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1.1

1.2

Infroduction

Mathematical induction is a technique for proving results or establish-
ing statements for natural numbers.

In 370 BC, Plato’s Parmenides may have contained an early ex-
ample of an implicit inductive proof. The earliest clear use of mathe-
matical induction may be found in Euclid’s proof that the number of
primes is infinite.

In India, early implicit proofs by mathematical induction appear
in Bhaskara’s "cyclic method", and in the al-Fakhri written by al-
Karaji around 1000 AD, who applied it to arithmetic sequences to
prove the binomial theorem and properties of Pascal’s triangle.

Mathematical Induction

In this section, we can use mathematical induction to prove that a
propositional function (a statement) P(n) is true for all integers n > 1.
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Definition 1.2.1 Principal of Mathematical Induction

Let P(n) be a propositional function (a statement) defined for in-
tegers n, and a fixed integer a. Then, if these two conditions are

true
1. P(a) is true.

2. if P(k) is true for some integer k > a, then P(k+ 1) is also

true.
then the P(n) is true for all integers n > a.

Now, we can refine an induction proof into a 3-step procedure:
1. Verify that P(1) is true.
2. Assume that P(k) is true for some integer k > 1.
3. Show that P(k+ 1) is also true.

1. The first step, is called the basis step or the anchor step or the

initial step.
2. The second step, the assumption that P(k) is true, is sometimes

referred to as the inductive hypothesis or induction hypothesis.

= Example 1.1 Use mathematical induction to prove that

1+2+3+---+n:@
Solution: Let the statement P(n) be
1+2+3+....+n=w.
1. We show that P(1) is true:
()

LHS=1, RHS= =1

2
Both sides of the statement are equal hence P(1) is true.
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2. We assume that P(k) is true:

k(k+1)

1 4+243+....+k=
3. We show that P(k+ 1) is true:

L-H-S=142+43+...+k+(k+1)
k(k+1)

+ (k+1)

= (kgl)[kqtz]

=R.H.S.

Thus, the statement P(n) is true for all positive integers 7.

= Example 1.2 Use mathematical induction to prove that

2 _ nn+1)2n+1)

124224324 . .4n <

Solution Let the statement P(n) be

1)(2 1
12+22+32+....+nz:n(”JF )(@2n+ ).

6
I. Atn=1
I(1+1)2+1
LHS.=1>=1, RHS.= (1+ g( + ):1,
therefore P(1) is true.
2. Let n =k, then P(k) is true i.e.,
k(k+1)(2k+1)

124224324 4k = . .
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3. Atn=k+1

LHS =124+22 43+ .. +k+(k+1)

Kk D)2k 4 1)
— . + (k+1)?
=KD ok 1) 4 6k 1)]

6
_ (k1) [2k2+k+6k+6}

:(k%l) [2k2+7k+6}

(k+1)

[(2k+3)(k+2)]

(k+1)(k+2)(2k +3)
6

@)

=R.H.S.

So P(k+1) is true and therefore, the statement P(n) is true for
all positive integers n.

= Example 1.3 Prove that (n’ +2n) is divisible by 3 for all positive
integers n.

Solution Suppose that P(n) be
" (n*+2n) is divisible by 3" .
1. Atn=1
13 4+2(1) = 3 is divisible by 3,

therefore P(1) is true.
2. Let n =k, then P(k) is true i.e.,

<k3 —|—2k) is divisible by 3.
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3. Atn=k+1
(k+ 12 +2(k+1) = (k3+3k2+3k+1)+(2k+2)
= &>+ 3k% +5k+3
- (k3 +2k) + (3k2+3k+3)
= <k3+2k) +3 <k2+k+ 1)
(k® 4 2k) is divisible by 3 from (2), and 3 (k* +k+1) is also

divisible by 3, therefore P(k+ 1) is true.
Thus, P(n) is true for all positive integers n.

= Example 1.4 Prove that 2"~! < n! for all positive integers .
Solution: Let P(n) be 2"~ < n!.
1. Atn=1, we get

=201 <11=1,

then P(1) is true.
2. Let n =k, then P(k) is true i.e.,

2kl < g
3. Atn=k+1, then we get
2= (2)(27") < @)k)

= (2) (271) < e+ (kY
=28 < (k+1)WVkezt,

i.e., P(k+1) is true.
Thus, P(n) is true for all positive integers n.
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« Example 1.5 If P(n) : 749" 4 16" + k is divisible by 64 for n € N” is
true, then the least negative integral value of k is......

Solution For n = 1,P(1) : 65+ k is divisible by 64.

Thus k, should be -1 since, 65 — 1 = 64 is divisible by 64 .
» Example 1.6 State whether the following proof (by mathematical
induction) is true or false for the statement.

nn+1)(n+1)

P(n): 1242°+.. . 4n’=

Solution False.
Since in the inductive step both the inductive hypothesis and what is
to be proved are wrong. .
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1.3 Exercises
Exercise 1.1 Prove each of the statements by the Principle of Math-
ematical Induction:
(i) 4" !is divisible by 3, for each natural number .
(ii) 23” I'is divisible by 7, for all natural numbers 7.
(iii) n® —7n+ 3 is divisible by 3, for all natural numbers n.
(iv) 3%" — 1 is divisible by 8, for all natural numbers 7.
(v) 14+5+9+...4 (4n—3) = n(2n— 1) for all natural numbers
n.
(vi) 2+4+6+...+2n = n? +n for all natural numbers 7.

Exercise 1.2 If 10" 4 3.4"2 1 k is divisible by 9 for all n € N, then
the least positive integral value of k is...... .

| Exercise 1.3 If P(n):2n <n!,n € N, then P(n) is true forall n >.......






»

artial Fractions

An algebraic fraction is a fraction in which the numerator and denomi-
nator are both polynomial expressions.
In this chapter, we study a fraction and convert it into a partial fraction.

It useful give some definitions which help for understanding this sub-
ject.

2.1 Introduction

Definition 2.1.1 A polynomial of degree n in one variable x is an
expression of the form

f(x)=ap+ax+---+ax"
= Z?:Oaixia

where aj, i=0,1,...,n € R or C, are coefficients of polynomial
and the degree of polynomial deg f = n.
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Definition 2.1.2 Let f(x) and g(x) be two polynomials, then the
quotient of two polynomials

where g(x) # 0 with no common factors, is called Rational fraction,
f(x) the numerator, and g(x) the denominator.

Partial fractions

To express a single rational fraction into the sum of two or more single
rational fractions are called partial fraction resolution.
For example,

2x+x2—1_1+ 1 1
x(x2—1) x x—1 x+1

A rational fraction is of two types:

Proper Fraction:

Definition 2.2.1 A rational fraction h(x) = %, is called a proper
g(x
fraction if the degree of numerator f(x) is less than the degree of

denominator g(x).

» Example 2.1 The following are proper fraction

.xz_ X
(D) e

(2) 5555 .
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Improper Fraction:

f(x)

Definition 2.2.2 A rational fraction h(x) = a0’ is called an im-
g(x

proper fraction if the degree of numerator f(x) is greater than or
equal to the degree of denominator g(x).

