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1. Mathematical Induction

1.1 Introduction
Mathematical induction is a technique for proving results or establish-
ing statements for natural numbers.

In 370 BC, Plato’s Parmenides may have contained an early ex-
ample of an implicit inductive proof. The earliest clear use of mathe-
matical induction may be found in Euclid’s proof that the number of
primes is infinite.

In India, early implicit proofs by mathematical induction appear
in Bhaskara’s "cyclic method", and in the al-Fakhri written by al-
Karaji around 1000 AD, who applied it to arithmetic sequences to
prove the binomial theorem and properties of Pascal’s triangle.

1.2 Mathematical Induction
In this section, we can use mathematical induction to prove that a
propositional function (a statement) P(n) is true for all integers n≥ 1.
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Definition 1.2.1 Principal of Mathematical Induction
Let P(n) be a propositional function (a statement) defined for in-
tegers n, and a fixed integer a. Then, if these two conditions are
true

1. P(a) is true.
2. if P(k) is true for some integer k ≥ a, then P(k+ 1) is also

true.
then the P(n) is true for all integers n≥ a.

Now, we can refine an induction proof into a 3-step procedure:
1. Verify that P(1) is true.
2. Assume that P(k) is true for some integer k ≥ 1.
3. Show that P(k+1) is also true.

R

1. The first step, is called the basis step or the anchor step or the
initial step.

2. The second step, the assumption that P(k) is true, is sometimes
referred to as the inductive hypothesis or induction hypothesis.

� Example 1.1 Use mathematical induction to prove that

1+2+3+ · · ·+n =
n(n+1)

2
Solution: Let the statement P(n) be

1+2+3+ . . . .+n =
n(n+1)

2
.

1. We show that P(1) is true:

L.H.S = 1, R.H.S =
1(1+1)

2
= 1

Both sides of the statement are equal hence P(1) is true.
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2. We assume that P(k) is true:

1+2+3+ . . . .+ k =
k(k+1)

n
.

3. We show that P(k+1) is true:

L ·H ·S = 1+2+3+ . . .+ k+(k+1)

=
k(k+1)

2
+(k+1)

=
(k+1)

2
[k+2]

= R.H.S.

Thus, the statement P(n) is true for all positive integers n.
�

� Example 1.2 Use mathematical induction to prove that

12 +22 +32 + . . . .+n2 =
n(n+1)(2n+1)

6

Solution Let the statement P(n) be

12 +22 +32 + . . . .+n2 =
n(n+1)(2n+1)

6
.

1. At n = 1

L.H.S.= 12 = 1, R.H.S.=
1(1+1)(2+1)

6
= 1,

therefore P(1) is true.
2. Let n = k, then P(k) is true i.e.,

12 +22 +32 + . . . .+ k2 =
k(k+1)(2k+1)

6
.
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3. At n = k+1

L.H.S.= 12 +22 +32 + . . .+ k2 +(k+1)2

=
k(k+1)(2k+1)

6
+(k+1)2

=
(k+1)

6
[k(2k+1)+6(k+1)]

=
(k+1)

6

[
2k2 + k+6k+6

]
=

(k+1)
6

[
2k2 +7k+6

]
=

(k+1)
6

[(2k+3)(k+2)]

=
(k+1)(k+2)(2k+3)

6
= R.H.S.

So P(k+1) is true and therefore, the statement P(n) is true for
all positive integers n.

�

� Example 1.3 Prove that
(
n3 +2n

)
is divisible by 3 for all positive

integers n.
Solution Suppose that P(n) be

"
(
n3 +2n

)
is divisible by 3" .

1. At n = 1

13 +2(1) = 3 is divisible by 3,

therefore P(1) is true.
2. Let n = k, then P(k) is true i.e.,(

k3 +2k
)

is divisible by 3.
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3. At n = k+1

(k+1)3 +2(k+1) =
(

k3 +3k2 +3k+1
)
+(2k+2)

= k3 +3k2 +5k+3

=
(

k3 +2k
)
+
(

3k2 +3k+3
)

=
(

k3 +2k
)
+3
(

k2 + k+1
)

(
k3 +2k

)
is divisible by 3 from (2), and 3

(
k2 + k+1

)
is also

divisible by 3, therefore P(k+1) is true.
Thus, P(n) is true for all positive integers n.

�

� Example 1.4 Prove that 2n−1 ≤ n! for all positive integers n.
Solution: Let P(n) be 2n−1 ≤ n!.

1. At n = 1, we get

21−1 = 20 = 1≤ 1! = 1,

then P(1) is true.
2. Let n = k, then P(k) is true i.e.,

2k−1 ≤ k!

3. At n = k+1, then we get

2k = (2)
(

2k−1
)
≤ (2)(k!)

⇒ (2)
(

2k−1
)
≤ (k+1)(k!)

⇒ 2k ≤ (k+1)!∀k ∈ Z+,

i.e., P(k+1) is true.
Thus, P(n) is true for all positive integers n.
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�

� Example 1.5 If P(n) : ”49n +16n + k is divisible by 64 for n ∈ N” is
true, then the least negative integral value of k is......
Solution For n = 1,P(1) : 65+ k is divisible by 64.
Thus k, should be -1 since, 65−1 = 64 is divisible by 64 �

� Example 1.6 State whether the following proof (by mathematical
induction) is true or false for the statement.

P(n) : 12 +22 + . . .+n2 =
n(n+1)(n+1)

6

Solution False.
Since in the inductive step both the inductive hypothesis and what is
to be proved are wrong. �
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1.3 Exercises
Exercise 1.1 Prove each of the statements by the Principle of Math-
ematical Induction:
(i) 4n−1 is divisible by 3, for each natural number n.
(ii) 23n−1 is divisible by 7, for all natural numbers n.
(iii) n3−7n+3 is divisible by 3, for all natural numbers n.
(iv) 32n−1 is divisible by 8, for all natural numbers n.
(v) 1+5+9+ ...+(4n−3) = n(2n−1) for all natural numbers

n.
(vi) 2+4+6+ ...+2n = n2 +n for all natural numbers n.

�

Exercise 1.2 If 10n +3.4n+2 + k is divisible by 9 for all n ∈ N, then
the least positive integral value of k is...... �

Exercise 1.3 If P(n) : 2n< n!,n∈N, then P(n) is true for all n≥.......
�





2. Partial Fractions

An algebraic fraction is a fraction in which the numerator and denomi-
nator are both polynomial expressions.
In this chapter, we study a fraction and convert it into a partial fraction.
It useful give some definitions which help for understanding this sub-
ject.

2.1 Introduction
Definition 2.1.1 A polynomial of degree n in one variable x is an
expression of the form

f (x) = a0 +a1x+ · · ·+anxn

= ∑
n
i=0 aixi,

where ai, i = 0,1, . . . ,n ∈ R or C, are coefficients of polynomial
and the degree of polynomial deg f = n.
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Definition 2.1.2 Let f (x) and g(x) be two polynomials, then the
quotient of two polynomials

h(x) =
f (x)
g(x)

,

where g(x) 6= 0 with no common factors, is called Rational fraction,
f (x) the numerator, and g(x) the denominator.

2.2 Partial fractions
To express a single rational fraction into the sum of two or more single
rational fractions are called partial fraction resolution.
For example,

2x+ x2−1
x(x2−1)

=
1
x
+

1
x−1

− 1
x+1

.

A rational fraction is of two types:

2.2.1 Proper Fraction:

Definition 2.2.1 A rational fraction h(x) =
f (x)
g(x)

, is called a proper

fraction if the degree of numerator f (x) is less than the degree of
denominator g(x).

� Example 2.1 The following are proper fraction

(1) 9x2−9x+6
(x−1)(2x−1)(x+2) .

(2) 6x+27
3x3−9x . �
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2.2.2 Improper Fraction:

Definition 2.2.2 A rational fraction h(x) =
f (x)
g(x)

, is called an im-

proper fraction if the degree of numerator f (x) is greater than or
equal to the degree of denominator g(x).

� Example 2.2 The following are improper fraction

(1) 9x3−9x+6
(x−1)(2x−1)(x+2) .

(2) 6x4+27
3x3−9x . �

R An improper fraction can be expressed, by division, as the sum of a
polynomial and a proper fraction i.e.,

f (x)
g(x)

= p(x)+
q(x)
g(x)

,

where degq(x) less than deg g(x).

� Example 2.3 The improper fraction

6x3 +5x2−7
3x2−2x−1

,

can be expressed, by division, as

6x3 +5x2−7
3x2−2x−1

= (2x+3)+
8x−4

x2−2x−1

�
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2.3 Process of Finding Partial Fraction

A proper fraction
f (x)
g(x)

can be resolved into partial fractions as:

(1) The denominator factor as distinct or repeated linear factors

The rational fraction The partial fractions
f (x)

(a1x+b1)(a2x+b2)...
A

a1x+b1
+ B

a2x+b2
+ . . .

f (x)
(ax+b)k

A1
(ax+b) +

A2
(ax+b)2 + . . .+ Ak

(ax+b)k

(2) The denominator factor as distinct or repeated quadratic factors
cannot be factored further

The rational fraction The partial fractions
f (x)

(a1x2+b1x+c1)(a2x2+b2x+c2)...
Ax+B

a1x2+b1x+c1
+ Cx+D

a2x2+b2x+c2
+ . . .

f (x)
(ax2+bx+c)k

A1x+B1
(ax2+bx+c) +

A2x+B2

(ax2+bx+c)2 + . . .+ Akx+Bk

(ax2+bx+c)k

where A,B,C,A1,A2, ....,Ak are constants whose values are to be
determined.
The evaluation of the coefficients of the partial fractions is based on
the following theorem:

Theorem 2.3.1 If two polynomials are equal for all values of the
variables, then the coefficients having same degree on both sides are
equal.
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� Example 2.4 Resolve
7x−25

x2−7x+12
into partial fractions.
Solution:

7x−25
(x−3)(x−4)

=
A

(x−3)
+

B
(x−4)

.

Multiplying both sides by (x−3)(x−4), we get

7x−25 = A(x−4)+B(x−3).

Comparing the coefficients of like powers of x on both sides, we have

7 = A+B,

−25 =−4A−3B.

Solving these equation we get A = 3 and B = 4. Hence the required
partial fractions are:

7x−25
x2−7x+12

=
3

(x−3)
+

4
(x−4)

.

�

� Example 2.5 Resolve into partial fraction

8x−8
x3−2x2−8x

.

Solution:
8x−8

x3−2x2−8x
=

8x−8
x(x−4)(x+2)

=
A
x
+

B
(x−4)

+
C

(x+2)
.

Multiplying both sides by x(x−4)(x+2), we get

8x−8 = A(x−4)(x+2)+Bx(x+2)+Cx(x−4)
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Put x = 0 in the above equation, we have A = 1.
Put x = 4 in the above equation, we have B = 1.
Put x =−2 in the above equation, we have C =−2.
Hence the required partial fractions

8x−8
x3−2x2−8x

=
1
x
− 1

x−4
− 2

x+2
�

� Example 2.6 Resolve into partial fractions:

x2−3x+1
(x−1)2(x−2)

.

Solution:

x2−3x+1
(x−1)2(x−2)

=
A

x−1
+

B
(x−1)2 +

C
x−2

Multiplying both sides by (x−1)2(x−2), we get

x2−3x+1 = A(x−1)(x−2)+B(x−2)+C(x−1)2,

Put x = 1 in the above equation, we have B = 1.
Put x = 2 in the above equation, we have C =−1.
Comparing the coefficient of like powers of x on both sides in the
above equation, we get

A+C = 1⇒ A = 2.

.
Hence the required partial fractions

x2−3x+1
(x−1)2(x−2)

=
2

x−1
+

1
(x−1)2 +

(−1)
x−2

.

�
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� Example 2.7 Express the following in partial fractions:

x+1
x3 + x2−6x

.

Solution:
x+1

x3 + x2−6x
=

A
x
+

B
(x−2)

+
C

x+3

Multiplying both sides by x3 + x2−6x, we get

x+1 = A(x−2)(x+3)+Bx(x+3)+Cx(x−2),

Put x = 0 in the above equation, we have A =
−1
6

.

Put x = 2 in the above equation, we have B =
3
10

.

Put x =−3 in the above equation, we have B =
−2
15

.
Hence the required partial fractions

x+1
x3 + x2−6x

=

−1
6
x

+

3
10

(x−2)
+

−2
15

x+3
.

�

Now, we give some example when the denominator contains ir-
reducible (repeated) quadratic factors.

� Example 2.8 Resolve into partial fractions:

9x−7
(x+3)(x2 +1)

.

Solution:
9x−7

(x+3)(x2 +1)
=

A
(x+3)

+
Bx+C
(x2 +1)

.
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Multiplying both sides by (x+3)(x2 +1), we get

9x−7 = A(x2 +1)+B(x2 +3x)+C(x+3),

Put x =−3 in the above equation, we have A =
−17

5
.

Comparing the coefficient of like powers of x on both sides in the
above equation, we get

A+B = 0⇒ B =
17
5
.

3B+C = 9⇒C =
−6
5
.

Hence the required partial fractions

9x−7
(x+3)(x2 +1)

=

(−17)
5

(x+3)
+

17
5

x− 6
5

(x2 +1)
.

�

� Example 2.9 Resolve into partial fractions:

x2 + x+2
x2(x2 +3)2 .

Solution:

x2 + x+2
x2(x2 +3)2 =

A
x
+

B
X2 +

Cx+D
(x2 +3)

+
Ex+F
(x2 +3)2 .

Multiplying both sides by x2(x2 +3)2, we get

x2 + x+2 = Ax(x2 +3)2 +B(x2 +3)2 +(Cx+D)x2(x2 +3)+

(Ex+F)x2.
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Putting x = 0 in the above equation, we have B =
2
9

.
Comparing the coefficient of like powers of x on both sides in the
above equation, we get Coefficient of x5

A+C = 0 . . . . . . . . . . . . . . . . . .(1)

Coefficient of x4

B−D = 0 . . . . . . . . . . . . . . . . . .(2)

Coefficient of x3

6A+3C+E = 0 . . . . . . . . . . . .(3)

Coefficient of x2

6B+3D+F = 1 . . . . . . . . . . . .(4)

Coefficient of x

9A = 1 . . . . . . . . . . . . . . . . . . . . .(5)

Hence the required partial fractions

x2 + x+2
x2(x2 +3)2 =

1
9
x
+

2
9

X2 −
x+2

(x2 +3)
− x−1
(x2 +3)2 .

�

� Example 2.10 Resolve into partial fractions:

x2 +1
x4− x2 +1

.

Solution:

x2 +1
x4− x2 +1

=
Ax+B

(x2− x+1)
+

Cx+D
(x2 + x+1)

.
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Multiplying both sides by x4 + x2 +1, we get

x2 +1 = (Ax+B)(x2 + x+1)+(Cx+D)(x2− x+1),

Comparing the coefficient of like powers of x, we have
Coefficient of x3:

A+C = 0 . . . . . . . . . . . . . . . . . . . . . . . .(1)

Coefficient of x2:

A+B−C+D = 1 . . . . . . . . . . . . . . .(2)

Coefficient of x:

A+B+C−D = 0 . . . . . . . . . . . . . . .(3)

Constant:
B+D = 1 . . . . . . . . . . . . . . . . . . . . . . . .(4)

Subtract (4) from (2) we have

A =C . . . . . . . . . . . . . . . . . . . . . . . . . . .(5)

Adding (1) and (5), we have A = 0.
Putting the value of A and C in (3), we have

B = D . . . . . . . . . . . . . . . . . . . . . . . . . . .(6)

Adding (4) and (6)

B =
1
2

Hence the required partial fractions

x2 +1
x4− x2 +1

=

1
2

(x2− x+1)
+

1
2

(x2 + x+1)
.

�
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Now, we give some example for improper rational fraction.

� Example 2.11 Express the following in partial fractions:

x2 + x+1
x2 +2x+1

Solution:
The given fraction is improper rational fraction, then we divide the
numerator by the denominator

�
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2.4 Exercises
Exercise 2.1 Express each of the following in partial fractions:

1.
3x+4

x2 + x−6
.

2.
2x+4

x3 + x2 + x+1
.

3.
x+4

x3 + x2−2x
.

4.
4

x4 + x2−2
.

5.
x3−2x+2
x3−2x+1

.
�



3. The Algebra of Sets

3.1 History

Mathematical topics typically emerge and evolve through interactions
among many researchers. Set theory, however, was founded by a single
paper in 1874 by Georg Cantor: "On a Property of the Collection of
All Real Algebraic Numbers".

Since the 5th century BC, beginning with Greek mathematician
Zeno of Elea in the West and early Indian mathematicians in the East,
mathematicians had struggled with the concept of infinity. Especially
notable is the work of Bernard Bolzano in the first half of the 19th
century.Modern understanding of infinity began in 1870–1874 and
was motivated by Cantor’s work in real analysis.An 1872 meeting
between Cantor and Richard Dedekind influenced Cantor’s thinking
and culminated in Cantor’s 1874 paper.

Cantor’s work initially polarized the mathematicians of his day.
While Karl Weierstrass and Dedekind supported Cantor, Leopold Kro-
necker, now seen as a founder of mathematical constructivism, did not.
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Cantorian set theory eventually became widespread, due to the utility
of Cantorian concepts, such as one-to-one correspondence among sets,
his proof that there are more real numbers than integers, and the "in-
finity of infinities" ("Cantor’s paradise") resulting from the power set
operation. This utility of set theory led to the article "Mengenlehre"
contributed in 1898 by Arthur Schoenflies to Klein’s encyclopedia.

The next wave of excitement in set theory came around 1900, when
it was discovered that some interpretations of Cantorian set theory
gave rise to several contradictions, called antinomies or paradoxes.
Bertrand Russell and Ernst Zermelo independently found the simplest
and best known paradox, now called Russell’s paradox: consider "the
set of all sets that are not members of themselves", which leads to a
contradiction since it must be a member of itself and not a member
of itself. In 1899 Cantor had himself posed the question "What is the
cardinal number of the set of all sets?", and obtained a related paradox.
Russell used his paradox as a theme in his 1903 review of continental
mathematics in his The Principles of Mathematics.

In 1906 English readers gained the book Theory of Sets of Pointsby
husband and wife William Henry Young and Grace Chisholm Young,
published by Cambridge University Press.

The momentum of set theory was such that debate on the paradoxes
did not lead to its abandonment. The work of Zermelo in 1908 and
the work of Abraham Fraenkel and Thoralf Skolem in 1922 resulted
in the set of axioms ZFC, which became the most commonly used set
of axioms for set theory. The work of analysts such as Henri Lebesgue
demonstrated the great mathematical utility of set theory, which has
since become woven into the fabric of modern mathematics. Set
theory is commonly used as a foundational system, although in some
areas—such as algebraic geometry and algebraic topology—category
theory is thought to be a preferred foundation.
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3.2 Sets
In this section, we define and study the concept of a set.

Definition 3.2.1 A set is defined as a mathematical object satisfying
certain axioms.

In many settings, the upper case letters A , B , . . . , Z are used to
name sets, and a pair of braces {,} is used to specify the elements of a
set.

� Example 3.1 Each of the following collections of elements is a set
• V = {cat,dog, f ish}.
• W = {1,2,3}.
• V = {n : n is an odd integer}.

�

Definition 3.2.2 Let A be the given set, and let a and b denote certain
objects "elements". When a is an element of A, we shall indicate
this fact by writing a ∈ A; when both a and b are elements of A, we
shall write a,b ∈ A instead of a ∈ A and b ∈ A; when b is not an
element of A, we shall write b /∈ A.

Set Formulation:
(1) The Tabulation Method:

We indicate a set by listing all its elements and enclosing them within
braces.

� Example 3.2 A = {2,3} . �

(2) The Rule Method:
We state the characteristic property by which we can determine whether
or not a given object is an element of the set.
We write A = {x : x has p} to say that “ A is the set of all elements x
for which a certain property p holds “.
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� Example 3.3 A =
{

x : x is a solution o f x2−5x+6 = 0
}

. �

Definition 3.2.3 The number of elements in a set A is called the order
of the set , and denoted by ◦(A) or |A|.

For convenience, we shall now reserve
The set of all natural numbers, N= {1,2,3, ...}.
The set of all integers, Z= {0,±1,±2,±3, ...}.
Q to denote the set of all rational numbers.
R to denote the set of all real numbers.

3.3 Equal Sets
Definition 3.3.1 When two sets A and B consist of the same elements,
they are called equal and we shall write A = B. To indicate that A
and B are not equal, we shall write A 6= B.

� Example 3.4 (i) When A= {Mary,Helen,John} and B= {Helen,John,Mary},
then A = B. Note that a variation in the order in which the ele-
ments of a set are tabulated is immaterial.

(ii) When A = {1,2,3} and B = {2,3,1}, then A = B since each
element of A is in B and each element of B is in A. Note that a
set is not changed by repeating one or more of its elements.

(iii) When A = {1,2,3} and B = {2,3,4,5} then A 6= B since 4 and
5 are elements of B but not A.

�
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3.4 Subsets of A sets
Definition 3.4.1 Let A be a given set. Any set B, each of whose
elements is also an element of A, is said to be contained in A and is
called a subset of A.

Definition 3.4.2 Let B be a subset of A. If B 6= A, we shall call B a
proper subset of A and write B⊂ A (to be read ’B is a proper subset
of A’ ).

More often and in particular when the possibility B = A, we shall write
B⊆ A (to be read ‘B is a subset of A’ or ‘B is contained in A’). Of all
the subsets of a given set A, only A itself is improper, that is, is not a
proper subset of A.

� Example 3.5 Let A = {1,2,3,4} ,B = {1,2} and C = {1,2,5}, then
B⊂ A and C * A for 5 ∈C but 5 /∈ A. �

R Note carefully that ∈ connects an element and a set, while
⊆ and ⊂ connect two sets.

Definition 3.4.3 Let A be a proper subset of U with U consisting of
the elements of A together with certain elements not in A. These
latter elements, i.e., {x : x ∈U,x /∈ A}, constitute another proper
subset of U called the complement of the subset A in U .

R The complement of A is denoted by Ac.

� Example 3.6 Let U = {1,2,3,4,5,6} , the complement of C = {1,2,5}
in U is Ac = {3,4,6}. �

Our discussion of complementary subsets of a given set implies that
these subsets be proper. The reason is simply that, thus far, we have
been depending upon intuition regarding sets; that is, we have tactily
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assumed that every set must have at least one element. In order to
remove this restriction (also to provide a complement for the improper
subset U in U), we introduce the empty or null set φ .

Definition 3.4.4 The empty or the null set φ is the set having no
elements.

� Example 3.7 If A=
{

x : x a solution o f x4 = 16, x is odd
}

, then A=

φ . �

Definition 3.4.5 A set consisting of only one element is said to be
singleton set .

� Example 3.8 If A= {x : x a solution o f x+15 = 16}, then A= {1} .
�

There follows readily
• φ is a subset of every set U .
• φ is a proper subset of every set φ 6=U .

Definition 3.4.6 The power set P(A) of A is a set consists of all
subsets of A, i.e.,

P(A) = {X ⊆ A}.

� Example 3.9 Let A = {a,b} , then

P(A) = {φ ,A,{a} ,{b}}.

�

� Example 3.10 Let A = {a,b,c} , then

P(A) = {φ ,A,{a} ,{b} ,{c} ,{a,b} ,{a,c} ,{c,b}}.

�

R The number of elements of P(A) = 2n, where n is the num-
ber of elements of A
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3.5 Intersection and Union of Sets
Definition 3.5.1 Let A and B non-empty sets, then the intersection of
A and B is

A∩B = {x : x ∈ A and x ∈ B}.

Figure 3.1: The intersection of two sets A and B, represented by circles.
A∩B is in red.

Definition 3.5.2 Let A and B non-empty sets, then the union of A and
B is

A∪B = {x : x ∈ A or x ∈ B}.

Figure 3.2: The union of two sets A and B.

� Example 3.11 Let A = {1,2,3,4} and B = {1,2,5}, then

A∩B = {1,2}



34 Dr. A. Elrawy

and

A∪B = {1,2,3,4,5}.

�

We can consider the union and the intersection of more than two sets.
In this case we write

∪n
i=1 = A1∪A2∪ ...∪An

and

∩n
i=1 = A1∩A2∩ ...∩An

for the union and intersection, respectively, of the sets A1,A2, ...,An.

Definition 3.5.3 Two sets A and B will be called disjoint if they have
no element in common, i.e., A∩B = φ .

Definition 3.5.4 A partition of a set A is a family of nonempty pair-
wise disjoint subsets, called blocks, whose union is all of A.

� Example 3.12 Consider the subsets A= {1,2,3} , B= {4,5,6} , and C =

{7,8,9} of U = {1,2,3,4,5,6,7,8,9}.
Clearly,

A∪B∪C =U

and

A∩B = A∩C = B∩C = φ ,

so that {A,B,C} is a partition of U . �
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R Sometimes we will work within one fixed set U , called the
universal set.
For any set A⊂U , we define the complement of A, denoted
by Ac, to be the set

Ac = {x : x ∈U and x /∈ A}.

Definition 3.5.5 Let A and B non-empty sets, then the difference of
A−B is

A−B = {x : x ∈ A and x /∈ B}.

Figure 3.3: The difference of two sets A and B.

R The signs :, ∧, ∨, ⇔ are used to denote “ such that , and ,
or , iff “.
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The follows are true:
(1) A−B = A∩Bc = Bc−Ac.
(2) A−B = φ ⇔ A⊂ B.
(3) A−B = B−A⇔ A = B.
(4) A−B = A⇔ A∩B = φ .

� Example 3.13 Let R be the universal set and suppose that

A = {x : x ∈ R,0≤ x≤ 3} and B = {x : x ∈ R,2≤ x≤ 4}.

Then

A∪B = {x : x ∈ R, 0≤ x≤ 4}.
A∩B = {x : x ∈ R, 2≤ x≤ 3}.
A−B = {x : x ∈ R, 0≤ x < 3}.
Ac = {x : x ∈ R, x < 0, x > 3}.

�

Proposition 3.5.1 Let A,B, and C be sets. Then
(1) A∪A = A, A∩A = A, and A−A = φ .
(2) A∪φ = A, and A∩φ = φ .
(3) A∪ (B∪B) = (A∪B)∪C and A∩ (B∩B) = (A∩B)∩C.
(4) A∪B = B∪A and A∩B = B∩A.
(5) A∪ (B∩C) = (A∪B)∩ (A∪C).
(6) A∩ (B∪C) = (A∩B)∪ (A∩C).

Proof. We will prove (1), (5), (6) and leave the remaining results to
be proven in the exercises.

(1) Observe that

A∪A = {x : x ∈ A, or x ∈ A}= {x : x ∈ A}= A,

and

A∩A = {x : x ∈ A, and x ∈ A}= {x : x ∈ A}= A.
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Also, A−A = A∩Ac = φ .
(5) Let x ∈ A∪ (B∩C)⇔ x ∈ A∨ x ∈ (B∩C)

⇔ x ∈ A∨ (x ∈ B∧ x ∈C)

⇔ (x ∈ A∨ x ∈ B)∧ (x ∈ A∨ x ∈C)

⇔ (x ∈ A∪B)∧ (x ∈ A∪C)

⇔ x ∈ (A∪B)∩ (A∪C).

(6) Let x ∈ A∩ (B∪C)⇔ x ∈ A∧ x ∈ (B∪C)

⇔ x ∈ A∧ (x ∈ B∨ x ∈C)

⇔ (x ∈ A∧ x ∈ B)∨ (x ∈ A∧ x ∈C)

⇔ (x ∈ A∩B)∨ (x ∈ A∩C)

⇔ x ∈ (A∩B)∪ (A∩C).

�

Theorem 3.5.2 (De Morgan’s Laws) Let A and B be sets. Then
(1) (A∪B)c = Ac∩Bc.
(2) (A∩B)c = Ac∪Bc.

Proof. (1) We must show that (A∪B)c ⊂ Ac∩Bc and Ac∩Bc ⊂ (A∪
B)c.

Let x ∈ (A∪B)c⇔ x /∈ A∪B
⇔ x /∈ A∧ x /∈ B
⇔ x ∈ Ac∧ x ∈ Bc

⇔ x ∈ Ac∩Bc.
Hence, (A∪B)c = Ac∩Bc.
(2) We must show that (A∩B)c ⊂ Ac∪Bc and Ac∪Bc ⊂ (A∩B)c.
Let x ∈ (A∩B)c⇔ x /∈ A∩B

⇔ x /∈ A∨ x /∈ B
⇔ x ∈ Ac∨ x ∈ Bc

⇔ x ∈ Ac∪Bc.
Hence, (A∩B)c = Ac∪Bc.. �
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Definition 3.5.6 An extension of the complement is the symmetric
difference, defined for sets A, B as

A4B = (A∪B)− (A∩B)

3.6 The Product Sets
Definition 3.6.1 Let A and B non-empty sets, then the product of A
and B is

A×B = {(x,y) : x ∈ A∧ y ∈ B}.

� Example 3.14 Let A = {1,2} and B = {1,2,3}. Then

A×B = {(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)}.

�

R

• In general A×B 6= B×A.
• Observe that if X and Y are finite sets, say, |X | = m

and |Y | = n (we denote the number of elements in a
finite set X by |X |), then |X×Y |= mn.
• Two ordered pairs (x,y) and (a,b) are equal iff x = a

and y = b.
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3.7 Tables of belonging
In this section, we build a table of belonging as follows: if a ∈ A we
put 1 in the column of A, and if a /∈ A we put 0 in the column of A.

� Example 3.15 Using tables of belonging, verify that (Ac)c = A
Solution: As it can be seen from the following table:

A Ac (Ac)c

1 0 1
0 1 0

The 1st and 3rd columns has the same values of belonging , thus
(Ac)c = A. �

� Example 3.16 Using tables of belonging, verify that (A−Bc) = A∩B
Solution: As it can be seen from the following table:

A B Bc A−Bc A∩B

1 1 0 1 1
1 0 1 0 0
0 1 0 0 0
0 0 1 0 0

The 4st and 5rd columns has the same values of belonging , thus
(A−Bc) = A∩B. �

� Example 3.17 Using tables of belonging, verify that(A∪B)c = Ac∩
Bc

Solution: As it can be seen from the following table:
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A B Ac Bc A∪B (A∪B)c Ac∩Bc

1 1 0 0 1 0 0
1 0 0 1 1 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 1

The 6st and 7rd columns has the same values of belonging , thus
(A−Bc) = A∩B. �
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3.8 Exercises
Exercise 3.1 Identify the elements in each set, assuming A= {w,x,y,z}
is the universe, B = {x,y} ,C = {x,y,z} , and D = {x,z} .
(1) Bc and Cc.
(2) B∩C and B∩D.
(3) B∪C and B∪D.
(4) B∩ (C∪D).
(5) C∪ (B∩D).
(6) B−D.
(7) D−C.
(8) B×D.
(9) B×C.
(10) P(B).
(11) P(D).

