntax:

>>> m = [ 'have', 'fun' ]

>>> (x, y) = m

>>> x

'have'

>>> y

'fun'

>>>

A particularly clever application of tuple assignment allows us to swap the values
of two variables in a single statement:

>>> a, b = b, a

2Python does not translate the syntax literally. For example, if you try this with a dictionary,
it will not work as might expect.



10.4. DICTIONARIES AND TUPLES 123

Both sides of this statement are tuples, but the left side is a tuple of variables;
the right side is a tuple of expressions. Each value on the right side is assigned
to its respective variable on the left side. All the expressions on the right side are
evaluated before any of the assignments.

The number of variables on the left and the number of values on the right must be
the same:

>>> a, b = 1, 2, 3

ValueError: too many values to unpack

More generally, the right side can be any kind of sequence (string, list, or tuple).
For example, to split an email address into a user name and a domain, you could
write:

>>> addr = 'monty@python.org'

>>> uname, domain = addr.split('@')

The return value from split is a list with two elements; the first element is assigned
to uname, the second to domain.

>>> print(uname)

monty

>>> print(domain)

python.org

10.4 Dictionaries and tuples

Dictionaries have a method called items that returns a list of tuples, where each
tuple is a key-value pair:

>>> d = {'a':10, 'b':1, 'c':22}

>>> t = list(d.items())

>>> print(t)

[('b', 1), ('a', 10), ('c', 22)]

As you should expect from a dictionary, the items are in no particular order.

However, since the list of tuples is a list, and tuples are comparable, we can now
sort the list of tuples. Converting a dictionary to a list of tuples is a way for us to
output the contents of a dictionary sorted by key:

>>> d = {'a':10, 'b':1, 'c':22}

>>> t = list(d.items())

>>> t

[('b', 1), ('a', 10), ('c', 22)]

>>> t.sort()

>>> t

[('a', 10), ('b', 1), ('c', 22)]

The new list is sorted in ascending alphabetical order by the key value.



124 CHAPTER 10. TUPLES

10.5 Multiple assignment with dictionaries

Combining items, tuple assignment, and for, you can see a nice code pattern for
traversing the keys and values of a dictionary in a single loop:

for key, val in list(d.items()):

print(val, key)

This loop has two iteration variables because items returns a list of tuples and key,

val is a tuple assignment that successively iterates through each of the key-value
pairs in the dictionary.

For each iteration through the loop, both key and value are advanced to the next
key-value pair in the dictionary (still in hash order).

The output of this loop is:

10 a

22 c

1 b

Again, it is in hash key order (i.e., no particular order).

If we combine these two techniques, we can print out the contents of a dictionary
sorted by the value stored in each key-value pair.

To do this, we first make a list of tuples where each tuple is (value, key). The
items method would give us a list of (key, value) tuples, but this time we want
to sort by value, not key. Once we have constructed the list with the value-key
tuples, it is a simple matter to sort the list in reverse order and print out the new,
sorted list.

>>> d = {'a':10, 'b':1, 'c':22}

>>> l = list()

>>> for key, val in d.items() :

... l.append( (val, key) )

...

>>> l

[(10, 'a'), (22, 'c'), (1, 'b')]

>>> l.sort(reverse=True)

>>> l

[(22, 'c'), (10, 'a'), (1, 'b')]

>>>

By carefully constructing the list of tuples to have the value as the first element
of each tuple, we can sort the list of tuples and get our dictionary contents sorted
by value.



10.6. THE MOST COMMON WORDS 125

10.6 The most common words

Coming back to our running example of the text from Romeo and Juliet Act 2,
Scene 2, we can augment our program to use this technique to print the ten most
common words in the text as follows:

import string

fhand = open('romeo-full.txt')

counts = dict()

for line in fhand:

line = line.translate(str.maketrans('', '', string.punctuation))

line = line.lower()

words = line.split()

for word in words:

if word not in counts:

counts[word] = 1

else:

counts[word] += 1

# Sort the dictionary by value

lst = list()

for key, val in list(counts.items()):

lst.append((val, key))

lst.sort(reverse=True)

for key, val in lst[:10]:

print(key, val)

# Code: http://www.py4e.com/code3/count3.py

The first part of the program which reads the file and computes the dictionary
that maps each word to the count of words in the document is unchanged. But
instead of simply printing out counts and ending the program, we construct a list
of (val, key) tuples and then sort the list in reverse order.

Since the value is first, it will be used for the comparisons. If there is more than
one tuple with the same value, it will look at the second element (the key), so
tuples where the value is the same will be further sorted by the alphabetical order
of the key.

At the end we write a nice for loop which does a multiple assignment iteration
and prints out the ten most common words by iterating through a slice of the list
(lst[:10]).

