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Preface 

This book is the fruit of for many years teaching the introduction to quan- 
tum mechanics to second-year students of physics at Oxford University. We 
have tried to convey to students that it is the use of probability amplitudes 
rather than probabilities that makes quantum mechanics the extraordinary 
thing that it is, and to grasp that the theory’s mathematical structure follows 
almost inevitably from the concept of a probability amplitude. We have also 
tried to explain how classical mechanics emerges from quantum mechanics. 
Classical mechanics is about movement and change, while the strong empha- 
sis on stationary states in traditional quantum courses makes the quantum 
world seem static and irreconcilably different from the world of every-day 
experience and intuition. By stressing that stationary states are merely the 
tool we use to solve the time-dependent Schrödinger equation, and presenting 
plenty of examples of how interference between stationary states gives rise 
to familiar dynamics, we have tried to pull the quantum and classical worlds 
into alignment, and to help students  to extend their physical intuition into 
the quantum domain. 

Traditional courses use only the position representation.  If you step 
back from the position representation, it becomes easier to explain that the 
familiar operators have a dual role: on the one hand they are repositories of 
information about the physical characteristics of the associated observable, 
and on the other hand they are the generators of the fundamental symmetries 
of space and time. These symmetries are crucial for, as we show already in 
Chapter 4, they dictate the canonical commutation relations, from which 
much follows. 

Another advantage of down-playing the position representation is that it 
becomes more natural to solve eigenvalue problems by operator methods than 
by invoking Frobenius’ method for solving differential equations in series. A 
careful presentation of Frobenius’ method is both time-consuming and rather 
dull. The job is routinely bodged to the extent that it is only demonstrated 
that in certain circumstances a series solution can be found, whereas in 
quantum mechanics we need assurance that all solutions can be found by this 
method, which is a priori implausible. We solve all the eigenvalue problems 
we encounter by rigorous operator methods and dispense with solution in 
series. 

By introducing the angular momentum operators outside the position 
representation, we give them an existence independent of the orbital angular- 
momentum operators, and thus reduce the mystery that often surrounds 
spin. We have tried hard to be clear and rigorous in our discussions of the 
connection between a body’s spin and its orientation, and the implications of 
spin for exchange symmetry. We treat hydrogen in fair detail, helium at the 
level of gross structure only, and restrict our treatment of other atoms to an 
explanation of how quantum mechanics explains the main trends of atomic 
properties as one proceeds down the periodic table. Many-electron atoms 
are extremely complex systems that cannot be treated in a first course with 
a level of rigour with which we are comfortable. 

Scattering theory is of enormous practical importance and raises some 
tricky conceptual questions. Chapter 5 on motion in one-dimensional step 
potentials introduces many of the key concepts, such as the connection be- 
tween phase shifts and the scattering cross section and how and why in 
resonant scattering sensitive dependence of phases shifts on energy gives rise 
to sharp peaks in the scattering cross section. In Chapter 12 we discuss fully 
three-dimensional scattering in terms of the S-matrix and partial waves. 

In most branches of physics it is impossible in a first course to bring 
students to the frontier of human understanding.  We  are fortunate in be- 
ing able to do this already in Chapter 6, which introduces entanglement and 
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quantum computing, and closes with a discussion of the still unresolved prob- 
lem of measurement. Chapter 6 also demonstrates that thermodynamics is 
a straightforward consequence of quantum mechanics and that we no longer 
need to derive the laws of thermodynamics through the traditional, rather 
subtle, arguments about heat engines. 

We assume familiarity with complex numbers, including de Moivre’s 
theorem, and familiarity with first-order linear ordinary differential equa- 
tions. We assume basic familiarity with vector calculus and matrix algebra. 
We introduce the theory of abstract linear algebra to the level we require 
from scratch. Appendices contain compact introductions to tensor notation, 
Fourier series and transforms, and Lorentz covariance. 

Every chapter concludes with an extensive list of problems for which 
solutions are available. The solutions to problems marked with an asterisk, 
which tend to be the harder problems, are available online1 and solutions to 
other problems are available to colleagues who are teaching a course from the 
book. In nearly every problem a student will either prove a useful result or 
deepen his/her understanding of quantum mechanics and what it says about 
the material world. Even after successfully solving a problem we suspect 
students will find it instructive and thought-provoking to study the solution 
posted on the web. 

We are grateful to several colleagues for comments on the first two edi- 
tions, particularly Justin Wark for alerting us to the problem with the singlet- 
triplet splitting. Fabian Essler, Andre Lukas, John March-Russell and Laszlo 
Solymar made several constructive suggestions. We thank Artur Ekert for 
stimulating discussions of material covered in Chapter 6 and for reading that 
chapter in draft form. 

June 2012 James Binney 
David Skinner 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1 http://www-thphys.physics.ox.ac.uk/people/JamesBinney/QBhome.htm 

http://www-thphys.physics.ox.ac.uk/people/JamesBinney/QBhome.htm


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 
Probability and probability 

amplitudes 

 
The future is always uncertain. Will it rain tomorrow?  Will Pretty Lady win 
the 4.20 race at Sandown Park on Tuesday? Will the Financial Times All 
Shares index rise by more than 50 points in the next two months? Nobody 
knows the answers to such questions, but in each case we may have infor- 
mation that makes a positive answer more or less appropriate: if we are in 
the Great Australian Desert and it’s winter, it is exceedingly unlikely to rain 
tomorrow, but if we are in Delhi in the middle of the monsoon, it will almost 
certainly rain. If Pretty Lady is getting on in years and hasn’t won a race yet, 
she’s unlikely to win on Tuesday either, while if she recently won a couple of 
major races and she’s looking fit, she may well win at Sandown Park. The 
performance of the All Shares index is hard to predict, but factors affecting 
company profitability and the direction interest rates will move, will  make 
the index more or less likely to rise. Probability is a concept which enables 
us to quantify and manipulate uncertainties. We assign a probability p = 0 
to an event if we think it is simply impossible,  and we  assign p  = 1 if we 
think  the event is certain to happen.  Intermediate values for p imply  that 
we think an event may happen and may not, the value of p increasing with 
our confidence that it will happen. 

Physics is about predicting the future.  Will this ladder slip when I 
step on it? How many times will this pendulum swing to and fro in an 
hour? What temperature will the water in this thermos be at when it has 
completely melted this ice cube?  Physics often enables us to answer such 
questions with a satisfying degree of certainty: the ladder will not slip pro- 
vided it is inclined at less than 23.34◦  to the vertical; the pendulum makes 
3602 oscillations per hour; the water will reach 6.43◦C. But if we are pressed 
for sufficient accuracy we must admit to uncertainty and resort to probability 
because our predictions depend on the data we have, and these are always 
subject to measuring error, and idealisations: the ladder’s critical angle de- 
pends on the coefficients of friction at the two ends of the ladder, and these 
cannot be precisely given because both the wall and the floor are slightly 
irregular surfaces; the period of the pendulum depends slightly on the am- 
plitude of its swing, which will vary with temperature and the humidity of 
the air; the final temperature of the water will vary with the amount of heat 
transferred through the walls of the thermos and the speed of evaporation 
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from the water’s surface, which depends on draughts in the room as well as 
on humidity. If we are asked to make predictions about a ladder that is in- 
clined near its critical angle, or we need to know a quantity like the period of 
the pendulum to high accuracy, we cannot make definite statements, we can 
only say something like the probability of the ladder slipping is 0.8, or there 
is a probability of 0.5 that the period of the pendulum lies between 1.0007 s 
and 1.0004 s. We can dispense with probability when slightly vague answers 
are permissible, such as that the period is 1.00 s to three significant figures. 
The concept of probability enables us to push our science to its limits, and 
make the most precise and reliable statements possible. 

Probability enters physics in two ways: through uncertain data and 
through the system being subject to random influences. In the first case we 
could make a more accurate prediction if a property of the system, such as the 
length or temperature of the pendulum, were more precisely characterised. 
That is, the value of some number is well defined,  it’s just that we don’t 
know the value very accurately.  The second case is that in which our system 
is subject to inherently random influences – for example,  to the draughts 
that make us uncertain what will be the final temperature of the water. 
To attain greater certainty when the system under study is subject to such 
random influences, we can either take steps to increase the isolation of our 
system – for example by putting a lid on the thermos – or we can expand the 
system under study so that the formerly random influences become calculable 
interactions between one part of the system and another. Such expansion 
of the system is not a practical proposition in the case of the thermos – the 
expanded system would have to encompass the air in the  room,  and then 
we would worry about fluctuations in the intensity of sunlight through the 
window, draughts under the door and much else. The strategy does work 
in other cases, however. For example, climate changes over the last ten 
million years can be studied as the response of a complex dynamical system 
– the atmosphere coupled to the oceans – that is subject to random external 
stimuli, but a more complete account of climate changes can be made when 
the dynamical system is expanded to include the Sun and Moon because 
climate is strongly affected by the inclination of the Earth’s spin axis to the 
plane of the Earth’s orbit and the Sun’s coronal activity. 

A low-mass system is less likely to be well isolated from its surroundings 
than a massive one. For example, the orbit of the Earth is scarcely affected 
by radiation pressure that sunlight exerts on it, while dust grains less than a 
few microns in size that are in orbit about the Sun lose angular momentum 
through radiation pressure at a rate that causes them to spiral in from near 
the Earth to the Sun within a few millennia. Similarly, a rubber duck left 
in the bath after the children have got out will stay very still, while tiny 
pollen grains in the water near it execute Brownian motion that carries 
them along a jerky path many times their own length each minute. Given 
the difficulty of isolating low-mass systems, and the tremendous obstacles 
that have to be surmounted if we are to expand the system to the point at 
which all influences on the object of interest become causal, it is natural that 
the physics of small systems is invariably probabilistic in nature. Quantum 
mechanics describes the dynamics of all systems, great and small. Rather 
than making firm predictions, it enables us to calculate probabilities. If the 
system is massive, the probabilities of interest may be so near zero or unity 
that we have effective certainty. If the system is small, the probabilistic 
aspect of the theory will be more evident. 

The scale of atoms is precisely the scale on which the probabilistic aspect 
is predominant. Its predominance reflects two facts. First, there is no such 
thing as an isolated atom because all atoms are inherently coupled to the 
electromagnetic field, and to the fields associated with electrons, neutrinos, 
quarks, and various ‘gauge bosons’. Since we have incomplete information 
about the states of these fields, we cannot hope to make precise predictions 
about the behaviour of an individual atom. Second, we cannot build mea- 
suring instruments of arbitrary delicacy. The instruments we use to measure 
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atoms are usually themselves made of atoms, and employ electrons or pho- 
tons that carry sufficient energy to change an atom significantly. We rarely 
know the exact state that our measuring instrument is in before we bring it 
into contact with the system we have measured, so the result of the measure- 
ment of the atom would be uncertain even if we knew the precise state that 
the atom was in before we measured it, which of course we do not. More- 
over, the act of measurement inevitably disturbs the atom, and leaves it in a 
different state from the one it was in before we made the measurement. On 
account of the uncertainty inherent in the measuring process, we cannot be 
sure what this final state may be. Quantum mechanics allows us to calculate 
probabilities for each possible final state. Perhaps surprisingly, from the the- 
ory it emerges that even when we have the most complete information about 
the state of a system that is is logically possible to have, the outcomes of 
some measurements remain uncertain. Thus whereas in the classical world 
uncertainties can be made as small as we please by sufficiently careful work, 
in the quantum world uncertainty is woven into the fabric of reality. 

 

1.1 The laws of probability 
Events are frequently one-offs: Pretty Lady will run in the 4.20 at Sandown 
Park only once this year, and if she enters the race next year, her form and 
the field will be different. The probability that we want is for this year’s 
race.  Sometimes events can be repeated,  however.  For example,  there is 
no obvious difference between one throw of a die and the next throw, so 
it makes sense to assume that the probability of throwing a 5 is the same 
on each throw. When events can be repeated in this way we seek to assign 
probabilities in such a way that when we make a very large number N of 
trials, the number nA of trials in which event A occurs (for example 5 comes 
up) satisfies 

nA ≃ pAN. (1.1) 

In any realistic sequence of throws, the ratio nA/N will vary with  N ,  while 
the probability pA does not. So the relation (1.1) is rarely an equality. The 
idea is that we should choose pA so that nA/N fluctuates in a smaller and 
smaller interval around pA as N is increased. 

Events can be logically combined to form composite events: if A is the 
event that a certain red die falls with 1 up, and B is the event that a white 
die falls with 5 up, AB is the event that when both dice are thrown, the red 
die shows 1 and the white one shows 5. If the probability of A is pA and the 
probability of B is pB, then in a fraction  pA of throws of the two dice the 
red die will show 1, and in a fraction pB of these throws, the white die 
will have 5 up. Hence the fraction of throws in which the event AB occurs is 

pApB so we should take the probability of AB to be pAB = pApB. In this 
example A and B are independent events because we see no reason why 
the number shown by the white die could be influenced by the number that 
happens to come up on the red one, and vice versa. The rule for combining 
the probabilities of independent events to get the probability of both events 
happening, is to multiply them: 

 

p(A and B) = p(A)p(B) (independent events). (1.2) 
 

Since only one number can come up on a die in a given throw, the 
event A above excludes the event C that the red die shows 2; A and C are 
exclusive events. The probability that either a 1 or a 2 will show is obtained 
by adding pA and pC. Thus 

 

p(A or C) = p(A) + p(C) (exclusive events). (1.3) 
 

In the case of reproducible events, this rule is clearly consistent with the 
principle that the fraction of trials in which either A or C occurs should be 
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the sum of the fractions of the trials in which one or the other occurs. If 
we throw our die, the number that will come up is certainly one of 1, 2, 3, 
4, 5 or 6. So by the rule just given, the sum of the probabilities associated 
with each of these numbers coming up has to be unity. Unless we know that 
the die is loaded, we assume that no number is more likely to come up than 
another, so all six probabilities must be equal.  Hence, they must all equal 
1
 . Generalising this example we have the rules 

 

 
With just N mutually exclusive outcomes, 

If all outcomes are equally likely, pi = 1/N. 

ΣN 

 
i=1 

 
pi = 1. 

 

(1.4) 

 

1.1.1 Expectation values 

A random variable x is a quantity that we can measure and the value that 
we get is subject to uncertainty. Suppose for simplicity that only discrete 
values xi can be measured. In the case of a die, for example, x could be the 
number that comes up, so x has six possible values, x1 = 1 to x6 = 6.  If pi 
is the probability that we shall measure xi, then the expectation value of 
x is 

⟨x⟩ ≡ 
Σ 

pixi. (1.5) 
i 

If the event is reproducible, it is easy to show that the average of the values 
that we measure on N trials tends to ⟨x⟩ as N becomes very large. Conse- 
quently, ⟨x⟩ is often referred to as the average of x. 

Suppose we have two random variables, x  and y.  Let pij  be  the proba- 
bility that our measurement returns xi for the value of x and yj for the value 
of y. Then the expectation of the sum x + y is 

⟨x + y⟩ = 

Σ 

Σ 
pij(xi + yj) = 

ij 

Σ 
pijxi + 

ij 

Σ 
pijyj (1.6) 

ij 

But j  pij   is  the  probability  that  we  measure  xi  regardless  of  what  we 

measure for y, so it must equal pi. Similarly i pij  = pj , the  probability of 
measuring yj irrespective of what we get for x. Inserting these expressions 
in to (1.6) we find 

⟨x + y⟩ = ⟨x⟩ + ⟨y⟩ . (1.7) 

That is, the expectation value of the sum  of  two random variables is  the 
sum of the variables’ individual expectation values,  regardless of whether 
the variables are independent or not. 

A useful measure of the amount by which the value of a random variable 
fluctuates from trial to trial is the variance of x: 

  2 2 D 
2
E 

(x − ⟨x⟩) =  x − 2 ⟨x ⟨x⟩⟩ +  ⟨x⟩ , (1.8) 

where we have made use of equation (1.7).   The expectation ⟨x⟩ is not a 

rDandoEm variable,  but  has  a  definite  value.  Consequently  ⟨x ⟨x⟩⟩ = ⟨x⟩
2  

and 
2 

⟨x⟩ = ⟨x⟩ , so the variance of x is related to the expectations of x and 

x
2
 by 

2 
x 

 
  2   

≡  (x − ⟨x⟩) =  x — ⟨x⟩  . (1.9) ∆ 
  

2 
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Figure 1.1 The two-slit interference experiment. 
 

1.2 Probability amplitudes 
Many branches of the social, physical and medical sciences make extensive 
use of probabilities, but quantum mechanics stands alone in the way that it 
calculates probabilities, for it always evaluates a probability p as the mod- 
square of a certain complex number A: 

p = |A|2. (1.10) 

The complex number A is called the probability amplitude for p. 
Quantum mechanics is the only branch of knowledge in which proba- 

bility amplitudes appear, and nobody understands why they arise. They 
give rise to phenomena that have no analogues in classical physics through 
the following fundamental principle. Suppose something can happen by two 
(mutually exclusive) routes, S or T , and let the probability amplitude for it 
to happen by route S be A(S) and the probability amplitude for it to happen 
by route T be A(T ). Then the probability amplitude for it to happen by one 
route or the other is 

A(S or T ) = A(S) + A(T ). (1.11) 

This rule takes the place of the sum rule for probabilities, equation (1.3). 
However, it is incompatible with equation (1.3), because it implies that the 
probability that the event happens regardless of route is 

p(S or T ) = |A(S or T )|2 = |A(S) + A(T )|2 

= |A(S)|2 + A(S)A∗(T ) + A∗(S)A(T ) + |A(T )|2 

= p(S) + p(T ) + 2ℜe(A(S)A∗(T )). 

(1.12) 

That is, the probability that an event will happen is not merely the sum 
of the probabilities that it will happen by each of the two possible routes: 
there  is  an additional term  2  e(A(S)A∗(T )).  This  term  has no  counterpart 
in standard probability theory, and violates the fundamental rule (1.3) of 
probability theory. It depends on the phases of the probability amplitudes 
for the individual routes, which do not contribute to the probabilities p(S) = 

2 
|A(S)| of the routes. 

Whenever the probability of an event differs from the sum of the prob- 
abilities associated with the various mutually exclusive routes by which it 
can happen, we say we have a manifestation of quantum interference. 
The term 2 e(A(S)A∗(T )) in equation (1.12) is what generates quantum 
interference mathematically. We shall see that in certain circumstances the 
violations of equation (1.3) that are caused by quantum interference are not 
detectable, so standard probability theory appears to be valid. 

How do we know that the principle (1.11), which has these extraordinary 
consequences, is true? The soundest answer is that it is a fundamental 
postulate of quantum mechanics, and that every time you look at a digital 
watch, or touch a computer keyboard, or listen to a CD player, or interact 
with any other electronic device that has been engineered with the help 
of quantum mechanics, you are testing and vindicating this theory. Our 
civilisation now quite simply depends on the validity of equation (1.11). 
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Figure 1.2 The probability distribu- 
tions of passing through each of the 
two closely spaced slits overlap. 

 
 
 

1.2.1 Two-slit interference 

An imaginary experiment will clarify the physical implications of the prin- 
ciple and suggest how it might be tested experimentally. The apparatus 
consists of an electron gun, G, a  screen with  two  narrow slits  S1  and  S2, 
and a photographic plate P, which darkens when hit by an electron (see 
Figure 1.1). 

When an electron is emitted by G, it has an amplitude to pass through 
slit S1 and then hit the screen at the point x. This amplitude will clearly 
depend on the point x, so we label it A1(x). Similarly, there is an amplitude 
A2(x) that the electron passed through S2 before reaching the screen at x. 
Hence the probability that the electron arrives at x is 

P (x) = |A1(x) + A2(x)|2  = |A1(x)|2  + |A2(x)|2  + 2ℜe(A1(x)A∗2 (x)).   (1.13) 

2 
|A1(x)|  is simply the probability that the electron reaches the plate after 
passing through S1. We expect this to be a roughly Gaussian distribution 
p1(x) that is centred on the value x1 of x at which a straight line from G 
through the middle of S1 hits the plate. A2(x) 

2
 should similarly be a roughly 

Gaussian function p2(x) centred on the intersection at x2 of the screen and 
the straight line from G through the middle of S2. It is convenient to write 
Ai  =   Ai e

iφi    =     pie
iφi ,  where  φi  is  the  phase  of  the  complex  number  Ai. 

Then equation (1.13) can be written 

p(x) = p1(x) + p2(x) + I(x), (1.14a) 
 

where the interference term I is 
√   

I(x) = 2 p1(x)p2(x) cos(φ1(x) − φ2(x)). (1.14b) 
 

Consider the behaviour of I(x) near the point that is equidistant from the 
slits. Then (see Figure 1.2) p1 p2 and the interference term is comparable 
in magnitude to p1 + p2, and, by equations (1.14), the probability of an 
electron arriving at x will oscillate between 2p1 and 0 depending on the 
value of the phase difference φ1(x) φ2(x). In 2.3.4 we shall show that the 
phases φi(x) are approximately linear functions of x, so after many electrons 
have been fired from G to P in succession, the blackening of P at x, which 
will be roughly proportional to the number of electrons that have arrived at 
x, will show a sinusoidal pattern. 

Let’s replace the electrons by machine-gun bullets. Then everyday ex- 
perience tells us that classical physics applies, and it predicts that the prob- 
ability p(x) of a bullet arriving at x is just the sum p1(x) + p2(x) of the 
probabilities of a bullet coming through S1 or S2. Hence classical physics 
does not predict a sinusoidal pattern in p(x). How do we reconcile the very 
different predictions of classical and quantum mechanics? Firearms manufac- 
turers have for centuries used classical mechanics with deadly success, so is 
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the resolution that bullets do not obey quantum mechanics? We believe they 
do, and the probability distribution for the arrival of bullets should show a 
sinusoidal pattern. However, in 2.3.4 we shall find that quantum mechanics 
predicts that the distance ∆ between the peaks and troughs of this pattern 
becomes smaller and smaller as we increase the mass of the particles we are 
firing through the slits, and by the time the particles are as massive as a 
bullet, ∆ is fantastically small 10−29

 m. Consequently, it is not  exper- 
imentally feasible to test whether p(x) becomes small at  regular intervals. 
Any feasible experiment will probe the value of p(x) averaged over many 
peaks and troughs of the sinusoidal pattern. This averaged value of p(x) 
agrees with the probability distribution we derive from classical mechanics 
because the average value of I(x) in equation (1.14) vanishes. 

 

1.2.2 Matter waves? 

The sinusoidal pattern of blackening on P that quantum mechanics predicts 
proves to be identical to the interference pattern that is observed in Young’s 
double-slit experiment. This experiment established that light is a wave phe- 
nomenon because the wave theory could readily explain the existence of the 
interference pattern. It is natural to infer from the existence of the sinusoidal 
pattern in the quantum-mechanical case, that particles are manifestations of 
waves in some medium. There is much truth in this inference, and at an 
advanced level this idea is embodied in quantum field theory. However, in 
the present context of non-relativistic quantum mechanics, the concept of 
matter waves is unhelpful. Particles are particles, not waves, and they pass 
through one slit or the other. The sinusoidal pattern arises because proba- 
bility amplitudes are complex numbers, which add in the same way as wave 
amplitudes. Moreover, the energy density (intensity) associated with a wave 
is proportional to the mod square of the wave amplitude, just as the proba- 
bility density of finding a particle is proportional to the mod square of the 
probability amplitude. Hence, on a mathematical level, there is a one-to-one 
correspondence between what happens when particles are fired towards a 
pair of slits and when light diffracts through similar slits. But we cannot 
consistently infer from this correspondence that particles are manifestations 
of waves because quantum interference occurs in quantum systems that are 
much more complex than a single particle, and indeed in contexts where 
motion through space plays no role. In such contexts we cannot ascribe the 
interference phenomenon to interference between real physical waves, so it is 
inconsistent to take this step in the case of single-particle mechanics. 

 

 

1.3 Quantum states 

 
1.3.1 Quantum amplitudes and measurements 

Physics is about the quantitative description of natural phenomena. A quan- 
titative description of a system inevitably starts by defining ways in which 
it can be measured. If the system is a single particle, quantities that we can 
measure are its x, y and z coordinates with respect to some choice of axes, 
and the components of its momentum parallel to these axes. We can also 
measure its energy, and its angular momentum. The more complex a system 
is, the more ways there will be in which we can measure it. 

Associated with every measurement, there will be a set of possible nu- 
merical values for the measurement – the spectrum of the measurement. 
For example, the spectrum of the x coordinate of a particle in empty space 
is the interval (     ,    ), while the spectrum of its kinetic energy is (0,    ). 
We shall encounter cases in which the spectrum of a measurement con- 
sists of discrete values.   For example,  in Chapter 7 we  shall show that 
the angular momentum of a particle parallel to any given axis has spec- 

trum  (. . . , (k  − 1)h̄, kh̄, (k  +  1)h̄, . . .),  where  h̄  is  Planck’s  constant  h   = 
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6.63    10−34
 J s divided by 2π, and k  is either  0 or 

 1
 .  When  the spectrum is 

a set of discrete numbers, we say that those numbers are the allowed values 
of the measurement. 

With every value in the spectrum of a given measurement there will be 
a quantum amplitude that we will find this value if we make the relevant 
measurement. Quantum mechanics is the science of how to calculate such 
amplitudes given the results of a sufficient number of prior measurements. 

Imagine that you’re investigating some physical system:  some particles 
in an ion trap, a drop of liquid helium, the electromagnetic field in a resonant 
cavity. What do you know about the state of this system? You have two types 
of knowledge: (1) a specification of the physical nature of the system (e.g., 
size & shape of the resonant cavity), and (2) information about the current 
dynamical state of the system. In quantum mechanics information of type 
(1) is  used to define  an object called the  Hamiltonian H  of the  system that 
is defined by equation (2.5) below. Information of type (2) is more subtle. 
It must consist of predictions for the outcomes of measurements you could 
make on the system. Since these outcomes are inherently uncertain, your 
information must relate to the probabilities of different outcomes, and in the 
simplest case consists of values for the relevant probability amplitudes. For 
example, your knowledge might consist of amplitudes for the various possible 
outcomes of a measurement of energy, or of a measurement of momentum. 

In quantum mechanics, then, knowledge about the current dynamical 
state of a system is embodied in a set of quantum amplitudes. In classical 
physics, by contrast, we can state with certainty which value we will measure, 
and we characterise the system’s current dynamical state by simply giving 
this value.  Such  values are often  called  ‘coordinates’ of the  system.  Thus 
in quantum mechanics a whole set of quantum amplitudes replaces a single 
number. 

Complete  sets  of  amplitudes Given the amplitudes for a certain set of 
events, it is often possible to calculate amplitudes for other events. The phe- 
nomenon of particle spin provides the neatest illustration of this statement. 

Electrons, protons, neutrinos, quarks, and many other elementary par- 
ticles turn out to be tiny gyroscopes: they spin. The rate at which they 

spin and therefore the√the magnitude of their spin angular momentum never 
changes;  it  is  always 3/4h̄.   Particles  with  this  amount  of  spin  are  called 
spin-half particles for reasons that will emerge shortly. Although the spin 
of a spin-half particle is fixed in magnitude, its direction can change. Conse- 
quently, the value of the spin angular momentum parallel to any given axis 

can take different values. In §7.4.2 we shall show that parallel to any given 

axis, the  spin angular momentum  of  a  spin-half particle can be  either  ± 1 h̄. 

Consequently, the spin parallel to  the z  axis is  denoted sz h̄, where sz  = ± 1 

is an observable with the spectrum {− 1 , 
1
 }. 

In §7.4.2 we shall show that if we know both  the amplitude a+ that sz 
will be measured to be + 

1
 and the amplitude a− that a measurement will 

yield sz = − 1 , then we can calculate from these two complex numbers the 
amplitudes  b+  and  b−  for  the  two  possible outcomes  of the  measurement of 
the spin along any direction. If we know only a+ (or only a−), then we can 
calculate neither b+  nor b−  for any  other direction. 

Generalising from this example, we have the concept of a complete 
set of amplitudes: the set contains enough information to enable one 
to calculate amplitudes for the outcome of any measurement whatsoever. 
Hence, such a set gives a complete specification of the physical state of the 
system. A complete set of amplitudes is generally understood to be a minimal 
set in the sense that none of the amplitudes can be calculated from the others. 
The set a−, a+ constitutes a complete set of amplitudes for the spin of an 
electron. 
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1.3.2 Dirac notation 

Dirac introduced the symbol ψ , pronounced ‘ket psi’, to denote a complete 
set of amplitudes for the system. If the system consists of a particle1 trapped 
in a potential well,  ψ   could consist of the amplitudes an that the energy 
is En, where (E1, E2, . . .) is the spectrum of possible energies, or it might 
consist of the amplitudes ψ(x) that the particle is found at x, or it might 
consist of the amplitudes a(p) that the momentum is measured to be p. 
Using the abstract symbol ψ enables us to think about the system without 
committing ourselves to what complete set of amplitudes we are going to 
use, in the same way that the position vector x enables us to think about 
a geometrical point independently of the coordinates (x, y, z), (r, θ, φ) or 
whatever by which we locate it. That is,  ψ  is a container for a complete set 
of amplitudes in the same way that a vector x is a container for a complete 
set of coordinates. 

The ket  ψ   encapsulates the crucial concept of a quantum state, which 
is independent of the particular set of amplitudes that we choose to quantify 
it, and is fundamental to several branches of physics. 

We saw in the last section that amplitudes must sometimes be added: if 
an outcome can be achieved by two different routes and we do not monitor 
the route by which it is achieved, we add the amplitudes associated with each 
route to get the overall amplitude for the outcome. In view of this additivity, 
we write 

|ψ3⟩ = |ψ1⟩ + |ψ2⟩ (1.15) 

to mean that every amplitude in the complete set ψ3 is the sum of the 
corresponding amplitudes in the complete sets ψ1 and ψ2 . This rule is 
exactly analogous to the rule for adding vectors because b3 = b1 +b2 implies 
that each component of b3  is the sum of the corresponding components of 
b1 and b2. 

Since amplitudes are complex numbers, for any complex number α we 
can define 

|ψ′⟩ = α|ψ⟩ (1.16) 

to mean that every amplitude in the set |ψ′⟩ is α times the corresponding 
amplitude in |ψ⟩. Again there is an obvious parallel in the case of vectors: 
3b is the vector that has x component 3bx, etc. 

 
 

1.3.3 Vector spaces and their adjoints 

The analogy between kets and vectors proves extremely fruitful and is worth 
developing. For a mathematician, objects, like kets, that you can add and 
multiply  by arbitrary complex numbers inhabit  a  vector  space.  Since we 
live in a (three-dimensional) vector space, we have a strong intuitive feel for 
the structures that arise in general vector  spaces,  and  this  intuition  helps 
us to understand problems that arise with kets.   Unfortunately our every- 
day experience does not prepare us for an important property of a general 
vector space, namely the existence of an associated ‘adjoint’ space, because 
the space adjoint to real three-dimensional space is indistinguishable from 
real space. In quantum mechanics and in relativity the two spaces are dis- 
tinguishable. We now take a moment to develop the mathematical theory 
of general vector spaces in the context of kets in order to explain the re- 
lationship between a general vector space and its adjoint space.  When we 
are merely using kets as examples of vectors, we shall call them “vectors”. 
Appendix G explains how these ideas are relevant to relativity. 

 

1 Most elementary particles have intrinsic angular momentum or ‘spin’ ( 7.4). A com- 
plete set of amplitudes for a particle such as electron or proton that has spin, includes 
information about the orientation of the spin. In the interests of simplicity, in our discus- 
sions particles are assumed to have no spin unless the contrary is explicitly stated, even 
though spinless particles are rather rare. 
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For any vector space V it is natural to choose a set of basis vectors, 

that is, a set of vectors |i⟩ that is large enough for it to be possible to 
express any given vector |ψ⟩ as a linear combination of the set’s members. 
Specifically, for any ket |ψ⟩ there are complex numbers ai such that 

Σ 
|ψ⟩ = ai|i⟩. (1.17) 

i 
 

The set should be minimal in the sense that none of its members can be 
expressed as a linear combination of the remaining ones. In the case of ordi- 
nary three-dimensional space, basis vectors are provided by the unit vectors 
i, j and k along the three coordinate axes, and any vector b can be expressed 
as the sum b = a1i + a2j + a3k, which is the analogue of equation (1.17). 

In quantum mechanics an important role is played by complex-valued 
linear functions on the vector space V because these functions extract the 
amplitude for something to happen given that the system is in the state ψ . 
Let f (pronounced ‘bra f’) be such a function. We denote by  f ψ  the 
result of evaluating this function on the ket ψ . Hence, f ψ is a complex 
number (a probability amplitude) that in the ordinary notation of functions 

would be written f (|ψ⟩). The linearity of the  function  ⟨f | implies  that  for 

any complex numbers α, β and kets |ψ⟩, |φ⟩, it is true that 
 

⟨f | α|ψ⟩ + β|φ⟩  = α⟨f |ψ⟩ + β⟨f |φ⟩. (1.18) 
 

Notice that the right side of this equation is a sum of two products of complex 
numbers, so it is well defined. 

To define a function on V we have only to give a rule that enables us 
to evaluate the function on any vector in V . Hence we can define the sum 
⟨h| ≡ ⟨f | + ⟨g| of two bras ⟨f | and ⟨g| by the rule 

⟨h|ψ⟩ = ⟨f |ψ⟩ + ⟨g|ψ⟩ (1.19) 

Similarly, we define the bra  p     α f  to be result of multiplying   f  by 
some complex number α through the rule 

 

⟨p|ψ⟩ = α⟨f |ψ⟩. (1.20) 

Since we now know what it means to add these functions and multiply them 
by complex numbers, they form a vector space V ′, called the  adjoint  space 
of V . 

The dimension of a vector space is the number of vectors required to 
make up a basis for the space. We now show that V and V ′ have the same 
dimension.  Let2   {|i⟩} for i = 1, N  be a basis for V .  Then a linear function 
⟨f | on V  is fully defined once we have given the N  numbers ⟨f |i⟩.  To see 

that this  is true, we use (1Σ.17) and the linearity of ⟨f | to calculate ⟨f |ψ⟩ for 
an arbitrary vector |ψ⟩ = i ai|i⟩: 

 
⟨f |ψ⟩ = 

 
 

ΣN 

 
i=1 

 

ai⟨f |i⟩. (1.21) 

 

This result implies that  we  can  define  N  functions  j  (j  =  1, N )  through 
the equations 

⟨j|i⟩ = δij , (1.22) 

where δij  is 1 if i = j and zero otherwise, because these equations specify the 
value that each bra ⟨j| takes on every basis vector |i⟩ and therefore through 

 

2 Throughout this book the notation {xi} means ‘the set of objects xi’. 
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(1.21) the value that j takes on any vector ψ . Now consider the following 
linear combination of these bras: 

⟨F | ≡ 
ΣN 

j=1 

⟨f |j⟩⟨j|. (1.23) 

 
It is trivial to check that for any i we have F i  =  f i , and from this 
it follows that F = f because we have already agreed that a bra is fully 
specified by the values it takes on the basis vectors. Since we have now shown 
that any bra can be expressed as a linear combination of the N bras specified 
by (1.22), and the latter are manifestly linearly independent, it follows that 
the dimensionality of V ′ is N , the dimensionality of V . 

In summary, we have established that every N -dimensional vector space 
V comes with an N -dimensional space V ′ of linear functions on V , called the 
adjoint space. Moreover, we have shown that once we have chosen a basis 
{|i⟩} for V , there is an associated basis {⟨i|} for V ′. Equation (1.22) shows 
that there is an intimate relation between the ket |i⟩ and the bra ⟨i|: ⟨i|i⟩ = 1 
while ⟨j|i⟩ = 0 for j i. We acknowledge this relationship by saying that ⟨i| 
is the adjoint of |i⟩. We extend this definition of an adjoint to an arbitrary 
ket |ψ⟩ as follows: if 

|ψ⟩ = 
Σ 

ai|i⟩  then ⟨ψ| ≡ 
i 

Σ 
a∗i ⟨i|. (1.24) 

i 

 

With this choice, when we evaluate the function ⟨ψ| on the ket |ψ⟩ we find 

 
⟨ψ|ψ⟩ = 

 Σ 

a∗i ⟨i| 
i 

  Σ 

j 

  

aj |j⟩ = 

 

Σ 
|ai|  ≥ 0. (1.25) 

i 

 

Thus for any state the number ⟨ψ|ψ⟩ is real and non-negative, and it can 
vanish only if |ψ⟩ = 0 because every ai vanishes. We call this number the 
length of |ψ⟩. 

The components of an ordinary three-dimensional vector b  =  bxi + 
byj + bzk are real. Consequently, we evaluate the length-square of b as 
simply (bxi + byj + bzk) · (bxi + byj + bzk) = b

2
 + b

2
 + b

2
. The vector on the 

extreme left of this expression is strictly speaking the adjoint of b but it is 
indistinguishable from it because we have not modified the components in 
any way. In the quantum mechanical case eq. 1.25, the components of the 
adjoint vector are complex conjugates of the components of the vector, so 
the difference between a vector and its adjoint is manifest. 

If |φ⟩ = 
Σ 

i bi|i⟩  and  |ψ⟩  = 
Σ 

i ai|i⟩ are any two states, a calculation 
analogous to that in equation (1.25) shows that 

Σ 
⟨φ|ψ⟩ = b∗i ai. (1.26) 

i 

Similarly, we can show that ⟨ψ|φ⟩ = 
Σ

i a
∗
i bi, and from this  it follows that 

⟨ψ|φ⟩ = 
 
⟨φ|ψ⟩

 ∗
. (1.27) 

We shall make frequent use of this equation. 

Equation (1.26) shows that there is a close connection between extract- 
ing the complex number φ ψ from φ and ψ  and the operation of taking 
the dot product between two vectors b and a. 
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1.3.4 The energy representation 

Suppose our system is a particle that is trapped in some potential well. Then 
the spectrum of allowed energies will be a set of discrete numbers E0, E1, . . . 
and a complete set of amplitudes are the amplitudes ai whose mod squares 
give the probabilities pi of measuring the energy to be Ei. Let  i   be a set 
of basis kets for the space V of the system’s quantum states. Then we use 

the set of amplitudes ai to associate them with a ket |ψ⟩ through 

Σ 
|ψ⟩ = ai|i⟩. (1.28) 

i 
 

This equation relates a complete set of amplitudes ai  to a certain ket 
ψ . We discover the physical meaning of a particular basis ket, say k , by 
examining the values that the expansion coefficients ai take when we apply 
equation (1.28) in the case  k   =  ψ  .  We clearly then have that ai = 0 for 
i = k  and ak  = 1.  Consequently,  the quantum state  k   is that in which 
we are certain to measure the value Ek for the energy.  We say that  k   is 
a state of well defined energy. It will help us remember this important 

identification if we relabel the basis kets, writing |Ei⟩ instead of just |i⟩, so 
that (1.28) becomes 

|ψ⟩ = 
Σ 

ai|Ei⟩. (1.29) 
i 

Suppose we multiply this equation through by Ek . Then by the lin- 
earity of this operation and the orthogonality relation (1.22) (which in our 
new notation reads ⟨Ek |Ei⟩ = δik) we find 

ak = ⟨Ek|ψ⟩. (1.30) 

This is an enormously important result because it tells us how to extract from 
an arbitrary quantum state   ψ   the amplitude for finding that the energy is 
Ek. 

Equation (1.25) yields 
 

⟨ψ|ψ⟩ = 

 
Σ 

|ai| 
i 

 
Σ 

= pi = 1, (1.31) 
i 

 

where the last equality follows because if we measure the energy, we must 
find some value, so the probabilities pi must sum to unity. Thus kets that 
describe real quantum states must have unit length: we call kets with unit 
length properly normalised. During calculations we frequently encounter 
kets that are not properly normalised, and it is important to remember that 
the  key  rule  (1.30)  can  be  used  to  extract Σpredictions  only  from  properly 
normalised kets. Fortunately, any ket φ = 
is straightforward to check that 

i bi|i⟩ is readily normalised:  it 

|ψ⟩ ≡ 
Σ      bi  

√ |i⟩ (1.32) 

i ⟨φ|φ⟩ 
 

is properly normalised regardless of the values of the bi. 
 
 

1.3.5 Orientation of a spin-half particle 

Formulae for the components of the spin angular momentum of a spin-half 
particle that we shall derive in 7.4.2 provide a nice illustration of how the 
abstract machinery just introduced enables us to predict the results of ex- 
periments. 

If you measure one component, say sz, of the spin s of an electron, you 
will obtain one of two results, either sz = 

1
 or sz = − 1 . Moreover the state 

2 
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|+⟩ in which a measurement of sz is certain to yield 2 and the state |−⟩ in 

which the measurement is certain to yield      form a complete set of states 
for the electron’s spin. That is, any state of spin can be expressed as a linear 
combination of |+⟩ and |−⟩: 

|ψ⟩ = a−|−⟩ + a+|+⟩. (1.33) 

Let n be the unit vector in the direction with polar coordinates (θ, φ). 
Then the state +, n in which a measurement of the component of s along 
n is certain to return 

1
 turns out to be (Problem 7.6) 

|+, n⟩ = sin(θ/2) e
iφ/2

|−⟩ + cos(θ/2) e−iφ/2
|+⟩. (1.34a) 

Similarly the state |−, n⟩ in which a measurement of the component of s 
along n is certain to return −  is 

|−, n⟩ = cos(θ/2) e
iφ/2

|−⟩ − sin(θ/2) e−iφ/2
|+⟩. (1.34b) 

By equation (1.24) the adjoints of these kets are the bras 

⟨+, n| = sin(θ/2) e−iφ/2
⟨−| + cos(θ/2) e

iφ/2
⟨+| 

⟨−, n| = cos(θ/2) e−iφ/2
⟨−| − sin(θ/2) e

iφ/2
⟨+|. 

(1.35) 

 

From these expressions it is easy to check that the kets , n are properly 
normalised and orthogonal to one another. 

Suppose we have just measured sz and found the value to be 
1
 and we 

want the amplitude A−(n) to find − 1  when we measure n· s. Then the state 
of the system is |ψ⟩ = |+⟩ and the required amplitude is 

A−(n) = ⟨−, n|ψ⟩ = ⟨−, n|+⟩ = − sin(θ/2)e
iφ/2

, (1.36) 

so the probability of this outcome is 

P−(n) = |A−(n)|2 = sin
2
(θ/2). (1.37) 

This vanishes when θ = 0 as it should since then n = (0, 0, 1) so n · s = sz, 
and we are guaranteed to find sz = 

1
 rather than − 1 . P−(n) rises to 

1
 when 

θ = π/2 and n lies somewhere in the x, y plane. In particular, if sz = 
1
 , a 

measurement of sx is equally likely to return either of the two possible values 
± 2 . 

Putting θ = π/2, φ = 0 into equations (1.34) we obtain expressions for 
the states in which the result of a measurement of sx is certain 

 

1 1 
|+, x⟩ = √

2 
(|−⟩ + |+⟩) ; |−, x⟩ = √

2 
(|−⟩ − |+⟩) . (1.38) 

Similarly, inserting θ = π/2, φ = π/2 we obtain the states in which the result 
of measuring sy is certain 

 

|+, y⟩ = 
eiπ/4 

√
2  

(|−⟩ − i|+⟩) ; |−, y⟩ = 
eiπ/4 

√
2  

(|−⟩ + i|+⟩) . (1.39) 

 

Notice  that  |+, x⟩ and  |+, y⟩ are  both  states  in  which  the  probability  of 
measuring sz  to be  

1
  is  

1
 .  What makes them physically distinct states is 

that the ratio of the amplitudes to measure ± 1 for sz is unity in one case 
and i in the other. 
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1.3.6 Polarisation of photons 

A discussion of the possible polarisations of a beam of light displays an 
interesting connection between quantum amplitudes  and classical physics. 
At any instant in a polarised beam of light, the electric vector E is in one 
particular direction perpendicular to the beam. In a plane-polarised beam, 
the direction of E stays the same, while in a circularly polarised beam it 
rotates. A sheet of Polaroid transmits the component of E in one direction 
and blocks the perpendicular component. Consequently, in the transmitted 
beam   E   is smaller than in the incident beam by a factor cos θ, where θ is 
the angle between the incident field and the direction in the Polaroid that 
transmits the field. Since the beam’s energy flux is proportional to E 

2
, a 

fraction cos
2
 θ of the beam’s energy is transmitted by the Polaroid. 

Individual photons either pass through the Polaroid intact or are ab- 
sorbed by it depending on which quantum state they are found to be  in 
when they are ‘measured’ by the Polaroid. Let be the state in which the 
photon will be transmitted and   that in which it will be blocked.  Then 
the photons of the incoming plane-polarised beam are in the state 

 

|ψ⟩ = cos θ|→⟩ + sin θ|↑⟩, (1.40) 

so each photon has an amplitude a→ = cos θ for a measurement by the 

Polaroid to find it in the state |→⟩ and be transmitted,  and an amplitude 
a↑ = sin θ to be found to be in the state     and be blocked.  The fraction 
of the beam’s photons that are transmitted is the probability get through 
P→  =   a→ 

2
  = cos

2
 θ.  Consequently a  fraction cos

2
 θ  of the  incident energy 

is transmitted, in agreement with classical physics. 
The states   and    form a complete set of states for photons that 

move in the direction of the beam. An alternative complete set of states is 
the set + , formed by the state + of a right-hand circularly polarised 
photon and the state of a left-hand circularly polarised photon. In the 
laboratory a circularly polarised beam is often formed by passing a plane 
polarised beam through a birefringent material such as calcite that has its 
axes aligned at 45◦  to the incoming plane of polarisation. The incoming 
beam is resolved into its components parallel to the calcite’s axes, and one 
component is shifted in phase by π/2 with respect to the other. In terms of 
unit vectors êx  and êy  parallel to the calcite’s axes, the incoming field is 

 

E 
E = √

2 
ℜ 
  

(êx + êy)e 
} 

−iωt 

 

(1.41) 

 

and the outgoing field of a left-hand polarised beam is 

E 
E− = √

2 
ℜ 
  

(êx + iêy)e 
} 

−iωt 

 
, (1.42a) 

 

while the field of a right-hand polarised beam would be 

E 
E+ = √

2 
ℜ 
  

(êx − iêy)e 
} 

−iωt 

 
. (1.42b) 

 

The last two equations express the electric field of  a circularly polarised 
beam as a linear combination of plane polarised beams that differ in phase. 
Conversely, by adding (1.42b) to equation (1.42a), we can express the electric 
field of a beam polarised along the x axis as a linear combination of the fields 
of two circularly-polarised beams. 

Similarly, the quantum state of a circularly polarised photon is a linear 
superposition of linearly-polarised quantum states: 

 

1 
|±⟩ = √

2 
(|→⟩ ∓ i|↑⟩) , (1.43) 
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and conversely, a state of linear polarisation is a linear superposition of states 
of circular polarisation: 

 
1 

|→⟩ = √
2 

(|+⟩ + |−⟩) . (1.44) 

Whereas in classical physics complex numbers are just a convenient way of 
representing the real function cos(ωt + φ) for arbitrary phase φ, quantum 
amplitudes are inherently complex and the operator    is not used. Whereas 
in classical physics a beam may be linearly polarised in a particular direction, 
or circularly polarised in a given sense, in quantum mechanics an individual 
photon has an amplitude to be linearly polarised in a any chosen direction 
and an amplitude to be circularly polarised in a given sense. The amplitude 
to be linearly polarised may vanish in one particular direction, or it may 
vanish for one sense of circular polarisation. In the general case the photon 
will have a non-vanishing amplitude to be polarised in any direction and any 
sense. After it has been transmitted by an analyser such as Polaroid, it will 
certainly be in whatever state the analyser transmits. 

 
 
 

1.4 Measurement 

Equation (1.28) expresses the quantum state of a system ψ as a sum over 
states in which a particular measurement, such as energy, is certain to yield a 
specified value. The coefficients in this expansion yield as their mod-squares 
the probabilities with which the possible results of the measurement will be 
obtained. Hence so long as there is more than one term in the sum, the result 
of the measurement is in doubt. This uncertainty does not reflect shortcom- 
ings in the measuring apparatus, but is inherent in the  physical situation – 
any defects in the measuring apparatus will increase the uncertainty above 
the irreducible minimum implied by the expansion coefficients, and in  6.3 
the theory will be adapted to include such additional uncertainty. 

Here we are dealing with ideal measurements, and such measurements 
are reproducible. Therefore, if a second measurement is made immediately 
after the first, the same result will be obtained.  From this observation it 

follows  that  the  quantΣum  state  of  the  system  is  changed  by  the  first  mea- 
surement from |ψ⟩ = i ai|i⟩ to |ψ⟩ = |I⟩, where |I⟩ is the state in which 
the  measurement is  guaranteed to  yield  the  value  that  was  obtainedΣby  the 
first measurement. The abrupt change in the quantum state from i  ai|i⟩ 
to I that accompanies a measurement is referred to as the collapse of the 
wavefunction. 

What happens when the “wavefunction collapses”? It is tempting to 
suppose that this event is not a physical one but merely an updating of 
our knowledge of the system: that the system was already in the state I 
before the measurement, but we only became aware of this fact when the 
measurement was made. It turns out that this interpretation is untenable, 
and that wavefunction collapse is associated with a real physical disturbance 

of the system. This topic is explored further in §6.5. 

Problems 

1.1 What physical phenomenon requires us to work with probability am- 
plitudes rather than just with probabilities, as in other fields of endeavour? 

1.2 What properties cause complete sets of amplitudes to constitute the 
elements of a vector space? 

1.3 V ′ is the dual space of the vector space V . For a mathematician, what 
objects comprise V ′? 
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1.4 In quantum mechanics, what objects are the members of the vector 
space V ? Give an example for the case of quantum mechanics of a member 
of the dual space V ′  and explain how members of V ′  enable us to predict 
the outcomes of experiments. 

1.5 Given that |ψ⟩ = e
iπ/5

|a⟩ +e
iπ/4

|b⟩, express ⟨ψ| as a linear combination 
of ⟨a| and ⟨b|. 

1.6 What properties characterise the bra ⟨a| that is associated with the ket 

|a⟩? 

1.7 An electron can be in one of two potential wells that are so close that 
it can “tunnel” from one to the other (see 5.2 for a description of quantum- 
mechanical tunnelling). Its state vector can be written 

 

|ψ⟩ = a|A⟩ + b|B⟩, (1.45) 

where A is the state of being in the first well and B is the state of being in 
the second well and all kets are correctly normalised. What is the probability 
of  finding  the√particle  in  the  first  well  given  that:  (a)  a  =  i/2;  (b)  b  =  e

iπ
; 

(c) b = 
1
 + i/  2? 

1.8 An electron can “tunnel” between potential wells that form a chain, so 
its state vector can be written 

 
|ψ⟩ = 

Σ∞ 

an|n⟩, (1.46a) 
−∞ 

 

where |n⟩ is the state of being in the n
th

 well, where n increases from left to 
right. Let 

1 −i 
 

 

 |n|/2 

an = √
2 3

 einπ . (1.46b) 

a. What is the probability of finding the electron in the n
th

 well? 
b. What is the probability of finding the electron in well 0 or anywhere to 

the right of it? 
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2 
Operators, measurement and time 

evolution 

 
In the last chapter we saw that each quantum state of a system is represented 
by a point or ‘ket’ ψ that lies in an abstract vector space. We saw that 
states for which there is no uncertainty in the value that will be measured 
for a quantity such as energy, form a set of basis states for this space – 
these basis states are analogous to the unit vectors i, j and k of ordinary 
vector geometry. In this chapter we develop these ideas further by showing 
how every measurable quantity such as position, momentum or energy is 
associated with an operator on state space. We shall see that the energy 
operator plays a special role in that it determines how a system’s ket ψ 
moves through state space over time. Using these operators we are able 
at the end of the chapter to study the dynamics of a free particle, and to 
understand how the uncertainties in the position and momentum of a particle 
are intimately connected with one another, and how they evolve in time. 

 
 
 

2.1 Operators 

A linear operator on the vector space V  is an object Q that transforms 
kets into kets in a linear way. That is, if |ψ⟩ is a ket, then |φ⟩ = Q|ψ⟩ is 
another ket, and if |χ⟩ is a third ket and α and β are complex numbers, we 
have 

Q α|ψ⟩ + β|χ⟩ 

Consider now the linear operator 

 
I = 

= α(Q|ψ⟩) + β(Q|χ⟩). (2.1) 

 
Σ 

|i⟩⟨i|, (2.2) 
i 

 

where {|i⟩} is any set of basis kets. I really is an operator because if we 
apply it to any ket |ψ⟩, we get a linear combination of kets, which must itself 
be a ket: 

I|ψ⟩ = 
Σ 

|i⟩⟨i|ψ⟩ = 
i 

Σ 
(⟨i|ψ⟩) |i⟩, (2.3) 

i 
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where we are able to move ⟨i|ψ⟩ around freely because it’s just a complex 
number. To determine which ket I|ψ⟩ is, we substitute into (2.3) the expan- 
sion (1.17) of |ψ⟩ and use the orthogonality relation (1.22): 

 
I|ψ⟩ = 

Σ Σ 
|i⟩⟨i| 

i j 

Σ 

  

aj |j⟩ 

 

 
(2.4) 

= ai|i⟩ = |ψ⟩. 
i 

 

We have shown that I applied to an arbitrary ket ψ yields that same ket. 
Hence I is the identity operator. We shall make extensive use of this fact. 

Consider now the operator 

Σ 
H = Ei|Ei⟩⟨Ei|. (2.5) 

i 
 

This is the most important single operator in quantum mechanics. It is called 
the Hamiltonian in honour of W.R. Hamilton, who introduced its classical 
analogue.1 We use H to operate on an arbitrary ket |ψ⟩ to form the ket 
H|ψ⟩, and then we bra through by the adjoint ⟨ψ| of |ψ⟩. We have 

Σ 
⟨ψ|H|ψ⟩ = Ei⟨ψ|Ei⟩⟨Ei|ψ⟩. (2.6) 

i 

By equation (1.29) ⟨Ei|ψ⟩ = ai, while by (1.24) ⟨ψ|Ei⟩ = a∗i .  Thus 

⟨ψ|H|ψ⟩ = 
Σ 

Ei|ai| 
i 

Σ 
= piEi = ⟨E⟩ . (2.7) 

i 
 

Here is yet another result of fundamental importance: if we squeeze the 
Hamiltonian between a quantum state ψ and its adjoint bra, we obtain the 
expectation value of the energy for that state. 

It is straightforward to  generalise this  result for the  expectation value 
of the energy to other measurable quantities: if Q is something that we can 
measure (often called an observable) and its spectrum of possible values is 
{qi},  then  we  expand  an  arbitrary ket  |ψ⟩ as  a  linear  combination  of  states 
|qi⟩ in which the value of Q is  well defined, 

Σ 
|ψ⟩ = ai|qi⟩, (2.8) 

i 
 

and with Q we associate the operator 

Σ 
Q = qi|qi⟩⟨qi|. (2.9) 

i 
 

Then ψ Q ψ  is the expectation value of Q when our system is in the state 
ψ . When the state in question is obvious from the context, we shall some- 
times write the expectation value of Q simply as Q . 

When a linear operator R turns up in any mathematical problem, it 
is generally expedient to investigate its eigenvalues and eigenvectors. An 
eigenvector is a vector that R simply rescales, and its eigenvalue is the 
rescaling factor. Thus, let r be an eigenvector of R, and r be its eigenvalue, 
then we have 

R|r⟩ = r|r⟩. (2.10) 
 

1 William Rowan Hamilton (1805–1865) was a protestant Irishman who was appointed 
the Andrews’ Professor of Astronomy at Trinity College Dublin while still an undergrad- 
uate. Although he did not contribute to astronomy, he made important contributions to 
optics and mechanics, and to pure mathematics with his invention of quaternions, the first 
non-commutative algebra. 

2 
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Box  2.1: Hermitian  Operators 

Then  we  bra  the  defining  equation  of  |qi⟩ through  by  ⟨qk |,  and  bra  the 
Let Q be a Hermitian operator with eigenvalues qi  and eigenvectors |qi⟩. 

defining equation of |qk⟩ through by ⟨qi|: 

⟨qk|Q|qi⟩ = qi⟨qk|qi⟩ ⟨qi|Q|qk⟩ = qk⟨qi|qk⟩. 

We next take the complex conjugate of the second equation from the first. 
The left side then vanishes because Q is Hermitian, so with equation 
(1.27) 

0 = (qi − qk
∗)⟨qk|qi⟩. 

 
belonging to distinct eigenvalues are orthogonal. 
are  real.   When  qi  =/ qk,  we  must  have  ⟨qk|qi⟩ =  0,  so  the  eigenvectors 
Setting k = i we find that qi = qi

∗  since ⟨qi|qi⟩ > 0.  Hence the eigenvalues 
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What are the eigenvectors and eigenvalues of H? If we apply H to |Ek⟩, we 
find 

H|Ek⟩ = 
Σ 

Ei|Ei⟩⟨Ei|Ek⟩ = Ek|Ek⟩. (2.11) 
i 

So the eigenvectors of H are the states of well defined energy, and its eigen- 
values are the possible results of a measurement of energy. Clearly this 
important result generalises immediately to eigenvectors and eigenvalues of 
the operator Q that we have associated with an arbitrary observable. 

Consider the complex number φ Q ψ , where φ and  ψ  are two arbi- 
trary quantum states. After expanding the states in terms of the eigenvectors 
of Q, we have 

 
⟨φ|Q|ψ⟩ = 

  Σ Σ 

b∗i ⟨qi|   Q 
i j 

  

aj |qj⟩ 
Σ 

= b∗i ajqjδij  = 
ij 

Σ 
b∗i qiai   (2.12) 

i 

Similarly, ⟨ψ|Q|φ⟩ = 
Σ 

i ai
∗qibi.   Hence  so  long  as  the  spectrum  {qi}  of  Q 

consists entirely of real numbers (which is physically reasonable), then 
 

(⟨φ|Q|ψ⟩)∗ = ⟨ψ|Q|φ⟩ (2.13) 

for any two  states   φ   and   ψ .   An operator with  this  property is  said to 
be  Hermitian.  Hermitian  operators  have  nice  properties.  In  particular, 
one can prove – see Box 2.1 – that they have real eigenvalues and mutually 
orthogonal eigenvectors, and it is because we require these properties on 
physical grounds that the operators of observables turn out to be Hermitian. 
In Chapter 4 we shall find that Hermitian operators arise naturally from 
another physical point of view. 

Although the operators associated with observables are always Hermi- 
tian, operators that are not Hermitian turn out to be extremely useful.  With 
a non-Hermitian operator R we associate another operator R† called its Her- 
mitian adjoint by requiring that for any states |φ⟩ and |ψ⟩ it is true that 

    
⟨φ|R |ψ⟩ = ⟨ψ|R|φ⟩. (2.14) 

Comparing this equation with equation (2.13) it is clear that a Hermitian 
operator Q is its own adjoint: Q† = Q. 

By expanding the kets φ and ψ in the equation φ = R ψ as sums of 
basis kets, we show that R is completely determined by the array of numbers 
(called matrix elements) 

 

Rij ≡ ⟨i|R|j⟩. (2.15) 



| ⟩ 
| ⟩ 

| ⟩ | ⟩ | ⟩ | ⟩ 

|  ⟩  ≡ ⟨  | ⟨ |  ≡ | ⟩ 

| ⟩ 

20 Chapter 2: Operators, measurement and time evolution 
 

Table 2.1 Rules for Hermitian adjoints 
 

Object 

Adjoint 

i 

−i 

|ψ⟩ 

⟨ψ| 

R 

R† 

QR 

R†Q† 

R|ψ⟩ 

⟨ψ|R† 

⟨φ|R|ψ⟩ 

⟨ψ|R†|φ⟩ 
 

In fact 
|φ⟩ = 

Σ 
bi|i⟩ = R|ψ⟩ = 

i 

Σ 

Σ 
ajR|j⟩ 

j 

Σ 

 

 
(2.16) 

⇒    bi = aj⟨i|R|j⟩ = 
j 

Rijaj . 
j 

If in equation (2.14) we set φ = i and ψ  =  j , we discover the 
relation between the matrix of R and that of R†: 

(Ri
†
j )
∗ = Rji ⇔ Ri

†
j  = Rj

∗
i. (2.17) 

Hence the matrix of R† is the complex-conjugate transpose of the matrix 
for R. If R is Hermitian so that R† = R, the matrix Rij must equal its 
complex-conjugate transpose, that is, it must be an Hermitian matrix. 

Operators can be multiplied together: when the operator QR operates 
on  ψ  , the result is what you get by operating first with R and then applying 
Q to R ψ . We shall frequently need to find the Hermitian adjoints of such 
products. To find out how to do this we replace R in (2.17) by QR: 

Σ Σ 

(QR)†
ij  = (QR)∗ji  = Qj

∗
k Rk

∗
i  = Ri

†
k Q

†
kj  = (R†Q†)ij . (2.18) 

k k 
 

Thus, to dagger a product we reverse the terms and dagger the individual 
operators. By induction it is now easy to show that 

 

(ABC . . . Z)† = Z† . . . C†B†A†. (2.19) 
 

If we agree that the Hermitian adjoint of a complex number is its com- 
plex conjugate and that  ψ †     ψ  and  ψ †     ψ , then we can consider the 
basic rule (2.14) for taking the complex conjugate of a matrix element to be 
a generalisation of the rule we have derived about reversing the order and 
daggering the components of a product of operators. The rules for taking 
Hermitian adjoints are summarised in Table 2.1. 

Functions of operators We shall frequently need to evaluate functions 
of operators. For example, the potential energy of a particle is a function 
V (x̂)  of  the  position  operator  x̂.  Let  f  be  any  function  of  one  variable  and 
R be any operator. Then we define the operator f (R) by the equation 

Σ 
f (R) ≡ f (ri)|ri⟩⟨ri|, (2.20) 

i 
 

where the ri and ri are the eigenvalues and eigenkets of R. This definition 
defines f (R) to be the operator that has the same eigenkets as R and the 
eigenvalues that you get by evaluating the function f on the eigenvalues of 
R. 

Commutators     The commutator of two operators A, B is defined to be 
 

[A, B] ≡ AB − BA. (2.21) 

If [A, B] = 0, it is impossible to find a complete set of mutual eigenkets of A 
and B  (Problem 2.19).  Conversely, it  can be  shown that  if  [A, B] = 0  there 
is a complete set of mutual eigenkets of A and B, that is, there is a complete 
set of states of the system in which there is no uncertainty in the value that 
will be obtained for either A or B. We shall make extensive use of this fact. 
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Notice that the word complete appears in both these statements; even in the 
case [A, B] = 0 it may be possible to  find  states in  which  both  A  and  B 
have definite values. It is just that such states cannot form a complete set. 
Similarly, when [A, B] = 0 there can be states  for which A  has  a definite 
value but B does not. The literature is full of inaccurate statements about 
the implications of [A, B] being zero or non-zero. 

Three invaluable rules are 

[A + B, C] = [A, C] + [B, C] 

AB = BA + [A, B] 

[AB, C] = [A, C]B + A[B, C]. 

 
 

(2.22) 

 

All three rules are trivial to prove by explicitly  writing out  the  contents of 
the square brackets. With these rules it is rarely necessary to write out the 
contents of a commutator again, so they eliminate a common source of error 
and tedium in calculations. Notice the similarity of the third rule to the 
standard rule for differentiating a product: d(ab)/dc = (da/dc)b + a(db/dc). 
The rule is easily generalised by induction to the rule 

 

[ABC . . . , Z] = [A, Z]BC . . . + A[B, Z]C . . . + AB[C, Z] . . . (2.23) 
 

We shall frequently need to evaluate the commutator of an operator 
A with a function f of an operator B. We assume that f has a convergent 
Taylor series2  f = f0+f ′B+ 

1
 f ′′B

2
+· · ·, where f0 ≡ f (0), f ′ ≡ (df (x)/dx)0, 

etc., are numbers. Then 
 

[A, f (B)] = f ′[A, B] + 
1
 f ′′([A, B]B + B[A, B]) 

+ 
 1

 f ′′′([A, B]B
2
 + B[A, B]B + B

2
[A, B]) + · · · 

 

 
(2.24) 

 

In the important case in which B commutes with [A, B], this expression 
simplifies dramatically 

[A, f (B)] = [A, B](f ′ + f ′′B + 
1
 f ′′′B

2
 + · · ·) = [A, B] 

df 
. (2.25) 

2
 dB 

We shall use this formula several times. 
 

 

2.2 Evolution in time 

Since physics is about predicting the future, equations of motion lie at its 
heart. Newtonian dynamics is dominated by the equation of motion f = 
ma, where f is the force on a particle of mass m and a is the resulting 
acceleration.   In quantum mechanics the analogous dynamical equation is 
the time-dependent  Schrödinger  equation  (TDSE):3

 

ih̄ 
∂|ψ⟩ 

= H  ψ  . (2.26) 
∂t 

For future reference we use the rules of Table 2.1 to derive from this equation 
the equation of motion of a bra: 

−ih̄ 
∂⟨ψ| 

= ⟨ψ|H, (2.27) 
 

2 If necessary, we expand f (x) about some point x0 0, i.e., in powers of x − x0, so 
we don’t need to worry that the series about the origin may not converge for all x. 

3 Beginners  sometimes  interpret  the  TdSE  as  stating  that  H  =  ih̄∂/∂t.    This  is  as 
unhelpful as interpreting f = ma as a definition of f. For Newton’s equation to be useful 
it has to be supplemented by a description of the forces acting on the particle. Similarly, 

the TdSE is useful only when we have another expression for H. 
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where we have used the fact that H is Hermitian, so H† = H. The great 
importance of the Hamiltonian operator is due to its appearance in the TdSE, 
which must be satisfied by the ket of any system. We shall see below in 
several concrete examples that the TdSE, which we have not attempted to 
motivate physically, generates familiar motions in circumstances that permit 
classical mechanics to be used. 

One perhaps surprising aspect of the TdSE we can justify straight away: 
while Newton’s second law is a second-order differential equation, the TdSE 
is first-order. Since it is first order, the boundary data at t = 0 required to 
solve for ψ, t   at t > 0 comprise the ket ψ, 0 . If the equation were second- 
order in time, like Newton’s law, the required boundary data would include 
∂ ψ /∂t. But   ψ, 0    by hypothesis constitutes a complete set of amplitudes; 
it embodies everything we know about the current state of the system. If 
mathematics required us to know something about the system in addition to 
ψ, 0 , then either ψ would not constitute a complete set of amplitudes, or 
physics could offer no hope of predicting the future, and it would be time to 
take up biology or accountancy, or whatever. 

The TdSE tells us that states of well-defined energy evolve in time in an 
exceptionally simple way 

 

ih̄ 
∂|En⟩ 

= H|E ⟩ = E |E  ⟩, (2.28) 
∂t 

which implies that 

n n n 

|En, t⟩ = |En, 0⟩e−iEnt/h̄ . (2.29) 

That is, the passage of time simply changes the phase of the ket at a rate 
En/h̄. 

We can use this result to calculate the time evolution of an arbitrary 
state |ψ⟩. In the energy representation the state is 

Σ 
|ψ, t⟩ = an(t)|En, t⟩. (2.30) 

n 

Substituting this expansion into the TdSE (2.26) we find 

 
ih̄ 

∂|ψ⟩ 

∂t 

Σ 
= īh 

n 

  

ȧn|En⟩ + an 

  
∂|En⟩ 

∂t 

Σ 
= anH|En⟩, (2.31) 

n 
 

where a dot denotes differentiation with respect to time. The right side 
cancels with the second term in the middle, so we have ȧn = 0.  Since the an 
are constant, on eliminating |En, t⟩ between equations (2.29) and (2.30), we 
find that the evolution of |ψ⟩ is simply given by 

Σ 
|ψ, t⟩ = ane−iEnt/h̄ |En, 0⟩. (2.32) 

n 
 

We shall use this result time and again. 
States of well-defined energy are unphysical and never occur in Nature 

because they are incapable of changing in any way, and hence it is impossible 
to get a system into such a state.  But they play an extremely important role 
in quantum mechanics because they provide the almost trivial solution (2.32) 
to the governing equation of the theory, (2.26). Given the central role of these 
states, we spend much time solving their defining equation 

H|En⟩ = En|En⟩, (2.33) 

which  is  known  as  the  time-independent   Schrödinger   equation,   or 
TISE for short. 
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2.2.1 Evolution of expectation values 

We have seen that   ψ Q ψ   is the expectation value of the observable Q 
when the system is in the state ψ , and that expectation values provide a 
natural connection to classical physics, which is about situations in which the 
result of a measurement is almost certain to lie very close to the quantum- 
mechanical expectation value. We can use the TdSE to  determine the  rate 
of change of this expectation value: 

d ∂Q 
ih̄ 

dt 
⟨ψ|Q|ψ⟩ = −⟨ψ|HQ|ψ⟩ + ih̄⟨ψ| 

∂t 
|ψ⟩ + ⟨ψ|QH|ψ⟩ 

∂Q 
= ⟨ψ|[Q, H ]|ψ⟩ + ih̄⟨ψ| 

∂t 
|ψ⟩, 

 

(2.34) 

 

where we have used both the TdSE (2.26) and its Hermitian adjoint (2.27) 
and the square bracket denotes a commutator – see (2.21). Usually operators 
are independent of time (i.e., ∂Q/∂t = 0), and then the rate of change of an 
expectation value is  the  expectation value of the operator     i[Q, H]/h̄.  This 
important result is known as Ehrenfest’s theorem. 

If a time-independent operator Q happens to commute with the Hamil- 

tonian, that is if [Q, H] = 0, then for any state |ψ⟩ the expectation value 
of  Q  is  constant  in  time,  or  a  conserved  quantity.    Moreov er,  in  these 
circumstances Q

2
 also commutes with H, so ⟨ψ|(∆Q)

2
|ψ⟩ =  Q − ⟨Q⟩ 

is  also  constant.   If  initia lly  ψ  is  a  state  of  well-defined  Q,  i.e.,  |ψ⟩  =  |qi⟩ 

for some i,  then    (∆Q)
2
    = 0 at all times.   Hence,  whenever [Q, H] = 0, 

a state of well defined Q evolves into another such state, so the value of Q 
can be  known precisely at all times.  The value qi  is  then  said to  be a good 
quantum number. We always need to label states in some way. The label 
should be something that can be checked at any time and is not constantly 
changing. Good quantum numbers have precisely these properties, so they 
are much employed as labels of states. 

If the system is in a state of well defined energy, the  expectation value 
of any time-independent operator is time-independent, even if the operator 
does not commute with H. This is true because in these circumstances 
equation (2.34) becomes 

 

d 
ih̄ 

dt 
⟨E|Q|E⟩ = ⟨E|(QH − HQ)|E⟩ = (E − E)⟨E|Q|E⟩ = 0, (2.35) 

where we have used the equation H E = E E and its Hermitian adjoint. 
In view of this property of having constant expectation values of all time- 
independent operators, states of well defined energy are called stationary 
states. 

Since H inevitably commutes with itself, equation (2.34) gives for the 
rate of change of the expectation of the energy 

 

d ⟨E⟩ 
= 

dt 

∂H 
. (2.36) 

∂t 
 

In particular  E   is constant if the Hamiltonian is time-independent.  This 
is a statement of the principle of the conservation of energy since time- 
dependence of the Hamiltonian arises only when some external force is work- 
ing on the system. For example, a particle that is gyrating in a time- 
dependent magnetic field has a time-dependent Hamiltonian because work 
is being done either on or by the currents that generate the field. 

2 
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2.3 The position representation 
If the system consists of a single particle that can move in only one dimension, 
the amplitudes ψ(x) to find the particle at x for x in (  ,  ) constitute a 
complete set of amplitudes. By analogy with equation (1.29) we have4 

∫ ∞ 

|ψ⟩ = dxψ(x)|x⟩. (2.37) 
−∞ 

Here an integral replaces the sum because the spectrum of possible values 
of x is continuous rather than discrete. Our basis kets are the states x  in 
which the particle is definitely at  x.  By  analogy with  equation (1.30) we 
have 

ψ(x) = ⟨x|ψ⟩. (2.38) 

Notice that both sides of this equation are complex numbers that depend on 
the variable x, that is, they are complex-valued functions of x. For historical 
reasons, the function ψ(x)  is  called the  wavefunction  of the  particle.  By 
the usual rule (1.27) for complex conjugation of a bra-ket we have 

ψ∗(x) = ⟨ψ|x⟩. (2.39) 

The analogue for the kets |x⟩ of the orthogonality relation (1.22) is 

⟨x′|x⟩ = δ(x − x′), (2.40) 

where the Dirac  delta  function δ(x   x′) is zero for x = x′  because when 
the particle is at x, it has zero amplitude to be at a different location x′. 
We get insight into the value of δ(x − x′) for x = x′ by multiplying equation 
(2.37) through by ⟨x′| and using equation (2.38) to eliminate ⟨x′|ψ⟩: 

∫ 

⟨x′|ψ⟩ = ψ(x′) = 

∫ 

= 

dxψ(x)⟨x′|x⟩ 

dxψ(x)δ(x − x′). 

 
(2.41) 

 

Since δ(x   x′) is zero for x = x′, we can replace ψ(x) in the integrand by 
ψ(x′) and then take this number outside the integral sign and cancel it with 
the ψ(x′) on the left hand side. What remains is the equation 

∫ 

1 = dxδ(x − x′). (2.42) 
 

Thus there is unit area under the graph of δ(x), which is remarkable, given 
that the function vanishes for x = 0! Although the name of δ(x) includes 
the word ‘function’, this object is not really a function because we cannot 
assign it a value at the origin. It is best considered to be the limit of a series 
of functions that all have unit area under their graphs but become more and 
more sharply peaked around the origin (see Figure 2.1). 

The analogue of equation (1.31) is 

∫ 

dx |ψ(x)|2  = 1, (2.43) 

which expresses the physical requirement that there is unit probability of 
finding the particle at some value of x. 

The analogue of equation (2.2) is 

∫ 

I = dx |x⟩⟨x|. (2.44) 
 

4 The analogy would be clearer if we wrote a(x) for ψ(x), but for historical reasons 
the letter ψ is hard to avoid in this context. 
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Figure 2.1 A series of Gaussians of unit area. The Dirac delta function is the limit of 
this series of functions as the dispersion tends to zero. 

 
It is instructive to check that the operator that is defined by the right side 
of this equation really is the identity operator. Applying the operator to an 
arbitrary state |ψ⟩ we find 

∫ 

I|ψ⟩ = dx |x⟩⟨x|ψ⟩ (2.45) 
 

By equations (2.37) and (2.38) the expression on the right of this equation 
is |ψ⟩, so I is indeed the identity operator. 

When we multiply (2.45) by ⟨φ| on the left, we obtain an important 
formula ∫ 

⟨φ|ψ⟩ = 

∫ 

dx ⟨φ|x⟩⟨x|ψ⟩ = 

 
dxφ∗(x)ψ(x), (2.46) 

 

where the second equality uses equations (2.38) and (2.39). Many practical 
problems reduce to the evaluation of an amplitude such as φ ψ . The expres- 
sion on the  right of equation (2.46) is  a well defined integral that evaluates 
to the desired number. 

By analogy with equation (2.5), the position operator is 

∫ 

x̂ = dxx|x⟩⟨x|. (2.47) 
 

After  applying  x̂  to  a  ket  |ψ⟩ we  have a  ket  |φ⟩ = x̂|ψ⟩ whose wavefunction 

φ(x′) = ⟨x′|x̂|ψ⟩ is 

∫ 
φ(x′) = ⟨x′|x̂|ψ⟩ = 

∫ 

dxx⟨x′|x⟩⟨x|ψ⟩ 

 

 

(2.48) 

= dxxδ(x − x′)ψ(x) = x′ψ(x′), 
 

where we have used equations (2.38) and (2.40). Equation (2.48) states that 
the operator x̂  simply multiplies  the wavefunction ψ(x)  by its  argument. 

In the position representation, operators turn functions of x into other 
functions of  x.  An easy  way of making a  new function  out of an old one is 
to differentiate it.  So consider the operator p̂  that is  defined by 

∂ψ 
⟨x|p̂|ψ⟩ = (p̂ψ)(x) = −ih̄ 

∂x 
. (2.49) 

In Box 2.2 we show that the factor i ensures that p̂  is a Hermitian operator. 
The factor h̄  ensures that p̂ has the dimensions of momentum:5    we will find 

5 Planck’s constant h = 2πh̄ has dimensions of distance ×momentum, or, equivalently, 
energy × time, or, most simply, angular momentum. 
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Box   2.2: Proof   that  p̂   is   Hermitian 

use equation (2.49) to write the left side of this equation in the position 
representation: 

We have to show that for any states |φ⟩ and |ψ⟩, ⟨ψ|p̂|φ⟩ = (⟨φ|p̂|ψ⟩)∗.  We 

∫ 

⟨ψ|p̂|φ⟩ = −ih̄ 

Integrating by parts this becomes 
  

dxψ∗(x) . 
∂x 

∂φ 

  

⟨ψ|p̂|φ⟩ = −ih̄ ψ∗φ  −∞  − 
   ∞ 

∫ 
dxφ(x) . 

∂x 

∂ψ∗ 

We assume that all wavefunctions vanish at spatial infinity, so the term 
in square brackets vanishes, and 

∫ 

⟨ψ|p̂|φ⟩ = ih̄ dx φ(x)  
∂x   

= (⟨φ|p̂|ψ⟩)∗. 
∂ψ∗ 
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that p̂  is the momentum  operator.  In Newtonian physics the momentum 
of a  particle of mass  m and  velocity ẋ  is  mẋ,  so  let’s  use equation (2.34) to 

calculate d ⟨x̂⟩ /dt and see whether it is  ⟨p̂⟩ /m. 

 
2.3.1 Hamiltonian of a particle 

To calculate any time derivatives in quantum mechanics we need to know 
what the Hamiltonian operator H of our system is because H appears in the 
TdSE (2.26). Equation (2.5) defines H in the energy representation, but not 
how to write H in the position representation. We are going to have to make 
an informed guess and justify our guess later. 

The Newtonian expression for the energy of a particle is 
 

 

E =  
1
 mẋ

2
 

p2 

+ V  = + V, (2.50) 
2m 

 

where V (x) is the particle’s potential energy. So we guess that the Hamilto- 
nian of a particle is 

p̂
2
 

H = 
2m 

+ V (x̂), (2.51) 

where the square of p̂ means the act of operating with p̂  twice (p̂
2
      p̂p̂).  The 

meaning of V (x̂) is given by equation (2.20) with V  and x̂ substituted for f 
and R. Working from that equation in close analogy with the calculation in 
equation (2.48) demonstrates that in the position representation the operator 
V (x̂)  acts  on  a  wavefunction  ψ(x)  simply  by  multiplying  ψ  by  V (x).   That 

is, ⟨x|V (x̂)|ψ⟩ = V (x)ψ(x). 
Now that we have guessed that H is given by equation (2.51), the next 

step in the calculation of the rate of change of   x̂   is to evaluate the commu- 
tator of x̂ and H .  Making use of equations (2.22) we find 

 

 

[x̂, H ] = 
 

x̂, 
p̂

2
 

+ V 
2m 

[x̂, p̂p̂] 
= 

2m 

 

+ [x̂, V (x̂)] 
 
 

(2.52) 
[x̂, p̂]p̂ + p̂[x̂, p̂] 

= . 
2m 

 

In  the  last  equality  we  have  used  the  fact  that  [x̂, V (x̂)] =  0,  which  follows 
because both x̂ and V (x̂) act by multiplication, and ordinary multiplication 
is a commutative operation. We now have to determine the value of the 
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commutator [x̂, p̂].  We  return to  the  definition  (2.49) of p̂  and  calculate the 
wavefunction produced by applying [x̂, p̂] to an arbitrary state |ψ⟩ 

∂ψ ∂(xψ) 
⟨x|[x̂, p̂]|ψ⟩ = ⟨x|(x̂p̂ − p̂x̂)|ψ⟩ = −ih̄ 

= ih̄⟨x|ψ⟩. 

x 
∂x 

− 
∂x (2.53) 

Since this equation holds for any |ψ⟩, we have the operator equation 

[x̂, p̂] = ih̄. (2.54) 

 
This key result, that the commutator of x̂ with p̂  is the constant ih̄, is called 
a canonical commutation relation.6  Two observables whose commutator 
is     ih̄ are said to be canonically  conjugate to one another, or conjugate 
observables. 

Finally  we  have  the  hoped-for  relation  between  p  and  ẋ:   substituting 
equations (2.53) and (2.54) into equation (2.34) we have 

 
d ⟨x⟩ 

=  
 d 

⟨ψ|x̂|ψ⟩ = i  i  ih̄ ψ|[x̂, H]|ψ⟩ = − ⟨ψ|p̂|ψ⟩ 

dt dt 
1 

=  
m 

⟨p̂⟩ . 

— 
h̄ 
⟨ h̄ m (2.55) 

 

This result makes it highly plausible that p̂ is indeed the momentum operator. 
A  calculation  of  the  rate  of  change  of   p̂   will  increase  the  plausibility 

still further. Again working from (2.34) and using (2.51) we have 
 

d ⟨p̂⟩ 
= − 

 i  
⟨[p̂, H ]⟩ = 

 i 
[p̂, V ]⟩ . (2.56) 

 

Since  [p̂, x̂]  = ih̄  is  just  a  number,  equation  (2.25)  for  the  commutator  of 
one operator with a function of another operator can be used to evaluate 
[p̂, V (x̂)].  We then have  

d ⟨p̂⟩ 
= 

dt 

 

dV 

dx̂ 

 

. (2.57) 

That is, the expectation of the rate of change of the momentum is equal 
to the expectation of the force on the particle. Thus we have recovered 
Newton’s second law from the TdSE. This achievement gives us confidence 
that (2.51) is the correct expression for H. 

 
 

2.3.2 Wavefunction for well defined momentum 

From the discussion below equation (2.11) we know that the state p in which 
a measurement of the momentum will certainly yield the value p has to  be 
an eigenstate of p̂.  We find the wavefunction up(x) =   x p   of this important 
state  by  using  equation  (2.49)  to  write  the  defining  equation  p̂  p   = p p   in 
the position representation: 

 

∂up 
⟨x|p̂|p⟩ = −ih̄ 

∂x   
= p⟨x|p⟩ = pup(x). (2.58) 

The solution of this differential equation is 

 
up(x) = Ae

ipx/h̄
 . (2.59) 

 
6 The name that derives from ‘canonical coordinates’ in Hamilton’s formulation of 

classical mechanics. 

− 

— 
h̄  

⟨ 
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Box  2.3: Gaussian integrals 

Consider the integral 

I ≡ 

∫ ∞ 

−∞ 

dx e−(b  x  +ax), 
2   2 

(1) 

where a and b are constants. We observe that b x + ax = (bx + a/2b)  − 2   2 2 

2 2 ∫ 

The integral is equal to 
√

π. Hence we have the very useful result 
a

2
/4b

2
.  Thus we may write I  = e

a
  
/4b

  b−1
 dz e−z

  , where z ≡ bx+a/2b. 
2 

∫ ∞ 

−∞ 

dx e−(b x +ax) = ea /4b . 
2   2 

√
π

 
2 2 

b 
(2) 

28 Chapter 2: Operators, measurement and time evolution 
 
 

 

Hence  the  wavefunction  of  a  particle√of  well  defined  momentum  is  a  plane 
wave with wavelength λ = 2π/k = h/  2mE, where m is the particle’s mass 
and E its kinetic energy; λ is called the particle’s de Broglie wavelength.7 

If we try to choose the constant A in (2.59) to ensure that up satisfies 
the usual normalisation condition (2.43), we will fail because the integral 
over  all  x  of   e

ipx/h̄
  

2
  = 1  is  undefined.  Instead  we  choose  A  as  follows.  By 

analogy with (2.40) we require p′ p = δ(p  p′).  When we use (2.44) to 
insert an identity operator into this expression, it becomes 

∫ 

δ(p − p′) = 

∫ 

dx ⟨p′|x⟩⟨x|p⟩ = |A|2 dx e
i(p−p′)x/h̄  = 2πh̄|A|2δ(p − p′), 

(2.60) 
where we have used equation (C.12) to evaluate the integral. Thus A 

2
 = 

h−1
, where h = 2πh̄ is Planck’s constant, and the correctly normalised wave- 

function of a particle of momentum p is 

1 
up(x) ≡ ⟨x|p⟩ = √

h 
e 

 

ipx/h̄ 
 
. (2.61) 

 

The uncertainty principle It follows from (2.61) that the position of a 
particle that has well defined momentum is maximally uncertain: all values of 
x are equally probable because up 

2
 is independent of x. This phenomenon 

is said to be a consequence of the uncertainty principle,8 namely that 
when an observable has a well-defined value, all values of the canonically 
conjugate observable are equally probable. 

We can gain useful insight into the workings of the uncertainty principle 
by calculating the variance in momentum measurements for states in which 
measurements of position are subject to varying degrees of uncertainty. For 
definiteness we take the probability density ψ(x) 

2
 to be a Gaussian distri- 

bution of dispersion ς. So we write 

1 
ψ(x) = 

(2πς2)1/4 

 
e−x

 
/4ς

 . (2.62) 

 

With equations (2.46) and (2.61) we find that in this state the amplitude to 
measure momentum p is 

∫ 
⟨p|ψ⟩ = dxu∗(x)ψ(x) = √ 

∫ 
dx e−ipx/h̄  e−x  /4ς   . (2.63) 

 

p
 h(2πς2)1/4 

7 Louis de Broglie (1892–1987) was the second son of the Duc de Broglie. In 1924 his 
PhD thesis introduced the concept of matter waves, by considering relativistic invariance 
of phase. For this work he won the 1929 Nobel prize for physics. In later years he struggled 
to find a causal rather than probabilistic interpretation of quantum mechanics. 

8 First stated by Werner Heisenberg, Z. Phys., 43, 172 (1927), and consequently often 
called ‘Heisenberg’s uncertainty principle’. 
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Box  2.3  explains  how  integrals  of  this  type  are  evaluated.  Setting  a = ip/h̄ 
and b = (2ς)−1

 in equation (2) of Box 2.3 we find 

⟨p|ψ⟩ = √ 2ς
√

π 
e−ς   p  /h̄     = 1 

e−ς   p  /h̄2 
 

 
. (2.64) 

h(2πς2)1/4 (2πh̄
2
/4ς2)1/4 

 

The probability density p ψ 
2
 is a Gaussian centred on zero with a disper- 

sion ςp  in p that equals h̄/2ς.  Thus, the more sharply peaked the particle’s 
probability distribution is in x, the broader the distribution is in p. The 
product of the dispersions in x and p is always  

1
 ̄h:  ςpς =  

1
 ̄h. 

2 2 
This trade-off between the uncertainties in x and p arises because when 

we  expand   ψ    in  eigenkets  of  p̂,  localisation  of  the  probability  amplitude 
ψ(x) is caused by interference between states of different momenta: in the 
position representation, these states are plane waves of wavelength h/p that 
have the same amplitude everywhere, and interference between waves of very 
different wavelengths is required if the region of constructive interference is 
to be strongly confined. 

 
 

2.3.3 Dynamics of a free particle 

We now consider the motion of a free particle – one that is subject to no forces 
so we can drop the potential term in the Hamiltonian (2.51). Consequently, 
the Hamiltonian of a free particle, 

 

p̂
2
 

H = 
2m 

 

, (2.65) 

is  a  function  of  p̂   alone,  so  its  eigenkets  will  be  the  eigenkets  (2.61)  of  p̂. 
By expressing any ket  ψ  as a linear combination of these eigenkets, and 
using the basic time-evolution equation (2.32), we can follow the motion of 
a particle from the initial state ψ .  We  illustrate this  procedure with  the 
case in which ψ corresponds to the particle being approximately at the origin 
with momentum near some value p0. Equation (2.64) gives p ψ  for the case 
in which p0 vanishes. The amplitude distribution that we require is 

 

p ψ, 0   =  
  1  

e−ς2(p−p0 )
2/h̄2 

. (2.66) 
(2πh̄

2
/4ς2)1/4 

 

We can now use (2.32) to obtain the wavefunction t units of time later 

∫ 

⟨x|ψ, t⟩ = dp ⟨x|p⟩⟨p|ψ, 0⟩e−ip
  
t/2mh̄

 
∫ 

 
(2.67) 

=  √ 
1 

dp eipx/h̄ e−ς2(p−p0 )
2/h̄2 

e−ip2t/2mh̄ . 
h(2πh̄

2
/4ς2)1/4 

 

Evaluating the integral in this  expression involves some tiresome algebra 
– you can find the details in Box 2.4 if you are interested. We want the 
probability density at time t of finding the particle at x, which is the mod- 
square of equation (2.67). From the last equation of Box 2.4 we have 

 
|⟨x|ψ, t⟩| 

 
  ς  

=  √
2πh̄

2
|b|2  

exp
 

  2   2   
−(x − p0t/m) ς 

 

 

2h̄
4
|b|4 

 
. (2.68) 

 

This is a Gaussian distribution whose centre moves with the velocity p0/m 
associated with the most probable momentum in the initial data (2.66). The 
square of the Gaussian’s dispersion is 

 
ς

2
(t) = ς

2
 + 

 2 
h̄t 

 

 

2mς 

 

. (2.69) 

2 



Box 2.4: Evaluating the integral in equation (2.67) 

The integral is of the form discussed in Box 2.3.  To clean it up we 
replace the p  in the third exponential with (p − p )  + 2p 2 2 2 

0 0 p − p and 0 

gather together all three exponents: 
2 

⟨x|ψ, t⟩ =√
h(2πh̄

2
/4ς2)1/4 

eip0t/2mh̄ 

∫       

× dp exp 
ip 

h̄ 
x − 

m 
− (p − p0) 

p0t 
  

2 
ς2 it 

   

In Box 2.3 we now set 
      

a = x − 
h̄ m 

i  p0t 
; b   = 2 

ς2 

h̄
2
  
+  

2mh̄ 

  

. 

h̄
2
  
+  

2mh̄ 

it 

and conclude that 
2 

⟨x|ψ, t⟩ = √ 
e ip  t/2mh̄ 0 

    
ip 0 

   √ 
p t π 2 2  2 

h(2πh̄
2
/4ς2)1/4 

exp 
h̄ 

x − 
0 

m b 
e−(x−p0t/m)  /4h̄   b   . 

This is a complicated result because b is a complex number, but its mod- 
square, equation (2.68), is relatively simple. 
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We  saw  above  that  in  the  initial  data  the  uncertainty  in  p  is  ∼ ςp  = h̄/2ς, 

which  translates  to  an  uncertainty  in  velocity  ∆v  ∼ h̄/2mς.   After  time  t 
this uncertainty should lead to an additional uncertainty in position ∆x = 
∆vt ∼ h̄t/2mς  in perfect agreement with equation (2.69). 

These results complete the demonstration that the identification of the 
operator p̂  defined by equation (2.49) with the momentum operator, together 
with the Hamiltonian (2.51), enable us to recover as much of Newtonian me- 
chanics as we expect to continue valid outside the classical regime. The idea 
that in an appropriate limit the predictions of quantum mechanics should 
agree with classical mechanics is often called  the  correspondence  prin- 
ciple. The discipline of checking that one’s calculations comply with the 
correspondence principle is useful in several ways: (i) it provides a check on 
the calculations, helping one to locate missing factors of i or incorrect signs, 
(ii) it deepens one’s understanding of classical physics, and (iii) it draws at- 
tention to novel predictions of quantum mechanics that have no counterparts 
in classical mechanics. 

In the process of checking the correspondence principle for a free particle 
we have stumbled on a new principle, the uncertainty principle, which implies 
that the more tightly constrained the value of one observable is, the more 
uncertain the value of the conjugate variable must be. Notice that these 
uncertainties do not arise from measurement errors: we have assumed that 
x and p can be measured exactly. The uncertainties we have discussed are 
inherent in the situation and can only be increased by deficiencies in the 
measurement process. 

Our calculations have also shown how far-reaching the principle of quan- 
tum interference is: equation (2.67), upon which our understanding of the 
dynamics of a free particle rests, expresses the amplitude for the particle to 
be found at x at time t as an integral over momenta of the amplitude to travel 
at momentum p. It is through interference between the infinite number of 
contributing amplitudes that classically recognisable dynamics is recovered. 
Had we mod-squared the amplitudes before adding them, as classical prob- 
ability theory would suggest, we would have obtained entirely unphysical 
results. 
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2.3.4 Back to two-slit interference 

When we discussed the two-slit interference experiment in 1.2.1, we stated 
without  proof  that  φ1      φ2       x,  where  φi(x)  is  the  phase  of  the  amplitude 
Ai(x) for an electron to arrive at the point x on the screen P after passing 
through the slit Si. We can now justify this assertion and derive the constant 
of proportionality. Once the constant has been determined, it is possible to 
assess the feasibility of the experiment from a practical point of view. 

We assume that the quantum state of an electron as it emerges from 
the electron gun can be approximated by a state of well defined momentum 
p . So the wavefunction between the gun and the screen with the slits is a 
plane wave of wavelength λ = h/p. As an electron passes through a slit we 
assume that it is deflected slightly but retains its former kinetic energy. So we 
approximate its wavefunction after passing through the slit by a wave that is 
no longer plane, but still has wavelength λ. Hence the phase of this wave at 
position x on the screen P will be the phase at the slit plus 2πD/λ = pD/h̄, 
where D(x) is the distance from x to the slit. By Pythagoras’s theorem 

√   
D = L2 + (x ± s)2, (2.70) 

where L is the distance between the screen with the slits and P, 2s is the 
distance between the slits, and the plus sign applies for one slit and the minus 
sign to the other.  We assume that both x and s are much smaller than L 
so the square root can be expanded by the binomial theorem. We then find 
that the difference of the phases is 

φ1 − φ2 ≃ 
2psx 

. (2.71) 
h̄L 

The distance X between the dark bands on P is the value of x for which the 
left side becomes 2π, so 

hL 
X = 

2ps 
. (2.72) 

Let’s put some numbers into this formula. Since h = 6.63 10−34
 J s is very 

small, there is a danger that X will come out too small to produce observable 
bands. Therefore we choose L fairly large and both p and s small. Suppose 
we adopt 1 m for L and 1 µm for s. From the Hamiltonian (2.65) we have p = 

2mE.  A reasonable energy for the electrons is E = 100 eV = 1.6 10−17
 J, 

which yields p = 5.5 10−24
 Ns, and X = 0.057 mm. Hence there should be 

no difficulty observing a sinusoidal pattern that has this period. 
What do the numbers look like for bullets? On a firing range we can 

probably stretch L to 1000 m. The distance between the slits clearly has 
to be larger than the diameter of a bullet, so we take s = 1 cm.  A bullet 
weighs      10 gm  and  travels  at       300 m s−1

.   Equation  (2.72)  now  yields 
X 10−29

 m. So it is not surprising that fire-arms manufacturers find 
classical mechanics entirely satisfactory. 

 
 

2.3.5 Generalisation to three dimensions 

Real particles move in three dimensions rather than one. Fortunately, the 
generalisation to three dimensions of what we have done in one dimension is 
straightforward. 

The x, y and z coordinates of a particle are three distinct observables. 
Their operators commute with one another: 

[x̂i, x̂j ] = 0. (2.73) 

Since these are commuting observables, there is a complete set of mutual 
eigenkets, x . We can express any state of the system, ψ , as a linear 
combination of these kets: 

∫ ∫ 
3 3 

|ψ⟩ = d x ⟨x|ψ⟩ |x⟩ = d x ψ(x) |x⟩, (2.74) 

√ 
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where the wavefunction ψ(x) is now a function of three variables, and the 
integral is over all space. 

The x, y and z components of the particle’s momentum p̂ commute with 
one another: 

[p̂i, p̂j ] = 0. (2.75) 

In the position representation, these operators are represented by partial 
derivatives with respect to their respective coordinates 

 
p̂i 

  ∂ 
= −ih̄ 

∂x
 so    p̂  = −ih̄∇ . (2.76) 

The momenta commute with all operators except their conjugate coordinate, 
so the canonical commutation relations are 

[x̂i, p̂j] = ih̄δij . (2.77) 

In    4.2  we  will  understand  the  origin  of  the  factor  δij .  Since  the  three  mo- 
mentum operators commute with one another, there is a complete set of 
mutual eigenstates. Analogously to equation (2.61), the wavefunction of the 
state with well defined momentum p is 

x p   =  
   1    

e
ix·p/h̄

. (2.78) 
h3/2 

In the position representation the TdSE of a particle of mass m that 
moves in a potential V (x) reads 

∂⟨x|ψ⟩ ˆ p̂
2
 

 
 ih̄ 

∂t 
= ⟨x|H|ψ⟩ = ⟨x| 

2m 
|ψ⟩ + ⟨x|V (x̂)|ψ⟩. (2.79) 

Now ⟨x|p̂
2
|ψ⟩ = −h̄

2
∇2⟨x|ψ⟩ and ⟨x|V (x̂)|ψ⟩ = V (x)⟨x|ψ⟩.  Hence using the 

definition ψ(x) ≡ ⟨x|ψ⟩, the TdSE becomes 
 

∂ψ 
ih̄ 

∂t 

h̄
2
 

= 
2m 

∇ ψ + V (x)ψ. (2.80) 

Probability   current Max Born9 first suggested that the mod-square of 
a particle’s wavefunction, 

ρ(x, t) ≡ |ψ(x, t)|2 (2.81) 

is the probability density of finding the particle near x at time t.  Since 
the particle is ce∫rtain to be found somewhere, this interpretation implies 
that at any time d

3
x |ψ(x, t)|2 = 1. It is not self-evident that this physical 

requirement is satisfied when the wavefunction evolves according to the TdSE 
(2.80). We now show that it is in fact satisfied. 

We multiple the TdSE (2.80) by ψ∗ and subtract from it the result of 
multiplying the complex conjugate of (2.80) by ψ. Then the terms involving 
the potential V (x) cancel and we are left with 

∂ψ ∂ψ∗ 
 

 h̄
2
 

ih̄ ψ∗ + ψ 
∂t ∂t 

= ψ∗∇2ψ − ψ∇2ψ∗ . (2.82) 

The left side of this equation is a multiple of the time derivative of ρ = 
ψ∗ψ. The right side can be expressed as a multiple of the divergence of the 
probability current 

ih̄    
∗ ∗ 

J(x) ≡ 
2m 

ψ∇ψ   − ψ ∇ψ . (2.83) 
 

 

9 For this insight Born won the 1954 Nobel Price for physics. In fact the text of the 
key paper (Born, M., Z. Physik, 37 863 (1926)) argues that ψ is the probability density, 
but a note in proof says “On more careful consideration, the probability is proportional 
to the square of ψ”. 
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That is, equation (2.82) can be written 
 

∂ρ 
= J. (2.84) 

∂t 

In fluid mechanics this equation with J = ρv expresses the conservation of 
mass as a fluid of density ρ flows with velocity v(x). In quantum mechanics 
it expresses conservation of probability. To show that this is so, we simply 
integrate both sides of equation (2.84) through a volume V. Then we obtain 

 d 
∫
 

dt   V 

 
d

3
x ρ = 

∫ 

d
3
x 

∂ρ 
= 

V ∂t 

∫ I 

d
3
x ∇ · J = − 

V ∂V 

d
2
S · J, (2.85) 

 

where the last equality uses the divergence theorem and ∂V denotes the 

boundary o∫f V. Equation (2.85) states that the rate of increase of the proba- 
bility P = d

3
x ρ of finding the particle in V is equal to minus the integral 

over the volu
V
me’s bounding surface of the probability flux out of the volume. 

If V∫ encompasses all space, ψ, and therefore J, will vanish on the boundary, 
so d

3
x ρ will be constant. 

VWe can gain valuable insight into the meaning of a wavefunction by 
explicitly breaking ψ into its modulus and phase: 

 

ψ(x) = S(x)e
iφ(x)

, (2.86) 
 

where S and φ are real. Substituting this expression into the definition (2.83) 
of J, we find 

 

J =  
 ih̄  

(S∇S − iS
2
∇φ − S∇S − iS

2
∇φ) =  

h̄  
S

2
∇φ. (2.87) 

 

Since S
2
 = |ψ|2 = ρ, the velocity v that is defined by setting J = ρv is 

h̄∇φ 
v = . (2.88) 

m 

Thus the gradient of the phase of the wavefunction encodes the velocity at 
which the probability fluid flows. In classical physics, this is the particle’s 
velocity. The phase of the wavefunction (2.78) of a particle of well-defined 
momentum is φ(x) = x   p/h̄, so in this  special case v = p/m as in classical 
physics. Equation (2.88) extends the connection between velocity and the 
gradient of phase to general wavefunctions. 

The virial theorem We illustrate the use of the canonical commutations 
relations equations (2.73), (2.75) and (2.77) by deriving a relation between 
the kinetic and potential energies of a particle that is in a stationary state. 
In §2.2.1 we showed that all expectation values are time-independent when 
a system is  in a stationary state.  We apply this  result to  the operator x̂ · p̂ 

d h p̂
2  i 

0 = ih̄ 
dt 

⟨x̂ · p̂⟩ = ⟨E|  x̂ · p̂, 
2m 

+ V (x̂)  |E⟩ 

=  
  1   

⟨E|[x̂ · p̂, p̂
2

]|E⟩ + ⟨E|[x̂ · p̂, V (x̂)]|E⟩. 

The first commutator can be expanded thus 

(2.89) 

[x̂ · p̂, p̂
2

] = 
Σ 

[x̂j p̂j , p̂
2

] = 
jk 

Σ 
[x̂j , p̂

2
]p̂j  = 

jk 

Σ 
2ih̄p̂kδjk p̂j  = 2ih̄p̂

2
.    (2.90) 

jk 
 

In the position representation the second commutator is simply 
 

[x̂ · p̂, V (x̂)] = −ih̄x · ∇V (x). (2.91) 

− 
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When we put these results back into (2.89) and rearrange, we obtain the 
virial theorem 

p̂
2
 

2⟨E| 
2m 

|E⟩ = ⟨E|(x · ∇V )|E⟩. (2.92) 

In important applications the potential is proportional to some power of 
distance from the origin: V (x) = C x 

α
. Then, because x = x/ x , the 

operator on the right is x V = αC x 
α
 = αV and the virial theorem 

becomes 
p̂

2
 

2⟨E| 
2m 

|E⟩ = α⟨E|V |E⟩. (2.93) 

So twice the kinetic energy is equal to α times the potential energy. For 
example, for a harmonic oscillator α = 2,  so kinetic and potential energies 
are equal. The other important example is motion in an inverse-square force 
field, such as the electrostatic field of an atomic nucleus. In this case α =  1, 
so twice the kinetic energy plus the potential energy vanishes. Equivalently, 
the kinetic energy is equal in magnitude but opposite in sign to the total 
energy. 

 

Problems 

2.1 How is a wave-function ψ(x) written in Dirac’s notation? What’s the 
physical significance of the complex number ψ(x) for given x? 

2.2 Let Q be an operator. Under what circumstances is the complex num- 
ber ⟨a|Q|b⟩ equal to the complex number (⟨b|Q|a⟩)∗ for any states |a⟩ and 
|b⟩? 

2.3 Let Q be the operator of an observable and let ψ be the state of our 
system. 

a. What are the physical interpretations of ⟨ψ|Q|ψ⟩ and |⟨qn|ψ⟩|2, where 
qn  is the n 

eigenvalue? 
eigenket of the observable Q and qn is the corresponding 

Σ 
b. What  is  the  operator n |qnΣ⟩⟨qn|,  where  the  sum  is  over  all  eigenkets 

of Q? What is the operator n qn|qn⟩⟨qn|? 
c. If un(x) is the wavefunction of the state |qn⟩, write dow an integral that 

evaluates to ⟨qn|ψ⟩. 

2.4 What does it mean to say that two operators commute? What is the 
significance of two observables having mutually commuting operators? 

Given that the commutator [P, Q] /= 0 for some observables P and Q, 
does it follow that for all |ψ⟩ 0 we have [P, Q]|ψ⟩ 0? 

2.5 Let ψ(x, t) be the correctly normalised wavefunction of a particle of 
mass m and potential energy V (x). Write down expressions for the expec- 
tation values of (a) x; (b) x

2
; (c) the momentum px; (d) p

2
; (e) the energy. 

What is the probability that the particle will be found in the interval 
(x1, x2)? 

2.6 Write down the time-independent (TiSE) and the time-dependent (TdSE) 
Schrödinger  equations.   Is  it  necessary  for  the  wavefunction  of  a  system  to 
satisfy the TdSE? Under what circumstances does the wavefunction of a 
system satisfy the TiSE? 

2.7 Why is the TdSE first-order in time, rather than second-order like New- 
ton’s equations of motion? 

2.8 A particle is confined in a potential well such that its allowed energies 
are En  =  n

2
   ,  where  n = 1, 2, . . . is  an  integer and   a  positive  constant. 

The corresponding energy eigenstates are 1 , 2 , . . . , n , At t = 0 the 
particle is in the state 

 

|ψ(0)⟩ = 0.2|1⟩ + 0.3|2⟩ + 0.4|3⟩ + 0.843|4⟩. (2.94) 

th 
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a. What is the probability, if the energy is measured at t = 0 of finding a 
number smaller than 6 ? 

b. What is the mean value and what is the rms deviation of the energy of 
the particle in the state ψ(0) ? 

c. Calculate the state vector  ψ  at time t. Do the results found in (a) and 
(b) for time t remain valid for arbitrary time t? 

d. When the energy is measured it turns out to be 16 . After the mea- 
surement, what is the state of the system?  What result is  obtained if 
the energy is measured again? 

2.9 A system has a time-independent Hamiltonian that has spectrum En . 
Prove that the probability Pk that a measurement of energy will yield the 
value Ek is is time-independent. Hint: you can do this either from Ehrenfest’s 
theorem, or by differentiating ⟨Ek, t|ψ⟩ w.r.t. t and using the TdSE. 

2.10 Let ψ(x) be a properly normalised wavefunction and Q an opera- 
tor on wavefunctions. Let qr be the spectrum of Q and ur(x) be the 
corresponding correctly normalised eigenfunctions.  Write down an expres- 
sion  for  theΣprobability  that  a  measurement  of  Q  will  yield  the  value  qr. 
Show that 

⟨Q⟩ ≡ 
∫ ∞

 

r P (qr|ψ)  =  1.    Show  further  that  the  expectation  of  Q  is 

ψ∗Q̂ψ dx.10 

2.11 Find the energy of neutron, electron and electromagnetic waves of 
wavelength 0.1 nm. 

2.12 Neutrons are emitted from an atomic pile with a Maxwellian distribu- 
tion of velocities for temperature 400 K. Find the most probable de Broglie 
wavelength in the beam. 

2.13 A beam of neutrons with  energy E runs horizontally into a crystal. 
The crystal transmits half the neutrons and deflects the other half vertically 
upwards. After climbing to height H these neutrons are deflected through 90◦  
onto a horizontal path parallel to the originally transmitted beam. The two 
horizontal beams now move a distance L down the laboratory, one distance H 
above the other. After going distance L, the lower beam is deflected vertically 
upwards and is finally deflected into the path of the upper beam such that 
the two beams are co-spatial as they enter the detector. Given that particles 
in both the lower and upper beams are in states of well-defined momentum, 
show that the wavenumbers k, k′ of the lower and upper beams are related 
by 

k′ ≃ k 

  

1 
mngH 

2E 

 
. (2.95) 

In an actual experiment (R. Colella et al., 1975, Phys. Rev. Let., 34, 1472) 
E  = 0.042 eV and  LH     10−3

 m
2
  (the  actual  geometry was slightly differ- 

ent). Determine the phase difference between the two beams at the detector. 
Sketch the intensity in the detector as a function of H. 

2.14 A particle moves in the potential V (x)  and  is known to have energy 
En. (a) Can it have well defined momentum for some particular V (x)? (b) 
Can the particle simultaneously have well-defined energy and position? 

2.15 The states 1 , 2 form a complete orthonormal set of states for a two-
state system. With respect to these basis states the operator ςy has 
matrix  

ςy = 
0 i 

. (2.96) 
i 0 

Could ς be an observable? What are its eigenvalues and eigenvectors in the 
{|1⟩, |2⟩} basis? Determine the result of operating with ςy on the state 

1 
|ψ⟩ = √

2 
(|1⟩ − |2⟩). (2.97) 

 

10 In the most elegant formulation of qantum mechanics, this last result is the basic 
postulate of the theory, and one derives other rules for the physical interpretation of the qn, 
an etc. from it – see J. von Neumann, Mathematical Foundations of Quantum Mechanics. 
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2.16 A three-state system has a complete orthonormal set of states 1 , 2 , 3 . 
With respect to this basis the operators H and B have matrices 

  
1 0 0 

  
1    0 0 

H  = h̄ω  0    −1 0 

0 0 −1 

where ω and b are real constants. 
a. Are H and B Hermitian? 

 B = b  0    0 1  , (2.98) 
0    1 0 

b. Write down the eigenvalues of H and find the eigenvalues of B. Solve for 
the eigenvectors of both H and B. Explain why neither matrix uniquely 
specifies its eigenvectors. 

c. Show that H and B commute. Give a basis of eigenvectors common to 
H and B. 

2.17 Given that A and B are Hermitian operators, show that i[A, B] is a 
Hermitian operator. 

2.18 Given a ordinary function f (x) and an operator R, the operator f (R) 
is defined to be  

f (R) = 
Σ 

f (ri)|ri⟩⟨ri|, (2.99) 
i 

where ri are the eigenvalues of R and ri are the associated eigenkets. Show 
that when f (x) = x

2
 this definition implies that f (R) = RR, that is, that 

operating with f (R) is equivalent to applying the operator R twice. What 
bearing does this result have in the meaning of e

R
? 

2.19 Show that if there is a complete set of mutual eigenkets of the Hermi- 
tian operators A and  B,  then  [A, B]  = 0.  Explain  the  physical  significance 
of this result. 

2.20 Given that for any two operators (AB)† = B†A†, show that 
 

(ABCD)† = D†C†B†A†. (2.100) 

 
2.21 Prove for any four operators A, B, C, D that 

 

[ABC, D] = AB[C, D] + A[B, D]C + [A, D]BC. (2.101) 
 

Explain the similarity with the rule for differentiating a product. 

2.22 Show that for any three operators A, B and C, the Jacobi identity 
holds: 

[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0. (2.102) 

 
2.23 Show that a classical harmonic oscillator satisfies the virial equation 
2⟨KE⟩ = α⟨PE⟩ and determine the relevant value of α. 

2.24 Given  that  the  wavefunction  is  ψ  = Ae
i(kz−ωt)

 + Be−i(kz+ωt)
,  where 

A and B are constants, show that the probability current density is 
 

J = v
 
|A|2  − |B|2

  
ẑ, (2.103) 

where v = h̄k/m.  Interpret the result physically. 
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3 
Harmonic oscillators and magnetic 

fields 

 
Harmonic oscillators are of enormous importance for physics because most 
of condensed-matter physics and quantum electrodynamics centre on weakly 
perturbed harmonic oscillators. The reason harmonic oscillators are so com- 
mon is simple. The points of equilibrium of a particle that moves in a 
potential V (x) are points at which the force   dV/dx vanishes.   When we 
place the origin of x at such a point, the Maclaurin expansion of V becomes 
V (x) = constant + 

1
 V ′′x

2
 + O(x

3
),  and  the  force  on the  particle becomes 

F = V ′′x + O(x
2
).  Consequently, for sufficiently small excursions from the 

point of equilibrium, the particle’s motion will be well approximated by a 
harmonic oscillator. 

Besides providing the background to a great many branches of physics, 
our analysis of a harmonic oscillator will introduce a technique that we will 
use twice more in our analysis of the hydrogen atom. As a bonus, we will find 
that our results for the harmonic oscillator enable us to solve another impor- 
tant, and apparently unrelated problem: the motion of a charged particle in 
a uniform magnetic field. 

