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Chapter 1

Normed and Banach spaces

1.1 Vector spaces

In this section we recall the definition of a vector space. Roughly speaking it is a set of elements,
called “vectors”. Any two vectors can be “added”, resulting in a new vector, and any vector can
be multiplied by an element from R (or C, depending on whether we consider a real or complex
vector space), so as to give a new vector. The precise definition is given below.

Definition. Let K = R or C (or more generally! a field). A wvector space over K, is a set X
together with two functions, 4+ : X x X — X, called vector addition, and - : K x X — X called
scalar multiplication that satisfy the following:

V1. For all x1, 29,23 € X, 21 + (22 + x3) = (21 + z2) + 3.

V2. There exists an element, denoted by 0 (called the zero wector) such that for all z € X,
z+0=0+z=ux.

V3. For every x € X, there exists an element, denoted by —z, such that x+(—z) = (—z)+z = 0.
V4. For all 1,29 in X, 1 + 9 = 22 + 1.

V5. Forallz € X, 12 ==x.

V6. Forallz € X and all o, B € K, a- (B -2) = (af) - .

V7. Forallz € X and all o, f €K, (a+8) -z =a-z+ [z

V8. For all z1,20 € X and alla € K, o« (x1 + 22) = a - x1 + - Z3.

Examples.

1. R is a vector space over R, with vector addition being the usual addition of real numbers,
and scalar multiplication being the usual multiplication of real numbers.

1Unless stated otherwise, the underlying field is always assumed to be R or € throughout these notes.
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2 Chapter 1. Normed and Banach spaces

2. R™ is a vector space over R, with addition and scalar multiplication defined as follows:

1 Y1 1 Y1 1+
if , € R"™, then + = ;
Tn Yn Tn Yn Tn + Yn
X1 I (a5 ]
if « € R and € R™, then « - =
T, Ty, Xy,

3. The sequence space ¢>°. This example and the next one give a first impression of how
surprisingly general the concept of a vector space is.

Let £°° denote the vector space of all bounded sequences with values in K, and with addition
and scalar multiplication defined as follows:

(wn)nEN + (yn)neN = (xn + yn)nENa (x'n)nENv (yn)nEN S EOO; (11
a(l‘n)nEN = (aajn)nEN» (¢S Ka (xn)'nEN € . (12

—_— —

4. The function space C[a,b]. Let a,b € R and a < b. Consider the vector space comprising
functions f : [a,b] — K that are continuous on [a, b], with addition and scalar multiplication
defined as follows. If f, g € C[a,b], then f + g € Cla, b] is the function given by

(f +9)(@) = f(z) +9(x), x€la,b]. (1.3)

If o € Kand f € Cla,b], then af € Cla,b] is the function given by
(af)(x) = af(x), =€ a,b]. (1.4)
Cla,b] is referred to as a ‘function space’, since each vector in C[a,b] is a function (from
[a,b] to K). O

Exercises.

1. Let yq,yp € R, and let
S(Ya,yp) = {z € Cla,b] | z(a) = yo and z(b) = ys}.
For what values of ya, ys is S(ya, yp) & vector space?

2. Show that C[0,1] is not a finite dimensional vector space.

HINT: One can prove this by contradiction. Let C[0, 1] be a finite dimensional vector space
with dimension d, say. First show that the set B = {x,22,..., w‘l} is linearly independent.
Then B is a basis for C[0,1], and so the constant function 1 should be a linear combination
of the functions from B. Derive a contradiction.

3. Let V be a vector space, and let {V;, | n € N} be a set of subspaces of V. Prove that ﬁ Vo
is a subspace of V. "
4. Let A1, A2 be two distinct real numbers, and let fi1, fo € C[0,1] be
fi(x) = eM? and fo(z) = e*, 2 €[0,1].

Show that the functions f; and f2 are linearly independent in the vector space C[0, 1].
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1.2 Normed spaces

In order to do ‘calculus’ (that is, speak about limiting processes, convergence, approximation,
continuity) in vector spaces, we need a notion of ‘distance’ or ‘closeness’ between the vectors of
the vector space. This is provided by the notion of a norm.

Definitions. Let X be a vector space over R or C. A norm on X is a function ||-|| : X — [0, +00)
such that:

N1. (Positive definiteness) For all x € X, ||z|| > 0. If z € X, then ||z =0 iff x = 0.
N2. For all a € R (respectively C) and for all x € X, |lazx|| = |a]||z|.
N3. (Triangle inequality) For all z,y € X, ||z + y|| < ||=|| + [Jv]|-

A normed space is a vector space X equipped with a norm.

If z,y € X, then the number ||z — y|| provides a notion of closeness of points z and y in X,
that is, a ‘distance’ between them. Thus ||z|| = ||z — 0]| is the distance of = from the zero vector
in X.

We now give a few examples of normed spaces.
Examples.

1. R is a vector space over R, and if we define | - || : R — [0, +00) by
ol = =], =€R,
then it becomes a normed space.

2. R™ is a vector space over R, and let

[N

n
||w||2=<2|wi|2> sox=| o | €RY

i=1 T,

Then R™ is a normed space (see Exercise 5a on page 5).

This is not the only norm that can be defined on R™. For example,
n
lzlly =l and 2] = max{la].....|zal}, x=| : | €R",
i=1

are also examples of norms (see Exercise ba on page 5).

Note that (R™,] - |l2), (R™, | - |l1) and (R™,|| - ||co) are all different normed spaces. This
illustrates the important fact that from a given vector space, we can obtain various normed
spaces by choosing different norms. What norm is considered depends on the particular
application at hand. We illustrate this in the next paragraph.

Suppose that we are interested in comparing the economic performance of a country from
year to year, using certain economic indicators. For example, let the ordered 365-tuple
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x = (x1,...,2365) be the record of the daily industrial averages. A measure of differences in
yearly performance is given by

365

lz =yl = |z — wil-
i=1
Thus the space (R3%°, || - ||;) arises naturally. We might also be interested in the monthly cost
of living index. Let the record of this index for a year be given by 12-tuples x = (1, ..., 212).

A measure of differences in yearly performance of the cost of living index is given by

& = yll = max{|z1 —p1l,. .., [212 — y12[},
which is the distance between z and y in the normed space (R'2, | - ||o0)-

3. The sequence space ¢*°. This example and the next one give a first impression of how
surprisingly general the concept of a normed space is.

Let £°° denote the vector space of all bounded sequences, with the addition and scalar
multiplication defined earlier in (1.1)-(1.2).

Define
[ (@n)nenlloo = sup |2n|,  (2n)nen € £
neN
Then it is easy to check that || - || is a norm, and so (£*°, ]| - ||«) is a normed space.

4. The function space C[a,b]. Let a,b € R and a < b. Consider the vector space comprising
functions that are continuous on [a, b], with addition and scalar multiplication defined earlier
by (1.3)-(1.4).

Figure 1.1: The set of all continuous functions g whose graph lies between the two dotted lines is
the ‘ball’ B(f,e) = {g € Cla,b] | lg — flleo < €}

Define

[fllc = sup [f(z)], f € Cla,b]. (1.5)
z€[a,b]
Then || - || is a norm on Cfa,b]. Another norm is given by
b

17l = [ 1f@lde. feCla, (1.6)
O

Exercises.

1. Let (X, | - ||) be a normed space. Prove that for all z,y € X, |||lz]| — |lylll < ||z — yll-

2. If z € R, then let ||z]| = |z|%. Is || - | a norm on R?
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3. Let (X, ||-]]) be a normed space and r > 0. Show that the function x — r||z|| defines a norm
on X.

Thus there are infinitely many other norms on any normed space.

4. Let X be a normed space || - ||x and Y be a subspace of X. Prove that Y is also a normed
space with the norm || - ||y defined simply as the restriction of the norm | - ||x to Y. This
norm on Y is called the induced norm.

5. Let 1 < p < 400 and q be defined by % + % = 1. Then Holder’s inequality? says that if
T1,...,%, and y1,...,Y, are any real or complex numbers, then

3 ol < (z w) (zw) |
i=1 i=1 i=1
If 1 <p <400, and n € N, then for

€

Tn

define

1
n P
%], = (Z |xi|p> if1<p<-+oc, and |z]e =max{|z],..., |z.|}. (1.7)
i=1

(a) Show that the function x — ||z, is a norm on R™.
HiNT: Use Holder’s inequality to obtain

n » n »
Do lwilles +ult T < llzllplle+yls  and Y fylles + w7 < Nylplle + il

i=1 i=1
Adding these, we obtain the triangle inequality:
n n n
lz+yllh =Y o+ illzs +wal ™ <Y Jwilles + "+ D lwalles + vl
i=1 i=1 i=1
(b) Let n = 2. Depict the following sets pictorially:

B5(0,1) = {z € R? | ||af|2 < 1},
B1(0,1) = {z € R? | ||z, <1},
Boo(0,1) = {z € R? | ||2|loo < 1}.
(c) Let z € R™. Prove that (||z||,)pen is a convergent sequence in R and lim ||z|/, = ||z]/c-
p—o0
Describe what happens to the sets B,(0,1) = {& € R? | ||z||, < 1} as p tends to cc.

6. A subset C of a vector space X is said to be convez if for all z,y € C, and all « € [0, 1],
az + (1 — a)y € C; see Figure 1.2.

(a) Show that the unit ball B(0,1) = {z € X | ||z|]| < 1} is convex in any normed space
X 0-10-
(b) Sketch the curve {(x1,22) € R? | \/|z1| + +/|22] = 1}.

2A proof of this inequality can be obtained by elementary calculus, and we refer the interested student to §1.4
at the end of this chapter.
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convex not convex

Figure 1.2: Examples of convex and nonconvex sets in R2.

(c¢) Prove that
2 x
lelly = (V] +vl) =[ ;]em&

does not define a norm on R2.
7. (a) Show that the polyhedron

z1

n
P, = Dl eRM | Vie{l,....n}, 2 >0and Yy oz =1
Tn =1
is convex in R™. Sketch Ps.
(b) Prove that
I n 1
. . 2
if : € P,, then ;w—l >n”. (1.8)
Tn =

HinT: Use Holder’s inequality with p = 2.