�

Exercise 3.2 What is the intuitive definition of a set? �

Exercise 3.3 What is the intuitive definition of an element? �

Exercise 3.4 Describe two approaches to identifying the elements
of an infinite set? �

Exercise 3.5 Let = {a,b,c}. Show that whether of the following is
true, and whether is false:
(1) {a} ∈ A
(2) {a,b} ⊂ P(A)
(3){A} ⊂ P(A)
(4) {a,b} ⊂ A
(5) {{a}} ⊂ A
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(6) {d} ⊂ P(A)
(7){{a,b} ,{b,c}} is a partition of A. �

Exercise 3.6 6-(Using the Tabulation Method) represent each of the
following sets:
(1) X = {x : x is a f actor o f 6} .
(2) Y =

{
y : y is a solution o f y2 = 0

}
.

(3)S = {x : x is a multiple o f 3} . �

Exercise 3.7 7-(Using the Rule Method) represent each of the fol-
lowing sets:
(1) S = {a, e, i, o, u} .
(2) S = {10,100,1000,10000, ...}.
(3) S = {1,1/2,1/3,1/4, ...}. �



4. Relations Between Sets

4.1 Introduction
We introduce the notion of an element a of set A being related to an
element b of set B, which we might denote by aRb. The notation aRb
exhibits the elements a and b in left-to-right order, just as the notation
(a,b) for an element in A×B. This leads us to the following definition
of a relation R as a set.

4.2 Relations
Definition 4.2.1 A relation between sets A and B is a subset R of
A×B. We read (a,b) ∈ R as “a is related to b” and write aRb.

R When R⊂ A×A we say that R is a relation on a set A.
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Definition 4.2.2 For a relation R⊂ A×B we define two sets:
The set DR is called the domain of R

DR = {a ∈ A : aRb},

and the set RR, is called the range of R

RR = {b ∈ B : aRb}.

� Example 4.1 Let A = {1,2,3} and R⊂ A×A, mean "divides". Since
1R1, 2R2, 3R3, 1R2, and 1R3, we have

R = {(1,1),(1,2),(1,3),(2,2),(3,3)} ,

DR = {1,2,3}

and

RR = {1,2,3}

�

� Example 4.2 Let A = {1,2,3} and R⊂ A×A, mean

aRb⇔ a > b ∀a,b ∈ A,

we have

R = {(2,1),(3,1),(3,2)} ,

DR = {2,3}

and

RR = {1,2}

�
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� Example 4.3 Consider R = {(x,y) : 2x− y = 6,x ∈R}. Geometri-
cally, each (x,y) ∈ R is a point on the graph of the equation 2x−y = 6.
Thus, while the choice cRa means (c,a) ∈ R rather than (a,c) ∈ R may
have appeared strange at the time, it is now seen to be in keeping with
the idea that any equation y = f (x) is merely a special type of binary
relation. �

Definition 4.2.3 If R1⊂ A×B and R2⊂ B×C we define a composite
relation:

R2 ◦R1 = {(a,c) : ∃b ∈ B;aR1b and bR2c}

.

R R2 ◦R1 6= R1 ◦R2.

� Example 4.4 If R1 and R2 are two relations on a set A = {1,2,3};
where

R1 = {(1,1),(1,3),(2,1),(2,2),(3,1),(3,3)}

and

R2 = {(1,1),(1,2),(2,2),(3,1)},

then

R2 ◦R1 = {(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)}

and

R1 ◦R2 = {(1,1),(1,2),(2,1),(2,2),(3,1),(3,3)}.

We see R2 ◦R1 6= R1 ◦R2. �
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4.3 Properties of Relations
1- Reflexive

Definition 4.3.1 A relation R on a set A is called reflexive if aRa for
every a ∈ A.

� Example 4.5 Let R be the set of real numbers and R mean “is less
than or equal to.” Thus, any number is less than or equal to itself so R
is reflexive i.e.,

∀a ∈ R,a≤ a⇒ aRa

�

� Example 4.6 Let Z+ be the set of positive integer numbers and R
mean

“∀a,b ∈ Z+, aRb⇔ b/a(b = na, n ∈ Z+)”

, so R is reflexive for

∀a ∈ Z+⇒ a = 1(a)⇒ a/a⇒ aRa.

�

� Example 4.7 Let A = {1,2,3,4} and R⊂ A×A define

R = {(1,2),(1,1),(2,2),(3,3),(4,1)}

, so R is not reflexive for 4 ∈ A but 4R4.
�
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2- Symmetric
Definition 4.3.2 A relation R on a set A is called Symmetric if when-
ever aRb, then every bRa.

� Example 4.8 Let L be the set of lines and R mean “is parallel to.”
Now any two lines l1Rl2 leads to l2Rl1. Hence R is symmetric. �

� Example 4.9 Let R be the set of real numbers and R mean “is less
than or equal to.” Now 3 is less than or equal to 5 but 5 is not less than
or equal to 3. Hence R is not symmetric. �

� Example 4.10 Let R be the set of real numbers and R mean “is less
than or equal to.” Thus, R is not symmetric for

∀aRb⇒ a≤ b ; bRa.

�

3- Transitive
Definition 4.3.3 A relation R on a set A is called Transitive if when-
ever aRb, and bRc, then every aRc.

� Example 4.11 Let L be the set of lines and R mean “is parallel to.”
Clearly, if line l1 is parallel to line l2 and if l2 is parallel to line l3, then
l1 is parallel to l3 and R is transitive. �

� Example 4.12 Let R be the set of real numbers and R mean “is less
than or equal to.”

∀x,y,z ∈ R and xRy and yRz⇒ x≤ y∧ y≤ z

⇒ x≤ z⇒ xRz.

Hence, R is transitive. �
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4.4 Equivalence Relations
Definition 4.4.1 A relation R on a set A is called an equivalence
relation on A when R is
(1)Reflexive,
(2) Symmetric,
(3) Transitive.

� Example 4.13 Let R be the set of real numbers and R mean “is less
than or equal to.” Now 3 is less than or equal to 5 but 5 is not less than
or equal to 3. Hence R is not symmetric and then R is not equivalence
relation. �

� Example 4.14 The relation = on the set R is undoubtedly the most
familiar equivalence relation for.
(i) R is reflexive, i.e.,

∀a ∈ R⇒ a = a⇒ aRa.

(ii) R is Symmetric, i.e.,

∀aRb⇒ a = b⇒ b = a⇒ bRa.

(iii) R is Transitive, i.e.,

∀aRb and bRc⇒ a = b∧b = c⇒ b = c⇒ aRc.

�

� Example 4.15 Let C be a complex number. Define on C a relation R
by:

(a+ ib)R(c+ id)⇔ ac≥ 0∀a+ ib,c+ id ∈ C.

Verify that R is an equivalence relation.
Solution:
R is reflective ;
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∀a+ ib ∈ C⇔ a.a = a2 ≥ 0
⇔ (a+ ib)R(a+ ib).

R is symmetric;
∀(a+ ib)R(c+ id)⇔ ac≥ 0

⇔ ca≥ 0
⇔ (c+ id)R(a+ ib).

R is transitive;
∀(a+ ib)R(c+ id), (c+ id)R(e+ i f )⇔ ac≥ 0 ∧ ce≥ 0

⇔ ae≥ 0
⇔ (a+ ib)R(e+ i f ),

and then R is an equivalence relation.
�
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4.5 Equivalence Sets
Definition 4.5.1 Let A be a set and R be an equivalence relation on
A. If a ∈ A, the elements b ∈ A satisfying bRa constitute a subset,
cl[a], of A, called an equivalence set or equivalence class. i.e.,

cl[a] = {b : b ∈ A,aRb}.

� Example 4.16 Let R = {(a,a),(b,b),(c,c)} be equivalence relation
on A = {a,b,c}, then

cl[a] = {a},

cl[b] = {b}

and

cl[c] = {c}.

�

� Example 4.17 Consider the relation of congruence "mod n" on Z,
and let a ∈ Z. The congruence class of a is defined by

{x ∈ Z : x = a+ kn, k ∈ Z}.

On the other hand, the equivalence class of a is, by definition,

{x ∈ Z : x≡ a, mod n}.

Since x≡ a, mod n if and only if x = a+km for some k ∈Z, these two
subsets coincide; that is, the equivalence class cl[a] is the congruence
class. �

Proposition 4.5.1 If R =≡ is an equivalence relation on a set A , then
x≡ y if and only if cl[x] = cl[y].
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Proof. Assume that x≡ y. If z ∈ cl[x], then z≡ x, and so transitivity
gives z≡ y; hence cl[x]⊂ cl[y]. By symmetry, y≡ x, and this gives the
reverse inclusion cl[y]⊂ cl[x]. Thus, cl[x] = cl[y].
Conversely, if cl[x] = cl[y], then x ∈ cl[x], by reflexivity, and so x ∈
cl[x] = cl[y]. Therefore, x≡ y. �

Proposition 4.5.2 Suppose that R =≡ is an equivalence relation on a
set A and if cl[x]∩ cl[y] = φ , then cl[x] = cl[y].

Theorem 4.5.3 An equivalence relation R on a set A effects a partition
of A, and conversely, a partition of A defines an equivalence relation
on A.

� Example 4.18 Let A = {0,1,2,3,4,5} . Define on A a relation R by:

aRb⇔ a−b
3
∈ Z∀a,b ∈ A

. Write R as a set of ordered pairs ,Verify that R is an equivalence
relation, and verify that the equivalence classes form a partition of.
Solution:

R =

{(0,0),(1,1),(2,2),(3,3),(4,4),(5,5),(0,3),(3,0),(1,4),(4,1),(2,5),(5,2)} .

R is reflective ; ∀a ∈ A⇒ a−a
3

= 0⇒ (a,a) ∈ R.

R is symmetric ; ∀(a,b) ∈ R⇒ (b,a) ∈ R
R is transitive; ∀(a,b), (b,c) ∈ R⇒ (a,c) ∈ R,
and then R is an equivalence relation.
The equivalence classes are:
cl[0] = {0,3}= cl[3].
cl[1] = {1,4}= cl[4] .
cl[2] = {2,5}= cl[5].
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And, these equivalence classes form a partion of A such that they are
disjoint subsets , and their union is the whole set A .

�
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4.6 Ordering in Sets
Definition 4.6.1 A set A will be said to be partially ordered (the
possibility of a total ordering is not excluded) by a binary relation R
if for arbitrary a,b,c ∈ S,
(1) R is reflexive,
(2) R is anti-symmetric, i.e., aRb and bRa if and only if a = b,
(3) R is transitive.

Definition 4.6.2 Let R⊂ A×A, then R be a total ordering relation
if:
(1) partially ordered
(2) ∀a,b ∈ A⇒ aRb or bRa.

Let A be a partially ordered set with respect to R. Then:
(1) every subset of A is also partially ordered with respect to R while
some subsets may be totally ordered.
(2) the element a ∈ A is called a first element of A if aRx for every
x ∈ A.
(3) the element b ∈ A is called a last element of A if xRb for every
x ∈ A. [The first (last) element of an ordered set, assuming there is one,
is unique.]
(4) the element a ∈ A is called a minimal element of A if xRa implies
x = a for every x ∈ A.
(5) the element b ∈ A is called a maximal element of S if bRx implies
b = x for every x ∈ A.

� Example 4.19 Let N be natural number and R means "≤", i.e., ∀a,b∈
N,aRb⇔ a≤ b.
(i) R is reflexive

∀a ∈ N⇒ a≤ b⇒ aRa.
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(ii) R is anti-symmetric, i.e.,

aRb∧bRa⇒ a≤ b∧b≤ a

⇒ a = b.

(iii) R is transitive, i.e.,

aRb∧bRc⇒ a≤ b∧b≤ c

⇒ a≤ c

aRc

Hence, R is ordered relation and

∀a,b ∈ N⇒ a≤ b∨b≤ a

⇒ aRb or bRa

thus R is total ordered relation. �

� Example 4.20 Let A = {1,2,3,4,12} be natural number and R means
"≤", i.e.,

∀a,b ∈ A,aRb⇔ a≤ b.

Then the first element is 1 and the last element is 12. Also, 1 is a
minimal element and 12 is a maximal element. �
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4.7 Exercises

Exercise 4.1 Which of the following are equivalence relations?
(a) “Is similar to” for the set T of all triangles in a plane.
(b) “Has the same radius as” for the set of all circles in a plane.
(c) “Is the square of ” for the set N.
(d) “Has the same number of vertices as” for the set of all poly-

gons in a plane.
(e) “⊂ ” for the set of sets S = {A,B,C, ...}.
( f ) "≤" for the set R.

�

Exercise 4.2 Show that “is a factor of ” on N is reflexive and transi-
tive but is not symmetric. �

Exercise 4.3 Give an example of a relation which is symmetric and
transitive but not reflexive. �

Exercise 4.4 Show that “<” on Z is not an equivalence relation. �

Exercise 4.5 Build a relation on a set A = {1,2,3} containing the
two elements (1,2), (2,3) and containing the minimum number of
elements to be an equivalence relation, and verify that the equiva-
lence classes form a partition of A. �

Exercise 4.6 Let A = {0,1,2,3,4,5}. Define on A a relation R by

aRb⇔ a−b
4
∈ Z∀a,b ∈ A.

Write R as a set of ordered pairs ,Verify that R is an equivalence
relation. �
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Exercise 4.7 Given the following relations R1, R2, R3, R4, R5 on
a set A = {1,2,3}. Explain in each case why the relation is or not:
reflective , symmetric , transitive , and then equivalence relation:
R1 = {(1,1),(1,2),(1,3),(2,2),(2,1),(2,3),(3,3),(3,2)} .
R2 = {(1,1),(1,2),(1,3),(2,2),(2,1),(2,3),(3,3),(3,1),(3,2)} .
R3 = {(1,1),(2,2),(3,3)} ,
R4 = {(1,1),(1,2),(2,2),(3,1)} ,
R5 = {(1,2),(1,3)} . �



5. Functions

In many branches of mathematics, the term map is used to mean a
function, sometimes with a specific property of particular importance
to that branch. For instance, a "map" is a continuous function in
topology, a linear transformation in linear algebra, etc.

Definition 5.0.1 Let X and Y be (not necessarily distinct) sets. A
function (mapping) f from X to Y , denoted by

f : X → Y ,

is a subset f ⊂ X ×Y such that, for each a ∈ X , there is a unique
b ∈ Y with (a,b) ∈ f .

For each a ∈ X , the unique element b ∈ Y for which (a,b) ∈ f is
called the value of f at a, and b is denoted by f (a). Thus, f consists
of all those points in X×Y of the form (a, f (a)).
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� Example 5.1 The identity function on a set X , denoted by e : X→ X
, is defined by e(x) = x for every x ∈ X . �

� Example 5.2 The Constant function on a set X , denoted by h : X →
X , is defined by h(x) = c for every x ∈ X and c is constant. �

If f : X → Y , call X the domain of f , call Y the target (or
codomain) of f , and define the image (or range) of f , denoted
by im f , to be the subset of Y consisting of all the values of f .

Definition 5.0.2 Functions f : X → Y and g : A→ B are equal if
X = A, Y = B, and the subsets f ⊂ X×Y and g⊂ A×B are equal.

Definition 5.0.3 If f : X → Y is a function, and if A ⊂ X , then the
restriction of f to A is the function f pA: X → Y defined by ( f pA
)(a) = f (a) for all a ∈ A.

If A⊂ X , define the inclusion i : A→ X to be the function defined by
i(a) = a for all a ∈ A.

Proposition 5.0.1 Let f : X→Y and g : A→ B be functions, then f = g
if and only if X = A, Y = B, and f (a) = g(b) for all a ∈ A.

Proof. Suppose that f = g, and this means that each of f and g is a
subset of the other. If a ∈ X and (a, f (a)) ∈ f = g, then (a, f (a)) ∈ g.
Therefore, (a, f (a)) = (a,g(a)), and equality of ordered pairs gives
f (a) = g(a), as desired.
Conversely, assume that f (a) = g(a) for every a ∈ X . To see that
f = g, it suffices to show that f ⊂ g and g⊂ f . Each element of f has
the form (a, f (a)). Since f (a) = g(a), we have (a, f (a)) = (a,g(a)),
and hence (a, f (a))∈ g. Therefore, f ⊂ g. The reverse inclusion g⊂ f
is proved similarly.
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R The above proposition resolves the problem raised by the
ambiguous term rule. If f ,g : R→ R are given by f (x) =
(x+1)2 and g(x) = x2+2x+1, then f = g because f (a) =
g(a) for every number a ∈ R.

�

5.1 One-to-one mapping
Definition 5.1.1 A function f : X →Y is injective (or one-to-one) if,
whenever

∀x,y ∈ X , f (x) = f (y)⇒ x = y.

or

∀x,y ∈ X , x 6= y⇒ f (x) 6= f (y).

� Example 5.3 The identity functions are injective, for

e(x) = e(y)⇒ x = y.

�

� Example 5.4 The mapping f : R→R, f (x) = x2 is not injective. For,

f (1) = f (−1) but 1 6=−1.

�

� Example 5.5 Let f : R−
{

3
2

}
→ R, define by

f (x) =
6x+4
2x−3

.

To check whether f is injective, suppose that f (x) = f (y):
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6x+4
2x−3

=
6y+4
2y−3

Cross multiplying yields

12xy+8y−18x−12 = 12xy+8x−18y−12

which simplifies to 26x = 26y and hence x = y. We conclude that f is
injective. �

5.2 Onto mapping
Definition 5.2.1 A function f : X → Y is surjective (or onto) if

im f = Y .

Thus, f is surjective if, for each y∈Y , there is some x∈X (probably
depending on y) with y = f (x).

� Example 5.6 The identity functions are surjections. �

� Example 5.7 The mapping f : R→ R, define by

f (x) = x2.

Now, im f consists of the non-negative reals, so f is not surjections. �

� Example 5.8 Let f : R→ R, define by

f (x) = 2x+6,

then f is onto for
∀y ∈ R, y = f (x)⇒ y = 2x+6

⇒ x =
1
2
(y−6) ∈R. �

� Example 5.9 Let f : R−
{

3
2

}
→ R, define by
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f (x) =
6x+4
2x−3

,

then f is not onto for

∀y ∈ R, y = f (x)⇒ y =
6x+4
2x−3

⇒ x =
3y+4
2y−6

/∈ R−
{

3
2

}
.

�

5.3 Composite Mapping
Sometimes there is a way of combining two functions to form another
function, their composite.

Definition 5.3.1 If f : A→ B and g : B→C are mappings (the target
of f is the domain of g), then their composite, denoted by g ◦ f ,
is the function A→ C given by g ◦ f : x→ g( f (x)); that is, first
evaluate f on x and then evaluate g on f (x).

Figure 5.1: The composite of two functions f and g.

Composition is thus a two-step process: x→ f (x)→ g( f (x)).

� Example 5.10 The function h : R→ R, defined by
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h(x) = ecos x,

is the composite g◦ f , where f (x) = cos x and g(x) = ex. �

R Composition is not commutative, i.e., g◦ f 6= f ◦g

� Example 5.11 If f : N→ N and g : N→ R are functions, then g ◦
f : N→ N is defined, but f ◦ g is not defined [for target (g) = N 6=
R= domain( f )]. Even when f : X → Y and g : Y → X , so that both
composites g◦ f and f ◦g are defined, these composites need not be
equal. �

� Example 5.12 Let f ,g : N→ N defined by

f (x) = x2

and

g(x) = 3x,

then

(g◦ f )(2) = 12,

and

( f ◦g)(2) = 36.

Hence, g◦ f 6= f ◦g. �

Proposition 5.3.1 Composition of mappings is associative: if

f : X → Y , g : Y → Z and h : Z→W ,

are mappings, then

h◦ (g◦ f ) = (h◦g)◦ f .
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Proof. We show that the value of either composite on an element a∈X
is just w = h(g( f (a))). If x ∈ X , then

h◦ (g◦ f ) : x→ (g◦ f )(x) = g( f (x))→ h(g( f (x))) = w,

and

(h◦g)◦ f : x→ f (x)→ (h◦g)( f (x)) = h(g( f (x))) = w.

It follows from Proposition 5.0.1 that the composites are equal. �

5.4 one-one correspondence mapping
Definition 5.4.1 A mapping f : X → Y is bijective (or is a one-one
correspondence) if it is both injective and surjective.

� Example 5.13 Identity mapping is always bijection. �

� Example 5.14 Let f : R→ R, define by

f (x) = 2x−3,

then f is bijection for
(i) f is injective i.e.,

∀x,y ∈ R, f (x) = f (y)⇒ 2x−3 = 2y−3

⇒ x = x

(ii) f is surjective i.e.,

∀y ∈ R, y = f (x)⇒ y = 2x−3

⇒ x =
1
2
(y+3) ∈ R.

�
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Definition 5.4.2 A map f : X → Y has an inverse if there exists a
map g : Y → X with both composites g◦ f and f ◦g being identity
maps.

Proposition 5.4.1 If f : X → Y and g : Y → X are maps such that (g◦
f )(x) = e(x) = x, then f is injective and g is surjective.

Proof. Suppose that f (x) = f (y); apply g to obtain g( f (x)) = g( f (y));
that is, x = y [because g( f (x)) = x], and so f is injective. If x ∈ X ,
then x = g( f (x)), so that x ∈ img; hence g is surjective. �

Proposition 5.4.2 A function f : X→Y has an inverse g : Y → X if and
only if it is a bijection.

Proof. If f has an inverse g, then Proposition 5.4.2 shows that f
is injective and surjective, for both composites g ◦ f and f ◦ g are
identities.

Assume that f is a bijection. Let y ∈ Y . Since f is surjective, there
is some x ∈ X with f (x) = y; since f is injective, this element x is
unique. Defining g(y) = x thus gives a (single-valued) function whose
domain is Y . It is plain that g is the inverse of f ; that is, f (g(y)) =
f (x) = y for all y ∈ Y and g( f (x)) = g(y) = x for all a ∈ X . �

R The inverse of a bijection f is denoted by f−1.

Proposition 5.4.3 Let X and Y be sets, and let f : X →Y be a mapping.
(i) If A⊂ B are subsets of X , then f (A)⊂ f (B), and if C ⊂ D are

subsets of Y , then f−1(C)⊂ f−1(D).
(ii) If C⊂Y , then f f−1(C)⊂C; if f is a surjection, then f f−1(C) =

C.
(iii) If A⊂ X , then A⊂ f−1 f (A).
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Proof. (i) If y ∈ f (A), then y = f (a) for some a ∈ A. But a ∈ B,
because A ⊂ B, and so f (a) ∈ f (A). Therefore, f (A) ⊂ f (B).
The other inclusion is proved just as easily

(ii) If a ∈ f f−1(C), then a = f (x
′
) for some x

′ ∈ f−1(C) this says
that a = f (x

′
) ∈C . We prove the reverse inclusion when f is

surjective. If a ∈C, then there is x ∈ X with f (x) = a; hence,
x ∈ f−1(C), and so a = f (x) ∈ f f−1(C).

(iii) If a ∈ A, then f (a) ∈ f (A), and so a ∈ f−1 f (a)⊂ f−1(A).
�
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5.5 Exercise
Exercise 5.1 Show that f : R→ R, defined by f (x) = 3x+ 5, is a
bijection, and find its inverse. �

Exercise 5.2 Determine whether f : Q×Q→Q, given by

f (
a
b
,

c
d
) =

(a+ c)
(b+d)

is a function. �

Exercise 5.3 Let f : X → Y and g : Y → Z be functions.
(i) If both f and g are injective, prove that g◦ f is injective.

(ii) If both f and g are surjective, prove that g◦ f is surjective.
(iii) If both f and g are bijective, prove that g◦ f is bijective.

�

Exercise 5.4 Prove f :N→N, defined by f (x) = x+5, is a mapping
but not onto. �

Exercise 5.5 Prove f : Q→Q, defined by f (x) = 3x+5, is a one-
to-one mapping. �



6. Binary operation

The word "binary" means composed of two pieces. A binary operation
is simply a rule for combining two values to create a new value. The
most widely known binary operations are those learned in elementary
school: addition, subtraction, multiplication and division on various
sets of numbers.

6.1 Definitions
Definition 6.1.1 A binary operation ∗ on a set G is a function map-
ping G×G into G. For each (a,b) ∈ G×G, we will denote the
element ∗((a,b)) of G by a∗b i.e.,

∗ : G×G→ G,.

(a,b)→ a∗b.

� Example 6.1 Our usual addition + is a binary operation on the set R.
Our usual multiplication · is a different binary operation on R.
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In this example, we could replace R by any of the sets C, Z, R+, or
Z+. �

� Example 6.2 Let M(R) be the set of all matrices with real entries.
The usual matrix addition + is not a binary operation on this set since
A+B is not defined for an ordered pair (A,B) of matrices having
different numbers of rows or of columns, for instance, A ∈Mm×n(R)
and B ∈Mn×m(R), then A+B is not defined. �

� Example 6.3 Let Mm×m(R) with the usual matrix addition + is a
binary operation. �

Definition 6.1.2 Let ∗ be a binary operation on G and let H be a
subset of G. The subset H is closed under ∗ if for all a,b ∈ H we
also have a∗b ∈H. In this case, the binary operation on H given by
restricting ∗ to H is the induced operation of ∗ on H.

� Example 6.4 Let R∗ = R−{0} ⊂ R, then the usual addition + on
the set R of real numbers does not induce a binary operation on the set
R∗ for ±1 ∈ R∗ but 1−1 = 0 /∈ R∗. �

� Example 6.5 On Z∗, we define a binary operation ∗ by a∗b equals
the smaller of a and b, or the common value if a = b. Thus 2∗11 = 2;
13∗9 = 9; and 1∗1 = 1. �

Definition 6.1.3 A binary operation ∗ on a set G is commutative if
(and only if) a∗b = b∗a for all a,b ∈ G.

� Example 6.6 Our usual addition + is commutative binary operation
on the set R. �

Definition 6.1.4 A binary operation on a set G is associative if (a∗
b)∗ c = a∗ (b∗ c) for all a,b,c ∈ G.

� Example 6.7 Our usual addition + is associative binary operation on
the set R. �
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Theorem 6.1.1 (Associativity of Composition) Let G be a set and
let f , g, and h be functions mapping G into G. Then

f ◦ (g◦h) = ( f ◦g)◦h.

Proof. To show these two functions are equal, we must show that they
give the same assignment to each x ∈ G. Computing we find that

f ◦ (g◦h)(x) = f ((g◦h)(x)) = f (g(h(x))).

and

(( f ◦g)◦h)(x) = ( f ◦g)(h(x)) = f (g(h(x))).

so the same element f (g(h(x))) of G is indeed obtained. �

Definition 6.1.5 Let G be a set together with a binary operation that
assigns to each ordered pair (a,b) of elements of G an element in G
denoted by a∗b. We say G is a semi group under this operation if
associative law is hold.

� Example 6.8 The set of integers under ordinary multiplication is a
semi group for

∀a,b ∈ Z,a×b ∈ Z.

Also,

∀a,b,c ∈ Z,(a×b)× c = a× (b× c).

�

� Example 6.9 The subset {1,−1, i,−i} of the complex numbers is a
semi group under complex multiplication. �

� Example 6.10 If ? and ⊗ defined on a set of all nature numbers N
by:
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a?b = ab and a⊗b = a+b−a2b2,

Then ? is a binary operation on N, because

a?b = ab ∈ N ∀a,b ∈ N,

but ⊗ is not binary operation on N because,

a⊗b = a+b−a2b2 6= N ∀a,b ∈ N,

(for example put a = 1,b = 2 ).
�

Definition 6.1.6 If ∗ is a binary operation on a set G, the element el
is called the left identity element w.r.t. ∗ if

∀a ∈ G, el ∗a = a,

and the element er is called the right identity element w.r.t. ∗ if

∀a ∈ G, a∗ er = a.

If the element er and el are equal, then we call it the identity element
w.r.t. ∗ i.e.,

∀a ∈ G, a∗ e = e∗a = a.

� Example 6.11 The set of integers under ordinary multiplication is a
semi group for with identity 1. �

� Example 6.12 The set of integers under ordinary addition is binary
operation with identity 0. �

Definition 6.1.7 If ∗ is a binary operation on a set G, the element
a−1

l is called the left inverse of the element a ∈ G w.r.t. ∗ if

∀a ∈ G, a−1
l ∗a = e,
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and the element a−1
r is called the right inverse of the element a ∈ G

w.r.t. ∗ if

∀a ∈ G, a∗a−1
r = e.

If the element a−1
r and a−1

l are equal, then we call it the inverse of
the element a ∈ G w.r.t. ∗ i.e.,

∀a ∈ G, a∗a−1 = a−1 ∗a = a.
� Example 6.13 The set of integers under ordinary addition is binary
operation, and the inverse of a ∈ Z is −a ∈ Z. �

� Example 6.14 If ∗ defined on a set of integers Z by:

∀x,y ∈ Z, x∗ y = x+ y−4,

Study the system (Z,∗).
Solution
(i) ∗ is a binary operation on Z

∀x,y ∈ Z, x∗ y = x+ y−4 ∈ Z,

(ii) ∗ is commutative binary operation on Z

∀x,y ∈ Z, x∗ y = x+ y−4

= y+ x−4 = y∗ x.

(iii) ∗ is associative binary operation on Z

∀x,y,z ∈ Z, (x∗ y)∗ z = (x+ y−4)∗ z

= x+ y+ z−8

and
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∀x,y,z ∈ Z, x∗ (y∗ z) = x∗ (y+ z−4)

= x+ y+ z−8

(iv) Let x∗ e = e∗ x = x ∀x ∈ Z,then

x+ e−4 = e+ x−4 = x⇒ e = 4 ∈ Z

i.e., ∗ have an identity e = 4.
(v) Let x∗ x−1 = x−1 ∗ x = e ∀x,x−1 ∈ Z,then

x+ x−1−4 = x−1 + x−4 = 4⇒ x−1 = 8− x ∈ Z

i.e., ∃ an inverse of x ∈ Z is x−1 = 8− x ∈ Z w.r.t. ∗. �

6.1.1 Addition and Multiplication mod n
We define addition and multiplication on Zn = {0,1,2, . . . ,n−1} the
set of all equivalence classes of the equivalence relation a≡ b(mod n)
as follows:
• a⊕n b is the remainder of a+b

n ∀a,b ∈ Zn.
• a⊗n b is the remainder of a×b

n ∀a,b ∈ Zn.

R Associative law holds in general for the two operations ⊕n
and ⊗n on Zn.

6.2 Tables
For a finite set, a binary operation on the set can be defined by means
of a table in which the elements of the set are listed across the top as
heads of columns and at the left side as heads of rows. We always
require that the elements of the set be listed as heads across the top
in the same order as heads down the left side. The next example
illustrates the use of a table to define a binary operation.
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� Example 6.15 Table 4.1 defines the binary operation ◦ on G =

{a,b,c} by the following rule:
(ith entry on the left) ◦ ( jth entry on the top) equal (entry in the ith row
and jth column of the table body). �

∗ a b c

a b c b
b a c b
c c b a

Table 6.1: defines the binary operation ◦ on G

R A binary operation defined by a table is commutative if and
only if the entries in the table are symmetric with respect to
the diagonal that starts at the upper left corner of the table
and terminates at the lower right corner.