 

 
3.1 Stationary states of a harmonic oscillator 

We can build a harmonic oscillator by placing a particle in a potential that 
increases quadratically with distance from the origin. Hence an appropriate 
Hamiltonian is given by equation (2.51) with V x

2
.1 For later convenience 

we choose the constant of proportionality such that H becomes 

1    
H = p 

2m 
+ (mωx)

2}
 
 
. (3.1) 

In 2.2 we saw that the dynamical evolution of a system follows immediately 
once we know the eigenvalues and eigenkets of H. So we now determine 
these quantities for the Hamiltonian (3.1). 

 

1 In the last chapter we distinguished the position and momentum operators from their 
eigenvalues with hats. Henceforth we drop the hats; the distinction between operator and 
eigenvalue should be clear from the context. 

2 
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We next introduce the dimensionless operator 
 

mωx + ip 
A ≡   √

2mh̄ω  
. (3.2a) 

 

This operator isn’t Hermitian. Bearing in mind that x and p are Hermitian, 
from the rules in Table 2.1 we see that its adjoint is 

 

 
 

The product A†A is 

A† = 
mωx     ip 
√

2mh̄ω  
. (3.2b) 

 

A†A = 
    1 

(mωx ip)(mωx + ip) 
2mh̄ω   } 

 
 

(3.3) 
    1  

= 
2mh̄ω 

(mωx)
2
 + imω[x, p] + p

2
 

H 
= 

h̄ω 
— 2 , 

where we have used the canonical commutation relation (2.54). This equation 
can be rewritten H/(h̄ω) = A†A + 

1
 , so A is rather nearly the square root of 

the dimensionless Hamiltonian H/h̄ω.  If we calculate AA†  in the same way, 
the only thing that changes is the sign in front of the commutator [x, p], so 
we have 

AA† = 
H

 
h̄ω 

+ 
1
 . (3.4) 

Subtracting equation (3.4) from equation (3.3) we find that 
 

[A†, A] = −1. (3.5) 

We will find it useful to have evaluated the commutator of A† with the 
Hamiltonian.  Since from equation (3.3) H  = h̄ω(A†A +  

1
 ), we can write 

[A†, H ] = h̄ω[A†, A†A] = h̄ωA†[A†, A] = −h̄ωA†, (3.6) 

where we have exploited the rules of equations (2.22). 
We now multiply both sides of the defining relation of |En⟩, namely 

H|En⟩ = En|En⟩, by A†: 
 

A†En|En⟩ = A†H |En⟩ =   HA† + [A†, H]  |En⟩ = (H − ̄hω)A†|En⟩.    (3.7) 
 

A slight rearrangement of this equation yields 
 

H(A†|En⟩) = (En + h̄ω)(A†|En⟩). (3.8) 

Provided |b⟩ ≡ A†|En⟩ has non-zero length-squared, this shows that |b⟩ is an 
eigenket of H  with eigenvalue En + h̄ω.  The length-square of |b⟩ is 

. 

.A†|E 
.2 

⟩. = ⟨E |AA†|E 

  
H 1 

⟩ = ⟨E | + 
 En 1 

|E  ⟩ = +   . (3.9) 

Now squeezing H between ⟨En| and |En⟩ we find with (3.1) that 

1   . .2 2   2
. 

 
 

.2  

En = ⟨En|H|En⟩ = 
2mω  

.p|En⟩. 
+ m ω  .x|En⟩. ≥ 0. (3.10) 

.  
† 

.2 

Thus the energy eigenvalues are non-negative, so .A |En⟩. > 0 and by 

repeated application of A† we can construct an infinite series of eigenstates 
with energy En + kh̄ω  for k = 0, 1, . . . 

Similarly, we can show that provided A|En⟩ has non-zero length-squared, 
it is an eigenket of H  for energy En − h̄ω.  Since we know that all eigenvalues 

n n n 2 
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are non-negative, for some energy E0, A E0 must vanish. Equating to zero 
the length-squared of this vector we obtain an equation for E0: 

  . . H E 
0 = .A|E ⟩.

2 
= ⟨E | − |E  ⟩ = 

 
    −  . (3.11) 

So E0 =  
1
 h̄ω  and we have established that the eigenvalues of H  are 

ω × ( 
1
 , 

3
 , . . . , 

2r+1
 , . . .)    that is    Er  = (r +  

1
 )h̄ω. (3.12) 

The operators A† and A with which we have obtained these important 
results are respectively called creation and annihilation operators be- 
cause the first creates an excitation of the oscillator, and the second destroys 
one. In quantum field theory particles are interpreted as excitations of the 
vacuum and each particle species is associated with creation and annihilation 
operators that create and destroy particles of the given species. A and A† 
are also called ladder operators. 

We now examine the eigenkets of H. Let r  denote the state of energy 
(r + 

1
 )h̄ω.  In this notation the lowest-energy state, or ground  state, is   0 

and its defining equation is A 0 = 0. From equation (3.2a) this equation 
reads 

0 = A|0⟩ = 
mωx 0  + ip 0 

√
2mh̄ω 

. (3.13) 

We now go to the position representation by multiplying  through  by  x . 
With equations (2.48) and (2.49) we find that the equation becomes 

1 ∂ 
√

2mh̄ω 
mωx + h̄ 

∂x 
⟨x|0⟩ = 0. (3.14) 

This is a linear, first-order differential equation. Its integrating factor is 
exp(mωx

2
/2h̄), so the correctly normalised wavefunction is 

r   

x 0  =
 1 

e−x2/4ℓ2 

, where  ℓ 
(2πℓ2)1/4 

   h̄  
. (3.15) 

2mω 
 

Notice that this solution is unique, so the ground state is non-degenerate. 
It is  a  Gaussian function,  so the  probability distribution  P (x) =  x 0  

2
  for 

the position of the particle that forms the oscillator is also a Gaussian: its 
dispersion is ℓ. 

From equations (2.63) and (2.64) we see that the momentum distribution 
of the wavefunction (3.15) is 

P (p) ≡ |⟨p|0⟩|2  ∝ e−2ℓ2p2 /h̄2 

, (3.16) 

which  is  a  Gaussian  with  dispersion  ςp  =  h̄/2ℓ.   By  inserting  x  =  ℓ  and 
p = ςp in the Hamiltonian (3.1) we obtain estimates of the typical kinetic 
and potential energies of the particle when it’s in its ground state. We find 
that  both  energies  are  ∼  1 h̄ω.  In  fact  one  can  straightforwardly show  that 
H(ℓ, ςp) is minimised subject to the constraint ℓςp  ≥ /2 when ℓ and ςp 
take the values that we have derived for the ground state (Problem 3.4). In 
other words, in its ground state the particle is as stationary and as close to 
the origin as the uncertainty principle permits; there is a conflict between the 
advantage energetically of being near the origin, and the energetic penalty 
that the uncertainty principle exacts for having a well defined position. 

Every system that has a confining potential exhibits an analogous zero- 
point motion. The energy tied up  in  this  motion  is  called  zero-point 
energy.  Zero-point motion is probably the single most important prediction 
of quantum mechanics, for the material world is at every level profoundly 
influenced by this phenomenon. 
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We obtain the wavefunctions of excited states by applying powers of 
the differential operator A† to x 0 . Equation (3.9) enables us to find the 
normalisation constant α in the equation  n + 1  = αA† n ;  it implies that 
α

2
 = n + 1. the generalisation of equation (3.11) enables us to determine the 

number β in the equation |n − 1⟩ = βA|n⟩, and we have finally 
 

  1  1   √ 
 |n + 1⟩ = 

n + 1 
A |n⟩   ; |n − 1⟩ = √

n 
A|n⟩. (3.17) 

 

It is useful to remember that the normalisation constant is always the square 
root of the largest value of n appearing in the equation. As a specific example 

 

1 ∂ x ∂ 
⟨x|1⟩ =  √

2mh̄ω
 

1 
= 

mωx − h̄ 
∂x

 

x 
e−x2/4ℓ2 . 

⟨x|0⟩ = 
2ℓ 

− ℓ
∂x  

⟨x|0⟩  

(3.18) 

(2πℓ2)1/4 ℓ 
 

Whereas the ground-state wavefunction is an even function of x, the wave- 
function of the first excited state is an odd function because A† is odd in x. 
Wavefunctions that are even in x are said to be of even parity, while those 
that are odd  functions  have odd  parity.  It  is  clear  that  this  pattern  will 
be repeated as we apply further powers of A† to generate the other states 
of well-defined energy, so x n is even parity if n is even, and odd parity 
otherwise. 

Notice that the  operator N      A†A is Hermitian.  By equations (3.17) 
N n = n n , so its eigenvalue tells you the number of excitations the oscil- 
lator has. Hence N is called the number operator. 

Let’s use these results to find the mean-square displacement n x
2
 n 

when the oscillator is in its n
th

 excited state. Adding equations (3.2) we 
express x as a linear combination of A and A† 

r   
h̄ 

x = 
2mω 

(A + A†) = ℓ(A + A†), (3.19) 

 

where ℓ is defined by (3.15), so 

 
⟨n|x

2
|n⟩ = ℓ

2
⟨n|(A + A†)

2
|n⟩. (3.20) 

When we multiply out the bracket on the right, the only terms that con- 
tribute are the ones that involve equal numbers of As and A†s. Thus 

 

⟨n|x
2
|n⟩ = ℓ

2
⟨n|(AA† + A†A)|n⟩ = ℓ

2
(2n + 1) = ℓ

2
 
2En 

, (3.21) 

where we have used equations (3.17) and (3.12). If we use equation (3.15) to 
eliminate ℓ, we obtain a formula that is valid in classical mechanics (Prob- 
lem 2.23). 
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3.2 Dynamics of oscillators 

By equations (2.29) and (3.12), the n
th

 excited state of the harmonic oscil- 
lator evolves in time according to 

|n, t⟩ = e−i(n+1/2)ωt
|n, 0⟩ (3.22) 

Consequently, no state oscillates at the oscillator’s classical frequency ω. How 
do we reconcile this result with classical physics? 

We have seen that we make the link from quantum to classical physics 
by considering the expectation values of observables – if classical physics 
applies, the measured value of any observable will lie close to the expectation 
value, so the latter provides an accurate description of what’s happening. 
Equation (2.35) tells us that when a system is in an energy eigenstate, the 
expectation value of any time-independent observable Q cannot depend on 
time. Equation (3.22) enables us to obtain this result from a different point of 
view by showing that when we form the expectation value Q = ψ Q ψ , the 
factor e−iE

nt/h̄   in the ket   ψ, t   = e−iE
nt/h̄  En   cancels on the corresponding 

factor in ψ, t . Hence energy eigenstates are incapable of motion.2 The 
system is capable of motion only if there are non-negligible amplitudes to 
measure more than one possible energy, or, equivalently, if none of the ai in 
the sum (2.32) has near unit modulus. 

Consideration of the motion of a harmonic oscillator will make this gen- 
eral point clearer. If the oscillator’s state is written 

Σ 
|ψ, t⟩ = aj e−iEjt/h̄ |j⟩, (3.23) 

then the expectation value of x is 

⟨x⟩ = 
Σ 

a∗kaj e
i(Ek−Ej )t/h̄ ⟨k|x|j⟩ = 

jk 

Σ 

a∗kaje
i(k−j)ωt

⟨k|x|j⟩. (3.24) 
jk 

 

We simplify this expression by using equation (3.19) to replace x with ℓ(A + 
A†) and then using (3.17) to evaluate the matrix elements of A and A†: 

Σ 
⟨x⟩ = ℓ a∗kaje

i(k−j)ωt
⟨k|(A + A†)|j⟩ 

jk 
Σ √ √   

 

 

(3.25) 
= ℓ a∗kaj e

i(k−j)ωt 

jk 

j⟨k|j − 1⟩ + j + 1⟨k|j + 1⟩. 

 

Since  k j 1  vanishes unless k = j 1, it’s now easy to perform the sum 
over k, leaving two terms to be summed over j. On account of the factor 

j we can restrict the first of these sums to j > 0, and in the second sum 
we replace j by j′ j + 1 and then replace the symbol j′ by j so we can 
combine the two sums. After these operations we have 

Σ √    

⟨x⟩ = ℓ  

j=1 
j(a∗j −1aj e

−iωt  + aj
∗aj−1eiωt) 

Σ 
= Xj cos(ωt + φj), 

j 

(3.26a) 

 

where the real numbers Xj  and φj  are defined by 

√ 
2    jℓ aj

∗aj−1 = Xje
iφj . (3.26b) 

Thus x oscillates sinusoidally at the classical frequency ω regardless of the 
amplitudes aj .  Thus we have recovered the classical result that the frequency 

 

2 If we consider that t is the variable canonically conjugate to energy, this fact becomes 
a manifestation of the uncertainty principle. 
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Figure 3.1 The potential energy V (x) of an anharmonic oscillator (full curve) and  V (x) 
for the harmonic oscillator obtained by restricting the potential to the first two terms in 
its Maclaurin expansion (dashed curve). 

 

at  which√a  harmonic  oscillator  oscillates  is  independent  of  amplitude  and 
equal to k/m, where k is the oscillator’s spring constant. 

In  the  classical  regime,  the  only  non-negligible  amplitudes  aj  have  in- 
dices j that cluster around some large number n. Consequently, a measure- 
ment of the energy is guaranteed to yield a value that lies close to E = En, 
and from equation (3.21) it follows that the mean value of x

2
 will lie close 

to  x2   =  2ℓ
2
En/(h̄ω).   Classically,  the  time  average  of  x

2
  is  proportional  to 

the average potential energy, which is just half the total energy. Hence, av- 
eraging the  Hamiltonian (3.1) we conclude that classically x2  = E/(mω

2
), 

in precise agrees with the quantum-mechanical result. The correspondence 
principle requires the classical and quantum-mechanical values of x2 to agree 
for large n. That they agree even for small n is a coincidence. 

 
 

3.2.1 Anharmonic oscillators 

The  Taylor series of the  potential energy V (x)  of a harmonic oscillator is 
very special: it contains precisely one non-trivial term, that proportional to 
x

2
. Real oscillators have potential-energy functions that invariably deviate 

from this ideal to some degree. The deviation is generally in the sense that 
V (x) < 

1
 V ′′(0)x

2
 for x > 0 – see Figure 3.1. One reason why deviations from 

harmonicity are generally of this type is that it takes only a finite amount of 
energy to break a real object, so V ( ) should be finite, whereas the potential 
energy function of a harmonic oscillator increases without limit as x . 

Consider the anharmonic oscillator that has potential energy 

a
2
V0 

V (x) = − 
a2 + x2 , (3.27) 

where V0 and a are constants. We cannot find the stationary states of this 
oscillator analytically any more than we can analytically solve its classical 
equations of motion.3 But we can determine its quantum mechanics nu- 
merically,4   and doing so will help to show which aspects of the results we 

 

3 Murphy’s law is in action here: the dynamics of the pendulum is analytically in- 
tractable precisely because it is richer and more interesting than that of the harmonic 
oscillator. 

4 A good way to do this is to turn the TiSE into a finite matrix equation and then to 
use a numerical linear-algebra package to find the eigenvalues of the matrix. Figure 3.2 
was obtained  using the approximation ψ′′       (ψn+1 + ψn−1     2ψn)/∆2, where ψn  denotes 

ψ(n∆) with ∆ a small increment in x. With this approximation the TiSE becomes the 
eigenvalue equation of a tridiagonal matrix that has 2b2/∆2 + Vn/V0 on the leading diag- 
onal  and  −b2/∆2  above  and  below  this  diagonal,  where  b2  = h̄2/2mV0  and  Vn  = V (n∆). 
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Figure 3.2 The spectrum of the 
anharmonic oscillator for which the 
potential is plotted in Figure 3.1 
when the dimensionless variable 
2ma2V0/h̄2  = 100. 

 
 
 
 

 

 

 

Figure  3.3 Values  of  aj  when  there  is  significant  uncertainty  in  E. 
 

have obtained for the harmonic oscillator are special, and which have general 
applicability. 

Figure 3.2 shows the anharmonic oscillator’s energy spectrum. At low 
energies, when the pendulum is nearly harmonic, the energies are nearly 
uniformly spaced in E. As we proceed to higher energies, the spacing between 
levels diminishes, with the consequence that infinitely many energy levels are 
packed into the finite energy range between V0 and zero, where the particle 
becomes free. This crowding of the energy levels has the following implication 

for the time dependence of ⟨x⟩. Suppose there are just two energies with non- 

zero amplitudes, aN and aN+1. Then ⟨x⟩ will be given by 

⟨x⟩ = a∗N aN+1e
i(EN −EN +1)t/h̄ ⟨N |x|N + 1⟩ + complex conjugate. (3.28) 

This is a sinusoidal function of time, but its period, T = h/(EN+1 EN ), 
depends on N . If we increase the energy and amplitude of the oscillator, we 
will increase N and Figure 3.2 shows that T will also increase. Classically 
the period of the oscillator increases with amplitude in just the same way. 
Thus there is an intimate connection between the spacing of the energy levels 
and classical dynamics. 

Consider now the case in which the energy is more uncertain, so that 
several of the aj  are non-zero, and let these non-zero aj  be clustered around 
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j = N (see Figure 3.3). In this case several terms will occur in the sum for 
⟨x⟩ 

⟨x⟩ = · · · + a∗N −1aN e
i(EN −1−EN )t/h̄ ⟨N − 1|x|N ⟩ 

+ a∗N +1aN ei(EN +1−EN )t/h̄ ⟨N + 1|x|N ⟩ 

+ a∗N +3aN e
i(EN +3−EN )t/h̄ ⟨N + 3|x|N ⟩ + · · · 

 
(3.29) 

where we have anticipated a  result of   4.1.4 below that the  matrix element 
j x k vanishes if j  k is even. The sum (3.29) differs from the correspond- 
ing one (3.26a) for a harmonic oscillator in the presence of matrix elements 
j x k   with  j   k   > 1:  in the  case of the  harmonic oscillator these ma- 
trix elements vanish, but in the general case they won’t. In consequence 

the  series  contains  terms  with  frequencies  (EN+3 − EN )/h̄  as  well  as  terms 

in  ωN  ≡  (EN+1 − EN )/h̄.   If  these  additional  frequencies  were  all  integer 

multiples of a single frequency ωN , the time dependence of ⟨x⟩ would be 
periodic with period TN = 2π/ωN , but anharmonic, like that of the classical 
oscillator.  Now (EN+3     EN )/h̄      3ωN  because the spacing between energy 
levels changes only slowly with N , so when, as in Figure 3.3, the non-zero 
amplitudes are very tightly clustered around N , the additional frequencies 
will be integer multiples of ωN to good accuracy, and the motion will indeed 
be periodic but anharmonic as classical mechanics predicts. 

If we release the oscillator from near some large extension X, the non- 
negligible amplitudes aj  will be clustered around some integer N  as depicted 
in Figure 3.3, and their phases will be such that at t = 0 the wavefunctions 

⟨x|j⟩  will  interfere  constructively  near  X  and  sum  to  near  zeΣro  elsewhere, 
ensuring  that  the  mod-square  of  the  wavefunction  ψ(x, 0)  = j  aj⟨x|j⟩  is 
sharply peaked around x = X. At a general time the wavefunction will be 
given by  

ψ(x, t) = e−iEN t/h̄
 

Σ 
e
i(EN −Ej )t/h̄ aj⟨x|j⟩. (3.30) 

j 
 

Since the spacing of the energy levels varies with index j, the frequencies in 
this sum will not be precisely equal to integer multiples of ωN = (EN+1 − 

EN )/h̄,  so  after  an  approximate  period  TN   =  2π/ωN   most  terms  in  the 
series will not have quite returned to their values at t = 0. Consequently, 
the constructive interference around x = X will be less sharply peaked than 
it was at t = 0, and the cancellation elsewhere will be correspondingly less 
complete. After each further approximate period TN , the failure of terms in 
the series to return to their original values will be more marked, and the peak 
in ψ(x, t) 

2
 will be wider. After a long time t TN  the instants at which 

individual terms next return to their original values will be pretty uniformly 
distributed around an interval in t of length TN , and ψ(x, t) 

2
 will cease to 

evolve very much: it will have become a smooth function throughout the 
range |x| < X. 

This behaviour makes perfectly good sense classically. The uncertainty 
in E that enables the wavefunction to be highly localised at t = 0 corre- 
sponds in the classical picture to uncertainty in the initial displacement X. 
Since the period of an anharmonic oscillator is a function of the oscillator’s 
energy, uncertainty in X implies uncertainty in the oscillator’s period. After 
a long time even a small uncertainty in the period translates into a significant 
uncertainty in the oscillator’s phase. Hence after a long time the probability 
distribution for the particle’s position is fairly uniformly distributed within 
|x| ≤ X even in the classical case. 
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3.3 Motion in a magnetic field 

The formalism we developed for a harmonic oscillator enables us to solve an 
important, and you might have thought unconnected, problem:  the motion 
of a particle of mass m and charge Q in a uniform magnetic field of flux 
density B. 

The first question to address when setting up the quantum-mechanical 
theory of a system is, “what’s the Hamiltonian?” because it is the Hamil- 
tonian that encodes mathematically how the system works, including what 
forces are acting. So we have to decide what the Hamiltonian should be for 
a particle of charge Q and mass m that moves in a magnetic field B(x). The 
answer proves to be 

H = 
  1  

(p QA)
2
, (3.31) 

2m 

where A is the vector potential that generates B through B =   A. The 
most persuasive theoretical motivation of this Hamiltonian involves relativity 
and lies beyond the scope of this book. However, since we are exploring a new 
and deeper level of physical theory, we can ultimately only proceed by making 
conjectures and then confronting the resulting predictions with experimental 
measurements. In this spirit we adopt equation (3.31) as a conjecture from 
which we can try to recover the known behaviour of a charged particle in 
a magnetic field. In subsequent chapters we will show that this formula 
accounts satisfactorily for features in the spectra of atoms. Hence we can be 
pretty sure that it is correct. 

Since we know the equations of motion of a classical particle in a field B, 
let’s investigate the classical limit in the usual way, by finding the equations 
of motion of expectation values. With equation (2.34) we have that the rate 
of change of the expectation value of the i

th
 component of x is 

ih̄ 
d ⟨xi⟩ 

= ⟨[x  , H ]⟩ =  
  1    

[x , (p − 2  
 
 
 

(3.32) 
 

The  rules  (2.22)  and  the  canonical  commutation  relation  [xi, pj ]  =  ih̄δij 
enable us to simplify the commutator 

2mih̄ 
d ⟨xi⟩ 

= ⟨[x  , (p − QA)] · (p − QA)⟩ 

dt 
i
 

+ ⟨(p − QA) · [xi, (p − QA)]⟩ 

= 2ih̄ ⟨pi − QAi⟩ , 

(3.33) 

 

where we have used the fact that x commutes with A because A is a function 
of x only. Thus, with this Hamiltonian 

⟨p⟩ = m 
d ⟨x⟩ 

+ Q ⟨A⟩ . (3.34) 
 

that  is,  the  momentum  is  mẋ   plus  an  amount  proportional  to  the  vector 
potential. It is possible to show that the additional term represents the 
momentum of the magnetic field that arises because the charge Q is moving 
(Problem 3.19). 

In the classical limit we can neglect the difference between a variable and 
its expectation value because all uncertainties are small.  Then with  (3.34) 
the Hamiltonian (3.31) becomes just  

1
 mẋ

2
, which makes perfect sense since 

we know that the Lorentz force Qẋ      B does no work on a classical particle, 
and the particle’s energy is just its kinetic energy. 

To show that our proposed Hamiltonian generates the Lorentz force, we 
evaluate the rate of change of ⟨p⟩: 

ih̄ 
d ⟨pi⟩ 

= ⟨[p , H ]⟩ =  
  1     

⟨[p , (p − QA)] · (p − QA)⟩ 

dt 
i
 2m 

i
 

+ ⟨(p − QA) · [pi, (p − QA)]⟩   . 

(3.35) 

. 
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We now use equation (2.25) to evaluate the commutator [pi, A] and conclude 
that 

d ⟨pi⟩ =  
Q 

  
∂A 

· (p − QA)   + 
∂A 

(p − QA) · 
 

. (3.36) 
dt 2m ∂xi ∂xi 

 

Notice that we cannot combine the two terms on the right of this equation 
because p does not commute with A and its derivatives. In the classical 
limit we can replace each operator by its expectation value, and then replace 
p     QA    by  m  ẋ  .   Similarly  replacing  the  p  on  the  left,  we  have  in  the 
classical limit 

d
2
xi dAi ∂A 

m 
dt2   

+ Q 
dt  

= Q
∂x 

· ẋ , (3.37) 

where we have omitted the expectation value signs that ought to be around 
every operator. The time derivative on the left is along the trajectory of the 
particle (i.e., to be evaluated at x t). If A has no explicit time dependence 
because the field B is static, its time derivative is just ẋ       Ai.  We move this 
term to the right side and have 

 

d
2
x ∂A } 

m 
i
 = Q 

dt2 
ẋ  ·  

 

∂xi 
— ẋ  · ∇Ai, = Q   ẋ  × (∇ × A) i. (3.38) 

 

Thus our proposed Hamiltonian (3.31) yields the Lorentz force in the classical 
limit. 

 
 

3.3.1 Gauge transformations 

Any magnetic field is Gauge invariant: A and A′ = A +  Λ  generate 
identical magnetic fields, where Λ(x) is any scalar function. A potential 
problem with the Hamiltonian (3.31) is that it changes in a non-trivial way 
when we change gauge, which is worrying because H should embody the 
physics, which is independent of gauge. We now show that this behaviour 
gives rise to no physical difficulty providing we change the phases of all kets 
at the same time that we change the gauge in which we write A. The idea 
that a change of gauge in a field such as A that mediates a force (in this 
case the electromagnetic force) requires a compensating change in the ket 
that is used to describe a given physical state, has enormously far-reaching 
ramifications in field theory. 

Suppose ψ(x) = ⟨x|E⟩ is an eigenfunction of the Hamiltonian for A: 

(p − QA)
2
|ψ⟩ = 2mE|ψ⟩. (3.39) 

 

Then we show that 
φ(x) ≡ e

iQΛ/h̄
 ψ(x) (3.40) 

is an eigenfunction of the Hamiltonian we get by replacing A with A′. We 
start by noting that 

 

p − QA′ = p − Q(A + ∇Λ) = (p − Q∇Λ) − QA 

and that for any wavefunction χ(x) 

e
iQΛ/h̄

 pχ(x) = e
iQΛ/h̄

 
  

− ih̄∇ 

= −ih̄ 
χ(x)  

eiQΛ/h̄ χ
  

− Q∇Λ(eiQΛ/h̄ χ) 
 

(3.41) 
∇ 

= (p − Q∇Λ)  e
iQΛ/h̄

 χ(x)  . 

We subtract QAe
iQΛ/h̄

 χ from each side to obtain 

e
iQΛ/h̄

 (p − QA)χ(x) = (p − QA − Q∇Λ)
 

e
iQΛ/h̄

 χ(x)
 
, (3.42) 

i 
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and then apply this result to χ ≡ (p − QA)ψ: 

e
iQΛ/h̄

 (p − QA)
2

ψ(x) = (p − QA − Q∇Λ)e
iQΛ/h̄

 (p − QA)ψ(x) 

= (p − QA − Q∇ 2
  

iQΛ/h̄ 
(3.43) 

where the second equality uses (3.42) again, this time with χ put equal to 
ψ. So if 

then 

Hψ = 
 1  

(p QA)
2
ψ = Eψ, (3.44) 

2m 

  1 ′      iQΛ/h̄ 
 

 

2
  

iQΛ/h̄ 
  

iQΛ/h̄ 

H   e ψ = 
2m 

(p − QA − Q∇Λ)   e ψ(x) = E e ψ(x) , 

(3.45) 
In words, we can convert an eigenfunction of the Hamiltonian (3.31) with A 
to  an eigenfunction of that Hamiltonian with A′  = A +    Λ  by multiplying 
it  by  e

iQΛ/h̄
 .   Notice  that  Λ  is  an  arbitrary  function  of  x,  so  multiplication 

by e
iQΛ/h̄

  makes an entirely non-trivial change to  ψ(x). 
Given that there is a one-to-one relation between the eigenfunctions of 

H before and after we make a gauge transformation, it is clear that the 
spectrum of energy levels must be unchanged by the gauge transformation. 
What about expectation values? Since both kets and the Hamiltonian un- 
dergo gauge transformations, we should be open to the possibility that other 
operators do too. Let R′ be the gauge transform of the operator R. Then 
the expectation value of R is gauge invariant if 

∫ 

⟨R⟩ = 
∫ 

d
3
x ψ∗(x)Rψ(x) = 

 

d
3
x ψ∗(x)e−iQΛ/h̄

 R′e
iQΛ/h̄

 ψ(x). (3.46) 
 

Clearly this condition is satisfied for R′ = R if R is  a function  of x only. 
From our work above it is readily seen that if R depends on p, the equation 
is satisfied if p only occurs through the combination (p QA), as in the 
Hamiltonian.5 We believe that in any physical situation this condition on 
the occurrence of p will always be satisfied, so all expectation values are in 
fact gauge-invariant. 

 

3.3.2 Landau Levels 

We now find the stationary states of a spinless particle that moves in a 
uniform magnetic field. Let the z-axis be parallel to B and choose the gauge 
in which A = 

1
 B(−y, x, 0). Then from equation (3.31) we have 

1 ,  
 

 

1 2 
 

 

, 
1 2 2 

 
 

H = 
2m 

px + 2 QBy + 
p2 

py − 2 QBx) + pz 

(3.47a) 
=  

1
 ̄hω(π

2
 + π

2
) +     

z
  , 

2 x y 2m 

where ω = QB/m is the Larmor frequency and we have defined the di- 
mensionless operators6 

πx ≡ 
px + 

1
 mωy 

√
mωh̄ 

; πy  ≡
 

 py − 1 mωx 
 

 

mωh̄ 

 
. (3.47b) 

H  has broken into two parts.  The term p
2
/2m is just the Hamiltonian of a 

free particle in one dimension – in 2.3.3 we already studied motion governed 
by this Hamiltonian. The part 

Hxy  ≡ 1 h̄ω(π
2
 + π

2
) (3.47c) 

 

5 The principle that p and A only occur in the combination p   QA is known as the 
principle of minimal coupling. 

6 We are implicitly assuming that QB and therefore ω are positive. It is this assump- 
tion that leads to the angular momentum of a gyrating particle never being positive – see 
equation (3.58). 

Λ) ψ(x) , 
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is essentially the Hamiltonian of a harmonic oscillator because it is the sum of 
squares of two Hermitian operators that satisfy the canonical commutation 
relation 

1    
[πx, πy] =  

2h̄
 

The ladder operators are 

[y, py] − [px, x] = i. (3.48) 

 

1 
a = √

2 
(πx + iπy) 

1 
a   = √

2 
(πx − iπy) 

 
⇒ [a, a†] = i[πy, πx] = 1, (3.49) 

 

and in terms of them Hxy is 

Hxy  = h̄ω(a†a +  
1
 ). (3.50) 

It follows that the energy levels are E = h̄ω( 
1
 , 

3
 , . . .).  These discrete energy 

2  2 
levels for a charged particle in a uniform magnetic field are known as Landau 
levels. 

If particles can move freely parallel to B (which may not be possible in 
condensed-matter systems), the overall energy spectrum will be continuous 
notwithstanding the existence of discrete Landau levels. 

In the case of an electron the Larmor frequency is usually called the 
cyclotron  frequency.  It  evaluates  to  176(B/1 T) GHz,  so  the  spacing  of 
the energy levels is 1.16    10−4

(B/1 T) eV. At room temperature electrons 
have thermal energies of order 0.03 eV, so the discreteness of Landau levels 
is usually experimentally significant in the laboratory only if the system is 
cooled to low temperatures and immersed in a strong magnetic field. The 
strongest magnetic fields  known occur near neutron stars, where B     10

8
 T 

is not uncommon, and in these systems electrons moving from one Landau 
level to the next emit or absorb hard X-ray photons. 

To find the wavefunction of a given Landau level, we write the ground 
state’s defining equation in the position representation 

  ∂ ∂    
a|0⟩ = 0 ↔ h̄ + i 

∂x ∂y 
+ 

1
 mω(x + iy) ⟨x|0⟩ = 0. (3.51) 

 

We transform to new coordinates u ≡ x + iy, v ≡ x − iy. The chain rule 
yields7 

∂ 1 

∂u 
2
 

 
∂ ∂ 

∂x 
− i 

∂y 
∂ 1 

∂v 
2
 

 

∂ ∂ 
+ i 

∂x ∂y 

 
, (3.52) 

so a and a† can be written 

rB    ∂ u 
 

 

† rB    ∂ v 
 

   

a = −i√
2

 
∂v 

+ 
4r

2
 

; a  = −i√
2

 
∂u 

− 
4r

2
 

, (3.53a) 

where  
rB ≡ 

r  s   
h̄ h̄ 

= . (3.53b) 
mω QB 

Equation (3.51) now becomes 

∂⟨x|0⟩ 
+ 

  1  
u⟨x|0⟩ = 0. (3.54) 

∂v 4r
2
 

 

7 Aficianados of functions of a complex variable may ask what ∂/∂u can mean since the 
partial derivative involves holding constant v, which appears to be the complex conjugate 
of u. Use of u, v as independent coordinates requires permitting x, y to take on complex 
values. If you are nervous of using this mathematical fiction to solve differential equations, 
you should check that the wavefunction of equation (3.58) really is an eigenfunction of H. 

; 
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Solving this first-order linear o.d.e. we find 
 

⟨x|0⟩ = g(u) e−uv/4r
B (3.55) 

where g(u) is an arbitrary function. On account of the arbitrariness of g(u), 
the ground state of motion in a magnetic field is not unique. This situation 
contrasts with the one we encountered when solving for the ground state of 
a harmonic oscillator. We obtain the simplest ground state by taking g to 
be a suitable normalising constant C – we’ll consider more elaborate choices 
below. Our present ground-state wavefunction is 

 

2 2 2 

⟨x|0⟩ = C e−(x
 

+y
 

)/4r
B . (3.56) 

In classical physics  a particle that  moves at  speed v  perpe√ndicular  to  a 

√uniform magnetic field moves in circles of radius r = mv/QB = 2mE/QB = 
 

2E/mω2.   When  E  =  
1
 ̄hω  this  radius  agrees  with  the  dispersion  rB  in 

2 

radius of the Gaussian probability distribution x 0 
derived. 

A wavefunction in the first excited level is 

2
  that we have just 

⟨x|1⟩ ∝ ⟨x|a†|0⟩ ∝ 
∂ v 

∂u 
− 

4r
2
 

  
e−uv/4rB ∝ ve−uv/4r

B . (3.57) 

 

It is easy to see that each further application of a† will introduce an additional 
power of v, so that we have 

 

⟨x|n⟩ ∝ v
n
e−uv/4r2   

= (x − iy)
n
e−(x2+y2 )/4r2  

. (3.58) 
 

We shall see in  7.2.3 that the factor (x  iy)
n
 implies that the particle has n 

units of angular momentum about the origin.8 We can also show from this 
formula that for large n the expectation of the orbital radius increases as 
the square root of the energy, in agreement with classical mechanics (Prob- 
lem 3.20). 

Displacement of the gyrocentre  A  particle in  the  state (3.58)  gyrates 
around the origin of the xy plane. Since the underlying physics (unlike the 
Hamiltonian 3.31) is invariant under displacements within the xy plane, there 
must be a ground-state ket in which the particle gyrates around any given 
point. Hence, every energy level associated with motion in a uniform mag- 
netic field is highly degenerate: it has more than one linearly independent 
eigenket. 

It was our choice of magnetic vector potential A that made the origin 

have a special status in H: the potential we used can be written A =  
1
 B×x. 

The choice Λ = − 1 x · (B × a), where a is any vector, makes the gauge 
transformation from A to A′ = A − 1 B × a,  so if A = 

1
 B × x, then 

A′ =  
1
 B    (x    a).  If we replace A in H with A′, it will prove expedient 

to redefine πx, πy such that the wavefunctions that are generated by the 
procedure we used before will describe a particle that gyrates around x = a 
instead of the origin. Thus in the gauge A′, the wavefunction of a ground- 
state particle that gyrates around x = a is 

 

2 2 

⟨x|0′, a⟩ = C e−(x−a)
 
/4r

B . (3.59) 

We can use the theory of gauge transformations that we derived in 3.3.1 to 
transform this back to our original gauge A. The result is 

 

⟨x|0, a⟩ = C eiQ(B×a)·x/2h̄  e−(x−a)2/4r2  . (3.60) 
 

8 This  statement  follows  because  in  spherical  polar  coordinates  (x − iy)n  = rne−inφ. 

2 
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This procedure is easily generalised to the determination of the wavefunction 
of the n

th
 Landau level for gyration about x = a. 

A complete set of mutually orthogonal stationary states is needed if we 
want to expand a general state of motion in a magnetic field as a linear 
combination of stationary states. Wavefunctions such as (3.56) and (3.60) 
that differ only in their gyrocentres are not orthogonal, so it is not convenient 
to combine them in a set of basis states. To obtain a complete set of mutually 
orthogonal states we can either return to equation (3.55) and set g(u) = 
u, u

2
, . . ., etc., or we can step still further  back  to  equations  (3.47)  and 

note that we started with four operators, x, y, px and py, but expressed the 
Hamiltonian Hxy in terms of just two operators πx and πy, which we then 
packaged into the ladder operators a and a†. 

Consider the operators 

ξx ≡ 
p 

1
 mωy 

√
mωh̄ 

; ξy  ≡
 

 py + 
1
 mωx 

√
mωh̄ 

 
. (3.61) 

They differ from the operators πx and πy defined by equations (3.47b) only 
in a sign each, and they commute with them. For example 

 

[ξx 
 

, πx 
   1  

] = [px 
mωh̄ 

1 

— 2 mωy, px 
 

+ 
1
 mωy] = 0 

 
 

(3.62) 

[ξx, πy] = [px − 1 mωy, py − 1 mωx] = 0. 
 

Consequently they commute with Hxy.  On the other hand, [ξx, ξy] = i, so 
from these operators we can construct the ladder operators 

1 
b = √

2 
(ξx − iξy) 

1 
b  = √

2 
(ξx + iξy) 

⇒ [b, b†] = i[ξx, ξy] = 1. (3.63) 

Since these ladder operators commute with Hxy, we can find a complete set 
of mutual eigenkets of b†b and Hxy. 

In the position representation the new ladder operators are 

rB    ∂ v 
 

 

† rB    ∂ u 
 

   

b = −i√
2

 
∂u 

+ 
4r

2
 

; b  = −i√
2

 
∂v 

− 
4r

2
 

. (3.64) 
 

2 

When  we  apply  b  to  the  ground-state  wavefunction    x 0 =   Ce−uv/4r
B 

(eq. 3.56), we find 

CrB  
b⟨x|0⟩ = −i √

2
 

∂ v 

∂u 
+ 

4r
2
 

e−uv/4rB 

 

= 0. (3.65) 

Thus  Ce−uv/4r
B    is  annihilated  by  both  a  and  b.  When  we  apply  b†  to  this 

wavefunction we obtain 

Cr 
b ⟨x|0⟩ = −i √

2
 

∂ u 

∂v 
− 

4r
2
 

e−uv/4rB ∝ u e−uv/4r
B , (3.66) 

which is the wavefunction we would have obtained if we had set g(u) = u in 
equation (3.55). In fact it’s clear from equation (3.66) that every application 
of b† will introduce an additional factor u before the exponential. Therefore 
the series of ground-state wavefunctions that are obtained by repeatedly 
applying b†  to e−uv/4r

B    are all of the form 

(b†)
n
⟨x|0⟩ ∝ u

n
e−uv/4r

B . (3.67) 

The only difference between this general ground-state wavefunction9 and the 
wavefunction of the n

th
 excited Landau level (eq. 3.57) is that the former has 

u
n
 rather than v

n
 in  front of  the exponential.  For  the  physical explanation 

of this result, see Problem 3.24. 

9 The absolute value of the real part of this is shown for n = 4 on the front cover. 

mωh̄ 
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Figure 3.4 The Aharonov–Bohm experiment 

 
3.3.3 Aharonov-Bohm effect 

Imagine a very long, thin solenoid that runs parallel to the z axis. There is 
a strong magnetic field inside the solenoid, but because the solenoid is long, 
the field lines are extremely thinly spread as they return from the solenoid’s 
north pole to its south pole, and outside the solenoid the magnetic field is 
negligibly small. In the limit that the solenoid becomes infinitely thin, a 
suitable vector potential for the field is 

Φ y x 
A = 

2π    
− 

r2 , r2 , 0   , (3.68) 

√   
where r = x2 + y2 and Φ is the magnetic flux through the solenoid.  To 
justify this statement we  note  that  when  we  integrate  A around a  circle 
of radius r, the integral evaluates to Φ independent of r.   But by Stokes’ 

theorem I ∫ 

dx · A = 

∫ 

d
2
x · ∇ × A = d

2
x · B. (3.69) 

 

Thus Φ units of flux run along the axis r = 0, and there is no flux anywhere 
else. 

Now we place a screen with two slits in the plane y = 0, with the slits 
distance 2s apart and running parallel to the solenoid and on either side of 
it. We bombard the screen from y < 0 with particles that have well defined 
momentum p = pj parallel to the y axis, and we detect the arrival of the 
particles on a screen P that lies in the plane y = L – apart from the presence 
of the solenoid, the arrangement is identical to that of the standard two- 
slit experiment of 2.3.4. Classical physics predicts that the particles are 
unaffected by B since they never enter the region of non-zero B. Aharonov 
& Bohm pointed out10 that the prediction of quantum mechanics is different. 

Consider the function 
Φ 

Λ = − 
2π

θ, (3.70) 

where θ is the usual polar angle in the xy plane. Since θ = arctan(y/x), 
 

∂θ y ∂θ x 

∂x 
= − 

r2 
and 

∂y 
= 

r2 
, (3.71) 

 

and the gradient of Λ is 
 

Φ 
∇Λ = − 

2πr2 
(−y, x, 0) (3.72) 

which is minus the vector potential A of equation (3.68). So let’s make a 
gauge transformation from A to A′ = A + Λ. In this gauge, the vector 
potential vanishes, so the Hamiltonian is just that of a free particle, p

2
/2m. 

Hence the analysis of §2.3.4 applies, and the amplitude to pass through a 
 

10 Y. Aharonov & D. Bohm, Phys. Rev. 115, 485 (1959) 
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given slit and arrive at a point on the screen P with coordinate x has a phase 
φ that is proportional to x (cf eq. 2.71): 

psx 
φi = constant ±  

h̄L 
, (3.73) 

where the plus sign applies for one slit and the minus sign for the other. 
Our choice of gauge leads to a tricky detail, however. We require Λ to be 

single valued, so we must restrict the polar angle θ to a range 2π in extent. 
Consequently, θ and Λ must be somewhere discontinuous. We get around 
this problem by using different forms of Λ, and therefore different gauges, to 
derive the  amplitudes  for arrival at x from each slit.  For  slit S1  at x = +s, 
we take   π < θ   π, and for S2 at x =   s we take   2π < θ   0. With these 
choices the discontinuity in Λ occurs where the electron does not go, and Λ is 
always the same in the region y < 0 occupied by the incoming electron beam. 
Consequently, the amplitudes for arrival at a point x on the screen P are the 
same as if the solenoid were not there. However, before we can add the 
amplitudes and calculate the interference pattern, we have to transform to a 
common gauge. The easiest way to do this is to transform the amplitude for 
S2 to the gauge of S1. The function that effects the transformation between 
the gauges is ∆   Λ1    Λ2, where Λi is the gauge function used for slit Si. At 
any point of P the two forms of θ differ by 2π, so ∆ = Φ. Therefore equation 
(3.40) requires us to multiplying the amplitude for S2  by exp(   iQΦ/h̄), and 
the quantum interference term (1.15) becomes 

 

 i 
constant ei(φ1−φ2+QΦ/h̄) exp 

h̄ 

2psx 
+ QΦ 

L 

 

. (3.74) 

 

The term QΦ in the exponential shifts the centre of the interference pattern 
by an amount ∆x =    LQΦ/2ps, so by switching the current in  the solenoid 
on and off you can change the interference pattern that is generated by par- 
ticles that never enter the region to which B is confined. This prediction was 
first confirmed experimentally by R.G. Chambers.11  Although this effect has 
no counterpart in classical mechanics, curiously the shift ∆x is independent 
of h and does not vanish in the limit h 0, which is often regarded as the 
classical limit. 

 

Problems 

3.1 After choosing units in which everything, including h̄ = 1, the Hamilto- 
nian of a harmonic oscillator may be written H =

 1
 (p

2
 +x

2
), where [x, p] = i. 

Show that if |ψ⟩ is a ket that satisfies H|ψ⟩ = E|ψ⟩, then 

1 (p
2
 + x

2
)(x ∓ ip)|ψ⟩ = (E ± 1)(x ∓ ip)|ψ⟩. (3.75) 

Explain how this algebra enables one to determine the energy eigenvalues of 
a harmonic oscillator. 

3.2 Given  that  A|En⟩ = α|En−1⟩ and  En  = (n +  
1
 )h̄ω,  where  the  annihi- 

lation operator of the harmonic oscillator is 
 

mωx + ip 
A ≡   √

2mh̄ω  
, (3.76) 

show that α = 
√

n. Hint: consider |A|En⟩|
2. 

3.3 The pendulum of a grandfather clock has a period of 1 s and makes 
excursions of 3 cm either side of dead centre. Given that the bob weighs 
0.2 kg, around what value of n would you expect its non-negligible quantum 
amplitudes to cluster? 

 

11 Phys. Rev. Lett. 5, 3 (1960) 
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Figure 3.5  The  wavefunctions  x 2 
and x 40  of two stationary states of 
a harmonic oscillator. 

 
 

 

3.4 Show  that  the  minimum  value  of  E(p, x) p
2
/2m +

 1
 mω

2
x

2
 with 

respect to the real numbers p, x when they are constrained to satisfy xp =  
1
 ̄h, 

is  
1
 h̄ω.  Explain the physical significance of this  result. 

3.5 How many nodes are there in the wavefunction x n of the n
th

 excited 
state of a harmonic oscillator? 

√3.6    Show that in terms of a harmonic oscillator’s characteristic length ℓ ≡ 
/2mω the ladder operators can be written 

x ∂ 
A = + ℓ 

2ℓ ∂x 
and   A† = 

x
 

2ℓ 

∂ 
— ℓ

∂x
.  (3.77) 

Hence show that the wavefunction of the second excited state is ⟨x|2⟩ = 

constant × (x
2
/ℓ

2
 − 1)e−x2/4ℓ2 

and find the normalising constant. 

3.7 Explain why the wavefunction x n of the oscillator’s n
th

 stationary 
state must have the form 

2 2 

⟨x|n⟩ = Hn(x/ℓ) e−x
 

/4ℓ
 , (3.78) 

where H√n   is  an  n
th

-order (‘Hermite√’)  polynomial.  By casting  the  equations 
A|n⟩ = n|n − 1⟩ and A†|n − 1⟩ = n|n⟩ in the x-representation, show that 

H′ (x/ℓ) = 
√

nH 

and thus that 

 
n−1 (x/ℓ)   and   

√
nHn 

x 
(x/ℓ) =  H 

ℓ 

 
n−1 (x/ℓ) − Hn

′ 
−1 (x/ℓ). 

(3.79) 

√
nHn 

x 
(x/ℓ) =  H 

ℓ 
n−1 (x/ℓ) − 

√
n − 1H n−2 (x/ℓ). (3.80) 

Given  that  H0  =  (2πℓ
2
)−1/4

  and  H1(y)  =  y/(2πℓ
2
)

1/4
,  use  this  recurrence 

relation to reproduce the plots of the wavefunctions x 2 and x 40 shown 
in Figure 3.5. Explain the physical significance of the vertical arrows. Why 
is the amplitude of ⟨x|40⟩ largest near the right arrow? 

3.8 Use r   
h̄ 

x = 
2mω 

(A + A†) = ℓ(A + A†) (3.81) 

to show for a harmonic oscillator that in the energy representation the op- 
erator x is  

0 
√

1 0 0 . . .  
 
√

1 0 
√

2 0  
 

0 
√

2 0 
√

3  
 

3 . . .   
. . . . . . . . . . . .  

 
jk   

 
. . . √ 0  

 
 n − 1 . . .  

  
 n − 1 √0 n √   

   √ 0 n + 1   · · ·  
n + 1 0 

· · · · · · · · · · · · 
 

(
·
3
· 
.
·
82) 

Calculate the same entries for the matrix pjk. 
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3.9 Show that the momentum operator of a harmonic oscillator can be 
expressed in terms of the creation and annihilation operators as 

r   

p =  
ih̄ 

(A† A)    where    ℓ 
2ℓ 

   h̄  
. (3.83) 

2mω 
 

Hence show that  
⟨0|p |0⟩ = 

h̄ 
 2

 
 

 

2ℓ 

 

. (3.84) 

How does this result relate to the physics of a free particle discussed in §2.3.3? 

3.10 At t = 0 the state of a harmonic oscillator, mass m frequency ω, is 
 

1 1 
|ψ⟩ = √

2 
|N − 1⟩ + √

2 
|N ⟩. (3.85) 

 

Show that subsequently 

r   

⟨x⟩t = 
√

Nℓ cos(ωt)     where     ℓ ≡ 
   h̄  

. (3.86) 
2mω 

 

Interpret this result physically. What does this example teach us about the 
validity of classical mechanics? 

Show that a classical oscillator with energy (N +  
1
 )h̄ω  has amplitude 

 
xmax = 2 

q   

N + 
1
 ℓ. (3.87) 

 

To explain the discrepancy between these results, consider the case in 
which initially 

1 
|ψ⟩ = √

K
 
N +ΣK−1 

k=N 

|k⟩ (3.88) 

with N       K     1.  Show that then  x t 2
√

Nℓ cos(ωt) consistent with 
classical physics. 

3.11 ∗     By expressing the annihilation operator A of the harmonic oscillator 
in the momentum representation, obtain p 0 . Check that your expression 
agrees with that obtained from the Fourier transform of 

r   

x 0  =
 1 

e−x2/4ℓ2 

, where  ℓ 
(2πℓ2)1/4 

   h̄  
. (3.89) 

2mω 
 

3.12 Show that for any two N N matrices A, B, trace([A, B]) = 0. Com- 
ment on this result in the light of the results of Problem 3.8 and the canonical 
commutation relation [x, p] = ih̄. 

3.13 ∗ A Fermi oscillator has Hamiltonian H = f †f , where f is an oper- 
ator that satisfies 

 

f 
2
 = 0 ; ff † + f †f = 1. (3.90) 

Show that H
2
 = H, and thus find the eigenvalues of H.  If the ket |0⟩ 

satisfies H|0⟩ = 0 with ⟨0|0⟩ = 1, what are the kets (a) |a⟩ ≡ f |0⟩, and (b) 

In quantum field theory the vacuum is pictured as an assembly of os- 
cillators, one for each possible value of the momentum of each particle type. 
A boson is an excitation of a harmonic oscillator, while a fermion in an ex- 
citation of a Fermi oscillator.  Explain the connection between the spectrum 
of f †f and the Pauli principle. 

b f † 0 ? 
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3.14 In the time interval (t + δt, t) the Hamiltonian H of  some  system 
varies in such a way that H ψ remains finite. Show that under these 
circumstances ψ is a continuous function of time. 

A harmonic oscillator with frequency ω is in its ground state when the 
stiffness of the spring is instantaneously reduced by a factor f 

4
 < 1, so its 

natural frequency becomes f 
2
ω.  What is  the  probability that the  oscillator 

is subsequently found to have energy  
3
 ̄hf 

2
ω?  Discuss the classical analogue 

of this problem. 

3.15 ∗ P is the probability that at the end of the experiment described in 
Problem 3.14, the oscillator is in its second excited state. Show that when 
f = 

 1
 ,  P  = 0.144 as  follows.  First  show that  the  annihilation operator of 

the original oscillator 

A = 
1
 

} 
(f −

1
 + f )A′ + (f −

1
 − f )A′† , (3.91) 

where A′ and A′† are the annihilation and creation operators of the final 
oscillator.  ΣThen  writing  the  ground-state  ket  of  the  original  oscillator  as  a 
sum |0⟩ = n cn|n′⟩ over the energy eigenkets of the final oscillator, impose 
the condition A 0  = 0. Finally use the normalisation of 0  and the orthogo- 
nality of the n′ . What value do you get for the probability of the oscillator 
remaining in the ground state? 

Show that at the end of the experiment the expectation value of the 
energy  is  0.2656h̄ω.    Explain  physically  why  this  is  less  than  the  original 
ground-state energy  

1
 ̄hω. 

This example contains the physics behind the inflationary origin of the 
Universe: gravity explosively enlarges the vacuum, which is an infinite collec- 
tion of harmonic oscillators (Problem 3.13). Excitations of these oscillators 
correspond to elementary particles. Before inflation the vacuum is unexcited 
so every oscillator is in its ground state. At the end of inflation, there is non- 
negligible probability of many oscillators being excited and each excitation 
implies the existence of a newly created particle. 

3.16 ∗ In terms of the usual ladder operators A, A†, a Hamiltonian can be 
written 

H = µA†A + λ(A + A†). (3.92) 

What restrictions on the values of the numbers µ and λ follow from the 
requirement for H to be Hermitian? 

Show that for a suitably chosen operator B, H can be rewritten 

H = µB†B + constant. (3.93) 

where [B, B†] = 1. Hence determine the spectrum of H. 

3.17 ∗ Numerically calculate the spectrum of the anharmonic oscillator shown 
in Figure 3.2. From it estimate the period at a sequence of energies. Compare 
your quantum results with the equivalent classical results. 

3.18 ∗ Let B = cA+sA†, where c cosh θ, s sinh θ with θ a real constant 
and A, A† are the usual ladder operators. Show that [B, B†] = 1. 

Consider the Hamiltonian 
 

H = ǫA†A + 
1
 λ(A†A† + AA), (3.94) 

 

where ǫ and λ are real and such that ǫ > λ > 0. Show that when 
 

ǫc − λs = Ec    ; λc − ǫs = Es (3.95) 

with E a constant, [B, H] = EB. Hence determine the  spectrum  of  H  in 
terms of ǫ and λ. 
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3.19 This problem is all classical electromagnetism, but it gives physical 
insight into quantum physics. It is hard to do without a command of Carte- 
sian tensor notation (Appendix B). A point charge Q is placed at the origin 
in the magnetic field generated by a spatially confined current distribution. 
Given that 

Q 
E = 

4πǫ0 

r 

r3 (3.96) 

and B = ∇ × A with ∇ · A = 0, show that the field’s momentum 

∫ 

P ≡ ǫ0 d
3
x E × B = QA(0). (3.97) 

 

Write down the relation between the particle’s position and momentum and 
interpret this relation physically in light of the result you have just obtained. 

Hint:  write E = (Q/4πǫ0)   r−1
 and B = A, expand the vector 

triple product and integrate each of the resulting terms by parts so as to 
exploit  in  one  ∇ · A  =  0  and  in  the  o∫ther  ∇2r−1

  =H −4πδ
3
(r).   The  tensor 

form of Gauss’s theorem states that 
many indices the tensor T may carry. 

d
3
x ∇iT = d

2
Si T no matter how 

3.20 From equation (3.58) show that the the normalised wavefunction of 
a particle of mass m that is in the n

th
 Landau level of a uniform magnetic 

field B is 
rne−r2/4r2 e−inφ 

⟨x|n⟩ =  
2(n+1)/2

√
n! π rn+1 , (3.98) 

√   
where  rB   = h̄/QB.    Hence  show  that  the  expectation  of  the  particle’s 
gyration radius is 

 
 
 

Show further that 

 
⟨r⟩n ≡ ⟨n|r|n⟩ = 

 

(n + 
1
 )! 

2 
2
    rB. (3.99) 

n! 

δ ln ⟨r⟩n 
≃

 1  
(3.100) 

and thus show that in the limit of large n,  r     
√

E, where E is the energy 
of the level. Show that this result is in accordance with the correspondence 
principle. 

3.21 Show that in the gauge in which the magnetic vector potential is 
A = 

 1
 B  x the wavefunction of the n

th
 Landau level of gyration about the 

point a is 
 

⟨x|n, a⟩ = e
iQ(B×a)·x/2h̄

{(x − a  ) − i(y − a  )}ne−|x−a|
2/4r2  

. (3.101) 

3.22 A particle of charge Q is confined to move in the xy plane, with 
electrostatic potential φ = 0 and vector potential A satisfying 

 

∇ × A = (0, 0, B). (3.102) 

Consider the operators ρx, ρy, Rx and Ry, defined by 
 

  1   
ρ = êz 

QB 
× (p − QA) and R = r − ρ, (3.103) 

 

where  r  and  p  are  the  usual  position  and  momentum  operators,  and  êz  is 
the unit vector along B. Show that the only non-zero commutators formed 
from the x- and y-components of these are 

 

[ρx, ρy] = ir
2
 and [Rx, Ry] = −ir

2
 , (3.104) 

B 

√ 



B 

2 

B 
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where r
2
 = h̄/QB. 

The operators a, a†, b and b† are defined via 

1 
a = √

2 r
 

1 
(ρx + iρy) and b = √

2 r
 (Ry + iRx). (3.105) 

Evaluate [a, a†] and [b, b†]. Show that for suitably defined ω, the Hamiltonian 
can be written 

H  = h̄ω 
  
a†a + 

1
 . (3.106) 

Given that there exists a unique state |ψ⟩ satisfying 

a|ψ⟩ = b|ψ⟩ = 0, (3.107) 

what conclusions can be drawn about the allowed energies of the Hamiltonian 
and their degeneracies? What is the physical interpretation of these results? 

3.23 Using cylindrical polar coordinates (R, φ, z), show that the probability 
current density associated with the wavefunction (3.98) of the n

th
 Landau 

level is 
2 2 

h̄R2n−1e−R   /2rB 

J(R) = − 
2n+1πn!mr2n+2 

R2 

n + 
2r2 êφ, (3.108) 

where rB 
physically. 

√   
h̄/QB.   Plot  J  as  a  function  of  R  and  interpret  your  plot 

3.24 Determine the probability current density associated with the n
th

 
Landau ground-state wavefunction (3.67) (which for n = 4 is shown in Fig- 
ure Landaufig). Use your result to explain in as much detail as you can why 
this state can be interpreted as a superposition of states in which the electron 
gyrates around different gyrocentres. Hint: adapt equation (3.108). 

Why is the energy of a gyrating electron incremented if we multiply the 
2 

wavefunction  e−(mω/4h̄)r
 

u
n
 = (x + iy)

n
? 

by v
n
 = (x − iy)

n
 but not if we multiply it by 

B B 

B 

≡ 
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4 
Transformations & Observables 

 
In   2.1  we  associated an  operator with  every observable quantity  through 
a sum over all states in which the system has a well-defined value of the 
observable (eq. 2.5).   We found that this operator enabled us to  calculate 
the expectation value of any function of the observable. Moreover, from the 
operator we could recover the observable’s allowed values and the associ- 
ated states because they are the operator’s eigenvalues and eigenkets. These 
properties make an observable’s operator a useful repository of information 
about the observable, a handy filing system. But they do not give the opera- 
tor much physical meaning. Above all, they don’t answer the question ‘what 
does an operator actually do when it operates?’ In this chapter we answer 
this question. In the process of doing this, we will see why the canonical 
commutation relations (2.54) have the form that they do, and introduce the 
angular-momentum operators, which will play important roles in the rest of 
the book. 

 
 

4.1 Transforming kets 

When one meets an unfamiliar object, one may study it by moving it around, 
perhaps turning it over in one’s hands so as to learn about its shape. In  1.3 
we claimed that all physical information about any system is encapsulated 
in its ket ψ , so we must learn how ψ changes as we move and turn the 
system. 

Even the simplest systems can have orientations in addition to posi- 
tions. For example, an electron, a lithium nucleus or a water molecule all 
have orientations because they are not spherically symmetric: an electron 
is a magnetic dipole, a 

7
Li nucleus has an electric quadrupole, and a water 

molecule is a V-shaped thing. The ket ψ that describes any of these objects 
contains information about the object’s orientation in addition to its position 
and momentum. In the next subsection we shall focus on the location of a 
quantum system, but later we shall be concerned with its orientation as well, 
and in preparation for that work we explicitly display a label µ of the sys- 
tem’s orientation and any other relevant properties, such as internal energy. 
For the moment µ is just an abstract symbol for orientation information; the 

details will be fleshed out in §7.1. 
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Figure 4.1 A spherical wavefunction 
and its displaced version. 

 
 
 

4.1.1 Translating kets 

We now focus on the location of our system. To keep track of this we use a 
coordinate system Σ0 whose origin is some well-defined point, say the centre 
of our laboratory. We can investigate ψ by expanding it in terms of a 
complete set of eigenstates x, µ , where x is the position vector of the centre 
of mass and µ represents the system’s orientation. The amplitude for finding 
the system’s centre of mass at x with the orientation specified by µ is 

 

ψµ(x) ≡ ⟨x, µ|ψ⟩. (4.1) 

If we know all the derivatives of the wavefunction ψµ at a position x, Taylor’s 
theorem gives the value of the wavefunction at some other location x − a as 

" 
2 

# 
∂ 1 ∂ 

ψµ(x − a) = 1 − a · 
∂x 

+ 
2! 

a · 
∂x 

− . . . ψµ(x) 

 
= exp 

  
∂ 

−a · 
∂x

 

 
ψµ(x) 

(4.2) 

= ⟨x, µ| exp 
a  p  

−i   
h̄

 |ψ⟩. 

 

This equation tells us that in the state ψ , the amplitude to find the system 
at x a with orientation etc µ is the same as the amplitude to find the 
system with unchanged orientation at x when it is a different state, namely 

 

|ψ′⟩ ≡ U (a)|ψ⟩ where    U (a) ≡ exp(−ia · p/h̄). (4.3) 

In this notation, equation (4.2) becomes 
 

ψµ(x − a) = ⟨x, µ|U (a)|ψ⟩ = ⟨x, µ|ψ′⟩ = ψµ
′  (x), (4.4) 

 

so, as Figure 4.1 illustrates, the wavefunction ψµ
′    for |ψ′⟩ is the wavefunction 

we would expect for a system that is identical with the one described by 
ψ except for being shifted along the vector a. We shall refer to this new 

system as the translated or transformed system and we shall say that the 
translation  operator  operator U (a)  translates   ψ   through  a  even though 
ψ is not an object in real space, so this is a slight abuse of language. 

The ket ψ′ of the translated system is a function of the vector a. It 
is instructive to take its partial derivative with respect to one component of 
a, say ax. Evaluating the resulting derivative at a = 0, when ψ′ = ψ , we 
find 

ih̄ 
∂|ψ⟩ 

= −ih̄ 
∂|ψ⟩ 

= p  |ψ⟩. (4.5) 
∂ax ∂x 

x
 

Thus the operator px gives the rate at which the system’s ket changes as 
we translate the system along the x axis. So we have answered the question 



§ ⟨  |  ⟩ 

Box  4.1: Passive transformations 

We can describe objects such as atoms equally well using any coordinate 
system. Imagine a whole family of coordinate systems set up throughout 
space, such that every physical point is at the origin of one coordinate 
system. We label by Σy the coordinate system whose origin coincides 
with the point labelled by y in our original coordinate system Σ0, and we 
indicate the coordinate system used to obtain a wavefunction by making 
y a second argument of the wavefunction; ψµ(x; y) is the amplitude to 
find the system at the point labelled x in Σy. Because the different 
coordinate systems vary smoothly with y, we can use Taylor’s theorem 
to express amplitudes in, say, Σa+y in terms of amplitudes in Σy. We 
have             

ψµ(x; a + y) = exp   a · 
∂y 

ψµ(x; y). 
∂ 

(1) 

Now ψµ(x; a) = ψµ(x+a; 0) because both expressions give the amplitude 
for the system to be at the same physical location, the point called x in 
Σa and called x + a in Σ0. Then equations (4.4) and (1) give 

⟨x, µ; 0|U (−a)|ψ⟩ = ψµ(x + a; 0) = ψµ(x; a), (2) 

where again |x, µ; 0⟩ indicates the state in which the system is located 
at the point labelled by x in Σ0.  This equation tells us that |ψ⟩ has 

fore, moving the origin of our coordinates through a vector a has the 
same effect on an arbitrary state’s wavefunction as moving the system 

the  same  wavefunction  in  Σa  that  |ψ̄⟩  ≡  U (−a)|ψ⟩  has  in  Σ0.   There- 

transformation, whereas leaving the state alone but changing the co- 
ordinate system is called a passive transformation. The infinitesimal 
vectors required to make logically equivalent active and passive transfor- 
mations differ in sign. This sign difference reflects the fact that if you 
move backwards, the world around you seems to move forwards; hence 
moving the origin of one’s coordinates back by δa has the same effect as 
moving the system forward by δa. In this book we confine ourselves to 
active transformations. 

itself through −a. Physically moving the system is known as an active 
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posed above as to what an observable’s operator actually does in the case of 
the momentum operators. 

Equation (2.78) enables us to expand a state of well-defined position x0 
in terms of momentum eigenstates. We have 

∫ 
|x , µ⟩ = 

∫ 
d

3
p |p, µ⟩⟨p, µ|x , µ⟩ = 

  1 
 d

3
p e−ix0·p/h̄ |p, µ⟩. (4.6) 

0 0 
h3/2 

Applying the translation operator, we obtain with (4.3) 
∫ 

   1  U (a)|x , µ⟩ = d
3
p e−ix0·p/h̄  U (a)|p, µ⟩ 

0 
h3/2 

   1   
∫
 

= 
h3/2 

 
d3p e−i(x0+a)·p/h̄  |p, µ⟩ 

 
(4.7) 

= |x0 + a, µ⟩, 

which is a new state, in which the system is definitely located at x0 + a, as 
we would expect. 

 
 

4.1.2 Continuous transformations and generators 

In 1.3 we saw  that  the  normalisation  condition  ψ ψ  = 1  expresses  the 
fact that when we make a measurement of any observable, we will measure 
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Box 4.2: Operators from expectation values 

In this box we show that if 

⟨ψ|A|ψ⟩ = ⟨ψ|B|ψ⟩, (1) 

|ψ⟩ = |φ⟩+λ|χ⟩, where λ is a complex number. Then equation (1) implies 
for every state |ψ⟩, then the operators A and B are identical. We set 

λ (⟨φ|A|χ⟩ − ⟨φ|B|χ⟩) = λ∗ (⟨χ|B|φ⟩ − ⟨χ|A|φ⟩) . (2) 

we vary λ. If the coefficients of λ and λ∗ are non-zero, we can cause the 
left and right sides  of (2) to  change differently  by varying the  phase of 
λ; they can be equal irrespective of the phase of λ only if the coefficients 

Since equation (1) is valid for any state |ψ⟩, equation (2) remains valid as 

and |χ⟩, from which it follows that A = B. 
vanish. This shows that ⟨χ|A|φ⟩ = ⟨χ|B|φ⟩ for for arbitrary states |φ⟩ 
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some  value; for example, if we determine the system’s location, we will find 
it somewhere. The normalisation condition must be unaffected by any trans- 
formation that we make on a system, so the transformation operator1   U 

must have the property that for any state |ψ⟩ 

1 = ⟨ψ′|ψ′⟩ = ⟨ψ|U †U |ψ⟩. (4.8) 

From this requirement we can infer by the argument given in Box 4.2 (with 
A = U †U and B = I, the identity operator) that U †U = I, so U † = U −1

. 
Operators with this property are called unitary operators. When we trans- 
form all states with a  unitary operator, we leave unchanged all amplitudes: 
φ′ ψ′ = φ ψ for any states φ and ψ . 

Exactly how we construct a unitary operator depends on the type of 
transformation we wish it to make. The identity operator is the unitary 
operator that represents doing nothing to our system. The translation oper- 
ator U (a) can be made to approach the identity as closely as we please by 
diminishing the magnitude of a. Many other unitary operators also have a 
parameter θ that can be reduced to zero such that the operator tends to the 
identity. In this case we can write for small δθ 

U (δθ) = I − iδθ τ + O(δθ)
2
, (4.9) 

where the factor of i is a matter of convention and τ is an operator. The 
unitarity of U implies that 

I = U †(δθ)U (δθ) = I + iδθ (τ † − τ ) + O(δθ
2
). (4.10) 

Equating powers of δθ on the two sides of the equation, we deduce that τ 
is Hermitian, so it may be an observable. If so, its eigenkets are states in 
which the system has well-defined values of the observable τ . 

We obtain an important equation by using equation (4.9) to evaluate 
|ψ′⟩ ≡ U (δθ)|ψ⟩. Subtracting |ψ⟩ from both sides of the resulting equation, 
dividing through by δθ and proceeding to the limit δθ → 0, we obtain 

i 
∂|ψ′⟩ 

= τ ψ′  . (4.11) 
∂θ 

Thus the observable τ gives the rate at which ψ changes when we increase 
the parameter θ in the unitary transformation that τ generates. Equation 
(4.5) is a concrete example of this equation in action. 

 

1 We restrict ourselves to the case in which the operator U is linear, as is every operator 
used in this book. In consequence, we are unable to consider time reversal. 
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A finite transformation can be generated by repeatedly performing an 

infinitesimal one. Specifically,  if  we  transform  N  times  with  U (δθ)  with 
δθ = θ/N , then in the limit N → ∞ we have 

 

U (θ) lim 
N →∞ 

   N 
θ 

1 − i 
N 

τ 

 
= e−iθτ

 . (4.12) 

 

This relation is clearly a generalisation of the definition (4.3) of the trans- 
lation operator. The Hermitian operator τ is  called the  generator  of  both 
the unitary operator U and the transformations that U accomplishes; for 
example, p/h̄ is  the generator of translations. 

 
 

4.1.3 The rotation operator 

Consider what happens if we rotate the system. Whereas in 4.1.1 we con- 
structed a state ψ′ = U (a) ψ   that differed from the state   ψ   only in a 
shift by a in the location of the centre of mass, we now wish to find a ro- 
tation operator that constructs the state ψ′ that we would get if we could 
somehow rotate the apparatus on a turntable without disturbing its internal 
structure in any way.  Whereas the  orientation of the system is  unaffected 
by a translation, it will be changed by the rotation operator, as is physically 
evident if we imagine turning a non-spherical object on a turntable. 

From 4.1.2 we know that a rotation operator will be unitary, and have a 
Hermitian generator. Actually, we expect there to be several generators, just 
as there are three generators, px/h̄, py/h̄ and pz/h̄, of translations.  Because 
there are three generators of translations, three numbers, the components of 
the vector a in equation (4.3), are required to specify a particular translation. 
Hence we anticipate that the number of generators of rotations will  equal 
the number of angles that are required to specify a rotation. Two angles are 
required to specify the axis of rotation,  and a  third  is  required to  specify 
the angle through which we rotate. Thus by analogy with equation (4.3), we 
expect that a general rotation operator can be obtained by exponentiating 
a linear combination of three generators of rotations, and we write 

U (α) = exp(−iα · J). (4.13) 

Here α is a vector that specifies a  rotation through an angle  α  around 
the  direction  of  the  unit  vector  α̂,  and  J  is  comprised  of  three  Hermitian 
operators, Jx, Jy and Jz. In the course of this chapter and the next it will 
become clear that the observable associated with J is angular momentum. 
Consequently, the components of J are called the angular-momentum op- 
erators. 

The role that  the angular momentum operators play in  rotating the 
system  around  the  axis  α̂   is  expressed  by  rewriting  equation  (4.11)  with 
appropriate substitutions as 

i 
∂|ψ⟩ 

= α̂  · J|ψ⟩. (4.14) 
 

 
4.1.4 Discrete transformations 

(a) The parity operator Not all transformations are continuous. In 
physics, the most prominent example of a discrete transformation is the 
parity transformation P, which swaps the sign of the coordinates of all 
spatial points; the action of P on coordinates is represented by the matrix 

  

 
−1 0 0  

P ≡ 0 −1 0 
0 0 −1 

 
so   Px = −x. (4.15) 
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Notice that det      =     1, whereas a rotation matrix has det R = +1.  In fact, 
any linear transformation with determinant equal to 1 can be written as a 
product of and a rotation R. 

Let an arbitrary quantum state ψ have wavefunction ψµ(x) = x, µ ψ , 
where the label µ is the usual shorthand for the system’s orientation. Then 
the quantum parity operator P is defined by 

ψµ
′  (x) ≡ ⟨x, µ|P |ψ⟩ ≡ ψµ(Px) = ψµ(−x) = ⟨−x, µ|ψ⟩. (4.16) 

The wavefunction of the new state, ψ′ = P ψ , takes the same value at x 
that the old wavefunction does at  x. Thus, when the system is in the state 
P ψ , it has the same amplitude to be at x as it had to be at x when it was 
in the state ψ . The orientation and internal properties of the system are 
unaffected by P . The invariance of orientation under a parity transformation 
is not self evident, but in 4.2 we shall see that it follows from the rules that 
govern commutation of P with x and J. 

Applying the parity operator twice creates a state  ψ′′  = P ψ′   = P 
2
 ψ 

with wavefunction 

ψµ
′′(x) = ⟨x, µ|P |ψ′⟩ = ⟨−x, µ|ψ′⟩ = ⟨−x, µ|P |ψ⟩ = ⟨x, µ|ψ⟩ 

= ψµ(x). 

 
(4.17) 

 

Hence P 
2
 = 1 and an even number of applications of the parity operator 

leaves the wavefunction unchanged. It also follows that P = P −1
 is its own 

inverse. 
P is also Hermitian: 

⟨φ|P |ψ⟩∗ = 

 
= 

 

= 
 

= 

∫ 
d

3
x 

∫ 

d
3
x 

∫ 

d
3
x 

∫ 

d
3
x 

Σ 
(⟨φ|x, µ⟩⟨x, µ|P |ψ⟩)∗ 

µ 

Σ 
(⟨φ|x, µ⟩⟨−x, µ|ψ⟩)∗ 

µ 

Σ 
⟨ψ| − x, µ⟩⟨x, µ|P |φ⟩ 

µ 

Σ 
⟨ψ| − x, µ⟩⟨−x, µ|P |φ⟩ = ⟨ψ|P |φ⟩, 

µ 

 
 
 
 
 

(4.18) 

 

so P † = P . It now follows that P is unitary2 because P −1
 = P = P †. Hence 

from the discussion of 4.1.2 it follows that transforming all states with P 
will preserve all amplitudes for the system. 

Suppose now that |P ⟩ is an eigenket of P ,  with eigenvalue λ.  Then 2 2 2 
|P ⟩ = P |P ⟩ = λP |P ⟩ = λ |P ⟩, so λ  = 1.  Thus the eigenvalues of P  are 

1. Eigenstates of P are said to have definite parity, with + = P + 
being a state of even parity and = P being one of odd parity. 

In 3.1 we found that the stationary-state wavefunctions of a harmonic 
oscillator are even functions of x when the quantum number n is even, and 
odd functions of x otherwise. It is clear that these stationary states are also 
eigenstates of P , those for n = 0, 2, 4, . . . having even  parity and those  for 
n = 1, 3, 5, . . . having odd parity. 

Mirror operators Systems not infrequently exhibit a mirror symmetry of 
some sort. When they do, it can be helpful to define an operator which trans- 
forms any state into the corresponding mirror state. Here’s an illustrative 
concrete example. 

A particle moves in two dimensions, so the amplitudes x, y ψ for the 
particle to be found at the location (x, y) constitute a complete set of am- 
plitudes. Let the operator M be such that for any state |ψ⟩ 

  ⟨x, y|M |ψ⟩ = ⟨y, x|ψ⟩. (4.19) 

2 Problem 4.9 shows that P is unitary by showing that it has an infinitesimal generator. 
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Figure 4.2 If the coordinates of the 
point marked with an filled circle are 
(x, y), then the coordinates  of the 
point marked with an open circle are 
(y, x). The points  would  be  object 
and image if a mirror lay along the 
line y = x. 

 

 
That is, in the state M ψ the amplitude to be at the point (x, y) (marked 
with a filled dot in Figure 4.2) is the same as the amplitude to be at the 
point (y, x) (marked by an open dot) when in the state   ψ . If there were a 
mirror along the line y = x, the image of a light at (x, y) would be located 
at (y, x). Thus the  operator M  produces the  state  we  get by  mirroring al 
the amplitudes in the line y = x. We leave as an exercise (Problem 4.12) the 
proof that M is a unitary operator, which closely follows the proof we gave 
of the unitarity of P . 

If we mirror a set of amplitudes twice, we obviously recover the original 
amplitudes, so M 

2
 = 1 and it follows that the eigenvalues of M can only be 

±1. 

 
4.2 Transformations of operators 
When we move an object around, we expect to find it in a new place. Specif- 
ically, suppose ψ x ψ = x0 for some state ψ . Since x0 just labels a spatial 
point, it must behave under translations and rotations like any vector. For 
example, translating a system that is in the state ψ  through a, we obtain 
a new state ψ′ which has  ψ′ x ψ′  = x0 + a =  ψ x + Ia ψ . On the other 
hand, from 4.1.1 we know that ψ′ x ψ′ = ψ U †(a)xU (a) ψ . Since these 
expectation values must be equal for any initial state ψ , it follows from the 
argument given in Box 4.2 that 

U †(a) x U (a) = x + a, (4.20) 

where the identity operator is understood to multiply the constant a. For 
an infinitesimal translation with a → δa we have U (a) ≃ 1 − ia · p/h̄.  So 

x + δa ≃ 

  

1 + i 
δa · p 

h̄ 

  

x 1 i
 δa · p 

h̄ 

 

 
(4.21) 

= x 
i  

[x, δa  p] + O(δa)
2
. 

h̄ 

For this to be true for all small vectors δa, x and p must satisfy the commu- 
tation relations 

[xi, pj ] = ih̄δij (4.22) 

in accordance with equation (2.54). Here we see that this commutation rela- 
tion arises as a natural consequence of the properties of x under translations. 
For a finite translation, we can write 

U †(a) x U (a) = U †(a)U (a)x + U †(a)[x, U (a)] = x + U †(a) [x, U (a)] .  (4.23) 

We use equation (2.25) to evaluate the commutator on the right.  Treating 
U  as the function e−ia·p/h̄

  of a · p, we find 

U †(a) x U (a) = x 
i 

U †(a)[x, a  p]U (a) = x + a (4.24) 
h̄ 
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Box 4.3: Rotations in ordinary space 

A rotation matrix R is defined by the conditions R
T
 = R−1

 and 
det(R)  =  +1.  If R(α) rotates around the α̂  axis, it should leave this 
axis invariant so R(α)α̂   =  α̂.  For a  rotation through an angle |α|, 
Tr R(α) = 1 + 2 cos |α|. 

Let α be an infinitesi- 
mal rotation vector:  that  is, 
a rotation through α around 
the axis that is in the direc- 
tion of the unit  vector α̂. 
We consider the effect of ro- 
tating an arbitrary vector v 
through angle α. The com- 
ponent of v parallel to α is 
unchanged by the rotation. 

The figure shows the projection of v into the plane perpendicular to 
α. The rotated vector is seen to be the vectorial sum of v and the in- 

tion.  That is 
finitesimal vector α × v that joins the end of v before and after rota- 

v′ = v + α × v. 
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as equation (4.20) requires. 
Similarly, under rotations ordinary spatial vectors have components 

which transform as v R(α)v, where R(α) is a matrix describing a rotation 
through  angle   α  around the  α̂  axis.  The  expectation  values   ψ x ψ   = x0 
should then transform in this way. In 4.1.2 we saw that when a system is 
rotated  through  an  angle   α  around  the  α̂  axis,  its  ket   ψ    should  be  mul- 

tiplied  by U (α) = e−iα·J.   If  this transformation of   ψ   is to be  consistent 
with the rotation of the expectation value of x, we need 

R(α)⟨ψ|x|ψ⟩ = ⟨ψ′|x|ψ′⟩ = ⟨ψ|U †(α) x U (α)|ψ⟩. (4.25) 

Since this must hold for any state ψ , from the argument given in Box 4.2 
it follows that 

R(α)x = U †(α) x U (α). (4.26) 

For an infinitesimal rotation, α δα and R(α)x x + δα x as is 
shown in Box 4.3, so equation (4.26) becomes 

x + δα × x ≃ (1 + iδα · J) x (1 − iδα · J) 

= x + i [δα · J, x] + O(δα)
2
. 

In components, the vector product δα x can be written 
Σ 

 

(4.27) 

(δα × x)i = ǫijkδαj xk, (4.28) 
jk 

where  ǫijk  is  the  object  that  changes  sign  if  any  two  subscripts  are  inter- 
changed and Σhas ǫxyz  = 1 (Appendix B). For example, equation (4.28) gives 
(δα × x)x  = jk  ǫxjkδαj xk  = ǫxyzδαy xz + ǫxzyδαz xy  = δαyz − δαzy.  The 
i
th

 components of equation (4.27) is 
Σ Σ 

ǫijkδαj xk  = i 
jk j 

 
δαj [Jj , xi]. (4.29) 

Since this equation holds for arbitrary δα, we conclude that the position 
and angular momentum operators xi and Jj must satisfy the commutation 
relation Σ 

[Ji, xj ] = i 
k 

 

ǫijkxk. (4.30) 

In particular, [Jx, y] = iz and [Jz, x] = iy, while [Jx, x] = 0. 
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In fact, if the expectation value of any operator v is a spatial vector, 
then the argument just given in the case of x shows that the components vi 
must satisfy Σ 

[Ji, vj ] = i 
k 

 
ǫijkvk. (4.31) 

For example, since momentum is a vector, equation (4.31) with v = p gives 
the commutation relations of p with J, 

Σ 
[Ji, pj ] = i 

k 

ǫijkpk. (4.32) 

The product α · J must be invariant under coordinate rotations because 

the  operator  U (α)  =  e−iα·J  depends  on  the  direction  α̂   and  not  on  the 
numbers used to quantify that direction. Since α is an arbitrary vector, the 
invariance of α J under rotations implies that under rotations the compo- 
nents of J transform like those of a vector. Hence, in equation (4.31) we can 
replace v by J to obtain the commutation relation 

Σ 
[Ji, Jj ] = i 

k 

ǫijkJk. (4.33) 

In 7.1 shall deduce the spectrum of the angular-momentum operators from 
this relation. 

We now show that J commutes with any operator S whose expectation 
value is a scalar. The proof is simple: ψ S ψ , being a scalar, is not affected 
by rotations, so 

⟨ψ′|S|ψ′⟩ = ⟨ψ|U †(α) S U (α)|ψ⟩ = ⟨ψ|S|ψ⟩. (4.34) 

Equating the operators on either side of the second equality and using U −
1
 = 

U † we have [S, U ] = 0. Restricting U to an infinitesimal rotation gives 

S ≃ (1 + iδα · J) S  (1 − iδα · J) = S + iδα · [J, S] + O(δα)
2
. (4.35) 

Since δα is arbitrary, it follows that 

[J, S] = 0. (4.36) 
 

Among other things, this tells us that [J, x   x] = [J, p   p] = [J, x   p] = 0.  It 
is straightforward to check that these results are consistent with the vector 
commutation relations (4.31) (Problem 4.1). It also follows that J

2
 = J J 

commutes with all of the Ji, 

[J, J
2

] = 0. (4.37) 

Equations (4.33) and (4.37) imply that it is possible to find a complete set 
of simultaneous eigenstates for both J

2
 and any one component of J (but 

only one). 

The parity operator    Under a parity transform, coordinates behave as 
x → Px = −x whereas quantum states transform as |ψ⟩ → |ψ′⟩ = P |ψ⟩, so 

−⟨ψ|x|ψ⟩ = P⟨ψ|x|ψ⟩ = ⟨ψ′|x|ψ′⟩ = ⟨ψ|P †xP |ψ⟩, (4.38) 

which implies that P †xP = −x or, since P is a unitary operator, 

{x, P } ≡ xP + P x = 0. (4.39) 

Two operators A and B  for which   A, B    = 0 are said to anticommute, 
with A, B being their anticommutator. The argument we have just given 
for x works with x replaced by any vector operator v, so we always have 

{v, P } = vP + P v = 0. (4.40) 
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This relation contains important information about the action of P . Suppose 
|ω⟩ is an eigenstate of a vector operator v with eigenvalues ω such that 
v|ω⟩ = ω|ω⟩. From equation (4.40) we see that 

v|ω′⟩ = v (P |ω⟩) = −P v|ω⟩ = −ωP |ω⟩ = −ω|ω′⟩ (4.41) 

so the parity-reversed state ω′ = P ω is also an eigenstate of v, but the 
eigenvalue has changed sign. 

Let be states of definite parity such that P       = . With 
equation (4.40) we deduce that 

 

−⟨±|v|±⟩ = P⟨±|v|±⟩ = ⟨±|P †vP |±⟩ = (±)
2
⟨±|v|±⟩. (4.42) 

Since zero is the only number that is equal to minus itself, all vector operators 
have vanishing expectation value in states of definite parity. More generally, 
if  φ  and  χ   both have the same definite parity, equation (4.40) implies that 
φ v χ = 0. We’ll use this result in Chapter 9. 

We frequently encounter situations in which the potential energy V (x) 
is an even function of x: V ( x) = V (x). We then say that the potential is 
reflection-symmetric because the potential energy at   x is the same as it 
is at the point x into which x is mapped by reflection through the origin. 
We now show that in such a case the parity operator commutes with the 

Hamiltonian. For an arbitrary state |ψ⟩ consider the amplitude 

⟨x|PV |ψ⟩ = ⟨−x|V |ψ⟩ = V (−x)⟨−x|ψ⟩ = V (x)⟨−x|ψ⟩, (4.43a) 

where we have used equation (4.16). On the other hand 

⟨x|V P |ψ⟩ = V (x)⟨x|P |ψ⟩ = V (x)⟨−x|ψ⟩. (4.43b) 

Since x and  ψ  are arbitrary, it follows that when V is an even function of 
x, [P, V ] = 0. This argument generalises to all operators that carry out a 
transformation that is a symmetry of the potential energy. 

Since the momentum p is a vector operator, P p = −pP , so 

 
p

2
P = 

Σ 
pkpkP = − 

k 

Σ 
pkPpk = 

k 

Σ 
Ppkpk = Pp

2
 

k 

 

 
(4.44) 

⇒ [p , P ] = 0. 

Applying these results to the Hamiltonian H = p
2
/2m + V (x) of a particle 

of mass m that moves in a reflection-symmetric potential, we have that 
[H, P ] = 0. It follows that for such a particle there is a complete set of 
stationary states of well-defined parity. This fact is illustrated by the case 
of the harmonic oscillator studied in 3.1, and in Chapter 5 it will enable us 
dramatically to simplify our calculations. 

In classical physics, a vector product a  b is a pseudovector; it behaves 
like an ordinary vector under rotations, but is invariant under parity, since 
both a and b change sign. We now show that expectation values of the 
angular momentum operators,   J , are pseudovectors.  If vi are components 
of a vector operator, then combining equations (4.31) and (4.40), we obtain 

Σ 
{P, [vi, Jj ]} = i 

k 

ǫijk{P, vk} = 0. (4.45) 

 

We use the identity (4.76) proved in Problem 4.8 to rewrite the left side of 
this equation. We obtain 

 

0 = {P, [vi, Jj ]} = [{P, vi}, Jj] − {[P, Jj ], vi} = −{[P, Jj ], vi}. (4.46) 
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Hence the operator [P, Jj ] anticommutes with any component of an arbitrary 
vector. Since P is defined to have precisely this property, [P, Jj ] must be 
proportional to P , that is 

[P, Jj ] = λP, (4.47) 

where λ must be the same for all values of j because the three coordinate 
directions are equivalent. Under rotations, the left side transforms like a vec- 
tor, while the right side is invariant. This is possible only if both sides vanish. 
Hence the parity operator commutes with all three angular-momentum op- 
erators. It now follows that 

⟨ψ′|J|ψ′⟩ = ⟨ψ|P †JP |ψ⟩ = ⟨ψ|J|ψ⟩, (4.48) 

so ⟨J⟩ is unchanged by a parity transformation, and is a pseudovector. 

Mirror  operators      In    4.1.4 we  introduced a  typical mirror operator M . 
To discover how M interacts with the position operators x and y we argue 
that for any state |ψ⟩ 

 

⟨ψ|M †xM |ψ⟩ = ⟨ψ|y|ψ⟩. (4.49) 

That is, in the state M |ψ⟩ the expectation of x must be equal to the ex- 
pectation value of y in the state |ψ⟩ – the truth of this statement follows 
immediately from the definition (4.19) of the state M |ψ⟩. Since equation 
(4.49) holds for arbitrary |ψ⟩, we can infer the operator equation 

M †xM = y ⇒ xM = My, (4.50) 

where the second equation follows by multiplying both sides of the first equa- 
tion by M and using the unitarity condition MM † = I.  In the same way we 
can show that Mx = yM , pxM = Mpy and pyM = Mpx. 

 
 

4.3 Symmetries and conservation laws 
Time changes states: in a given time interval t, the natural evolution of the 
system causes any state ψ, 0 to evolve to another state ψ, t . Equation 
(2.32) gives an explicit expression for ψ, t . It is easy to see that with the 
present notation this rule can be written 

 

|ψ, t⟩ = e−iHt/h̄
 |ψ, 0⟩, (4.51) 

where H is the Hamiltonian. The time-evolution operator 

U (t) ≡ e−iHt/h̄ 

is unitary, as we would expect.3 

(4.52) 

Now suppose that the generator τ  of some displacement (a translation, 
a rotation, or something similar) commutes with H. Since these operators 
commute, their exponentials U (θ) (eq. 4.12) and U (t) also commute. Con- 

sequently, for any state |ψ⟩ 

U (θ)U (t)|ψ⟩ = U (t)U (θ)|ψ⟩. (4.53) 
 

3 The similarity between equations (4.52) and the formula (4.12) for a general unitary 
transformation suggests that H is the generator of transformations in time. This is not 
quite true. If we were to push the system forward in time in the same way that we 
translate it in x, we would delay the instant at which we would impose some given initial 
conditions, with the result that it would be less evolved at a given time t. The time- 
evolution operator, by contrast, makes the system older. Hence H is the generator of 
transformations backwards in time. 
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The left side is the state you get by waiting for time t and then displacing, 
while the right side is the state obtained by displacing first and then waiting. 
So the equation says that the system evolves in the same way no matter where 
you put it. That is, there is a connection between commuting observables and 
invariance of the physics under displacements. Moreover, in 2.2.1 we saw 
that when any operator Q commutes with the Hamiltonian, the expectation 
value of any function of Q is a conserved quantity, and that in consequence, 
a system that is initially in an eigenstate  qi   of Q remains in that eigenstate. 
So whenever the physics is unchanged by a displacement, there is a conserved 
quantity. 

If [px, H] = 0, this argument implies that the system evolves in the same 
way wherever it is located. We say that the Hamiltonian is translationally 
invariant. It is a fundamental premise of physics that empty space is the same 
everywhere, so the Hamiltonian of every isolated system is translationally 
invariant. Consequently, when a system is isolated, the expectation value of 
any function of the momentum operators is a conserved quantity, and, if the 
system is started in a state of well-defined momentum, it will stay in that 
state. This is Newton’s first law. 

If [Jz, H] = 0, we say that the Hamiltonian is rotationally invariant 
around the z axis, and our argument implies that the system evolves in the 
same way no matter how it is turned around the z axis. The expectation 
value of any function of Jz is constant, and if the state is initially in an 
eigenstate of Jz with eigenvalue m, it will remain in that state. Consequently, 
m is a good quantum number. In classical physics invariance of a system’s 
dynamics under rotations around the z  axis is associated with conservation 
of the z component of the system’s angular momentum. This fact inspires 
the identification of h̄J with angular momentum. 

Above we used a very general argument to infer that the existence of 
a unitary operator that commutes with the Hamiltonian implies that the 
system has a symmetry. In  4.1.4 an explicit calculation (eq. 4.43) showed 
that reflection symmetry of the potential energy implied that the potential- 
energy operator V commutes with the parity operator P . This argument 
generalises to other transformation operators. For example, suppose V (x) is 
invariant under some rotation V (R(α)x) = V (x). Then 

⟨x|V U (α)|ψ⟩ = V (x)⟨x|U (α)|ψ⟩ = V (x)⟨R(α)x|ψ⟩, (4.54a) 

while  
⟨x|U (α)V |ψ⟩ = ⟨R(α)x|V |ψ⟩ = V (R(α)x)⟨R(α)x|ψ⟩, (4.54b) 

so and the operator equation UV = V U follows from the equality of V (R(α)x) 
and V (x). 

In general, finding all the operators that commute with a given Hamilto- 
nian is a very difficult problem. However, it is sometimes possible to deduce 
conserved quantities by  direct inspection.  For example, the Hamiltonian for 
a system of n particles that interact with each other, but not with anything 
else, is 

Σn 

H = 
i=1 

  p
2 

2mi 

Σ 
+ 

i<j 

V (xi − xj), (4.55) 

where the potential-energy function V only depends on the relative positions 
of the individual particles. Such a Hamiltonian is invariant under translations 
of all particles together (sΣhifts of the centre of mass coordinate) and thus the 
total momentum ptot = i pi of this system is conserved. 

If the Hamiltonian is a scalar, then [H, J] = 0, [H, J
2

] = 0 and [H, P ] = 0 
(Problem 4.10), which implies conservation of angular momentum around 
any axis, conservation of total angular momentum, and conservation of par- 
ity.  We  have already seen  that  [J, J

2
] = [J, P ] = 0,  so  for  a  scalar Hamilto- 

nian we can find complete sets of simultaneous eigenkets of H, P ,  J
2
, and 

any one of the components of J. 
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The equation  [H, P ]  =  0 implies  that  if  you  set  up  a  system  that  at 
t = 0 is a mirror image of a given system, it will evolve in exactly the same 
way as the given system. When the evolution of the mirrored system is 
watched, it will appear identical to the evolution of the given system when 
the latter is observed in a mirror.  Hence,  when  [H, P ] = 0, it  is  impossible 
to tell whether a system that is being observed, is being watched directly or 
through a mirror. One of the major surprises of 20

th
 century physics was an 

experiment by Wu et al.4 in 1957, which showed that you can see things in a 
mirror that cannot happen in the real world! That is, there are Hamiltonians 

for which [H, P ] /= 0. 

 

4.4 The Heisenberg picture 

All physical predictions are extracted from the formalism of quantum me- 
chanics by operating with a bra on a ket to extract a complex number: we 
either calculate the amplitude for some event as A = φ ψ  or the expecta- 
tion value of a observable through   Q   =  ψ Qψ , where  Qψ   Q ψ .  In 
general our predictions are time-dependent because the state of our system 
evolves in time according to 

 

|ψ, t⟩ = U (t)|ψ, 0⟩, (4.56) 

where the time-evolution operator U is defined by equation (4.52). 
With every operator of interest we can associate a new time-dependent 

operator 

Q̃t  ≡ U †(t)QU (t). (4.57) 

Then at any time t the expectation value of Q can be written 

⟨Q⟩t = ⟨ψ, t|Q|ψ, t⟩ = ⟨ψ, 0|U †(t)QU (t)|ψ, 0⟩ = ⟨ψ, 0|Q̃t|ψ, 0⟩. (4.58) 

That  is,  the  expectation  value  at  time  t  =  0  of  the  new  operator  Q̃t   is 
equal to the expectation value of the original, physical, operator Q at time t. 
Similarly, when we wish to calculate an amplitude   φ, t ψ, t    for something 
to happen at time t, we can argue that on account of the unitarity of U (t) 
it is equal to a corresponding amplitude at time zero: 

 

⟨φ, t|ψ, t⟩ = ⟨φ, 0|ψ, 0⟩   where    |φ, t⟩ ≡ U (t)|φ, 0⟩. (4.59) 

Thus  if  we  work  with  the  new  time-dependent  operators  such  as  Q̃t,  the 
only states we require are those at t = 0. This formalism, is called the 
Heisenberg  picture  to  distinguish  it  from  the  Schrödinger  picture  in 
which states evolve and operators are normally time-independent. 

As we have seen, classical mechanics applies in the limit that it is suffi- 
cient to calculate the expectation values of observables, and is concerned with 
solving the equations of motion of these expectation values. In the Heisen- 
berg picture quantum mechanics is concerned with solving the equations of 

motion  of  the  time-dependent  operators  Q̃t,  etc.   Consequently,  there  is  a 
degree of similarity between the Heisenberg picture and classical mechanics. 

It  is  straightforward  to  determine  the  equation  of  motion  of  Q̃t:   we 
simply differentiate equation (4.57) 

 

dQ̃t   
=  

dU † 

QU + U †Q 
dU 

. (4.60) 
dt dt dt 

4 Wu, C.S., Ambler, E., Hayward, R.W., Hoppes, D.D. & Hudson, R.P., 1957, Phys. 
Rev., 105, 1413 
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But differentiating equation (4.52) we have 

dU  
= − 

iH 
U ⇒ 

dU †  

= 
iH 

U †, (4.61) 

where we have taken advantage of the fact that U is a function of H and 
therefore commutes with it. Inserting these expressions into equation (4.60) 
we obtain 

ih̄ 
dQ̃t   

= HU †QU + U †QUH 
dt 

= [Q̃t, H ]. 

 

(4.62) 

This result is similar to Ehrenfest’s theorem (eq. 2.34) as it has to be because 
Ehrenfest’s theorem must be recovered if we pre- and post-multiply each side 
by the time-independent state ψ, 0 . 

The Heisenberg picture is most widely used in the quantum theory of 
fields. In this theory one needs essentially only one state, the vacuum in the 
remote past  0 ,  which we assume was empty.   Excitations of the  vacuum 
are interpreted as particles, each mode of excitation being associated with a 
different type of particle (photons, electron, up-quarks, etc). The theory is 
concerned with the dynamics of operators that excite the vacuum, creating 
particles, which then propagate to other locations, where they are detected 
(annihilated) by similar operators. Sometimes one mode of excitation of the 
vacuum morphs into one or more different modes of the vacuum, and such an 
event is interpreted as the decay of one type of particle into other particles. 
The amplitude for any such sequence of events is obtained as a number of the 

form   0 Ã1Ã2 . . . Ãn  0  ,  where  the  operators Ãi   are creation  or  annihilation 
operators for the appropriate particles in the Heisenberg picture. 

 
 

4.5 What is the essence of quantum mechanics? 

It  is  sometΣimes  said that  commutation  relations  such as  [xi, pj] = ih̄δij  and 
[Ji, Jj ] = i k ǫijkJk are inherently quantum mechanical, but this is not true. 

Take for example an ordinary classical rotation matrix R(α) which ro- 
tates spatial vectors as v → v′ = R(α)v. Define matrices Jx, Jy and Jz 

exp (−iα · J ) ≡ R(α), (4.63) 

where the exponential of a matrix is defined in terms of the power series for 
e

x
. Clearly, the i must be 3 3 matrices, and, since R(α) is real and the 

angles α are arbitrary, the i must be pure imaginary. Finally, orthogonality 
of R requires 

 

I = R
T
(α)R(α) = exp(−iα · J )

T
 exp(−iα · J ) 

= exp(−iα · J T) exp(−iα · J ) 
(4.64)

 

We express α in terms of the angle of the rotation it  represents, θ  =  α , 
and the direction n = α/ α of the rotation axis, and then we differentiate 
equation (4.64) with respect to θ. We obtain 

 

0 = −in · J T exp(−iθn · J T) exp(−iθn · J ) 

+ exp(−iθn · J T) exp(−iθn · J )(−in · J ) 

= −in · {J T + J }. 

(4.65) 

 

Since n is an arbitrary unit vector, it now follows that   
T
 =   i, so   i 

is antisymmetric. A pure imaginary antisymmetric matrix is a Hermitian 
matrix. Thus the Ji are Hermitian. 



| | − ≃ − × 

H H 

72 Chapter 4: Transformations & Observables 

 
For any two vectors α and β, it is easy to show that the product 

R
T
(α)R(β)R(α) is an orthogonal matrix with determinant +1, so it is a 

rotation matrix.  It leaves the vector β′ ≡ R(−α)β = R
T

(α)β invariant: 

, , 
R

T
(α)R(β)R(α)   β′ = R

T
(α)R(β)β = R

T
(α)β = β′. (4.66) 

 

Hence β′ is the axis of this rotation. Therefore 

R
T

(α)R(β)R(α) = R(β′) = R(R(−α)β). (4.67) 

In Box 4.3 we showed that when  α  is infinitesimal, R(   α)β    β    α   β, 
so when β is also infinitesimal, equation (4.67) can be written in terms of 
the classical generators (4.63) as 

 

(1 + iα · J ) (1 − iβ · J ) (1 − iα · J ) ≃ 1 − i(β − α × β) · J . (4.68) 

The zeroth order terms (‘1’) and those involving only α or β cancel, but the 
terms involving both α and β cancel only if 

Σ 
αiβj [Ji, Jj ] = iαiβj ǫijkJk. (4.69) 

k 
 

This equation can hold for all directions α and β only if the Ji satisfy 

Σ 
[Ji, Jj ] = i 

k 

ǫijkJk, (4.70) 

 

which is identical to the ‘quantum’ commutation relation (4.33). Our red- 
erivation of these commutation relations from entirely classical considerations 
is possible because the relations reflect the fact that the order in which you 
rotate an object around two different axes matters (Problem 4.6). This is 
a statement about the geometry of space that has to be recognised by both 
quantum and classical mechanics. 

In Appendix D it is shown that in classical statistical mechanics, each 
component of position, xi, and momentum, pi, is associated with a Hermi- 
tian  operator  x̂i  or  p̂i  that  acts  on  functions  on  phase  space.  The  operator 
p̂i  generates  translations  along  xi,  while  x̂i  generates  translations  along  pi 
(boosts).   The  operators  L̂i   associated  with  angular  momentum  satisfy  the 

commutation relation [L̂x, L̂y] = i    L̂z,  where is  a  number  with the  same 
dimensions  as  ̄h  and  a  magnitude  that  depends  on  how  x̂i  and  p̂i  are  nor- 
malised. 

If the form of the commutation relations is not special to quantum me- 
chanics, what is? In quantum mechanics, complete information about any 
system is contained in its ket |ψ⟩. There is nothing else. From |ψ⟩ we can 
evaluate amplitudes such as ⟨x, µ|ψ⟩ for the system to be found at x with 
orientation µ. If we do not care about µ, the total probability for |ψ⟩ to be 
found at x is Σ. .2 

Prob(at x|ψ) = .⟨x, µ|ψ⟩. . (4.71) 
µ 

Eigenstates of the x operator with eigenvalue x0 are states in which the 
system is definitely at x0, while eigenstates of the p operator with eigenvalue 
h̄k are states  in which the system definitely has momentum h̄k. 

By contrast, in classical statistical mechanics we declare at the outset 
that a well defined state is one that has definite values for all measurable 
quantities, so it has a definite position, momentum, orientation etc. The 
eigenfunctions  of  p̂  or  L̂ do not represent states of definite momentum  or 
angular momentum, because we have already defined what such states are. 

Classical statistical mechanics knows nothing about probability ampli- 
tudes,  but  interprets  the  functions  on  phase  space  on  which  p̂ or  L̂ act 
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as probability distributions. This is possible because, as we show in Ap- 
pendix D, the integral of such a distribution can be normalised to one and is 
conserved. We can certainly expand any such distribution in the eigenfunc- 
tions of, say p̂.  However, as in quantum mechanics the expansion coefficients 
will not be positive – in fact, they will generally be complex. Hence they 
cannot be interpreted as probabilities. What makes quantum mechanics fun- 
damentally different is its reliance on complex quantum amplitudes, and the 
physical interpretation that it gives to a functional expansion through the 
fundamental rule (1.11) for adding quantum amplitudes. Quantum mechan- 
ics is therefore naturally formulated in terms of states ψ that inhabit a 
complex vector space of arbitrary dimension – a so called Hilbert space. 
These states may always be expanded in terms of a complete set of eigen- 
states of a Hermitian operator, and the (complex) expansion coefficients have 
a simple physical interpretation. 

Classical statistical mechanics is restricted to probabilities, which have 
to be real, non-negative numbers and are therefore never expansion coeffi- 
cients. Quantum and classical mechanics incorporate the same commutation 
relations, however, because, as we stressed in 4.2, these follow from the 
geometry of space. From a mathematician’s perspective, the commutation 
relations of quantum-mechanical operators and the operators of classical sta- 
tistical physics have to be the same because both systems of operators pro- 
vide representations of the ‘Lie algebra’ of the same mathematical group 
(Appendix E). 

Problems 

4.1 Verify  that  [J,Σx · x]  =  0  and  [J, x · p] =Σ0  by  using  the  commutation 
relations [xi, Jj ] = i k ǫijkxk  and [pi, Jj ] = i k ǫijkpk. 

4.2 ∗ Show that the vector product a×b of two classical vectors transforms 
like a vector under rotations.  Hint:  A rotation matrix R satisΣfies the relations 
R R

T
 = I and det(R) = 1, which in tensor notation read 
Σ p RipRtp  = δit 

and ijk  ǫijk Rir RjsRkt  = ǫrst. 
Σ 

4.3 ∗ We  have  shown  that  [vi, Jj ]  =  i k ǫijkvk  for  any  operator  whose 
components vi form a vector.  The expectaΣtion value of this operator relation 
in  any  state  |ψ⟩ is  then  ⟨ψ|[vi, Jj ]|ψ⟩ =  i k ǫijk⟨ψ|vk|ψ⟩.   Check  that  with 
U (α)  =  e−iα·J  this  relation  is  consistent  under  a  further  rotation  |ψ⟩ → 

|ψ′⟩ = U (α)|ψ⟩ by evaluating both sides separately. 

4.4 ∗ The matrix for rotating an ordinary vector by φ around the z axis is 
  

R(φ) ≡ 
cos φ sin φ  0 
sin φ cos φ 0 

0  0  1 
(4.72) 

By considering the form taken by R for infinitesimal φ calculate from R the 
matrix  Jz  that √appears  in  R(φ) = exp(−iJzφ√).  Introduce  new  coordinates 
u1 ≡ (−x +iy)/   2, u2 = z and u3 ≡ (x +iy)/   2.  Write down the matrix M 
that appears in u = M  x [where x (x, y, z)] and show that it is unitary. 
Then show that 

Jz
′ ≡ M · Jz · M†. (4.73) 

is identical with Sz in the set of spin-one Pauli analogues 
      

1 
Sx = √

2
 

0    1 0 
 1  0 1  

0    1 0 

1 
, Sy = √

2
 

0 i 0 
i 0 i 
0 i 0 

 

, Sz = 

1 0 0 
 0 0 0  . 

0 0 −1 
(4.74) 

Write down the matrix Jx whose exponential generates rotations around 
the x axis, calculate Jx

′  by analogy with equation (4.73) and check that 
your result agrees with Sx in the set (4.74). Explain as fully as you can the 
meaning of these calculations. 
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4.5 Determine the commutator [   x
′ ,   z

′] of the generators used in Problem 
4.4.  Show that  it  is  equal to i   y

′,  where y
′   is  identical  with  Sy  in  the  set 

(4.74). 

4.6 ∗ Show that if α and β are non-parallel vectors, α is not invariant under 
the combined rotation R(α)R(β). Hence show that R

T
(β)R

T
(α)R(β)R(α) 

is not the identity operation. Explain the physical significance of this result. 

4.7 ∗ In this problem you derive the wavefunction 
 

⟨x|p⟩ = eip·x/h̄ (4.75) 
 

of a state of well defined momentum from the properties of the translation op- 
erator U (a).  The state   k   is one of well-defined momentum h̄k.  How would 
you characterise the state  k′    U (a) k ?  Show that the wavefunctions of 
these states are related by uk′ (x) = e−ia·kuk(x) and uk′ (x) = uk(x a). 
Hence obtain equation (4.75). 

4.8 By expanding the anticommutator on the left and then applying the 
third rule of the set (2.22), show that any three operators satisfy the identity 

 

[{A, B}, C] = {A, [B, C]} + {[A, C], B}. (4.76) 

 
4.9 Define G in terms of the parity operator P by 

 

G ≡ 1 (1 − P ). (4.77) 

Show that G is Hermitian and that G
n
 = G for positive integer n. Explain 

this result in terms of the eigenkets and eigenvalues of G.  Show further that 
P = U (π) where U (s) ≡ e

isG
. 

4.10 Let P be the parity operator and S an arbitrary scalar operator. 
Explain why P and S must commute. 

4.11 In this problem we consider discrete transformations other than that 
associated with parity. Let be a linear transformation on ordinary three- 
dimensional space that effects a a reflection in a plane. Let S be the asso- 
ciated operator on kets.  Explain the physical relationship between the kets 
|ψ⟩ and |ψ′⟩ ≡ S|ψ⟩. Explain why we can write 

S⟨ψ|x|ψ⟩ = ⟨ψ|S†xS|ψ⟩. (4.78) 

What are the possible eigenvalues of S? 
Given that reflects in the plane through the origin with unit normal 

n̂, show, by means of a  diagram or otherwise, that its  matrix is given by 
 

Sij  = δij − 2ninj . (4.79) 

Determine the form of this matrix in the case that n = (1, 1, 0)/
√

2.  Show 
that in this case Sx = yS and give an alternative expression for Sy. 

Show that a potential of the form 

V (x) = f (R) + λxy, where R ≡ 
√   

x2 + y2 (4.80) 
 

satisfies V ( x) = V (x) and explain the geometrical significance of this equa- 
tion. Show that [S, V ] = 0. Given that E is an eigenvalue of H = p

2
/2m + V 

that has a unique eigenket |E⟩, what equation does |E⟩ satisfy in addition 
to H|E⟩ = E|E⟩? 

4.12 Show that the operator defined by ⟨x, y|S|ψ⟩ = ⟨y, x|ψ⟩ is Hermitian. 
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5 
Motion in step potentials 

 
We follow up our study of the harmonic oscillator by looking at motion in 
a wider range of one-dimensional potentials V (x). The potentials we study 
will be artificial in that they will only vary in sharp  steps,  but  they  will 
enable us to explore analytically some features of quantum mechanics that 
are generic and hidden from us in the classical limit.  We start by considering 
a particle that is trapped in a potential well and go on to consider a particle 
that has a choice of two wells. We find that in this case it can move between 
these wells in violation of classical mechanics, and we use this simple system 
to mode the operation of an ammonia maser. In 5.3 we ask how potential 
wells and barriers affect the motion of a free particle – one that can escape 
to infinity. We find that whereas in classical mechanics the particle is never 
reflected by a potential well, in quantum mechanics there is generally a non- 
zero amplitude for such reflection. We find also that particles can “tunnel” 
through barriers that classically would certainly reflect them. 

 
 

 
5.1 Square potential well 

We look for energy eigenstates of a particle that moves in the potential 
(Figure 5.1) 

 

V (x) = 
0 for |x| < a 
V0 > 0 otherwise. 

 

(5.1) 

 

Since V is an even function of x, the Hamiltonian (2.51) commutes with the 
parity operator P (page 67). So there is a complete set of energy eigenstates 
of well defined parity. The wavefunctions u(x)      x E  of these states will 
be either even or odd functions of x, and this fact will greatly simplify the 
job of determining u(x). 

In the position representation, the governing equation (the TiSE 2.33) 
reads 

h̄
2
  d

2
u 

— 
2m dx2  + V (x)u = Eu. (5.2) 

On account of the step-like nature of V , equation (5.2) reduces to a pair of 
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Figure 5.1 The dotted line shows the square-well potential V (x). The full curve shows 
the ground-state wavefunction. 

 

extremely simple equations, 
 

d
2
u 

dx2 = − 

 

 
2mE 

h̄2     u for |x| < a 
d

2
u 

 
 

2m(V  − E) (5.3) 

dx2 
= 

0
 u otherwise. 

h̄
2
 

We restrict ourselves to solutions that describe a particle that is bound by 
the potential well in the sense that E < V0.1 Then the solution to the second 
equation is u(x) = Ae±Kx

, where A is  a constant and 

s   

K 
2m(V0 − E) 

. (5.4)
 

h̄
2
 

 

If u is to be normalisable, it must vanish as  x . So at x > a we have 
u(x)  =  Ae−Kx

,  and  at  x  <     a  we  have  u(x)  =     Ae
+Kx

,  where  the  plus 
sign is required for solutions of even parity, and the minus sign is required 
for odd parity. 