(¢) In the financial world, there is a method of investment called dollar cost averaging.
Roughly speaking, this means that one invests a fixed amount of money regularly
instead of a lumpsum. It is claimed that a person using dollar cost averaging should
be better off than one who invests all the amount at one time. Suppose a fixed amount

A is used to buy shares at prices pi,...,pn. Then the total number of shares is then

p% +ot pA. If one invests the amount nA at a time when the share price is the average
) . . 2 .

of p1,...,pn, then the number of shares which one can purchase is ﬁ. Using the

inequality (1.8), conclude that dollar cost averaging is at least as good as purchasing
at the average share price.
8. (%) (p-adic norm) Consider the vector space of the rational numbers Q over the field Q. Let

p be a prime number. Define the p-adic norm ||, on the set of rational numbers as follows:
if r € Q, then
irl, = ﬁwherer:pk’%, k,m,n € Z and p fm,n, ifr #0,
PLo if r=0.
So in this context, a rational number is close to 0 precisely when it is highly divisible by p.

(a) Show that | - |, is well-defined on Q.

(b) If 7 € Q. then prove that |r|, > 0, and that |r[, =0 iff r = 0.

(c) For all r1,ro € Q, show that |ri7r2]p, = [r1]p|r2lp.

(d) For all ri,re € Q, prove that |ry + 72|, < max{|ri|p,|r2|p}. In particular, for all

r1,7T2 S Q7 |T1 + r2|p S |r1|p + |7"2|p-

9. Show that (1.6) defines a norm on Cla, b].
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1.3 Banach spaces

In a normed space, we have a notion of ‘distance’ between vectors, and we can say when two
vectors are close by and when they are far away. So we can talk about convergent sequences. In
the same way as in R or C, we can define convergent sequences and Cauchy sequences in a normed
space:

Definition. Let (2,)nen be a sequence in X and let x € X. The sequence (2, )nen converges to
x if
Ve >0, IN € N such that for all n € N satisfying n > N, |z, — z| <e. (1.9)

Note that (1.9) says that the real sequence (||, — z||)nen converges to 0: lim ||z, — x| =0,
n—oo

that is the distance of the vector z,, to the limit x tends to zero, and this matches our geometric
intuition. One can show in the same way as with R, that the limit is unique: a convergent sequence
has only one limit. We write

lim z, = x.
n—oo

Example. Consider the sequence (fy,)nen in the normed space (C[0,1],]| - ||oc), Where
sin(2mnx)
fn = T

The first few terms of the sequence are shown in Figure 1.3.

1 »\

0.5

-1

Figure 1.3: The first three terms of the sequence (f,,)nen-

From the figure, we see that the terms seem to converge to the zero function. Indeed we have

T, 1
1fn = Olloe = —5 | sin(2rna) || = — < ¢ for all n. > N > v O

Definition. The sequence (2, )nen is a called a Cauchy sequence if

Ve > 0, 3N € N such that for all m,n € N satisfying m,n > N, ||z, — .|| <e. (1.10)

Every convergent sequence is a Cauchy sequence, since ||Zm — @n|| < ||@m — || + ||z — 24|
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Definition. A normed space (X, || - ||) is called complete if every Cauchy sequence is convergent.

Complete normed spaces are called Banach spaces after the Polish mathematician Stephan
Banach (1892-1945) who was the first to set up the general theory (in his Ph.D. thesis in 1920).

Thus in a complete normed space, or Banach space, the Cauchy condition is sufficient for
convergence: the sequence (xy,)nen converges iff it is a Cauchy sequence, that is if (1.10) holds. So
we can determine convergence a priori without the knowledge of the limit. Just as it was possible
to introduce new numbers in R, in the same way in a Banach space it is possible to show the
existence of elements with some property of interest, by making use of the Cauchy criterion. In
this manner, one can sometimes show that certain equations have a unique solution. In many cases,
one cannot write them explicitly. After existence and uniqueness of the solution is demonstrated,
then one can do numerical approximations.

The following theorem is an instance where one uses the Cauchy criterion:

Theorem 1.3.1 Let (xp)nen be a sequence in a Banach space and let s, = x1 + -+ + @y If

(o)
> ]l < +o0, (1.11)
n=1

o

then the series E x,, converges, that is, the sequence (S, )nen converges.

n=1

o]

<D llzall.
n

=1

o0
If we denote lim s, by Z T, then we have
n—oo

n=1

00
> e
n=1

k
Proof For k > n, we have s — s,, = Z x; so that:

i=n+1
k oS
lsi = sall < D fall < D Nl <e
i=n+1 i=n+1

for k > n > N sufficiently large. It follows that (s,)nen is a Cauchy sequence and hence is
convergent. If s = lim s,, then using the triangle inequality (see Exercise 1 on page 5), we have
n—oo

sl = Isnll] < |Is — sn]| so that ||s]| = lim ||s,||. Since
n—oo
n oo
lsall < 3 heall < 3 sl
i=1 i=1
we obtain [|Y07  z,]| < 307 ||z, by taking the limit. m

We will use this theorem later to show that e? converges, where A is a square matrix. This
matrix-valued function plays an important role in the theory of ordinary differential equations.

Examples.

1. The space R™ equipped with the norm |- ||, given by (1.7) is a Banach space. We must show
that these spaces are complete. Let (x(™),cn be a Cauchy sequence in R™ (respectively C").
Then we have

2®) — ™| <€ forall m,k>N
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that is .
Z |:L‘§k) — ;L',Em')|2 <€ forall m k> N. (1.12)
i=1

Thus it follows that for every i € {1,...,n}, |;L',§k) — .’L’Em)| < ¢ for all m,k > N, that is
the sequence (xgm))meN is a Cauchy sequence in R (respectively C) and consequently it is
convergent. Let z; = lim .’L‘Em). Then x = (21,...,%,) belongs to R™ (respectively C™).
Now let k go to inﬁnit;/n ino?l.12), and we obtain:
n
Z |z; — :::Z(»m)|2 < e forall m> N,

=1

that is
|z —z™]|y<e forallm>N

and so z = lim 2™ in the normed space. This completes the proof.
m—oo

2. The spaces (P.
Let 1 < p < 400. Then one defines the space ¢ as follows:

i |z |P < —l—oo}

i=1

0= {95 = (%;)ien

with the norm

lzllp = (Z Ix¢|p> : (1.13)

For p = 400, we define the space £ by

> — {w = (%i)ien

sup |z;| < +oo}
ieN
with the norm
[[#([oc = sup |zi.
iEN
(See Exercise 1 on page 12.) The most important of these spaces are £, > and (2.

Theorem 1.3.2 The spaces P are Banach spaces for 1 < p < 4oc.

Proof We prove this for instance in the case of the space ¢2. From the inequality |z; +y;|? <
2|x;]? + 2]y;|?, we see that £2, equipped with the operations

(-T"n)nEN + (yn)neN - (-T'n + yn)neNy (m'n)neNy (y'n)neN S 52:

a(xn)nEN = (al‘n)neNa a €K, ($n)n€N € 52:

is a vector space.

We must now show that 2 is complete. Let (20"),en be a Cauchy sequence in (2. The
proof of the completeness will be carried out in three steps:

STEP 1. We seek a candidate limit 2 for the sequence (z(™),ex.

We have
|2®) — 2|y <€ forall n.k > N,
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that is
oo
Z |£E£»k) — xgn'>|2 <ée foralln, k> N. (1.14)
i=1

(k) _

Thus for every i € N, |x; a;ﬁ.")| < e for all n,k > N, that is, the sequence (xﬁ"))neN is a

Cauchy sequence in R (respectively C) and consequently, it is convergent. Let z; = lim xgn).

n—oc

STEP 2. We show that indeed z belongs to the desired space (here £2).
The sequence = = (7;);en belongs to £2. Let m € N. Then from (1.14) it follows that

m

Z |1’§k) - ml(,”)|2 <e? foralln, k> N.
i=1
Now we let k go to co. Then we see that
m
Z |x; — mz(-n)|2 <e? foralln> N.
i=1
Since this is true for all m € N, we have
oo
Z |2 — xE")|2 <e? foralln> N. (1.15)
i=1
This means that for n > N, the sequence z — 2™, and thus also the sequence z = z — (™) +

2™ belongs to £2.

STEP 3. We show that indeed ||z — (™ || goes to 0, that is, (") converges to z in the given
normed space (here £2).

The equation (1.15) is equivalent with
|z -2, <e foralln> N,

and so it follows that = lim 2 in the normed space ¢2. This completes the proof. m

n—oo

Spaces of continuous functions.
Theorem 1.3.3 Let a,b € R and a <b. The space (Cla,b], || - ||c) is a Banach space.

Proof It is clear that linear combinations of continuous functions are continuous, so that
Cla, b] is a vector space. The equation (1.5) defines a norm, and the space Cla, b] is a normed
space.

We must now show the completeness. Let (fy,)nen be a Cauchy sequence in Cfa,b]. Let
€ > 0 be given. Then there exists a N € N such that for all = € [a, b], we have

|fr(@) = fu(@)] < [|fe — fallo <€ forallk,n > N. (1.16)

Thus it follows that (f,,(x))nen is a Cauchy sequence in K. Since K (=R or C) is complete,
the limit f(z) = lim f,(z) exists. We must now show that the limit is continuous. If we
n—oc

let k go to oo in (1.16), then we see that for all « € [a, ],

|f(z) — fu(z)| <€ forallmn> N. (1.17)
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Using the continuity of the f,,’s and (1.17) above, we now show that f is continuous on [a, b].

Let zo € [a,b]. Given any ¢ > 0, let ¢ = §. Choose N € N large enough so that (1.17) holds.

As fn is continuous on [a, ], it follows that there exists a § > 0 such that
for all z € [a,b] such that |x — x| <4, |fn(z)— fn(z0)| <e
Consequently, for all z € [a,b] such that |z — zo| < J, we have

|f(z) — f(z0)] |f(z) — fn(x) + fn(z) — fa(zo) + fn (o) — f(0)]
|f(z) = fn(@)] + [fn(z) = [N (20)| + [N (20) — f(20)]
e+e+e=C(.

VAN VASVAN

So f must be continuous, and hence it belongs to C[a, b].