So now the output finally looks like what we want for our word frequency analysis.

61 i

42 and

40 romeo

34 to

34 the



126 CHAPTER 10. TUPLES

32 thou

32 juliet

30 that

29 my

24 thee

The fact that this complex data parsing and analysis can be done with an easy-to-
understand 19-line Python program is one reason why Python is a good choice as
a language for exploring information.

10.7 Using tuples as keys in dictionaries

Because tuples are hashable and lists are not, if we want to create a composite key
to use in a dictionary we must use a tuple as the key.

We would encounter a composite key if we wanted to create a telephone directory
that maps from last-name, first-name pairs to telephone numbers. Assuming that
we have defined the variables last, first, and number, we could write a dictionary
assignment statement as follows:

directory[last,first] = number

The expression in brackets is a tuple. We could use tuple assignment in a for loop
to traverse this dictionary.

for last, first in directory:

print(first, last, directory[last,first])

This loop traverses the keys in directory, which are tuples. It assigns the elements
of each tuple to last and first, then prints the name and corresponding telephone
number.

10.8 Sequences: strings, lists, and tuples - Oh
My!

I have focused on lists of tuples, but almost all of the examples in this chapter
also work with lists of lists, tuples of tuples, and tuples of lists. To avoid enumer-
ating the possible combinations, it is sometimes easier to talk about sequences of
sequences.

In many contexts, the different kinds of sequences (strings, lists, and tuples) can
be used interchangeably. So how and why do you choose one over the others?

To start with the obvious, strings are more limited than other sequences because
the elements have to be characters. They are also immutable. If you need the
ability to change the characters in a string (as opposed to creating a new string),
you might want to use a list of characters instead.

Lists are more common than tuples, mostly because they are mutable. But there
are a few cases where you might prefer tuples:



10.9. DEBUGGING 127

1. In some contexts, like a return statement, it is syntactically simpler to create
a tuple than a list. In other contexts, you might prefer a list.

2. If you want to use a sequence as a dictionary key, you have to use an im-
mutable type like a tuple or string.

3. If you are passing a sequence as an argument to a function, using tuples
reduces the potential for unexpected behavior due to aliasing.

Because tuples are immutable, they don’t provide methods like sort and reverse,
which modify existing lists. However Python provides the built-in functions sorted

and reversed, which take any sequence as a parameter and return a new sequence
with the same elements in a different order.

10.9 Debugging

Lists, dictionaries and tuples are known generically as data structures; in this
chapter we are starting to see compound data structures, like lists of tuples, and
dictionaries that contain tuples as keys and lists as values. Compound data struc-
tures are useful, but they are prone to what I call shape errors; that is, errors
caused when a data structure has the wrong type, size, or composition, or perhaps
you write some code and forget the shape of your data and introduce an error.

For example, if you are expecting a list with one integer and I give you a plain old
integer (not in a list), it won’t work.

When you are debugging a program, and especially if you are working on a hard
bug, there are four things to try:

reading Examine your code, read it back to yourself, and check that it says what
you meant to say.

running Experiment by making changes and running different versions. Often
if you display the right thing at the right place in the program, the prob-
lem becomes obvious, but sometimes you have to spend some time to build
scaffolding.

ruminating Take some time to think! What kind of error is it: syntax, runtime,
semantic? What information can you get from the error messages, or from
the output of the program? What kind of error could cause the problem
you’re seeing? What did you change last, before the problem appeared?

retreating At some point, the best thing to do is back off, undoing recent changes,
until you get back to a program that works and that you understand. Then
you can start rebuilding.

Beginning programmers sometimes get stuck on one of these activities and forget
the others. Each activity comes with its own failure mode.

For example, reading your code might help if the problem is a typographical error,
but not if the problem is a conceptual misunderstanding. If you don’t understand



128 CHAPTER 10. TUPLES

what your program does, you can read it 100 times and never see the error, because
the error is in your head.

Running experiments can help, especially if you run small, simple tests. But if
you run experiments without thinking or reading your code, you might fall into
a pattern I call “random walk programming”, which is the process of making
random changes until the program does the right thing. Needless to say, random
walk programming can take a long time.

You have to take time to think. Debugging is like an experimental science. You
should have at least one hypothesis about what the problem is. If there are two or
more possibilities, try to think of a test that would eliminate one of them.

Taking a break helps with the thinking. So does talking. If you explain the problem
to someone else (or even to yourself), you will sometimes find the answer before
you finish asking the question.

But even the best debugging techniques will fail if there are too many errors, or
if the code you are trying to fix is too big and complicated. Sometimes the best
option is to retreat, simplifying the program until you get to something that works
and that you understand.