For E > 0, the solution to the first of equations (5.3) is either u(x) = 
B cos(kx) or u(x) = B sin(kx) depending on the parity, where 

r   
2mE 

k ≡ 
h̄2     . (5.5) 

So far we have ensured that u(x) solves the TiSE everywhere except 
at x = a. Unless u is continuous at these points, du/dx will be arbitrarily 
large, and d

2
u/dx

2
 will be undefined, so u will not satisfy the TiSE. Similarly, 

unless du/dx is continuous at these points, d
2
u/dx

2
 will be arbitrarily large, 

so u cannot solve the TiSE. Therefore, we require that both u and du/dx are 
continuous at x = a, that is 

) 
B cos(ka) = Ae−Ka

 
or 

−kB sin(ka) = −KAe−Ka
 

( 
B sin(ka) = Ae−Ka

 

kB cos(ka) = −KAe−Ka
 

 

(5.6) 

 

where the first pair of equations apply in the case of even parity and the 
second in the case of odd parity. It is easy to show that once these equa- 
tions have been satisfied, the corresponding equations for x = a will be 
automatically satisfied. 

 

1 By considering the behaviour of u near the origin we can prove that E > 0. 
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Figure 5.2 Plots of the left (full) and right (dashed) sides of equation (5.8) for the case 
W = 10. 

 

 

Figure 5.3 A square well inscribed in a general well. 

 
We eliminate A and B from equations (5.6) by dividing the second 

equation in each set by the first. In the case of even parity we obtain 
r   

k tan(ka) = K = 
2mV0 

k2. (5.7) 
h̄

2
 

This is an algebraic equation for k, which controls E through (5.5). Before 
attempting to solve this equation, it is useful to rewrite it as 

 
tan(ka) = 

s   
W 2 

(ka)2  
− 1 where   W ≡ 

r   
2mV0a2 

h̄2 . (5.8) 
 

W and ka are dimensionless variables. The left and right sides of equation 
(5.8) are plotted as functions of ka in Figure 5.2.  Since for ka = 0 the graphs 
of the two sides start at the origin and infinity, and the graph of the left side 
increases to infinity at ka = π/2  while the  graph of the left  side terminates 
at ka = W , the equation always has at least one solution. Thus no matter 
how small V0 and a are, the square well can always trap the particle. The 
bigger W is, the more solutions the equation has; a second solution appears 
at W = π, a third at W = 2π, etc. 

Analogously one can show that for an odd-parity energy eigenstate to 
exist, we must have W  > π/2 and that additional solutions appear when 
W = (2r + 1)π/2 for r = 1, 2, . . . (Problem 5.5). 

From a naive perspective our discovery that no matter how narrow or 
shallow it is, a square potential well always has at least one bound state, 
conflicts  with  t√he  uncert√ainty  principle:   the  particle’s  momentum  cannot 
exceed pmax = 2mE < 2mV0 and can have either sign, so if the particle 
were  confined  within  the  well, √the  product  of  the  uncertainties  in  p  and  x 

 

would  be  less  than  4apmax  <  4    2mV0a2  =  4h̄W ,  which  tends  to  zero  with 
W . The resolution of this apparent paradox is that for W    1 the particle is 
not confined within the well; there is a non-negligible probability of finding 
the particle in the classically forbidden region  x  > a. In the limit W     0 
the particle is confined by a well in which it is certain never to be found! 
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Figure 5.4 The wavefunctions of the lowest three stationary states of the infinitely deep 
square well: ground state (full); first excited state (dashed); second excited state (dotted). 

 
Our result that a square well always has a bound state can be extended 

to potential wells of any shape:  given the potential well U sketched in Fig- 
ure 5.3, we consider the square well shown by the dashed line in the figure. 
Since this shallower and narrower well has a bound state, we infer that the 
potential U also has at least one bound state. 

 
 

5.1.1 Limiting cases 

(a) Infinitely  deep  well      It is worthwhile to investigate the behaviour 
of these solutions as V0  with a fixed, when the well becomes infinitely 
deep.   Then W and the dashed curve in Figure 5.2 moves higher 
and higher up the paper and hits the x axis further and further to  the 
right. Consequently, the values of ka that solve equation (5.8) tend towards 
ka = (2r + 1)π/2, so the even-parity energy eigenfunctions become 

, 
A cos[(2r + 1)πx/2a]   |x| < a 

u(x) = 
0 otherwise. 

(5.9) 

This solution has a discontinuity in its gradient at x = a because it is the 
limit of solutions in which the curvature K for x > a diverges to infinity. The 
odd-parity solutions are obtained by replacing the cosine with sin(sπx/a), 
where s = 1, 2, . . ., which again vanish at the edge of the well (Figure 5.4). 
From this example we infer the principle that wavefunctions vanish at the 
edges of regions of infinite potential energy. 

The energy of any stationary state of an infinite  square potential well 
can be obtained from 

n
2
  
  

h̄π 
 2

 

En = 
8m a 

, where    n = 1, 2, . . . (5.10) 

 

The particle’s momentum when it is in the ground state (n = 1) is of 
order h̄k = h̄π/2a and of undetermined sign, so the uncertainty in the 
momentum is  ∆p  ≃  h̄π/a.   The  uncertainty  in  the  particle’s  position  is  
∆x  ≃  2a,  so 
∆x∆p ≃ 2h̄π, consistent with the uncertainty principle (§2.3.2). 

(b) Infinitely narrow well In 11.5.1 we will study a model of covalent 
bonding that involves the potential obtained by letting the width of the 
square well tend to zero as the well becomes deeper and deeper in such a 
way that the product V0a remains constant. In this limit W a  V0 (eq. 5.8) 
tends to zero, so there is only one bound state and it will be an even-parity 
state. 

Rather than obtaining the wavefunction and energy of this state from 
formulae already in hand, it is more convenient to reformulate the problem 
using a different normalisation for the energy: we now set V to zero outside 
the well, so V becomes negative at interior points. Then we can write V (x) = 

Vδδ(x), where δ(x) is the Dirac delta function and Vδ > 0. The TiSE now 
reads 

h̄
2
  d

2
u 

— 
2m dx2  − Vδδ(x)u = Eu. (5.11) 
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Figure 5.5 Wavefunction of a particle trapped by a very narrow, deep potential well. 

 

Integrating the equation from x = −ǫ to x = ǫ with ǫ infinitesimal, we find 
 

du
 ǫ 

2m
 ∫ ǫ

 

— 
dx 

=   
h̄

2
 

−ǫ 

Vδu(0) + E dxu 
−ǫ 

. (5.12) 

 

Since u is finite, the integral on the right can be made as small as we please 
by letting ǫ 0. Hence the content of equation (5.12) is that du/dx has a 
discontinuity at the origin: 

 
du

 ǫ 

dx −ǫ 

= 
2mVδ 

u(0). (5.13) 
h̄

2
 

Since we know that the solution we seek has even parity, it is of the 
form  u(x)  =  Ae∓

Kx
,  where  the  minus  sign  applies  for  x  >  0  (Figure  5.5). 

Substituting this form of u into (5.13) and dividing through by 2A we have 
 

K = 
mVδ 

. (5.14) 
h̄

2
 

Inserting u = e−Kx
 into equation (5.11) at x > 0 we find that E = h̄

2
K

2
/2m, 

so the energy of a particle that is bound to a δ-function potential is 
 

 mV 
2
 

2h̄
2
 

Figure 5.5 shows that ψ(x) 
2
 is finite in the well, and the well in infinitely 

narrow, so the probability of finding the particle in the well is zero – the 
particle is certain never to be in the well that traps it! This result is an 
extreme case of the phenomenon we discussed apropos the application of the 
uncertainty principle to a shallow well of finite depth. 

 
 

5.2 A pair of square wells 

Some important phenomena can be illustrated by considering motion in a 
pair of potentials that are separated by a barrier of finite height and width. 
Figure 5.6 shows the potential 

( 
0 for |x| < a 

V (x) = 0 for a < |x| < b 

∞ otherwise. 

(5.16) 

Since the potential is an even function of x, we may assume that the energy 
eigenfunctions that we seek are of well-defined parity. 

For simplicity we take the potential to be infinite for x > b, and we 
assume that the particle is classically forbidden in the region  x < a. Then 
in  this  region  the  wavefunction  must  be  of  the  form  u(x)  =  A cosh(Kx) 
or u(x) = A sinh(Kx) depending  on  parity,  and  K  is  given  by  (5.4).  In 
the region a < x < b the wavefunction may be taken to be of the form 
u(x) = B sin(kx + φ), where B, and φ are constants to be determined and k 

V 
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Figure 5.6 A double potential well with b/a = 5. 

 
 

 

Figure 5.7 Full curves: the left side of equation (5.19) for the case W = 3.5, b = 5a. 
Each vertical section is associated with a different value of the integer r. The right side is 
shown by the dotted curve for even parity, and the dashed curve for odd parity. 

 
is related to the energy by (5.5). From our study of a single square well we 
know that u must vanish at x = b, so 

sin(kb + φ) = 0 ⇒ φ = rπ − kb with    r = 0, 1, . . . (5.17) 

Again by analogy with the case of a single square well, we require u and its 
derivative to be continuous at x = a, so (depending on parity) 

 

cosh(Ka) = B sin(ka + φ) 

K sinh(Ka) = kB cos(ka + φ) 

  
sinh(Ka) = B sin(ka + φ) 

or 
K cosh(Ka) = kB cos(ka + φ). 

(5.18) 
Once these equations have been solved, the corresponding conditions at 
x  = a will be automatically satisfied if for b  < x  < a we take u = 

B sin(k x + φ), using the plus sign in the even-parity case. 
Using (5.17) to eliminate φ from equations (5.18) and then proceeding 

in close analogy with the working below equations (5.6), we find 

s   
W 2  coth 

 
 

 √    
W 2 − (ka)2 

 
even parity 

tan [rπ − k(b − a)] 

(ka)2  
− 1 = 

 
tanh 

 √    
W 2 − (ka)2 odd parity, 

(5.19) 
where W is defined by equation (5.8). 
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Figure 5.8 The ground state (full curve) and the associated odd-parity state (dashed 
curve) of the double square-well potential (shown dotted). 

 
The left and right sides of equation (5.19) are plotted in Figure 5.7; the 

values of ka for stationary states correspond to intersections of the steeply 
sloping curves of the left side with the initially horizontal curves of the right 
side. The smallest value of ka is associated with the ground state. The values 
come in pairs, one for an even-parity state,  and one very slightly  larger for 
an odd-parity state. The difference between the k values in a pair increases 
with k. 

The closeness of the k values in a given pair ensures that in the right- 
hand well (a < x < b) the wavefunctions ue(x) and uo(x) of the even- and 
odd-parity states are very similar, and that in the left-hand well ue and uo 
differ by little more than sign – see Figure 5.8. Moreover, when the k values 
are similar, the amplitude of the wavefunction is small in the classically 

forbidden region |x| < a. Hence, the linear combinations 

1 
ψ±(x) ≡ √

2 
[ue(x) ± uo(x)] (5.20) 

are the wavefunctions of a state |ψ+⟩ in which the particle is almost certain 
to be in the right-hand well, and a state  ψ−  in which it is equally certain 
to be in the left-hand well. 

Consider now how the system evolves if at time 0 it is in the state   ψ+  , 
so the particle is in the right-hand well. Then by equation (2.32) at time t 
its wavefunction is 

1 
ψ(x, t) = √

2
 

1 

h 
ue(x)e −iEe t/h̄ 

h 

 

+ uo(x)e 
i 

−iEo t/h̄ 

i 

 
 

(5.21) 

= √
2

 e
−iEet/h̄ ue(x) + uo(x)e−i(Eo−Ee)t/h̄     . 

 

After a time T  = πh̄/(Eo − Ee) the exponential in the square brackets on the 
second  line  of  this  equation  equals  −1,  so  to √within  an  overall phase  factor 
the wavefunction has become [ue(x) − uo(x)]/   2, implying that the particle 
is certainly in the left-hand well; we say that in the interval T the particle has 
tunnelled through the barrier that divides the wells. After a further period 
T it is certainly in the right-hand well, and so on ad infinitum. In classical 
physics the particle would stay in whatever well it was in initially. In fact, the 
position of a familiar light switch is governed by a potential that consists of 
two similar adjacent potential wells, and such switches most definitely do not 
oscillate between their on and off positions. We do not observe tunnelling in 
the classical regime because Eo Ee decreases with increasing W faster than 
e−2W

 (Problem 5.16), so the time required for tunnelling to occur increases 
faster than e

2W
 and is enormously long for classical systems such as light 

switches. 
 
 

5.2.1 Ammonia 

Nature provides us with a beautiful physical realisation of a system with a 
double potential well in the ammonia molecule NH3. Ammonia contains four 
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Figure 5.9 The two possible relative locations of nitrogen and hydrogen atoms in NH3. 

 
nuclei and ten electrons, so is really a very complicated dynamical system. 
However, in 11.5.2 we shall show that a useful way of thinking about the 
low-energy behaviour of molecules is to imagine that the electrons provide 
light springs, which hold the nuclei together. The nuclei oscillate around the 
equilibrium positions defined by the potential energy of these  springs.   In 
the case of NH3, the potential energy is minimised when the three hydrogen 
atoms are arranged at the vertices of an equilateral triangle, while the ni- 
trogen atom lies some distance x away from the plane of the triangle, either 
‘above’ or ‘below’ it (see Figure 5.9). Hence if we were to plot the molecule’s 
potential energy as a function of x, we would obtain a graph that looked like 
Figure 5.6 except that the sides of the wells would be sloping rather than 
straight. This function would yield eigenenergies that  came in  pairs,  as in 
our square-well example. 

In many physical situations the molecule would have so little energy that 
it could have negligible amplitudes to be found in any but the two lowest- 
lying stationary states, and we would obtain an excellent approximation to 
the dynamics of ammonia by including only the amplitudes to be found in 
these two states. We now use Dirac notation to study this dynamics. 

Let + be the state whose wavefunction is analogous to the wavefunction 
ψ+(x)  defined  above  in  the  case  of  the  double  square  well;  then  ψ+(x)  = 
x + , and in the state + the N atom is certainly above the plane containing 
the H atoms. The ket   is the complementary state in which the N atom 
lies below the plane of the H atoms. 

The states are linear combinations of the eigenkets e and o of the 
Hamiltonian: 

1 
|±⟩ = √

2 
(|e⟩ ± |o⟩). (5.22) 

In the |±⟩ basis the matrix elements of the Hamiltonian H are 
 

1 1 

⟨+|H|+⟩ = 2 (⟨e| + ⟨o|)H(|e⟩ + |o⟩) = 2 (Ee + Eo) 
1 1 

⟨+|H|−⟩ = 2 (⟨e| + ⟨o|)H(|e⟩ − |o⟩) = 2 (Ee − Eo) (5.23) 
1 1 

⟨−|H|−⟩ = 2 (⟨e| − ⟨o|)H(|e⟩ − |o⟩) = 2 (Ee + Eo) 

Bearing in mind that H is represented by a Hermitian matrix, we conclude 
that it is       

H = 
E −A 
−A E 

 
, (5.24) 

where E = 
1
 (Ee + Eo) and A ≡ 1 (Eo − Ee) are both positive. 

Now  the  electronic structure  of  NH3  is  such that  the  N  atom carries 
a small negative charge q, with a corresponding positive charge +q dis- 
tributed among the H atoms.  With NH3  in either the   +   or         state there 
is a net separation of charge, so an ammonia molecule in these states pos- 
sesses an electric dipole moment of magnitude qs directed perpendicular to 
the plane of H atoms (see Figure 5.9), where s is a small distance. 

Below equation (5.21) we saw that a molecule that is initially in the 
state |+⟩ will subsequently oscillate between this state and the state |−⟩ at 
a  frequency  (Eo − Ee)/2πh̄  =  A/πh̄.   Hence  a  molecule  that  starts  in  the 
state |+⟩ is an oscillating dipole and it will emit electromagnetic radiation 



E 
|−⟩ 

|  ⟩ − 

E ≫ E 

| ⟩ | ⟩ 

5.2 A pair of square wells 83 
 
 
 
 
 

 

 

Figure 5.10 Energy levels of the 
ammonia molecule as a function of 
external electric field strength E. 
The quantity plotted, ∆E = E − E. 

 

 
at  the  frequency  A/πh̄.   This  proves  to  be  150 GHz,  so  the  molecule  emits 
microwave radiation. 

The ammonia maser The energy 2A that separates the ground and first 
excited states of ammonia in zero electric field is small, 10−4

 eV. Conse- 
quently at room temperature similar numbers of molecules are in these two 
states. The principle of an ammonia maser2 is to isolate the molecules that 
are in the first excited state, and then to harvest the radiation that is emit- 
ted as the molecules decay to  the  ground state.  The  isolation is  achieved 
by exploiting the fact that, as we now show, when an electric field is ap- 
plied, molecules in the ground and first excited states develop polarisations 
of opposite sign. 

We define the dipole-moment operator P by 

P |+⟩ = −qs|+⟩    ; P |−⟩ = +qs|−⟩, (5.25) 

so a molecule in the  +  state has dipole moment qs and a molecule in the 
state has dipole moment +qs.3 To measure this dipole moment, we can 

place the molecule in an electric field of magnitude parallel to the dipole 
axis. Since the energy of interaction between a dipole P and an electric field 
E is −P E, the new Hamiltonian is 

     

H = 
E + qEs       −A 

−A E − qEs 

 
. (5.26) 

 

This new Hamiltonian has eigenvalues 

√ 
 

E± = E ± A2 + (qEs)2. (5.27) 
 

These are plotted as a function of field E in Figure 5.10. When E = 0 the 

energy  levels  are  the  same  as  √before.    As  E  slowly  increases,  E  increases 
 

quadratically with E, because A2 + (qEs)2  ≃ A + (qEs)
2
/2A, but when 

A/qs the energy eigenvalues change linearly with . Notice that in this 
large-field limit, at lowest order the energy levels do not depend on A. 

The physical interpretation of these results is the following. In the 
absence of an electric field, the energy eigenstates are the states of well- 
defined parity e and o , which have no dipole moment. An electric field 
breaks the symmetry between the two potential wells, making it energetically 
favourable for the N atom to occupy the well to which the electric field is 
pushing it. Consequently, the ground state develops a dipole moment P , 
which is proportional to  E.  Thus at this  stage the  electric  contribution to 
the energy of the ground state, which is −P E, is proportional to E2. Once 

 

2 ‘maser’ is an acronym for “microwave amplification by stimulated emission of radiation”. 
3 The N atom is negatively charged so the dipole points away from it. 



E 
E 

|±⟩ 

− 

E 

⟨ ⟩ 

| | 

dt ∂x 

84 Chapter 5:  Motion in step potentials 
 

this contribution exceeds the separation A between the states of well-defined 
parity,  the  molecule has shifted  to  the  lower-energy state of the  pair   , 
and it stays in this state as the electric field is increased further.  Thus for 
large fields the polarisation of the ground state is independent of and the 
electric contribution to the energy is simply proportional to . 

While the ground state develops a dipole moment that lowers its energy, 
the first excited state develops the opposite polarisation, so the electric field 
raises the energy of this state, as shown in Figure 5.10. The response of the 
first excited state is anomalous from a classical perspective. 

Ehrenfest’s theorem (2.57) tells us that the expectation values of oper- 
ators obey classical equations of motion. In particular the momentum of a 
molecule obeys  

d ⟨px⟩ = 
dt 

 
∂V 

, (5.28) 
∂x 

where x is a Cartesian coordinate of the molecule’s centre of mass. The 
potential depends on x only through the electric field E, so 

 

 
 
 

from which it follows that 

∂V  
= P 

∂E 
, (5.29) 

∂x ∂x 

d ⟨px⟩ 
= ⟨P ⟩ 

∂E 
. (5.30) 

 

Since the sign of P and therefore the force on a molecule depends on 
whether the molecule is in the ground or first excited state, when a jet of 
ammonia passes through a region of varying , molecules in the first excited 
state can be separated from those in the ground state. 

Having gathered the molecules that are in the excited state, we lead 
them to a cavity that resonates with the 150 GHz radiation that is emitted 
when molecules drop into the ground state. The operation of an ammonia 
maser by Charles Townes and colleagues4 was the first demonstration of 
stimulated emission and opened up the revolution in science and technology 
that lasers have have since wrought. 

 
 

5.3 Scattering of free particles 
We now consider what happens when a particle that is travelling parallel 
to the x axis encounters a region of sharply changed potential energy. In 
classical physics the outcome depends critically on whether the potential 
rises by more than the kinetic energy of the incoming particle: if it does, the 
particle is certainly reflected, while it continues moving towards positive x in 
the contrary case. We shall find that quantum mechanics predicts that there 
are usually non-vanishing probabilities for both reflection and transmission 
regardless of whether the rise in potential exceeds the initial kinetic energy. 

We assume that each particle has well-defined energy E, so its wave- 
function satisfies the TiSE (5.2). We take the potential to be (Figure 5.11) 

  

V = 
V0 for  x < a 

0 otherwise, 
(5.31) 

 

where V0 is a constant. At |x| > a the relevant solutions of (5.2) are 

 
e±ikx or 

 
sin(kx + φ) at x > a 

± sin(−kx + φ) at x < −a 

 

with k = 

r   
2mE 

h̄2     ,   (5.32a) 

 
 

4 Gordon, J.P., Zeiger, H.J., & Townes, C.H., 1954, Phys. Rev, 95, 282 (1954) 
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Figure 5.11 A square, classically forbidden barrier and the functional forms for stationary 
states of even (top) and odd parity. 

 
where φ is a constant phase. Since the time dependence of these stationary 
states  is  obtained  by  introducing  the  factor  e−iEt/h̄

,  a  plus  sign  in  e±ikx
 

implies that the particle is moving to the right, and a minus sign is associated 
with movement to the left. A wavefunction that is proportional to sin(kx+φ) 
contains both types of wave with amplitudes of equal magnitude, so it makes 
motion in either direction equally likely. At x < a the relevant solutions of 
(5.2) are 

 
e±iKx or 

 

cos(Kx) 
sin(Kx) 

 
with K = 

s   

2m(E − V0) 
h̄

2
 

s   

 
when  E > V0 

e±Kx or cosh(Kx) 
sinh(Kx) 

with  K = 
2m(V0 − E) 

h̄
2
 

when   E < V0. 

(5.32b) 
In every case we have a choice between exponential solutions and solu- 

tions of well-defined parity. Since our physical problem is strongly asymmet- 
ric in that particles are fired in from negative x rather than equally from both 
sides, it is tempting to work with the exponential solutions of the TiSE rather 
than the solutions of well-defined parity. However, the algebra involved in 
solving our problem is much lighter if we use solutions of well-defined parity 
because then the conditions that ensure proper behaviour of the solution 
at x  = a automatically ensure that  the solution also  behaves properly at 
x  =   a;  if we use exponential solutions,  we have to  deal with the  cases 
x = a individually. Therefore we seek solutions of the form 

  

ψe(x) = 
B sin(k x + φ) for x > a 
cos(Kx) or  cosh(Kx) otherwise; 

 

 B′ sin(kx + φ′) for x > a 

ψo(x) = 
 
A sin(Kx) or A sinh(Kx) for |x| ≤ a, 
−B′ sin(k|x| + φ′) otherwise, 

(5.33) 

where A, B, B′, φ and φ′ are constants. B, φ and φ′ will be unambiguously 
determined by the conditions at x = a. These conditions will make B′ 
proportional to A, which we treat as a free parameter. 

In our study of the bound states of potential wells in 5.1, the require- 
ment that the wavefunction vanish at infinity could be satisfied only for 
discrete values of E. These values of E (and therefore k and K) differed 
between the even- and odd-parity solutions, so all energy eigenfunctions au- 
tomatically had well-defined parity. In the case of a free particle, by contrast, 
we will be able to construct both an even-parity and an odd-parity solution 
for every given value of E. Linear combinations of these solutions ψe(x) and 
ψo(x) of well-defined parity are energy eigenfunctions that do not have well- 
defined parity. We now show that the sum these solutions of the TiSE with 
well-defined parity can be made to describe the actual scattering problem. 

In the solution we seek, there are no particles approaching from the 
right. Adding the even- and odd-parity solutions, we obtain at x > a a 
solution of the form 

ψe(x) + ψo(x) = B sin(kx + φ) + B′ sin(kx + φ′) 

eikx    
= Be 

2i 

  
+ B′eiφ′ e−ikx    

— 
2i 

Be 
−iφ 

  
+ B′e−iφ . 

(5.34) 
iφ 



′ 

− 

′ 

eiφ 

| | 

| | 

2 
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The condition that no particles are approaching from the right is 
 

B′  = −Be
i(φ

 −
φ)

, (5.35) 

for then at x > a the solution becomes 
 

 

ψe(x) + ψo(x) = 
eikx 

Beiφ 
 

2i 
(1 − e 2i(φ′−φ) 

 

)   (x > a), (5.36) 

 

which includes only particles moving to the right. At x < a the solution is 
now 

 

ψe(x) + φo(x) = B sin(−kx + φ) − B′ sin(−kx + φ′) 

eikx    
= 

2i 
−Be −iφ 

  
+ B′e−iφ + e

−ikx    
 

 

2i 
Beiφ 

  

— B′eiφ 

= eikx iBe −iφ + e−ikx 

2i 

  
Be

iφ
   1 + e 

  
2i(φ′−φ)    . 

 
 

(5.37a) 
In the solution given by equations (5.36) and (5.37a) the incoming amplitude 
is iBe−iφ

, while the amplitudes for reflection and transmission are 
 

B   
1 + e 2i∆φ

  
 

(reflected) 
2i 
B 

eiφ 

2i 

   
2i∆φ 

1 − e 

 
(transmitted), 

(5.37b) 

 

where 

∆φ ≡ φ′ − φ (5.37c) 

is phase difference ∆φ between the odd- and even-parity solutions at x > 
a. From the ratios of the mod-squares of the outgoing amplitudes to that 
of the incoming amplitude iB we have that the reflection and transmission 
probabilities are 

 
Prefl = cos

2
(∆φ) Ptrans = sin

2
(∆φ). (5.38) 

 
Thus ∆φ determines the reflection and transmission probabilities. Notice 
that these formulae for the transmission and reflection probabilities have 
been obtained without reference to the form of the wavefunction at x < a. 
Consequently, they are valid for any scattering potential V (x) that has even 

parity and vanishes outside some finite region, here |x| < a. 

The scattering cross section In the case that V0 < 0, so the scattering 
potential forms a potential well, the outgoing wave at x > a represents 
two physically distinct possibilities: (i) that the incoming particle failed to 
interact with the potential well and continued on its way undisturbed, and 
(ii) that it was for a while trapped by the well and later broke free towards 
the right rather than the left. We isolate the possibility of scattering by 
writing the amplitude of the  outgoing wave as  1 + T  times  the  amplitude 
of the incoming wave. Here the one represents the possibility of passing 
through undisturbed and T represents real forward scattering. From our 
formulae (5.37) for the amplitudes of the incoming and outgoing waves we 
have that  

T = 
1
 e2iφ′ − e2iφ — 1. (5.39a) 

 

If we similarly write the amplitude of the reflected wave as R times the 
amplitude of the incoming wave, then from the formulae above we have 

 

R = − 1 e2iφ′ + e2iφ . (5.39b) 

′ 
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The total scattering cross section5 is defined to be the sum of the prob- 
abilities for forward and backward scattering: 

 

ς = |R|2 + |T |2. (5.40) 

Now R 
2
 is just the reflection probability Prefl, and the transmission proba- 

bility is 
Ptrans = |1 + T |2 = 1 + |T |2 + T + T ∗, (5.41) 

so 
ς = Prefl + Ptrans − 1 − T − T ∗ = −(T + T ∗). (5.42) 

From equation (5.39a) we have an expression for the total scattering cross 
section in terms of the phase angles 

ς = 2 − cos(2φ′) + cos(2φ).  (5.43a) 

The trigonometric identities 1 + cos 2φ = 2 cos
2
 φ and 1 cos 2φ = 2 sin

2
 φ 

enable us to re-express the cross section as 

    
ς = 2  sin  φ + cos  φ  . (5.43b) 

 
 

5.3.1 Tunnelling through a potential barrier 

Now consider the case V0 > E in which classical physics predicts that all 
particles are reflected. From equations (5.33), the conditions for both the 
wavefunction and its derivative to be continuous at x = a are 

cosh(Ka) = B sin(ka + φ) 

K sinh(Ka) = Bk cos(ka + φ) 

   
A sinh(Ka) = B′ sin(ka + φ′) 

or 
KA cosh(Ka) = B′k cos(ka + φ′), 

(5.44a) 
where r   

2mE 
k = 

h̄2 

 

and   K = 

s   
2m(V0 − E) 

. (5.44b) 
h̄

2
 

Dividing the equations of each pair into one another to eliminate the con- 
stants A, B and B′, we obtain 

tan(ka + φ) = (k/K) coth(Ka)    or tan(ka + φ′) = (k/K) tanh(Ka). 
(5.45) 

On account of the fact that for any x, tan(x + π) = tan x, the equations have 
infinitely many solutions for φ and φ′ that differ by rπ, where r is an integer. 
From equations (5.39) and (5.43a) we see that these solutions give identical 
amplitudes for reflection and transmission and the same value of the total 
scattering cross section ς. Hence we need consider only the unique values of 
φ and φ′ that lie within π/2 of ka. 

Equations (5.38) show that the transmission and reflection probabilities 
are determined by the phase difference ∆φ = φ′ − φ. From (5.45) we have 

 

k k 
∆φ = arctan tanh(Ka) 

K 
— arctan coth(Ka) 

K 
. (5.46) 

 

Figure 5.12 shows the transmission probability sin
2
(∆φ) as a function of 

the  energy of  the  incident  particle for  (2mV0a
2
/h̄

2
)

1/2
  = 0.5, 1 and  1.5.  We 

see that for the most permiable of these barriers the transmission probability 
reaches 50% when the energy is less than a third of the energy, V0, classically 
required for passage. On the other hand, the transmission probability is still 

 

5 This definition of the total scattering cross section only applies to one-dimensional 
scattering problems. See 12.3 for the definition of the total scattering cross section that 
is appropriate for realistic three-dimensional experiments. 
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Figure 5.12 The transmission probability for a particle incident on a potential-energy 
barrier of height V0 and width 2a as a function of the particle’s energy. The curves are 
labelled  by  the  values  of  the  dimensionless  parameter  (2mV0a2/h̄2)1/2. 

 
only 80% when E = V0 and classically the particle would be certain to pass. 
A barrier of the same height but three times as thick allows the particle to 
pass with only 2% probability when E = V0/3, and even when E = V0 the 
chance of passing this thicker barrier is only a third. 

When the barrier is high, Ka   1 so both t    tanh(Ka) and coth(Ka) = 
1/t are close to unity: 

 

eKa e−Ka 

t ≡ tanh(Ka) =  
eKa  + e−Ka   ≃ (1 − e 

 
−2Ka

)
2
. (5.47) 

 

Consequently, the arguments of the two arctan functions in equation (5.46) 
are similar and we can obtain an approximate expression for ∆φ by writing 

 
k 

arctan  t 
K 

 
= arctan 

  k k 
+ 

Kt Kt 
  

k 
 

 

  

(t
2
 − 1) 

1 k 2 

 

 
(5.48) 

≃ arctan 
Kt

 + 
1 + (k/Kt)2 Kt 

(t
 

— 1), 

where we have used the standard formula d arctan x/dx = 1/(1 + x
2
). Using 

equations (5.47) and (5.48) in equation (5.46), and we have 
 

4e−2Ka 4k  −2Ka 
 

 

∆φ ≃ − 
Kt/k + k/Kt 

≃ − 
K 

e
 

(Ka ≫ 1). (5.49) 

Thus  the  probability  of  passing  the  barrier,  sin
2
(∆φ),  decreases  like  e−4Ka

 
as the barrier gets higher. 

 
 

5.3.2 Scattering by a classically allowed region 

Now consider the case of scattering by the square potential (5.31) when 
E > V0, so the region of non-zero potential is classically allowed. Physically 
that region could be a classically surmountable barrier (V0 > 0) or a potential 
well (V0 < 0). At x < a the wavefunctions of well-defined parity are now 
either cos(Kx) or A sin(Ka) and from equation (5.33) the conditions for 
continuity of the wavefunction and its derivative at x = a are 

 

cos(Ka) = B sin(ka + φ) 

−K sin(Ka) = Bk cos(ka + φ) 

   
A sin(Ka) = B′ sin(ka + φ′) 

or 
KA cos(Ka) = B′k cos(ka + φ′), 

(5.50a) 
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Figure 5.13 The probability of reflection by three potential barriers of height V0 and 
three half-widths a as functions of E/V0. The curves are labelled by the dimensionless 
parameter  (2mV0a2/h̄2)1/2. 

 

where r   
2mE 

k = 
h̄2 

 
 

and   K = 

s   
2m(E − V0) 

. (5.50b) 
h̄

2
 

By dividing the second equation of each pair into the first we obtain equations 
that uniquely determine the two solutions: 

 

tan(ka+φ) = −(k/K) cot(Ka)    or     tan(ka+φ′) = (k/K) tan(Ka).  (5.51) 

The points in Figure 5.13 at E > V0 were obtained by solving these equations6 

for φ and φ′ and then calculating the reflection probability cos
2
(φ′ φ), while 

the remaining points were obtained from equations (5.46) for E < V0. We 
see that for all three barrier widths the reflection probability obtained for 
E > V0 joins smoothly onto that for E < V0.  The reflection probability 
tends to zero with increasing E/V0 as we would expect, but its dependence 
on the thickness of the barrier is surprising: for E/V0 = 2 the thickest 
barrier has the lowest reflection probability. In fact, the reflection probability 
vanishes for E slightly larger than 2V0 and then increases at larger energies. 
Similarly, the probability for transmission through the next thickest barrier 
vanishes near E = 3.5V0. The cause of this unexpected phenomenon is 
quantum interference between the amplitudes to be reflected from the front 
and back edges of the barrier, which cancel each other when the barrier is of 
a particular thickness. 

When the constant V0 in the potential (5.31) is negative, there is a po- 
tential well around the origin rather than a barrier.  In the classical regime 
the probability of reflection is zero, but as Figure 5.14 shows, it is in general 
non-zero and is large near E/ V0 1. The oscillations in the reflection prob- 
ability apparent in Figure 5.14 are caused by quantum interference between 
reflections from the two edges of the well. 

 
 

5.3.3 Resonant scattering 

In the limit that a barrier becomes very high, the probability that it  reflects 
an incoming particle tends to unity. Consequently, a particle that encounters 
two high barriers (Figure 5.15) can bounce from one barrier to the other a 
great many times before eventually tunnelling through one of the barriers and 

 

6 An explicit expression (5.78) for the reflection probability in terms of ka and Ka and 
without reference to φ or φ′ can be derived (Problem 5.10). This formula is useful when 
limiting cases need to be examined. 
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Figure 5.14 The probability for reflection by square potential wells of depth |V0|. The 
full curve is for (2m|V |a2/h̄2)1/2  = 3 and  the  dashed  curve is for a well only  half as wide. 

 
 

 

 
 

Figure 5.15 Schematic of the potential-energy function V (x) experienced by an α-particle 
near an atomic nucleus. The short-range ‘strong’ force causes the particle’s potential 
energy to rise extremely steeply at the edge of the nucleus. The long-range electrostatic 
repulsion between the nucleus and the alpha particle causes V (x) to drop steadily as the α-
particle moves away from the nucleus. 

 
 

 

  

 

Figure 5.16 A pair of δ-function potentials form a well within which a particle can be 
trapped. The forms taken by the wavefunctions of the stationary states of even (top) and 
odd parity are shown. 

 
 

escaping to infinity. This situation arises in atomic nuclei because the short- 
range ‘strong’ force confines charged particles such as protons and helium 
nuclei (α-particles) within the nucleus even though it would be energetically 
advantageous for them to escape to infinity: the electrostatic energy released 
as the positively charged particle recedes from the positively charged nucleus 
can more than compensate for the work done on the strong force in moving 
beyond its short effective range (Figure 5.15). Some types of radioactivity – 
the sudden release of a charged particle by a nucleus – are caused by these 
particles tunnelling out of a well that has confined them for up to several 
gigayears. We now use a toy model of this physics to demonstrate that there 
is an important link between the cross section for scattering by a well and the 
existence of long-lived bound states within the well. This connection makes 
it possible to probe the internal structure of atomic nuclei and ‘elementary’ 
particles with scattering experiments. 

We model the barriers that form the potential well by δ-function poten- 
tials, located at x = ±a: 

V (x) = Vδ {δ(x + a) + δ(x − a)} with   Vδ > 0. (5.52) 



± 
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Figure 5.17 The total scattering cross sections of double δ-function barriers as a function 
of the wavenumber of the incoming particle. The barriers are located at x = a. The full 
curve  is  for  high  barriers  (2mVδa/h̄2  =  40)  while  the  dotted  curve  is  for  lower  barriers 
(2mVδa/h̄2  = 10). 

 

By integrating the TiSE 
 

h̄
2
  d

2
ψ 

− 
2m dx2  + Vδδ(x)ψ = Eψ (5.53) 

for an infinitesimal distance across the location of the δ-function barriers 
in equation (5.52), we find that a barrier introduces a discontinuity in the 
gradient of the wavefunction of magnitude (cf. eq. 5.13) 

 

dψ    
= Kψ, where   K 

2mVδ 
. (5.54) 

dx   h̄
2
 

 

Hence the energy eigenstates that will enable us to calculate scattering by a 
double-δ-function system take the form of sinusoids at x < a and at x > a 
that join continuously at x = a in such a way that their gradients there 
differ in accordance with equation (5.54) (Figure 5.16). 

At x = a the requirements on the even-parity solution ψe(x) that it be 
continuous and have the prescribed change in derivative, read 

 

B sin(ka + φ) = cos(ka) 

kB cos(ka + φ) = −k sin(ka) + K cos(ka). 

Similarly the conditions on the odd-parity solution ψo(x) are 
 

B′ sin(ka + φ′) = A sin(ka) 

 

(5.55a) 

kB′ cos(ka + φ′) = kA cos(ka) + KA sin(ka). 
(5.55b)

 

Dividing one equation in each pair by the other to eliminate A, B and B′ we 
obtain 

cot(ka + φ) = K/k − tan(ka) 

cot(ka + φ′) = K/k + cot(ka). 
(5.56) 

From these expressions and equations (5.38) we can easily recover the prob- 
ability sin

2
(φ′  φ) that an incoming particle gets past both δ-function bar- 

riers. More interesting is the total scattering cross section, which is related 
to the phases by equation (5.43b). Figure 5.17 shows as a function of the 
wavenumber of the incoming particle the cross sections for barriers of two 
heights. The height of a barrier is best quantified by the dimensionless num- 
ber  2mVδa/h̄

2
  =  Ka.    The  full  curve  in  Figure  5.17  is  for  the  case  that 



± 

| ⟩ 

− 
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Ka = 40 and the dotted curve is for the case of a lower barrier such that 
Ka = 10. In each case the cross section shows a series of peaks. In the case 
of the higher barrier, these peaks lie near ka = nπ/2, with n = 1, 2, In 
the case of the lower barrier the peaks are less sharp and occur at slightly 
smaller values of ka. 

If the barriers were so high as to be impenetrable, the particle would have 
bound states with ka = nπ/2, which is the condition for the wavefunction to 
vanish at x = a. Each peak in the scattering cross section is associated with 
one of these bound states. Physically, the scattering cross section is large 
near the energy of a bound state because at such an energy the particle can 
become temporarily trapped between the barriers, and after a delay escape 
either to the right or the left. 

When the barriers have only finite height,  the state  trap  in which 
the particle is initially trapped in the well is not a stationary state, and 
its expansion in stationary states will involve states whose energies span a 

non-zero range, say (E0 − Γ/2, E0 + Γ/2). For simplicity we assume that 
|trap⟩ has even parity, so it can be expressed as a linear combination of the 
even-parity stationary states |e; E⟩: 

∫ E0+Γ/2 

|trap⟩ = dE a(E)|e; E⟩, (5.57) 
E0−Γ/2 

 

where a(E) is the amplitude to measure energy E. Outside the well the 
wavefunction of this state is 

∫ E0+Γ/2 

ψtrap(x) ∝ dE a(E) sin(kx + φ) (x > a). (5.58) 
E0−Γ/2 

 

Below we shall find that when the well is very deep, φ becomes a sensitive 
function of E in the neighbourhood of particular ‘resonant’ energies. Then 
the sines in equation (5.58) cancel essentially perfectly on account of the 
rapidly changing phase φ(E). When the integral is small, there is negligible 
probability of finding the particle outside the well. 

The evolution of ψtrap with time is obtained by adding the usual factors 

e−iEt/h̄
  in the integral of equation (5.58): 

∫ E0+Γ/2 

ψtrap(x, t) ∝  
E0−Γ/2 

dE a(E) sin(kx + φ) e−iEt/h̄
 (x > a). (5.59) 

 

After a time of order h/Γ the relative phases of the integrand at E0 Γ/2 and 
E0 + Γ/2 will have changed by π  and the  originally perfect cancellation of 
the sines will have been sabotaged. The growth of the value of the integral, 
and therefore the wavefunction outside the well, signals increasing probability 
that the particle has escaped from the well. The more rapidly φ changes with 
E, the smaller is the value of Γ at which a negligible value of the integral in 
equation (5.58) can be achieved, and the smaller Γ is, the longer the particle 
is trapped. Thus sensitive dependence of the phases on energy is associated 
with long-lived trapped states, which are in turn associated with abnormally 
large scattering cross sections. Notice that in Figure 5.17 the peaks are 
narrower at small values of k because the smaller the particle’s energy is, the 
smaller is its probability of tunnelling through one of the barriers. 

The Breit–Wigner cross section We have seen that when particles are 
scattered by a model potential that contains a well, the total scattering cross 
section has narrow peaks. The physical arguments given above suggest that 
this behaviour is generic in the sense that it is related to the time it takes 
a particle to tunnel out of the well after being placed there. What we have 
yet to do is to understand mathematically how the fairly simple formulae 
(5.43b) and (5.56) generate sharp peaks in the energy dependence of ς. An 
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Figure 5.18 The values of the phases φ (full curve) and φ′ (dashed curve) from equations 
(5.56) as functions of the wavenumber of the incoming particle when the latter is scattered 
by  the  double  δ-function  well  (eq.  5.52).  These  results  are  for  the  case  2mVδa/h̄2  = 40. 

 
understanding of this phenomenon will motivate a simple analytic model of 
resonant scattering that is widely used in experimental physics. 

Figure 5.18 shows the values of the phases φ and φ′ that solve equation 
(5.56). For most values of k (and therefore E), the two angles are equal, so 
the sum sin

2
 φ′ + cos

2
 φ in equation (5.43b) is unity. The peaks in ς occur 

where φ and φ′ briefly diverge from one another at the integral-sign features 
in Figure 5.18, which we shall refer to as ‘glitches’. 

We are interested in the case K/k     1.  Then for most values of ka 
the right sides of equations (5.56) are dominated by the first term, so the 
cotangent on the left is equal to some large positive value, and its argument 
lies close to zero. However each time ka/π approaches (2r + 1)π/2 with r 
an integer, the tangent in the first equation briefly overwhelms K/k and the 
right side changes from a large positive number to a large negative number. 
Consequently the argument of the cotangent on the left quickly increases to 
a value close to π. As ka increases through (2r + 1)π/2, the tangent instan- 
taneously changes sign, and the argument of the cotangent instantaneously 
returns to a small value. Examination of the third glitch in Figure 5.18 con- 
firms that φ rises rapidly but continuously by almost π and then suddenly 
drops by exactly π as this analysis implies. The abrupt rise in φ is centred 
on the point at which ka + φ = π/2, at which point φ  rπ because at a 
glitch ka  (2r + 1)π/2. Consequently, glitches in φ are centred on points 
at which cos

2
(φ) = 1.  Meanwhile φ′ (2r + 1)π/2, so sin

2
(φ′) = 1 and 

equation (5.43b) gives ς = 4. A very similar analysis reveals how the second 
of equations (5.56) generates glitches in φ′. 

Putting this argument on a quantitative basis, we Taylor expand tan(ka) 
around the resonant value of k, kR, at which tan(kRa) = K/kR. Then 

K/k − tan(ka) ≃ −sec
2
(kRa)aδk = −(1 + K

2
/k

2
 )aδk, (5.60) 

where δk = k kR. We also observe that glitches in φ occur where ka 
(2r + 1)π/2, so 

 

cot(ka + φ) =  
cos(ka) cos(φ) − sin(ka) sin φ 

tan φ. (5.61) 
sin(ka) cos φ + cos(ka) sin(φ) 

 

With these approximations the first of equations (5.56) reads 

  
tan φ ≃ 1 + K 2/k

2
 
  

aδk. 
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Figure 5.19 The total cross section for the scattering of neutrons by 238U nuclei. (From 
data published in L.M. Bollinger, et al., Phys. Rev., 105, 661 (1957)) 

 
Equation (5.43b) now gives the cross section as 

 

1 
ς = 2 sin

2
 φ′ + cos

2
 φ  = 2 

  
sin

2
 φ′ +  

 

1 + tan
2
 φ 

  
 

(5.62) 

2   sin
2
 φ′ +

 1  
. 

1 + (1 + K2/k
2
 )2a2(δk)2 

 

Thus in the vicinity of the resonant energy ER = h̄
2
k

2
 /2m, where 

m 
δk =  

h̄2k
 (E − ER), (5.63) 

 

the cross section has the form  

2(Γ/2)
2
 

 

 
where 

ς = constant + 
(Γ/2)2 + (E − E

 
)2  , (5.64a) 

2h̄
2
kR 

Γ ≡ 
(1 + K2/k

2
 )am 

2h̄
2
k

3
 

≃ 
K2am

. (5.64b) 

Γ has the dimensions of energy and is the characteristic width of the reso- 
nance. Experimental data for the energy dependence of cross sections are 
often fitted to the functional form defined by equation (5.64a), which is 
known as the Breit–Wigner cross section. Figure 5.19 shows a typical 
example. 

The dependence on energy of the phase φ and the total scattering cross 
section ς in the vicinity of a peak in ς is reminiscent of the behaviour near 
a resonance of a lightly damped harmonic oscillator (Box 5.1). 

By the uncertainty principle, the width Γ of the Breit–Wigner cross 
section (5.64a) corresponds to a time scale 

 

h̄ 
tR = 

Γ 
= 

K
2
am 

 
 

2h̄k
3
 

 

. (5.65) 

A naive calculation confirms that tR is the timescale on which a particle 
escapes from the well. When a particle encounters a δ-function barrier, it is 
easy to show (Problem 5.11) that its probability of tunnelling through the 
barrier is 

  4  P = ≃ 4(k /K)
2
 for K ≫ k 

 
. (5.66) 

tun 4 + (K/kR)2 R R
 

R 

R 

≃ 



∝ 

∝ 

Box 5.1: Analogy with a damped oscillator 

When a weakly damped harmonic oscillator is driven at some angular 
frequency ω, the phase of the steady-state response changes sharply in 
the vicinity of the oscillator’s resonant frequency ωR. Specifically, if the 
oscillator’s equation of motion is 

ẍ + γẋ + ω
2
 z = F cos(ωt), R 

then the steady-state solution is x = X cos(ωt − φ), where 

X = √ 
F 

  

2  2 2    2 
and  φ = arctan 

γω 
  

(ω − ω )  + γ 2 
R ω ω − ω 2 2 

. 
R 

As the driving frequency approaches the resonant frequency from below, 
the phase lag φ increases from near zero to π/2. As the driving frequency 

creases to near zero as ω   − ω becomes large compared to ωγ.   These 
passes through resonance, φ drops discontinuously to −π/2, and then in- 

2 2 
R 

results suggest a picture in which a quantum well is an oscillator that 
is being driven by the incoming probability amplitude. The oscillator’s 
level of damping is  set  by the  well’s characteristic energy Γ of  equa- 
tion (5.64b), and the form of the Breit–Wigner cross section of equation 
(5.64a) mirrors the Lorentzian form of the oscillator’s amplitude X. 
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Hence the probability of remaining in the well after bouncing n times off the 
walls is 

Ptrap = (1 − Ptun)
n
. (5.67) 

The  particle  moves  from  one  barrier  to  the  other  in  a  time  tf  =  2am/h̄kR 
and in this time the logarithm of Ptrap changes by ln(1 − Ptun) ≃ −Ptun, so 

 

 d ln(P Ptun 1  ) ≃ − = − , (5.68) 
dt 

trap 
tf tR 

 

where tR is given by equation (5.65). Thus this simple physical argument 
confirms that h̄/Γ is the characteristic time for the particle to remain in the 
well. 

 
 
 

5.4 How applicable are our results? 

It seems unlikely that any real system has a discontinuous potential V (x), so 
our results are of practical interest only if sufficiently steep changes in V can 
be treated as discontinuous. We now investigate how abrupt a change in po- 
tential must be for results obtained under the assumption of a discontinuous 
potential to be applicable. 

When the wavefunction is evanescent (i.e.       e±Kx
) on one side of the 

discontinuity, our results carry over to potentials that change continuously: 
where E < V (x), the wavefunction is no longer a simple exponential but 
its phase remains constant and its amplitude decreases monotonically, while 
in the region E > V (x) the sinusoidal dependence ψ(x)     e

ikx
 is replaced 

by some other oscillatory function of similar amplitude. Qualitatively the 
results we have obtained for particles confined by a step potential carry over 
to continuously varying potentials when E < V on one side of a region of 
varying potential. 

The situation is less clear when E > V (x) on both sides of the change 
in the potential. The relevance to such cases of our solutions for step po- 
tentials can be investigated by solving the TiSE numerically for a potential 
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Figure 5.20 The full curve shows the probability of reflection when a particle moves from 
x  = in  the  potential  (5.69)  with  energy  E  =  h̄2k2/2m  and  V0  =  0.7E.   The  dotted 
line is the value obtained for a step change in the potential (Problem 5.4). 

 
 

 

Figure 5.21 Each curve shows the reflection probability when a particle with kinetic 
energy E  encounters  a region in which  the  potential  V (x)  smoothly  changes  to  V0  over 
a distance 2b, and then smoothly returns to zero; the change in V is given by equation 
(5.69) with x replaced by x + a, and the  fall is given by the  same equation  with x replaced 
by −(x − a). The full curves are for ka = 30 and the dashed curves for ka = 15.  The 
left panel is for barriers of height V0 = 0.7E, while the right panel is for potential wells 
(V0 = −0.7E). 

 
that changes over a  distance  that can be  varied (Problem 5.15).  Consider 
for example 

 

V (x) = V0 

( 
0 for x < b 
1 
2 

1 for x > b, 

 

(5.69) 

 

which changes from 0 to V0 over a distance 2b centred on the origin. Fig- 
ure 5.20 shows the probability of reflection when a particle with 
energy h̄

2
k

2
/2m = V0/0.7  encounters  this  rise  in  potential  energy  as  it  

approaches from x =   . For kb   1, the probability of reflection is close to 
that ob- tained for the corresponding step potential (Problem 5.4), but it 
falls to very 
much smaller values for kb > 2.7   Thus treating a rapid change in potential 
energy as a discontinuity can lead to a serious over-estimate of the reflected 
amplitude. 

Figure 5.21 shows reflection probabilities for particles of energy E that 
encounter a finite region of elevated or depressed potential energy as a func- 
tion of the sharpness of the region’s sides – the changes in potential energy 
occur in a distance 2b as described by equation (5.69). The left panel is for 
potential barriers of height 0.7E and the right panel is for potential wells of 

 

7 The ‘WKBJ’ approximation derived in 11.6 provides an analytic approximation to 
the solution of the TiSE when kb is significantly larger than 2π. 
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depth 0.7E. The full curves are for the case in which the region’s half-width 
a satisfies ka = 30, where k is the wavenumber of the incoming and outgoing 
wavefunctions, while the dashed curves are for regions only half as wide. The 
left panel shows that when kb = 1, the reflection probability generated by a 
smooth barrier is smaller than that for a sharp step by a factor   1.7, and 
when kb = 2 it is nearly a factor ten smaller than in the case of an abrupt 
barrier. The right panel shows that in the case of a potential well, even 
smaller values of kb are required for the assumption of an abrupt change in 
V (x) to be useful. Thus these results confirm the implication of Figure 5.20 
that modelling a change in potential energy by a sharp step is seriously mis- 
leading unless the half width of the transition region b satisfies the condition 
kb < 1. 

The amplitude to be reflected by a region of varying potential energy 
decreases rapidly with increasing half width b of the  transition region, but 
the amplitudes to be reflected at the leading and trailing edges of a region 
of varying potential remain comparable. Consequently, destructive interfer- 
ence between these amplitudes is possible for all values of b. Moreover, the 
phases of the reflected amplitudes depend on b, so the plots of overall reflec- 
tion probability versus b in Figure 5.21 show there are regular nulls in the 
probability for reflection like those we see in Figure 5.14 for the probability 
for reflection by an abrupt potential well. 

We conclude that many qualitative features of results obtained with step 
potentials also hold for continuous potentials, but results obtained for step 
potentials with no classically forbidden region are quantitatively misleading 
when applied to continuous potentials unless the distance over which the 
potential changes is small compared to the de Broglie wavelength λ = h/p 
of the incident particles. 

Let’s consider under what circumstances this condition could be satisfied 
for a stream of electrons. The de Broglie wavelength of electrons with kinetic 
energy E is 

 

λ = 1.16 

  
E 

 

 

1 eV 

 −1/2  

nm. (5.70) 

 

For the one-dimensional approximation to apply, we need the beam to be 
many λ wide, and for the step approximation to be valid, we require the 
change in potential to be complete well inside λ. In practice these conditions 
can be simultaneously satisfied only when the potential change is associated 
with a change in the medium through which the electrons are propagating. 
If the medium is made of atoms, the change must extend over at least the 
characteristic size of atoms 0.1 nm. Hence we require E < 1 eV. 

Realistically step potentials are relevant only for less massive particles, 
photons and neutrinos.   The propensity for some photons to be  transmit- 
ted and some reflected at an abrupt change in potential, such as that at a 
glass/air interface, plays an important role in optics. By contrast, electrons, 
neutrons and protons are unlikely to be partially transmitted and partially 
reflected by a region of varying potential. 

These considerations explain why the phenomenon of partial reflection 
and partial transmission is unknown to classical mechanics, which is con- 
cerned with massive bodies that have de Broglie wavelengths many orders of 
magnitude smaller than an atom at any experimentally accessible energy. 
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5.5 Summary 

In this chapter we have examined some highly idealised systems and reached 
some surprising conclusions. 

Any one-dimensional potential well has at least one bound state, and 
may have more depending on the size of the value of the dimensionless 
parameter W  defined by equation (5.8), with V0  and a interpreted as 
the well’s characteristic depth and width, respectively. 
A particle trapped by a very narrow or shallow well has negligible prob- 
ability of being found in the well. 
When solving the TiSE in the presence of an infinite step in the potential, 
we should require the wavefunction to vanish at the base of the step. 
When two identical square potential wells are separated by a  barrier, 
the eigenenergies occur in pairs, and the associated wavefunctions have 
either even or odd parity with respect to an origin that is symmetrically 
placed between the wells. The even-parity state of a pair lies slightly 
lower in energy than the odd-parity state. A sum of the lowest two 
eigenstates is a state in which the particle is certainly in one well, while 
the difference gives a state in which the particle is certainly in the other 
well. A particle that starts in one well oscillates between the wells with a 
period inversely proportional to the difference between the eigenenergies. 
The particle is said to ‘tunnel’ through the barrier that divides the two 
wells at a rate that decreases exponentially with the product of the 
barrier’s height and the square of its width. 

In an ammonia molecule the nitrogen atom moves in an effective poten- 
tial that provides two identical wells and the above model explains how 
an ammonia maser works. 
A free particle has a non-zero probability to  cross a potential  barrier 
that would be impenetrable according to classical physics. On the other 
hand, if the potential changes significantly within one de Broglie wave- 
length, a particle generally has a non-zero probability of being reflected 
by a low barrier that classical physics predicts will be crossed. 
The probabilities for a free particle to be reflected or transmitted by a 
potential barrier or a well with very steep sides oscillate as functions of 
the particle’s energy on account of quantum interference between the 
amplitudes to be reflected at the front and back edges of the barrier or 
well. 
When a free particle is scattered by a region that contains a potential 
well, the total scattering cross section peaks in the vicinity of the energies 
of the well’s approximately bound states. Longer-lived bound states are 
associated with sharper peaks in a plot of scattering cross section versus 
energy because the width in energy of a peak, Γ, and the lifetime t0 of 
the corresponding bound state are related by the uncertainty relation 

t0Γ ∼ h̄. 

The Breit–Wigner formula (5.64a) gives the energy-dependence of a scat- 
tering cross-section near a resonance, and the timescale h̄/Γ that appears 
in it is the typical time for which a particle is trapped. 
The results we have obtained for discontinuous potentials V (x) are an 
accurate guide to what will happen when the potential changes contin- 
uously when either (i) the particle is classically forbidden on one side 
of the change, or (ii) the change is complete within a fraction of a de 
Broglie wavelength. When the potential changes more gradually, the 
amplitude to be reflected by the region of changing potential is typically 
much smaller than in our idealised examples, but, as in these examples, 
the amplitude to be reflected oscillates as a function of energy. 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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Problems 

5.1 A particle is confined by the potential well 

, 
0 for |x| < a 

∞  otherwise. 

 
 

 
(5.71) 

 

Explain (a) why we can assume that there is a complete set of stationary 
states with well-defined parity and (b) why to find the stationary states we 
solve the TiSE subject to the boundary condition ψ(±a) = 0. 

Determine the particle’s energy spectrum and give the wavefunctions of 
the first two stationary states. 

5.2 At t = 0 the particle of Problem 5.1 has the wavefunction 
 

ψ(x) = 

   
1/  2a   for |x| < a 

 

(5.72) 
0 otherwise. 

 

Find the probabilities that a measurement of its energy will yield: (a) 
9h̄

2
π

2
/(8ma

2
); (b)  16h̄

2
π

2
/(8ma

2
). 

5.3 Find the probability distribution of measuring momentum p for the 
particle described in Problem 5.2. Sketch and comment on your distribution. 

Hint: express ⟨p|x⟩ in the position representation. 

5.4 Particles move in the potential 

  

V (x) = 
0 for x < 0 
V0 for x > 0. 

(5.73) 

 

Particles of mass m and energy E > V0 are incident from x = . Show 
that the probability that a particle is reflected is 

   
k − K

 2
 

k + K 

where  k  ≡  
√

2mE/h̄  and  K  ≡  
√

 

, (5.74) 
 

— V0)/h̄.   Show  directly  from  the 
TiSE that the probability of transmission is 

 
4kK 

(k + K)2 
(5.75) 

and check that the flux of particles moving away from the origin is equal to 
the incident particle flux. 

5.5 Show that the energies of bound, odd-parity stationary states of the 
square potential well 

 

V (x) = 
0 for |x| < a 
V0 > 0 otherwise, 

(5.76) 

 

are governed by 

s   
W 2 

 
 

 

r   
2mV0a2 

2 2 
 

 

cot(ka) = − 
(ka)2 − 1   where    W ≡ 

h̄2 and    k   = 2mE/h̄  . 

(5.77) 
Show that for a bound odd-parity state to exist, we require W > π/2. 

V (x) = 

2m(E 
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Figure 5.22 The real part of the wavefunction when a free particle of energy E is scattered 
by a classically forbidden square barrier barrier (top) and a potential well (bottom). The 
upper panel is for a barrier of height V0  = E/0.7 and half width a such that 2mEa2/h̄2  = 1. 
The lower panel is for a well of depth V0  = E/0.2 and half width a such that 2mEa2/h̄2  = 
9.  In  both  panels  (2mE/h̄2)1/2  = 40. 

 

 

 
Figure 5.23 A triangle for Prob- 
lem 5.10 

 
 

5.6 Show that the correctly normalised wa√vefunction of a particle trapped 
2 

by the potential V (x) = −Vδδ(x)  is ψ(x) = Ke−K|x|, where K  = mVδ/h̄  . 
Show that although this wavefunction makes it certain that a measurement 
of x will find the particle outside the well where its kinetic energy is nega- 
tive,  the  expectation value of  its  kinetic energy  ⟨EK⟩ =  

1
 mV 

2
/h̄

2
  is  in  fact 

positive. Reconcile this apparent paradox as follows: (i) show that for a 
narrow, deep potential well of depth V0 and half-width a, with 2V0a = Vδ, 
ka ≃ W  ≡ (2mV0a

2
/h̄

2
)

1/2
,  while Ka ≃ W 

2
.  (ii)  Hence  show that  the  con- 

tribution from inside the well to ⟨EK⟩ is |ψ(0)|2Vδ regardless of the value of 
a. Explain physically what is happening as we send a → 0. 

5.7 Reproduce the plots shown in Figure 5.22 of the wavefunctions of par- 
ticles that are scattered by a square barrier and a square potential well. Give 
physical interpretations of as many features of the plots as you can. 

5.8 Give an example of a potential in which there is a complete set of 
bound stationary states of well-defined parity, and an alternative complete 
set of bound stationary states that are not eigenkets of the parity operator. 
Hint: modify the potential discussed apropos NH3. 

5.9 A free particle of energy E approaches a square, one-dimensional po- 
tential well of depth V0 and width 2a. Show that the probability of being 
reflected by the well vanishes when Ka = nπ/2, where n is an integer and 
K  = (2m(E + V0)/h̄

2
)

1/2
.  Explain this  phenomenon in physical terms. 

5.10 Show that the  phase shifts  φ (for the even-parity stationary state) 
and φ′ (for the odd-parity state) that are associated with scattering by a 
classically allowed region of potential V0 and width 2a, satisfy 

 

tan(ka + φ) = −(k/K) cot(Ka)    and tan(ka + φ′) = (k/K) tan(Ka), 



E 
E ≡ ⟨ |  | ⟩ ≡ ⟨  ±  |  | ⟩ 

∝ 

≪ ≪ 

|−⟩ 
| ⟩ 

dt 
e 

th 

Writing 
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where k and K are, respectively, the wavenumbers at infinity and in the 
scattering potential. Show that 

2 ′ (K/k − k/K)
2
 sin

2
(2Ka) 

Prefl  = cos  (φ  − φ) = 
(K/k + k/K)2 sin

2
(2Ka) + 4 cos2(2Ka) 

. (5.78)
 

Hint: apply the cosine rule for an angle in a triangle in terms of the lengths 
of the triangle’s sides to the top triangle in Figure 5.23. 

5.11 A particle of energy E approaches from x < 0 a barrier in which the 
potential energy is V (x) = Vδδ(x). Show that the probability of its passing 
the barrier is 

1 P = where  k = 
 

r   2mE 
, K = 

2mVδ 
. (5.79) 

  

tun 
1 + (K/2k)2 h̄

2
 h̄

2
 

 

5.12 An electron moves along an infinite chain of potential wells. For 
sufficiently low energies we can assume that the set {|n⟩} is complete, where 

|n⟩ is the state of definitely being in the n well.   By  analogy  with  our 
analysis of the NH3 molecule we assume that for all n the only non-vanishing 
matrix elements of the Hamiltonian are n H n  and A   n   1 H n . 
Give physical interpretations of the numbers A and . 

Explain why we can write 

Σ∞ 

H = 
n=−∞ 

E|n⟩⟨n| + A (|n⟩⟨n + 1| + |n + 1⟩⟨n|) . (5.80) 

Σ 
Writing an energy eigenket |E⟩ = n an|n⟩ show that 

am(E − E) − A (am+1 + am−1) = 0. (5.81) 

Obtain solutions of these equations in which am e
ikm

 and thus find the 
corresponding energies Ek. Why is there an upper limit on the values of k 
that need be considered? 

Initially the electron is in the state 

1 
|ψ⟩ = √

2 
(|Ek⟩ + |Ek+∆⟩) , (5.82) 

where 0 < k   1 and 0 < ∆    k. Describe the electron’s subsequent motion 
in as much detail as you can. 

5.13 ∗ In this problem you investigate the interaction of ammonia molecules 
with electromagnetic waves in an ammonia maser. Let + be the state in 
which the N atom lies above the plane of the H atoms and be the state in 
which the N lies below the plane. Then when there is an oscillating electric 
field E cos ωt directed perpendicular to the plane of the hydrogen atoms, the 
Hamiltonian in the |±⟩ basis becomes 

     

H = 
E + qEs cos ωt −A 

−A E − qEs cos ωt 

 
. (5.83) 

 

Transform this  Hamiltonian from the |±⟩ basis to the basis provide√d by the 
states of well-defined parity |e⟩ and |o⟩ (where |e⟩ = (|+⟩ + |−⟩)/  2, etc). 

|ψ⟩ = ae(t)e−iEet/h̄ |e⟩ + ao(t)e−iEo t/h̄ |o⟩, (5.84) 

show that the equations of motion of the expansion coefficients are 

dae   
i(ω−ω )t 

  
−i(ω+ω )t 

dt 
= −iΩao(t) e 

  

0      + e 0
  

(5.85) 
dao 

= −iΩa (t) ei(ω+ω0)t + e−i(ω−ω0)t   , 



∼ 

[1 + sin(πx/2a)]   for |x| < a 
− 

— ≃ 

dt 
o 

dt 
e 
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where  Ω  ≡  qEs/2h̄  and  ω0  =  (Eo − Ee)/h̄.   Explain  why  in  the  case  of  a 
maser the exponentials involving ω + ω0 a can be neglected so the equations 
of motion become 

 

dae 
= −iΩa (t)e

i(ω−ω0)t ; 
dao  

= −iΩa (t)e−i(ω−ω0)t. (5.86) 

Solve the equations by multiplying the first equation by e−i(ω−ω
0)t and differ- 

entiating the result. Explain how the solution describes the decay of a popu- 
lation of molecules that are initially all in the higher energy level. Compare 
your solution to the result of setting ω = ω0 in (5.86). 

5.14 
238

U decays by α emission with a mean lifetime of 6.4 Gyr. Take the 

nucleus to have a diameter ∼ 10−14
 m and suppose that the α particle has 

been bouncing around within it at speed ∼ c/3. Modelling the potential 
barrier that confines the α particle to be a square one of height V0 and width 
2a,  give  an  order-of-magnitude  estimate  of  W   =  (2mV0a

2
/h̄

2
)

1/2
.    Given 

that the energy released by the decay is     4 MeV and the atomic number 
of uranium  is Z = 92, estimate  the width  of the  barrier through which  the 
α particle has to tunnel. Hence give a very rough estimate of the barrier’s 
typical height. Outline numerical work that would lead to an improved 
estimate of the structure of the barrier. 

5.15 ∗     Particles  of  mass  m  and  momentum  h̄k  at  x  <  −a  move  in  the 
potential  

 

V (x) = V0 

( 
0 for x < a 
1 
2 

1 for x > a, 

 
 

(5.87) 

where  V0  <  h̄
2
k

2
/2m.    Numerically  reproduce  the  reflection  probabilities 

plotted Figure 5.20 as follows.  Let ψi ≡ ψ(xj ) be the value of the wavefunc- 
tion at xj = j∆, where ∆ is a small increment in the x coordinate. From 
the TiSE show that 

 

 
where k ≡ 

ψj  ≃ (2 − ∆
2
k

2
)ψj+1 − ψj+2, (5.88) 

√   
2m(E − V )/h̄.   Determine  ψj  at  the  two  grid  points  with  the 

largest values of x from a suitable boundary condition, and use the recurrence 
relation  (5.88)  to  determine  ψj  at  all  other  grid  points.   By  matching  the 
values of ψ at the points with the smallest values of x to a sum of sinusoidal 
waves, determine the probabilities required for the figure. Be sure to check 
the accuracy of your code when V0 = 0, and in the general case explicitly 
check that your results are consistent with equal fluxes of particles towards 
and away from the origin. 

Equation (11.40) gives an analytical approximation for ψ in  the  case 
that there is negligible reflection. Compute this approximate form of ψ and 
compare it with your numerical results for larger values of a. 

5.16 ∗ In this problem we obtain an analytic estimate of the energy differ- 
ence between the even- and odd-parity states of a double square well. Show 
that for large θ, coth θ tanh θ   4e−2θ

. Next letting δk be the difference 
between the k values that solve 

s   
W 2  coth 

 
 

 √    
W 2 − (ka)2 

 
even parity 

tan [rπ − k(b − a)] 

(ka)2  
− 1 = 

 
tanh 

 √    
W 2 − (ka)2 odd parity, 

(5.89a) 
where r   

2mV0a2 

W  ≡ 
h̄2 (5.89b) 



≫ 

− 

∝ 

− 

→ 
→ → ∞ → − 

| | 

W 2 
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for given r in the odd- and even-parity cases, deduce that 

  "  
W 2  1/2  −1/2

# 1 (ka)
2
 
  −1  

 

(ka)2 
− 1

 
+ 

(ka)2   
− 1

 (b − a) + 
k 

1 − 
W 2 δk 

h √ i 
≃ −4 exp −2 W 2 − (ka)2    . 

(5.90) 
Hence show that when W 1 the fractional difference between the energies 
of the ground and first excited states is 

δE 
≃

    −8a 
e−2W

 
√

1−E/V0 . (5.91) 
E W (b − a) 

 

5.17 We consider the scattering of free particles of mass m that move in 
one-dimension in the potential V (x) =   Wδ(x), with W > 0. (a) For a well 
of finite depth V0 and width 2a the condition on the phases φ and φ′ of the 
even- and odd-parity wavefunctions ψ sin(kx + φ), etc, for free particles 
are 

k 
tan(ka + φ) = − 

K
 

cot(Ka)   ; tan(ka + φ′) = 
k

 
K 

 
tan(Ka) 

 

Show that in the limit a       0, V0 = W/2a we have tan φ          h̄
2
k/mW 

and φ′ 0.  Hence obtain the scattering cross section by the δ-function 
potential 

2 
ς =  

1 + (h̄k/mW )2 
. (5.92)

 

(b) Re-derive the equation above for φ by requiring that ψ = sin(k x + φ) 
satisfy the TiSE. Convince yourself that ψ = sin(kx) is also consistent with 
the TiSE. 

(a) The wavenumber k is constant as we send a → 0 so ka → 0. 
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6 
Composite systems 

 
Systems often consist of more than one part. For example a hydrogen atom 
consists of a proton and an electron, and a diamond consists of a very large 
number of carbon atoms. In these examples of composite systems there is 
significant physical interaction between the component parts of the system 
– the electron moves in the electromagnetic field of the proton, and electro- 
magnetic forces act between the atoms in a diamond. But in principle there 
need be no physical interaction between the parts of a composite system: it is 
enough that we consider the sum of the parts to constitute a single system. 
For example ‘quantum cryptography’ exploits correlations between widely 
separated photons that are not interacting with each other, and in 7.5 we 
shall study a system that consists of two completely unconnected gyros that 
happen to be in the same box. Even in classical physics specifying the state 
of such a system is a complex business because in general there will be cor- 
relations between the parts of the system: the probability for obtaining a 
certain value for an observable of one subsystem depends on the state of the 
other subsystem. In quantum mechanics correlations arise through quantum 
interference between various states of the system, with the result that cor- 
relations are sometimes associated with unexpected and sometimes puzzling 
phenomena. 

In 6.1 we extend the formalism of quantum mechanics to composite 
systems.  We introduce the concept of ‘quantum entanglement’, which is 
how correlations between the different parts of a composite system are rep- 
resented in quantum mechanics, and we find that subsystems have a propen- 
sity to become entangled. In 6.1.4 we discuss a thought experiment with 
entangled particles that Einstein believed demonstrated that quantum me- 
chanics is merely an incomplete substitute for a deeper theory. Experiments 
of this type have since been carried out and the results are inconsistent with 
a theory of the type sought by Einstein. In 6.2 we introduce the principal 
ideas of quantum computing, which is the focus of much current experimen- 
tal work and has the potential to revolutionise computational mathematics 
with  major implications for  the  many aspects  of our civilisation  that  rely 
on cryptography. In 6.3 we introduce the operator that enables us to drop 
unrealistic assumptions about our level of knowledge of the states of quan- 
tum systems and introduce the key concept of entropy. In 6.4 we show that 
thermodynamics arises naturally from quantum mechanics. In 6.5 we come 
clean about the intellectual black hole that lurks at the heart of quantum 
mechanics: the still unresolved problem of measurement. 
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At several points in the chapter we encounter fundamental questions 
about quantum mechanics with which experimental and theoretical physi- 
cists are currently wrestling. It is a remarkable feature of quantum mechanics 
that already the sixth chapter of an introduction to the subject can bring 
students to the frontier of human understanding. 

 

 
6.1 Composite systems 

Once we understand how to combine two systems A and B to make a com- 
posite system AB, we will be in a position to build up systems of arbitrary 
complexity, because we will be able to combine the system AB with some 
other system C to make a system ABC, and so on indefinitely. So we now 
consider what is involved in forming AB out of A and B. 

Suppose   A; i   and    B; j    are sets of states of A and B, respectively. 
Then the symbolic product A; i B; j is used to denote that state of the 
composite system in which A is in the state A; i and B is in the state B; j : 
clearly this is a well defined state of AB. We express this fact by writing 

|AB; i, j⟩ = |A; i⟩|B; j⟩, (6.1a) 

where the label of the ket before the semicolon indicates what system is 
having its state specified, and the label after the semicolon enumerates the 
states. The Hermitian adjoint of equation (6.1a) is 

⟨AB; i, j| = ⟨A; i|⟨B; j|, (6.1b) 

and we define the product of a bra and a ket of AB by the rule 

⟨AB; i′, j′|AB; i, j⟩ = ⟨A; i′|A; i⟩⟨B; j′|B; j⟩. (6.2) 

This rule is well defined because the right side is simply a product of two 
complex numbers. It is a physically sensible rule because it implies that the 
probability that AB is in the state i′j′  is the product of the probability that 
A is in state i′ and B is in state j′: 

p(AB; i′, j′) = |⟨AB; i′, j′|AB; i, j⟩|2 = |⟨A; i′|A; i⟩|2|⟨B; j′|B; j⟩|2 

= p(A; i′)p(B; j′). 
 

Any state of AB that like (6.2) can be written as a product of a state 
of A and a state of B is rather special. To see this, we consider the simplest 
non-trivial example, in which both A and B are two-state systems. Let + 
and be the two basis states  A; i   of A and let and be the two 
basis states B; j of B – we shall call these the ‘up’ and ‘down’ states of B. 
We use these basis states to expand the states of the subsystems: 

|A⟩ = a−|−⟩ + a+|+⟩    ; |B⟩ = b↓|↓⟩ + b↑|↑⟩, (6.4) 

so the state |AB⟩ = |A⟩|B⟩ of AB can be written 

|AB⟩ = (a−|−⟩ + a+|+⟩) (b↓|↓⟩ + b↑|↑⟩, ) 

= a−b↓|−⟩|↓⟩ + a−b↑|−⟩|↑⟩ + a+b↓|+⟩|↓⟩ + a+b↑|+⟩|↑⟩. 
(6.5) 

 

The coefficients in this expansion are the amplitudes for particular events 
–  for  example  a−b↓  is  the  amplitude  that  A  will  be  found  to  be  minus  and 
B will be found to be down. From them we obtain a relation between the 
probabilities of finding A to be in its plus state and B to be either up or 
down: 

p+↑ 

p+↓ 

= 
|b↑| 

. (6.6) 
|b↓|2 

(6.3) 
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Now by Bayes’ theorem, the probability of finding B to be up given that A 
is plus is 

p(B; ↑|A; +) = 
   p+↑      

=
 p+↑ 

=
 1 

. (6.7) 
p(A; +) 

 

With equation (6.6) this simplifies to 

p+↑ + p+↓ 1 + p+↓/p+↑ 

 

1 
p(B; ↑|A; +) = 

1 + |b /b |2 
. (6.8) 

 

The key thing is that the right side of this expression makes no reference to 
subsystem A. Evidently, when the state AB of the composite system can 
be written as a product A  B  of states of the subsystems, the probability 
of finding B to be up is independent of the state of A. That is, the two 
subsystems are uncorrelated or statistically independent. Usually the 
states of subsystems are correlated and then the state of AB cannot be 
expressed as a simple product A B . 

For example, suppose we have two vertical gear wheels, A with NA 
teeth and B with NB teeth. Then the state of A is specified by giving the 
amplitudes ai that the i

th
 tooth is on top of the wheel. The state of B is 

similarly specified by the amplitudes bj  for each of its teeth to be uppermost. 
However, if both wheels are members of the same train of gears (as in a 
clock), the probability that the j

th
 tooth of B is on top will depend on which 

tooth of A is uppermost. When the orientations of the wheels are correlated 
in this way, each of the NANB configurations of the pair of wheels has an 
independent  probability,  pij .   Specifically,  when  NA  =  NB,  pij  will  vanish 
except when i = j. If these gear wheels are uncorrelated because they are 
not meshed together, we need to specify only the NA +NB amplitudes ai and 
bj .  Once the wheels become correlated as a result of their teeth meshing, we 
have to  specify NANB  amplitudes, one for each probability pij . 

We now assume that the sets A; i and B; j are complete for their 
respective systems and show that the set of states given by equation (6.1a) 
for all possible values of i, j is then a complete set of states for the composite 
system. That is, any state |AB; ψ⟩ of AB can be written 

|AB; ψ⟩ = 
Σ 

cij |AB; i, j⟩ = 
ij 

Σ 
cij |A; i⟩|B; j⟩. (6.9) 

ij 
 

The proof involves supposing on the contrary that there is a state  AB; φ  of 
AB that cannot be expressed in the form (6.9). We construct the object 

Σ 
|AB; χ⟩ ≡ |AB; φ⟩ − 

ij 

cij |AB; i, j⟩  where   cij  = ⟨AB; i, j|AB; φ⟩.    (6.10) 

 

This object cannot vanish or AB; φ would be of the form (6.9). But when 
AB is in this state, the amplitude for subsystem A to be in any of the states 

|A; i⟩ vanishes: Σ 

(⟨A; i|⟨B; j|) |AB; χ⟩ = 0. (6.11) 
j 

This conclusion is absurd because the set    A; i     is by hypothesis complete, 
so the hypothesised state AB; φ cannot exist. Thus we have shown that a 
general state of AB is specified by NANB amplitudes, just as the argument 
about gear wheels suggested. 

This result implies that the number of amplitudes required to specify the 
state of a composite system grows exceedingly rapidly with the  complexity 
of the subsystems – for example, if NA = NB = 1000, a million amplitudes 
are required to specify a general state of AB. By contrast only 2000 am- 

plitudes are required to specify a product state |AB⟩ = |A⟩|B⟩ because the 
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form of such a state automatically sets to zero all correlations between the 
subsystems. For a general state a large number of amplitudes are required 
to specify these correlations. 

Even when a state of AB is given by an expansion of the form (6.9) that 
involves NANB amplitudes, the states of A and B may not be correlated. To 
see this let |A; ψ⟩ = a |A; i⟩ be the state of the subsystem A and let 

ΣNB i=1 i 

|B; φ⟩ = j=1 bj |B; j⟩ be  the  state  of  subsystem  B.  Then  the  state  of  the 
composite system AB is 

|AB; χ⟩ ≡ |A; ψ⟩|B; φ⟩ = 
Σ 

aibj|A; i⟩|B; j⟩. (6.12) 
ij 

The right side of this equation is identical to the right side of equation (6.9) 
except  that  cij   has  been  replaced  with  aibj .    Thus  equation  (6.12)  is  an 
instance of the general expansion (6.9), but it is a very special instance: in 
general the expansion coefficients cij , which can be thought of as the entries 
in an NA NB matrix, cannot be written as the product of an NA-dimensional 
vector  with  entries  ai  and  an  NB-dimensional  vector  bj.  To  see  that  this  is 
so,  consider  the  ratio  cij/cij′   of  the  matrix  elements  in  the  same  row  but 
different columns.  When cij  can be expressed as the product of two vectors, 
we have 

cij 

cij′ 

=  
aibj 

aibj′ 

=  
bj  

, (6.13) 
bj′ 

so this ratio is independent of i. That is, when the state of AB can be written 
as the product of a state of A and a state of B, the expansion coefficients cij 
are restricted such that every row of the matrix that they form is a multiple 
of the top row. Similarly, in this case every column is a multiple of the 
leftmost column (Problem 6.3). 

When the state of AB cannot be written as the product of a state of A 
and a state of B, we say that the subsystems A and B are entangled. As we 
have seen, the observables of entangled systems are correlated, so we could as 
well say that the subsystems are correlated. It is remarkable that correlations 
between subsystems, which are as evident in classical physics as in quantum 
mechanics, arise in quantum mechanics through the quintessentially quantum 
phenomenon of the addition of quantum amplitudes: states of AB in which 
subsystems A and B are correlated are expressed as linear combinations of 
states in which A and B are uncorrelated. The use of the word ‘entanglement’ 
reminds us that correlations arise through an intertwining of states that is 
inherently quantum-mechanical and without classical analogue. 

It may help to clarify these ideas if we apply them to a hydrogen atom. 
We work in the position representation, so we require the amplitude 

ψ(xe, xp) = ⟨xe, xp|ψ⟩ (6.14) 

to find the electron near xe and the proton near xp. Suppose that we have 
states 

ui(xe) = ⟨xe|ui⟩  and   Uj(xp) = ⟨xp|Uj⟩ (6.15) 

that form complete sets for the electron and the proton, respectively. Then 
for any state of the atom, |ψ⟩, there are numbers cij  such that 

Σ 
|ψ⟩ = cij |ui⟩|Uj ⟩. (6.16) 

ij 

Multiplying through by ⟨xe, xp| we obtain 

Σ 
ψ(xe, xp) = cijui(xe)Uj(xp). (6.17) 

ij 

The product of ui and Uj on the right is no longer symbolic: it is an ordinary 
product  of  complex  numbers.  The  quantity  cij  is  the  amplitude  to  find  the 
electron in the state |ui⟩ and the proton in the state |Uj⟩. 
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Box  6.1: Classical correlations 

It’s instructive to consider how we can represent correlations between 
two classical systems A and B. Let’s assume that each system has a 
finite number N of discrete states – they might be digital counters on an 
instrument panel.  Then there are N 

2
  probabilities cjk  to specify. 

We  can  specify  the  state  of  A  by  giving  N   probabilities  aj   and 
similarly the state of B can be specified by probabilities bk. We might 
choose to  express  these  in  terms  of  their  discrete  Fourier  transforms  âα 
and b̂β, so 

NΣ−1 NΣ−1 

aj  = âαe2πiαj/N 
; bk = b̂β e

2πiβk/N 

α=0 β=0 

If  A  and  B  were  uncorrelated,  so  cjk  =  ajbk,  the  state  of  AB  could  be 
written Σ 

cjk  = ĉαβ e
2πi(αj+βk)/N , (1) 

αβ 

where 
ĉαβ  = âαbβ. (2) 

In  the  presence  of  correlations  we  can  still  represent  cjk  as  the  double 
Fourier sum (1) but then ĉαβ  will not be given by the product of equation 
(2). Thus the  mathematical  manifestation  of  classical correlations can 
be very similar to quantum entanglement.  The big difference is that in 
the classical case the expansion coefficients have no physical interpreta- 
tion: the basis functions used for expansion (here the circular functions 
e

2πiαj/N
 ) and the expansion coefficients âα etc., will not be non-negative 

so they cannot be interpreted as probability distributions. In quantum 
mechanics these quantities acquire physical interpretations. Moreover, 
the final probabilities, being obtained by mod-squaring a sum like that 
of equation (1), involve quantum interference between different terms in 
the sum. 
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6.1.1 Collapse of the wavefunction 

Consider again the composite system we introduced above in which both A 
and B are two-state systems, with |−⟩ and |+⟩ constituting a basis for A and 
|↓⟩ and |↑⟩ constituting a basis for B. Let AB be in the entangled state 

|AB⟩ = a|+⟩|↑⟩ + |−⟩(b|↑⟩ + c|↓⟩), (6.18a) 

where b and c are given complex numbers. Then if a measurement of sub- 
system A is made and it yields +, the state of AB after the system is 

|AB⟩ = |+⟩|↑⟩. (6.18b) 

Conversely, if the measurement of A yields , the state of AB after the 
measurement is 

  1  
|AB⟩ = √  

2 2 
|−⟩(b|↑⟩ + c|↓⟩). (6.18c) 

These rules are extensions of the usual collapse hypothesis, which we intro- 
duced in idealmeasuresec: there we had a single system and we stated that 
when a measurement is made, the state of the system collapses from a linear 
combination of states that are each possible outcomes of the measurement to 
the particular state that corresponds to the value of the observable actually 
measured. That is 

|ψ⟩ = 
Σ 

ai|i⟩ → |ψ⟩ = |3⟩, say. (6.19) 
i 



| ⟩| ⟩ 

0 B 

2 

(6.23) 
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The new twist in equations (6.18) is that when we expand the state of a 
composite system as a linear combination of states of the subsystem we 
propose to measure, the coefficients of those states are states of the other 
subsystem rather than amplitudes, and these states are the ones the second 
system will be in after the first system has been measured. Consequently, the 
amplitudes we obtain for a subsequent measurement of the second subsystem 
depend on the outcome of the first measurement: if measurement of A yields 
+, then from (6.18b), a measurement of B is certain to yield ↑, while if the 
measurement of A yields −, subsequent measurement of B will yield ↓ with 
probability 1/(|b/c| + 1). 

 
6.1.2 Operators for composite systems 

While the law of multiplication of probabilities leads to the kets of subsystems 
being multiplied, we add the operators of subsystems. For example, if A and 
B are both free particles, then the Hamiltonian operator of the composite 
system is 

p2 p2 

HAB = HA + HB = 
 
  

A
   + 

 
  

B
  . (6.20) 

2mA 2mB 

In this simple example there is no physical interaction between the parts of 
the system, with the consequence that the Hamiltonian splits into a part 
that depends only on the operators of A, and a part that depends only on 
operators of B. When there is a physical connection between the systems, 
there will be an additional part of the Hamiltonian, the interaction Hamil- 
tonian that depends on operators belonging to both systems. For example, 
if both particles bear electrostatic charge Q, the interaction Hamiltonian 

 

Q2 
Hint = 

4πǫ |x 
(6.21) 

— x | 
 

should be added to HA + HB to form HAB. For the rest of this subsection 
we assume for simplicity that there is no dynamical interaction between the 
subsystems. 

When an operator acts on a ket that is a product of one describing A 
and one describing B, kets that belong  to the  other system stand idly  by  as 
if they were mere complex numbers. For example 

 

pB|A; i⟩|B; j⟩ = |A; i⟩ pB|B; j⟩ 

so 

(6.22) 

⟨A; i′|⟨B; j′|(HA +HB)|A; i⟩|B; j⟩ = ⟨A; i′|HA|A; i⟩⟨B; j′|B; j⟩ 

+ ⟨A; i′|A; i⟩⟨B; j′|HB|B; j⟩ 

= ⟨A; i′|HA|A; i⟩δjj′  + δii′ ⟨B; j′|HB|B; j⟩. 

When we set i′ = i and j′ = j we obtain the expectation value of HAB when 
the system is in the state  A; i  B; j  . This is easily seen to be just the sum of 
the expectation values of the energies of the two free particles, as one would 
expect. 

We shall several times have to find the eigenvalues and eigenkets of an 
operator such as HAB that is the sum of operators HA and HB that belong to 
completely different subsystems. Every operator of subsystem A commutes 
with every operator of subsystem B. Consequently when HAB is given by 
equation (6.20), 

[HAB, HA] = [HA + HB, HA] = 0. (6.24) 

That is, when there is no physical interaction between the subsystems, so 
HAB is just the sum of the Hamiltonians of the individual systems, HAB 
commutes with both individual Hamiltonians.  It follows that in this case 

A 



i 

j 

{| ⟩} 
{| ⟩} 

| ⟩ ≡ | ⟩| ⟩ 

| ⟩ 

| ⟩ 

ij 

ij i j 

∂t ∂t ∂t ∂t 
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there is a complete set of mutual eigenkets of HAB, HA and HB. Let A; i 
be a complete set of eigenkets of HA with eigenvalues E

A
, and let B; i 

be a complete set of eigenkets of HB with eigenvalues E
B
. Then it is trivial 

to check that the states AB; i, j A; i  B; j   are eigenkets of HAB  with 
eigenvalues E

A
 + E

B
.  Moreover, we showed above that these product kets 

i j 

form a complete set. So the states AB; ij form a complete set of mutual 
eigenkets of HAB, HA and HB. In the position representation this result 
becomes the statement that the wavefunctions 

ψ
AB

(xA, xB) ≡ ⟨xA, xB|AB; ij⟩ = u
A
(xA)u

B
(xB) (6.25) 

 

form a complete set of mutual eigenfunctions for the three operators.  That 
is, if we have a composite system with a Hamiltonian that is simply the sum 
of the Hamiltonians of the parts, we can assume that the eigenfunctions of 
the whole system’s Hamiltonian are simply products of eigenfunctions of the 
individual component Hamiltonians. 

It is instructive to write the TdSE for a composite system formed by two 
non-interacting subsystems: 

 

ih̄ 
∂|AB⟩ 

= ih̄ 
∂  

(|A⟩|B⟩) = ih̄ 
∂|A⟩ 

|B⟩ + |A⟩ 
∂|B⟩ 

 

= (HA |A⟩)|B⟩ + |A⟩(HB |B⟩) = (HA 
 

+ HB )|A⟩|B⟩ 
(6.26) 

= HAB|AB⟩. 

Thus we have been able to derive the TdSE for the composite system from 
the TdSE for each subsystem. Notice that the physically evident rule for 
adding the Hamiltonians of the subsystem emerges as a consequence of the 
ket for the whole system being a product of the kets of the subsystems and 
the usual rule for differentiating a product. 

 

6.1.3 Development of entanglement 

Entangled is an appropriate name because subsystems are as prone to become 
entangled as is the line of a kite. To justify this statement, we consider the 
dynamical evolution of a composite system AB. Without  loss of  generality 
we can use basis states that satisfy the TdSEs of the isolated subsystems. 
That is, the we may assume that the states |A; i⟩, etc, satisfy 

 

ih̄ 
∂|A; i⟩ 

= H
 

∂t 
A; i and    ih̄ 

∂|B; j⟩ 
= H 

∂t 
|B; j⟩. (6.27) 

A general state of the composite system is 

Σ 
|AB⟩ = cij |A; i⟩|B; j⟩, (6.28) 

ij 
 

where  the  expansion coefficients  cij  are all  functions  of  time.  The  Hamilto- 
nian of the composite system can be written 

 

HAB = HA + HB + Hint, (6.29) 
 

where the interaction Hamiltonian Hint is the part of HAB that contains 
operators belonging to both subsystems (cf eq. 6.21). Substituting this ex- 
pression for HAB and the expansion (6.28) into the TdSE for the composite 
system (eq. 6.26), we find 

 
ih̄ 

∂|AB⟩ 

∂t 

 
= ih̄ 

Σ 
dc  

dt  
|A; i⟩|B; j⟩ + cij 

ij 

  
∂|A; i⟩ 

∂t 
|B; j⟩ + |A; i⟩ 

   
∂|B; j⟩ 

∂t 
Σ 

= cij {(HA|A; i⟩)|B; j⟩ + |A; i⟩(HB|B; j⟩) + Hint|A; i⟩|B; j⟩} . 
ij 

(6.30) 

A B 
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After using equations (6.27) to cancel terms, this simplifies to 

ih̄ 

Σ dcij 

dt 
|A; i⟩|B; j⟩ = 

ij 

Σ 
cijHint|A; i⟩|B; j⟩, (6.31) 

ij 

which states that the time evolution of the expansion coefficients is entirely 
driven by the interaction Hamiltonian. In particular, if there is no coupling 
between  the  systems  (Hint  =  0),  the  cij  are  constant,  so  if  the  systems  are 
initially unentangled, they remain so. 

By multiplying equation (6.31) through by A; k B; l we obtain  an 
equation that is most conveniently written 

 
ih̄ 

dckl = 
dt 

Σ 
cij ⟨AB; kl|Hint|AB; ij⟩. (6.32) 

ij 
 

Let’s suppose that all the matrix elements in this equation vanish except 
an element AB; k0l0 Hint AB; k0l0  which lies on the diagonal.  Then only 
ck0 l0 will have non-vanishing time derivative, so the condition for the sub- 
systems  to  be  unentangled,  namely  that  cij/cij′   is  independent  of  i,  which 
is initially satisfied, will soon be violated by the ratio ck0 l0 /ck0 j for j = l0. 
Careful consideration of what happens when there are several non-vanishing 
matrix elements leads to the same conclusion: almost any coupling between 
subsystems will cause them to become entangled from an unentangled initial 
condition. 

This result  is  not  surprising physically:  a  coupling  makes the  motion 
of one system dependent on the state of the other. So after some time the 
state that the second system has reached depends on the state of the first 
system, which is just to say that the two systems have become correlated or 
entangled. 

 
 

6.1.4 Einstein–Podolski–Rosen experiment 

In 1935 A. Einstein,  B.  Podolski and  N.  Rosen  (EPR for  short)  proposed1 

an experiment with entangled particles that they argued would demonstrate 
that quantum mechanics is an incomplete theory in the sense that to specify 
the state of a physical system you need to know the values taken by hidden 
variables that quantum mechanics does not consider. In 1964 J.S. Bell 
showed2 that for a similar experiment quantum mechanics makes predictions 
that are incompatible with the existence of hidden variables. In 1972 an 
experiment of this type was successfully carried out3 and its results were 
found to vindicate quantum mechanics. We now describe Bell’s formulation 
of the experiment and discuss its implications. 

A nucleus decays from a state that has no spin to another spinless state 
by emitting an electron and a positron. The nucleus is at rest both before and 
after the decay, so the electron and positron move away in opposite directions 
with equal speeds. As we saw in 1.3.5, electrons and positrons are spinning 
particles so they each carry some spin angular momentum away from the 
nucleus. Since the nucleus is at all times without angular momentum, the 
angular momenta of the electron and positron must be equal and opposite. 
At some distance from the decaying nucleus Alice detects the electron and 
measures the component of its spin in the direction of her choice, a. As 
we saw in §1.3.5, the result of this measurement will be either + 

1
 or − 1 . 

Meanwhile Bob, who sits a similar distance from the nucleus to Alice, detects 
the positron and measures its spin in the direction of his choice, b. 

After Alice has obtained + 
1
 on measuring the spin along a she thinks: 

“If Bob measures along a too, he must measure − 1 . But if Bob measures 
 

1 E. Einstein, B. Podolski & N. Rosen, Phys. Rev., 47, 777 (1935) 
2 J.S. Bell, Phyics, 1, 195 (1964) 
3 S.J. Freedman & J.F. Clauser, Phys. Rev. L., 28, 938 (1972) 
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along some other vector b, I cannot be certain what value he will get, but he 
isn’t likely to get + 

1
 if b is only slightly inclined to my vector a, that is, if 

1   a  b   1.” Alice can see that conservation of angular momentum implies 
that the results obtained by Bob and herself must be correlated.  Let’s put 
this argument on a quantitative basis. 

In 7.5.1 we shall see that because the system formed by the electron- 
positron pair has no net angular momentum, its state can be written 

 

1 
|ψ⟩ =  √

2 
(|e+⟩|p−⟩ − |e−⟩|p+⟩) . (6.33) 

Here e+ is the  state in  which the component of  the electron’s  spin along 
the z-axis is certain to be + 

1
 , and similarly for  p     , etc.  We are free to 

orient the z-axis parallel to Alice’s choice of direction a, so we do this. When 
Alice obtains + 

1
 , she collapses the system’s state into 

 

|ψ′⟩ = |e+⟩|p−⟩. (6.34) 

Before Alice’s measurement, when the state was given by equation (6.33), 
the amplitude for a measurement of the positron’s spin along a to yield + 

1
 

√ 2 

was 1/   2, but after the measurement equation (6.34) shows that it vanishes, 
just as Alice reasoned it would. To find the amplitude for Bob to measure for 
the positron + 

1
 along another vector b, we recall equation equation (1.34)a 

from §1.3.5:  
|+, b⟩ = sin(θ/2) e

iφ/2
|p−⟩ + cos(θ/2) e−iφ/2

|p+⟩, (6.35) 
 

where θ and φ are the polar angles that give the orientation of b in a system 
in which a is along the z-axis. In particular 

 

cos θ = a · b. (6.36) 

Given that after Alice’s measurement the positron is certainly in the state 
|p−

1  
⟩, it follows from equation (6.35) that the amplitude for Bob to measure 

+    along  his  chosen  direction  is  ⟨+, b|p−⟩ = sin(θ/2)e−iφ/2
.  Mod-squaring 

this amplitude we find that the probability that Bob measures + 
1
  is 

 

PB(+|A+) = sin
2
(θ/2), (6.37) 

which is small when a b as Alice predicted. So quantum mechanics is 
consistent with common sense. 

We have supposed that Alice measures first, but if the electron and 
positron are moving relativistically, a light signal sent to Bob by Alice when 
she made her measurement would not have arrived at Bob when he made his 
measurement, and vice versa. In these circumstances the theory of relativity 
teaches us that the order in which the measurements are made depends on 
the velocity of the observer who is judging the matter. Consequently, for 
consistency the predictions of quantum mechanics must be independent of 
who is supposed to make the first measurement and to collapse the system’s 
state. It is easy to see from the discussion above that this condition is 
satisfied. 

What worried EPR was that after Alice’s measurement there is a di- 
rection  in  which  Bob  will  never  find  + 

1
 for the positron’s spin, and this 

direction depends  on what direction Alice  chooses to  use.  This fact seems 
to imply that the positron somehow ‘knows’ what Alice measured for the 
electron, and the collapse of the system’s state from (6.33) to (6.34) seems 
to confirm this suspicion. Since  relativity forbids  news of  Alice’s  work on 
the electron from influencing the positron at the time of Bob’s measurement, 
EPR argued that the required information must have travelled out with the 
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positron in the form of a  hidden  variable which was correlated at  the time 
of the nuclear decay with a matching hidden variable in the electron. 

The existence of hidden variables would explain the probabilistic nature 
of quantum mechanics (which Einstein intensely disliked) because the uncer- 
tain outcomes of experiments would reflect our ignorance of the values taken 
by the hidden variables; the uncertainty would be banished once a better 
theory gave us access to these variables. 

Bell’s inequality Remarkably, Bell was able  to  show  that  any  hidden 
variable theory will yield a weaker correlation than quantum mechanics be- 
tween the measurements of Alice and Bob as functions of the angle θ between 
their chosen directions.  Let’s denote the results of Alice’s and Bob’s mea- 
surements by ςA  = ± 1   and ςB  = ± 1   and calculate the expectation value 
of the product ςAςB. There are just four cases to consider, so the desired 
expectation value is 

 

⟨ςAςB⟩ =  4 {PA(+)PB(+|A+) + PA(−)PB(−|A−) 

— PA(+)PB(−|A+) − PA(−)PB(+|A−)}, 

 

(6.38) 

 

where PA(+) is  the  probability that Alice  obtains  ςA  = + 
1
  and PB(−|A+) 

is the probability that Bob finds ςB  = − 1   given that Alice has measured 

ςA = + 
1
 . Since nothing is known about the orientation of  the  electron 

before Alice makes her measurement 
 

PA(+) = PA(−) =  
1
 . (6.39) 

We showed above (eq. 6.37) that PB(+|A+) = sin
2
(θ/2), so 

PB(−|A+) = 1 − PB(+|A+) = cos
2
(θ/2). (6.40) 

Putting these results into equation (6.38) we have 
 

1 2 2 1 1 
⟨ςAςB⟩ = 4 {sin (θ/2) − cos (θ/2)} = − 4 cos θ = − 4 a · b, (6.41) 

which agrees with Alice’s simple argument when a       b. 
Consider now the case that the result of measuring the electron’s spin 

in the direction a is completely determined by the values taken by hidden 
variables in addition to a.  That is, if we knew the values of these variables, 
we could predict with certainty the result of measuring the  component of 
the electron’s spin in the direction of any unit vector a and Alice is only 
uncertain what result she will  get because she is ignorant of the  values of 
the hidden variables. We consider the variables to be the components of 
some n-dimensional vector v, and have that the result of measuring the 
electron’s spin along a is a function ςe(v, a) that takes the values 

1
 only. 

Similarly, the  result of measuring the  positron’s spin  along a  unit  vector b 

is a function ςp(v, b) that is likewise restricted to the values ± 1 . As Alice 
argued, conservation of angular momentum implies that 

 

ςe(v, a) = −ςp(v, a). (6.42) 

The outcome of a measurement is uncertain because the value of v is uncer- 
tain. We quantify whatever knowledge we do have by assigning a probability 
density ρ(v) to v, which is such that the probability that v lies in the in- 
finitesimal n-dimensional volume d

n
v is dP = ρ(v) d

n
v. In terms of ρ the 

expectation value of interest is 

∫ 

⟨ςe(a)ςp(b)⟩ = 

 
d

n
v ρ(v)ςe(v, a)ςp(v, b) 

∫ 

 

 

(6.43) 

= − d
n
v ρ(v)ςe(v, a)ςe(v, b), 
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Figure 6.1 For  a  family  of  choices 
of the vectors a, b and b′, quantum 
mechanics predicts that the left side 
of Bell’s inequality (6.46) is larger 
than the right side, contrary to the 
prediction of any hidden-variable 
theory. 

 
 
 

where the second equality uses equation (6.42). 
Now suppose Bob sometimes measures the spin of the positron parallel 

to b′ rather than b. Then the fact that ς
2
(v, b) = 

1
  allows us to write 

e 4 

∫ 
⟨ςe(a)ςp(b)⟩ − ⟨ςe(a)ςp(b′)⟩ = − 

∫ 

d
n
v ρ(v)ςe(v, a){ςe(v, b) − ςe(v, b′)} 

= − d
n
v ρ(v)ςe(v, a)ςe(v, b){1 − 4ςe(v, b)ςe(v, b′)}. 

(6.44) 
We now take the absolute value of each side and note that the curly bracket 
in the integral is non-negative, while the product ςe(v, a)ςe(v, b) in front of 

it fluctuates between  ± 1 . Hence we obtain an upper limit on the value of 
the integral by replacing ςe(v, a)ςe(v, b) by 

1
 , and have 

∫ 

|⟨ςe(a)ςp(b)⟩ − ⟨ςe(a)ςp(b′)⟩| ≤  1
 d

n
v ρ(v){1 − 4ςe(v, b)ςe(v, b′)}. 

We break the right side into two integrals.  The first, 
∫ (6.45) 

d
n
v ρ(v), evaluates 

to unity because ρ is a probability density, while changing b → b′ and 
a → b in equation (6.43) we see that the the second integral evaluates to 
−4⟨ςe(b)ςp(b′)⟩. Hence we have that 

|⟨ςe(a)ςp(b)⟩ − ⟨ςe(a)ςp(b′)⟩| ≤ 1  + ⟨ςe(b)ςp(b′)⟩. (6.46) 

This is Bell’s inequality, which must hold for any three unit vectors a, b 
and b′ if hidden variables exist.  It can be tested experimentally as follows: 
for a large number of trials Alice measures the electron’s spin along a while 
Bob measures the positron’s spin along b in half  the  trials and  along b′  in 
the other half. From the results of these trials the value of the left side 
of equation (6.46) can be estimated. The value of the right side is then 
estimated from a new series of trials in which Alice measures the electron’s 
spin along b and Bob measures the positron’s spin along b′. 

An obvious question is whether Bell’s inequality is consistent with the 
quantum-mechanical result ⟨ςe(a)ςp(b)⟩ = − a · b (eq. 6.41). When we 
substitute this expression into each side we get 

 

lhS = 
1
 |a · (b − b′)| ; RhS = 

1
 (1 − b · b′). (6.47) 

 

Let’s choose a b = 0 and b′ = b cos φ+a sin φ so as we increase the parameter 
φ from zero to π/2 b′ swings continuously from b to a. For this choice of b′ 
we easily find that 

 

lhS = 
1
 | sin φ| ; RhS = 

1
 (1 − cos φ). (6.48) 

These expressions for the left and right sides of Bell’s inequality are plotted 
in Figure 6.1: we see that the inequality is violated for all values of φ other 
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than 0 and π/2. Thus the quantum-mechanical result is inconsistent with 
Bell’s inequality and is therefore inconsistent with the existence of hidden 
variables. 

Inequalities similar to (6.46) can be derived for systems other than spin- 
half particles, including pairs of entangled photons. Experiments with pho- 
tons have produced results that agree with the predictions of quantum me- 
chanics to sufficient precision that they violate the relevant Bell inequalities.4 

Consequently, these experiments rule out the possibility that hidden variables 
exist. 

What general conclusions can we draw from the EPR experiment? 

A measurement both updates our knowledge of a system and disturbs the 
system. Alice’s measurement disturbs the electron but not the positron, 
and gains her information about both particles. 

Quantum mechanics requires wholistic thinking:  when  studying  the 
EPR experiment we must consider the  system formed by both  parti- 
cles together rather than treating the particles in isolation. We shall 
encounter a more spectacular example of this requirement below in con- 
nection with ideal gases. 

• Many discussions of the EPR experiment generate needless confusion 
by supposing that after Alice has measured + 

1
  for the component of 

the electron’s spin parallel to a,  the  spin  is aligned with  a.  We  shall 
see in 7.4.2 that the electron also has half a unit of angular momentum 
in each of the x and y directions, although the signs of these other 
components are unknown when we know the value of sz. Hence the 
most Alice can know about the orientation of the spin vector is that it 
lies in a particular hemisphere. Whatever hemisphere Alice determines, 
she can argue that the positron’s spin lies in the opposite hemisphere. 
So if Alice finds the electron’s spin to lie  in the  northern hemisphere, 
she concludes that the positron’s spin lies in the southern hemisphere. 
This knowledge excludes only one result from the myriad of possibilities 
open to Bob:  namely he cannot find sz = + 

1
 .  He is unlikely to find + 

1
 

2 2 

if he measures the component of spin along a vector b that lies close to 
the z axis because the hemisphere associated with this result has a small 
overlap with the southern hemisphere, but since there is an overlap, the 
result + 

1
 is not excluded. Contrary to the claims of EPR, the results of 

Bob’s measurements are consistent with the hemisphere containing the 
positron’s spin being fixed at the outset and being unaffected by Alice’s 
measurement. 
The experimental demonstration that Bell inequalities are violated es- 
tablishes that quantum mechanics will not be superseded by a theory 
in which the spin vector has a definite direction. In 7.4.1 we shall see 
that macroscopic objects only appear to have well defined orientations 
because they are not in states of well-defined spin.   That is,  the idea 
that a spin vector points in a well defined direction is a classical notion 
and not applicable to objects such as electrons that do have a definite 
spin. This idea is an old friend from which we part company as sadly as 
after studying relativity we parted company with the concept of univer- 
sal time. The world we grew accustomed to in playgroup is not the real 
world, but an approximation to it that is useful on macroscopic scales. 
The study of physics forces one to move on and let childish things go. 

 
 
 
 
 
 
 

4 e.g., W. Tittel et al., PRL, 81, 3563 (1998) 

• 

• 

• 



∼ 

∼ 
× 

− 

— ∼ 

| ⟩ 

| ⟩|  ⟩ · · · | ⟩ 
| ⟩ 

| ⟩ 

| ⟩ | ⟩| ⟩| ⟩| ⟩ 

| ⟩ | ⟩ | ⟩| ⟩| ⟩| ⟩ 

116 Chapter 6: Composite systems 

6.2 Quantum computing 
There’s an old story about a mathematician at the court of the Chinese em- 
peror. The mathematician had advised the emperor wisely and the emperor, 
wishing to express his gratitude in a manner worthy of his greatness, asked 
the mathematician to name the reward he would like to receive. “Oh great 
Emperor, your offer is too liberal for one who has rendered you such a slight 
service. Let a chess board be brought and one grain of rice be placed on the 
first square, two on the second, four on the third, eight on the fourth, and 
so on till every square of the board has received an allocation of rice.” The 
emperor was pleased by the modesty of the mathematician’s proposal and 
ordered it be done. Great was his shock and annoyance the next day when it 
was reported to him that all the rice in his great silos had proved insufficient 
to  pay the  mathematician his  due.  For 2

64
     1     10

19
  grains of rice would 

be needed to supply the 64 squares on the board. That’s   10
12

 tons of rice 
and vastly more than all the rice on the planet.5 

What is the relevance of this old story for quantum mechanics? We have 
seen that a system made of two two-state systems has four basis states. If we 
add a further two-state system to this four-state composite system, we obtain 
a system with 2     4 = 8 basis states.  By the time  we have built a system 
from 64 two-state systems, our composite system will have 2

64
 10

19
 basis 

states. Sixty four two-state systems might be constructed from 64 atoms 
or even 64 electrons, so could be physically miniscule. But to calculate the 
dynamics of this miniscule system we would have to integrate the equations 
of motion of 10

19
 amplitudes! This is seriously bad news for physics. 

The idea behind quantum computing  is  to  turn  this  disappointment 
for physics into a boon for  mathematics.  We  may  not  be  able  to  solve 
10

19
 equations of motion, but Nature can evolve the physical system, and 

appropriate measurements made on the system should enable us to discover 
what the results of our computations would have been if we had the time to 
carry them out. If this approach to computation can be made to work in 
practice, calculations will become possible that could never be completed on 
a conventional computer. 

The first step towards understanding how a quantum computer would 
work is to map integers onto the basis states of our system. In this context 
we refer to a two-state system as a qubit and call its basis states 0  and 
1 . A set of N qubits forms a register, which has a complete set of states 
of the form x x′ x′′ , where x, x′, etc., = 0, 1 indicate the states of the 
constituent qubits. Now  given a number  in  binary form, such  as 7 = 4 + 2 + 
1 = 111, we associate it with the basis state of the register   0   . . . 0   1   1   1 . 
In this way we establish a one to one correspondence between the integers 
0 to 2

N
  1 and the basis states of a register that comprises N qubits. We 

use this correspondence to establish a more compact notation for the basis 
states of the register, writing 7 instead of 0 . . . 0 1 1 1 , etc. 

This arrangement mirrors the correspondence in a classical computer 
between numbers and the states of a classical register formed by N classical two-
state systems or bits. The crucial difference between quantum and classical 
registers is that whereas a classical register is always in a state that is 
associated with a definite number, the generic state ψ of a quantum register 
is a linear combination of states that are associated with different numbers: 

|ψ⟩ = 
2Σ

N −1 

j=0 

cj |j⟩. (6.49) 

Thus nearly all states of a quantum register are not associated with individ- 
ual numbers but with all representable numbers simultaneously. We shall see 
that this ability of a single state of a quantum register to be associated with 

 

5 According to the International Rice Search Institute, in 2007 global rice production 
was 650 million tons. 
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a huge number of integers enables a quantum computer to conduct massively 

parallel computations. 

The central processor unit (CPU) of a classical computer is a pro- 
grammable mechanism that reads a number n from an input register and 
places the number f (n) into the output register, where  f  is  the  function 
that the CPU is currently programmed to evaluate. By analogy one might 
imagine that a quantum computer would consist of a quantum register and 

a programmable Hamiltonian H that would cause the state |n⟩ to evolve in 

some specified time T  into the state |f (n)⟩ = e−iHT/h̄
 |n⟩.  Unfortunately this 

conception is flawed because this machine could not evaluate any function 
that took the same value on  different  arguments, so f (n) = f (m) = F ,  say, 

for some values n /= m. To see why the computer could not evaluate such a 

function recall that the operator U  ≡ e−iHT/h̄
  is unitary, so it has an inverse 

U †. But we have U |n⟩ = U |m⟩ = |F ⟩, and if we apply U † to |F ⟩ we must 

get both |m⟩ and |n⟩, which is absurd. 