� Example 6.16 In the above example, a binary operation ◦ on G is not
commutative for the entries in the table are not symmetric. �

� Example 6.17 Complete Table 4.2 so as to define a commutative
binary operation ◦ on S = {a,b,c,d}

∗ a b c d

a a b c ...

b b d ... c
c c a d b
d d ... ... a

Table 6.2: defines the binary operation ◦ on S

Solution: From Table 4.2, we see that d ◦a = d. For ◦ to be commu-
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tative, we must have a ◦ d = d. By the same way we find b ◦ c = a,
d ◦b = c and d ◦ c = b. �

� Example 6.18 we represent the two operations ⊕4 and ⊗4 on

Z4 = {0,1,2,3}

by the following tables �

⊕4 0 1 2 3

0 0 1 2 3
1 1 2 3 4
2 2 3 0 1
3 3 0 1 2

Table 6.3: defines the binary operation ⊕4 on Z4

⊗4 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Table 6.4: defines the binary operation ⊗4 on Z4

� Example 6.19 In Example 6.18 Explain why ⊕4 is or not commuta-
tive, associative binary operation on Z4 , there is an identity, and there
is an inverse w.r.t. ⊕4 ?
As it can be seen from the Table 6.18 above:
(i) all elements in a table belongs to a set Z4, therefore ⊕4 is a binary
operation on Z4.
(ii) all elements in a table are symmetric around the diameter of the
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table, therefore ⊕4 is commutative.
(iii) associative law holds in general for the two operations ⊕n and ⊗n

on Zn. So ⊕4 is associative on Z4.
(iv) 0 is the identity element; its row(column) is identical with the
main row (column) of the table.
(v)

The element 0 1 2 3

The inverse 0 3 2 1

�

� Example 6.20 If⊗10 is an operation defined on a set X = {2,4,6,8}⊂
Z10. Explain why ⊗10 is or not commutative, associative binary opera-
tion on X , there is an identity, and there is an inverse w.r.t. ⊗10 ?
Solution: As it can be seen from the Table 6.20 above:

⊗10 2 4 6 8

2 4 8 2 6
4 8 6 4 2
6 2 4 6 8
8 6 2 8 4

Table 6.5: defines the binary operation ⊗10 on X

(i) all elements in a table belongs to a set X , therefore ⊗10 is a binary
operation on X .
(ii) all elements in a table are symmetric around the diameter of the
table, therefore ⊗10 is commutative.
(iii) associative law holds in general for the two operations ⊕n and ⊗n

on Zn. So ⊗10 is associative on X ⊂ Z10.
(iv) 6 is the identity element; its row(column) is identical with the
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main row (column) of the table.
(v)

The element 2 4 6 8

The inverse 8 4 6 2

�

6.3 Groups
The term group was used by Galois around 1830 to describe sets of one-
to-one functions on finite sets that could be grouped together to form a
set closed under composition. As is the case with most funda- mental
concepts in mathematics, the modern definition of a group that follows
is the result of a long evolutionary process. Although this defi- nition
was given by both Heinrich Weber and Walther von Dyck in 1882, it
did not gain universal acceptance until the 20th century.

Definition 6.3.1 Let G be non-empty set, and ∗ binary operation on .
The couple (G,∗) is said to be a group if the following conditions
are satisfied:
(G1) a∗b ∈ G ∀a,b ∈ G.
(G2) (a∗b)∗ c = a∗ (b∗ c) ∀a,b,c ∈ G.
(G3) ∃ e ∈ G;a∗ e = e∗a = a ∀a ∈ G.
(G4) ∀ a ∈ G∃a−1 ∈ G;a∗a−1 = a−1 ∗a = e.

Definition 6.3.2 (i) If only the condition (G1) is satisfied, (G,∗)
is said to be groupoid.

(ii) If only the two conditions (G1), (G2) are satisfied, (G,∗) is
said to be semi-group.

(iii) If only the three conditions (G1), (G2), (G3) are satisfied,
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(G,∗) is said to be monoid.

Definition 6.3.3 A group (G,∗) is said to be commutative (or abelian)
if it satisfies the commutative law:

a∗b = b∗a ∀a,b ∈ G.

� Example 6.21 Each of the following sets with the usual definition of
addition of numbers is a group:
Z the set of all integers.
Q the set of all rational numbers.
R the set of all real numbers.
C the set of all complex numbers. �



78 Dr. A. Elrawy

6.4 Exercises
Exercise 6.1 In each of the following ∗ is the specified binary oper-
ation on the set Z of integers. Determine in each case whether the
operation is commutative, whether is associative , whether there is
an identity for the operation , and whether there is an inverse w.r.t.
the operation?
(i) a∗b = b.
(ii) a∗b = a+b+ab.
(iii) a∗b = 2a+2b.
(iv) a∗b = a+b−1.
(iv) a∗b = a+b−1.
(iv) a∗b = a+ab.

�

Exercise 6.2 Let P(X) be the power set of a set X = {1,2}.
(i) Is the binary operation ∩ on P(X) commutative? Is it associative?
Does it have an identity?.
(ii) Answer the same questions for the binary operation ∪ on P(X).
(iii) Answer the same questions for the binary operation4 on P(X)

�

Exercise 6.3 If ⊗ defined on a set X = R−{1} , by:

x⊗ y = x+ y− xy∀x,y ∈ X

(i) Is ⊗ binary operation on X ?
(ii) Is ⊗ commutative? Is it associative?
(iii) Does ⊗ have an identity? Is exist an inverse w.r.t. ⊗ ? (Give
reasons for your answer).

�
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Chapter one 

Mathematical logic 

 

Definition 1.  A proposition is a statement “ declarative sentence” that is, 
by itself, either true or false.  

We say that the truth value of a proposition is either true (T) or false (F). 

Letters p,q r,…. Or P, Q, R, … are used to denote propositions. 

Example: The following propositions are true: 

          1) Elephants are bigger than mice. 

         2) 7 is odd. 

         3) 1+1=2. 

Example: The following propositions are false: 

          1) Qena is the capital of Egypt. 

         2) 2 divides 7. 

          3) 1+2=2. 

Example: The following are not propositions : 

          1) x+3=6.    

  Neither true nor false sentence. 

         2) What time is it now?  

 Not declarative sentences. 

Example: “x < y if and only if y > x.” 

Is this a statement? 

Yes 

Is this a proposition? 

Yes, because its truth value does not depend on specific values of x and y. 

What is the truth value of the proposition?  Yes. 

Combining Propositions 
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As we have seen in the previous example, one or more propositions can be 

combined to form a single compound proposition. 

Logical Operators (Connectives) 

We will examine the following logical operators: 

•  Negation  (NOT, ). 

•  Conjunction  (AND, ). 

•  Disjunction (OR, ). 

•  Exclusive-or (XOR,  ). 

•  Implication      (if – then, → ) 

•  Biconditional  (if and only if,  ) 

Truth tables can be used to show how these operators can combine 

propositions to compound propositions. 

1- Negation 

Definition.  Let p be a proposition. The statement “ it is not the case that p ‘ 

is another proposition, called the negation of p  and denoted by  . 

Example: The negation of the proposition “ Today is Friday” is “It is not 

Friday today”. 

Now we show the truth table for  

-p P 

F T 

T F 

 2- Conjunction 

Definition.   
If p and q are statement variables, the conjunction of p and q is “p and q,” 

denoted p  q. It is true when, and only when, both p and q are true. If 

either p or q is false, or if both are false, p  q is false. 

 

 

 

Now we show the truth table for p  q 
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𝒑 ∧ 𝒒 𝒒 𝒑 

T T T 

F F T 

F T F 

F F F 

3- Disjunction 

Definition.   
If p and q are statement variables, the disjunction of p and q is “p or q,” 

denoted p  q. It is true when either p is true, or q is true, or both p and q 
are true; it is false only when both p and q are false. 

Now we show the truth table for 𝒑 ∨ 𝒒 

𝒑 ∨ 𝒒 𝒒 𝒑 

T T T 

T F T 

T T F 

F F F 

Example:  

Construct the truth table for the statement form (𝑝 ∨ 𝑞) ∧ ¬(𝑝 ∧ 𝑞) 

Solution: 

(𝒑 ∨ 𝒒) ∧ ¬(𝒑 ∧ 𝒒) ¬(𝒑 ∧ 𝒒) 𝒑 ∧ 𝒒 𝒑 ∨ 𝒒 𝒒 𝒑 

F F T T T T 

T T F T F T 

T T F T T F 

F T F F F F 

 

 

 

 

 

 

 

Example: 
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Construct a truth table for the statement form (𝑝 ∧ 𝑞) ∨ ¬𝑟 

Solution: 

p q r ¬𝒓 𝒑 ∧ 𝒒 (𝒑 ∧ 𝒒) ∨ ¬𝒓 

T T T F T T 

T T F T T T 
T F T F F F 

T F F T F T 
F T F T F T 

F T T F F F 

F F T F F F 
F F F T F T 

 

4- Exclusive Or (XOR) 

Binary Operator, Symbol:   

𝒑  𝒒 𝒒 𝒑 

F T T 

T F T 

T T F 

F F F 

5- Implication (if - then) 

Binary Operator, Symbol:  → 

𝒑 → 𝒒 𝒒 𝒑 

T T T 

F F T 

T T F 

T F F 

 

 

 

 

6- Biconditional (if and only if) 
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Binary operator, symbol:   

𝒑 ↔ 𝒒 𝒒 𝒑 

T T T 

F F T 

F T F 

T F F 

 

Example 

Write the statements in symbolic form using the logical operators and the 

indicated letters to represent component statements. 

1- To take discrete mathematics, you must have taken calculus or a course in 

computer science. 

Solution: 

– P: take discrete mathematics 

– Q: take calculus 

– R: take a course in computer science 

• P → Q  R 

2-  When you buy a new car from Acme Motor Company, you get $2000 back 

in cash or a 2% car loan. 

Solution: 

– P: buy a car from Acme Motor Company 

– Q: get $2000 cash back 

– R: get a 2% car loan 

• P → Q  R 

3- School is closed if more than 2 feet of snow falls or if the wind chill is 

below -100. 

Solution: 

– P: School is closed  
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– Q: 2 feet of snow falls 

– R: wind chill is below -100 

• Q  R → P 

Logical Equivalence 

 

 Example: 

𝒒 ∧ 𝒑 𝒑 ∧ 𝒒 𝒒 𝒑 

T T T T 

F F F T 
F F T F 

F F F F 

 

𝒑 ∧ 𝒒  and 𝒒 ∧ 𝒑  always have the same truth values, so they are 

logically equivalent. 

Example: 

1- Show that the statement forms −(𝒑 ∧ 𝒒) and −𝒑 ∧ −𝒒 are not 

logically equivalent. 

2- −(−𝒑) ≡  𝒑. 

3- −(𝒑 ∧ 𝒒) ≡ −𝒑 ∨ −𝒒.  

 

Equivalence laws 

– Identity laws,  P  T   P,  

– Domination laws,  P  F   F,  

– Idempotent laws,  P  P   P,  

Definition. 
Two statement forms are called logically equivalent if, and only if, they 
have identical truth values for each possible substitution of statements for 
their statement variables. The logical equivalence of statement forms P and 
Q is denoted by writing 𝑷 ≡  𝑸. 
Two statements are called logically equivalent if, and only if, they have 
logically equivalent forms when identical component statement variables 
are used to replace identical component statements. 
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– Double negation law,   ( P)   P 

– Commutative laws,  P  Q   Q  P,  

– Associative laws,  P  (Q  R)  (P  Q)  R,  

– Distributive laws,  P  (Q  R)  (P  Q)  (P  R),  

– De Morgan’s laws,   (PQ)  ( P)  ( Q) 

– Law with implication  P → Q   P  Q 

 

Tautologies and Contradictions 

Example: 

1) R(R) 

2)(PQ)  (P)( Q) 

Example: 

1) R(R) 

2)((P  Q)   (P)  (Q)) 

 

 

 

 

 

 

 

 

Definition. 
A tautology is a statement that is always true. 
 

Definition. 
A contradiction is a statement that is always false. 
 

Remark. 
The negation of any tautology is a contradiction, and the negation of any 
contradiction is a tautology. 
 

Remark. 

S1  S2 if S1  S2 is a tautology 
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Exercises 

 

1. Show that P → Q   P  Q:  by truth table . 

2. Show that (P → Q)  (P → R)  P → (Q  R): by equivalence laws. 

3. Show that 𝑝 ∨ (𝑝 ∧ 𝑞) ≡ 𝑝 by truth table . 

4. Show that 𝑝 ∨ −𝑝 is a tautology. 
5. Show that 𝑝 ∧ −𝑝 is a contradiction. 
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Chapter 1 

 Real Functions 

     One of the important themes in calculus is the analysis of relationships be-

tween physical or mathematical quantities. Such relationships can be described in 

terms of graphs, formulas, numerical data, or words. In this chapter we will de-

velop the concept of a function, which is the basic idea that underlies almost all 

mathematical and physical relationships, regardless of the form in which they are 

expressed. We will study properties of some of the most basic functions that oc-

cur in calculus.  

   Let us begin with some illustrative examples. 

 The area A  of a circle depends on its radius r  by the equation 
2A r , 

so we say that A  is a function of  r . 

 Volume of a sphere depends on its radius by the equation  34

3
V r . 

 Surface area of a cube depends on the length of its side by the equation  

26S x  

 The velocity A  of a ball falling freely in the Earth’s gravitational field in-

creases with time A  until it hits the ground, so we say that A  is a function 

of  A  . 

This idea is captured in the following definition: 

Definition 1. 

If a variable y depends on a variable x  in such a way that each value of x  de-

termines exactly one value of y , then we say that y  is a function of x . 

      In the mid-eighteenth century the mathematician Euler conceived the idea of 

denoting functions by letters of the alphabet, thereby making it possible to de-

scribe functions without stating specific formulas, graphs, or tables. 

This suggests the following definition: 

Definition 2. 

A function f  is a rule that associates a unique output with each input. If the input 

is denoted by x , then the output is denoted by ( )f x  (read " f  of x "). 

         This output is sometimes called the value of f  at x  or the image of x  un-
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der f .  Sometimes we will want to denote the output by a single letter, say y , 

and write 

( )y f x  

This equation expresses y  as a function of x . The variable x  is called the inde-

pendent variable of  f  , and the variable y  is called the dependent variable of f . 

This terminology is intended to suggest that x  is free to vary, but that once x  has 

a specific value a corresponding value of y is determined.  For now,  we will only 

consider functions in which the independent and dependent variables are real 

numbers, in which case we say that f  is a real-valued function of a real variable. 

         In the previous definition the term unique means "exactly one".  Thus, a 

function cannot assign two different outputs to the same input.   

For example, the following equation 

2 9y x x  

describes y as a function of  x because each input x in the interval 3 3x

produces exactly one output 2 9y x x . 

Definition 3.  

A function   f from set A  to set B  (written as :f A B ) is a rule of corre-

spondence that associates to each element of A , one and only one element of B . 

(A function is also called a mapping from A  to B .) 

We observe that 

 Each element of B  need not be in the association, but every element of A  

must be involved in it. Hence, a function is a one way pairing process. 

(Every element of A  pairs off with some element of  B  but not converse-

ly.) 

 One element of A  cannot be associated to more than one element of B , 

but one element of B  may correspond to two or more elements of A . 

The correspondence from the elements of set A  to set B , shown in Figs 1.1-1.3 

represents function(s) whereas that shown in Figs 1.4 and 1.5 does not represent 

functions. 
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       Fig 1.1                                     Fig 1.2                                  Fig 1.3 

 

 

 

 

 

 

                         

                     Fig 1.4                                                                 Fig 1.5 

Example (1) 

For 2( ) 2f x x x , find and simplify 

(a) (4)f ,  (b) (4 )f h ,  (c) (4 ) (4)f h f  

(d) [ (4 ) (4)] /f h f h , where 0h . 

Solution 

2(4) 4 2(4) 16 8 8f  

2

2

2

(4 ) (4 ) 2(4 )

(16 8 ) (8 2 )

8 6

f h h h

h h h

h h

 

2

2

(4 ) (4) 8 6 8

6

f h f h h

h h

2[ (4 ) (4)] / (6 ) / 6f h f h h h h h  
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Domain and Range of  a Function 

Definition 4. 

Let f  be a function from set A  to set B  ( :f A B ), then 

 The (entire) set A  is called the domain of  f . 

 The (entire) set B  is called the codomain of f . 

 An element y  of B  that corresponds to some element x  of A  is denoted 

by ( )f x , and it is called the image of x  under f . 

 The set of all images constitute the range of f . The range of f  is denoted 

by ( )f A  and it is a subset of set B . In other words ( )f A B . 

Definition 5. 

If ( )y f x then the set of all possible inputs (x -values) is called the domain of 

f  , and the set of outputs (y -values) that result when x  varies over the domain is 

called the range of f . 

For example, consider the equations 

2y x    

and   

  2, 2y x x  

In the first equation there is no restriction on x , so we may assume that any real 

value of x  is an allowable input. Thus, the equation defines a function 2( )f x x

with domain x . In the second equation, the inequality 2x  re-

stricts the allowable inputs to be greater than or equal to 2, so the equation de-

fines a function 2g( ) , 2x x x  with domain 2 x . 

As x  varies over the domain of the function 2( )f x x , the values of 2y x

vary over the interval 0 y , so this is the range of f . By comparison, as 

x  varies over the domain of the function 2( ) , 2g x x x , the values of 2y x

vary over the interval 4 y , so this is the range of g . It is important to 

understand here that even though 2( )f x x  and 2( ) , 2g x x x  involve the 

same formula, we regard them to be different functions because they have differ-

ent domains. In short, to fully describe a function you must not only specify the 
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rule that relates the inputs and outputs, but you must also specify the domain, that 

is, the set of allowable inputs. 

Example (2)  

Find the  domain of : 

(a)  3( )f x x  (b) 
1

( )
( 1)( 3)

f x
x x

 

(c)  ( ) tanf x x  (d) 2( ) 5 6f x x x  

Solution  

(a) The function f  has real values for all real x , so its domain is the interval 

( , ) . 

(b) The function f  has real values for all real x , except 1x and 3x , 

where divisions by zero occur. Thus, the domain is                                         

{ : , 1and 3} ( ,1) (1,3) (3, )x x R x x . 

(c) Since 
sin

( ) tan
cos

x
f x x

x
, the function f  has real values except where 

cos 0x , and this occurs when x  is an odd integer multiple of 
2

. Thus, 

the domain consists of all real numbers except 
3 5

, , ,...
2 2 2

x  

(d)  The function f  has real values, except when the expression inside the rad-

ical is negative. Thus the domain consists of all real numbers x  such that 

2 5 6 ( 3)( 2) 0x x x x . This inequality is satisfied if 2x  

or 3x , so the natural domain of f  is ( ,2] [3, ). 

Example (3) 

Find the domain and range of 

(a) ( ) 2 1f x x  (b) 
1

( )
1

x
f x

x
 

Solution 

(a) The domain of ( )f x  is [1, ) . As x  varies over the interval [1, ) , the value 

of 1x varies over the interval [0, ), so the value of ( ) 2 1f x x var-
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ies over the interval[2, ) , which is the range of ( )f x . 

(b) The given function ( )f x  is defined for all real 1x , so the domain of ( )f x  

is ( ,1) (1, ). To determine the range it will be convenient to introduce a 

dependent variable  

1
(*)

1

x
y

x
 

we solve (*) for x  in terms of  

( 1) 1x y x  

1xy y x  

                                                   1xy x y  

( 1) 1x y y  

                                                    

1

1

y
x

y
 

So, the range of the function ( )f x is ( ,1) (1, ).  

Example (4)  

Find the domain for 2(t) 9 t  . 

Solution 

 Here, we must restrict t  so that 29 0t , in order to avoid nonreal values 

for 29 t . This is achieved by requiring that 2 9t  or 3 3t . Thus, 

the domain of ( )t  is { : 3 3}t R t . In interval notation, we can write 

the domain as [ 3,3]. 

Example (5) 

Determine the domains of the functions 

(a) 24y x  (b) 2 16y x  (c) 
1

2
y
x

 

                       (d) 
2

1

9
y

x
    (e) 

2 4

x
y
x

 

Solution 

a. Since y  must be real, 24 0x  or 2 4x . The domain is the interval 
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2 2x . 

b. Here, 2 16 0x , or 2 16x . The domain consists of the intervals 

4x and 4x . 

c. The function is defined for every value of x  except 2 . 

d. The function is defined for 3x . 

e. Since 2 4 0x for all x , the domain is the set of all real numbers. 

Example (6) 

Determine the domain of each of the following functions: 

(a) 2 4y x  (b) 2 4y x  (c) 2 4y x  (d) 
3

x
y
x

 

(e) 
2

( 2)( 1)

x
y

x x
  (f ) 

2

1

9
y

x
  (g) 

2

2

1

1

x
y
x

 (h) 
2

x
y

x
 

Solution 

(a), (b), (g) all values of x   (c) 2x   (d) 3x  (e) 1x , 2  (f ) 

3 3x   (h) 0 2x . 

Example (7) 

Find the domains and ranges of the following functions: 

(a) 2( ) 1f x x  (b) 
1 if 0 1

( )
2 if 1

x x
f x

x x
 

 (c) ( )f x x = the greatest integer less than or equal to x  

(d) 
2 4

2

x
y

x
 (e) 2( ) 5f x x  (f ) ( ) 4f x x  

(g) ( ) 3f x x  (h) ( ) 4 /f x x  (i) ( ) /f x x x  

( j) ( )f x x x  (k) 
if 0

( )
2 if 0

x x
f x

x
 

Solution 

(a) domain, all numbers; range, 1y  

(b) domain, 0x ; range, 1 0y or 2y  
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(c) domain, all numbers; range, all integers 

(d) domain, 2x ; range 4y  

(e) domain, all numbers; range, 5y  

(f ) domain, 0x ; range, 0y  

(g) domain, all numbers; range, 0y  

(h) domain, 0x ; range, 0y  

(i) domain, 0x ; range, 1,1y  

( j) domain, all numbers; range, 0y  

(k) domain, all numbers; range, 0y  

Example (8) 

Find the domains and ranges of the following functions: 

(a) 
2 if 1 0

( )
if 0 1

x x
f x

x x
 (b) 

2 if 0 2
( )

1 if 3 4

x x
f x

x x
 

(c) 

2 4
if 2

( ) 2
4 if 2

x
x

f x x
x

 

Solution 

(a) domain ( 1,1], range [0,2) 

(b) domain (0,2) [3,4], range (0,3)  

(c) domain and range  set of all real numbers 

Types of Functions 

(A) One-One Function 
 A function is one-one provided distinct elements of the domain are relat-

ed to distinct element of the range. In other words, a function :f A B  

is defined to be one-one if the images of distinct element of A  under f  

are distinct, that is, for every 1 2,a a A , 1 2 1 2( ) ( )f a f a a a . 

 [It also means that, 1 2 1 2( ) ( )f a f a a a ]. A one–one function is al-

so called injective function (Figure 1.6 and 1.7). 
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              Fig. 1.6                                       Fig. 1.7 

 

(B) Many-One Function 
 If the range of the function has at least one element, which is the image 

for two or more elements of the domain, then the function is said to be 

many-one function (Figure 2.8a and b). It means that there is at least one 

pair of distinct elements, 1 2,a a A , such that 1 2( ) ( )f a f a  though 

1 2a a . A constant function is a special case of many-one function 

(Figures 1.8 and 1.9). 

            
                                           Fig. 1.8 

                         
 

                            Fig. 1.9 Constant function 
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(C) Onto Function 

A function :f A B  is called an onto function if each element of the 

codomain is involved in the relation. (Here, range of f  codomain B.) 

In other words, a function :f A B  is said to be onto if every element 

ofB  is the image of some element of A , under f , that is, for every 

b B , there exist an element a A such that ( )f a b  (Figure 1.10 

and 1.11). Onto function is also called surjective function. 

 
                           Fig. 1.10                                        Fig. 1.11 

(D) Bijective Function (or One-to-One Correspondence) 

The most important functions are those which are both one-one and onto. 

In a function that is one-one and onto, each image corresponds to exactly 

one element of the domain and each element of codomain is involved in 

the relation as shown in Figure 1,12. Such a function is also called one-

to-one correspondence or a bijective function. 

 
           Fig. 12 

Example (9) 

Consider the function 3( )y f x x . Here, for every value of x R , there 

corresponds a single value of y , and, conversely, to each y R , there corre-

sponds a single value of x  given by 3x y . Therefore, f  specifies a one-to-

one mapping, from R  onto R . 
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Example (10) 

Consider the function 2( )y g x x . Here, for every value of x R , there 

corresponds a single value of (0, )y . However, to every 0y , there corre-

spond two values of :x x y . Therefore, "g " is not one-to-one corre-

spondence. 

Example (11) 

Consider the exponential function y ( ) xy f x e . It can be shown that the 

function ( ) xy f x e is one-to-one mapping from ( , )onto (0, ). Note 

that for 1 2x x , we have 1 2x xe e , where 1 2,x x Rx1, , and 1 2,x xe e R   . 

Consider 1 2 1 2/ 1 1x x x xe e e or 1 2 0x xe e  (since 0 1e )

1 2 1 20x x x x . In other words, 1 2
1 2

x xe e x x . Thus, 

1 2
1 2

x xx x e e . Therefore, " f " defines a one-to-one correspondence 

from ( , )onto (0, ). 

Classification of Functions 

Even and Odd Functions 

(i) A function is an even function if for every x  in the domain of f  

( ) ( )f x f x . 

(ii) A function is an odd function if for every x  in the domain of f  

( ) ( )f x f x . 

Example (12) 

I. A polynomial function of the following form is an even function: 

2 4 2

0 1 2( ) n

nf x a a x a x a x       

Observe that the power of  x  in each term is an even integer. 

II. We have , that  cos cosx x   for allx . Thus, the cosine function is an 

even function. 

III.  A constant function is always even (why?). 

Example (13) 

I.  It can be easily verified that the functions ( )f x x  and 
3( )f x x are 

odd functions. In fact, any polynomial function in which the power of each 

term is an odd integer is an odd function. 

II. We have for allx ,  sin sinx x   and  tan tanx x   . Thus, the 
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sine and the tangent functions are odd functions. 

Note 

The property of functions whether even or odd is very useful. In particular, it 

helps in drawing graph of such functions. 

Definition 6. 

 A function  :f   is said to be periodic, if there exists a real number 

( 0)p p   such that ( ) ( )f x p f x   for allx  . 

Period of a Periodic Function  

If a function f is periodic, then the smallest 0p  , if it exists such that 

( ) ( )f x p f x   for all x  , is called the period of the function.  

Obviously, the period of the sine and cosine functions is 2  . It can be shown 

that the period of the tangent function (and that of the cotangent function) is   . 

Remark 

Aperiodic function may not have a period. Note that a constant function f is peri-

odic as ( ) ( )f x p f x  constant for all 0p  , however, there is no smallest 

0p   for which the relation holds. Hence, there is no period of this function, 

though it is periodic by definition. 

Algebraic operation on functions 

Functions are not numbers. But, just as two numbers a  and b  can be added to 

produce a new number (a b ), two functions f  and g  can be added to produce 

a new function ( f g ). This is just one of the several operations on functions.  

(a) Sums, Differences, Products and Quotients of Functions 

Let f  and g  be functions. We define the sum f g , the difference f g , 

and the product .f g to be the functions whose domains consist of all those 

numbers that are common in the domains of both  f  and g  and  whose 

rules are given by  

( )( ) ( ) ( )f g x f x g x  

( )( ) ( ) ( )f g x f x g x  

( . )( ) ( ). ( )f g x f x g x . 

In each case, the domain is consisting of those values of x  for which both

( )f x and ( )g x are defined.  
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Next, because division by 0  is excluded, we give the definition of quotient 

of two functions separately as follows: The quotient 
g

f
is the function 

whose domain consists of all numbers x  in the domains of both ( )f x  and 

g( )x  for which g( ) 0x , and whose rule is given by 

( )
( ) , ( ) 0

( )

f f x
x g x

g g x
 

Example (14) 

Let 
1

( )f x
x

 and ( )g x x . Find the domain and rule of f g . 

Solution 

The domain of f is : 0x R x  and the domain of  ( )g x  

: 0x R x .  

The only numbers in both domains are the positive numbers, which constitute the 

domain of f g . 

For the rule, we have 

1
( )( ) ( ) ( ) , 0f g x f x g x x x

x
. 

Example (15) 

 Let 2( ) 4f x x and g( ) 1x x . Find the domain and rule of f g . 

Solution:  

The domain of ( )f x  is the interval [ 2,2] and the domain of g( )x  is the interval 

[1, ) . The domain of [ 2,2] [1, ) [1,2]f g . The rule of f g  is given 

by 

2

2

( . )( ) ( ). ( ) 4 1

(4 )( 1) for 1 2

f g x f x g x x x

x x x
 

Caution 

This example illustrates a surprising fact about the domain of  functions combi-

nation . We found that the domain of ( ) ( )f x g x is the interval [1,2]. Now observe 
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that the expression 2(4 )( 1)x x is also meaningful for x  in ( , 2]. 

This is true because 2(4 )( 1) 0 2x x x . However, ( , 2] can-

not be considered a part of the domain of ( ). ( )f x g x . By definition, the domain of 

the resulting function ( ) ( )f x g x consists of those values of x  common to do-

mains of ( )f x  and ( )g x . It is not to be determined from the expression (or the 

rule) for ( ). ( )f x g x .  

Similar comments hold for the domains of ( ) ( )f x g x and ( ) ( )f x g x .  

For the domain of ( ) / ( )f x g x , there is an additional requirement that the values 

of x , for which ( ) 0g x , are excluded. 

Example (16)  

Let ( ) 3f x x  and ( ) ( 3)( 2)g x x x . Let us find the domain and rule 

of ( ) / ( )f x g x . 

Solution 

Observe that the domains of ( )f x  and ( )g x are all real numbers, but ( ) 0g x , for 

3x  and 2x . It follows that the domain of ( ) / ( )f x g x consists of all real 

numbers except 2x  and 3x . The 

rule of ( ) / ( )f x g x is given by 

( ) 3
( ) for 2 and 3

( ) ( 3)( 2)

f f x x
x x x
g g x x x

 

Note 

We can add or multiply more than two functions. For example, if ,f g , and h  are 

functions, then for all x  common to the domains of ,f g , and h , we have (

( ) ( ) ( ) ( )f g h x f x g x h x  and ( . . ) ( ). ( ). ( )f g h x f x g x h x . 