Beginning programmers are often reluctant to retreat because they can’t stand to
delete a line of code (even if it’s wrong). If it makes you feel better, copy your
program into another file before you start stripping it down. Then you can paste
the pieces back in a little bit at a time.

Finding a hard bug requires reading, running, ruminating, and sometimes retreat-
ing. If you get stuck on one of these activities, try the others.

10.10 Glossary

comparable A type where one value can be checked to see if it is greater than,
less than, or equal to another value of the same type. Types which are
comparable can be put in a list and sorted.

data structure A collection of related values, often organized in lists, dictionaries,
tuples, etc.

DSU Abbreviation of “decorate-sort-undecorate”, a pattern that involves building
a list of tuples, sorting, and extracting part of the result.

gather The operation of assembling a variable-length argument tuple.

hashable A type that has a hash function. Immutable types like integers, floats,
and strings are hashable; mutable types like lists and dictionaries are not.



10.11. EXERCISES 129

scatter The operation of treating a sequence as a list of arguments.

shape (of a data structure) A summary of the type, size, and composition of
a data structure.

singleton A list (or other sequence) with a single element.

tuple An immutable sequence of elements.

tuple assignment An assignment with a sequence on the right side and a tuple
of variables on the left. The right side is evaluated and then its elements are
assigned to the variables on the left.

10.11 Exercises

Exercise 1: Revise a previous program as follows: Read and parse the “From”
lines and pull out the addresses from the line. Count the number of messages from
each person using a dictionary.

After all the data has been read, print the person with the most commits by
creating a list of (count, email) tuples from the dictionary. Then sort the list in
reverse order and print out the person who has the most commits.

Sample Line:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Enter a file name: mbox-short.txt

cwen@iupui.edu 5

Enter a file name: mbox.txt

zqian@umich.edu 195

Exercise 2: This program counts the distribution of the hour of the day for each
of the messages. You can pull the hour from the “From” line by finding the time
string and then splitting that string into parts using the colon character. Once
you have accumulated the counts for each hour, print out the counts, one per line,
sorted by hour as shown below.

Sample Execution:

python timeofday.py

Enter a file name: mbox-short.txt

04 3

06 1

07 1

09 2



130 CHAPTER 10. TUPLES

10 3

11 6

14 1

15 2

16 4

17 2

18 1

19 1

Exercise 3: Write a program that reads a file and prints the letters in decreasing
order of frequency. Your program should convert all the input to lower case and
only count the letters a-z. Your program should not count spaces, digits, punctua-
tion, or anything other than the letters a-z. Find text samples from several different
languages and see how letter frequency varies between languages. Compare your
results with the tables at wikipedia.org/wiki/Letter_frequencies.

wikipedia.org/wiki/Letter_frequencies


Chapter 11

Regular expressions

So far we have been reading through files, looking for patterns and extracting
various bits of lines that we find interesting. We have been

using string methods like split and find and using lists and string slicing to
extract portions of the lines.

This task of searching and extracting is so common that Python has a very powerful
library called regular expressions that handles many of these tasks quite elegantly.
The reason we have not introduced regular expressions earlier in the book is because
while they are very powerful, they are a little complicated and their syntax takes
some getting used to.

Regular expressions are almost their own little programming language for searching
and parsing strings. As a matter of fact, entire books have been written on the
topic of regular expressions. In this chapter, we will only cover the basics of regular
expressions. For more detail on regular expressions, see:

http://en.wikipedia.org/wiki/Regular_expression

https://docs.python.org/2/library/re.html

The regular expression library re must be imported into your program before you
can use it. The simplest use of the regular expression library is the search()

function. The following program demonstrates a trivial use of the search function.

# Search for lines that contain 'From'

import re

hand = open('mbox-short.txt')

for line in hand:

line = line.rstrip()

if re.search('From:', line):

print(line)

# Code: http://www.py4e.com/code3/re01.py

We open the file, loop through each line, and use the regular expression search()

to only print out lines that contain the string “From:”. This program does not

131

http://en.wikipedia.org/wiki/Regular_expression
https://docs.python.org/2/library/re.html


132 CHAPTER 11. REGULAR EXPRESSIONS

use the real power of regular expressions, since we could have just as easily used
line.find() to accomplish the same result.

The power of the regular expressions comes when we add special characters to
the search string that allow us to more precisely control which lines match the
string. Adding these special characters to our regular expression allow us to do
sophisticated matching and extraction while writing very little code.

For example, the caret character is used in regular expressions to match “the
beginning” of a line. We could change our program to only match lines where
“From:” was at the beginning of the line as follows:

# Search for lines that start with 'From'

import re

hand = open('mbox-short.txt')

for line in hand:

line = line.rstrip()

if re.search('^From:', line):

print(line)

# Code: http://www.py4e.com/code3/re02.py

Now we will only match lines that start with the string “From:”. This is still a
very simple example that we could have done equivalently with the startswith()

method from the string library. But it serves to introduce the notion that regular
expressions contain special action characters that give us more control as to what
will match the regular expression.

