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Mathematics 1




Functions

Functions are a tool for describing the real world in mathematical
terms.
Definition:
If a variable y depends on a variable x in such away that each
variable of x determines exactly one value of y, then we say that

y 1s a function of x.

y = f(x).



A function can be represented by:

« Numerically (by tables).
« Geometrically (by graph).

« Algebraically (by equation).

* Verbally.



Functions

_ Table 0.1.1

A function can be represented by: INDIANAPOLIS 500
QUALIFYING SPEEDS

] YEAR { SPEED S

* Numerically (by tables). (mi/h)
1994 228.011

1995 231.604

1996 233.100

1997 218.263

1998 223.503

1999 225179

2000 223471

2001 226.037

2002 231.342

2003 231.725




Functions

A function can be represented by:

» Geometrically (by graph)

AD
Time of Arrival of Arrival of
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Functions

A function can be represented by:
* Algebraically (by equation)

WARIE

F =G

42
* Verbally.
The gravitational force of attraction between two bodies in the universe is

directly proportional to the product of their masses and inversely

proportional to the square of the distance between them.



Functions

D ———— ' e f (X)
Input / Output 7

Definition:

A function f Is a rule that associates a unique output with each
Input. If the Input Is denoted by X, then the out put Is denoted

by (x).



» Example y=3x"—4x+2

f(()) — 3(())2 — 4(()) +2=2 f associates y = 2 with x = 0.

F=17) =3 LDE - 4=1T) + 2= 1747

f(\/Z) = 3(\/5)2 4242 =842 | fassociates y = 8§ — 42 withx = /2.



Functions
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Graphs of Functions

If f(X) Is a function, then the graph of f(x) in the xy-plane Is
defined to be the graph of the equation y=f(x).

Example: f(x) =x+ 2




Graphs of Functions

2

Example: Graph the function y = x“ over the interval

[_212]-
* Make a table of xy-pairs that satisfy the equation.

* Plot the points (x,y) whose coordinates appear in the table.

 Draw a smooth curve through the plotted points.



Graphs of Functions

Example: Graph the function y = x? over the interval

A~
|
~

(]

[-2,2].

X

* Make a table of xy-pairs that satisfy the —2
equation. — 1
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Graphs of Functions

Example: Graph the function y = x? over the interval
[-212]'
* Plot the points (x,y) whose coordinates appear in the table.

 Draw a smooth curve through the plotted points.




The Vertical Line Test for a Function

Not every curve In the xy-plane Is the graph of a function.

Example: A circle cannot be the graph of a function since some vertical
lines intersect the circle twice.

3
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Domain and Range

If x and y are related by the equation y=f(x), then the set
of all allowable inputs (x-values) is called the domain of
the function f(x).

y = f(x).

The set of outputs (y-values) that results when x various
over the domain is called the range of the function f(x).



Domain and Range

Example:
Find the domain and the range of the function f(x) defined by

X O 1 2 3

y | 3 4 | —1 | 6

Answer:
The domainis the set: {0,1,2,3}

The range istheset: {-1,3,4,6}



Domain and Range

Example:
Find the domain of the functions:

() f(x)=x
(b) f(x)=1/[(x = 1)(x = 3)]
(c) f(x)=+/x2-5x+6

Answer:

(a)The domain is the set : (—o0, c0)



Domain and Range

Example: Let x=3

Find the domain of f(X) _ 1 _ 1
1 [(B-1)(3-3)] [2(0)]

b) f(x) =

(b) 1{x) [(x—1)(x=3)] :%= 00

Answer:



Domain and Range

Example: Let x=1
Find the domain of f(X) _ 1 _ 1
1 [(1-1)(1-3)] [0(—2)]
b) f(x) =
(b) 1) = e S g

Answer:

The domainis {x: x#+ 1 and x# 3}
=(_OO) 1)U (1)3) U (3) OO)



Domain and Range

Example: let x = 2,

Find the domain and the range of Then f(x)= V1 — 4
(c) f(x) = V1 — x2 =/—3 = V—1V3=iV3

. f(x) notreal at x = 2

Answer: 1—x%2>0
(1—-x)(1+x)=0
x=1andx = —1 —00 “ 00




Domain and Range

Example: let x = 2,

Find the domain and the range of Then f(x)= V1 — 4
(c) f(x) = V1 — x2 =/—3 = V—1V3=iV3

. f(x) notreal at x = 2

Answer: 1—x%2>0
(1—-x)(1+x)=0 —
x=1landx=-1 -0 - co




Domain and Range

Example: let x = 2,

Find the domain and the range of Then f(x)= V1 — 4
(c) f(x) = V1 — x2 =/—3 = V—1V3=iV3

. f(x) notreal at x = 2

Answer: 1—x4>0

I-0A+0)20 o ;=
x=1landx = —1 -0 o0



Domain and Range

Example: let x = 2,

Find the domain and the range of Then f(x)= V1 — 4
(c) f(x) = V1 — x2 =/—3 = V—1V3=iV3

. f(x) notreal at x = 2

Answer: 1—x%2>0
(1-01+x)=20  — N -
x=1landx = —1 —00 ‘ 00

The domain is [—1,1].
The range is [0,1].



Function Domain (x) Range (y)

y=x’ (=00, 00) [0, o0)
y=1/x (=00,0)U(0,00)  (=00,0)U(0, 0)
y=Vx [0, 00) [0, o)



Pilecewise-Defined Functions

Sometimes a function Is described by using different formulas on
different parts of its domain.

Example 1: Absolute value function

X, x =0
f=q 0
“V9 2

Domain: (-00, c0)

Range: [0, o0)



Piecewise-Defined Functions

Example 2:
/
A, x < b= —x y = f(x)
f) =9 % 0=x=<] 25
1, y > 1 [ v =
}::_1’2
| | | |
-2 -1 0 ] 2




Piecewise-Defined Functions

Example 3: Greatest integer function or the integer floor function.

The function whose value at any number x is the greatest integer less than or
equal to x is called the greatest integer function or the integer floor function.
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Piecewise-Defined Functions

Example 4: Least integer function or the integer ceiling function.

The function whose value at any number x is the smallest integer greater

than or equal to x is called the least integer function or the integer ceiling
function.

: 2

[2.41 = 3 [_0_31 = 0 ] CT‘/;I
T ?—/—.v—ﬂ
(1):2 i 12 -2 = -2 2_:/1 L
0] =0 N




Properties of functions



Increasing and Decreasing Functions

DEFINITIONS  Let f be a function defined on an interval / and let x; and x, be
any two points in /.

1. If f(xp) > f(x;) whenever x; < x;, then f is said to be increasing on /.

2. If f(xp) < f(x;) whenever x; < x», then f is said to be decreasing on /.

If the graph of a function climbs or rises as you move from left to right, we say
that the function is increasing.

If the graph descends or falls as you move from left to right, the function is
decreasing.



Increasing and Decreasing Functions

Example: y
A
The function is decreasing on (-©0,0]. |
‘}- = =Y -} :f(‘“r)
The function is increasing on [0, 1]. 21
y =1
|
The function is neither increasing nor y = 1
decreasing on the interval [1, o). o [
-2 -1 0 | 2




Functions

Functions and Graphs

In Exercises 1-6, find the domain and range of each function. Find the domain and graph the functions in Exercises 15-20.

L f(x) =1+ x?

3. F(x) = V5x + 10

5. fl1) = 50—

4

2. flx) =1-— Vx

4, g(x) = Vx? — 3x
2

6. G(1) = 716

Piecewise-Defined Functions
Graph the functions in Exercises 25 28.

x,
25, fl(x) = {2 .

1 — x,
26. gi(x) = {2 _ .

4—12,
27. F(x) = {IE + oy

1
2

0 = x

=
A
-
A A

1
2

15. f(x) =5— 2 16. f(x) =1 —2x — x*
17. g(x) = \/|x_| 18. g(x) = V—x
19. F(1) = t/|¢] 20. G(1) = 1/]¢]
. . + 3
21. Find the domain of y = —— i
4-Vx*-9
2
22. Find th fyp=2+—2—
e range of y 212

23. Graph the following equations and explain why they are not
graphs of functions of x.
a. |y|==x

24, Graph the following equations and explain why they are not
graphs of functions of x.

a. x|+ [y]=1

b. y?=x?

b. [x +y|=1



Functions

Functions and Graphs

In Exercises 1-6, find the domain and range of each function. Find the domain and graph the functions in Exercises 15-20.

L f(x) =1+ x?

3. F(x) = V5x + 10

5. fl1) = 50—

4

2. flx) =1-— Vx

4, g(x) = Vx? — 3x
2

6. G(1) = 716

Piecewise-Defined Functions
Graph the functions in Exercises 25 28.

x,
25, fl(x) = {2 .

1 — x,
26. gi(x) = {2 _ .

4—12,
27. F(x) = {IE + oy

1
2

0 = x

=
A
-
A A

1
2

15. f(x) =5— 2 16. f(x) =1 —2x — x*
17. g(x) = \/|x_| 18. g(x) = V—x
19. F(1) = t/|¢] 20. G(1) = 1/]¢]
. . + 3
21. Find the domain of y = —— i
4-Vx*-9
2
22. Find th fyp=2+—2—
e range of y 212

23. Graph the following equations and explain why they are not
graphs of functions of x.
a. |y|==x

24, Graph the following equations and explain why they are not
graphs of functions of x.

a. x|+ [y]=1

b. y?=x?

b. [x +y|=1



Increasing and Decreasing Functions

The Greatest and Least Integer Functions

. Graph the functions in Exercises 37-46. What symmetries, if any, do
33. For what val f
orw HES 0L the graphs have? Specify the intervals over which the function is in-
a x| =107 b. [x] =0 creasing and the intervals where it is decreasing.
34, What real numbers x satisfy the equation |x| = |x|? . \ . 1
VY= X LY==
35. Does | —x | = —| x| for all real x? Give reasons for your answer. ! 1 ! lxz
36. Graph the function ¥, y=-% 0. y = i
B LIJF IE{] 4l-y=w;| 42-y=\/__.x
D=1 x<o. B.y=28 .y =-4Vx
45, y = 46. y = (=x)*"

Why is f(x) called the integer part of x?



Even and Odd Functions
In Exercises 4758, say whether the function is even, odd, or neither.
Give reasons for vour answer.

47, flx) = 3 48. f(x) = x~°

49. f(x) = x* + 1 50. f(x) = x* + x

51. g(x) = x* + x 52, g(x) = x* + 3x* — 1
|

53. g(x) = [ER 54. gi(x) = . I_ 1

55. k(1) = t_l 1 56. h(t) = |3

57. hit) = 21 + 1 58. (1) = 2t + 1



Increasing and Decreasing Functions

DEFINITIONS  Let f be a function defined on an interval / and let x; and x, be
any two points in /.

1. If f(xy) > f(x;) whenever x; < x,, then f is said to be increasing on /.
2. If f(xy) < f(x;) whenever x| < x», then f is said to be decreasing on /.

If the graph of a function climbs or rises as you move from left to right, we say
that the function is increasing.

If the graph descends or falls as you move from left to right, the function is
decreasing.