(b) Composition of Functions 

Given the two function f  and g , the composite function denoted by (

g f ) is defined by 

( )( ) ( ( ))g f x g f x  

and the domain of ( ( ))g f x is the set of all numbers x  in the domain of f  

such that ( )f x is in the domain of ( )g x . The definition indicates that when 
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computing ( )( )f g x , we first apply g  to x  and then the function f to 

( )g x . We write 

( )( ) ( ( ))f g x f g x  

Example (17) 

 Let 
3

( )
2

x
f x  and ( )g x x . We may composite them as follows: 

I.  
3 3

( )( ) ( ( )) ( )
2 2

x x
g f x g f x g  

  

II. 
2

( )( ) ( )
2

x
f g x f x  

Remark 

Note that ( )( ) ( )( )g f x f g x ). Thus, composition of functions is not 

commutative, ( )( )g f x and ( )( )f g x   are usually different. 

Domain of a Composite Function 

We must be more careful in describing the domain of a composite func-

tion. Let ( )f x  and g( )x  be defined for certain values of x . Then, the do-

main of ( )( )g f x  is that part of the domain of ( )f x  (i.e., those values of 

x x) for which g  can accept ( )f x  as input. In the above example, the do-

main of ( )( )g f x is 3, , since x  must be greater than or equal to 3  in 

order to give a nonnegative number 
3

2

x
 for g to work on. 

Example (18) 

Consider the function 3( ) 7x x . 

We can express ( )x  as the composition of the two functions g( )x  and 

( )f x , given by 3( ) 7f x x and ( )g x x . 

Now, we have 3 3( ) ( )( ) ( ( )) ( 7) 7x g f x g f x g x x  

Next, we can also express ( )x as the composition of another pair of func-

tions g  and f given by 3( )f x x  and ( ) 7g x x . 
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Consider 3 3( ) ( )( ) ( ( )) ( ) ( 7)x g f x g f x g x g x . 

Example (19) 

Given 
2

1
( )

3
x

x
. 

Express ( )x  as the composition of two function f and g in two ways: 

(i) The function  f  containing the radical. 

(ii) The function g  containing the radical. 

Solution  

To solve such problems, it is necessary to develop the ability of decompos-

ing the given function into composite pieces. 

I. We choose 
1

( )
3

f x
x

 and 2( )g x x . 

Now, 
2

2

1
( ) ( )( ) ( ( )) ( )

3
x f g x f g x f x

x
 

(Observe that to express ( ( ))f g x   first we insert the expres-

sion for ( )g x  and obtain ( )f t  , where t  stands for ( )g x . 

Next, we write the expression for ( )f t  and replace  t  by

( )g x .) 

II. Now,  we choose 
1

( )f x
x

 and 2( ) 3g x x  . Then, 

2

2

1
( ) ( )( ) ( ( )) ( 3)

3
x f g x f g x f x

x
(Here again, to express ( ( ))f g x , first we insert the expres-

sion for ( )g x and obtain ( )f t , where ( )f t  stands for 

( )g x . Now we look at the expression for ( )f t , which sug-

gests that we must take the reciprocal of  t .) 

Example (20) 

 Let ( ) 1f x x  and 
1( )g x
x

 . We shall determine the functions 
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g f  and f g  , and then find ( (5))g f  and f 
1

(g( ))
4

f   

Solution  

The function is   ( )g f x  given by 

1
( )( ) ( ( )) ( 1)

1
g f x g f x g x

x
 . The domain of ( )f x is  

[1, ) . Therefore, the domain of g f consists of those numbers x in

[1, )  for which g  can accept ( )f x as input. This demands that 

1 1

1 1
g
x x

 must be defined, which requires that  1x . 

Therefore, the domain of g f  is (1, ). 

The rule for f g is given by 

1 1
( )( ) ( ( )) ( ) 1f g x f g x f

x x
 

The domain of ( )g x is the set of nonzero numbers, that is( ,0) (0, )

Therefore, the domain of f g consists of those numbers  x  in the above 

domain for which f can accept ( )g x  as input. This demands that 

1 1
( ) 1f
x x

 must be defined.  

It requires that must be positi
1 1 1

1 0 1( ve w 1th )ix
x x x

.  

So, The domain is (0,1]. 

Inverse Function 1f  

If a function  " f  " is one-to-one and onto, then the correspondence associating 

the same pairs of elements in the reverse order is also a function. This reverse 

function is denoted by 1f , and we call it the inverse of the function f  . Note 

that, 1f is also one-to one and onto. See figure 1.13 

Remark 

A function f has an inverse provided that there exists a function, 1f such that 

I. the domain of 1f is the range of  f   

II. ( )f x y  if and only if 1( )f y x  for all x  in the domain of  " f " and 
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for all y  in the range of  " f ". 

Note  

Not every function has an inverse. If a function :f A B  has an inverse, then 

1 :f B A is defined, such that, the domain of 1f is the range of f  , and the 

range of 1f is the domain of  f , associating the same pairs of elements. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                     Fig. 1.13 

 

It can be shown that if  f  has an inverse, then the inverse function is uniquely 

determined. Sometimes, we can give a formula for 1f . For example 

( ) 2y f x x , then 1 1
( )

2
x f y y . Similarly, if 3( ) 1y f x x , then 

1 3( ) 1x f y y . In each case, we simply solve the equation that deter-

mines  x  in terms of y . The formula in y expresses the (new) function 1f . 

We cannot always give the formula for 1f . For example, consider the function 

5( ) 2 1y f x x x . It is beyond our capabilities to solve this equation for 

x. 

Note that, in such cases, we cannot decide whether a given function has an in-

verse or not.  

Fortunately, there are criteria that tell whether a given function ( )y f x has an 

inverse, irrespective of whether we can solve it for x . 

In this notation, the letter x  stands for the independent variable and the letter y  

the dependent variable for both the mutually inverse functions. Thus the func-
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tions 
3y x  and 

3y x  , represent a pair of mutually inverse functions. Al-

so 10xy   and 
10logy x  are mutually inverse functions. 

There is a simple relationship between the graphs of two mutually inverse func-

tions ( )y f x  and 
1( )y f x  . They are symmetric with respect to the line

y x (see Figure 1.14 and 1.15). 

 
                                                    Fig. 1.14 

 
                                                       Fig. 1.15 

In the case of simple functions (like linear functions, etc.) there is a three-step 

process that gives a formula for the inverse. 

Step (1): Solve the equation ( )y f x for x, in terms of y . 

Step (2): Use the symbol 1f to name the resulting expression in y . 

Step (3): Replace  y  by  x to get the formula for 1( )f x . 
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Example (21) 

Consider the function ( ) 3 2y f x x , x R , and let us find its inverse 

function. 

Solution 

Step (1): 
2

( ) 3 2
3

y
y f x x x   

Step (2): 1 2
( )

3

y
f y  

Step (3): 1 2
( )

3

x
f x  

Example (22)  

Let us find the formula for 1( )f x if ( )
1

x
y f x

x
 

Step (1): ( )
1 1

x y
y f x x

x y
 

Step (2): 1( ) ( 1)
1

y
f y y

y
 

Step (3): 1( ) ( 1)
1

x
f x x

x
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Algebraic Functions and Their Combinations 

(a) Constant Function:  

A function of the form ( )f x a , where "a " is a nonzero real number 

(i.e., 0a ), is called a constant function. The range of a constant func-

tion consists of only one nonzero number. 

(b)  Identity Function:  

The function ( )f x x  is called the identity function . The range of  iden-

tity function is all real number. From the functions at (a) and (b) above, we 

can build many important functions of calculus: polynomials, rational 

functions, power functions, root functions, and so on. 

(c) Polynomial Function:  

Any function, that can be obtained from the constant functions and the 

identity function by using the operations of addition, subtraction, and mul-

tiplication, is called a polynomial function. This amounts to say  that " ( )f x

" is a polynomial function, if it is of the form 

1 2
1 2 1 0( ) ....n n

n nf x a x a x a x a x a  

where 1 2 1 0, ,...., , ,n na a a a a  are real numbers ) 0na ) and n  is a 

nonnegative integer. If the coefficient 0na , then "n " (in nx ), the 

nonnegative integral exponent of x , is called the degree of the polynomial. 

Obviously, the degree of constant functions is zero. 

I. Linear Function: Polynomials of degree 1 are called linear functions. 

They are of the form 1 0( )f x a x a , with 1 0a . Note that, the 

identity function [ ( )f x x ] is a particular linear function. 

II. 2
2 1 0( )f x a x a x a is a second degree polynomial, called a 

quadratic function. If the degree of the polynomial is 3, the function 

is called a cubic function. 

III. Rational Functions: Quotients of polynomials are called rational 

functions. Examples are as follows: 

2

1
( )f x

x
,  3( ) 5f x x x ; 

3 2
( )

2

x x
f x

x
2

2

2
( )

5 6

x x
f x

x x
. 
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Example (23)  

Let 
2

2

2
( )

5 6

x x
f x

x x
. Find the domain of f . 

Solution 

We have 2 5 6 ( 1)( 6)x x x x . Therefore, the denominator is 0  for 

1x  and 6x . Thus, the domain of  f  consists of all numbers except 1  

and 6 . 

Remark  

Sometimes, it may happen that both the numerator and the denominator have 

a common factor. For example, we have 2 2 ( 1)( 2)x x x x , and 

2 5 6 ( 1)( 6)x x x x . So, we have  

2

2

2 ( 1)( 2)
( )

( 1)( 6)5 6

x x x x
f x

x xx x
 

which may be simplified to read
2

6

x

x
, provided 1x . Note that, while the ex-

pression 
2

6

x

x
is meaningful for 1x , the number 1  is not in the domain of 

function f . (This again suggests that the domain of a combination of functions 

must be determined from the original description of the function(s), and not from 

their simplified form.) 

(d) Power Functions 

These are functions, of the form ( )f x x , where  is real number. Ex-

amples are 4 2 3 5 0 3, , , , ,x x x x x x . 

(e) Root Functions 

I. Square root function  

Consider the relation 2y x . We write it as y x  or 1/2y x  

and call it the square root function of x . We know that there is no 

real number whose square  is a negative number. Hence, we define 

square root function ( )f x x  that assigns to each nonnegative 

number x  the nonnegative number ( )f x . We emphasize that 
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( )f x x  is defined only for 0x and that ( ) 0f x , for all 

0x . Accordingly, it is meaningful to write 8, 1 / 3 , and 0 , 

and so on, but 5 has no meaning. Furthermore, while 4 2 , 

we write 4 2  and we never write 4 2 . 

II. Cube Root Function  

Consider the relation 3y x . We write it as 
3y x  or 1/3y x , 

and call it the cube root function. It assigns to any number x , the 

unique number y  such that 3y x . Of course, our interest lies only 

in real roots. In contrast to the square root function, the cube root 

function has in its domain all real numbers, including negative num-

bers. For example, 
3 8 2 , 

3 1 1and 

3 27 / 64 3 / 4 . Similarly 
3 8 2; 

3 125 5 , and

3 125 5 . Thus cube root of any negative number is a negative 

number and that of any positive number is a positive number. 

III.  thn  Root Function 

We note that cube root function "
3( )f x x "is defined for all real 

numbers x , whereas square root function " ( )f x x " is defined 

only for 0x  with the understanding that 0x  (i.e., only 

nonnegative square roots are accepted). By extending these concepts 

to the roots of higher order, we get that if n  is odd, then thn  root 

function "
n x " is defined for all real numbers, and on the other 

hand, if n  is even, then "
n x " is defined only for 0x  

Note  

 In view of the above, the expressions
3 1 ; 

5 32  and 
7 128 are 

meaningful, whereas the expressions 
4 1 ; 

6 64 ; and 3 9 / 4
are meaningless. For every positive integer n , we also have 

1 1, 0 0n n
. 
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Non-algebraic Functions and Their Combinations 

I. Trigonometric functions 

Let a point ( , )p x y  moves along  a circle perimeter with radius 1r  and 

 is the angle that the revolving line OP makes with the x-axis (see figure 

1.16). Then, we can define the sine and cosine functions of   by: 

sin
x

r
, cos

y

r
 

 
                                                   Fig. 1.16 

Here , it is important to keep in mind that the angle  can be of any mag-

nitude and sign. Therefore, the terminal side OP can be in any quadrant. 

Thus, the angle  that the revolving line makes with the x-axis need not 

be acute. However, we define the trigonometric function of the angle 

with reference to the right-angled triangle in which the revolving line (as 

hypotenuse) makes the angle  with the x-axis. Obviously,  may be 

acute or obtuse or negative. 

There are four other basic trigonometric functions that are defined in terms 

of sin
 
 and cos , we define 

sin
tan

cos
,  

cos
cot

sin
 

1
sec

cos
,  

1
co sec

sin
 

The values of these functions can be quickly computed from the corre-
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sponding values of sin  and cos . 

Properties of  trigonometric functions 

1. Sine function 
Sine function has the following properties(Fig. 1.17) 

a. sin : R R   

b. Its domain is R  and its range is [ 1,1] 
c. It is periodic function with period 2 , that is           

    sin( 2 ) sin . 

d. It is odd function, that is,  sin( ) sinx x . 

e. Sine function is not one-to-one function. 

 

Fig. 1.17 

2. Cosine function 

         Cosine function has the following properties (see Fig. 1.18) 

a. cos : R R  

b. Its domain is R  and its range is [ 1,1] 
c. It is periodic function with period 2 , that is  

    cos( 2 ) cosx x . 

d. It is even function, that is,  cos( ) cosx x . 

e. Cosine function is not one-to-one function. 

 

Fig. 1.18 
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3. Tangent function 
Tangent function has the following properties (see Fig. 1.19) 

a. tan : { } ,
2

R k R k Z .  

b. Its domain is { },
2

R k k Z  and its range is R . 

c. It is periodic function with period , that is tan( ) tanx x . 

d. It is odd function, that is,  tan( ) tanx x . 

e. It is not one-to-one function. 

 

                                                      Fig. 1.19 

4. Secant function 
Secant function has the following properties (see Fig. 1.20). 

a. sec : { } ,
2

R k R k Z . 

b. Its domain is { },
2

R k k Z  and its range is  

    ( , 1] [1, ) . 

c. It is periodic function with period 2 , that is  

    sec( 2 ) secx x . 

d. It is even function, that is,  sec( ) secx x . 

e. It is not one-to-one function. 
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                                                          Fig. 1.20 

5. Cosecant function 
Cosecant function has the following properties (see Fig. 1.21) 

a. cosec : { } ,R k R k Z  

b. Its domain is { },R k k Z  and its range is  

    ( , 1] [1, )  

c. It is periodic function with period 2 , that is  

   cosec( 2 ) cosecx x . 

d. It is odd function, that is,  cosec( ) cosecx x . 

e. It is not one-to-one function.   

 

                                                          Fig. 1.21 

 

6. Cotangent function 

Cotangent function has the following properties (see Fig. 1.22). 

a. cot : { } ,R k R k Z . 

b. Its domain is { },R k k Z  and its range is R . 
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c. It is periodic function with period , that is cot( ) cotx x . 

d. It is odd function, that is,  cot( ) cotx x . 

e. It is not one-to-one function.  

 
                                                              Fig. 1.22 

 

Some Values of Trigonometric Functions 

 

2 3 5
0

6 4 3 2 3 4 6

1 2 3 3 2 1
sin 0 1 0

2 2 2 2 2 2

3 2 1 1 2 3
cos 1 0 1

2 2 2 2 2 2

x

x

x

      


   

 

        
 

 

sin sin

cos cos

x x

x x





  

  
 

Trigonometric  Identities  

1 . 
2 2sin cos 1x x   

2 . 
2 21 tan secx x   

3 . 
2 21 cot cosecx x  

4 . sin( ) sin cos sin cosx y x y y x   

5 . cos( ) cos cos sin sinx y x y x y  

6 . 
tan tan

tan( )
1 tan tan

x y
x y

x y
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7 . sin2 2sin cosx x x   

8 . 
2 2 2 2cos2 cos sin 1 2sin 2cos 1x x x x x   

9 . 
2 1 cos2

sin
2

x
x   

1 0 . 
2 1 cos2

cos
2

x
x   

1 1 . 
1

sin cos [sin( ) sin( )]
2

x y x y x y   

1 2 . 
1

sin sin [cos( ) cos( )]
2

x y x y x y  

1 3 . 
1

cos cos [cos( ) cos( )]
2

x y x y x y  

II. Trigonometric Functions (With Restricted Domains) and Their In-

verses 

We begin with the sine function  siny x  , whose graph appears in 

Figure 1.17. Observe from the figure that the sine function is strictly in-

creasing on the interval ,
2 2

  
 
 

 . Consequently, the function 

( ) sinf x x  , for which 

( ) sin , ,
2 2

f x x x
  

   
 

 

is one-to-one, and hence it does have an inverse in this interval. The graph 

of is sketched in figure 1.23. Its domain is ,
2 2

  
 
 

  and its range is 

 1,1 . The inverse of this function is called the inverse sine function. 
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                                                   Fig. 1.23 

1 . Inverse Sine Function  

The inverse sine function, denoted by 1sin  is defined by 

1siny x , if and only if sinx y   and [ , ]
2 2

y .  

The domain of  1sin x  is the closed interval 1,1   and the range 

is the closed interval ,
2 2

 (see  Fig. 1.24). 

 
                                                        Fig. 1.24 
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Remarks 

1sin ( 1)
2

  as sin( ) 1
2

.  

1sin (0) 0  as  sin(0) 0 .  

1 1
sin ( )

2 6
 as 

1
sin

6 2
. 

1 1
sin ( )

42
 as  

1
sin( )

4 2
.  

1sin (1)
2

 as sin( ) 1
2

.  

The use of the symbol "-1" to represent the inverse sine function 

makes it necessary to denote the reciprocal of sinx  by 1(sin )x  , to 

avoid confusion. 

A similar convention is applied when using any negative exponent 

with a trigonometric function. For instance, 11
(tan )

tan
x

x
 

11
(cos )

cos
x

x
 and so on.  

The terminology arc sine is sometimes used in place of inverse sine, 

and the notation arc sine is then used instead of  1sin x  . 

 

2 . Inverse Cosine Function 

The graph of  cosine function  cosy x , appears in Figure 1.18. 

Observe from the figure that the cosine function is strictly decreas-

ing on the interval 0,  . Consequently, the function 

( ) cosf x x  , for which 

 ( ) cos , 0,f x x x    

is one-to-one, and hence it does have an inverse in this interval. The 

graph of is sketched in figure 1.25. Its domain is  0,   and its 

range is  1,1 . The inverse of this function is called the inverse 

cosine function. 
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                                           Fig. 1.25 

The inverse cosine function, denoted by 1cos x  , is defined by
1cosy x  , if and only if cosx y   and 0,y  . The do-

main of 1cos x  is the closed interval 1,1  and the range is the 

closed interval 0, (see  Fig. 1.26).   

 
                                                         Fig. 1.26 

1cos ( 1)   as cos( ) 1.  

1cos (0)
2

 as  cos( ) 0
2

.  

1 1
cos ( )

2 3
 as 

1
cos

3 2
. 

1 1
cos ( )

42
 as  

1
cos( )

4 2
.  
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1cos (1) 0  as cos(0) 1.  

3 . Inverse Tangent Function 

The inverse tangent function, denoted by 1tan , is defined by

1tany x  , if and only if, tanx y  and  
2 2
y  . The 

domain of  1tan x  is the set  of real numbers and the range is 

the open interval( , )
2 2

 . The graph of the inverse tangent func-

tion is shown in Figure 1.27. 

 
                                                          Fig. 1.27 

4 . Inverse Cotangent Function 

To define the inverse cotangent function, we use the identity

1 1tan cot
2

x x  ,  where x  is any real number. 

The inverse cotangent function, denoted by 1cot  , is defined by

1 1cot tan
2

y x x   where x is any real number. 

The domain of  
1cot x  is the set  of real numbers. To obtain the 

range, we write the equation in the definition as 

1 1cot tan (**)
2

x x  

We know that;   



34 
 
 

 

1tan (* * *)
2 2

x  

Using (**) in (***), we get 

1cot
2 2 2

x  

Subtracting 
2

 from each member, we get 

1cot 0x  
Now, multiplying each member by 1 , we get 

10 cot x  
The range of the inverse cotangent function is therefore the open in-

terval (0, )(see Fig. 1.28). 

 
                              Fig. 1.28 

Illustration 

(a) 1tan (1)
4

  

(b) 1tan ( 1)
4

 

(c) 1 1cot (1) tan (1)
2 4

  

(d) 1 1 3
cot ( 1) tan ( 1)

2 4
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5 . Inverse secant Function 

The inverse secant function, denoted by 1sec , is defined by

1secy x  , if and only if, secx y  and  [0, ] { }
2

y  . The 

domain of  1sec x  is the set ( 1,1) of real numbers and the 

range is [0, ] { }
2

 . The graph of the inverse secant function is 

shown in Figure  1.29.  

 
                                                         Fig. 1.29 

6 . Definition of the Inverse cosecant Function 

The inverse secant function, denoted by 1cosec , is defined by
1cosecy x  , if and only if, cosecx y  and  

[ , ] {0}
2 2

y  . The domain of  1cosec x  is the set 

( 1,1) of real numbers and the range is [ , ] {0}
2 2

 .  
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The graph of the inverse cosecant function is shown in Figure 1.30.  

 
                                      Fig. 1.30 

 

III. Exponential Function 

The product 2 2 2 2 2 2 64       , is conveniently written in the form 
62 64   , to mean that the number is multiplied by itself, six times. In the 

expression 
62  , the number "2  "is called the base and "6  " is called the ex-

ponent. We say that the number 64   is expressed in the exponential form as
62  . Similarly, we can write 

34 64  and
164 64  , which are two other 

exponential forms for 64. 

In fact, any positive number can be expressed in any number of exponential 

form(s), by choosing a positive base and an appropriate exponent. 

Definition  
The exponential function is defined as  

( ) , 0, 1xy f x a a a  

The domain of exponential function is the set of all real numbers  and its 

range is the set of positive numbers. This function monotonically increases, 

if the base is 1a  and monotonically decreases if 0 1a   (see Fig. 

1.31). 
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                                                           Fig. 1.31 

 

The Natural Exponential Function 

The exponential function to the base  e  is called the natural exponential 

and is usually denoted by  ( ) xy f x e  (see Fig.  1.32). 

 
 

                                                      Fig. 1.32 

Laws of Exponents (or Laws of Indices) for real exponents 

For any positive real numbers 1, 1a b  , ,m n  natural numbers and real 

variables ,x y  , the following laws are valid: 

I. .x y x ya a a    
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II. , 0
x

x y

y

a
a a

a

    

III.  
y

x xya a   

IV.  . .
x x xab a b   

V. 
0 1a    

VI. 
/n m m na a   

The Exponential Series 

Now, we will show that, 
2 3 4

1 ...
1! 2! 3! 4!

x x x x x
e        

Proof. 

Consider  the expression 
1

1

nx

n

 
 

 
, by making use of the binomial theo-

rem, we can expand this expression and get 

2

3

2

2

1 1 ( 1) 1
1 1 .

1! 2!

( 1)( 2) 1
...

3!

( 1 / ) 1
1

1! 2!

n x
nx nx nx

n n n

nx nx nx

n

x n x x n

n

 
    

 

 
 


  

 

3

3

( 1/ )( 2 / ) 1
...

3!

n x x n x n

n

 
   

( 1/ ) ( 1/ )( 2 / )
1 ...

1! 2! 3!

x x x n x x n x n  
      

But, asn   , the terms 1/ , 2 /n n  , and so on approach 0  . Therefore, 

the right-hand side simplifies to the following: 
2 3 4

R.H.S. 1 ...
1! 2! 3! 4!

x x x x
       

Moreover, the number of terms (being   1n   ) becomes infinitely large as

n   , whatever x may be. Hence, the series continues to infinity. 

Also, 
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1 1

lim L.H.S.= lim 1 lim 1

x
nx n

x

n n n
e

n n  

    
            

 

We get,  
2 3 4

1 ...
1! 2! 3! 4!

x x x x x
e        

 

IV. The Logarithmic Function 

Firstly, we introduce the concept of logarithm of a positive real number. If 

three numbers  ,a b , and c  are so related that 
ba c  

then the exponent "b " is called the logarithm of  "c " to the base "a " 

We write 

loga c b  

It may be noted that the logarithm of a number can be different for different 

bases. In the system of logarithms, which we use in our day-to-day calcula-

tions (such as those in the field of engineering, etc.), the base 10   is found 

to be most useful. Logarithms to the base 10   are called common loga-

rithms. Once the base "10  " is chosen, it has to be raised with a suitable re-

al number "b "(positive, zero, or negative) so that, it represents the given 

(positive) number c , exactly or very close to it.  

Thus, we write, 

10 or 10b bc c    where the symbol "" stands for "very close to". 

For example, 

10 10log 100 2, log 1000 3  . 

These values of logarithms are exact, since 
210 100  and

310 1000 .  

On other hand,  

10 10log 5 0.669 , log 27.8 1.4453   

These values of logarithms are not exact, but they are very close to 

the numbers in equations, since    
0.699 1.4453

10 5 , 10 27.8  . 

In common logarithms, the base is always10  , so that, if no base is men-

tioned, the base 10   is always understood. However, it is useful only while 

dealing with arithmetical calculations. 

Important in calculus are logarithms to the base "e ", called natural loga-

rithms . The number"e ", (which is the base for natural logarithms) is a typ-

ical irrational number, lying between 2   and 3  ( 2.71828. . .e  ). 
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The notation for "natural logarithm" is " ln ". 

Definition of the logarithm 

The logarithm of a given number to a given base, is equal to the power to 

which, the base should be raised to get the given number. 

 

We know that     Therefore we  say that          we write 
6

2

3

4

1

64

2

5

3

5

2 =64 log of 64 to the base 2=6 log 64=6 

4 =64 log of 64 to the base 4=3 log 64=3

64 =64 log of 64 to the base 64=1 log 64=1

5 =25 log of 25 to the base 5=2 log 25=2

5 =1/125 log of 1/125 to the base 5=-3 log (1

0

1

/125)=-3

1,(a 0) log of 1 to the base a=0 log 1=0

log of a to the base a=1 log a=1

a

a

a

a a

 



 

Note  

I. From the first three illustrations, we observe that the logarithm of a (posi-

tive) number is different for different bases. 

II. The logarithm of  1  to any base is zero. 

III. The logarithm of any number to the same base (as the number itself)    

is 1  (i.e. 10log 1, log 10 1, log 1a ea e   .) 

Definition 
the general logarithmic function is defined as  

( ) log , 0, 1ay f x x a a     

and defined by the condition 

log y

ay x a x     

The domain of  the logarithmic function logay x is the set of all posi-

tive real numbers  0, , and its range is the open interval ( , )  .  

This function monotonically increases if 1a   , and monotonically de-

creases if 0 1a   (see Fig. 1.33). 



41 
 
 

 

 
                                                     Fig. 1.33 

 

The logarithmic function, logay x is the inverse of the exponential 

function 
xy a . 

The Natural Logarithm 

The logarithmic function to the base  e  is called the natural logarithmic 

function and is usually denoted by lnx  (or loge x ) see Fig. 1.34. 

 
 

                                             Fig. 1.34 
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The Common Logarithm 

The logarithmic function to the base 10  is called the common logarithmic 

function and sometimes denoted by logx . 

The fundamental Laws of Logarithms 

        
(i) log logx

a ab x b  

Proof. 

        

   

Let log

L.H.S. log log

log R.H.S.

u

a

x
u ux

a a

a

b a b u

a a

u x x b

  

  

  

 

         

(ii) log ( ) log log

(iii) log log log

a a a

a a a

x y x y

x
x y

y

 

 
  

 
 Change of Base 

We will now show that, if we are given the logarithm of a number, to any 

base, then we can easily compute the logarithm of that number to any other 

base. The following relation states the rule. 

log
log (1)

log

b
a

b

x
x

a
  

 

Proof. 

Let  
/,y c y cx b a b x a     

The left hand side of (1) 

/L.H.S. log log (2)y c

a a

y
x a

c
  

 
The right hand side of (1) 

log log
R.H.S. (3)

log log

y

b b

c

b b

x b y

a b c
    

Comparing  (2) and (3) we have the result. 
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Relation Between Exponential Function and Logarithmic Function 

Now, it is easy to show that 
loga x

a x  

 

Proof. 

Let  
log

(1)a x
a t  

 

Taking the logarithm to base a  for both sides of  (1), we have 
log

log log log loga x

a a a aa t x t    

So, we have 

t x  

Corollaries 

I. ln yy x x e    . 

II. ln lnxy a y x a   . 

III. 
ln

log
ln

a

x
x

a
  . 

IV. ln xe x  . 

V.  
lnxe x .  

V. Hyperbolic Functions and Their Properties 

Certain special combinations of  
xe  and  

xe 
 appear so often in both math-

ematics and science that they are given special names. 

Definitions 

The functions 

sinh , cosh (1)
2 2

x x x xe e e e
x x

  
   

are respectively, called the hyperbolic sine and hyperbolic cosine. 

the parametric equations  coshx t  , sinhy t  describe the right 

branch of the unit hyperbola  
2 2 1x y   [which is the special case of the 

hyperbola

2 2

2 2
1

x y

a b
   ](Figure 1.35). Moreover,  the parameter  t  is re-

lated to the shaded area S  by 2t S . 
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                                                  Fig. 1.35 

 

There are six basic hyperbolic functions. The other four hyperbolic func-

tions are defined in the terms of the hyperbolic sine and hyperbolic cosine. 

Definitions  
The functions 

sinh
tanh

cosh

x x

x x

x e e
x

x e e






 


 

cosh
coth

sinh

x x

x x

x e e
x

x e e






 


 

1 2
sech

cosh x x
x

x e e 
 


 

1 2
cosech

sinh x x
x

x e e 
 


 

are respectively called the hyperbolic tangent, the hyperbolic cotangent, the 

hyperbolic secant, and the hyperbolic cosecant. 

Hyperbolic functions are connected by a number of algebraic relations simi-

lar to those connecting trigonometric functions. In particular, the fundamen-
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tal identity for the hyperbolic functions is 
2 2cosh sinh 1x x   

2 21 tanh sechx x   
2 21 coth cosechx x    

 cosh cosh cosh sinh sinhx y x y x y    

 sinh sinh cosh sinh coshx y x y y x    

If y  is replaced by x  in these identities we obtain, 

  2 2cosh 2 cosh sinhx x x   

 sinh 2 2sinh coshx x x  

Note   
From the definitions (1) , we can obtain 

sinh cosh xx x e   

cosh sinh xx x e    

It is, therefore, apparent that any combination of the exponentials  
xe  and 

xe 
 can be replaced by a combination of  sinhx  and coshx  and  con-

versely. 