= Example 2.2 The following are improper fraction

x3— X
() ez

64
(2) §55

An improper fraction can be expressed, by division, as the sum of a
polynomial and a proper fraction i.e.,

f(x) q(x)
— L = + —_,
@ ")
where degq(x) less than deg g(x).
» Example 2.3 The improper fraction
6x> +5x%> —7
3x2—2x—1"
can be expressed, by division, as
6x° +5x% — 7 8x—4
=(2x+4+3)+ 55—
Erai v B G e e
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Process of Finding Partial Fraction

. X . . .
A proper fraction % can be resolved into partial fractions as:
g(x
(1) The denominator factor as distinct or repeated linear factors

The rational fraction The partial fractions
f(x) A B
(a1x+b1)(arx+bs)... a1x+by + arx—+by +..
f(x) A A A
(ax+b] (@ci®) " @bp T ey

(2) The denominator factor as distinct or repeated quadratic factors
cannot be factored further

The rational fraction The partial fractions
S(x) Ax+B CxtD
(a1x*>+b1x+c1)(apx*+byx+cs)... a\x>+bix+c; ' axx*+byx+cy ' °
f(x) A1x+B) Axx+B) X Agx+By
(ax®+bx+c)* (ax*+bx+c)  (ax’+bx+c)’ (ax’+bx+c)

where A,B,C,A|,A,,....,A; are constants whose values are to be

determined.
The evaluation of the coefficients of the partial fractions is based on
the following theorem:

If two polynomials are equal for all values of the
variables, then the coefficients having same degree on both sides are
equal.
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= Example 2.4 Resolve

Tx—25
xX2—Tx+12
into partial fractions.
Solution:
Tx —125 A B

G-3a—4)  (x-3) (x-4)
Multiplying both sides by (x —3)(x —4), we get
Tx—25=A(x—4)+B(x—3).
Comparing the coefficients of like powers of x on both sides, we have
7=A+B,

—25=—4A -3B.

Solving these equation we get A = 3 and B = 4. Hence the required
partial fractions are:

Tx—=25 3 n 4
X2 —Tx+12  (x—3) (x—4)
= Example 2.5 Resolve into partial fraction
8x—38
x3—2x%2 —8x
Solution:
8x—8 8x—38 A B C

B —22—8x x(x—4)(x+2) P (x—4) i (x+2)

Multiplying both sides by x(x —4)(x+2), we get

8x—8=A(x—4)(x+2)+Bx(x+2)+Cx(x—4)
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Put x = 0 in the above equation, we have A = 1.
Put x = 4 in the above equation, we have B = 1.

Put x = —2 in the above equation, we have C = —2.
Hence the required partial fractions
8x—8 | 1 2

X3—2x2—8x «x

x—4_x+2

= Example 2.6 Resolve into partial fractions:

x2—3x+1
(x—1)2(x—2)
Solution:
2 —3x+1 A B C

G—12(—2) x—1 12"

x—2
Multiplying both sides by (x —1)?(x —2), we get

X =3x4+1=Ax—1)(x—2)+B(x—2)+C(x—1)?,
Put x = 1 in the above equation, we have B = 1.
Put x = 2 in the above equation, we have C = —1.

Comparing the coefficient of like powers of x on both sides in the
above equation, we get

A+C=1=A=2.

Hence the required partial fractions

x=3x+1 2 L] +(—1)
(x—1)2(x—-2) x—1 (x—1)2 x-2°
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» Example 2.7 Express the following in partial fractions:

x+1
x4 x2—6x
Solution:
x+1 A B C

B2 —6x ;—'_ (x—2) +x+3
Multiplying both sides by x> + x> — 6x, we get

x+1=A(x—-2)(x+3)+Bx(x+3)+Cx(x —2),

Put x = 0 in the above equation, we have A = —.

Put x = 2 in the above equation, we have B = —

10°
-2
Put x = —3 in the above equation, we have B = T
Hence the required partial fractions
—1 3 -2
x+1 6 10 15
_ 6 410 15

BHx2—6x  x  (x—2) x+3°

Now, we give some example when the denominator contains ir-
reducible (repeated) quadratic factors.

» Example 2.8 Resolve into partial fractions:

Ox—7
(x+3)(x2+1)

Solution:
Ox —17 A Bx+C

G132+ x+3) @)
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Multiplying both sides by (x+3)(x* + 1), we get

9x—7 =A(x*+ 1)+ B(x* 4 3x) + C(x+3),
. : —17
Put x = —3 in the above equation, we have A = —

Comparing the coefficient of like powers of x on both sides in the
above equation, we get

17

3B+C=9=C= =
Hence the required partial fractions

(-17) 17 6
%-7 5 3575
(x+3)(x2+1)  (x+3) (x2+1)

» Example 2.9 Resolve into partial fractions:

xX24x+2
x2(x243)2
Solution:

X2 +x+2 _A_ B CxtD  Ex+F
(x24+3)2 x X2 (x243)  (x243)%

Multiplying both sides by x?(x> 4+ 3)2, we get
X4+ x+2=Ax(x*+3)2+B(x*+3)> + (Cx+D)x*(x* + 3)+

(Ex+F)x*.
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Putting x = 0 in the above equation, we have B =

.

N=1\S]

Comparing the coefficient of like powers of x on both sides in the
above equation, we get Coefficient of x°

A+C=0.................. (1)
Coefficient of x*

B—-D=0.................. (2)
Coefficient of x>

6A+3C+E=0............ (3)
Coefficient of x?

6B+3D+F=1............ (4)
Coefficient of x

QA=1.......ociiiiii... (5)

Hence the required partial fractions
1 2
¥ +x+2 9 .9 x+2 x—1
x(x2+3)2  x X2 (x243) (x24+3)%

= Example 2.10 Resolve into partial fractions:
x* 41
xt—x2+1
Solution:

x*+1  Ax+B L _Cx4D
—x2 41 (2—x+1)  (Z+x+1)
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Multiplying both sides by x* 4+ x> + 1, we get
X2 +1=(Ax+B) (X +x+1)+ (Cx+D)(x* —x+1),

Comparing the coefficient of like powers of x, we have
Coefficient of x>

Coefficient of x2:
A+B—-C+D=1............... (2)

Coefficient of x:

Adding (1) and (5), we have A = 0.
Putting the value of A and C in (3), we have

B=D......c.cooiiiiiii (6)
Adding (4) and (6)
1
T2
Hence the required partial fractions
1 1
2+1 3 5

A2+l (Z—x+1) i (x2+x+1)
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Now, we give some example for improper rational fraction.

=« Example 2.11 Express the following in partial fractions:

x2 +x+1
xX24+2x+1
Solution:

The given fraction is improper rational fraction, then we divide the
numerator by the denominator

1
% 42541 g |
e o 6
—
x4 x4l _ x
Xt 4 2x41 4 2x41
x
We decompose the proper fraction ———— as follow:
x +2x+1
X X A " B A(x+D)+3B

P+2x+1] @+D? x4l G+DE o+
=>x=Alx+1)+B.
Equate the coefficients of x and 0 (constant terms) to get:
l=dand 0=4A+B =2A4=1_8=-1
) x ok &
s T S
Coxt4x4l 1 1
=1 ¥

U +2x+1 x4l (x+D)Y
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2.4 Exercises

Exercise 2.1 Express each of the following in partial fractions:
3x+4
1.

X+x—6
2x+4

B4x2+x+1
x+4

3412 =2
4

2.

3.
A I

o —2x+2
X3 —2x+1
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3.1 History

Mathematical topics typically emerge and evolve through interactions
among many researchers. Set theory, however, was founded by a single
paper in 1874 by Georg Cantor: "On a Property of the Collection of
All Real Algebraic Numbers".

Since the 5 century BC, beginning with Greek mathematician
Zeno of Elea in the West and early Indian mathematicians in the East,
mathematicians had struggled with the concept of infinity. Especially
notable is the work of Bernard Bolzano in the first half of the 19th
century.Modern understanding of infinity began in 1870-1874 and
was motivated by Cantor’s work in real analysis.An 1872 meeting
between Cantor and Richard Dedekind influenced Cantor’s thinking
and culminated in Cantor’s 1874 paper.