Finally, from (1.17), we have
If = frlloo <€ forallm> N,
and so f,, converges to f in the normed space Cla,b]. [ ]

It can be shown that C[a, ] is not complete when it is equipped with the norm

b
1l = / f@)ldz, f e Clab):

see Exercise 6 below.

Using the fact that (C[0,1], || - ||s) is & Banach space, and using Theorem 1.3.1, let us show
that
. sin(n)
> ~ (1.18)
n=1
converges in (C[0, 1], || - || ). Indeed, we have
sin(2mnx) 1
n? w  n¥
— 1
and as E —3 < it follows that (1.18) converges in the || - ||o-norm to a continuous
n=1
function.

In fact, we can get a pretty good idea of the limit by computing the first N terms (with
a large enough N) and plotting the resulting function—the error can then be bounded as

follows:
i sin(2mnz) < i sin(27mx)‘ i 1
2 = 2 = 2’
n=N+1 n n=N+1 n o n=N+1 n

oo

For example, if N = 10, then the error is bounded above by

2

=1 7 1 1 1
= (1444 4 —) ~0.09516637.
S (i) vom

Using Maple, we have plotted the partial sum of (1.18) with IV = 10 in Figure 1.4. Thus the
sum converges to a continuous function that lies in the strip of width 0.96 around the graph
shown in the figure. O
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0.5

Figure 1.4: Partial sum of (1.18).

Exercises.

1. Show that if 1 < p < 400, then ¢? is a normed space. (That is, ¢P is a vector space and that
Il - |l defined by (1.13) gives a norm on ¢?.)

HiNT: Use Exercise 5 on page 5.

2. Let X be a normed space, and let (r,,),en be a convergent sequence in X with limit x.
Prove that (|2 ||)nen is a convergent sequence in R and that

lim [z [| = [l]].
n—00

3. Let coo denote the set of all sequences that have only finitely many nonzero terms.

(a) Show that cgg is a subspace of £P for all 1 < p < +o0.

(b) Prove that for all 1 < p < +00, ¢ is not complete with the induced norm from ¢7.

4. Show that £' C (2 C ¢,

5. (x) Let C'[a,b] denote the space of continuously differentiable® functions on [a, b]:

C'a,b) = {f : [a,b] — K| f is continuously differentiable},

equipped with the norm

1£11.00 = 1 flloc + 11 llco>

Show that (C[a,d], ] - ||1.00) is a Banach space.

f€Ca,b].

(1.19)

6. (*) Prove that C[0,1] is not complete if it is equipped with the norm

1
17 = / f@)ldz, e o1,

HINT: See Exercise 5 on page 54.

7. Show that a convergent sequence (z,)nen in a normed space X has a unique limit.

3A function f : [a,b] — K is continuously differentiable if for every c € [a,b], the derivative of f at ¢, namely
f'(¢), exists, and the map ¢ — f'(¢) : [a,b] — K is a continuous function.
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8. Show that if (z,,)nen is a convergent sequence in a normed space X, then (z,)ney is a
Cauchy sequence.

9. Prove that a Cauchy sequence (2, )nen in a normed space X is bounded, that is, there exists
a M > 0 such that for all n € N, ||z, || < M.

In particular, every convergent sequence in a normed space is bounded.
10. Let X be a normed space.

(a) If a Cauchy sequence (r,)ney in X has a convergent subsequence, then show that
(2 )nen is convergent.

(b) () If every series in X with the property (1.11) is convergent, then prove that X is
complete.

HiNT: Construct a subsequence (z,, )ren of a given Cauchy sequence (z,,)nen POS-
sessing the property that if n > ng, then ||z, — 2, | < 2% Define u; = z,,,

oo
Uk41 = Tnyy, — Ty, k €N, and consider Z k]l
k=1

11. Let X be a normed space and S be a subset of X. A point x € X is said to be a limit point
of S if there exists a sequence (2 )nen in S\ {x} with limit z. The set of all points and limit
points of S is denoted by S. Prove that if Y is a subspace of X, then Y is also a subspace
of X. This subspace is called the closure of Y.

1.4 Appendix: proof of Holder’s inequality

Let p € (14 c0) and ¢ be defined by % + % = 1. Suppose that a,b € R and a,b > 0. We begin by
showing that

S 2> avb (1.20)

If a =0 or b = 0, then the conclusion is clear, and so we assume that both a and b are positive.
We will use the following result:

CramM: If @ € (0,1), then for all z € [1,00), a(z — 1) +1 > z*.
Proof Given « € (0,1), define f: [1,00) — R by
fal@)=alz—1)—2*+1, z€[l,00).

Note that
fal)=a-0-194+1=0,

and for all z € [1, 00),

_ 1
folw)=a—a-a® 1:a(1_x1—a> =

Hence using the fundamental theorem of calculus, we have for any > 1,

Fal@) — fall) = /0 "y > 0,

and so we obtain f,(z) > 0 for all z € [1, 00). [ |
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As p € (1,00), it follows that % € (0,1). Applying the above with a = % and

|

ifa>b
ifa<b

SIS

we obtain inequality (1.20).

Holder’s inequality is obvious if

n n
Do lwilP=0 or M |yl?=0.
i=1 i=1
So we assume that neither is 0, and proceed as follows. Define

‘ oyl .
dndbz—ni, ze{l,...,n}.

— n
Dl > lwil
=1 i=1

Applying the inequality (1.20) to a;, b;, we obtain for each ¢ € {1,...,n}:

P
1

|$zyz| < |$z'|p |yi|p
n % n % - n n '
Sl ) (Slwr) Pk Xl
i=1 i=1 =1 =1

Adding these n inequalities, we obtain Holder’s inequality.
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Continuous maps

In this chapter, we consider continuous maps from a normed space X to a normed space Y. The
spaces X and Y have a notion of distance between vectors (namely the norm of the difference
between the two vectors). Hence we can talk about continuity of maps between these normed
spaces, just as in the case of ordinary calculus.

Since the normed spaces are also vector spaces, linear maps play an important role. Recall
that linear maps are those maps that preserve the vector space operations of addition and scalar
multiplication. These are already familiar to the reader from elementary linear algebra, and they
are called linear transformations.

In the context of normed spaces, it is then natural to focus attention on those linear trans-
formations that are also continuous. These are important from the point of view of applications,
and they are called bounded linear operators. The reason for this terminology will become clear
in Theorem 2.3.3.

The set of all bounded linear operators is itself a vector space, with obvious operations of
addition and scalar multiplication, and as we shall see, it also has a natural notion of a norm,
called the operator norm. Equipped with the operator norm, the vector space of bounded linear
operators is a Banach space, provided that the co-domain is a Banach space. This is a useful
result, which we will use in order to prove the existence of solutions to integral and differential
equations.

2.1 Linear transformations

We recall the definition of linear transformations below. Roughly speaking, linear transformations
are maps that respect vector space operations.

Definition. Let X and Y be vector spaces over K (R or C). A map T : X — Y is called a linear
transformation if it satisfies the following:

L1. For all 1,22 € X, T(21 + 22) = T(x1) + T(22).

L2. Forallz € X and all « € K, T(a- 2) = - T().

15
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Examples.

1. Let myn e Nand X =R"” and Y = R™. If

ai ... A1n
— - . mXn
A= : : e R™,

Am1 - Amn

then the function Ty : R™ — R™ defined by

— -
Z A1kTE
1 1121 + -+ A1pTy k=1 1
Ta| = : = : for all : eR”, (21)
Tn Am1T1 + -+ AmnTn & Tn
> ampy
k=1 i

is a linear transformation from the vector space R™ to the vector space R™. Indeed,

Ty n (ol n I n
Ta S I =Ta| @ |+Tal| : for all S, | eRY
Tn Yn Tn Yn LT Yn
and so L1 holds. Moreover,
T T I
Tha| - : =a-Ty : for all @ € R and all : e R"™,

Tn T Tn

and so L2 holds as well. Hence T4 is a linear transformation.

. Let X =Y = (2. Consider maps R, L from £2 to 2, defined as follows: if (2, )nen € £2, then

R((x1,x2,7s5,...)) = (x2,23,0a4,...) and L((z1,22,73,...)) = (0,21, 22, 23,...).

Then it is easy to see that R and L are linear transformations.

. The map T : Cla,b] — K given by

a+b
2

Tf:f< ) for all f € Cla,b],

is a linear transformation from the vector space Cla,b] to the vector space K. Indeed, we
have

17+ =+ (“50) = £ (57) 9 (457 ) =T()+ T(o). orail g € Clai,

and so L1 holds. Furthermore

T(a-f)=(a-f) <a—2|—b> =af <a—2i—b> =aT(f), for all « € K and all f € Cla,b],

and so L2 holds too. Thus T is a linear transformation.
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Similarly, the map I : C[a, b] — K given by

b
I(f):/ f(x)dz for all f € Cla, ],

is a linear transformation.

Another example of a linear transformation is the operation of differentiation: let X =
Clla,b] and Y = C[a,b]. Define D : C[a,b] — Cla,b] as follows: if f € Cl[a,b], then

df
(D(f))(z) = 7 -(2), = €la,b].
T
It is easy to check that D is a linear transformation from the space of continuously differen-
tiable functions to the space of continuous functions. O
Exercises.

1. Let a,b € R, not both zeros, and consider the two real-valued functions fi, fo defined on R
by
filx) =e*cos(bx) and fa(x) = e sin(bx), x€R.

f1 and fo are vectors belonging to the infinite-dimensional vector space over R (denoted by
C1(R,R)), comprising all continuously differentiable functions from R to R. Denote by ¥
the span of the two functions f; and fs.

(a) Prove that f; and fo are linearly independent in C*(R,R).
(b) Show that the differentiation map D, f +— %ﬁ is a linear transformation from ¥ to 7.

lx 7

)
)

(¢) What is the matrix [D]g of D with respect to the basis Z = { f1, f2}?
)

(d) Prove that D is invertible, and write down the matrix corresponding to the inverse of
D.

(e) Using the result above, compute the indefinite integrals
/e‘” cos(bx)dx  and /e‘” sin(bx)dx.
2. (Delay line) Consider a system whose output is a delayed version of the input, that is, if u
is the input, then the output y is given by
y(t) = u(t - A)? te Ra (22)

where A (> 0) is the delay.