The important hyperbolic identities  

 

 

2 2

2 2

2 2

2 2

cosh sinh 1

sinh 2 2sinh cosh

cosh 2 cosh sinh

sech 1 tanh

cosech coth 1

sinh sinh cosh sinh cosh

cosh cosh cosh sinh sinh

x x

x x x

x x x

x x

x x

x y x y y x

x y x y x y

 



 

 

 

  

  

 

Note  

Hyperbolic functions are defined in terms of exponential functions. This is 

very different from the way we defined trigonometric functions. However, 

if you study complex analysis, you will discover that trigonometric func-

tions can also be defined in terms of exponential functions of a complex 

variable. 
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The Properties of  Hyperbolic Functions 

The graphs of hyperbolic cosine and hyperbolic sine are shown in Figs. 

1.36 and 1.37. 

 At  0x   , cosh 1x   andsinh 0x   . Note that these value are same as 

in the case of corresponding trigonometric functions  at 0x   . Therefore, 

all the hyperbolic functions have the same values at 0x    that the corre-

sponding trigonometric functions have. 

Further, note that 

 sinh sinh
2 2

x x x xe e e e
x x

  
       

 cosh cosh
2 2

x x x xe e e e
x x

  
     

Thus, hyperbolic sine is an odd function and the hyperbolic cosine is an 

even function. So the graph of sinhx is symmetric with respect to the 

origin and that of  coshx  is symmetric about the axisy   . 

 
 

                                                    Fig. 1.36 
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                                                    Fig. 1.37 

 

1. The domain of  the  function sinhx   is the set of  all real numbers  

 and its range is ( , )  (Fig. 1.36). 

2. The domain of  the  function coshx   is the set of  all real numbers 

 and its range is [1, ) (Fig. 1.37).  

3. The domain of  the  function tanhx   is the set of  all real numbers  

 and its range is ( 1,1) (Fig. 1.38).  

4. The domain of  the  function cothx   is the set of  all real numbers  

 except at 0x     {0}  and its range is 

 1,1 ( , 1) (1, )       (Fig. 1.39). 

5. The domain of  the  function sechx   is the set of  all real numbers  

 and its range is (0,1](Fig. 1.40).  

6. The domain of  the  function cothx   is the set of  all real numbers  

 except at 0x    {0}  and its range is  {0}   

(Fig. 1.41).  
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                                              Fig. 1.38 

 
                                               Fig. 1.39 

 

 
                                              Fig. 1.40 
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                                      Fig. 1.41  

VI. Inverse Hyperbolic Functions 

1. Inverse Hyperbolic Sine Function.  

From the graph of the hyperbolic sine in Figure 1.36, observe that  

the hyperbolic sine is one-to-one. Furthermore, the hyperbolic sine is 

continuous and increasing on its domain. Thus, this function has an 

inverse that we now define. 

Definition (A): The inverse hyperbolic sine function denoted by
1sinh x

 , is defined as follows: 
1sinhy x  , if and only if, sinhx y , where y is any real 

number (Figure 1.42). 

Both, the domain and range of  
1sinh x

 , are the set  of real 

numbers. From the definition (A), 

   1 1sinh sinh and sinh sinhx x y y  
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                                       Fig.1.42 

2. Inverse Hyperbolic Cosine Function 
As in the case of inverse trigonometric functions, we restrict the do-

main and define a new function ( ) cosh , 0f x x x    as follows: 

The domain of this function is the interval [0, )  and the range is the 

interval[1, )  . Because ( )f x  is continuous and increasing on its 

domain, it has an inverse, called the inverse hyperbolic cosine func-

tion.  

Definition (B): The inverse hyperbolic cosine function denoted by
1cosh x

 , is defined as follows: 
1cosh , if andonlyif cosh , 0y x x y y    

 

The domain of 
1cosh x

 is in the interval [1, )  and the range is in 

the interval [0, ) ( See Fig. 1.43) . From the definition (B), 

 

 

1

1

cosh cosh if 1,

and cosh cosh if 0

x x x

y y y
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Fig. 1.43 

3. Inverse Hyperbolic Tangent Function 
The hyperbolic tangent function is one-to-one and has an inverse. 

Definition (C): The inverse hyperbolic tangent function denoted by 
1tanh x

 is defined as follows: 
1tanh  if and only if ,  tanh ,  

where  is any real number.

y x x y

y

 
 

The domain of the inverse hyperbolic tangent function is the interval 

( , )   and the range is the set  of real numbers. The graph of 
1tanh x

 appears in Figure 1.44.   

 
Fig.1.44 

4. Inverse Hyperbolic Cotangent Function.  

The hyperbolic cotangent function is one-to-one and has an inverse. 

The graphs of  
1cothy x  is given in Figures 1.45.  
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The domain of the inverse hyperbolic cotangent function is 

( ,1) (1, )     and the range is ( ,0) (0, )   . 

 
                                              Fig. 1.45 

5. Inverse Hyperbolic Secant Function. 

We restrict the domain of  hyperbolic secant function and define a 

new function ( ) sech , 0f x x x    as follows: 

The domain of this function is the interval [0, )  and the range is the 

interval(0,1]  . Because ( )f x  is continuous and increasing on its 

domain, it has an inverse, called the inverse hyperbolic secant func-

tion.  

Definition (D): The inverse hyperbolic secant function denoted by
1sech x

 , is defined as follows: 
1sech , if andonlyif cosh , 0y x x y y    

The domain of 
1sech x

 is the interval (0,1]  and the range is the in-

terval [0, )  (see Fig. 1.46).  

From the definition (D), 

 

 

1

1

sech sech if 0 1,

and sech sech if 0

x x x

y y y
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                                            Fig. 1.46 

6. Inverse Hyperbolic Cosecant Function. 

The hyperbolic cosecant function is one-to-one and has an inverse. 

The graphs of  
1cosechy x  is given in Figures 1.47.  

The domain of the inverse hyperbolic cotangent function is 

( ,0) (0, )     and the range is ( ,0) (0, )   . 

 
                                               Fig. 1.47 

Logarithm Equivalents of the Inverse Hyperbolic Functions 

Since the hyperbolic functions are defined in terms of 
xe  and 

xe 
 , 

it is not too surprising that the inverse hyperbolic functions can be 

expressed in terms of the natural logarithm. Following are these ex-

pressions for the six inverse hyperbolic functions we have discussed. 
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1 2

1 2

1

1

2
1

2
1

sinh ln 1 ,

cosh ln 1 , 1

1 1
tanh ln , 1

2 1

1 1
coth ln , 1

2 1

1 1
sech ln , 0 1

1 1
cosech ln , 0

x x x x

x x x x

x
x x

x

x
x x

x

x
x x

x

x
x x

x













   

   

 
  

 

 
  

 

  
   

 
 

  
  

 
   

To prove 

 1 2sinh ln 1 ,x x x x      

Let 
1sinhy x   

From definition (A) 

 

2 2

2

1 2

sinh
2

1 1 sinh cosh
2

1

sinh ln 1

y y

y y

y

e e
x y

e e
x y y

x x e

y x x x








 


    

   



   

 

To prove 

 1 2cosh ln 1 , 1x x x x      

Let 
1coshy x   

From definition (B) 
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2 2

2

1 2

cosh
2

1 cosh 1 sinh
2

1

cosh ln 1

y y

y y

y

e e
x y

e e
x y y

x x e

y x x x








 


    

   



   

 

 

To prove 

1 1 1
tanh ln , 1

2 1

x
x x

x

  
  

 
 

Let 
1tanhy x   

From definition (C) 

   

2

2

2 2 2

2

1
tanh

1

1 1 1 1

1 1

1 1

y y y

y y y

y y y

y y

e e e
x y

e e e

x e e e x x

x x
e e

x x





 
  

 

       

 
   

 

 

But  0ye   , we have 

1

1

1 1
ln

2 1

y x
e

x

x
y

x






 
  

 

 

The other relations can be proved in similar way. 

 



65 
 

Chapter 2 

Limits of Real Functions 

Introduction 

      Addition, subtraction, multiplication, division, raising 

to a power, extracting a root, taking a logarithm, or a modu-

lus are operations of elementary mathematics. In order to 

pass from elementary mathematics to higher mathematics, 

we must add to this list one more mathematical operation, 

namely, "finding the limit of a function". 

     The notion of limit is an important new idea that lies at 

the foundation of Calculus. In fact, we might define Calcu-

lus as the study of  limits. It is, therefore, important that we 

have a deep understanding of this concept. Although the 

topic of  limit is rather theoretical in nature, we shall try to 

represent it in a very simple and concrete way. 

 

Useful  Notations 

 Meaning of the notation x a  Let x  be a variable 

and "a" be a constant. If  x  assumes values nearer and 

nearer to "a" (without assuming the value "a" itself), 

then we say x tends to a (or x approaches a) and we 

write x a . In other words, the procedure of giving 

values to x  (from the domain of   " f ") nearer and 

nearer to "a", but not permitting  x  to assume the val-

ue "a ", is denoted by the symbol "x a ". Thus, 

1x   means, we assign values to x which are nearer 

and nearer to 1 (but not permitting  x to assume the 

value 1), which means that x comes closer and closer 

to "1" reducing the distance between "x " and "1", in 

the process. Thus, by the statement "x " tends to "a ", 

we mean that: 

 x a , 

 (x  assumes values nearer and nearer to a, and 
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 The way in which x should approach a is not spec-

ified. (Different ways of approaching “a” are given 

below.) 

 Meaning of  x a    

If we consider x to be approaching closer and closer to 

"a " from the left side (i.e., through the values less than 

"a "), then we denote this procedure by writing  

x a   and read it as "x  " tends to "a minus". 

 Meaning of x a   

If we consider x  approaching closer and closer to "a " 

through the values greater than "a  " (i.e., x approach-

ing "a " from the right side), then this procedure is de-

noted by writing x a and we read it as  "x   " 

tends to "a plus". 

Example (1) 
Consider the function 

( ) 3 5, (2,3) (3,5]f x x x     

Note the following points 

1. " 4" is in the domain of  f  , and it can be approached 

from both the sides. Therefore, we can write 4x   . 

2. "5  " is in the domain of  f  , but x  can approach 5  , 

only from the left of  5 (i.e., through values of 5x   ). 

Thus, in this case, it is meaningful to write  5x   ,

but we cannot write 5x  .   

3. " 2" is not in the domain of  f , but x  can approach “2”, 

from the right of "2" (i.e., through values of 2x  ). 

Thus, in this case, it is meaningful to write 2x   but ,

we cannot write 2x   or 2x  . 

4. "3 " is not in the domain of  f  , but x can approach  " 

3 " from both the sides of "3 ". Thus, we can write 

3x  and  3x    or 3x    

Notes 

1. If x  can approach "a  " from both sides, then  for an 
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arbitrary small 0   , x  always belongs to the  

 -neighborhood of  "a ", that is, ( , )x a a     with

x a . This is equivalent to assigning values to "x ", clos-

er and closer to "a "from both sides of  "a ". (This proce-

dure is useful for studying the values of a function in the 

neighborhood of the given point "a ".) 

 

2. If x a  (i.e., if  approaches "a "from the left) then, 

for an arbitrary small 0   , x always belongs 

( , )a a  

 

3. If x a  (i.e., if x approaches “a” from the right) 

then, for an arbitrary small 0   , x  always belongs to 

(a,a )  

 
Definition of the limit 
Let f(x) be a function. If  x assumes values nearer and near-

er to the number "a "except possibly the value "a " and f(x) 

assumes the values nearer and nearer to l  , which is a finite 

real number, then we say that f(x) tends to the limit l  as x 

tends to a, and we write   

lim ( )
x a

f x l


  

Notice that the function f need not even be defined at "a ".  

If  ( )f x  assumes the values nearer and nearer to l as  x  

approaches closer and closer to "a " from the left side, then  

the number " l " is the limit of ( )f x  as x  approaches "a

"from the left and we write 
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lim ( )
x a

f x l


  

If  ( )f x  assumes the values nearer and nearer to l as x 

approaches closer and closer to "a " from the right side, 

then  the number " l " is the limit of  ( )f x  as x approach-

es "a "from the right and we write 

lim ( )
x a

f x l


  

Since "a " may be approached from both the sides of  a 

(i.e., left side and right side of a) when we say that 

lim ( )
x a

f x l


  

we really mean to say that  

lim ( ) lim ( )
x a x a

f x l f x
  

   

If these conditions are not satisfied simultaneously, we say 

that lim ( )
x a

f x


 does not exist. 

Example (2) 
Consider  

2 4
( ) , 2

2

x
f x x

x


 


 

Find 
2

lim ( )
x

f x


. 

Solution 

We prepare the following calculations, by choosing succes-

sive values of  x from a small neighborhood of  2 (say  

0.1   is  neighborhood of  2) and compute correspond-

ing values ( )f x  . From the  calculations, we get the data of 

our interest, which is given in Table 2.1. 
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x                             ( )f x   x                             ( )f x   

1.91 3.91

1.92 3.92

1.96 3.96

1.99 3.99

1.997 3.997

1.9998 3.9998

1.999998  3.999998

1.99999999 3.99999999

2 Not defined

  

2.1 4.1

2.01 4.01

2.001 4.001

2.0001 4.0001

2.00001 4.00001

2.000001 4.000001

2.0000001 4.0000001

2.00000001 4.00000001

2 Not defined

  

                                              

                                           Table 2.1 

From the table,  we observe that as x approaches 2,  ( )f x  

takes up values closer and closer to 4.We, therefore, say 

that the limit of ( )f x  as x  approaches 2, is 4. In symbols, 

we write  

2
lim ( ) 4
x

f x


  

 

Note that the preparation of  Table 2.1 is time consuming 

and tedious. On the other hand, we have 
2 4 ( 2)( 2)

( ) , 2 (1)
2 ( 2)

x x x
f x x

x x

  
  

 
 

Note that, if ( 2) 0x    , (i.e., if 2x  ) then we can 

cancel the factor ( 2x   ) from the numerator and the de-

nominator of the above expression on the right-hand side of 

Equation (1), and get, 

( ) 2, 2 (2)f x x x    

Thus, we have two Equations (1) and (2), both representing 

the same function ( )f x  , when 2x   . We may choose 
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any of them for computing the limit of the function in ques-

tion. Obviously, the Equation (2) is simpler to handle in 

view of the difficulty observed in connection with the ex-

pression

2 4
, 2

2

x
x

x





 , in listing the values of ( )f x  in 

the neighborhood of  2. Hence, we choose the expression  

( ( ) 2f x x   ) for computing the limit in question. We 

get 
2

2 2

2

4
lim ( ) lim , 2

2

lim( 2), 2

2 2 4

x x

x

x
f x x

x

x x

 




 



  

  

 

Note that whereas (2)f   does not exist (since 2 is not in 

the domain of  " f "),  
2

lim ( )
x

f x


  exists, and it is given by 

the number 4. This shows that the existence or nonexist-

ence of the limit of a function at a point does not depend on 

the existence or nonexistence of the value of the function at 

that point. 

Example (3) 

 Consider  

2
( ) , 2

2

x
G x x

x


 


 

Note that this function is defined for all real values of  x , 

except 2x   . However, the limit 
2

2
lim , 2

2x

x
x

x





  

does not exist (see Fig. 2.1). 
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                                       Fig. 2.1 

This is because, as 2x   , the numerator ( 2x   ) ap-

proaches the number 4 whereas the denominator approach-

es the number "0 " from right, so that ( )G x  approaches 

positive large values.  On the other hand, as 2x   , the 

numerator ( 2x   ) approaches the number 4 whereas the 

denominator approaches the number "0 "from left, so that 

( )G x approaches negative large values.   Whenever such a 

situation arises, we say that the limit of the function does 

not exist. Later , we shall introduce infinity as limit of a 

function. 

Example (4) 
Let  

5, 0
( )

2, 0

x x
f x

x x

 
 

 
 

Find  
0

lim ( )
x

f x


.  

Solution 

Observe that (0)f  is not defined. Let us study the values 

( )f x  as of 0x  . We note that as 
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0 ( ) 2x f x    . 

On the other hand, as 

0 ( ) 5x f x    . 

Thus 

0 0
lim ( ) lim ( )
x x

f x f x
  

 . 

When this happens, we say that the limit of the function 

does not exist. 

Example (5) 

2 1, 1 2
( )

4 5, 2 3

x x
f x

x x

  
 

  
 

Observe that  (2)f  is not defined. Let us study the values 

of ( )f x  as 2x   . We prepare Table 2.2.  

  

 x                       ( ) f x                x                   ( ) f x   

1.9 2.8 2.1  3.4

1.99 2.98 2.01 3.04

1.999 2.998 2.001 3.004

1.9999 2.9998 2.0001 3.0004

1.9999 2.99998 2.00001 3.00004

2  ( ) 3  2 ( ) 3As x f x As x f x    

 

                                      

Table 2.2 

From Table 2.2, we observe that 

2
lim ( ) 3
x

f x


  

And 

2
lim ( ) 3 
x

f x
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Thus, the left-hand limit of ( ) f x  at 2x   is equal to its 

right-hand limit at 2x   . In this case, we say 

that the limit of ( ) f x  as 2x   exists, and we write 

2
lim ( ) 3
x

f x


  

Example (6) 

Let  

, 1

( ) 2, 1

2, 1

x x

f x x

x x




 
  

 

Find   
1

lim ( ) 
x

f x


   

Solution 

We have the following observations: 

(a) 
1

lim ( ) 1
x

f x


  (left-hand limit) 

(b) 
1

lim ( ) 3
x

f x


  (right-hand limit) 

(c) (1) 2f    

Thus 

1 1
lim ( ) =1 lim ( ) 3 
x x

f x f x
  

    

Obviously, 
1

lim ( ) 
x

f x


does not exist. 

Example (7) 

Let  

1
( ) , 1

1
f x x

x
 


 

Find   
1

lim ( ) 
x

f x


  

Solution 

Observe that as  1x  as x)    assumes values closer and 

closer to 1 from the right hand side) ( ) f x gets larger and 

larger positive values. On the other hand, when 1x   (as 
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x assumes values closer and closer to 1 from the left hand 

side),  ( ) f x  gets larger and larger negative values (see 

Fig. 2.2). 

Thus,  
1

lim ( ) 
x

f x


 does not exist. 

 
                                        Fig. 2.2 

Example (8) 
Evaluate the following limit 

0

sin
lim , ( in radians)
x

x
x

x
 

Solution 

Here, there is no way of canceling terms in the numerator 

and denominator. Since sin 0x   as 0x   , the quo-

tient 
sin x

x
 might appear to approach

0

0
 . But, we know 

that 
0

0
 is undefined, so if the above limit exists, then we 

must find it by a different technique. Since we do not have 
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any other simpler way of  rewriting 
sin x

x
 to obtain the 

limit, we use a calculator to find the values of 
sin x

x
for 

values of  x close to 0 and angles  x (in sin x) in radians. 

(Other methods of finding this limit will be discussed later.) 

 

   x           sinx              
sin x

x
  

-0.10 0.0998333 0.99833

-0.09 0.0898785 0.99865

-0.05 0.0499792 0.99958

-0.03 0.0299955 0.99985

-0.02 0.0199987 0.99993

-0.01 0.00999983 0.999983

0.00 0.00000 Not defined

0.01 0.00999983 0.999983

0.02 0.0199987 0.99993

0.03 0.0299955 0.99985

 

     

                                    Table 2.3 

From Table 2.3, it is obvious that, as 0x   , either from 

the right or from the left, the value of 
sin x

x
approaches 

closer and closer to the number 1. We, therefore, agree to 

write 

0

sin
lim 1
x

x

x
  

This limit is used very often to find the limits of many trig-

onometric functions (including various functions involving 
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trigonometric functions), and plays a very important role in 

deriving many useful results. 

Simpler and Powerful Rules for Finding Limits (Alge-

bra of Limits) 

Limits are extremely important throughout Calculus.  A 

general method, we can prepare a table listing values of  x  

, closer and closer to “a”, and the corresponding values 

( ) f x . Such a table may help us guess a number to which 

( ) f x approaches, suggesting the limit of   ( ) f x  , as

x a . However, such a process of finding the values of 

“f” as x a  is  both time consuming and  generally very 

tedious.  

Let n  be a positive integer, k  be a constant,  and ( ) f x ,  

( ) g x and ( ) h x be  functions, such that lim ( ) 
x a

f x


, 

lim ( ) 
x a

g x


 and lim ( ) 
x a

h x


 exist. Then  

1. lim
x a

k k


   

2. lim
x a

x a


   

3. lim [ ( ) ( )] lim ( ) lim ( ) 
x a x a x a

f x g x f x g x
  

    

4. lim . ( ) .lim ( ) 
x a x a

k f x k f x
 

    

5. lim [ ( ). ( )] lim ( ).lim ( )
x a x a x a

f x g x f x g x
  

   

6. 

lim ( ) ( ) 
lim , lim ( ) 0 

( ) lim ( ) 

x a

x a x a

x a

f xf x
g x

g x g x



 



    

7. lim[ ( )] [lim ( )]n n

x a x a
f x f x

 
   

8. lim ( ) lim ( ) n n
x a x a

f x f x
 

  provided lim ( ) 0
x a

f x


   

when n is even. 

9.    
0 0 0

lim( )( ) lim ( ) lim ( )
x x x

f g x f g x f g x
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10. If  ( ) ( ) ( ) f x g x h x   for all x near a, except 

possibly at a. If  lim ( ) lim ( )
x a x a

f x h x l
 

   , then 

lim ( ) 
x a

g x l


 .  

Example (9) 

Find the following limit 
1/4

1/31

1
lim

1x

x

x




 

Solution 

Here, we observe that the indices of  x are fractions. Hence, 

it is not possible to factorize both numerator and denomina-

tor. We substitute
12x y  . Required limit is  

1/4 3

1/3 41 1

2

3 21

2

3 21

1 1
lim lim

1 1

( 1)( 1)
lim

( 1)( 1)

1 3
lim

1 4

x y

y

y

x y

x y

y y y

y y y y

y y

y y y

 





 


 

  


   

 
 

  

 

Example (10) 

Determine the following limit 

0

1 1
lim
x

x

x

 
 

Solution 

Put 1y x   , then as 0 1x y    . Hence, the lim-

it reduces to the form 

1/2

1

1
lim

1y

y

y




 . 
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Example (11) 

One can show that 
0

lim 0
x

x


   but it must be clear that 

neither 
0

lim
x

x


 nor  
0

lim
x

x


exists (because  x  is not 

defined to the left of 0). 

Methods for Evaluating Limits of Various Algebraic 

Functions 

1. Direct Method [or Method of Direct Substitution] 

This method is applicable in the case of very simple 

functions, in which the value of the function and the lim-

it of the function both are the same. 

Example (12) 
2 2

2 2 2
lim[ 3] lim lim3 4 3 7
x x x

x x
  

       

Example (13) 

5 5

5

5

lim 1 lim21 2 4 2
lim[ ]

6 331 lim 31

x x

x

x

xx

x x

 





  
  

 
 

Example (14) 
2

1

2

1

1

9
lim , 3

3

lim( 9)
4

lim( 3)

x

x

x

x
x

x

x

x













 



 

 

2. Factorization Method 

For computing limit(s) of the type, 
( ) 

lim
( ) x a

f x

g x
, where 

( ) 0f a   and ( ) 0g a   , the direct substitution method 

fails. In such cases, we search for a common factor 

(x a  ) in f(x) and g(x) by factorizing them and cancel-

ing this factor to reduce the quotient to the simplest form 
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and then apply the direct method to obtain the limit. 

[Remember that x a  means thatx a  , at any stage. 

In other words ( ) 0x a   , at any stage. This permits 

us to cancel the common factor (x – a) from both numer-

ator and denominator. 

Example (15) 

Evaluate 
2

21

4 3
lim

2 3x

x x

x x

 

 
 

Solution 
2

21 1

1

4 3 ( 3)( 1)
lim lim

2 3 ( 3)( 1)

( 3) 1
lim , [( 1) 0]

( 3) 2

x x

x

x x x x

x x x x

x
x

x

 



   


   


    



 

Note: For evaluating  
( ) 

lim
( ) x a

f x

g x
, we may also follow 

the following steps: 

I. Put x a h   ( 0)x a as h     

II. Simplify numerator and denominator and cancel the 

common factorh  . 

III. Put  0h   , in the remaining expression in h and ob-

tain the limit. 

Example (16)  
Evaluate 

3 2

34

8 16
lim

60x

x x x

x x

 

 
 

Solution 
3 2

34

8 16
lim

60x

x x x

x x
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2

3 2 24

( 8 16)
lim

4 4 16 15 60x

x x x

x x x x x

 


    
 

  

2

4

4

4

( 4 4 16)
lim

( 4)[( 4) 4 15]

( 4)( 4)
lim

( 4)[( 4) 4 15]

( 4)
lim 0

[( 4) 4 15]

x

x

x

x x x x

x x x

x x x

x x x

x x

x x







  


   

 


   


 

  

  

 

An Important Standard Limit 

1lim , nisnaturalnumber (*)
n n

n

x a

x a
na

x a









 

Example (17) 

Evaluate 
1 2 3 2

1

...
lim , nisnaturalnumber

1

n n n

x

x x x x x x n

x

 



      


 

Solution 
1 2 3 2

1

1 2 3 2

1

...
lim

1

... (1 1 1 ....n times)
lim

1

n n n

x

n n n

x

x x x x x x n

x

x x x x x x

x

 



 



      



         



1 3 2

1

( 1) ( 1) ... ( 1) ( 1) ( 1)
lim

1

n n

x

x x x x x

x
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1 2

0 0 0

3 2

0 0 0

( 1) ( 1) ( 1)
lim lim lim

1 1 1

( 1) ( 1) ( 1)
... lim lim lim

1 1 1

n n n

x x x

x x x

x x x

x x x

x x x

x x x

 

  

  

  
  

  

  
   

  

  

1 2 ... 1
( 1)

n
n n n

n n
       


  

The above formula can be used to evaluate limits of the  

lim
n n

m nx a

x a

x a




 

For this purpose, we write 

 

0
lim lim lim

n n n n m m

m nx a x a x

x a x a x a

x a x a x a  

  
 

  
 

and apply the standard limit to obtain 

lim (**)
n n

n m

m nx a

x a n
a

x a m









 

Example (18) 
Evaluate   

5 5

3 3
lim
x a

x a

x a




 

Solution   
5 5

5 3

3 3

5
lim

3x a

x a
a

x a









 

 

Remark  
Formula (*) has been proved for natural numbers n and m. 

However, the result is true for rational values of n and m. 

The following examples tell how this is justified. 
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Example (19)  
Evaluate  

1/4 1/4

1/3 1/31

1
lim

1x

x

x




 

 

Note : In such cases the important point is that the given 

limit can be converted in the form (*) by substitution as fol-

lows. 

Here, the indices of x are fractions and hence we cannot 

factorize. The denominators of these indices are 4 and 3. 

Their L.C.M. is 12. Therefore, we use the substitution 
12x t , for our purpose. 

Solution 

Put  
12 ( 1 as 1)x t t x     

1/4 1/4 3 3

1/3 1/3 4 41 1

1 1 3
lim li  m

1 1 4x t

x t

x t 

 


 
  

Note   

We can also apply Corollary (**) directly and obtain the 

limit as follows: 
1/4 1/4

1/4 1/3

1/3 1/31

1 1/ 4 3
lim .1

1 1/ 3 4x

x

x






 


 

Example (20) 

Find 
2/5 2/5

1/2 1/23

3
lim

3x

x

x




 

Solution 
2/5 2/5

2/5 1/2 1/10

1/2 1/23

3 2 / 5 4
lim .3 3

3 1/ 2 5x

x

x

 




 


 

Example (21) 

Evaluate 
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3 3

2

2
lim

2x

x

x

 






 

Solution
 3 3

3 1 4

2

2 3 3
lim .2 3.2

2 1 16x

x

x

 
  



 
    


 

Note : To evaluate limits of this type, it is always useful to 

convert the given limit to the standard form as follows: 
3 3 3 3

2 2

3 3
3 1

32

2 1/ 1/ 2
lim lim

2 2

1 2 1 3
lim 3.2

8 2 64 16

x x

x

x x

x x

x

x x

 

 





 


 


    

 

 

Example (22)  
Evaluate  

5/3 5/3( 2) ( 2)
lim
x a

x a

x a

  


 

Solution 
5/3 5/3

5/3 5/3

2 2

5/3 1

( 2) ( 2)
lim

( 2) ( 2)
lim

( 2) ( 2)

5
(a 2)

3

x a

x a

x a

x a

x a

x a



  



  



  


  

 

 

Example (23) 

Evaluate  
1/3

2/31

1
lim

1x

x

x
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Solution 
1/3 1/3 1/3

2/3 2/3 2/31 1

1/3 1/3 1/3
1/3

2/3 2/31 1

1 ( 1) /
lim lim

1 ( 1) /

x ( 1) 1
lim 1 .lim

( 1) 1

1

2

x x

x x

x x x

x x x

x x

x x



 

 

 


 

 
 

 



 

Method of Simplification 

Sometimes it is required to simplify the given function and 

then evaluate the limit. 

Example (24)  
Evaluate  

25

1 5
lim( )

5 5x x x x


 
 

Solution 

2 25 5

0 5

1 5 5
lim( ) lim( )

5 5 5

5 1 1
lim lim

( 5) 5

x x

x x

x

x x x x x

x

x x x

 

 


 

  


  



 

Example (25) 

Evaluate 

2 22

1 1
lim ( )

5 6 3 2x x x x x


   
 

Solution 

We have 
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2 22

2

2

2

2

1 1
lim ( )

5 6 3 2

1 1
lim[ ]

( 2)( 3) ( 2)( 1)

( 1) ( 3)
lim

( 1)( 2)( 3)

2( 2)
lim

( 1)( 2)( 3)

2
lim 2

( 1)( 3)

x

x

x

x

x

x x x x

x x x x

x x

x x x

x

x x x

x x












   

 
   

  


  




  

  
 

 

Method of Rationalization 

If the numerator or the denominator or both contain func-

tions of the type  [ ( ) ( )]f x g x   or 

[ ( ) ( )]f x g x  and the direct method fails to give the 

limit, we rationalize the given 

function by multiplying and dividing by [ ( ) ( )]f x g x  

or  [ ( ) ( )]f x g x , as the case may be. After simpli-

fication of the function, we evaluate the limit by the earlier 

methods. 

Example (26)  
Evaluate 

0
lim

1 1x

x

x  
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Solution 

Consider 

0 0

0 0

1 1
lim lim

1 1 1 1 1 1

( 1 1)
lim lim( 1 1) 2

(1 ) 1

x x

x x

x x x

x x x

x x
x

x

 

 

 
 

     

 
    

 

 

Example (27) 

3

3
lim

2 4x

x

x x



  
 

Solution  
Consider 

3

3

3

3

3

3
lim

2 4

3 2 4
lim

2 4 2 4

( 3)( 2 4 )
lim

( 2) (4 )

( 3)( 2 4 )
lim

2( 3)

( 2 4 )
lim 1

2

x

x

x

x

x

x

x x

x x x

x x x x

x x x

x x

x x x

x

x x













  

   
 

     

   


  

   




  
 

 

Example (28) 

Evaluate 

0
lim
x

a x a x

b x b x
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Solution 

 

 

0

0

0

lim

lim

lim

x

x

x

a x a x

b x b x

a x a x
a x a x

a x a x

b x b x
b x b x

b x b x







  

  

   
     

   

   
     

   

 

0

2 2
lim

2

2

x

x x

a x a x b x b x

b b

aa
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Infinite Limits 
So far we have considered the cases where as x a  (a 

finite number), ( )f x l  , (a finite number). 