Cantor’s work initially polarized the mathematicians of his day.
While Karl Weierstrass and Dedekind supported Cantor, Leopold Kro-
necker, now seen as a founder of mathematical constructivism, did not.
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Cantorian set theory eventually became widespread, due to the utility
of Cantorian concepts, such as one-to-one correspondence among sets,
his proof that there are more real numbers than integers, and the "in-
finity of infinities" ("Cantor’s paradise") resulting from the power set
operation. This utility of set theory led to the article "Mengenlehre"
contributed in 1898 by Arthur Schoenflies to Klein’s encyclopedia.

The next wave of excitement in set theory came around 1900, when
it was discovered that some interpretations of Cantorian set theory
gave rise to several contradictions, called antinomies or paradoxes.
Bertrand Russell and Ernst Zermelo independently found the simplest
and best known paradox, now called Russell’s paradox: consider "the
set of all sets that are not members of themselves", which leads to a
contradiction since it must be a member of itself and not a member
of itself. In 1899 Cantor had himself posed the question "What is the
cardinal number of the set of all sets?", and obtained a related paradox.
Russell used his paradox as a theme in his 1903 review of continental
mathematics in his The Principles of Mathematics.

In 1906 English readers gained the book Theory of Sets of Pointsby
husband and wife William Henry Young and Grace Chisholm Young,
published by Cambridge University Press.

The momentum of set theory was such that debate on the paradoxes
did not lead to its abandonment. The work of Zermelo in 1908 and
the work of Abraham Fraenkel and Thoralf Skolem in 1922 resulted
in the set of axioms ZFC, which became the most commonly used set
of axioms for set theory. The work of analysts such as Henri Lebesgue
demonstrated the great mathematical utility of set theory, which has
since become woven into the fabric of modern mathematics. Set
theory is commonly used as a foundational system, although in some
areas—such as algebraic geometry and algebraic topology—category
theory is thought to be a preferred foundation.
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Sets

In this section, we define and study the concept of a set.
Definition 3.2.1 A set is defined as a mathematical object satisfying
certain axioms.

In many settings, the upper case letters A, B, ..., Z are used to
name sets, and a pair of braces {, } is used to specify the elements of a
set.

= Example 3.1 Each of the following collections of elements is a set
o V ={cat,dog, fish}.
o W=1{1,2,3}.
o V={n:nisanodd integer}.

Definition 3.2.2 Let A be the given set, and let a and b denote certain
objects "elements". When a is an element of A, we shall indicate
this fact by writing a € A; when both a and b are elements of A, we
shall write a,b € A instead of a € A and b € A; when b is not an
element of A, we shall write b ¢ A.

Set Formulation:

(1) The Tabulation Method:
We indicate a set by listing all its elements and enclosing them within
braces.

« Example 3.2 A = {2,3} . .

(2) The Rule Method:
We state the characteristic property by which we can determine whether
or not a given object is an element of the set.
We write A = {x: x has p} to say that ““ A is the set of all elements x
for which a certain property p holds “.
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» Example 3.3 A = {x: X is a solution 0fx2—5x+6:O} : .

Definition 3.2.3 The number of elements in a set A is called the order
of the set , and denoted by o(A) or |A]|.

For convenience, we shall now reserve

The set of all natural numbers, N = {1,2,3,...}.
The set of all integers, Z = {0,+1,£2,+3,...}.
Q to denote the set of all rational numbers.

R to denote the set of all real numbers.

Equal Sets
Definition 3.3.1 When two sets A and B consist of the same elements,
they are called equal and we shall write A = B. To indicate that A
and B are not equal, we shall write A # B.

« Example 3.4 (i) When A = {Mary,Helen,John} and B= {Helen,John,Mary},

then A = B. Note that a variation in the order in which the ele-
ments of a set are tabulated is immaterial.

(ii) When A = {1,2,3} and B = {2,3,1}, then A = B since each
element of A is in B and each element of B is in A. Note that a
set is not changed by repeating one or more of its elements.

(iii) When A ={1,2,3} and B = {2,3,4,5} then A # B since 4 and
5 are elements of B but not A.
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Subsets of A sets
Definition 3.4.1 Let A be a given set. Any set B, each of whose

elements is also an element of A, 1s said to be contained in A and 1s
called a subset of A.

Definition 3.4.2 Let B be a subset of A. If B £ A, we shall call B a
proper subset of A and write B C A (to be read ’B 1s a proper subset
of A”).

More often and in particular when the possibility B = A, we shall write
B C A (toberead ‘B is a subset of A’ or ‘B is contained in A”). Of all
the subsets of a given set A, only A itself is improper, that is, is not a
proper subset of A.

« Example 3.5 Let A = {1,2,3,4} B={1,2} and C = {1,2,5}, then
BCAandCZAfor5e€Chbut5¢A. .

Note carefully that € connects an element and a set, while
C and C connect two sets.

Definition 3.4.3 Let A be a proper subset of U with U consisting of
the elements of A together with certain elements not in A. These
latter elements, i.e., {x:x € U,x ¢ A}, constitute another proper
subset of U called the complement of the subset A in U.

The complement of A is denoted by A°.

«Example 3.6 LetU ={1,2,3,4,5,6}, the complementof C={1,2,5}
inU is A“={3,4,6}. .
Our discussion of complementary subsets of a given set implies that

these subsets be proper. The reason is simply that, thus far, we have
been depending upon intuition regarding sets; that is, we have tactily
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assumed that every set must have at least one element. In order to
remove this restriction (also to provide a complement for the improper
subset U in U), we introduce the empty or null set ¢.
Definition 3.4.4 The empty or the null set ¢ is the set having no
elements.

=« Example 3.7 If A = {x : x a solution of = 16, x is odd}, then A =
Q. .

Definition 3.4.5 A set consisting of only one element is said to be
singleton set .

« Example 3.8 If A = {x: x a solution of x+15=16},thenA = {1}.

There follows readily
e ¢ is a subset of every set U.
e ¢ is a proper subset of every set ¢ # U.

Definition 3.4.6 The power set P(A) of A is a set consists of all
subsets of A, i.e.,

P(A)={X C A}
« Example 3.9 Let A = {a,b}, then

P(A) = {9,A,{a},{b}}.

« Example 3.10 Let A = {a,b,c}, then

P(A) ={¢,A,{a},{b},{c} ,{a,b} {a,c},{c,b}}.

The number of elements of P(A) = 2", where n is the num-
ber of elements of A
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3.5 Intersection and Union of Sets
Definition 3.5.1 Let A and B non-empty sets, then the intersection of

A and B 1s

ANB={x:x€Aandx € B}.

Figure 3.1: The intersection of two sets A and B, represented by circles.
ANB isin red.

Definition 3.5.2 Let A and B non-empty sets, then the union of A and
Bis

AUB={x:x€AorxecB}.

Figure 3.2: The union of two sets A and B.

» Example 3.11 Let A = {1,2,3,4} and B={1,2,5}, then
ANB={1,2}
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and
AUB=1{1,2,3,4,5}.

We can consider the union and the intersection of more than two sets.
In this case we write

and
N, =A1NAN...NA,
for the union and intersection, respectively, of the sets A1,A,...,A;,.

Definition 3.5.3 Two sets A and B will be called disjoint if they have
no element in common, i.e., ANB = ¢.

Definition 3.5.4 A partition of a set A is a family of nonempty pair-
wise disjoint subsets, called blocks, whose union is all of A.

=« Example 3.12 Consider the subsets A ={1,2,3}, B={4,5,6}, and C =
{7,8,9} of U = {1,2,3,4,5,6,7,8,9}.
Clearly,

AUBUC=U
and
ANB=ANC=BNC=9,

so that {A,B,C} is a partition of U. .
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Sometimes we will work within one fixed set U, called the

universal set.
For any set A C U , we define the complement of A, denoted

by A€, to be the set
A°={x:xeUand x ¢ A}.

Definition 3.5.5 Let A and B non-empty sets, then the difference of
A—Bis

A—B={x:x€Aand x ¢ B}.