We get around this problem by making our quantum computer slightly 
more complex:  we let it have two registers, a control register X and a 

data register Y. The computer then has a basis of states |x⟩|y⟩, where x is 
the number stored in the control register and y is the number stored in the 
data register. We conjecture that we can find a Hamiltonian such that for 

any function f the state |x⟩|y⟩ evolves in time T into the state |x⟩|y + f (x)⟩. 
Adding the second register solves the problem we encountered above because 

applying U to |n⟩|y⟩ we get |n⟩|y +F ⟩ which is a different state from what we 

get when we apply U to |m⟩|y⟩, namely |m⟩|y + F ⟩: adding the extra register 
allows the computer to remember the state it was in before the machine 
cycle started, and this memory makes it logically possible for U † to restore 
the earlier state. 

Adding the second register may have demolished an objection to our 

original most naive proposal, but is it really possible to construct a time- 

evolution operator that would enable us to evaluate any function f (x)? This 

question is answered affirmatively in two stages. First one defines a handful 

of unitary operators U that perform basic bit manipulations on our registers, 

and shows that using a sequence of such operators one can perform any of 

the standard arithmetical operations, adding, subtracting, multiplying and 

dividing. Second,  for each of these  operators U  one designs an experiment 

in which U gives the evolution of a two-state quantum system over some 

time  interval.   Currently many groups use  photons  as  qubits,  identifying 

|0⟩ and |1⟩ with either right- and left-handed circular polarisation, or with 

linear polarisation in two orthogonal directions. Other groups use electrons 

as qubits, identifying |0⟩ and |1⟩ as states in which the spin in some given 

direction is either 
1
  or − 1 .  All such work with real qubits is extremely 

challenging and in its infancy, but it has already established that there is no 

objection in principle to realising the simple unitary operators that quantum 

computing requires. It is too early to tell what physical form qubits will take 

when quantum computing becomes a mature technology. Consequently, we 

leave to one side the question of how our operators are to be realised and 

focus instead on what operators we require and what could be achieved with 

them when they have been realised. 

The simplest computer has two one-qubit registers, with a basis of states 

|0⟩|0⟩, |0⟩|1⟩, |1⟩|0⟩ and |1⟩|1⟩ – we shall refer to basis states of a register with 
any number of qubits ordered thus by increasing value of the stored number 
as the computational basis. In the computational basis of our two-qubit 

system, the operator U+ that performs addition (|x⟩|y⟩ → |x⟩|y + x⟩) has the 
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unitary matrix6  
1 0    0 0  

U+ = 
 0 1   0 0  

. (6.50) 
0 0    0 1 
0 0    1 0 

To justify this claim we note that 

 
1  0 0  0 

  
α  

 
 α  

 0  1 0  0   β  
= 

 β  (6.51) 
 0  0 0  1   γ   δ  

0    0 1    0 δ γ 
 

so U+ causes the state of the computer 
 

|ψ⟩ = α|0⟩|0⟩ + β|0⟩|1⟩ + γ|1⟩|0⟩ + δ|1⟩|1⟩ (6.52) 
 

to evolve into  
U+|ψ⟩ = α|0⟩|0⟩ + β|0⟩|1⟩ + γ|1⟩|1⟩ + δ|1⟩|0⟩, (6.53) 

 

so the second qubit is indeed incremented by the first modulo 2. 
U+ is a simple example of an operator in which the state of the data 

register is changed in a way that depends on the state of the control register 
while the state of the control register stays the same. Such operators are 
called controlled-U operators. Another useful operator is the controlled- 
phase operator, which in the computational basis has the matrix 

 
1  0 0 0 
 0  1 0 0 

Uφ  
0  0 1 0 

0   0 0  e
iφ

 

 

 
. (6.54) 

 

Uφ has no effect on the first three states of the computational basis, and it 
multiplies the phase of the  last state by e

iφ
.  It is  straightforward to show 

that 
Uφ|x⟩|y⟩ = e

ixyφ
|x⟩|y⟩ (6.55) 

by checking that the two sides match for all four possible values of (x, y). 
It can be shown that any unitary transformation of an n-qubit register 

can be simulated if we  augment U+  and Uφ  with two  operators that work 
on just one qubit. One of these extra operators is the phase operator U 

1
, 

which leaves |0⟩ invariant and increments the phase of |1⟩ by φ: 

) 
U 

1
|0⟩ = |0⟩ 

U 
1
|1⟩ = e

iφ
|1⟩ 

 
⇔ Uφ |x⟩ = e 

 

 
iφx 

 
|x⟩ ⇔ Uφ = 

 
1 0 
0 eiφ 

 

.  (6.56) 

 

The other single-qubit operator that we need is the Hadamard operator, 
which in the computational basis, |0⟩ |1⟩, has the matrix 

 

1 
UH = √

2
 

1 1 

1   −1 

 

. (6.57) 

 

The Hadamard operator takes a state that represents a number, such as 0 , 
and turns it into a state that is a linear combination of the two representable 

numbers:  UH|0⟩ = (|0⟩ + |1⟩)/
√

2.   Conversely, because U 
2
  = I  so UH is 

6 Here x + y must be understood to mean x + y mod 2 because quantum computers 
like classical computers do arithmetic modulo one more than the largest number that they 
can store. 
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Figure 6.2 Schematic diagram to show how two Hadamard operators and two phase shift 
operators suffice to transform |0⟩  into an arbitrary state of a qubit. 

 

 

 
 

 
 

Figure 6.3 Evaluating f on every 
argument simultaneously. The top 
three qubits form the control reg- 
ister, which is initially in the state 

   |0⟩ . 

 
 

its own inverse, it turns these linear combinations of numbers into actual 
numbers: UH( 0 + 1 )/ 2 = 0 . 

Complex operations on qubits can be built up by sequences of phase and 
Hadamard operators and such sequences are conveniently described using 
the graphical notation of Figure 6.2. Each qubit  is represented by a  line 
along which the state of the qubit flows from left to right.  In the simple 
example sho√wn, the state |0⟩ is converted by the first Hadamard operator to 

1 
(|0⟩ + |1⟩)/   2, and U converts this to 

1     
√

2  
|0⟩ + e 

 
2iθ 

  
|1⟩ 

 

. (6.58a) 

After the next Hadamard operator this becomes 
1
 

2iθ 
1     2iθ 

  2iθ
 } 

2    |0⟩ + |1⟩ + e (|0⟩ − |1⟩)   = 2 1 + e |0⟩ +  1 − e |1⟩ (6.58b) 
= e

iθ
 {cos θ|0⟩ − i sin θ|1⟩} . 

Finally, application of the phase-shift operator U 
1
 converts this to 

iθ
 

iφ 
  

|ψ⟩ ≡ e cos θ|0⟩ + e   sin θ|1⟩  . (6.58c) 

By choosing the values of θ and φ appropriately, we can make ψ any chosen 
state of the qubit. Thus the phase-shift and Hadamard operators form a 
complete set of single-qubit operators. 

If we apply a Hadamard operator to each qubit of an 2-qubit register 
that is initially in the state |0⟩|0⟩, we get 

(UH|0⟩) (UH|0⟩) = 
1
 (|0⟩ + |1⟩) (|0⟩ + |1⟩) 

= 
1
 (|1⟩|1⟩ + |1⟩|0⟩ + |0⟩|1⟩ + |0⟩|0⟩) 

= 
1
 (|3⟩ + |2⟩ + |1⟩ + |0⟩) . 

(6.59) 

That is, by setting the register to zero and then applying a Hadamard oper- 
ator to each of its qubits, we put the register into a linear superposition of 
the states associated with each representable number. It is easy to see that 
this result generalises to n-qubit registers.7 Using this trick we can simul- 
taneously evaluate a function on every representable argument, simply by 
evaluating the function on the state of the control register immediately after 
it has been processed by the Hadamard operators. Figure 6.3 illustrates this 
process, which is described by the equations 

7 In fact, applying Hadamard operators to the qubits of an n-qubit register when it is 
set to any number will put the register into a linear superposition of states associated with 
all representable numbers, but if the initial state of the register differs from |0⟩ , exactly 
half of the coefficients in the sum will be −2−n/2 and half +2−n/2 (Problem 6.6). 
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Box  6.2: Deutsch’s algorithm 

Given a function  f (x) that takes an n-bit argument and returns either  0 
or 1, the exercise is to determine whether f is a constant or ‘balanced’ 
function. To this end we build a computer with an n-qubit control regis- 
ter and a single qubit data register. We set the control register to |0⟩ and 

operator UH. Then the computer’s state is 
the data register to |1⟩ and operate on every qubit with the Hadamard 

1 

2(n+1)/2 

 2Σ
n−1 

x=0 

  

|x⟩ (|0⟩ − |1⟩). (1) 

Now we evaluate the function f in the usual way, after which the com- 
puter’s state is 

1 

2(n+1)/2 

  
Σ 

! 

|x⟩(|f (x)⟩ − |1 + f (x)⟩)  . (2) 
x 

written 
(|f (x)⟩ − |1 + f (x)⟩) = (−1) (|0⟩ − |1⟩) so the computer’s state can be 
Given  that  f (x)  =  0, 1,  it  is  straightforward  to  convince  oneself  that 

f (x) 

  
Σ 

! 
  1  

2(n+1)/2 (−1) |x⟩  (|0⟩ − |1⟩). f (x) (3) 
x 

We now operate on every qubit with UH for a second time.  The data 
register returns to |1⟩ because U is its own inverse, while the control H 

register only returns to |0⟩ if we can take the factor (−1) out of f (x) 

tΣhe  sum  over  x,  making  the  state  of  the  control  register  a  multiple  of 

and in this case UH moves the control register to a state |y⟩ for y /= 0 
x |x⟩; if f is ‘balanced’, half of the factors (−1) are +1 and half −1 f (x) 

 
 

(Problem 6.6). Hence by measuring the state of the control register, we 
discover whether f is constant or balanced: if the control register is set 
to zero, f is constant, and if it holds any other number, f is balanced. 
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UH      1 2Σ
n −1 

2
n
  1 

f 1 
|0⟩|0⟩→ 

2n/2 
 

x=0 

|x⟩|0⟩→ 
2n/2 

 

x=0 

|x⟩|f (x)⟩. (6.60) 

After the evaluation of f , the computer’s state depends on every possible 
value of f . So the state of a 64-qubit computer will depend on the 2

64
 

10
19

 possible values of f . By exploiting this fact, can we conduct massively 
parallel computations with just a pair of quantum registers? 

The question is, how can we learn about the values that f takes? An 
obvious strategy is to read off a numerical value X from the control register 
by collapsing each of its qubits into either the state 0 or the state 1 . 
Once this has been done, the state of the composite system x y will have 
collapsed from that  given on the right of (6.60) to  X  f (X)  ,  so f (X) can 
be determined by inspecting each of the qubits of the data register. The 
trouble with this strategy is that it only returns one value of f , and that for 
a random argument X. Hence if our quantum computer is to outperform a 
classical computer, we must avoid collapsing the computer’s state by reading 
its registers. Instead we should try to answer questions about f that have 
simple answers but ones that involve all the values taken by f . 

For example, suppose we know that f (x) only takes the values 0 and 1, 
and that it is either a constant function (i.e., either f (x) = 1 for all x, or 
f (x) = 0 for all x) or it is a ‘balanced function’ in the sense that f (x) = 0 for 
half of the possible values of x and 1 for the remaining values. The question 
we have to answer is “is f constant or balanced?” With a classical computer 
you would have to keep evaluating f on different values of x until either you 
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got two different values (which would establish that f was balanced) or more 
than half of the possible values of x had been tried (which would establish 
that f was constant). In Box 6.2 we show that from (6.60) we can discover 
whether f is constant or balanced with only a handful of machine cycles. 

The algorithm given in Box 6.2 is an extension of one invented by 
Deutsch8 , which was an early example of how the parallel-computing po- 
tential of a quantum computer could be harnessed. Subsequently algorithms 
were developed that dramatically accelerate database searches9 and the de- 
composition of large numbers into their  prime factors.  The  usefulness  of 
the internet depends on effective cryptography, which  currently relies  on 
the difficulty of prime-number decomposition. Hence by rendering existing 
cryptographic systems ineffective, the successful construction of a quantum 
computer would have a big impact on the world economy. 

Notwithstanding strenuous efforts around the world, quantum comput- 
ing remains a dream that will not be realised very soon. Its central idea is 
that the the integers up to 2

N
 1 can be mapped into the base states of an 

N -qubit quantum register, so a general state of such a register is associated 
with all representable integers, and the time evolution of the register involves 
massively parallel computing. The field is challenging both experimentally 
and theoretically. The challenge for theorists is to devise algorithms that 
extract information from a quantum  register given that  any  measurement 
of the register collapses its state and thus erases much of the information 
that was encoded in it before a measurement was made. Experimentally, the 
challenge is to isolate quantum registers from their environment sufficiently 
well that they do not become significantly entangled with the environment 
during a computation. We discuss the process of becoming entangled with 
the environment in the next section. 

 
 
 

6.3 The density operator 

To this point in this book we have assumed that we know what quantum 
state our system is in. For macroscopic objects this assumption is completely 
unrealistic, for how can we possibly discover the quantum states of the 10

23
 

carbon atoms in a diamond, or even the    10
5
 atoms in a protein molecule? 

To achieve this goal for  a  diamond,  at  least 10
23

  observables would  have 
to be measured, and the number would in reality be vastly greater because 
individual atoms would be entangled with one another, making the state of 
the diamond a linear combination of basis states of the form a1 a2 . . . aN , 
where ai denotes a state of the i

th
 atom. It is time we squared up to the 

reality of our ignorance of the quantum states of macro- and meso-scopic 
objects. 

Actually, we need to be cautious even when asserting that we know the 
quantum state of atomic-scale objects. The claim that the state of a system 
is known is generally justified by the assertion that a measurement has just 
been made, with the result that the system’s state has been collapsed into 
a known eigenstate of the operator of the given observable. This procedure 
for establishing the quantum state of a system is unrealistic in that it makes 
no allowance for experimental error, which we all know to be endemic in real 
laboratories: real experiments lead to the conclusion that the value of an 
observable is x     y, which is shorthand for “the probability distribution for 
the value of the observable is centred on x and has a width of the order y.” 
Since the measurement leaves the value of the observable uncertain, it does 
not determine the quantum state precisely either. 

Let us admit that we don’t know what state our system is in, but conjec- 
ture that the system is in one of a complete set of states {|n⟩}, and for each 

 

8 D. Deutsch, Proc. R. Soc., 400, 97 (1985) 
9 L. K. Grover, STOC’96, 212 (1996) 
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value of n assign a probability pn that it’s in the state n .10 It’s important 
to be clear that we are not saying that the system is in the state 

|φ⟩ = 
Σ √

p 
n 

|n⟩. (6.61) 

 

That is a well-defined quantum state, and we are admitting that we don’t 
know the system’s state. What we are saying is that the system may be in 
state   1 ,  or in state   2 ,  or state   3 ,  and assigning probabilities p1,  p2, . . . 
to each of these possibilities. 

Given this incomplete information, the expectation value of measuring 
some observable Q will be p1 times the expectation value that Q will have 
if the system is in the state |1⟩, plus p2 times the expectation value for the 
case that the system is in the state |2⟩, etc. That is 

Σ 
Q = pn⟨n|Q|n⟩, (6.62) 

n 

 
where we have introduced a new notation Q to denote the expectation value 
of Q when we have incomplete knowledge. When our knowledge of a system 
is incomplete, we say that the system is in an impure state, and corre- 
spondingly we sometimes refer to a regular state ψ as a pure state. This 
terminology is unfortunate because a system in an ‘impure state’ is in a per- 
fectly good quantum state; the problem is that we are uncertain what state 
it is in – it is our knowledge of the system that’s impure, not the system’s 
state. 

It  is  instructive  to Σrewrite equation  (6.62) by  inserting  either  side  of  Q 
identity operators I = 
Then we have 

j |qj⟩⟨qj | that  are  made  out  of  the  eigenkets  of  Q. 

Σ 
Q = 

nkj 

pn⟨n|qk⟩⟨qk |Q|qj⟩⟨qj |n⟩ = 
Σ 

qjpn|⟨qj |n⟩|2, (6.63) 
nj 

 

where the second equality follows from Q qj   = qj  qj   and the orthonormality 
of the kets  qj  .  Equation (6.63) states that the expectation value of Q is the 
sum of the possible measurement values  qj  times  the probability pn   qj  n   

2
 

of obtaining this value, which is the product of the probability of the system 
being  in the  state   n   and the probability of obtaining qj  in  the case that  it 
is. 

Now consider the density operator 

Σ 
ρ ≡ pn|n⟩⟨n|, (6.64) 

n 
 

where the pn are the probabilities introduced above. This definition is rem- 
iniscent of the definition Σ 

Q = qj |qj⟩⟨qj | (6.65) 
j 

 

of the operator associated with an observable (eq. 2.9). In particular, ρ is 
a Hermitian operator because the pn  are real.  It should  not be  considered 
an observable, however, because the pn are subjective not objective: they 
quantify our state of knowledge rather than hard physical reality. For exam- 
ple, if our records of the results of measurements become scrambled, perhaps 
through some failure of electronics in the data-acquisition system, our values 

of the pn will change but the system will not.  By contrast the spectrum {qj} 
 

10 See Problem 6.9 for a different and more physically plausible physical assumption. 

n 
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Box  6.3: Properties of  Tr 

The trace operator Tr extracts a complex number from an operator. We 
now show that although its definition (6.67) is in terms of a particular 

other basis.  Then we insert identity operators I  = j  |qj⟩⟨qj | either side 
basis {|m⟩}, its value is independent of the basis usΣed.  Let {|qj⟩} be any 

of A in Tr A = n⟨n|A|n⟩: 
Σ 

Σ Σ 
Tr A = ⟨n|qj⟩⟨qj |A|qk⟩⟨qk |n⟩ = ⟨qj |A|qk⟩⟨qk|n⟩⟨n|qj ⟩ 

njk kjn 

Σ (1) 
= ⟨qj |A|qj ⟩, 

j 

where we have used I  = n |n⟩⟨n| and ⟨qk|qj⟩ = δkj . 
Σ 

Another  useful  result  is  that  for  any  two  operators A  and  B, 
Tr(AB) = Tr(BA): 

Σ Σ 
Tr(AB) = ⟨n|AB|n⟩ = ⟨n|A|m⟩⟨m|B|n⟩ 

Σ 
n nm 

Σ (2) 
= ⟨m|B|n⟩⟨n|A|m⟩ = ⟨m|BA|m⟩ = Tr(BA). 

nm m 

that 
By making the substitutions B → C and A → AB in this result we infer 

Tr(ABC) = Tr(CAB). (3) 
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of Q is determined by the laws of nature and is independent of the complete- 
ness of our knowledge. Thus the density operator introduces a qualitatively 
new feature into the theory: subjectivity. 

To see the point of the density operator, we use equations (6.64) and 
(6.65) to rewrite the operator product ρQ: 

Σ 
ρQ = pnqj |n⟩⟨n|qj ⟩⟨qj |. (6.66) 

nj 
 

When this equation is premultiplied by   m   and postmultiplied by  m   and 
the result summed over m, the right side becomes the same as the right side 
of equation (6.63) for Q. That is, 

Tr(ρQ) ≡ 
Σ 

 

⟨m|ρQ|m⟩ = Q, (6.67) 
m 

 

where ‘Tr’ is short for ‘trace’ because the sum over m is of the diagonal ele- 
ments of the matrix for ρQ in the basis n . Box 6.3 derives two important 
properties of the trace operator. 

Equation (6.64) defines the density operator in terms of the basis {|n⟩}. 

What do we get if we Σexpress ρ in terms of some other basis {|qj⟩}?  To find 
out we replace |n⟩ by j ⟨qj |n⟩|qj ⟩ and obtain 

Σ 
ρ = 

njk 

Σ 
= 

jk 

pn⟨qj |n⟩⟨n|qk⟩ |qj⟩⟨qk | 

pjk |qj⟩⟨qk| where    pjk  ≡ 

 
Σ 

pn⟨qj |n⟩⟨n|qk⟩. 
n 

 
(6.68) 

 

This equation shows that whereas ρ is represented by a diagonal matrix in 
the     n     basis, in the     qj      basis ρ is represented by a non-diagonal matrix. 
This contrast arises because in writing equation (6.64) we assumed that our 
system was in one of the states of the set {|n⟩}, although we were unsure 



∂t 

{| ⟩} 
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which one. In general if the system is in one of these states, it will definitely 
not  be  in  any  of  the  states  {|qj⟩}  because  each  |n⟩  will  be  a  non-trivial 
linear  combination  of  kets  |qj⟩.  Thus  when  ρ  is  expanded  in  this  basis,  the 

expansion does not simply specify a probabilΣity to be in each state.  Instead 
it includes complex off-diagonal terms pjk  = n pn⟨qj |n⟩⟨n|qk⟩ that have no 
classical interpretation. When we have incomplete knowledge of the state of 
our system, we will generally not know that the system is in some state of a 
given complete set, so we should not assume that the off-diagonal elements of 
ρ vanish. Never the less, we may safely use equation (6.64) because whatever 
matrix represents ρ in a given basis, ρ is a Hermitian operator and will have 
a complete set of eigenkets.  Equation (6.64) gives the expansion of ρ in 
terms of its eigenkets. In practical applications we may not know what the 

eigenkets |n⟩ are, but this need not prevent us using them in calculations. 

The importance of ρ is that through equation (6.67) we can obtain from 
it the expectation value of any observable. As the system evolves, these ob- 
servables will evolve because ρ evolves. To find its equation of motion, we 
differentiate equation (6.64) with respect to time and use the TdSE. The 
differentiation is straightforward because pn is time-independent: if the sys- 

tem was in the state |n⟩ at time t, at any later time it will certainly be in 

whatever state |n⟩ evolves into. Hence we have 

dρ Σ 
= pn 

dt 

  
∂|n⟩

⟨n| + |n⟩ 

  
∂⟨n| 
∂t 

n 

1 Σ 
= 

ih̄ 
n 

1 
pn (H |n⟩⟨n| − |n⟩⟨n|H) =  

ih̄ 
(Hρ − ρH). 

(6.69) 

 

This equation of motion can be written more simply 
 

dρ 
ih̄ 

dt 

 

= [H, ρ]. (6.70) 

 
 

To obtain the equation of motion of an arbitrary expectation value Q = 
Tr(ρQ), we expand the trace in terms of a time-independent basis a and 
use equation (6.70): 

 
 

 

dQ 
ih̄  = īh 

dt 

Σ dρ 
⟨a| 

dt 
Q|a⟩ = 

a 

Σ 
⟨a|(Hρ − ρH)Q|a⟩ = Tr(ρ[Q, H]), (6.71) 

a 

 

where the last equality uses equation (3) of Box 6.3. Ehrenfest’s theorem 
(2.34) states that the rate of change of the expectation value Q for a given 
quantum  state  is  the  expectation  value  of  [Q, H ]  divided  by  ih̄,  so  equation 
(6.71) states that when the quantum state is uncertain, the expected rate of 
change of Q is the appropriately weighted average of the rates of change of 
Q for each of the possible states of the system. 

Notice that the density operator and the operators for the Hamiltonian 
and other observables encapsulate a complete, self-contained theory of dy- 
namics. If  we have incomplete knowledge of our system’s initial  state,  use 
of this theory is mandatory. If we do know the initial state, we can still use 
this apparatus by assigning our system the density operator 

 

ρ = |ψ⟩⟨ψ| (6.72) 

rather than using the TdSE and extracting amplitudes for possible outcomes 
of measurements. However, when ρ takes the special form (6.72), the use of 
the density operator becomes optional (Problem 6.8). 
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6.3.1 Reduced density operators 

We have seen that any physical interaction between two quantum systems 
is likely to entangle them. No man is an island and no  system  is  truly 
isolated (except perhaps the  entire Universe!)  Consequently, a  real system 
is constantly entangling itself with its environment.  We now show that even 
if our system starts in a pure state, once it has entangled itself with its 
environment, it will be in an impure state. 

We consider a  system that is comprised of two subsystems:  A, which 
will represent our system, and B, which will represent the environment – 
the environment consists of anything that is dynamically coupled to our 
system but not observed in sufficient detail for its dynamics to be followed. 
Let the density operator of the entire system be 

Σ 
ρAB =  

ijkl 

|A; i⟩|B; j⟩ρijkl⟨A; k|⟨B; l|. (6.73) 

 

Let Q be an observable property of subsystem A. The expectation value of 
Q is 

 
Q = Tr Qρ 

  
Σ Σ 

= ⟨A; m|⟨B; n|Q  
mn 

 
 

ijkl 

|A; i⟩|B; j⟩ρijkl⟨A; k|⟨B; l|  |A; m⟩|B; n⟩ 

Σ Σ 
= ⟨A; m|Q|A; i⟩ 

mi n 

ρinmn, 
 

 
(6.74) 

where the second equality exploits the fact that Q operates only on the 
states of subsystem A, and also uses the orthonormality of the states of each 
subsystem: A; k A; m = δkm, etc. We now define the reduced density 
operator of subsystem A to be 

 
ρA ≡ 

Σ 
⟨B; n|ρAB|B; n⟩ = 

n 

Σ 
|A; i⟩ 

im 

! 
Σ 

ρinkn 

n 

 
⟨A; k|, (6.75) 

 

where the second equality uses equation (6.73). In terms of the reduced 
density operator, equation (6.74) can be written 

Σ 
 

Q = ⟨A; m|QρA|A; m⟩ = Tr QρA. (6.76) 
m 

 

Thus the reduced density operator enables us to obtain expectation values of 
subsystem A’s observables without bothering about the states of subsystem 
B. It is formed from the density operator of the entire system by taking the 
partial trace over the states of subsystem B (eq. 6.75). 

Suppose both subsystems start in well-defined states. Then under the 
TdSE the composite system will evolve through a series of pure states ψ, t , 
and at time t the density operator of the composite system will be (cf. 6.72) 

ρAB = |ψ, t⟩⟨ψ, t|. (6.77) 

If the two subsystems have not become entangled, so ψ, t = A, t B, t , 
then the reduced density operator for A is 

Σ 
ρA = |A, t⟩⟨A, t| ⟨B; i|B, t⟩⟨B, t|B; i⟩ = |A, t⟩⟨A, t|, (6.78) 

i 
 

where we have used the fact that the set B; i is a complete set of states for 
subsystem B. Equation (6.78) shows that so long as the subsystems remain 
unentangled, the reduced density operator for A has the form expected for 
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a system that is in a pure state.  To show that entanglement will generally 
lead subsystem A into an impure state, we consider the simplest non-trivial 
example: that in which both subsystems are qubits. Suppose they have 
evolved into the entangled state 

1 
|ψ, t⟩ = √

2 
(|A; 0⟩|B; 0⟩ + |A; 1⟩|B; 1⟩) (6.79) 

Then evaluating the trace over the two states of B we find 

ρA = 
1
 ⟨B; 0| (|A; 0⟩|B; 0⟩ + |A; 1⟩|B; 1⟩) (⟨A; 0|⟨B; 0| + ⟨A; 1|⟨B; 1|) |B; 0⟩ 

+ 
1
 ⟨B; 1| (|A; 0⟩|B; 0⟩ + |A; 1⟩|B; 1⟩) (⟨A; 0|⟨B; 0| + ⟨A; 1|⟨B; 1|) |B; 1⟩ 

= 
1
 (|A; 0⟩⟨A; 0| + |A; 1⟩⟨A; 1|) , 

(6.80) 
which is the density operator of a very impure state. Physically this result 
makes perfect sense: in equation (6.80) ρA states that subsystem A has 
equal probability of being in either 0 or 1 , which is consistent with the 
state (6.79) of the entire system. In that state these two possibilities were 
associated with distinct predictions about the state of subsystem B, but 
in passing from ρAB to ρA we have lost track of these correlations: if we 
choose to consider system A in isolation, we lose the information carried 
by these correlations, with the result that we have incomplete information 
about system A. In this case system A is in an impure state. So long as we 
recognise that A is part of the larger system AB and we retain the ability 
to measure both parts of AB, we have complete information, so AB is in a 
pure state. 

In this example system A represents the system under study and system 
B represents the environment of A, which we defined to be whatever is dy- 
namically coupled to A but incompletely instrumented. If, for example, A is 
a hydrogen atom, then the electromagnetic field inside the vessel containing 
the atom would form part of B  because a hydrogen atom, being  comprised 
of two moving charged particles, is inevitably coupled to the electromagnetic 
field. If we start with the atom in its first excited state and the electro- 
magnetic field in its ground state, then atom, field and atom-plus-field are 
initially all in pure states.  After  some time the atom-plus-field will evolve 
into the state 

 

|ψ, t⟩ = a0(t)|A; 0⟩|F; 1⟩ + a1(t)|A; 1⟩|F; 0⟩, (6.81) 

where  A; n  is the n
th

  excited state of the atom, while   F; n   is the state of 
the electromagnetic field when it contains n photons of the frequency asso- 
ciated with transitions between the atom’s ground and first-excited states. 
In equation (6.81), a0(t) is the amplitude that the atom has decayed to its 
ground state while a1(t) is the amplitude that it is still in its excited state. 
When neither amplitude vanishes, the atom is entangled with the electro- 
magnetic field. If we fail to monitor the electromagnetic field, we have to 
describe the atom by its reduced density operator 

ρA = |a0|
2|A; 0⟩⟨A; 0| + |a1|

2|A; 1⟩⟨A; 1|. (6.82) 

This density operator indicates that the atom is now in an impure state. 
In practice a system under study will sooner or later become entangled 

with its environment, and once it has, we will be obliged to treat the system 
as one for which we lack complete information. That is, we will have to 
predict the results of measurements with a non-trivial density operator. The 
transition of systems in this way from pure states to impure ones is called 
quantum decoherence. Experimental work directed at realising the possi- 
bilities offered by quantum computing is very much concerned with arresting 
the decoherence process by weakening all couplings to the environment. 
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6.3.2 Shannon entropy 

Once we recognise that systems are typically in impure states, it’s natural 
to want to quantify the impurity of a state: for example, if in the definition 
(6.64) of the density operator, p3 = 0.99999999, then the system is almost 
certain to be found in the state  3   and predictions made by assuming that 
the system is in the pure state  3  will not be much in error, while if the 
largest probability occurring in the sum is 10−20

, the effects of impurity will 
be enormous. 

A probability distribution pi provides a certain amount of information 
about the outcome of some investigation. If one probability is close to unity, 
the information it provides is nearly complete. Conversely, if all the probabil- 
ities are small, no outcome is particularly likely and the missing information 
is large. The question we now address is “what is  the  appropriate measure 
of the missing information that  remains after  a probability distribution  pi 
has been specified?” 

Logic dictates that the required measure s(p1, ..... , pn) of missing infor- 
mation must have the following properties: 

s must be a continuous, symmetric function of the pi; 
s should be largest when every outcome is equally likely, i.e.,  when 
pi = 1/n for all i. We define 

s( 
1
 , . . . , 

1
 ) = sn (6.83) 

n n 

and require that sn+1 > sn (more possibilities implies more missing 
information). 
s shall be consistent in the sense that it yields the same missing informa- 
tion when there are different ways of enumerating the possible outcomes 
of the event. 

To grasp the essence of the last requirement, consider an experiment with 
three possible outcomes x1, x2 and x3 to which we assign probabilities p1, p2 
and p3,  yielding missing information s(p1, p2, p3).  We could group the last 
two outcomes together into the outcome x23, by which we mean “either x2 
or x3”. Then we assign a probability p23 = p2 + p3 to  getting  x23,  giving 
missing information s(p1, p23). To this missing information we have to add 
that associated with resolving the outcome x23 into either x2 or x3. The 
probability that we will have to resolve this missing information is p23, and 
the probability of getting x2 given that we have x23 is p2/p23, so we argue 
that  

s(p1, p2, p3) = s(p1, p23) + p23s 
  p2 

p23 

p3   
  

, 
p23 

 

. (6.84) 

This equation is readily generalised: we have n possible outcomes x1, . . . , xn 
with probabilities p1, . . . , pn.  We gather the outcomes into r groups and let 
y1 be the outcome in which one of x1, . . . , xk1 was obtained, y2 the outcome in 
which one of xk1 +1 . . . , xk2 was obtained etc, and let wi denote the probability 
of the outcome yi. Then since the probability that we get x1 given that we 
have already obtained y1 is p1/w1, we have 

s(p1, . . . , pn) = s(w1, . . . , wr) + w1s(p1/w1, . . . , pk1 /w1)+ 

· · · + wrs(pn−kr /wr, . . . , pn/wr). 
(6.85) 

Since s is a continuous function of its arguments, it suffices to evaluate 
it for rational values of the argumeΣnts.  So we assume that there are integers 
ni  such that pi  =  ni/N ,  where i ni = N by the requirement that the 
probabilities sum to unity. Consider a system in which there are N equally 
likely outcomes, and from these form n groups, with ni possibilities in the 
i
th

 group. Then the probability of the group is pi and the probability of 
getting any possibility in the i

th
 group given that the i

th
 group has come up, 

is 1/ni. Hence applying equation (6.85) to the whole system we find 

Σn 

s(1/N, . . . , 1/N ) = s(p1, . . . , pn) + pis(1/ni, . . . , 1/ni) (6.86) 
i 

• 
• 

• 



Box  6.4: Solving Equation  (6.88) 

Let s(n) ≡ sn. Then equation (6.88) is easily extended to 

s(mnr · · ·) = s(n) + s(m) + s(r) + · · · , 

so with n = m = r = · · · we conclude that 

s(n
k
) = ks(n). 

Now let u, v be any two integers bigger than 1. Then for arbitrarily large 
n we can find m such that 

m ln v 

n  
≤ 

ln u 
< 

n 

m + 1 
⇒ u ≤ v   < u . m n m+1 (1) 

Since s is monotone increasing, 

s(u
m

) ≤ s(v
n
) < s(u

m+1
) ⇒ ms(u) ≤ ns(v) < (m + 1)s(u) 

⇒ 
m s(v) m + 1 (2) 

n 
≤ 

s(u) 
< 

n 
. 

Comparing equation (1) with equation (2), we see that 
. 
. s(v) ln v . 1 

. . 
. . . s(u) 

− 
ln u . 

≤ 
n 

⇒ 
. s(v) s(u). 

. 
. . . ln v 

− 
ln u . 

≤ ǫ,
 

where  ǫ  =  s(u)/(n ln v)  is  arbitrary small.   Thus  we  have  shown  that 
s(v) ∝ ln v. 
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or with the definition (6.83) of sn, 

Σn 

s(p1, . . . , pn) = sN − 
i 

 

 
pisni 

 

  Σn 

N = 
i 

 
 

ni  . (6.87) 

This equation relates s evaluated on a general argument list to the values 
that s takes when all its arguments are equal. Setting all the ni = m we 
obtain a relation that involves only sn: 

sn = snm − sm. (6.88) 

It is easy to check that this functional equation is solved by  sn  =  K ln n, 
where K is an arbitrary constant that we can set to unity. In fact, in Box 6.4 
it is shown that this is the only monotone solution of equation (6.88). Hence 
from equation (6.87) we have that the unique measure of missing information 
is 

Σn 

s(p1, . . . , pn) = ln N − 
i 

Σ 

pi ln ni = − 
Σ 

pi(ln ni − ln N ) 
i 

 

 
(6.89) 

= − pi ln pi. 
i 

Since every probability pi is non-negative and less than or equal to one, s is 
inherently positive. Claude Shannon (1916–2001) first demonstrated11 that 
the function (6.89) is the only consistent measure of missing information. 
Since s(p) turns out to be  intimately  connected to thermodynamic entropy, 
it is called the Shannon entropy of the probability distribution. 

The Shannon entropy of a density operator ρ is defined to be 

s(ρ) = − Tr ρ ln ρ. (6.90) 
 

11 C.E. Shannon, Bell Systems Technical Journal, 27, 379 (1948). For a much fuller 
account, see E.T. Jaynes Probability Theory: the Logic of Science Cambridge University 
Press, 2003. 
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The right side of this expression involves a function, ln(x) of the operator 
ρ. We recall from equation (2.20) that f (ρ) has the same eigenkets as ρ and 
eigenvalues f (λi), where λi are the eigenvalues of ρ. Hence 

s = − Tr(ρ ln ρ) = − 
Σ Σ 

⟨n| 
n i 

Σ 
pi|i⟩⟨i| 

j 

ln(pj)|j⟩⟨j|n⟩ = − 
Σ 

pn ln pn. 
n 

(6.91) 
Hence s is simply the Shannon entropy of the probability distribution pi 
that appears in the definition (6.64) of ρ. 

 
 

6.4 Thermodynamics 

Thermodynamics is concerned with macroscopic systems about which we 
don’t know very much, certainly vastly less than is required to define a 
quantum state.  For  example,  the  system  might  consist  of  a  cylinder full 
of fluid and our knowledge be confined to the chemical nature of the fluid 
(that it is O2 or CO2, or whatever), the mass of fluid, its volume and the 
temperature of the environment with which it is in equilibrium. In the 
canonical  picture we consider that as a result of exchanges of energy with 
the environment, the energy of the fluid fluctuates around a mean U . The 
pressure also fluctuates around a mean value P , but the volume is well- 
defined and under our control. 

Thermodynamics applies to systems that are more complex than bodies 
of fluid, for example to a quantity of diamond. In such a case the stress in the 
material is not fully described by the pressure, and thermodynamic relations 
involve also the shear stress and the shear strain within the crystal. If the 
crystal, like quartz, has interesting electrical properties, the thermodynamic 
relations will involve the electric field within the material and the polarisation 
that it induces. A fluid is the simplest non-trivial thermodynamic system and 
therefore the focus of introductory texts, but the principles that it illuminates 
are of much wider validity. For simplicity we restrict our discussion to fluids. 

To obtain relations between the thermodynamic variables from a knowl- 
edge of the system’s microstructure, we need to assign a probability pi to 
each of the system’s zillions of quantum states. We argue that the only ratio- 
nal way to assign probabilities to the stationary states of a thermodynamic 

system is to choose them such that (i)  they  reproduce any measurements 
we have of the system, and (ii) they maximise the Shannon entropy. Re- 

quirement (ii) follows because in choosing the pi we must not specify any 
information beyond that included when we satisfy requirement (i) – our prob- 
abilities must “tell the truth, the whole truth and nothing but the truth”. 
It is straightforward to show (Problem 6.16) that the pi that maximise the 
Shannon entropy for given internal energy 

Σ 
U 

stationary 
states i 

Eipi (6.92) 

 

are given by 
p   =  

1 
e−βEi , (6.93a) 

i 
Z

 

where β ≡ 1/(kBT ) is the inverse temperature and 

Σ 
Z 

stationary 
states i 

e−βEi . (6.93b) 

 

The quantity Z defined above is called the partition function; it is man- 
ifestly a function of T and less obviously a function of the volume V and 
whatever other parameters define the spectrum {Ei} of the Hamiltonian. In 

≡ 

≡ 
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equation (6.93a) its role Σis clearly to ensure that the probabilities satisfy the 
normalisation condition i pi = 1. 

Since the probability distribution (6.93a) maximises the Shannon en- 
tropy for given internal energy, we take the density operator of a thermody- 
namic system to be diagonal in the energy representation and to be given 
by 

1 Σ
 

ρ = 
stationary 
states i 

e−βEi |i⟩⟨i|. (6.94) 

This form of the density operator is called the Gibbs distribution in honour 
of J.W. Gibbs (1839–1903), who died before quantum mechanics emerged but 
had already established that probabilities should given by equation (6.93a). 

The sum in equation (6.94) is over quantum states not energy levels. It 
is  likely  that  many  energyΣlevels  will  be  highly  degenerate  and  in  this  case 
the sum simplifies to Z  = α gαe−βE

α , where α runs over energy levels and 
gα is the number of linearly independent quantum states in level α. 

The expectation of the Hamiltonian of a thermodynamic system is 
 

 

H = Tr(Hρ) = 
Σ 

⟨n|H 
n 

Σ 
pi|i⟩⟨i|n⟩ = 

i 

Σ 
pnEn = U, (6.95) 

n 

where we have used the definition (6.92) of the internal energy. Thus the 
internal energy U of thermodynamics is simply the expectation value of the 
system’s Hamiltonian. Another important expression for U follows straight- 
forwardly from equations (6.92) and (6.93): 

 

U = − 
∂ ln Z 

. (6.96) 
∂β 

We obtain an interesting equation using equation (6.93a) to eliminate 
the second occurrence of pn from the extreme right of equation (6.91): 

Σ 
s = − 

n 

pn(−βEn − ln Z) = βU + ln Z. (6.97) 

In terms of the thermodynamic entropy 

S ≡ kBs (6.98) 

and the Helmholtz free energy 

F  ≡ −kBT ln Z (6.99) 

equation (6.97) can be written 
 

F = U − TS, (6.100) 

which in classical thermodynamics is considered to be the definition of the 
Helmholtz free energy. When we substitute our definition of F into equation 
(6.96), we obtain 

 

∂(βF ) ∂F ∂F 
U = 

∂β 
= F + β 

∂β  
= F − T 

∂T 
. (6.101) 

 

Comparing this equation with equation (6.100) we conclude that 

∂F 
S = − 

∂T 
. (6.102) 

The difference of equation (6.92) between two similar thermodynamic 
states is  

dU = 
Σ 

(dpiEi + pidEi). (6.103) 
i 

Z 
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Σ 
Similarly differencing the definition S = kB 
namic entropy (eqns 6.91 and 6.98), we obtain 

Σ 

i pi ln pi  of  the  thermody- 

 

Σ 
dS = −kB (ln pi + 1) dpi = −kB 

i 

ln pi dpi, (6.104) 
i 

 

where theΣsecond  equality exploits  the  fact  that  {pi} is  a  probability distri- 
bution so i piΣ= 1 always.  By equation (6.93a), ln pi = −Ei/(kBT ) − ln Z, 
so again using i pi = 1, equation (6.104) can be rewritten 

Σ 
T dS = Eidpi. (6.105) 

i 
 

If we heat our system up at constant volume, the Ei stay the same but the 
pi  change becauΣse they depend on T .  In these circumstances the increase in 
internal energy, i Eidpi, is the heat absorbed by the system. Consequently, 
equation (6.105) states that T dS is the heat absorbed when the system is 
heated with no work done. This statement coincides with the definition of 
entropy in classical thermodynamics. 

Substituting equation (6.105) into equation (6.103) yields 
 

dU = T dS − P dV , (6.106a) 
 

where  
P ≡ − 

Σ 
p

 ∂Ei 
. (6.106b) 

i 
∂

 
i 

If we isolate our system from heat sources and then slowly change its vol- 
ume, the adiabatic principle ( 11.1) tells us that the system will stay in 
whatever stationary state it started in. That is, the pi will be constant while 
the volume of the thermally isolated system is slowly changed. In classical 
thermodynamics this is an ‘adiabatic’ change. From equation (6.104) we see 
that the entropy S is constant during an adiabatic change, just as classical 
thermodynamics teaches. 

Since dS  = 0 in  an  adiabatic change,  the  change in  U  as  is  varied 
must be the mechanical work done on the system, P d , where P is the 
pressure the system exerts. This argument establishes that the quantity P 
defined by (6.106b) is the pressure. 

Differentiating equation (6.100) for the Helmholtz free energy and using 
equation (6.106a) to eliminate dU , we find that 

 

dF = −SdT − P dV . (6.107) 

From this it immediately follows that 

 
S = − 

  
∂F 

 

 

∂T V 

 
; P = − 

  
∂F 

 

 

∂V  T 

 
. (6.108) 

The first of these equations was obtained above but the second one is new. 
Equation (6.106a) is the central equation of thermodynamics since it 

embodies both the first and second laws of thermodynamics. This result es- 
tablishes that classical thermodynamics is a consequence of applying quan- 
tum mechanics to systems of which we know very little. Remarkably, physi- 
cists working in the first half of the 19

th
 century discovered thermodynamics 

long before quantum mechanics was thought of, using extremely subtle argu- 
ments concerning heat engines. Quantum mechanics makes these arguments 
redundant. Notwithstanding this redundancy, they continue to feature in un- 
dergraduate syllabuses the world over because they are beautiful. But then 
so are copperplate writing and slide rules, which have rightly disappeared 
from schools. 
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A possible explanation for the survival of thermodynamics as an in- 
dependent discipline is as follows. Equations (6.99), (6.100) and (6.108) 
establish that any thermodynamic quantity can be obtained from the depen- 
dence of the partition function on T and V . Unfortunately, this dependence 
can be calculated for only a very few Hamiltonians. In almost all practical 
cases we cannot proceed by evaluating Z. However, once we know that  Z 
and therefore F and S exist, we can determine their functional forms from 
experimental data. For example, by measuring the heat released on cooling 

our s∫ystem at constant volume to absolute zero, we can determine its entropy 
S = dQ/T . Similarly, we can measure the system’s pressure as a function 
of T  and     .   Then  by integrating equation (6.107) we can  obtain F (T,    ) 
and thus infer Z(T, ). In none of these operations is the involvement of 
quantum mechanics apparent, so engineers and chemists, who make exten- 
sive use of thermodynamics, are generally unaware that it is a consequence of 
quantum mechanics. Quantum mechanics provides us with relations between 
thermodynamics quantities but does not enable us to evaluate the quantities 
themselves. Evaluation must still be done with 19

th
 century technology. 

Although thermodynamics systems are inherently macroscopic, quan- 
tum mechanics plays a central role in determining their thermodynamic 
quantities because it defines the stationary states we have to sum over in 
(6.93b) to form the partition function. Before quantum mechanics was born, 
the thermodynamic properties of an ideal gas – one composed of molecules 
that occupy negligible volume and interact only at very short range – were 
obtained by summing over the phase-space locations of each molecule inde- 
pendently. In this procedure there are six distinct states of a three-molecule 
gas in which there are molecules at the phase-space locations x1, x2 and x3: 
in one state molecule 1  is at  x1,  molecule  2 is  at  x2  and  molecule 3 is  at 
x3, and a distinct state is obtained by swapping the locations of molecule 
1 and molecule 2, and so forth. Quantum mechanics teaches that the state 
of the gas is completely specified by listing the three occupied states, 1 , 
2 and 3 for  it  is  meaningless  to  say which  molecule  is  in  which  state. 

The classical way of counting states leads to absurd results even for gases at 
room temperature (Problem 6.22). At low-temperatures another aspect of 
classical physics leads to erroneous results: the low-lying energy levels of a 
gas are distributed discretely rather than continuously in E, with the result 
that specific heats always vanish in the limit  T  0  (Nernst’s  theorem; 
Problem 6.23), contrary to the prediction of classical physics. 

An important lesson to be learnt from the failure of classical physics to 
predict the properties of an ideal gas is the importance in quantum mechan- 
ics of thinking wholistically: we have to sum over the quantum states of the 
whole cylinder of gas, not over the states of individual molecules. This is 
analogous to the importance for understanding EPR phenomena of consid- 
ering the quantum system formed by the entangled particles taken together. 
In quantum mechanics the whole is generally very much more than the sum 
of its parts because there are non-trivial correlations between the parts.12 

 
 

6.5 Measurement 
In 1.4 we asserted that the state of a system ‘collapses’ into one of the 
eigenstates   qj    of the  operator Q  the instant we measure the  observable Q. 
Consequently, the result of measuring Q is to leave the system in the well- 
defined quantum state   qj  .  It’s  time to  examine this  collapse  hypothesis 
critically. 

Superficially the collapse hypothesis is merely an assertion that mea- 
surements are reproducible in the sense that if we measure something twice 
in  quick  succession,  we  will  obtain  the  same  result:  in  §2.1  |qj⟩ was  defined 

 

12 The origin of these correlations is the subject of §10.1. 
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to be  the state in  which measurement of Q was certain to yield  the value 
qj ,  so  if  the  measurement  of  Q  is  to  be  reproducible,  the  system  has  to  be 
in the state   qj    immediately after the measurement.  However, our system’s 
quantum state ψ  is supposed to describe the system’s real, physical state, 
not just our knowledge of it. So something physical must have happened to 

make |ψ⟩ shift from the value it had before the measurement to the state 
|qj⟩ |ψ⟩ that it had just after the measurement was completed.  Notice that 
the evolution from  ψ   to   qj   has not been derived from the TdSE, which we 
have stated to be the equation that governs the time-evolution of  ψ  .  So 
this Copenhagen interpretation of quantum mechanics implies that every 
measurement leads to a momentary suspension of the equations of motion, 
so the system can be steered, by forces unspecified, into a randomly chosen 
state! This is not  serious physics.  We need to consider more realistically 
what is involved in making a measurement. 

A first step from Copenhagen towards the real world can be taken by 
recognising that since real measurements are associated with error bars, they 
will not leave the system in a state in which the result of a subsequent 
measurement is certain. It follows that a real measurement of Q will in 

general not leave the system in one of the states   qi   in which the result of a 
subsequent measurement is certain. That is, the collapse hypothesis is false. 

The Copenhagen interpretation does, however, contain a crucial insight 
into measurement by stressing that any measurement physically disturbs the 
system, so the system’s state after a measurement has been made is different 
from what it was earlier. In classical physics we may or may not have to 
worry about the disturbance of the system by the measuring process – for 
example, when we measure the positions of Jupiter’s moons by pointing a 
telescope at them, we don’t need to worry about disturbance caused by mea- 
surement. But when we measure the voltage across a resistor by connecting 
a galvanometer in parallel with it, we change the voltage by increasing the 
current through the circuit either side of the resistor. We minimise this dis- 
turbance by buying a galvanometer with the highest affordable impedance, 
and we estimate the magnitude of the effect and try to correct for it. When 
measurements are made on systems small enough for quantum mechanics 
to be relevant, the system will be significantly disturbed because we cannot 
make instruments of arbitrary sensitivity – quantum mechanics itself makes 
this impossible. So the Copenhagen interpretation is right to stress that 
post- and pre-measurement states are significantly different. 

Where the Copenhagen interpretation slips up is in supposing that the 
disturbance caused by a measurement can be taken into account without 
knowing anything about the measuring instrument that was used. Physically 
it is obvious that since the disturbance is caused by the instrument, we 
cannot hope to predict the evolution of the system without knowledge of the 
physical principles on which the instrument works, and the configuration it 
was in when the measuring process started. In fact, it’s astonishing that 
useful predictions can be extracted from a theory that fails to engage with 
these key questions! 

The Copenhagen interpretation makes progress through two stratagems. 
First it assumes that the builder of the measuring instrument has been clever 
enough to make an instrument that makes essentially reproducible measure- 
ments. This being so, the state in which the measuring instrument leaves 
the system must be one of the eigenstates of the observable’s operator. Fo- 
cusing on instruments that measure reproducibly is a shrewd move because 
instruments that do not yield reproducible readings are regarded as ‘noisy’ 
and tend not to be used. So the Copenhagen interpretation does make an 
assumption about the nature of the measuring instrument – that it is a good 
one,  so  it  steers  the  system’s  state  to  one  of  the   qi    –  and  gets  by  without 
considering the detailed physics that actually does the steering. By declin- 
ing to consider the physics of the instrument, the theory remains general and 
able to produce results that apply to any instrument rather than a particular 
brand of electrometer, or whatever. 
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The second stratagem is to abandon causality and assert that the out- 
come of a measurement is inherently uncertain. It merely supplies probabili- 
ties of the various measurement outcomes. So while a differential equation is 
supplied with which to calculate with precision the evolution of the system’s 
state between measurements, the consequences of measurement are left to 
blind chance. This stratagem circumvents the failure to consider fully the 
nature of the measuring equipment, for (as we shall argue) it is the unknown 
state of this equipment at the start of the measuring process that makes the 
outcome of the measurement uncertain. 

A key insight of the Copenhagen interpretation is that the states  in 
which the outcome of measuring one observable is certain are generally dif- 
ferent from the states in which the outcome of measuring a different observ- 
able is certain. That is, there are fundamentally incompatible observables 
in the sense that if you are certain what value you will measure for one ob- 
servable, you cannot be certain what value you will measure for the other 
observable.   Since the states in which the outcomes of measurements are 
the eigenkets of an observable’s operator, and operators that do not have a 
complete set of mutual eigenkets do not commute, incompatible observables 
have non-commuting operators. There is nothing deeply mysterious about 
incompatible observables – it just happens that the act of measuring one 
observable drives the system into different states from those into which the 
system is driven by measuring the other observable. The key thing is to be 
clear that an observable is not an intrinsic property of the system, but a 
question we can ask of it.  In general my particle has neither a position nor 
a momentum, but these are questions I can ask of it, and after the question 
has been asked, the particle will be (temporarily) in a special state that does 
have a well-defined position / momentum. 

The probabilistic outcome of a measurement introduces to  physics a 
new feature of great consequence: irreversibility. After a measurement, it is 
impossible to determine what the state of the system was before the mea- 
surement was made. This is so because many different initial states of the 
system are consistent with measuring a particular value of the observable Q, 

and therefore causing the system to  finish in a given state |qi⟩. 
An instrument is itself a dynamical system, and its dynamics is governed 

by quantum mechanics. We make a measurement by putting the instrument 
‘into contact’ with our system – that is, we ensure that the instrument and 
the system are dynamically coupled by  a  non-negligible Hamiltonian.  Once 

in contact, the instrument and our system together form a composite system, 
and, like all dynamically coupled subsystems, they soon become entangled. 
That is, the state of the instrument becomes correlated with that of the 
system. It is as a consequence of this entanglement that the instrument is 

able to show a reading that reflects the state of the system being measured. 
The instrument must  be  sufficiently  macroscopic that  it  can be  read 

by a human being – if it were microscopic, an instrument would be  needed 
to measure it, and so on until eventually the macroscopic scale is reached. 
That is, an instrument that is not macroscopic can be considered part of the 
quantum system being studied and evolved with the TdSE; if a measurement 
is to be made, at some point the entire  quantum system has  to  interact 
with a macroscopic instrument. Anything macroscopic will be in an impure 
state ( 6.3). Consequently, once interaction with a macroscopic instrument 
is established, the outcome of the experiment will be probabilistic,  just as 
the Copenhagen interpretation asserts. 

A measurement will also be irreversible in the sense that one cannot 
compute the state that the system was in prior to the interaction because 
such a computation would require for the initial conditions complete knowl- 
edge of the instrument’s state after the measurement. 

This discussion shows that the collapse hypothesis is really a clever way 
to circumvent our unwillingness to follow the dynamics of system/instrument 
interaction. The failure to follow the interaction enables the theory to make 
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general statements that are valid irrespective of which devices are actually 
used for measurement, but in specific cases it should be possible to obtain 
a more complete understanding by properly considering the dynamics of 
the measuring instrument. Unfortunately, we probably need an extension 

to quantum mechanics to take this step, because a conventional quantum- 
mechanical theory of the measuring instrument will require us at some point 
to ‘observe’ the instrument using the collapse hypothesis, from which we are 
trying to escape: quantum mechanics is a theoretical arena from which the 
only exit to the real world is through the turnstile of the collapse hypothesis. 

We expect any extension of  quantum  mechanics  that  successfully  in- 
cludes the act of measurement to be formulated in terms of density opera- 
tors, because incomplete knowledge of the state of our instruments certainly 
makes a major contribution to the uncertain outcome of measurements, and 
may be entirely responsible for it. 

 

Problems 

6.1 A system AB consists of two non-interacting parts A and B. The dy- 

namical state of A is described by |a⟩, and that of B by |b⟩, so |a⟩ satisfies the 

TdSE for A and similarly for |b⟩. What is the ket describing the dynamical 
state of AB? In terms of the Hamiltonians HA and HB of the subsystems, 
write down the TdSE for the evolution of this ket and show that it is au- 
tomatically satisfied. Do HA and HB commute? How is the TdSE changed 
when the subsystems are coupled by a small dynamical interaction Hint? 
If A and B are harmonic oscillators, write down HA, HB. The oscillating 
particles are connected by a weak spring. Write down the appropriate form 
of the interaction Hamiltonian Hint. Does HA commute with Hint? Explain 
the physical significance of your answer. 

 

6.2 Explain what is implied by the statement that “the physical state of 
system A is  correlated with  the  state of  system B.”  Illustrate your answer 
by considering the momenta of cars on (i) London’s circular motorway (the 
M25) at rush-hour, and (ii) the road over the Nullarbor Plain in southern 
Australia in the dead of night. 

Explain why the states of A and B must be uncorrelated if it is possible 
to write the state of AB as a ket  AB; ψ  =  A; ψ1  B; ψ2   that is a product 
of states of A and B. Given a complete set of states for A, A; i and a 
corresponding complete set of states for B,     B; i    , write down an expression 
for a state of AB in which B is possibly correlated with A. 

6.3 Given that the state |AB⟩ of a compound system can be written as 

a  product  |A⟩|ΣB⟩ of  states  of  the  individual  systems,  show  that  when  |AB⟩ 
is  written  as ij  cij |A; i⟩|B; j⟩  in  terms  of  arbitrary  basis  vectors  for  the 
subsystems,  every  column  of  the  matrix  cij   is  a  multiple  of  the  leftmost 
column. 

6.4 Consider a system of two particles of mass m that each move in one 
dimension along a given rod. Let 1; x be the state of the first particle when 
it’s at x and  2; y  be the state of the second particle when it’s at y.  A 
complete set of states of the pair of particles is   xy   =   1; x  2; y   . Write 
down the Hamiltonian of this system given that the particles attract one 
another with a force that’s equal to C times their separation. 

Suppose the particles experience an additional potential 

 
V (x, y) = 

1
 C(x + y)

2
. (6.109) 

 
Show that the dynamics of the two particles is now identical with the dynam- 
ics of a single particle that moves in two dimensions in a particular potential 
Φ(x, y), and give the form of Φ. 
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6.5 In 6.1.4 we derived Bell’s inequality by considering measurements by 
Alice and Bob on an entangled electron-positron pair. Bob measures the 
component of spin along an axis that is inclined by angle θ to that used by 
Alice. Given the expression 

|−, b⟩ = cos(θ/2) e
iφ/2

|−⟩ − sin(θ/2) e−iφ/2
|+⟩, (6.110) 

for the state of a spin-half particle in which it has spin − 1 along the direction 

b with polar angles (θ, φ), with |±⟩ the states in which there is spin ± 1  along 
the z-axis, calculate the amplitude AB(−|A+) that Bob finds the positron’s 
spin to be − 1 given that Alice has found + 

1
 for the electron’s spin.  Hence 

2 
2 

2 
show that PB(−|A+) = cos  (θ/2). 

6.6 Show that when the Hadamard operator UH is applied to every qubit 
of an n-qubit register that is initially in a member m of the computational 
basis, the resulting state is 

1 
|ψ⟩ = 

2n/2 

2Σ
n −1 

x=0 

ax|x⟩, (6.111) 

where ax = 1 for all x if m = 0, but exactly half the ax = 1 and the other 
half the ax = −1 for any other choice of m. Hence show that 

   1 Σ 
UH ax|x⟩ = 

  
|0⟩ if all ax = 1 

2n/2 
x 

|m⟩ |0⟩  if half the ax = 1 and the other ax = −1. 

(6.112) 

6.7 Show that the trace of every Hermitian operator is real. 

6.8 Let ρ be the density operator of a two-state system. Explain why ρ 
can be assumed to have the matrix representation 

a c 
ρ = 

c∗ b
 

 

, (6.113) 

where a and b are real numbers. Let E0 and E1 > E0 be the eigenenergies of 
this system and 0 and 1 the corresponding stationary states. Show from 
the equation of motion of ρ that in the energy representation a and b are 
time-independent while c(t) = c(0)e

iωt
  with ω = (E1      E0)/h̄. 

Determine the values of a, b and c(t) for the case that initially the system 
is in the state ψ = ( 0 + 1 )/  2. Given that the parities of  0  and  1  are 
even and odd respectively, find the time evolution of the expectation value 
x in terms of the matrix element ⟨0|x|1⟩. Interpret your result physically. 

6.9 In this problem we consider an alternative interpretation of the density 
operator. Any quantum state can be expanded in the energy basis as 

|ψ; φ⟩ ≡ 
ΣN 

 
n=1 

   
pn e 

 

iφn |n⟩, (6.114) 

where φn is real and pn is the probability that a measurement of energy will 
return En. Suppose we know the values of the pn but not the values of the 
phases φn. Then the density operator is 

∫ 2π 

ρ = 
0 

d
N
 φ 

(2π)N 
|ψ; φ⟩⟨ψ; φ|. (6.115) 

Σ 
Show that this expression reduces to n pn|n⟩⟨n|.  Contrast the physical 
assumptions made in this derivation of ρ with those made in §6.3. 

Clearly |ψ; φ⟩ can be expanded in some other basis {|qr⟩} as 

|ψ; φ⟩ ≡ 
r 

Pr e iηr |qr⟩, (6.116) 

where Pr is the probability of obtaining qr on a measurement of the observ- 
able Q and the ηr(φ) are unknown phases. Why does this second expansion 
not lead to the erroneous conclusion that ρ is necessarily diagonal in the 
{|qr⟩} representation? 

√ 
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6.10 Show that the equation of motion of the density operator ρ is solved 
by 

ρt = U (t)ρ0U †(t), (6.117) 

where U (t) ≡ e−iHt/h̄
  is the time-evolution operator introduced in §4.3. 

6.11 ∗   Show that when the density operator takes the form ρ =  ψ   ψ , 
the expression Q = Tr Qρ for the expectation value of an observable can be 
reduced to ψ Q ψ . Explain the physical significance of this result. For the 
given form of the density operator, show that the equation of motion of ρ 
yields 

|φ⟩⟨ψ| = |ψ⟩⟨φ| where    |φ⟩ ≡ ih̄ 
∂|ψ⟩ 

− H|ψ⟩. (6.118) 

Show from this equation that |φ⟩ = a|ψ⟩, where a is real. Hence determine 
the time evolution of |ψ⟩ given the at t = 0 |ψ⟩ = |E⟩ is an eigenket of H. 
Explain why ρ does not depend on the phase of |ψ⟩ and relate this fact to 
the presence of a in your solution for |ψ, t⟩. 

6.12 The density operator is defined to be ρ = 
Σ 

α pα|α⟩⟨α|, where pα 
is  the  probability  that  the  system  Σis  in  the  state  α.    Given  an  arbitrary 
basis {|i⟩} and the expansions |α⟩ = i aαi|i⟩, calculate the matrix elements 
ρij  =   i ρ j   of ρ.  Show that the diagonal elements ρii  are non-negative real 
numbers and interpret them as probabilities. 

Σ 
6.13 Consider the density operator ρ = ij  ρij |i⟩⟨j| of a system that is in 
a pure state.  Show that every row of the matrix ρij  is a multiple of the first 
row and every column is a multiple of the first column. Given that these 
relations between the rows and columns of a density matrix hold, show that 
the system is in a pure state. Hint: exploit the real, non-negativity of ρ11 
established in Problem 6.12 and the Hermiticity of ρ. 

6.14 Consider the rate of change of the expectation of the observable Q 
when the system is in an impure state. This is 

dQ Σ 
= 

dt 
n 

d 
pn 

dt 
⟨n|Q|n⟩, (6.119) 

where pn is the probability that the system is in the state n . By using 
Ehrenfest’s theorem to evaluate the derivative on the right of (6.119), derive 
the equation of motion ih̄dQ/dt = Tr(ρ[Q, H]). 

6.15 Find the probability distribution (p1, . . . , pn) for n possible outcomes 
that maximises the Shannon entropy. Hint: use a Lagrange multiplier. 

6.16 Use  Lagrange multipliers  λ  and β  to  extremise the  ShannoΣn entropy 
of  the  prΣobability  distribution  {pi} subject  to  the  constraints  (i) i pi  = 1 
and (ii) i piEi = U . Explain the physical significance of your result. 

6.17 Explain why if at t = 0 the density operator of a system is given by 
the Gibbs distribution, it remains so at later times. 

6.18 A composite system is formed from uncorrelated subsystem A and 
subsystem B, both in impure states. The numbers pAi are the probabilities 
of the members of the complete set of states A; i for subsystem A, while 
the numbers  pBi  are the probabilities of the complete set of states B; i 
for subsystem B. Show that the Shannon entropy of the composite system is 
the sum of the Shannon entropies of its subsystems. What is the relevance 
of this result for thermodynamics? 

6.19 The 0 state of a qubit has energy 0, while the 1 state has energy ǫ. 
Show that when the qubit is in thermodynamic equilibrium at temperature 
T = 1/(kBβ) the internal energy of the qubit is 

ǫ 
U = 

eβǫ + 1 
. (6.120) 

Show  that  when  βǫ        1,  U        
1
 ǫ,  while  for  βǫ        1,  U       ǫe−βǫ

.   Interpret 
these results physically and sketch the specific heat C = ∂U/∂T  as a function 
of T . 
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6.20 Show that the time-evolution of the density operator leaves the Shan- 
non entropy s = − Tr ρ log ρ invariant. 

6.21 Show that the partition function of a harmonic oscillator of natural 
frequency ω is 

e−βh̄ω/2 

Zho =  
1 − e−βh̄ω . (6.121) 

Hence show that when the oscillator is at temperature T = 1/(kBβ) the 
oscillator’s internal energy is 

 

 
U = h̄ω 1 

+ 
1  . (6.122) 

ho 2 
eβh̄ω  − 1 

Interpret  the  factor  (e
βh̄ω

 1)−1
  physically.    Show  that  the  specific  heat 

C = ∂U/∂T is 
eβh̄ω  

2
 

C  = kB 
(eβh̄ω  − 1)2 

(βh̄ω)  . (6.123) 

Show that lim T→0 C = 0 and obtain a simple expression for C when kBT 
h̄ω. 

6.22 A classical ideal monatomic gas has internal energy U =
 3

 NkBT and 
pressure P = NkBT/ , where N is the number of molecules and is the 
volume they occupy. From these relations, and assuming that the entropy 
vanishes at zero temperature and volume, show that in general the entropy 
is 

S(T, V) = NkB( 
3
 ln T + ln V). (6.124) 

A  removable wall divides  a cylinder into  equal parts  of volume  .  Initially 
the wall is in place and each half contains N  molecules of ideal monatomic 
gas at temperature T . The wall is removed. Show that equation (6.124) 
implies that the entropy of the entire body of fluid increases by 2 ln 2 NkB. 
Can this result be squared with the principle  that dS  = dQ/T , where dQ is 
the heat absorbed when the change is made reversibly? What conclusion do 
you draw from this thought experiment? 

6.23 Consider a ‘gas’ formed by M non-interacting, monatomic molecules 
of mass m that move in a one-dimensional potential well V  = 0 for   x  < a 
and  otherwise. Assume that at sufficiently low temperatures all molecules 
are either in the ground or first-excited states. Show that in this approxima- 
tion the partition function is given by 

 

ln Z  = −MβE0 + e−3βE0   − e−3(M+1)βE0 where    E0 ≡ 
π

2
h̄

2
 

 

 

8ma2 

 

. (6.125) 

Show that for M large the internal energy, pressure and specific heat of this 
gas are given by 

 

 

U  = E0(M + 3e−3βE0 ) ;  P  = 
2E0 

−3βE0 
 

a 

2 

; CV  =  0  e−3βE0 . 
kBT 2 

(6.126) 
In what respects do these results for a quantum ideal gas differ from the 
properties of a classical ideal gas? Explain these differences physically. 

≫ 
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7 
Angular Momentum 

 
In Chapter 4 we introduced the angular-momentum operators Ji as the gΣener- 
ators of rotations. We showed that they form a pseudo-vector, so J

2
 = i   

2 

is a scalar. By considering the effect of rotations on vectors and scalars, we 
showed that the the Ji commute with all scalar operators, including J

2
, and 

found that commutator of Ji with a component of vector operator is given 
by equation (4.31).  From this result we dΣeduced that the Ji do not commute 
with one another, but satisfy [Ji, Jj ] = i k ǫijk Jk. 

Although we have from the outset called the Ji ‘angular-momentum 
operators’, the only connection we have established between the Ji and an- 
gular momentum is tenuous and by no means justifies our terminology: we 
have simply shown that when the Hamiltonian is invariant under rotations 
about some axis α̂, and the system starts in an eigenstate of the correspond- 
ing  angular-momentum  operator  α̂    J,  it  will  subsequently  remain  in  that 
eigenstate. Consequently, the corresponding eigenvalue is then a conserved 
quantity. In classical mechanics dynamical symmetry about some axis im- 
plies that the component of angular momentum about that axis is conserved, 
so it is plausible that the conserved eigenvalue is a measure of angular mo- 
mentum. This suggestion will be substantiated in this chapter. Another 
important task for the chapter is to explain how the orientation  of a system 
is encoded in the amplitudes for it to be found in different eigenstates of 
appropriate angular-momentum operators. We start by using the angular- 
momentum commutation relations to determine the spectrum of the Ji. 

 

 

7.1 Eigenvalues of Jz and J2 

Since no two components of J commute, we cannot find a complete set of 
simultaneous eigenkets of two components of J. We can, however, find a 
complete set of mutual eigenkets of J

2
 and one component of J because 

[J
2
, Ji] = 0.  Without loss of generality we can orient our coordinates so that 

the chosen component of J is Jz. Let us label a ket which is simultaneously 

an eigenstate of J
2
 and Jz as |β, m⟩, where 

J
2
|β, m⟩ = β|β, m⟩ ; Jz|β, m⟩ = m|β, m⟩. (7.1) 

 

We now define 
J± ≡ Jx ± iJy. (7.2) 
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These objects clearly commute with J
2
, while their commutation relations 

with Jz are 
 

[J+, Jz] = [Jx, Jz ] + i[Jy, Jz ] = −iJy − Jx = −J+ 

[J−, Jz] = [Jx, Jz ] − i[Jy, Jz] = −iJy + Jx = J−. 

 

(7.3) 

 

Since J± commutes with J
2
, the kets J± β, m are eigenkets of J

2
 with 

eigenvalue β. Operating with Jz on these kets we find 
 

JzJ+|β, m⟩ = (J+Jz + [Jz, J+]) |β, m⟩ = (m + 1)J+|β, m⟩ 

JzJ−|β, m⟩ = (J−Jz + [Jz, J−]) |β, m⟩ = (m − 1)J−|β, m⟩. 

 

(7.4) 

 

Thus, J+ β, m  and J− β, m   are also members of the complete set of states 
that are eigenstates of both J

2
 and Jz, but their eigenvalues with respect to 

Jz differ from that of |β, m⟩ by ±1. Therefore we may write 

J±|β, m⟩ = α±|β, m ± 1⟩, (7.5) 

where α± is a constant that we now evaluate.  We do this by taking the 

length-squared  of  both  sides  of  equation  (7.5).  Bearing  in  mind  that  J+
†   

= 
J−, we find 

2 

|α+| = ⟨β, m|J−J+|β, m⟩ = ⟨β, m|(Jx − iJy)(Jx + iJy)|β, m⟩ 

= ⟨β, m|(J
2
 − J

2
 − Jz)|β, m⟩ = β − m(m + 1). 

Similarly, |α−|2 = β − m(m − 1), so 

√   

(7.6) 

α± = β − m(m ± 1). (7.7) 

2 
. .2 

The Ji  are Hermitian operators, so ⟨ψ|Ji  |ψ⟩ = .Ji|ψ⟩. ≥ 0. Hence 

β = ⟨β, m|J
2
|β, m⟩ = ⟨β, m|(J

2
 + J

2
 + J

2
)|β, m⟩ ≥ m

2
. (7.8) 

So notwithstanding equation (7.5), it cannot be possible to create states with 
ever larger eigenvalues of Jz by repeated application of J+. All that can stop 
us doing this is the vanishing of α+ when we reach some maximum eigenvalue 
mmax that from equation (7.7) satisfies 

 

β − mmax(mmax + 1) = 0. (7.9) 

Similarly, α− must vanish for a smallest value of m that satisfies 

β − mmin(mmin − 1) = 0. (7.10) 

Eliminating β between (7.9) and (7.10) we obtain a relation between mmax 
and mmin that we can treat as a quadratic equation for mmin.  Solving this 
equation we find that 

 

mmin = 
1
 {1 ± (2mmax + 1)}. (7.11) 

The plus sign yields a value of mmin that is incompatible with our require- 
ment that mmin ≤ mmax, so we must have mmin = −mmax. To simplify the 
notation, we define j ≡ mmax, so that equation (7.9) becomes β = j(j + 1) 
and  −j  ≤ m ≤ j.  Finally,  we  note  that  since  an  integer  number  of  applica- 
tions of J−  will take us from  β, j   to   β,   j  , 2j  must be an integer – see 
Figure 7.1. In summary, the eigenvalues of J

2
 are j(j+1) with 2j = 0, 1, 2, . . . 

and for each value of j  the eigenvalues m of Jz  are (j, j − 1, . . . , −j). 
At this point we simplify the labelling of kets by defining |j, m⟩ to  be 

what has hitherto been denoted |β, m⟩ with β = j(j + 1) – we clear a great 
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Figure 7.1 Going from mmin to 
mmax in an integer number of steps 
in the cases j = 3 , 2. 

  

 
deal of clutter from the page by replacing j(j + 1), m with j, m . The kets’ 
eigenvalues with respect to J

2
 are of course unaffected by this relabelling. 

Had we known at the outset that the eigenvalues of J
2
 would be of the form 

j(j + 1), we would have used the new notation all along. 
In summary, we can find simultaneous eigenstates of J

2
 and one of the 

Ji, conventionally taken to be Jz. The eigenvalues of J
2
 are j(j + 1) with 

2j = 0, 1, . . ., and for any given j the eigenvalues m of Jz then run from +j 
to −j  in integer steps: 

j ≥ m ≥ −j. (7.12) 

In order to move from the state |j, m⟩ to the adjacent state |j, m ± 1⟩ we use 
the raising or lowering operators J± which act as 

√   
J±|j, m⟩ = α±(m)|j, m ± 1⟩ = j(j + 1) − m(m ± 1)|j, m ± 1⟩. (7.13) 

 

These operators only change the Jz eigenvalue, so they just realign a given 
amount of total angular momentum, placing more (J+) or less (J−) along 
the z-axis. So far, we have not discovered how to alter the J

2
 eigenvalue 

j(j + 1). 
It is sometimes helpful to rewrite the constants α±(m) of equation (7.13) 

in the form  

α+(m) = 

α−(m) = 

√   
(j    m)(j + m + 1) 

√ 
(j + m)(j − m + 1). 

 
(7.14) 

These equations make it clear that the proportionality constants for different 
m satisfy 

 

α+(m) = α+(−m − 1) 

α−(m) = α−(−m + 1) 

α+(m − 1) = α−(m) 

α−(m) = α+(−m). 

 

(7.15) 

 

For example, when J− lowers the highest state j, j , we obtain the same 
proportionality constant as when J+ raises the lowest state j, j ; conse- 
quently, we only need to work out half the constants directly, because we can 
then infer the others. 

By expressing Jx = 
1
 (J+ + J−) in terms of the ladder operators, we 

observe that when we apply Jx to a state j, m for j > 0 we obtain a ket 
that  differs from  j, m  ,  so  j, m   is never an eigenket of  Jx.  Hence  for j  > 0 
it is impossible to be certain what will be the result of measuring both Jz 
and Jx. It is trivial to see that this argument extends to the pair (Jz, Jy), 
so for j > 0 it is impossible to be certain of the outcome of more than one of 
the Ji. If j = 0 the outcome measuring of any component of J is certainly 
0, but a null vector has no direction. Consequently, there are no states in 
which the vector J has a well-defined direction. This situation contrasts with 
the case of the momentum vector p, which can have a well defined direction 
because its components commute with one another. 

In §4.1.2 we discovered that when the system is rotated through an 
angle α around the z axis, its ket |ψ⟩ transforms to |ψ′⟩ = U (α)|ψ⟩, where 
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the unitary operator U (α) = exp(  iαJz).  If  ψ   =  j, m   is an eigenket of 
Jz, U (α) simply changes its phase: 

U (α)|j, m⟩ = e−iαJz |j, m⟩ = e−iαm
|j, m⟩. (7.16) 

Since 2j is an integer, j (and hence m) must be either an integer or a half in- 
teger. Using this information in equation (7.16), we see that, after a rotation 
through 2π around the z-axis, we have either 

|j, m⟩ → |j, m⟩ for m even (7.17a) 

or 
|j, m⟩ → −|j, m⟩    for m odd. (7.17b) 

Equation (7.17a) is as expected; under a 2π rotation, the system returns to 
its original state. However, equation (7.17b) says that a system with half 
integer angular momentum does not return to its original state after a 2π 
rotation – the initial and final states are minus one another! This difference of 
behaviour between systems with integer and half-integer angular momentum 
is of fundamental importance, and determines many other characteristics of 
these systems.  A result of quantum field theory is   that ‘spin-half’ fields 
never attain macroscopic values: the quantum uncertainty in the value of 
a spin-half field is always on the same order as the value of the field itself. 
Integer-spin fields, by contrast, can attain macroscopic values:  values that 
are vastly greater than their quantum uncertainties. Consequently, classical 
physics – physics in the absence of quantum uncertainty – involves integer- 
spin fields (the electromagnetic and gravitational fields are examples) but no 
spin-half field. Our intuition about what happens when a system is rotated 
has grown out of our experience of classical physics, so we consider that 
things return to their original state after rotation by 2π. If we had hands-on 
experience of spin-half objects, we would recognise that this is not generally 
true. 

 
 

7.1.1 Rotation spectra of diatomic molecules 

Knowledge of the spectrum of the angular momentum operators enables us 
to understand an important part of the dynamics of a diatomic molecule such 
as carbon monoxide. For some purposes a  CO  molecule can be  considered 
to consist of two point masses, the nuclei of the oxygen and carbon atoms, 
joined by a ‘light rod’ provided by the electrons. In this model the molecule’s 
moment of inertia around the  axis that joins the  nuclei is negligible, while 
the same moment of inertia I applies to any perpendicular axis. 

In classical mechanics the rotational energy of a rigid body is 
    J 2 J J 2 

 
E = 

1
     x  +   y 

Ix Iy 
+   z 

Iz 
, (7.18) 

where the Ii are the moments of inertia about the body’s three principal 
axes and    is the  body’s  angular-momentum vector.   We  conjecture that 
the equivalent formula links the Hamiltonian and the angular momentum 
operators in quantum mechanics: 

h̄
2
 
  

J
2
 J

2
 J

2
 
 

 
H = x +  y  +  z . (7.19) 

2 Ix Iy Iz 

The best justification for adopting this formula is that it leads us to results 
that are confirmed by experiments. 

In the case of an axisymmetric body, we orient our body such that 
the symmetry axis is parallel to the z axis. Then I Ix = Iy and the 
Hamiltonian can be written 

h̄
2
 
  

J
2
 

H = 
  

  
+ J

2
 

1 
− 

   
1 . (7.20) 

 

2 I 
z
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From this formula and our knowledge of the eigenvalues of J
2
 and Jz, we 

can immediately write down the energies that form the spectrum of H: 

Ejm = h̄
2
  
  

j(j + 1) 
 

  

  
+ m

2
 

1 
− 

   
1 

, (7.21) 
2 I Iz I 

 

where j is the total angular-momentum quantum number and m < j. In 
the case of a diatomic molecule such as CO, Iz I so the coefficient of m

2
 is 

very much larger than the coefficient of j(j + 1) and states with m > 0 will 
occur only far above the ground state. Consequently, the states of interest 
have energies of the form 

 

h̄
2
 

Ej = j(j + 1) 
2I 

. (7.22) 

For reasons that will emerge in 7.2.2, only integer values of j are allowed. 
CO is a significantly dipolar molecule. The carbon atom has a smaller 

share of the binding electrons than the oxygen atom, with the result that it 
is positively charged and the oxygen atom is negatively charged. A rotating 
electric dipole would be expected to emit electromagnetic radiation. Because 
we are in the quantum regime, the radiation emerges as photons which, as 
we  shall  see,  can  add  or  carry away only  one  unit  ̄h  of  angular  momentum. 
It follows that the energies of the photons that can be emitted or absorbed 
by a rotating dipolar molecule are 

 

h̄
2
 

Ep = ± (Ej − Ej−1) = ±j 
I 

. (7.23) 

Using the relation E = hν between the energy of a photon and the frequency 
ν of its radiation, the frequencies in the rotation spectrum of the molecule 
are 

h̄ 
νj = j 

2πI 
. (7.24) 

In the case of 
12

CO, the coefficient of j evaluates to 113.1724 GHz and spec- 
tral lines occur at multiples of this frequency (Figure 7.2). 

In  the  classical  limit  of  large  j,       =  jh̄  is  the  molecule’s  angular  mo- 
mentum, and this is related to the angular frequency ω at which the molecule 
rotates  by       =  Iω.  When  in  equation  (7.24)  we  replace  jh̄  by  Iω,  we  dis- 
cover that the frequency of the emitted radiation ν is simply the frequency 
ω/2π at which the molecule rotates around its axis. This conclusion makes 
perfect sense physically. Now, because of the form of the Hamiltonian, the 
energy eigenstates are also the eigenstates of Jz and J

2
. Therefore in any 

energy eigenstate,   J
2
  = j(j + 1) and for low-lying states with m = 0 and 

j (1), j(j + 1) is significantly larger than j
2
. Therefore νj in (7.24) 

is smaller than the frequency at which the molecule rotates when it is in 
the  upper  state  of  t√he  transition.  On  the  other  hand,  νj  is  larger  than  the   h̄  

rotation frequency (j − 1)j of the lower state. Hence the frequency at 
which radiation emerges lies between the rotation frequencies of the upper 
and lower states. Again this makes sense physically. As we approach the 
classical regime, j becomes large so j(j + 1) j

2
 (j 1)j and the rotation 

frequencies of the upper and lower states converge, from above and below, 
on the frequency of the emitted radiation. 

Measurements of radiation from 115 GHz and the first few multiples of 
this frequency provide one of the two most important probes of interstel- 
lar gas.1 In denser, cooler regions, hydrogen atoms combine to form H2 
molecules, which are bisymmetric and do not have an electric dipole mo- 
ment when they are simply rotating. Consequently, these molecules, which 

 

1 The other key probe is the hyperfine line of atomic hydrogen that will be discussed 
in Chapter 8. 
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Figure 7.2 The rotation spectrum of CO. The full lines show the measured frequencies 
for transitions up to j = 38 37, while the dotted lines show integer multiples of the 
lowest measured frequency. Up to the line for j = 22  21 the dotted lines are obscured 
by the full lines except at one frequency for which measurements are not available. For 
j    22 the separation between the dotted and full lines increases steadily as a consequence 
of the centrifugal stretching of the bond between the molecule’s atoms. Measurements are 
lacking for several of the higher-frequency lines. 

 

together with similarly uncommunicative helium atoms make up the great 
majority of the mass of cold interstellar gas, lack readily observable spectral 
lines. Hence astronomers are obliged to study the cold interstellar medium 
through the rotation spectrum of the few parts in 10

6
 of CO that it contains. 

Important information can be gleaned from the relative intensities of 
lines associated with different values of j in equation (7.24). The rate at 
which molecules emit radiation and thus the intensity of the line2 is propor- 
tional to the number nj of molecules in the upper state. As we shall deduce 
in 7.5.3, all states have equal a priori probability, so nj is proportional to 
the number of states that have the given energy – the degeneracy or sta- 

tistical weight g of the energy level. From 7.1 we know that g = 2j + 1 
because this is the number of possible orientations of the angular momentum 
for quantum number j. 

In §6.4 we saw that when a gas is in thermal equilibrium at temper- 
ature  T ,  the  probability  pj  that  a  given  molecule  is  in  a  state  of  energy 
Ej is proportional to the Boltzmann factor exp( Ej/kBT ), where kB is the 
Boltzmann constant (eq. 6.93a). Combining this proportionality with the 
dependence on the degeneracy 2j + 1 just discussed leads us to expect that 
the intensity of the line at frequency νj will be 

 

Ij  ∝ (2j + 1) exp(−Ej/kBT ) (j > 0). (7.25) 

For E1 < kBT , j increases at small j before declining as the Boltzmann 
factor begins to overwhelm the degeneracy factor. Fitting this formula, which 
has only one free parameter (T ), to observed line intensities enables one both 
to measure the temperature of the gas, and to check the correctness of the 
degeneracy factor. 

Figure 7.2 shows that for large values of the quantum number j, the 
spacing between lines in the spectrum diminishes in apparent violation of the 
prediction of equation (7.24). Lines with large j are generated by molecules 
that are spinning very rapidly.  The bond between the nuclei is stretched like 
a spring by the centripetal acceleration of the nuclei. Stretching of the bond 
increases the moment of inertia I, and from equation (7.24) this decreases 
the frequency of the spectral lines (Problem 7.2). 

 
 
 
 

 
2 We neglect the absorption of photons after emission, which can actually be an im- 

portant process, especially for 12CO. 
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7.2 Orbital angular momentum 

Let x and p be the position and momentum operators of the system. Then, 
inspired by classical mechanics, we define the dimensionless orbital angular 
momentum operators by3 

1 1 Σ 
L ≡ 

h̄ 
x × p, that is    Li ≡ 

h̄
 ǫijkxjpk. (7.26) 

jk 

From the rules of Table 2.1 and the Hermitian nature of x and p, the Her- 
mitian adjoint of Li is 

L† = 
1 Σ 

ǫ 
 

p† x† = 
1 Σ 

ǫ 
 

 
x p  = L , (7.27) 

i
 h̄ 

jk 

ijk k  j h̄ 
ijk    j    k  i 

jk 

 

where  we  have  used  the  fact  that  [xj , pk]  =  0  for  j k.   Thus  the  Li  are 
Hermitian and are likely to correspond to observables.  We also define the 
total orbital angular momentum operator by 

 

L
2
 ≡ L · L = L

2
 + L

2
 + L

2
, (7.28) 

which is again Hermitian, and calculate a number of commutators. First, 
bearing in mind the canonical commutation relation (2.54), we have 

1 Σ 
[Li, xl] =  

h̄
 

jk 

Σ 

1 Σ 
ǫijk [xjpk, xl] =  

h̄
 

jk 

 
ǫijkxj [pk, xl] = −i 

Σ 
ǫijlxj 

j 

 
 
 

(7.29) 
= i ǫiljxj . 

j 
 

Similarly 

1 Σ 1 Σ Σ 
[Li, pl] =  

h̄
 ǫijk[xjpk, pl] =  

h̄
 

jk 

ǫijk [xj , pl]pk  = i 
jk j 

ǫiljpj . (7.30) 

 

Notice that these commutation relations differ from the corresponding ones 
for Ji [equations (4.30) and (4.32)] only by the substitution of L for J. From 
these relations we can show that Li commutes with the scalars x

2
, p

2
  and 

x · p. For example 

 
[Li, p

2
] = 

Σ Σ 
[Li, p

2
] = i 

j jk 

 
ǫijk(pkpj + pjpk) = 0, (7.31) 

 

where the last equality follows because the ǫ symbol is antisymmetric in jk 
while the bracket is symmetrical in these indices (see also Problem 7.3). We 
can now also calculate the commutator of one component of L with another. 
We have 

 

1 
[Lx, Ly] =  

h̄ 
[Lx, (zpx − xpz)] = i(−ypx + xpy) = iLz. (7.32) 

Clearly each Li commutes with itself, and the other non-zero commutators 
can be obtained from equation (7.32) by permuting indices. These commu- 
tators mirror the commutators (7.104) of the Ji. 

L is a vector operator by virtue of the way it is constructed out of the 
vectors x and p. It follows that L

2
 is a scalar operator. Hence the way these 

 

3 In many  texts  L is defined  without the  factor h̄−1.  By making L dimensionless, this 
factor simplifies many subsequent formulae. 
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operators commute with the total angular momentum operators Ji follows 
from the work of §4.2: 

[Ji, Lj ] = i 
Σ 

ǫijkLk ; [Ji, L
2

] = 0. (7.33) 
k 

Although p
2
 and x

2
 commute with Li, the total angular momentum 

operator J
2
 does not: 

[J
2
, Li] = 

Σ Σ 
[J

2
, Li] = i 

j jk 

ǫjik(LkJj + JjLk). (7.34) 

The right side does not vanish because the final bracket is not symmetric in 
jk.  The physical significance of [J

2
, Li] being  non-zero is that if our system 

is in a state  of well-defined total angular momentum,  in general there  will 
be uncertainty in the amount of orbital angular momentum it has about any 
axis. We shall explore the consequences of this fact in §7.5. 

 
7.2.1 L as the generator of circular translations 

In §4.1.1 we saw that when the system is displaced along a vector a, its ket 
is  transformed  by  the  unitary  operator  U (a)  =  e−ia·p/h̄

.   We  now  imagine 
successively performing n translations through vectors a1, a2 . . . , an . Since 
each translation will cause ψ to be acted on by a unitary operator, the final 
state will be 

U (an) . . . U (a2)U (a1)|ψ⟩ = 
 Yn 

 

exp 

  
i 

h̄ 
ai · p 

   

|ψ⟩ 
i=1 

!
 

i Σn (7.35) 

= exp 
h̄ 

ai 
i=1 

· p   |ψ⟩, 

where the second equality follows because the components of p commute 
with  one another.  Since  the  expoΣnent  in  the  last  line  is  proportional to  the 
overall displacement vector A ≡ 

n 
i=1 ai, the change in |ψ⟩ is independent 

of the path that the system takes. In particular, if the path is closed, A = 0 
and ψ  is unchanged. 

Now consider the effect of moving the system in a circle centred on the 
origin and in the plane with unit normal n. When we increment the rotation 
angle α by δα, we move the system through 

δa = δα n × x. (7.36) 

The associated unitary operator is 

i i 
U (δa) = exp — 

h̄ 
δα (n × x) · p = exp   − 

h̄ 
δα n · (x × p) 

(7.37) 

= e−iδα n·L. 

The unitary operator corresponding to rotation through a finite angle α is a 
high power of this operator. Since the exponent contains only one operator, 
n L, which inevitably commutes with itself, the product of the exponentials 
is simply 

where α ≡ αn. 

U (α) = e−iα·L, (7.38) 

The difference between the total and orbital angular momentum oper- 
ators is now apparent. When we rotate the system on a turntable through 

an angle α, the system’s ket is updated by e−iα·J. When we move the sys- 
tem around a circle without modifying its orientation, the ket is updated 

by e−iα·L. The crucial insight is that the turntable both moves the system 
around a circle and reorientates it. The transformations of which J is the 
generator reflects both of these actions. The transformations of which L is 
the generator reflects only the translation. 
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Figure 7.3 J both swings the particle around the origin and rotates its spin (left), while 
L moves the particle, but leaves the direction of the spin invariant (right). 

 
7.2.2 Spectra of L

2
 and Lz 

We have shown that the Li commute with one another in exactly the same 
way that the Ji do. In 7.1 we found the possible eigenvalues of J

2
 and Jz 

from the commutation relations and nothing else. Hence we can without 
further ado conclude that the possible eigenvalues of L

2
 and Lz are l(l + 1) 

and m, respectively, with l m l, where l is a member of the set 
(0, 

1
 , 1, 

3
 , . . .). 

2 2 

In the last subsection we saw that L is the generator of translations 
on circles around the origin, and we demonstrated that when a complete 
rotation through 2π is made, the unitary operator that L generates is simply 
the identity. Consider the case in which we move the system right around the 
z axis when it is in the eigenstate l, m  of L

2
 and Lz.  The unitary operator 

is then  e−2πiLz    and the transformed ket is 

|l, m⟩ = e−2πiLz |l, m⟩ = e−2mπi
|l, m⟩. (7.39) 

Since the exponential on the right side is equal to unity only for integer m, 
we conclude that Lz, unlike Jz has only integer eigenvalues. Since for given 
l, m runs from l to l, it follows that l also takes only integer values. Thus 
the spectrum of L

2
 is l(l + 1) with l = 0, 1, 2, . . ., and for given l the possible 

values of Lz are the integers in the range (−l, l). 

 
7.2.3 Orbital angular momentum eigenfunctions 

We already know the possible eigenvalues of the operators L
2
 and Lz. Now 

we find the corresponding eigenfunctions. 
In the position representation, the Li become differential operators. For 

example 
1 ∂ ∂ 

Lz  =  
h̄ 

(xpy − ypx) = −i x
∂y 

− y 
∂x 

(7.40) 

Let (r, θ, φ) be standard spherical polar coordinates. Then the chain rule 
states that 

∂ ∂x  ∂ 
= 

∂y ∂ 
+ 

∂z  ∂ 
+ . (7.41) 

∂φ ∂φ ∂x ∂φ ∂y ∂φ ∂z 

Using x = r sin θ cos φ, y = r sin θ sin φ and z = r cos θ we find 
 

∂ ∂ ∂ ∂ ∂ 
= r sin θ 

∂φ 

That is 

— sin φ
∂x 

+ cos φ
∂y  

= 

 
∂ 

x
∂y 

− y 
∂x 

= iLz. (7.42) 

Lz = −i 
∂φ

. (7.43) 

Let |l, m⟩ be a simultaneous eigenket of L
2
 and m for the eigenvalues l(l + 1) 

and m, respectively. Then Lz|l, m⟩ = m|l, m⟩ and the wavefunction ψlm(x) ≡ 

⟨x|l, m⟩ must satisfy the eigenvalue equation 

∂ψlm 
−i  

∂φ   
= mψlm. (7.44) 



± 
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The solution of this equation is 

ψlm(r, θ, φ) = Klm(r, θ)e
imφ

, (7.45) 

where Klm is an arbitrary function of r and θ. Since m is an integer, ψlm is 
a single-valued function of position. 

In our determination of the spectra of J
2
 and Jz in §7.1, important roles 

were played by the ladder operators J± = (Jx ± iJy). If we define 

L± ≡ Lx ± iLy, (7.46) 

then by analogy with equation (7.5) we will have that 

L±|l, m⟩ = α±|l, m ± 1⟩, (7.47a) 

where  
α±(m) = 

√   
l(l + 1) − m(m ± 1). (7.47b) 

It will be helpful to express L± in terms of partial derivatives with re- 
spect to spherical polar coordinates. We start by deriving a relation between 
partial derivatives that we will subsequently require. From the chain rule we 
have that 

∂ ∂ ∂ ∂ 
= r cos θ 

∂θ 
cos φ + sin φ 

∂x ∂y 
— r sin θ 

∂z
.  (7.48a) 

Multiplying the corresponding expression (7.42) for φ by cot θ yields 

∂ ∂ ∂ 
cot θ = r cos θ 

∂φ 
— sin φ

∂x 
+ cos φ

∂y
 . (7.48b) 

Adding or subtracting i times (7.48b) to (7.48a) we obtain 
  

∂ ∂ ∂ ∂ ∂ 

∂θ 
± i cot θ 

∂φ 
= r cos θ    (cos φ ∓ i sin φ) 

∂x 
+ (sin φ ± i cos φ) 

∂y 
− r sin θ 

∂z
 

∓iφ
    ∂ ∂ ∂ = r cos θe 

∂x 
± i 

∂y 
— r sin θ 

∂z
. 

(7.49) 

Multiplying through by e±iφ
, we obtain the needed relation: 

    
e±iφ

 
∂ 

i cot θ 
∂

 
∂θ ∂φ 

  ∂ 
= r cos θ 

∂x 

∂    
± i 

∂y
 

r sin θ e±iφ ∂ 
. (7.50) 

∂z 

With this expression in hand we set to work on L+. In the position repre- 
sentation it is 

∂ ∂ ∂ ∂ 
L+ = −i y 

∂z 
− z 

∂y +   z 
∂x 

− x
∂z

 
  ∂ ∂ ∂ 

= z + i 
∂x ∂y 

  ∂ 
 

 

— (x + iy) 
∂z

 

∂    
 

 

 
iφ ∂ 

(7.51) 

= r cos θ + i 
∂x ∂y — r sin θ e   

∂z
,  

so with equation (7.50) we can write 

iφ
     ∂ ∂    

L+ = e + i cot θ 
∂θ ∂φ 

. (7.52a) 

Similarly 
∂ ∂ ∂ ∂ 

L− = −i y 
∂z 

− z 
∂y — z 

∂x 
− x

∂z
 

  ∂ ∂ ∂ 
= −z 

  
∂x 

− i 
∂y 
  ∂ 

+ (x − iy) 
∂z

 

∂    

 

  (7.52b) ∂ 
= −   r cos θ ∂x 

− i 
∂y 

r sin θ e−iφ
    
∂z 

−iφ
     ∂ ∂    

= −e 
∂θ 

− i cot θ 
∂φ 

. 

− 

− 
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Table 7.1  The first six spherical harmonics 

 

 

q  
0

 

 m 
±1 ±2 

Ym 
0 

Ym 
1 

Ym 
2 

  1   
 4π 

q 
 6

 cos θ  8π  
q 

  10 (3 cos
2
 θ − 1) 

32π 

 
∓ 

∓ 

 

q   
  3  sin θe±iφ

  8π  
q 

  15  sin 2θe±iφ 
32π 

 

 
q   

  15 sin2 θe±2iφ 
32π 

The state l, l with the largest permissible value of m for given l must 
satisfy the equation L+ l, l = 0. Using equations (7.45) and (7.52a), in the 
position representation this reads 

 
∂Kll 

∂θ    
− l cot θKll = 0. (7.53) 

Thi s is ∫a first-or der linear differential equation. Its  integrating  factor  is 
exp −l dθ cot θ   = sin−l

 θ, so its solution is Kll = R(r) sin
l
 θ, where R is 

an arbitrary function. Substituting this form of Kll into equation (7.45), we 
conclude that 

ψll(r, θ, φ) = R(r) sin
l
 θ e

ilφ
. (7.54) 

From equation (7.54) we can obtain the wavefunctions ψlm of states with 
smaller values of m simply by applying the differential operator L−. For 
example 

  ∂ −iφ ∂ 
l
 

 
 

 
 

ilφ 

ψl(l−1)(r, θ, φ) = constant × R(r)e — 
∂θ 

+ i cot θ 
∂φ

 sin θ e 
(7.55) 

= constant × R(r) sin
l−1

 θ cos θe
i(l−1)φ

. 

Hence, the eigenfunctions of L
2
 and Lz for given l all have the same radial 

dependence, R(r). The function of θ, φ that multiplies R in ψlm is conven- 
tionally denoted Y

m
 and called a spherical  harmonic.  The normalisation 

of Y
m

 is chosen such that 

∫ 

d
2
Ω |Y

m
|2  = 1 with    d

2
Ω ≡ sin θ dθdφ (7.56) 

 

the element of solid angle. We have shown that 

Y
l
 ∝ sin

l
 θe

ilφ
 and    Y

l−1
 ∝ sin

l−1
 θ cos θe

i(l−1)φ
. (7.57) 

The normalising constants can be determined by first evaluating the integral 

∫ 2 

d Ω sin   θ = 4π 2       
(2l + 1)! 

 
(7.58) 

 

involved in the normalisation of Y
l
, and then dividing by the factor α− of 

equation (7.47b) each time L− is applied. 
The spherical harmonics Y

m
 for l   2 are listed in Table 7.1. Figures 7.4 

and 7.5 show contour plots of several spherical harmonics. Since spherical 
harmonics are functions on the unit sphere, the  figures show  a  series of 
balls with contours drawn on them. Since spherical harmonics are complex 
functions we had to decide whether to show the real part, the  imaginary 
part, the modulus or the phase of the function. We decided it was most 
instructive to plot contours on which the real part is constant; when the real 
part is positive, the contour is full, and when it is negative, the contour is 
dotted. 
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Figure 7.4 Contours of ℜ(Ym )  on the  unit sphere  for m = 15 (left),  m = 7 (centre)  and 
m = 2 (right). The contours on which ℜ(Ym ) = 0 are the heavy curves, while contours 
on which ℜ(Ym ) < 0 are dotted. Contours of the imaginary part of Ym would look the 
same except shifted in azimuth by half the distance between the heavy curves of constant 
azimuth. 

 
 

Figure 7.5 Top row: contours of (Ym) for m = 1 (left) and 0 (right) with line styles 
having the same meaning as in Figure 7.4. Contours of the imaginary part of Y1 would 
look the same as the left panel but with the circles centred on the y axis. Bottom row: 
contours of ℜ(Ym) for m = 2 (left), m = 1 (centre) and m = 0 (right). 

 
For large l, Y

l
 is significantly non-zero only where sin θ  1, i.e., around 

the equator, θ = π/2 – the leftmost panel of Figure 7.4 illustrates this case. 
The first l applications of L− each introduce a term that contains one less 
power of sin θ and an extra power of cos θ.   Consequently, as m diminishes 
from l to zero, the region of the sphere in which Y

m
 is significantly non-zero 

gradually spreads from the equator toward the poles – compare the leftmost 
and rightmost panels of Figure 7.4. These facts make good sense physically: 
Y

l
 is the wavefunction of a particle that has essentially all its orbital angular 

momentum parallel to the z axis, so the particle should not stray far from the 
xy plane.  Hence Y

l
, the amplitude to find the particle at θ, should be small 

for θ significantly different from π/2. As m diminishes the orbital plane is 
becoming more inclined to the xy plane, so we are likely to find the particle 
further and further from the plane. This is why Y

m
 increases away from the 

equator as m decreases. 
For large l the phase of Y

l
 changes rapidly with φ (leftmost panel of 

Figure 7.4). This is to be expected, because the particle’s large orbital 
angular momentum, lh̄, implies that the particle has a substantial tangential 
motion within the xy plane. From classical physics we estimate its tangential 
momentum  at  p  =  lh̄/r,  and  from  quantum  mechanics  we  know  that  this 
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implies  that  the  wavefunction  must  change  its  phase  at  a  rate  p/h̄  =  l/r 
radians per unit distance. This estimate agrees precisely with the rate of 
change of phase with distance around the equator arising from the factor e

ilφ
 

in Y
l
. When m is significantly smaller than l (rightmost panel of Figure 7.4), 

the rate of change of the wavefunction’s phase with increasing φ is smaller 
because the particle’s tangential momentum is not all in the direction of 

m imφ 
l 

For any value of m, Lx and Ly both have zero expectation values, as 
follows immediately from the relation Lx = 

1
 (L+ + L−). So the orientation 

of the component of the angular momentum vector that lies in the xy  plane 
is completely uncertain. Because of this  uncertainty, the  modulus of Y

m
 

is independent of φ, so there is no trace of an inclined orbital plane when 
m < l. An orbital plane becomes defined if there is some uncertainty in Lz, 
with the result that there are non-zero amplitudes ψm = l, m ψ for several 
values of m. In this case quantum interference between states of well-defined 
Lz can generate a peak in x ψ 

2
 along a great circle that is inclined to the 

equator. 
 
 

7.2.4 Orbital angular momentum and parity 

In 4.1.4 we defined the parity operator P , which turns a state with wave- 
function ψ(x) into the state that has wavefunction ψ′(x) ψ( x). We now 
show that wavefunctions that are proportional to a spherical harmonic Y

m
 

are eigenfunctions of P  with eigenvalue (−1)
l
. 

In polar coordinates the transformation x → −x is effected by θ → π−θ, 
φ → φ+π. Under this mapping, sin θ = sin(π − θ) is unchanged, while e

ilφ
 → 

e
ilπ

e
ilφ

  =  (−1)
l
e
ilφ

.   By  equation  (7.57),  Y
l
  ∝ sin

l
 θe

ilφ
,  so  Y

l
  → (−1)

l
Y

l
. 

That is, Y
l
 has even parity if l is an even number and odd parity otherwise. 

In   4.1.4 we saw that x and p are odd-parity operators:  P x = xP . 
From this and the fact that the orbital angular momentum operators Li 
are sums of products of a component of x and a component of p, it follows 

that both the Li and the ladder operators L± = Lx ± iLy  are even-parity 
operators. Now Y

m−1
 = L−Y

m
/α−, where α− is a constant, so applying 

l 

the parity operator 

P Y
l−1

 = 
 1 

L 

l 
 

 

P Y
l
 = (−1)

l
 
  1   

L 
 
Y

l
 = (−1)

l
Y

l−1
. (7.59) 

l α−    
− l α−    

−   l l 

 

That is, Y
l−1

 has the same parity as Y
l
. Since all the Y

m
 for a given l can 

l l l 

be obtained by repeated application of L− to Y
l
, it follows that they all have 

the same parity, (−1)
l
. 

 
7.2.5 Orbital angular momentum and kinetic energy 

We now derive a very useful decomposition of the kinetic energy operator 
HK p

2
/2m into a sum of operators for the radial and tangential kinetic 

energies. First we show that L
2
 is intimately related to the Laplacian opera- 

tor 
2
. From the definition (7.46) of the ladder operators for orbital angular 

momentum, we have 
 

L+L− = (Lx + iLy)(Lx − iLy) = L
2
 + L

2
 + i[Ly, Lx] 

x y 

= L
2
 + L

2
 + Lz. (7.60) 

x y 
 

Hence with equations (7.52) we may write 
 

L
2
 = L+L− − Lz + L

2
 

iφ ∂ 
z 
∂ −iφ ∂ 

 
 

∂ ∂ ∂
2
 

 
   = e + i cot θ e 

∂θ ∂φ — 
∂θ 

+ i cot θ 
∂φ

 + i 
∂φ 

− 
∂φ2 

.
 



— − 

2 

· 

2 

2 

r ∂r r ∂r r ∂r2 r ∂r r2 
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Differentiating out the right side 

 
2 ∂2 

 
2 ∂2 

 
 

∂ ∂    
 

  

2 ∂ ∂ ∂
2
 

 
   

L = − 
∂θ2  

− cot θ 
∂φ2 

+cot θ — 
∂θ 

+i cot θ 
∂φ

 — i csc 
θ 

∂φ 
+i 

∂φ 
− 

∂φ2 
.
 

The  first-order terms  in ∂/∂φ cancel because cot
2
 θ  csc

2
 θ  =  1.  This 

identity also enables us to combine the double derivatives in φ. Finally the 
single and double derivatives in θ can be combined so that the equation 
becomes   

L
2
 = − 

    
∂ ∂ 1 

sin θ + 
 

∂2      
, (7.61) 

sin θ ∂θ ∂θ sin
2
 θ ∂φ

2
 

which we recognise as −r
2
 times the angular part of the Laplacian operator 

∇ . 
Now we ask “what is the operator associated with radial momentum?”. 

The obvious candidate is r̂ p, where r̂ is the unit vector in the radial direction. 
Unfortunately this operator is not Hermitian: 

 

(r̂ · p)†  = p · ̂r /= r̂ · p, (7.62) 

so it is not an observable. This is a particular case of a general phenomenon: 
the product AB of two non-commuting observables A and B is never Her- 
mitian. But it is easy to see that 

1
 (AB + BA) is Hermitian. So we define 

 

pr  ≡ 1 (r̂ · p + p · ̂r), (7.63) 

which is manifestly Hermitian. We will need an expression for pr in the 

position representation.  Replacing p by −ih̄∇ we have 
 

ih̄ 1 
pr = − 

2 r 
r · ∇ + ∇ · (r/r) . (7.64) 

 

From the chain rule it is straightforward to show that 
 

∂ ∂ ∂ ∂ 
r
∂r 

= x
∂x 

+ y 
∂y 

+ z 
∂z 

= r · ∇ . (7.65) 

Moreover, ∇ · r = 3, so equation (7.64) can be rewritten 
 

ih̄ ∂ 3 r ∂ 
pr = − 

2
 ∂r 

+ 
r 

− 
r2  

+ 
∂r 

  
 

(7.66) 
∂ 1 

= −ih̄ + . 
∂r r 

 

This expression enables us to find the commutator 
 

∂ 
[r, pr] = −ih̄   r, 

∂r
 

 

= ih̄. (7.67) 

 

Squaring both sides of equation (7.66) yields 

      

p
2
 = −h̄

2
  ∂   

+  
1 ∂

 
1
 

∂
2
 2 ∂ 1 1 

 
 

+ = −h̄
2
  

  + − + 

h̄
2
  ∂ ∂  

 
 (7.68) 

= − 
r2 ∂r 

r2 . 
∂r 

 

We recognise this operator as −h̄
2
  times the radial part of the Laplacian op- 

erator ∇2. Since we have shown that L
2
 is −r

2
 times the angular part of the 

r2 

1 



r 

r 

× 

l 

≡ 

l 

≤ ≤ 

− 

− 
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Table 7.2  The first five Legendre polynomials 
 

 

0 1 
l 

2 

 
3 

 
4 

Pl(µ) 1 µ 
1 (3µ

2
 − 1) 2 

1 (5µ
3
 − 3µ) 2 

1 (35µ
4
 − 30µ

2
 + 3) 8 

   

Laplacian (eq.  7.61), it  follows  that  ∇2  = −(p
2
/h̄

2
 + L

2
/r

2
).  Consequently, 

the kinetic-energy operator HK = p
2
/2m = −(h̄

2
/2m)∇2  can be written 

 

HK = 

  
1 

p
2
 + 

2m 

h̄
2
L

2
 
 

 
 

 

r2 

 

. (7.69) 

 

The physical interpretation of this equation is clear: classically, the orbital 
angular momentum h̄L  is  mr     v = mrvt,  where vt  is  the tangential speed, 
so  the  term  ̄h

2
L

2
/2mr

2
  =  

1
 mv

2
  is  the  kinetic  energy  associated  with  the 

2 t 
tangential motion. On the other hand p

2
/2m =  

1
 mv

2
, so this term repre- 

r 2 r 

sents the kinetic energy due to radial motion, as we would expect. For future 
reference we note that the kinetic-energy operator can be also written 

h̄
2
  
  

1   ∂ ∂
 

L2   

HK = − 
2m

   

r2 ∂r 
r2    

∂r 
— 

r2 . (7.70) 

 

 

7.2.6 Legendre polynomials 

The spherical harmonic Y
0
 is special in that it is a function of θ only. We 

now show that it is, in fact, a polynomial in cos θ. In the interval 0 θ 
π of interest, θ is a monotone function of µ      cos θ, so without any loss 
of generality we may take Y

0
 to be proportional to a function Pl(µ). On 

this understanding, Pl is an eigenfunction of L
2
 with eigenvalue l(l + 1). 

Transforming the independent variable from θ to µ in our expression (7.61) 
for L

2
, we find that Pl must satisfy Legendre’s equation: 

  
 d 

(1 µ
2
) 

dPl 

dµ   dµ 

 
+ l(l + 1)Pl 

 
= 0. (7.71) 

 

We look foΣr polynomial solutions of this  equation.  Putting  in the trial solu- 
tion Pl = n bnµ

n
, we find 

Σ   
bn  n(n − 1)µ 

n 

 
n−2 — n(n + 1)µ 

} 
+ l(l + 1)µ

n
 

 
= 0. (7.72) 

 

This equation must be valid for any value of µ in the interval (   1, 1), which 
will be possible only if the coefficient of each and every power of µ individually 
vanishes. The coefficient of µ

k
 is 

 

0 = bk+2(k + 2)(k + 1) − bk {k(k + 1) − l(l + 1)} . (7.73) 

For k = 0 the expression connects b2 to b0, while for k = 2 it relates b4 to b2, 
and so on. Thus from this equation we can express bn as a multiple of b0 for 
even n, and as a multiple of b1 for odd n. Moreover, if l is an even number, 
we know from our discussion of parity that Pl must be an even function 
of µ, so in this case bn must vanish for n odd. Finally, bn will vanish for 
n even and greater than l on account of the vanishing of the curly bracket 
in equation (7.73) when k = l. This completes the proof that for even l, 
Pl(µ) is a polynomial or order l. An extremely similar argument shows that 
Pl(µ) is also a polynomial of order l when l is odd. The first five Legendre 
polynomials are listed in Table 7.2. 

n 
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The conventional normalisation of the Legendre polynomial Pl is the 
requirement that Pl(1) = 1. With this property, the Pl are not orthonormal. 
In fact ∫ 1

 
2 

dµ Pl(µ)Pl′ (µ) = 
2l + 1 

δll′ . (7.74) 
−1 

From this result it easily follows that the proportionality constant between 
Pl(cos θ) and the orthonormal functions Y

0
(θ) is such that 

 
Y

0
(θ) = 

r   
2l + 1 P (cos θ). (7.75) 

 

l
 4π 

l
 

 
 
 

7.3 Three-dimensional harmonic oscillator 
In this section we discuss the dynamics of a particle that moves in three 
dimensions subject to a central force that is proportional to the particle’s 
distance from the origin. So the Hamiltonian is 

 

p2 
1 2   2 

H = 
2m 

+ 2 mω r . (7.76) 

If we use Cartesian coordinates, this Hamiltonian becomes the sum of three 
copies of the Hamiltonian of the one-dimensional harmonic oscillator that 
was the subject of §3.1: 

 

H = Hx + Hy + Hz, (7.77) 
 

where, for example, Hx  = (p
2
 /2m)+ 

1
 mω

2
x

2
.  These one-dimensional Hamil- 

x 2 

tonians commute with one another. So there is a complete set of mutual 
eigenkets. Let  nx, ny, nz  be the state that is an eigenket of Hx with eigen- 
value  (nx +  

1
 )h̄ω  eq.  3.12,  etc.  Then   nx, ny, nz    will  be  an  eigenket  of  the 

three-dimensional Hamiltonian (7.76) with eigenvalue 
 

E = (nx + ny + nz +  
3
 )h̄ω. (7.78) 

 
Moreover, in the position representation the wavefunction of this state is just 
a product of three of the wavefunctions we derived for stationary states of a 
one-dimensional oscillator 

 

ψ(x) = unx (x)uny (y)unz (z). (7.79) 
 

In view of these considerations it might be thought that there is nothing 
we do not know about the Hamiltonian (7.76).  However, it is instructive 
to reanalyse the system from a more physical point of view, that recognises 
that  the  system  is  spherically  symmetric.   We  have  seen  that  [Li, p

2
]  =  0, 

and  [Li, r
2

] = 0,  so  [Li, H] = 0  and  [L
2
, H ] = 0.  From  this  result  it  follows 

that there is a complete set of mutual eigenstates of H, L
2
 and Lz. Very 

few of the eigenstates obtained from the one-dimensional Hamiltonians are 
eigenstates of either L

2
 or Lz. We now show how the eigenvalue problem 

associated with (7.76) can be solved in a way that yields mutual eigenkets of 
H, L

2
 and Lz. This exercise is instructive in itself, and some technology that 

we will develop along the way will prove extremely useful when we analyse 
the hydrogen atom in Chapter 8. 