11.1 Character matching in regular expressions

There are a number of other special characters that let us build even more powerful
regular expressions. The most commonly used special character is the period or
full stop, which matches any character.

In the following example, the regular expression “F..m:” would match any of the
strings “From:”, “Fxxm:”, “F12m:”, or “F!@m:” since the period characters in the
regular expression match any character.

# Search for lines that start with 'F', followed by

# 2 characters, followed by 'm:'

import re

hand = open('mbox-short.txt')

for line in hand:

line = line.rstrip()

if re.search('^F..m:', line):

print(line)

# Code: http://www.py4e.com/code3/re03.py



11.2. EXTRACTING DATA USING REGULAR EXPRESSIONS 133

This is particularly powerful when combined with the ability to indicate that a
character can be repeated any number of times using the “*” or “+” characters in
your regular expression. These special characters mean that instead of matching
a single character in the search string, they match zero-or-more characters (in the
case of the asterisk) or one-or-more of the characters (in the case of the plus sign).

We can further narrow down the lines that we match using a repeated wild card
character in the following example:

# Search for lines that start with From and have an at sign

import re

hand = open('mbox-short.txt')

for line in hand:

line = line.rstrip()

if re.search('^From:.+@', line):

print(line)

# Code: http://www.py4e.com/code3/re04.py

The search string “ˆFrom:.+@” will successfully match lines that start with
“From:”, followed by one or more characters (“.+”), followed by an at-sign. So
this will match the following line:

From: uct.ac.za

You can think of the “.+” wildcard as expanding to match all the characters be-
tween the colon character and the at-sign.

From:

It is good to think of the plus and asterisk characters as “pushy”. For example,
the following string would match the last at-sign in the string as the “.+” pushes
outwards, as shown below:

From: iupui.edu

It is possible to tell an asterisk or plus sign not to be so “greedy” by adding
another character. See the detailed documentation for information on turning off
the greedy behavior.

11.2 Extracting data using regular expressions

If we want to extract data from a string in Python we can use the findall()

method to extract all of the substrings which match a regular expression. Let’s use
the example of wanting to extract anything that looks like an email address from
any line regardless of format. For example, we want to pull the email addresses
from each of the following lines:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Return-Path: <postmaster@collab.sakaiproject.org>

for <source@collab.sakaiproject.org>;

Received: (from apache@localhost)

Author: stephen.marquard@uct.ac.za



134 CHAPTER 11. REGULAR EXPRESSIONS

We don’t want to write code for each of the types of lines, splitting and slicing
differently for each line. This following program uses findall() to find the lines
with email addresses in them and extract one or more addresses from each of those
lines.

import re

s = 'A message from csev@umich.edu to cwen@iupui.edu about meeting @2PM'

lst = re.findall('\S+@\S+', s)

print(lst)

# Code: http://www.py4e.com/code3/re05.py

The findall() method searches the string in the second argument and returns a
list of all of the strings that look like email addresses. We are using a two-character
sequence that matches a non-whitespace character (\S).

The output of the program would be:

['csev@umich.edu', 'cwen@iupui.edu']

Translating the regular expression, we are looking for substrings that have at least
one non-whitespace character, followed by an at-sign, followed by at least one more
non-whitespace character. The “\S+” matches as many non-whitespace characters
as possible.

The regular expression would match twice (csev@umich.edu and cwen@iupui.edu),
but it would not match the string “@2PM” because there are no non-blank char-
acters before the at-sign. We can use this regular expression in a program to read
all the lines in a file and print out anything that looks like an email address as
follows:

# Search for lines that have an at sign between characters

import re

hand = open('mbox-short.txt')

for line in hand:

line = line.rstrip()

x = re.findall('\S+@\S+', line)

if len(x) > 0:

print(x)

# Code: http://www.py4e.com/code3/re06.py

We read each line and then extract all the substrings that match our regular
expression. Since findall() returns a list, we simply check if the number of
elements in our returned list is more than zero to print only lines where we found
at least one substring that looks like an email address.

If we run the program on mbox.txt we get the following output:

['wagnermr@iupui.edu']

['cwen@iupui.edu']



11.2. EXTRACTING DATA USING REGULAR EXPRESSIONS 135

['<postmaster@collab.sakaiproject.org>']

['<200801032122.m03LMFo4005148@nakamura.uits.iupui.edu>']

['<source@collab.sakaiproject.org>;']

['<source@collab.sakaiproject.org>;']

['<source@collab.sakaiproject.org>;']

['apache@localhost)']

['source@collab.sakaiproject.org;']

Some of our email addresses have incorrect characters like “<” or “;” at the begin-
ning or end. Let’s declare that we are only interested in the portion of the string
that starts and ends with a letter or a number.