Increasing and Decreasing Functions

Example: y
A
The function is decreasing on (-©0,0]. |
‘}- = =Y -} :f(‘“r)
The function is increasing on [0, 1]. 21
y =1
|
The function is neither increasing nor y = 1
decreasing on the interval [1, o). o [
-2 -1 0 | 2




Even Functions and Odd Functions: Symmetry

DEFINITIONS A function y = f(x) is an

even function of x if f(—x) = f(x),
odd function of x if f(—x)

|

|
S~
o

-
‘;——-"’

for every x in the function’s domain.

Example:
y= x? y=X
= x4 = x3

Even Odd




Even Functions and Odd Functions: Symmetry

The graphs of even and odd functions have characteristic symmetry
properties.

>

The graph of an even function is symmetric
about the y-axis. Since f(-x) = f(x) , a point
(x,y) lies on the graph if and only if the
point (-x, y) lies on the graph.

A reflection across the y-axis leaves the
graph unchanged.




Even Functions and Odd Functions: Symmetry

The graphs of even and odd functions have characteristic symmetry
properties.

The graph of an odd function is symmetric about
the origin. Since f(-x) = - f(x) , a point (x,y) lies on
the graph if and only if the point (-x, -y) lies on
the graph.

> X
Equivalently, a graph is symmetric about the origi

if a rotation of 180 about the origin
leaves the graph unchanged. (=, =)

Notice that the definitions imply that both x and -x
must be in the domain of the function f.



Even Functions and Odd Functions: Symmetry

Example: f(x) = x% + 1

Answer:

fl=x) = (=x+1=x*+1

~ f(=x) = f(x) M Even function -

symmetry about y-axis

> X



Even Functions and Odd Functions: Symmetry

Example: fx) = x* + 1 X y=x2+1
Answer:
y = x%
f(=x) = (-)c‘)2 +1=xt4]
~ f(=x) = f(x) M Even function
> X

symmetry about y-axis




Even Functions and Odd Functions: Symmetry

Example:  f(x) = x + 1

f(—x) = —x + 1
—f(x) = —x— 1

f(=x) # f(x), and f(=x) # —f(x),

~. The function f(x)is not odd and not even.



Even Functions and Odd Functions: Symmetry

> =

Example:  f(x) = x + 1

f(—x) = —x + 1
—flx) = —x — |

f(=x) # f(x), and f(—x) # —f(x), /1/

. The function f(x)is not odd and not even.

The symmetry about the orgini is lost



Combining Functions

Here, we study the main ways functions are combined or transformed to
form new functions.

Like numbers, functions can be added, subtracted, multiplied, and
divided (except where the denominator is zero) to produce new
functions.



Combining Functions

If fand g are functions, then for every x that belongs to the domains of
both fand g (that is, for x € D(f) N D(g)), we define functionsf+g, f - g,

and fg by the formulas

(f+9)(x) = f(x) + g(x).
(f-9)(x) = f(x) - g(x).
(fa)(x) = f(x)g(x).



Combining Functions

At any point in D(f) N D(g)) at which g(x) # O, we can also define the
f

function ; by the formula
f) f(x)
—(x) = - where g(x) # 0).

Functions can also be multiplied by constants: If cis a real number, then
the function cf is defined for all x in the domain of f by

(cf)(x) = cf(x).



Combining Functions

Example: The functions defined by the formulas

f(x) = Vx and g(x) = V1 - x

D(f) = [0, ) 1-x=>0
D(g) = (—,1]

So, the points common to these domains are the points

[0, 00) N (=00, 1] = [0, 1].




Example: The functions defined by the formulas

f(x) = Vx  and g(x) = V1 — x

Function Formula Domain
f+g (f+g)=VetVi-x  Df)NDg)=[0,1]
f-g (f—g)(x)=\/.£—\/? [0, 1]

¢~/ (g=fl=VI-x- Vi [0, 1]



Combining Functions

Example: The functions defined by the formulas

f(x) = Vx and g(x) = V1 — x

Function Formula Domain
f-g (f+g)x) \/xl-x [0, 1]
S/ e = ( o =17 E“’; \/ X [0, 1) (x = 1 excluded)

(x) — X
g/f f 7 = ?(1) \/l x (0, 1] (x = 0 excluded)



Example 1: The functions defined by the formulas
f(x) = Vx and g(x) = V1 — x

Y y
A

3(”:"1;; fO=Vr = Vi=z ) =V
o
L 1
: >

I > I B ”
s 05 5 05 | ol 1 2 3 £ 4



Example 1: The functions defined by the formulas
f(x) = Vx and g(x) = V1 — x

X y
A
g)=VI1-x Jx) =
\1N
L
2
| | | | Y
ol 1 2 3 4
5 5 5 5




Combining Functions

Composition is another method for combining functions.

DEFINITION If f and g are functions, the composite function f ° g (“f com-
posed with g”) is defined by

(f ° g)x) = flgx)).

The domain of f ° g consists of the numbers x in the domain of g for which g(x)
lies 1n the domain of f.




g(x)

The definition implies that f o g can be formed when the range of g lies in the
domain of f. To find (f o g)(x), first find g(x) and second find f(g(x)).



Combining Functions

The functions f o g and g o f are usually quite different.

To evaluate the composite function g o f (when defined), we find f(x)

first and then g(f(x)).

The domain of g o f is the set of numbers x in the domain of f such

that f(x) lies in the domain of g.



Combining Functions

EXAMPLE 2 If f(x) = Vxand g(x) = x + 1, find
@) (f ° g)x) (b) (g° llx) () (fe Hlx) (@) (g°gk).

Solution

Composite Domain
(@) (f°gx) = flglx)) = Vglx) = Vx +1 [—1, 00)
) (g Hlx) = g(f) = () + 1= Vx+1 0, o)

(¢) (f° f)lx)= (
) (g°og)x) =glglx) =gx) +1=x+1)+1=x+2 (=00,00)



Shifting a Graph of a Function

A common way to obtain a new function from an existing one is by adding a
constant to each output of the existing function, or to its input variable.

The graph of the new function is the graph of the original function shifted
vertically or horizontally, as follows.

Shift Formulas
Vertical Shifts

v = f(x) + k Shifts the graph of f up k units if &k > 0
Shifts it down | k|units if £ < O

Horizontal Shifts

v = f(x + h) Shifts the graph of f left h units it A > 0
Shifts it right |h|units if 7 < 0




Shifting a Graph of a Function

Example :

(a) Adding 1 to the right-hand side of the formula y = x? to get y= x*+ 1 shifts
the graph up 1 unit.

> 2
_}"=.1’2-|—1
y = x"

(b) Adding -2 to the right-hand side of the
formula y = x? to get y = x2-2 shifts the
graph down 2 units.




Example: y=x?

> X




Shifting a Graph of a Function

Example :
Adding -2 to x in y = x% to get y=(x — 2)? shifts the graph 2 units to the
right.

Add a negative
constant to x.




Shifting a Graph of a Function

Example: y=x?

Adding 3to x iny = x% to get y=(x + 3)? shifts the graph 3 units to the
left.

Add a posiuve Add a negative
constant to x. constant to x.

y=(x—|—3)2




Shifting a Graph of a Function

Example: vy =|x]

Adding -2 to x in y = | x|, and then adding -1 to the result, gives
y = |x — 2| - 1. This shifts the graph 2 units to the right and 1 unit down




Scaling and Reflecting a Graph of a Function

To scale the graph of a function y = f(x) is to stretch
or compress it, vertically or horizontally. This is
accomplished by multiplying the function f, or the
independent variable x, by an appropriate constant

c. Reflections across the coordinate axes are special

cases where c =-1.



Vertical and Horizontal Scaling and Reflecting Formulas

For ¢ > 1, the graph is scaled:

y = cf(x) Stretches the graph of f vertically by a factor of c.
y = % f(x) Compresses the graph of f vertically by a factor of c.
y = f(ex) Compresses the graph of f horizontally by a factor of c.

y = f(x/c) Stretches the graph of f horizontally by a factor of c.




Scaling a Graph of a Function

Example:

y = Vx

Vertical: Multiplying the right-
hand side of y = +/x by 3 to get
y = 3y/x stretches the graph
vertically by a factor of 3, whereas
multiplying by 1/3 compresses the
graph by a factor of 3

stretch




Scalling a Graph of a Function

Example: y = /x
Horizontal: The graph of y=+v3x is a
horizontal compression of the graph

of y = +/x by a factor of 3, and y = /x/3is a
horizontal stretching by a factor of 3.

Note that y =+/3x =+/3 /x so a horizontal
compression may correspond to a vertical
stretching by a different scaling factor.
Likewise, a horizontal stretching may
correspond to a vertical compression by a
different scaling factor.

>

COMPIESS

y=V3x

|
-1




Shifting a Graph of a Function

Example: y = +/x

Vertical: Multiplying the right-
hand side of y = +/x by 3 to get
y = 3+/x  stretches the graph
vertically by a factor of 3, whereas
multiplying by 1/3 compresses the
graph by a factor of 3.

o W = N

stretch y = Vx




Vertical and Horizontal Scaling and Reflecting Formulas

For ¢ = —1, the graph is reflected:
y=—f(x) Reflects the graph of f across the x-axis.
y = f(—x) Reflects the graph of f across the y-axis.




Reflecting a Graph of a Function

Example: y = /x
Reflection: The graph of y=-+/xisa - y=V=x
reflection of y = \/x across the x-axis,

and y = h is a reflection across the y-
axis

| | |
3 -2 -l




Shifting a Graph of a Function

Example: Given the function f(x) =x* — 4x3+10,  find formulas to

(a) compress the graph horizontally by a factor of 2 followed by a
reflection across the y-axis.

(b) compress the graph vertically by a factor of 2 followed by a
reflection across the x-axis

Solution

(a) We multiply x by 2 to get the horizontal compression, and by -1 to give
reflection across the y-axis. The formula is obtained by substituting -2x for x
in the right-hand side of the equation for f:

y = f(—=2x) = (=2x)* — 4(=2x)’ + 10
= 16x* + 32x° + 10.



Shifting a Graph of a Function

Example: Given the function f(x) =x* — 4x3+10, find formulas to

(a) compress the graph horizontally by a factor of 2 followed by a
reflection across the y-axis.

(b) compress the graph vertically by a factor of 2 followed by a
reflection across the x-axis

Solution

(b) The formula 1s

1 ., 1 4 3
y = zf(.l)— > X + 2x 5.

-




Families Of Functions

Linear Functions

A function of the form f(x)=mx+b

for constants m and b, is called a linear
function.

y=mx+b

} b

0

> X



Families Of Functions

Linear Functions

A function of the form y=mx+b

for constants m and b, is called a linear
function.

Letb=0 - f(x)=mx
Let b =0, and m=1

f(x) = X ‘ Identity function




Common Functions

Linear Functions

A function of the form f(x)=mx+b
for constants m and b, is called a linear
function.

Lletm=0,andb #0

f(x) =bh ‘ Constant function |




Common Functions

Linear Functions A function of the form f(x)=mx+b

letb=0 . y=mXx mmm) proportionality relationship
DEFINITION  Two variables y and x are proportional (to one another) if one is
always a constant multiple of the other; that 1s, 1f y = kx for some nonzero

constant £.