A-B

Figure 3.3: The difference of two sets A and B.

p) Thesigns:, A, V, < are used to denote “ such that , and
or , iff .
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The follows are true:

(1) A—B=ANB =B —A".

(2) A-B=¢ <A CB.

(3) A-B=B—A< A=B.

(4) A—-B=A<ANB=4.
= Example 3.13 Let R be the universal set and suppose that

A={x:xeR,0<x<3}andB={x:xeR,2<x<4}.

Then

AUB={x:xeR, 0<x <4}
ANB={x:xeR, 2<x<3}
A—B={x:xeR, 0<x<3}.
A={x:xeR, x<0, x>3}.

Let A, B, and C be sets. Then
(1) AUA=A,ANA=A, and A—A = ¢.
(2) AUPp=A, and AN = ¢.
(3) AU(BUB) =(AUB)UCandAN(BNB) = (ANB)NC.
(4) AUB=BUA and ANB = BNA.
(5) AU(BNC)=(AUB)N(AUC).
(6) AN(BUC)=(ANB)U(ANC).

Proof. We will prove (1), (5), (6) and leave the remaining results to

be proven in the exercises.
(1) Observe that

AUA={x:x€A,orxeA} ={x:x €A} =A,
and

ANA={x:x€A,andxc A} ={x:x €A} =A.
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Also, A —A =ANAS = ¢.

(5)Letxc AU(BNC) <= xecAVxe (BNCO)
Sx€EAV(xeBAxe)
& (x€AVXEB)A(xeAVxeC)
& (x€EAUB)A(x€AUCQ)
Sx€e(AUB)N(AUC).

(6) Letxc AN(BUC) <= xcAAx e (BUQC)
SxeAN(xeBVxel)
& (xeANxeB)V(xeAANxeC)
& (x€ANB)V(xeANCO)
Sxe(ANB)U(ANC).

(De Morgan’s Laws) Let A and B be sets. Then
(1) (AUB) =A“NB".
(2) (ANB)“ =A“UB".

Proof. (1) We must show that (AUB)¢ C A°“NB“ and A“NB° C (AU
B)“.
Letxe (AUB)*<x¢ AUB
Sx¢ANXEB
SxcAAxe B
SxcA°NB.
Hence, (AUB) = AN BC.
(2) We must show that (ANB)¢ C A°UB¢ and A“UB¢ C (ANB)“.
Letxe (ANB)<x¢ ANB
Sx¢EAVx¢B
SxeA°Vxe B
Sx€eAUB.
Hence, (ANB)¢ = A“UBC.. H
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Definition 3.5.6 An extension of the complement is the symmetric
difference, defined for sets A, B as

AAB=(AUB)—(ANB)

The Product Sets

Definition 3.6.1 Let A and B non-empty sets, then the product of A
and B is

AxB={(x,y):x€AAy€ B}.
=« Example 3.14 Let A = {1,2} and B={1,2,3}. Then

AxB=1{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)}.

e In general A X B % B X A.
e Observe that if X and Y are finite sets, say, |[X| =m
and |Y| = n (we denote the number of elements in a

finite set X by |X|), then |X X Y| = mn.
e Two ordered pairs (x,y) and (a,b) are equal iff x =a
and y = b.
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Tables of belonging

In this section, we build a table of belonging as follows: if a € A we
put 1 in the column of A, and if a ¢ A we put 0 in the column of A.

=« Example 3.15 Using tables of belonging, verify that (A)¢ = A
Solution: As it can be seen from the following table:

A AC (AC)C
110 1
0] 1 0

The 1* and 3" columns has the same values of belonging , thus
(AC)C - A [ ]

« Example 3.16 Using tables of belonging, verify that (A —B) =ANB
Solution: As it can be seen from the following table:

A|B|B°|A—-B°|ANB
1110 1 1
110]1 0 0
01,0 0 0
0/0|1 0 0

The 4% and 5" columns has the same values of belonging , thus

(A—B°)=ANB. .
= Example 3.17 Using tables of belonging, verify that(AUB)“ = A°N
BC

Solution: As it can be seen from the following table:
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A[BJA[B°[AUB][ (AUB) [ A°NB°
1f1fofo] 1 0 0
1fofol1] 1 0 0
o110 1 0 0
ojo[1[1] o 1 1

The 6% and 7"¢ columns has the same values of belonging , thus
(A—B)=ANB. .
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3.8 Exercises

Exercise 3.1 Identify the elements in each set, assuming A = {w, x, y,z}
is the universe, B = {x,y},C = {x,y,z}, and D = {x,z}.

(1) B¢ and C“.
(2) BNC and BND.
(3) BUC and BUD.
(4) BN(CUD).
(5) Cu(BND)
(6)
(7)
(8)
(9)
(10)
(1)

X X
ZA540

(B).
(D).

“u”ububcmbcﬁ

\_/

I Exercise 3.2 What is the intuitive definition of a set? .
I Exercise 3.3 What is the intuitive definition of an element? .

Exercise 3.4 Describe two approaches to identifying the elements
of an infinite set? .

Exercise 3.5 Let = {a,b,c}. Show that whether of the following is
true, and whether is false:

(D {a}eA

(2) {a,b} C P(A)

3){A} C P(A)

@) {a,b} C A

5) {{a}} c A
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(6) {d} C P(A)
(M {{a,b},{b,c}} is a partition of A. .

Exercise 3.6 6-(Using the Tabulation Method) represent each of the
following sets:

()X ={x: xisa factor of 6}.

2)Y = {y . yis a solution of y* = O} :

(3)S = {x: xisamultiple of 3}. .

Exercise 3.7 7-(Using the Rule Method) represent each of the fol-
lowing sets:

(h)S={a, e, i, 0, u}.

(2) § = {10,100, 1000, 10000, ...}

3)S={1,1/2,1/3,1/4,...}. .



4.1 Introduction

We introduce the notion of an element a of set A being related to an
element b of set B, which we might denote by aRb. The notation aRb
exhibits the elements a and b in left-to-right order, just as the notation
(a,b) for an element in A x B. This leads us to the following definition
of a relation R as a set.

4.2 Relations
Definition 4.2.1 A relation between sets A and B is a subset R of

A x B. We read (a,b) € R as “a is related to b” and write aRb.

n) When R C A X A we say that R is a relation on a set A.
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Definition 4.2.2 For a relation R C A X B we define two sets:
The set Dp is called the domain of R

Dr={a€A: aRb},
and the set Rg, is called the range of R
Rr={b € B: aRb}.

« Example 4.1 LetA ={1,2,3} and R C A X A, mean "divides". Since
IR1, 2R2, 3R3, 1R2, and 1R3, we have

R= {(17 1)7(172)5(173)7(272)7<373)}7
Dr = {1,2,3}
and

Rr=1{1,2,3}

« Example 4.2 Let A = {1,2,3} and R C A X A, mean
aRb=a>b Va,bcA,

we have
R={(2,1),(3,1),(3,2)},
Dgr={2,3}
and

Rr={1,2}
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» Example 4.3 Consider R = {(x,y) : 2x—y =6,x € Z}. Geometri-

cally, each (x,y) € R is a point on the graph of the equation 2x —y = 6.

Thus, while the choice cRa means (c¢,a) € R rather than (a,c) € R may

have appeared strange at the time, it is now seen to be in keeping with

the idea that any equation y = f(x) is merely a special type of binary

relation. .
Definition 4.2.3 If R C A X B and R, C B x C we define a composite
relation:

RyoRy ={(a,c): 3b € B;aR\b and bRc}

RyoR| # R| oRy.

« Example 4.4 If R; and R, are two relations on a set A = {1,2,3};
where

Ry = {(17 1)7(173)7(27 1)7<272)7(371)7(373>}

and
Ry = {(17 1)?(172>7(272)7(37 1)}’
then
RyoRy = {(17 1)7(172)7<27 1)7(272)7(3a 1)7(372)}
and

RioR, ={(1,1),(1,2),(2,1),(2,2),(3,1),(3,3)}.