We use equation (7.69) to eliminate p
2
 from equation (7.76) 

 

 p
2 

H = + 
2m 

h̄
2
L

2
 

 
 

2mr2 

 

+ 
1
 mω

2
r

2
. (7.80) 
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Figure 7.6 The effective potential 
(7.82) for (from bottom to top) 
l = 0, . . . , 5. The beads mark the 
classical turning points at the values 
of energy and angular momentum 
that quantum mechanics allows. 

 
 
 

We can assume that our energy eigenstates are also eigenstates of L
2
, so in 

this Hamiltonian we can replace L
2
 by an eigenvalue l(l + 1).  Hence we wish 

to find the eigenvalues of the radial Hamiltonian 
 

 p
2 

Hl = + 
2m 

l(l + 1)h̄
2
 

2mr2 

 

+ 
1
 mω

2
r

2
. (7.81) 

This is the Hamiltonian for a particle that moves in a one-dimensional ef- 
fective potential 

 

Veff(r) ≡ 
l(l + 1)h̄

2
 

2mr2 

 

+ 
1
 mω

2
r

2
. (7.82) 

Hl governs the oscillations of the mass about the minima of this potential, 
which is plotted in Figure 7.6.  The  eigenkets |E, l, m⟩ of H  are products of 
the eigenkets |E, l⟩ of Hl and the eigenkets |l, m⟩ of L

2
 and Lz: 

|E, l, m⟩ = |E, l⟩|l, m⟩. (7.83) 

Our determination of the allowed energies of a one-dimensional har- 
monic oscillator exploited the dimensionless operators A and A†,  which 
rather nearly factorise H/h̄ω.  So here we define the operator 

 
1 

Al  ≡ √
2mh̄ω 

  

ipr − 

 

(l + 1)h̄ 
+ mωr 

r 

 
. (7.84) 

 

The product of A and its  Hermitian adjoint A†
l   is 

 
A†A     1  

 
 = −ip 

    
(l + 1)h̄ − + mωr ip 

 
(l + 1)h̄ 

− + mωr 
l      l 2mh̄ω 

r
 r 

r
 r 

( 
2 

) 
    1  

= 
2mh̄ω 

1 

p
2
 + 

(l + 1)h̄ 
— 

r 
+ mωr 

l(l + 1)h̄
2
 

(l + 1)h̄ 
+ i  − 

r 
+ mωr, pr 

  
= 

2mh̄ω 
p

2
 + 

r2 + m
2

ω
2
r

2
 − (2l + 3)h̄mω    .  

(7.85) 
Comparing the right side with equation (7.81), we see that 

, , 

Hl = h̄ω A†
l Al + (l +  

3
 ) , (7.86) 

 

which bears a strong similarity to equation (3.3) for the one-dimensional 
harmonic oscillator. 
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The commutator of Al  and A†
l   is 

   
[A , A†] = 

   1  
ip (l + 1)h̄ 

− + mωr 
  

,  −ip (l + 1)h̄ 
− + mωr 

l
 l 2mh̄ω 

  
i 

r 
r 

r 
r

 
  

(l + 1)h̄ 
= 

mh̄ω 
pr,   − + mωr 

r 
(l + 1)h̄ 

=  
mωr2    

+ 1, 
 
 

(7.87) 
where we have used equation (7.67) to reach the last line. This result can be 
written more usefully in the form 

[A , A†] = 
Hl+1 − Hl  

+ 1. (7.88) 
l
 l h̄ω 

From this expression and equation (7.86) we can easily calculate the com- 
mutator of Hl with Al: 

[Al, Hl] = h̄ω[Al, A†
l Al] = h̄ω[Al, Al

†
]Al = (Hl+1 − Hl + h̄ω)Al. (7.89) 

Now let |E, l⟩ be an eigenket of Hl with eigenvalue E: 

Hl|E, l⟩ = E|E, l⟩. (7.90) 

We multiply both sides of the equation by Al and use equation (7.89) to 
reverse the order of Al and Hl: 

 

EAl|E, l⟩ = AlHl|E, l⟩ = (HlAl + [Al, Hl])|E, l⟩ 

= (Hl+1 + h̄ω)Al|E, l⟩. 

On rearrangement this yields 

 

(7.91) 

 

Hl+1(Al|E, l⟩) = (E −   ω)(Al|E, l⟩), (7.92) 
 

which says that Al|E, l⟩ is an eigenket of Hl+1  for the eigenvalue E − h̄ω, so 
 

Al|E, l⟩ = α−|E −   ω, l + 1⟩, (7.93) 

where α− is a normalising constant. 
Al creates the radial wavefunction for a state that has more orbital 

angular momentum and less energy than the state with which it started. 
That is, Al diminishes the radial kinetic energy by some amount and adds a 
smaller quantity of energy to the tangential motion. If we repeat this process 
a sufficient number of times, by following Al with Al+1 and Al+1 with Al+2, 
and so on, there will come a point at which no radial kinetic energy remains 
– we will have reached the quantum equivalent of a circular orbit. The next 
application of Al must annihilate the wavefunction. Hence AL|E, L⟩ = 0, 
where L(E) is the largest allowed value of l for energy E. If we operate on 
|E, L⟩ with HL, we find with equation (7.86) that 

E|E, L⟩ = HL|E, L⟩ = h̄ω(L +  
3
 )|E, L⟩, (7.94) 

 

so 

E = (L +  
3
 )h̄ω and    L(E) =   

E   
−   . 

 

Since  is a non-negative integer, it follows that the ground-state energy is 
3
 h̄ω and that the ground state has no angular momentum.  In general E/h̄ω 

is any integer plus 
3
 . These values of the allowed energies agree perfectly 

with what we could have deduced by treating H as a sum of three one- 
dimensional harmonic-oscillator Hamiltonians. 
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Figure  7.7  Radial  probability  distributions  of  circular  orbits  in  the  th√ree-dimensional 
harmonic  oscillator  potential  for  L = 1  and  L = 8.  The  scale  radius  ℓ = h̄/2mω. 

 

We shall define a circular orbit to be one that has the maximum an- 
gular momentum possible at its energy. We obtain the radial wavefunctions 
of these by writing the equation AL E, = 0 in the position representation. 
With equations (7.84) and (7.66) this equation becomes 

 

∂ 
+ 

1 
− 

L + 1 
+ 

mω 
r
  

u  (r) = 0. (7.95) 

 

This is a first-order linear differential equation. Its integrating factor is 

 ∫ 

exp 

  

dr − 
L 

+ 
mω 

r 

 
= r−L exp 

mω 
r2 

 
, (7.96) 

 

so the solution of equation (7.95) is 

2 2 √ 
uL(r) = constant × rLe−r

 
/4ℓ

 , where ℓ ≡ 

 

 
/2mω. (7.97) 

 

Notice that the exponential factor is simply the product of three exponential 
factors from equation (3.15), one in x, one in y and one in z. The wavefunc- 
tion varies with r, so  a circular orbit does  have some  radial kinetic  energy. 
In the limit of large in which classical mechanics applies, the radial kinetic 
energy is negligible compared to the tangential kinetic energy, and we neglect 
it. But it never really vanishes. 

Equation  (7.97)  gives  the  radial  wavefunction  for  a  circu∫lar  orbit.  The 
complete wavefunction is ψ(x) = uL(r)Y

m
(θ, φ), and since d

2
Ω Y

m
 = 1, L 

2 2 
l
 

the  radial  probability  density  is  P (r)  =  r
2
u

2
   ∝  r

2L+2
e−r

  
/2ℓ

  ,  where  the 

factor r
2
  arises from the expression for  the vo

L

lume element d
3
x in spherical 

polar coord√inates.  This density is plotted in Figur√e 7.7 for L = 1 and L = 8. 
2L+2 

For r/ℓ ≪ 2L + 2, P  rises as r . For r/ℓ > 2L + 2 it falls rapidly as 
the Gaussian factor takes over. Figure 7.7 shows that the uncertainty in r is 

ℓ, which is a small fraction of r when is not small. 
We may obtain the radial wavefunctions of more eccentric orbits by 

showing that A is a raising operator. Equation (7.89) yields 
 

AlHl = Hl+1Al + h̄ωAl (7.98) 
 

Daggering both sides we have 
 

HlAl
†  

= A†
l Hl+1 + h̄ωA†

l . (7.99) 
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Figure 7.8 The (E, l) plane and the 

action of Al and A†    . 

 
 

We now multiply both sides of Hl+1|E, l + 1⟩ = E|E, l + 1⟩ by A†
l : 

EA†
l |E, l + 1⟩ = A†

l Hl+1|E, l + 1⟩ = (Hl − h̄ω)Al
†
|E, l + 1⟩. (7.100) 

Rearranging 

Hl(Al
†
|E, l + 1⟩) = (E + h̄ω)(Al

†
|E, l + 1⟩). (7.101) 

Thus, we have shown that 

A†
l |E, l + 1⟩ = α+|E + h̄ω, l⟩, (7.102) 

where α+ is a normalising constant. By writing Al
† 

in the position repre- 
sentation, we can generate the wavefunctions of all non-circular orbits by 
repeatedly applying Al

† 
to the current wavefunction, starting with that of 

a circular orbit.  We start with the product of rL and a Gaussian factor 
[equation (7.97)]. From this A† 

L−1 generates terms proportional to rL+1
 and 

† 
rL−1

 times the Gaussian (Problem 7.25). From these two terms A then 

generates three terms, r L+2 , rL and r L−2 
L−2 

times the Gaussian, and so on. 
Consequently the number of radial nodes – radii at which the wavefunction 
vanishes  –  increases  by  one  with  each  application  of  Al

†
,  and  the  wavefunc- 

tion oscillates more and more rapidly in radius as Al
† 

invests a larger and 
larger fraction of the particle’s kinetic energy in radial motion. 

Figure 7.8 helps to organise the generation of radial wavefunctions. Each 
dot represents a radial wavefunction. From the dot at (E, l), operating with 
Al  carries one to  the next dot up and to the left, while operating with A†

l    1 

carries  one  to  the  next  dot  down  and  to  the  right.    At  half  the  energi
−
es 

only  even values  of l  occur,  and only odd  values of l  occur at the  other 
half of the energies. In Problem 7.22 you can show that, when one bears in 
mind that each dot gives rise to 2l + 1 complete wavefunctions, the number 
of wavefunction with energy E that we obtain in this way agrees with the 
number that we would obtain using wavefunctions of the one-dimensional 
harmonic oscillator via equation (7.79). 

 

 
7.4 Spin angular momentum 
In 7.2.1 we saw that the difference between J and L is that J is the gener- 
ator for complete rotations of the system, while L is the generator for dis- 
placements of the system around circles, while leaving its orientation fixed 
(Figure 7.3). Consequently the difference 

S ≡ J − L (7.103) 

is the generator for changes of orientation that are not accompanied by any 
motion of the system as a whole. Since J and L are vector operators, S is 
also a vector operator. Its components are called the spin operators. 
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We saw in   7.2 that L has exactly the same commutation relations as 
J with any function of the position and momentum operators only. From 
this fact and the definition (7.103), it follows that S commutes with all such 
functions. In particular [S, x] = [S, p] = [S, L] = 0. This essentially tells us 
that S has nothing to do with a system’s location, nor the way in which it 
may or may not be moving. S is associated with intrinsic properties of the 
system. 

The components Si of the spin operator inherit the usual angular mo- 
mentum commutation rules from Ji and Li: 

 

[Si, Sj ] = [Ji − Li, Jj − Lj ] 

= [Ji, Jj ] − [Li, Jj ] − [Ji, Lj ] + [Li, Lj ] 

= i ǫijk(Jk − Lk − Lk + Lk) 
k 

Σ 
= i ǫijkSk. 

k 

(7.104) 

 

We define S
2
 ≡ S · S and then equation (7.104) ensures that 

[S, S
2
] = 0. (7.105) 

 

Because the Si have exactly the same form of commutation relations as the 
Ji, we know that the possible eigenvalues of S

2
 are the numbers 0, 

1
 , 1, 

3
 , . . . 

2 2 

and that for given s the eigenvalues m of the Si move in integer steps from   s 
to s. Can s take half-integer values? This question is answered affirmatively 
by equation (7.103); since [Jz, Lz] = 0 we can find a  complete  set of states 
that simultaneously have well-defined values of both Jz and Lz. In general, 
the Jz eigenvalue could be either an integer or half-integer, whereas the Lz 
eigenvalue must be an integer. The difference Sz = Jz Lz must then be 
either an integer or half-integer. 

In the rest of this book we will make extensive use of commutation 
relations involving angular momentum operators. In Table 7.3 these have 
been gathered for later reference. 

 
 

7.4.1 Spin and orientation 

We have several times stated without proof that the orientation of the system 
is encoded in the amplitudes ajm  for the system to be found in states of well 
defined angular momentum, j, m . We now begin to justify this claim. For 

simplicity we consider spin angular momentum because we want to focus on 
the orientation of our system without concerning ourselves with its location. 
However, what we refer to as ‘spin’ is the total intrinsic angular momentum 
of the system. If the latter is a hydrogen atom, for example, it may contain a 
contribution from the orbital angular momentum of the electron in addition 
to the contributions from the intrinsic spins of the electron and the proton. 

Since the Si are Hermitian operators, any state ψ  may be expanded 
in terms of the complete set of eigenstates s, m  of,  say,  Sz  and S

2
.  We 

have seen that these states are labelled by an integer or half integer s, with 
−s ≤ m ≤ s, so the complete expansion is 

 

|ψ⟩ = 
Σ 

 
1 

s=0, 2 ,1,... 

Σs 

 
m=−s 

⟨s, m|ψ⟩|s, m⟩. (7.106) 

 

Fortunately, systems for which quantum mechanical effects are significant 
rarely have more than a handful of non-zero amplitudes    s, m ψ    in the sum 
of equation (7.106). In the simplest case we have an object with s = 0, a 
spin-zero object, such a pion. The sum in equation (7.106) contains only 
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Table 7.3  Commutators involving angular momentum 

Σ 
[Ji, vj ] = i k ǫijkvk where v  is  any vector or pseudovector 

[Ji, s] = 0 where s is  any scalar or pseudoscalar 

Σ 
[Li, wj ] = i k ǫijkwk   where w  is any vector or pseudovector function 

of only x, p and constant scalars and pseudoscalars 
 

[Li, f ] = 0 where f  is any scalar or pseudoscalar function 
of only x, p and constant scalars and pseudoscalars 

[Si, w] = 0 where w  is any function of spatial operators 

 

The following are important special cases of the above results 

 Σ 
[Ji, Jj ] = i k ǫijkJk 

Σ 
[Li, Lj ] = i k ǫijkLk 

Σ 
[Ji, Lj ] = i k ǫijkLk 

Σ 
[Si, Sj ] = i k ǫijkSk 

Σ 
[Ji, Sj ] = i k ǫijkSk 

[Li, Sj ] = 0 

[Ji, J
2

] = 0 [Ji, L
2

] = 0 [Ji, S
2

] = 0 

[Li, L
2

] = 0 [Li, S
2

] = 0 [Si, L
2

] = 0 

[Si, S
2

] = 0 [L
2
, J

2
] = 0 [S

2
, J

2
] = 0 

 

Since J = L + S and therefore J
2
 = L

2
 + S

2
 + 2L · S we also have 

[L , J
2
] = 2i 

Σ 
ǫ S L [S , J

2
] = 2i 

Σ 
ǫ L S 

i jk ijk  j  k i jk  ijk  j  k 

 
 

 

one eigenstate with s = 0, the state 0, 0 because an object with no spin 
cannot have any spin angular momentum around the z axis. 

When we rotate an object about the direction α without translating 

it, its state is updated by the operator U (α) = e−iα·S (cf.  equation  4.13). 
When we apply this operator to a state of a spin-zero object, the state 
emerges unchanged: 

 

U (α)|0, 0⟩ = exp (−iα · S) |0, 0⟩ = |0, 0⟩. (7.107) 

Hence, a spin-zero object, like a perfect sphere, is completely unchanged by 
an arbitrary rotation. In view of their invariance under rotations, spin zero 
particles are sometimes known as scalar particles.4 

Some very important systems require just the two terms in equation 
(7.106) that are associated with s = 

1
 . These systems are called spin-half 

objects. Electrons, quarks, protons and neutrons fall into this category. For 
example, by equation (7.106) the state of an electron can be written 

 

1 

Σ2 
|e−⟩ = 

 
⟨ 1 , m|e−⟩| 1 , m⟩. (7.108) 

2 2 

m=− 
1

 

 
4 Since both J and S commute with the parity operator P , behaviour under rotations 

does not tell us about behaviour under reflection, so spin zero particles could also be 
pseudoscalars. In fact, pions are pseudoscalar particles. 
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Because there are only two terms in this expansion, the quantum uncertainty 
in the orientation of a spin-half system is very great. We shall see that the 
most precise information we can have is that the end of the system’s angular 
momentum vector lies in a given hemisphere – for example, we could state 
that it lies within the northern rather than the southern hemisphere, or the 
western rather than the eastern hemisphere. Where it lies in the hemisphere 
is shrouded in quantum uncertainty. 

Another important class of systems contains those that have total spin 
quantum number s = 1. These systems are called spin-one objects. The W 
and Z bosons fall in this class. For a spin-one system, the expansion (7.106) 
reduces to just (2s + 1) = 3 terms.  For example, the state of a Z boson can 
be written 

Σ1 

|Z⟩ = ⟨1, m|Z⟩|1, m⟩. (7.109) 
m=−1 

We will see that we can constrain the end of the angular-momentum vector 
of a spin-one system to lie within a chosen polar cap, or in the equatorial 
band that lies between opposite polar caps. 

The larger a system’s spin s,  the more precisely we can constrain the 
end of its angular momentum vector.  It is rather as if systems were subject 
to random torques of a certain magnitude, and the faster it is spinning, 
the more stable its orientation can be in the  face of the  random torques. 
The same physical principle underlies the use of rifling in  guns to  stabilise 
the orientation of the projectile by imparting angular momentum to it as 
it flies down the barrel. A few concrete examples will clarify the physical 

interpretation of the quantum states |s, m⟩. 

 
7.4.2 Spin-half systems 

As in equation (7.108), the state of any spin-half system may be expanded 

in terms of just two Sz eigenstates | 1 , + 
1
 ⟩ and | 1 , − 1 ⟩ which we will call 

+  and respectively. Equation (7.108) then reads  ψ   = a +  + b . In 
this basis we can write the operators as (cf. equation 2.16)5 

 

Sx = 
⟨+|Sx|+⟩   ⟨+|Sx|−⟩ 

⟨−|Sx|+⟩    ⟨−|Sx|−⟩ 

 

; Sy = 
⟨+|Sy|+⟩  ⟨+|Sy|−⟩ 

⟨−|Sy|+⟩    ⟨−|Sy |−⟩ 
 

Sz = 
⟨+|Sz|+⟩   ⟨+|Sz|−⟩ 

⟨−|Sz|+⟩    ⟨−|Sz |−⟩ 

 

. (7.110) 

The elements of the matrix Sz are trivially evaluated because |±⟩ are the 
eigenkets of Sz with eigenvalues ± 1 . To evaluate the other two matrices we 
notice that Sx = 

1
 (S+ + S−), and Sy =

 1
 (S+ − S−), then use the relations 

S+ =  +  and S− +  = which follow from equations (7.5) and (7.7) 
for the spin operator. The result of these operations is 

Sx = 1 0  1 

1    0 
; Sy = 

1
 

0 i
 

i 0 
; Sz = 

1
 

1 0 

0 −1 
. (7.111) 

The matrices appearing here are the Pauli matrices, 
0 1 

ςx ≡ 
1 0

 
0 i 

;  ςy ≡ 
i 0

 ; ςz ≡ 
1 0 

0   −1 
, (7.112) 

so we can write S = 
1
 σ. It is straightforward to verify that the square of 

any Pauli matrix is the identity matrix: 
ς

2
 = I. (7.113) 

i   
This result implies that for any state 

2
   = 

  
2
 

2
  =  

1
 , which is 

consistent with the fact that the measurement of any component of S can 
produce only ± 1 . 

The Stern–Gerlach experiment In 1922, Stern and Gerlach6 conducted 

5 Here we are again slightly abusing the notation; Si are taken to be both the spin 
operators and their matrix representations. 

6 Gerlach, W. & Stern, O., 1922, Zeit. f. Physik, 9, 349 
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Figure 7.9 Schematic of a Stern– 
Gerlach filter. The atomic beam en- 
ters from the left. Between the pole 
pieces the magnetic field increases 
in intensity upwards, so atoms that 
have their spins aligned with B are 
deflected upwards and the other 
atoms are deflected downwards. 

 
 

 
Figure 7.10 Beam split by an SG 
filter and then up beam hits a sec- 
ond filter. 

 

 
some experiments with silver atoms that most beautifully illustrate the de- 
gree to which one can know the orientation of a spin-half object.  In addi- 
tion to this interest, these experiments provide clear examples of the stan- 
dard procedure for extracting experimental predictions from the  formalism 
of quantum mechanics. 

A silver atom is a spin-half object and has a magnetic dipole moment 
µ. which can be used to track the atom’s orientation. In a magnetic field 
B, a magnetic dipole experiences a force (µ B). Consequently, in a field 
that varies in strength with position, a dipole that is oriented parallel to B 
is drawn in to the region of enhanced B , whereas one that is antiparallel 
to B is repelled from this region. Stern and Gerlach exploited this effect to 
construct filters along the lines sketched in Figure 7.9. A powerful magnet 
has one pole sharpened to a knife edge while the other forms either a flat 
surface (as shown) or is slightly concave. With this geometry the magnetic 
field lines are close packed as they stream out of the knife edge, and then 
fan out as they approach the flat pole-piece. Consequently the intensity of 
the magnetic field increases towards the knife edge and the Stern–Gerlach 
filter sorts particles according to the orientation of their magnetic moments 
with respect to B. 

The experiments all start with a beam of sliver atoms moving in vacuo, 
which is produced by allowing vapourised silver to escape from an oven 
through a suitable arrangement of holes – see Figure 7.10. When the beam 
passes into a filter, F1, it splits into just two beams of equal intensity. We 
explain this phenomenon by arguing that the operator µi associated with 
the  i

th
 component of an atom’s magnetic moment is proportional to Si: 

µi = gSi.  Hence the filter has ‘measured’ n   S, where n is the unit vector in 
the direction of B; we are at liberty to orient our coordinate system so that 
n = ez, and n S = Sz. We know that for a spin-half system, a measurement 
of Sz can yield only  

1
 , so the splitting of the beam into two is explained. 

Given that there was nothing in the apparatus for producing the beam that 
favoured up over down as a direction for µ, it is to be expected that half of 

the atoms return + 
1
 and half − 1 , so the two sub-beams have equal intensity. 

We block the sub-beam associated with Sz = − 1  so that only particles with 

Sz = 
1
 emerge from the filter. 

We now place a second Stern-Gerlach filter, F2, in the path of the + 
sub-beam, as shown in Figure 7.10, and investigate the effect of rotating the 
filter’s magnetic axis n in the plane perpendicular to the incoming beam’s 
direction. Let this be the yz plane. The incoming particles are definitely in 
the state7   |+, z⟩ because they’ve just reported + 

1
  on a measurement of Sz. 

 

7 We relabel |+⟩  → |+, z⟩  to make clear that this is a state with spin up along the 
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F2 measures n · S, where n = (0, sin θ, cos θ) with θ the direction between 
n  and  the  z-axis.   If  |+, θ⟩ is  the  eigenket  of  n · S  with  eigenvalue  + 

1
 , 

the amplitude that the measurement yields + 
1
  is ⟨+, θ|+, z⟩.  The defining 

equation of |+, θ⟩ is  
1
 n·σ|+, θ⟩ =  

1
 |+, θ⟩ or, using the matrix representation 

2 

(7.111)   
2 

cos θ −i sin θ 
i sin θ − cos θ 

a 
= 

a 

b b 
, (7.114) 

where a        +, z +, θ   and b , z +, θ . We have to solve this equation 
subject to the normalisation condition a 

2
 + b 

2
 = 1. From the first row of 

the matrix we deduce that 
b 

= i 
1 − cos θ 

. (7.115) 
a sin θ 

From the trigonometric double-angle formulae we have 1 − cos θ = 2 sin
2
 

1
 θ 

and sin θ = 2 sin 
1
 θ cos 

1
 θ, so 

2 2 

b sin
 1

 θ 
= i 

2
  

a cos
 1

 θ. 

 

(7.116) 

The choices   
a 

=
 

b 

 
cos 

1
 θ 

i sin
 1

 θ 

 
 

(7.117) 

satisfy both equation (7.116) and the normalisation condition. The ampli- 
tude that a particle with spin up along the z-axis also has spin up along the 
n-axis is a∗ = ⟨+, θ|+, z⟩, so the probability that an atom will pass F2 is 

P2 = |a|2 = cos
2
 

1
 θ. (7.118) 

Thus, as θ is increased from 0 to  π,  the fraction of atoms that  get through 
F2 declines from unity to zero, becoming 

1
 when θ = π/2 and the magnetic 

axes of F1 and F2  are at  right  angles.  Physically it  would  be  surprising if 
the fraction that passed F2 when θ = π/2 were not a half since, when the 
magnetic moments of incoming atoms are perpendicular to the magnetic axis 
of a filter, there is nothing in the geometry of the experiment to favour the 
outgoing particles being parallel to the magnetic axis, rather than antipar- 
allel. When θ = π the magnetic axes of the filters are antiparallel and it is 
obvious that every atom passed by F1 must be blocked by F2. This agrees 
with what we found out about a spin-half object’s orientation in the previous 
section; if it is pointing somewhere in the upper z hemisphere, then there is 
some chance it is also pointing in any other hemisphere apart from the   z 
one. 

We now place a third filter, F3, in the atomic beam that emerges from 
F2. Let φ denote the angle between the magnetic axis of this filter and 
the z-axis.  The atoms that emerge from F2 are in the state |+, θ⟩ because 
they’ve just returned  

1
  on a measurement of n · S, so the amplitude that 

these atoms get through F3 is   +, φ +, θ .  The amplitudes a′ +, z +, φ 
and b′ , z +, φ can be obtained directly from the formula we already 
have for (a, b) with φ substituted for θ. Hence 

    
a′ 

b′ = 

and the amplitude to pass F3 is 
Σ 

  
cos 

1
 φ 
 

 
i sin

 1
 φ 

 
. (7.119) 

⟨+, φ|+, θ⟩ =  
s=± 

⟨+, φ|s, z⟩⟨s, z|+, θ⟩ 

  
1 1 cos 

1
 θ (7.120) 

= cos 2 φ, −i sin 2 φ 2 

i sin
 1

 θ 

= cos 
1
 (φ − θ). 

 

z-axis. 
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Thus the  amplitude  to pass F3  depends  only on the  angle φ  θ  between 
the magnetic axes of the filters,  and the  probability of  passing F3  could 
have been obtained simply by substituting this angle into equation (7.118). 
This conclusion is obvious physically, but it is satisfying to see it emerge 
automatically from the formalism. 

An especially interesting case is when θ = π/2 and φ = π. In the absence 
of F2, F3 would now block every atom that passed F1. But with F2 present 
both F2 and F3 allow through half of the atoms that reach them, so a quarter 
of the atoms that leave F1 with Sz = + 

1
 pass both filters. These atoms exit 

from F3 with Sz =    
1
 .  Introducing F2 changes the  fraction of atoms that 

pass F3 because the measurement that F2 makes changes the states of the 
atoms. This is a recurring theme in quantum mechanics. No measurement 
can be made without slightly disturbing the system that is being measured, 
and if the system is small enough, the disturbance caused by a measurement 
can significantly affect the system’s dynamics. 

 
 

7.4.3 Spin-one systems 

In the case that s = 1, three values of m are possible,   1, 0, 1, and so the 
Si may be represented by 3 3 matrices. The calculation of these matrices 
proceeds exactly as for spin half, the main difference being that (7.5) and 
(7.7) now yield 

S+| − 1⟩ = 
√

2|0⟩ ; S+|0⟩ = 
√

2|1⟩ ; 

 

 
The result is 

(7.121) 

S−|1⟩ = 
√

2|0⟩ ; S−|0⟩ = 
√

2| − 1⟩ . 

    
1 

Sx = √
2

 

0 1    0 
 1 0  1  
0 1   0 

1 
; Sy = √

2
 

0 i 0 
i 0 i 
0 i 0 

  
1    0 0 

(7.122) 

Sz =  0    0 0  . 

0    0 −1 
 

Consider the effect of using Stern-Gerlach filters on a beam of spin- 
one atoms. In the experiment depicted in Figure 7.10 each filter now splits 
the incoming beam into three sub-beams, and we block all but the beam 
associated with m = +1 along the magnetic axis. One third of the atoms 
that emerge from the collimating slits get through the first filter F1 because 
each value of m is equally probable at this stage.8 To calculate the fraction 
of atoms which then pass through F2, the magnetic axis of which is inclined 
at angle θ to that of F1, we must calculate the amplitude 1, θ 1, z . The 
defining equation of   1, θ   is n   S 1, θ   =   1, θ , which with equations (7.122) 
can be written 

 cos θ − √i
 sin θ 0      
2    a a    

 √
i sin θ 0 − √i

 sin θ   b  =  b  , (7.123) 
0 √i  sin θ − cos θ c c 

 

where a 1, z 1, θ , b 0, z 1, θ , and c 1, z 1, θ . The first and third 
equations, respectively, yield 

i 
(cos θ − 1)a = √

2 
sin θ b and 

i 
√

2 
sin θ b = (1 + cos θ)c. (7.124) 

 
 

8 The atoms emerge from the slits in an impure state ( 6.3) and we set the probabilities 
for each value of m to 1 in order to maximise the Shannon entropy of that state ( 6.3.2). 
The equality of the probabilities is an instance of the general principle that every quantum 
state has equal a priori probability. 

2 2 



 

2 

√ | | | | | | 

4 

2 

∼ ∼ 

 

 2 

 

− 
 

 . .  .  

. .  − 
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Eliminating a and c in favour of b yields 

  
  √i sin θ 

     
 2 cos θ − 1  − √i  cot(θ/2) 

 b  = b  1  = b  1  . (7.125) 
  

c  
i sin θ  

 
 

√i  tan(θ/2) 

√2 cos θ + 1 

The normalisation condition a 
2
 +  b 

2
 + c 

2
  = 1 now implies that b  = 

2 sin( 
1
 θ) cos( 

1
 θ). The coefficient that we need is therefore 

2 2 
 

2  1 i 
⟨1, θ|1, z⟩ = a = i cos ( 2 θ) = 2 (1 + cos θ). (7.126) 

Hence the probability that an atom passes F2 after passing F1 falls from unity 
when θ = 0 to zero when θ = π as we would expect. When θ = π/2 the 
probability is P3 = 

1
 , which is substantially smaller than the corresponding 

probability of 
1
 found in (7.118) for the case of spin-half atoms. 

From a classical point of view it is surprising that after F1 has selected 
atoms that have their angular momentum oriented parallel to the z-axis 
(in the sense that Sz takes the largest allowed value) there is a non-zero 
probability P3 that the angular momentum is subsequently found to be, in 
the same sense, aligned with the y axis. The explanation of this phenomenon 
is that for this system, the value of S

2
 is s(s+1) = 2 which is twice the largest 

allowed value of Sz. Hence, even in the state |1, z⟩ a significant component 
of the angular momentum lies in the xy plane. P3 is the probability that 
this component is found to be parallel to the y axis.  Once the measurement 

of Sy has been made by F3, the atom is no longer in the state |1, z⟩ and we 
are no longer certain to obtain 1 if we remeasure Sz. 

 

 
7.4.4 The classical limit 

An electric motor that is, say, 1 cm in diameter and weighs about 10 gm 
might spin at 100 revolutions per second. Its angular momentum would then 
be       10−3

 kg m
2
 s−1

,  which  is       10
31

h̄.   Thus  classical  physics  works  with 
extremely large values of the integers s, m. It is interesting to understand 
how familiar phenomena emerge from the quantum formalism when s is no 
longer small. 

For any value of s we can construct matrices that represent the angular 
momentum operators. The matrix for Sz is diagonal with the eigenvalues 

s, (s−1), . . . , −s down the diagonal. The matrices for Sx and Sy are evaluated 
in the usual way from S+ and S− and so are zero apart from strips one 
place above and below the diagonal. Using the relations (7.15) between the 
coefficients α±(m) of the raising and lowering operators S± we then find 

 

0 α(s − 1) 0 . . . . . . 0 0 

 α(s − 1) 0 α(s − 2) . . . 0 0  
 
 
 0 α(s 2) 0 

1  
. . .

 . .  
. .  

 
Sx =  

2  .  . 
.  

. 
. . . 

.  
. 

 
. .  

 . .  
 

0 α(s 2) 0  
 

 0 0 . . . α(s − 2) 0 α(s − 1)  

0 0 . . . 

1 h i 
. . . 0 α(s − 1) 0 

=  
2   

α(m)δm,n−1 + α(m − 1)δm,n+1  
(7.127a) 
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Figure 7.11 The points show the absolute values of the amplitudes am s, m, z s, s, θ 
for s = 40 and, from left to right, θ = 120◦ , 80◦ , 30◦ . For each value of θ, the vertical line 
shows the value of cos θ. 

 

0 α(s − 1) 0 . . . . . . 0 0 

 −α(s − 1) 0 α(s − 2) . . . 0 0  
 
 
 0 α(s 2) 0 

1  
. . .

 . .  
. .  

 

Sy = 
 

2i  . 
 . 

.  
. 

. . . 
.  

. 
 

. .  
 . .  

 
0 α(s 2) 0  

 
 0 0 . . . −α(s − 2) 0 α(s − 1)  

0 0 . . . 

1 h 
=  

2i    
− α(m)δm,n−1 + α(m − 1)δm,n+1 

i 
. . . 0 −α(s − 1) 0 

(7.127b) 

 
s 0 . . . 0 . . . 0 0    0  s − 1 . 0 0  
 . 
 . .  

 
 

. .  
Sz =  0 m 0  

 
 
 . . 
 

 
. .  

.  
.  

(7.127c) 

 0 0 . 1 − s 0 
0 0 . . . 0 . . . 0 −s 

= m δmn, 

where the α(m) are what were called α+(m) in (7.15), and the rows and 
columns of the matrix are labelled from +s at the top left to s at the 
bottom right. In the same way as for spins s = 

1
 and s = 1, it is straight- 

forward (for a computer) to determine the amplitudes am s, m, z s, s, θ 
for measuring Sz to have value m, given that n S certainly returns value s 
when n = (0, sin θ, cos θ) is inclined at angle θ to the z-axis. The points in 
Figure 7.11 show the results of this calculation with s = 40 and three values 
of θ. The amplitudes peak around the values of the ordinate, m = s cos θ, 
that are marked with vertical lines. The larger the spin, the more sharply the 
amplitudes are peaked around these lines, so for the extremely large values of 
s that are characteristic of macroscopic systems, am is significantly non-zero 
only when m differs negligibly from s cos θ. Hence, in the classical limit the 
only values of Sz that have non-negligible probabilities of occurring lie in 
a narrow range around s cos θ, which is just the projection of the classical 
angular-momentum vector S = sn onto the z-axis. That is, in the classical 
limit the probability of measuring any individual value of Sz is small, but we 
are certain to find a value that lies close to the value predicted by classical 
physics. 

  

. 
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The classical picture implies that when the angular-momentum vector is 
tipped in the yz plane at angle θ to the z axis, the value of Sy should be s sin θ. 
So now for the eigenstate of n S just described, we evaluate the expectation 
value   Sy   by  first multiplying  the  matrix for  Sy  on the  column vector of 
the amplitudes plotted in Figure 7.11, and then multiplying the resulting 
vector by the row vector of the complex conjugates of the amplitudes. The 
expectation value of Sy in this state is 

⟨Sy⟩ = a∗m(Sy)mnan 

1 Σs 

= 
2i 

m,n=−s 

1    Σ
s 

a∗m (α(m)δm,n−1 + α(m − 1)δm,n+1) an 
 

(7.128) 

≃ 
2i  

m=−s 

(α(m)a∗mam+1 + α(m − 1)a∗mam−1) , 

 

bearing in mind that α(s) = α( s 1) = 0. For a given value of θ, the 
amplitudes plotted in Figure 7.11 lie on smooth curves so we can use the 
approximation  am−1       am        am+1 .  The phases of the am increase by 
π/2 with successive values of m, so Sy is real and the two terms (7.128) 
add.  Finally, we exploit the fact that   am   is small unless m      s cos θ  and 
use the approximation for large s, m that 

 
α(m) = 

√   
s(s + 1) − m(m + 1) ≃ 

√   
s2 − m2 ≃ s sin θ. (7.129) 

 

Combining these approximations with the normalisation condition on the am 
gives 

⟨Sy⟩ ≃ s sin θ 
Σ 

|am| 
m 

 
= s sin θ (7.130) 

exactly as classical physics leads us to expect. 
To determine the uncertainty in Sy we evaluate the expectation of S

2
. 

From equation (7.127b) we find that the matrix S
2
 has elements 

 

Σs 

— 4 

p=−s 
1 

α(m)δm,p−1 + α(m − 1)δm,p+1 
   

α(p)δp,n−1 + α(p − 1)δp,n+1 

, 
≃ − 4  {α(m)α(m + 1)δm,n−2 + α(m − 1)α(m − 3)δm,n+2 

2 2 
} 

— α (m) + α (m − 1) δmn  

(7.131) 
where in going to the second line we have ignored corrections when m = s 
because the amplitudes for these are negligible anyway. Using the same 
approximations as before, we now find 

Σ Σ Σ 2 ∗ 2 2 2 2 2 
Sy    = am(Sy )mnan ≃ 

mn 

α (m)|am| 
m 

≃ (s sin θ) |am| 
m 

 

(7.132) 

= s
2
 sin

2
 θ ≃ ⟨Sy⟩

2 
. 

    
The uncertainty in S , being ∼ 

2
 2   1/2 

— ⟨S ⟩ is therefore negligible. A 
2 

similar calculation shows that both ⟨Sx⟩ and vanish to good accuracy. 
Thus in the classical limit it is normal for all three components of S to have 
small uncertainties. However, it should be noted that Sy can be accurately 
determined precisely because there is some uncertainty in Sz: our calculation 
on Sy depends crucially on there being several non-zero amplitudes am. 
Quantum interference between states with different values of Sz is responsible 
for confining the likely values of Sy to a narrow range. 

This is the third time we have found that the familiar world re-emerges 
through quantum interference between states in which some observable has 

Sy 

2 
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well-defined values:  in  2.3.3 we found that bullets can be assigned posi- 
tions and momenta simultaneously through interference between states of 
well-defined momentum, in   3.2 we  saw that an excited oscillator moves as 
a result of quantum interference between states of well-defined energy, and 
now we find that a gyro has a well defined orientation through quantum 
interference between states of well-defined angular momentum. In the clas- 
sical regime a tiny fractional uncertainty in the value of an observable allows 
the vast numbers of states to have non-negligible amplitudes, and interfer- 
ence between these states narrowly defines the value of the variable that is 

canonically conjugate to the observable (§2.3.1). 

7.4.5 Precession in a magnetic field 

A compass needle swings to the Earth’s magnetic north pole because a mag- 
netic dipole such as a compass needle experiences a torque when placed in a 
magnetic field. Similarly, a proton that is in a magnetic field experiences a 
torque because it is a magnetic dipole. However, its response to this torque 
differs from that of a compass needle because it is a spinning body; instead of 
aligning with the magnetic field, it precesses around the field. This precession 
forms the basis for nuclear magnetic resonance (NMR) imaging, which has 
become an enormously important diagnostic tool for chemistry and medicine. 
The theory of NMR is a fine example of the practical application of quantum 
mechanics in general and spin operators in particular. 

Classically, the potential energy of a magnetic dipole µ in a magnetic 
field B is 

H = −µ · B, (7.133) 

where the minus sign ensures that a dipole aligns with the field because this 
is its lowest-energy configuration. We align our coordinate system such that 
the z axis lies along B and assume that the magnetic moment operator µ 

is a constant 2µp times the spin operator s. Then the Hamiltonian operator 
can be written 

H = −2µpBsz. (7.134) 

The stationary states of this Hamiltonian are the eigenstates of sz, which for a 
spin-half particle such as a proton are the states |±⟩ in which a measurement 
of sz is certain to yield ± 1 ; the energies of these states are 

 

E± = ∓µpB. (7.135) 

The evolution in time of any spin state is 

|ψ, t⟩ = a−e−iE−t/h̄ |−⟩ + a+e−iE+t/h̄ |+⟩, (7.136) 

where the constant amplitudes a± specify the initial condition |ψ, 0⟩ = 
a−|−⟩ + a+|+⟩. 

Suppose that initially a measurement of the spin parallel to n ≡ (sin θ, 0, cos θ) 
was certain to yield 

1
 . Then from Problem 7.6 we have that a− = sin(θ/2) 

and a+ = cos(θ/2). Hence at time t the proton’s state is 
 

|ψ, t⟩ = sin(θ/2)e−iE−t/h̄ |−⟩ + cos(θ/2)e−iE+t/h̄ |+⟩ 

 

 
where 

= sin(θ/2)e
iφ/2

|−⟩ + cos(θ/2)e−iφ/2
|+⟩, 

(7.137a) 

φ(t) = 
2E+t 

= ωt    where    ω = − 
2µpB

. (7.137b) 
 

But  from Problem 7.6 this  is just  the  state  +, n′   in  which a measurement 
of the spin parallel to n′ = (sin θ cos φ, sin θ sin φ cos θ) is certain to yield 

1
 . 

Consequently, the direction in which a measurement of the spin is certain to 
yield 

1
 rotates around the direction of B at the frequency ω. This mirrors 

the behaviour expected in classical physics of a magnetic dipole of magnitude 



2 
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µp  that has spin angular momentum  
1
 ̄h; its  spin axis would precess around 

B at angular frequency ω (Problem 7.12). 
When material that contains chemically bound hydrogen atoms is im- 

mersed in a powerful magnetic field, most of the protons align their spins 
with B in order to  minimise  their  energy.  Radiation of frequency  ω  has 
just the energy required kick a proton into the higher-energy state in which 
its spin is anti-aligned with B. Consequently, such radiation is readily ab- 
sorbed by a sample, whereas radiation of neighbouring frequencies is not. 
As the analysis above shows, quantum interference between the aligned and 
anti-aligned states causes the expectation value of the magnetic moment to 
precesses at angular frequency ω, and the precessing magnetic moment cou- 
ples resonantly to the imposed radiation field. 

The magnetic field at the location of a proton in a molecule has a con- 
tribution from the spins of the electrons that bind the proton, and this 
contribution varies slightly from one location to another. For example, in 
methanol, CH3OH, the magnetic field experienced by the proton that is at- 
tached to the oxygen atom differs from those experienced by the protons that 
are attached to the carbon atom,  and the  proton that  is on  the other side 
of the carbon atom from the oxygen atom experiences a different field from 
the protons that are adjacent to the oxygen atom. Since the frequency ω of 
the resonant radiation is proportional to the magnitude of magnetic field at 
the location of the proton, methanol has three different resonant frequencies 
for a given magnitude of the imposed magnetic field. Consequently, clues to 
the chemical structure of a substance can be obtained by determining the 
frequencies at which magnetic resonance occurs in a given imposed field. 

 
 

7.5 Addition of angular momenta 

In practical applications of quantum mechanics we can often identify two 
or more components of the system that each carry a well defined amount 
of angular momentum.  For example, in a hydrogen atom both the proton 
and  the  electron  carry  angular  momentum  

1
 ̄h  by  virtue  of  their  spins,  and 

a further quantity of angular momentum may be present in the orbit of the 
electron around the proton. The  total angular momentum  of the  atom is 
the sum of these three contributions, so it is important to understand how 
to add angular momenta in quantum mechanics.  Once we understand how 
to add two contributions, we’ll be able to add any number of contributions, 
because we can add the third contribution to the result of adding the first 
two, and so on. Therefore in this section we focus the problem of adding the 
angular momenta of two ‘gyros’, that is two systems that have unvarying total 
angular momentum quantum number j but several possible orientations. 

Imagine that we have two gyros in a box and that we know that the first 
gyro has total angular-momentum quantum number j1, while the second gyro 
has total quantum number  j2.  Without  loss  of generality we  may  assume 

j1 ≥ j2. A ket describing the state of the first gyro is of the form 

Σj1 

|ψ1⟩ = 

 
while the state of the second is 

 
|ψ2⟩ = 

 
m=−j1 

 

 
Σj2 

 
m=−j2 

cm|j1, m⟩, (7.138a) 

 

 
dm|j2, m⟩, (7.138b) 

 

and from the discussion in §6.1 it follows that the state of the box is 

|ψ⟩ = |ψ1⟩|ψ2⟩. (7.139) 
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The coefficients cm and dm are the amplitudes to find the individual gyros 
in particular orientations with respect to the z axis. For example, if both 
gyros  are  maximally  aligned  with  the  z  axis,  we  will  have  |cj1 | =  |dj2 | =  1 
and cm1  = dm2  = 0 for m1 /= j1 and m2 j2. 

The operators of interest are the operators J
2
, Jiz and Ji± of the i

th
 

gyro and the corresponding operators of the box. The operators Jz and J± 
for the box are simply sums of the corresponding operators for the gyros 

 

Jz = J1z + J2z ; J± = J1± + J2±. (7.140) 

Operators  belonging  to  different  systems  always  commute,  so  [J1i, J2j ]  =  0 
for any values of i, j. The operator for the square of the box’s angular 
momentum is 

J
2
 = (J1 + J2)

2
 = J

2
 + J

2
 + 2J1.J2 . (7.141) 

 

Now 

1 2 
 
 

J1+J2− = (J1x + iJ1y)(J2x − iJ2y) 

 
 

 
(7.142) 

= (J1xJ2x + J1yJ2y) + i(J1yJ2x − J1xJ2y). 

The expression for J1−J2+ can be obtained by swapping the labels 1 and 2, 
so9 

J1+J2− + J1−J2+ + 2J1zJ2z = 2J1.J2 . (7.143) 

Using this expression to eliminate J1.J2 from (7.141) we obtain 
 

J
2
 = J

2
 + J

2
 + J1+J2− + J1−J2+ + 2J1zJ2z . (7.144) 

While the total angular momenta of the individual gyros are fixed, that 
of the box is variable because it depends on the mutual orientation of the 
two gyros: if the latter are parallel, the squared angular momentum in the 
box might be expected to have quantum number j1 + j2, while if they are 
antiparallel, the box’s angular momentum might be expected to have quan- 
tum number j1 j2. We shall show that this conjecture is true by explicitly 
calculating the values of the coefficients cm and dm for which the box is in an 
eigenstate of both J

2
  and Jz.  We start by examining the state  j1, j1   j2, j2 

in which both gyros are maximally aligned with the z axis. It is easy to see 
that this object is an eigenket of Jz with eigenvalue j1 + j2. We use (7.144) 
to show that it is also an eigenket of J

2
: 

J
2
|j1, j1⟩|j2, j2⟩ = (J

2
 + J

2
 + J1+J2− + J1−J2+ + 2J1zJ2z)|j1, j1⟩|j2, j2⟩ 

= j1(j1 + 1) + j2(j2 + 1) + 2j1j2  j1, j1  j2, j2 , 
(7.145) 

where we have used the equation Ji+ ji, ji = 0, which follows from equation 
(7.7). It is straightforward to show that the expression in curly brackets in 
equation (7.145) equals j(j +1) with j = j1 +j2. Hence |j1, j1⟩|j2, j2⟩ satisfies 
both the defining equations of the state |j1 + j2, j1 + j2⟩ and we may write 

|j1 + j2, j1 + j2⟩ = |j1, j1⟩|j2, j2⟩. (7.146) 

Now that we have found one mutual eigenket for the box of J
2
 and Jz 

we can easily find others by applying J− to reorient the angular momentum 
of the box away from the z axis. Again setting j = j1 + j2 we evaluate the 
two sides of the equation 

J−|j, j⟩ = (J1− + J2−)|j1, j1⟩|j2, j2⟩. (7.147) 

Equation (7.7) enables us to rewrite the left side 

J−|j, j⟩ = 
√   

j(j + 1) − j(j − 1) |j, j − 1⟩ = 
√   

2j |j, j − 1⟩. (7.148) 
 

 

9 Recall that J1i commutes with J2j for all ij. 
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Figure 7.12 The left panel shows states obtained by adding a system of angular momen- 
tum j2 = 1 to one with j1 = 2, while the right panel is for j1 = 1 and j2 = 1 . 

 
The right side of (7.147) becomes 

√   
j1(j1 + 1) − j1(j1 − 1)|j1, j1 − 1⟩|j2, j2⟩ 

+ j2(j2 + 1) − j2(j2 − 1)|j1, j1⟩|j2, j2 − 1⟩ (7.149) 
√  √   

= 2j1 |j1, j1 − 1⟩|j2, j2⟩ + 2j2 |j1, j1⟩|j2, j2 − 1⟩. 
 

Putting the two sides back together, we have 

 
|j, j − 1⟩ = 

s   
j1 

j  
|j1, j1 − 1⟩|j2, j2⟩ + 

s   
j2 

j 
|j1, j1⟩|j2, j2 − 1⟩. (7.150) 

 

A further application of J−  to the left side of this equation and of J1− + J2− 
to the right side would produce an expression for j, j 2 and so on. 

Figure 7.12 helps to organise the results of this calculation. States of the 
box with well defined angular momentum are marked by dots. The radius 
of each semi-circle is proportional to j′, where j′(j′ + 1) is the eigenvalue of 
the kets with respect to J

2
. The height of each ket above the centre of the 

circles is proportional to m. The left panel shows the case j1 = 2, j2 = 1, 
while  the  right panel  is for j1  =  1,  j2  =  

1
 .   The  scheme for constructing 

eigenstates J
2
 

2 

and Jz that we have developed so far starts with the state at 
the top and then uses J− to successively generate the states that lie on the 
outermost semi-circle. 

We now seek an expression for the state   j    1, j     1   that lies at the top 
of the first semicircle inwards. It is trivial to verify that j1, m1 j2, m2 is an 
eigenket of Jz with eigenvalue (m1 + m2). We require m1 + m2 = j1 + j2 1, 
so either m1 = j1 1 and m2 = j2, or m1 = j1 and m2 = j2  1. Equation 
(7.150) shows that j, j 1 involves precisely these two cases, and must be 
orthogonal to   j    1, j     1   because it has a different eigenvalue with respect 
to J

2
. So the ket we seek is the unique (up to an overall phase factor) linear 

combination of the kets appearing in (7.150) that is orthogonal to the linear 
combination that appears there. That is, 

 
|j − 1, j − 1⟩ = 

s   
j2 

j 
|j1, j1 − 1⟩|j2, j2⟩ − 

s   
j1 

j 
|j1, j1⟩|j2, j2 − 1⟩. (7.151) 

 

All the kets |j − 1, m⟩ for m = j − 2, . . ., which in Figure 7.12 lie on the first 
semicircle in, can be constructed by applying J− to this equation. 

Similarly, j 2, j 2 , which in Figure 7.12 lies at the top of the smallest 
semicircle, will be a linear combination of j1, j1 2 j2, j2 , j1, j1 1 j2, j2 
1  and  j1, j1  j2, j2  2  and must be orthogonal to  j, j  2  and  j  1, j   2 , 
which are known linear combinations of these states. Hence we can determine 
which linear combination is required for |j − 2, j − 2⟩, and then generate the 
remaining kets of the series j 2, m by applying J− to it. 

On physical grounds we would expect the box’s smallest total angular 
momentum quantum number to be j1 − j2, corresponding to the case in 
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Table 7.4  Total numbers of states 

j Number of states 
 

j1 + j2 2(j1 + j2) + 1 
j1 + j2 1 2(j1 + j2) + 1 2 
. . . . . . 
j1 − j2 2(j1 + j2) + 1 − 4j2 

Total (2j1 + 1)(2j2 + 1) 
 

 

 
Figure 7.13 Interpretation of Clebsch– 

Gordan  coefficients  in  terms  o√f  vec- 
tors. The full line has length 3(3 + 1) 
and its vertical component has length 

2.   The√dotted  lines  labelled  j1  have 
length 2(2 + 1) and vertical com- 
ponents of length 2 and 1. 

 
 

which the two gyros are antiparallel (recall that we have labelled the gyros 
such that j1 j2). Does this conjectured smallest value of j allow for the 
correct number of basis states for the box? That is, will there be as many 
basis states of the box as there are of the contents of the box? We can easily 
evaluate the latter: there are 2j1 + 1 orientations of the first gyro, and for 
each of these orientations, the second gyro can be oriented in 2j2 + 1 ways. 
So the box’s contents can be in (2j1 + 1)(2j2 + 1) basis states of the form 
j1, m1   j2, m2  .  The  predicted number of basis states of the  box is worked 
out in Table 7.4. In the main part of the table, the number of states in each 
row is two less than in the row above and there are 2j2 + 1 rows.  The sum 
at the bottom can be obtained by making a third column that is just the 
second column in reverse order and noting that the sum of the numbers in 
the second and third columns of a given row is then always 4j1 + 2. Hence 
twice the sum of the numbers in the second column is 2j2 + 1 times 4j1 + 2. 
Thus we do get the correct number of basis states if the smallest value of j 
is j1 j2. 

The numbers 
 

C(j, m; j1, j2, m1, m2) ≡ ⟨j, m|j1, m1⟩|j2, m2⟩ (7.152) 

that we have been evaluating are called Clebsch–Gordan coefficients. They 
have a simple physical interpretation: C(j, m; j1, j2, m1, m2) is the amplitude 
that, on opening the box when it’s in a state of well defined angular momen- 
tum, we will find the first and second gyros to be oriented with amounts m1 

and m2 of their spins parallel to√the z axis. For example, equation (7.151) 
implies that C(3, 2; 2, 1, 1, 1) = 2/3, so if a box that contains a spin-two 
gyro and a spin-one gyro has spin-three, there is a probability 2/3 that on 
opening the box the second gyro will be maximally aligned with the z  axis 
and the second significantly inclined,  and only a  probability 1/3 of finding 
the reverse arrangement. These two possibilities are depicted by the lower 
and upper dotted lines  in Figure 7.13.  The  classical interpretation is  that 
the two gyros precess around the fixed angular-momentum vector of the box, 
and that the two configurations for which the Clebsch–Gordan coefficients 
give amplitudes are two of the states through which the precession carries the 
system. This picture is intuitive and of some value, but should not be taken 
too seriously. For one thing, the rules for adding angular momentum are 
independent of any statement about the Hamiltonian,  and therefore carry 
no implication about the time evolution of the  system.  The gyros may or 
may not precess, depending on whether they are dynamically coupled. 
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In 6.1 we saw that the physical significance of the state of a composite 
system, such as that formed by two gyros, being a linear combination of 
product states such as  j1, m1  j2, m2  is that the subsystems are correlated. 
The Clebsch–Gordan coefficients encode the correlations between the gyros 
required for the box to have well-defined angular momentum. If there is any 
uncertainty in the  orientation of  either gyro, such correlations are essential 
if the angular momentum of the box is to be well defined: the angular mo- 
mentum of the second gyro has to make up a pre-defined total with whatever 
value is measured for the first gyro. This consideration explains why the only 
states of the box that are simple products of states of the individual gyros are 
j1 + j2, j1 + j2 = j1, j1 j2, j2 and j1 + j2, (j1 + j2) = j1, j1 j2, j2 
– so much angular momentum can be aligned with the z-axis only by each 
gyro individually straining to align with the axis, and there is then no need 
for the gyros to coordinate their efforts. 

 
 

7.5.1 Case of two spin-half systems 

The general analysis we have just given will be clarified by working out some 
particular cases. We consider first the case j1 = j2 = 

1
 , which is relevant, for 

example, to a hydrogen atom in its ground state, when all angular momentum 
is contributed by the spins of the proton and the electron. The electron has 
base states , e in which Jz returns the value 

1
 , while the proton has 

corresponding base states , p . Hence there are four states in all and j 
takes just two values, 1 and 0. 

Our construction of the states in which the atom has well-defined angular 
momentum starts with the state 

|1, 1⟩ = |+, e⟩|+, p⟩ (7.153) 

in which both the electron and the proton have their spins maximally aligned 
with the z axis. So the atom has maximum angular momentum, and its 
angular momentum is maximally aligned with the z  axis.  Applying J   = 
J

e
 + J

p
 to this ket we obtain 

— − 

1 
|1, 0⟩ = √

2 
(|−, e⟩|+, p⟩ + |+, e⟩|−, p⟩) . (7.154) 

The right side of this equation states that with the atom in this state, mea- 
surements of Jz for the electron and proton are certain to find that they 
are ‘antiparallel’. This fact is surprising given that the left side states that 
the atom has maximum angular momentum, so you would think that the 
two particles had parallel angular momenta. The resolution of this paradox 
is that the z components of the two spins are antiparallel, but the compo- 
nents in the xy plane are parallel, although their direction is unknown to 
us.   Similarly, when the atom is in the state   1, 1    of equation (7.153), the 
z components of the electron and proton angular momenta are parallel, but 
the components in the xy  p√lane are√not well aligned.  The poor √alignment in 

the xy plane explains why J2 = 2 for the atom is less than 3, which is 

the sum of J2 = 
3/4 for the electron and the proton. 

When we apply J− to |1, 0⟩ we obtain 

|1, −1⟩ = |−, e⟩|−, p⟩. (7.155) 

This equation confirms the physically obvious fact that if we want to have 
h̄  of angular momentum pointing along the negative z  axis, we need to have 
the angular momenta of both the proton and the electron maximally aligned 
with the negative z axis. 

The remaining state of the atom is 0, 0 in which the atom has no angu- 
lar momentum. This is the unique linear combination of the two compound 
states on the right of equation (7.154) that is orthogonal to |1, 0⟩: 

1 
|0, 0⟩ = √

2 
(|−, e⟩|+, p⟩ − |+, e⟩|−, p⟩) . (7.156) 
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The change of sign on the right of this equation from the right of equation 
(7.154) for 1, 0 ensures that the spins of the electron and proton are antipar- 
allel in the xy plane as well as along the z axis. We show this by rewriting 
1, 0 and 0, 0 in terms of the states in which the electron and proton have well-
defined spin parallel to the x-axis. These states are 

 

1 
|x+, e⟩ = √

2 
(|+, e⟩ + |−, e⟩) 

1 
|x+, p⟩ = √

2 
(|+, p⟩ + |−, p⟩) 

1 
|x−, e⟩ = √

2 
(|+, e⟩ − |−, e⟩) 

1 
|x−, p⟩ = √

2 
(|+, p⟩ − |−, p⟩) 

 
 

(7.157) 

 

So 

|0, 0⟩ = |x+, e⟩⟨x+, e|0, 0⟩ + |x−, e⟩⟨x−, e|0, 0⟩ 

= 
1
 |x+, e⟩ (−|−, p⟩ + |+, p⟩) − 1 |x−, e⟩ (|−, p⟩ + |+, p⟩) 

2 2 (7.158) 
1 

= − √
2 

(|x+, e⟩|x−, p⟩ + |x−, e⟩|x+, p⟩) . 

The last line states that when the atom is in the state 0, 0 we are indeed 
guaranteed to find the components of the spins of the electron and proton 
parallel to x have opposite signs. An analogous calculation starting from 
equation (7.154) yields (Problem 7.27) 

 

1 
|1, 0⟩ = √

2 
(|x+, e⟩|x+, p⟩ − |x−, e⟩|x−, p⟩) , (7.159) 

so when the atom is in the 1, 0 state the two particles have identical com- 
ponents of spin along x . 

Notice that all three states in which the atom has j = 1 are unchanged 
if we swap the m values of the particles – that is, if we map , e , e 
and the same for the proton states. The atomic atomic state with j = 0, 
by contrast, changes sign under this interchange. This fact will prove to be 
important when we consider systems with two electrons (such a helium) or 
two protons (such as an H2 molecule). 

 
 

7.5.2 Case of spin one and spin half 

In the first excited state of hydrogen, the electron can have total orbital 
angular momentum quantum number l = 1. So we now consider how to 
combine angular momentum j = 1 with the electron’s spin, j = 

1
 .  The total 

angular momentum quantum number takes two values, j = 
3
 and j = 

1
 (see 

2 2 

Figure 7.12). We start with the state 
 

3  3 

| 2 , 2 ⟩ = |+⟩|1, 1⟩ (7.160) 

in which the spin and orbital angular momenta are both maximally oriented 
along the z axis. Applying J− = L− + S− to this equation, we obtain 

q q    
3   1 1 2 

| 2 , 2 ⟩ = 3 |−⟩|1, 1⟩ + 3 |+⟩|1, 0⟩. (7.161) 
 

The right side of this equation says that in this state of the atom, the electron 
is twice as likely to be found with its spin up as down. A second application 
of J− yields q q    

3 1 2 1 
| 2 , − 2 ⟩ = 3 |−⟩|1, 0⟩ + 3 |+⟩|1, −1⟩ (7.162) 

as we would expect from the symmetry between up and down. A final 
application of J− yields | 3 , − 3 ⟩ = |−⟩|1, −1⟩ as it must on physical grounds. 
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Figure 7.14 Classically the sum 
vector J1 + J2 can line anywhere on 
the  sphere  of  radius  |J2|  around  the 
end  of  J1. 

 
The state | 1 , 

1
 ⟩ is the linear combination of the states that appear in 

the right of equation (7.161) that is orthogonal to | 3 , 
1
 ⟩. Hence, 

2  2 

q q    
1   1 2 1 

| 2 , 2 ⟩ = 3 |−⟩|1, 1⟩ − 3 |+⟩|1, 0⟩. (7.163) 
 

In this atomic state, the electron’s spin is twice as likely to be down as up. 
The last remaining state can be found by applying J− to equation (7.163). 
It is q q    

1 1 1 2 
| 2 , − 2 ⟩ = 3 |−⟩|1, 0⟩ − 3 |+⟩|1, −1⟩. (7.164) 

 

 

7.5.3 The classical limit 

In classical physics we identify angular momentum with the vector h̄  J  , 
and the angular momentum of the whole system is obtained by vectorially 
adding the angular momenta  1 and   2 of the component parts. If θ is the 
angle between these vectors, then 

 

2 2 2 
J  = J1 + J2 + 2J1J2 cos θ. (7.165) 

 

If nothing is known about the direction of J2 relative to J1, all points on a 

sphere of radius J2 and centred on the end of J1 are equally likely locations 
for the end of 2 (Figure 7.14). Consequently, the probability dP that θ lies 
in the range (θ, θ + dθ) is proportional to the area of the band shown in the 
figure. Quantitatively 

dP = 
1
 sin θ dθ, (7.166) 

where the factor 
1
 ensures that 

∫ 
dP = 1. From equation (7.165) the change 

in J when θ changes by dθ is given by 

J dJ  = −J1J2 sin θdθ. (7.167) 

Combining equations (7.166) and (7.167), we find that the probability that 
the total angular momentum lies in the interval (J , J + dJ ) is10 

dP =
 J dJ 

. (7.168) 
2J1J2 

 

10 We discarded the minus sign in equation (7.167) because we require dP > 0 regardless 
of whether J increases or decreases. 
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In quantum mechanics the fraction of states that have total angular- 
momentum quantum number j is 

 

2j + 1 
f = 

(2j1 + 1)(2j2 + 1) 

 

, (7.169) 

 

which in the classical limit of large quantum numbers becomes approximately 
j/(2j1j2).  If all states were equally likely, this fraction would equal the 
classical  probability  that  J  ≃  jh̄  lay  within  h̄  of  jh̄.   It  is  easy  to  check 
from (7.167) that  dP  does  indeed  take the  value  f  when we insert     i  = h̄ji 
and  d      =  h̄.   Thus  from  consistency  with  classical  mechanics  we  are  led 
to the principle of equal a priori  probability, namely that when we 
have no information relevant to an upcoming measurement, we assign equal 
probabilities to the system being in each state of whatever basis we have 
decided to work in. This principle is the foundation of all statistical physics. 

 

Problems 

7.1 Show that ⟨j, j|Jx|j, j⟩ = ⟨j, j|Jy|j, j⟩ = 0 and that ⟨j, j|(J
2
+J

2
)|j, j⟩ = 

j. Discuss the implications of these results for the uncertainty in the orien- 
tation of the classical angular momentum vector J for both small and large 
values of j. 

7.2 In the  rotation spectrum of 
12

C
16

O  the  line  arising from the  transition 
l = 4   3 is at 461.04077 GHz, while that arising from l = 36   35 is at 
4115.6055 GHz. Show from these data that in a non-rotating CO molecule 
the intra-nuclear distance is s         0.113 nm, and that the electrons provide 
a spring between the nuclei that has force constant 1904 N m−1

. Hence 
show that the vibrational frequency of CO should lie near 6.47 10

13
 Hz 

(measured  value  is  6.43  10
13

 Hz).  Hint:  show  from  classical mechanics 
that the distance of O from the centre of mass is

 3
 s and that the molecule’s 

moment of inertia is
 48

 mps
2
. Recall also the classical relation L = Iω. 

7.3 Show that Li commutes with x p and thus also with scalar functions 
of x and p. 

7.4 Write  down  the  expression  for  the  commutator  [ςi, ςj ]  of  two  Pauli 
matrices. Show that the anticommutator of two Pauli matrices is 

 

{ςi, ςj } = 2δij . (7.170) 

 
7.5 Let n be any unit vector and σ = (ςx, ςy, ςz) be the vector whose 
components are the Pauli matrices. Why is it physically necessary that n σ 
satisfy (n   σ)

2
  = I, where I is  the  2   2  identity  matrix?   Let  m be  a 

unit vector such that m  n = 0. Why do we require that the commutator 
[m σ, n σ] = 2i(m n) σ? Prove that that these relations follow from the 
algebraic properties of the Pauli matrices. You should be able to show that 

[m · σ, n · σ] = 2i(m × n) · σ for any two vectors n and m. 

7.6 Let n be the unit vector in the direction with polar coordinates (θ, φ). 
Write down the matrix n σ and find its eigenvectors. Hence show that the 
state of a spin-half particle in which a measurement of the component of spin 
along n is  certain to  yield  

1
 ̄h is 

 

|+, n⟩ = sin(θ/2) e
iφ/2

|−⟩ + cos(θ/2) e−iφ/2
|+⟩, (7.171) 

 

where |±⟩ are the states in which ± 1    is obtained when sz is measured. 
Obtain the corresponding expression for , n . Explain physically why the 
amplitudes in (7.171) have modulus 2−1/2

 when θ = π/2 and why one of the 
amplitudes vanishes when θ = π. 
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7.7 For a spin-half particle at rest, the rotation operator J is equal to the 
spin operator S. Use the result of Problem 7.4 to show that in this case the 
rotation operator U (α) ≡ exp(−iα · J) is 

U (α) = I cos 
  α   

2 
— iα̂  · σ sin 

  α   

2 
, (7.172) 

where  α̂  is  the  unit  vector  parallel  to  α.   Comment  on  the  value  this  gives 
for U (α) when α = 2π. 

7.8 Write down the 3 × 3 matrix that represents Sx for a spin-one system 
in the basis in which Sz is diagonal (i.e., the basis states are |0⟩ and |±⟩ with 
Sz|+⟩ = |+⟩, etc.) 

A beam of spin-one particles emerges from an oven and enters a Stern– 
Gerlach  filter  that  passes  only  particles  with  Jz  = h̄.  On  exiting  this  filter, 
the  beam  enters  a  second  filter  that  passes  only  particles  with  Jx  = h̄,  and 
then  finally  it  encounters  a  filter  that  passes  only  particles  with  Jz  =     h̄. 
What fraction of the particles stagger right through? 

7.9 ∗ Repeat the analysis of Problem 7.8 for spin-one particles coming on 
filters aligned successively along +z, 45◦  from z towards x [i.e. along (1,0,1)], 
and along x. 

Use classical electromagnetic theory to determine the outcome in the 
case that the spin-one particles were photons and the filters were polaroid. 
Why do you get a different answer? 

7.10 A system that has spin momentum 
√

6h̄  is rotated through an angle φ 

around the z axis. Write down the 5 × 5 matrix that updates the amplitudes 
am that Sz will take the value m. 

7.11 Justify physically the claim that the Hamiltonian of a particle that 
precesses in a magnetic field B can be written 

 

H = −2µs · B. (7.173) 

In a coordinate system oriented such that the z axis is parallel to B, a 

proton is initially in the eigenstate |+, x⟩ of sx. Obtain expressions for the 
expectation values of sx and sy at later times. Explain the physical content 
of your expressions. 

Bearing in mind that a rotating magnetic field must be a source of 
radiation, do you expect your expressions to remain valid to arbitrarily late 
times? What really happens in the long run? 

7.12 Show that a classical top with spin angular momentum S which is 
subject to a torque G = µS B/ S precesses at angular velocity ω = µB/ S . 
Explain the relevance of this calculation to magnetic resonance imaging in 
general and equation (7.137b) in particular. 

7.13 ∗ Write a computer programme that determines the amplitudes am in 
 

|n; s, s⟩ = 
Σs 

 
m=−s 

am|s, m⟩ 

 

where n = (sin θ, 0, cos θ) with θ any angle and |n; s, s⟩ is the ket that solves 
the equation (n · S)|n; s, s⟩ = s|n; s, s⟩. Explain physically the nature of this 
state.   

Use your am to evaluate the expectation values ⟨Sx⟩ and x 

 
for this 

stat√e  and  hence  show  that  the  RMS  fluctuation  in  measurements  of  Sx  will 
be s/2 cos θ. 
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7.14 ∗ We have that 

 
L+ ≡ Lx + iLy = e 

 

  ∂ ∂    
+ i cot θ 

∂θ ∂φ 

 
 
 

. (7.174) 

 

From the Hermitian nature of Lz = i∂/∂φ we infer that derivative operators 
are anti-Hermitian. So using the rule (AB)† = B†A† on equation (7.174), 
we infer that 

L− ≡ L†
+  = 

 
∂ 

— 
∂θ 

 
∂ 

+ i cot θ 
∂φ 

 
e−iφ. 

This argument and the ∫result it le∫ads to is wrong.  Obtain the correct result 
by integrating by parts dθ  sin θ dφ (f ∗L+g), where f  and g  are arbitrary 
functions of θ and φ. What is the fallacy in the given argument? 

7.15 ∗ By writing h̄
2
L

2
 = (x×p) · (x×p) = 

Σ
 ǫijk xjpk ǫilm xlpm show 

that  
p

2
 = 

 

h̄
2
L

2
 

 

 

r2 

1 2 } 
+  

r2      (r · p)   − ih̄r · p 

 
. (7.175) 

By showing that p · ̂r − ̂r · p = −2ih̄/r, obtain r · p = rpr + ih̄.  Hence obtain 

h̄
2
L

2
 

p
2
 = p

2
 + . (7.176) 

r2 

 

Give a physical interpretation of one over 2m times this equation. 

7.16 The angular part of a system’s wavefunction is 

⟨θ, φ|ψ⟩ ∝ (
√

2 cos θ + sin θe−iφ
 − sin θe

iφ
). 

What are the possible results of measurement of (a) L
2
, and (b) Lz, and 

their probabilities? What is the expectation value of Lz? 

7.17 A system’s wavefunction is proportional to sin
2
 θ e

2iφ
. What are the 

possible results of measurements of (a) Lz and (b) L
2
? 

7.18 A system’s wavefunction is proportional to sin
2
 θ. What are the pos- 

sible results of measurements of (a) Lz and (b) L
2
? Give the probabilities of 

each possible outcome. 

7.19 Consider a stationary state |E, l⟩ of a free particle of mass m that has 
angular-momentum quantum number l. Show that Hl|E, l⟩ = E|E, l⟩, where 

 

 
Hl ≡ 

  
1 

p
2
 + 

2m 

l(l + 1)h̄
2
 
 

 
 

 

r2 

 
. (7.177) 

 

Give a physical interpretation of the two terms in the big bracket. Show that 
Hl = A†

l Al, where  
1 

Al ≡ √
2m

 

  

ipr − 

 
(l + 1)h̄ 

r 

 
 

. (7.178) 

Show  that  [Al, Al
†

] = Hl+1      Hl.  What  is  the  state  Al E, l  ?  Show that  for 

E > 0 there is no upper bound on the angular momentum. Interpret this 
result physically. 

7.20 ∗ Show  that  [Ji, Lj]  =  i 
Σ 

ǫ L   and [J , L
2
] = 0 by eliminating L 

using  its  definition  L  =  h̄−1
x p,  and  then  using  the  commutators  of  Ji 

with x and p. 

ijklm 

iφ 



± 

2 

⟨ |  | ⟩ 

⟨ |  | ⟩ 

≡ 

i jik   L  [L  , x  ] + [L  , x  ]Lj k k j

 i  i 

| ⟩ 

2 

± 

≡ 
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7.21 ∗ In this problem you show that many matrix elements of the position 
operator x vanish when states of well defined l, m are used as basis states. 
These  results  will  leadΣto  selection  rules  for  electric  dipole  radiation.   First 
show that [L

2
, xi] = i 

using this result derive 
jk ǫjik(Ljxk + xkLj).  Then show that L · x = 0 and 

[L
2
, [L

2
, x ]] = i 

Σ 
ǫ 

  
2 2 = 2(L

2
x + x L

2
).  (7.179) 

jk 

 

By squeezing this equation between angular-momentum eigenstates ⟨l, m| 

and |l′, m′⟩ show that 

  } 
0 =  (β − β′)

2
 − 2(β + β′)  ⟨l, m|xi|l′, m′⟩, 

where β    l(l + 1) and β′ = l′(l′ + 1).  By equating the factor in front of 
l, m xi l′, m′ to zero, and treating the resulting equation as a quadratic 
equation for β given β′, show that   l, m xi l′, m′   must vanish unless l + l′ = 
0 or l = l′    1.  Explain why the matrix element must also vanish when 
l = l′ = 0. 

7.22 ∗ Show that l excitations can be divided amongst the x, y or z oscilla- 
tors of a three-dimensional harmonic oscillator in (

 1
 l + 1)(l + 1) ways. Verify 

in the case l = 4 that this agrees with the number of states of well defined 
angular momentum and the given energy. 

7.23 ∗ Let 
 

1 
Al  ≡ √

2mh̄ω 

 

  

ipr − 

 
(l + 1)h̄ 

+ mωr 
r 

 

 
. (7.180) 

be the ladder operator of the three-dimensional harmonic oscillator and E, l 
be the oscillator’s stationary state of energy E and angular-momentum quan- 

tum  n√umber  l.   Show  that  if  we  write  Al|E, l⟩  =  α−|E  − h̄ω, l + 1⟩,  then 
α− = L − l, where L is the angular-momentum quantum number of a cir- 
cular orbit of energy E.  Show similarly that if A†

l    1|E, l⟩ = α+|E + h̄ω, l − 1⟩, 
 

− 

then α+ = 
√

L − l + 2. 
7.24 ∗ Show that the probability distribution in radius of a particle that 
orbits  in  the  three-dimensional  harmonic-oscillator  potential  on√a  circular 
orbit with angular-momentum quantum number l peaks at r/ℓ = 2(l + 1), 
where r   

h̄ 
ℓ . (7.181) 

2mω 

Derive the corresponding classical result. 

7.25 ∗ A particle moves in the three-dimensional harmonic oscillator poten- 
tial with the second largest angular-momentum quantum number possible at 
its energy. Show that the radial wavefunction is 

 
u1 ∝ x 

  
2l + 1 

x − 
x

 

 
e−x

 
/4

 where   x ≡ r/ℓ with ℓ ≡ 

r   
   h̄  

. 
2mω 

(7.182) 
How many radial nodes does this wavefunction have? 

7.26 A box containing two spin-one gyros A and B is found to have angular- 
momentum quantum numbers j = 2, m = 1. Determine the probabilities 
that when Jz is measured for gyro A, the values m = 1 and 0 will be 
obtained. 

What is the value of the Clebsch–Gordan coefficient C(2, 1; 1, 1, 1, 0)? 

l 
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7.27 The angular momentum of a hydrogen atom in its ground state is 
entirely due to the spins of the electron and proton. The atom is in the state 
1, 0 in which it has one unit of angular momentum but none of it is parallel 
to the z-axis.  Express this state as a linear combination of products of the 

spin states |±, e⟩ and |±, p⟩ of the proton and electron. Show that the states 
|x±, e⟩ in which the electron has well-defined spin along the x-axis are 

1 
|x±, e⟩ = √

2 
(|+, e⟩ ± |−, e⟩) . (7.183) 

 

By writing  
|1, 0⟩ = |x+, e⟩⟨x+, e|1, 0⟩ + |x−, e⟩⟨x−, e|1, 0⟩, (7.184) 

 

express 1, 0 as a linear combination of the products x  , e  x  , p . Explain 
the physical significance of your result. 

7.28 ∗ The interaction between neighbouring spin-half atoms in a crystal is 
described by the Hamiltonian 

 

H = K 

 
S(1)   S(2) 

a 
− 3 

(S
(1)

 · a)(S
(2)

 · a) 
 

 
 

 

a3 

 

, (7.185) 

 

where K is a constant, a is the separation of the atoms and S
(1)

 is the first 
atom’s spin operator. Explain what physical idea underlies this form of H. 
Show that S

(1)
S

(2)
+S

(1)
S

(2)
 =  

1
 (S

(1)
S

(2)
+S

(1)
S

(2)
).  Show that the mutual 

x x y y 2 + 
2 

− − + 
eigenkets of the total spin operators S 
find the corresponding eigenvalues. 

and Sz are also eigenstates of H and 

At time t = 0 particle 1 has its spin parallel to a, while the  other 
particle’s spin is antiparallel to a. Find the time required for both spins to 
reverse their orientations. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8 
Hydrogen 

 
Wherever we look, down at ourselves or up into the vastness of the Uni- 
verse, what we see are atoms. The way atoms interact with themselves and 
with electromagnetic radiation structures the world about us, giving colour, 
texture, solidity or fluidity to all things, both alive and inanimate.  In  the 
wider Universe the way visible matter has aggregated into stars and galaxies 
is determined by the interplay between atoms and radiation. In the last two 
decades of the twentieth century it emerged that atoms do not really domi- 
nate the Universe; on large scales they are rather like icing on the cake. But 
they certainly dominate planet Earth, and, like the icing, they are all we can 
see of the cosmic cake. 

Besides the inherent interest of atomic structure,  there is the  histori- 
cal fact that the formative years of quantum mechanics were dominated by 
experimental investigations of atomic structure.   Most of the principles of 
the subject were developed to explain atomic phenomena, and the stature of 
these phenomena in the minds of physicists was greatly enhanced through 
the rôle they played in revolutionising physics. 

It is an unfortunate fact that atoms are complex systems that are not 
easily modelled to a precision as good as that with which they are commonly 
measured. The complexity of an atom increases with the number of electrons 
that it contains, both because the electrons interact with one another as well 
as with the nucleus, and because the more electrons there are, the  higher 
the nuclear charge and the faster electrons can move. By the middle of the 
periodic table the speeds of the fastest electrons are approaching the speed 
of light and relativistic effects are important. 

In this chapter we develop a model of the simplest  atom,  hydrogen, 
that accounts for most, but not all,  measurements.  In Chapter 10 we will 
take the first steps towards a model of the second most complex atom, he- 
lium, and indicate general trends in atomic properties as one proceeds down 
the periodic table. The ideas we use will depend heavily on the model of 
hydrogen-like systems that is developed in this chapter. With these appli- 
cations in view, we generalise from hydrogen to a hydrogen-like  ion,  in 
which a single electron is bound to a nucleus of charge Ze. 
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8.1 Gross structure of hydrogen 

We start with a rather crude model of a hydrogen-like ion. In this model 
neither the electron nor the nucleus has a spin, and the electron moves non- 
relativistically under purely electrostatic forces. The structure of an atom or 
ion that is obtained using these approximations is called its gross structure. 
The approximations make it easy to write down the model Hamiltonian be- 
cause they include just three contributions to the energy: the kinetic energies 
of the nucleus and the electron, and the bodies’ electrostatic binding energy: 

 

p2 p2 Ze
2
 

H =    n    +    e     − , (8.1) 
2mn 2me 4πǫ0|xe − xn| 

 

where xe and xn are the position operators of the electron and the nucleus, 
respectively, and pe and pn are the corresponding momentum operators. We 
wish to solve the eigenvalue equation H E = E E for this Hamiltonian. 
In the position representation, the momentum operators become derivative 
operators, and the eigenvalue equation becomes a partial differential equation 
in six variables 

 
Eψ(xn, xe) = − 

h̄
2
 

 

 

2mn 

 
∇nψ − 

 

h̄
2
 

2me 

 
∇eψ − 

Ze
2
ψ 

 

 

4πǫ0|xe − xn| 

 
, (8.2) 

where a subscript e or n on implies the use of derivatives with respect to the 
components of xe or xn. Remarkably, we can solve this frightening equation 
exactly. The key step is to introduce six new variables, the components of 

 

X 
mexe + mnxn 

me + mn 
and  r ≡ xe — xn 

 

. (8.3) 

 

X is the location of the ion’s centre of mass, and r is the vector from the 
nucleus to the electron. The chain rule yields 

 

  ∂ ∂X ∂ 
= · 

∂r ∂ 
+ · 

  me ∂ 
= 

∂ 
+ . (8.4) 

∂xe ∂xe ∂X ∂xe ∂r me + mn ∂X ∂r 
 

When we take the dot product of each side with itself, we find 
 

   2 
2 me 2 2 

 
 

 
2me ∂

2
 

 
 ∇e = 

me + mn 
∇X + ∇r + 

me + mn 
, (8.5a) 

∂X · ∂r 
 

where the subscripts X and r imply that the operator is to be made up of 
derivatives with respect to the components of X or r. Similarly 

 
   2 

2 mn 2 2 
 

 

 
2mn ∂

2
 

 
 ∇n = 

me + mn 
∇X + ∇r − 

me + mn 
. (8.5b) 

∂X · ∂r 
 

We  now add  m−
e  

1  times  equation (8.5a) to  mn
−1  times  equation (8.5b).  The 

mixed derivatives cancel leaving 
 

m−1∇2 + m−1∇2  =
 1 

∇2 + 
1 

∇2, (8.6a) 
 
 

where 

e e n n
 me + mn X µ  r 

 
  memn  

µ ≡ 
m

 + mn 
(8.6b) 

is called the reduced mass of the electron. In the case of hydrogen, when 
mn = mp = 1836me, the reduced mass differs very little from me (µ = 
0.99945me), and in heavier hydrogen-like ions the value of µ lies even closer 
to me. 

e 



2 2 

§ 

h̄ 

n 

— ∇ ψ  −  = E ψ . (8.10)
2µ

  4πǫ r
 

§ 
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Figure 8.1 The effective potential 
(8.13) for Z = 1 and (from bottom 
to top) l = 0, 1, 2, 3, 4. 

 
 
 

When we use equation (8.6a) to replace xe and xn in equation (8.2) by 
r and X, we obtain 

 

Eψ = − 
h̄

2
 

2(me + mn) 
∇Xψ − 

h̄
2
 

 
 

2µ 
∇rψ − 

Ze
2
 

 
 

4πǫ0r 

 

ψ. (8.7) 

 

The right side breaks into two parts: the first term is the Hamiltonian HK of 
a free particle of mass me + mn, while the second and third terms make up 
the Hamiltonian Hr of a particle of mass µ that is attracted to the origin by 
an inverse-square law force. Since HK and Hr commute with one another, 
there is a complete set of mutual eigenkets. In 6.1.2 we showed (page 109) 
that in these circumstances we can assume that ψ is a product 

 

ψ(xe, xn) = K(X)ψr(r), (8.8) 
 

where 
2        2 

 
 

and 

− 
2(me + m ) 

∇XK = EKK (8.9) 

h̄
2
 Ze

2
ψr 

       2    
r   r r  r 

0 

Here EK and Er are two distinct eigenvalues and their sum is the ion’s total 
energy, E = EK + Er. 

From 2.3.3 we know all about the dynamics of a free particle, so equa- 
tion (8.9) need not detain us. We have to solve equation (8.10). In the 
interests of simplicity we henceforth omit the subscript Er. 

Equation (7.69) enables us to write the kinetic energy term in equation 
(8.10) in terms of the radial momentum operator pr and the total orbital 
angular momentum operator L

2
. Equation (8.10) is then the eigenvalue 

equation of the Hamiltonian 
 

 p
2 

H + 
2µ 

h̄
2
L

2
 

2µr2 

Ze
2
 

— 4πǫ0r 

 

. (8.11) 

 

L
2
 commutes with H since the only occurrence in H of the angles θ and φ 

is in L
2
 itself. So there is a complete set of mutual eigenstates E, l, m  of 

H, L
2
 and Lz such that L

2
 E, l, m = l(l + 1) E, l, m . For these kets the 

operator H of equation (8.11) is equivalent to the radial Hamiltonian 
 

 p
2 

H + 
2µ 

l(l + 1)h̄
2
 

2µr2 

Ze
2
 

— 4πǫ0r 

 

. (8.12) 
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The operator (8.12) is the Hamiltonian for a particle that moves in one 
dimension in the effective potential 

 

l(l + 1)h̄
2
 Ze

2
 

Veff(r) ≡ 
2µr2 

− 
4πǫ r 

. (8.13) 
 

The first term in this expression is the kinetic energy that conservation of 
angular momentum requires in tangential motion, while the second term is 
the electrostatic potential energy. Veff is plotted in Figure 8.1 for l = 0, . . . , 4. 
The radial Hamiltonian Hl governs the oscillations of the reduced mass 
around the minimum for Veff. By astute exploitation of natural coordinates 
and symmetry we have reduced our original intimidating Hamiltonian (8.1), 
which contained twelve operators, to a Hamiltonian Hl that contains only 
two operators. The eigenkets of the Hamiltonian Hr for the internal struc- 
ture of the ion are products of the eigenkets  E, l  of Hl and eigenkets  l, m 
of L

2
 and Lz: 

|E, l, m⟩ = |E, l⟩|l, m⟩. (8.14) 

Hl is strikingly similar to the radial Hamiltonian defined by equation 
(7.81) for which we solved the eigenvalue problem in the course of our study 
of the three-dimensional harmonic oscillator. We use essentially the same 
technique now, defining the dimensionless ladder operator 

 

a0 i l + 1 Z 
Al ≡ √

2
 

h̄ 
pr − + 

r (l + 1)a0 
, (8.15a) 

 

where we have identified the Bohr radius1 

 
4πǫ0h̄

2
 

a0 ≡ 
µe2     . (8.15b) 

The product of Al  with A†
l   is 

a
2 

i     Z l + 1 i   Z l + 1 
A†Al =  

0
 −  pr + − 

  

pr + − 
   l

 2 h̄ 
( 2 2 

(l + 1)a0 r h̄ 
 2 

(l + 1)a0 r 
 ) 

= 
a0 pr  +

 
  

  Z  l + 1 − i l + 1 + p , . 
2 h̄

2
 (l + 1)a0 r h̄ 

r
 r  

(8.16) 
Equations (2.25) and (7.67) enable us to evaluate the commutator in this 
expression, so we have 

a2     p2 
 

Z
2
 (l + 1)

2
 2Z 

 
i l + 1 

A†Al =   0 r  + + − − 
  

[pr, r] 
 

l 2 

 a
2 

= 

h̄
2
 

 p
2 

+ 

(l + 1)2a
2
 r2 

l(l + 1) 2Z 
− + 

  

a0r 

Z2 

h̄    r2  

(8.17) 
2 h̄2 r2 
a

2
µ Z

2
 

a0r (l + 1)2a
2
 

=  
0
  Hl + 

h̄
2
 2(l + 1)2 

.
 

 

If we evaluated the product AlAl
†
, the sign in front of the commutator in the 

first line of equation (8.17) would be reversed, so we would find 
 

AlA†
l 

 a
2
µ 

= Hl+1 + 
h̄

2
 

Z2 
 

 

2(l + 1)2 

 

. (8.18) 

 
 

1 The physical significance of a0 is clarified by rewriting equation (8.15b) in the form 
e2/(4πǫ0a0)  =  (h̄/a0)2/µ.   The  left  side  is  the  electrostatic  potential  energy  at  a0  and 
the right side is twice the kinetic energy of zero-point motion (§3.1) of a particle whose 
position has uncertainty ∼ a0. For hydrogen a0 = 5.29177 × 10−11 m. 
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Taking equation (8.17) from equation (8.18) we obtain the commutator 

† a
2
µ 

[Al, A ] = 
 
 

0
   (Hl+1 − Hl), (8.19) 

l
 h̄

2
 

a result that recalls equation (7.88) for the three-dimensional harmonic os- 
cillator. 

It is useful to rewrite equation (8.17) in the form 

h̄
2
 Z

2
 

Hl = 
µa2 A†

l Al  − 
2(l + 1)2 

. (8.20) 

Commuting each side of this equation with Al and using equation (8.19), we 
obtain an expression for the commutator of Hl with Al: 

h̄
2
 † h̄

2
 † 

[Al, Hl] = 
µa2 [Al, Al Al] = 

µa2 [Al, Al ]Al = (Hl+1 − Hl)Al. (8.21) 
0 0 

This equation simplifies to 

AlHl = Hl+1Al. (8.22) 

We show that Al is a ladder operator by multiplying it into both sides 
of the eigenvalue equation Hl|E, l⟩ = E|E, l⟩ and using equation (8.22): 

EAl|E, l⟩ = AlHl|E, l⟩ = Hl+1Al|E, l⟩. (8.23) 

This equation states that Al E, l is an eigenket of Hl+1 with eigenvalue E. 
That is, Al transfers energy from the electron’s radial motion to its tangential 
motion. If we repeat this  process by multiplying  Al|E, l⟩ by Al+1,  and so on, 
we will eventually arrive at a circular orbit. Let L(E) denote the l value of 
this orbit. Then AL must annihilate E, because, if it did not, we would 
have a state with even greater angular momentum. Thus with equation 
(8.17) we can write 

0 = |AL|E, L⟩| 

That is, 

= ⟨E, L|A† 
 a

2
µ 

A  E, = E + 
h̄

2
 

Z2 
 

 

2(L + 1)2 

 

. (8.24) 

Z
2
h̄

2
 Z2e2 Z

2
µe

4
 E = − 

2µa
2
n2   

= − 
8πǫ  a  n2   

= − 
2n2(4πǫ  h̄)2 

, (8.25)
 

0 0   0 0 

where we have defined the principal quantum number n + 1 and the 
second equality uses the definition (8.15b) of the Bohr radius. The Rydberg 
constant R is 

 
 

h̄
2
 e

2
 e

2  2
 

      1    
R ≡ 

2µa
2
  
=  

8πǫ  a    
=  

2 
µ 

4πǫ  h̄ 
= 13.6056923 eV, (8.26) 

where µ = memp/(me+mp) is the reduced mass in the case of hydrogen. The 
Rydberg constant enables us to give a compact expression for the permitted 
values of E and l in hydrogen 

E = − 
R

2 
(n = 1, 2, . . .)    ; 0 ≤ l ≤ n − 1 . (8.27) 

Henceforth we use n rather than E to label kets and wavefunctions. Thus 
n, l, m  =  n, l  l, m  (cf. eq. 8.14) is the stationary state of a hydrogen-like 
ion for the energy given by (8.25) and the stated angular-momentum quan- 
tum numbers. The ground state is 1, 0, 0 . The energy level immediately 
above the ground state is four-fold degenerate, being spanned by the states 
2, 0, 0 , 2, 1, 0 and 2, 1, 1 . The second excited energy level is 9-fold de- 
generate, and so on. 

This property of our model hydrogen atom, that it has states with dif- 
ferent l but the same energy, is unusual and reflects a hidden symmetry of 
our model – see Appendix F for details. Atoms with more than one electron 
have energy levels that depend explicitly on l even when spin and relativity 
are neglected. When our model of hydrogen is upgraded to include spin and 
relativity, E becomes weakly dependent on l. 

2 
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Figure 8.2 Schematic diagram  of 
the Lyman, Balmer and Paschen se- 
ries of spectral lines in the spectrum 
of hydrogen. 

 

 
8.1.1 Emission-line spectra 

A hydrogen atom may change its value of n to a smaller value n′,  releasing 
the liberated energy as a photon of frequency ν = (En En′ )/h. Hence the 
emission spectrum of hydrogen contains lines at the frequencies 

 

ν = 
R

   1 1  
− 

 
. (8.28) 

h n′2 n2 

 

The lines associated with a given lower level n′ form a series of lines of 
increasing frequency and decreasing wavelength. The series associated with 
n′ = 1 is called the Lyman series, the longest-wavelength member of which 
is the Lyman α line at  121.5 nm,  followed  by  the  Lyβ  line  at  102.5 nm, 
and so on up to   the   series limit at 91.2 nm.    The   series associated with 
n′  = 2 is called the Balmer  series and starts with a line called Hα at 
656.2 nm and continues with Hβ at 486.1 nm towards the series limit at 
364.6 nm. The series associated with  n′  =  3  is  the  Paschen  series,  and 
that associated with n′  = 4 is the Brackett series.  Figure 8.2 shows the 
first three series schematically. Historically the discovery in 1885 by Johann 
Balmer (1825–1898), a Swiss schoolmaster, that the principal lines in the 
optical spectrum of hydrogen could be fitted by equation (8.28), was crucial 
for the development of Niels Bohr’s model atom of 1913, which was the 
precursor of the current quantum theory (Problem 8.3). 

Equation (8.25) states that, for given n, the energy of an electron scales 
as Z

2
. For a many–electron atom electromagnetic interactions between the 

electrons invalidate this scaling. However, it holds to  a fair  approximation 
for electrons that have the smallest values of n because these electrons are 
trapped in the immediate vicinity of the nucleus and their dynamics is largely 
unaffected by the presence of electrons at larger radii. Henry Moseley (1887– 
1915) studied the frequencies of X-rays given off when atoms were bombarded 
by free electrons. He showed2 that the frequencies of similar spectral lines 
from different elements seemed to scale with the square of the atomic number. 
At that time the periodic table was something constructed by chemists that 
lacked a solid physical foundation. In particular, the atomic numbers of some 
elements were incorrectly assigned. Moseley’s experiments led to the order 
of cobalt and nickel being reversed, and correctly predicted that elements 
with atomic numbers 43, 61, 72, 75, 87 and 91 would be discovered. 

 
 

8.1.2 Radial eigenfunctions 

The wavefunctions of hydrogen-like ions are not only important for exper- 
iments with atoms and ions that have only one electron, but are also the 
building blocks from which models of many-electron atoms are built. 

The first step in finding any radial eigenfunction  for a hydrogen-like ion 
is to write the equation An−1 n, n  1  = 0 (eq. 8.24) as a differential equation 
for the radial wavefunction of the circular orbit with angular-momentum 

 

2 Moseley, H.G.J., 1913, Phil. Mag., 27, 703. The lines studied by Moseley were 
associated with transitions n = 2 → 1. 
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Figure 8.3 The radial wavefunctions un−1(r) of “circular” orbits for n = 1, 2 and 3. 

 

quantum number l = n − 1. From equations (8.15a) and (7.66) we need to 
solve 

∂ 
un−1 + 

  

— 
n − 1 

+ 
 Z 

 
u

n−1
 = 0, (8.29) 

 
where 

∂r  
n
 r na0 

n
 

u
l
 (r) ≡ ⟨r|n, l⟩. (8.30) 

Equation (8.29) is a first-order linear differential equation. Its integrating 
factor is  ∫ 

exp 

  

dr − 
n − 1 

+  
Z 

 
= r−(n−1)eZr/na0 , (8.31) 

r 

so the required eigenfunction is 

na0 

u
n−1

(r) = Cr
n−1

e−Zr/na0 , (8.32) 

where C is a  normalising  constant.  This  wavefunction  is  very  similar  to 
our expression (7.97) for the wavefunction of a circular orbit in the three- 
dimensional harmonic oscillator potential – the only difference is that the 
Gaussian function has been replaced by a simple exponential. The scale- 
length in the exponential is (n/Z)a0, so it increases with energy and decreases 
with the nuclear charge. This makes perfect sense physically because it states 
that more energetic electrons can go further from a given nucleus, and that 
nuclei with higher electric charge will bind their (innermost) electrons more 
tightly. 

We choose the normalising constant C in equation (8.32) to ensure that 
the complete wavefunction (eq. 8.14) 

l m 

⟨r, θ, φ|(|E, l⟩|l, m⟩) = ⟨r|n, l⟩⟨θ, φ|l, m⟩ = un(r)Yl   (θ, φ) (8.33) 

∫is  correctly  normalised.    Bearing  in  mind  that  d
3
x  =  r

2
dr d

2
Ω  and  that 

d
2
Ω |Y

m
|2 = 1, we find that C must satisfy 
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∫ ∞ 

dr r2ne−2Zr/na0  = C2 
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 2n+1 
∫ ∞  

dρ ρ2ne−ρ 

0 
  na   2n+1 

= C 
2Z 

 
(2n)!, 

2Z 0 
(8.34) 

where we have evaluated the integral with the aid of Box 8.1. The correctly 
normalised radial wavefunction is therefore 

1 
u (r) = √  

 

 

  
2Z  

 3/2     
2Zr 

 n−1 
  

 
e−Zr/na0 . (8.35) 

n
 (2n)! na0 na0 

These functions are plotted for n = 1 3 in Figure 8.3. For n > 1 the 
wavefunction rises from zero at the origin to a peak at r = n(n 1)a0/Z and 
from there falls exponentially with increasing r. 
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Box  8.1: The factorial  function 

We often encounter the integral Γ(α + 1) ≡ dt t  e    .  Integrating by 
∫ ∞ 

0 
α −t 

parts we find that 

   ∞ 

Γ(α + 1) = − e + α dt t e tα −t 
∫ ∞ 

0 
α−1 −t 

0 

= αΓ(α). 

It is easy to check that Γ(1) = 1. Putting α = 1 in the last equation it 
follows that Γ(2) = 1. Setting α = 2 we find Γ(3) = 2, and repeating 
this process we see that for any integer n, Γ(n + 1) = n!. We can use this 
result to define the factorial function by 

∫ ∞ 
z −t 

0 

This definition yields a well defined value for z! for any complex number 
that is not a negative integer, and it coincides with  the  usual definition 
of a factorial if z happens to be a non-negative integer. 

z! ≡ Γ(z + 1) = dt t e    . (1) 
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Figure 8.4 The probability  of  find- 
ing the electron of a hydrogen atom 
that is in its ground state at  a ra- 
dius greater than r. Radii greater 
than 2a0/Z are classically forbidden. 

 
 
 
 

 

We obtain the ground-state radial wavefunction by setting n = 1 in 
equation (8.35): 

 

u
0
(r) = 2 

  
Z 

 3/2 
 

 

a0 

 

e−Zr/a0 . (8.36) 

The complete wavefunction is obtained by multiplying this by Y
0
 = (4π)−1/2

. 
Figure 8.4 shows the probability of finding the electron at a radius greater 
than r. This reaches 13/e

4
     0.24 at r = 2a0/Z, where the potential energy 

is equal to the total energy. In classical physics the probability of finding the 
electron at these radii is zero. 

It is interesting to calculate the expectation value of r for circular orbits. 
We have 

1 2Z  
 3∫ ∞   

2Zr 
 2(n−1) 

⟨n, n − 1, m|r|n, n − 1, m⟩ =  
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0
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2Z (2n)!  0 2    Z 

(8.37) 
In the classical limit of large n,   r n

2
a0/Z,  so  E 1/n

2
 1/ r as 

classical physics predicts. (One can easily show that classical physics yields 
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Figure 8.5 Probability densities  for 
three orbits in hydrogen. All orbits have 
n = 3 and  m = l.  Clockwise from top 
left l increases from 0 to 2. The grey 
scale shows the log to base 10 of the 
probability density. 

 

the correct proportionality constant.) A very similar calculation shows that 
 

  2  2 
 

1 2 2 n + 1 2 
 

 

r = n (n + 1)(n + 2 )a0/Z  = 
n + 1  ⟨r⟩ , (8.38) 

q   
so the rms uncertainty in r is ⟨r2⟩ − ⟨r⟩   = ⟨r⟩ /

√
2n + 1.  Consequently, 

2 

as n increases, the uncertainty in r increases as n
3/2

, but the fractional 
uncertainty in r decreases as n−1/2

. 
Our conclusion that the radius of an atom scales as n

2
 implies that an 

atom with n 100 occupies 10
12

 times as much volume as an atom in the 
ground state. Consequently, only at high-vacuum densities can such highly 
excited atoms be considered isolated systems. Radio telescopes detect line 
radiation emitted by hydrogen atoms in the interstellar medium that are 
reducing their value of n by δn from n  100.  The frequency of such a 
transition is 

E − E   R 1    1  
 

 
 

100 
  3

 

νn = n+δn 

h 

n  
=

 
h n2 

— 
(n + δn)2 

≃ 6.58 
n

 δn GHz.  (8.39) 

Our analysis of the three-dimensional harmonic oscillator suggests that 

applications of A†
′ to u

n−1
 should generate the wavefunctions u

l
  for l < n−1. 

We show that this is indeed the case by daggering both sides of equation 
(8.22) to obtain 

HlAl
†  = Al

†Hl+1. (8.40) 

Consequently, applying Al
† 

to both sides of E E, l + 1 = Hl+1 E, l + 1 we 
have 

E(A†
l |E, l + 1⟩ = Al

†Hl+1|E, l + 1⟩ = Hl(A†
l |E, l + 1⟩) 

which establishes that Al
†  

E, l + 1  is an eigenket of Hl as we hoped.  Using 
a result proved in Problem getAAdaggerprob, we have, in fact, that 

√
2
 

1 
1  

  −1/2 

|n, l⟩ = 
Z

 
(l + 1) 

− 
n2 

A†
l |n, l + 1⟩. (8.41) 
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Table 8.1 The first six radial eigenfunctions u
l
 (r) for hydrogen with 

aZ ≡ a0/Z.  The full wavefunction is u
l
 (r)Y

m
(θ, φ). 
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√
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1 

2 

From equations (8.15a) and (7.66) we can write 

  
† a0 ∂ l + 2 Z 

Al = −√
2

 

∂r 
+ 

r 
− 

(l + 1)a 

. (8.42) 

Setting l = n − 2 we can apply this operator to u
n−1

 to obtain 

u
n−2

(r) = constant × 

  
  Zr  

1 − 
n(n − 1)a 

 
rn−2e−Zr/na0 . (8.43) 

 

This wavefunction has a node at r = n(n     1)a0/Z .  When we apply A†
n    3  to 

this wavefunction to generate u
n−3

, the lowest power of r in the factor that 
multiplies the exponential will be r

n−3
, so the exponential will be multiplied 

by a quadratic in r and the wavefunction will have two nodes. In our study of 
the three-dimensional harmonic oscillator we encountered the same pattern: 
the number of nodes in the radial wavefunction increased by one every time 
A† decrements the angular momentum and increases the energy of radial 
motion. The radial eigenfunctions for states with n 3 are listed in Table 8.1 
and plotted in Figure 8.5. 

Notice that because u
n−1

(r) is a real function and A† is a real operator, 
n l 

all the radial eigenfunctions are real. Because the probability current J is 
proportional to the gradient of the phase of the wavefunction (eq. 2.87), the 
reality of u

l
 (r) implies that the probability current inside the atom has no 

radial component. This makes perfectly good sense physically: the electron 
moves both inwards and outwards and (unlike in the classical case) at any 
given point the electron is as likely to be moving out as in. 

 
 

8.1.3 Shielding 

The electrostatic potential in which a bound  electron moves is never  ex- 
actly  proportional  to  1/r  as  we  have  hitherto  assumed.   In  hydrogen  or 
a single-electron ion the deviations from 1/r proportionality are small but 
measurable. In many-electron systems the deviations are large. In all cases 
the deviations arise because the charge distribution that binds  the  electron 
is not confined to  a  point as we have assumed.  First,  protons and neu- 
trons have non-zero radii – after all there has to be room for three quarks 
to move about in there at mildly relativistic speed! Second, even if the nu- 
clear charge were confined to a point, the field it generates would not be an 
inverse-square field because in the intense electric field that surrounds the 
nucleus, a non-negligible charge density arises in the vacuum. This charge 
density is predicted by quantum electrodynamics, the theory of the interac- 
tion of the Dirac field, whose excitations constitute electrons and positrons, 
and the electromagnetic field, whose excitations are photons. In a vacuum 
the zero-point motions ( 3.1) of these fields cause electron-positron pairs to 
be constantly created, only to annihilate an extremely short time later. In 
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the strong field near the nucleus, the positrons tend to spend their brief 
lives further from the nucleus, which repels them, than do the electrons. In 
consequence the charge inside a sphere drawn around the nucleus is slightly 
smaller than the charge on the nucleus, the charge deficit being small for 
both very small and very large spheres. That is, quantum electrodynamics 
predicts that the vacuum is a polarisable dielectric medium, just like an or- 
dinary insulator, in which the electrons and ions move in opposite directions 
when a field is applied, giving rise to a net charge density within the medium. 

When an atom has more than one electron, the deviation of the elec- 
trostatic potential from 1/r proportionality is much larger than in hydrogen 
since the charge on any electron other than the one whose dynamics we are 
studying is distributed by quantum uncertainty through the space around 
the nucleus, so the charge inside a sphere around the nucleus is comparable 
to the charge on the nucleus when the sphere is very small, but falls to e 
when the sphere is large. 

Phenomena of this  type,  in which there is a tendency for a charged 
body to gather oppositely charged bodies around it, are often referred to as 
‘shielding’. A complete treatment of the action of shielding in even single- 
electron systems involves quantum field theory and is extremely complex. 
In this section we modify the results we have obtained so far to explore an 
idealised model of shielding, which makes it clear how shielding modifies the 
energy spectrum, and thus the dynamics of atomic species. 

The key idea is to replace the atomic number Z in the Hamiltonian with 
a decreasing function of radius. We adopt 

 

Z(r) = Z0 a   
1 + , (8.44) 

r 

where Z0 and a are adjustable parameters. For r a, the nuclear charge 
tends to a maximally shielded value Z0e.  For r  a, the charge is larger 
by  Z0e.  At very small r, the charge diverges, but we anticipate that 
this unphysical divergence will not have important consequences because the 
electron is very unlikely to be found at r   a0/Z. With this choice for Z(r), 
the radial Hamiltonian (8.12) becomes 

 

 
 

 
where 

2 

Hl
′ =  

r
 + 

2µ 

{l(l + 1) − β}h̄ 

2µr2 

 
Z0aµe

2
 

Z0e
2
 

— 
4πǫ0r 

 

, (8.45a) 

β ≡  
2πǫ  h̄2  . (8.45b) 

Because we chose to take the radial dependence of Z to be proportional to 
1/r, we have in the end simply reduced the repulsive centrifugal potential 
term in the radial Hamiltonian. Let l′(l) be the positive root of the quadratic 
equation 

l′(l′ + 1) = l(l + 1) − β. (8.46) 

In general l′ will not be an integer. With this definition, Hl
′ is identical with 

the Hamiltonian (8.12) of the unshielded case with l′ substituted for l and 
Z0 replacing Z, that is 

Hl
′ = Hl′(l). (8.47) 

Consequently, the operator Al′ that is defined by equation (8.15a) with the 
same substitutions satisfies (cf. eq. 8.17) 

† a
2
µ   Z

2
 

Al′ Al′  =   
h̄2   Hl′  +  

2(l′  + 1) 
. (8.48) 

Moreover by analogy with equation (8.19) we have 

 
[Al′ , A†

l′ ] = 
 a

2
µ 

h̄2   (Hl′ +1  − Hl′ ). (8.49) 
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It follows that Al′ is a ladder operator 
 

EAl′ |E, l′⟩ = (Hl′ Al′ + [Al′ , Hl′ ])|E, l′⟩ = Hl′ +1Al′ |E, l′⟩, (8.50) 

so Al′ |E, l′⟩ = α|E, l′ + 1⟩ is  an (unnormalised) eigenket of Hl′ +1  just  as in 
the unshielded case. Applying Al′ +1 to |E, l′ + 1⟩ we argue that eventually 
some maximum value ′ of l′ will be reached, at which point AL′ E, ′ = 0. 
From the mod square of this equation we conclude that 

 

  Z2e2 

E =  , where = l (l) + k, (8.51) 
8πǫ0a0(L′ + 1)2 

where k is the number of times we have to apply A to achieve annihilation. 
Since for a = 0,  l′(l) is  not  an  integer,  E  is  given  by  the  formula  (8.25) 
for the unshielded case with n replaced by a number that is not an integer. 
Moreover, the energy now depends on l as well as on n, where n is  defined 
to be 1 + l plus the number of nodes in the radial wavefunction at r < . 
To see this, consider the effect of increasing our initial value of l by one, and 
correspondingly decreasing by one the number of times we have to apply Al′ 

to achieve annihilation. In an unshielded atom l′ = l,  so  E is  unchanged 
when l is increased and k decreased by unity; we have moved between states 
with the same value of n. In the shielded case, increasing l by unity does 
not increment l′(l) by unity, so in equation (8.51) the changes in l′ and k do 
not conspire to hold constant ′. In fact one can show from equation (8.46) 
that when l increases by one, l′ increases by more than one (Problem 8.13), 
so among states with a given principal quantum number, those with the 
largest l values have the smallest binding energies. This makes perfect sense 
physically because it is the eccentric orbits that take the electron close to 
the nucleus, where the nuclear charge appears greatest. 

In 1947 Lamb & Retherford showed3 that in hydrogen the state  2, 0, 0 
lies 4.4 10−6

 eV below the states   2, 1, m , contrary to naive predictions 
from the Dirac equation. This Lamb shift is due to shielding of the proton 
by electron-positron pairs in the surrounding vacuum. 