To do this, we use another feature of regular expressions. Square brackets are
used to indicate a set of multiple acceptable characters we are willing to consider
matching. In a sense, the “\S” is asking to match the set of “non-whitespace
characters”. Now we will be a little more explicit in terms of the characters we will
match.

Here is our new regular expression:

[a-zA-Z0-9]\S*@\S*[a-zA-Z]

This is getting a little complicated and you can begin to see why regular expressions
are their own little language unto themselves. Translating this regular expression,
we are looking for substrings that start with a single lowercase letter, uppercase
letter, or number “[a-zA-Z0-9]”, followed by zero or more non-blank characters
(“\S*”), followed by an at-sign, followed by zero or more non-blank characters
(“\S*”), followed by an uppercase or lowercase letter. Note that we switched from
“+” to “*” to indicate zero or more non-blank characters since “[a-zA-Z0-9]” is
already one non-blank character. Remember that the “*” or “+” applies to the
single character immediately to the left of the plus or asterisk.

If we use this expression in our program, our data is much cleaner:

# Search for lines that have an at sign between characters

# The characters must be a letter or number

import re

hand = open('mbox-short.txt')

for line in hand:

line = line.rstrip()

x = re.findall('[a-zA-Z0-9]\S+@\S+[a-zA-Z]', line)

if len(x) > 0:

print(x)

# Code: http://www.py4e.com/code3/re07.py

...

['wagnermr@iupui.edu']

['cwen@iupui.edu']

['postmaster@collab.sakaiproject.org']

['200801032122.m03LMFo4005148@nakamura.uits.iupui.edu']

['source@collab.sakaiproject.org']



136 CHAPTER 11. REGULAR EXPRESSIONS

['source@collab.sakaiproject.org']

['source@collab.sakaiproject.org']

['apache@localhost']

Notice that on the “source@collab.sakaiproject.org” lines, our regular expression
eliminated two letters at the end of the string (“>;”). This is because when we
append “[a-zA-Z]” to the end of our regular expression, we are demanding that
whatever string the regular expression parser finds must end with a letter. So
when it sees the “>” after “sakaiproject.org>;” it simply stops at the last “matching”
letter it found (i.e., the “g” was the last good match).

Also note that the output of the program is a Python list that has a string as the
single element in the list.

11.3 Combining searching and extracting

If we want to find numbers on lines that start with the string “X-” such as:

X-DSPAM-Confidence: 0.8475

X-DSPAM-Probability: 0.0000

we don’t just want any floating-point numbers from any lines. We only want to
extract numbers from lines that have the above syntax.

We can construct the following regular expression to select the lines:

^X-.*: [0-9.]+

Translating this, we are saying, we want lines that start with “X-”, followed by
zero or more characters (“.*”), followed by a colon (“:”) and then a space. After
the space we are looking for one or more characters that are either a digit (0-9)
or a period “[0-9.]+”. Note that inside the square brackets, the period matches an
actual period (i.e., it is not a wildcard between the square brackets).

This is a very tight expression that will pretty much match only the lines we are
interested in as follows:

# Search for lines that start with 'X' followed by any non

# whitespace characters and ':'

# followed by a space and any number.

# The number can include a decimal.

import re

hand = open('mbox-short.txt')

for line in hand:

line = line.rstrip()

if re.search('^X\S*: [0-9.]+', line):

print(line)

# Code: http://www.py4e.com/code3/re10.py



11.3. COMBINING SEARCHING AND EXTRACTING 137

When we run the program, we see the data nicely filtered to show only the lines
we are looking for.

X-DSPAM-Confidence: 0.8475

X-DSPAM-Probability: 0.0000

X-DSPAM-Confidence: 0.6178

X-DSPAM-Probability: 0.0000

But now we have to solve the problem of extracting the numbers. While it would
be simple enough to use split, we can use another feature of regular expressions
to both search and parse the line at the same time.

Parentheses are another special character in regular expressions. When you add
parentheses to a regular expression, they are ignored when matching the string.
But when you are using findall(), parentheses indicate that while you want the
whole expression to match, you only are interested in extracting a portion of the
substring that matches the regular expression.

So we make the following change to our program:

# Search for lines that start with 'X' followed by any

# non whitespace characters and ':' followed by a space

# and any number. The number can include a decimal.

# Then print the number if it is greater than zero.

import re

hand = open('mbox-short.txt')

for line in hand:

line = line.rstrip()

x = re.findall('^X\S*: ([0-9.]+)', line)

if len(x) > 0:

print(x)

# Code: http://www.py4e.com/code3/re11.py

Instead of calling search(), we add parentheses around the part of the regular
expression that represents the floating-point number to indicate we only want
findall() to give us back the floating-point number portion of the matching
string.