We SCGR20R1 #RloRQ. ]
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Properties of Relations
1- Reflexive

Definition 4.3.1 A relation R on a set A is called reflexive if aRa for
every a € A.

= Example 4.5 Let R be the set of real numbers and R mean “is less
than or equal to.” Thus, any number is less than or equal to itself so R
1s reflexive 1.e.,

Va e R,a <a= aRa

= Example 4.6 Let Z* be the set of positive integer numbers and R
mean

“Ya,b€Z", aRb<=Db/a(b=na, n€ Z")”
, SO R 1s reflexive for

Va€Z" = a=1(a) = a/a= aRa.

« Example 4.7 Let A = {1,2,3,4} and R C A x A define

R = {(172)7(17 1)7(272)7<373>7(45 1)}

, SO R 1s not reflexive for 4 € A but 4R4.
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2- Symmetric

Definition 4.3.2 A relation R on a set A is called Symmetric if when-
ever aRb, then every bRa.

= Example 4.8 Let L be the set of lines and R mean “is parallel to.”
Now any two lines /Rl leads to [oR[{. Hence R is symmetric. .

= Example 4.9 Let R be the set of real numbers and R mean “is less
than or equal to.” Now 3 is less than or equal to 5 but 5 is not less than
or equal to 3. Hence R is not symmetric. .

= Example 4.10 Let R be the set of real numbers and R mean “is less
than or equal to.” Thus, R is not symmetric for

YaRb = a < b # bRa.

3- Transitive

Definition 4.3.3 A relation R on a set A is called Transitive if when-
ever aRb, and bRc, then every aRc.

= Example 4.11 Let L be the set of lines and R mean “is parallel to.”
Clearly, if line /; is parallel to line /> and if [, is parallel to line /3, then

[1 1s parallel to /3 and R is transitive. .

= Example 4.12 Let R be the set of real numbers and R mean “is less
than or equal to.”

Vx,y,z€ Rand xRy and yRz = x < yAy <z

= x < 7= xRz

Hence, R is transitive. .
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Equivalence Relations
Definition 4.4.1 A relation R on a set A is called an equivalence
relation on A when R is
(1)Reflexive,
(2) Symmetric,
(3) Transitive.

= Example 4.13 Let R be the set of real numbers and R mean “is less
than or equal to.” Now 3 is less than or equal to 5 but 5 is not less than
or equal to 3. Hence R is not symmetric and then R is not equivalence
relation. .

» Example 4.14 The relation = on the set R is undoubtedly the most
familiar equivalence relation for.
(i) R is reflexive, i.e.,

Va € R= a=a= aRa.
(i) R 1s Symmetric, i.e.,
YaRb = a=b = b =a= bRa.
(iii) R 1s Transitive, 1.e.,
YaRb and bRc = a=b/\b=c= b= c= aRc.

= Example 4.15 Let C be a complex number. Define on C a relation R
by:

(a+ib)R(c+id) < ac > OVa+ib,c+id € C.

Verify that R is an equivalence relation.
Solution:
R 1s reflective ;
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Va+ibeCeaa=a*>>0
< (a+ib)R(a+ib).
R is symmetric;
V(a+ib)R(c+id) < ac >0
< ca> 0
< (c+id)R(a+ib).
R 1s transitive;
V(a+ib)R(c+id), (c+id)R(e+if) < ac>0 Nce >0
&ae >0
< (a+ib)R(e+if),
and then R is an equivalence relation.
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Equivalence Sets

Definition 4.5.1 Let A be a set and R be an equivalence relation on
A. If a € A, the elements b € A satisfying bRa constitute a subset,
cl[a], of A, called an equivalence set or equivalence class. i.e.,

clla) ={b:b € A,aRb}.

« Example 4.16 Let R = {(a,a),(b,b),(c,c)} be equivalence relation
on A = {a,b,c}, then

clla] = {a},

cl[b] = {b}
and

cllc] = {c}.

» Example 4.17 Consider the relation of congruence "mod n" on Z,
and let a € Z. The congruence class of a is defined by

{x€Z:x=a+kn, ke Z}.
On the other hand, the equivalence class of a is, by definition,
{x €Z:x=a, mod n}.

Since x = a, mod n if and only if x = a+ km for some k € Z, these two
subsets coincide; that is, the equivalence class cl[a] is the congruence
class. .

If R == is an equivalence relation on a set A , then
x =y if and only if cl[x] = cl[y].
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Proof. Assume that x = y. If z € cl[x], then z = x, and so transitivity
gives z = y; hence cl[x] C cl[y|. By symmetry, y = x, and this gives the
reverse inclusion cl[y] C cl[x]. Thus, cl[x] = cly].

Conversely, if cl[x] = cl[y], then x € cl[x], by reflexivity, and so x €
cl[x] = cl]y]. Therefore, x = y. |

Suppose that R == is an equivalence relation on a
set A and if cl[x] Ncly] = ¢, then cl[x] = cl]y].

An equivalence relation R on a set A effects a partition
of A, and conversely, a partition of A defines an equivalence relation
on A.

« Example 4.18 Let A = {0,1,2,3,4,5} . Define on A a relation R by:

—b
aRb@aTEZVa,b cA

. Write R as a set of ordered pairs ,Verify that R is an equivalence
relation, and verify that the equivalence classes form a partition of.
Solution:

R =
{(0,0),(1,1),(2,2),(3,3),(4,4),(5,5),(0,3),(3,0),(1,4),(4,1),(2,5),(5,2) } -

R is reflective ; Va € A = 7% 0= (a,a) € R.
R is symmetric ; V(a,b) € R = (b,a) € R

R is transitive; V(a,b), (b,c) € R= (a,c) € R,
and then R is an equivalence relation.

The equivalence classes are:

cl[0] ={0,3} = cl[3].

cl[1] ={1,4} =cl[4] .

cl[2] ={2,5} =cl[5].
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And, these equivalence classes form a partion of A such that they are
disjoint subsets , and their union is the whole set A .
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Ordering in Sets

Definition 4.6.1 A set A will be said to be partially ordered (the
possibility of a total ordering is not excluded) by a binary relation R
if for arbitrary a,b,c € S,

(1) R is reflexive,

(2) R is anti-symmetric, i.e., aRb and bRa if and only if a = b,

(3) R is transitive.

Definition 4.6.2 Let R C A X A, then R be a total ordering relation
if:

(1) partially ordered

(2) Va,b € A = aRb or bRa.

Let A be a partially ordered set with respect to R. Then:

(1) every subset of A is also partially ordered with respect to R while
some subsets may be totally ordered.

(2) the element a € A is called a first element of A if aRx for every
x €A.

(3) the element b € A is called a last element of A if xRb for every
x € A. [The first (last) element of an ordered set, assuming there is one,
is unique.]

(4) the element a € A is called a minimal element of A if xRa implies
x = a for every x € A.

(5) the element b € A is called a maximal element of S if bRx implies
b = x for every x € A.

» Example 4.19 Let N be natural number and R means "<",i.e.,Va,b €
N,aRb < a < b.
(i) R is reflexive

Vae N=a<b= aRa.
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(i) R is anti-symmetric, i.e.,
aRbANbRa=a<bANb<a
=a=>b.
(iii) R is transitive, i.e.,
aRbANbRc=a<bANb<c
=a<c
aRc
Hence, R is ordered relation and
Va,be N=a<bVb<a
= aRb or bRa

thus R is total ordered relation. .

« Example 4.20 Let A = {1,2,3,4,12} be natural number and R means
HSH, i.e.,

Va,b € A,aRb < a < b.