 

8.1.4 Expectation values for r−k
 

It will prove expedient to have formulae for the expectation value of r−k
 with 

hydrogenic wavefu nctio ns and the first three values of k. 
The value of r−1 can be obtained from the virial theorem (2.93) since 

in hydrogen the potential energy is r−1
.  With α = 1, equation (2.93) 

implies that 
p2 

2⟨E| 
2m 

|E⟩ = −⟨E|V |E⟩. (8.52) 

On the other hand the expectation of the Hamiltonian yields 
 

p2 

⟨E| 
2m 

|E⟩ + ⟨E|V |E⟩ = E, (8.53) 
 

so we have  
 

Ze
2
 

⟨E|V |E⟩ = − 
4πǫ

 

 
⟨E|r−1

 

 
 

Z2e2 

|E⟩ = 2E = − 
4πǫ a n2 . (8.54) 

 
It follows that 

 
r−1 

0 0   0 

 
= Z/(n

2
a0). 

To obtain 
  
r−2 we anticipate a result that we shall prove in §9.1. This 

relates to what happens when we add a term βH1 to a system’s Hamiltonian, 
where β is a number and H1 is an operator. The n

th
 eigenenergy of the 

 

3 W.E. Lamb & R.C. Retherford, Phys. Rev. 72, 241 
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complete Hamiltonian then becomes a function of β, and in §9.1 we show 
that . 

dE . 

dβ . 

 

 
 

β=0 

= ⟨E|H1|E⟩. (8.55) 

We apply this result to a hydrogen-like system with the additional Hamilto- 
nian 

h̄
2
 

H1 = − 
2µr2 . (8.56) 

In the last subsection we showed that the exact eigenvalues of this system 
are given by equation (8.51).  Differentiating the eigenvalues with respect to 
β and using equation (8.55) we find 

 
h̄

2
 . d . Z

2
e

2
 

 
Z2e2 

 
dl′ 

⟨E|r−2
|E⟩ = .    

.
β=0 8πǫ0a0(l′  + k)2 

 
 

4πǫ0a0(l + k)3  dβ 
(8.57) 

From equation (8.46) we have dl′/dβ = −1/(2l + 1), so 
 

−2 Z
2
e

2
µ Z

2
 ⟨E|r 

|E⟩ =  
2πǫ  a  h̄

2
n3(2l + 1)  

=  
a

2
n

3
(l +  

1
 ) 

, (8.58)
 

0   0 0 2 
 

where the last equa lity u ses the definition (8.15b) of the Bohr radius. 
We determine r−3 by considering the expectation value of the com- 

mutator [H, pr]. As we saw in 2.2.1, in a stationary state the commutator 
with H of any observable vanishes. Hence with equation (8.12) we can write 

 

0 = ⟨E|[H, pr]|E⟩ = 
l(l + 1)h̄

2
 

2µ 
⟨E|[r−2

,  pr]|E⟩  − 
Ze

2
 

 
 

4πǫ0 
⟨E|[r−1

, pr]|E⟩  (8.59) 

 

Using  the  canonical  commutation  relation  [r, pr]  =  ih̄  [equat ion  ( 7.67)]  to 
evaluate the commutators in this expression, and the value of 
have just established, we find 

r−2 that we 

 

⟨E|r−3
 

Z3 |E⟩ = 
a

3
n3l(l + 1)(l + 

1
 ) 

. (8.60)
 

0 2 

    
The three values of  r−k

   that we have calculated conform to a pattern. 
First the  basic atomic scale a0/Z  is raised to  the     k

th
  power.  Then  there is 

a product of 2k quantum numbers on the bottom, reflecting the tendency for 
the atom’s size to grow as n

2
. Finally, as k increases, the number of fa ctor s 

of l increases from zero to three, reflecting the growing sensitivity of 
to orbital eccentricity. 

r−3 

 

8.2 Fine structure and beyond 

The model of hydrogen-like ions that we developed in the last section is 
satisfying and useful, but it is far from complete. We now consider some of 
the physics that is neglected by this model. 

In 2.3.5 we saw that when a particle that moves in an inverse-square 
force field is in a stationary state, the expectation value of its kinetic energy, 
classically 

1
 mv

2
, is equal in magnitude but opposite in sign to  its  total 

energy. Equation (8.25) is an expression for the ground-state energy of an 
electron in a hydrogen-like ion. When we equate the absolute value of this 
expression to 

1
 mev

2
, we find that the ratio of v to the speed of light c is 

 

v 
= αZ, (8.61) 
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2µ 
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where the dimensionless fine structure constant is defined to be 

e
2 1 

α ≡ 
4πǫ  h̄c  

≃ 
137 

. (8.62) 

Since relativistic corrections tend to be O(v
2
/c

2
), it follows that in hydrogen 

relativistic corrections to the results we have derived may be expected to 
be several parts in 10

5
, but these corrections, being proportional to Z

2
, will 

exceed 10% by the middle of the periodic table. 
For future reference we note that with the reduced mass µ approximated 

by me, equation (8.15b) for the Bohr radius can be written 
 

h̄ 
a0 = 

αmec 
= 

λCompton 
, (8.63) 

2πα 
 

where we have identified the electron’s Compton wavelength h/mec (the 
wavelength of a photon that has energy mec

2
). When we use this expression 

to eliminate a0 from equation (8.25), we find that the energy levels of a 
hydrogen-like ion are 

 

Z2α2 
2

 
 

 

 
1    2 2 

 
 

E = − 
2n2   mec , so R = 2 α  mec  . (8.64) 

 
8.2.1 Spin-orbit coupling 

Magnetism is a relativistic correction to electrostatics in the sense that a 
particle that is moving with velocity v in an electric field E experiences a 
magnetic field 

1 
B = 

c2 v × E. (8.65) 

If the particle has a magnetic dipole moment µ, it experiences a torque 
G = µ B that will cause its spin S to precess. In the particle’s rest frame 
the classical equation of motion of S is 

 

dS 1 

dt  
=  

h̄ 
µ × B, (8.66) 

where h̄ appears only because S is the dimensionless spin obtained by divid- 
ing the angular momentum by h̄.  We assume that the magnetic moment µ is 
proportional to the dimensionless spin vector S and write the proportionality 

µ =  
gQh̄ 

S, (8.67) 
2m0 

where g is the dimensionless gyromagnetic ratio, and Q and m0 are the 
particle’s charge and rest mass. In the case of an electron g = 2.002, a value 
which is correctly predicted by relativistic quantum electrodynamics, and 
the dimensional factor is defined to be the Bohr magneton 

µ 
  eh̄    

= 9.27 10−24
 J T−1

. (8.68) 
B
 2me 

 

With this notation, our rest-frame equation of motion (8.66) becomes 
 

dS gQ 
= 

dt 2m0 
S × B. (8.69) 

The non-zero value of the right side of this classical equation of motion 
for S implies that there is a spin-dependent term in the particle’s Hamiltonian 
since the operator S commutes with all spatial operators ( 7.4) and the 
right side of the classical equation of motion (8.69) is proportional to the 
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expectation of [S, H] (cf. eq. 2.57). We want to determine what this term in 
H is. 

Energy is not a relativistic invariant – it is physically obvious that ob- 
servers who move relative to one another assign different energies to a given 
system. Consequently, when they do quantum mechanics they use different 
Hamiltonians. We need the Hamiltonian that governs the dynamics of the 
reduced particle in the rest frame of the atom’s centre of mass.  So we have 
to transform the equation of motion (8.69) to this frame. This is a tricky 
business because the reduced particle is accelerating, so the required Lorentz 
transformation is time-dependent. Given the delicacy of the required trans- 
formation, it is advisable to work throughout with explicitly Lorentz ‘covari- 
ant’ quantities, which are explained in  Appendix  G.  In Appendix  H  these 
are used to show that in a frame of reference in which the electron is moving, 
equation (8.69) becomes 

 
dS Q  

= 

    
  h̄    dΦ 

— S × L + 2c S × B 
 

. (8.70) 
dt 2m0c2 m0r dr 

 

It is straightforward to demonstrate (Problem 8.14) from equation (2.34) that 
this classical equation of motion of the spin S of an electron (which has charge 
Q = e) arises if we introduce into the quantum-mechanical Hamiltonian 
(8.1) two spin-dependent terms, namely the spin-orbit Hamiltonian 

 

dΦ eh̄
2
 

HSO ≡ − 
dr 2rm2c2 S · L, (8.71) 

and the Zeeman spin Hamiltonian 
 

eh̄        
HZS ≡ 

m
 S · B. (8.72) 

 

The Zeeman spin Hamiltonian is just µ B with equation (8.67) used to 
replace the magnetic moment operator by the spin operator. Interestingly, 
the spin-orbit Hamiltonian is a factor two smaller than µ B with µ replaced 
in the same way and equation (8.65) used to relate B to the electric field 
in which the electron is moving. In the 1920s the experimental data clearly 
required this factor of two difference in the spin Hamiltonians, but its origin 
puzzled the pioneers of the subject until, in 1927, L.T. Thomas4   showed that 
it is a consequence of the fact that the electron’s rest frame is accelerating 
(Appendix H). If no torque is applied to a gyro, it does not precess in its 
instantaneous rest frame. But if the direction of the gyro’s motion is chang- 
ing relative to some inertial frame, the sequence of Lorentz transformations 
that are required to transform the spin vector into the inertial frame causes 
the spin to precess in the inertial frame. This apparent precession of an 
accelerated gyro is called Thomas precession. 

In a single-electron system such as hydrogen, Φ = Ze/(4πǫ0r), so 
 

Zαh̄
3
 

HSO = 
2m2cr3 

S · L, (8.73) 

where the fine-structure constant (8.62) has been used to absorb the 4πǫ0. 
Since the coefficient in front of the operator S L is positive, spin-orbit 
coupling lowers the energy when the spin and orbital angular momenta are 
antiparallel. 

The operator S · L in equation (8.73) is most conveniently written 

S · L = 
1
 ((L + S)

2
 − L

2
 − S

2
) = 

1
 (J

2
 − L

2
 − S

2
), (8.74) 

 

4 Phil. Mag. 3, 1 (1927) 
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Figure 8.6 The fine  structure  of 
a hydrogen-like ion with Z = 200 
that is predicted by equation (8.76a). 
The dotted  line denotes  a  break  in 
the energy scale so that the ground 

   state can be included. 
 

 

 
 

so HSO is diagonal in a basis made up of mutual eigenkets of J
2
, L

2
 and S

2
. 

In 7.5 we constructed such mutual eigenkets from the eigenkets of S
2
, Sz, 

L
2
, and Lz. S L annihilates states with quantum number l = 0 because 

then j = s. Hence, there is no spin-orbit coupling in the ground state of 
hydrogen. In any excited state, l > 0 is permitted, and from 7.5.2 we know 
that the possible values of j are l 

1
 . The associated eigenvalues of the 

operator on the right of equation (8.74) are readily found to be 
   

1 l for j = l + 
1
 , 

{j(j + 1) − l(l + 1) −   } = 2 
1 

  

2 (8.75) 
2 4 − 2

 (l + 1)   for j = l − 1 . 
 

Although S L commutes with the gross-structure Hamiltonian HGS 
(eq. 8.1), the other operator in HSO, namely r−3

, does not. So the eigenkets 
of HGS + HSO will differ (subtly) from the eigenkets we have found. In 
9.1 we shall show that in these circumstances the change in the energy of a 

stationary state can be estimated by replacing the operator by its expectation 
value. Equation (8.60) gives this value, and, inserting this  with  our  results 
for the spin operators, yields energy shifts 

, 
( 

(l + 1)(l + 
1
 ) for j = l + 

1
 

∆E ≡ ⟨n, l, m|HSO|n, l, m⟩ ≃ Kn 
2 2 

−l(l +  ) for j = l − (l > 0), 

 

where 

 
 

Z
4
αh̄

3
 

2 
 

 
Z4α4 

2 

(8.76a) 

Kn ≡ 4a
3
m2cn3  

=
 4n3 mec

2
, (8.76b) 

0     e 

and the second equality uses equation (8.63) for a0. The difference between 
the energies of states with j = l ± 1 is 

 

 

El+1/2 — El−1/2 

  2Kn  
= . (8.76c) 

l(l + 1) 
 

For n = 1 the fine-structure energy scale Kn is smaller than the gross- 
structure energy (8.64) by a factor Z

2
/2α

2
 that rises from parts in 10

5
 for 

hydrogen to more than 10% by the middle of the periodic table.5 In hydrogen 
fine-structure is largest in the n = 2, l = 1 level, which is split into j = 

3
 and 

j = 
1
 sublevels. According to equations (8.76c), these sublevels are separated 

by K2 = 4.53 10−5
 eV, while the measured shift is 4.54 10−5

 eV. 
Figure 8.6 shows the prediction of equation (8.76a) for the energy levels 

of a hydrogen-like ion with Z = 200. With this unrealistically large value 
 

5 Naturally, the fine-structure constant owes its name to its appearance in this ratio 
of the fine-structure and gross energies. 
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of Z the fine structure for n = 2 has comparable magnitude to the gross- 
structure difference between the n  = 2 and n  = 3 levels.  The levels in 
this figure are labelled in an obscure notation that is traditional in atomic 
physics and more fully explaine in Box 10.2. The value of n appears first, 
followed by one of the letters S, P , D, F to denote l = 0, 1, 2, 3, respectively.6 

The value of j appears as a subscript to the letter, and the value of 2s + 
1 (here always 2) appears before the letter as a superscript. So the level 
2

2
P3/2  has n  = 2,  s  = 1/2,  l  = 1,  and j =  

3
 .   From Figure 8.6 we see 

that states in which j is less than l (because the electron’s spin and orbital 
angular momenta are antiparallel) are predicted to have lower energies than 
the corresponding states in which the two angular momenta are aligned. The 
spin–orbit interaction vanishes by symmetry for s = 0 but otherwise at fixed 
n the magnitude of the effect decreases with increasing angular momentum 
because the electron’s top speed on a nearly circular orbit is smaller than on 
an eccentric orbit, so relativistic effects are largest on eccentric orbits. 

Equation (8.76a) suggests that states that differ in l  but not j should 
have different energies, whereas they do in fact have extremely similar en- 
ergies.  For example, the 2

2
S1/2 state lies 4.383   10−6

 eV above the 2
2
P1/2 

state, while equation (8.76a) implies that this energy difference should be 
3
 K2 = 6.79 10−5

 eV. This discrepancy arises because the spin-orbit Hamil- 
tonian does not provide a complete description to order α

4
 of relativistic 

corrections to the electrostatic Hamiltonian. Actually, additional corrections 
shift the energy of the 2

2
S1/2 states into close alignment with the energy of 

the 2
2
P1/2 states.7 However, in atoms with more than one electron, the 

electrostatic repulsion between the electrons shifts the energy of the 2
2
S1/2 

states downwards by much larger amounts. These electrostatic corrections 
are hard to calculate accurately, so the much smaller relativistic corrections 
are not interesting, experimentally, and the quantities of interest are differ- 
ence in energy between states with the same values of l but different j. These 
difference are correctly given by equation (8.76a). 

Relativistic quantum electrodynamics is in perfect agreement with mea- 
surements of hydrogen. It uses the Dirac equation rather than classically- 
inspired corrections to the electrostatic Hamiltonian. We have devoted sig- 
nificant space to deriving the spin-orbit Hamiltonian not because it plays a 
role in hydrogen, but because it becomes important as one proceeds down 
the periodic table. The other relativistic corrections also become large by the 
middle of the periodic table, but outside hydrogen their effects are so masked 
by electron-electron interactions that they are of little practical importance 
and we shall not discuss them in this book. 

 
 

8.2.2 Hyperfine structure 

A proton is a charged spin-half particle, so like an electron it has a magnetic 
moment. By analogy with the definition of the Bohr magneton (eq. 8.68), 
we define the nuclear magneton to be 

 

µ 
  eh̄    

= 5.05 10−27
 J T−1

. (8.78) 
p
 2mp 

 
6 These letters are a shorthand for a description of spectral lines that later were found 

to involve the various l values: sharp, principal, diffuse, faint. 
7 In the lowest order of relativistic quantum electrodynamics, the energy of a hydrogen 

atom depends on only n and j: the Dirac equation predicts 

, , !, 
R α2Z2 3 n 

E = − 
n2     1 

n2 
4 

− 
j + 1 

. (8.77) 

Thus the 22S1/2 states are predicted to have the same energy as the 22P1/2 states. The 
measured Lamb shift between these states arises in the next order as a consequence of 
polarisation of the vacuum, as described in §8.1.3. 
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In terms of µp, the magnetic-moment operator of the proton is 
 

µ = gpµpSp, (8.79) 

where gp = 5.58 and Sp is proton’s spin operator, so the proton’s magnetic 
moment is smaller than that of an electron by a factor 2.79me/mp 1.5 
10−3

. 
The electron in a hydrogen atom can create a magnetic field at the 

location of the proton in two ways: as a moving charge, it generates a cur- 
rent, and it has its intrinsic magnetic moment, so its probability distribution 

2 
|ψ(x)|  is a distribution of magnetic dipoles that will generate a magnetic 
field just as iron does in a bar magnet. 

The ground level of hydrogen is a particularly simple case because in 
this state the electron has no orbital angular momentum, so it generates a 
magnetic field exclusively through its dipole moment. The magnetic vector 
potential distance r from a magnetic dipole µe is 

A = 
µ0 µe × r 

= 
µ0 

4π r3 4π 

  µe 
  
. (8.80) 

r 

The magnetic field is B = A, so the hyperfine-structure Hamiltonian 
for the ground state is 

H = µ · B = 
µ0 

µ  · ∇ × 
, µe 

 , 

∇ × 
r
 

 
. (8.81) 

Until HHFS is included in the atom’s Hamiltonian, the atom’s lowest 
energy level is degenerate because the spins of the electron and the proton 
can be combined in a number of different ways. To proceed further we need 
to evaluate the matrix elements obtained by squeezing HHFS between states 
that form a basis for the ground-level states. The natural basis to use is 
made up of the states j = 0 and j = 1, m for m =  1, 0, 1 that can be 
constructed by adding two spin-half systems ( 7.5.1). In Appendix I we show 
that the resulting matrix elements are 

⟨ψ, s|H 

 

 
HFS 

|ψ, s′⟩ = 
2µ0 

|ψ(0)|2⟨s|µ  · µ |s′⟩ 
e 

2µ0 

 

 
(8.82) 

= |ψ(0)|2gpµp2µB⟨s|Sp · Se|s′⟩, 
 

where we have replaced the magnetic moment operators by the appropri- 
ate multiples of the spin operators. From our discussion of the spin-orbit 
Hamiltonian (8.73), which is also proportional to the dot product of two 
angular-momentum operators, we know that the eigenstates of the total an- 
gular momentum operators are simultaneously eigenstates of Sp · Se with 
eigenvalues 

1
 {j(j + 1) − 3 − 3 }, so in this basis the off-diagonal matrix 

elements vanish and the diagonal ones are 

2µ0 2 3 

⟨ψ, j, m|HHFS|ψ, j, m⟩ = −  
3  

|ψ(0)| gpµpµB{j(j + 1) − 2 }. (8.83) 
 

In 9.1 we shall show that the diagonal matrix elements provide a good 
estimates of the amount by which HHFS shifts the energies of the stationary 
states of the gross-structure Hamiltonian. 

The total angular-momentum quantum number of the atom can be j = 0 
or j = 1 and the two possible values of the curly bracket above differ by two. 
Equation (8.36) gives |ψ(0)|2 = 1/(πa

3
), so the energies of these levels differ 

by 
 4µ0  ∆E = 5.58µ µ = 5.88 × 10−6

 eV. (8.84) 
3πa

3
 

p
 

B
 

The lower level, having j = 0, is non-degenerate, while the excited state is 
three-fold degenerate. Transitions between these levels give rise to radiation 

3 p 

∇ × 



× 

R R 
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of frequency 1.420 405 7518 GHz. To obtain perfect agreement between this 
most accurately measured frequency and equation (8.84), it is necessary to 
change the gyromagnetic ratio of the electron from the value of 2 that we 
have adopted to the value 2.002319     that is predicted by quantum electro- 
dynamics. The agreement between theory and experiment is then impressive. 

The hyperfine line of hydrogen provides the most powerful way of tracing 
diffuse gas in interstellar and intergalactic space. Radiation at this frequency 
can propagate with little absorption right through clouds of dust and gas 
that absorb optical radiation. Consequently it was in radiation at 1.4 GHz 
that the large-scale structure of our own galaxy was first revealed in the 
1950s. The line is intrinsically very narrow with the consequence that the 

temperature and radial velocity of the hydrogen that emits the radiation 
can be accurately measured from the Doppler shift and broadening in the 

observed spectral line. The existence of 1.4 GHz line radiation from  our 
galaxy was predicted theoretically by H.C. van de Hulst as part of his doctoral 

work in Nazi-occupied Utrecht. In 1951 groups  in  the  USA  and  Australia 
and the Netherlands, detected the line almost simultaneously.  The Dutch 
group used a German radar antenna left over from the war. 

Problems 

8.1 Some things about hydrogen’s gross structure that it’s important to 
know (ignore spin throughout): 

a) What quantum numbers characterise stationary states of hydrogen? 
b) What combinations of values of these numbers are permitted? 
c) Give the formula for the energy of a stationary state in terms of the 

Rydberg . What is the value of in eV? 
d) How many stationary states are there in the first excited level and in 

the second excited level? 
e) What is the wavefunction of the ground state? 
f) Write down an expression for the mass of the reduced particle. 
g) The wavefunction x n of any state with principal quantum number n 

contains an exponential in r = x . Write down the scale length of this 
exponential in terms of the Bohr radius a0. 

h) We can apply hydrogenic formulae to any two charged particles that are 
electrostatically bound. How does the ground-state energy then scale 
with (i) the mass of the reduced particle, and (ii) the charge Ze on the 
nucleus? (iii) How does the radial scale of the system scale with Z? 

8.2 Show, by induction or otherwise, that there are n
2
 stationary states of 

hydrogen with energy E = −R/n
2
. 

8.3 In the Bohr atom, electrons move on classical circular orbits that have 
angular  momenta  lh̄,  where  l  =  1, 2, . . ..   Show  that  the  radius  of  the  first 
Bohr orbit is a0  and that  the  model predicts  the  correct energy spectrum. 
In fact the ground state of hydrogen has zero angular momentum. Why did 
Bohr get correct answers from an incorrect hypothesis? 

8.4 Show that the speed of a classical electron in the lowest Bohr orbit 
(Problem 8.3) is v = αc, where α = e

2
/4πǫ0h̄c is the fine-structure constant. 

What is the corresponding speed for a hydrogen-like Fe ion (atomic number 
Z = 26)? Given these results, what fractional errors must we expect in the 
energies of states that we derive from non-relativistic quantum mechanics. 

8.5 Show that Bohr’s hypothesis (that a particle’s angular momentum must 
be an integer multiple of h̄), when applied to the three-dimensional harmonic 
oscillator,  predicts  energy  levels  E   =  lh̄ω  with  l  =  1, 2, . . ..    Is  there  an 
experiment that would falsify this prediction? 

8.6 Show that the electric field experienced by an electron in the ground 
state of hydrogen is of order 5 10

11
 V m−1

. Why is it impossible to generate 
comparable macroscopic fields using charged electrodes. Lasers are available 
that can generate beam fluxes as big as 10

22
 W m−2

. Show that the electric 
field in such a beam is of comparable magnitude. 
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8.7 Positronium consists of an electron and a positron (both spin-half and 
of equal mass) in orbit around one another. What are its energy levels? By 
what factor is a positronium atom bigger than a hydrogen atom? 

8.8 The emission spectrum of the He
+

  ion contains the Pickering series of 
spectral lines that is analogous to the Lyman, Balmer and Paschen series in 
the spectrum of hydrogen. 

Balmer  i  =  1, 2, . . .   0.456806 0.616682 0.690685 0.730884 
Pickering i = 2, 4, . . .   0.456987 0.616933 0.690967 0.731183 

The table gives the frequencies (in 10
15

 Hz) of the first four lines of the Balmer 
series and the first four even-numbered lines of the Pickering series. The 
frequencies of these lines in the Pickering series are almost coincident with 
the frequencies of lines of the Balmer series. Explain this finding. Provide a 
quantitative explanation of the small offset between these nearly coincident 
lines in terms of the reduced mass of the electron in the two systems. (In 1896 
E.C. Pickering identified the odd-numbered lines in his series in the spectrum 
of the star ζ Puppis.  Helium had yet to be discovered and he believed that 
the lines were being produced by hydrogen. Naturally he confused the even- 
numbered lines of his series with ordinary Balmer lines.) 

8.9 Tritium,  
3
H, is highly radioactive and decays with a half-life of 12.3 

years to 
3
He by the emission of an electron from its nucleus. The electron 

departs with 16 keV of kinetic energy. Explain why its departure can be 
treated as sudden in the sense that the electron of the original tritium atom 
barely moves while the ejected electron leaves. 

Calculate the probability that the newly-formed 
3
He atom is in an ex- 

cited state. Hint: evaluate ⟨1, 0, 0; Z = 2|1, 0, 0; Z = 1⟩. 

8.10 ∗  A spherical potential well is defined by 

  

V (r) = 
0 for r < a 
V0 otherwise, 

(8.85) 

 

where V0 > 0. Consider a stationary state with angular-momentum quantum 
number  l.  By  writing  the  wavefunction ψ(x)  =  R(r)Y

m
(θ, φ)  and using 

p
2
  =  p

2
  + h̄

2
L

2
/r

2
,  show  that  the  state’s  radial  wavefunction  R(r)  must 

satisfy 
h̄

2
  
  

d 1 
 2

 

 
l(l + 1)h̄

2
 

− 
2m dr 

+ 
r R + 

2mr2 
R + V (r)R = ER. (8.86) 

 

Show that in terms of S(r) ≡ rR(r), this can be reduced to 
 

d
2
S S 2m 

dr2   
− l(l + 1) 

r2  
+  

h̄2  (E − V )S = 0. (8.87) 

 

Assume that V0 > E > 0. For the case l = 0 write down solutions to this 
equation valid at (a) r < a and (b) r > a. Ensure that R does not diverge 
at the origin. What conditions must S satisfy at r = a? Show that these 
conditions can be simultaneously satisfied if and only if a solution can be 

found  to  k cot ka  =  −K,  where  h̄
2
k

2
  =  2mE  and  h̄

2
K

2
  =√2m(V0  − E). 

Show  graphically that  the  equation  can  only  be  solved  when 2mV0 a/h̄ > 
π/2. Compare this result with that obtained for the corresponding one- 
dimensional potential well. 

The deuteron is a bound state of a proton and a neutron with zero 
angular momentum. Assume that the strong force that binds them produces 

a sharp potential step of height V0 at interparticle distance a = 2 × 10−15
 m. 

Determine in MeV the minimum value of V0 for the deuteron to exist. Hint: 
remember to consider the dynamics of the reduced particle. 
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8.11 Let the wavefunction of the stationary states of the gross-structure 
Hamiltonian of hydrogen be ⟨x|n, l, m⟩ = u

l
 (r)Y

m
(θ, φ). Show that 

n l 

∫ 
2  l l 

dr r un(r)un′ (r) = δnn′ . (8.88) 
0 

 

By considering an appropriate Sturm-Liouville equation, or otherwise, show 
further that ∫ ∞ 

l l′ 
dr un(r)un (r) = Clδll′ . (8.89) 

0 
 

8.12 Show that for hydrogen the matrix element   2, 0, 0 z 2, 1, 0  =   3a0. 
On account of the non-zero value of this matrix element, when an electric 
field is applied to a hydrogen atom in its first excited state, the atom’s energy 
is linear in the field strength ( 9.1.2).    

q 
8.13 ∗ From equation (8.46) show that l′ +

 1
 = (l +

 1
 )2 − β and that the 

increment ∆ in l′ when l is increased by one satisfies ∆
2
+∆(2l′+1) = 2(l+1). 

By considering the amount by which the solution of this equation changes 
when l′ changes from l as a result of β increasing from zero to a small number, 
show that 

2β 
∆ = 1 + 

4l2 − 1
 + O(β

2
). (8.90) 

Explain the physical significance of this result. 

8.14 Show that Ehrenfest’s theorem yields equation (8.70) with  B = 0 
as the classical equation of motion of the vector S that is implied by the 
spin–orbit Hamiltonian (8.71). 

8.15 ∗ (a) A particle of mass m moves in a spherical potential V (r). Show 
that according to classical mechanics 

 

 d 
(p × L ) = mr

2
 
dV der 

, (8.91) 
 

where Lc = r p is the classical angular-momentum vector and er is the 
unit vector in the radial direction.  Hence show that when V (r) =  K/r, 
with K a constant, the Runge-Lenz  vector Mc   p    Lc    mKer is a 
constant of motion. Deduce that Mc lies in the orbital plane, and that for 
an elliptical orbit it points from the centre of attraction to the pericentre of 
the orbit, while it vanishes for a circular orbit. 

(b) Show that in quantum mechanics (p L)† p L =  2ip. Hence 
explain why in quantum mechanics we take the Runge-Lenz vector operator 
to be 

M ≡ 1 h̄N − mKer where    N ≡ p × L − L × p. (8.92) 

Explain why we can write down the commutation relation [Li, Mj ] = i 
Σ 

k ǫijk Mk. 
(c) Explain why [p

2
, N ] = 0 and why [1/r, p L] = [1/r, p] L. Hence 

show that 

  
1 1 

  
[1/r, N] = i (r

2
p − x x · p) − pr

2
 p  x x 

r3 
. (8.93) 

 

(d) Show that  
1 1 Σ x x 

   j j 
[p

2
, er] = ih̄   −   p    +    p    + pj x + x pj . (8.94) 

r r r3 r3 
j 

 

(e) Hence show that [H, M] = 0. What is the physical significance of 
this result? 

∞ 

r3 



i jk  ijk k   j j k i 
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(f) Show that (i) [M , L
2
] = i 

Σ 
ǫ (M L + L M ), (ii) [L , M 

2
] = 0, 

where M 
2
 ≡ M 

2
 + M 

2
 + M 

2
. What are the physical implications of these 

results? 
x y z 

(g) Show that 
 

 
and that 

[Ni, Nj ] = −4i 
Σ 

ǫijup
2
Lu (8.95) 

u 
 

4ih̄ Σ 
[Ni, (er)j ] − [Nj, (er)i] = −  

r
 ǫijtLt (8.96) 

t 

and hence that 
[Mi, Mj ] = −2ih̄

2
mH 

Σ 
ǫijkLk. (8.97) 

k 

What physical implication does this equation have? 
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9 
Perturbation theory 

 
It is rarely possible to solve exactly for the dynamics of a system of experi- 
mental interest. In these circumstances we use some kind of approximation 
to tweak the solution to some model system that  is as close as possible to 
the system of interest and yet is simple enough to have analytically solvable 
dynamics. That is, we treat the difference between the experimental system 
and the model system as a ‘perturbation’ of the model. Perturbation theory 
in this sense was an important part of mathematical physics before quantum 
mechanics appeared on the scene – in fact the development of Hamiltonian 
mechanics was driven by people who were using perturbation theory to un- 
derstand the dynamics of the solar system. Interestingly, while perturbation 
theory in classical mechanics remains an eclectic branch of knowledge that is 
understood only by a select few, perturbation theory in quantum mechanics 
is a part of main-stream undergraduate syllabuses. There are two reasons 
for this. First, analytically soluble models are even rarer in quantum than in 
classical physics, so more systems have to be modelled approximately. Sec- 
ond, in quantum mechanics perturbation theory is a good deal simpler and 
works rather better than in classical mechanics. 

 
 

 

9.1 Time-independent perturbations 

Let H be the Hamiltonian of the experimental system and H0 the Hamil- 
tonian of the model system for which we have already solved the eigenvalue 

problem. We hope that ∆ ≡ H − H0 is small and define 

Hβ = H0 + β∆. (9.1) 

 
We can think of Hβ as the Hamiltonian of an apparatus that has a knob on 
it labelled ‘β’; when the knob is turned to β = 0, the apparatus is the model 
system, and as the knob is turned round to β = 1, the apparatus is gradually 
deformed into the system of experimental interest. 

We seek the eigenkets E and eigenvalues E of Hβ as functions of β. 
Since the Hamiltonian of the apparatus is a continuous function of β, we 
conjecture that the |E⟩ and E are continuous functions of β too. In fact, we 
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conjecture that they are analytic functions1 of β so they can be expanded as 
power series 

|E⟩ = |a⟩ + β|b⟩ + β  |c⟩ + · · · ; E = Ea + βEb + β  Ec + · · · , (9.2) 

where a , b , etc., are states to be determined and Ea, Eb, etc., are appropri- 
ate numbers. When we plug our conjectured forms (9.2) into the eigenvalue 
equation H|ψ⟩ = E|ψ⟩, we have 

 

2 2 2 

(H0 + β∆) |a⟩ + β|b⟩ + β |c⟩+) =  Ea + βEb + β Ec + |a⟩ + β|b⟩ + β |c⟩ +  . 
(9.3) 

Since we require the equality to hold for any value of β, we can equate the 
coefficient of every power of β on either side of the equation. 

 

β
0
 : 

β
1
 : 

β
2
 : 

H0|a⟩ = Ea|a⟩ 

H0|b⟩ + ∆|a⟩ = Ea|b⟩ + Eb|a⟩ 

H |c⟩ + ∆|b⟩ = E |c⟩ + E |b⟩ + E |a⟩. 

 
(9.4) 

 

The first equation simply states that Ea and a are an eigenvalue and eigen- 
ket of H0. Physically, a is the state that we will find the system in if we 
slowly turn the knob back to zero after making a measurement of the energy. 
Henceforth we shall relabel Ea with E0 and relabel a with E0 , the zero 
reminding us of the association with β = 0 rather than implying that  E0 
is the ground state of the unperturbed system. 

To determine Eb we multiply the second equation through by ⟨E0|: 

⟨E0|H0|b⟩ + ⟨E0|∆|E0⟩ = E0⟨E0|b⟩ + Eb. (9.5) 

Now from Table 2.1, E0 H0 b = ( b H0 E0 )∗ = E0  E0 b  .  Cancelling this 
with the identical term on the right, we are left with 

Eb = ⟨E0|∆|E0⟩. (9.6) 

Thus the first-order change in the energy is  just  the  expectation  value  of 
the change in the Hamiltonian when the system is in its unperturbed state, 
which makes good sense intuitively. This is the result that we anticipated in 

8.2.1 and 8.2.2 to estimate the effects on the allowed energies of hydrogen 
of the spin-orbit and hyperfine Hamiltonians. 

To extract the second-order change in E we multiply the third of equa- 
tions (9.4) by E0 . Cancelling E0 H0 c  on E0 E0 c  by strict analogy with 
what we just did, we obtain 

Ec = ⟨E0|∆|b⟩ − Eb⟨E0|b⟩. (9.7) 

To proceed further we have to determine |b⟩, the first-order change in the 
state vector. Since the eigenkets |En⟩ of H0 form  a  complete set  of states, 
we can write |b⟩ as the sum 

|b⟩ = 
Σ 

bk|Ek⟩. (9.8) 
k 

 

In the second of equations (9.4) we replace |b⟩ by this expansion and multiply 
through by ⟨Em| /= ⟨E0| to find 

 

b = 
⟨Em|∆|E0⟩ 

. (9.9) 
E0 − Em 

 

1 Much interesting physics is associated with phenomena in which a small change in 
one variable can produce a large change in another (phase changes, narrow resonances, 
caustics, . . . ). In classical physics perturbation theory is bedevilled by such phenomena. 
In quantum mechanics this conjecture is more successful, but still untrustworthy as we 
shall see in §9.1.2. 
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Box 9.1: Ensuring that ⟨a|b⟩ = 0 

Since the perturbed eigenket should be properly normalised, we have 

1 = ⟨E|E⟩ = (⟨E0| + β⟨b| + · · ·) (|E0⟩ + β|b⟩ + · · ·) 

= 1 + β (⟨E0|b⟩ + ⟨b|E0⟩) + O(β ). 

Equating the  coefficient of β on each side of the equation we conclude 

2 

that ⟨E0|b⟩ + ⟨b|E0⟩ = 0, from which it follows that ⟨E0|b⟩ is pure imagi- 

independently for each model Hamiltonian Hβ. In particular, instead of 
nary. The phase of |E⟩ is arbitrary, and we are free to choose this phase 

using |E⟩ we can use |E′⟩ ≡ e
iαβ

|E⟩, where α is any real constant:  |E′⟩ 
is our original eigenket but with its phase shifted by a linear function of 
β. When we expand |E′⟩ in powers of β we have 

|E′⟩ = |E0⟩ + β|b′⟩ + · · · , 

This is 
where |b′⟩ is the derivative of |E′⟩ with respect to β evaluated at β = 0. 

|b′⟩ = 

Consequently, 

d|E′⟩. 
. 
. 

 d     iαβ   . 
. 

dβ . 
β=0 

= 
dβ 

e |E⟩  . . 
β=0 

= iα|E0⟩ + |b⟩. 

⟨E0|b′⟩ = iα + ⟨E0|b⟩. 

α such that ⟨E0|b′⟩ = 0.  This analysis shows that the phases of the 
Since ⟨E0|b⟩ is known to be pure imaginary, it is clear that we can choose 

perturbed eigenkets can be chosen such that the first order perturbation 
|b⟩ is orthogonal to the unperturbed state |E0⟩ and one generally assumes 
that this choice has been made. 
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This expression determines the coefficient of all kets in (9.8) that have en- 
ergies that differ from the unperturbed value E0. For the moment we as- 
sume that E0 is a non-degenerate eigenvalue of H0, so there is only one 
undetermined coefficient,  namely that of  E0 .   Fortunately we can argue 
that this coefficient  can  be  taken  to  be  zero  from  the  requirement  that 
E = E0 + β b  + O(β  ) remains correctly normalised.  The complete ar- 
gument is given in Box 9.1 but we can draw a useful analogy with changing 
a three-dimensional vector so that the condition r = 1 is preserved; clearly 
we have to move r on the unit sphere and the first-order change in r is nec- 
essarily perpendicular to the original value of r. The quantum-mechanical 
normalisation condition implies that as β increases E moves on a hyper- 
sphere in state space and   E0 b   = 0.  So we exclude  E0  from the sum in 
(9.8) and have that the first-order change to the stationary state is 

|b⟩ = 
Σ ⟨Em|∆|E0⟩ 

|E
 ⟩. (9.10) 

m/=0 
E0 − Em 

 

When this expression for b is inserted into equation (9.7), we have that the 
second-order change in E is 

E  = 
Σ ⟨E0|∆|Ek⟩⟨Ek|∆|E0⟩ . (9.11)

 
E0 − Ek 

k  0 

 
 

9.1.1 Quadratic Stark effect 

Let’s apply the theory we’ve developed so far to a hydrogen atom that has 
been placed in an electric field E = −∇Φ. An externally imposed electric 
field is small compared to that inside an atom for field strengths up to E ≃ 

m 
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5 10
11

 V m−1
 (Problem 8.6) so perturbation theory should yield a good 

estimate of the shifts in energy level that ordinary fields effect. By the 
definition of the electrostatic potential Φ, the field changes the energy of the 
atom by 

δE = e{Φ(xp) − Φ(xe)}, (9.12) 

where xp and xe are the position vectors of the proton and electron, respec- 
tively. We assume that the field changes very little on the scale of the atom, 
and, as in §8.1, we define r ≡ xe − xp. Then we may write 

δE ≃ −er · ∇Φ = er · E. (9.13) 

We orient our coordinate system so that E is parallel to the z axis and use 
the notation = E . Then it is clear that the effect of imposing an external 
electric field is to add to the unperturbed Hamiltonian a term 

∆ = eEz. (9.14) 

Suppose the atom is in its ground state 100 , where the digits indicate the 
values of n, l and m. Then from equation (9.6) the first-order energy change 
in E is 

Eb = eE⟨100|z|100⟩. (9.15) 

In 4.1.4 we saw that the expectation value of any component of x vanishes 
in a state of well-defined parity. Since the ground-state ket 100 has well 
defined (even) parity, Eb = 0, and the change in E is dominated by the 
second-order term Ec. For our perturbation to the ground state of hydrogen, 
equation (9.11) becomes 

Σ∞ 

Ec = e
2
E2

 

n=2 

Σ 
 
l<n 

|m|≤l 

⟨100|z|nlm⟩⟨nlm|z|100⟩
. (9.16)

 

E1 − En 

 

Symmetry considerations make it possible to simplify this sum dramatically. 
First, since [Lz, z] = 0 (Table 7.3), z nlm is an eigenfunction of Lz with 
eigenvalue m, and therefore orthogonal to 100  unless m = 0.  Therefore 
in equation (9.16) only the terms with m = 0 contribute. Second, we can 
delete from the sum over l all even values of l because, as we saw in 4.1.4, 
the matrix elements of an odd-parity operator between states of the same 
parity vanish. In fact, a result proved in Problem 7.21 shows that the terms 
with l = 1 are the only non-vanishing terms in the sums over l in (9.16). 
Thus 

Σ∞ 

Ec = e
2
E2

 

n=2 

⟨100|z|n10⟩⟨n10|z|100⟩
. (9.17)

 

E1 − En 

It is easy to understand physically why the change in E  is  proportional 
to 

2
. In response to the external electric field, the probability density of the 

atom’s charge changes by an amount that is proportional to the coefficients 
bk, and these coefficients are proportional to E. That is,  the  field polarises 
the atom, generating a dipole moment P that is ∝ E. The dipole’s energy is 

 
−P · E, so the energy change caused by the field is proportional to E . 

 
 

9.1.2 Linear Stark effect and degenerate perturbation theory 

Consider now the shift in the energy of the n = 2, l = 0 state of Hydrogen 
when an electric field is applied. The sum over k in (9.16) now includes the 
term 

⟨200|z|210⟩⟨210|z|200⟩
,
 

E20 − E21 

which is infinite if we neglect the very small Lamb shift ( 8.1.3), because 
the top is non-zero (Problem 8.12) and the difference of energies on the 

2 
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bottom vanishes. It hardly seems likely that a negligible field will produce 
an arbitrarily large change in the energy of the first excited state of hydrogen. 
So what did we do wrong? 

Our error was to assume at the outset that a small stimulus produces a 
small response as we did when we wrote equations (9.2). Our infinite con- 
tribution to Ec can be traced to our expression (9.9) for bm, which diverges 
as Em E0. That is, the change in the wavefunction that a given field pro- 
duces is inversely proportional to the energy difference between the original 
state E0 and the state Em we are pushing the system towards. This is an 
entirely reasonable result, analogous to what happens as we push a marble 
that lies at the bottom of a bowl: the distance the marble moves before 
coming into equilibrium depends on the curvature of the bowl. In the limit 
that the curvature goes to zero, and the bottom of the bowl becomes flat, an 
infinitesimal force will move the marble arbitrarily far, because all locations 
have the same energy. So we conclude that when the system’s initial energy 
is a degenerate eigenvalue Ed of H0, a tiny stimulus is liable to produce a big 
change in the state (but not the energy) of the system. Disaster will attend 
an attempt to calculate this abrupt change of state by the approach we have 
been developing. 

So must we just give up in despair? No, because we can see that the 
only states that are going to acquire a non-negligible amplitude during the 
abrupt change are ones that have the same energy as Ed. That is, the state 
to which the system abruptly moves can be expressed as a linear combination 
of the kets belonging to Ed. In many cases of interest there are only a small 
number of these (four in the problem of hydrogen on which we are working). 
What we have to do is to diagonalise the matrix ∆ij formed by ∆ squeezed 
between all pairs of these kets. The eigenkets of ∆ in this small subspace 
will be states of well-defined energy in the slightly perturbed system. As β 
is ramped up from zero to unity their energies will diverge from Ed. We 
conjecture that in the instant that β departs from zero, the system’s state 
jumps to the eigenket with the lowest energy, and subsequently stays in this 
state as β increases. If this conjecture is correct, we should be able to use the 
perturbation theory we have developed provided we use as basis kets ones 
that diagonalise ∆ as well as H0. 

So let’s diagonalise e z in the 4-dimensional subspace of Hydrogen kets 
with n = 2. When we list the kets in the order 200 , 210 , 211 ,  21  1 , 
the matrix of ∆ looks like this 

 
0 a 0  0  

∆ij 
 a∗ 0 0  0  
 
0 0 0  0  

0 0 0   0 

where   a = ⟨200|z|210⟩. (9.18) 

From Problem 8.12 we have that ⟨200|z|210⟩ = −3a0. It is now easy to show 
that the eigenvalues of ∆ are ±3eEa0 and 0, while appropriate eigenkets are 
2−1/2

(1, ∓1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1). We conclude that as soon as the 
slightest perturbatio n is switched on, the system is in the state of lowest 
energy, |ψ⟩ = 2−1/2

 |200⟩ + |210⟩ , and we use this state to determine Eb. 
We find 

Eb = 
1
 eE ⟨200| + ⟨210| z  |200⟩ + |210⟩ 

(9.19) 
= −3a0eE. 

From our discussion of the quadratic Stark effect, we know that a change 
in E that is proportional to requires the dipole moment P of an atom to be 
independent of . Since Eb is proportional to we conclude that a hydrogen 
atom in the n = 2 state has a permanent electric dipole. 

In classical physics this result is to be expected because the orbit of the 
electron would in general be elliptical, and the time-averaged charge density 
along the ellipse would be higher at the apocentre than at the pericentre,2 be- 
cause the electron lingers at the apocentre and rushes through the pericentre. 

2 An orbit’s apocentre is the point furthest from the attracting body,  while the 
pericentre is the point nearest that body. 

= eE 
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Figure 9.1 The charge distribu- 
tion of the state ( 200 +  210 )/  2 
is axisymmetric. Here we plot the 
distribution in the (R, z) plane of 
cylindrical polar coordinates. 

 

 
Hence the centre of charge would lie on the opposite side of the geometrical 
centre of the ellipse from the focus, where the proton’s cancelling charge lies. 
Thus, if the electron’s orbit were a perfect Kepler ellipse, the atom would 
have a permanent electric dipole moment parallel to the orbit’s major axis. 
Any deviation of the radial force field from F      r−2

 will cause the major 
axis of the ellipse to precess, and therefore the time-averaged polarisation of 
the atom to be zero. In hydrogen the force-field deviates verify little from 
an inverse-square law, so the precession occurs very slowly in the classical 
picture. Consequently, even a weak external field can prevent precession and 
thus give rise to a steady electric dipole. 

In the quantum-mechanical picture, shielding shifts the energy of the S 
state below that of the P states, thus ensuring that, in the absence of an 
imposed field, the atom is spherical and has no dipole moment. An electric 
field deprives L

2
 of its status as a constant of motion because the field can 

apply a torque to the atom. Shielding is a very weak effect in hydrogen 
(because it relies on the vacuum’s virtual electrons and positrons), so the 
S state lies very little below the P states and in even a weak electric field 

this  off√set  becomes  irrelevant.    The  lowest-energy  state  becomes  (|200⟩ + 
|210⟩)/  2.  This is not an eigenket of L  but it is an eigenket of Lz with 
eigenvalue zero. Thus its angular momentum is perpendicular to the field, 
as we expect from the classical picture of a Kepler ellipse with its major axis 
parallel to E. Figure 9.1 shows that in this state the charge distribution 
comprises a dense cloud around the origin and an extended cloud centred on 

R = 0, z ≃ −3a0. We can think of these clouds as arising from pericentre 
and apocentre, respectively, of eccentric orbits that ha∫ve their major axes 
roughly aligned with the negative z axis. The integral 
so in this state the atom has dipole moment P = +3ea0. 

d
3
x, z|ψ|2  = −3a0, 

 
 

9.1.3 Effect of an external magnetic field 

When an atom is placed in a magnetic field, the wavelengths of lines in 
its spectrum change slightly. Much of quantum mechanics emerged from 
attempts to understand this phenomenon. We now use perturbation theory 
to explain it. 

In 3.3 we discussed the motion of a free particle in a uniform magnetic 
field. Our starting point was the Hamiltonian (3.31), which governs the mo- 
tion of a free particle of mass m and charge Q in the magnetic field produced 
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by the vector potential A. This is the Hamiltonian of a free particle, p
2
/2m, 

with p replaced by p QA. Hence we can incorporate the effects of a mag- 
netic field on a hydrogen atom by replacing pn and pe in the gross-structure 
Hamiltonian (8.1) with pp eA and pe + eA, respectively. With Z = 1 the 
kinetic energy term in the Hamiltonian then becomes 

HKE ≡ 
(pp − eA)

2
 

2mp 

(pe + eA)
2
 

+ 
2me 

p
2
 p

2
 p p p p 

= 
 
  

p
  +   

e
 + 

1
 e 

2mp 2me 
2 

    e p  

me 
− 

mp 
· A + A · 

    e p  

me 
− 

mp 
+ O(A

2
) 

(9.20) 
We neglect the terms that are O(A

2
) on the grounds that when the field is 

weak enough for the O(A) terms to be small compared to the terms in the 
gross-structure Hamiltonian, the O(A

2
) terms are negligible. 

Equation (8.4) and the corresponding equation for ∂/∂xp imply that 

  me  
p  = p + p and  p 

     mp  
= p — p , (9.21) 

me + mp me + mp 

where pX is the momentum  associated with  the centre of mass coordinate 
X, while pr is the momentum of the reduced particle. From the algebra that 
leads to equation (8.6a) we know that the first two terms on the right of 
the second line of equation (9.20) reduce to the kinetic energy of the centre- 
of-mass motion and of the reduced particle. Using equations (9.21) in the 
remaining terms on the right of equation (9.20) yields 

p
2
 p

2
 e 

HKE = X +  r + (pr · A + A · pr), (9.22) 
2(me + mp) 2µ 2µ 

where µ is the mass of the reduced particle (eq. 8.6b). It follows that an 
external magnetic field adds to the gross-structure Hamiltonian of a hydrogen 
atom a perturbing Hamiltonian 

e 
HB = 

2µ 
(pr · A + A · pr). (9.23) 

On the scale of the atom the field is likely to be effectively homogeneous, so 
we may take A = 

1
 B × r (page 49). Then HB becomes 

e 
HB = 

4m
 (p · B × r + B × r · p), (9.24) 

where we have approximated µ by me and dropped the subscript on p. 
The two terms in the bracket on the  right can both be  transformed into 
B    r      p  =  h̄B    L  because  (i)  these  scalar  triple  products  involve  only 
products  of  different  components  of  the  three  vectors,  and  (ii)  [xi, pj ]  =  0 
for i = j.  Hence,  we do not need to  worry about the  order of the  r and 
p operators and can exploit the usual invariance of a scalar triple product 
under cyclic interchange of its vectors. 

If an atom has more than one unpaired (‘valence’) electron, each electron 
will contribute a term of this form to the overall Hamiltonian. We can fold 
these separate contributions into a single contribution HB by interpreting L 
as the sum of the angular-momentum operators of the individual electrons. 

In 8.2.1 we discussed terms that must be added to hydrogen’s gross- 
structure Hamiltonian to account for the effects of the electron’s intrinsic 
dipole moment. We found that the coupling with an external field is gener- 
ated by the Zeeman spin Hamiltonian (8.72). Adding this to the value of HB 
that we have just computed, and orienting our coordinate system so that the 
z axis is parallel to B, we arrive at our final result, namely that a uniform 
magnetic field introduces a perturbation 

eh̄ 
HBs = 

2m  
B(Lz + 2Sz) = µBB(Jz + Sz), (9.25) 

X 

e 
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Figure 9.2 Eigenvalues of the spin-dependent Hamiltonian AL S + B(Lz + 2Sz ) as 
functions of B/A for the case l = 1, s = 1 . The right side of the diagram (field strong 
compared to spin-orbit coupling) quantifies quantifies the Paschen–Back effect, while the 
left side of the diagram quantifies the Zeeman effect (weak field). The top and bottom 
lines on the extreme right show the energies of the states 1, 1 + and 1, 1 , which 
are eigenstates of the full Hamiltonian for all values of B/A. 

 
where S is the sum of the spin operators of all the valence electrons. 

The Hamiltonian formed by adding HBs to the gross-structure Hamil- 
tonian (8.1) commutes with L

2
, Lz, S

2
 and Sz. Its eigenkets are simply the 

eigenkets of the gross-structure Hamiltonian upgraded to include eigenvalues 
of S

2
 and Sz. The only difference from the situation we studied in 8.1 is 

that the energies of these eigenkets now depend on both Lz and Sz. Hence, 
each energy level of the gross-structure Hamiltonian is split by the magnetic 
field into as many sub-levels as ml + 2ms can take. For example, if l = 0 
and s =  

1
 , there are two sublevels, while when l = 1 and s =  

1
 there are 

2 2 

five levels in which ml + 2ms ranges between ±2. 
In practice the perturbation HBs always acts in conjunction with the 

spin-orbit perturbation HSO of equation (8.73).3 The general case in which 
HBs and HSO are comparable, requires numerical solution. The extreme 
cases in which one operator is larger than the other can be handled analyti- 
cally. 

Paschen–Back effect In a sufficiently strong magnetic field, HSO affects 
the atom much less than HBs, so HSO simply perturbs the eigenkets of the 
Hamiltonian formed adding HBs to the gross-structure Hamiltonian. The 
change in the energy of the state |n, l, ml, s, ms⟩ is 

Eb = ⟨n, l, ml, s, ms|HSO|n, l, ml, s, ms⟩ 

= ζ⟨n, l, ml, s, ms|L · S|n, l, ml, s, ms⟩, 

 
(9.26) 

where ζ is a number with dimensions of energy that is independent of ml 
and ms. By writing L· S = 

1
 (L+S− + L−S+) + LzSz (eq. 7.143) we see that 

⟨L · S⟩ = mlms. So in a strong magnetic field the eigenenergies are 

Egross + µBB(ml + 2ms) + ζmlms. (9.27) 

The levels on the extreme right of Figure 9.2 show the energies described by 
this formula in the case that l = 1 and s =  

1
 .  The fact that in a strong 

magnetic field an atom’s energies depend on ml and ms in this way is known 
as the Paschen–Back effect. 

Zeeman effect In a sufficiently weak magnetic field, HSO affects the atom 
more strongly than HBs. Then spin-orbit coupling assigns different energies 

3 There is no spin-orbit coupling for an S state, but an allowed spectral line from an S 
state will connect to a P state for which there is spin-orbit coupling. Hence the frequencies 
of allowed transitions inevitably involve spin-orbit coupling. 
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to states that differ in j. Consequently, when we use perturbation theory 
to calculate the smaller effect of an imposed magnetic field, the degenerate 
eigenspace in which we have to work is that spanned by the states that have 
given values of j, l and s but differ in their eigenvalues m of Jz.  Fortunately, 
HBs  is  already diagonal within  this  space  because  [Jz, Sz] = 0.  So  the  shift 
in the energy of each state is simply 

Eb = ⟨j, m, l, s|HBs|j, m, l, s⟩ = µB m + ⟨j, m, l, s|Sz|j, m, l, s⟩ . (9.28) 
 

As we saw in  7.5, our basis states do not have well-defined values of Sz 
– in general they are linear combinations of eigenstates of Lz and Sz: 

Σs 

|j, m, l, s⟩ =  
m′ =−s 

cm′ |l, m − m′⟩|s, m′⟩, (9.29) 

 

where the coefficients cm′ are Clebsch–Gordan coefficients (eq. 7.152). In any 
concrete case it is straightforward to calculate the required expectation value 
of Sz from this expansion. However, a different approach yields a general 
formula that was important historically. 

In the classical picture, spin-orbit coupling causes the vector S to precess 
around the invariant vector J.  Hence, in this picture the expectation value of 
S is equal to the projection of S onto J.4 The classical vector triple product 
formula enables us to express S in terms of this projection: 

 

J × (S × J) = J
2
S − (S · J)J so  J

2
S = (S · J)J + J × (S × L).  (9.30) 

In the classical picture, the expectation value of the vector triple product 
on the right side vanishes. If its quantum expectation value were to vanish, 
the expectation value of the z component of the equation would relate Sz , 
which we require, to the expectation values of operators that have the states 
j, m, l, s as eigenstates, so our problem would be solved. Motivated by these 
classical considerations, let’s investigate the operator 

Σ 
G ≡ J × (S × L) so  Gi ≡  

jklm 

ǫijkJjǫklmSlLm. (9.31) 

 

It is straightforward to check that its components commute with the angular- 
momentum operators Ji in the way we expect the components of a vector to 
do: Σ 

[Ji, Gj ] = i 
k 

 

ǫijkGk. (9.32) 

From equation (9.31) it is also evident that J G = 0. In Problem 7.21 
identical conditions on the operators L and x suffice to prove that x = 0 in 
any state that is an eigenket of L

2
. So the steps of that proof can be retraced 

with L replaced by J and x replaced by G to show that for the states of 
interest G = 0. 

Now that we have established that the quantum-mechanical expectation 
value of G does indeed vanish, we reinterpret equation (9.30) as an operator 
equation, and, from the expectation value of its z component, deduce 

 

⟨j, m, l, s|S  |j, m, l, s⟩ = 
⟨J · S⟩ m

. (9.33) 

From equation (8.74) we have 

J · S = L · S + S
2
 = 

1
 (J

2
 − L

2
 + S

2
), (9.34) 

 

4 This heuristic argument is often referred to as the vector model. 



± 
± 

2 

| ⟩ 

2 2 

/ |  ⟩ | ⟩ 

Σ 

212 Chapter 9: Perturbation theory 
 

so we find 
 

 

EB = mgL µBB where gL ≡ 1 + 
j(j + 1) − l(l + 1) + s(s + 1) 

2j(j + 1) 

 

.  (9.35) 

 

The  factor  gL  is  called  the  Landé  g  factor.  In  the  early  days  of  quantum 
theory, when the Bohr atom was taken seriously, people expected the mag- 
netic moment of an electron to be µB and therefore thought a magnetic 
field would shift energy levels by µBB. Equation (9.35) states that the 
actual shift is mgL times this. When this factor differed from unity, they 
spoke of an anomalous Zeeman effect. 

The left hand side of Figure 9.2 shows the energy levels described by 
equation (9.35) in the case l = 1, s = 

1
 .  The possible values of j are  

3
  and 

2 2 
1
 , and the magnetic field splits each of these spin-orbit levels into 2j + 1 

components. 
 
 

9.2 Variational principle 
We now describe a method of estimating energy levels, especially a system’s 
ground-state energy, that does not involve breaking the Hamiltonian down 
into a part that has known eigenkets and an additional perturbation. In 
Chapter 10 we shall show that this method yields quite an accurate value 
for the ionisation energy of helium. 

Let H be the Hamiltonian for which we require the eigenvalues En 

and tΣhe associated eigenkets |n⟩.  We imagine expanding an arbitrary state 

|ψ⟩ = 
n an n as a linear combination of these eigenkets, and then calculate the 

expectation value of H in this state as 
Σ 2 

⟨H⟩ = ⟨ψ|H|ψ⟩ = Σ
i
 
|ai|  Ei 

, (9.36) 
j |aj |2 

 

where  we  have  included  the  sum  of  the  |aj |
2   on  the  bottom  to  cover  the 

possibility that |ψ⟩ is not properly normalised. ⟨H⟩ is manifestly independent 
of the phase of ai. We investigate the stationary points of ⟨H⟩ with respect 
to the moduli |ai| by differentiating equation (9.36) with respect to them: 

Σ ∂ ⟨H⟩ 2|a |E 2|a | |a |2E 
 

 = Σ 
k
 − 

k
 i i i 

. (9.37) 
∂|ak| j |aj|2  Σ 2 

j |aj |2 

 

Equating this derivative to zero, we find that the conditions for a stationary 
point of ⟨H⟩ are 

 
0 = |ak| 

 

Σ 
Ek |ai| − 

i 

! 
Σ 

|ai| Ei 
i 

 

(k = 0, 1, . . .) (9.38) 

 

These equations are trivially solved by setting ak = 0 for every k, but then 
|ψ⟩ = 0 so the solution is of no interest. For any value of k for which ak /= 0, 
we must have 2 

Ek = Σ
i
 
|ai|  Ei 

. (9.39) 
i |ai|2 

Since the right side of this equation does not depend on k, the equation can 
be satisfied for at most one value of k, and it clearly is satisfied if we set ai = 0 
for i = k and ak = 1, so ψ = k . This completes the proof of Rayleigh’s 
theorem: The stationary points of the expectation value of an Hermitian 
operator occur at the eigenstates of that operator. Moreover, all eigenstates 

provide stationary points of the operator. That is, for general |ψ⟩ the number 

k 
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of ψ H ψ isn’t equal to an eigenvalue of H, but if ψ H ψ is stationary 
with respect to ψ in the sense that it doesn’t change when ψ is changed 
by a small amount, Rayleigh’s theorem tells us that the number  ψ H ψ 
is an eigenvalue of H. Problem 9.10 gives a geometrical interpretation of 
Rayleigh’s theorem. 

The stationary point associated with the ground state is a minimum of 
H . To see that this is so, we subtract the ground-state energy E0 from 
both sides of equation (9.36) and have 

Σ 
i |ai| (Ei − E0) ⟨H⟩ − E0 = 
Σ 

|a |2 . (9.40) 
 

Both the top and bottom of the fraction on the right are non-negative, so 
H  E0.  The stationary points of  H  associated with excited states are 
saddle points (Problem 9.14). 

The practical use of Rayleigh’s theorem is this. We write down a trial 
wavefunction ψa(x) that depends on a number of parameters a1, . . . , aN . 
These might, for example,  be the coefficients in an expansion of ψa as a 
linear combination of some convenient basis functions ui(x) 

ΣN 

ψa(x) ≡  
i=1 

aiui(x). (9.41) 

More often the ai  are parameters in a functional form that is motivated 
by some physical argument. For example, in Chapter 10 we will treat the 
variable Z that appears in the hydrogenic wavefunctions of 8.1.2 as one of 
the ai.  Then we use ψa  to calculate  H   as a function of the ai  and find 
the stationary points of this function. The minimum value of H that we 
obtain in this way clearly provides an upper limit on the ground-state energy 
E0.  Moreover, since   H   is stationary for the ground-state wavefunction, 
H E0 increases only quadratically in the difference between ψa and the 
ground-state wavefunction ψ0. Hence, with even a mediocre fit to ψ0 this 
upper limit will lie close to E0. This approach to finding eigenvalues and 
eigenfunctions of the Hamiltonian is called the variational principle. 

In Problems 9.12 and 9.13 you can explore how the variational principle 
works in a simple case. 

 

 

9.3 Time-dependent perturbation theory 

We now describe a way of obtaining approximate solutions to the TdSE (2.26) 
that we shall use to study both scattering of particles and the emission and 
absorption of radiation by atoms and molecules. 

Consider the evolution of a system that is initially in a state that is 
nearly, but not quite, in a stationary state. Specifically, at t = 0 it is in the 
N th eigenstate of a Hamiltonian H0 that differs by only a small, possibly 
time-dependent, operator V from the true Hamiltonian H: 

H = H0 + V. (9.42) 

Inspired by (2.32) we expand the solution to the TdSE for this H in the form 
Σ 

|ψ⟩ = an(t)e−iEnt/h̄ |En⟩, (9.43) 
n 

where En is a (time-independent) eigenket of H0 with eigenvalue En. This 
expansion doesn’t restrict ψ because En is a complete set and the func- 
tions an(t) are arbitrary. Substituting it into the TdSE we have 

∂|ψ⟩ Σ   −iE   t/h̄ 
ih̄ 

∂t 
= (H0 + V )|ψ⟩ = 

n 
Σ     

En|En⟩ + V |En⟩ ane n
  

(9.44) 
= ih̄ȧn + Enan 

n 

e−iEnt/h̄ |En⟩. 

j j 



/ 

′ 

= 
(E  −

  2

E   − h̄ω) 

— − 

≡ 
− 

k 
h̄ 

k 

− 

∫ 
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We simplify this by multiplying through by ⟨Ek|: 

Σ 
ih̄ȧke−iEkt/h̄  = ane−iEnt/h̄ ⟨Ek|V |En⟩. (9.45) 

n 
 

This constitutes a set of linear ordinary differential equations for the an(t) 
which must be solved subject to the boundary conditions aN (0)  =  1  and 
an(0) = 0 for n = N .  Hence, at the earliest times the term on the right of 
(9.45) with  n = N  will dominate the equation of motion of ak  with  k = N , 
and we have the approximation 

ȧ    ≃ − 
 i 

e−i(EN −Ek)t/h̄ ⟨E |V |E ⟩. (9.46) 
 

We now assume that any time dependence of V takes the form V (t) = V0e
iωt

, 
where V0 is a time-independent operator. This assumption is in practice not 
very restrictive because the theory of Fourier analysis enables us to express 
any operator of the form V0f (t), where f is an arbitrary function, as a linear 
combination of sinusoidally varying operators. Replacing V by V0e

iωt
 in 

equation (9.46) and integrating from t = 0 we find 

a (t) = 
  ⟨Ek|V0|EN ⟩   h it 

e−i(EN −Ek−h̄ω)t  /h̄ 
 
, (9.47) 

EN  − Ek − h̄ω  0 

so the probability that after t the system has made the transition to the kth 
eigenstate of H0 is 

Pk(t) = |ak|
2

 

   |⟨Ek|V0|EN ⟩|2 

N k 

  

2 − 2 cos 
(EN  − Ek 

− ̄hω)t h̄ 

 
(9.48) 

2 sin
2
 ((EN  − Ek − ̄hω)t/2h̄) = 4|⟨Ek|V0|EN ⟩| 
(EN — Ek 

— ̄hω)2 
.
 

For a  time  of order h̄/(EN Ek h̄ω) this  expression grows like t
2
.  Subse- 

quently it oscillates. 
 

9.3.1 Fermi golden rule 

In many applications of equation (9.48), there are a large number of station- 
ary states  of H0  with energies Ek  that lie within h̄/t of 

 

Eout ≡ EN − ω, (9.49) 
 

and we are interested in the probability that the system has made the tran- 
sition to any one of these states. Hence we sum the Pk over k.  Let there 
be g(Ek) dEk eigenvalues in the interval (Ek + dEk, Ek). Then the total 
transition probability is 

Σ ∫ 
Pk(t) = 4 dEk g(Ek) |⟨Ek|V |EN ⟩|2 

sin
2
 ((Eout — Ek)t/2h̄) 
(Eout Ek)2 

k 

2 2  sin
2
(xt) 

 
  

(9.50) 

=  
h̄ 

dx g(Eout − 2h̄x) |⟨Eout − 2h̄x|V |EN ⟩| 
x2 , 

 

where  we’ve  introduced  a  new  variable,  x  =  (Eout      Ek)/2h̄.   For  given  t, 
the function ft(x) sin

2
(xt)/x

2
 is dominated by a bump around the origin 

that is of height t
2
 and width 2π/t. Hence, the area under the bump is 

proportional to t and in the limit of large t, 
 

sin
2
(xt) 

x2 ∝ tδ(x). (9.51) 

k N 
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∫ 
We find the constant of proportionality by differentiating dxft with respect 
to t: 

d 
∫ ∞

 

dx 
dt  −∞ 

sin
2
(xt) 

∫ ∞
 

x2 = dx 

∫ 
−∞ 

 
sin(2xt) 

= π, (9.52) 
x 

where we have used a result, dx sin x/x = π, from the theory of contour 
integration in the complex plane. Hence 

 
sin

2
(xt) 

lim 
t→∞ x2 

= πtδ(x). (9.53) 
 

Inserting this relation in (9.50) and integrating over x, we have finally 

Σ 2πt 
P  = g(E ) |⟨out|V |in⟩|2. (9.54) 

k
 h̄ 

k 

out 

 

This equation establishes Fermi’s golden rule5 of perturbation theory: a 
perturbation V e

iωt
 causes a system to transition to a new state lower in 

energy  by  h̄ω  at  a  rate  equal  to  2π/h̄  times  the  mod-square  of  the  matrix 
element of V between the initial and final states times the density of states 
at the final energy. It is easy to see that if the time-dependence of the 
perturbation were e−iωt

, it would cause transitions at the same rate to states 
higher in energy by h̄ω. 

 

9.3.2 Radiative transition rates 

We now use equation (9.48) to calculate the rate at which a electromagnetic 
waves induce an atom to make radiative transitions between discrete sta- 
tionary states. Our treatment is valid when the quantum uncertainty in the 
electromagnetic field may be neglected, and the field treated as a classical 
object.  This condition is satisfied, for example, in a laser, or at the focus of 
the antenna of a radio telescope. 

Whereas in our derivation of Fermi’s golden rule, we took the frequency 
ω of the perturbation to be fixed and assumed a continuum of final states, 
now that we are considering the case of a discrete  final  state,  we  argue 
that the electromagnetic field is a superposition of plane waves of various 
frequencies, and that we should sum the transition probability (9.48) that 
each wave independently contributes. Thus we write 

 

Σ Σ 
2 sin

2
 ((EN  − Ek − h̄ω)t/2h̄) 

waves 

Pk(t) = 4 
waves 

|⟨Ek|δV0|EN ⟩| 
(EN — Ek — h̄ω)2 

, (9.55) 
 

where δV0 and ω relate to an individual wave. 
In vacuo the electric field of an electromagnetic wave is divergence free, 

being entirely generated by Faraday’s law,     E =   ∂B/∂t. It follows that 
the whole electromagnetic field of the wave can be described by the vector 
potential A through the equations 

 

B = ∇ × A   and   E = −∂A/∂t. (9.56) 

We are considering a superposition of plane waves, which individually have 
a potential 

δA(x, t) = δA0 cos(k · x − ωt), (9.57) 

where δA0 is a constant vector and k is the wavevector. From equations 
(9.56) and (9.57) we have that the wave’s contribution to the electric field is 

 

δE(x, t) = −ωδA0 sin(k · x − ωt), (9.58) 
 

5 The golden rule was actually first given by P.A.M. Dirac, Proc. Roy. Soc. A, 114, 
243 (1927) 
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so δE is parallel to δA0. From ∇ · δE = 0 it follows that 

k · δA0 = 0, (9.59) 

so k δE = 0 and the wave is transverse. 
In 9.1.3 we saw that an external electromagnetic field adds to an atom’s 

Hamiltonian the perturbing term (9.23) for each electron. In the present case 
the perturbation is 

e 
δV (x, t) = 

2me 
{p · δA0 cos(k · x − ωt) + cos(k · x − ωt)δA0 · p}. (9.60) 

 

By virtue of equation (9.59), δA0 p commutes with k x because a component 
of momentum always commutes with a perpendicular component of position. 
Since δA0 is a constant, it commutes with p. So we can simplify δV to 

e 
δV (x, t) = 

me 
δA0 · p cos(k · x − ωt) 

  
 

(9.61) 
   e  = δA · p ei(k·x−ωt) + e−i(k·x−ωt)    . 

2me 
0 

 

We now make the approximation that the electromagnetic wavelength 
is much bigger than the characteristic size of the atom or molecule. This is 
a good approximation providing the atom or molecule moves between states 
that are separated in energy by much less than αmec

2
 (Problem 9.20), as 

will be the case for waves with frequencies that are less than those of soft X-
rays.  In this case we will have k  x   1 for all locations x in the atom or 
molecule at which there is significant probability of finding an electron. 
When this condition is satisfied, it makes sense to expand the factors e±ik·x 
in equation (9.61) as a power series and discard all but the constant term. 
We then have  

δV (x, t) = 
e 

 
 

2me 
δA0 · p e−iωt + eiωt 

  
, (9.62) 

where we have retained the exponentials in time because large values of 
t cannot be excluded in the way that we can exclude  large values  of x. 
Finally,  we note  that  in the  gross-structure Hamiltonian H0,  p  occurs only 
in  the  term  p

2
/2me,  so  [H0, x] =     i(h̄/me)p.  When  we  use  this  relation to 

eliminate p from equation (9.62), we have 
 

δV (x, t) = i 
eδA0 

[H , z](e−iωt
 + e

iωt
), (9.63) 

2h̄ 
0
 

 

where we have chosen to make the z axis parallel to A0. Thus a plane elec- 
tromagnetic wave gives rise to perturbations with both positive and negative 
frequencies.   Above  we  derived  the  frequency  condition  ω  =  (EN      Ek)/h̄ 
for transitions from  EN   to  Ek ,  so the negative frequency perturbation 
is associated with excitation of the system (Ek > EN ), while the positive 
frequency perturbation is associated with radiative decays. 

We identify the time-independent part of δV as the operator δV0 that 
occurs in equation (9.55) and then  have that  the  net  transition probability 
is 

Σ e2  Σ 
2

 
 

 

2 sin
2
 ((EN  − Ek − ̄hω)t/2h̄) 

 
 Pk(t) =   2 

waves 
 

waves 

(δA0)  |⟨Ek|[H0, z]|EN ⟩| 
(EN — Ek — h̄ω)2 

e2 
2

 
 

 

2 Σ 
2 sin

2
(xt) 

 
 

 

 
where 

=  
4h̄4 (Ek − EN )  |⟨Ek |z|EN ⟩|  

waves 

(δA0) 
x2 ,  

(9.64a) 

x ≡ (EN  − Ek − h̄ω)/2h̄. (9.64b) 

h̄ 
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Even though the expression 
 

ρ = 
  1    

(E/c)
2
 + B

2
 (9.65) 

2µ0 
 

for the energy density of an electromagnetic field is quadratic in the field 
amplitudes E and B, the volume-averaged energy density of a superposition 
of plane waves is just the  sum of the energy densities of each individual 
wave. Moreover, the electric and magnetic energy densities of a plane wave 
are equal, so the energy density contributed by our plane wave is just twice 
its electric energy density, and from equations (9.58) and (9.65) we infer that 
our wave contributes the time-averaged energy density 

 

ω2(δA0)2 
1    2 2 

δρ = 

2µ c2 = 2 ω  ǫ0(δA0) , (9.66) 
 

where the second equality uses µ0c
2
 = 1/ǫ0. Using this expression to elimi- 

nate δA0 from equation (9.64a), we obtain 
 

Σ e2 2 2 Σ sin
2
(xt) 

 
 

Pk(t) =  
2ǫ  h̄4 (Ek − EN )  |⟨Ek |z|EN ⟩| δρ   

ω2x2     . (9.67) 
waves 0 waves 

 

Let ρ(ω) be the power contained in all waves that have frequencies less than 
ω. In symbols 

ρ(ω) ≡ 
Σ 

 

waves with ω′<ω 

 
δρω′ . (9.68) 

Then 
Σ

 

waves 

∫ 

δρ = 

 
dρ 

dω . (9.69) 
dω 

When we use this expression to replace the sum on the right side of equation 
(9.67) by an integral, and we use equation (9.64b) to replace dω with   2dx, 
we obtain 

Σ 
Pk(t) = e2 ∫ 

(Ek − EN )
2
|⟨Ek|z|EN ⟩|2 

 

dρ sin
2
(xt) 

dx 
 

 
. (9.70) 

waves ǫ0h̄
4
 dω   ω2x2 

 

We now let t become large and exploit equation (9.53) to evaluate the inte- 
gral. The result is 

Σ 
Pk(t) = t 

 
πe

2
 
2 |⟨Ek|z|EN ⟩| 

 

. 
2 dρ . dω 

 

 
. (9.71) 

 

waves ǫ0h̄ . 
ω=(EN −Ek)/h̄ 

 

The coefficient of t on the right of this equation gives the rate R at which 
transitions occur. When we express the cumulative energy density of the 
wave-field in terms of frequency ν rather than angular frequency ω and use 
equation to eliminate ǫ0 in favour of the Bohr radius, the rate becomes 

. 
2π 

R = 
a0me 

|⟨Ek|z|EN ⟩| 
2 dρ . 

dν . 
 

ν=|EN −Ek|/h 

. (9.72) 

 

When Ek > EN ,  the negative-frequency term in equation (9.62) gives 
rise to excitations at an identical rate. Thus we have recovered from a dynam- 
ical argument Einstein’s famous result that stimulated emission of photons 
occurs, and that the coefficient B that controls the rate of stimulated emis- 
sion is  equal  to  the  absorption coefficient  (Box 9.2).  Einstein’s prediction 
of stimulated emission led 38 years later to the demonstration of a maser 

(§5.2.1) and 44 years later to the construction of the first laser by Theodore 

0 



§ 

2 

Box 9.2: Einstein A and B Coefficients 

In 1916, when only the merest fragments of quantum physics were known, 
Einstein showed (Verh. Deutsch. Phys.  Ges.  18, 318) that systems must 
be capable of both spontaneous and stimulated emission of photons, and 
that the coefficient of stimulated emission must equal that for absorption 
of a photon. He obtained these results by requiring that in thermal 
equilibrium there are equal rates of absorption and emission of photons 
of a given frequency ν by an ensemble of systems. He considered a 
frequency ν for which hν = ∆E, the energy difference between two states 

Nabs = BaN1(dρ/dν), where Ba is the absorption coefficient, N1 is the 
|1⟩ and |2⟩ of the systems. The rate of absorptions he assumed to be 

number of systems in the state |1⟩, and (dρ/dν) is the energy density 

0 = (BeN2 − BaN1) 
dν 

+ AN2. 

In thermal equilibrium N1 = N2e
hν/kT

 and dρ/dν is given by the Planck 
function. Using these relations to eliminate N1 and dρ/dν and then 
cancelling N2, we find 

in radiation of frequency ν.   The rate of emissions he assumed to be 
Nem = BeN2(dρ/dν) + AN2, where Be is the coefficient for induced 
emission and A is that for spontaneous emission. Equating Nabs to Nem 
yields 

dρ 

0 = (Be − Bae hν/kT ) − A. 
c3(ehν/kT − 1) 

8πhν
3
 

bracket with the Bs becomes large, and the contents of this bracket tends 
In the limit of very large T , e

hν/kT
  → 1, so the factor multiplying the 

drop the subscripts on them, take B out of the bracket, cancel the factors 
with exponentials, and finally deduce that 

to Be − Ba. It follows that these coefficients must be equal. We therefore 

A = 8πh(ν/c)
3
B. (1) 
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Maiman.6    In view of this history, it’s a remarkable fact that a laser operates 
in the regime in which the electromagnetic field can be treated as a classical 
object, as we have done here. Emission of light by a humble candle, by con- 
trast, is an inherently quantum-mechanical phenomenon because it occurs 
through spontaneous emission. Our treatment does not include spontaneous 
emission because we have neglected the quantum uncertainty in the elec- 
tromagnetic field. This uncertainty endows the field with zero-point energy 
(  3.1), and spontaneous emission can be thought of as emission stimulated 
by the zero-point energy of the electromagnetic field. 

Using the argument given in Box 9.2, Einstein was able to relate the 
coefficient A of spontaneous emission to B. Einstein’s argument does not 
yield a numerical value for either A or B. Our quantum mechanical treatment 
has yielded a value for B, and with Einstein’s relation (eq. 1 in Box 9.2) 
between B and A we can infer the value of A: 

16π
2
hν

3
 A = 

c3a m |⟨Ek|z|EN ⟩| . (9.73) 
0     e 

From this we can estimate the typical lifetime for radiative decay from an 
excited state of an atom. 

When the radiation density ρ is very small, the number N2 of atoms in 
an  excited  state  obeys  Ṅ2   =  −AN2  (Box  9.2),  so  N2  decays  exponentially 

6 The word ‘laser’ is an acronym for “light amplification by stimulated emission”. 
Curiously Maiman’s paper (Nature, 187, 493 (1960)) about his laser was rejected by the 
Physical Review. 
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with a  characteristic time  A−1
.  Unless  some  symmetry  condition  causes 

the matrix element in equation (9.73) to vanish, we expect the value of the 
matrix element to be      a0.  So the characteristic radiative lifetime of a state 
is 

−1 mec
2
  λ 1 τ = A = 

hν  a0 
16π2ν 

. (9.74) 

For an optical transition, hν      2 eV, λ      650 nm      1.2     10
4
a0, and ν 

4.6     10
14

 Hz, so τ      4     10−8
 s.   It follows that      10

7
  oscillations of the 

atom occur before the radiation of energy causes the atom to slump into the 
lower state. 

 

9.3.3 Selection rules 

Equation (9.72) states that the rate of radiative transitions is proportional 
to the mod-square of the electric dipole operator ez. For this reason the 
approximation we made, that k x 1, is called the electric dipole ap- 
proximation. 

There are important circumstances in which symmetry causes the matrix 
element of the dipole operator to vanish between the initial and final states. 
Transitions between such states are said to be forbidden in contrast to al- 
lowed transitions, for which the matrix element does not vanish. Some 
approximations were involved in our derivation of equation (9.72), so the 
transition rate does not necessarily vanish completely when the matrix ele- 
ment is zero. In fact, forbidden transitions often do occur, but at rates that 
are much smaller than the characteristic rate of allowed transitions (eq. 9.74) 
because the rate of a forbidden transition is proportional to terms that we 
could neglect in the derivation of equation (9.72). We now investigate rela- 
tions between the initial and final states that must be satisfied if the states 
are to be connected by an allowed transition. Such relations are called se- 
lection rules. The slower rate of forbidden transitions must be determined 
by either including the next term of the Taylor expansion of e

ik·x, or taking 
into account the perturbation µBS B that arises from the interaction of the 
intrinsic magnetic moment of an electron with the wave’s magnetic field. 

We are interested in matrix elements between states that are eigenstates 
of operators that commute with the Hamiltonian H that the atom would 
have if it were decoupled from electromagnetic waves. The Hamiltonian 
should include spin-orbit coupling as well as interaction with whatever steady 
external electric or magnetic fields are being applied. The operator in the 
matrix element is the component of the position operator parallel to the 
electric field of the radiation that is being either absorbed or emitted. 

Even in the presence of an external field, the angular-momentum parallel 
to the field, which we may call Jz, commutes with H, so the kets of interest 
are labelled  with  m.  Since  [Jz, z] = 0,  the  ket z E, m  is  an eigenket of Jz 
with eigenvalue m. It follows that E, m z E′, m′ = 0 unless m = m′. This 
gives us the first selection rule listed in Table 9.1, namely that when the 
electric vector of the radiation is parallel to the imposed field, the quantum 
number m is unchanged by radiation. 

If we define x± = x ± iy, we have 

[Jz, x±] = iy ± i(−ix) = ±x±. (9.75) 

It follows that x±|E, m⟩ is an eigenket of Jz with eigenvalue m ± 1, so 

⟨E, m|x|E′, m′⟩ = 
1
 ⟨E, m|(x+ + x−)|E′, m′⟩ 

2 

= 0 unless m′ = m ± 1. 
(9.76) 

 

Obviously the same result applies to the matrix element for y.  Hence we 
have the second selection rule listed in Table 9.1: when the electric vector of 
the radiation is perpendicular to the imposed field, the quantum number m 
changes by ±1. If the direction of observation is along the imposed field, the 



± 

± 
± 

→ 

√ 

|  −   | ≤ 

§ ⟨ | | ⟩ 

1 

Table 9.1 Selection rules 

j |j − j′| ≤ 1 but j = 0 /→ j′ = 0 

m |m − m′| ≤ 1; m = m′ for E parallel to an external field; 

l |l − l′| = 1 

|m − m′| = 1 for photon emitted parallel to an external field 

s s = s′ 
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electric vector of the radiation must be perpendicular to the field. Hence, 
in this case m must change by 1. In fact, m increases when a left-hand 
circularly-polarised photon is emitted in the positive z direction, and con- 
versely for the emission of a right-hand polarised photon. When the direction 
of observation is perpendicular to the imposed field, the electric vector of the 
radiation can be either perpendicular to the field, in which case m changes 
by 1, or parallel to the field, and then m does not change. 

When there is no imposed field, m may be unchanged or change by 1, 
and we can observe photons associated with any of these changes in m when 
observing from any direction. 

When there is no imposed field, J
2
 commutes with H and the kets 

of interest are labelled with E, j and m. The selection rule for j can be 
obtained from the rules for adding angular momentum that were discussed 
in 7.5: E, j, m xk E′, j′, m′ vanishes unless it is possible to make a spin-j 
object by adding a spin-one object to a spin-j′ object. For example, the 
matrix element vanishes if j = j′ = 0 because spin-one is all you can get by 
adding a spin-one system to a spin-zero one. Subject to the selection rules on 
m just discussed, the matrix element does not vanish if j = 0 and j′ = 1, or if 
j = 1 and j′ = 1, because both a spin-zero system and a spin-one one can be 
obtained by adding two spin-one subsystems.  The matrix element  vanishes 
if j = 1 and j′ = 3 because by adding spin-one and spin-three the smallest 
spin you can get is spin-two. In summary, the selection rule is j j′ 1 
except that j = 0   j′ = 0 is forbidden. 

The selection rules for j that we have just given follow from a powerful 
result of group theory, the Wigner-Eckart theorem. Unfortunately, a 
significant amount of group theory is required to prove this theorem. In 
Appendix J we give a proof of the selection rule for j that builds on the 
calculation involved in Problem 7.21. 

When spin-orbit coupling is weak, the total orbital angular momentum 
L

2
 and the total spin angular momentum S

2
 are constants of motion, so 

their quantum numbers l and s are likely to appear as labels in the kets. 
Since [x, S] = 0, it is clear that the selection rule for s is that it should not 

change. The selection rule for l was derived in Problem 7.21: |l − l′| = 1. 

Problems 

9.1 A harmonic oscillator with mass m and angular frequency ω is per- 
turbed by δH = ǫx

2
. (a) What is the exact change in the ground-state 

energy? Expand this change in powers of ǫ up to order ǫ
2
. (b) Show that 

the change given by first-order perturbation theory agrees with the exact 
result to O(ǫ) (c) Show that the first-order change in the ground state is 
|b⟩  =  −(ǫℓ

2
/    2h̄ω)|E2⟩.   (d)  Show  that  second-order  perturbation  theory 

yields energy change Ec = −ǫ
2
h̄/4m

2
ω

3
  in agreement with the exact result. 

9.2 The harmonic oscillator of Problem 9.1 is perturbed by δH = ǫx. Show 
that the perturbed Hamiltonian can be written 

 
H = p

2
 + m

2
ω

2
X

2
 

2m 

ǫ2    

ω2 , 

 

where X = x+ǫ/mω
2
 and hence deduce the exact change in the ground-state 

energy. Interpret these results physically. 

− 
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What value does first-order perturbation theory give? From perturba- 
tion theory determine the coefficient b1 of the unperturbed first-excited state 
in the perturbed ground state. Discuss your result in relation to the exact 
ground state of the perturbed oscillator. 

9.3 The harmonic oscillator of Problem 9.1 is perturbed by δH = ǫx
4
. 

Show that the first-order change in the energy of the n
th

 excited state is 

δE = 3(2n
2
 + 2n + 1)ǫ 

Hint: express x in terms of A + A†. 

 2 
h̄ 

 

 

2mω 

 
. (9.77) 

9.4 The infinite square-well potential V (x) = 0 for  x  < a and      for 
x  > a is perturbed by the potential δV  = ǫx/a. Show that to first order in 
ǫ the energy levels of a particle of mass m are unchanged. Show that even 
to this order the ground-state wavefunction is changed to 

1 16ǫ Σ 
 

  

n/2 n 
 

 

ψ1(x) = √
a 

cos(πx/2a) + 
π2E 

√
a

 (−1) 
n=2,4, (n2  − 1)3  sin(nπx/2a), 

where E1 is the ground-state energy. Explain physically why this wavefunc- 
tion does not have well-defined parity but predicts that the particle is more 
likely to be found on one side of the origin than the other. State with rea- 
sons but without further calculation whether the second-order change in the 
ground-state energy will be positive or negative. 

9.5 An atomic nucleus has a finite size, and inside it the electrostatic 
potential Φ(r) deviates from Ze/(4πǫr). Take the proton’s radius to be 
ap 10−15

 m and its charge density to be uniform.  Then treating the dif- 
ference between Φ and Ze/(4πǫ0r) to  be a perturbation on the Hamiltonian 
of hydrogen, calculate the first-order change in the ground-state energy of 
hydrogen. Why is the change in the energy of any P state extremely small? 
Comment on how the magnitude of this energy shift varies with Z in hydro- 
genic ions of charge Z. Hint: exploit the large difference between ap and a0 
to approximate the integral you formally require. 

9.6 Evaluate  the  Landé g  factor  for  the  case  l  = 1,  s =  
1
  and  relate  your 

result to Figure 9.2. 

9.7 A particle of mass m moves in the potential V (x, y) =
 1

 mω
2
(x

2
 + y

2
), 

where ω is a constant. Show that the Hamiltonian can be written as the 
sum Hx + Hy of the Hamiltonians of two identical one-dimensional harmonic 
oscillators. Write down the particle’s energy spectrum. Write down kets 
for two stationary states in the first-excited level in terms of the stationary 
states nx of Hx and  ny  of Hy.  Show that the n

th
 excited level is n + 1 

fold degenerate. 
The oscillator is disturbed by a small potential H1 = λxy. Show that 

this perturbation lifts the degeneracy of the first excited level, producing 
states with energies 2h̄ω     λh̄/2mω.  Give expressions for the corresponding 
kets. 

The mirror operator M is defined such that for any state  ψ  ,  x, y M  ψ  = 
y, x ψ .    Explain  physically  the  relationship  between  the  states   ψ   and 
M ψ . Show  that  [M, H1]  = 0.  Show  that  MHx  =  HyM  and  thus  that 
[M, H] = 0. What do you infer from these commutation relations? 

9.8 ∗ The Hamiltonian of a two-state system can be written 

H = 
A1 + B1ǫ B2ǫ 

B2ǫ A2 

 
, (9.78) 

where all quantities are real and ǫ is a small parameter. To first order in ǫ, 
what are the allowed energies in the cases (a) A1 = A2, and (b) A1 = A2? 

Obtain the exact eigenvalues and recover the results of perturbation 
theory by expanding in powers of ǫ. 

1 
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Figure 9.3 The relation of  input 
and output vectors of a 2 2 Hermi- 
tian matrix with positive eigenvalues 
λ1 > λ2. An input vector (X, Y )  on 
the unit circle produces the output 
vector (x, y) that lies on the  ellipse 
that has the eigenvalues as semi- 
axes. 

 

 
9.9 ∗   For the P states of hydrogen, obtain the shift in energy caused by a 
weak  magnetic  field  (a)  by  evaluating  the  Landé  g  factor,  and  (b)  by  use 
equation (9.28) and the Clebsch–Gordan coefficients calculated in §7.5.2. 

9.10 The 2 2 Hermitian matrix H has positive eigenvalues λ1 > λ2. The 
vectors (X, Y ) and (x, y) are related by 

 

X 
= 

x 
.
 

Y y 
 

Show that the points (λ1X, λ2Y ) and (x, y) are related as shown in Figure 9.3. 
How does this result generalise to 3 3 matrices? Explain the relation of 
Rayleigh’s theorem to this result. 

9.11 We find an upper limit on the ground-state energy of the harmonic 
oscillator from the trial wavefunction ψ(x) = (a

2
 + x

2
)−1

. Using the substi- 
tution x = a tan θ, or otherwise, show that 

∫ ∞ 

dx |ψ|2 = 
1
 πa−3

 
 

∫ ∞ 

dxx
2
|ψ|2  =  

1
 πa−1

 
 

∫ ∞ 

dxψ∗p
2
ψ =  

1
 πa−5

 
0 

(9.79) 
Hence show that ⟨ψ|H|ψ⟩/⟨ψ|ψ⟩ is minimised by setting a = 2

l/4
ℓ, where ℓ is 

the  cha√racteristic length  of  the  oscillator.  Show  that  our  upper  limit  on E0 
is  ̄hω/    2.  Plot the the  final trial wavefunction and the  actual ground-state 
wavefunction and (a) say whether you consider it a good fit, and (b) how it 
might be adapted into a better trial wavefunction. 

9.12 Show that for the unnormalised spherically-symmetric wavefunction 
ψ(r) the expectation value of the gross-structure Hamiltonian of hydrogen is 

2  ∫ . .2 2    ∫ ! , ∫ 
h̄ 2 

. dψ . e 
 

  

2 2 2 

⟨H⟩ = 
2m

 dr r  . . dr — 4πǫ dr r|ψ| dr r |ψ| . (9.80) . . 
e 0 

 

For the trial wavefunction ψb = e−br
 show that 

 

h̄
2

b
2
 

⟨H⟩ = 
2m

 
e

2
b 

— 4πǫ0 
 

and hence recover the definitions of the Bohr radius and the Rydberg con- 
stant. 

9.13 ∗ Using the result proved in Problem 9.12, show that the trial wave- 
function ψb = e−b

 
r
 

/2
 yields −8/(3π)R as an estimate of hydrogen’s ground- 

state energy, where R is the Rydberg constant. 

9.14 Show that the stationary point of ψ H ψ associated with an excited 
state of H is a saddle point. Hint: consider the state ψ = cos θ k +sin θ l , 
where θ is a parameter. 

0 0 

e 

H · 

, 
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9.15 At early times (t ∼ −∞) a harmonic oscillator of mass m and natural 
  

angular frequency ω is in its ground state. A perturbation δH = Exe−t
 
/τ

 
is then applied, where E and τ are constants. 

a. What is the probability according to first-order theory that by late times 
the oscillator transitions to its second excited state, 2 ? 

b. Show that to first order in δH the probability that the oscillator tran- 
sitions to the first excited state, |1⟩, is 

 

π  2τ 2 

P = 
2mh̄ω 

e−ω  τ  /2 
 

, (9.81) 

 

c. Plot P as a function of τ and comment on its behaviour as ωτ → 0 and 

ωτ → ∞. 

9.16 A particle of mass m executes simple harmonic motion at angular 
frequency ω. Initially it is in its ground state but from t = 0 its motion is 
disturbed by a steady force F . Show that at time t > 0 and to first order in 
F the state is 

 

where 

|ψ, t⟩ = e−iE0t/h̄ |0⟩ + a1e−iE1t/h̄ |1⟩ 

∫ t 
   i  

a1  =  √
2mh̄ω 

dt′ F (t′)e
iωt

 . 
0 

Calculate ⟨x⟩ (t) and show that your expression coincides with the classical 
solution  

x(t) = 
∫ t 

dt′ F (t′)G(t t′), 
0 

where the Green’s function is G(t   t′) = sin[ω(t   t′)]/mω.   Show that a 
suitable displacement of the point to which the oscillator’s spring is anchored 
could give rise to the perturbation. 

9.17 ∗ A particle of mass m is initially trapped by the well with potential 
V (x) = Vδδ(x), where Vδ > 0. From t = 0 it is disturbed by the time- 
dependent  potential  v(x, t)  =    Fxe−iωt

.   Its  subsequent  wavefunction can 
be written 

∫ 

|ψ⟩ = a(t)e−iE0t/h̄ |0⟩ + dk  {bk(t)|k, e⟩ + ck(t)|k, o⟩} e−iEkt/h̄ , (9.82) 

 

where E0  is  the  energy of the bound  state   0   and Ek h̄
2
k

2
/2m and   k, e 

and k, o are, respectively the even- and odd-parity states of energy Ek (see 
Problem 5.17). Obtain the equations of motion 

 

ih̄ 

∫ 

ȧ|0⟩e−iE0t/h̄  + dk 

  

  

ḃk|k, e⟩ + ċk|k, o⟩ 

∫ 

 
e−iEkt/h̄ 

 
 

(9.83) 

= v    a|0⟩e−iE0t/h̄  + dk  (bk|k, e⟩ + ck|k, o⟩) e−iEkt/h̄ . 

 

Given that the free states are normalised such that   k′, o k, o   = δ(k k′), 
show that to first order in v, bk = 0 for all t, and that 

 

c  (t) = 
iF 

⟨k, o|x|0⟩ e
iΩkt/2  sin(Ωkt/2) 

, where   Ω   ≡ 
Ek − E0  

− ω. 
k
 h̄ Ωk/2 

k
 h̄  

(9.84) 
Hence show that at late times the probability that the particle has become 
free is  

Pfr(t) = 

 

2πmF 
2
t 

3 

2 . . . (9.85) 

h̄ k . 
Ωk=0 

2 2 
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Given that from Problem 5.17 we have 

√ −K|x| mVδ 1 
 

 ⟨x|0⟩ = Ke where  K = 
h̄2 and    ⟨x|k, o⟩ =  √

π 
sin(kx), 

(9.86) 
show that r   

K 4kK 
⟨k, o|x|0⟩ = 

π (k2 + K2)2 . (9.87) 

Hence show that the probability of becoming free is 

√   

Pfr(t) = 
8h̄F 

2
t 

mE
2
 

Ef /|E0| 
, (9.88) 

(1 + E /|E |)4 
 

where Ef > 0 is the final energy. Check that this expression for Pfr is 
dimensionless and give a physical explanation of the general form of the 
energy-dependence of Pfr(t) 

9.18 ∗     A particle travelling with momentum p = h̄k > 0 from encoun- 
ters the steep-sided potential well V (x) = V0 < 0 for x < a. Use the Fermi 
golden rule to show that the probability that a particle will be reflected by 
the well is 

V 2 
P sin (2ka), 

4E2 

where E = p
2
/2m.  Show that in the limit E   V0 this result is consistent 

with the exact reflection probability derived in Problem 5.10. Hint: adopt 
periodic boundary conditions so the wavefunctions of the in and out states 
can be normalised. 

9.19 ∗ Show that the number states g(E) dE d
2
Ω with energy in (E, E+dE) 

and  momentum  in  the  solid  angle d
2
Ω  around p = h̄k  of  a  particle  of  mass 

m that moves freely subject to periodic boundary conditions on the walls of 
a cubical box of side length L is 

 
g(E) dE d

2
Ω = 

   3 3/2         
2E dE dΩ

2
. (9.89) 

 

2π h̄
3
 

 

Hence show from Fermi’s golden rule that the cross section for elastic scat- 
tering  of  such  particles  by  a  weak  potential  V (x)  from  momentum  ̄hk  into 
the solid angle d

2
Ω around momentum h̄k′  is 

 
m2 

dς = 

.∫ 

. 
4 d Ω . 

 
d3x ei(k−k′)·x 

. 

. V (x). . 

 

(9.90) 

(2π)2h̄ . . 
 

Explain in what sense the potential has to be “weak” for this Born approx- 
imation to the scattering cross section to be valid. 

9.20 Given  that  a0  =  h̄/(αmec)  show  that  the  product  a0k  of  the  Bohr 
radius and the wavenumber of a photon of energy E satisfies 

 

E 
a0k = 

αm c2 . (9.91) 

Hence show that the wavenumber kα  of an Hα photon satisfies a0kα = 
 5

 α 
and determine λα/a0. What is the connection between this result and our 
estimate that 10

7
 oscillations are required to complete a radiative decay. 

Does it imply anything about the way the widths of spectral lines from 
allowed atomic transitions varies with frequency? 

9.21 Equation (9.75) implies that x± act as ladder operators for Jz. Why 
did we not use these operators in §7.1? 

2 



2 

2 
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9.22 Given that a system’s Hamiltonian is of the form 

 
p2 

H = 
2me 

 
+ V (x) (9.92) 

 

show  that  [x, [H, x]]  =  ̄h
2
/me.   By  taking  the  expectation  value  of  this  ex- 

pression in the state |k⟩, show that 
 

Σ h̄
2
 

n/=k |⟨n|x|k⟩| (En − Ek) = 
2m

 
, (9.93) 

 

where the sum runs over all the other stationary states. 
The oscillator strength of a radiative transition |k⟩ → |n⟩ is defined 

2me f ≡ (E — E  )|⟨n|x|k⟩| (9.94) 
kn 

h̄2 n k 

Σ 
Show that n fkn = 1. What is the significance of oscillator strengths for 
the allowed radiative transition rates of atoms? 

to be 
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10 
Helium and the periodic table 

 
In this chapter we build on the foundations laid by our study of hydrogen in 
Chapter 8 to understand how the atoms of heavier elements work. Most of 
the essential ideas already emerged in Chapter 8.  In fact, only one impor- 
tant point of principle needs to be introduced before we can move down the 
periodic table understanding why elements have the spectra and chemistry 
that they do. This outstanding issue is the remarkable implications that 
quantum mechanics carries for the way in which identical particles interact 
with one another. We shall be concerned with the case in which the parti- 
cles are electrons, but the principles we elucidate apply much more widely, 
for example, to the dynamics of the three quarks that make up a proton or 
neutron, or the two oxygen atoms that comprise an oxygen molecule. 

 
 

10.1 Identical particles 

Consider a system that contains two identical spinless particles. Then a 
complete set of amplitudes is given by a function ψ of the coordinates x and 
x′ of the particles: the complex number ψ(x, x′) is the amplitude to find one 
particle at x and the other particle at x′. What’s the physical interpretation 
of the number ψ(x′, x)? It also gives the amplitude  to find  particles at x and 
x′. If the particles were not identical – if one where a pion the other a kaon, 
for example – finding the pion at x and the kaon at x′ would be a physically 
distinct situation from finding the kaon at x and the pion at x′. But if 
both particles are pions, ψ(x, x′) and ψ(x′, x) are amplitudes for identical 
physical situations. Does it follow that ψ(x, x′) = ψ(x′, x)? No, because 
experimentally we can only test the probabilities to which these amplitudes 

give rise. So we can only safely argue that the probability |ψ(x, x′)|2 must 

equal the probability |ψ(x′, x)|2, or equivalently that 

ψ(x, x′) = e
iφ

ψ(x′, x), (10.1) 

where φ is a real number. This equation must hold for any x and x′. So the 
function ψ has the property that if you swap its arguments, you increment 
its phase by φ. Specifically 

 

ψ(x′, x) = e
iφ

ψ(x, x′). (10.2) 
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Substituting this equation into the right side of equation (10.1), it follows 
that 

ψ(x, x′) = e
2iφ

ψ(x, x′), (10.3) 

which implies that either φ = 0 or φ = π. Thus we have shown that the 
wavefunction for a system of two identical spinless particles has to be either 
symmetric or antisymmetric under interchange of the particles’ coordinates. 

Consider now the case of two spin-s particles, which might, for example, 
be electrons (s = 

1
 ) or photons (s = 1).  A complete set of amplitudes would 

be the amplitude for one particle to be at x in the state that has eigenvalue 
m of Sz, and the other particle to be at x′ with eigenvalue m′. Let the 
complex number ψmm′ (x, x′) denote this amplitude – that is, let the first 
subscript on ψ give the orientation of the spin of the particle that is found 
at the position given by the first argument of ψ. Then the possibly different 
amplitude ψm′m(x′, x) is for the identical physical situation. Hence 

 

ψm′ m(x′, x) = e
iφ

ψmm′ (x, x′). (10.4) 
 

This equation must hold for all m, m′  and x,  x′.  So swapping the subscripts 
on ψ at the same time as swapping the arguments, is equivalent to multiply- 
ing through by e

iφ
. Swapping a second time leads to 

 

ψmm′ (x, x′) = e
2iφ

ψmm′ (x, x′), (10.5) 

so, as in the case of spin-zero particles, either φ = 0 or φ = π. It turns out 
that there is no change of sign if the particles are bosons (s = 0, 1, 2, . . .), and 
there is a change of sign if the particles are fermions (s = 

1
 , 

3
 , . . .).  That is 

 
ψmm′ (x, x′) = 

2   2 

 

ψm′m(x′, x) for fermions 

+ψm′m(x′, x) for bosons. 

 

(10.6) 

 

These relations between amplitudes are said to arise from the principle of 
exchange symmetry between identical particles. 

Generalisation to the case of  N  identical  particles  If  our  system 
contains N identical fermions, the wavefunction will change its sign when we 
swap the arguments (both spin quantum numbers and spatial coordinates) 
associated with any two slots in the wavefunction. Similarly, if the system 
contains N bosons, the wavefunction will be invariant when we swap the 
arguments associated with any two slots. 

 
 

10.1.1 Pauli exclusion principle 

An immediate consequence of the wavefunction of fermions being antisym- 
metric under a swap of its arguments, is that there is zero probability of 
finding two fermions with their spins oriented in the same way at the same 
location: since ψmm(x, x) = ψmm(x, x), the  amplitude  ψmm(x, x)  must 
vanish. Since wavefunctions are continuous functions of position, and their 
spatial derivatives are constrained in magnitude by the particles’ momenta, 
ψmm(x, x′) can vanish at x = x′ only if it is small whenever the two argu- 
ments are nearly equal. Hence, fermions with similarly oriented spins avoid 
each other; they are anticorrelated. This fact has profound implications 
for atomic and condensed-matter physics. 

If the particles’ spins have different orientations, there can be a non- 
zero amplitude of finding them at the same location: from ψmm′ (x, x) = 

ψm′m(x, x) it does not follow that the amplitude ψmm′ (x, x) vanishes. 
The principle of exchange symmetry arises as a constraint on amplitudes, 

but we now show that it has implications for the structure of the underlying 
states.  Let  n  be  a  complete set of states  for a  single fermion – so  the 
label n carries information about both the electron’s motion in space and 
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its orientation (spin state). Then from 6.1 we have that any state of an 
electron pair can be expanded in the form1 

Σ 
|ψ⟩ =  

nn′ 

ann′ |n⟩|n′⟩. (10.7) 

 

Multiplying through by x, x′, m, m′ we obtain the amplitude ψmm′ (x, x′) 
that is constrained by exchange symmetry: 

Σ 
ψmm′ (x, x′) = ⟨x, x′, m, m′|ψ⟩ =  

nn′ 

ann′ ⟨x, m|n⟩⟨x′, m′|n′⟩. (10.8) 

 

We now swap x, m with x′, m′ throughout the equation and add the result 
to our existing equation. Then by exchange symmetry the left side vanishes, 
and we have 

Σ 
0 = 

nn′ 

ann′ ⟨x, m|n⟩⟨x′, m′|n′⟩ + 
Σ 
 

nn′ 

ann′ ⟨x′, m′|n⟩⟨x, m|n′⟩. (10.9) 

 

In the second sum we may swap the labels n and n′ (since they are be- 
ing summed over), and we may also reverse the order of the amplitudes 
⟨x′, m′|n′⟩ and ⟨x, m|n⟩ (because they are mere complex numbers).  Then we 

 

Σ 
0 = 

nn′ 

Σ 

ann′ ⟨x, m|n⟩⟨x′, m′|n′⟩ + 
Σ 
 

n′n 

an′n⟨x, m|n⟩⟨x′, m′|n′⟩ 

= 
nn′ 

⟨x, m|n⟩⟨x′, m′|n′⟩(ann′ + an′ n) 

Σ 
(10.10) 

= ⟨x, x′, m, m′|  
nn′ 

|n⟩|n′⟩(ann′  + an′n). 

 

Since this equation holds for arbitrary x, x′, m, m′ it follows that the sum 
vanishes, and from the linear independence of the basis kets n n′ it follows 
that the coefficient of each such ket vanishes. Hence we have 

 

ann′ = −an′n. (10.11) 

In particular ann vanishes so there is zero amplitude to find that both 
fermions are in the same single-particle state n . This result is known as 
the Pauli exclusion principle. 

The Pauli exclusion principle ensures that any expansion of the form 
(10.7) involves at least two terms. When there are only two terms, equation 
(10.11) ensures that ann′ = −an′n = ±1/ 2, so equation (10.7) reduces to 

 
1 ′ ′ 

|ψ⟩ = ±√
2 

(|n⟩|n ⟩ − |n ⟩|n⟩). (10.12) 

 
In 6.1 we saw when the wavefunction of a pair of particles is a non-trivial sum 
over products of wavefunctions for each particle, the particles are correlated. 
Hence the Pauli exclusion principle implies that identical fermions are always 
correlated. 

 

1 Equation (10.7) implies that we can distinguish the two electrons – electron “1” is 
in the state |n⟩ , while electron “2” is in state |n′⟩ . Physically this is meaningless. What 
we are doing is writing down states of distinguishable particles that are consistent with 
the restrictions imposed on states of pairs of indistinguishable particles. 



1 

± 

§ 

⟨ | 

 
ψ+−(x, x′)  

1 ≡ 

1 ≡ 

1 1 

1 1 

10.1 Identical particles 229 
 

10.1.2 Electron pairs 

We now specialise to the important case of identical spin-half particles, such 
as electrons. For complete specification of the quantum state of a single 
electron we must give the values of two functions of x, which can be the 
amplitudes ψ±(x) to find the electron at x and oriented such that Sz returns 
± 2 . These functions form a two-component wavefunction: 

 

⟨x|ψ⟩ ≡ 
ψ+(x) 
ψ−(x) 

. (10.13) 

 

Similarly, to specify completely the state of a pair of electrons, four functions 
of two locations are required, namely ψmm′ (x, x′) for m, m′ = . Thus an 
electron pair has a four-component wavefunction 

 
ψ++(x, x′)  

⟨x, x′|ψ⟩ ≡ 
 ψ−+(x, x′)  

. (10.14) 

ψ−−(x, x′) 

We often wish to consider the states of an electron pair in which it is the pair 
rather than its individual members that has well-defined spin – in 7.5.1 we 
investigated the states of a hydrogen atom in which the atom rather than 
its constituent particles has well-defined spin. Our derivation of the results 
obtained there relied only on the properties of the spin raising and lowering 
operators S±, so they  are valid for  any pair  of spin-half particles, including 
an electron pair.   Multiplying equation (7.153) through by   m, m′   we see 
that when the pair has unit spin and Sz yields 1, the only non-vanishing 
amplitude ψmm′   is  ψ++.  Hence in this  state of the pair the wavefunction is 

 1  

⟨x, x′|ψ, 1, 1⟩ = ψ
1
(x, x′) 

 0  
, (10.15) 

1  0  

0 
 

where ψ
1
 ψ++  is required by exchange symmetry to  be an antisymmetric 

function of x and x′: 
ψ

1
(x′, x) = −ψ

1
(x, x′). (10.16) 

Similarly, from equation (7.154) it follows that when the pair has s = 1 
but  m = 0,  there  are equal  amplitudes  to  find  the  individual  spins  −+  and 
+−, so  0  

⟨x, x′|ψ, 1, 0⟩ = ψ
0
(x, x′) 

 1  
, (10.17) 

1  1  

0 

where  ψ
0
(x, x′)       ψ−+(x, x′)  =  ψ+−(x, x′).   Swapping  the  labels  x  and  x′ 

on both sides of the equivalence and using first equation (10.6) and then 
equation (10.17), yields 

 

ψ
0
(x′, x) = ψ−+(x′, x) = −ψ+−(x, x′) = −ψ

0
(x, x′). (10.18) 

 

Thus ψ
0
 like ψ

1
 is an antisymmetric function of its arguments. 

1 1 

Similarly, from equation (7.155) we infer that when the pair has s = 1 
and m = −1 its wavefunction is 

 0  

⟨x, x′|ψ, 1, −1⟩ = ψ−1
(x, x′) 

 0  
, (10.19) 

1  0  

1 
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where ψ1
−1  is an antisymmetric function of its  arguments. 

Finally we must consider the spin-zero state of the pair. By equation 
(7.156) it is associated with values of the amplitudes ψ−+  and ψ+−  that are 
equal in magnitude and opposite in sign. So we can write 

 0  

⟨x, x′|ψ, 0, 0⟩ = ψ (x, x′) 
 1   

. (10.20) 
0  1  

0 
 

In this case use of the exchange principle yields 

ψ0(x, x′) ≡ ψ−+(x, x′) = −ψ+−(x′, x) = ψ0(x′, x) (10.21) 

so ψ0, in contrast to the previous functions ψ
m

, is a symmetric function of 
its arguments. 

The spin-one states of an electron pair are generally called triplet 
states while the spin-zero state is called the singlet state. We have seen 
that the wavefunction of a triplet state is an antisymmetric function of x 
and x′, while wavefunction of the singlet state is a symmetric function of x 
and x′. We saw above that electrons that have equal components of angular 
momentum parallel to the z axis avoid each other. We now see that this 
mutual avoidance is a general characteristic of all the triplet states. 

One way of constructing a function of two variables is to take the product 
u(x)v(x′) of two functions u and v of one variable. Unless u = v, this product 
is neither symmetric nor antisymmetric under interchange of x and x′, so it 
cannot be proportional to the wavefunction of either a triplet or a singlet 
state. To achieve such proportionality, we must extract the symmetric or 
antisymmetric part of the product. That is, for appropriate u and v we may 
have 

m ′ 1 ′ ′ 

ψ1  (x, x ) = √
2 

{u(x)v(x ) − u(x )v(x)} (m = 1, 0, −1) 
1 

ψ0(x, x ) = √
2 

{u(x)v(x ) + u(x )v(x)}. 

(10.22) 

 

In the case u = v, the triplet wavefunctions are identically zero but the sin- 
glet wavefunction can be non-vanishing; that is, two distinct single-particle 
wavefunctions are required for the construction of a triplet state, while just 
one single-particle wavefunction is all that is required for a singlet state. 