The output from this program is as follows:

['0.8475']

['0.0000']

['0.6178']

['0.0000']

['0.6961']

['0.0000']

..

The numbers are still in a list and need to be converted from strings to floating
point, but we have used the power of regular expressions to both search and extract
the information we found interesting.



138 CHAPTER 11. REGULAR EXPRESSIONS

As another example of this technique, if you look at the file there are a number of
lines of the form:

Details: http://source.sakaiproject.org/viewsvn/?view=rev&rev=39772

If we wanted to extract all of the revision numbers (the integer number at the end
of these lines) using the same technique as above, we could write the following
program:

# Search for lines that start with 'Details: rev='

# followed by numbers and '.'

# Then print the number if it is greater than zero

import re

hand = open('mbox-short.txt')

for line in hand:

line = line.rstrip()

x = re.findall('^Details:.*rev=([0-9.]+)', line)

if len(x) > 0:

print(x)

# Code: http://www.py4e.com/code3/re12.py

Translating our regular expression, we are looking for lines that start with “De-
tails:”, followed by any number of characters (“.*”), followed by “rev=”, and then
by one or more digits. We want to find lines that match the entire expression but
we only want to extract the integer number at the end of the line, so we surround
“[0-9]+” with parentheses.

When we run the program, we get the following output:

['39772']

['39771']

['39770']

['39769']

...

Remember that the “[0-9]+” is “greedy” and it tries to make as large a string of
digits as possible before extracting those digits. This “greedy” behavior is why we
get all five digits for each number. The regular expression library expands in both
directions until it encounters a non-digit, or the beginning or the end of a line.

Now we can use regular expressions to redo an exercise from earlier in the book
where we were interested in the time of day of each mail message. We looked for
lines of the form:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

and wanted to extract the hour of the day for each line. Previously we did this
with two calls to split. First the line was split into words and then we pulled
out the fifth word and split it again on the colon character to pull out the two
characters we were interested in.



11.4. ESCAPE CHARACTER 139

While this worked, it actually results in pretty brittle code that is assuming the
lines are nicely formatted. If you were to add enough error checking (or a big
try/except block) to insure that your program never failed when presented with
incorrectly formatted lines, the code would balloon to 10-15 lines of code that was
pretty hard to read.

We can do this in a far simpler way with the following regular expression:

^From .* [0-9][0-9]:

The translation of this regular expression is that we are looking for lines that start
with “From” (note the space), followed by any number of characters (“.*”), followed
by a space, followed by two digits “[0-9][0-9]”, followed by a colon character. This
is the definition of the kinds of lines we are looking for.

In order to pull out only the hour using findall(), we add parentheses around
the two digits as follows:

^From .* ([0-9][0-9]):

This results in the following program:

# Search for lines that start with From and a character

# followed by a two digit number between 00 and 99 followed by ':'

# Then print the number if it is greater than zero

import re

hand = open('mbox-short.txt')

for line in hand:

line = line.rstrip()

x = re.findall('^From .* ([0-9][0-9]):', line)

if len(x) > 0: print(x)

# Code: http://www.py4e.com/code3/re13.py

When the program runs, it produces the following output:

['09']

['18']

['16']

['15']

...

11.4 Escape character

Since we use special characters in regular expressions to match the beginning or
end of a line or specify wild cards, we need a way to indicate that these characters
are “normal” and we want to match the actual character such as a dollar sign or
caret.

We can indicate that we want to simply match a character by prefixing that charac-
ter with a backslash. For example, we can find money amounts with the following
regular expression.



140 CHAPTER 11. REGULAR EXPRESSIONS

import re

x = 'We just received $10.00 for cookies.'

y = re.findall('\$[0-9.]+',x)

Since we prefix the dollar sign with a backslash, it actually matches the dollar
sign in the input string instead of matching the “end of line”, and the rest of
the regular expression matches one or more digits or the period character. Note:
Inside square brackets, characters are not “special”. So when we say “[0-9.]”, it
really means digits or a period. Outside of square brackets, a period is the “wild-
card” character and matches any character. Inside square brackets, the period is
a period.

11.5 Summary

While this only scratched the surface of regular expressions, we have learned a bit
about the language of regular expressions. They are search strings with special
characters in them that communicate your wishes to the regular expression system
as to what defines “matching” and what is extracted from the matched strings.
Here are some of those special characters and character sequences:

ˆ Matches the beginning of the line.

$ Matches the end of the line.

. Matches any character (a wildcard).

\s Matches a whitespace character.

\S Matches a non-whitespace character (opposite of \s).

* Applies to the immediately preceding character and indicates to match zero or
more of the preceding character(s).