Then the first element is 1 and the last element 1s 12. Also, 1 1s a
minimal element and 12 is a maximal element. .
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4.7 Exercises

Exercise 4.1 Which of the following are equivalence relations?
(a) “Is similar to” for the set T of all triangles in a plane.
(b) “Has the same radius as” for the set of all circles in a plane.
(c) “Is the square of ” for the set N.
(d) “Has the same number of vertices as” for the set of all poly-

gons in a plane.
(e) “c ” for the set of sets S = {A,B,C,...}.
(f) "<"for the set R.

Exercise 4.2 Show that “is a factor of 7 on N is reflexive and transi-
tive but is not symmetric. .

Exercise 4.3 Give an example of a relation which is symmetric and
transitive but not reflexive. .

I Exercise 4.4 Show that “<” on Z is not an equivalence relation. =

Exercise 4.5 Build a relation on a set A = {1,2,3} containing the
two elements (1,2), (2,3) and containing the minimum number of
elements to be an equivalence relation, and verify that the equiva-
lence classes form a partition of A. .

Exercise 4.6 Let A ={0,1,2,3,4,5}. Define on A a relation R by

aRb & 6’4;17 € Z¥a,b € A.

Write R as a set of ordered pairs ,Verify that R is an equivalence
relation. .
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Exercise 4.7 Given the following relations Ry, Ry, R3, R4, R5 on
aset A ={1,2,3}. Explain in each case why the relation is or not:
reflective , symmetric , transitive , and then equivalence relation:

Ri={(1,1),(1,2),(1,3),(2,2), (2, 1),(2,3),(3,3), (3.2)}.

R, ={(1,1),(1,2),(1,3),(2,2),(2,1),(2,3),(3,3),(3,1),(3,2)} .
R3:{(171)7(2?2)7( J )}7

R4:{(171)7(172>7( J )7( )}

Rs ={(1,2),(1,3)}. .



In many branches of mathematics, the term map is used to mean a
function, sometimes with a specific property of particular importance
to that branch. For instance, a "map" is a continuous function in
topology, a linear transformation in linear algebra, etc.

Definition 5.0.1 Let X and Y be (not necessarily distinct) sets. A
function (mapping) f from X to Y, denoted by

f:X—=Y,

is a subset f C X x Y such that, for each a € X , there is a unique
b €Y with (a,b) € f .

For each a € X , the unique element b € Y for which (a,b) € f is
called the value of f at a, and b is denoted by f(a). Thus, f consists
of all those points in X x Y of the form (a, f(a)).
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« Example 5.1 The identity function on a set X, denoted by ¢ : X — X
, is defined by e(x) = x for every x € X. .

» Example 5.2 The Constant function on a set X, denoted by 4 : X —
X , is defined by h(x) = ¢ for every x € X and c is constant. .

If f:X —Y, call X the domain of f , call Y the target (or
codomain) of f , and define the image (or range) of f , denoted
by im f , to be the subset of Y consisting of all the values of f.

Definition 5.0.2 Functions f : X — Y and g: A — B are equal if
X =A,Y =B, and the subsets f C X XY and g C A X B are equal.

Definition 5.0.3 If f : X — Y is a function, and if A C X, then the
restriction of f to A is the function f i14: X — Y defined by (f 14
)(a) = f(a) for all a € A.

If A C X, define the inclusion i : A — X to be the function defined by
i(a) =aforall a € A.

Let f:X —Y and g: A — B be functions, then f = ¢
ifandonly if X =A,Y =B, and f(a) = g(b) forall a € A.

Proof. Suppose that f = g, and this means that each of f and g is a
subset of the other. If a € X and (a, f(a)) € f = g, then (a, f(a)) € g.
Therefore, (a, f(a)) = (a,g(a)), and equality of ordered pairs gives
f(a) = g(a), as desired.

Conversely, assume that f(a) = g(a) for every a € X. To see that
f = g, it suffices to show that f C g and g C f. Each element of f has
the form (a, f(a)). Since f(a) = g(a), we have (a, f(a)) = (a,g(a)),
and hence (a, f(a)) € g. Therefore, f C g. The reverse inclusion g C f
1s proved similarly.
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The above proposition resolves the problem raised by the
ambiguous term rule. If f,g: R — R are given by f(x) =

(x+1)% and g(x) = x*> +2x+ 1, then f = g because f(a) =
g(a) for every number a € R.

One-to-one mapping
Definition 5.1.1 A function f : X — Y is injective (or one-to-one) if,
whenever

Vx,y €X, f(x)=fy) =x=y.
or
Vx,yeX, x#y=f(x) # f(y).
» Example 5.3 The identity functions are injective, for
e(x) =e(y) =x=y.

2

=« Example 5.4 The mapping f : R — R, f(x) = x“ is not injective. For,

f(1)=f(=1) but 1 #—1.

3
« Example 5.5 Let f: R — {5} — R, define by

_6x—|—4
C 2x—3°

f(x)

To check whether f is injective, suppose that f(x) = f(y):
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6x+4  6y+4
2x—3  2y-3

Cross multiplying yields
12xy+ 8y —18x— 12 =12xy+8x— 18y — 12

which simplifies to 26x = 26y and hence x = y. We conclude that f is
injective. .

Onto mapping

Definition 5.2.1 A function f : X — Y is surjective (or onto) if
imf=Y.

Thus, f is surjective if, for each y € Y, there is some x € X (probably
depending on y) with y = f(x).

» Example 5.6 The identity functions are surjections. .

» Example 5.7 The mapping f : R — R, define by
f(x) =2

Now, im f consists of the non-negative reals, so f is not surjections. =

» Example 5.8 Let f : R — R, define by
f(x) =2x+6,

then f is onto for
VWeR, y=f(x)=y=2x+6

1

3
« Example 5.9 Let f: R — {5} — R, define by
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6x+4
f<x)_2x—3’
then f is not onto for
6x+4
YER, y=flx)=y=7—

3y+4 3
¥ =567 {2}

Composite Mapping

Sometimes there is a way of combining two functions to form another
function, their composite.
Definition 5.3.1 If f: A — B and g : B — C are mappings (the target
of f is the domain of g), then their composite, denoted by go f,
is the function A — C given by go f : x — g(f(x)); that is, first
evaluate f on x and then evaluate g on f(x).

Figure 5.1: The composite of two functions f and g.

Composition is thus a two-step process: x — f(x) — g(f(x)).
» Example 5.10 The function /2 : R — R, defined by
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h(x) — eCOS )C’

is the composite g o f, where f(x) = cos x and g(x) = e*. .

Composition is not commutative, i.e., go f # fog

» Example 5.11 If f: N — N and g : N — R are functions, then go
f N — N is defined, but f o g is not defined [for target (g) = N #
R = domain(f)]. Even when f: X — Y and g: Y — X, so that both
composites go f and f o g are defined, these composites need not be

equal. .
« Example 5.12 Let f, g : N — N defined by
fla) =
and
g(x) =3x,
then

and
(fog)(2) =36.

Hence, go f # fog. .

Composition of mappings is associative: if
f:X—=Y,g:Y—=Zandh:Z—W,

are mappings, then

ho(gof)=(hog)of.
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Proof. We show that the value of either composite on an element a € X
is just w=h(g(f(a))). If x € X , then

ho(gof):x— (gof)(x)=g(f(x))— h(g(f(x)))=w,

and

(hog)of:x— fx) = (hog)(f(x)) =h(g(f(x))) =w.

It follows from Proposition 5.0.1 that the composites are equal. R

one-one correspondence mapping

Definition 5.4.1 A mapping f : X — Y is bijective (or is a one-one
correspondence) if it is both injective and surjective.

= Example 5.13 Identity mapping is always bijection. .