But, it may happen that as  x a  , ( )f x  increases (or 

decreases) endlessly. Symbolically, we express these 

statements as follows: 

lim ( ) , lim ( )
x a x a

f x f x
  

    

Or 

lim ( ) , lim ( )
x a x a

f x f x
  

     

Consider the graph of  
1

( )
2

f x
x




 , as shown in Figure 

2.3. Note that it makes no sense to ask  
2

1
lim

2x x 
 ,(?why) 

but we think it is reasonable to write 
2

1
lim

2x x
 


 and 

2

1
lim

2x x
 


. The following definition relates to 

this situation. 

 
Fig 2.3 
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Definition (Infinite Limits) 

We say that  lim ( )
x a

f x


    , if ( )f x  gets larger and 

larger  without  bound, when  x  assumes values nearer and 

nearer to "a". On other hand,  we say that  

lim ( )
x a

f x


    , if  ( )f x    is permitted to assume 

smaller and smaller values endlessly, when  x  assumes 

values nearer and nearer to "a". 

Example (29)  
Find  

2
2

1
lim

( 2)x x 
  and 

2
2

1
lim

( 2)x x 
 

Solution 

The graph of  
2

1
( )

( 2)
f x

x



 is shown in Figure 2.4.  

 
Fig. 2.4 

We think it is quite clear that 

2
2

1
lim

( 2)x x
 


 

And  
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2
2

1
lim

( 2)x x
 


 

Since both limits are  , we could also write 

22

1
lim

( 2)x x
 


 

Example (30)  
Find  

2
2

1
lim

5 6x

x

x x



 
 

Solution  

2
2 2

1 1
lim lim

5 6 ( 2)( 3)x x

x x

x x x x  

 


   
 

As 2x  we see that  1 , 3x    , 3 1x    , and 

2 0x    Thus, the numerator is approaching  3, but the .

denominator is negative and approaching  0. We conclude 

that    

2

1
lim

( 2)( 3)x

x

x x


 

 
 

Asymptotes 

Definition: An asymptote to a curve is defined as a straight 

line, which has the property that the distance from a point 

on the curve to the line tends to zero as the distance of this 

point to the origin increases without bound. There are verti-

cal, horizontal  asymptotes. 

Vertical Asymptotes 

The graph of the function ( )y f x  has a vertical asymp-

tote forx a  , if  lim ( )
x a

f x


   or lim ( )
x a

f x


   

(see Figure 3.3a and b). The equation of the vertical asymp-

tote has the formx a  . (In Figure 2.5a, it is 0x   , and 

in Figure 2.5b  it isx a  .) 
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                                            Fig. 2.5 

Horizontal Asymptotes 

The graph of the function ( )y f x  for  x   or for 

x   , has a horizontal asymptote, if 

lim ( )
x

f x b


   Or lim ( )
x

f x b


  , where b  is a finite 

number. It may happen that either only one or none of these 

limits is finite. Then, the graph has either one or no hori-

zontal asymptote. Of course, the graph of a function may 

have two horizontal asymptotes. The equation of the hori-

zontal asymptote has the form y a  . (In Figure 2.6a, it is

y b  , and in Figure 2.6b the two asymptotes are 1y  

.) 
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Fig. 2.6 

 

Example (31)  
Find the asymptotes to the curve  

1

3
y

x



 

Solution:  

We have 

1
lim 0

3x x



 

Therefore, the curve has a horizontal asymptote at 0y    

Further, we observe that 

3

1
lim

3x x
 


 

and  

3

1
lim

3x x
 


 

Hence, the curve has a vertical asymptote at 3x   (see 

Figure 2.7). 
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Fig. 2.7 
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Limit at Infinity 

The symbol for infinity is “  ”. In modern mathematics, 

the symbol “  ” is not a number, and not all algebraic op-

erations are defined for this symbol. 

Often we shall have to study the behavior of functions of  

x, as x becomes infinitely large, that is, when x is permitted 

to assume larger and larger values exceeding any bound K, 

no matter how big K is chosen.  

For example, take     

1
( )f n

n
  . 

Then if n  takes the values 1, 2, 3, . . ., 100, the class, or set, 

consisting of the values of ( )f n  , for various values of  n 

consisting of the fractions( 1, 1/2, 1/3, . . . 1/100). 

We wish to discuss the behavior of this function for very 

large values of n. It is immediately obvious that 
1

( )f n
n

  

becomes very small when n is very large. 

Note: It is wrong to say that 
1

0
n
  whenn   . Remem-

ber that    is not a number, so it cannot be equated to any 

number, howsoever large. Further, 
1

n
  can never be equat-

ed to zero, however big  n  is chosen. However, it makes 

sense to say that the function 
1

( )f n
n

   tends to zero for 

values of n that tend to infinity. 

If we now consider the function 
2( )f n n  , 

it is clear that this function can be made as large as we 

please by taking sufficiently large values of  n. We may 

therefore, say that the function 
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2( )f n n  

tends to infinity when n tends to infinity. 

Now, let us consider the function 
2( )f n n    

In this case, we say that f(n) tends to   when n tends to

  . We would usually write these statements briefly as 

given below: 

 
2 asn n   
2 asn n    

Consider the function  

2
( )

1

x
f x

x



  

We ask the question:  

What happens to ( )f x  as x  gets larger and larger? In 

symbols, we ask for the value  lim ( )
x

f x


  

We use the symbol x   as a shorthand way of saying 

that x  gets larger and larger without bound. 

(When we writex   , we are not implying that some-

where far, far to the right on the x-axis, there is a number 

bigger than all other numbers to which x is approaching. 

Rather, we use x   to say that x is permitted to assume 

larger and larger values endlessly.) 

In Table 2.4, we have listed values of ( )f x  , for larger and 

larger values of x, for several values of x  . 
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2
( )

1

x
x f x

x



 

10 0.099

100 0.010

1000 0.001

10,000 0.0001

0

 



 

                                   Table 2.4 

It appears that ( )f x  gets smaller and smaller as x gets 

larger and larger. Therefore, we 

 
2

lim 0
1x

x

x



 

Experimenting with large negative values of x, would again 

lead us to write 

2
lim 0

1x

x

x



 

Definitions of Limits x    

If ( )f x   gets closer and closer to the value l   as  x  is 

permitted to assume larger and larger values endless-

ly(without bound).  In symbols, we write 

lim ( )
x

f x l


  

Definitions of Limits x    

If ( )f x   gets closer and closer to the value l   as  x  is 

permitted to assume larger and larger negative values end-

lessly(without bound).  In symbols, we write 

lim ( )
x

f x l
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Simpler and Powerful Rules for Finding Limits 

x    
 

1. lim n

x
x


   

2. lim , (niseven)n

x
x


   

3. lim , (nisodd)n

x
x


   

4. 
1

lim 0
nx x
  

5. If  
1 2

0 1 2( ) ...n n n

nf x a x a x a x a       , then 

0lim ( ) lim n

x x
f x a x

 
   

6. If  

1 2

0 1 2

1 2

0 1 2

...
( ) ,

...

n n n

n

m m m

m

a x a x a x a
f x

b x b x b x b

 

 

   


   
then  

0

0

lim
lim ( )

lim

n

x

mx

x

a x
f x

b x







   

Example (31)  
Find   

3

3

2
lim

1x

x

x 
 

Solution 

Here we use a standard trick: dividing  numerator and de-

nominator by the highest power of x that appears in the de-

nominator. 
3 3 3

3 3 3 3

2 2 / 2
lim lim lim 2

1 1/ / 0 1x x x

x x x

x x x x  
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Exercise 

Evaluate the following limits 

 

2

3

20 30

50

2 4 5
(i) lim

3 7

(2 1) (3 1)
(ii) lim

(2 1)

(iii) lim 1

x

x

x

x x

x x

x x

x

x x
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Chapter 3 

Continuity of Real Functions 

Introduction 

We can introduce the concept of continuity proceeding from a graphic repre-

sentation of a function. 

A function is continuous if its graph is unbroken, i.e., free from sudden 

jumps or gaps. 

Suppose a function is defined on an interval I  . We say that the function is 

continuous on the interval I  , if its graph consists of one continuous curve, 

so that it can be drawn without lifting the pencil. There is no break in any of 

the graphs of continuous functions (Figure 3.1a-b). 

 
                                                      Fig. 3.1 

If the graph of a function is broken at any point "a " of an interval, we say 

that the function is not continuous (or that it is discontinuous) at “a”. 

The Natural Domain 

If the domain of the given function is not specified, we take the domain as 

the largest set of real numbers for which the rule of the function makes sense 

and gives real-number values. This is called the natural domain of the func-

tion. 

To understand the concept of continuity better, it is useful to study the fol-

lowing graphs of functions, which represent discontinuous functions. 

The graph of the function 1( )f x  appears in Figure 3.2a. It consist of all 

points on the line 2 3y x   , except(2,5) . The graph has a break at the 

point (1, 5). Here  1( )f x  is not continuous at 1x   since “1” is not in the 

domain of 1( )f x . We say that 1( )f x  is not defined at 1x   .We can 
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Fig. 3.2 

also say that 
1( )f x is continuous for all x , except for 1x   . It is also cor-

rect to say that 1( )f x  is discontinuous at 1x  (or that it is discontinuous in 

any interval containing “1”). 

Now consider the function 2 2

1
( )f x

x
  , 0x  . Its graph appears in the 

Figure 3.2b. Observe that as
2

1
0,x

x
   , which means that 2 ( )f x  

does not exist at 0x   or that 2 2

1
( )f x

x
 is not defined at 0x   .We say 

that in any interval containing "0", the function 2 ( )f x is discontinuous 

at the point 0x   .  

Note  

We say that a function  ( )f x  is not defined at x a  if either "a  " is not in 

the domain of  ( )f x  or ( )f x   asx a . 

We give below some more situations when a function may be discontinuous 

"at a point", in the interval of its definition. The functions 3( )f x  is defined 

for allx . Note that the point (1, 5) is torn out from the graph of 3( )f x  and 

shifted to the location (1, 2). Here, the point (1, 5) of the graph jumps out 
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from the height 5 to 2, creating a break in the graph at 1x    (Figures 3.3 

and 3.4). 

The graph of the function 
4 ( )f x , shows a break at the point 1x   . Here, a 

portion of the graph has a finite vertical jump at 1x   making the graph 

discontinuous at 1x   .  

 
Fig.3.3  

 
Fig.3.4 

Next, consider the graph of the function 5( )f x  (Fig. 3.5). The function 

5( )f x  is not defined at 0x   but it is defined for all other values of x. We 
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observe that as 
1

0 ,x
x

   , and as 
1

0 ,x
x

  . Thus, 

5( )f x  is discontinuous at the point 0x  . 

 
Fig. 3.5 

From the above discussion (and the graphs), it is clear that the question of 

continuity must be considered only for those points, which are in the domain 

of the function. However, a point of discontinuity may or may not be in the 

domain of the function.  

Definition  

Let a function “ ( )f x  ” be defined in an interval I  , and let “a  ” be any 

point in I  . The function “f ” is said to be continuous at the point “a”, if and 

only if the following three conditions are met: 

0

(i) ( ) isdefinedat

(ii) lim ( )exists

(iii) lim ( ) ( )

x a

x

f x x a

f x

f x f a









 

In fact, these three conditions of continuity “at a point”, are summed up in 

the following short definition. 

A function f(x) is said to be continuous at a pointx a  , if the limit of the 

function asx a  , is equal to the value of the function forx a  , which 

we express by the statement, 

lim ( ) ( ) (*)
x a

f x f a


  

There is another way to express continuity of a function at a point “a”. In the 

statement (*), if we replace x  bya h  , then asx a  , we have 0h  . 
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Thus, the statement 

0
lim ( ) ( )
h

f a h f a


   

defines continuity of the function “f ” at “a”. 

Remark 

I. f(x) is defined at x a  means, the value f(a) is a finite number. 

II. f(x) is not defined at x a  means, either the point  , ( )a f a  is 

missing from the graph (which also means that “a” is not in the do-

main of “f ”) or f(a) is not finite [i.e., asx a  , ( )f x   ]. 

III.  lim ( )
x a

f x


 exists means lim ( ) lim ( )
x a x a

f x f x
  

  and both being fi-

nite 

Note   

It is important to remember that the value f(a) and lim ( )
x a

f x


are two differ-

ent concepts and hence even when both the numbers exist, they may be dif-

ferent. The concept of continuity of the function (at any pointx a  , in its 

domain) is based on the existence and equality of these 

two values, at “a”. 

Definition [Discontinuity] 

We can say that, a function defined on an interval I  is discontinuous at a 

point a I , if at least one of the following 

conditions occur at the point x a . 

I. The function f(x) is not defined atx a  , 

II. lim ( )
x a

f x


  does not exist [which means that  

lim ( ) lim ( )
x a x a

f x f x
  

  or at least one of the one-sided limits is infi-

nite], 

III. lim ( ) ( )
x a

f x f a


  , in the arbitrary approach of x a  (which 

means that the expressions on the right and the left both exist but they 

are unequal). 

One-Sided Continuity 

In Chapter 2, the concept of limit of a function was extended to include one-

sided limits (and limits involving  ). The importance of one-sided limits 

has since been seen in testing the continuity of a function at any point and in 

identifying the type of discontinuity at that point. 

Now, we extend the concept of limit to define the concept of one-sided con-

tinuity, which is useful in defining continuity in a closed interval.  
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Example(1)  

Consider the function ( )f x x  . We know that the domain of the square 

root function ( )f x x  is [0, )  Therefore, the  
0

lim ( )
x

f x


  does not 

exist. As a consequence, under the definition of continuity, the square root 

function ( )f x x   is not continuous at 0x   (Why?). 

However, it has a right-hand limit at 0  . We express this fact by saying that 

the square root function ( )f x x  is continuous from the right of “0”.We 

can give the following definitions of one-sided continuity. 

Definition [Continuity from the Right]  
A function f(x) is continuous from the right at a point “a” in its domain, if  

lim ( ) ( )
x a

f x f a


  

Definition [Continuity from the Left]  
A function f(x) is continuous from the left at a point “a” in its domain, if  

lim ( ) ( )
x a

f x f a


  

In view of the above definitions a function whose domain is a singleton is 

considered continuous at that point.  

Continuity on An Interval 

We say that a function is continuous on an open interval if it is continuous at 

each point there. It must be clear that each point in the interval has to satisfy 

all the three conditions of continuity at a point as stated in the definition (1). 

When we consider a closed interval  ,a b  we face a problem as we have 

seen in the case of the square root function ( )f x x . 

We overcome this situation by agreeing as follows: we say that “f ” is con-

tinuous on closed interval  ,a b , if it is continuous at each point of ( , )a b  

and if the following limits exist: 

lim ( ) ( )
x a

f x f a


   and lim ( ) ( )
x b

f x f b


  

 

Example (2)  
Given 

( )
2

x
f x

x



 . 

Test the continuity of the function in the intervals (1, 2), [1, 2], and (1, 3).  
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Solution 

Note that, f(x) is not defined for 2x   . Accordingly, f(x) is continuous 

in any interval which does not contain 2. Thus, “f ” is continuous on (1, 2), 

but it is discontinuous on [1, 2] and on (1, 3). 

Some Theorems on Continuity (Without Proof) 

I. If ( )f x  and ( )g x  are two functions continuous at the number “a”, 

then ( ) ( )f x g x , ( ). ( )f x g x   are continuous at “a” and 
( )

( )

f x

g x
 is 

continuous at “a”, provided that ( ) 0g a  . 

II. Continuity of a Composite Function: If the function ( )g x  is continu-

ous at “a” and the function ( )f x  is continuous at ( )g a , then the 

composite function ( )( )f g x  is continuous at “a”. 

Continuity of Some Elementary Functions  

It can be shown that 

I. A constant function is continuous for all x. 

II. A polynomial function 
1

0 1( ) ...n n

nf x a x a x a     is continuous 

for all values of x on( , )   . 

III.  , 0nx n   is continuous for all values of  x. 

IV.  A rational function is continuous at every point in its domain. 

V. 
1

, 0
n

n
x

  is continuous for all values of x, except 0x   . 

VI. Trigonometric functions: ( ) sinf x x  and ( ) cosg x x  are con-

tinuous on( , )   . Other trigonometric functions (i.e., tan x, cot x, 

sec x, cosec x) are continuous for all values of  x for which they are de-

fined. 

VII. Inverse trigonometric functions are continuous for all values of x for 

which they are defined. 

VIII. The exponential function: f ( ) xf x a  is continuous on( , )  . (In 

particular, ( ) xf x e  is continuous for all x.) 

IX. The logarithmic function: ( ) logaf x x  , (a>0) is continuous o 

(0, ) . 
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Example (3)  
Discus the continuity of  the function 

| |
( )

x
f x

x
  at 0x  . 

Solution 

The arrows at the ends of the rectilinear portions of the graph mean that for 

0x  , the function is not defined but for the values of  x less than zero the 

value of the function is “ 1  ”, and for the values of x exceeding zero, it is 

equal to “1”. Hence, the function has no limit as 0x  . Thus, the function 

( )f x  discontinuous at 0x  .   

Example (4) 

The greatest integer function of  x  denoted by ( ) [ ]f x x  is defined as: 

[ ]x   the greatest integer less than or equal to x . Thus, for all numbers  x  

less than 2 but near 2, [ ] 1x  , and for all numbers greater than 2 but near 2, 

[ ] 2x  . 

The graph of [ ]x takes a jump at each integer as clear from the graph (Fig. 

3.6). 

Now,  for any integer number  k , we have 

lim[ ] 1
x k

x k


   , but when lim[ ]
x k

x k


 . 

Thus, lim[ ]
x k

x


 does not exist. Thus,  [ ]x  is not continuous for any integer 

x . 

 
Fig. 3.6 
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Example (5)  

Find any points of discontinuity for the function ( )f x  given by 
4 2

2

3 2 1
( )

1

x x x
f x

x

  



 

Solution 

The denominator is zero when 2x    . Hence “ ( )f x ” is not defined at 

2   and accordingly it is discontinuous at these points. Otherwise, the func-

tion is “well behaved”. In fact, any rational function (i.e., any quotient of 

polynomials) is discontinuous at points where the denominator becomes 0, 

but it is continuous at all other points. 

Example (6)  

Check whether the function 
1/

1/

2 1
( )

2 2

x

x
f x





 

is continuous at 0x  . 

Solution  

Note that the function ( )f x  is not defined at 0x   . To check whether this 

function is continuous at 0x   , we compute its one-sided limits.  

As  
1

0 ,x
x

  , so that 
1/2 0x  . 

1/

1/
0 0

2 2 0 1 1
lim ( ) lim

2 1 0 2 2

x

x
x x

f x
  

 
   

 
 

However, as  
1

0 ,x
x

  , so that 
1/2 x  . 

1/ 1/ 1/

1/ 1/ 1/
0 0 0

1/

1/
0

2 2 2 (1 2.2 )
lim ( ) lim lim

2 1 2 (1 2 )

1 2.2 1 0
lim 1

1 2 1 0

x x x

x x x
x x x

x

x
x

f x
  






  






 
  

 

 
  

 

 

Therefore, the ( )f x  is discontinuous at 0x   . 
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Example (7) 
Prove that the function defined by 

1
sin , if 0

( )

0, if 0

x x
f x x

x




 
 

 

is continuous at 0x  . 

Solution  
We shall compute the left-hand limit and right-hand limit of this function, at

0x  . 

0 0 0 0

1 1
lim ( ) lim sin ( lim )( lim sin ) 0
x x x x

f x x x
x x      

    

0 0 0 0

1 1
lim ( ) lim sin ( lim )( lim sin ) 0
x x x x

f x x x
x x      

    

(Since 
1

sin
x

 is a bounded function, which lies between 1   and 1.) 

As 
0 0

lim ( ) lim ( ) (0)
x x

f x f x f
  

  , ( )f x  is continuous at 0x   . 

Example (8) 

1
sin , if 0

( )

0, if 0

x
f x x

x




 
 

 

Test the continuity of  f(x) at 0x  . 

Solution  

Note that f(x) is defined for all x . 
0

1
limsin
x x

  does not exist. [Indeed, the

0

1
limsin
x x

 oscillates between 1   and 1]. Hence, the given function f(x) is 

not continuous at 0x   . 

Note   

The function 
1

sin
x

 is defined for all values of x  except for 0x   . It does 

not approach either a finite limit or infinity as 0x   . The graph of this 

function is shown below (Fig. 3.7). 
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                                                Fig. 3.7 

Example (9) 

2 1
sin , 0

( )

0, 0

x if x
f x x

if x




 
 

 

Test the continuity of  ( )f x  at 0x  . 

Solution  

Note that ( )f x is defined for all x .  We have 

I. (0) 0f    

II. 
2

0 0

1
lim ( ) lim sin 0
x x

f x x
x 

    

III. 
0

lim ( ) (0) 0
x

f x f


    

Thus, ( )f x  is continuous at 0x  . 

Example (10) 

Test the continuity/discontinuity of the following function at 0x   . 
1/

1/
, if 0

( ) 1

0, if 0

x

x

e
x

f x e

x




 
 

 

Solution  

Observe that,  

I. (0) 0f    
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II. 

1/

1/
0 0

0
lim ( ) lim 0

1 1 0

x

x
x x

e
f x

e  
  

 
 and 

1/ 1/

1/ 1/ 1/
0 0 0

1/
0

lim ( ) lim lim
1 (e 1)

1 1
lim 1

(e 1) 0 1

x x

x x x
x x x

x
x

e e
f x

e e  




  




 
 

  
 

  

Thus, 
0

lim ( )
x

f x


 does not exist.  We conclude that f(x) is discontinuous at 

0x  .  

Example (11)  

sin 2
, 0

( )

1, 0

x
x

f x x

x




 
 

 

Is f (x) continuous at 0x   ? 

Solution  
Note that the function is defined for all x. To find whether f(x) is continuous 

at 0x   or not, we check the left-hand and the right-hand limits at 0x  . 

I. (0) 1f    

II. 
0 0

sin 2
lim ( ) lim 2
x x

x
f x

x  
   and 

0 0

sin 2
lim ( ) lim 2
x x

x
f x

x  
  . 

Thus, 
0

lim ( ) 2
x

f x


  

III. 
0

lim ( ) (0)
x

f x f


   

We conclude that f(x) is discontinuous at 0x  .  

Example (12)  

Let  

sin
( )

x
f x

x
 . 

Define a function ( )g x  which is continuous, and ( ) ( )g x f x  for all 

0x   . 

Solution  

We have 
0 0

sin
lim ( ) lim 1
x x

x
f x

x 
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Let  

sin
, 0

( )

1

x
x

g x x




 


 

Then, g(x) is continuous at “0”. Since 
0

lim ( ) (0) 1
x

g x g


  . Furthermore, 

 ( ) ( )g x f x  for all 0x  , as was desired. 

Note   

The graph (Fig. 3.8)of the function 
sin x

x
 is given below. It gives a feel of 

how it becomes continuous when we redefine it at 0x   as 1. 

 
 

 

Fig. 3.8 

Example (13)  

Discuss the continuity of the function 
2(3 1)

, 0
( ) sin ln(1 )

2ln3, 0

x

x
f x x x

x

 


 
 

 

 

Solution:  

Given (0) 2ln3f    

 
 

2

0 0

2

2

2

0

(3 1)
lim ( ) lim

sin ln(1 )

3 1

ln3
lim ln3

sin ln(1 ) 1.1

x

x x

x

x

f x
x x

x

x x

x x
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Thus,  we have  
0

lim ( ) (0)
x

f x f


 . Hence, ( )f x  is discontinuous at 

0x  . 

Example (14) 

 Find the value of k , if 

1 cos
, 0

( ) sin

2, 0

kx
x

f x x x

x




 
 

  

is continuous. 

Solution  

Since ( )f x  is continuous at 0x   ,  

0
lim ( ) (0) 2
x

f x f


   

Hence our problem reduces to computing the limit of f(x) as 0x  . 

Consider, 

2

0 0 0 2

2
2 2

0 2

2

2sin
1 cos 2lim ( ) lim lim

sinsin

2sin
2.12lim

4 sin 4 1 2
( ) . .

2

x x x

x

kx
kx

f x
xx x

x
x

kx
k k

kx x

k x

  




 

  

 

 

Thus,  
2

2 2
2

k
k     

Example (15)  

If   
 5 2 .

( )
cos5 cos3

x x x
f x

x x





 , for 0x  , is continuous at 0x  , find

(0)f . 

Solution  

It is given that ( )f x  is continuous at 0x   . Therefore, by definition, we 

have, 
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0
lim ( ) (0)
x

f x f


  

Thus, our problem is reduced to computing the 
0

lim ( )
x

f x


 . 

Now, 

 
0 0

5 2 .
lim ( ) lim

cos5 cos3

x x

x x

x
f x

x x 





 

 
0

5 2 .
lim (since cosA cos 2sin sin )

2sin 4 .sin 2 2

x x

x

x A B A B
B

x x

  
   


 

0

5 1 2 1

ln5 ln 2 1 5
lim ln

sin 4 sin 8 8 2
8 .

4

x x

x

x x

x x

x x



  
 

 
   




 

Example (16) 

 The function  ( )f x  is defined by 

2

1
, 0

( )
1

, 0
2

xe x
x

xf x

x

  


 
 


 

 is continuous at 0x   . What is 
0

lim ( )
x

f x


 ? 

Solution  
If the problem is read carefully, it must be clear that we do not have to com-

pute 
0

lim ( )
x

f x


]. Since, ( )f x  is continuous at 0x   , 

0

1
lim ( ) (0)

2x
f x f


   

Example (17) 

Discus the continuity of  the function 

1
( ) at 2

2
f x x

x
 


 

Solution 

Since ( )f x  is not defined at 2x   . Hence, ( )f x  is discontinuous at  2.  
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Again, 
2

lim ( )
x

f x


 does not exist (see Fig. 3.9) (Why?).  

 
Fig. 3.9 

 
Fig. 3.10 

Example (18) 

Discus the continuity of  the function 

1
, 2

( ) 2

3, 2

x
f x x

x




 
 

 

at 2x    

Solution 

Here , the graph of ( )f x  has a break at 2 (see Fig.3.10 ).We check 

the conditions of ( )f x , at 2x   . Observe that 

I. (2) 3f    
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II. 
2 2

1 1
lim , and lim ,

2 2x xx x  
   

 
Thus, 

2

1
lim

2x x 
 does not 

exist.  

Obviously, ( )f x  is discontinuous at 2x  . 

Example (19) 

Discus the continuity of  the function 

3 , 3
( )

2, 3

x x
f x

x

  
 


 

Solution 

We check the three conditions of continuity at 3x     

I. (3) 2f    

II. 
3 3 3 3

lim ( ) lim(3 ) 0, and lim ( ) lim( 3) 0
x x x x

f x x f x x
      

      . 

Thus, 
0

lim 3
x

x


  exists and equals 0  (see Fig. 3.11) . 

III. 
3

lim ( ) (3)
x

f x f


   

Thus, ( )f x  is discontinuous at 3. 

 

 
                                                     Fig. 3.11 

Example (20) 

Discus the continuity of  the function 
2 2, 1

( )
5 1, 1

x x
f x

x x

  
 

 
 

Solution 

The functions having values 
2 2x   and 5 1x   are polynomials and are 

therefore continuous everywhere. Thus, the only number at which continuity 

is questionable is 1. We check the three conditions for continuity at “1”. 
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I. (1) 4f  . Thus, (1)f  exists. 

II. 
2

1 1
lim ( ) lim( 2) 3
x x

f x x
  

    and 
1 1

lim ( ) lim(5 1) 4
x x

f x x
  

  

Thus, 
1 1

lim ( ) lim ( )
x x

f x f x
  

 . Therefore,
1

lim ( )
x

f x


 does not exist, 

and so “ ( )f x  ” is discontinuous at 1x  . 

Example (21) 

Discus the continuity of  the function 

2

6, 3
( )

, 3

x x
f x

x x

 
 


 

 

Solution 

We observe that, 

I. (3) 9f  . 

II. 
2

3 3
lim ( ) lim 9,
x x

f x x
  

   and 
3 3

lim ( ) lim( 3) 9,
x x

f x x
  

     

Thus,  
3

lim ( ) (3)
x

f x f


  and ( )f x  is continuous at 3x      

Example (22) 

Discus the continuity of  the function 

2

2, 2
( )

, 2

x x
f x

x x

 
 


 

Solution 

Since “ ( )f x  ” is not defined at 2x   , it is discontinuous there. (It is con-

tinuous for all other x.). Note that 
2

2 2
lim ( ) lim( ) 4
x x

f x x
  

   and 
2 2

lim ( ) lim( 2) 4
x x

f x x
  

    

Thus 
2

lim ( ) 4
x

f x


  exists. 

Example (23) 
Discus the continuity of  the function 

2 , 1
( )

, 1

x x
f x

x x

 
 


 

Solution 
Note that 

I. (1) 1f    
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II. 
2

1 1
lim ( ) lim( ) 1
x x

f x x
  

   and 
1 1

lim ( ) lim( ) 1
x x

f x x
  

  . Thus 

1
lim ( ) 1
x

f x


  exists (see Fig. 3.12). 

III.  
1

lim ( ) (1) 1
x

f x f


   

 
Fig. 3.12 

Example (24) 
Discus the continuity of  the function 

2

2
( )

1

x
f x

x



 

Solution 

Here again “ ( )f x ” is a rational function, but its denominator (
21 x  ) is 

never 0 . Thus, “ ( )f x ” is defined for all x and therefore “f ” is continuous 

for every real value of  x. 

Example (25) 

Show that the function ( ) 5f x   is continuous for every value of  x  . 

Solution 

We must verify that the conditions for continuity at arbitrary point x a  

are satisfied. 

I. ( ) 5f a    

II. lim ( ) 5
x a

f x


  and  lim ( ) 5
x a

f x


 . Thus, lim ( ) 5
x a

f x


  

III.  lim ( ) ( )
x a

f x f a


  

Therefore, ( )f x   is continuous atx a . 

 

 

 



111 
 

 

Example (26) 

Let  

1, 0

( ) sgn 0, 0

1, 0

x

f x x x

x

 


  
 

 

 

Discus the continuity of  ( )f x .  

Solution 

The function f(x) is called signum  function (or sign function) denoted by 

sgnx  and read “signumof x ” (Figure 3.13). (It gives the sign of x  .) 