1

If the variable y is proportional to the reciprocal ;, then sometimes it

is said that y is inversely proportional to x.



Common Functions

Polynomials A function p is a polynomial if
p(x) = a,x" + a1 x"" '+ - + ax + ag

where n is a nonnegative integer and the numbers agy, a4, a,, ..., a,, are real
constants (called the coefficients of the polynomial).

If a,, # 0 and n > 0, then n is called the degree of the polynomial.

Example: Polynomials of degree 2

plx) = ax’ + bx + c quadratic functions

p(x) =x*—-5x+6



Common Functions

n—1

Polynomials p(x) = a,x" + a,—1x""" + -+ + a;x + ag

Example: Polynomials of degree 3

p(x) = ax’ + bx* + cx +d  cubic functions

Example: Polynomials of degree 1
p(x)=mx+b

Linear functions with m # 0 are polynomials of degree 1.

All polynomial have domain (-0, o).



Common Functions

Power Functions

A function f(x) = x% where a is a constant, is called a power function.

There are several important cases to consider:

(a) a = n, a positive integer.

=)

Fx) = 2"

Domain (-0, 00).

'\-_"-.,_t.._.lr

]




Common Functions

Power Functions

A function f(x) = x% where a is a constant, is called a power function.
There are several important cases to consider:

la=-1 )  fx)=x"1=-

X

The graph of f(x) = % is the hyperbola xy =1,

which approaches the coordinate axes far from
the origin.

This function is decreasing on the 0 '1 T
intervals (-00,0) and (0, =) Domain: x # 0

. . . Range: v = 0
The graph of the function f is symmetric about e

the origin and it is odd function.




Common Functions

Power Functions
A function f(x) = x% where a is a constant, is called a power function.

There are several important cases to consider:
. _ 1 Yy
(i) a =-2 :> f(x) = 2:; A

The graph of f(x) = x—lz approaches the coordinate

dXes.

This function is increasing on (-00,0) and 1
decreasing on (0, o)

> X

0 1

Domain: x # 0

Th h of the function f | tric about
e graph ot the unctlonf IS Ssymmetric apbou Range: y > 0

the y-axis and it is even function.




Common Functions

Power Functions
A function f(x) = x% where a is a constant, is called a power function.

There are several important cases to consider:

11 3 / -* f
(ii)a=~,-,-a d— (Recall that x¥? = (x/%)* and 3 = (x'7)2)
y
A
y
y Y | A
A y= "‘»G A Y = IE;E

> X > X > X > X
0] 1 04 1 0] 1 0] 1
Domain: 0 < x < Domain: =% < x < Domain: 0= x<®  pyoain g < ¢ < o0

Range: 0<y<« Range: —»<y<w Range: 0=y<®  pinger 0<y<e




Common Functions

RaﬁonaIFuncﬁons

A rational function is a quotient or ratio f(x) =

p(x)
q(x)’

where p(x) and q(x) are

polynomials. The domain of a rational function is the set of all real x for which

g(x)+ 0.

b

2212—3 p)

Tx+4}
|

el

> -t

_ 5x% + 8x — 3

y
. 5
N ) = =
i Ine ) ;

8

y

N

_ 11x + 2

2x3 — 1




Common Functions

Trigonometric Functions: The six basic trigonometric functions: sin x, cos x,
tan x, cosec x, sec x, cot x.

Exponential Functions: f(x) =a*, where the base a > 0 Is a positive constant.
All exponential functions have domain (-oo,00) and range (0,00).

-.H I ..L.
' L

y = 10" y =107

12 12+
10 10+
8~ 8
v = 37" 6 -

4

y =27 2r




Common Functions

Logarithmic Functions: f(x) = log ,x, where the base a#1 Is a positive constant.
They are the inverse functions of the exponential.

The domain is (0, o) and the range Is (- oo, o).




Common Functions

Transcendental Functions: These are functions that are not algebraic. They include
the trigonometric, inverse trigonometric, exponential, and logarithmic functions,
and many other functions as well.




h

sin 0 = opp csc 0 = YD

hyp opp

hypotenuse ,
i h opposite

cos 0 = = sec 0 = YI?

hyp adj ¢

adjacent

tan @ = OPI_) cot 8 = adj

adj OopP



The Six Basic Trigonometric Functions

We extend this definition to obtuse and negative angles by first placing the angle
In standard position in a circle of radius - We then define the trigonometric

functions in terms of the coordinates of the point A(x,)) where the angle's terminal
ray intersects the circle.

: : y /
sine: sinf =7 cosecant: csell =
: X ¥
cosine: cosf = - secant: sec = ¢

'

X
tangent: tanf = .  cotangent: cotf = 3




The Six Basic Trigonometric Functions

_ sinf 1
tan & = cos 0 csc ¢ sin 6

1 1 ' a
sec O = 03 0 cotf = P

tan 0 and sec 0 are not defined if x = cos 8 = 0. This means they are not

3
defined if @ is * g, + zn, ... . Similarly, cot 8 and csc 0 are not defined for values

of 8 for which y =sin 8 =0,namely 0 =0, #m, £ 21, ....






Example:
|
SIn -~ =
COS — — ﬁ
6 2
aT 1



The CAST Rule

The CAST rule is useful for remembering when the basic trigonometric functions
are positive or negative.

2T V3
s1N T — T S A
sin pos all pos
r_ ]
COS 3 — — E > X
i 2m _ T C
an 3= = -\V3 tan pos COS Pos




The CAST Rule

The CAST rule is useful for remembering when the basic trigonometric functions

are positive or negative.
CcOS E_ﬂ-, 51N Z_ﬂ- = ( l, Lﬁ
S 377 3 2’72

sSiIN—— = ——
1
COS i _ l %ﬁ 57
3 > N .
1
2 E
ran T — _ \/i




Periodicity and Graphs of the Trigonometric Functions

When an angle of measure 6 and an angle of measure 6 + 2 are in standard

position, their terminal rays coincide.

The two angles therefore have the same trigonometric function values:

sin(@+ 2m) =sin A, tan(@ + ) = tan @, and so on.

Similarly, cos(6 - 2m) = cos 8, sin(6 - 2mr) = sin 8, and so on. We describe this

repeating behavior by saying that the six basic trigonometric functions are periodic.



Periodicity and Graphs of the Trigonometric Functions

DEFINITION A function f(x) is periodic if there is a positive number p such that
f(x + p) = f(x) for every value of x. The smallest such value of p 1s the period of {.

y
A

. ) = SIN X
Period 277 : | )
|
sin(x + 27) = sinx | .
—7 _7 z 3w P
/7 N\

sin(—x) = —sinx ) Odd pomain: —ec < X < o

Range: -1=y=1
Period: 2




Periodicity and Graphs of the Trigonometric Functions

Period 27 :

cos(x + 2m) = cosx

COS(_X) — COS X ‘ Even Domain: —oo < x <
Range: -l1=y=1
Period: 2



Periodicity and Graphs of the Trigonometric Functions

Period 277 .

sec(x + 2m) = secx |

\J

Y
0\ y = SeC X

b —77

sec(—x) = sec x mmh Even m

Domain: x #+2 + 27

Range:
Period:

0

3T
2 27

y=—-lory=1

2T



Periodicity and Graphs of the Trigonometric Functions

Period 277 .

csc(x + 2m) = cscx

csc(—x) = —cscx mmp 0Odd

Domain: x # 0, =, =21, . ..
Range: y=-lory=1
Period: 2



Periodicity and Graphs of the Trigonometric Functions

Period 77 :

tan(x + ) = tanx

tan(—x) = —tanx =) Odd

> X

Domain: x #++

Range: —o <
Period:



Periodicity and Graphs of the Trigonometric Functions

y
Period 77 : | y = Cotx
cot(x + ) = cotx |
-y _o\V0| m\7 37
cot(=x) = —cotx == Odd : : :

Domain: x # 0, =, =2, . ..
Range: —oo <y <o
Period: 7



Trigonometric Identities

The coordinates of any point P(x, y) in the plane can be expressed in
terms of the point's distance r from the origin and the angle 8 that ray
OP makes with the positive x-axis

X = ¥ COS 8 P(cos 8, sin 8)

y = rsmno

When r =1 we can apply the Pythagorean theorem

cos?0+sin%0 = 1




Trigonometric Identities

cos?0+sin%0 = 1 divid over cos?6
1+tan?0 = sec?6
cos?0+sin%0 = 1 divid over sin’6

cot?0 + 1 = csc“0
The following formulas hold for all angles Aand B
sin(A + B) =sin4 cosB + cos A sinB
cos (A+B)=cos A cosB + sin A sinB



Double-Angle Formulas

cos 20 = cos?0 - sin‘ 6
sin 260 = 2sin @ cos @

Half-Angle Formulas
cos? 0 +sin*60 =1 (1)

cos? 0 - sin’* 0 = cos 20 (2)
By summing Eq. (1) and Eq.(2)
cos? 0 +sin? 6 + cos? 6 - sin? 6 = 1+ cos 26
2c0s* 0 =1+ cos?20
1 4+ cos 26

2

cos? 0 =




Double-Angle Formulas

Half-Angle Formulas

cos? 0 +sin“0 =1 (1)
cos? 0 - sin* 0 = cos 20 (2)

By subtracting Eq. (2) from Eq.(1)

1 — cos 20
2

sin‘ 6 =



INVERSE FUNCTIONS

y = f(x)

This equation is better for computing )/ if Xis known.

x=g(y)

This equation is better for computing X If )/is known.



Example: vy = x> 4+ 1




INVERSE FUNCTIONS

Example: y = x> + 1 x =y —1

y = f(x) x = g(y)

When these functions are composed in either order, they cancel out the effect
of one another:

=3/f(x)—1=3/(x3 )-1=x
fe) =[P +1=(y—-1)’




INVERSE FUNCTIONS

0.4.1 bpEFINITION If the functions f and g satisfy the two conditions

g(f(x)) = x for every x in the domain of f

f(g(y)) = y for every y in the domain of g

then we say that fis an inverse of g and g is an inverse of [ or that f and g are inverse

functions.

If a function £ has an inverse, then that inverse Is unigue.

Thus, if a function £ has an inverse, then we denote it by the symbol f~1.

f—l(f(x)) —=x foreveryx int

ne domain of f

f(f'(y) =y foreveryyint

e domain of £~



INVERSE FUNCTIONS

Changing The independent Variable :
Y (f(x)) =x forevery x in the domain of f
f(f~'(y)) =y forevery y in the domain of f~!

If we want to graph the functions 7 and f~! together in the same
Xx)~coordinate system, then we use x as the independent variable and y
as the dependent variable for both functions.

Ex: To graph the functions: f(x) =x° +1and f~'(y) = J/y —1

we would change the independent variable y to X, use y as the dependent variable
for both functions, and graph the equations

y=x>41 and y:\?’/x—l



INVERSE FUNCTIONS

Changing The independent Variable :

Y f(x)) = x forevery x in the domain of f
f(f~'(y)) =y forevery y in the domain of !

using x as the independent variable for both fand f~1:

Y (f(x)) =x forevery x in the domain of f
f(f~'(x)) =x forevery x in the domain of f~!