» Example 5.14 Let f: R — R, define by
fx)=2x-3,

then f is bijection for
(i) f is injective i.e.,

Vx,y R, f(x)=f(y) =2x—3=2y-3
=Xx=Xx
(ii) f is surjective i.e.,

VWeR, y=f(x)=y=2x-3

1
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Definition 5.4.2 A map f : X — Y has an inverse if there exists a
map g : Y — X with both composites go f and f o g being identity
maps.

If f: X —Yandg:Y — X are maps such that (go
f)(x) =e(x) = x, then f is injective and g is surjective.

Proof. Suppose that f(x) = f(y); apply g to obtain g(f(x)) = g(f(v));
that is, x = y [because g(f(x)) = x], and so f is injective. If x € X,

then x = g(f(x)), so that x € img; hence g is surjective. H

A function f: X — Y has an inverse g : ¥ — X if and
only if it is a bijection.

Proof. If f has an inverse g, then Proposition 5.4.2 shows that f
is injective and surjective, for both composites go f and f o g are
identities.

Assume that f is a bijection. Let y € Y. Since f is surjective, there
is some x € X with f(x) = y; since f is injective, this element x is
unique. Defining g(y) = x thus gives a (single-valued) function whose
domain is Y. It is plain that g is the inverse of f; that is, f(g(y)) =
f(x)=yforallyeY and g(f(x)) =g(y) =xforalla € X. |

The inverse of a bijection f is denoted by f~!.

Let X and Y be sets, and let f : X — Y be a mapping.
(i) If A C B are subsets of X, then f(A) C f(B), and if C C D are
subsets of Y, then f~!(C) c f~1(D).
(ii) IfC C Y, then ff~1(C) C C;if fis asurjection, then ff~1(C) =
C.
(iii) IfA C X, then A C f~1f(A).
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Proof. (i) If y € f(A), then y = f(a) for some a € A. But a € B,
because A C B, and so f(a) € f(A). Therefore, f(A) C f(B).
The other inclusion is proved just as easily
(i) Ifa € ff~1(C), then a = f(x) for some x € f~'(C) this says
thata = f (x,) € C . We prove the reverse inclusion when f is
surjective. If a € C, then there is x € X with f(x) = a; hence,
x€ f~1(C),andsoa= f(x) € ff1(C).
(iii) If a € A, then f(a) € f(A), andsoa € f~'f(a) C f~1(A).
|
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5.5 Exercise

Exercise 5.1 Show that f: R — R, defined by f(x) =3x+5, is a
bijection, and find its inverse. .

Exercise 5.2 Determine whether f: Q x Q — Q, given by

ac  (a+o)

is a function. .

(i) If both f and g are injective, prove that g o f is injective.
(i) If both f and g are surjective, prove that go f is surjective.
(iii) If both f and g are bijective, prove that g o f is bijective.

Exercise 5.4 Prove f:N — N, defined by f(x) =x+35, is a mapping
but not onto. .

Exercise 5.5 Prove f: Q — Q, defined by f(x) = 3x+5, is a one-

‘ Exercise 5.3 Let f: X — Y and g : Y — Z be functions.
‘ to-one mapping. .



6.1

The word "binary" means composed of two pieces. A binary operation
1s simply a rule for combining two values to create a new value. The
most widely known binary operations are those learned in elementary
school: addition, subtraction, multiplication and division on various
sets of numbers.

Definitions
Definition 6.1.1 A binary operation x on a set G is a function map-

ping G x G into G. For each (a,b) € G x G, we will denote the
element x((a,b)) of Gby axbi.e.,

«:GxG— G,

(a,b) — axb.

» Example 6.1 Our usual addition + is a binary operation on the set R.
Our usual multiplication - 1s a different binary operation on R.
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In this example, we could replace R by any of the sets C, Z, R, or
Zt. .
» Example 6.2 Let M(R) be the set of all matrices with real entries.
The usual matrix addition + is not a binary operation on this set since
A + B is not defined for an ordered pair (A,B) of matrices having
different numbers of rows or of columns, for instance, A € M,;,x,(R)
and B € M,,x»(R), then A + B is not defined. .

» Example 6.3 Let M,,,,(R) with the usual matrix addition + is a
binary operation. .

Definition 6.1.2 Let x be a binary operation on G and let H be a
subset of G. The subset H is closed under x if for all a,b € H we
also have axb € H. In this case, the binary operation on H given by
restricting * to H is the induced operation of x on H.

= Example 6.4 Let R* = R — {0} C R, then the usual addition + on
the set R of real numbers does not induce a binary operation on the set
R*for+1 € R*but 1 —1 =0 ¢ R*, .

» Example 6.5 On Z*, we define a binary operation * by a * b equals
the smaller of a and b, or the common value if a = b. Thus 2% 11 = 2;
13¥x9=9;and 1 x1 = 1. .

Definition 6.1.3 A binary operation * on a set G is commutative if
(and only if) axb = bxa for all a,b € G.
» Example 6.6 Our usual addition + is commutative binary operation
on the set R. .
Definition 6.1.4 A binary operation on a set G is associative if (a

b)xc=ax(bxc) forall a,b,c € G.

» Example 6.7 Our usual addition + is associative binary operation on
the set R. .
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(Associativity of Composition) Let G be a set and
let f, g, and h be functions mapping G into G. Then

fo(goh)=(fog)oh.

Proof. To show these two functions are equal, we must show that they
give the same assignment to each x € G. Computing we find that

fol(goh)(x)=f((goh)(x)) = f(s(h(x))).
and
((fog)oh)(x) = (fog)(h(x)) = f(g(h(x))).
so the same element f(g(h(x))) of G is indeed obtained. |

Definition 6.1.5 Let G be a set together with a binary operation that
assigns to each ordered pair (a,b) of elements of G an element in G
denoted by a xb. We say G is a semi group under this operation if
associative law is hold.

» Example 6.8 The set of integers under ordinary multiplication is a
semi group for

Ya,b € Z,a x b € 7.
Also,

Va,b,c € Z,(axb) xc=ax (bxc).

=« Example 6.9 The subset {1,—1,i,—i} of the complex numbers is a
semi group under complex multiplication. .

= Example 6.10 If x and ® defined on a set of all nature numbers N
by:
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axb=a’anda®b =a-+b— a*b?,
Then « is a binary operation on N, because
axb=a’ € NVa,beN,
but ® is not binary operation on N because,
a®b=a+b—a*b* #NVa,beN,

(for example puta=1,b=2).

Definition 6.1.6 If x is a binary operation on a set G, the element ¢;
1s called the left identity element w.r.t. * if

Yae G, e;xa=a,
and the element e, is called the right identity element w.r.t. * if
Ya e G, axe, =a.

If the element e, and ¢; are equal, then we call it the identity element
W.I.t. * 1.e.,

Vae G, axe=exa=a.
» Example 6.11 The set of integers under ordinary multiplication is a

semi group for with identity 1. .

= Example 6.12 The set of integers under ordinary addition is binary
operation with identity 0. .

Definition 6.1.7 If x is a binary operation on a set G, the element
al_1 is called the left inverse of the element a € G w.r.t. * if

Va € G, al_l*a:e,
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and the element a ! is called the right inverse of the element a € G
w.r.t. x if

1 pu—

Vae G, axa, =e.

If the element ¢! and al_l are equal, then we call it the inverse of
the element a € G w.r.t. *x i.e.,

VaceG,axa'=axa=a.

= Example 6.13 The set of integers under ordinary addition is binary
operation, and the inverse of a € Z i1s —a € Z. .