Let D : C(R) — C(R) denote the map modelling the system operation (2.2) corresponding
to delay A:

(DNt = [(t—A), teR, feC(R).
Show that D is a linear transformation.
3. Consider the squaring map S : Cla,b] — Cla, b] defined as follows:
(S(u)(t) = (u(t)?, tela,b], uécCCla,b].

Show that S is not a linear transformation.
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2.2 Continuous maps

Let X and Y be normed spaces. As there is a notion of distance between pairs of vectors in either
space (provided by the norm of the difference of the pair of vectors in each respective space), one
can talk about continuity of maps. Within the huge collection of all maps, the class of continuous
maps form an important subset. Continuous maps play a prominent role in functional analysis
since they possess some useful properties.

Before discussing the case of a function between normed spaces, let us first of all recall the
notion of continuity of a function f: R — R.

2.2.1 Continuity of functions from R to R

In everyday speech, a ‘continuous’ process is one that proceeds without gaps of interruptions or
sudden changes. What does it mean for a function f : R — R to be continuous? The common
informal definition of this concept states that a function f is continuous if one can sketch its graph
without lifting the pencil. In other words, the graph of f has no breaks in it. If a break does
occur in the graph, then this break will occur at some point. Thus (based on this visual view of
continuity), we first give the formal definition of the continuity of a function at a point below.
Next, if a function is continuous at each point, then it will be called continuous.

If a function has a break at a point, say xg, then even if points z are close to zg, the points
f(x) do not get close to f(xp). See Figure 2.1.

To

Figure 2.1: A function with a break at zo. If x lies to the left of xo, then f(z) is not close to
f(z0), no matter how close x comes to .

This motivates the definition of continuity in calculus, which guarantees that if a function
is continuous at a point xg, then we can make f(z) as close as we like to f(z), by choosing x
sufficiently close to xg. See Figure 2.2.

To—0 TTo a9+

Figure 2.2: The definition of the continuity of a function at point zq. If the function is continuous
at 2, then given any € > 0 (which determines a strip around the line y = f(zo) of width 2¢), there
exists a > 0 (which determines an interval of width 24 around the point x() such that whenever
z lies in this width (so that = satisfies |z — x| < &) and then f(z) satisfies |f(z) — f(zo)| < e.
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Definitions. A function f : R — R is continuous at ¢ if for every € > 0, there exists a § > 0
such that for all z € R satisfying |z — x| < 6, |f(z) — f(z0)| < e.

A function f: R — R is continuous if for every zo € R, f is continuous at x¢.
For instance, if @ € R, then the linear map 2 +— « is continuous. It can be seen that sums

and products of continuous functions are also continuous, and so it follows that all polynomial
functions belong to the class of continuous functions from R to R.

2.2.2 Continuity of functions between normed spaces

We now define the set of continuous maps from a normed space X to a normed space Y.

We observe that in the definition of continuity in ordinary calculus, if x,y are real numbers,
then |2 — y| is a measure of the distance between them, and that the absolute value | - | is a norm
in the finite (1-)dimensional normed space R.

So it is natural to define continuity in arbitrary normed spaces by simply replacing the absolute
values by the corresponding norms, since the norm provides a notion of distance between vectors.

Definitions. Let X and Y be normed spaces over K (R or C). Let 70 € X. Amap f: X - Y
is said to be continuous at xq if

Ve >0, 30 > 0 such that Vo € X satisfying || — zo|| <9, | f(z) — f(zo)] <e. (2.3)

The map f: X — Y is called continuous if for all xg € X, f is continuous at xg.

We will see in the next section that the examples of the linear transformations given in the
previous section are all continuous maps, if the vector spaces are equipped with their usual norms.
Here we give an example of a nonlinear map which is continuous.

Example. Consider the squaring map S : C[a, b] — Cla, b] defined as follows:
(S(w)(t) = (u(t)?, teclab], uécCla,b]. (2.4)
The map is not linear, but it is continuous. Indeed, let uy € Cla, b]. Let
M = max{[u(t)| [t € [a, b]}

(extreme value theorem). Given any € > 0, let

€
—mindl,—o .
0 mm{’ZlW—i—l}

Then for any u € Cla, b], such that ||u — ug|| < 8, we have for all ¢ € [a,b]

|(u(t)® — (uo(t))?|

|u(t) = uo()|fu(t) + uo(?)]
S(lu(t) = uo(t) + 2uo(t)])
O(lu(t) = uo(t)] + 2fuo(?)
d([lu — uoll +2M)
d(6 4 2M)

0(1+2M) <e.

)

IN A CININ A
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Hence for all u € Cla, b] satistying ||u — ug|| < d, we have

[18(u) = S(uo)ll = sup |(u(t))® - (uo(t))?| < e.
t€la,b]

So S is continuous at ug. As the choice of ug € C[a, b] was arbitrary, it follows that .S is continuous
on Cla, b]. %

Exercises.

1. Let (X, | - ||) be a normed space. Show that the norm || - || : X — R is a continuous map.

2. (%) Let X,Y be normed spaces and suppose that f : X — Y is a map. Prove that f is
continuous at zo € X iff

for every convergent sequence (Z,, )nen contained in X with limit xg,

(f(xn))nen is convergent and HILHOlO flzy) = flmo). (2.5)

In the above claim, can “and lim f(x,) = f(20)” be dropped from (2.5)7?

n—0o00

3. (*) This exercise concerns the norm || - ||1.00 on C*[a, b] considered in Exercise 5 on page 12.

Since we want to be able to use ordinary calculus in the setting when we have a map with
domain as a function space, then, given a function F : Cl[a,b] — R, it is reasonable to
choose a norm on C'la, b] such that F is continuous.

(a) It might seem that induced norm on C'{a,d] from the space Cla,b] (of which C[a,b]
as a subspace) would be adequate. However, this is not true in some instances. For
example, prove that the arc length function L : C[0, 1] — R given by

L) = [ VI TGP (26)

is not continuous if we equip C*[0, 1] with the norm induced from C[0, 1].

HiNT: For every curve, we can find another curve arbitrarily close to the first in the
sense of the norm of C[0, 1], whose length differs from that of the first curve by a factor
of 10, say.

(b) Show that the arc length function L given by (2.6) is continuous if we equip C*[0, 1]
with the norm given by (1.19).

2.3 The normed space .Z(X,Y)

In this section we study those linear transformations from a normed space X to a normed space
Y that are also continuous, and we denote this set by £ (X,Y):

ZL(X,Y)={F: X — Y | Fis a linear transformation} ﬂ {F:X — Y | F is continuous}.

We begin by giving a characterization of continuous linear transformations.

Theorem 2.3.1 Let X and Y be normed spaces over K (R or C). Let T : X — Y be a linear
transformation. Then the following properties of T are equivalent:
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1. T is continuous.
2. T is continuous at 0.

3. There ezists a number M such that for all x € X, | Tz|| < M|z

Proof
1 = 2. Evident.

2 = 3. For every € > 0, for example € = 1, there exists a 6 > 0 such that ||z| < § implies
[|Tz|| < 1. This yields:

1
ITz|| < SH”E” for all z € X. (2.7)
This is true if ||z| = . But if (2.7) holds for some z, then owing to the homogeneity of 7" and of
the norm, it also holds for ax, for any arbitrary a € K. Since every = can be written in the form

2z = ay with ||y = § (take @ = @), (2.7) is valid for all z. Thus we have that for all z € X,
|Tz|| < M||z| with M = %.

3 = 1. From linearity, we have: |T2 — Ty|| = |T(z — y)|| < M|z — y|| for all 2,y € X. The

continuity follows immediately. [

Owing to the characterization of continuous linear transformations by the existence of a bound
as in item 3 above, they are called bounded linear operators.

Theorem 2.3.2 Let X and Y be normed spaces over K (R or C).

1. Let T : X — Y be a linear operator. Of all the constants M possible in 3 of Theorem 2.3.3,
there is a smallest one, and this is given by:

IT|l = sup [[Tu]. (2.8)
=zll<1

2. The set Z(X,Y) of bounded linear operators from X toY with addition and scalar multi-
plication defined by:

(T+S)r=Tz+ Sz, z€X, (2.9)
(o)x=aTz, ze€X, «ack (2.10)

is a vector space. The map T +— ||T|| is a norm on this space.

Proof 1. From item 3 of Theorem 2.3.3, it follows immediately that ||T'|] < M. Conversely we
have, by the definition of ||T||, that ||| <1 = ||Tz| < ||T||. Owing to the homogeneity of T
and of the norm, it again follows from this that:

|Tz|| < ||T||||z]| forallz € X (2.11)
which means that ||| is the smallest constant M that can occur in item 3 of Theorem 2.3.3.

2. We already know from linear algebra that the space of all linear transformations from a vector
space X to a vector space Y, equipped with the operations of addition and scalar multiplication
given by (2.9) and (2.10), forms a vector space. We now prove that the subset .Z(X,Y") comprising
bounded linear transformations is a subspace of this vector space, and consequently it is itself a
vector space.
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We first prove that if T',.S are in bounded linear transformations, then so are 7'+ S and oT'.
It is clear that T'4+ S and aT are linear transformations. Moreover, there holds that

(T + S)z|| < [T + ISzl < (IT[I+ ISIDI[=]. =€ X, (2.12)
from which it follows that 7"+ S is bounded. Also there holds:

[aT = sup [[aTz|| = sup |of|[Tz[| = |a| sup [Tz = |af]T]. (2.13)
e <1 e <1 e <1

Finally, the 0 operator, is bounded and so it belongs to Z(X,Y).

Furthermore, £ (X,Y) is a normed space. Indeed, from (2.12), it follows that ||7"+ S| <
I + ||S]l, and so N3 holds. Also, from (2.13) we see that N2 holds. We have |T|| > 0; from
(2.11) it follows that if [|T'|| = 0, then Tz = 0 for all z € X, that is, T = 0, the operator 0, which
is the zero vector of the space Z(X,Y’). This shows that N1 holds. [

So far we have shown that the space of all continuous linear transformations (which we also call
the space of bounded linear operators), .Z(X,Y), can be equipped with the operator norm given
by (2.8), so that .Z(X,Y") becomes a normed space. We will now prove that in fact .£(X,Y) with
the operator norm is in fact a Banach space provided that the co-domain Y is a Banach space.