INVERSE FUNCTIONS

Example: Confirm each of the following:
(a) The inverse of f(x) = 2x is f~!(x) = 3x.
(b) The inverse of f(x) = x3is f~1(x) = x!/3.
Solution:
(@) ') =f"12x) =32x) =x
@) = f(3x) =2(3x) =x

(b) ' (f@) =100 = (2% =x

3

FUI) = fx3) = (x13) =x



INVERSE FUNCTIONS

Domain and Range of Inverse functions:
From:
f‘1 (f(x)) =x forevery x in the domain of f
f(f " (y))=y forevery y in the domain of !

domain of f—! = range of f

range of f~! = domain of f



INVERSE FUNCTIONS

A ‘Method For Finding Inverse Functions

0.4.2 THEOREM Ifan equation y = f(x) can be solved for x as a function of y, say
x = g(y), then f has an inverse and that inverse is g(y) = f~'(y).

This theorem provides us with the following procedure for finding the inverse of a function.

A Procedure for Finding the Inverse of a Function f

Step 1.
Step 2.
Step 3.

Step 4.

Write down the equation y = f(x).
If possible, solve this equation for x as a function of y.

The resulting equation will be x = f~'(y), which provides a formula for f~!
with y as the independent variable.

If y 1s acceptable as the independent variable for the inverse function, then you
are done, but if you want to have x as the independent variable, then you need
to interchange x and y in the equation x = f~'(y) to obtain y = f~!(x).



INVERSE FUNCTIONS

A Method For Finding Inverse Functions

Example Find a formula for the inverse of f(x) = +/3x — 2 with x as the indepen-
dent variable, and state the domain of !,

Solution  Following the procedure, we first write y = +/3x — 2

Then we solve this equation for x as a function of y: yz — 3x —2

X = %(}-‘2 -+ 2)
which tellsus that 7~ !(y) = %(}-‘2 +2) ]

Since we want x to be the independent variable f_l(x) = %(Jt2 +2)

The domain of f~1is the range of f, whereas the range of f(x) is [0, o).



INVERSE FUNCTIONS

Existence Of Inverse Functions:

This procedure can fail for two reasons. The function f may not have an inverse, or it may
have an inverse but the equation /= f(x) cannot be solved explicitly for x as a function of .

Thus, it Is Important to establish conditions that ensure the existence of an inverse,
even If it cannot be found explicitly.

0.4.3 THEOREM A function has an inverse if and only if it is one-to-one.

A function that assigns distinct outputs to distinct inputs Is said to be one-to-
one or invertible.

Algebraically, a function 7(x)is one-to-one if and only if f(x1) # f(x,) whenever x; # x,.



Existence Of Inverse Functions:
The Horizontal Line Test:

0.4.4 THEOREM (The Horizontal Line Test) A function has an inverse function if and
only if its graph is cut at most once by any horizontal line.

AY AY
y=1Ax

y= ﬁX) f(XE) |

fix) = f(x,) /\ f(xy) :

| |

I I | |
1 | : | )
| | X X X >

> 1 2
X 1’2

Not one-to-one, since One-to-one, since f(x;) # f(x,)

I‘(Xl) = f(XE) and XX If X e = Xy




Existence Of Inverse Functions:
Example: y = x%,and y = x3

Y

y = x2 is not invertible. y = x3 is invertible.



Existence Of Inverse Functions:

Increasing Or Decreasing functions are invertible.

AY AY
Increasing Decreasing
I I
: f(x,) f(x)) :
| I I |
| | I |
| I I |
f(x,) I l X I I ()
o
X X X X

f(x)) < f(x,) if x; < x5 f(x)) > f(x,) iIf x; < x,




Graphs Of Inverse Functions

0.4.5 THEOREM If f has an inverse, then the graphs of y = f(x) and y = f~'(x)
are reflections of one another about the line y = x; that is, each graph is the mirror
image of the other with respect to that line.

ALY

y=f'(x® 4

The graphs of fand f'are
reflections about y = x.




Graphs Of Inverse Functions




INVERSE FUNCTIONS

ReStricting Domains For Invertibility

Sometimes It is possible to create an invertible function from a function that is
not invertible by restricting the domain appropriately.

Example: y = x%, However, consider the restricted functions
N, fik)=x*, x>0 and f(x)=x", x<0
y=x These restricted functions are each one-to-one (invertible).
4 AY AY
| |
| |
| |
| |
| | .
| J >
-2 2 y=x,x20 y=x>x<0
X X
= >
y = x? is not invertible.




INVERSE FUNCTIONS

ReStricting Domains For Invertibility

Sometimes it is possible to create an invertible function from a function that is not
Invertible by restricting the domain appropriately.
Example: y = x2 However, consider the restricted functions

| fl(x) = Xz, X > 0 and fz(x) :x2’ x < 0

Ay o i i
y=x Theirinversesare f;'(x)=+/x and f;'(x) = —/x
y=x>, x<0 e y=x2, x>0 -
4 <L -
| | 4L ///,
| | -
| | 3 //,/
I I T 7 y=Ax
| | X L
_2 2 | ] | -~ ] | | | | i
—3 —2 —1 //' 1 2 3 4 5
/_1 -
y = x* is not invertible. L [




INVERSE FUNCTIONS

Inverse Trigonometric Functions

The six basic trigonometric functions do not have inverses because their graphs repeat
periodically and hence do not pass the horizontal line test.

AY AY Y AY

y=smx y=cosx y=tanx y=secx

T T 0<x< T T T
—S<y<s = A= - <Xx<= <x< =
7 SX<5 7 <X<3 {}_x_;fr,x¢2

To circumvent this problem we will restrict the domains of the trigonometric functions to
produce one-to-one functions and then define the “inverse trigonometric functions” to be
the inverses of these restricted functions.



Inverse Trigonometric Functions

0.4.6 DEFINITION The inverse sine function, denoted by sin™"', is defined to be the
inverse of the restricted sine function

sinx, —mw/2<x<m/2

Y




Inverse Trigonometric Functions

0.4.7 pEFINITION The inverse cosine function, denoted by cos™!, is defined to be
the inverse of the restricted cosine function

cosx, O0<x<m

ALY

¥=cos X




Inverse Trigonometric Functions

0.4.8 DEFINITION The inverse tangent function, denoted by tan—!, is defined to be
the inverse of the restricted tangent function

tanx, —m/2<x<m/2
.
T
2 —

/ X

-
- =
)




Inverse Trigonometric Functions

0.4.9 DEFINITION® The inverse secant function, denoted by sec™!, is defined to be
the inverse of the restricted secant function

secx, 0<x<mwithx # n/2

.

]

|A




INVERSE FUNCTIONS

Inverse Trigonometric Functions

Properties of inverse trigonometric functions

FUNCTION DOMAIN RANGE BASIC RELATIONSHIPS

sin"!(sin X) = x if —7w/2<x<7/2

- —] . .

sin =1, 1] =2 721 GnGsinTl ) = x if —1 < x< 1

-1 .
1 cos  (cosx)=x1f O<x<m

o5 =1, 1] [0, 7] cos(cos™ x) =x if -1 <x<1
-1 . o

tan-] (=00, +00) (=7/2, 7/2) tan ('[Eirll X)=X ff n/2<x<m/2

tan(tan™ X) = X 1f —oo < X < +o0

-] . .

coc] (—oo, <17 U [1,400) [0, 7/2) U (/2. 7] sec (secx)=x1f O<x<m xzm/2

sec(sec™ x) = x if X = 1




Problems

EXERCISE SET

- ~1¢y
1. In(a)—(d), determine whether f and g are inverse functions. 9-16 Find a formula for f~"(x).

@) f(x) =4x, g(v) = gx 9. f(x)="Tx —6 10, fi) =211

(b) f(x)=3x+1, gx) =3x—1 x—1

(c) flx)=x—2, gx)=x"+2 11 f(x) =35 12. f(x) = Jax 12

_ 4 _ 4
(d) fOx) =x" g(x) = Vx 13. f()=3/x% x<0 14 f(x)=5/(2+1), x>0
3. Ineach part, use the horizontal line test to determine whether 15. f(x) = 5/2-x, x<2

the function f is one-to-one. |1/, x =2

(a) f(x)=3x+2 (b) flx)=+vx—1 16 ~[2x, x <0

© fe) = I @ f() = =10 20

e) f(x)=x*—2x+2 (f) f(x) =sinx
17-20 Find a formula for f~'(x), and state the domain of the

function f~!.
17. ()= (x+2)*% x>0
18. f(x) =X 13 19, f(x) = —/3 = 2x

20. f(x)=x—-5x2, x>1



Exponential And Logarithmic Functions

If O1s a nonzero real number, then nonzero /ntegerpowers of O are
defined by

]
b"=bxbx.---xb and b™" = —

n factors b"
If n =0, then b°= 1.

Also, If Zlisa positive rational number, then

q
|
b1 = Ybr = (Yb)” and b‘f’/q:bm
bP 1
P — 1,Ptq R X R rP\Y _ 1,rq — b —
bfb?1 = b , bff_b : (b)_b y=>b =



Exponential And Logarithmic Functions

The Family Of Exponential Functions

A function of the form y = b”*, where 6 >0, is called an exponential function with base b.

X
Example: f(x) =2%,  f(x)=(3) , [f(x)=7x"
Note that an exponential function has a constant base and variable exponent.

y="0b y=b"
0O<b< 1) AY (b>1)

}/’: 1.:'=

Y ™



Exponential And Logarithmic Functions

The graph of y = b* has the following properties:
AY (b>1)
* The graph passes through (0, 1) because b’ = 1.

e |[fb > 1, the value of b* Increases as x increases.

As you traverse the graph of y = b* from left to
right, the values of b* increase indefinitely.

. .)/:l'r:l

If you traverse the graph from right to left, the values
of b* decrease toward zero but never reach zero.



Exponential And Logarithmic Functions

The graph of y = b* has the following properties:

» The graph passes through (0, 1) because b’ = 1.

y=b
0<bh<)

e [f0O<b<1],the value of b* decreases as X Increases.

As you traverse the graph of y = b* from left to
right, the values of b* decrease toward zero but
never reach zero.

If you traverse the graph from right to left, the
values of b* increase indefinitely.

If b =1, then the value of b* IS constant.




Exponential And Logarithmic Functions

The Natural Exponential Function

Among all possible bases for exponential functions there is one particular base

that plays a special role in calculus. That base, denoted by the letter &, is a certain
Irrational number whose value to six decimal places is

e~ 2.718282 p e

» The function y = e* is called the natural Slope =

exponential function. 0.1)

* The tangent line to the graph of y = e* at (0,1)

has slope 1. /

The tangent line to the graph of y = ¢ at (0, 1) has slope 1.

W B




Logarithmic Functions

* A logarithm is an exponent.