Wavefunctions of the form (10.22) are widely  used in  atomic physics 
but one should be clear that it is an approximation to assume that a two- 
electron wavefunction can be written in terms of just two single-particle 
wavefunctions; any wavefunction can be expanded as a sum of products of 
single-particle wavefunctions, but the sum will generally contain more than 
two terms. 

 
10.2 Gross structure of helium 
About a quarter of the ordinary matter in the Universe is in the form of 
helium, the second simplest element. The tools that we now have at our 
disposal enable us to build a fairly detailed model of these important atoms. 
This model will illustrate principles that apply in all many-electron atoms. 

We seek the stationary states of the Hamiltonian that describes the 
electrostatic interactions between the two electrons and the alpha particle 
that make up a helium atom. This Hamiltonian is (cf. eq. 8.1) 

p2 p2 p2 
  e

2
 2 2 1 

H =    n    +   1    +    2    − + − , 
2mn 2me 2me 4πǫ0 |x1 − xn| |x2 − xn| x1 x2 

(10.23) 
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where xi and xn are the position operators of the i
th

 electron and the nucleus, 
respectively, and pi and pn are the corresponding momentum operators. We 
shall work in the atom’s centre-of-mass frame and neglect the small displace- 
ment from the origin and kinetic energy that the nucleus has in this frame. 
With this approximation, H can be written as the sum of two hydrogenic 
Hamiltonians with Z = 2 (cf. eq. 8.10) and the term that describes the 
mutual electrostatic repulsion of the electrons 

e2                                                             

H = HH(p1, x1) + HH(p2, x2) + 
4πǫ |x

 , (10.24a) 
— x | 

where 
p2 

HH(p, x) ≡ 
2m

 
2e

2
 

— 
4πǫ |x| 

. (10.24b) 

We cannot determine the eigenkets of H exactly, so we resort to the approx- 
imate methods developed in the previous chapter. 

 

10.2.1 Gross structure from perturbation theory 

Our first approach is to use the perturbation theory of §9.1. In §8.1 we found 

the eigenfunctions of HH. These proved to be products u
l
 (r)Y

m
(θ, φ) of the 

n l 

radial eigenfunctions u
l
 derived in §8.1.2 and the spherical harmonics Y

m
 

derived in 7.2.3. From the work of 6.1 it follows that the eigenfunctions of 
the operator 

 

are products 

H0 ≡ HH(p1, x1) + HH(p2, x2) (10.25) 

 

Ψ
m

(x )Ψ
m′ 

(x ) ≡  l m
 

l′ m′ 

(θ , φ  ), (10.26) 
 

where n and n′ are any positive integers. From equation (8.27) the corre- 
sponding eigenvalues are 

 

1 1 
E0 ≡ −4R 

n2 
+ 

n′2 
. (10.27) 

 

The ground-state wavefunction of H0 will be a product of the ground-state 
eigenfunctions (4π)−1/2

u
0
(r) of HH, where the function u

0
 is given by equa- 

1 1 

tion (8.36) with Z = 2. From equation (10.27) the ground-state energy of 
H0 is 

E0 = −8R = −108.8 eV. (10.28) 

The Hamiltonian (10.23) commutes with all spin operators because it 
makes no reference to spin. Therefore we are at liberty to seek eigenfunctions 
of H that are simultaneously eigenfunctions of the total spin operators S

2
 and 

Sz. We have seen that these eigenfunctions are either singlet or triplet states 
and are either symmetric or antisymmetric functions of the spatial variables. 
The ground-state wavefunction of H0 is  an inherently a  symmetric function 
of x1 and x2,  so  the  ground-state is  a  singlet.  The  first-order contribution 
to the ground-state energy is the expectation value of the perturbing part of 
the Hamiltonian (10.24.) This expectation value is 

2 ∫ e |Ψ  (x )| |Ψ   (x )| 
 ∆E = D0 where  D0 ≡ d

3
x1 d

3
x2 

10 1 10 2 
.  (10.29) 

4πǫ0 |x1 − x2| 
 

Box 10.1 describes the evaluation of the six-dimensional integral D0. We 
find that ∆E = 

5
 R, so our estimate of the ground-state energy of helium is 

E = E0 + ∆E = − 11 R = −74.8 eV. The experimentally measured value is 
−79.0 eV. 

e 



§ 

Box 10.1: Evaluating the 
integral D0 in equation (10.29) 

We express the two position vectors in spherical polar coordinates. Since 
x1  is  a  fixed  vector during  the  integration over x2,  we  are  at liberty 
to  orient  our √z  axis  for  the  x2  coordinate  system  parallel  to  x1.   Then 

|x1 − x2| = |r  + r  − 2r r  cos θ | is independent of φ .  The mod 2 2 
1 2 1  2 2 2 

square of Ψ
0
   does not depend on φ, so the integrand is independent of 10 

φ2 and we can trivially integrate over φ2. What remains is 

D0 = 
2 

∫ ∫ 2 

a3 d x 3 0 2         2  r sin θ e 2  
−2r /a 2      Z 

1 
Z 

|Ψ  (x ) 10 1 | dr2dθ2 √ (1) 
|r + r  − 2r r  cos θ | 2 2 

1 2 1  2 2 

where aZ ≡ a0/2. Now    

  sin θ2  
√ = 

1 d  
q 

2 2 

|r + r  − 2r r  cos θ | 2 2 
1 2 1  2 2 r1r2 dθ2 

|r + r  − 2r r  cos θ |, 1 2 1  2 2 

so ∫ π
 sin θ dθ  
√ 

  2 2  
= 

    1 2 1 2   |r + r | − |r  − r | 

0 |r + r  − 2r r  cos θ | 2 2 
1 2 1  2 2 

  

= 

r1r2 

2/r1 for r1 > r2 
2/r2 for r1 < r2. 

After using this expression in equation (1), we have to break the integral 
over r2 into two parts, and have 

∫ ∫ r1
 2 

D0 = 
4 

∫ ∞   

a3 d x 3 0 2 
1 |Ψ  (x ) 10 1 dr2  

   2 e−2r2 /aZ   + dr2 r2e−2r2/aZ 
r 

Z ∫ 
| 

0 r1 r 1 

= 
 2   

aZ 
d x 3 0 1    } 

1 |Ψ  (x ) 10 1 | 2 − e−ρ1 (2 + ρ1)  , 2 

ρ1 

given the normalisation of the spherical harmonics, we simply have to 
integrate over r1. We transform to the scaled radius ρ1 and find 

∫ 

where ρ1 ≡ 2r1/aZ.  The integral over x1 is relatively straightforward: 

D0 = 
1 

aZ 
dρ1 ρ1e−ρ1      2 − e−ρ1 (2 + ρ1)   = = . 

  } 5 5 

8aZ 4a0 
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10.2.2 Application of the variational principle to helium 

We can use the variational principle ( 9.2) to refine our estimate of helium’s 
ground-state energy. Our estimate is based on the assumption that the elec- 
trons’ wavefunctions are those that would be appropriate if the electrons did 
not repel one another. Suppose we could somehow switch off this repulsion 
without affecting the attraction between each electron and the alpha particle. 
Then the electrons would settle into the wavefunctions we have assumed. If 
we then turned the electric repulsion back on, it would push the electrons 
apart to some extent, and the atom would become bigger. This thought 
experiment suggests that we might be able to obtain a better approximation 
to the electrons’ wavefunctions by increasing the characteristic lengthscale 
that appears in the exponential of a hydrogenic ground-state wavefunction 
(eq. 8.36) from a0 to some value a. The variational principle assures us that 
the minimum value with respect to a of the expectation value of H that we 
obtain with these wavefunctions will be a better estimate of the ground-state 
energy than the estimate we obtained by first-order perturbation theory. 

Consider, therefore, the expectation value of the Hamiltonian (10.24a) 
for the case in which the electronic wavefunction is a product of hydrogenic 
wavefunctions with a0 replaced by a. From the work of the last subsection we 
already know the value taken when a = a0. Moreover, the expectation value 
is made up of five terms, two kinetic energies, and three potential energies, 
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and by dimensional analysis it is clear how each term must scale with a: the 
kinetic energies scale as a−2

 because p is proportional to the gradient of the 
wavefunction, which scales like a−1

, while the potential energy contributions 
scale as a−1

 since they explicitly have distances in their denominators. We 
know that when a = a0 and the wavefunctions are hydrogenic, the expec- 
tation value of the sum of hydrogenic Hamiltonians in equation (10.24a) is 

8 , and we know from the virial theorem (eq. 2.93) that this overall energy 
is made up of 8 kinetic energy and  16  of potential energy. We saw above 
that when a = a0 the electrostatic repulsion of the electrons contributes

 5
 

of potential energy. Bearing in mind the way that these kinetic and potential 
energies scale with a it follows that for general a, the expectation value of 
helium’s Hamiltonian is 

⟨H⟩a = R{8x — (16 − 2 )x} where   x ≡ 
a0 

. (10.30) 
a 

 

The derivative of H  a  with respect to x vanishes when x =  
27

 .  When we 

insert this value of x into equation (10.30) we find our improved estimate of 
helium’s ground-state energy is 

1
 (3/2)

6
 = 77.4 eV. As was inevitable, 

this value is larger than the experimentally measured value of    79.0 eV.  But 
it is significantly closer than the value we obtained by first-order perturbation 
theory. 

An important indicator of the chemical nature of an element is the 
magnitude of the energy required to strip an electron from an atom, which 
is called the element’s ionisation energy. In the case of hydrogen, this 
energy is simply the binding energy, 13.6 eV. In the case of helium it is the 
difference  between  the  binding  energies  of  the  atom  and  the  ion  He

+
  that 

remains after one electron is stripped away.  Since the He
+

  ion is hydrogenic 
with  Z  =  2,  its  binding  energy is  4    =  54.4 eV,  so  the  ionisation energy 
of helium is 79.0 54.4 = 24.6 eV. This proves to be the largest ionisation 
energy of any atom, which makes helium perhaps the least chemically active 
element there is. 

 

10.2.3 Excited states of helium 

We now consider the low-lying excited states of helium. Given our success 
in calculating the ground-state energy of helium with the aid of hydrogenic 
wavefunctions, it is natural to think about the excited states using the same 
hydrogenic language. Thus we suppose that the electronic wavefunction is 
made up of products of single-particle wavefunctions. We recognise that the 
single-particle wavefunctions that should be used in these products will differ 
slightly from hydrogenic ones, but we assume that they are similar to the 
hydrogenic ones that carry the same orbital angular momentum  and have 
the same number, n 1, of radial nodes. Hence we can enumerate the single- 
particle wavefunctions by assigning the usual quantum numbers n and l to 
each electron. We expect to be able to obtain reasonable estimates of the 
energies of excited states by taking the expectation value of the Hamiltonian 
for hydrogenic states. 

In the first excited state it is clear that one of the electrons will have been 
promoted from its n = 1 ground state to one of the n = 2 states. From our 
discussion of shielding in 8.1.3, we expect that the state with l = 0 will have 
less energy than any other n = 2 state. Thus we seek to construct the first 
excited state from a product of the hydrogenic ground-state wavefunction 
Ψ1(x) and the wavefunction Ψ2(x) for n = 2, l = 0, which is also spherically 
symmetric. Since we are working with distinct single-particle states, we can 
construct both singlet and triplet states as described in 10.1.3. The spatial 
part of the wavefunction (ψ

m
 of ψ0) will be constructed from the product 

Ψ1Ψ2 symmetrised as described by equation (10.22). Since the two possible 
ways of symmetrising the product differ only in a sign, we defer choosing 
between them and make our formulae valid for either case, putting the sign 

2 



1 

§ 

— ∓ 

⟨   ⟩ − ∓ 

0 

≡ 

234 Chapter 10: Helium and the periodic table 
 

for the singlet state on top. We now have to calculate 

∫ 

⟨H⟩ = 2 d
3
x d

3
x′  {Ψ1

∗(x)Ψ∗
2(x′) ± Ψ∗

1(x′)Ψ∗
2(x)} 

× H {Ψ1(x)Ψ2(x′) ± Ψ1(x′)Ψ2(x)} . 

(10.31) 

 

When we substitute for H from equation (10.24a), integrals over terms such 
as  Ψ1

∗(x)Ψ2
∗(x′)HHΨ1(x′)Ψ2(x)  arise,  where  HH  is  the  hydrogenic  operator 

that appears in equations (10.24). The orthogonality of Ψ1 and Ψ2 causes 
these integrals to vanish, because HH contains either x o∫r x′, but not both 
operators  so  there  is  always  an  integral  of  the  form  0  = d

3
x Ψ∗

1(x)Ψ2(x). 
The  integral  over  Ψ∗

1(x)Ψ2
∗(x′)HHΨ1(x)Ψ2(x′)  evaluates  to  either  −4R  or 

−R depending on whether HH contains x or x′. Hence 

e2 

⟨H⟩ = −5R + 
4πǫ  

{D ± E}, (10.32a) 
 

where D and E are, respectively, the direct and exchange integrals: 

∫ |Ψ (x)Ψ (x′)|2 
 D ≡ d

3
x d

3
x′ 

∫ 
1 2 

|x − x′| (10.32b) 

E d3x d3x′ Ψ1
∗(x)Ψ2(x)Ψ2

∗(x′)Ψ1(x′) 
.
 

|x − x′| 
 

Since both Ψ1 and Ψ2 are spherically symmetric functions of their arguments, 
both integrals can be evaluated by the technique described in Box 10.1. After 
a good deal of tedious algebra one discovers that  H   =   (56.6   1.2) eV, 
where the upper sign is for the singlet state. The experimentally measured 
values are  (58.8  0.4) eV. Hence perturbation theory correctly predicts 
that the triplet state lies below the singlet state. 

The differences between our perturbative values and the experimental 
results arise because the hydrogenic wavefunctions we have employed are not 
well suited to helium. The  deficiency is  particularly marked in  the case of 
the n = 2 wavefunction because the nuclear charge is significantly shielded 
from the outer electron, so the n = 2 wavefunction should extend to larger 
radii than the hydrogenic wavefunction we have employed, which assumes 
that the electron sees the full nuclear charge. Consequently, we have over- 
estimated the overlap between the two wavefunctions: the extent to which 
the wavefunctions permit the electrons to visit the same place. Because our 
wavefunctions have unrealistically large overlap, they yield values for both D 
and E that are too large. The exchange integral is particularly sensitive to 
overestimation of the overlap because it vanishes when there is no overlap, 
which D does not.  Thus it is entirely understandable that our treatment 
yields binding energies that are insufficiently negative, and a singlet-triplet 
splitting that is too large. 

The sensitivity of the singlet-triplet splitting to wavefunction overlap 
leaves a clear imprint on the energy-level structure of helium  that is shown 
in Figure 10.1: the separations of corresponding full (singlet) and dotted 
(triplet) lines diminishes as one goes up any column (increasing n) or from 
left to right (increasing l). Quantitatively, the singlet-triplet splitting when 
the excited electron is in a n = 2, l = 1 state (bottom of second column), 
rather than the n = 2, l = 0 state that we have just investigated (bottom of 
the first column), is 0.2 eV rather than 0.8 eV because, as we saw in    8.1.2, 
the l = 1 state has smaller amplitudes at the small radii at which the n = 1 
state has large amplitudes. 

We have discussed the splitting between singlet and triplet states in the 
case in which both the single-particle wavefunctions employed are spherically 
symmetric, so the wavefunctions are entirely real. The analysis for wavefunc- 

tions that have l /= 0 is significantly more involved, but the essential result 
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Figure 10.1 Excited states of helium for n     6 and l     3. Energies are given with respect 
to the ground-state energy, and the line at the top shows the ionisation energy. Full lines 
show singlet states and dotted lines show triplet states. Fine structure splits the triplet 
states with l    1 but the splittings are much too small to show on this scale – the largest 
is 0.00012 eV. 

 
is the same because the exchange integral E is always real (Problem 10.3) 
and positive.  We can see that E is positive as follows. The exchange integral 
is dominated by the region x    x′ in which the denominator is small.  In 
this region the numerator does not differ much from Ψ1(x)Ψ2(x) 

2
, so it is 

positive. Hence E is positive. Thus it is quite generally true that the triplet 
states lie below the corresponding singlet state. 

In our discussion of spin-orbit coupling in 8.2.1 we saw that the energy 
scale of that coupling is       

1
 Z

2
α

4
mec

2
 (eq. 8.76b).  For helium this evaluates 

to 0.006 eV, which is two orders of magnitude smaller than the singlet- 
triplet splitting. Moreover, we found that the coupling vanishes for states 
with l = 0, so it should vanish in the first excited state of helium. The singlet-
triplet splitting is large because it has an electrostatic origin, rather than 
being a mere relativistic effect: a triplet state has less energy because in it 
the electrons are anticorrelated ( 10.1.1). 

It is commonly stated that on account of this anticorrelation the energy 
of electrostatic repulsion between the electrons is smaller in triplet than in 
singlet states.  This is false:  the inter-electron potential energy is larger  in 
the triplet  than the  singlet state.2    The  reason the  triplet has lower energy 
is because it places the electrons closer to the nucleus than the singlet does. 
Moving the electrons towards the nucleus and thus towards one another nat- 
urally increases the energy of electron-electron repulsion, but  this  increase 
is outweighed by the lowering of the negative electron-nucleus energy. The 
quantitative results we obtained above should not be used to evaluate the 
inter-electron energy because they are based on hydrogenic wavefunctions, 
which provide a poor approximation to the true  wavefunction.  As  we  saw 
in 9.2, even a poor approximation to the wavefunction of a stationary state 
yields a useful approximation to the energy of that state because the expec- 
tation value of H is stationary in the neighbourhood of a stationary state. 
But the expectation value of a single term in H, such as the inter-electron 
potential energy, is not  extremised by a stationary state, so the  error in it 
will be of order the error in the wavefunction. In particular, to obtain a value 
that is accurate to first order in the perturbation, it is mandatory to use a 
wavefunction that is correct to first order, whereas we used the zeroth-order 
wavefunctions. Because the electrons do a better job of keeping out of each 
other’s way in the triplet state, in that state they can cohabit in a smaller 
volume, where the attraction of the nucleus is stronger. On account of this 

 

2 B. Schiff, H. Lifson, C.L. Pekeris & P. Rabinowitz, Phys. Rev., 140, A1104, (1965) 
find the inter-electron energy to be 6.80 eV in the singlet state and 7.29 eV in the triplet 
state. 



Box 10.2: Spectroscopic Notation 

Standard spectroscopic notation presumes that l and s, the total orbital 
and spin angular momenta, are good quantum numbers. The electronic 
configuration is a specification of the principal (n) and orbital angu- 
lar momentum (l) quantum numbers of the individual electrons of the 
outermost shell. Within a configuration a spectroscopic term speci- 
fies definite values for the total orbital l and spin s angular momenta of 
the outer electrons.  Within each term a fine-structure  level specifies 
a definite value for the total electronic angular momentum j. Within 
a fine-structure level may be distinguished different hyperfine levels 
that differ in total angular momentum f .  The letters S, P , D, F  denote 
l = 0, 1, 2, 3, respectively. 

A typical configuration is denoted 2s2p
3
 meaning one electron has n = 2, 

l = 0, and three electrons have n = 2, l = 1. 

Terms  are  denoted  by  
(2s+1)

lj ;  for  example  
4
P1/2  means  s  =  

3
 ,  l  =  1, 2 

j = 
1
 . 

2 
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effect, the true singlet and triplet wavefunctions differ by more than just 
a change of sign; in equation (10.31) the functions Ψ1 and Ψ2 should also 
change between the singlet and triplet cases. 

The singlet–triplet splitting in helium reflects destructive interference 
between the amplitudes for the two electrons to be simultaneously at the 
same place,  and  it  is very much a  quantum-mechanical effect.  Through- 
out the periodic table, this mechanism gives rise to large energy differences 
between atomic states that differ only in their spin. These differences make 
ferromagnetism possible, and thus provide us with the dynamos, power trans- 
formers and electric motors that keep our civilisation on the move. 

 
10.2.4 Electronic configurations and spectroscopic terms 

The ground state of helium has neither spin nor orbital angular momentum. 
In conventional spectroscopic notation (Box 10.2) it is designated 1s

2
, which 

implies that it has two electrons in the n = 1 S state. A related notation is 
used to indicate the spin, orbital and total angular momentum of the entire 
atom. In this system the ground state is designated 

1
S0.  The superscript 

1 implies that the state is a spin-singlet because there is zero spin angular 
momentum. The S implies that there is no orbital angular momentum, and 
the subscript 0 implies that there is zero total angular momentum. 

The lowest dotted line in Figure 10.1 represents a triplet of excited 
states. These have the electronic configuration 1s2s because there is an 
electron in the n  = 1, l  = 0 state and one in the n = 2, s  = 0 state. 
They form the spectroscopic term 

3
S1 because the angular momenta of 

the whole atom are given by s = 1, l = 0 and j = 1. 
Just above this triplet of states comes the singlet state that has the same 

electronic configuration 1s2s but which forms the distinct spectroscopic term 
1
S0. 

Next come four spectroscopic terms that both have the electronic con- 
figuration 1s2p:  the most energetic of these terms is the singlet 

1
P1, which is 

a set of three quantum states that have exactly the same energy but differ- 
ent orientations of the one unit of total angular momentum. Below this are 
three terms that have very similar energies: 

3
P0, 

3
P1 and 

3
P2. These terms 

differ from one another in the degrees of alignment of the spin and orbital 
angular momenta. In the 

3
P0 term the angular momenta are anti-parallel, 

with the result that the atom has zero angular momentum overall, while in 
the 

3
P2 term the angular momenta are parallel, so the atom has two units of 

angular momentum. There is just one quantum state in the 
3
P0 term, and 
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five quantum states in the 
3
P2 term. The small energy differences between 

the 
3
Pj terms are due to spin-orbit coupling. 

Spectrum of helium The selection rules listed in Table 9.1 include ∆s = 
0, so in Figure 10.1 transitions between full and dotted levels are forbidden. 
Hence, an atom which is excited into one of the upper triplet states will 
cascade down through triplet states until it reaches the 

3
S1 level at the 

bottom of the triplet hierarchy. The states in this level are metastable 
because they can decay radiatively only by making the forbidden transition 
to the 

1
S0 ground state, which takes appreciable time. Table 9.1 includes 

the rule ∆l = 1, so transitions are only allowed between states that lie in 
adjacent columns, and the excited singlet state that is designated 

1
S0 is also 

metastable. 
 
 
 

10.3 The periodic table 

The understanding of atomic structure that we have gained in our studies of 
hydrogen and helium suffices to explain the structure of the periodic table 
of the elements. 

 

10.3.1 From lithium to argon 

Imagine that we have a helium atom in its first excited state and that we 
simultaneously add a proton to the nucleus and an electron to the vacancy 
with principal quantum number n = 1 that arose when the atom was put 
into its excited state. After making these changes we would have a lithium 
atom in its ground state. The effects on the outermost electron of adding the 
positively charged proton and the negatively charged electron might be ex- 
pected to largely cancel, so we would expect the ionisation energy of lithium 
to be similar to that of a helium atom that’s in its first excited state. This 
expectation is borne out by experimental measurements: the ionisation en- 
ergy of once excited helium is 4.77 eV while that of lithium  in its ground 
state is 5.39 eV. Thus the energy required to strip an electron from lithium 
is smaller than that required to take an electron from hydrogen or helium 
by factors of 2.5 and 4.6, respectively. The comparative ease with which 
an electron can be removed from a lithium atom makes compounds such as 
LiH stable (Problem 10.5). It also makes lithium is a metal by making it 
energetically advantageous for each atom in a lithium crystal to contribute 
one electron to a common pool of delocalised electrons. 

In their ground states atoms of hydrogen and helium cannot absorb 
radiation at optical frequencies because the first excited states of these atoms 
lie rather far above the ground state (10.2 and 19.8 eV, respectively).  The 
first excited state of lithium is obtained by promoting the n = 2 electron 
from l = 0 to l = 1. This change in quantum numbers only increases the 
electron’s energy by virtue of shielding ( 8.1.3), so the energy difference is a 
mere 1.85 eV, the quantity of energy carried by photons of wavelength 671 nm 
that lie towards the red end of the optical spectrum. Elements that lie beyond 
helium in the periodic table, the so-called heavy elements, feature very 
prominently in astronomical measurements even though they are present in 
trace amounts compared to hydrogen and helium because their absorption 
spectra contain lines at easily observed optical wavelengths. 

There is a useful parallel between a lithium  atom and a hydrogen atom 
in its first excited state: the lithium nucleus, shielded by the two n = 1 
electrons, appears to have the same net charge as the proton in hydrogen, 
so the n = 2 electron moves in a similar electric field to that experienced by 
an electron with n = 2 in hydrogen. We can test this parallel quantitatively 
by comparing the ionisation energy of lithium  (5.39 eV) with  the energy of 
H with n = 2 (3.40 eV).  This agreement is not terribly good because the 
n = 2, l = 0 wavefunction that forms the ground state of lithium overlaps 
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significantly with the n = 1 wavefunction, and therefore has exposure to 
the full nuclear charge. There is a more satisfying parallel between the first 
excited state of lithium, in which the n = 2 electron has l = 1 and the 
corresponding state of hydrogen: in this state lithium has ionisation energy 
3.54 eV. 

Consider now the effect of transmuting lithium into beryllium by simul- 
taneously increasing the nuclear charge by one unit and adding a second 
electron to the n = 2, l = 0 state. The parallel that we have just described 
suggests that this operation will be analogous to moving up from hydrogen 
to helium, and will significantly increase the ionisation energy of the atom. 
Experiment bears out this expectation, for the  ionisation energy of beryl- 
lium is 9.32 eV,  1.7 times  that  of lithium.  As  in  helium,  the  ground state 
of beryllium has total spin zero, while the first excited states have spin one. 
However, whereas in the excited states of helium the two electrons have dif- 
ferent values of n, in beryllium they both have n = 2, and they differ in their 
values of l. Consequently, the overlap between the single-electron states that 
form the beryllium triplet is significantly larger than the corresponding over- 
lap in helium.  This fact makes the exchange integral in equations (10.32) 
large and causes the singlet excited state to lie 2.5 eV above the triplet of 
excited states. 

If we add a unit of charge to the nucleus of a beryllium atom, we create 
an atom of singly ionised boron. The four electrons with l = 0 that envelop 
the ion’s nucleus screen the nuclear charge to a considerable extent from the 
perspective of the lowest-energy unfilled single-particle state, which is a 2p 
state (n = 2, l = 1). The screening is far from complete, however, so the 
nuclear charge Z that the outermost electron perceives is greater than unity 
and the dynamics of the outermost electron of boron is similar to that of the 
electron in a hydrogenic atom with Z > 1. The ionisation energy from the 

n = 2 level of hydrogen is 
1
 Z

2
R = 3.40Z

2
 eV, while that of boron is 8.30 eV, 

so Z ∼ 1.6. 
Spin-orbit coupling causes the ground state of boron to form the 

2
P1/2 

term in which the electron’s spin and orbital angular momenta are antipar- 
allel. At this early stage in the periodic table, spin-orbit coupling is weak, 
so the excited states of the 

2
P3/2 term lie only 0.0019 eV above the ground 

state. C
+
 ions have the same electronic configuration as boron atoms, and 

in interstellar space are more abundant by factors of several thousand. Even 
at the low temperatures ( 20 K) that are characteristic of dense interstel- 
lar clouds, collisions carry enough energy to lift C

+
 ions into the low-lying 

excited states of the 
2
P3/2 term, so such collisions are often inelastic, in 

contrast to collisions involving the very much more abundant hydrogen and 
helium atoms and hydrogen molecules. At the low densities prevalent in in- 
terstellar space, an excited C

+
 ion usually has time to return to the ground 

state by emitting a photon before it is involved in another collision. So C
+
 

ions cool the interstellar gas by radiating away its kinetic energy. As a re- 
sult of this physics, the temperature of interstellar gas depends sensitively 
on the abundances in it of the commonest heavy elements, carbon, nitrogen 
and oxygen. The propensity of interstellar gas to collapse gravitationally 
into stars depends on the temperature of the gas, so the formation of stars 
depends crucially on the existence of low-lying excited states in boron and 
the next few elements in the periodic table. 

When we add another unit of charge to the  nucleus of a boron atom, 
the binding energy of the outermost electron increases by a factor of order 
(6/5)

2
 = 1.44. Adding a further electron, which can go into another 2p state 

alongside the existing outer electron, offsets this increase in binding energy 
to some extent, so we expect the ionisation energy of carbon to lie some- 
where between the 8.30 eV of boron and 1.44 times this value, 12.0 eV. The 
experimental value is 11.3 eV, which lies at the upper end of our anticipated 
range, implying that the mutual repulsion of the two 2p electrons is not very 
important energetically. This is to be expected because the ground state of 
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carbon belongs to the triplet term3 3P0, so the electrons keep out of each 
other’s way. As in boron, the first excited states lie very close to the ground 
state – they form a 

3
P1  term 0.0020 eV above the ground state, and there is 

a 
3
P2 term 0.0033 eV above that. 

Adding a unit of charge to the nucleus of carbon and then dropping 
an electron into another 2p single-particle state  creates a  nitrogen atom. 
The ionisation energy increases (to 14.5 eV) for exactly the same reason that 
it did when we transmuted boron into carbon. The spin of all three 2p 
electrons are aligned to ensure that the wavefunction is antisymmetric in the 
electrons’ spatial coordinates. Hence the ground state of nitrogen belongs 
to a quadruplet of states. The total orbital angular momentum proves to be 
zero (Problem 10.7), so all states in this quadruplet have the same energy, 
and there are actually four distinct ground states that together comprise the 
term 

4
S3/2 – it is sometimes rather confusingly said that the ground ‘state’ 

of nitrogen is four-fold degenerate. The lowest excited states form the 
2
D3/2 

term, and they lie 2.3835 eV and 2.3846 eV above the ground state. 
Since there are only three single-particle spatial wavefunctions available 

with l = 1, namely the wavefunctions for m =  1, 0, when we add an elec- 
tron to nitrogen to form oxygen, the overall wavefunction cannot be totally 
antisymmetric in the spatial coordinates of the electrons. The result is that 
in oxygen the electrons are less effective in keeping out of each other’s way 
than are the electrons in carbon and nitrogen, and the ionisation energy of 
oxygen (13.6 eV) is slightly smaller than that of nitrogen. The ground states 
form the term 

3
P2, while states in the 

3
P1  and 

3
P0 terms lie 0.020 eV and 

0.028 eV above the ground state. In these terms three of the electrons have 
cancelling orbital angular momenta as in nitrogen, so the orbital angular 
momentum of the atom is just the single unit introduced by the fourth elec- 
tron: hence the P in the ground-state term. Spin-orbit interaction causes 
the ground state to have the largest available value of j, whereas in carbon 
the reverse was the case. 

The easiest way to understand fluorine, the element that follows oxygen 
in the periodic table, is to skip ahead two places from oxygen to neon, in 
which a full house of six electrons is packed into the 2p states. Every spin is 
paired and every value of the orbital angular momentum quantum number m 
is used twice, so both the spin and the orbital angular momenta sum to zero. 
Each of the six 2p electrons is exposed to a large fraction of the ten units 
of charge on the nucleus, so the ionisation energy is large, 21.6 eV, second 
only to helium of all the  elements.  There are no  low-lying excited states. 
This fact together with the large ionisation potential makes neon chemically 
inactive. 

We transmute neon into fluorine by taking away a unit of nuclear charge 
and one of the 2p electrons. The ‘hole’ we have left in the otherwise complete 
shell of 2p electrons behaves like a spin-half particle that carries one unit of 
orbital angular momentum. Hence the ground state of fluorine has s = 

1
 
2 and l = 1. Spin-orbit interaction causes the 

2
P 

3/2 term to lie 0.050 eV below 
the 

2
P1/2 term that also arises when spin-half is combined with one unit of 

orbital angular momentum. In the case of oxygen we encountered a similar 
maximisation of j, and it turns out that the ground states of atoms with 
shells that are more than half full generally maximise j, while j is minimised 
in the ground state of an atom with a shell that is less than half full. 

We have now reached the end of the first long period of the table. The 
second long period, from sodium to argon, is an almost perfect copy of the 
period we have just covered. Figure 10.3 illustrates this statement by show- 
ing the ionisation energies of the elements in the first three periods. There 
is an abrupt drop in the ionisation energy as we move from neon to sodium, 
from an inert noble gas to a highly reactive alkali metal. Then the ionisation 

 

3 See Problem 10.6 for an explanation of why the ground state of carbon has l = 1 
rather than l = 0 or l = 2, which are the other possible results of combining two electrons, 
each of which has l = 1. 
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Figure 10.3 Ionisation energies of the first nineteen elements. 

 
 

 

  

Figure 10.4 The lowest-lying energy 
levels of carbon silicon and germa- 
nium. Along this sequence the fine- 
structure splitting between the three 
lowest-lying levels increases dramat- 
ically. In the case of germanium the 
spread in the energies of the triplet 
states is no longer negligible com- 
pared to the energy gap between the 
lowest-lying singlet state and the top 

   triplet state. 
 

 

   

 
 

energy creeps up as one moves along the period, with two small setbacks, be- 
tween magnesium and aluminium, and between phosphorus and sulfur, that 
are associated with the start and the half-way point of the 3p, respectively. 

 

10.3.2 The fourth and fifth periods 

After reaching argon with its full 3p shell,  one might expect to  start filling 
the 3d shell. Actually the 4s states prove to be lower-lying because their 
vanishing angular momentum allows much greater penetration of the cloud 
of negative charge associated with the electrons that have n    3.  But once 
the 4s shell has been filled, filling of the 3d shell commences with scandium 
and continues unbroken through zinc.  Once the 3d shell is full, filling of the 
4p shell commences, finishing with the noble gas krypton at Z = 39. 

In the next period, filling of the 5s shell takes precedence over filling of 
the 4d shell, and when, after cadmium at Z = 48, the 4d shell is  full,  filling 
the 5p shell takes precedence over filling the 4f shell.  The last two periods 
are very long and have complex patterns due to the availability of shells with 
large l that tend to be filled much later than shells with the same n but small 
l. 

It is instructive to compare the pattern of energy levels as we move down 
one column of the periodic table. Figure 10.4 shows the lowest energy levels 
of carbon and the elements, silicon and germanium, that lie beneath it in 
the periodic table. As we saw above, carbon has at the bottom of its energy- 
level diagram a cluster of three very closely spaced energy levels that form the 
terms 

3
Pj for j = 0, 1, 2. As we proceed through silicon and germanium the 

spacing within this cluster grows markedly because it is caused by spin-orbit 
coupling, which scales like Z

4
 ( 8.2.1). By the time we reach silicon the 

energy differences created by spin-orbit coupling are no longer very small 
compared to the energy difference between the triplet and singlet states, 
which Σwe  know  is  of  electrostatic  origin.   The  total  electron  spin  operator 

2 
S

2
 ≡ ( Si)   does not commute with the term in the HamiltoΣnian which is 

generated by spin-orbit interaction, which is proportional to i Si · Li. So 
long as this term is small compared to the terms in the Hamiltonian that do 
commute with S

2
, total electron spin is a good quantum number and it is 

meaningful to describe the atom with a spectroscopic term such as 
3
P0. In 
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reality the atom’s wavefunction will include contributions from states that 
have l = 1, but the coefficients of these terms will be very small, and for most 
purposes they can be neglected. As the contribution to the Hamiltonian from 
spin-orbit coupling grows, the coefficients in the ground-state wavefunction 
of terms with l = 1 grows, and the designation 

3
P0 becomes misleading. The 

lowest-lying three levels of germanium can for most purposes be treated as 
3
Pj terms. In the case of tin, which lies under germanium, the designation 

3
Pj is highly questionable, and in lead, which lies under tin, it is valueless. 

Problems 

10.1 Show that when the state of a pair of photons is expanded as 
Σ 

|ψ⟩ =  

nn′ 

bnn′ |n⟩|n′⟩, (10.33) 

where n is a complete set of single-photon states, the expansion coeffi- 
cients satisfy bnn′ = bn′n. 

10.2 By substituting from equation (10.22) for ψ0 into equation (10.20), 
express the singlet state of an electron pair ψ, 0, 0 as a linear combination of 
products of the single-particle states u, and v, in which the individual 
electrons are in the states associated with spatial amplitudes u(x) and v(x) 
with Sz returning

 1
 . Show that your expression is consistent with the Pauli 

condition ann′ = an′n. 
Given the four single-particle states u, and v, , how many linearly 

independent entangled states of a pair of particles can be constructed if 
the particles are not identical? How many linearly independent states are 
possible if the particles are identical fermions? Why are only four of these 
states accounted for by the states in first excited level of helium? 

10.3 Show that the exchange integral defined by equation (10.32b) is real 
for any single-particle wavefunctions Ψ1 and Ψ2. 

10.4 The  H−  ion consists of  two electrons bound  to  a  proton.  Estimate 
its ground-state energy by adapting the calculation of helium’s ground-state 
energy that uses the variational principle. Show that the analogue for H− of 
equation (10.30) is 

⟨H⟩a = R(2x — 11 x)    where    x ≡ 
a0 

. (10.34) 
a 

Hence find that the binding energy of H− is      0.945   .  Will H−  be a stable 
ion? 

10.5 ∗ Assume that a LiH molecule comprises a Li
+
 ion  electrostatically 

bound to an H− ion, and that in the molecule’s ground state the kinetic 
energies of the ions can be neglected. Let the centres of the two ions be 
separated by a distance b and calculate the resulting electrostatic binding 
energy under the assumption that they attract like point charges. Given that 
the ionisation energy of Li is 0.40    and using the result of Problem 10.4, 
show that the molecule has less energy than that of well separated hydrogen 
and lithium atoms for b < 4.4a0. Does this calculation suggest that LiH is a 
stable molecule? Is it safe to neglect the kinetic energies of the ions within 
the molecule? 

10.6 ∗  Two  spin-one gyros are a  box.  Express  that  states   j, m   in  which 
the box has definite angular momentum as linear combinations of the states 
1, m 1, m′ in which the individual gyros have definite angular momentum. 
Hence show that 

1 
|0, 0⟩ = √

3 
(|1, −1⟩|1, 1⟩ − |1, 0⟩|1, 0⟩ + |1, 1⟩|1, −1⟩) 

By considering the symmetries of your expressions, explain why the ground 
state of carbon has l = 1 rather than l = 2 or 0. What is the total spin 
angular momentum of a C atom? 

2 



± 

| ⟩ 
| ⟩ 

|±⟩ 

| ⟩| ⟩| ⟩ 
| ⟩ 

|±⟩ |  ⟩|  ⟩|−⟩ 

Problems 243 
 

10.7 ∗ Suppose we have three spin-one gyros in a box. Express the state 
0, 0 of the box in which it has no angular momentum as a linear combination 

of the states 1, m 1, m′ 1, m′′ in which the individual  gyros  have  well- 
defined angular momenta. Hint: start with just two gyros in the box, giving 

states j, m of the box, and argue that only for a single value of j will it be 
possible to get 0, 0 by adding the third gyro; use results from Problem 10.6. 

Explain the relevance of your result to the fact that the ground state of 
nitrogen has l = 0. Deduce the value of the total electron spin of an N atom. 

10.8 ∗ Consider a system made of three spin-half particles with individual 
spin states .  Write down a linear combination of states such as  +   + 
(with two spins up and one down) that is symmetric under any exchange of 
spin eigenvalues . Write down three other totally symmetric states and say 
what total spin your states correspond to. 

Show that it is not possible to construct a linear combination of products 
of which is totally antisymmetric. 

What consequences do these results have for the structure of atoms such 
as nitrogen that have three valence electrons? 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

11 
Adiabatic principle 

 
We often need to understand the quantum mechanics of systems that have 
a large number of degrees of freedom. We might. for example, be interested 
in the speed at which sound waves propagate through a macroscopic crystal 
of diamond. This depends on the deformability of the bonds between the 
crystal’s carbon atoms, which is in turn determined by the orbits of the 
atoms’ electrons. Also relevant is the inertia of a block of crystal, which 

is mostly contributed by the carbon nuclei. These nuclei are dynamical 
systems, in which protons and neutrons move at mildly relativistic speed. 
Each proton or neutron is itself a dynamical systems in which three quarks 

and some gluons race about relativistically. When a sound wave passes 
through the crystal, each nucleus experiences accelerations that must affect 
its internal dynamics, and the dynamics of its constituent quarks. Is there 

any chance that a sound wave will induce a nucleus to transition to an excited 
state? Could a sound wave cause an atom to become electronically excited? 

So long as such transitions are realistic possibilities, it is going to  be 
extremely difficult to calculate the speed of sound, because the calculation 
is going to involve atomic physics, nuclear physics and quantum chromo- 
dynamics – the theory strong interactions and quarks, which governs the 
internal structure of protons and neutrons. The adiabatic approximation, 

which is the subject of this chapter, enables us to infer that such transitions 
are exceedingly unlikely to occur. Consequently, in this case and a vast num- 
ber of similar situations, the adiabatic approximation greatly simplifies our 
problem by permitting us to neglect phenomena, such as electron or nuclear 
excitation, that have energy scales that are significantly larger than the char- 
acteristic energy scale of the phenomenon under investigation, even though 
the different degrees of freedom are dynamically coupled. Moreover, we shall 
see that the adiabatic approximation enables us to calculate quantities such 
as the spring constant of the bonds that bind a crystals’s atoms from the 
dynamics of the electrons that form these bonds. It also provides the theo- 
retical underpinning for the kinetic theory of gases, for most of condensed- 
matter physics and much of chemistry. It is enormously important for the 

development of quantum field theory and our understanding of quantum 
chromodynamics. Hence, the adiabatic approximation is an extraordinarily 

important tool with applications that span the natural sciences. 
We start by deriving the adiabatic approximation.   Then we study  in 

turn elementary applications of it to kinetic theory, to thermodynamics, to 
condensed-matter physics, and to chemistry. 
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11.1 Derivation of the adiabatic principle 

In 2.2 we stressed that the TdSE (2.26) is valid even when H is time- 
dependent. However, we have mostly confined ourselves to Hamiltonians 
that are time-independent. In 9.3 we did consider a time-dependent Hamil- 
tonian, but we assumed that the time-dependent part of H was small. Now 
we consider the case in which H can change by an amount that is large, so 
long as the time T over which this change takes place is long in a sense that 
will be specified below. 

We consider the dynamics of a system that has a slowly varying Hamil- 
tonian H(t). At any instant, H(t) has a complete set of eigenkets En(t) 
and eigenvalues En(t). For the case of vanishing time dependence, equa- 
tion (9.43) provides an appropriate trial solution of the TdSE (2.26). After 
modifying this solution to allow for time-variation of the En, we have 

 
|ψ, t⟩ = 

Σ 
an(t) exp 

n 

i 
∫ t 

— 
h̄    0 

  
dt′ En(t′) 

 
|En(t)⟩. (11.1) 

 

Since for each t the set En(t) is complete and the numbers an(t) are 
arbitrary, no assumption is involved in writing down this expansion of the 
system’s ket. When we substitute the expansion (11.1) into the TdSE, we 
find 

∂|ψ⟩ Σ i 
∫ t

 

ih̄ 
∂t   

= H|ψ⟩ = 
  

an exp 
n 

— 
h̄ 

dt′ En(t′) 
0 

H(t)|En(t)⟩ 
  

Σ 
= {ih̄ȧn 

a 

+ anEn (t)}|En (t)⟩ + ih̄an 
∂|En⟩ 

∂t 
(11.2) 

i 
∫ t 

× exp — 
h̄ 

dt′ En(t′)   . 
0 

 

Exploiting the fact that En(t) is an eigenket of H(t) we can cancel a term 
from each side and are left with 

Σ   
0 = ȧn|En(t)⟩ + an ∂|En⟩ 

  
 
exp 

i 
∫ t

 

− 
  

dt′ En(t′) 
 
. (11.3) 

∂t h̄ 
n 

 

Now we use the perturbation theory developed in §9.1 to expand |En(t+ 

δt)⟩ as a linear combination of the complete set {|En(t)⟩}. That is, we write 

Σ 
|En(t + δt)⟩ − |En(t)⟩ = 

 
where from (9.9) we have 

 
m/=n 

bnm|Em(t)⟩, (11.4) 

 

 

bnm = 
⟨Em(t)|δH|En(t)⟩ 

En(t) − Em(t) 

 

(11.5) 

 

with δH the change in H between t and t + δt. Dividing equation (11.4) by 
δt and substituting the result into (11.3) we find 

Σ   
0 = ȧn|En(t)⟩+an 

Σ ⟨Em (t)|Ḣ |En (t)⟩ 
  

|Em⟩ 
 
exp 

i 
∫ t

 

− 
  

dt′ En(t′)  . 

n m/=n 
En(t) − Em(t) h̄    0  

(11.6) 

0 
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Figure 11.1 A plot of sin(kx) times the slowly varying function 1/(1 + x2). As k 
and the wavelength of the oscillations becomes shorter, the negative contribution from 
each section of the curve below the x axis more nearly cancels the positive contribution 
from the preceding upward section. 

 

When we multiply through by ⟨Ek(t)| this yields 

ȧk  = − 
Σ 

an(t) 
n/=k 

⟨Ek(t)|Ḣ |En(t)⟩ 
 

 

En(t) − Ek(t) 

 
exp 

i 
∫ t

 

— 
h̄    0 

  
dt′ {En(t′) − Ek(t′)}  . 

(11.7) 
Although we have used first-order perturbation theory, our working so far 
has been exact because we can make δH as small as we please by taking 
δt to be small.  Now we introduce an approximation by supposing that H 
is a slowly varying function of time in the sense that it changes by very 
little in the time h̄/ min( En     Ek  ), which is the time required for significant 
motion to occur as a result of interference between the stationary states with 
energies En and Ek ( 3.2). In this approximation, the right side of equation 
(11.7) is a product of a slowly varying function of time and an approximately 
sinusoidal term that oscillates much more rapidly. When we integrate this 
expression to get the change in ak, the integral vanishes rather precisely 
because the contributions from adjacent half-periods of the oscillating factor 
nearly cancel (Figure 11.1). Hence, if initially ak = 1 for some k, it will 
remain unity throughout the evolution. This completes the derivation of the 
adiabatic approximation: if a system is initially in the k

th
 state of well- 

defined energy, it will stay in this state when the Hamiltonian is changed 
sufficiently slowly. 

 

 

11.2 Application to kinetic theory 

Consider air that is being compressed in the  cylinder  of  a  bicycle  pump. 
The air resists the compression by exerting pressure on the cylinder and 
its piston, and it grows hot as we drive the piston in. This phenomenon 
is usually explained by treating the air molecules as classical particles that 
bounce elastically off the cylinder walls. In this section we use the adiabatic 
principle to interpret the phenomenon at a quantum-mechanical level. 

We proceed by first imagining that there is only one molecule in the 
cylinder, and then making the assumption that when there are a large num- 
ber N of molecules present, the pressure is simply N times the pressure we 
calculate for the single-particle case. The Hamiltonian that governs our basic 
system, a particle in a box, is 

 
H(t) = 

p2 

+ V (x, t), (11.8) 
2m 

where the potential V (x, t) is provided by the walls of the box. The simplest 
model is  

V (x, t) = 
0 for x in the cylinder 

∞  for x in a wall or the piston. 

 
(11.9) 

The time dependence of V arises because the piston is moving. We need 
to find the eigenvalues En and eigenkets |En⟩ of the Hamiltonian (11.8). 
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We work in the position representation, in which the eigenvalue equation 
becomes 

h̄
2
 

— 
2m 

∇ un + V un = Enun (11.10) 

with un(x)      x En .  From   5.1.1(a) we have that un should vanish on 
the walls of the cylinder and the piston. For x inside the cylinder, the 
second term on the left of equation (11.10) vanishes, so En and un(x) are 
the solutions to 

h̄
2
 

— 
2m 

∇ un = Enun with un = 0 on the boundary. (11.11) 

We assume that the cylinder’s cross section is rectangular or circular, so 
coordinates exist such that (i) the cylinder’s walls are all surfaces on which 
one coordinate vanishes and (ii)  the Laplacian operator separates.  That is, 
we can write 

2 2 ∂2
 

∇  = ∇2 + 
∂z2 

, (11.12) 

where ∇2  is an operator that depends on the two coordinates, x and y, 
that specify location perpendicular to the cylinder’s axis, and z is distance 
down that axis. In this case, we can find a complete set of solutions to 
equation (11.11) for eigenfunctions that  are products  un(x) = X(x, y)Z(z) 
of a function X of x and y, and a function of z alone. Substituting this 
expression for un into equation (11.11) and rearranging, we find 

 

2 2mEn d
2
Z 

Z∇2X + 
h̄2      XZ = −X 

dz2  . (11.13) 
 

When we divide through by XZ, we find that the left side does not depend 
on z while the right side does not depend on x or y. It follows that neither 
side depends on any of the coordinates. That is, both sides are equal to 
some constant, which we may call 2m  z/h̄

2
.  This  observation enables  us  to 

separate our original wave equation into two equations 
 

−∇2X  =  
2m(En − Ez) 

X
 

2 

d
2
Z 

 
 

h̄
2
 

2mEz 
 

 

(11.14) 

— 
dz2 

=
 h̄2     Z. 

The physical content of these equations is clear: z is the kinetic energy 
associated with motion along the cylinder’s axis, so motion perpendicular to 
the axis carries the remaining energy, En z. As we push in the piston, 
neither the equation governing X and En z nor its boundary conditions 
change, so En z is invariant. What does change is the boundary condition 
subject to which the equation for Z has to be solved. 

We place one end of the cylinder at z = 0 and the piston at z = L. 
Then it is easy to see that the required solution for Z is [cf. §5.1.1(a)] 

Z(z) ∝ sin(kπz/L)     with k = 1, 2, . . . , (11.15) 

and the possible values of Ez are 

h2 
2

 

Ez = 
8mL2 k . (11.16) 

The adiabatic principle assures us that if we let the piston out slowly, 
the particle’s value of the quantum number k will not change, and its energy 

z will evolve according to equation (11.16). By conservation of energy, the 
energy lost by the particle when L is increased by dL must equal the work 

that the particle does on the piston, which is P dV, where P is the pressure 
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it exerts and d is the increase in the cylinder’s volume. Let A be the area 
of the piston. Then conservation of energy requires that 

dL 
−dEz = 2Ez L  

= PA dL, (11.17) 

from which it follows that 

P = 
2Ez  

= 2 
Ez 

. (11.18) 
AL V 

When we sum the contributions to the pressure that arise from a large 
number, N , of molecules in the cylinder, equation (11.18) yields 

N 
P = 2 

V 
⟨Ez⟩ , (11.19) 

where the angle brackets mean the average over all molecules. At this point 
we have to take into account collisions between the N molecules. Colliding 
molecules change the directions of their momenta and thus transfer energy 
between motion in the z direction and motion in the plane perpendicular to 
it. Collisions do not satisfy the adiabatic approximation, so they do change 
the quantum numbers of particles. Their overall effect is to ensure that the 
velocity distribution remains isotropic even though the piston’s motion is 
changing   z and not the energy of motion in the plane of the piston, En     z. 
So we may assume that   E  = 3     z  .  Let U      N   E   be the internal energy 
of the gas. Then eliminating z from equation (11.19) in favour of U , we 
obtain 

P V = 
2
 U. (11.20) 

This result is identical with what we obtain by combining the equation of 
state of an ideal gas, P  =  NkBT ,  with  the  expression  for  the  internal 
energy of such a  gas,  U  =  

3
 NkBT .  Actually  our  result  is  more  general 

than the result for an ideal gas because we have not assumed that the gas 
is in thermal equilibrium: the only assumption we have made about the 
distribution of kinetic energy among particles is that it is isotropic. 

 

11.3 Application to thermodynamics 
In 6.4 we saw that when a system is in thermodynamic equilibrium, we 
do not know what quantum state it is in but can assign a probability pi 
e−Ei/kBT    that  it  is  in  its  i

th
  stationary  state  (eq.  6.93a).   The  energy  Ei 

of this state depends on the variables, such as volume, electric field, shear 
stress, etc., that quantify the system’s environment. In the simplest non- 
trivial case, that in which the system is a fluid, the only relevant variable is 
the volume and we shall consider only this case. Hence we consider the 
energy of each stationary state to be a function Ei( ). 

In an adiabatic compression of our system, we slowly change while 
isolating the system from heat sources. From the adiabatic principle it follows 
that during such a compression the system remains in whatever stationary 
state it was in when the compression started. Consequently, the probabilities 
pi  of its beΣing in the various stationary states are constant, and the entropy 
S  =  −kB i pi ln pi  (eq.  6.91)  is  constant  during  an  adiabatic  change,  just 
as classical thermodynamics teaches. 

Σ During an adiabatic compression, the change in the internal energy U = 

i piEi is 

 
dU = p 

∂Ei  
= −P dV where   P ≡ − 

i 

Σ 
p 

∂Ei 
. (11.21) 

i 
∂

 
i 

Since there is no heat flow, the increment in U must equal the work done, 
which is the pressure that the system exerts times d , so the quantity P 
defined by equation (11.21) is indeed the pressure. 

Σ 

V 
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11.4 The compressibility of condensed matter 

As a second application of the adiabatic principle, we estimate the compress- 
ibility of solids and liquids. In condensed matter atoms touch one another 
and the volume of the bulk material can be reduced only if every atom is 
made smaller. If an atom’s electrons are to be confined to a smaller volume, 
by the uncertainty principle, their momenta and therefore their kinetic en- 
ergies must increase. We estimate the compressibility of matter by equating 
the work done in compressing it to the resulting increase in the energy of 
the atom. The adiabatic approximation tells us that during slow compres- 
sion, the atom remains in its ground state. Hence the compressibility can be 
deduced if we can calculate the ground-state energy E0 as a function of the 
atom’s volume . 

Compressibility χ is defined to be the fractional change in volume per 
unit applied pressure P : 

χ = 
1 dV 

. (11.22) 
V dP 

Conservation of energy implies that −P dV, the work done by the compressor, 
is equal to the increase in the ground-state energy dE0, so P = −dE0/dV 

and 
2 −1 

d E0 
χ = V 

dV2 . (11.23) 

E0( ) can be obtained by solving for the atom’s stationary states with the 
electronic wavefunction required to vanish on the surface of a sphere of vol- 
ume    .  A highly simplified version of such a calculation enables us to obtain 
a rough estimate of the compressibility of condensed matter. 

We assume that when the atom is confined in a sphere of radius a, 
its wavefunction x a is the same as the wavefunction for the confining 
sphere of radius a0 with all distances rescaled by a/a0 and the appropriate 
adjustment in the normalisation. In this case, we can argue as in 9.2 that 
the expectation value a K a of the atom’s kinetic energy operator K scales 
as (a0/a)

2
, while the expectation value of the potential-energy operator V 

scales as a0/a. Hence 

dE0  
= 

 d  
(⟨a|K|a⟩ + ⟨a|V |a⟩) ≃ −2 

⟨a|K|a⟩ 
− 

⟨a|V |a⟩ 
. (11.24) 

 

Equation (8.52) states that 2 a K a  = a V a , so the right side of this 
equation vanishes.1 Differentiating again, we find 

 

d
2
E0 

 
 

⟨a|K|a⟩ ⟨a|V |a⟩ E0 

da2    ≃ 6 
a2 + 2 

a2 = −2 
a2 , (11.25) 

 

where equation (8.52) has been used again to simplify the right side. Since 
V ∝ a  , dV /da = 3V /a and bearing in mind our result that dE0/da = 0 we 
find 

d
2
E0 

 
 

  a    2 d2E0
 

 
  

2 E0 
 

 

dV2   
≃   

3V da2    
= − 9 V2 

. (11.26) 

Using this result in equation (11.23), we conclude that the compressibility is 
 

χ ≃ 9    V  
. (11.27) 
 

2 |E0| 

Some care is required in the application of this result to many-electron 
atoms. Our assumption that a V a scales as a−1

 is valid only if the wave- 
function is simultaneously rescaled in the coordinates of all the atom’s elec- 
trons. Unfortunately, it is physically obvious that, at least for small fractional 

 

1 Equation (8.52) was actually only derived for hydrogen, but the result applies to the 
gross structure of any atom. 
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changes in volume, only the outermost shell of electrons will be significantly 
affected by the confining sphere. So realistically we should assume that the 
system formed by the inner electron shells remains fixed and the wavefunction 
is rescaled in its dependence on the coordinates of electrons in the outermost 

shell. In this spirit we shall replace E0 by N times the atom’s ionisation 
energy, where N is the number of electrons in the outermost shell. Since the 
electrostatic potential produced by the nucleus and the fixed inner shells of 

electrons does not vary with radius as r−1
, a V a will not scale as a−1

 and 
the factor 

9
 in equation (11.27) will be in error. None the less, the equation 

should correctly predict the order of magnitude of an atom’s compressibility. 

For lithium we take V = 
4
 π(2a0)

3
 and |E0| = 5.39 eV to find χ = 

2.6 10−11
 Pa−1

. The measured value varies with temperature and is of order 
10−10

 Pa−1
, which is in excellent agreement with our quantum-mechanical 

estimate given the sensitivity of the latter to the adopted value of the rather 

ill-defined parameter V. 

 

11.5 Covalent bonding 

The air we breathe, the living tissue of our bodies, and the plastics in the 
clothes, chairs and carpets that surround us, are held together by covalent 
bonds. These are bonds between two atoms of similar electronegativity, such 
as two oxygen atoms, two carbon atoms or a carbon atom and an oxygen 
atom. In this section we explain how they arise through the sharing by the 
atoms of one or more electrons. Unlike the ionic bonds that hold together a 
crystal of common salt, which are crudely electrostatic in nature, a covalent 
bond is intrinsically quantum-mechanical. 

 
 

11.5.1 A model of a covalent bond 

To show how covalent bonding works, we study a one-dimensional model 
that is not at all realistic but it is analytically  tractable.2  We  imagine a 
particle of mass m that moves along the x axis in a potential V (x) that is 
made up of two δ-function potentials of the type we introduced in 5.1.1(b). 
The wells are separated by distance 2a: 

 

V (x) = −Vδ{δ(x + a) + δ(x − a)}. (11.28) 

We have placed the origin at the midpoint between the two wells, which we 
can do without loss of generality. This placement ensures that the Hamil- 
tonian commutes with the parity operator, and we can seek solutions of the 
TiSE that have well-defined parity.  There are three distinct regions in which 
V (x) = 0, namely x < a, a < x < a and x > a and in these regions the 
wavefunction u(x) must be a linear combination of the exponentials e±kx

, 
where k is related to E by 

k = 
√   

2mE /h̄. (11.29) 

With an eye to the construction of solutions of definite parity we let our 
solutions in these regions be 

 
 e

kx
 for x < −a, 

u(x) ∝ cosh(kx) or sinh(kx) for a < x < a, 
e−kx

 for x > a, 

(11.30) 

 
 

2 Physicists call a model that lacks realism but nonetheless captures the physical 
essence of a phenomenon, a toy model. 
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Figure 11.2 Even- and odd-parity solutions to the two delta-function problem. 

 
Bearing in mind that the wavefunction has to be continuous across the po- 
tential wells, we see from Figure 11.2 that solutions of each parity must be 
of the form 

 
 e

k(x+a)
 for x < −a, 

u+(x) = A × 
 
cosh(kx)/ cosh(ka)    for a < x < a, 

e−k(x−a)
 for x > a, 

 
 −e

k(x+a)
 for x < −a, 

u−(x) = B × 
 
sinh(kx)/ sinh(ka)    for a < x < a, 

e−k(x−a)
 for x > a, 

 
 

 
(11.31) 

 

where the constants on each segment of the real line have been chosen to 
ensure that the wavefunctions equal A and B, respectively, at x = a. 

On account of the symmetry of the problem, it suffices to choose k for 
each parity such that the equation (5.13) is satisfied at x = a. From this 
equation we have that 

 

2K = 
k{1 + tanh(ka)}   for even parity 

k{1 + coth(ka)} for odd parity 
(11.32) 

 

where K is defined by equation (5.14). By expressing the hyperbolic func- 
tions in terms of e

ka
, we can rearrange the equations into 

 

— 1 = ±e−2ka
, (11.33) 

 

where the upper sign is for even parity.  In the  upper  panel of Figure 11.3 
the left and right sides of these equations are plotted; the solution k is the 
ordinate at which the straight line of the left side intersects with the decaying 
exponential plot of  the  right side.  The  value  of  k+ that  we  obtain from 
the upper curve associated with  the even-parity case is always larger than 
the value k− obtained for the odd-parity case. By equation (11.29), the 
particle’s binding energy increases with k,  so the even-parity state is the 
more tightly bound. If we increase a, the exponential curves in the top panel 
of Figure 11.3 become more curved and approach the x-axis more rapidly. 

Hence k+ diminishes,  and k−  grows.  In the limit a → ∞, the exponentials 
hug the axes ever more tightly and k+ and k− converge on the point k = K 
at which the sloping line crosses the x-axis.  This value of k  is precisely that 
for an isolated well as we would expect, since in the limit a the wells 
are isolated from one another. The lower panel of Figure 11.3 shows the 
energies associated with k± from equation (11.29). 

Suppose our particle is initially in the ground state of two wells that 
are distance 2a apart, and imagine slowly moving the two wells towards one 
another.  By the adiabatic principle, the particle stays in the ground state, 

k 

K 
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Figure 11.3 Graphical solution of equation (11.33). In the top panel, the exponential is 
drawn for the case Ka = 1. Bottom panel: binding energy versus inverse separation. The 
scale  energy  E0  =     h̄2K2/2m  is  the  energy  of  the  bound  state  of  an  isolated  δ-function 
potential well. 

 
which, as we have seen, moves to lower energies. Hence the particle loses 
energy. Where does this energy go? It can only go into the mechanism that 
positions the wells. A little thought reveals that if work is done on this 
mechanism, it must be resisting the mutual attraction by the holes.  Hence 
we have arrived at the conclusion that two potential wells that are jointly 
binding a particle, can experience a mutual attraction that would not be 
present if the bound particle were absent. 

 
 

11.5.2 Molecular dynamics 

The toy model just presented describes an inherently quantum-mechanical 
mechanism by which atoms experience mutual attraction or repulsion through 
sharing a bound particle. An essentially identical calculation, in which the 
energy Ee of the two shared electrons on an H2 molecule is studied as a 
function of the separation b of the protons, enables one to understand the 
structure of the  H2  molecule.  Analogously with the  toy model,  the energy 
of the shared electrons decreases monotonically with b, so in the absence of 
the mutual electrostatic repulsion of the protons, which had no analogue in 
our model, the electrons would draw the protons ever closer together. In 
reality there is a particular value b0 of b at which the rate at which Ee(b) 
decreases equals the rate at which the electrostatic energy Ep(b) of the pro- 
tons increases with decreasing b. The classical intranuclear separation of an 
H2 molecule is b0. 
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A more complete theory is obtained by considering V (b)   Ee + Ep to 
be a dynamical potential in which the two nuclei move. The analysis of this 
problem proceeds in close analogy with our treatment of the hydrogen atom 
in 8.1: we introduce a reduced particle and observe that the Hamiltonian 
that governs its dynamics commutes with the reduced particle’s angular- 
momentum operator; this observation enables us to derive a radial wave 
equation for each value of the angular-momentum quantum number l. This 
radial wave equation describes oscillations that are governed by the effective 
potential V (b). The rotation-vibration spectrum of H2 may be understood 
as arising from transitions between states that are characterised by l and the 
quantum number n associated with the oscillations in b. 

Similar principles clearly apply to studies of the dynamics of many other 
molecules:  one starts by determining the energy of shared electrons for a 
grid of  fixed locations of the  nuclei.  The  resulting energies together with 
the energy of electrostatic repulsion between the nuclei yields an effective 
potential, that can then be used to study the quantum dynamics of the 
nuclei. The essential approximation upon which this kind of work depends 
is that the frequencies at which the nuclei oscillate are low compared to any 
difference  between energy levels of the electronic system, divided by h̄.  Since 
electrons are so much lighter than nuclei, this approximation is generally an 
excellent one when the molecular rotations and vibrations are not strongly 
excited. The approximation is guaranteed to break down during dissociation 
of a molecule, however. We return to the toy model to explain why this is 
so. 

 

11.5.3 Dissociation of molecules 

In the model of 11.5.1, the force provided by the particle that is shared 
between the potential wells is not always attractive: if the particle in the 
excited, odd-parity bound-state the energy of the particle increases as the 
separation of the wells 2a is diminished, so the positioning mechanism must 
be pushing the two wells together as it resists the mutual repulsion of the 
wells. Consider now a two-well molecule that is held together by the attrac- 
tive force provided by the shared particle in its ground state when a photon 
promotes the particle to its excited state. Then the force provided by the 
particle becomes repulsive, and the wells will begin to move apart. As they 
move, much of the energy stored in the excitation of the particle is converted 
into kinetic energy of the wells, and soon there is one bare well and one well 
with a trapped particle. 

As the wells move apart, the energy difference between the ground and 
excited states decreases,  while the rate of increase of a increases.   Hence 
the  adiabatic  approximation,  which  requires  that  a/ȧ        (Eo      Ee)/h̄  must 
break down. In a more complex system, such as a real CO molecule, this 
breakdown can cause some of the energy stored in the particle’s excitation 
being transferred to excitation of one or both of the final atoms rather than 
being converted to the kinetic energy of their motion apart. 

 
 
 

11.6 The WKBJ approximation 

In 5.4 we learnt from a numerical solution of the TiSE that when a particle 
encounters a modest ramp in its potential energy V , the amplitude for re- 
flection is small unless the distance over which V changes is small compared 
to the particle’s de Broglie wavelength. This result is closely related to the 
adiabatic approximation in the sense that in the particle’s rest frame, the 
potential that it experiences changes slowly compared to the time taken to 
cover a de Broglie wavelength. Now we given an important analytical ar- 
gument that leads to the same conclusion and allows us to determine the 
evolution of the wave as it moves over the barrier. 
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The equation we wish to solve is 
 

d
2
ψ 2 

 
 

2 2m 
 

 

dx2   
= −k  ψ where    k  (x) ≡  

h̄2  (E − V ), (11.34) 
 

and V (x) is some real function. We define 

 
φ(x) ≡ 

∫ x 

dx′ k(x′) = 

√
2m 

∫ x
 

 
 

h̄ 

 
dx′ 

 

√   
E − V (x′), (11.35) 

 

so k = dφ/dx. Then without loss of generality we write 

 
ψ(x) = S(x)e

iφ
, (11.36) 

 
where S is a function to be determined. When we substitute this expression 
for ψ into the TiSE (11.34), cancel the right side with one of the terms on 
the left and then divide through by e

iφ
, we obtain 

 

d
2
S dS dk 

dx2  + 2ik 
dx 

+ iS 
dx 

= 0. (11.37) 

Now we reason that when k is a slowly varying function of x, S  will be 
also. In fact,  if k  changes on a lengthscale L ≫ 1/k that is greater than 
the wavelength 2π/k, we will have |dk/dx| ∼ |k|/L, |dS/dx| ∼ |S|/L and 

2 2 2 
d S/dx S /L . In these circumstances it follows that the first term 

in equation (11.37) is negligible compared to the other two, and we may 
approximate the equation by 

 

d ln S 
= − 1 d ln k  

(11.38) 

 

Integrating both sides from x1 to x2 we find that 

√   . √ . 
(S  k). 

1 
= (S k). 

2 
. (11.39) 

 

The particle flux implied by ψ(x) is proportional to the probability density 
2 

|S|  times the particle speed k/m.  Hence equation (11.39) states that the 
particle flux at x1 is equal to that at x2. In other words, when the wavenum- 
ber changes very little in a wavelength, the reflected amplitude is negligible 
and the wavefunction is approximately 

 

 
ψ(x) ≃ constant × 

h̄
2
 

 
 

2m(E − V ) 

 1/4  
e

iφ
 (11.40) 

 

where φ(x) is given by equation (11.35). This solution is known as the 
WKBJ approximation.3 The WKBJ approximation guarantees conserva- 
tion of particle flux in the classical limit of very small de Broglie wavelengths. 
It also has innumerable applications outside quantum mechanics, including 
the working of ear trumpets, tidal bores and Saturn’s rings. 

 
 
 
 
 

3 The WKBJ approximation is named after Wentzel, Kramers, Brillouin and Jeffreys. 

This is frequently abbreviated to ‘WKB approximation’. 

x x 
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Problems 

11.1 In 9.1  we  obtained  estimates  of the  amount by  which the  energy 
of an atom changes when an electric or magnetic field is applied. Discuss 
whether the derivation of these results implicitly assumed the validity of the 
adiabatic principle. 

11.2 In 11.2 we assumed that the potential energy of air molecules is 
infinitely large inside a bicycle pump’s walls. This  cannot be  strictly true. 
Give a reasoned order-of-magnitude estimate for the potential in the walls, 
and consider how valid it is to approximate this by infinity. 

11.3 Explain why E/ω is an adiabatic invariant of a simple harmonic os- 
cillator, where ω is the oscillator’s angular frequency. Einstein proved this 
result in classical physics when he was developing the “old quantum theory”, 
which involved quantising adiabatic invariants such as E/ω and angular mo- 
mentum. Derive the result for a classical oscillator by adapting the derivation 

of the WKBJ approximation to the oscillator’s equation of motion ẍ = −ω
2
x. 

11.4 Consider a particle that is trapped in  a  one-dimensional potential 
well V (x). If the particle is  in  a  sufficiently  highly  excited  state  of  this 
well, its typical de Broglie wavelength may be sufficiently smaller than the 
characteristic lengthscale of the well for the WKBJ approximation to be valid. 
Explain why it is plausible that in this case 

1 
∫ x2 

x1 

 
dx′ 

√   
2m{E − V (x′)} = nπ, (11.41) 

 

where  the  E − V (Hxi)  =  0  and  n  is  an  integer.  Relate  this  condition  to  the 
quantisation rule dxpx = nh used in the “old quantum theory”. 

 

11.5 Show that the “old quantum theory” (Problem 11.4) predicts that 
the energy levels  of the harmonic oscillator are nh̄ω  rather than (n +  

1
 )h̄ω. 

Comment on the dependence on n of the fractional error in En. 

11.6 Suppose the charge carried by a proton gradually decayed from its 
current value, e, being at a general time  fe.  Write down an expression for 
the binding energy of a hydrogen atom in terms of f . As α 0 the binding 
energy vanishes. Explain physically where the energy required to free the 
electron has come from. 

When the spring constant of an oscillator is adiabatically weakened by 
a factor f 

4
, the oscillator’s energy reduces by a factor f 

2
. Where has the 

energy gone? 

In Problems 3.14 and 3.15 we considered an oscillator in  its  ground 
state when the spring constant was suddenly weakened by a factor f = 1/16. 
We  found  that  the  energy  decreased  from  

1
 ̄hω  to  0.2656h̄ω  not  to  ̄hω/512. 

Explain physically the difference between the sudden and adiabatic cases. 

11.7 Photons are trapped inside a cavity that has perfectly reflecting walls 
which slowly recede, increasing the cavity’s volume . Give a physical mo- 
tivation for the assumption that each photon’s frequency ν        −1/3

.  Using 
this assumption, show that the energy density of photons u         −4/3

 and 
hence determine the scaling with     of the pressure exerted by the photons 
on the container’s walls. 

Black-body radiation comprises an infinite set of thermally excited har- 
monic oscillators – each normal mode of a large cavity corresponds to a new 
oscillator. Initially the cavity is filled with black-body radiation of tem- 
perature T0.   Show that  as the  cavity expands,  the  radiation continues to 
be black-body radiation although its temperature falls as −1/3

. Hint: use 
equation (6.121). 
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11.8 Show that when a charged particle gyrates with energy E in a uni- 
form magnetic field of flux density B, the magnetic moment µ = E/B is 
invariant when B is changed slowly. Hint: recall Problem magmomentprob. 
By applying the principle that energy must be conserved when the magnetic 
field is slowly ramped up, deduce whether a plasma of free electrons forms a 
para- or dia-magnetic medium. 
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12 
Scattering Theory 

 
In this chapter we study situations in which a free particle approaches a 
region of enhanced potential, is deflected, and moves away in a new direction. 
Different potentials lead to different probabilities for a particle to be scattered 
in a particular direction, so by carefully measuring the outcomes of repeated 
scattering experiments, we can infer the potential that was responsible. 

In fact, most of what we know about the small-scale structure of matter 
has been learnt this way. For example, Rutherford discovered that atoms 
have dense, compact nuclei by studying the distribution of α-particles scat- 
tered by gold foil, while nowadays we study the sub-atomic structure of mat- 
ter by scattering extremely fast-moving electrons or protons off one another 
in high-energy accelerators. 

The task of scattering theory is to build a bridge between the Hamiltoni- 
ans that govern the evolution of states and the quantities – cross sections and 
branching ratios – that are actually measured in the laboratory. In 5.3 we 
investigated the scattering of particles that are constrained to move in one 
dimension, and found that quantum mechanics predicts qualitatively new 
scattering phenomena. We expect the freedom to move in three dimensions 
rather than one to be fundamental for the physics of scattering, so in this 
chapter we investigate three-dimensional scattering. We shall find that the 
new phenomena we encountered in 5.3 do carry over to physically realistic 
situations. 

 
 

12.1 The scattering operator 

Let |ψ⟩ be the state of a particle in a scattering experiment. The evolution 
of |ψ⟩ is governed by the TdSE 

∂ 
ih̄ |ψ⟩ = H|ψ⟩ ⇔ |ψ; t⟩ = U (t)|ψ; 0⟩, (12.1a) 

 
where U (t) = e−iHt/h̄

  is  the time evolution operator introduced in   4.3.  We 
break the Hamiltonian into a sum H  = HK +V  of the kinetic-energy operator 
HK = p

2
/2m and the potential V that causes scattering. If ψ represents a 

moving particle – one that approaches or leaves some collision – it must be a 

non-trivial superposition of the eigenstates of H – see §2.3.3. Unfortunately, 
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when V 0 we may not know what these eigenstates are, and it may be 
prohibitively difficult to find them. 

A crucial physical insight allows us to make progress: in a scattering 
experiment, long before the particle reaches the interaction region it is ap- 
proximately free. The evolution of a free particle |φ⟩ is governed by HK 

∂ 
ih̄ 

∂t 
|φ⟩ = HK|φ⟩    or    |φ; t⟩ = UK(t)|φ; 0⟩, (12.1b) 

where UK(t) = e−iH
K t/h̄ , so the statement that  ψ   behaves like a free particle 

in the asymptotic past is the requirement that 
 

lim 
t→−∞ 

U (t) ψ; 0 =  lim 
→−∞ 

UK(t)|φ; 0⟩ (12.2a) 

 

for some free state φ . Implicit in this equation is the assumption that the 
origin of time is chosen such that the interaction takes place at some finite 
time. For example, it might be in full swing at time t = 0, which we shall 
sometimes refer to as ‘the present’. 

In the asymptotic future the scattered particle will have moved far away 
from the interaction region and will again be approximately free. Hence we 
also require 

lim 
t→+∞ 

U (t) ψ; 0 =  lim 
→+∞ 

UK(t)|φ′; 0⟩ (12.2b) 

where |φ′⟩ is another free state. 
Equations (12.2) allow us to relate the real state |ψ⟩ to both |φ⟩ and 

|φ′⟩ at the present time via 
 

ψ; 0   =   lim 
→−∞ 

U †(t)UK(t)|φ; 0⟩  = lim 
t′→+∞ 

U †(t′)UK(t′)|φ′; 0⟩  
(12.3) 

= Ω+|φ; 0⟩ = Ω−|φ′; 0⟩, 

where the operators Ω± are defined by1 

 

Ω lim 
→∓∞ 

U †(t)UK(t). (12.4) 

 

The origin of the irritating choices of sign in this definition will be explained 
in 12.2 below. In terms of the Ω± operators, the scattering operator 
is defined as 

S ≡ Ω† Ω+. (12.5) 

Here’s what the scattering operator does: first, evolves a free-particle state 
back to the distant past, then matches it onto a real state which has the same 
past asymptotic behaviour. Next,  evolves this real state forwards – all the 
way through the scattering process to the far future. There, the real particle 
again behaves like a free particle, and matches their states before finally 
evolving the free state back to the present.  If the real particle is in some 
state ψ , and looks like a free-particle state φ well before the interaction 
occurs, then the amplitude for it will look like some other free state λ long 
after the interaction is   λ    φ .  Hence the probability to find the particle in 
the free state  λ   is just    λ     φ   

2
.  The scattering operator is useful because 

it always acts on free states, so if we use it we do not need to know the 
eigenstates of the full Hamiltonian H. 

Notice that is defined as a product of four unitary evolution operators 
and is therefore itself unitary. 

When V = 0, the particle isn’t scattered, and its future state is the 
same as its past state. In such circumstances, the scattering operator must 
be just the identity operator S = 1, and we can check this is indeed true by 

 

1 It is not self-evident that the limits as t → ±∞ that appear in equation (12.4) exist. 
Appendix K derives a condition on V that ensures that Ω± is well defined. 
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putting H = HK in equations (12.3) to (12.5). The operator that describes 
a genuine interaction is the transition operator 

 

T ≡ S − 1 (12.6) 

and the probabilities for actual transitions are given by 
 

Prob(|φ⟩ → |λ⟩) = |⟨λ|T |φ⟩|2 = |⟨λ|S|φ⟩ − ⟨λ|φ⟩|
2 

. (12.7) 

Since S is unitary, we have 

1 = S†S = 1 + T † + T + T †T . (12.8) 

Squeezing this equation between ⟨φ| and |φ⟩ we obtain 

−2ℜe (⟨φ|T |φ⟩) = ⟨φ|T †T |φ⟩. (12.9) 
 

We also have that 

|⟨φ|S|φ⟩|  = |1 + ⟨φ|T |φ⟩|  = 1 + 2ℜe(⟨φ|T |φ⟩) + |⟨φ|T |φ⟩| . (12.10) 

Rearranging and using equation (12.9) yields 

1 − |⟨φ|S|φ⟩|
2 

= 
Σ 

⟨φ|T †|ψi⟩⟨ψi|T |φ⟩ = 
Σ 

|⟨ψi|T |φ⟩|  , (12.11) 
|ψi⟩     |φ⟩  |ψi⟩     |φ⟩  

 

where  {|ψi⟩} is  a  complete  set  of  states  that  includes  |φ⟩.   The  left  side  of 
equation (12.11) is one, minus the probability that at t = +∞ the particle 
is still in the state it was in at t = −∞,  while the right side is the sum of 
the probabilities that the particle has made the transition to some state |ψi⟩ 
different from the original state |φ⟩. 

 
12.1.1 Perturbative treatment of the scattering operator 

The definition S ≡ Ω† Ω+ is difficult to use in practical calculations, because 

deep inside. To get at it we first differentiate  Ω(t)     U †(t)UK(t) with respect 
to t, finding 

 

 d 
Ω(t) =  

 i 
e
iHt/h̄

 (H − H )e−iHKt/h̄  =  
 i 

eiHt/h̄ V e−iHK t/h̄ , (12.12) 

 

where we have been careful to preserve the order of the operators. We now 
re-integrate this equation between t′ and t to reach 

i 
∫ t 

Ω(t) = Ω(t′) + 
h̄ 

dτ eiHτ/h̄ V e−iHK τ/h̄ 

t′ 
 (12.13) 

 

= Ω(t′) + 
i 
∫ t 

 
 

h̄    t′ 

 

dτ U †(τ )V UK(τ ). 

 

Taking the Hermitian adjoint of this equation we have 

i 
∫ t 

Ω†(t) = Ω†(t′) −  
t′ 

i 
∫ t 

dτ UK
† 
(τ )V U (τ )  

(12.14) 

= Ω†(t′) − 
h̄

 dτ UK
† 
(τ )V UK(τ )Ω†(τ ). 

t′ 

K 
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The integrand itself contains Ω†(τ ), but suppose we use this equation to 
replace it by Ω(t′) plus an integral that involves Ω†(τ ′), and then repeat this 
process once more. The result is 

i 
∫ t 

Ω†(t) = Ω†(t′) − 
h̄ 

dτ UK
† 
(τ )V UK(τ ) Ω†(t′) 

t′ 

1  
∫ t  ∫ τ 

′ † 
 

 

 
′ ′ †     ′ — 

h̄
2
 dτ dτ 

t′ t′ 
UK(τ )V UK(τ − τ )V UK(τ )Ω (t ) 

i 
∫ t   ∫ τ ∫ τ 

+  
h̄

3
 

dτ dτ ′ 
t′ t′ 

dτ ′′ UK
† (τ )V UK(τ τ ′)V UK(τ ′ τ ′′)V UK(τ ′′)Ω†(τ ′′). 

t′′ 

(12.15) 
Through repeated use of equation (12.14) we can push the operator Ω†(τ ) 
for τ > t′ off into an integral that contains as many powers of V as we please. 
For sufficiently small V , the magnitude of the term in which Ω(τ ) occurs will 
be negligible, and we will be able to drop it. Then multiplying the equation 
by Ω(t′), and taking the limits  t → ∞ and t′  → −∞, we obtain an expansion 
of S in powers of V . Since Ω†(t′)Ω(t′) = 1, this expansion is 

i 
∫ ∞ 

S = 1 − 
h̄ 

dτ  UK
† 
(τ )V UK(τ ) 

1  
∫ ∞ 

−
∫
∞ 

τ
 

— 
h̄

2
 

dτ dτ ′  UK
† 
(τ )V UK(τ − τ ′)V UK(τ ′) 

−∞ −∞ 

i 
+  

h̄
3
 

∫ ∞   ∫ τ 

dτ dτ ′ 
−∞ −∞ 

∫ τ ′ 

dτ ′′  UK
† 
(τ )V UK(τ − τ ′)V UK(τ ′ − τ ′′)V UK(τ ′′) 

−∞ 

+ · · ·  

(12.16) 
The virtue of equation (12.16) is that all the evolution operators involve only 
the free Hamiltonian HK – information about scattering has been encoded 
in the expansion in powers of V .2 

Equation (12.16) has an intuitive physical interpretation. The zeroth- 
order term is the identity operator and represents no scattering; its presence 
was anticipated by equation (12.6). The term    

(1)
 with one power of V  acts 

on a free particle as 

 
⟨λ; 0|S |φ; 0⟩ = − i 

∫ ∞ 

dτ ⟨λ; 0|U † (τ )V UK(τ )|φ; 0⟩ 
h̄    −∞ 

i 
∫ ∞ (12.17) 

= − 
h̄

 dτ ⟨λ; τ |V |φ; τ ⟩. 
−∞ 

 

The integrand λ; τ V φ; τ   is the amplitude for a particle in the free state φ 
to be deflected by the potential V at time τ , transferring it into another free 
state λ . Since we only observe the initial and final states, we do not know 
when the interaction took place, so we add the amplitudes for the deflection 
to have occurred at any time. Similarly, the second-order term 

(2)
 gives the 

amplitude 

 
⟨λ; 0|S |φ; 0⟩ = 

  
i 

  2 ∫ ∞ 

dτ 
∫ τ 

dτ ′ ⟨λ; τ |V UK(τ − τ ′)V |φ; τ ′⟩ (12.18) 
h̄ −∞      −∞ 

 

for an incoming particle in the free state |φ⟩ to be deflected by the potential 
at time τ ′, then to propagate freely for a further time τ − τ ′,   and finally 
to be deflected again by V into the final state |λ⟩. Since we do not know 

 

2 This expansion is reminiscent of the perturbation theory developed in 9.1. However, 
that theory hinged on the assumption that the response of the system to changes in its 
Hamiltonian is analytic in the parameter β. Here we need no such assumption. Instead 
we guess that certain integrals become small. 

K 
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when either deflection occurred, we integrate over all τ and τ ′, subject to 
the condition τ ′ < τ that the first deflection happens earlier. Higher-order 
terms describe trajectories that involve larger numbers of deflections. 

If the potential is sufficiently weak, we might hope to approximate equa- 
tion (12.16) by its lowest-order terms 

i 
∫ ∞ 

S ≃ 1 − 
h̄

 dτ  UK
† 
(τ )V UK(τ ). (12.19) 

−∞ 

This drastic curtailing of the series for     is known as the Born approxima- 
tion.  Whether  it is a good approximation in a given physical situation must 
be checked, often by estimating the order-of-magnitude of the second-order 
term S(2), and checking it is acceptably smaller than the Born term. 

 
12.2 The S-matrix 

It is impossible to put any physical particle into a pure energy eigenstate, 
because such states are not localised in time. Nonetheless, energy eigenstates 
are useful as mathematical tools, being simpler to handle than realistic su- 
perpositions. Calculating with energy eigenstates presents special problems 
in scattering theory, because the idea that the particle moves towards the 
potential is central to our entire formalism, but a particle that is in an energy 
eigenstate goes nowhere. 

 
 

12.2.1 The iǫ prescription 

To get to the root of the problem, notice that equation (12.4) implies that 
. 

HΩ±  d . 
dt . e−iHt/h̄  Ω±

 

.t=0   

. 
= ih̄ . 

 
lim 

 
e−iHt/h̄ U †(τ )UK

 
  

(τ ) 
dt . τ →∓∞ 

.t=0   
 d . 

= ih̄ . 
 
lim U †(τ − t)UK (τ − t)UK 

  
(t) 

(12.20) 

dt . 
t=0. 

τ →∓∞ 

= ih̄Ω  d . 
± . 

t=0 

e−iHKt/h̄  = Ω±HK. 

Therefore,  if  the  interacting state  ψ   initially  resembles some  eigenstate 
E; free   of the free Hamiltonian, then equations (12.2a) and (12.20) imply 
that 

H|ψ⟩ = HΩ+|E; free⟩ = Ω+HK|E; free⟩ = EΩ+|E; free⟩ = E|ψ⟩, (12.21) 

so ψ  must actually be an eigenstate  E; true  of the true Hamiltonian, with 
the same energy E. The trouble with this is that energy eigenstates look the 
same at all times, so  E; true  and  E; free  would always look like each other 
– a state of affairs that only makes sense if V = 0 and there is no scattering. 

Our argument shows that the initial and final states cannot  have well- 
defined energy – they must be non-trivial superpositions of energy eigen- 
states. Nonetheless, because energy eigenstates often simplify otherwise dif- 
ficult calculations, we are reluctant to forego them. Instead, we seek a way 
to avoid the problem. From equation (12.13), write Ω± in the form 

i 
∫ ∓∞ 

Ω± = 1 +  
h̄

 dτ U †(τ )V UK(τ )  
(12.22) 

 

= 1 + 
i 
∫ ∓∞ ∫ 

dτ 
h̄    0 

d
3
x d

3
x′ U †(τ )|x⟩⟨x|V |x′⟩⟨x′|UK(τ ) . 



→ 

⟨ |  | ⟩ ≃ 
⟨ | | ⟩ 

|  ⟩ 

− 

262 Chapter 12: Scattering Theory 
 

When Ω± is applied to a real scattering state |φ⟩, the integrand vanishes for 
large τ , because x UK φ is non-negligible only far from the scattering centre, 
where   x V  x  ′      0.  Hence, if we include a convergence factor e−ǫ|τ |/h̄

  in the 
integrand, for sufficiently small ǫ > 0 we make a negligible difference to the 
action of Ω± on a real scattering state: for finite τ this factor approximates 

unity to arbitrary accuracy as ǫ       0.  Consider therefore the operator Ω̃ that 
has this harmless factor.   Taking the limit that the constant ǫ approaches 
zero from above we obtain 

i 
∫ ∓∞ 

Ω±|φ⟩ −→ Ω̃±|φ⟩ = 1 + lim 
ǫ→0+   h̄    0 

dτ U †(τ )V e−ǫ|τ |/h̄
UK(τ ) |φ⟩. 

(12.23) 

The action of Ω̃±  on a state |φ⟩ that is a non-trivial superposition of en- 
ergy eigenstates is identical to that of Ω±. However, Problem 12.1 shows that 

the  product  HΩ̃±   satisfies  an  equation that  differs  crucially   from  equation 
(12.21): 

HΩ̃±  = Ω̃±(HK ± iǫ) ∓ iǫ. (12.24) 

Consequently,  when  we  apply  H  to  |ψ⟩ ≡ Ω̃±|E; free⟩,  where  |E; free⟩ is  an 
eigenstate of HK, we find 

 

H|ψ⟩ = HΩ̃±|E; free⟩ = (E ± iǫ)|ψ⟩ ∓ iǫ|E; free⟩, (12.25) 

so |ψ⟩ is an eigenstate of H only when V = 0 and |ψ⟩ = |E; free⟩. Therefore, 

when  we  use  Ω̃±   to  generate  ‘interacting’  states  from  eigenstates  of  HK, 
which will henceforth be simply labelled E , our interacting states are not 
stationary states of the true Hamiltonian, and thus can describe scattering. 
The crucial point that makes the whole procedure consistent is that for any 
physically realistic superposition, it makes no difference whether we construct 
interacting states with Ω±  or Ω̃±. 

We  can  simplify  Ω̃±   a  little:  since  |τ | =  τ  for  τ  ≥ 0  and  |τ | =  −τ  for 

τ < 0, with |φ⟩ = |E⟩ equation (12.23) becomes 

Ω̃±|E⟩ = 
  

1 + lim i 
∫ ∓∞ 

 

 

 

dτ U †(τ )V e−i(E±iǫ)τ/h̄ 

 
|E⟩. (12.26) 

ǫ→0+   h̄    0 
 

Therefore, our modification merely supplements the energy eigenvalue E 
with a small imaginary piece +iǫ for initial states and −iǫ for final states 
– the sign on iǫ corresponds to the subscript on Ω± and is historically the 
origin of the naming of the Ω operators.  This procedure is known as the 
iǫ prescription. In practice the prescription is implemented by using the 
original Ω± operators, but pretending that all eigenstates of HK satisfy 

 

HK|E⟩ = (E + iǫ)|E⟩   for initial kets when acted on by Ω+ 

HK|E′⟩ = (E′ − iǫ)|E′⟩ for final kets when acted on by Ω−. 

 

(12.27a) 

 

Similarly, the Hermitian adjoints of the modified operators  (12.23)  imply 
that we should likewise pretend that 

 

⟨E|HK = ⟨E|(E − iǫ)    for initial bras when acted on by Ω+
†
 

⟨E′|HK = ⟨E′|(E′ + iǫ)   for final bras when acted on by Ω† . 

 
(12.27b) 

 

In no way do we mean that the Hermitian operator HK actually has a com- 
plex eigenvalues E;  equations (12.27) are merely useful fictions that enable 
us to carry out the iǫ prescription. 
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12.2.2 Expanding the S-matrix 

Since the incoming and outgoing states are free states, and the momentum 
operators commute with the free Hamiltonian HK, the scattering operator is 
conveniently studied in the momentum representation. We then work with 
the S-matrix 

S(p, p′) ≡ ⟨p′|S|p⟩. (12.28) 

where we must use the iǫ prescription of equations (12.27) to interpret the 
action of Ω+ on p  that is implicit in this definition.  From equation (12.16), 
the lowest-order contribution to the S-matrix is then 

i 
∫ ∞ 

⟨p′|S|p⟩ ≃ ⟨p′|p⟩ − dτ ⟨p′|eiHK τ/h̄ V e−iHKτ/h̄ |p⟩ 

 
= ⟨p′|p 

h̄    −∞ ∫
 

i ∞ p′|V |p⟩ 
 

−i(Ep−Ep′ )τ/h̄ . 
(12.29) 

⟩ − 
h̄ 
⟨ dτ e 

−∞ 
 

Here, we used the rules (12.27) to find that the argument of the exponential 
in the integrand is actually independent of ǫ. We recognise the integral as 
2πh̄δ(Ep      Ep′ ). 

Potentials that depend only on position are diagonal in the x represen- 
tation, so the momentum-space elements ⟨p′|V |p⟩ are 

∫ 

⟨p′|V |p⟩ = d
3
x d

3
x′ ⟨p′|x′⟩⟨x′|V |x⟩⟨x|p⟩ 

∫ 
1 

=  
(2πh̄)3 

 

d3x e−iq·x/h̄ V (x) 
, (12.30) 

 

where we have used our expression (2.78) for the wavefunction of a state of 
well-defined momentum and defined the momentum transfer 

 

q ≡ p′ − p. (12.31) 

Therefore, the Born approximation to the S-matrix just depends on the 
Fourier transform of V (x): 

⟨p′|S 

 
 

(1) 

∫ 
2πi 

|p⟩ = − 
(2πh̄)3 δ(Ep − Ep′ ) 

 
d

3
x e 

 
−iq·x/h̄ 

 
V (x). (12.32) 

 

From the theory of Fourier transforms, we see that potentials which vary 
rapidly with x lead to S-matrices that contain significant amplitudes for large 
momentum transfers. Turning this around, if a particle suffers a large change 
in momentum when it is scattered by V (x), we infer that V (x) has sharp 
features. Arguing along these lines (albeit more classically), Rutherford was 
able to deduce the existence of nuclei from the occasional back-scattering 
of α-particles off gold foil.  More recently,  a team of physicists3  working 
at SLAC in Stanford scattered high-energy electrons off protons; the elec- 
trons sometimes suffered large-angle scattering, providing evidence for the 
existence of quarks inside the nucleons. 

The second-order term in the scattering operator can be treated in a 
similar manner. From equation (12.16) we find 

⟨p′|S(2)|p⟩ = − 
∫ ∞   ∫ τ 

dτ dτ ′ ⟨p′|U † (τ )V UK(τ − τ ′)V UK(τ ′)|p⟩.  (12.33) 
h̄2      

−∞ −∞ 
K

 
 

The  free-ev∫olution  operators  can  be  evaluated  by  inserting  the  identity  op- 
erator 1 = d

3
k |k⟩⟨k| anywhere between the two V  operators.  Bearing in 

 

3 D.H. Coward, et. al., Phys. Rev. Lett. 20, 292, (1968). 

1 
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mind that HK p = (Ep + iǫ) p and p′ HK = p′ (Ep′ + iǫ) in accordance 
with the iǫ prescription, we find 

∫ 

⟨p′|S(2)|p⟩ =  lim 
 1  

— 
h̄

2
 d

3
k  ⟨p′|V |k⟩⟨k|V |p⟩ 

∫ ∫ τ 
′ 

× dτ dτ ′ ei(Ep′ +iǫ−Ek)τ/h̄ e−i(Ep−Ek+iǫ)τ  /h̄     . 

 
The integral over τ ′ is 

∫ τ 

−∞ −∞  
 

   −i(Ep−Ek+iǫ)τ/h̄ 

(12.34) 

dτ ′   e−i(Ep−Ek+iǫ)τ ′/h̄  = ih̄ 
e 

−∞ Ep − Ek + iǫ 
, (12.35) 

 

so the second-order contribution to the S-matrix is 

S(2)(p′, p) =  lim 
i 
∫

 
− 

 
d

3
k 

′ ∫ ∞ 

dτ e−i(Ep−Ep′ )τ/h̄ 

ǫ→0+ h̄ Ep − Ek + iǫ −∞ 
∫ 

3  ⟨p′|V |k⟩⟨k|V |p⟩ = 2πi δ(Ep Ep′ ) lim 
ǫ→0+ 

d k 

Ep − Ek 

. 
+ iǫ 

 

(12.36) 
The numerator in the integrand is the amplitude for the particle to scatter 
from the p state into the k state, and then from the k state into the p′ 
state. The denominator arose from the integration over τ ′, which in turn was 
present because the particle travelled freely for some time τ τ ′ in between 
the two interactions. Since it comes from this free propagation, the factor 
(Ep Ek +iǫ)−1

 is known as the propagator, written here in the momentum 
representation. Finally, because we do not measure the intermediate state, 
equation (12.36) adds up the amplitudes for scattering via any state. 

Higher order terms are handled in a similar way: V  occurs n times in 
(n)

(p′, p), so there are n    1 intermediate evolution operators, leading to 
n 1 propagators. Similarly, there are n 1 sets of intermediate states, all of 
which  are integrated over.   

(n)
(p′, p)  may be  represented diagrammatically 

as in Figure 12.1. These Feynman diagrams are an order-by-order book- 
keeping system for calculating contributions to the S-matrix: each term in 
the series for the S-matrix corresponds to a diagram, and Feynman rules 
can be defined that enable the algebraic expression for the term to be inferred 
from the diagram. Thus Feynman diagrams summarise complicated integrals 
in an intuitive way. 

The Feynman rules required here are extremely simple: (i) each vertex 
has just two lines going into it and is associated with a factor V ; (ii) each 
‘internal line’ (one that has a vertex at each end) is associated with the prop- 
agator (Ep Ek +iǫ)−1

, where k, which is integrated over, is the momentum 
carried by that line;  (iii) there is an overall prefactor     2πiδ(Ep     Ep′ ),  where 
p and p′ are the ingoing and outgoing momenta, respectively. With these 
rules we can only construct one diagram with a given number n of vertices, 
and it’s a simple chain. Feynman diagrams become much more interesting 
and valuable when one recognises that when an electron is scattered by an 
electrostatic potential V (x), for example, it really collides with a photon, and 
one needs to include the coupled dynamics of the photons. In this more so- 
phisticated picture, V (x) is replaced by the electromagnetic vector potential 
A, which becomes a quantum-mechanical object, and our diagrams include 
propagators for both photons and electrons. Moreover, the vertices become 
points at which three or more lines meet, two for the incoming and outgoing 
electron, and one or more for photons. With a richer set of lines and vertices 
on hand, many different diagrams can be constructed that all have the same 
number of vertices, and therefore contribute to the S-matrix at the same 
order. 

ǫ→   +0 



S 

S 

→ 

⟨ | ⟩ ⟨ | ⟩ 
ˆ′·r̂/h̄ ′ 

± ± − 

− − − 

(12.38) 

12.2 The S-matrix 265 
 
 
 
 
 

Figure 12.1 Feynman  diagrams 
for the scattering process to lowest 
orders in V . 

 

 

12.2.3 The scattering amplitude 

Both the first- and second-order approximations to the S-matrix are pro- 
portional to an energy-conserving delta function. This result is not limited 
to the series expansion for  , but actually holds for the exact S-matrix as 
we now demonstrate. Equation (12.20) and its Hermitian adjoint state that 

HΩ± = Ω±HK and Ω† H = HK Ω† . Now S ≡ Ω† Ω+, so 
 

HKS = HK Ω† Ω+ = Ω† HΩ+ = Ω† Ω+HK = SHK, (12.37) 
 

that is, [ , HK] = 0. Sandwiching this commutation relation between mo- 
mentum eigenstates and using the iǫ prescription of equations (12.27) gives 
the relation 

0 = ⟨p′|[S, HK]|p⟩ = (Ep + iǫ − Ep′ − iǫ)S(p, p′) = (Ep − Ep′ )S(p, p′), 

so the S-matrix vanishes unless the initial and final states have the same 
(real) energy. This tells us that the exact S-matrix must have the form 
S(p, p′) ∝ δ(Ep − Ep′ ). 

In equation (12.6) we broke S into the sum S = 1 + T to isolate the 
scattering amplitude, and it is clear  that  ⟨p′|T |p⟩ is  also  proportional  to 
δ(Ep −Ep′ ).    Motivated by this insight we define the scattering amplitude 
f (p → p′) by 

 

′ i ′ 

⟨p |T |p⟩ =  
2πh̄m 

δ(Ep − Ep′ )f (p → p ), (12.39) 

where  the  factor  of  i/(2πh̄m)  is  included  for  later  convenience.  On  account 
of the delta function, f (p p′) depends on p′  only through its direction p̂′. 

To understand the significance of the scattering amplitude, consider the 
following argument. According to the discussion in §12.1, long after the 

interaction, a particle that scattered from the free state |φ⟩ can be described 
by the free state |λ⟩ = S|φ⟩. Therefore, in the idealised case that the initial 

state was a momentum eigenstate |p⟩, the wavefunction of the final state is 

∫ 

⟨r|λ⟩ = ⟨r|S|p⟩ = ⟨r|p⟩ + d
3
p′ ⟨r|p′⟩⟨p′|T |p⟩ 

= ⟨r|p⟩ + 

∫ 
i 

 

 

2πh̄m 
d

3
p′ ⟨r|p′⟩δ(Ep − Ep′ )f (p → p′). 

(12.40) 

Since the states |p′⟩ in the integrand are final states, the iǫ prescription tells 

us to take p′2/2m = (Ep′ − iǫ), so in spherical polar coordinates4 

q   

d
3
p′ = p′2dp′dΩ = m    2m(Ep′ − iǫ) dEp′ dΩ. (12.41) 

 

Using this in equation (12.40) and integrating over Ep′ using the delta func- 
tion gives 

√ ∫ 

r λ  =  r p + 
i  2m(Ep − iǫ) 

(2πh̄)5/2 

 
dΩ e

ir
 
√   

2m(Ep −iǫ) p f (p → p ).  (12.42) 

 
 

4 In this chapter it is  convenient  to  define  dΩ  =  sin θ dθ dφ  rather  than  d2Ω  = 
sin θ dθ dφ as in earlier chapters. 
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This free-particle wavefunction only looks like the true wavefunction of the 
scattered particle long after the collision, so equation (12.42) will only cor- 
respond to the physical wavefunction as r . In this limit, the phase of 
the exponential in equation (12.42) varies extremely rapidly as a function 
of  the  variables  θ  and  φ  that  define  the  direction  of  p̂,  over  which  we  are 
integrating. The different contributions to the integral will therefore cancel 
each other out except where the phase of the integrand is stationary with 
respect to angle. For sufficiently large r the sensitivity of the exponential to 
angle will exceed that of f (p  p′).  Hence the dominant contribution to 
the integral arises when 

 

∂  
(p̂′ · ̂r) =   

∂
 

∂ 
cos θ = 0 and 

 

cos θ = 0, (12.43) 

 

where  we  have  aligned  the  polar  axis  with  the  (fixed)  direction  r̂  .   These 
conditions are satisfied when θ = 0, π, independent of φ. When θ = π, and 
p̂′   r̂ =     1, the integrand of equation (12.42) is exponentially suppressed as 
r by the iǫ prescription. Therefore the integral over the unit sphere is 
dominated by the contribution from a small disc centred on the direction r̂. 
This insight justifies the approximation 

∫ 

dΩ e
ir
 
√   

2m(Ep−iǫ) p f (p → p ) 
∫ √   

≃ 2πf (p → p′) d cos θ e
ir
 2m(Ep −iǫ) cos θ/h̄ 

(12.44) 

f (p → p′) ir
√

2m(Ep −iǫ)/h̄ 

≃ 2πh̄ 
ir
√

2m(E 
e . 

— iǫ) 
 

Using this expression in equation (12.42) we have finally 

 
lim ⟨r|φ⟩ = lim 

 
⟨r|p⟩ + 

 
1 

3/2 
eir

√
2m(Ep−iǫ)/h̄ 

! 
f (p → pr̂) 

r→∞ r→∞ 

1 
= lim 

3/2
 

r→∞  (2πh̄) 

(2π ) 

  
eip·r/h̄  + 

r 

eipr/h̄ 

f (p pr̂)    , 
r 

(12.45) 

 

where in the last line we have taken the limit ǫ 0
+
. Equation (12.45) shows 

that a particle that was initially in a momentum eigenstate will emerge from 
the scattering process in a superposition of its original state (no scattering) 
and a wave travelling radially outwards.  The scattering amplitude f (p       pr̂) 
is just the amplitude of this outgoing wave. 

In equation (12.45) the time-dependence is suppressed by our convention 
that the S-matrix generates the wavefunction at the generic time 0. We now 
restore explicit time dependence by introducing a factor e−iEpt/h̄  and replace 
the incoming state p by a realistic superposition of such states. Then the 
outgoing wavefunction becomes 

 
⟨r|φ; t⟩ = 

∫ 
d

3
p φ(p) 

 
 

ei(p·r−Ept)/h̄  + 
(2πh̄)3/2 

 
ei(pr−Ept)/h̄ 

 

 

r 

  

f (p → pr̂) 

 

, (12.46) 

 

which is the sum of the incoming wave packet plus a wave packet that travels 
radially outwards from the scattering centre. 

p 

∂φ 



|⟨ | ⟩| 
| ⟩ 

| ⟩ 

ǁ 

—   ′ i(p    −p     )·x   /h̄ ∗ ′ 
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12.3 Cross-sections and scattering experiments 

Children sometimes test their skill by taking turns to throw pebbles at a dis- 
tant target, perhaps a rock. If a pebble hits, it will bounce off in a different 
direction, whereas a pebble that misses will simply continue undisturbed. 
Each throw will not be repeated exactly, and after a long time we might 
imagine that the children have thrown pebbles randomly, such that the dis- 
tribution of throws per unit area is uniform over a region surrounding the 
target. If so, we can estimate the area of the target that the children see by 
simply counting the number of pebbles that hit it – if Nin pebbles are thrown 
in per unit area, and Nsc  of them hit the rock, the rock has cross-sectional 
area 

A ≃ Nsc/Nin. (12.47) 

With more care, we can measure the angle through which throws are de- 
flected. Pebbles that  strike nearby points of  a  smooth rock will  bounce off 
in roughly the same direction, whereas a jagged rock may deflect pebbles 
that hit closely spaced points very differently.  Hence,  counting the number 
of pebbles that end up going in a given direction gives us information about 
the rock’s shape. We define the  differential  cross-section  δς  to  be  the 
area of the target that deflects pebbles into a small solid angle δΩ. If there 
are N (θ, φ)δΩ such pebbles, then 

δς ≡ 
N (θ, φ)δΩ 

Nin 

 
δς 

or = 
δΩ 

 

N (θ, φ) 

Nin 

 
, (12.48) 

and the total cross-section is 
∫ ∫ ∫ 

ς ≡ dς = dς dΩ = dΩ 
N (θ, φ) 

= 
Nsc (12.49) 

tot dΩ Nin Nin 
 

as above. 
This may seem a rather baroque manner in which to investigate rocks, 

but when you go out on a dark night with a torch, you probe objects in a very 
similar way by throwing photons at them. A more complete analogy can be 
drawn between pebble-throwing children and physicists with particle accel- 
erators: a beam containing a large number Nb of particles is fired towards 
a target, and detectors measure the number of particles that scatter off into 
each element of solid angle δΩ. Long before the collision, a typical particle 
in the beam looks like a free state φ , so the probability density of each 
particle is  x φ  

2
 and the number of particles per unit area perpendicular 

to the beam direction is 

∫ 

nin(x⊥) = Nb dxǁ |⟨x|φ⟩|2, (12.50) 

 

where the integral is along the beam direction. 
When φ is expanded in terms of momentum eigenstates, equation 

(12.50) becomes 

 
nin 

 
(x⊥ 

∫ 
   Nb  ) =  
(2πh̄)3 

∫ 

 

dx  d3p d3p′ei(p−p′)·x/h̄ φ(p)φ∗(p′) 

   Nb  
=  

(2πh̄)2 
d

3
p d

3
p′ δ(pǁ 

′ 

p )e ⊥ ⊥ ⊥     φ(p)φ (p ), 
ǁ 

(12.51) 
where the integral over xǁ produced the delta function of momentum along 
the beam direction. Experimental beams are highly collimated, so φ(p) 
vanishes  rapidly  unless  the  momentum  is  near  some  average  value  p̄.    In 
particular, they contain only small amounts of momentum perpendicular to 
the  beam  direction  p  ≡ p̄/|p̄|.   Consequently,  throughout  a  region  of  non- 
negligible extent near the centre of the beam, at x⊥  = 0, we have e

ip⊥·x⊥/h̄  ≃ 



| ⟩ ⟨ |T | ⟩ 

3 

∗ ′ 

ǁ 

ǁ 

dΩ 

ǁ ǁ 

0 
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1. With this approximation, the number of particles incident per unit area 
perpendicular to the beam is uniform near the beam centre, so 

∫ 

nin (x⊥ 
   Nb  

) ≃ 
(2πh̄)2 

d
3
p d

3
p′ δ(pǁ p′ )φ(p)φ∗(p′). (12.52) 

ǁ 

Equation (12.52) may seem a bizarre way to rewrite the intuitively clear 
expression (12.50), but it will soon prove its worth. 

We must now calculate N (θ, φ). At large distances, we know that the 
wavefunction of particles scattered from the state φ  is  r  φ .  If we had 
placed detectors at some large distance r0 from the scattering centre, over 
time they would have detected any particle that has the same values of θ, φ 
and is predicted to lie at r > r0. Thus the total number of particles that are 
detected in the element of solid angle δΩ is 

∫ ∞ 

N (θ, φ)δΩ = dr r
2
NbδΩ |⟨r|T |φ⟩|2. (12.53) 

Equation (12.46) gives ⟨r|φ⟩ = ⟨r|(1 + T )|φ⟩, so 

∫ .∫ . ∞ . d p φ(p) . 
N (θ, φ)δΩ = NbδΩ dr  .   e

ipr/h̄
 f (p → pr̂). . (12.54) 

r . (2πh̄)3/2 . 

So long as the scattering amplitude is reasonably smooth, the collimation 
of  the  beam  allows  us  to  replace  f (p  →  pr̂)  by  its  value  at  the  average 
momentum f (p̄  → p̄r̂), which gives 

∫ 

N (θ, φ)δΩ = NbδΩ|f (p̄  → p̄r̂)|2 

 d3p d3p′ ∫ ∞ 

(2πh̄)3    φ(p)φ  (p ) 

 

dr ei(p−p′)r/h̄ . 

(12.55) 
Explicitly writing the incoming particle’s momentum in terms of the average 
momentum p̄  of the beam and its  deviation δp from this  value, we find 

√   
 

 
p = (p̄ + δp) · (p̄ + δp) ≃ p̄    1 + 

  
p̄ · δp 

p̄2 
= p̄  + p̄̂ · δp, (12.56) 

so the argument of the exponential in equation (12.55) involves 

(p − p′) ≃ (δp − δp′) · p̂̄  = (δpǁ − δp′ ) = (pǁ − p′ ). (12.57) 
 

Since r > r0 is very large, the phase of this exponential oscillates rapidly, so 
again the integral is dominated by contributions for which p = p′ 

ǁ giving 

N (θ, φ)δΩ ≃ Nb δΩ|f (p̄  → p̄r̂)|2 

= nin|f (p̄  → p̄r̂)|2δΩ, 

∫  
d

3
pd

3
p′ 

 
 

(2πh̄)2 
φ(p)φ∗(p′)δ(pǁ − p′ ) 

 
 

(12.58) 

 

where we have used equation (12.52). 
Combining this with the definition (12.48) of the differential cross-section, 

we find dς/dΩ for scattering from momentum p (now relabelled) into a dif- 
ferent momentum p′ of the same magnitude:5 

dς 
= |f (p → p′)|2, (12.59) 

where  p̂′  points  towards  the  centre  of  the  element  of  solid  angle  dΩ.   The 
total scattering cross-section is 

∫ 
ςtot = dΩ |f (p → p′)|2. (12.60) 

 
 

5 Our language here is loose: neither the incoming nor the outgoing states are strictly 
states of well-defined momentum. 

− 

2 

r0 



→ − 

. 

− 

§ 

§ 

| | 

12.3 Cross-sections & experiments 269 

The two remarkably simple formulae (12.59) and (12.60) form crucial 
links between experiment and theory. If the scattering potential is sufficiently 
weak that the Born approximation is valid, equation (12.32) tells us that the 
scattering amplitude  is  f (p p′) = 4π

2
 

cross-section is 
m⟨p′|V |p⟩, and the differential 

. dς  
= (4π

2
h̄m)

2
|⟨p′|V |p⟩|2  = 

.    m
 

∫ 
d3x e−iq·x/h̄ 

. 

. 
V (x). , 

 

(12.61) 
dΩ . 2πh̄

2
 . 

 

where q  = p′ p. The integral in equation (12.61) is just the Fourier 

transform Ṽ (q)  of the potential, so the equation can be rewritten 
 

dς m
2
 

dΩ  
=  

4π2h̄4 P (q), (12.62) 

where P (q) =  Ṽ (q) 
2
 is the power spectrum of V (x).  Thus, by measuring 

the number of particles that are scattered into a given direction, we can 
determine the power spectrum of the interaction potential. 