Theorem 2.3.3 IfY is complete, then L (X,Y) is also complete.
Proof Let (T,,)nen be a Cauchy sequence in Z(X,Y). Then given a € > 0 there exists a number
N such that: ||T,, — T,|| < € for all n,m > N, and so, if © € X, then

Vn,m 2 N, |Thx =Tzl < T = Tull[lz] < efl]. (2.14)

This implies that the sequence (7),z)nen is a Cauchy sequence in Y. Since Y is complete, lim T,z
n—oo
exists:
Tx= lim T,z.

n—oo

This holds for every point € X. It is clear that the map T : x + T'(z) is linear. More-
over, the map T is continuous: we see this by observing that a Cauchy sequence in a normed
space is bounded. Thus there exists a number M such that [|T,|| < M for all n (take M =
max (|71, .-, |Tn-1ll,e + ||Tn]])). Since

VneN, VeeX, |T,z| <Mz,
by passing the limit, we obtain:
Vee X, |[Tx| < Mz,
and so T' is bounded.

Finally we show that lim |7, — T'|| = 0. By letting m go to co in (2.14), we sec that
n—oo

Yn>N, VeeX, |[Thx—Tz| <e¢|x.

This means that for all n > N, ||T,, — T|| < ¢, which gives the desired result. ]

Corollary 2.3.4 Let X be a normed space over R or C. Then the normed space .£(X,R)
(£ (X, C) respectively) is a Banach space.
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Remark. The space £ (X,R) (£(X,C) respectively) is denoted by X’ (sometimes X*) and is
called the dual space. Elements of the dual space are called bounded linear functionals.

Examples.

1. Let X =R"”, Y =R™, and let

ail N A1n
A= : : e R™*™,
Am1 .- Amn
We equip X and Y with the Euclidean norm. From Holder’s inequality with p = 2, it follows

that
2

n n
> agry | <[> ad | Iz,
=1 =1

for each 7 € {1,...m}. This yields |Taz| < ||A4||2|lx| where

2

[Alls = (D > ai | - (2.15)

i=1 j=1
Thus we see that all linear transformations in finite dimensional spaces are continuous, and

that if X and Y are equipped with the Euclidean norm, then the operator norm is majorized
by the Euclidean norm of the matrix:

Al < A2
Remark. There does not exist any ‘formula’ for ||T4] in terms of the matrix coeflicients

except in the special cases n = 1 or m = 1). The map A — ||A||2 given by (2.15) is also a
norm on R™*™ and is called the Hilbert-Schmidt norm of A.

2. Integral operators. We take X =Y = Cla,b]. Let k : [a,b] X [a,b] — K be a uniformly
continuous function, that is,

Ve >0, 3§ > 0 such that V(z1,y1), (2, y2) € [a,b] X [a, b] satisfying

o1~ a] < 6 and gy — gl < 8 [kla1,1) — Kz )| < (210)
Such a k defines an operator
K : Cla,b] — Cla, b
via the formula
1)) = [ K S (217)

We first show that K f € C[a,b]. Let x¢ € X, and suppose that € > 0. Then choose a § > 0
such that

€

if |z1 — 22| <6 and |y1 — yo| <0, then |k(z1,y1) — k(22, y2)| < ———-
) =)
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Then we obtain

b b
(KD @) ~ KDl = | [ k) fdy = [ k) )y

a

b
/ (k(z,y) — k(zo,1)) f (W) dy

IA

b
/ k() — ko, )1 (4)|dy

€
== Mlle=¢

This proves that K f is a continuous function, that is, it belongs to X = Cfa,b]. The map
f— K f is clearly linear. Moreover,

< (b—a)

I(Kf)B)] < /ab k(t,s)] | f(s)]ds < /:|k(t, s)|ds || flloo
so that if ||k||co denotes the supremum! of |k| on [a, b]2, we have:
K flloc < (b= a)|[k]lsc || flloc forall f € Cla,b].
Thus it follows that K is bounded, and that
K] < (b= a)l[k]l-

Remark. Note that the formula (2.17) is analogous to the matrix product
(Kf)i=>_ kijfj-
j=1

Operators of the type (2.17) are called integral operators. It used to be common to call the
function k that plays the role of the matrix (k;;), as the ‘kernel’ of the integral operator.
However, this has nothing to do with the null space: {f | K f = 0}, which is also called the
kernel. Many variations of the integral operator are possible. ¢

Exercises.
1. Let X,Y be normed spaces with X # 0, and T € Z(X,Y). Show that
= — 11— 172
(IT|| = sup{||Tz| | z € X and ||z|| = 1} = sup ] re€Xandx#0;.
T

So one can think of ||T'|| as the maximum possible ‘amplification factor’ of the norm as a
vector x is taken by T to the vector T'z.

2. Let (A)nen be a bounded sequence of scalars, and consider the diagonal operator D : £ — £2
defined as follows:

D(z1,x2,x3,...) = (A121, Ao, A3Z3,... ), (Tp)nen € 2. (2.18)

Prove that D € £ (¢?) and that
[ DI = sup [An].
neN

1 This is finite, and can be seen from (2.16), since [a,b]? can be covered by finitely many boxes of width 26.
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3. An analogue of the diagonal operator in the context of function spaces is the multiplication
operator. Let [ be a continuous function on [a,b]. Define the multiplication operator M :
Cla,b] — Cla, ] as follows:

(Mf)(x) =1U=)f(x), x€l[ab], fEeClab]
Is M a bounded linear operator?

4. A linear transformation on a vector space X may be continuous with respect to some norm
on X, but discontinuous with respect to another norm on X. To illustrate this, let X be
the space coo of all sequences with only finitely many nonzero terms. This is a subspace of
YN ¢2. Consider the linear transformation T : cgo — R given by

T((#n)nen) =21+ 22 +23+ ..., (Tn)neN € coo-
(a) Let coo be equipped with the induced norm from ¢!. Prove that T is a bounded linear
operator from (cgp, || - |[1) to R.
(b) Let cgo be equipped with the induced norm from ¢2. Prove that T is not a bounded
linear operator from (coo, || - ||2) to R.
HinT: Consider the sequences (1, %, %, R %,0, . ), m € N.

5. Prove that the averaging operator A : £°° — (°° defined by
r1+T2 T1+T2+ T3
2 ) 3 )

is a bounded linear operator. What is the norm of A?

Az, z0,23,...) = (ml, (2.19)

6. (%) A subspace ¥ of a normed space X is said to be an invariant subspace with respect to
a linear transformation T: X — X if T C V.

Let A : £>° — £ be the averaging operator given by (2.19). Show that the subspace (of £>°)
¢ comprising convergent sequences is an invariant subspace of the averaging operator A.
HinT: Prove that if « € ¢ has limit L, then Ax has limit L as well.

Remark. Invariant subspaces are useful since they are helpful in studying complicated op-
erators by breaking down them into smaller operators acting on invariant subspaces. This is
already familiar to the student from the diagonalization procedure in linear algebra, where
one decomposes the vector space into eigenspaces, and in these eigenspaces the linear trans-
formation acts trivially. One of the open problems in modern functional analysis is the
invariant subspace problem:

Does every bounded linear operator on a separable Hilbert space X over C have a non-trivial
invariant subspace?
Hilbert spaces are just special types of Banach spaces, and we will learn about Hilbert spaces
in Chapter 4. We will also learn about separability. Non-trivial means that the invariant
subspace must be different from 0 or X. In the case of Banach spaces, the answer to the
above question is ‘no’: during the annual meeting of the American Mathematical Society
in Toronto in 1976, the young Swedish mathematician Per Enflo announced the existence
of a Banach space and a bounded linear operator on it without any non-trivial invariant
subspace.

7. (%) (Dual of Cla,b]) In this exercise we will learn a representation of bounded linear func-
tionals on Cla, b].

A function w : [a,b] — R is said to be of bounded variation on [a,b] if its total variation
Var(w) on [a, b] is finite, where

n

Var(w) = S;PZ lw(z;) — w(wj-1)l,
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the supremum being taken over the set &2 of all partitions
a=20<x1 < <Tp=D» (2.20)

of the interval [a, b]; here, n € N is arbitrary and so is the choice of the values x1,...,Zn—1
in [a, b], which, however, must satisfy (2.20).

Show that the set of all functions of bounded variations on [a, b], with the usual operations
forms a vector space, denoted by BV]a, b].

Define || - || : BV[a,b] — [0, +00) as follows: if w € BV][a, ], then
[w]| = |w(a)| + Var(w). (2.21)

Prove that || - || given by (2.21) is a norm on BV][a, b].

We now obtain the concept of a Riemann-Stieltjes integral as follows. Let f € Cla,b] and
w € BVJa,b]. Let P, be any partition of [a,b] given by (2.20) and denote by A(P,) the
length of a largest interval [z;_1,z;], that is,

A(P,) = max{x1 — Zg, ..., Ty, — Tp—1}-

For every partition P, of [a,b], we consider the sum
n
P) =) fla))(wlz;) — wz;1)).
=1

Then the following can be shown:

Fact: There exists a unique number . with the property that for every e > 0 there is a
d > 0 such that if P, is a partition satisfying A(P,) < J, then | — S(P,)| < e.

. is called the Riemann-Stieltjes integral of f over [a,b] with respect to w, and is denoted

by ,
/ f(@)du(z)

/ f1(@) + faz)dw(z / fi(z)dw(x) + / fa(x)dw(x) for all f1, fo € Cla,b], (2.22)

It can be seen that

/b af (x)dw(x) = a/ f(z)dw(zx) for all f € Cla,b] and all a € K. (2.23)

Prove the following inequality:

b
/ F@)dw(@)| < || oo Var(w),

where f € C[a,b] and w € BV][a,b]. Conclude that every w € BV]a, b] gives rise to a bounded
linear functional T, € .Z(Cla, b],K) as follows:

b
fH/f@mmy

and that ||T,| < Var(w).

The following converse result was proved by F. Riesz:
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Theorem 2.3.5 (Riesz’s theorem about functionals on Cla,d]) If T € £(C|a,b],K), then
there exists a w € BV[a,b] such that

b
Ve Clab, T(f)= / f(@)duw(z),
and ||T|| = Var(w).