*If b >0and b # 1,then for a positive value of x the expression

y = logyx
(read “the logarithm to the base b of X”) denotes that exponent to which
b must be raised to produce X.

y=logyx mmp bY=x
Example :

log,, 100 =2 log;,(1/1000) = -3 log,16 =4 log,1 =0

102 = 100 1073 = 1/1000 24 — 16 0 =1



Logarithmic Functions

The graphs of f(x) = log,x for various values of b.
y — Dgz Xe

They all pass through the point (1,0).




Logarithmic Functions

Properties of logarithms :

(CI) IOgb (CZC) — lOgb a —+ IOgb C Product property

(b) log,(a/c) =log,a —log, ¢  Quotient property

(C) IOgb (Clr) =r logb a Power property
(d) IOgb(l/ C) —= — IOgb C Reciprocal property
Example : Simplify the expression log ﬁ
S
X
log — = log xy® —log \/z = log x + log y° — log z!/?

/z

= logx + Slogy — %logz



Logarithmic Functions

f(x) =logpx
IS called the Jogarithmic function with base b.

 Logarithmic functions can also be viewed as inverses of exponential functions.

Why? y=b* y=b"

(0< b< 1) AY (b>1)

If b >0andb # 1,

then the graph of y = b* passes the
horizontal line test, so b* has an Inverse.

}!: l’r=1
/ (b=1)




Logarithmic Functions

0.5.1 THEOREM Ifb > 0andb # 1, then b* and log, x are inverse functions.

Proof:

This inverse with x as the independent variable by solving the equation.

x =Db’ Apply log, on both sides

log, x = logy b”. ‘ log, x =y logy b, where log, b = 1.

y:logbx



Logarithmic Functions

The graphs of y=b*and y =log, x are reflections of
one another about the line )y = x.




Logarithmic Functions

The Natural Logarithm

The function log.x 1s the inverse of the natural exponential function e”.
Inx =log.x
Example :

In1=0, Ine =1, Inl/e = —1, In(e?) =2

. {] _ . ¥ —_ -
Since e = 1 Since ¢! = ¢ Since e~ = 1/e Since e* = e”



Logarithmic Functions

It also follows from the cancellation properties of inverse functions.

log,(b*) = x for all real values of x

blotx — x forx > 0

In the special case where b = e, these equations become

Example :

In(e*) = x for all real values of x

e™ —=x forx >0

In words, the functions b* and log,x cancel out the effect of one another when
composed In either order.

Example : | <
log10* =x, 10°* =x, Ine* =x, ¢"* =x, Ine’ =5,



Logarithmic Functions

The Natural Logarithm

Example : Provethat y = In x, ifandonlyif x =e”.

Solution:

_ y = Iln x, take exponent of both sides
x=e), Apply In on both sides

Inx=1Ine’. eV = olnx :> elnx — o

Inx=ylne o> Ine=1

o lnxzy

ey = X



Logarithmic Functions

X —X

Example : Solve ° _ZE = 1 for x.
Solution:  Multiplying both sides of the given equation by 2 yields
1
—e ' =2 P =2
e € [j> e e
_y . er
Multiplying through by ¢* yields wwy &% ex =2¢" mm) e —1=2¢"

e™ — 26" —1—0:> (X))’ —2e* — 1 =0
let u=e" =) u*—2u—1=0 we) quadratic formula yields

2t v4+4 2448 :
U= T leifz@z;mceu:ex@e":1::«/5

2 2
But ¢* cannot be negative, so we discard the negative value 1 — ﬁ; thus, mo> ¥ =1 4+ 4/2

Ine* =1In(l + /2) m x =In(1+ V2) ~0.881




Limits and Continuity

The concept of a “limit” Is the fundamental building block on which all
calculus concepts are based.

1.1.1 LIMITS (AN INFORMAL VIEW) If the values of f(x) can be made as close as
we like to L by taking values of x sufficiently close to a (but not equal to a), then we
write

Iim f(x) =L (6)

X—=d

which 1s read “the limit of f(x) as x approaches a 1s L” or “ f(x) approaches L as x
approaches a.” The expression in (6) can also be written as

f(x)—L as x—a (7)

The limit describes the behavior of fclose to a but not at a.



Limits and Continuity

1.1.2 ONE-SIDED LIMITS (AN INFORMAL VIEW) If the values of f(x) can be made
as close as we like to L by taking values of x sufficiently close to a (but greater than a),
then we write

lim+ f(x) =L (14)
and if the values of f(x) can be made as close as we like to L. by taking values of x
sufficiently close to a (but less than a), then we write

lim f(x) =L (15)
Expression (14) is read “‘the limit of f(x) as x approaches a from the right is L™ or
“ f(x) approaches L as x approaches a from the right.” Similarly, expression (15) is
read “‘the limit of f(x) as x approaches a from the left is L. or * f(x) approaches L as
x approaches a from the left.”

The one-sided limits in (14) and (15) can also be written as

f(x)=L as x—a* and f(x)>L as x—>a~  respectively.



Limits and Continuity

1.1.3 THE RELATIONSHIP BETWEEN ONE-SIDED AND TWO-SIDED LIMITS The two-
sided limit of a function f(x) exists at a if and only 1f both of the one-sided limits exist
at a and have the same value; that 1s,

Iim f(x) =L 1ifandonlyif Iim f(x)=L = lim+ f(x)

X—da X—a- X—a

X
Example: Explain why lim u does not exist.

x—0 x
Solution Y x>0
| x| I, x>0
foy=" =17 -
, x <0
—X

X

x—0t X x—0- X

Thus. the one-sided limits at O are not the same.



Limits and Continuity

Infinite Limits
1.1.4 INFINITE LIMITS (AN INFORMAL VIEW) The expressions

lim f(x)=+4c and lim_ f(x)= 4o

X —a X —d

denote that f(x) increases without bound as x approaches a from the left and from the
right, respectively. If both are true, then we write
lim f(x) = +oe
Similarly, the expressions
lim f(x) = —c and Iim f(x) = —oo

X—=>a— x—at

denote that f(x) decreases without bound as x approaches a from the left and from the
right, respectively. If both are true, then we write

Im f(x) = —oo

X—0



Limits and Continuity

Infinite Limits
1.1.4 INFINITE LIMITS (AN INFORMAL VIEW) The expressions

lim f(x)=+4c and lim_ f(x)= 4o

X —a X —d

denote that f(x) increases without bound as x approaches a from the left and from the
right, respectively. If both are true, then we write
lim f(x) = +oe
Similarly, the expressions
lim f(x) = —c and Iim f(x) = —oo

X—=>a— x—at

denote that f(x) decreases without bound as x approaches a from the left and from the
right, respectively. If both are true, then we write

Im f(x) = —oo

X—0



Limits and Continuity

Infinite Limits
Example: Describe the limits at x = ain appropriate limit notation.

ALY

|
|
|

:Lx
\ ia

\If(x)_xla
Solution: |

. 1 .

lim — 4o and Ilim — —©

x—at X —d x—a- X —d

The function increases without bound as x approaches a from the right and
decreases without bound as x approaches a from the left.



Limits and Continuity

Infinite Limits
Example: Describe the limits at x = ain appropriate limit notation.
AV

i

|
|
AN
Solution }ﬂ g
1 SO
lim : > = 4w and [im S = + If(X) - (x — a)®
x—a’ (_I —ﬂ]“ x—=a- (J: —{I]“ I
. 1 * 1 * 1
lim = lim — lim = o0

X—a (_I —_ {1)2 r— gt (I —H)E o = (I _H)E o

The function increases without bound as x approaches a from both the right and
the left.



Computing Limits

1.2.1 THEOREM Let a and k be real numbers.

Iim —
xr—=0- X

(a) lm k =k (b) Ilm x =a ()
X—d X—d
AY
k > <« Y=k
T ' t
I | |
| | |
I | |
i : -
lim k=k

lim — = +oo
r—0t X




Limits and Continuity

Computing Limits
THEOREM Let a be a real number, and suppose that
Iim f(x) =L, and lim g(x) = L»

@) lim 0)+ 8] = lim 1)+ lim ) = Ly + L

) lim [/(6) - g0)] = lim f(x) ~ lim () = L, - L

(© lim [f()g ]_(llmf )(}lmg ) LiL,

(d) lim @=}E‘”) L ovided Ly # 0
o g() T lmg(x) Ly

X=+d

lim ,/7 \/llm fx)= {VL_ . provided Ly > 0if n is even.

U=



Limits and Continuity

Computing Limits
Example: Find 1im5 (x* — 4x + 3).

Solution:
lim (x* — 4x +3) = lim x* — lim 4x + lim 3

X—35 X—5 X—35 X—=5

—limx’=4lmx+lim3 =5 —4(5)+3=38

X—=5 =5 =)

5x° + 4
Example: Find lim T .

X—2 .1'—3

= . - 3
Solution: ) 543 +4 }1112 (5x” 4+ 4) 523 14 u
1111 = - - —

x—2 x —3 lim (x — 3) 2-13

x—2




Limits and Continuity

Computing Limits

_ o x2—6x+9
Example: Find LIm
x—3 x — 3

Solution:

2 - 9) - .
Iim . 6x +9 — lim (x = 3) — |lim (x = Hx=3) _ Im (x —3) =0
x—3 x —3 xr—3 x —13 xr—=3 x —3 x—3

Example: Find i 2x +8
xample: Fin im
p xr——4 JL'Z i 12

Solution:

_ 2x + 8 . 2(x +4) : 2 2
lim = lim = lim = ——
x>—4x2+x—12 >4 (x+4hx—-3) r1>-4x-—3 7




Limits and Continuity

x — 1
Example: Find lim Jr =
Solution: lim = — fim %= DWx+1D - _ _ lim ¥~ Dvx +1)
=1 x—1 x=>1 ((/x=DGx+1) x-1 x —1
= t!i—r}nl ﬁ+ l =2
| 3Ix+5
Example: Find Iim . 5
P r—+o 6x — 8 - 3 + ;
. 3x +5 . — _1m
Solution: 1 Divide each term by x. X —> +-o° o §
xi?ix 6x — 8 : = °— 3
- 2 - - - 345 Iim —
xl—l>m+00(3+X) x1—1>m+oa3+xl—l}lpl—00x — X—>F® X 3+0_1
3 .1 6-0 2

lim (6—§) Iim 6 — lim — 6 —8 Iim -—
X — +o0 X X — 4o x — 4o X x— 4w X



Limits and Continuity

Cohtinuity:

The graph of a function can be described as a ‘“continuous curve” If 1t has no
breaks or holes.

The graph of a function has a break or hole if any of the following conditions
OCCur:

1- The function f is undefined at c. d

1 y=fix
Example: f (x)== ’ /
v :% I
1 — /:
|

| > X
0 1 |
Domain: x # :
Range: y # C

Y =

QC




Limits and Continuity

Cohtinuity:

The graph of a function can be described as a ‘“continuous curve” If 1t has no
breaks or holes.

The graph of a function has a break or hole if any of the following conditions
OCCur:

2-The limit of f(x) does not exist as x approaches c.

Ay AY
y = f(x)

—

vl

!
|
|
!

C

y= f(x)

\

Y




Limits and Continuity

Cohtinuity:

The graph of a function can be described as a ‘“continuous curve” If 1t has no
breaks or holes.