Note that the function sgnx is defined for allx . 

 

 
Fig. 3.13 

Because 

 sgn 1, If 0x x    , sgn 0, If 0x x  and sgn 1, If 0x x  , 

we have 

0 0 0 0
lim sgn lim ( 1) 1, lim sgn lim (1) 1
x x x x

x x
      

       

Thus, the left-hand limit and the right-hand limit are not equal, which means 

that  
0

limsgn
x

x


does not exist. Accordingly, f(x) is discontinuous at 0x  . 
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Chapter 4 

Differentiation of Real Functions 
Let ( )y f x  be a given function defined in an open interval (a, b).  Let 

the points  x and  (x x ) both belong to the domain of function ( )f x

where x  is an arbitrary nonzero number. From the function f(x), we form 

a new function 

( ) ( )
( )

f f x x f x
x

x x


   
 
 

 

The limit of this ratio, as 0x   , may or may not exist. If 

0

( ) ( )
lim
x

f x x f x

x 

  


 

exists, then we call it the derivative of  ( )f x   with respect to x . It is de-

noted by  ( )f x  or 
dy df

dx dx
 . 

Derivative of a Function at a Particular Point 

The derivative of a function ( )y f x  at a particular point 1x x  in the 

domain of ( )f x  is given by the limit 

1 1

0

( ) ( )
lim
x

f x x f x

x 

  


 

if this limit exists. It is denoted by 1( )f x . 

If we replace ( 1x x  ) by x , and accordingly 1x x x    , then the de-

rivative of ( )f x   at 1x  is given by 

1

1
1

1

( ) ( )
( ) lim

x x

f x f x
f x

x x


 


 

 

if this limit exists. 

In all cases, the number 1x  at which  f   is evaluated is held fixed during 

the limit operation. Here, x  is the variable and 1x  is regarded as a constant. 

Note   

Observe that if  1( )f x  exists, then the letter x  in (C) can be replaced by 

any other letter. For example, we can write 
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( ) ( )
( ) lim (*)

t a

f t f a
f a

t a


 


 

Example (1)  
Let 

2

( ) 1
4

x
f x    . 

Find ( 1)f    and (3)f   

Solution  

Using (*), we obtain 

 

 

 

2

1

2

2

1 1

2

1 1

1

5
( / 4) 1̀

4( 1) lim
( 1)

1
(1/ 4) 1

4 4lim lim
1 1

1
1

(1/ 4)( 1)( 1)4lim lim
1 1

1
lim (1/ 4)( 1)

2

x

x x

x x

x

x

f
x

x
x

x x

x
x x

x x

x



 

 



 
  

 

 
 

 


 

 
 

   

 

 

 

2

3

22

3 3

2

3 3

3

13
( / 4) 1̀

4(3) lim
3

(1/ 4) 9(1/ 4) 9 / 4
lim lim

3 3

(1/ 4) 1 (1/ 4)( 3)( 3)
lim lim

3 3

1
lim(1/ 4)( 3)

2

x

x x

x x

x

x

f
x

xx

x x

x x x

x x

x



 

 



 
 




 

 

  
 

 

   

 

 

 



831 
 

Next, we give the following formal definitions. 

Differentiability of Functions 
I. Functions differentiable at a point  

If a function has a derivative at 
1x  of its domain, then it is said to be 

differentiable at
1x . 

II. Functions differentiable in an open interval 

 A function is differentiable in an open interval ( , )a b  if it is differen-

tiable at every number in the open interval. 

III. Functions differentiable in a closed interval  
If f(x) is defined in a closed interval [a, b], then the definitions of the 

derivatives at the end points are modified so that the point ( x x ) 

lies in the interval  ,a b . Hence, we define the one side derivative at 

the end points as follows: 

The right-hand derivative 

( ) ( )
( ) lim

x a

f x f a
f a

x a



 


 

The left-hand derivative 

( ) ( )
( ) lim

x a

f x f b
f b

x b



 


 

IV. Differentiable Function 

If a function is differentiable at every number in its domain, it is 

called a differentiable function. 

Note   
The above definition appears to be quite simple, but certain situations might 

create confusion. Hence, to get a clear idea of a differentiable function, it is 

useful to consider the following example: 

Example (2) 

Check the differentiability of the function  ( )f x x   at 0x   

Solution 

The right-hand derivative 

0 0

0

( ) (0) 0
(0) lim lim

0 0

1
lim

x x

x

f x f x
f

x x

x

 




 



 
  

 

  

 

The left-hand derivative 
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0 0

0

( ) (0) 0
(0) lim lim

0 0

1
lim doesnot exist

x x

x

f x f x
f

x x

x

 




 



 
  

 



 

Here, the domain of ( )f x  is [0, )  but  ( )f x  does not exist at 0x   . 

Thus, ( )f x  is not differentiable at “0  ”, which is in the domain of ( )f x . 

Therefore, we will say that ( )f x  is not a differentiable function. 

However, if we define the function ( )f x x  in the open interval(0, ) , 

then it becomes a differentiable function. 

In view of the above, we agree to say that if the domain of ( )f x  is the 

same as that of ( )f x  , then ( )f x  is a differentiable function. 

Nearly every function we will encounter is differentiable at all numbers or 

all but finitely many numbers in its domain. 

Note   
To obtain the derivative of a function, by using the definition of the deriva-

tive, is known as the method of finding the derivative from the first princi-

ple. 

Notation for Derivative 

We know that differentiation of  ( )y f x  by the first principle involves 

two steps: 

I. First, the formation of the difference quotient  
( ) ( )f x x f x

x

  


  

II. Second, the evaluation of the limit 
0

( ) ( )
lim
x

f x x f x

x 

  


  

III.  If the limit,  
0

( ) ( )
lim
x

f x x f x

x 

  


 exists, then we denote it by 

the symbol ( )f x  or 
dy

dx
 and call it the derivative of the function 

( )f x . 

Note  
We can look at the process of differentiation as an operation. The operation 

of obtaining ( )f x  , from ( )f x  , is called differentiation of ( )f x  . The 
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symbol 
d

dx
 is assigned for this operation. We call it the operator of differ-

entiation. 

The Operator of  Differentiation 
d

dx
 

In view of the above discussion, we can say that the symbol 
d

dx
 stands for 

the operation of computing the derivative of a given function by the first 

principle. In other words, we agree to say that 
d

dx
 constructs from the dif-

ference quotient 
( ) ( )f x x f x

x

  


, and determines its limit as 0x   

(treating the difference quotient as a function of variable x ) 

Note   

The notation 
d

dx
 should be interpreted as a single entity and not as a ratio. 

(It reads “d over dx”). It is also used in a formula to stand 

for the phrase “the derivative of ”. Thus, the symbol 
d

dx
 is used to define 

the derivatives of combinations of functions. 

Derivatives of Simple Algebraic Functions 

Now, we proceed to evaluate the derivatives of some simple algebraic func-

tions by definition. 

Example (3) 

Let ( ) ,ny f x x n   . Then, we have 

 

0

1

0

( ) ( ) ( )
( ) lim

lim

x

n n

n

x

dy df x f x x f x
f x

dx dx x

x x x
nx

x

 



 

  
   



  
 



 

Example (4)  

Let ( ) ,y f x x      . Then, we have 
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0

1

0

( ) ( ) ( )
( ) lim

lim

x

x

dy df x f x x f x
f x

dx dx x

x x x
x

x

 



 



 

  
   



  
 



 

Remark 

To obtain, the limit 
 

0
lim
x

x x x

x

 

 

  


,  by making use of binomial 

theorem , we can expand the amount 
 x x x

x

   


 as follows: 

   

   

 

2 3

1 2 3
2 3

1 2

1 /
(since 1)

( 1) ( 1)( 2)
1 ...

1! 2! 3!

( 1) ( 1)( 2)
( ) ...

1! 2! 3!

( 1) ( 1)( 2)

1! 2!

x x x x x x x x

x x x

x x x
x x

x x x

x

x x x
x x x

x

x x x
x

   

 

  

  

     

     

     

  

 

      
 

 

         
        

     




  
     




  
     

3
2

...
3!

x


 

So, we have 

 

   

0

1 2 3
2

0

1

lim

( 1) ( 1)( 2)
lim ...

1! 2! 3!

x

x

x x x

x

x x x
x x

x

 

  



     



 

  

 



  



   
      

 


Note   
Later, where the method of  logarithmic differentiation is discussed, we shall 

show prove the above formula by using logarithmic differentiation .  

Example (5) 

Find the derivative  of  y x   
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Solution 

1/2 (1/2) 1

1/2

1
( )

2

1 1

2 2

dy d d
x x x

dx dx dx

x
x





  

 

  

Now, Let Us Consider the Derivative of a Constant, ( )y f x C  . 

0

0

( ) ( )
lim

lim 0

x

x

dy f x x f x

dx x

C C

x





  





 



  

Example (6)  

Find the derivative of  

( ) 3 7f x x   

Solution  

0

0

( ) ( )
( ) lim

3( ) 7 3 7
lim

h

h

f x h f x
f x

h

x h x

h





 
 

   


  

By rationalizing the numerator, we get 

0

0

0

0

3( ) 7 3 7 3( ) 7 3 7
( ) lim .

3( ) 7 3 7

3( ) 7 (3 7)
lim

3( ) 7 3 7

3
lim

3( ) 7 3 7

3
lim

3( ) 7 3 7

3

2 3 7

h

h

h

h

x h x x h x
f x

h x h x

x h x

h x h x

h

h x h x

x h x

x
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Example (7) 

Find the derivative of  
1

( )f x
x

 . 

Solution  

0

0

( ) ( )
( ) lim

1/ ( ) 1/
lim

h

h

f x h f x
f x

h

x h x

h





 
 

 


  

By rationalizing the numerator, we get 

 

 

 

0

0

0

0

3/2

2

1/ 1/ 1 / 1 /
( ) lim .

1/ 1 /

1 / ( ) 1 /
lim

1/ 1/

( )
lim

1/ 1/

1

( )
lim

1/ 1/

1 1 1
.

22 /

h

h

h

h

x h x x h x
f x

h x h x

x h x

h x h x

x x h

x x h

h x h x

x x h

x h x

x
x x











   
 

 

 


 

 




 






 


    

Rules of Differentiation of Functions 

We find the result of applying the operator 
d

dx
 to certain combinations of 

differentiable functions, namely, sums, products, and ratios. (It turns 

out that the rules for differentiating such combinations of functions are easi-

ly established in terms of the derivatives of the constituent functions). 

I. Derivative of a sum (or difference) of functions 

Let 1( )f x  and 2 ( )f x  be differentiable functions of  x  , with the 

same domain,  then  



836 
 

 1 2 1 2( ) ( ) ( ) ( )
d d d

f x f x f x f x
dx dx dx

     

This rule can be extended to the derivative of the sum (or difference) 

of any finite number of differentiable functions, with the same do-

main. Thus,  

 1 2

1 2

( ) ( ) ... ( )

( ) ( ) ... ( )

n

n

d
f x f x f x

dx

d d d
f x f x f x

dx dx dx

  

   

 

II. The Constant Rule for Derivatives 

If  k  is any constant,  ( )f x  is any differentiable function, then 

 

 . ( ) ( )
d d

k f x k f x
dx dx

  

III. The derivative of product of two functions 

Let 
1( )f x  and 

2 ( )f x  be differentiable functions of  x , then 

 1 2 1 2 2 1( ). ( ) ( ) ( ) ( ) ( )
d d d

f x f x f x f x f x f x
dx dx dx

   

This rule can be extended to the product of more than two functions 

(and in general for a product of finite number of differentiable func-

tions). Thus, 

   

   

 

1 2 3 1 2 3

1 2 3 3 1 2

1 2 3 3 1 2 2 1

( ). ( ). ( ) ( ). ( ) . ( )

( ). ( ) ( ) ( ) ( ). ( )

( ). ( ) ( ) ( ). ( ) ( ) ( ) ( )

d d
f x f x f x f x f x f x

dx dx

d d
f x f x f x f x f x f x

dx dx

d d d
f x f x f x f x f x f x f x f x

dx dx dx

   

 

 
   

 

 

IV. The derivative of quotient of two functions 

Let 1( )f x  and 2 ( )f x  be differentiable functions of  x , then 

 

2 1 1 2
1

2

2 2

( ) ( ) ( ) ( )
( )

( ) ( )

d d
f x f x f x f x

f xd dx dx

dx f x f x
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Example (8) 

 If   
1 1

1 1

x x
y

x x

  


  
 , find 

dy

dx
. 

Solution 

   

   

2

1 1 1 1
.

1 1 1 1

1 1 2 1 1

1 1

1 1

1 1
1

2 1 2 1

1
1

x x x x
y

x x x x

x x x x

x x

x x x

dy x x

dx x x

x

x

     


     

     


  

   

 
   

 

 


 

Example (9) 

If  
a x

y
a x





, find 

dy

dx
.  

Solution 

   
2

2 2

1 1

2 2

/

a x a x
dy x x

dx a x

a x a

a x x a x

   
     

   


 
 

 
    
   

 

The Derivative of a Composite Function 

We have already introduced the concept of composite functions in Chapter 

1. Many of the functions we encounter in mathematics and in applications 

are composite functions. Consider the following examples: 

I.  
10

3 1y x   is a function of  
3 1x  , and  

3 1x   is a function of  

x . 
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So,  
10

3 1y x   can be considered as a composition of two func-

tions as follows 

 

10 3

10
3 3

, 1 ( )( )

( ( )) ( 1) 1

y u u x y u x

y u x y x x

   

    
 

II. 
3 4 1y x    is a function of 

4 1x   , and 
4 1x   is a function of 

x .  So, 
3 4 1y x  can be considered as a composition of two 

functions as follows 
43

34 4

, 1 ( )( )

( ( )) ( 1) 1

y u u x y u x

y u x y x x

   

    
 

III. 

10

7 1
2

x
y

 
  

 
 is a function of  

10

1
2

x 
 

 
 ,  

10

1
2

x 
 

 
 is a func-

tion of 1
2

x
 , and 1

2

x
  is a function of  x . 

Thus,  
10

10 33 4
71 , 1, 1

2

x
y x y x y

 
      

 
 and so on are ex-

amples of composite functions of x  . If we could discover a general rule for 

the derivative of a composite function in terms of the component functions, 

then we would be able to find its derivative without resorting to the defini-

tion of the derivative. 

To find the derivative of a composite function, we apply the chain rule, 

which is one of the important computational theorems in calculus. It as-

sumes a very suggestive form in the Leibniz notation . 

The Chain Rule 

If ( )y f u  is a differentiable function of  u  and ( )u g x  is a differen-

tiable functions of x  , such that the composite function 

( )( ) ( ( ))y f g x f g x   is defined,  then  
dy

dx
 is given by 

.
dy dy du

dx du dx
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If y  is a function of u  , defined by ( )y f u  and  
dy

du
 exists, and if  u  is 

a function of  x  defined by ( )u g x  and 
du

dx
 exists, then y  

. (*)
dy dy du

dx du dx
  

Note   
Here, it is important to note that in the product of derivatives on RHS, there 

are two separate operators of differentiation, namely, 
d

du
 and

d

dx
. Hence, 

dy

dx
 is not obtained by canceling du  from the numerator and the denomina-

tor. 

Extension of Chain Rule (i.e. The Compound Chain Rule) 

In general, if ( )y f t ,  ( )t g u , and  ( )u h x , where  ,
dy dt

dt du
 and 

du

dx
 exist, then  y  is a function of  x  and 

dy

dx
 exists, given by 

. .
dy dy dt du

dx dt du dx
  

Thus, the derivative of  y  is obtained in a chain-like fashion. In practice, it 

is convenient to identify the functions ,t u , and so on at different stages of 

differentiation. 

Remark  

In formula (*), y is represented in two different ways: once as a function of  

x and once as a function of  u . The expression 
dy

dx
is the derivative of  y , 

when y is regarded as a function of x . In the same way, 
dy

du
 is the deriva-

tive of y  , when y is regarded as a function of  u . Formula (*) is especially 

useful when y  is not given explicitly in terms of  x , but is given in terms 

of an intermediate variable . 
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Example (10) 

If  
2

2

x
y

x





, find 

dy

dx
.  

Solution 

Let 
1

1

x
u y u

x


  


. 

Then,  

 
2

1 4
,

2 2

dy du

du dxu x
 


 

 
2

1 4

1 1
2

1

dy dy du

dx du dx x x

x

  
 



 

Example (11) 

If   
5

3 3y x  , find 
dy

dx
.  

Solution 

Let 
3 53u x y u    . 

Then,  

4 25 , 3
dy du

u x
du dx

   

   
4 4

3 2 2 35 3 3 15 3
dy dy du

x x x x
dx du dx

       

Derivatives of Trigonometric Functions 

By using the basic trigonometric limits and applying the definition of the de-

rivative, we can compute the derivatives of all basic trigonometric functions. 

The Derivatives of  sinx  and cosx  (From the First Principle) 

To find the derivative of  ( ) sinf x x  , using the definition of the deriva-

tive. We have, 

0

( ) ( )
( ) lim

x

f x x f x
f x

x 

  
 


 

provided the limit on the RHS exists. 
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0

0

0

0 0 0

sin sin
sin lim

sin cos cos sin sin
lim

sin( ) sin cos cos sin

sin cos 1 sin cos
sin lim

sin cos 1 cos 1sin
lim cos lim lim 0

0 cos

x

x

x

x x x

x x xd
x

dx x

x x x x x

x

x y x y x y

x x x xd
x

dx x

x x xx
x

x x x

x

 

 

 

     

  




   




  

   




    
   

   

  cosx
  

Similarly we can  find the derivative of  ( ) cosf x x  , using the defini-

tion of the derivative. We have, 

0

( ) ( )
( ) lim

x

f x x f x
f x

x 

  
 


 

provided the limit on the RHS exists. 

 
 

 

 
 

   

0

0

0

0 0 0

cos cos
cos lim cos

cos cos sin sin cos
lim

cos( ) cos cos sin sin

cos cos 1 sin sin
cos lim

cos cos 1 cos 1sin
lim sin lim lim 0

0 s

x

x

x

x x x

x x xd
x

dx x

x x x x x

x

x y x y x y

x x x xd
x

dx x

x x xx
x

x x x

 

 

 

     

  




   




  

   




    
   

   

  in sin .x x 
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Theorem  

 If  ( )f x  is a differentiable function of x , 

   

 

   

 

sin ( ) cos ( ) ( ) [bychain rule]

( ) cos ( )

cos ( ) sin ( ) ( ) [bychain rule]

( ) sin ( )

d d
f x f x f x

dx dx

f x f x

d d
f x f x f x

dx dx

f x f x

   

   

    

    

 

The Derivative of  tanx   

     
2

2 2
2

2 2

cos cos sin sinsin
tan

cos cos

cos sin 1
sec

cos cos

x x x xd d x
x

dx dx x x

x x
x

x x

  
  

 


  

  

The Derivative of  cot x   

     
2

2 2
2

2 2

sin sin cos coscos
cot

sin sin

cos sin 1
cosec

sin sin

x x x xd d x
x

dx dx x x

x x
x

x x

  
  

 


     

 

The Derivative of  secx   

   
2

2

0. cos sin .11
sec

cos cos

sin 1 sin
sec tan

cos cos cos

x xd d
x

dx dx x x

x x
x x

x x x

  
  

 

  

  

The Derivative of  cosecx   

   
2

2

0. sin cos .11
cosec

sin sin

cos 1 cos
cosec cot

sin sin sin

x xd d
x

dx dx x x

x x
x x

x x x
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Theorem  

 If  ( )f x  is a differentiable function of x , 

   

 

   

 

     

 

2

2

2

2

tan ( ) sec ( ) ( ) [bychain rule]

( ) sec ( )

cot ( ) cosec ( ) ( ) [bychain rule]

( ) cosec ( )

sec ( ) sec ( ) tan ( ) ( ) [bychain rule]

( ) sec ( ) tan (

d d
f x f x f x

dx dx

f x f x

d d
f x f x f x

dx dx

f x f x

d d
f x f x f x f x

dx dx

f x f x f

   

    

    

     

    

   

     

   

)

cosec ( ) cosec ( ) cot ( ) ( ) [bychain rule]

( ) cosec ( ) cot ( )

x

d d
f x f x f x f x

dx dx

f x f x f x

  

     

    
 

Example (12)  
Differentiate 

 3 25 siny x x x  . 

Solution 

   

   

3 2 3 2

3 2 2

5 . sin sin . 5

5 .cos sin . 3 10

dy d d
x x x x x x

dx dx dx

x x x x x x

   

   

 

Example (13) 

If 
1 sin

1 sin

x
y

x





 , find 

dy

dx
  

Solution 

Let 
1 sin

,
1 sin

x
u

x





 then  y u  and  

.
dy dy du

dx du dx
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2

2

2

2

1
,

2

cos 1 sin cos 1 sin

1 sin

2cos

1 sin

1 2cos

2 1 sin

1 sin cos

1 sin 1 sin

dy

du u

x x x xdu

dx x

x

x

dy x

dx u x

x x

x x



   









 
   

  

 
   

   
 

 

Example (14) 

If 
tan sec

tan sec

x x
y

x x





 ,  find 

dy

dx
. 

Solution: 

  

 

  

 

 

 

 

2

2

2

2

2 3

2

sec sec tan tan sec

tan sec

sec sec tan tan sec

tan sec

2sec tan 2sec

tan sec

2sec tan sec

tan sec

x x x x xdy

dx x x

x x x x x

x x

x x x

x x

x x x

x x
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Derivative of Exponential Function 

To find the derivative of the exponential function ( ) xy f x a  , we use 

the principal  definition  

 

0

0 0

0 0

( ) ( )
( ) lim

lim lim

1 1
lim lim

ln

x

x x x x x x

x x

x x x
x

x x

x

dy f x x f x
f x

dx x

a a a a a

x x

a a a
a

x x

a a

 

 

   

 

   

  
 



 
 

 

 
 

 



 

So, we have 

lnx xd
a a a

dx
  

Also, we have 

lnx x xd
e e e e

dx
   

Derivatives of Logarithmic Function 

To find the derivative of the natural logarithmic function ( ) lny f x x  , 

we use the principal  definition  

 

0

0 0

1/

0 0

1/ 1/
/ /

0 0

( ) ( )
( ) lim

ln 1
ln ln

lim lim

1
lim ln 1 lim ln 1

ln lim 1 ln lim 1

ln

x

x x

x

x x

x x
x x x x

x x

dy f x x f x
f x

dx x

x

x x x x

x x

x x

x x x

x x

x x

e

 

   



   

 

   

  
 



 
     

 
 

    
      

    

       
         

         

 1/ 1x

x
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So, we have 

1
ln

d
x

dx x
  

Also, we have 

ln
log

ln

1 1 1
ln .

ln ln

a

d d x
x

dx dx a

d
x

a dx a x

 
  

 

 

 

Example (15) 

 

 

 

 

3 2

2

5 4

sin cos cos sin

7 5 3 7

1
tan ln ln sec

sec 5 sec tan

x x

x x

d
x x x x

dx

d
x x x

dx

d
a x x a a x

dx x

d
x e x x e x x

dx
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Exercise  

Find the derivative of                                      Answer 

the following functions                               

with respect tox   

 

 

 

 

 

 

2

2

2

2

2

2 2

2

10

sin cos

sin sin

ln

cos sin ln coscos

ln ln

ln cos sin ln

cos cos

4

1 1

1 (1 ) 1

ln

1 ln10

log ln

xx

x x

n n

x x

x x x x

e x xe

x x

a a n
a

x x x

x x x x xx x

x x

x x x x x

x x x

e e

e e e e

x

x x x

a x a

a x a x

x x x



 



 
 

 

 






 



  

 
 

  



 

 

Example (16)  

Differentiate 

53 logxy x   
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Solution 

 

5 5

5

3 log log 3

1 1
3 log 3 ln3

ln5

x x

x x

dy d d
x x

dx dx dx

x
x

 

 
  

   
Example (17)  
Differentiate with respect to x , the function  

logxy a  

Solution 

We have,  

ln
log

ln
x

a
y a

x
   

 

 

2

2

1 1/
ln ln

ln ln

ln

ln

dy d x
a a

dx dx x x

a

x x

  
   

  




 

 

Exercise Answer   

 

     

 

2

1  Differentiate ln 1 ln 

2  If 2 3 , find  at 2 36 1 2ln3

3  If 6 tan , find  at 0  0

x

x x x

dy
y x x x

dx

dy
y x x x

dx



   

 

 

 

Theorem  

If  ( )f x  is a differentiable function of x , 

( ) ( )

( )

ln ( ) [bychain rule]

ln ( )

f x f x

f x

d d
a a a f x

dx dx

a a f x
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( ) ( )

( )

( ) [bychain rule]

( )

f x f x

f x

d d
e e f x

dx dx

f x a

    

 

 

 

 

1 1
log ( ) ( ) [bychain rule]

ln ( )

1 ( )

ln ( )

1
ln ( ) ( ) [bychain rule]

( )

( )

( )

a

d d
f x f x

dx a f x dx

f x

a f x

d d
f x f x

dx f x dx

f x

f x

     


 

    




 

 

Example (18) 

If   ln ln siny x  find
dy

dx
 . 

Solution 

Let  sin , ln sint x u x  . Then,   lny u   and   lnu t .  

So, we have    

. .
dy dy du dt

dx du dt dx
  

1 1
, , cos

dy du dt
x

du u dt t dx
     

 

 

1 1 1 1
. .cos . .cos

ln sin sin

cot

ln sin

dy
x x

dx u t x x

x

x

 



  

Example (19) 

If secy x  ; find 
dy

dx
  

Solution: 

Let    , sect x u x   . Then , secy u u t    
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1 1
. . .sec tan .

2 2

1 1
.sec tan .

22 sec

sec tan

4 sec

dy dy du dt
t t

dx du dt dx u x

x x
xx

x x

x x

 





  

 

Example (20)  

If 
1 sin

ln
1 sin

mx
y

mx

 
  

 
; find

dy

dx
. 

Solution 

Let  
1 sin

1 sin

mx
t

mx





  

1 sin

1 sin

mx
u

mx





. Then ln ,y u u t    

   

 

 

2

2

2 2

. .

cos 1 sin cos 1 sin1 1
. .
2 1 sin

1 sin 1 1 sin 2 cos
. .

1 sin 2 1 sin 1 sin

cos cos
sec

1 sin cos cos

dy dy du dt

dx du dt dx

m mx mx m mx mx

u t mx

mx mx m mx

mx mx mx

m mx m mx m
m mx

mx mx mx



  




 


  

   
     

Simpler method for other similar problems: 

When computing derivatives by the chain rule, we do not actually write the 

function  ,t u  and so on, but bear them in mind, and keep on obtaining the 

derivatives of the component functions, stepwise, as shown in the following 

solved examples. 

Example (21)  

If  2ln siny x  find  
dy

dx
. 
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Solution 

 

 

2

2

2

2 2

2

2 2

2

ln sin

1
. sin

sin

1
.cos .

sin

1
.cos .2 2 cot

sin

dy d
x

dx dx

d
x

x dx

d
x x

x dx

x x x x
x

 
 





 

 

 

Note  

Observe that when we differentiate a function by using the chain rule, we 

differentiate from the outside inward. Thus, to differentiate  sin 3 5x   , 

we first differentiate the outer function sinx  (at3 5x   ) and then differen-

tiate the inner function3 5 atx x . Similarly, to differentiate
7cosx , we 

first differentiate the outer function cosx  (at
7x ) and then 

differentiate the inner function
7x  , at  x . The chain rule can be applied to 

even longer composites. The procedure is always the same: 

Differentiate from outside inward and multiply the resulting derivatives 

(evaluated at the appropriate numbers). 

For example, 

  

      

5

5 5 4 2

sin cos tan

cos cos tan sin tan 5tan sec

d
x

dx

x x x x

 
 

    
  

  

Example (22) 

 If   ln ln lny x  find
dy

dx
. 
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Solution  
We have  

  

 
  

 

 

   

ln ln ln

1
ln ln

ln ln

1 1
. . ln

ln ln ln

1 1 1
. .

ln ln ln

1

ln ln ln

dy d
x

dx dx

d
x

x dx

d
x

x x dx

x x x

x x x

   








  

 

 

Example (23) 

 If   3ln ln lny x  find
dy

dx
. 

Solution  
We have  

  

 
  

3

3

3

ln ln ln

1
ln ln

ln ln

dy d
x

dx dx

d
x

dxx

 
 


 

 
3

33

1 1
. . ln
lnln ln

d
x

x dxx
  

 

 

3

3 3

2

3 33

1 1 1
. .

ln ln ln

1 1 1
. . .3
lnln ln

d
x

x x x dx

x
x xx
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   3 3

3

ln ln lnx x x


 
 

 

 

Example (24) 

If 
3xy e  ,   find

dy

dx
 

Solution  
We have, 

 

3 3

3 3

3

2 23 3

x x

x x

dy d d
e e x

dx dx dx

e x x e

 

 

  

 

Example (25)  

If  cosy x ,  find 
dy

dx
. 

 

Solution  
We have, 

 

 

 

cos

1
. cos

2 cos

1
. sin .

2 cos

1 1
. sin .

22 cos

sin

4 cos

dy d
x

dx dx

d
x

dxx

d
x x

dxx

x
xx

x

x x





 

 

 

 

Example (26) 

If  10sin logy x  ; find
dy

dx
. 
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We have,  

  

   

 

 

10

10 10

10

10

sin log

cos log log

1
cos log

ln10

cos log

ln10

dy d
x

dx dx

d
x x

dx

x
x

x

x





 
  

 



 

 

Example (27) 

 If
 

 ln sin cosy x x  ; find
dy

dx
 . 

Solution 

We have 

  

 

 

ln sin cos

1
sin cos

sin cos

1
cos sin

sin cos

cos sin

sin cos

dy d
x x

dx dx

d
x x

x x dx

x x
x x

x x

x x

 

 


 







 

Example (28) 

 If
  

 2 cos 3 2xy x   ; find
dy

dx
. 

Solution  
We have 

 2 cos 3 2xdy d
x

dx dx
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2 cos 3 2 cos 3 2 2

2 sin 3 2 3 2 cos 3 2 2 ln 2

2 sin 3 2 3 cos 3 2 2 ln 2

2 ln 2cos 3 2 3sin 3 2

x x

x x

x x

x

d d
x x

dx dx

d
x x x

dx

x x

x x

         

           

          

     

 

Example (29) 

 If  
1

ln
y

x x
  ; find 

dy

dx
. 