*? Applies to the immediately preceding character and indicates to match zero or
more of the preceding character(s) in “non-greedy mode”.

+ Applies to the immediately preceding character and indicates to match one or
more of the preceding character(s).

+? Applies to the immediately preceding character and indicates to match one or
more of the preceding character(s) in “non-greedy mode”.

[aeiou] Matches a single character as long as that character is in the specified set.
In this example, it would match “a”, “e”, “i”, “o”, or “u”, but no other characters.

[a-z0-9] You can specify ranges of characters using the minus sign. This example
is a single character that must be a lowercase letter or a digit.

[ˆA-Za-z] When the first character in the set notation is a caret, it inverts the logic.
This example matches a single character that is anything other than an uppercase
or lowercase letter.

( ) When parentheses are added to a regular expression, they are ignored for the
purpose of matching, but allow you to extract a particular subset of the matched
string rather than the whole string when using findall().



11.6. BONUS SECTION FOR UNIX / LINUX USERS 141

\b Matches the empty string, but only at the start or end of a word.

\B Matches the empty string, but not at the start or end of a word.

\d Matches any decimal digit; equivalent to the set [0-9].

\D Matches any non-digit character; equivalent to the set [ˆ0-9].

11.6 Bonus section for Unix / Linux users

Support for searching files using regular expressions was built into the Unix operat-
ing system since the 1960s and it is available in nearly all programming languages
in one form or another.

As a matter of fact, there is a command-line program built into Unix called grep
(Generalized Regular Expression Parser) that does pretty much the same as the
search() examples in this chapter. So if you have a Macintosh or Linux system,
you can try the following commands in your command-line window.

$ grep '^From:' mbox-short.txt

From: stephen.marquard@uct.ac.za

From: louis@media.berkeley.edu

From: zqian@umich.edu

From: rjlowe@iupui.edu

This tells grep to show you lines that start with the string “From:” in the file
mbox-short.txt. If you experiment with the grep command a bit and read the
documentation for grep, you will find some subtle differences between the regular
expression support in Python and the regular expression support in grep. As an
example, grep does not support the non-blank character “\S” so you will need to
use the slightly more complex set notation “[ˆ ]”, which simply means match a
character that is anything other than a space.

11.7 Debugging

Python has some simple and rudimentary built-in documentation that can be quite
helpful if you need a quick refresher to trigger your memory about the exact name of
a particular method. This documentation can be viewed in the Python interpreter
in interactive mode.

You can bring up an interactive help system using help().

>>> help()

help> modules

If you know what module you want to use, you can use the dir() command to
find the methods in the module as follows:



142 CHAPTER 11. REGULAR EXPRESSIONS

>>> import re

>>> dir(re)

[.. 'compile', 'copy_reg', 'error', 'escape', 'findall',

'finditer' , 'match', 'purge', 'search', 'split', 'sre_compile',

'sre_parse' , 'sub', 'subn', 'sys', 'template']

You can also get a small amount of documentation on a particular method using
the dir command.

>>> help (re.search)

Help on function search in module re:

search(pattern, string, flags=0)

Scan through string looking for a match to the pattern, returning

a match object, or None if no match was found.

>>>

The built-in documentation is not very extensive, but it can be helpful when you
are in a hurry or don’t have access to a web browser or search engine.

11.8 Glossary

brittle code Code that works when the input data is in a particular format but
is prone to breakage if there is some deviation from the correct format. We
call this “brittle code” because it is easily broken.

greedy matching The notion that the “+” and “*” characters in a regular ex-
pression expand outward to match the largest possible string.

grep A command available in most Unix systems that searches through text files
looking for lines that match regular expressions. The command name stands
for “Generalized Regular Expression Parser”.

regular expression A language for expressing more complex search strings. A
regular expression may contain special characters that indicate that a search
only matches at the beginning or end of a line or many other similar capa-
bilities.

wild card A special character that matches any character. In regular expressions
the wild-card character is the period.



11.9. EXERCISES 143

11.9 Exercises

Exercise 1: Write a simple program to simulate the operation of the grep com-
mand on Unix. Ask the user to enter a regular expression and count the number
of lines that matched the regular expression:

$ python grep.py

Enter a regular expression: ^Author

mbox.txt had 1798 lines that matched ^Author

$ python grep.py

Enter a regular expression: ^X-

mbox.txt had 14368 lines that matched ^X-

$ python grep.py

Enter a regular expression: java$

mbox.txt had 4218 lines that matched java$

Exercise 2: Write a program to look for lines of the form

`New Revision: 39772`

and extract the number from each of the lines using a regular expression and
the findall() method. Compute the average of the numbers and print out the
average.