The graph of a function has a break or hole if any of the following conditions
OCCur:

3- The value of the function and the value of the limit at ¢ are different.

AV

[
|
|
|
|
|

C

Y




Limits and Continuity

Continuity:
1.5.1 DEFINITION A function f 1s said to be continuous at x = ¢ provided the
following conditions are satisfied:

1. f(c) 1s defined.

2. lim f(x) exists.

X—C

3. lim f(x) = f(c).

X—=C

If one or more of the conditions of this definition fails to hold, then we will say
that 7 has a discontinuity at x = c.



Limits and Continuity

Continuity:
Example: Determine whether the following function is continuous at x = 2.
.I2 —
fx) =——
Solution:

we must check whether the limit of the function as x — 2 iIs the same as the value
of the function at x = 2.
‘-4 -2 (x+2
lim f(x)zlimx = lim =2+ )= Iim (x +2) =4

x—2 =2 x —2 Py x_z x—2

2

X
:ZA\'IX— f(x)=x_2 f(x) = o
~. The function fis undefined at x= 2, and hence Is not continuous at x = 2.




Limits and Continuity

Continuity on an interval

1.5.2 DEFINITION A function f is said to be continuous on a closed interval |a, b]

if the following conditions are satisfied:

1. f is continuous on (a, b).
2. f 1s continuous from the right at a.

3. f is continuous from the left at b.

The function is continuous at the left endpoint because

lim_f(x) = f(a)

X —d

The function is continuous at the right endpoint because

lim f(x) = f(b)

y= f(x)

Y =




Limits and Continuity

Continuity on an interval
Example: What can you say about the continuity of the function f(x) =9 — x*?

Solution: The domain of this function is [-3, 3].

The continuity of Fwill be investigated on the open interval (=3, 3) and at the two
endpoints. If ¢is any point in the interval (=3, 3), then

lim f(x) = lim V9 —x? = /lim (9 —x2) = V9 — ¢ = f(c)

=~ f1s continuous at each point in the interval (=3, 3).
At the endpoints: lim f(x) = lim VI—x2= /lim (9-x?)=0= f(3)

X—

im f(x)= lm y9- lim (9-x%)=0=f(-3

1==3t = =3t x—==3t

. £1s continuous on the closed interval [—3,3].



Limits and Continuity

Continuity of polynomials and rational functions
1.5.4 THEOREM
(a) A polynomial is continuous everywhere.

(b) A rational function is continuous at every point where the denominator is nonzero,
and has discontinuities at the points where the denominator is zero.

The function is continuous everywhere when it Is continuous at an arbitrary point.
If p(x) Is a polynomial and a Is any real number, then

lim p(x) = p(a)

X—d

This shows that polynomials are continuous everywhere.



Limits and Continuity

Cohtinuity of polynomials and rational functions

Example: For what values of xis there a discontinuity in the graph of

x> —9
y = ?

x2—5x+6

Solution:

The function is continuous at every number where the denominator is nonzero.
x> —=5x+6=0
(x—2)(x—3)=0

yields discontinuities at x= 2 and at x= 3.



Limits and Continuity

Some properties of continuous functions

1.5.3 THEOREM If the functions f and g are continuous at c, then

(a) f + gis continuous at c.

)

(b) f — g is continuous at c.

(c) fgis continuous at c.
)

(d) /g is continuous at c if g(c) # 0 and has a discontinuity at ¢ if g(c) = 0.

The absolute value of a continuous function Is continuous.



Rates of change

Tangent Lines:

What 1s the mathematical definition of the tangent
line to a curve )y = f(x)at a point A(x0, f(x0)) on the
curve?

Consider a point Q(x, f(x)) on the curve that Is
distinct from £, and compute the slope mp) of

the secant line through Pand Q.

_ J(x)—f(xo)
mPQ_ X—Xo ] X .

If we let x approach x,, then the point QO will move
along the curve and approach the point ~.



Rates of change

Tangent Lines:

If the secant line through ~Pand Q approaches a
limiting position as x — x, then we will regard
that position to be the position of the tangent line
at ~.

So, If the slope mpQ) of the secant line through P ) |-——===K

and Qapproaches a limit as x — x, then we regard 1) azad SX
that limit to be the slope m;,, of the tangent line at
P. Thus, we make the following definition.

Thus, we make the following definition.



Tangent Lines:

2.1.1 DEFINITION Suppose that xg 1s in the domain of the function f. The tangent
line to the curve y = f(x) at the point P (xq, f(xp)) 1s the line with equation

y — f(x0) = myn(x — xp)

where

e = lim f(x) = f(xo) 0
X— X0 X — Xp

provided the limit exists. For simplicity, we will also call this the tangent line to
y = J(x) at xo.




Rates of change

Tangent Lines

o f(x) = fxo)
My = 1M

X=X X — X

Let A denote the difference fixy+ by

h=Xx— X »x:xmh ‘x—wo:h > ()

. Jxo+h)— f(xo)
Mign = lIM
h—0 h

fix,)

This equation expresses the slope of the tangent line as a limit of slopes
of secant lines.



Rates of change

Rates of change

0
f & 5

Elapsed time

!
I T B |ﬁl I ,,5, -

0

Car moves only in the positive direction. Position versus time curve

The average velocity over atime interval [t,, to, + /], 7 >0, Is defined to be.

change in position  f(#y + h) — f(t)
time elapsed h

Vave =

Velocity can be viewed as rate of change—the rate of change of position with respect to time.



Rates of change

Slopes and Rates of Change

Rates of change occur in other applications.

For example:

« A microbiologist might be interested in the rate at which the number of bacteria in a colony
changes with time.

« A medical researcher might be interested in the rate at which the radius of an artery
changes with the concentration of alcohol in the bloodstream.

* An economist might be interested in the rate at which production cost changes with the
quantity of a product that is manufactured.

« An engineer might be interested in the rate at which the length of a metal rod changes with
temperature.



Rates of change

Slopes and Rates of Change

If yis a linear function )= mx+ b, the slope /771s the natural measure of the rate of
change of ywith respect to .x. AY

In this Figure:

Each 1-unit increase in xanywhere along the line
produces an m-unit change iny.

ychanges at a constant rate with respect
B> to xalong the line and that /7 measures

this rate of Change. A l-unit increase in x always
produces an m-unit change in y




Rates of change

Slopes and Rates of Change

Example: Find the rate of change of ywith respect to xif
(a) y=2x—1 (b) y=—-5x+1
Solution:

(a) The rate of change of ywith respect to xis /m = 2.

So, each 1-unit Increase in X produces a 2-unit increase iny.

(b) The rate of change of )y with respect to xis /7= -5.

So, each 1-unit increase in x produces a 5-unit decrease iny.



Rates of change

Rates of Change

Although the rate of change of )y with respect to xiIs constant along a nonvertical

line )y= mx+ b, this Is not true for a general (non-linear) curve = 7(x).
Ay

For example:

The change In ythat results from a 1-unit increase in x
tends to have greater magnitude in regions where the
curve rises or falls rapidly than in regions where it rises
or falls slowly.




Rates of change

Geometrically:

The average rate of change of yywith respect to x over the interval [x,,x,] IS the
slope of the secant line through the points A(x0, 7(x0))and Q(x1, f(x1)).

AY

If )y= F(x), then the average rate of change of y Y
wilth respect to x over the interval [x,, x] to be &//
S
J(x1) — f(xo)
Fave =
X1 — Xp

Let: h = x1 — xg :> x1:x0+h
J(xo +h) — f(xo)

rave -
h




Rates of change

Georhetrically:

The instantaneous rate of change of )y with respect to x at x, Is the slope of the

tangent line at the point 2(x0, 7(x0)) (since it is the limit of the slopes of the secant
lines through A).

AY
The Instantaneous rate of change of y with S A
respect to x at x 1S

Finst = lim f(xl) _ f(I(})

X1 —Xo X1 — Xp

. fxo+h) — f(xp) ’ —
Finst = l1m X < !
h—( h




Rates of change

Example: Let y = x? + 1.
(a) Find the average rate of change of y with respect to x over the interval [3, 3].

. (b) Find the instantaneous rate of change of y with respect to x when x = —4.
Solution:

(@) f(x)=x*+1,xg=3,and x; =5
Jxi) — fxo)  fO)—f3B)  26-10
X1 — X0 - 5—3 B 2 -
(b) f(x)=x*>+1andxyg = —4
J(x1) — f(xo) o) — /=4 (xf +1) =17

r ave

Finst = 11mM = lim
X1 —> X0 X1 — Xo x;— —4 X1 — (—4) x;— —4 X1+ 4

— 16 4 — 4
— lim = = lim (o + ) = lm (x; —4) = —8
x——4 x1+4 X — —4 x; + 4 x| — —4




The Derivative Function

¥ f(xo +h) — f(xo)
11m
h—0 h
It can be Interpreted either as the slope of the tangent line to the curve )= 7(x)
at x - X0

or

the instantaneous rate of change of y with respect to xat x = xy.

2.2.1 pEFINITION The function f’ defined by the formula

e = e J&x+h)— f(x) 2)

h—0 h

is called the derivative of f with respect to x. The domain of f’ consists of all x in the
domain of f for which the limit exists.



The Derivative Function

Finding an Equation for the Tangent Line to y = f(x) at x = x,,

Step 1. Evaluate f(xp); the point of tangency 1s (xg, f(xo)).

Step 2. Find f'(x) and evaluate f’(x), which is the slope m of the line.

Step 3. Substitute the value of the slope m and the point (xg, f(xg)) into the point-slope
ormoteline s fxo) = fx0)(x — 30

or, equivalently,

= f(xo) + f'(x0)(x — x0) (3)



The Derivative Function

Example: Find the derivative with respect to x of f{x)=x?, and use it to find the

equation of the tangent line to y= x? at x= 2.

Thus, the slope of the tangent line to y=x? at x= 2 is
‘M= f’(xo) — Zxo :f’(Z): 2(2) =4 e

Solution: T
h) — h)? — x2 I
F(x) = lim fx +h) — f(x) — 1im (x + h) X L
h—0 h h—0 h 6 |
x% 4 2xh + h* — x? 2xh + h? s
= i = | =} —

) h hh_r}nﬂ h J}E}}(Zx th)=2x T

3

2

1

(2, 4)

v f(xg)=41f x,= 2, the equation of the tangent line Is R |
©Y = f(x0)=M (x—xo) Wy y—4=4(x—2) W) y-—4=4x—8
Ly=4x — 4



Differentiability

It is possible that the limit that defines the derivative of a function 7may not exist

at certain points in the domain of £ At such points the derivative Is undefined.

2.2.2 DEFINITION A function f 1s said to be differentiable at x 1f the limut

(xo) = lim fxo+h) — f(xp)

h—0 h

(5)
exists. If f 1s differentiable at each point of the open interval (a, b), then we say that it

1s differentiable on (a, b), and similarly for open intervals of the form (a, +), (—o, b),
and (—oo, 40). In the last case we say that f 1is differentiable everywhere.

THEOREM If a function f is differentiable at xo, then f is continuous at x.