In other words, every bounded linear functional on Cfa, b] can be represented by a Riemann-
Stieltjes integral.

Now consider the bounded linear functional on Cla,b] given by f — f(b). Find a corre-

sponding w € BV][a, b].

8. (a) Consider the subspace ¢ of £>° comprising convergent sequences. Prove that the limit
map [ : ¢ — K given by

l(mn)neN - nlLH;o Ty (-Tn)nEN cc, (224)

is an element in the dual space .Z (¢, K) of ¢, when c¢ is equipped with the induced norm
from £°°.

(b) (%) The Hahn-Banach theorem is a deep result in functional analysis, which says the

following;:

Theorem 2.3.6 (Hahn-Banach) Let X be a normed space and'Y be a subspace of X.
Ifl € Z(Y,K), then there exists a L € £ (X,K) such that Ly =1 and | L|| = ||I||.

Thus the theorem says that bounded linear functionals can be extended from subspaces
to the whole space, while preserving the norm.

Consider the following set in ¢>°:

Y = {(xn)neN e >

. T+ oy .
lim ———— exists ¢ .

n—oo n

Show that Y is a subspace of £°°, and that for all x € £*°, x — Sx € Y, where § : {* —
£>° denotes the shift operator:

S(xy,x2,23,...) = (x2,23,24,...), (Zn)nen € L.

Furthermore, prove that ¢ C Y.
Consider the limit functional { on ¢ given by (2.24). Prove that there exists an L €
Z(>°,K) such that L|. = and moreover, LS = L.
This gives a generalization of the concept of a limit, and Lz is called a Banach limit of
a (possibly divergent!) sequence x € £°°.
HiNT: First observe that Ly : Y — K defined by

T4t a,

LO(xn)neN = nllllgo #: (xn)nEN ey,

is an extension of the functional [ from ¢ to Y. Now use the Hahn-Banach theorem to
extend Lg from Y to £°°.

(¢) Find the Banach limit of the divergent sequence ((—1)")nen-
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2.4 The Banach algebra .Z(X). The Neumann series

In this section we study Z(X,Y) when X =Y, and X is a Banach space.
Let X,Y, Z be normed spaces over K.
Theorem 2.4.1 IfB: X —»Y and A:Y — Z are bounded linear operators, then the composition

AB : X — Z is a bounded linear operator, and there holds:
[AB| < [ A[lIB]- (2.25)

Proof For all x € X, we have
[ABz|| < [[A[[|Bz|| < [|AllI Bl
and so AB is a bounded linear operator, and ||AB|| < ||A||||B||. ]

We shall use (2.25) mostly in the situations when X =Y = Z. The space .Z (X, X) is denoted
in short by .Z(X), and it is an algebra.

Definitions. An algebra is a vector space X in which an associative and distributive multiplication
is defined, that is,
z(yz) = (2y)z, (x+y)z=zz+4+yz, x(y+z)=ay+az
for x,y,z € X, and which is related to scalar multiplication so that
a(zy) = z(ay) = (ax)y (2.26)
for z,y € X and a € K. An element e € X is called an identity element if

Ve e X, exr=ux=uze.

From the previous proposition, we have that if A, B € £(X), then AB € Z(X). We see that
Z(X) is an algebra with the product (A, B) — AB. Moreover .Z(X) has an identity element,
namely the identity operator I.

Definitions. A normed algebra is an algebra equipped with a norm that satisfies (2.25). A Banach
algebra is a normed algebra which is complete.

Thus we have the following theorem:

Theorem 2.4.2 If X is a Banach space, then £ (X) is a Banach algebra with identity. Moreover,
1] = 1.

Remark. (To be read after a Hilbert spaces are introduced.) If instead of Banach spaces, we are
interested only in Hilbert spaces, then still the notion of a Banach space is indispensable, since
Z(X) is a Banach space, but not a Hilbert space in general.

Definition. Let X be a normed space. An element A € .Z(X) is invertible if there exists an
element B € .Z(X) such that:
AB=BA=1.
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Such an element B is then uniquely defined: Indeed, if AB’ = B’A = I, then thanks to the
associativity, we have:
B'=B'I =B (AB) = (B'A)B=1B = B.

The element B, the inverse of A, is denoted by A~!. Thus we have:
AAT P =AT1A=1T
In particular,
AA e = A" Az =2 forallz e X
so that A: X — X is bijective?.
Theorem 2.4.3 Let X be a Banach space.

1. Let A € £(X) be a linear operator with ||A|| < 1. Then the operator I — A is invertible and

T=A)'=T+A+ A+ + A =A™ (2.27)
n=0

2. In particular, I — A : X — X is bijective: for ally € X, there exists a unique solution r € X
of the equation
x— Az =y,
and moreover, there holds that:

1
Izl < —7r vl
1— [l A]

The geometric series in (2.27) is called the Neumann series after Carl Neumann, who used
this in connection with the solution of the Dirichlet problem for a convex domain.

In order to prove Theorem 2.4.3, we we will need the following result.

Lemma 2.4.4 There holds
1A < |A|™ for all n € N. (2.28)

Proof This follows by using induction on n from (2.25): if (2.28) holds for n, then from (2.25)
we have [[A"TH]| < [[A”[| Al < [IA]"[[A] = A" u

Proof (of Theorem 2.4.3.) Since ||A]| < 1, we have

o0 o0 1
(1A < A" = ——7 < 400,
2, 1471 = 2 141" = T

so that the Neumann series converges in the Banach space Z(X) (see Theorem 1.3.1). Let

n—oo

Spn=I+A+---+ A" andS:I—l—A—l—-~+A"+...:ZA": lim S,.
n=0

From the inequality (2.25), it follows that for a fixed A € Z(X), the maps B — AB and B — BA
are continuous from .Z(X) to itself. We have: AS,, =S, A=A+ A% +...+ A1 =6, ., 1. In

2In fact if X is a Banach space, then it can be shown that every bijective linear operator is invertible, and this
is a consequence of a deep theorem, known as the open mapping theorem.
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the limit, this yields: AS = SA=S5—1I,andso (I —A)S =5(I—A)=1. Thus I — A is invertible
and (I — A)~! = S. Again, using Theorem 1.3.1, we have ||S|| < m

The second claim is a direct consequence of the above. ]

Example. Let k be a uniformly continuous function on [a,b]?. Assume that (b — a)|k||c < 1.
Then for every g € Cla,b], there exists a unique solution f € Cla, b] of the integral equation:

b
flz)— / k(z,y)f(y)dy = g(x) for all = € [a,b]. (2.29)

Integral equations of the type (2.29) are called Fredholm integral equations of the second kind.

b
Fredholm integral equations of the first kind, that is: / k(x,y)g9(y)dy = g(x) for all = € [a, b]

are much more difficult to handle. ¢

What can we say about the solution f € Cfa,b] except that it is a continuous function? In
general nothing. Indeed the operator I — K is bijective, and so every f € C[a,b] is of the form
(I-K)'gforg=(—-K)f. 0O

Exercises.

1. Consider the system
T = %1‘14-%‘%24-1, }

2.
xTo = §$1+14B2+2, ( 30)

in the unknown variables (21, 22) € R2. This system can be written as (I — K)z = y, where
I denotes the identity matrix,

1 -1 1 1
K= , = and == .
T el %)
(a) Show that if R? is equipped with the norm || - ||2, then ||[K| < 1. Conclude that the
system (2.30) has a unique solution (denoted by z in the sequel).

(b) Find out the unique solution 2 by computing (I — K)~L.

approximate solution relative error (%)
n|an=(I+K+K+ - +K")y el
2 (3.0278, 3.4306) 38.63
3 (3.6574, 3.8669) 28.21
5 (4.4541,4.4190) 15.09
10 (5.1776,4.9204) 3.15
15 (5.3286,5.0250) 0.66
20 (5.3601,5.0469) 0.14
25 (5.3667,5.0514) 0.03
30 (5.3681,5.0524) 0.01

Table 2.1: Convergence of the Neumann series to the solution z ~ (5.3684, 5.0526).

(c) Write a computer program to compute z, = (I + K + K2 + K2+ --- 4+ K™)y and the
relative error w for various values of n (say, until the relative error is less than
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1%). See Table 2.1. We see that the convergence of the Neumann series converges very
slowly.

2. (a) Let X be a normed space, and let (1},),en be a convergent sequence with limit 7 in
Z(X). If S € Z(X), then show that (ST},)nen is convergent in .Z(X), with limit S7T'.
(b) Let X be a Banach space, and let A € Z(X) be such that ||A|| < 1. Consider the
sequence (P,),en defined as follows:
Py= I+ AT+ A*)(I+ A% .. (I+A%), neN.

2n+1

i. Using induction, show that (I — A)P, =1—- A for all n € N.

ii. Prove that (P,)nen is convergent in £ (X) in the operator norm. What is the limit
of (Pn)nGN?
HINT: Use ||A™|| < ||A|™ (m € N). Also use part 2a with § = (I — A)~L.

2.5 The exponential of an operator

Let X be a Banach space and A € Z(X) be a bounded linear operator. In this section, we will
study the exponential e, where A is an operator.

Theorem 2.5.1 Let X be a Banach space. If A € £(X), then the series

[e)

1
A . n
et =) A (2.31)

n=0

converges in £ (X).

Proof That the series (2.31) converges absolutely is an immediate consequence of the inequality:

1l < A

n! n! ’

o0
1
and the fact that the real series E —'x" converges for all real x € R. Using Theorem 1.3.1, we
n

n=0 "

obtain the desired result. ]

The exponential of an operator plays an important role in the theory of differential equations.
Let X be a Banach space, for example, R™, and let o € X. It can be shown that there exists

precisely one continuously differentiable function ¢ + x(t) € X, namely z(t) = ¢4z such that:
(jl—j(t) = Az(t), teR (2.32)
z(0) = xo. (2.33)

Briefly: The Cauchy initial value problem (2.32)-(2.33) has a unique solution.

Exercises.

1. A matrix A € B"*" is said to be nilpotent if there exists a n > 0 such that A™ = 0. The
series for e? is a finite sum if A is nilpotent. Compute e”, where

A:[g (1)] (2.34)



32 Chapter 2. Continuous maps

2. Let D € C™*™ be a diagonal matrix

D: )
An

for some A1, ..., A\, € C. Find €.