Enter file:mbox.txt

38549.7949721

Enter file:mbox-short.txt

39756.9259259



144 CHAPTER 11. REGULAR EXPRESSIONS


	Why should you learn to write programs?
	Creativity and motivation
	Computer hardware architecture
	Understanding programming
	Words and sentences
	Conversing with Python
	Terminology: interpreter and compiler
	Writing a program
	What is a program?
	The building blocks of programs
	What could possibly go wrong?
	The learning journey
	Glossary
	Exercises

	Variables, expressions, and statements
	Values and types
	Variables
	Variable names and keywords
	Statements
	Operators and operands
	Expressions
	Order of operations
	Modulus operator
	String operations
	Asking the user for input
	Comments
	Choosing mnemonic variable names
	Debugging
	Glossary
	Exercises

	Conditional execution
	Boolean expressions
	Logical operators
	Conditional execution
	Alternative execution
	Chained conditionals
	Nested conditionals
	Catching exceptions using try and except
	Short-circuit evaluation of logical expressions
	Debugging
	Glossary
	Exercises

	Functions
	Function calls
	Built-in functions
	Type conversion functions
	Random numbers
	Math functions
	Adding new functions
	Definitions and uses
	Flow of execution
	Parameters and arguments
	Fruitful functions and void functions
	Why functions?
	Debugging
	Glossary
	Exercises

	Iteration
	Updating variables
	The while statement
	Infinite loops
	``Infinite loops'' and break
	Finishing iterations with continue
	Definite loops using for
	Loop patterns
	Counting and summing loops
	Maximum and minimum loops

	Debugging
	Glossary
	Exercises

	Strings
	A string is a sequence
	Getting the length of a string using len
	Traversal through a string with a loop
	String slices
	Strings are immutable
	Looping and counting
	The in operator
	String comparison
	string methods
	Parsing strings
	Format operator
	Debugging
	Glossary
	Exercises

	Files
	Persistence
	Opening files
	Text files and lines
	Reading files
	Searching through a file
	Letting the user choose the file name
	Using try, except, and open
	Writing files
	Debugging
	Glossary
	Exercises

	Lists
	A list is a sequence
	Lists are mutable
	Traversing a list
	List operations
	List slices
	List methods
	Deleting elements
	Lists and functions
	Lists and strings
	Parsing lines
	Objects and values
	Aliasing
	List arguments
	Debugging
	Glossary
	Exercises

	Dictionaries
	Dictionary as a set of counters
	Dictionaries and files
	Looping and dictionaries
	Advanced text parsing
	Debugging
	Glossary
	Exercises

	Tuples
	Tuples are immutable
	Comparing tuples
	Tuple assignment
	Dictionaries and tuples
	Multiple assignment with dictionaries
	The most common words
	Using tuples as keys in dictionaries
	Sequences: strings, lists, and tuples - Oh My!
	Debugging
	Glossary
	Exercises

	Regular expressions
	Character matching in regular expressions
	Extracting data using regular expressions
	Combining searching and extracting
	Escape character
	Summary
	Bonus section for Unix / Linux users
	Debugging
	Glossary
	Exercises

	Networked programs
	HyperText Transport Protocol - HTTP
	The World's Simplest Web Browser
	Retrieving an image over HTTP
	Retrieving web pages with urllib
	Parsing HTML and scraping the web
	Parsing HTML using regular expressions
	Parsing HTML using BeautifulSoup
	Reading binary files using urllib
	Glossary
	Exercises

	Using Web Services
	eXtensible Markup Language - XML
	Parsing XML
	Looping through nodes
	JavaScript Object Notation - JSON
	Parsing JSON
	Application Programming Interfaces
	Google geocoding web service
	Security and API usage
	Glossary
	Exercises

	Object-Oriented Programming
	Managing Larger Programs
	Getting Started
	Using Objects
	Starting with Programs
	Subdividing a Problem - Encapsulation
	Our First Python Object
	Classes as Types
	Object Lifecycle
	Many Instances
	Inheritance
	Summary
	Glossary

	Using databases and SQL
	What is a database?
	Database concepts
	Database Browser for SQLite
	Creating a database table
	Structured Query Language summary
	Spidering Twitter using a database
	Basic data modeling
	Programming with multiple tables
	Constraints in database tables
	Retrieve and/or insert a record
	Storing the friend relationship

	Three kinds of keys
	Using JOIN to retrieve data
	Summary
	Debugging
	Glossary

	Visualizing data
	Building a Google map from geocoded data
	Visualizing networks and interconnections
	Visualizing mail data

	Contributions
	Contributor List for Python for Everybody
	Contributor List for Python for Informatics
	Preface for ``Think Python''
	The strange history of ``Think Python''
	Acknowledgements for ``Think Python''

	Contributor List for ``Think Python''

	Copyright Detail