Differentiability

Example: Prove that 7(x)=|X is not differentiable at x=0

Solution: According to the differentiability definition, that 7(x) is differentiable
IT the following limit exists.

f(xo+h) — f(xo)

f(x0) = ;}1_15;. -
. f(O4+h)— £(0) f(h) — £(0) [h] — [0] Ia
Ty — . : T . 1 - e
F )= ;Eh_r}n[} h - hll_r;nu h - hh_rj.nu h I}E}} h
h
Al _ I, h>0 lim ﬂ:1 and lim u:—1
h —1, h <O h—0+t h h—0- h

Since these one-sided limits are not equal, the two-sided limit does not exist, and
hence 7 Is not differentiable at x=0.



Differentiability

Derivatives at the endpoints of an interval

If a function 7 Is defined on a closed interval [a, 0] but not outside that interval,
then f' is not defined at the endpoints of the interval because derivatives are two-

sided limits.
To deal with this we define left-hand derivatives and right-hand derivatives by

f(x+h)— f(x) J(x+h) — fx)

(x) = 1 d flx)=1i
J-(x) = Tim . and  fi(x) = lim .

respectively. These are called one-sided derivatives.

In general, we will say that 7 is adifferentiable on an interval of the form [a, 4],
[a + o), (-0, D], [4, B), or (& O] If it Is differentiable at all points inside the
Interval and the appropriate one-sided derivative exists at each included endpoint.



Techniques Of Differentiation

Derivative of a function.

2.3.1 THEOREM The derivative of a constant function is O; that is, if c is any real
number, then

i[ 1=0 (D)
dx <=
Proof: The constant function is f(x) = c N
. f&x+h)— fx) _
'(x) = lim Y=<
fie) = fim = T
. c—cC _ :
= lim = lim0=20 | X
h—0 h h—0 X
Example
d d d d The tangent line to the graph of
=0 ——[=31=0, ——[x]=0, 7= [_‘/E} =0 | f(x) = chas slope 0 for all x




Techniques Of Differentiation

Derivative of a function.

d d d
I =1 4= /00 + 8] = —[f(] + g
- i x" nx"~! d d
o = 5.- —[f(x) 0] = L] -~ [g(w)]
X
3- %[Cf(x)]=c%[f(x)]
d _, d d s s 9 1
Example: e [x°] = 2x P [x°] = 3x? x[x ] = 5x dt[ |

Example: Find i[\/;T:]
dx

I
Solution: i[\/}] = i[xuz] — _ (1)-1 _ lx—l/z
dx dx



Techniques Of Differentiation

Deriwvative of a function.
d

Example: Find —[/x]
dx

Solution:

d 33— d 5 1 5 1
‘:‘_b':[\/—;]—d}([-}C ]—gx —33/)?

d

Example: Find —[2x% + x ]
dx

Solution: 4

d d
_26 -9 :_26 9
dx[ X" +x7) dx[ X ]+dx[x ]

= 12x° + (—=9)x 10 = 12x5 — 9y~ 10



Techniques Of Differentiation

Example: Find dy/dx if y = 3x8 — 2x5 + 6x + 1.
dy
dx

Solution:

d 8 5
—dx[3x — 2x° 4+ 6x + 1]

d d d d
= —[3x°] — —[2x° —|6 —1
dx[ - dx[ * ]_I_dx[ x]_l_dx[ ]
= 24x" — 10x* + 6
Derivative of a product

2.4.1 THEOREM (The Product Rule) If [ and g are differentiable at x, then so is the
product [ - g, and

d d d
d—[f(x)g(x)] = f(x)—lg(x)]+ gx)—I[f(x)] (1)
X dx dx



Techniques Of Differentiation

Example: Find dy/dx if y = (4x* — 1)(7x> + x).

Solution:

D _ 142 Z 10 +20)] = @~ D[ 1]+ (06 0 [ 1]
dx dx dx dx

= (4x* — D)(21x* + 1) + (7x° + x)(8x)

Derivative of a quotient

2.4.2 THEOREM (The Quotient Rule) If [ and g are both differentiable at x and if
g(x) # 0, then f/g is differentiable at x and

d d
d [ f(x)] 8O L] — 1) T lg ()] o
dx

g(x) [g(x)]?



Techniques Of Differentiation

3 p) 2 1
Example: Find y'(x) for y = S .
_ x+35
Solution: d ., _, s d
dy d DI :(x+5)a[x +2x°—1] - (x" + 2x _UE[XJFS]
dx  dx x+35 (x +5)?
B (x +5)(3x% +4x) — (3 + 2x2 = (1)
B .IE 1 (I+5)2
Example: Find dy/dx f(x) = —,
_ x4+ 1
Solution: \ d , d
d}-’ _ d xz_l _ (.X' —+—1)E[x — 1]—(.1' —I)E[I —+—l]
dx dx |x*+1 (x4 4+ 1)2

_ 6P D@x) — (@ — DAx)
B (x* + 1)2




Techniques Of Differentiation

Derivatives of trigonometric functions

d . d

d—[sm x| = cosx a[cotx] = —csc’ x
X

d d _

d_[cos x] = —sinx d—x[secx] = Sec x tan x
X

d 4 osex] =

d_[tan x] = sec? x a[csc x] = —cscxcotx
X

Example: Find dy/dx if y = x sinx.

Solution:

dy d d . + d _ :
—2 — — [x si = Xx—|[sinx] 4 sinx—[x] =X COSX + SInx
dx dx [ sin x] dx dx




Techniques Of Differentiation

| : . sin x
Example: Find dy/dx if y = T cost”
Solution:
d_}f’ _ (1 —1—{305.?{) : E[sinx] —sinx - E[l -+ CDSI] - (1 +CDSI)(CDSI) . (Siﬂ){f)(— SiHI)
dx (1 +CDSI)2 (1 —}-ngx)z

The chain rule:

2.6.1 THEOREM (The Chain Rule) If g is differentiable at x and f is differentiable at
g(x), then the composition f o g is differentiable at x. Moreover, if
y= f(g(x)) and u = g(x)

then y = f(u) and
dy dy du

dx_du-dx

(1)



Techniques Of Differentiation

Example: Find dy/dx if y = cos(x?).

Solution:
Letu = x> mm) y = cosu Apply chain rule

dy dy du d d . 0 2 i3
— . - — = (—sinu) - 3x°) = —3x7sin(x”)
== [cosu] - - [x°] = ( ) - (3x7)

Example: Find dw/dt if w = tan x and x = 41> + 1.
Solution:

dw dw dx d d 7 7 .
— . — —[tanx] - —[43 +1] = (sec”x)- (12t 4+ 1)

dt dx dt ~ dx
= [sec’(d> + )] - (122 + 1)




Techniques Of Differentiation

Example Find (a) [Sln(zx)] (b) i[tan(x2+l)]

(c) — [\/x3 + csc x] (d) —[,r — x + 24

Solution: (a) Let u = 2x #

y= SIHH —yzcosu
du
d d d
Y y a4 — 2C0S 2x
dx du dx

(b) Let u =x*+1 #




1 Techniques Of Differentiation

Example: Find (4) < [gin(2x)) ®) = ftan(? + 1]
dx dx
d d
_ 3 2 3/4
© — [\/x —+—Csc.x] @ [ = x+2]
Solution: () Let u = x> +cscx
d 1 du 1 d
H[ﬁ] BN RN Ty 'dx[x + cscx]

. (3x% — csc x cot x)

- 2/ x3 + cscx
(d) Let u =x2—x4+2

. d o,
—x+2)74. E[r —x+2]

3
— i{f —x+2)"Y*2x — 1



Techniques Of Differentiation

Derivatives of logarithmic functions

d ]
—[lnx]=-, x>0
dx X
d 1 d
Ly ==&
dx u dx

Example: Find dy/dx if y = In(x* 4 1)

Solution: u = x?% 4+ 1
d 1 du

-n — .
dx[nu] u dx

Y24+ 1

—1 — , 0
dx[ﬂgbx] xlnb e

d 1 du

-n _ .

dx[ og,, ul ulnb dx

d 1 2x
a'x[x + 1] x2 g x2 41




Techniques Of Differentiation

Derivatives of logarithmic functions

|
Example: Find dy/dx it y = 2Inx + In(sinx) — Eln(l + x)

Solution:
d_Zl (e 1l | | 2 cosx ]
dx I T n(sm.r)—i n +I)_ “x  sinx 2(1+x)
Derivatives of exponential functions
d d du
—[b*]=b"Inb —["1=b"Inb- —
dx dx[ | ! dx
d du

E[E]:E_ E[E]:E‘E



Techniques Of Differentiation

Defivatives of exponential functions d 5 = b Inb
—_—\h | = n
Example: Find dy/dx for dx
(a) )X (b) 6—2.1: (3) €x3 (4) ecﬂsx i[EI] _
Solution: dx
d X X u u
(a) E[z]_z In2 E[b]_bl“bﬁ
d
(b) _[6—2.17] _ 6—2.1: . —[2x] = _28—2.1: i — d_u
dx dx dx [E ] = € dx

d . d :
(c) E[e"‘*] = e . d—x[ﬁ] — 3x2¢"

d
(d) E[ecc’”] = "% . E[COS x] = —(sinx)e "



Higher Derivatives

If £ is differentiable, then its derivative is denoted by f'' and is called the second
derivative of f.

="
_dy
dx?

I
]

d &
= { [F(x )]} = 3/ ()]

As long as we have differentiability, we can continue the process of
differentiating to obtain third, fourth, fifth, and even higher derivatives of 7.

fm _ (f”)fw f{ﬂr} _ (f;fr-)r’ f{j]. _ (f@});‘ -

n

'y w4
- = f (x)—dxﬂ [f(x)]



Example: Find f©(x) If f(x) = 3x* — 20 + x2 —4x + 2

Solution:

fl(x) =12x% — 6x2 +2x — 4
f7(x) =36x2 — 12x + 2
S (x) =T72x —
fP(x) =172
fOx) =0



Applications of differentiation

Applications of differentiation:

* 'Hopital’s Rule

e Related rates

e Mean Value Theorem

e Maximum and minimum



L'Hopital’s Rule

3.6.1 THEOREM (L’Hépital’s Rule for Form 0/0) Suppose that | and g are differentiable
functions on an open interval containing x = a, except possibly at x = a, and that

Iim f(x) =0 and Ilm g(x)=0

X—rd X—d

If im [ f'(x)/g'(x)] exists, or if this limit is + or —x, then

X=—q

fo L f0)
g v @)

Moreover, this statement is also true in the case of a limitasx - a~,x —>a™

or das X — +oo.

?I—}—':ﬂ?