3. If P is an invertible n X n matrix, then show that for any n x n matrix @, ePQP™! = peQp-1,

A matrix A € C"*" is said to be diagonalizable if there exists a matrix P and a diagonal
matrix D such that A = PDP~1.

Diagonalize
a b
=4 el
and show that
A _ qo| cosb sinb
© T —sinb cosb |
4. Tt can be shown that if X is a Banach space and A, B € £ (X) commute (that is, AB = BA),

then eAtB = edeB,

(a) Let X be a Banach space. Prove that for all A € £(X), e is invertible.

b) Let X be a Banach space and A € Z(X). Show that if s, € R, then (5704 = ¢34¢t4,
(b) p (X) tER,
(¢) Give an example of 2 x 2 matrices A and B such that eAT8 £ e4eB,

HINT: Take for instance A given by (2.34) and B = —AT.

2.6 Left and right inverses

We have already remarked that the product in £ (X) is not commutative, that is, in general,
AB # BA (except when X = K and so .Z(X) = K). This can be already seen in the case of
operators in R? or C2. For example a rotation followed by a reflection is, in general, not the same
as this reflection followed by the same rotation.

Definitions. Let X be a normed space and suppose that A € £(X). If there exists a B € .Z(X)
such that AB = I, then one says that B is a right inverse of A. If there exists a C € £ (X) such
that CA = I, then C is called the left inverse of A.

If A has both a right inverse (say B) and a left inverse (say C), then we have
B=IB=(CA)B=C(AB)=CI =C.

Thus if the operator A has a left and a right inverse, then they must be equal, and A is then
invertible.

If X is finite dimensional, then one can show that A € .Z(X) is invertible iff A has a left (or
right) inverse. For example, AB = I shows that A is surjective, which implies that A is bijective,
and hence invertible.

However, in an infinite dimensional space X, this is no longer the case in general. There exist
injective operators in X that are not surjective, and there exist surjective operators that are not
injective.
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Example. Consider the right shift and left shift operators R : £2 — (2, L : {? — (2, respectively,
given by

R(z1,22,...) =(0,21,29,...) and L(z1,22,...) = (22,23, 24,...), (mn)neNGZQ.

Then R is not surjective, and L is not injective, but there holds: LR = I. Hence we see that L has
a right inverse, but it is not bijective, and a fortiori not invertible, and that R has a left inverse,
but is not bijective and a fortiori not invertible. %

Remark. The term ‘invertible’ is not always used in the same manner. Sometimes the operator
A € Z(X) is called invertible if it is injective. The inverse is then an operator which is defined on
the image of A. However in these notes, invertible always means that A € £ (X) has an inverse
in the algebra £(X).

Exercises.

1. Verify that R and L arc bounded lincar operators on #2. (R is in fact an isometry, that is,
it satisfies | Rx|| = ||z|| for all = € £2).

2. The trace of a square matrix

aiy ... A1n
A: . . c (Cnxn

apl1 ... Gpp

is the sum of its diagonal entries:
tI‘(A) =a11+- -+ ann-

Show that tr(A + B) = tr(A) + tr(B) and that tr(AB) = tr(BA).
Prove that there cannot exist matrices A, B € C"*" such that AB — BA = I, where [
denotes the n x n identity matrix.

Let C*°(R,R) denote the set of all functions f : R — R such that for all n € N, f(") exists
and is continuous. It is easy to see that this forms a subspace of the vector space C'(R,R)
with the usual operations, and it is called the space of infinitely differentiable functions.
Consider the operators A, B : C®°(R,R) — C*®(R,R) given as follows: if f € C*(R,R),
then

df

(Af)(@) = (@) and (Bf)(z) =xf(z), z€R.
Show that AB — BA = I, where I denotes the identity operator on C*° (R, R).

3. Let X be a normed space, and suppose that A, B € Z(X). Show that if I+ AB is invertible,
then I + BA is also invertible, with inverse I — B(I + AB)~1A.

4. Consider the diagonal operator considered in Exercise 2 on page 24. Under what condition
on the sequence (A, )nen is D invertible?
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Geometry of inner product spaces

In a vector space we can add vectors and multiply vectors by scalars. In a normed space, the
vector space is also equipped with a norm, so that we can measure the distance between vectors.
The plane R? or the space R? are examples of normed spaces.

However, in the familiar geometry of the plane or of space, we can also measure the angle
between lines, provided by the notion of ‘dot” product of two vectors. We wish to generalize this
notion to abstract spaces, so that we can talk about perpendicularity or orthogonality of vectors.

Why would one wish to have this notion? One of the reasons for hoping to have such a notion
is that we can then have a notion of orthogonal projections and talk about best approximations in
normed spaces. We will elaborate on this in §4.3. We will begin with a discussion of inner product
spaces.

4.1 Inner product spaces

Definition. Let K = R or C. A function (-,-) : X x X — K is called an inner product on the
vector space X over K if:

IP1 (Positive definiteness) For all z € X, (z,z) > 0. If z € X and (z,z) =0, then x = 0.

IP2 (Linearity in the first variable) For all x1, 20,y € X, (1 + 22,y) = (x1,y) + (x2,9).
For all z,y € X and all a € K, (az,y) = oz, y).

IP3 (Conjugate symmetry) For all x,y € X, (x,y) = (y,z)*, where -* denotes complex conjuga-
tion!.

An inner product space is a vector space equipped with an inner product.

It then follows that the inner product is also antilinear with respect to the second variable,
that is additive, and such that
(z,0y) = o™ (2,y).
It also follows that in the case of complex scalars, (z,z) € R for all + € X, so that IP1 has
meaning.

f 2z = 2 +yi € C with z,y € R, then 2* = & — yi.

47
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Examples.

1. Let K=R or C. Then K" is an inner product space with the inner product

X1 Y1
(z,yy =my] + -+ xpy,, wherez = : and y =

Tn Yn

2. The vector space £2 of square summable sequences is an inner product space with
oo
(@,y) = wny; forall 2 = (n)nen,y = (Yn)new € L7,
n=1
It is easy to see that if

(o] o0
Z lzn|?> < +oo  and Z lyn|? < 400,
n=1

n=1

[ee]

then the series Z Tny, converges absolutely, and so it converges. Indeed, this is a conse-

n=1
quence of the following elementary inequality:

|"1:’ﬂ|2 + |yn|2

o] = frallal < 2

3. The space of continuous K-valued functions on [a, b] can be equipped with the inner product

b
(fr9)= | J@)g(x)"ds, (4.1)

We use this inner product whenever we refer to Cla, b] as an inner product space in these
notes. O

We now prove a few ‘geometric’ properties of inner product spaces.

Theorem 4.1.1 (Cauchy-Schwarz inequality) If X is an inner product space, then
forallz,y € X, |(z,y)]* < (z.2)(y, ). (4.2)

There is equality in (4.2) iff x and y are linearly dependent.

Proof From IP3, we have (z,y) + (y,z) = 2 Re((z,y)), and so
(z+y z+y) = (z,7)+ (y,y) + 2Re((z,9)). (4.3)

Using IP1 and (4.3), we see that 0 < (z + ay, = + ay) = (z,z) + 2Re(a"(z,9)) + |a|*(y, y). Let
a =re'®, where © is such that (z,y) = |(z,y)|e’®, and r € R. Then we obtain:

(w,2) + 2r[(z, )| + (y,y)r* >0 forallr € R

and so it follows that the discriminant of this quadratic expression is < 0, which gives (4.2).
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Cauchy-Schwarz

Finally we show that equality in (4.2) holds iff z and y are linearly independent, by using the
fact that the inner product is positive definite. Indeed, if the discriminant is zero, the equation
(z, )+ 2r|{(x,y)| + (y,y)r> = 0 has a root 7 € R, and so there exists a number o = r¢’® such that
(x + ay,x + ay) = 0, from which, using IP1, it follows that 2 + ay = 0. [ ]

We now give an application of the Cauchy-Schwarz inequality.

Example. Let C[0,T] be equipped with the usual inner product. Let F' be the filter mapping
C0,T] into itself, given by

(Fu)(t):/te_(t_T)u(T)dT, te[0,T), weC[0,T).
0

Such a mapping arises quite naturally, for example, in electrical engineering, this is the map from
the input voltage u to the output voltage y for the simple RC-circuit shown in Figure 4.1. Suppose
we want to choose an input u € X such that ||ul| =1 and (Fu)(7") is maximum.

e
|

Figure 4.1: A low-pass filter.

C <

- —=

Define h € C[0,T] by h(t) = et, t € [0,T]. Then if u € X, (Fu)(T) = e~ T(h,u). So from the
Cauchy-Schwarz inequality
[(Fu)(T)| < e T|h[[|ul]

with the equality being taken when u = «h, where « is a constant. In particular, the solution of

our problem is
[ 2

u(t) = oy
2T _ 2T
(Fuym) =ty 2= 1T

Furthermore,

e, telo,T).
-1
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If (-,-) is an inner product, then we define

Izl = v/ (2, 7). (4.4)

The function z — ||z|| is then a norm on the inner product space X. Thanks to IP2, indeed we
have: ||az| = |e|l|z||, and using Cauchy-Schwarz inequality together with (4.3), we have

lz +yl* = llzl* + [ly1* + 2Re((z, ) < lllI* + lyll* + 2llz[lllyll = (=]l + ly1)?

so that the triangle inequality is also valid. Since the inner product is positive definite, the norm
is also positive definite. For example, the inner product space Cla,b] in Example 3 on page 48
gives rise to the norm

2

b
nﬂb=</|ﬂmﬁm), f € Clab,

Note that the inner product is determined by the corresponding norm: we have

called the L2-norm.

=+ ylI? lll* + lyl* + 2Re({z, ) (4.5)
lz=5l* = l=ll* + lyll* — 2Re((z, 7)) (4.6)

so that Re((z,y)) = § (|z + y[? — |z — y[|*). In the case of real scalars, we have

(.9) = 7 (e + I ~ Il — 911?) (17)

In the complex case, Im({z,y)) = Re(—i{z,y)) = Re((x,iy)), so that
1 1o
(wy) =7 (le+ ylI? = lle = yll* +ille +ay||* - illz — iyll*) = 1 D itz + ity (4.8)
k=1

(4.7) (respectively (4.8)) is called the polarization formula.
If we add the expressions in (4.5) and (4.6), we get the parallelogram law:
Iz +yl* + |z = yl* = 2)|z]* + 2[ly|*  for all 2,y € X. (4.9)

(The sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of
the other two sides; see Figure 4.2.)