Solution 

We have 

   

 

 

   

2

2 2

1

ln

(0) ln (1) ln

ln

1
ln (1)

1 ln

ln ln

dy d

dx dx x x

d
x x x x

dx

x x

x x
xx

x x x x

 
  

 





 
   

   

 

Summary of Differentiation Rules 

Derivative of a sum (difference) of functions) 

 1 2 1 2( ) ( ) ( ) ( )
d d d

f x f x f x f x
dx dx dx

    

Derivative of a constant multiple of a function  

 ( ) ( )
d d

k f x k f x
dx dx

   

Derivative of a product of functions 

 1 2 1 2 2 1( ) ( ) ( ) ( ) ( ) ( )
d d d

f x f x f x f x f x f x
dx dx dx

    

Derivative of ratio of functions 
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2 1 1 2
1

2

2 2

( ) ( ) ( ) ( )
( )

( ) ( )

d d
f x f x f x f x

f xd dx dx

dx f x f x


 

 
 

  

Derivative of composite functions (the chain rule) 

     ( ) ( ) ( )
d d d

f g x f g g x
dx dg dx

     

Summary of basic functions derivatives . 

dy
y

dx
  

     

     

    

    

    

      

      

1

2

2

( ) , ( ) ( )

( )
( )

2 ( )

sin ( ) cos ( ) ( )

cos ( ) sin ( ) ( )

tan ( ) sec ( ) ( )

cot ( ) cosec ( ) ( )

sec ( ) sec ( ) tan ( ) ( )

cosec ( ) cosec ( ) cot ( ) ( )

f x f x f x

f x
f x

f x

f x f x f x

f x f x f x

f x f x f x

f x f x f x

f x f x f x f x

f x f x f x f x

 
 










 







 

dy
y

dx
 

  

 

 

 

( ) ( )

( ) ( )

( ) ln

( )

( )
ln ( )

( )

1 ( )
log ( )

ln ( )

f x f x

f x f x

a

a a f x a

e e f x

f x
f x

f x

f x
f x

a f x
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Exercise : Differentiate the following functions w.r.t. x : 

 

     

 

 

4

3

2

7 7

(1) ln ln sin (2) ln ln ln (3) sin

sin
(4) cos (5) (6)

1 cos
(7) 2 (8) log log (9) ln

1 cos3

xe

x

x e

y x y x y x

x
y x e y y e

x

x
y y x y

x

    

  


  


 

Implicit Functions and Their Differentiation 

First, let us distinguish between explicit and implicit functions. Functions of 

the form, ( )y f x  in which y  (alone) is directly expressed in terms of 

the function(s) of  x , are called explicit functions. 

Example (30) 

2 3 2y x x    ,  sin 2 xy x e   , 
2

3

1

x
y

x





  

2cos ln(1 )y x x    and so on. 

Not all functions, however, can be defined by equations of this type. For ex-

ample, we cannot solve the following equations for y  (alone) in terms of 

the functions of x . 

Examples (31) 
3 3 2x y xy  ,   

5 2 23 2 2 0y y x    ,   
2 2 36x y 

sin sin( )y x a y  ,  
3 37y y x  and so on. 

Such relations connecting  x  and y are called implicit relations. An implic-

it relation (in x  and y ) may represent jointly two or more functions  x . 

As an example, the relation  
2 2 36x y   jointly represents two functions: 

236y x    and  
236y x   . 

 

Remark  

Every explicit function ( )y f x  can also be expressed as an implicit 

function. For example, we may write the above equation in the form 

( ) 0y f x   and call it an implicit function of  x . Thus, the term explicit 
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function and implicit function do not characterize the nature of a function 

but merely the way a function is defined. 

The Differentiation of implicit  Functions 

The technique of implicit differentiation is based on the chain rule. 

For example, consider the equation 
3 37y y x   

Differentiating both the sides with respect to x  , treating y  as a function of

x  , we get (via the rule for differentiating a composite function) 

2 23 7 3 (*)
dy dy

y x
dx dx

   

Now solving (*) for 
dy

dx
, we get 

 
2

2 2

2

3
3 7 3

3 7

dy dy x
y x

dx dx y
   


 

Note that, the above expression for 
dy

dx
 involves both  x and y . If it is re-

quired to find the value of the derivative of an implicit function for a given 

value ofx  , then we have to first find the corresponding value of y  , using 

the given relation . This will help in computing the value of 
dy

dx
 at those 

points. 

Example (32) 

Find 
dy

dx
 , if  

5 2 23 2 4y y x     . 

Solution 

Differentiating both sides of the given equation “with respect to x ” (using 

the chain rule), we obtain 

 

45 6 4 0
dy dy

y y x
dx dx

    

We now solve for 
dy

dx
, obtaining 

 4

4

4
5 6 4

5 6

dy dy x
y y x

dx dx y y
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Derivatives of the Inverse Trigonometric  Functions 

I. Derivative of the Inverse Sine  Function 

Let 
1siny x , which is equivalent to  

sin and ,
2 2

x y y
  

   
 

 

Differentiating both the sides of this equation with respect to x , we 

obtain 

 
1

1 cos
cos

dy dy
y

dx dx y
    

If ,
2 2

y
  

  
 

, cos y is non-negative. 

Here, we have to write the right-hand side in terms of  x .  

Since,  sin y x  , we have 

2 2cos 1 sin 1y y x       

Of these two values for cos y , we should take  
2cos 1y x  , 

since ,
2 2

y
  

  
 

.  

So, we have  

1

2

1

2

1 1
sin

cos 1

1
sin

1

dy d
x

dx dx y x

d
x

dx x





    


   


 

 

Theorem (A): If  ( )f x  is a differentiable function of x , 

 
 

 

1

2

2

1
sin ( ) ( ) [bychain rule]

1 ( )

( )

1 ( )

d d
f x f x

dx dxf x

f x

f x
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Example (33) 

  Find 
dy

dx
 , if 

1 2siny x   

Solution 

1 2

4

2
sin

1

dy d x
x

dx dx x

 


  

II. Derivative of the Inverse Cosine  Function 

Let 
1cosy x , which is equivalent to  

 cos and 0,x y y    

Differentiating both the sides of this equation with respect to x , we 

obtain 

 
1

1 sin
sin

dy dy
y

dx dx y
      

If  0,y  , sin y is non-negative. 

Here, we have to write the right-hand side in terms of  x .  

Since,  cos y x  , we have 

2 2sin 1 cos 1y y x       

Of these two values for sin y , we should take  
2sin 1y x  , 

since  0,y  .  

So, we have  

1

2

1

2

1 1
cos

sin 1

1
cos

1

dy d
x

dx dx y x

d
x

dx x





     


    


 

 

Theorem (B): If  ( )f x  is a differentiable function of x , 

 
 

 

1

2

2

1
cos ( ) ( ) [bychain rule]

1 ( )

( )

1 ( )

d d
f x f x

dx dxf x

f x

f x
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Example (34) 

 Find 
dy

dx
 , if 

1 2cos xy e   

Solution 
2

1 2

4

2
cos

1

x
x

x

dy d e
e

dx dx e

  


  

III. Derivative of the Inverse Tangent  Function 

Let 
1tany x , which is equivalent to  

tan and ,
2 2

x y y
  

   
 

 

Differentiating both the sides of this equation with respect to x , we 

obtain 

2

2

1
1 sec

sec

dy dy
y

dx dx y
      

Here, we have to write the right-hand side in terms of  x .  

Since,  tan ,x y  , we have 

2 2 2sec 1 tan 1y y x     

So, we have  

1

2 2 2

1

2

1 1 1
tan

sec 1 tan 1

1
tan

1

dy d
x

dx dx y y x

d
x

dx x





       

    

 

 

Theorem (C): If  ( )f x  is a differentiable function of x , 

 
 

 

1

2

2

1
tan ( ) ( ) [bychain rule]

1 ( )

( )

1 ( )

d d
f x f x

dx dxf x

f x

f x

    







 

Example (35)  

Find 
dy

dx
 , if 

1 1
tan

1
y

x
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Solution 

 

 

2

1

2 2

1

11 1
tan

1 1 11
1

1

xdy d

dx dx x x

x




 

    
    

  
 

  

IV. The Derivative of Inverse Cotangent function 

From the definition of inverse cotangent function, we have 

1 1cot tan
2

y x x
      

Differentiating both sides with respect tox  , we get 

 

1 1

2 2

cot tan
2

1 1
0

1 1

dy d d d
x x

dx dx dx dx

x x

  
   

 

   
 

 1 

Theorem (D): If ( )f x  is a differentiable function of  x  , 

 
 

 

1

2

2

1
cot ( ) ( )

1 ( )

( )

1 ( )

d d
f x f x

dx dxf x

f x

f x

   



 



 

V. Derivative of the Inverse Secant  Function 

Let 
1secy x , which is equivalent to  

 sec and 0,
2

x y y



 

    
 

 

Differentiating both the sides of this equation with respect to x , we 

obtain 

 
1

1 sec tan
sec tan

dy dy
y y

dx dx y y
    

If  0,
2

y



 

   
 

, sec tany y is non-negative. 

Here, we have to write the right-hand side in terms of  x .  
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Since,  secx y , we have 

2 2sec tan sec sec 1 1y y y y x x     

So, we have  

1

2

2

1

2

1 1
sec

sec tan sec sec 1

1

1

1
sec

1

dy d
x

dx dx y y y y

x x

d
x

dx x x





    





   


 

Theorem (E): If ( )f x  is a differentiable function of  x  , 

 
 

 

1

2

2

1
sec ( ) ( )

( ) ( ) 1

( )

( ) ( ) 1

d d
f x f x

dx dxf x f x

f x

f x f x

  








 

VI. The Derivative of Inverse Cosecant function 

From the definition of inverse cosecant function, we have 

1 1cosec sec
2

y x x
      

Differentiating both sides with respect tox  , we get 

 

1 1

2 2

cosec sec
2

1 1
0

1 1

dy d d d
x x

dx dx dx dx

x x x x

  
   

 

   
 

 1 

Theorem (D): If ( )f x  is a differentiable function of  x  , 
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1

2

2

1
cosec ( ) ( )

( ) ( ) 1

( )

( ) ( ) 1

d d
f x f x

dx dxf x f x

f x

f x f x

   




 



 

Example (36) 

If 
1 1

tan
1

x
y

x

  
  

 
 ,  find 

dy

dx
  

Solution  

   

 

2

2 2

2

1 1

11
1

1

1 1 ( 1) 11

11
1

1

1

1

dy d x

dx dx xx

x

x x

xx

x

x

 
    

  
 

     
  

      
 




 

 

 

Example (37) 

If 

2
1

2

1
cos

1

x

x

e
y

e

  
  

 
; find 

dy

dx
  

Solution  
We have, 

2

22
2

2

1 1

1
1

1
1

x

x
x

x

dy d e

dx dx e
e

e
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2 2 2 2

22 22

2

2

2 1 2 11

11
1

1

2

1

x x x x

xx

x

x

x

e e e e

ee

e

e

e

    
   
       




 

Example (38) 

Differentiate 

2
1 1 1

tan
x

y
x


  

  
 
 

 with respect to x . 

Solution  
We have, 

    

 

2

2
2

2

2

2 2
2

2

1 1 1

1 1
1

1 1 1
1 1

1 1
1

1

2 1

dy d x

dx dx x
x

x

x
x x

x

x
x

x

x

  
  

     
  
 
 

  
    

  
       
    

 




 

Example (39) 
Differentiate  

  1 2sin 1 1y x x x x     

Solution 

 
2

2
2

1
1 1

1 1 1

dy d
x x x x

dx dx
x x x x
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2
2

2

2

2

2 2
2

1

1 1 1

1 1
1 (1) 1

2 1 21

1 2 3 3 1

2 1 2 1
1 1 1

x x x x

x
x x x x

x xx

x x

x x x
x x x x



   

      
          

      

  
  

     

  

Example (40) 

If 
1 1 4

sec
1 4

x

x
y   
  

 
 , find 

dy

dx
  

Solution  

     

 

2

2

2

1

1 1 4

1 4
1 4 1 4

1
1 4 1 4

1

1 4 1 4
1

1 4 1 4

4 ln 4 1 4 4 ln 4 1 4

1 4

2 ln 2

1 4

x

x
x x

x x

x x

x x

x x x x

x

x

x

dy d

dx dx
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Derivatives of Hyperbolic Functions 

The formulas for the derivatives of the hyperbolic sine and hyperbolic cosine 

functions are obtained by considering their definitions, and differentiating 

the expressions involving exponential functions. Thus, 

 

 

sinh cosh
2 2

cosh sinh
2 2

x x x x

x x x x

d d e e e e
x x

dx dx

d d e e e e
x x

dx dx

 

 

    
     

   

    
     

   

 

From these formulas and the chain rule we have the following theorem. 

Theorem (A): If  ( )f x  is a differentiable function of  x , 

   

   

sinh ( ) cosh ( ) ( )

cosh ( ) sinh ( ) ( )

d
f x f x f x

dx

d
f x f x f x

dx

      

      

 

The derivative of  tanhx  may be found from the exponential definition or 

we may use the above result(s) (i.e., the derivatives of sinhx  andcoshx  ). 

Since 

sinh
tanh

cosh

x
x

x
  

Then,  

 
2 2

2

2 2

cosh sinh 1
tanh sech

cosh cosh

d x x
x x

dx x x


     

The formulas for the derivatives of the remaining three hyperbolic functions 

are 

 

 

 

2coth cosech ,

sech sech tanh ,

cosech cosech coth .

d
x x

dx

d
x x x

dx

d
x x x

dx

 

 

 

  

 

 

 



868 
 

From these formulas and the chain rule, we have the following theorem. 

Theorem (B): If  ( )f x  is a differentiable function of  x , 

 

 

   

   

2

2

tanh ( ) sech ( ) ( )

coth ( ) cosech ( ) ( )

sech ( ) sech ( ) tanh ( ) ( )

cosech ( ) cosech ( )coth ( ) ( )

d
f x f x f x

dx

d
f x f x f x

dx

d
f x f x f x f x

dx

d
f x f x f x f x

dx

   

   

 

 

 

Differentiation of Inverse Hyperbolic Functions 

Inverse hyperbolic functions correspond to inverse circular functions, and 

their derivatives are found by similar methods. 

I. Derivative of 
1sinhy x   

Let 
1sinhy x .  Then   sinhx y  

Differentiating both sides  w.r.t.   x    

 

2 2

1 cosh

1 1 1

cosh 1 sinh 1

dy
y

dx

dy

dx y y x



   
 

  

II. Derivative of 
1coshy x   

Let 
1coshy x .  Then   coshx y  

Differentiating both sides  w.r.t.   x    

 

2 2

1 sinh

1 1 1

sinh cosh 1 1

dy
y

dx

dy

dx y y x



   
 

 

III. Derivative of 
1tanhy x   

Let 
1tanhy x .  Then   tanhx y  

Differentiating both sides  w.r.t.   x    
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2

2 2 2

1 sech

1 1 1

sech 1 tanh 1

dy
y

dx

dy

dx y x x

   

   
 

 

The differential coefficient of the reciprocals of the above can be found by 

the same methods. 

They are, 

1

2

1

2

1

2

1
sech

1

1
cosech

1

1
coth

1

dy
y x

dx x x

dy
y x

dx x x

dy
y x

dx x







  


  


  


  

From these formulas and the chain rule, we can obtain the following results. 

If ( )f x  is a differentiable function of  x   

 
 

 
 

 
 

 
 

 
 

 

1

2

1

2

1

2

1

2

1

2

1

( )
sinh ( )

( ) 1

( )
cosh ( ) , ( ) 1

( ) 1

( )
tanh ( ) , ( ) 1

1 ( )

( )
sech ( )

( ) 1 ( )

( )
cosech ( )

( ) 1 ( )

( )
coth ( )

d f x
f x

dx f x

d f x
f x f x

dx f x

d f x
f x f x

dx f x

d f x
f x

dx f x f x

d f x
f x

dx f x f x

d f x
f x

dx














   




    




    




    




    




      

2
, ( ) 1

( ) 1
f x

f x
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Example (41)  

Find 
dy

dx
 if   1tanh cos2y x  . 

Solution  

We have, 

 

 

 
 

1

2

2

tanh cos2

1
2sin 2

1 cos2

2sin 2 2
2cosec2

sin 2 sin 2

dy d
x

dx dx

x
x

x
x

x x

   

  



    

 

Example (42)  

Find
dy

dx
 , if   1sinh tany x  . 

Solution 

 

 1

2
2

2

sinh tan

1 sec
sec sec

sec1 tan

dy d
x

dx dx

x
x x

xx
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Derivatives  Higher  Orders 

We have studied several methods of finding derivatives of differentiable 

functions. If ( )y f x  is a differentiable function of  x  , then its deriva-

tive is denoted by  

dy

dx
 or ( )f x   or  y   

The notation  ( )f x  suggests that the derivative of  ( )f x  is also a function 

of  x . If the function ( )f x   is in turn differentiable, its derivative is called 

the second derivative (or the derivative of the second order) of the original 

function ( )f x  and is denoted by ( )f x  . This leads us to the concept of 

the derivatives of higher orders. 

 
0

( ) ( )
( ) ( ) lim

x

f x x f x
f x f x

x 

     


 

We write, 

 2

2

( )
or ( ) or

d f xd dy d y
f x y

dx dx dx dx

  
    

   
 

Similarly, we can find the derivative of 

2

2

d y

dx
 provided it exists, and is de-

noted by 

3

3

d y

dx
  [or ( )f x  or y  ], called the third derivative of 

( )y f x  and so on. 
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Notations for Derivatives of  ( )y f x   

Order of  Derivative              Prime Notation ( )                     Leibniz Notation  

 

2

2

3

3

4
iv iv

4

( ) ( )

1st or ( )

2nd or ( )

3rd or ( )

4th or ( )

th or ( )
n

n n

n

dy
y f x

dx

d y
y f x

dx

d y
y f x

dx

d y
y f x

dx

d y
n y f x

dx

 

 

 
 

 

Example (43)  

If 
5 22 3y x x    , then 

 
2

4 3

2

3 4
2

3 4

5 6

5 6

10 2 , 40 2

120 , 240

240, 0, , 0
n

n

dy d y
x x x

dx dx

d y d y
x x

dx dx

d y d y d y

dx dx dx

   

 

  

 

Note that, for a polynomial function ( )f x  of degree 5, 
( ) ( ) 0nf x   for

6n   . More generally, the 
th( 1)n   and all higher derivatives of any pol-

ynomial of degree n  are equal to 0. 

However, there are functions [like sinx  , cosx  , 
xe  , lnx  , and their ex-

tended forms, [that is  sin ax b  ,  cos ax b  , 
axe  ,  ln ax b or 
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more general ones like  sin ( )f x  , 
( )f xe  and  log ( )a f x  ] that can be 

differentiated any number of times and 
( ) ( )nf x is never 0. 

Example (44)  

Let us find the thn  derivatives of the following: 

(i) (ii)

(iii) (iv)sin

n x

x

x e

a x
 

Solution 

I.  Let
ny x   

    

        

     

2 3
1 2 3

2 3
, 1 , 1 2

1 2 2 1

1 2 2 1 !

n n n

n
n n

n

dy d y d y
nx n n x n n n x

dx dx dx

d y
n n n n n n n x

dx

n n n n

  



      

      

   

 

II. Let
xy e   

2 3

2 3
, ,x x x

n
x

n

dy d y d y
e e e

dx dx dx

d y
e

dx

   



 

III. Let
xy a   

     

  

2 3
2 3

2 3
ln , ln , ln

ln

x x x

n
nx

n

dy d y d y
a a a a a a

dx dx dx

d y
a a

dx

   



 

 

 

IV. Let siny x   
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2

2

3

3

cos sin ,
2

cos sin sin 2
2 2 2 2

cos 2 sin 2 sin 3
2 2 2 2

cos ( 1) sin ( 1)
2 2 2

n

n

dy
x x

dx

d y
x x x

dx

d y
x x x

dx

d y
x n x n

dx



   

   

  

 
    

 

      
             

      

      
               

      

   
           

   
sin

2
x n

  
   

 
Exercise 

find the thn  derivatives of the following: 

1
(1)cos (2)

(3)ln

x
x

x

 

Derivatives of Higher Orders: Product of Two Functions (Leibniz For-

mula) 

It helps us to find the thn  derivative of the product of two functions. 

 Let ( ) and ( )f x g x   be functions of  x  and ( ) ( )y f x g x  .  

Then, the  thn  derivative of y is 
( ) ( ) ( 1)

0 1

( 2) ( 3)

2 3

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ).

n n n n n

n n n n

n n

n

y C f x g x C f x g x

C f x g x C f x g x

C f x g x



 

   

    

  

 

Where,  

!

!( )!

n

k

n
C

k n k



 

Note  

When one of the functions in the above theorem is of the form ,mx m  , 

then we should choose it as (the second function) ( )g x  , and the other as 

(the first function) ( )f x  , because ,mx m   shall have only m  deriva-

tives (and not more). 
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Example (45)  

If
2axy e x  , find

( )ny . 

Solution 
2

2

( ) (4) ( )

( ) ( )

( ) ( ) 2

( ) ( ) 2

( ) ( ) 0 ( ) ( )

ax

ax

ax

n n ax n

f x e g x x

f x ae g x x

f x a e g x

f x a e g x g x g x

 

  

  

    

   

 

  ( ) 2 1 22 1n n ax n ax n axy a e x na e x n n a e       

 

Example (46) 

Let us compute the 100th   derivative of the function
2 siny x x . 

Solution 

We have 

       
(100) (99) (98)(100) 2sin 200 sin 100 99 siny x x x x x    

All the subsequent terms are omitted here since they are identically equal to 

zero. Consequently, 

(100) 2

2

sin 100 200 sin 99 9900sin 98
2 2 2

sin 200 cos 9900sin

y x x x x x

x x x x x

       
             

     

  

The Method of Logarithmic Differentiation 

For (complicated) functions such as general exponential functions and other 

expressions involving products, quotients, and powers of functions.) 

Recall that to find the derivative  
 nd x

dx
 , we use the power rule 

  1n nd
x nx

dx

  

Also, we get 

   
1

( ) ( ) ( )
n nd

f x n f x f x
dx


  

using power rule and the chain rule. 
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But, we cannot use the power rule to find  xd
e

dx
 . Thus, 

   1x xd
e x e

dx

   

Recall that,   lnx xd
a a a

dx
 , which is the differentiation formula for the 

exponential function. 

Thus, we get, 

lnx x xd
e e e e

dx
   

and 

( ) ( ) ( ) lnf x f xd
a a f x a

dx
       

using differentiation formula for exponential function and the chain rule. 

Now, we ask the question; what can we write for  xd
x

dx
? 

Of course, it would be sheer nonsense to write   1x xd
x x x

dx

   . 

It is for these types of functions, and more generally for functions of the type 

 
( )

( )
g x

y f x   

where both ( )f x  and ( )g x  are differentiable functions of  x , that we can 

use the technique of logarithmic differentiation for computing their deriva-

tives. This technique is also used to simplify differentiation of many (com-

plicated) functions involving products, quotients, and powers of different 

functions. We list below the right technique for differentiating each of the 

following forms of functions: 

 ( ) Power rule
n

f x   

( ) Differentiation formula for exponential functionsf xa   

 
( )

Logarithmic different a on( i) i t
g x

f x   

Remark  

The technique of logarithmic differentiation is so powerful that it can be 

used for each of these forms. 
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Procedure of Logarithmic Differentiation 

The procedure of logarithmic differentiation involves taking natural loga-

rithm of each side of the given equation. After simplifying (by using proper-

ties of logarithms), we differentiate both sides w.r.t.  x .  

The usefulness of the process is due to the fact that the differentiation of the 

product of functions is reduced to that of a sum; of their quotients to that of a 

difference; and of the general exponential to that of the product of simpler 

functions. 

The following solved examples will illustrate the process of logarithmic dif-

ferentiation. 

First, we start with the differentiation of certain (complicated) function in-

volving products, quotients, and powers of functions. 

Example (47) 

If  
5 sin2 cosxy e x x  , find  

dy

dx
. 

Solution 

Taking the natural logarithm of both sides, we get 

ln 5ln lnsin2 lncosxy e x x    

Differentiating w.r.t.  x , we get 

 

 

 5

1 5 1 sin
2cos2

sin 2 cos

5 2cot 2 tan

5 2cot 2 tan

sin 2 cos 5 2cot 2 tan

x

x

x

dy x
e x

y dx e x x

x x

dy
y x x

dx

e x x x x

    

  

  

  

 

Example (48) 

If 
4 2 3sin tanxy e x x  , find

dy

dx
. 

Solution 

Taking the natural logarithms of both sides, we get 

ln 4ln 2lnsin 3ln tanxy e x x    

Differentiating w.r.t. x , we get 
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2

4 2 3

1 2cos 3sec
4

sin tan

3
4 2cot

sin cos

3
4 2cot

sin cos

3
sin tan 4 2cot

sin cos

x

x

x

dy e x x

y dx e x x

x
x x

dy
y x

dx x x

e x x x
x x

  

  

 
   

 

 
   

 

 

Example (49)  

If 
  

  

1 2

1 2

x x
y

x x

 


 
 , find 

dy

dx
  

Solution 

Taking natural logarithm of both sides, we get 

       
1

ln ln 1 ln 2 ln 1 ln 2
2

y x x x x           

Differentiating w.r.t.x , we get 

2 2

1 1 1 1 1 1

2 1 2 1 2

1 2 4

2 1 4

dy

y dx x x x x

x x
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2 2

2 2

2

2 2

2

2 2

2 4

2 1 4

1 2

1 4

6 3

1 4

1 2 6 3

1 2 1 4

dy y

dx x x

y
x x

x
y

x x

x x x

x x x x

 
    

 
    

 
 

   

   
 

     

 

Now, we consider functions of the type   
( )

( )
g x

f x  .  

Example (50) 

If 
tan5 xy   , find 

dy

dx
. 

Solution 

Taking natural logarithm of each side, we get 

ln tan ln5y x  

Differentiating w.r.t.  x  , we get 

2

2

tan 2

1
sec ln5

sec ln5

5 sec ln5x

dy
x

y dx

dy
y x

dx

x



   

   

 

Example (51)  

If  
xx  , find

dy

dx
. 

Solution 

Taking the natural logarithm of each side, we obtain 

ln lny x x   

Differentiating both sides w.r.t. x , we have 
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1 1
1 ln 1 ln

1 ln 1 lnx

dy
x x x

y dx x

dy
y x x x

dx

     

   

 

Example (52)  

If  
xxy x   , find 

dy

dx
. 

Solution 

Taking the natural logarithm of each side, we get 

ln lnxy x x  

Differentiating both sides w.r.t.  x  , we get 

     

    

    

1

1

1 1
ln 1 ln

ln 1 ln

ln 1 ln
x

x x

x x

x x x

dy
x x x x

y dx x

dy
y x x x x

dx

x x x x x





 
      

 

    

    

 

Example (53)  

If
  

 
x

xy x  , then find
dy

dx
. 

Solution 

We have   
2x

x xy x x    

Taking natural logarithm of both sides, we get 
2ln lny x x   

Differentiating w.r.t.  x  , we get 

 

2

2 2

2

2

1 1
ln

ln

lnx

dy
x x x

y dx x

dy
y x x x

dx

x x x x
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Example (54)   

If  ln
x

y x  find 
dy

dx
. 

Solution 

Taking natural logarithm of both the sides, we get 

 ln ln lny x x  

Differentiating both sides w.r.t.  ,x  we get 

 

 

   

1 1 1
1 ln ln

ln

1
ln ln

ln

1
ln ln ln

ln

x

dy
x x

y dx x x

dy
y x

dx x

x x
x

 
    

 

 
  

 

 
  

 

 

Example (55) 

If  
sin

cos
x

y x  , find 
dy

dx
 . 

Solution 

Taking natural logarithm of both sides, we get 

ln sin lncosy x x   

Differentiating both sides w.r.t.   x , we get 

 

 

 

   
2

sin

1 sin
sin cos ln cos

cos

sin
sin cos ln cos

cos

sin
cos cos ln cos

cos

x

dy x
x x x

y dx x

dy x
y x x x

dx x

x
x x x

x

 
   

 

  
    

  

 
  

 

 

Example (56) 

If  
ln

tan
x

y x  , find 
dy

dx
. 

Solution 

Taking natural logarithm of each side, we get 
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ln ln tany x x   

Differentiating both sides w.r.t.  x , we get 

 

 

 
 

2

ln

1 sec 1
ln ln tan

tan

ln tanln

sin cos

ln tanln
tan

sin cos

x

dy x
x x

y dx x x

xdy x
y

dx x x x

xx
x

x x x

  

 
  

 

 
  

 

 

Example (57) 

If  
tan

sin
x

y x  , find 
dy

dx
. 

Solution 

Taking the natural logarithm of each side, we get 

 ln tan ln siny x x   

Differentiating both sides w.r.t.  x , we have 

 

2

2

tan 2

1 cos
tan sec lnsin

sin

1 sec lnsin

sin 1 sec lnsin
x

dy x
x x x

y dx x

dy
y x x

dx

x x x

  

    

    

 

Example (58) 

 If  
ln

cos
x

y x , find 
dy

dx
  

Solution 

Taking the natural logarithm of each side, we get 

ln lncosy x x   

Differentiating both sides w.r.t. x , we get 
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ln

1 sin 1
ln ln cos

cos

1
ln cos tan ln

1
cos ln cos tan ln

x

dy x
x x

y dx x x

dy
y x x x

dx x

x x x x
x


  

 
   

 

 
   

 

 

Example (59)  

If  1y xx y   , find 
dy

dx
 

Solution 

Taking natural logarithm of both sides, we get 

ln ln 0

ln ln 0

y xx y

y x x y

 

 
 

Differentiating w.r.t. x , we get 

 

 

 

1 1
ln ln 0

ln ln

ln

ln

lnln

ln
ln

dy dy
y x x y

x dx y dx

dy x y
x y

dx y x

y
y

dy x
xdx

x
y

y y x yy x y

x x y xx
x x

y

     

 
    

 



 



  
   

 
 

 

 

Example (60)  
y x bx y a   , 

find 
dy

dx
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Solution  

Putting 
yu x  and  

xv y  , we get 

bu v a   
Differentiating  w.r.t. x  , we have 

 

0 (*)
du dv

dx dx
   

Now, consider  
yu x   

Taking natural logarithm of both sides, we get 

ln lnu y x  

Differentiating both sides w.r.t  x , we get 

1 1
ln

ln

ln (**)y

du dy
y x

u dx x dx

du y dy
u x

dx x dx

y dy
x x

x dx

   

 
   

 

 
   

 

 

Now, consider  
xv y   

Taking natural logarithm of both sides, we get 

ln lnv x y  

Differentiating both sides w.r.t . x , we get 

1 1
ln

ln

ln (***)x

dv dy
x y

v dx y dx

dv x dy
v y

dx y dx

x dy
y y

y dx

  

 
  

 

 
  

 

 

Using (**) and (***) in (*), we get 

ln ln 0y xy dy x dy
x x y y

x dx y dx
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ln lny x y xdy x y
x x y x y y

dx y x

   
       

  
 

 

 

 

/ ln

ln /

y x

y x

x y x y ydy

dx x x y x y
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