L'Hopital’s Rule

3.6.2 THEOREM (L’Hépital’s Rule for Form <[ x) Suppose that f and g are differentiable
functions on an open interval containing x = a, except possibly at x = a, and that

lim f(x) =« and lim g(x) =

X—d X—d

If im [ f'(x)/g'(x)] exists, or if this limit is 4o or —x, then

- ACONS . f'(x)
Xx—a g(x) Xx—a g"(x)

Moreover, this statement is also true in the case of a limitas x —-a~ , x — at

or ds X — +%,,

1x_}_m1



L'Hopital’s Rule
2_4

: .. X g
Example: Find the limit lim > L’Hopital’s rule.
x—2 X —
Solution:
. x*—4 0
lim =
x—=2 x — 2 0

Applying L'Hopital’s rule

y)
2 —[x° — 4]
- xc—4 - 2x
lim = lim dx — lim — =4
x—2 _;t—2 xr—2 d r—2 1
—[x — 2]
dx




L'Hopital’s Rule

Example: Find the limits

_ sin 2x _ 1 — sinx
(a) Iim (b) Iim
x—0 X x— /2 COS X
| eX — 1 tan x y = sin(2x). Letu = 2x
(c) hIm d) i
x—0 x3 (d) e o- x2 du_,
. dx
Solution: y = sin(u)
: dy
 sin2x ‘ E[Sm 2x] . 2cos2x du~ oS
(a) lim — lim = lim = 2
x—0 x x—0 d x—>0 1 dyzdydu:ZCOS(u)=2cos(2x)
E[X] dx dudx
| — i —[1 — sin x] B 0
(b) lim ———% — fim 94X — lim —— % = T =0
x—m/2 COSX x—=>m/2 d x—m/2 —SInX —1

E[CDS x]



L'Hopital’s Rule

Example: Find the limits

sin 2x _ 1 —sinx
(a) Imm (b) lim
x—0 X x— /2 COS X
.oet —1 ) tan x
© Jm % (& hm =5
Solution: d .
e — 1 E[E - l] o
(¢) lim —— = lim = lim — =0
xr—0 X x—0 d 3 0 3}.’2
—[x7]
dx
d
tan x d—[tan o sec? x
(d) lim — lim % = lim
x— 0~ xz x—>0" d r— 0~ 2_)'['
—[x2]



Related rates

* In related rates problems, it is required to find the rate at which some
guantity is changing by relating the quantity to other guantities whose

rates of change are known.
Example: The following figure shows a liquid draining through a conical filter

As the liguid drains:

Its volume V; height 4, and radius 7 are —
functions of the elapsed time 7 These T
variables are related by v b

V = Erzh I
3 34

To find the rate of change of the volume Vwith respect to the time ¢

dV Sdh d dh d
. r-— +h 2r—r . rE——I—Zrh—r
dt 3 dt dt 3 dt dt



Related rates

Example: Suppose that xand )y are differentiable functions of £and are related

by the equation y=x3. Find % attime =1 1f x=2 and %: 4 attime £=1.

Solution:
y=x
dy 3 ,dXx
— x| = 3x°—
dt dr[ | dt
attimer = 1
dv d
=322 =12-4=48
dt |, dt |,




The Mean Value Theorem

THEOREM 4—The Mean Value Theorem

is at least one point ¢ in (a, ) at which

f(b) — fla)

b — a

= f'(c).

Suppose v = f(x) is continuous on a
closed interval [a, /] and differentiable on the interval’s interior (a, /). Then there

(1)

Example: y=x2on [0,2].

fb)-fa) _ f(2)-f(0) _ _ 30
b—a 2—0 2—0

f'=2x (2
from (1), (2)and the mean value theorem
f'(c)=2c =2
s c=1

=2

(1)

B(2,4)

N

ACO, O)

N~




©  Maximumand minimum

Absolute maximum
No greater value of fanywhere.
Local maximum Also a local maximum.

No greater value of
f nearby.

Local minimum
No smaller value
" of f nearby.

Absolute minimum
No smaller value of

f anywhere. Also a |

local minimum. :

|
' |
cl c € o b

I No smaller va]ule of

|
|
|
' Local minimum l
|
|
|
|

: f nearby.
|

= X



Maximum and minimum

Finding maximum and minimum values Is one of the most important
applications of the derivative.

DEFINITIONS Let f be a function with domain D. Then f has an absolute
maximum value on D at a point ¢ if

flx) = f(c) for all x in D
and an absolute minimum value on D at ¢ 1f

flx) = f(c) for all x in D.

Maximum and minimum values are called extreme values of the function 7(x).

Absolute maxima or minima are also referred to as global maxima or minima




Maximum and minimum

Absolute maximum
Mo greater value of fanvwhere.

Local maximum Also a local maximurm.
MNo greater value of
‘nearby. -
u o v = £(x) L.ocal minimum
| : i No smaller value
: : of f nearby.
. . I I
Absolute minimum | |
MNo smaller value of : , Local minimum :
J anyvwhere. Also a : : I No smaller value of :
.. .y 1 |
local minimum. | , J nearby. ! |
| | 1 | | N
ol c e el b

The next theorem explains why we usually need to investigate only a few values
to find a function's extrema.

THEOREM 2—The First Derivative Theorem for Local Extreme Values If f has a
local maximum or minimum value at an interior point ¢ of its domain, and if f’ is
defined at ¢, then

f'(c) = 0.



Maximum and minimum

THEOREM 2—The First Derivative Theorem for Local Extreme Values If f has a
local maximum or minimum value at an interior point ¢ of its domain, and if f’ is
defined at ¢, then

f'(e) = 0.

Theorem 2 says that a function's first derivative is always zero at an interior point
where the function has a local extreme value and the derivative is defined.

Hence the only places where a function 7(x) can possibly have an extreme value
(local or global) are

1. interior points where f* = 0,

2. 1nterior points where f’ 1s undefined,
3. endpoints of the domain of f.



DEFINITION  An interior point of the domain of a function f where f' is zero
or undefined 1s a critical point of f.

How to Find the Absolute Extrema of a Continuous Function f on a
Finite Closed Interval

1. Evaluate f at all critical points and endpoints.

2. Take the largest and smallest of these values.




Maximum and minimum

Example: Find the absolute maximum and minimum values of y=x? on [-2,1].

Solution: , dy
flix) = - X

The critical pointis f'(x) =0
f'(x)=2x=0 mmm) .- x =0 s the critical point.

Critical point value: £(0) = (0)*=0
Endpoint values : f(—2) = (—2)*=4
Endpoint values : f(1) = (1)*=1

The function has an absolute maximum value of 4 at x= -2 and an absolute
minimum value of Oat x=0.
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Determinants

The determinant of a square matrix A Is a single number, denoted by det(A) or
A

For A,

d11 9312

| 351 Ay

A —

| Al=aj1a55 —a,5a5,



Example: Find |A|, where

A —

Solution

Al=3(3) - 4(2)=1



* Determinate of 3x3 matrix

* Signs in the (i,j) cofactors




Determinants

* For A, ,,

dp; Ayj
Al= T

d3; dgzs

dis

= 841 (82853-8p383,)-81 (801 833-8p3831) T 3(8185p-805831)



Ex. Find |A],

0

A= 3,

1
0

=3(0-3)+2(0+2) = -5

L L
/
2

1 1 9
- (- +
2) 15 ¢




Determinants

Or Expanding using 3" column

[ )

D N
- 4L v

A= 0O e
Al 2 3 W, g +0

= P

)




Properties of Determinants

© |AT|= |A|

3 4
2 3

* For square matrices Aand B, |AB|= |A|

2 o4
A —

,B =

<t

|AB| =114 -112=2

3 2
— :1
4 3
B]
19 8
AB =
14 6

IA|=9-8=1, |B| =2

* For square matrix A and positive integer n, |A"|= |A|n



Properties of Determinants

® For diagonal or triangular matrix A,

| A|= product of diagonal entries

3 0 O

2 2 0O|l=3%x2x4=24
5 2 4

—1 O O

O 5 0Ol=-—-1x5x4=-—-20
O O 4




Properties of Determinants

= Interchange of two rows (columns) changes the sign of the determinant

2 3 3 4
=8-9=-1 =9-8=1
3 4 2 3

= Addition of a multiple of any row to another row will leave the value of the determinant
unchanged

3 4 3 4
2 3 2+5x3 3+5x4




Properties of Determinants

" The determinant vanishes if

* It has a zero row (column) O O
=0
* A row (column) is multiple of another one 2 3
2 3
: : =0
 If a row (column) is a linear 4 6
combination of other rows (columns)
1 2
2 5
3 7

o N W




2.2 Theorem

a

. 3] If ad — bc # 0, then A 1s invertible and

1 d —b
A7l =
ad—bc[—ﬂ -‘1]

If ad — bc = 0, then A 1s not invertible.

LetAz[




2.2 Inverse of 2x2 matrices

- \
a11{
21422 \\
N
) 1 ax~_- Q12 1 22 -0Q12
Al= . —
A11Qoo — A+1-Q -
|A| -Ay1 041 11422 12021 az1 a1
N J N J




The Inverse of a Matrix

Example: Find A, if A —

Solution:

1 B
8 —6| -1

AL =

Note that:

i.e. | Al|=1/|A]

S 6

|A| =8-6=2

61 | 2
— 1

2 | |72
-, 3
2




The Inverse of a Matrix

Adjugate (classical adjoint) Method

C;
(i,j) —entry of A™1 = L
Ci11 Ciz Cy3

- T
A1 — adj(A) _ C_ _ i Co1 Gy Cy3
|A 1Al |A[]C3; C3, Css

If |A| = 0,

—> A has no inverse (non invertible or Singular)




Inverse of a Matrix

Ex. Find Alif A=
[
1
Al=
Al |
\

N

N PN

S
1|\

=

S

6 1 6
2 1 -2
2 1 2
2 1| |2 2
2 1 2 1
6 1 6 2

—1 1/2

—1/4



Inverse of a Matrix

Note that

1.If k is a scalar, (kA)!= (k)AL

2.1f n is positive integer, (A") 1= (A"
3.f |A[ =0 A is singular (non invertible or has

. no inverse)
4.|A|= 1/|A]



Properties of Inverse of a Matrix

Example: Evaluate |A]|, |A|, where — —

2 4 6
A=10 1 3
_O O 3_
Solution :
|Al= 6

A= 1/6




Solve a System of linear Equation



Systems of Linear Equations

Definition:

A System of Linear Equations is a collection of one or more linear equations that sharing

the same variables

a11x1 + a12x2 + + alnxn — b]_

a21x1 + azzxz + + aann — bz



Systems of Linear Equations

EX. Find the solution of the following linear system,
2x+y+z =1
6x +2y+z=-—1

—2x+2y+z=7

Carl Friedrich Gauss
German

Gauss Elimination with Back Substitution



Gauss Elimination with Back Substitution

Example: Find the solution of the following linear system

Solution
2x+y+z =1

6x +2y+z=-1

—2x+2y+z=7
1

oo b 2
3 2

=

OON

1

-4

8.

R +R, >R,

—

2

0

0

Pived x

1
—1
0

2x +y+z =1

—y — 2z = —4
—4z = —4
> x=-1y=2,z=1

[

1
—2
-4

k=

—2

|-
—4
4 |

DN IN =

1 1]
1 -1
1 7.
R,+3R,—>R,




https://www.youtube.com/watch?v=t96K1trPXy4

https://www.youtube.com/watch?v=VRCG zi3IDw&t=12s

https://www.youtube.com/watch?v=IFnX9q2ET5g&t=139s
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