Figure 4.2: The parallelogram law.

If x and y are orthogonal, that is, (z,y) = 0, then from (4.5) we obtain Pythagoras’ theorem:

o +y|? = ||lz||> + |yl for all »,y with = L y. (4.10)
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If the norm is defined by an inner product via (4.4), then we say that the norm is induced by an
inner product. This inner product is then uniquely determined by the norm via the formula (4.7)
(respectively (4.8)).

Definition. A Hilbert space is a Banach space in which the norm is induced by an inner product.

The hierarchy of spaces considered in these notes is depicted in Figure 4.3.

Vector spaces

Normed spaces

Inner product spaces

Banach spaces

7

Figure 4.3: Hierarchy of spaces.

Exercises.

1. If A,B € R™ " then define (A, B) = tr(A" B), where AT denotes the transpose of the
matrix A. Prove that (-,-) defines an inner product on the space of m x n real matrices.
Show that the norm induced by this inner product on R™*™ is the Hilbert-Schmidt norm
(see the remark in Example 1 on page 23).

2. Prove that given an ellipse and a circle having equal areas, the perimeter of the ellipse is
larger.

Figure 4.4: Congruent ellipses.

HinT: If the ellipse has major and minor axis lengths as 2a and 2b, respectively, then observe
that the perimeter is given by

27 27
P= V/(acos©)2 + (bsin ©)2dO = V/(asin©)2 + (bcos ©)2dO,
Jo Jo

where the last expression is obtained by rotating the ellipse through 90°, obtaining a new
ellipse with the same perimeter; see Figure 4.4. Now use Cauchy-Schwarz inequality to prove
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that P2 is at least as large as the square of the circumference of the corresponding circle
with the same area as that of the ellipse.

3. Let X be an inner product space, and let (2, )nen, (Yn)nen be convergent sequences in X
with limits x,y, respectively. Show that ((Z,,¥yn))nen i a convergent sequence in K and
that

Jim (25, yn) = (2,9)- (4.11)

4. (%) (Completion of inner product spaces) If an inner product space (X, (-,)x) is not com-
plete, then this means that there are some ‘holes’ in it, as there are Cauchy sequences that
are not convergent-roughly speaking, the ‘limits that they are supposed to converge to’, do
not belong to the space X. One can remedy this situation by filling in these holes, thereby

enlarging the space to a larger inner product space (X, (,-)%) in such a manner that:

Cl X can be identified with a subspace of X and for all z,y in X, (z,y)x = (z,y)%.
C2 X is complete.

Given an inner product space (X, (-,-)x), we now give a construction of an inner product

space (X, (-, )x), called the completion of X, that has the properties C1 and C2.

Let € be the set of all Cauchy sequences in X. If (,)nen, (Yn)nen are in €, then define
the relation? R on € as follows:

((xn)nen, (Yn)nen) € R if nh—I};o 2n — ynllx = 0.

Prove that R is an equivalence relation on €.

.’I?,l)neN] [(yn)nEN] [(Zn)nEN]

[(
X

Figure 4.5: The space X.

Let X be the set of equivalence classes of ¥ under the equivalence relation R. Suppose
that the equivalence class of (2,)nen is denoted by [(mn)nGNL See Figure 4.5. Define vector
addition 4+ : X x X — X and scalar multiplication - : K — X by

[(xn)nGN] + [(yn)neN] = [(mn =+ yn)neN] and - [(mn)neN] = [(azn)neN]‘

2Recall that a relation on a set S is a simply a subset of the cartesian product S x S. A relation R on a set S
is called an equivalence relation if

ER1 (Reflexivity) For all x € S, (z,z) € R.
ER2 (Symmetry) If (z,y) € R, then (y,x) € R.
ER3 (Transitivity) If (z,vy), (y,z) € R, then (z,2) € R.

If z € S, then the equivalence class of z, denoted by [z], is defined to be the set {y € S | (z,y) € R}. It is easy to
see that [z] = [y] iff (z,y) € R. Thus equivalence classes are either equal or disjoint. They partition the set S, that
is the set can be written as a disjoint union of these equivalence classes.
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Show that these operations are well-defined. It can be verified that X is a vector space with
these operations.

Define (-, )% : X x X — K by
<[($n)nEN]7 [(yn)nENDY = nll—Ivlolo<ln’ yn>X~

Prove that this operation is well-defined, and that it defines an inner-product on X.

[(m)nEN]

[(y)nEN]

Figure 4.6: The map ¢.

Define the map ¢ : X — X as follows:
if x € X, then ¢(z) = [(2)nen],

that is, ¢ takes = to the equivalence class of the (constant) Cauchy sequence (z,z,x,...).
See Fligure 4.6. Show that ¢ is an injective bounded linear transformation (so that X can be

identified with a subspace of X), and that for all z,y in X, (z,y)x = (t(z), 1(y))=-

We now show that X is a Hilbert space. Let ([(%),en])ren be a Cauchy sequence in X. For
each k € N, choose ny € N such that for all n,m > ny,

k

1
n xﬁzHX <.

k

[

Define the sequence (yx)ren by yr = x,’f,,k, k € N. See Figure 4.7. We claim that (yx)ren
belongs to €.

i 7 Y1 =Ty,
o) @3 y2 =7,
nq o
(2 )nen] [(@)nen] (23 ) ner}——=[(ym)nen]
X

Figure 4.7: Completeness of X.

Let € > 0. Choose N € N such that % < e. Let K7 € N be such that for all k£, > K,

() nen] = [(@)nenlllx < e,
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that is,
lim |lzf — 2! ||x <e.
n—oo

Define K = max{N, K1}. Let k,I > K. Then for all n > max{ny,n;},

lye —willx = llys —2h + 28 — 2, + 28, —ullx

< lye = apllx 4 |+ 2 — 2l llx + 2, - ullx
1 L I 1

< _+||+mn_mn”X+_
k l
1 1

< gtll+an—amlx+ 4

< etk -2l |x +e

So
lye = willx < e+ lim ok —al||lx +e<e+ete=3e

This shows that (yn)nen € €, and s0 [(Yn)nen] € X. We will prove that ([(zF)nen])ren
converges to [(yn)nen] € X.

Given € > 0, choose K1 such that 7= <e. As (yx)ken is a Cauchy sequence, there exists a
K5 € N such that for all k,1 > K>, ||yk —yil|x < e. define K = max{Ky, Ks}. Then for all
k> K and all m > max{ny, K}, we have

N

||Tﬁfz —ymllx < ”Tfn - xfzk”X + ”‘szk —ymlx
1
< %"i'”yk_ym“X

L 4
K€
< €4 €= 2.

Hence
N . k
”[(:Z:fn)mEN] - [(ym)meN]”Y = mh—I)noo ”xm - ym”X < 2e.

This completes the proof.
(x) (Incompleteness of Cla,b] and L?[a,b]) Prove that C[0,1] is not a Hilbert space with
the inner product defined in Example 3 on page 48.

HINT: The functions f,, in Figure 4.8 form a Cauchy sequence since for all € [0, 1] we have
| fn(z) = fm(z)] <2, and so

+max{n,m}
”fn - fm||2 = ﬁ |f,n(:L') — fm( )| dr < 4de{l l} .

1 n -m
2

But the sequence does not converge in C[0, 1]. For otherwise, if the limit is f € C[0, 1], then
for any n € N, we have

1 44 1
1 — fI2 = /|<>|2dz+/ fula) — fla )I2di+/+lll—.f(w)l2dw.

Show that this implies that f(z) = 0 for all z € [0,3]. and f(z) = 1 for all € (3, 1].

Consequently,
0 if
f(z) :{ 1if

which is clearly discontinuous at 3

1
<z 2
< 1

= O
IA IN
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Figure 4.8: Graph of f,.

The inner product space in Example 3 on page 48 is not complete, as demonstrated in
above. However, it can be completed by the process discussed in Exercise 4 on 52. The
completion is denoted by L?[a,b], which is a Hilbert space. One would like to express this
new inner product also as an integral, and it this can be done by extending the ordinary
Riemann integral for elements of C'a, b] to the more general Lebesgue integral. For continuous
functions, the Lebesgue integral is the same as the Riemann integral, that is, it gives the
same value. However, the class of Lebesgue integrable functions is much larger than the
class of continuous functions. For instance it can be shown that the function

0 ifzel0,1\Q
f('”):{ 1 ifze0,1]nQ

is Lebesgue integrable, but not Riemann integrable on [0,1]. For computation aspects,
one can get away without having to go into technical details about Lebesgue measure and
integration.

However, before we proceed, we also make a remark about related natural Hilbert spaces
arising from Probability Theory. The space of random variables X on a probability space
(9, #, P) for which E(X?) < +oco (here E(+) denotes expectation), is a Hilbert space with
the inner product (X,Y) = E(XY).

6. Let X be an inner product space. Prove that
2

. 1 1
for all ,y,2 € X, 2= al*+ |z =yl = 5l —yl*+2 |z - 5@ +)

(This is called the Appollonius identity.) Give a geometric interpretation when X = R2.

7. Let X be an inner product space over C, and let T € Z(X) be such that for all z € X,
(Tz,x) = 0. Prove that T' = 0.
HiNT: Counsider (T'(x + y),x + y), and also (T'(z + iy),z + iy). Finally take y = T'z.

4.2 Orthogonal sets

Two vectors in R? are perpendicular if their dot product is 0. Since an inner product on a
vector space is a generalization of the notion of dot product, we can talk about perpendicularity
(henceforth called orthogonality®) in the general setting of inner product spaces.

Definitions. Let X be an inner product space. Vectors x,y € X are said to be orthogonal if
(z,y) = 0. A subset S of X is said to be orthonormal if for all z,y € S with z # y, (z,y) = 0 and
forallz € S, (x,z) = 1.

3The prefix ‘ortho’ means straight or erect.