If we could complement this information by measuring the phases of the 
Fourier transform, we could reconstruct V (x) from the scattering data. The 
obvious way to measure the phases is to observe interference between the 
scattered and incident amplitudes – interference of this type is what gener- 
ates holograms, from which the three-dimensional structure of the scattering 
object can be reconstructed. A high-energy accelerator does not produce 
sufficiently pure quantum states (in the sense of 6.3) for interference be- 
tween the incident and scattered amplitudes to be observable. Moreover, in 
realistic circumstances, experiments in which this interference was observed 
would be  of limited interest because in reality the potential V (x)  fluctuates 
in time. For example, in 12.4 below we discuss scattering of electrons by 
atoms, and in this case the electrostatic potential V varies in time as the 
electrons that partly generate it whizz about the atom.  These internal mo- 

tions cause rapid variability in the phases of Ṽ (q), while affecting the power 
spectrum of V to a much smaller extent: the latter depends on the number 
and structure of the lumps associated with the electrons and nucleus, rather 
than on their locations. Thus scattering experiments enable us to unveil as 
much of the structure of matter as we are in practice interested in. For this 
reason they are one of the most powerful tools we can deploy in our efforts 
to understand nature. 

 
 

12.3.1 The optical theorem 

The simple connection between the power spectrum of V (x) and the scatter- 
ing cross-section established above relies on the Born approximation. This 
approximation is certainly not always valid, so it is interesting to see what 
we can say about cross-sections in general. 

From equation (12.8) we have that 

∫ 

T + T † = −T †T = − d
3
p′′ T †|p′′⟩⟨p′′|T . (12.63) 

 

Squeezing this equation between ⟨p′| and |p⟩ and using equation (12.39), we 
find that the scattering amplitude f (p → p′) satisfies 

} 
δ(Ep − Ep′ )

∫
f (p → p′) − f ∗(p′ → p) 

i 
= 

2πh̄m 
d3p′′ δ(Ep′′  − Ep′ )f ∗(p′ → p′′ ) δ(Ep′′  − Ep)f (p → p′′). 

(12.64) 

2 
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Figure 12.2 The differential cross-section for neutron-proton scattering at two values of 
the centre-of-mass energy. Data obtained from M. Kreisler et. al., Phys. Rev. Lett., 16, 
1217, (1966). The diffraction peak at θ = 0 can be understood in terms of the optical 
theorem. 

 
The second delta function in the integral ensures that Ep′′ = Ep, so we can 
replace the first delta function by δ(Ep Ep′ ), and then bring it outside the 
integral since it no longer depends on p′′. Then we have 

∫ 

f (p → p′)−f ∗(p′ 
i 

→ p) =  
2πh̄m 

d3p′′ δ(Ep′′ −Ep)f ∗(p′ → p′′ )f (p → p′′). 

(12.65) 
When p′ = p (equal directions as well as magnitudes), the left side becomes 
f (p    p)    f ∗(p    p) = 2i   mf (p    p) and, after changing variables in the 
delta function to obtain δ(Ep′′ Ep) = (m/p′′) δ(p′′ p), equation (12.65) 
reduces to 

  1 
∫
 

ℑmf (p → p) = d
3
p′′ 

 1 
δ(p − p′′)f ∗(p → p′′)f (p → p′′) 

4πh̄ 
∫
 

  p 
= 

4πh̄ 

p′′ 

dΩ |f (p → p′′)|2. 

(12.66) 

 

In this last expression we recognise from equation (12.60) the total cross- 
section for scattering from a state of initial momentum p. We have derived 
the relation 

ςtot(p) = 
4πh̄ 

p  
ℑmf (p → p). (12.67) 

This equation is known as the optical theorem, and relates the total cross- 
section to the imaginary part of the scattering amplitude in the forward 
direction.ΣIt  is  at  heart  a  re-expression  of  equation  (12.9)  with  an  identity 
operator |ψi⟩⟨ψi| inserted  after  T †   on  the  right.   The  forward  scattering 
gives the probability a particle is removed from the original beam, and this is 
associated with the total probability the particle is deflected into some other 
direction. 

When neutrons are scattered from protons, the differential cross-section 
has a peak in the forward direction, as shown in Figure 12.2. As the centre- 
of-mass energy is raised, this peak increases in height and decreases in width. 
This behaviour is explained by the optical theorem. Experimentally, the total 
cross-section becomes roughly constant as p . Equation (12.67) then 
implies that mf (p  p) rises roughly in proportion to p, so from equation 
(12.59) the differential cross-section in the forward direction grows at least 
as fast as p

2
. Convers∫ely, since |f (p → p′)|2  is necessarily positive, the total 

cross section ςtot = dΩ |f (p  → p′)|2   is never less than  the cross-section 
for scattering into any solid angle ∆Ω < 4π. Choosing ∆Ω to be the region 
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around the forward direction in which  |f (p → p′)|2  is  falling  from  its  peak 
at p′ = p, but still greater than 

1
 |f (p → p)|2, gives 

∫ 
ςtot ≥ dΩ |f (p → p′)|2 ≥ 1 ∆Ω|f (p → p)|2 ≥ 1 ∆Ω|ℑmf (p → p)|2. 

2 2 
∆Ω 

(12.68) 
Hence, from the optical theorem, the FWhM of the peak around the forward 
direction is bounded by 

32π
2
 

∆Ω 2 
tot 

(12.69) 

and therefore shrinks as p−2
 as p . This diffraction peak is familiar 

from optics: collimated light can be diffracted by two slits, and the resulting 
intensity in the Fraunhofer region is peaked in the forward direction, with a 
FWhM that shrinks as the frequency of the light is increased. 

 
 

12.4 Scattering electrons off hydrogen 
We now apply our scattering formalism to a physical problem, namely scat- 
tering of electrons by a hydrogen atom that is in its ground state   1, 0, 0 
( 8.1). Taking the proton to be a pointlike object at the centre of the atom, 
the atom’s charge distribution is 

ρ(r) = eδ
3
(r) − e |⟨r|1, 0, 0⟩|

2 
. (12.70) 

From  8.1.2 we have that r 1, 0, 0 
2
 = e−2r/a

0 /πa
3
 where a0 is the Bohr 

radius (eq. 8.15b).  Hence, the atom is the source of an electric field E = 
−∇Φ, where 

 
Φ(r) = 

∫ 
1 

 
 

4πǫ0 
d3r′     ρ(r′)  

=
 

|r − r′| 

 

e 
 

 

4πǫ0r 

∫ 
e 

— 
4πǫ0πa

3
 

′ 

 
′ 

0 

d r      
|r − r′| 

 

 
(12.71) 

e 2e 
 

 

′ r′2 sin θ e−2r /a0 
 

 

= 
4πǫ r 

− 
4πa

3
ǫ 

dr dθ 
(r2 + r′2 − 2rr′ cos θ)1/2 

.
 

The integral differs only trivially from that evaluated in Box 10.1. Adapting 
the result obtained there we conclude that 

e 1 1 
Φ(r) = + e−2r/a0 . (12.72) 

4πǫ0 r a0 
 

Notice how the ground-state electron shields the pure 1/r Coulomb potential 
of the proton, causing the overall potential to decline exponentially at large 
distances. This potential will scatter a passing charged particle such as an 
electron. It will turn out that our calculations only apply to electrons that 
have enough energy to excite or even ionise the atom. Never the less, we 
shall consider only the case of elastic scattering, in which the atom remains 
throughout in its ground state. 

Equation (12.61) gives the Born approximation for the differential cross 
section in terms of the Fourier transform of the interaction potential V (r) = 
eΦ(r). By equation (12.72) V is a function of distance r only, and for any 

such function it is straightforward to show that 

∫ 

d3r e−iq·r/h̄ V (r) = − 
4πh̄  

∫ ∞
 

dr r sin 
  qr   
 

 

 
V (r). (12.73) 

q 0 h̄ 

Substituting for V (r) = −eΦ(r) from equation (12.72) we find 
∫ 

4πh̄
2
    8 + (qa  /h̄)

2
 

d
3
r e−iq·r/h̄

V (r) =    
0
  . (12.74) 

me   (4 + (qa0/h̄)2)2 

∫ 
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Figure 12.3 Trigonometry of the 

q isosceles triangle tells us the mag- 
nitude of momentum transfer, since 
|p′| = |p|. 

 
 

Plugging this result into equation (12.61), we have finally 
 

dς 
= 4a

2
 

dΩ 

   
8 + (qa  /h̄)

2
   
 2

 

(4 + (qa0/h̄)2)2 

 
 

. (12.75) 

 

Now q =  p′ p = 2p sin(θ/2) (see Figure 12.3), so q is smallest and the 
cross-section is greatest for forward scattering (θ = 0). Quantitatively, 

. 

 dς . 

dΩ.
θ=0 

=   a
2
, (12.76) 

 

independent of the incoming electron’s energy. When the electron’s mo- 
mentum is large, the cross-section drops sharply as we move away from the 
forward direction. This behaviour is in rough agreement with the optical 
theorem, although we should not expect equation (12.67) to hold exactly 
because we have used the Born approximation. 

We now check the validity of the Born approximation. The potential 
of equation (12.72) has a characteristic range a0. When an electron with 
momentum  ∼ p̄  is  aimed  at  the  atom,  it  is  within  this  range  for  a  time  of 
order  δt ≃ a0m/p̄.  Averaged  over  that  time,  the  potential  it  experiences  is 
of order      ∫ 

 1  
V  ≡ 

a3 

2 e
2
 

dr r  V (r) = − 
8πǫ a   

= −R, (12.77) 

where we have used the definition (8.15b) of a0 and is the Rydberg constant 
(eq. 8.26). From the TdSE the fractional change that V  effects in its ket 
during  this  interval  is  of  order  δ ψ  / ψ          V δt/h̄.    We  expect  the  Born 
approximation to be is valid if this fractional change is small, that is, provided 

     √   

1 ≫ 
a0m |V | 

= 
   Rme/2 

. (12.78) 

Hence the inequality holds for electrons with energies 
 

p̄
2
 

 

 

2me 
≫ 4 R. (12.79) 

 

Since 13.6 eV,   while the   rest-mass energy of the   electron is mec
2
 

511 keV, there is a wide range of energy that is high enough for the Born 
approximation to be valid, yet small enough for the electron to be non- 
relativistic. In Figure 12.4 we plot the experimentally measured differential 
cross section alongside our estimate (12.75) from the Born approximation 
for three electron energies: 4.9, 30 and 680 eV. At the lowest energy the 
Born approximation is  useless.   At  30 eV 2 the approximation works 
moderately well for back-scattering but seriously underpredicts the cross 
section for forward scattering. At 680 eV the approximation works well for 
all scattering angles. 
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Figure  12.4  Elastic  e−H  scattering  at  electron  kinetic  energies  E  = 4.9,  30  and  680 eV. 
The curves show the predictions of the Born approximation (eq. 12.75) while the points 
show experimental data from J.F. Williams, J. Phys. B, 8 no. 13 (1975). The accuracy of 
the Born approximation increases with energy. 

 

12.5 Partial wave expansions 

In 12.2 we introduced the S-matrix by squeezing the scattering operator 
between states p of definite momentum. This allowed us to evaluate the 
action of the free evolution operators UK(τ ), because    p     is a complete set 
of eigenstates of HK. In 7.2.5 we saw that states E, l, m of definite angular 
momentum also form a complete set of eigenstates  of HK,  so we could just 

as well consider the matrix ⟨E′, l′, m′|S|E, l, m⟩. 
From equation (12.37) we have that [HK, S]  =  0,  from  which  it  fol- 

lows that ⟨E′, l′, m′|S|E, l, m⟩ vanishes unless E′ = E. Also, if the scatter- 
ing potential is spherically symmetric, it follows from the work of §4.2 that 
[L, S] = 0, so 

 

[Lz, S] = 0 ; [L±, S] = 0   ; [L
2
, S] = 0. (12.80) 

From the first and last of these commutators it follows that  E′, l′, m′ E, l, m 
vanishes unless m′ = m and l′ = l. Moreover, the second commutator implies 
that6 

 

0 = ⟨E, l, m|[S, L+]|E, l, m − 1⟩ 

∝ ⟨E, l, m|S|E, l, m⟩ − ⟨E, l, m − 1|S|E, l, m − 1⟩, 

 

(12.81) 

 

so  not  only is  diagonal in  the  E, l, m  basis,  but  E, l, m  E, l, m   is 
actually independent of m. We can summarise these constraints on the S- 
matrix of a spherically symmetric potential by writing 

 

⟨E′, l′, m′|S|E, l, m⟩ = δ(E − E′)δl′ lδm′m sl(E), (12.82) 

where sl(E) is a number that depends on E and l. Finally, since the S-matrix 
is unitary, sl(E), must have unit modulus, so 

⟨E′, l′, m′|S|E, l, m⟩ = δ(E − E ′)δl′ lδm′ m e
2iδl(E), (12.83) 

where all the remaining information is contained in the real phase shifts 
δl(E). This reduction of the whole scattering process to a mere set of phases 
makes the angular-momentum basis invaluable for scattering problems. 

Equation (12.83) implies that 
 

S|E, l, m⟩ = e
2iδl (E)|E, l, m⟩, (12.84) 

 

6 Recall from equations (7.15) that α+(m − 1) = α−(m). 
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l 

Box 12.1: The  amplitude  ⟨p|E, l, m⟩ 

energy E and angular momentum will be found to have momentum p 
and energy p

2
/2M . Since the quantity we seek is the momentum-space 

wavefunction of a particle of well-defined angular momentum, we simply 

We require the amplitude ⟨p|E, l, m⟩ that a particle that has well-defined 

repeat the work of §7.2.3 in the momentum representation. We have 

Lz  =  
h̄ 

(pyx − pxy) = i 
1 

  

py 
∂p 

∂ 
  

— px ∂p
 

∂ 
, 

x y 

where the operators are written in the momentum representation.  We 
now introduce polar coordinates (p, ϑ, ϕ) for momentum space, and, in 
exact analogy to the derivation of equation (7.43), show that Lz = i∂/∂ϕ. 
This is simply minus the corresponding real-space result (7.43). It is easy 
to see that proceeding in this way we would obtain momentum-space 
representations of L± that differ from their real-space analogues (7.52) 

only in the substitutions θ → ϑ and φ → ϕ and an overall change of 
sign. Consequently the momentum-space wavefunction of a state of well 

l 

is as yet undetermined and the complex conjugate spherical harmonic is 
required because Lz  = +i∂/∂ϕ.   If we require E  to equal p

2
/2M ,  it is 

2 

defined angular momentum must be ψ(p) = g(p)Y
m∗(ϑ, ϕ), where g(p) 

determined by the normalization condition 
clear that g = Gδ(E − p /2M ).  The constant of proportionality, G, is 

δ(E − E′) = ⟨E, l, m|E′, l, lm⟩ 
∫ ∫ 

= G
2
 dp p

2
δ(E − p

2
/2M )δ(E′ − p

2
/2M ) dΩ|Y  | m 2 

l 

∫ 

= G
2
M 

√   

= G
2
M 

√
2ME δ(E − E′) = G

2
Mpδ(E − E′). 

Thus G = (Mp)−1/2
. 

dEp 2MEpδ(E  − Ep)δ(E′  − Ep) 
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so if prior to scattering the particle is in the state E, l, m , it will emerge from 
the scattering region in a state that differs only by the acquisition of an extra 
phase 2δl(E). This fact mirrors our finding in 5.3 that a one-dimensional 
scattering process is entirely determined by the phase shifts of the even- and 
odd-parity solutions to the TiSE – which are the one-dimensional analogues 
of states of well-defined angular momentum. 

The above discussion generalises straightforwardly to the case of parti- 
cles with non-zero spin, provided we replace the orbital angular momentum 
operator L with the total angular momentum operator J, and relabel the 
states and phase shifts accordingly. For simplicity, we will confine ourselves 
to scalar particles for the rest of this section. 

To relate the S-matrix in the form of equation (12.83) to experimental 
cross-sections, we must calculate the scattering amplitude f (p p′). Using 
equations (12.6) and (12.83) we obtain 

⟨p′|T |p⟩ = 
Σ ∫ 

l′lm′ m 

Σ 

dEdE′ ⟨p′|E′, l′, m′⟩⟨E′, l′, m′|T |E, l, m⟩⟨E, l, m|p⟩ 

= dE ⟨p′|E, l, m⟩⟨E, l, m|p⟩(e
2iδl(E)  − 1). 

lm 

 
 

(12.85) 
In Box 12.1 we show that 

⟨p|E, l, m⟩ = (Mp)−1/2
δ(E − Ep)Y

m∗(ϑ, ϕ), (12.86) 

where (ϑ, ϕ) are the polar coordinates of p. 
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If we align the z-axis with the beam direction, the initial state is un- 
changed  by  rotations  around  the  z-axis.   Equation  (7.38)  with  α =  ̂z  then 
tells  that  the  initial  state has  m = 0,  so   pẑ E, l, m   vanishes  unless  m = 0. 
Thus for a beam in this direction 

δ(Ep − E) 0 
 ⟨E, l, m|p⟩ = √

Mp 
δm0Yl (0). (12.87) 

 

In §7.2.3 we saw that Y
0
(ϑ) is a real l

th
-order polynomial in cos ϑ: 

 
Y

0
(ϑ) = 

r   
2l + 1 P (cos ϑ). (12.88) 

 

l
 4π 

l
 

 

We have, moreover, that Pl(1) = 1. Consequently, equation (12.87) yields 

s   
2l + 1 

⟨E, l, m|p⟩ = δ(Ep − E)δm0 . (12.89) 
4πMp 

 

Using equation (12.86) again to eliminate p′ E, l, m from equation (12.85), 
and then using equation (12.88) to eliminate Y

0
, we obtain 

Σ ∫ 

⟨p′|T |p⟩ = 
l 

  
dE ⟨p′|E, l, 0⟩⟨E, l, 0|p⟩  e

2iδl(Ep)  − 1 
∫ Σ 2l + 1 dE 

 
  

  ′ 2iδ (Ep ) 
= 

4πM 
l 

√ δ(E − Ep′ )δ(Ep − E)Pl(cos ϑ ) e    l − 1 

     i  = δ(E 
Σ 2l + 1 — E ′ )   ′ 2iδl(E)  − 

2πh̄M 
p
 p 

2ip   
h̄Pl(cos ϑ )  e 

l 

1 , 
 

(12.90) 
where ϑ′ is the angle between p and p′. Comparing this equation with the 
definition (12.39) of the scattering amplitude, we see finally that 

Σ 
f (p → p′) = (2l + 1)Pl(cos ϑ′)fl(Ep), (12.91a) 

l 
 

where the partial-wave amplitude is defined to be 
 

fl(E) ≡ h̄ 
e2iδl(E)  − 1 

2ip 
=  

h̄  
eiδl(E) 

p 

 

sin δl(E). (12.91b) 

 

The differential cross-section is just the mod square of the scattering 
amplitude, and because the spherical harmonics are orthonormal when inte- 
grated over all angles, the total cross-section is 

∫ 
ςtot = dΩ |f (p → p′)|2 

Σ √  
∫ 

= 4π (2l′ + 1)(2l + 1)fl′ (E)∗fl(E) dΩ Y
0
 (ϑ′)Y

0
(ϑ′) 

 

l′ l 

l′ l (12.92) 

= 4π 
Σ

(2l + 1)|f (E)|2  = 4πh̄
2
 
Σ 2l + 1 

sin
2
 δ (E). 

l 
p2 l 

l l 

Σ 
This equation is often written as ςtot = l ςl, where the partial cross- 
section of order l, 

 

2 2l + 1 2 

ς  ≡ 4π(2l + 1)|f (E)|  = 4π sin  δ (E), (12.93) 

′p p 
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is the cross-section for scattering a particle that has total squared angular 
momentum l(l + 1)h̄

2
.  Clearly, the partial cross-sections are restricted by 

 

0 ≤ ςl 
2 2l + 1 

≤ 4πh̄ 
p2      , (12.94) 

 

with ςl only vanishing when the phase shift δl = nπ. Notice from equations 
(12.91a) that 

Σ Σ 2l + 1 2 
ℑmf (p → p) = (2l + 1)Pl(1)ℑmfl(E) = 

l l 

h̄ sin 
p 

δl(E).  (12.95) 

 

Comparison of this with equation (12.92) shows that the optical theorem 
(12.67) is explicitly satisfied in this basis. This fact follows from conservation 
of angular momentum – we have treated the incoming beam as a superpo- 
sition of states of well-defined angular momentum; since the potential is 
spherically symmetric, it cannot change the particle’s angular momentum, 
so each state of well-defined angular momentum scatters separately, and does 
so in conformity with the optical theorem. 

In the classical picture of scattering, the angular momentum of a particle 
of energy p

2
/2M is determined by its impact parameter b, which is the 

distance between the scattering centre and the straight line tangent to the 
incoming trajectory. Quantitatively, the angular momentum has magnitude 
L = bp. Large b corresponds to a glancing collision and a small scattering 
angle, while at small b the encounter is nearly head-on and the particle is 
liable to back-scatter. Thus we expect the differential cross section fl(p 
p′) to be largest for ϑ′    0 when l is large, and for ϑ′    π to be largest when 
l 0. The partial cross section ςl is expected to decrease as l, and therefore 
b, increases. 

 
 

12.5.1 Scattering at low energy 

At low energy, p is small and for l > 0 the classical impact parameter b = L/p 
becomes large. Hence we expect low-energy scattering to be dominated by 
the partial wave with l = 0. In this subsection we show that this naive 
expectation is borne out by our quantum-mechanical formulae. 

To discover how a given particle is actually scattered, we must relate 
the phase shifts δl(E) to the scattering potential V (r).  Since the free state 

2 
E, l, m   is an eigenstate of HK, L    and Lz, from equation (7.70) it follows 

that7 

1 ∂ r
2
 
∂ 

⟨r|E, l, m⟩ = l(l + 1) 2mE 
− ⟨r|E, l, m⟩. (12.96) 

r2 ∂r ∂r r
2
 h̄

2
 

 

When l = 0, the angular momentum term dominates the right side near 
the  origin, and one  can easily show that   r E, l, m       r

l
  for small r  (Prob- 

lem 12.8). Consequently, there is only a very small probability of finding a 
particle that has high angular momentum near the origin. This reasoning 
breaks down when the second term on the right side becomes important. For 
energy E  = p

2
/2m this  occurs  at  r      lh̄/p,  which  for  large l  coincides  with 

the classical impact parameter. Suppose that the scattering potential acts 
over some characteristic length R, beyond which it is negligible – for exam- 
ple, in the case of the potential (12.72), R is of the order of a few Bohr radii. 
If R       lh̄/p, then  V (r)  is only strong in a region where a  free wavefunction 
would be very small. In this case, the l

th
 partial wave will scarcely be af- 

fected, so δl    0. Roughly, the only states that suffer significant scattering 
are those  with  angular momenta  in  the  range lh̄ < pR,  so  for  low incoming 

7 In  fact,   r E, l, m   = jl(kr)Ym(θ, φ),  where  k = 
√

2ME/h̄ and  jl  is the  lth  spherical 
Bessel function, but we do not need this result here (see Problem 12.8). 
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momenta the total scattering amplitude can be well approximated by the 
first few terms in the infinite sum (12.91a). 

In fact, we can see quite generally that only the lowest l states make 
significant contributions to the low-energy cross-section. The scattering am- 
plitude f (p     p′) should be a smooth function of p and p′  as p, p′      0, 
because at low energies the incoming particle has a large wavelength and can- 
not resolve any sharp features in the potential. Since in equation (12.91a) 
Pl is an l

th
-order polynomial in cos ϑ = p′   p/p′p, we see that if f (p    p′) 

is to be an analytic function of the Cartesian components of p and p′ at low 
energies, the partial wave amplitude fl(E) must vanish with p at least as 
fast as 

lim 
p→0 

fl(E) ∼ (p′p)
l
 = p

2l
. (12.97) 

The total cross section (12.92) then behaves as 
Σ 

lim 
p→0 

ςtot = 4π a
2
p

4l
 (12.98) 

l 

in terms of some constants al, and can be well approximated by just the 
lowest few terms. In the extreme low energy limit, the only non-vanishing 
amplitude is f0(Ep → 0) = a0 and the differential cross section 

lim dς 2 ≃ a P = a
2
 (12.99) 

is isotropic. 

p→0  dΩ 0    0 0 

An eigenstate of the true Hamiltonian H with the same energy and 
angular-momentum quantum numbers as E, l, m has a radial wavefunction 
ul(r) that satisfies a version of equation (12.96) modified by the inclusion of 
a potential V (r). Writing ul(r) = Ul(r)/r we find 

where 

d
2
Ul(r) 

dr2 = − 
2mE 

h̄2     Ul(r) + Veff Ul(r), (12.100a) 

Veff(r) ≡ 
2mV (r) 

h̄
2
 

+
 

l(l + 1) 

r2 . (12.100b) 

For a general potential, we typically have to solve this equation numeri- 
cally, and then find the phase shifts by comparing our solution with equation 
(12.45) in the large r limit. However, we can obtain a heuristic understanding 
of the behaviour of the phase shift as follows. If the potential is attractive 
(V (r) < 0), Ul(r) will have a greater curvature, and hence oscillate more 
rapidly in the presence of V that it would have done if the particle were free. 
A potential with finite range R       lh̄/p only acts over a small part of a radial 
oscillation, so when V < 0, the wavefunction emerges from the interaction 
region slightly further along its cycle than a free wavefunction. On the other 
hand, when the potential is repulsive, Ul(r) has smaller curvature, so oscil- 
lates more slowly than a free wavefunction, emerging from the interaction 
region slightly behind. Equation (12.84) tells us that states emerge from the 
scattering process changed only in phase; we now see that the sign of the 
phase shift δl will typically be opposite to that of the potential. 

As the magnitude of V increases, so does the difference in oscillation 
rates between interacting and free eigenstates, and hence at fixed energy 
δl(E) likewise increases. When the potential is sufficiently strong, the in- 
teracting wavefunction can oscillate precisely half a cycle more (or less if 
V > 0) in the interaction region than it would do if the state were free, and 
then δl(E)  = π with the consequence that fl(E)  0.  In these circum- 
stances this angular-momentum state suffers no scattering at all. 

In 10.3, we saw that atoms of a noble gas such as argon are chemically 
inert because in their ground states they have spherically-symmetric distri- 
butions of electron charge, and they have no low-lying excited states that 
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Figure 12.5 An exponential attrac- 
tive force combined with centrifugal 
repulsion generates a minimum in 
the effective potential. 

 
 
 

can be mixed in by a perturbation to generate a less symmetrical charge dis- 
tribution. As a consequence, these atoms generate negligible electric fields 
beyond some limiting radius R a0 that contains nearly all the probability 
density of the outermost shell of electrons. At r R there is a significant 
electric field, and any particle that penetrates this region will be appreciably 
scattered, but particles that have larger impact parameters will be negligi- 
bly  scattered.  At  energies  low  enough  that  Rp       h̄,  scattering  from  states 
with l > 0 is negligible, while the considerations of the previous paragraph 
suggest that there could be an energy at which there is also no scattering 
from states with l = 0.  Then an electron is  not scattered at all.  Exactly 
this Ramsauer–Townsend effect was observed before the development of 
quantum mechanics8   when electrons of energy      0.7 eV were discovered to 
pass undeflected past noble-gas atoms. 

 
 

12.6 Resonant scattering 
Nuclear physics involves a combination of short- and long-range forces: the 
strong interaction that binds protons and neutrons into nuclei has only a 
short range, while the electrostatic repulsion between protons has a long 
range.   Figure 12.5 illustrates the fact that when a short-range attractive 
force is combined with a long-range repulsive force, the overall effective po- 
tential Veff of equation (12.100b) is likely to have a local minimum. In  5.3.3 
we studied scattering by a one-dimensional potential that contained such a 
potential well and demonstrated that a plot of the scattering cross-section 
versus energy would show sharp peaks at the energies that allow the particle 
to be trapped in the well for an extended period of time. The method of 
partial waves allows us to consider the physics of temporary entrapment in 
the much more realistic case of scattering in three dimensions. We shall find 
not only that the results of 5.3.3 largely carry over to realistic scattering 
potentials, but we are able to extend them to include a quantitative account 
of the delay between the particle reaching the  potential well and its  mak- 
ing  good its  escape.  Physicists have learnt much of  what is  known about 
the structure of both nuclei and baryons such as protons and neutrons by 
exploiting the connections between bound states and anomalous scattering 
cross sections that emerges from this section. 

Equation (12.46) gives the wavefunction at late times of a particle that 
was initially in the free state |φ⟩. It breaks the wavefunction into two parts. 
The first is a sum of plane waves φ(p)e

i(p·r−Et)/h̄
 .  If |φ(p)|2  has a well-defined 

peak  at  momentum  p̄,  from  §2.3.3  we  know that  the  amplitude  of  this  first 
contribution peaks  on the  plane p̂̄ · r = p̄t/m.  To  determine the  location at 

 

8 C. Ramsauer, Ann. Physik, 4, 64 (1921); V.A. Bailey & J.S. Townsend, Phil. Mag., 
42, 873 (1921). 
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which the amplitude of the second part peaks, we observe that as t , 
the phase of the exponential in equation (12.46) varies extremely rapidly 
as a function of momentum, causing the sign of the integrand to oscillate 
quickly. If φ(p) is a smooth function, the integral will be dominated by the 
contribution from momenta at which the phase is stationary. To find these 
points,  we  must  take  into  account  the  phase  of  f (p        pr̂).   By  equations 
(12.91),  the  scattering  amplitude  for  each partial  wave is  real  except  for 
a  factor  e

iδ
l(Ep ).   Hence  the  dominant  contribution  to  the  second  term  in 

equation (12.46) arises when 

∂ p ∂ 

∂p 
{pr − Ept + h̄δl(Ep)} = 0 i.e. when    r =  

m
t − h̄ 

∂p
δl(Ep).    (12.101) 

We see that if the phase shift δl(Ep) increases sharply for momenta near the 
average momentum of the initial state, the amplitude of the wave will be 
concentrated at a smaller radius than the incoming wave would have been. 
Consequently, there will be two distinct peaks in the probability of a particle 
reaching a detector at some distance from the scattering centre. The first 
is associated with the possibility that the particle misses its target, and the 
second with the possibility that it hits and is temporarily trapped by it 
before making good its escape. Thus unstable bound states are associated 
with rapid increases with Ep in the phase shift of the scattered particle. This 
conclusion mirrors our finding in  5.3.3 that temporary trapping of particles 
by a one-dimensional well is associated with rapid variations with energy in 
the phases φ and φ′ of the states of well-defined parity. 

We can model a dramatic increase of δl(E) by postulating that, for 
energy near some value ER, the phase shift behaves as 

δl(E) ≃ tan−1
 

  −Γ/2   

E − ER 

 
, (12.102) 

where the fixed energy scale Γ is included to ensure that the argument of the 
inverse tangent is dimensionless, and must be positive if we want ∂δl/∂p > 0. 
In this model the phase shift rapidly increases by π as the energy increases 
through ER. Using the model in equation (12.101), we find that the time 
delay between the two peaks in the probability density of the particle hitting 
a given detector is 

mh̄  ∂ mh̄ ∂E   ∂ ∆t = δ (E) = 
 

 
tan−1

 −Γ/2 
 

 

p ∂p  
l
 p    ∂p ∂E 

h̄Γ/2 
E − ER 

(12.103) 
= 

(E − ER )2 + (Γ/2)2 
.
 

We infer from this delay that the lifetime of the quasi-bound state is h̄/Γ in 
agreement with the much less rigorous conclusion that we reached in 5.3.3. 

Calculating Γ for a physically realistic potential usually requires numer- 
ical analysis. However, since the lifetime of the quasi-bound state increases 
as Γ decreases, we anticipate that smaller values of Γ correspond to deeper 
minima in the potential: a deeper well traps the particle for longer. The 
limiting case Γ     0

+
 implies that the delay in emergence becomes infinite. 

We interpret this to mean that the dip in V is just deep enough to genuinely 
bind an incoming particle. 

If V is so deep that there is a state  that  has a strictly negative energy, 
the final state may not resemble the initial free state. For example, the 
incoming particle may get trapped for good in the potential, or it may knock 
out another particle that is already trapped (as in ionisation of an atom). 
In such cases, the scattering is said to be inelastic and the methods of this 
chapter must be extended9 . 

9 The difficulty is not too severe. True bound states have energy E < 0 whereas all 
free states must have energy E ≥ 0. Hence, if |b⟩  is bound and |φ⟩  is free, ⟨ b|φ⟩  = 0 
so H acts on a larger Hilbert space than does HK. Including these extra states carefully 
allows us to treat bound states. (See also Problem 12.6.) 
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Returning to the case Γ > 0, we now investigate how the cross-section is 
affected by the delayed emergence of our particle. From equations (12.6) and 
(12.46) the wavefunction of the scattered particle in the asymptotic future is 

 
⟨r|T |φ; t⟩ = 

∫ 
d

3
p 

(2πh̄)3/2 
φ(p)

 

 

ei(pr−Et)/h̄ 

r 
f (p → pr̂) 

Σ 
= (2l + 1) 

l 

∫ 
d

3
p 

(2πh̄)3/2 
φ(p)

 

ei(pr−Et)/h̄ 

r 
Pl(p̂ · ̂r)fl(E), 

(12.104) 
where the second line uses equation (12.91a) to relate f (p p′) to the partial-
wave amplitudes fl(E). To derive the cross-section (12.59), we as- sumed 
that the scattering amplitudes are more slowly varying functions of p than 
the wavepacket φ(p) – see the discussion after equation (12.54).  In the 
presence of a resonance, this approximation may break down. Indeed, when 
one of the phase shifts δl(E) has the form of equation (12.102), from 
equation (12.91b) the corresponding partial wave amplitude is 

 

f (E) ≡ 
h̄  

e
iδl(E) sin δ (E) = − 

h̄ Γ/2  
, (12.105) 

l 
p 

l 
p E − ER + iΓ/2 

 

and for small Γ this varies rapidly when E ER. We assume that the 
incoming wavepacket φ(p) contains states  p  that are restricted in energy to 
a range of width ∆ and consider first the case ∆  Γ in which the resonance 
is broader than the uncertainty in the energy of the incoming particle. 

 

 
12.6.1 Breit–Wigner resonances 

If ∆ ≪ Γ, then  fl(E) varies slowly  with  energy in  comparison to  φ(p), 
and equation (12.93) for the partial cross-sections ςl applies. Again using 
equation (12.102), we have (cf. eq. 5.64a) 

 

ςl(E) = 4π(2l + 1)|fl|
2  ≃ 

4πh̄
2
 

p2 

(2l +  1)(Γ/2)
2
 

(E − ER)2 + (Γ/2)2 

 

. (12.106) 

 

A peak in the cross-section that follows this famous formula is said arise 
from a pure Breit–Wigner resonance.  Breit–Wigner resonances are eas- 
ily detected in plots of a cross-section versus energy and are the experimental 
signature of quasi-bound states in the scattering potential. Figure 12.6 is a 
plot of equation (12.106). Notice that the energy dependence is a combi- 
nation of the slow decline with E associated with the factor p−2

 and the 
peak that arises from the Lorentzian final factor – such factors are familiar 
from the theory of a damped harmonic oscillator (Box 5.1).  If Γ   ER, 
the factor p−2

 changes very little over the width of the bump, and the res- 
onance curve falls to half its maximum height when E  ER   Γ/2. Thus 
the  resonance  lifetime  h̄/Γ  can  be  determined  from  the  FWhM  of  the  peak 
in the cross-section. This result explains why we needed to restrict ourselves 
to superpositions with ∆ Γ: in order to resolve the Breit–Wigner curve 
experimentally, there had better be a good chance that our particle’s energy 
lies within Γ of ER, where all the action lies. 

 

 
12.6.2 Radioactive decay 

The width Γ of a very long-lived resonance may be so small that our experi- 
mental apparatus cannot generate incoming particles with sufficiently small 
uncertainty ∆ in the energy to resolve the curve of Figure 12.6. Then, using 
equation (12.86), we expand the momentum amplitudes φ(p) of the initial 
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Figure 12.6 The Breit–Wigner formula for a scattering cross section in the presence of a 
resonance.  Here  ER  = 10Γ  and  the  cross  section  is  normalised  by  s ≡ 2(2l + 1)h̄2/mΓ. 

 

state as  

Σ ∫ 
φ(p) = 

lm 

Σ 

 
dE′ ⟨p|E′, l, m⟩⟨E′, l, m|φ⟩ 

⟨E, l, m|φ⟩ p 
 

 

 
 
 
 

(12.107) 

= Y
m∗(p̂) 

lm 
√

Mp 
, where   E ≡ 

2M 
. 

Suppose for simplicity that, near some energy ER, only one partial wave 
amplitude has the  form of equation (12.105),  the  others all being negligi- 
ble by comparison. Then, ignoring any angular dependence, the final-state 
wavefunction (12.104) of the scattered particle contains a factor 

∫ 
p2 ⟨E, l, m|φ⟩ Γh̄ ei(pr−Et)/h̄ 

⟨r|T |φ; t⟩ ∝ 
dp 

(2πh̄)3/2     (Mp)1/2 2pr E − ER + iΓ/2 

  ∫ s   
∞    i(pr−Et)/h̄ 

(12.108) 

= 
2r   0 (2πh̄)3/2 p 

⟨E, l, m|φ⟩ 
E − E

 . 
+ iΓ/2 

 

If the initial state |φ⟩ has average energy around ⟨HK⟩ ≃ ER, but is a super- 
position of states with different energies, smooth over a range ∆ ≫ Γ, we may 

approximate p−1/2
 E, l, m φ by its value at resonance, p−1/2

 ER, l, m  φ  and 
bring it outside the integral. Similarly, near resonance we approximate p by 

p ≃ p  dp + (E − E 
 
) = p + 

E − ER 
, (12.109) 

R
 dE 

where vR = pR/M , so 

R R 
vR

 

 

ei(pr−Et)/h̄  ≃ ei(pR r−ERt)/h̄ ei(E−ER)(r/vR−t)/h̄ . (12.110) 

Substituting these approximations into equation (12.108), we find 
 

Γh̄ ⟨ER , l, m|φ⟩ ei(pR r−ERt)/h̄  ∫ ∞ ei(E−ER)(r/vR−t)/h̄ 
 

 ⟨r|T |φ; t⟩ ∼ 
2v1/2 (2π )3/2 

dE 
r 0 E − ER 

. 
+ iΓ/2 

(12.111) 
The remaining integral can be done by contour integration. Since the denom- 
inator is large except near E = ER, we can extend the range of integration 
to < E < , without drastically affecting the integral.  If r > vRt, we 
close the contour in the upper half complex E plane. Since the only pole is 
in the lower half-plane, the integral evaluates to zero. If r < vRt, we close 

R 

Γh̄ 

2 



2 

≃ 
′ 

≃ 

|⟨ |  | ⟩| 

⟨ |S| ⟩ ⟨ | ⟩ ⟨ |T | ⟩ 

   R   e−Γ(t−r/vR)/h̄ 
2 
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the contour in the lower half-plane.  Evaluating the residue of the pole at 
E = ER − iΓ/2, we conclude that 

 

⟨r|T |φ; t⟩ ∼ 
iΓ 

2(2πh̄vR)1/2 
⟨ER, l, m|φ⟩ 

ei(pRr−ERt)/h̄ 
 

 

r 
e−Γ(t−r/vR 

 
)/2h̄ 

 

. (12.112) 

 

Consequently, 

 
 

 
 

0 if r > vRt 

|⟨r|T |φ; t⟩| ∼ 
2 

Γ |⟨E , l, m|φ⟩| (12.113) 

8πh̄vR r2 
 

The physical interpretation of this equation is the following. The probability 
density r T φ; t 

2
 is zero before time t′ = r/vR because the particle travels 

radially outwards at speed vR. Subsequently, the probability of finding the 
particle anywhere on a sphere of radius r decays exponentially as e−Γ(t−t

 
)/h̄

 . 
This result provides a remarkable explanation of the law of radioactive 

decay: we interpret the emission of a neutron by an unstable nucleus as the 
endpoint of a scattering experiment that started months earlier in a nuclear 
reactor, where the nucleus was created by absorption of a neutron. More 
dramatic is the case of 

238
U, which decays via emission of an α-particle to 

234
Th  with  a  mean  life  ̄h/Γ  6.4 Gyr.  Because Γ/h̄  is  tiny,  the  probability 

(12.113) is nearly constant over huge periods of time. Our formalism tells 
us that if we were to scatter α-particles off 

234
Th, they would all eventually 

re-emerge, but only after a delay that often exceeds the age of the universe! 
Thus 

238
U is really a long-lived resonance of the (α,

234
 Th) system, rather 

than  a  stationary  state.    It  is  only  because  the  timescale  h̄/Γ  is  so  long 
that we speak of 

238
U rather than a resonance in the (α, 

234
Th) system. In 

fact, 
234

Th is itself a resonance, ultimately of Pb. The longevity of 
238

U is 
inevitably associated with a very small probability that 

238
U will be formed 

when we shoot an α-particle at a 
234

Th nucleus. To see this notice that 
the final-state wavefunction r  φ; t  =  r φ; t  +  r φ; t , also involves an 
unscattered piece. On account of the smallness of Γ, the ratio of probabilities 

 

Prob(α is trapped) Γ
2
m 2 

 
 

Prob(α unscattered) 
≈

 p   
|⟨ER, l, m|φ⟩| (12.114) 

is extremely small. Hence it is exceptionally difficult to form 
238

U by firing α- 
particles at 

234
Th nuclei. Naturally occurring 

238
U was formed in supernovae, 

where the flux of α-particles and neutrons was large enough to overcome this 
suppression. 

 

Problems 

12.1 Show that the operators Ω̃±   defined by equation (12.23) obey 

HΩ̃±  = Ω̃±(HK ± iǫ) ∓ iǫ. (12.115) 

 
12.2 Obtain the first and second order contributions to the S-matrix from 
the Feynman rules given in §12.3. 

12.3 Derive the Lippmann–Schwinger equation 
 

1 
|±⟩ = |E⟩ + 

E − H
 ± iǫ 

V |±⟩, (12.116) 

 

where |±⟩ are in and out states of energy E and |E⟩ is a free-particle state of 
the same energy. In the case that the potential V = V0|χ⟩⟨χ| for some state 
|χ⟩ and constant V0, solve the Lippmann–Schwinger equation to find ⟨χ|±⟩. 

K 

otherwise. 

R 
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12.4 A certain potential V (r) falls as r−n
  at large distances.  Show that 

the Born approximation to the total cross-section is finite only if n > 2. Is 
this a problem with the Born approximation? 

12.5 Compute the differential cross section in the Born approximation for 
the potential V (r) = V0 exp(−r

2
/2r

2
). For what energies is the Born ap- 

proximation justified? 

12.6 When an electron scatters off an atom, the atom may be excited (or 
even ionised). Consider an electron scattering off a hydrogen atom. The 
Hamiltonian may be written as H = H0 + H1 where 

 p̂
2
 

H = 
2m 

e2 
 

 

4πǫ0r1 

 p̂
2
 

+ 
2m 

 
(12.117) 

is the Hamiltonian of the hydrogen atom (whose electron is described by co- 
ordinate r1) together with the kinetic Hamiltonian of the scattering electron 
(coordinate r2), and 

    
e

2
 1 1 

H1 = 
4πǫ |r − r | 

− 
r 

(12.118) 

is the interaction of the scattering electron with the atom. 
By using H0 in the evolution operators, show that in the Born approx- 

imation the amplitude for a collision to scatter the electron from momen- 
tum  p2  to  p′

2 

|n′, l′, m′⟩ is 
whilst exciting the atom from the state |n, l, m⟩ to the state 

f (p2; n, l, m →
∫
 p′

2; n′, l′, m′) 

4π
2
h̄m 

 
 

3 3 −iq ·r ′    ′ ′ 

= − 
(2πh̄)3 

d r1d r2 e 2    2 ⟨n , l , m |r1⟩⟨r1|n, l, m⟩H1(r1, r2), 

(12.119) 
where q2 is the momentum transferred to the scattering electron.  (Neglect 

the possibility that the two electrons exchange places. You may wish to 
perform the d

3
r1 integral by including a factor e−αr

1   and then letting α 0.) 
Compute the differential cross-section for the   1, 0, 0 2, 0, 0 transi- 

tion and show that at high energies it falls as cosec
12

(θ/2). 

12.7 Use the optical theorem to show that the first Born approximation is 
not valid for forward scattering. 

12.8 A particle scatters off a hard sphere, described by the potential 
, 

V (r) = for  r a 
0 otherwise. 

(12.120) 

By considering the form of the radial wavefunction u(r) in the region r > a, 
sh ow that the phase shifts are given by tan δl = jl(ka)/nl(ka), where k = 

2mE/h̄ and jl(kr) and nl(kr) are spherical Bessel functions and Neumann 
functions, which are the two independent solutions of the second-order radial 
equation 

 

1  d d 
r

2
 u(r) = 

l(l + 1) 2mE 
− 

 
u(r). (12.121) 

r2 dr dr r2 h̄
2
 

 

In the limit kr → 0, show that these functions behave as 
 

(kr)
l
 2l − 1 

 
 

jl(kr) → 
2l + 1 

nl(kr) → − 
(kr)l+1   

. (12.122) 

Use this to show that in the low-energy limit, the scattering is spherically 
symmetric and the total cross-section is four times the classical value. 

2 
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12.9 Show that in the Born approximation the phase shifts δl(E) for scat- 
tering off a spherical potential V (r) are given by 

∫ ∞ 

δl(E) ≃ −2mkh̄
2
 dr r

2
V (r) (jl(kr))

2
 . (12.123) 

 

When is the approximation valid? 

12.10 Two α-particles collide. Show that when the α-particles  initially 
have equal and opposite momenta, the differential cross-section is 

 

dς 
= |f (θ) + f (θ − π)|2. (12.124) 

Using the formula for f (θ) in terms of partial waves, show that the differential 
cross-section at θ = π/2 is twice what would be expected had the α-particles 
been distinguishable. 

A moving electron crashes into an electron that is initially at rest. As- 
suming both electrons are in the same spin state, show that the differential 
cross-section falls to zero at θ = π/4. 
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Appendices 
 
 

Appendix A: The laws of probability 

Events are frequently one-offs: Pretty Lady will run in the 4.20 at Sandown Park 
only once this year, and if she enters the race next year, her form and the field will 
be different. The probability that we want is for this year’s race. Sometimes events 
can be repeated, however. For example, there is no obvious difference between one 
throw of a die and the next throw, so it makes sense to assume that the probability 
of throwing a 5 is the same on each throw. When events can be repeated in this 
way we seek to assign probabilities in such a way that when we make a very large 
number N of trials, the number nA of trials in which event A occurs (for example 
5 comes up) satisfies 

nA ≃ pAN. (A.1) 

In any sequence of throws, the ratio nA/N will vary with N, while the probability 
pA does not. So the relation (A.1) is rarely an equality. The idea is that we should 
choose pA so that nA/N fluctuates in a smaller and smaller interval around pA as 
N is increased. 

Events can be logically combined to form composite events: if A is the event 
that a certain red die falls with 1 up, and B is the event that a white die falls 
with 5 up, AB is the event that when both dice are thrown, the red die shows 1 
and the white one shows 5. If the probability of A is pA and the probability of B 
is pB , then in a fraction ∼ pA of throws of the two dice the red die will show 1, 
and in a fraction ∼ pB of these throws, the white die will have 5 up. Hence the 
fraction of throws in which the event AB occurs is ∼ pApB so we should take the 
probability of AB to be pAB = pApB . In this example A and B are independent 
events because we see no reason why the number shown by the white die could 
be influenced by the number that happens to come up on the red one, and vice 
versa. The rule for combining the probabilities of independent events to get the 
probability of both events happening, is to multiply them: 

p(A and B) = p(A)p(B)   (independent events). (A.2) 

Since only one number can come up on a die in a given throw, the event A 
above excludes the event C that the red die shows 2; A and C are exclusive events. 
The probability that either a 1 or a 2 will show is obtained by adding pA  and pC . 
Thus, for classical probability 

p(A or C) = p(A) + p(C)    (exclusive events). (A.3) 

In the case of reproducible events, this rule is clearly consistent with the principle 
that the fraction of trials in which either A or C occurs should be the sum of the 
fractions of the trials in which one or the other occurs. If we throw our die, the 
number that will come up is certainly one of 1, 2, 3, 4, 5 or 6. So by the rule just 
given, the sum of the probabilities associated with each of these numbers coming 
up has to be unity.  Unless we know that the die is loaded, we assume that no 
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number is more likely to come up than another, so all six probabilities must be 
equal. Hence, they must all equal 

1
 . Generalising this example we have the rules 

 

N 

With just N mutually exclusive outcomes, pi = 1. 
i=1 

 
 

(A.4) 

If all outcomes are equally likely, pi = 1/N. 
 

Expectation values A random variable x is a quantity that we can measure 
and the value that we get is subject to uncertainty. Suppose for simplicity that 
only discrete values xi can be measured. In the case of a die, for example, x could 
be the number that comes up, so x has six possible values, x1 = 1 to x6 = 6. If pi 

is the probability that we shall measure xi, then the expectation value of x is 

⟨ x⟩  ≡ pixi. (A.5) 
i 

If the event is reproducible, it is easy to show that the average of the values that  
we measure on N  trials tends to ⟨ x⟩  as N  becomes very large.  Consequently, 
⟨ x⟩  is often referred to as the average of x. 

Suppose  we  have  two  random  variables,  x  and  y.   Let  pij   be  the  probability 
that our measurement returns xi for the value of x and yj for the value of y. Then 
the expectation of the sum x + y is 

⟨ x + y⟩  = 
Σ 

pij (xi  + yj ) = 
Σ 

pijxi  + 
Σ 

pijyj (A.6) 

But  p   is the probability that we measure x  regardless of what we measure 
for  y,  so  it  must  equal  pi.   Similarly       i pij   =  pj ,  the  probability  of  measuring  yj 

irrespective of what we get for x. Inserting these expressions in to (A.6) we find 

⟨ x + y⟩  = ⟨ x⟩  + ⟨ y⟩  . (A.7) 

That is, the expectation value of the sum of two random variables is the sum of 
the variables’ individual expectation values, regardless of whether the variables are 
independent or not. 

A useful measure of the amount by which the value of a random variable  
fluctuates from trial to trial is the variance of x: 

(x − ⟨ x⟩ )
2
   =  x

2
  − 2 ⟨ x ⟨ x⟩ ⟩  +  ⟨ x⟩

2
  , (A.8) 

where we have made use of equation (A.7). The expectation ⟨ x⟩  is not a random 

variable, but has a definite value.  Consequently ⟨ x ⟨ x⟩ ⟩  = ⟨ x⟩
2
  and    ⟨ x⟩

2
    = 

⟨ x⟩
2
, so the variance of x is related to the expectations of x and x

2
 by 

 
∆

2
 
  

≡ 
 
(x − ⟨ x⟩ )

2  
= 

 
x

2  
− ⟨ x⟩

2
 . (A.9) 

 
Appendix B: Cartesian tensors 

Vector notation is very powerful,  but sometimes  it is necessary  to step  outside 
it and work explicitly with the components of vectors. This is especially true in 
quantum mechanics, because when operators are in play we have less flexibility 
about the order in which we write symbols, and standard vector notation can be 
prescriptive about order. For example if we want p to operate on a but not b, 
we have to write b to the left of p and a on the right, but this requirement is  
incompatible with the vectorial requirements if the classical expression would be 
p × (a × b).   The techniques of Cartesian tensors resolve this kind of problem. 
Even in classical physics tensor notation enables us to use concepts that cannot be 
handled by vectors. In particular, it extends effortlessly to spaces with more than 
three dimensions, such as spacetime, which vector notation does only in a limited 
way. 

Instead of writing a, we write ai for the i
th

 component of the vector. Then 
a · b  becomes      i aibi.   When  a  subscript  is  used  twice  in  a  product,  as  i  is  here, 
it is generally summed over and we speak of the subscript on a being contracted 
on the subscript on b. 

The ij
th

  component of the 3 × 3 identity matrix  is denoted δij   and called the 
Kronecker delta: so 

δij   = 
1     if  i = j 

0    otherwise. 
(B.1) 



Σ 

Σ 

Σ
i  ij    jj Σ 

Σ 

Σ 

Σ 
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The equation a   =    δ  a   expresses the fact that the identity matrix times a 
equals a.  The scalar  product often appears  in the form a · b =      ij δijaibj .  To see 
that this is equivalent to the usual expression, we do the sum over j. Then the 
delta  vanishes  except  when  j  =  i,  when  it  is  unity,  and  we  are  left  with       i qibi. 
Notice that it  does  not matter in  what  order the symbols appear;  we have also 
a · b  =      ij aiδijbj ,  etc.  –  when  using  Cartesian  tensors,  the  information  that  in 
vector notation is encoded in the positions of symbols is carried by the way the 
subscripts on different symbols are coupled together. 

To make the vector product we need to introduce the alternating symbol 
or Levi–Civita  symbol ǫijk.  This is  a set of  27 zeros  and ones defined such that 
ǫ123  = 1 and the sign changes if any two indices are swapped.  So ǫ213  = −1, 
ǫ231 = 1, etc. If we cyclically permute the indices, changing 123 into first 312 and 
then 231, we are swapping two pairs each time, so there are two cancelling changes 
of sign. That is, ǫ123 = ǫ312 = ǫ231 = 1 and ǫ213 = ǫ321 = ǫ132 = −1. All the 
remaining 21 components of the alternating symbol vanish, because they have at 
least two subscripts equal, and swapping these equal subscripts we learn that this  
component is equal to minus itself, and therefore must be zero. 

We now have 

(a × b)i  = ǫijkajbk. (B.2) 
jk 

To prove this statement, we explicitly evaluate  the right side for  i = 1, 2 and 3. 
For  example,  setting  i  = 1  the  right  side  becomes      jk  ǫ1jkajbk.  In  this  sum  ǫ1jk 
is non-vanishing only when j is different from k and neither is equal one. So there 
are only two terms: 

ǫ123a2b3  + ǫ132 a3a2  = a2b3  − a3b2 (B.3) 

which is by definition the third component of a × b. 

A few simple rules enable us to translate between vector and tensor notation. 
1. Fundamentally we are writing down the general component of some quantity, 

so if that quantity is a vector, there should be one subscript that is “spare” 
in the sense that it is not contracted with another subscript. Similarly, if the 
quantity is a scalar, all indices should be contracted, while a tensor quantity 
has two spare indices. 

2. Each scalar product is expressed by choosing a letter that has not already 
been used for a subscript and making it the subscript of both the vectors  
involved in the product. 

3. Each vector product is expressed by choosing three letters, say i, j and k and 
using them as subscripts of an ǫ. The second letter becomes the subscript 
that comes before the cross, and the third letter becomes the subscript of the 
vector that comes after the cross. 
We need a lemma to handle vector triple products: 

ǫijkǫirs  = δjrδks  − δkrδjs (B.4) 
i 

Before we prove this identity (which should be memorised), notice its shape: on 
the left we have two epsilons with a contracted subscript. On the right we have 
two products of deltas, the subscripts of which are matched “middle to middle, 
end to end” and “middle to end, end to middle”. Now the proof. For the sum on 
the left to be non-vanishing, both epsilons must be non-vanishing for some value 
of i. For that value of i, the subscripts j and k must take the values that i does 
not. For example, if i is 1, j and k must between them be 2 and 3. For the same 
reason r and s must also between them be 2 and 3.  So either j = r  and k = s 
or j = s and k = r.  In the first case, if ijk is an even permutation of 123, then 
so is irs, or if ijk is an odd permutation, then so is irs. Hence in the first case 
either both epsilons are equal to 1, or they are both equal to −1 and their product 
is guaranteed to be 1. The first pair of deltas on the right cover this case. If, on 
the other hand, j = s and k = r, irs will be an odd permutation of 123 if ijk is 
an even one, and vice versa if ijk is an odd permutation. Hence in this case one 
epsilon is equal to 1 and the other is equal to −1 and their product is certainly 
equal to −1. The second product of deltas covers this case. This completes the 
proof of equation (B.4) because we have shown that the two sides always take the 
same value no matter what values we give to the subscripts. 

Besides enabling us to translate vector products into tensor notation, the 
alternating symbol enables us to form the determinant of any 3 × 3 matrix. In fact, 
this is the symbol’s core role and its use for vector products is a spinoff from it. 
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The simplest expression for det(A) is 

det(A) = ǫijkA1iA2jA3k. (B.5) 
ijk 

A more sophisticated expression that is often invaluable is 

det(A)ǫrst = ǫijkAriAsjAtk. (B.6) 
ijk 

These expressions are best treated as the definition of det(A) and used to derive 
the usual rule for the evaluation of a determinant by expansion down a row or 
column. This popular rule is actually a poor way to define a determinant, and a 
dreadful way of evaluating one. It should be avoided whenever possible. 

 

Appendix C: Fourier series and transforms 

The amplitude for a particle to be located at x and the amplitude for the particle 
to have momentum p are related by Fourier transforms, so they play a significant 
role in quantum mechanics. In this appendix we derive the basic formulae. Like 
Fourier

1
 himself we start by considering a function of one variable, f (x), that is 

periodic with period L: that is, f (x + L) = f (x) for all x.  We assume that f can 
be expressed as a sum of sinusoidal waves with wavelength L: 

∞ 

f (x) = 
n=

Σ

−∞ 
Fne

2πinx/L
, (C.1) 

where the Fn are complex numbers to be determined.  At this stage this is just 
a hypothesis – only 127 years after Fourier introduced his series did Stone

2
 prove 

that the sum on the right always converges to the function on the left. However 
numerical experiments soon convince us that the hypothesis is valid because it is  
straightforward to determine what the coefficients Fn must be, so we can evaluate 
them for some specimen functions f and see whether the series converges to the 
function. To determine the Fn we simply multiply both sides of the equation by 
e−2πimx/L

  and integrate  from  −L/2  to L/2:
3
 

L/2 

 
−L/2 

dx e−2πimx/Lf (x) = 

 

 

Fn 

n=−∞ 

L/2 

 
−L/2 

dx e2πi(n−m)x/L 
 
 

(C.2) 

= LFm, 

where the second equality follows because for n /= m the integral of the exponential 
on the right vanishes, so there is only one non-zero term in the series. Thus the 
expansion coefficients have to be 

1 L/2 

Fm = 
−L/2 

dx e−2πimx/L 
 

f (x). (C.3) 

In terms of the wavenumbers of our waves, 
 

 
our formulae become 

k   ≡ 
2πn

, (C.4) 
n 

L
 

f (x) =  
Σ
 Fne

iknx      
; Fm = 1 

∫ L/2 
 
dx e−ikmx

f (x). (C.5) 

n=−∞ 
L  −L/2 

At this stage it proves expedient to replace the Fn with rescaled coefficients 

f̃(kn) ≡ LFn. (C.6) 

f (x) =  
Σ
 f̃(kn) e

iknx       
; 

f̃(km) = 

∫ L/2  

dx e−ikmx
f (x). (C.7) 

 

 
1 After dropping out from a seminary Joseph Fourier (1768–1830) joined the Auxerre 

Revolutionary Committee. The Revolution’s fratricidal violence led to his arrest but he 
avoided the guillotine by virtue of Robespierre’s fall in 1794. He invented Fourier series 
while serving Napoleon as Prefect of Grenoble. His former teachers Laplace and Lagrange 
were not convinced. 

2 Marshall Stone strengthened a theorem proved by Karl Weierstrass in 1885. 
3 You can check that the integration can be over any interval of length L. We have 

chosen the interval (− 1 L, 1 L) for later convenience. 

−L/2 

∞ ∫ ∫ 

L 

∞ 

∞ 
1 



−∞ 

˜ 

2π 
n=−∞ 

f (k) e ; f (k) = dx e 

dx e f (x ). (C.10) 

dx f (x ) 

−∞ 
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Now we eliminate L from the first equation in favour of the difference dk ≡ kn+1 − 
kn = 2π/L and have 

f (x) =  
Σ
 f̃(kn) e

iknx       
; f̃(km) = 

∫ L/2 

dx e−ikmx
f (x). (C.8) 

Finally we imagine the period getting longer and longer without limit. As L grows 
the difference dk between successive values of kn becomes smaller and smaller, so 
kn becomes a continuous variable k, and the sum in the first equation of (C.8) 
becomes an integral. Hence in the limit of infinite L we are left with 

∫ ∞ dk ˜ ikx  ̃
∫ ∞ 

−ikx 
 

These are the basic formulae of Fourier transforms. The original restriction to 
periodic functions has been lifted because any function can be considered to repeat 
itself after an infinite interval. The only restriction on f for these formulae to be 
valid is that it vanishes sufficiently fast at infinity for the integral in the second of 

equations (C.9) to converge: the requirement proves to be that 
¸ ∞    

dx |f |
2
 exists, 

which requires that asymptotically |f | < |x|−1/2
.  Physicists generally don’t worry 

too much about this restriction. 
Using the second of equations (C.9) to eliminate the Fourier transform f from 

the first equation, we have 
∫ ∞  dk 

∫ ∞
 

 

 
′   ik(x−x′) ′ 

Mathematicians stop here because our next step is illegal.
4
 Physicists reverse the 

order of the integrations in equation (C.10) and write 
∫ ∞ 

′

 

 

 

′ 
∫ ∞  dk 

 

 
ik(x−x′) 

Comparing this equation with equation (2.41) we see that the inner integral on the 
right satisfies the defining condition of the Dirac delta function, and we have 

δ(x − x′) = 
∞ dk 

−∞ 2π 
eik(x−x′) 

 

. (C.12) 

 

 

Appendix D: Operators in classical statistical mechanics 

In classical statistical mechanics we are interested in the dynamics of a system with 
N degrees of freedom. We do not know the system’s state, which would be quan- 
tified by its position q = (q1, . . . , qN ) and the canonically conjugate momentum 
p. Our limited knowledge is contained in the probability density ψ(q, p), which is 
defined such that the probability of the system being in the elementary phase-space 
volume dτ = d

N
 q d

N
 p is ψ(q, p) dτ . 

Over time q and p evolve according to Hamilton’s equations 

q̇  =  
∂H

 
∂p 

; ṗ  = − 
∂H 

, (D.1) 
∂q 

and ψ evolves such that probability is conserved: 

0 = 
∂ψ 

+ 
∂ · (q̇ ψ) +   

∂
 
 

· (ṗ ψ) 
∂t ∂q ∂p 

= 
∂ψ 

+ 
∂H 

· 
∂ψ 

− 
∂H 

· 
∂ψ (D.2) 

∂t ∂p ∂q ∂q ∂p 

= 
∂ψ 

+ {ψ, H}, 
∂t 

where  the  second  equality  follows  from  substituting  for  q̇ 

 

 
and  ṗ 

 

 
from Hamilton’s 

equations, and the last line follows from the definition of a Poisson bracket:  if 
 

4 It is legitimate to reverse the order of integration only when the integrand is abso- 
lutely convergent, i.e., the integral of its absolute value is finite. This condition is clearly 
not  satisfied  in  the  case  of  eikx.   By  breaking  the  proper  rules  we  obtain  an  expression 
for an object, the Dirac delta function, that is not a legitimate function.  However, it is 
extremely useful. 

−∞ 2π −∞ 

−∞ 2π 

∞ 

∫ 

−L/2 

f (x) = 
−∞ 2π 

f (x). (C.9) 

f (x) = 
−∞ 

f (x) = e . (C.11) 

dk 



∂qi  ∂pi ∂pi  ∂qi 

, 

Box D.1: Classical operators for a single particle 

In the simplest case, our system consists of a single particle with Hamiltonian 
H = 

1
 p

2
/m + V (x). Then the operators associated with px, x, H and Lz are 2 

p̂x  = −ih̄{·, px} = −ih̄  
∂

 
∂x 

; x̂ = −ih̄{·, x} = ih̄   
∂

 
∂px 

H  = −ih̄{·, H} = −ih̄ · ∇  − ∇V  
· 
ˆ 

L̂z  = −ih̄{·, Lz } = −ih̄{·, xpy  − ypx} 

    p 

m 

∂ 

∂p 

  

(1) 

= −ih̄   x − y + p 
  

∂ ∂ 

∂y ∂x 
x − py 

  ∂   ∂ 
∂py ∂px 

Notice  that (̂p2) =/     (p̂)
2
.  The  commutators  of  these operators  are 

 
.
 

[x̂, ̂px] = 0 [L̂x, L̂y ] = ih̄L̂z . ; (2) 

(The easiest way to derive the second of these results is to apply (D.8).) 

i 
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F (q, p) and G(q, p) are any two functions on phase space, the Poisson bracket 
{F, G} is defined to be 

{F, G} ≡ 
Σ ∂F ∂G 

− 
∂F ∂G

. (D.3) 

We use the Poisson  bracket to associate  with F  an operator F̂  on other func- 

tions of phase space:  we define the operator F̂  by its action on an arbitrary function 
ψ(p, q): 

F̂ ψ ≡ −ih̄{ψ, F }. (D.4) 

Here h̄  is some constant with the dimensions of the product p · q – i.e.,  the inverse 

of the dimensions of the Poisson bracket – and is introduced so the operator F̂  has 
the same dimensions as the function F. The factor i is introduced to ensure that 
with  the obvious  definition of  an inner  product, the  operator  F̂  is  Hermitian: 

∫  

dτ φ∗F̂ ψ = −ih̄

∫ ∫  

d
N

 p d
N

 q φ∗ 
∂ψ  

·  
∂F  

− 

∫  

d
N

 q d
N

 p φ∗ 
∂ψ  

·  
∂F 

,

 

= ih̄

∫ ∫

 

 
d

N
 p d

N
 q 

 
∂φ∗ 

 

∂q 

∂q ∂p 

· 
∂F 

ψ − 
∂p 

 
d

N
 q d

N
 p 

 
∂φ∗ 

 

∂p 

∂p ∂q 

· 
∂F 

ψ
 

∂q 

 

(D.5) 

= 

∫  

dτ (F̂ φ)∗ψ. 

When written  in  terms  of  the  classical  Hamiltonian  operator  Ĥ ,  the  classical  evo- 
lution equation (D.2) takes a familiar form 

ih̄ 
∂ψ  

= Ĥ ψ. (D.6) 
∂t 

It is straightforward (if tedious) to show that Poisson brackets, like a commu- 
tators, satisfies the Jacobi identity (cf. 2.102) 

{A, {B, C}} + {B, {C, A}} + {C, {A, B}} = 0. (D.7) 

We use this identity to express the commutator of two such operators in terms of 
the Poisson bracket of the underlying functions: 

[Â, B̂]ψ = −h̄
2 

{{ψ, B}, A} − {{ψ, A}, B}
 
 

= h̄
2
{ψ, {A, B}} 

= ih̄{Â, B}ψ. 

where  {Â, B}  denotes  the operator  associated  with  the  function {A, B}. 

(D.8) 

Let A(p, q) be some function on phase space. Then the rate of change of the 
value of A along a phase trajectory is 

dA  
=  

∂A  
· ṗ  +  

∂A  
· q̇  = {A, H}. (D.9) 

dt ∂p ∂q 

Consequently A is a constant of motion if and only if 0 = {A, H}, which by (D.8) 
requires its operator to commute with the Hamiltonian operator: as in quantum 

mechanics,  A  is  a  constant  of  the motion  if  and only  if  [Â, Ĥ ] = 0. 

∫ 



∫ , 

h̄ 

× 

∂x h̄ 

" 
2 

# 
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It is instructive to repeat the analysis of §4.2 with the classical operators 
of a single-particle system (Box D.1). If we displace the system through a, its 
probability density becomes 

ψ′(x, p) ≡ ψ(x − a, p) = 1 − a ·  
∂  

+
 1

 
∂x 2! 

a ·  
∂ 

− . . . 
∂x 

ψ(x, p) 
(D.10) 

= exp 

∫

−a ·   
∂  
, 

ψ(x, p) = exp 

∫

−i
a · p̂

, 

ψ(x, p). 

 
Thus  p̂/h̄  is  the  generator  of  displacements,  as  in  quantum  mechanics.   Displace- 
ment of the system by δa clearly increases the expectation of x by δa, so with 
dτ ≡ d

3
x d

3
p 

⟨ x⟩  + δa = 

∫  

dτ xψ′(x, p) = 

∫  

dτ x 

∫

1 − i 
δa · p̂

, 

ψ(x, p) + O(δa
2
). (D.11) 

This equation will hold for an arbitrary probability density ψ if and only if 

ih̄δij   = 

∫  

dτ xip̂j ψ = 

∫  

dτ (p̂j xi)
∗

ψ = ih̄ 

∫  

dτ {xi, pj }ψ, (D.12) 

where the second equality uses the fact that p̂j   is Hermitian.  Thus equation (D.11) 
holds if and and only if the Poisson brackets {xi, pj } rather than the commutators 
[x̂i, p̂j ] satisfy the canonical commutation relations.  This crucial difference between 
the quantum and classical cases arises from the way we calculate expectation values:  
in classical physics the quantum rule ⟨ Q⟩  = ⟨ ψ|Q|ψ⟩  is replaced by 

⟨ Q⟩  = 

∫ 

d
N
 q d

N
 p Qψ, (D.13) 

where (i) Q is the function not the associated operator, and (ii) ψ occurs once not 
twice because it is a probability not a probability amplitude. On account of these 
differences,  whereas  equation  (4.21)  yields  [xi, pj ]  =  ih̄δij ,  its  classical  analogue, 
(D.11)  yields  {xi, pj } = δij . 

 

 

Appendix E: Lie groups and Lie algebras 

A group is a set of objects that is equipped with an associative product and an 
identity member: given any two members a, b of  a group G,  there is a member of 
G, c = ab, and there is a member 1 such that 1a = a for  any a in G.  For any a 
there must be an inverse a−1

 such that aa−1
 = 1. The associativity of the product 

means that for any a, b, c ∈ G,  (ab)c = a(bc).  If  the multiplication  is  commutative 
(ab = ba always) then the group is Abelian. 

Some groups, such as that of the rotations that turn a square into itself, have 
a finite number of (discrete) members, but others, such as the group SO(3) of all  
three-dimensional rotations have an infinite number of members.

1
 Moreover, in a 

group such as SO(3) some members are almost identical to other members because 
they are rotations through almost the same angle around almost the same axis. A 
Lie group is such a continuous group.

2
 

The linear transformations of vector spaces provide representations of groups, 
that is, concrete realisations of an abstract group in which each group member is 
represented by a linear transformation in such a way that the product of group 
members is faithfully represented by the compounding of transformations. We gen- 
erally quantify the linear transformations of an n-dimensional vector space with 
n × n matrices, so a representation of a group consists of a rule associating each 
group member a with a matrix M

a
 such that if ab = c, then M

a
 · M

b
 = M

c
. 

In Chapter 4 we saw how translations and rotations of a system are mir- 
rored by unitary transformations U (a) and U (α) of the system’s ket |ψ⟩ . These 
unitary transformations form representations of the groups of translations and ro- 
tations. So group theory, and especially results relating to possible representations 
of groups, are important for quantum mechanics. In particular, quantum mechan- 
ics enormously extends the range of representations that are physically significant 
by introducing the usually infinite-dimensional (Hilbert) space of possible kets. By 

 

1 The group formed by orthogonal rotations in n-dimensional space is called SO(n). 
Each group member is most naturally represented by a n    n real orthogonal matrix with 
unit determinant. 

2 Technically, a Lie group is a group that is also a differentiable manifold. 



ij 

Σ 

k ij ij 

i j 

complex numbers, then the set {Ii} forms the basis of an n-dimensional Lie algebra. 

k 
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contrast, in classical physics groups generally only have finite-dimensional repre- 
sentations. 

The structure of a Lie group is largely determined by the group members that 
lie near the identity, because by left-multiplying any member of a neighbourhood 
of the identity by a, we can map this neighbourhood into a neighbourhood of a. 
Moreover, if we repeatedly multiply the identity by a nearby group member, we 
can generate members that lie far from the identity, and if the structure of the 
group is simple, we can generate any group member. This logic becomes very 
clear when we work with a quantum-mechanical representation: a member near 
the identity of SO(3) is represented by the matrix I − iδα · J, where |δα| ≪ 1 and 
the result of repeatedly multiplying the identity by this member is represented by 
U (α) = e−iα·J (eq. 4.12). 

The infinitesimal generators of the group – in the case of SO(3) the angular- 
momentum operators Ji – form a Lie algebra because they have the following 
properties: (i) they can be multiplied by (complex) numbers and added, and (ii) 
they are equipped with an antisymmetric product (the commutator) which (a) 
satisfies the Jacobi identity 

[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0, (E.1) 

and (b) evaluates to a linear combination of the original generators.  That is, if 

I1, . . . , In  are  n  operators  which  satisfy  [Ii, Ij]  =  i 
Σ  

c
k
 Ik,  where  c

k
   is  a  set  of 

In the case  of  SO(3),  n = 3  and  c
k
   = iǫijk. 

The group SU(2) formed by 2 × 2 unitary matrices with unit determinant 
plays a big role in quantum mechanics because it is an important subgroup of the 
group of Lorentz transformations. Its Lie algebra is identical to that of SO(3), so 
here we have a manifestation of the fact that a Lie group is not entirely determined 
by its Lie algebra, although it nearly is. In fact, SU(2) is essentially an extension 
of SO(3). 

The group SU(3) of 3 × 3 unitary matrices with unit determinant is  crucial 
for nuclear physics because the quantum field whose excitations we call quarks 
provides representations of SU(3). 

 

 
Appendix F: The hidden symmetry of hydrogen 

The gross structure of hydrogen is degenerate with respect to both l and m; there 
are states with different (l, m) that have the same energy. Degeneracy with respect 
to m is to be expected whenever the Hamiltonian is rotationally symmetric, but 
degeneracy with respect to l is special to the Coulomb potential and indicates the 
presence of additional symmetry. 

To uncover this symmetry, we define the Hermitian Runge-Lenz operator 
(Problem 8.15) 

M ≡  
1
 ̄h(p × L − L × p) − mZe

2
 r 

 . (F.1) 
2
 4πǫ0 r 

The important algebraic properties of this operator are derived (after lengthy 
computations) in Problem 8.15. Crucially it commutes with the Hamiltonian, 
[M, H] = 0, so each component of M is  associated  with  a  conserved  quantity 
(§2.2.1) and the unitary transformations that M generates, U (θ) ≡ exp(−iθ · M) 
where θ is a triple of real numbers, transform stationary states into stationary 
states of the same energy because these transformations are dynamical symmetries  
of H (§4.3). 

The components of M have the commutation relations 

[Mi, Mj ] = −2ih̄
2
mH ǫijkLk. (F.2) 

k 

Consequently, the action of U (θ) on stationary states of energy E < 0 can  be 
obtained by using the generators 

M′ ≡ 
1

 
(2h̄

2
m|E|)1/2 

which have the commutation relations 

M, (F.3) 

[M ′, M ′ ] = i 
Σ 

ǫijkLk, (F.4) 



2 

Σ
=  ǫ (L   − M   + M   − L  ) = 0ijk

  k k k k 

4 

i 

l 

l 

j k 

4 k 

k 

k k 
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Since M′ is an (axial) vector operator, from §4.2 we know that the commutators 
between its components and the orbital-angular momentum operators are 

[Li, M ′ ] = i 
Σ 

ǫijkM ′ . (F.5) 

From equations (F.4) and (F.5) it follows that the components of 

M± ≡ 
1
 (L ± M′) (F.6) 

commute with each other because 
[M 

+
, M 

−
] =  

1
 ([Li, Lj ] − [Li, Mj ] + [Mi, Lj ] − [Mi, Mj ]) 

 

i j 4 

i (F.7) 
4 

while 

ijk 

[M 
±

, M 
±

] =  
1
 ([Li, Lj ] ± [Li, Mj ] ± [Mi, Lj ] + [Mi, M − j]) 

 i j 

=  
i
  
Σ 

ǫijk(Lk ± Mk ± Mk + Lk) = i 
Σ 

ǫijkM ±. 
(F.8)

 

Thus the components of M
+
 and M− satisfy the commutation relations we first 

encountered in §4.2 in connection with the rotation operators. These relations 
define the Lie Algebra of the group SU(2) formed by 2×2 unitary matrices with unit 
determinant – for a very brief account Lie groups and Lie algebras, see Appendix E. 

The group SO(4) formed by the orthogonal rotations of 4-dimensional vectors 
has just the Lie algebra that is formed by the operators M±, namely two sets of 
three operators that commute with each other like the angular-momentum opera- 
tors, with any operator from one set commuting with any in the other set. This 
coincidence of the Lie algebras establishes that the invariance group of hydrogen is 
SO(4). The manifest spherical symmetry of the atom is just the SO(3) sub-group 
of SO(4). The extra dimension of symmetry is obscure because in the classical 
limit it is not a point transformation – a mapping of spatial points into spatial 
points – but involves momentum in an  essential  way,  so  if (x′, p′) is  the image  of 
the phase-space point (x, p), x′ depends on p as well as on x. 

The operators M ′ that generate the hidden symmetries of hydrogen do not 

commute with L
2
, so a general symmetry transformation U (θ) will turn an eigen- 

state |l⟩  of L
2
 into a state that is not an eigenstate of L

2
 (Problem 8.15). For a 

judicious choice of θ it is possible move |l⟩  into a different eigenstate |l ± 1⟩  of 
L

2
. This is almost what the ladder operators Al and A† of §8.1 accomplish – almost 

because Al and A† only modify the radial part of the wavefunction, and we have 
to change the angular part from Y

m
 to Y

m
 by hand. 

l l±1 

From the results above and our work with the angular-momentum operators, 
we know that a complete set of commuting operators for hydrogen will consist of 
H, one component of each of M±, say M 

+
 and M −, and the operators (M 

+
)

2
 + 

z z x 
(M 

+
)

2
 + (M 

+
)

2
 and (M −)

2
 + (M −)

2
 + (M −)

2
. So we could label the members 

y z x y z 
of a complete set of hydrogen’s stationary states, |E, m

+
, m−, m

+
, m−⟩ , with their 

z z 

eigenvalues with respect to these operators. These five eigenvalues correspond to 
the five classical constants of motion of Kepler orbits. Five constraints on the six 
phase-space coordinates confine the orbit to a one-dimensional sub-manifold (an 
ellipse) of phase space. Indeed,  in  any fixed  spherical  potential,  the  direction  of 
the angular momentum vector confines the orbit to a plane, and the magnitude 
of the angular momentum and the energy together determine the radial scale and 
eccentricity of the orbit. The fifth constant of motion, provided by the hidden 
symmetry of the inverse-square law, fixes the point of closest  approach  to  the 
centre of attraction (the periapsis). The precession of  the periapsis  of  Mercury’s 
orbit demonstrates that the planet moves in a force field that deviates from the 
inverse-square law. About 10% of this deviation is caused by general  relativity  and 
the rest arises from the gravitational fields of the other planets, predominantly that 
of Jupiter. 



√ 

   

ν 

0 0 1    0   py 

pµp = − 
c2   + px + py + pz = −m0c , (G.6) 

µ 

is also a Lorentz scalar: the value of 
Σ Σ 

0 0 0    1 pz 

0 0 1    0 

0 0 0    1 

py 

pz 

µ 

µ µ 
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Appendix G: Lorentz covariant equations 

Special relativity is about determining how the numbers used by moving observers 
to characterise a given system are related to one another. All observers agree on 
some numbers such as the electric charge on a particle – these numbers are called 
Lorentz scalars. Other numbers, such as energy, belong to a set of four numbers, 
called a four-vector. If you know the values assigned by some observer to all four 
components of a four-vector, you can predict the values that any other observer 
will assign.  If you do not know all  four numbers, in general you cannot predict 
any of the values that a moving observer will assign. The components of every 
ordinary three-dimensional vector are associated with the spatial components of a 
four-vector, while some other number completes the set as the ‘time component’ 
of the four-vector. We use the convention that Greek indices run from 0 to 3 while 
Roman ones run from 1 to 3; the time component is component 0, followed by the 
x component, and so on. All components should have the same dimensions, so, for 
example, the energy-momentum four vector is 

(p
0
, p

1
, p

2
, p

3
) ≡ (E/c, px, py, pz ). (G.1) 

The energies and momenta assigned by an observer who moves at speed v parallel 
to the x axis are found by multiplying the four-vector by a Lorentz transformation 
matrix. For example, if the primed observer is moving at speed v along the x axis, 
then she measures 

 
E′/c 

  
γ −βγ    0    0 

  
E/c  

 p′       
 

  

  

 −βγ γ 0    0   px   

 
 

 x    =  
, (G.2) 

where β ≡ v/c and the Lorentz factor is γ = 1/   1 − β2.  The indices on the 
four-vector p are written as superscripts because it proves helpful to have a form 
of p in which the sign of the time component is reversed. That is we define 

(p0, p1, p2, p3) ≡ (−E/c, px, py, pz ), (G.3) 

and we write the indices on the left as subscripts to signal the difference in the time 
component.  It is straightforward to verify that in the primed frame the components 
of the down vector are obtained by multiplication with a matrix that differs slightly 
from the one used to transform the up vector 

 
−E′/c 

  
γ βγ    0    0 

  
−E/c  

   p′   βγ γ 0    0   px    
 

 x  =  

. (G.4) 
The Lorentz transformation matrices that appear in equation (G.2) and (G.4) are 
inverses of one another. In index notation we write these equations 

p
′ν  

= 
Σ 

Λ
ν

µp
µ     

and    p
′   

= 
Σ 

Λν
µ
pµ. (G.5) 

µ µ 

Notice that we sum over one down and one up index; we never sum over two down 
or two up indices. Summing over an up and down index is called contraction of  
those indices. 

The dot product of the up and down forms of a four vector yields a Lorentz  
scalar. For example 

Σ 
µ E2 

 

 

 
2 2 2 2 2 

where m0 is the particle’s rest mass. Observers in relative motion will typically 
assign different values to all four components of p and yet from them they will 

compute the same value of 
Σ 

pµp
µ
. The dot product of two different four vectors 

The time and space coordinates form a four-vector 

(x
0
, x

1
, x

2
, x

3
) ≡ (ct, x, y, z). (G.7) 

In some interval dt of coordinate time, a particle’s position four-vector x increments 
by dx and the Lorentz scalar associated with dx is −c

2
 times the square of the 

′ 
z p 

′ 
y p 

p 

p 

    

 ′ 
y 
′ 
z 

  

pµh
µ
 = p

µ
hµ is the same in any frame. 



µ 

 E  /c −B 0 B 

(dτ )
2
 = −

 1 Σ 
dx dx

µ
 = (dt)

2
 − 

 1   
(dx)

2
 + (dy)

2
 + (dz)

2}
 

1 − 
c2 = (dt) (1 − β ). 

dτ 
λν 

ν 
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proper-time interval associated with dt: 

 
c2 c2 

µ 

2 

∫ 
v2 , 

2 2 
 

 

 
(G.8) 

 

The proper time dτ is just the elapse of time in the particle’s instantaneous rest 
frame; it is the amount by which the hands move on a clock that is tied to the 
particle. From the last equality above it follows that dτ = dt/γ, so moving clocks 
tick slowly. 

The four-velocity of a particle is 
 

u
µ
 = 

dx
µ

 
= 

dτ 

dct 
, 

dτ 

dx
, 

dτ 

dy 
, 

dz 

dτ dτ 
= γ 

∫

c, dx
, 

dt 

dy 
, 

dz 

dt dt 

 

, (G.9) 

where γ is the particle’s Lorentz factor. In a particle’s rest frame the four velocity 
points straight into the future: u

µ
 = (1, 0, 0, 0). In any frame 

uµu
µ 

= −c
2
. (G.10) 

The electrostatic potential φ and the magnetic vector potential A form a four 
vector 

A
µ  

= (φ/c, Ax, Ay, Az ). (G.11) 

Some numbers are members of a set of six numbers that must all be known 
in one frame before any of them can be predicted in an arbitrary frame. The six 
components of the electric and magnetic fields form such a set. We arrange them 
as the independent, non-vanishing components of an antisymmetric four by four 
matrix, called the Maxwell field tensor 

  
0 −Ex/c     −Ey/c     −Ez/c  

Fµν 

Ex/c 0 Bz −By 

≡ 
y z x 

Ez/c By −Bx 0 

 . (G.12) 

The electric and magnetic fields seen by a moving observer are obtained by pre- 
and post-multiplying this matrix by an appropriate Lorentz transformation matrix 
such as that appearing in equation (G.4). 

The equation of motion of a particle of rest mass m0 and charge Q is 

m0 
duλ  

= Q 
Σ 

F   u
ν
. (G.13) 

The time component of the four-velocity u is γc, and the spatial part is γv, so, 
using our expression (G.12) for F, the spatial part of this equation of motion is 

γQ(E + v × B) = m0 
dγv 

= γm0 
dv 

+ O(β
2
), (G.14) 

dτ dτ 

which shows the familiar electrostatic and Lorentz forces in action. 
The great merit of establishing these rules is that we can state that the dy- 

namics of any system can be determined from equations in which both sides are 
of the same Lorentz-covariant type. That is, both sides are Lorentz scalars, or 
four-vectors, or antisymmetric matrices, or whatever. Any correct equation that 
does not conform to this pattern must be a fragment of a set of equations that do. 
Once a system’s governing equations have been written in Lorentz covariant form, 
we can instantly transform them to whatever reference frame we prefer to work in. 

Lagrangian  and Hamiltonian for  motion in an  electromagnetic field        Ev- 
ery particle traces a path x(τ ) through space-time. This path is called the particle’s 
world line. The particle’s action S[x(τ )] is a functional of the world line – a 
number that depends on the whole line. In fact S[x] is given by 

S[x] = 

∫ 

dτ s[x(τ )], (G.15) 

where s is a function of x(τ ) and its derivatives. Quantum mechanics ensures that 
the world line taken by a particle as it moves from a given event x1 to a second 
event x2 is the one that extremises S. Thus the particle’s dynamics is determined 
by the action S, which is in turn determined by the function s[x]. 

The action S must be a Lorentz scalar since there is no obvious higher n-tuple 
into which we can fit it.  The proper time τ  is a Lorentz scalar, so s must be a 
scalar too, and to determine the form of s we have only to ask what scalars we can 

∫ , , 

= (dt) 



∫   √ 
0

 

dτ 

2 

dt 

dt — m0c 1 − 2 c2 
+ Q · A + QcA0 

dt 

2 dt 
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construct from the world-line x(τ ) and quantities such as A, F associated with the 
electromagnetic field in which the particle moves. 

First we note that S shouldn’t depend on our choice of origin, so only deriva- 
tives of x(τ ) such as dx/dτ should occur in s, not x itself. Furthermore, the Euler-
Lagrange equation, which is used to extract equations of motion from a La- 
grangian, involves differentiation with respect to the variable that parametrises 
position along the extremal path, in this case τ . So we will get a second-order 
equation of motion, if s depends on dx/dτ , but not on higher derivatives of x(τ ). 
Similarly, the Euler-Lagrange equation involves differentiation with respect to the 
position vector x, so if the equation of motion is to depend on F and not its deriva- 
tives, s should depend on A but not F. So the Lorentz scalars to consider are (i) 
|dx/dτ |

2
 = −c

2
  and  (ii) (dx/dτ ) · A –  we  exclude |A|

2
  from  consideration  since 

its contribution to S proves to be both gauge- and world-line dependent. So the 
simplest thing to try is 

S = 

∫ 

dτ 

∫

−m0c
2 

+ Q 
dx 

· A

, 

, (G.16) 

where we’ve included the rest mass m0 for future convenience and Q is a constant 
scalar, which will turn out to be the charge. 

Now that we have chosen a form for s, we should find the differential equation 
of the world line that extremises S between given events x1 and x2. Unfortunately, 
this is a non-standard problem because the elapse of proper time between these 
events depends on the world line taken between them, and the Euler-Lagrange 
equations require the integration variable to have fixed values at the end-points. 
By contrast, the coordinate time t does have fixed values at x1 and x2, so we 
change integration variable from τ to t. Since dt/dτ = u

0
/c = γ, we obtain 

S = dt   − m c
2
   1 − v2/c2 + Q 

dx 
· A  . (G.17) 

dt 

If we are willing to restrict ourselves to non-relativistic motion, we can simplify 
equation (G.17) by expanding the square root and discarding terms smaller than 
v

2
/c

2
. Then we have 

∫ 
2  

  
1 v

2 
dx 

 

 

where the term with A0 arises because the vectors x and A are now three- rather 
than four-dimensional so we have to add explicitly the contributions of the time 
components to the contraction of two four-vectors. The term in the integrand 
−m0c

2
 yields a contribution to S  that is world-line-independent and therefore 

plays no role in determining the world line. Hence we may delete this term and 
arrive at our final expression for the action of a charged, non-relativistic particle 

S = 

∫ 

dt 
  

1 m0v
2 

+ Q 
dx 

· A − Qφ
  

, (G.19) 
 

where φ = −A0/c is the electrostatic potential. 
In  classical  mechanics  the  Lagrangian  is  a  function  L(x, ẋ )  of  position  and 

velocity  ẋ  ≡ dx/dt that  yields  the action  through 

S[(x(t)] = 

∫ 

dt L 

∫

x, 
dx

, 

. (G.20) 

Hence equation (G.19) states that the Lagrangian of a charged particle is 

L (x, ẋ ) =  
1
 m0|ẋ |

2  
+ Qẋ  · A − Qφ. (G.21) 

The classical momentum is defined to be 

p ≡  
∂L  

= m0ẋ  + QA, (G.22) 
∂ẋ 

and the classical Hamiltonian is defined to be 

H(x, p) ≡ p · ẋ  − L 
 

= p · 
p − QA 

−
 

m0 

|p − QA|
2
 

 

2m0 

— Q 
p − QA 

m0 

 

· A + Qφ 
 

(G.23) 

|p − QA|
2
 

= 
2m0 

+ Qφ. 

S = , (G.18) 



 
 

µ 

§ 

Σ 
Fµν    =   

dτ 2m0 

= 
dτ 2m 

− s Fλν 

= 
dτ 2m 

− s Fλν + 
c2 

dτ 
uµ. (H.8) 

ν Ex/c 0 Bz −By 
s = 

Sx 
(H.4) 

µ µν 
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Appendix H: Thomas precession 

In this appendix we generalise the equation of motion of an electron’s spin (eq. 8.69) 
dS 

=  
gQ 

S × B (H.1) 
dt 2m0 

from the electron’s rest frame to a frame in which the electron is moving. We do 
this by writing equation (H.1) in Lorentz covariant form (Appendix G). 

The first step in upgrading equation (H.1) to Lorentz covariant form is to 
replace S and B with covariant structures. We hypothesise that the numbers Si 

comprise the spatial components of a four vector that has vanishing time component  
in the particle’s rest frame. Thus 

(s0, s1, s2, s3) = (0, Sx, Sy, Sz )    (rest frame), (H.2) 

and we can calculate s
µ
 in an arbitrary frame by multiplying this equation by an 

appropriate Lorentz transformation matrix. Since in the rest frame s
µ
 is orthogonal 

to the particle’s four-velocity u
µ
, the equation 

uµs
µ 

= 0 (H.3) 

holds in any frame. In equation (8.69) B clearly has to be treated as part of the 
Maxwell field tensor Fµν (eq. G.12). In the particle’s rest frame dt = dτ and 

   
0 −Ex/c     −Ey/c     −Ez/c 

  
0  

  
−S · E/c  

Ey/c −Bz 0 Bx 
ν 

Ez/c By −Bx  0 

  Sy  
 

 

 S × B   

so equation (H.1) coincides with the spatial components of the covariant equation 

dsµ 
=  

gQ 
Σ 

Fµνs
ν. (H.5) 

 

 

This cannot be the correct equation, however, because it is liable to violate the 
condition (H.3). To see this, consider the case in which the particle moves at 
constant velocity and dot equation (H.5) through by the fixed four-velocity u

ν
 . 

Then we obtain Σ d 
(u

µ
s ) =  

gQ  Σ 
F   u

µ
s

ν
. (H.6) 

µν 

The left side has to be zero but there is no reason why the right side should vanish. 
We can fix this problem by adding an extra term to the right side, so that 

dsµ gQ   
 
Σ 

 

  

ν 
Σ 

λ 

 

 

u
ν
 uµ 

!
 

 

 

When this equation is dotted through by u
µ
, and equation (G.10) is used, the 

right side becomes proportional to 
Σ

µν Fµν (s  u  + s  u  ), which vanishes because 
µ  ν ν   µ 

F is antisymmetric in its indices while the bracket into which it is contracted is  
symmetric in the same indices.

1
 

If our particle is accelerating, equation (H.7) is still incompatible with equation 
(H.3), as becomes obvious when one dots through by u

µ
 and includes a non-zero 

term du
µ
/dτ . Fortunately, this objection is easily fixed by adding a third term to 

the right side. We then have our final covariant equation of motion for s 

dsµ gQ   
 
Σ 

 

  

ν 
Σ 

λ 

 
 

u
ν
 uµ 

!
 

1 Σ 
 

 

λ duλ 

In the rest frame the spatial components of this covariant equation coincide with 
the equation (8.69) that we started from because ui = 0. The two new terms on 
the right side ensure that s remains perpendicular to the four-velocity u as it must 
do if it is to have vanishing time component in the rest frame. 

The last term on the right of equation (H.8) is entirely generated by the 
particle’s acceleration; it would survive even in the case g = 0 of vanishing magnetic 
moment. Thus the spin of an accelerating particle precesses regardless of torques. 
This precession is called Thomas precession.

2
 

1 Here’s  a  proof  that  the  contraction  of  tensors  S  aΣnd  A  that  are  reΣspectively  sym- 
metric and antisymmetric in their indices vanishes. 
Σ µν Sµν Aµν = µν SνµAµν  = 

— µν SνµAνµ. This establishes that the sum is equal to minus itself.  Zero is the only 
number that has this property. 

2 L.T. Thomas, Phil. Mag.  3, 1 (1927).  For an illuminating discussion see  11.11 of 
Classical Electrodynamics by J.D. Jackson (Wiley). 

λ λν ν 0 

c2 
λν ν 0 

ν 

Sz 

dτ 2m0 

Fµνs . (H.7) 

Fµνs 
c2 

s 



    

= 
dτ 2m 

g Fµνs s Fλν 

 S   0 0 1     0  s2  . (H.10) 

dτ dτ 2c2 dτ 2c2 dτ 

= 
dτ m 

E + s × B 
c 

= 
m c2   E + s × B 

dS 
= 

   Q      
(v · s)E − (E · s)v + 2c

2
s × B

  
+ O(β

2
) 

dt 2m0c
2
 r dr 

Sx 
= 
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If the particle’s acceleration is entirely due to the electromagnetic force that 

it experiences because it is charged, its equation of motion is (G.13). Using this in 
equation (H.8), we find 

dsµ Q Σ 
ν 

 

  

Σ 
λ u

ν
 uµ 

!
 

 

  
For electrons, g = 2.002 and to a good approximation the extra terms we have 
added cancel and our originally conjectured equation (H.5) holds after all. We now 
specialise on the unusually simple and important case in which g = 2. 

From our equation of motion of the covariant object s we derive the equation 
of motion of the three-vector S whose components are the expectation values of 
the spin operators. We choose to work in the rest frame of the atom. By equation 
(H.2), S is related to s by a time-dependent Lorentz transformation from this frame 
to the electron’s rest frame. We align our x axis with the direction of the required 
boost, so 

 
0 

  
γ −βγ     0    0 

  
s

0
  

   −βγ γ 0    0   s
1
  

 
 

   

The time equation implies that s
0
 = βs

1
, so the x equation can be written 

1 0 2     1 s1 
1 2 Sx = γ(s — βs ) = γ(1 − β )s = = s (1 − 

1
 β 

γ 
+ · · ·). (H.11) 

The y and z components of equation (H.10) state that the corresponding compo- 
nents of S and s are identical.  Since s

1
  is the projection of the spatial part of s 

onto the particle’s velocity v, we can summarise these results in the single equation 

S = s − 
v · s

v + O(β
4
) (H.12) 

2c2 

as one can check by dotting through with the unit vectors in the three spatial  
directions. Differentiating with respect to proper time and discarding terms of 
order β

2
, we find 

dS 
= 

ds 
− 

  1  
∫

dv 
· s

, 

v − 
v · s dv 

+ O(β
2
). (H.13) 

 

Equation (H.9) implies that with g = 2 

ds Q  
∫ 

s
0
 

, 
Q   v · s 

 

 

  

where the second equality uses the relation s
0
 = βs

1
 = (v · s)/c. We now use this 

equation and equation (G.14) to eliminate ds/dτ and dv/dτ from equation (H.13). 

 

dτ 2m0c
2
 

= 
   Q      

S × (E × v) + 2c
2
S × B  + O(β

2
). 

2m0c
2
 

 

(H.15) 

Since we are working in the atom’s rest frame, B = 0 unless we are applying an 
external electric field. The difference between the electron’s proper time τ and the 
atom’s proper time t is O(β

2
), so we can replace τ with t. We assume that E is 

generated by an electrostatic potential Φ(r) that is a function of radius only. Then 
E = −∇Φ = −(dΦ/dr)r/r points in the radial direction. Using this relation in 
equation (H.15) we find 

dS 
= 

  Q    
∫

− 
1 dΦ 

S × (r × v) + 2c
2
S × B

, 

. (H.16) 
 

When  r × v  is  replaced  by  h̄L/m0,  we  obtain  equation  (8.70).   The  factor  of  two 
difference between the coefficients of S in the spin-orbit and Zeeman Hamiltonians 
(8.71) and (8.72) that so puzzled the pioneers of quantum mechanics, arises be- 
cause the variable in equation (H.5) is not the usual spin operator but a Lorentz 
transformed version of it. The required factor of two emerges from the derivatives 
of v in equation (H.13). Hence it is a consequence of the fact that the electron’s  
rest frame is accelerating. 

0 0 

s3 0 0 0    1 Sz 

y 

c2 
λν ν 0 

2 

— (g − 2) . (H.9) 

, (H.14) 
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Appendix I: Matrix elements for a dipole-dipole 
interaction 

We calculate the matrix elements obtained by squeezing the hyperfine Hamiltonian 
(8.81) between states that would all be ground states if the nucleus had no magnetic 
dipole moment. We assume that these are S states, and therefore have a spherically 
symmetric spatial wavefunction ψ(r). They differ only in their spins. In practice 
they will be the eigenstates |j, m⟩  of the total angular momentum operators J

2
 

and Jz that can be constructed by adding the nuclear and electron spins. We use 

the symbol s as a shorthand for j, m or whatever other eigenvalues we decide to 
use. 

The matrix elements are 

Mss′  ≡ ⟨ ψ, s|HHFS|ψ, s′⟩  = 

∫ 

d
3
x ρ(r)⟨ s|HHFS|s′⟩ , (I.1a) 

 

where  
ρ(r) ≡ |ψ(r)|

2
, (I.1b) 

and for given s, s′  ⟨ s|HHFS|s′⟩  is a function of position x only.  Substituting for 
HHFS from equation (8.81) we have 

M  ′ = 
µ0  

∫ 

d
3
x ρ⟨ s|µ  · ∇  × 

,
∇ × 

  µe  
  , 

|s′⟩ . (I.2) 
 

We now use tensor notation (Appendix B) to extract the spin operators from the 
integral, finding 

µ M   ′  = ǫ ǫ ⟨ s|µNiµem|s
′
⟩ I, (I.3a) 

 

where 

ss 4π  
ijklm 

∫ 

ijk klm 
 
 

3 ∂2r−1 
 

 

The domain of integration is a large sphere centred on the origin. On evaluat- 
ing the derivatives of r−1

 and writing the volume element d
3
x in spherical polar 

coordinates, the integral becomes 

I  = 

∫  

ρ(r)r
2
dr 

∫  

d
2
Ω  

∫

3 
xjxl   

−  
δjl 

, 

. (I.4) 
 

We integrate over polar angles first. If j /= l, the first term integrates to zero 
because the contribution from a region in which xj is positive is exactly cancelled 
by a contribution from a region in which xj is negative. When j = l, we orient our 
axes so that xj is the z axis. Then the angular integral becomes 

∫  

dΩ 

∫

3 
xjxl   

−  
δjl 

, 

=  
2π  

∫  

dθ  sin θ(3 cos
2
 θ − 1) = 0. (I.5) 

 

The vanishing of the angular integral implies that no contribution to the integral of 
equation (I.3b) comes from the entire region r > 0. However, we cannot conclude 
that the integral vanishes entirely because the coefficient of ρ in the radial integral 
of (I.4) is proportional to 1/r, so the radial integral is divergent for ρ(0) /= 0. 

Since any contribution comes from the immediate vicinity of the origin, we 
return to our original expression but restrict the region of integration to an in- 
finitesimal sphere around the origin. We approximate ρ(r) by ρ(0) and take it out 
of the integral. Then we can invoke the divergence theorem to state that 

∫ 
3 ∂2r−1 ∫ 

2
 

 

 

∂r−1 
 

 

 

where we have used the fact that on the surface of a sphere of radius r the infinites- 
imal surface element is d

2
S = d

2
Ω rx. We now evaluate the surviving derivative of 

1/r: 

I = −ρ(0) 

∫ 

d
2
Ω 

xjxl  
= − 

4π 
ρ(0)δ  , (I.7) 

where we have again exploited the fact that the integral vanishes by symmetry if 
j /= l, and that when j = l it can be evaluated by taking xj to be z. Inserting this 
value of I in equation (I.3a), we have 

M ′ = −
 µ0 

ρ(0) 
Σ 

ǫ ǫ δ   ⟨ s|µNiµem|s
′
⟩ . (I.8) 

 
 

Now 

ss 3 
ijklm 

ijk klm jl 

Σ 
ǫijkǫklmδjl  =  

Σ 
ǫijkǫkjm  = −  

Σ 
ǫijkǫmjk (I.9) 

l l 

∂xj∂xl 
I ≡ . (I.3b) 

I = ρ(0) , (I.6) 



Σ 

Σ 

Σ 

2 

2 

Σ 

Σ 

ss 
3 

ei 

klm m 

st j′′ m′′ 
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This  sum  must  be  proportional  to  δim   because  if  i m,  it  is  impossible  for  both 
(ijk) and (mjk) to be permutations of (xyz) as they must be to get a non-vanishing 
contribution to the sum. We can determine the constant of proportionality by 
making a concrete choice for i = m. For example, when they are both x we have 

ǫxjkǫxjk  = ǫxyzǫxyz  + ǫxzyǫxzy  = 2. (I.10) 
jk 

When these results are used in equation (I.8), we have finally 

M ′ = 
2µ0 

|ψ(0)|
2
⟨ s| 

Σ 

µ 
 

 

· µ  |s′⟩ . (I.11) 

 
 

Appendix J: Selection rule for j 

In  Problem  7.21  the  selection  rule  on  l  is  derived  by  calculating  [L
2
, [L

2
, xi]]  and 

then squeezing the resulting equation between states ⟨ l, ml| and |l′, m′⟩ .  The alge- 
l  Σ 

bra uses only two facts about the operators L and x, namely [Li, xj] = i k  ǫijkxk, 
and L · x = 0. Now if we substitute J for L, the first equation carries over (i.e., 
[Ji, xj] = i k  ǫijkxk) but the second does not (J · x = S · x).  To proceed, we define 
the operator 

X ≡ J × x − ix. (J.1) 

Since  X  is  a  vector  operator,  it  will  satisfy  the  commutation  relations  [Ji, Xj ]  = 
i k  ǫijkXk, as can be verified by explicit calculation.  Moreover X is perpendicular 
to J: 

J · X = 
Σ 

ǫklmJkJlxm − i 
Σ 

Jmxm 

=  
1
 
Σ 

ǫklm[Jk, Jl]xm − i 
Σ 

Jmxm 

(J.2) 

klm m 

=  
1
 
Σ 

ǫklmi 
Σ 

ǫklpJpxm − i 
Σ 

Jmxm  = 0, 

klm p m 

where the last equality uses equation (I.10).  We can now argue that the algebra 
of Problem 7.21 will carry over with J substituted for L and X substituted for x. 
Hence the matrix elements ⟨ jm|Xk|j′m′⟩  satisfy the selection rule |j − j′| = 1. 

Now we squeeze a component of equation (J.1) between two states of well- 
defined angular momentum 

⟨ jm|Xr |j
′
m

′
⟩  = 
Σ 

ǫrst    

Σ 
⟨ jm|Js|j

′′ 
m

′′
⟩ ⟨ j

′′
m

′′
|xt|j

′
m

′
⟩  − i⟨ jm|xr |j

′ 
m

′
⟩  

= ǫrst⟨ jm|Js|jm
′′
⟩ ⟨ jm

′′
|xt|j

′
m

′
⟩  − i⟨ jm|xr |j

′
m

′
⟩ , 

m′′ st 

(J.3) 
where the sum over j′′ has been reduced to the single term j′′ = j because [J

2
, Js] = 

0. The left side vanishes for |j−j′| 1. Moreover, since J·x is a scalar, it commutes 
with  J

2
  and  we  have that ⟨ jm|J · x|j′m′⟩  = 0  unless  j  = j′,  or 

⟨ jm|Jt|jm′′⟩ ⟨ jm′′|xt|j′m′⟩  ∝ δjj′ (J.4) 
m′′ t 

Let |j − j′| > 1, then in matrix notation we can write equations (J.3) for r = x, y 
and (J.4) as 

0 = Jy z − Jz y − ix 

0 = Jz x − Jxz − iy 

0 = Jxx + Jy y + Jz z, 

 
(J.5) 

where Jx etc are the (2j+1)×(2j+1) spin-j matrices introduced in §7.4.4 and x etc 
are the (2j+1)×(2j′ +1) arrays of matrix elements that we seek to constrain. These 
are three linear homogeneous simultaneous equations for the three unknowns x, etc.  
Unless the 3 × 3 matrix that has the J matrices for its elements is singular, the 
equations will only have the trivial solution x = y = z = 0. One can demonstrate 
that the matrix is non-singular by eliminating first x and then y. Multiplying the 
first equation by iJx and then subtracting the third, and taking the second from 
iJz times the first, we obtain 

0 = (iJxJy − Jz )z − (iJxJz + Jy )y 
(J.6) 0 = (iJ J  + J )z − (iJ

2
 − i)y. 

z   y x z 

i 

Ni 



z 

z 

z 

y 

¸ 

¸ 

x 
⇒ J J J + J J J = J (J

2
 + J

2
) − J 

y z z y x 

|ψ; 0⟩  = Ω(t )|φ; 0⟩  
+ 

dτ U  (τ )V U0(τ )|φ; 0⟩ . (K.1) 

dτ U (τ )V U (τ )|φ; 
0⟩  

≤ dτ U  (τ )V U (τ )|φ; 0⟩   . (K.2) 
. . . 0 . 

h̄ t′ 
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Eliminating y yields 

0 = {i(J
2 

− 1)(iJxJy − Jz ) − (iJxJz + Jy )(iJz Jy + Jx)}z 
= {−J

2
JxJy  − iJ

3  
+ JxJy  + iJz 

 
 
 
 

(J.7) 
z z 

+ JxJ
2
Jy − i(JxJz Jx + Jy Jz Jy ) − Jy Jx}z. 

We can simplify the matrix that multiplies z by working Jz to the front. In fact, 
using 

JxJ
2 
Jy = (Jz Jx − iJy )Jz Jy = Jz (Jz Jx − iJy )Jy − i(Jz Jy + iJx)Jy 

2 2 (J.8) 

 
and 

= JzJxJy − 2iJzJy + JxJy 
 

JxJz Jx = Jz J
2 

− iJy Jx 

)
 

 

  
         

 

equation (J.7) simplifies to 

{iJz (3 − J
2 

− 2J
2 
) + JxJy }z = 0. (J.10) 

The matrix multiplying z is not singular, so z = 0. Given this result, the second 
of equations (J.9) clearly implies that y = 0, which in turn implies that x = 0. 
This completes the demonstration that the matrix elements of the dipole operator 
between states of well defined angular momentum vanish unless |j − j′| ≤ 1. 

 

 

Appendix K: Restrictions on scattering potentials 

The  Ω±   operators  of  equation  (12.3)  require  us  to  evaluate  e
iHt/h̄

e−iH0t/h̄
  as  t → 

∓∞. Since e±i∞ is not mathematically well defined, we must check we really know 
what Ω± actually means. 

We can determine Ω± from equation (12.13) if it is possible to take the limit 
t → ∓∞ in the upper limit of integration. Hence the Ω± operators will make sense 
so long as this integral converges when acting on free states. 

Let’s concentrate for a while on Ω−, with |ψ; 0⟩  = Ω−|φ; 0⟩  telling us that |ψ⟩  
and |φ⟩  behave the same way in the distant future.   Using equation (12.13),  we 
have 

′ i 
∫ ∞ 

† 

To decide if the integral converges, we ask whether its modulus is finite (as it must 
be if |ψ⟩  can be  normalized).  The triangle  inequality  |v1  + v2| ≤ |v1| + |v2|  tells 
us that the modulus of an integral is no greater than the integral of the modulus 
of its integrand, so 

.
∫ ∞ 

†

 

 

 
. 

∫ ∞ 
. † . 

 

Since U (τ ) is unitary, the integrand simplifies to |V U0(τ )|φ; 0⟩ | = |V |φ; τ ⟩ | where 
|φ; τ ⟩  is the state of the free particle at time τ . If the potential depends only on 
position, it can be written V = d

3
x V (x)|x⟩ ⟨ x|, and the integrand on the right of 

equation (K.2) becomes 

. . 
∫
  1/2 

.V |φ; τ ⟩ . = ⟨ φ; τ |V 
2
|φ; τ ⟩

1/2
 = d

3
x V 

2
(x)|⟨ x|φ; τ ⟩ |

2
 . (K.3) 

 

What does this expression  mean?  At any fixed time,  |⟨ x|φ; τ ⟩ |
2
 d

3
x is the probabil- 

ity that we find our particle in a small volume d
3
x. Equation (K.3) instructs us to 

add up these probabilities over all space, weighted by the square of the potential – 
in other words (with the square root) we calculate the rms V (x) felt by the particle 
at time τ . As time progresses, the particle moves and we repeat the process, adding 
up the rms potential all along the line of flight. 

Now 1 =  ⟨ φ; τ |φ; τ ⟩   =  d
3
x |⟨ x|φ; τ ⟩ |

2
,  we  can  be  confident  that  for  any 

given value of τ the integral over x on the right of (K.3) will be finite. Since the 
integrand of the integral over τ is manifestly positive, convergence of the integral 
over τ requires that 

 
lim 

τ →∞ 

 
d

3
x V 

2
(x) |⟨ x|φ; τ 

⟩ |
2
 

 1/2  
<  O(τ −

1
). (K.3b) 

t′ t′ 

z y x z y z y x z x 
= J J

2
 + iJ J J J J 

(J.9) 
y y 

0 

 ∫ 



302 Appendix K: Restrictions on scattering potentials 

 
We began our discussion of scattering processes by claiming that the real particle 
should be free when far from the target, so it’s not surprising that we now find a 
condition which requires that the particle feels no potential at late times. 

If we  neglect  dispersion,  |⟨ x|φ; τ ⟩ |
2
  is  just  a  function  of  the  ratio  ξ ≡  x/τ 

as the particle’s wavepacket moves around. Assuming that the potential varies as 
some power r−n

 at large radii, we have for large τ 
∫ 

d
3
x V 

2
(x) |⟨ x|φ; τ ⟩ |

2
 ≃ τ 

3−2n
 

∫ 

d
3
ξ V 

2
(ξ)f (ξ). (K.4) 

Hence, at late times the rms potential varies as ∼ τ −n+3/2
 and Ω± is certainly well 

defined for potentials that drop faster than r−5/2
. When dispersion is taken into 

account, we can sometimes strengthen this result to include potentials that drop 
more slowly – see Problem 12.4. 

Unfortunately, the Coulomb potential does not satisfy our condition. We will 
not let this bother us too greatly because pure Coulomb potentials never arise – if 
we move far enough away, they are always shielded by other charges. 