« Example 6.14 If x defined on a set of integers Z by:
Vx,y€Z, xxy=x+y—4,

Study the system (Z, *).
Solution
(i) * is a binary operation on Z

Vx,yE€Z, xxy=x+y—4 €7,
(ii) * is commutative binary operation on Z
Vx,yEeZ, xxy=x+y—4
=y+x—4=yxx.
(iii) * is associative binary operation on Z
VX, 3,2 € Z, (xxy)*z=(x+y—4)*z
=x+y+z—38

and
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Vx,y,2 € Z, x* (y*z) =xx(y+z—4)
=x+y+z—38

(iv) Let xx e = e xx = x Vx € Z,then
xt+e—4d=e+x—4d=x=e=4cZ

1.e., * have an identity e = 4.
(v) Letxxx ! =x"lxx=eVx,x~! € Z,then

xtx l—d=xl4x—4=4=x1=8-—xcZ

ie, Janinverseof xe Zisx ' =8 —x € Z w.rt. *. .

Addition and Multiplication mod n

We define addition and multiplication on Z, = {0,1,2,...,n— 1} the
set of all equivalence classes of the equivalence relation ¢ = b( modn)
as follows:

e a®, b is the remainder of % Va,b € Z,,.

e a®, b is the remainder of % Va,b € Z,.

Associative law holds in general for the two operations &,
and ®,, on Z,.

Tables

For a finite set, a binary operation on the set can be defined by means
of a table in which the elements of the set are listed across the top as
heads of columns and at the left side as heads of rows. We always
require that the elements of the set be listed as heads across the top
in the same order as heads down the left side. The next example
illustrates the use of a table to define a binary operation.
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» Example 6.15 Table 4.1 defines the binary operation o on G =
{a,b,c} by the following rule:
(i"" entry on the left) o ( j'”* entry on the top) equal (entry in the i’ row

and j* column of the table body). -
x|al|b|c
alblc|b
bla|c|b
clbla

Table 6.1: defines the binary operation o on G

A binary operation defined by a table is commutative if and
only if the entries in the table are symmetric with respect to
the diagonal that starts at the upper left corner of the table
and terminates at the lower right corner.

= Example 6.16 In the above example, a binary operation o on G is not
commutative for the entries in the table are not symmetric. .

» Example 6.17 Complete Table 4.2 so as to define a commutative
binary operation o on S = {a,b,c,d}

xlal|lb|c|d
allalb|c

b|lb|d]|..|c
clcla|d]|b
d|d a

Table 6.2: defines the binary operation o on §

Solution: From Table 4.2, we see that d oa = d. For o to be commu-
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tative, we must have aod = d. By the same way we find boc = a,
dob=canddoc=b. .

= Example 6.18 we represent the two operations &4 and ®4 on

Z4=10,1,2,3}
by the following tables .
@g (0123
0 |0j1/2]3
1 |[1]2]3]4
2 |2]3]0]1
3 (3[/0[1]2

Table 6.3: defines the binary operation ©4 on Z4

®4 (1011213
0 /0[0|0|0
1 |0|1]2]3
2 1012102
3 10(3[2]1

Table 6.4: defines the binary operation &4 on Zy

» Example 6.19 In Example 6.18 Explain why &, is or not commuta-
tive, associative binary operation on Zy , there is an identity, and there
1S an inverse w.r.t. Py ?

As it can be seen from the Table 6.18 above:

(i) all elements in a table belongs to a set Zy, therefore @y is a binary
operation on Zy.

(ii) all elements in a table are symmetric around the diameter of the
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table, therefore 4 1s commutative.

(iii) associative law holds in general for the two operations &, and ®,,
on Z,. So P4 is associative on Z4.

(iv) 0O is the identity element; its row(column) is identical with the
main row (column) of the table.

(v)

Theelement | O | 123
The inverse |03 |21

=« Example 6.20 If @ is an operation defined on aset X = {2,4,6,8} C
Z10. Explain why ®1¢ 1s or not commutative, associative binary opera-
tion on X, there is an identity, and there is an inverse w.r.t. ®1q ?
Solution: As it can be seen from the Table 6.20 above:

X10 214168
2 |4/812]6
4 ||8]6(4 )2
6 [|[2/4/6|8
8 |6/2]8]4

Table 6.5: defines the binary operation ®1g on X

(i) all elements in a table belongs to a set X, therefore ®1¢ is a binary
operation on X.

(ii) all elements in a table are symmetric around the diameter of the
table, therefore ®;¢ is commutative.

(iii) associative law holds in general for the two operations @,, and ®,,
on Z,. So ®q 1s associative on X C Zj.

(iv) 6 is the identity element; its row(column) is identical with the
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main row (column) of the table.

(v)

Theelement | 2 |4 | 6| 8
The inverse || 8 |4 | 6|2

Groups

The term group was used by Galois around 1830 to describe sets of one-
to-one functions on finite sets that could be grouped together to form a
set closed under composition. As is the case with most funda- mental
concepts in mathematics, the modern definition of a group that follows
is the result of a long evolutionary process. Although this defi- nition
was given by both Heinrich Weber and Walther von Dyck in 1882, it
did not gain universal acceptance until the 20th century.

Definition 6.3.1 Let G be non-empty set, and * binary operation on .

The couple (G, *) is said to be a group if the following conditions

are satisfied:

(Gl)axbe G Va,beG.

(G2) (axb)*xc=ax(bxc) Va,b,c€QG.

(G3)JdecGiaxe=exa=a VYacG.

(GA)VacGla ' €Gaxa ' =a'xa=e.

Definition 6.3.2 (i) If only the condition (G1) is satisfied, (G, )
is said to be groupoid.

(if) If only the two conditions (G1), (G2) are satisfied, (G, ) is
said to be semi-group.

(iii) If only the three conditions (G1), (G2), (G3) are satisfied,
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(G, ) is said to be monoid.

Definition 6.3.3 A group (G, ) is said to be commutative (or abelian)
if it satisfies the commutative law:

axb=bxa Va,beQq.

= Example 6.21 Each of the following sets with the usual definition of
addition of numbers is a group:

Z the set of all integers.

Q the set of all rational numbers.

R the set of all real numbers.

C the set of all complex numbers. .
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6.4 Exercises

Exercise 6.1 In each of the following x is the specified binary oper-
ation on the set Z of integers. Determine in each case whether the
operation is commutative, whether is associative , whether there is
an identity for the operation , and whether there is an inverse w.r.t.
the operation?
(i) axb=h.
(ii) axb=a+b+ab.
(iii) axb=2a+2b.

(iv) axb=a+b—1.
(iv) asb=a+b—1.
(iv) axb=a+ab

Exercise 6.2 Let P(X) be the power set of a set X = {1,2}.

(i) Is the binary operation N on P(X) commutative? Is it associative?
Does it have an identity?.

(ii) Answer the same questions for the binary operation U on P(X).
(iii) Answer the same questions for the binary operation A on P(X)

Exercise 6.3 If ® definedonaset X =R — {1}, by:
XQy=x+y—xyvx,yc€ X

(i) Is ® binary operation on X ?

(ii) Is ® commutative? Is it associative?

(iii) Does ® have an identity? Is exist an inverse w.r.t. ® ? (Give
reasons for your answer).
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Chapter one

Mathematical logic

Definition 1. A proposition is a statement “ declarative sentence” that is,
by itself, either true or false.
We say that the truth value of a proposition is either true (T) or false (F).

Letters p,qr,.... Or P, Q, R, ... are used to denote propositions.
Example: The following propositions are true:
1) Elephants are bigger than mice.
2) 7 is odd.
3) 1+1=2.
Example: The following propositions are false:
1) Qena is the capital of Egypt.
2) 2 divides 7.
3) 1+2=2.
Example: The following are not propositions :
1) x+3=6.
Neither true nor false sentence.
2) What time is it now?
Not declarative sentences.
Example: “x <y ifand only ify > x.”
Is this a statement?
Yes
Is this a proposition?
Yes, because its truth value does not depend on specific values of x and y.
What is the truth value of the proposition? Yes.

Combining Propositions
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As we have seen in the previous example, one or more propositions can be
combined to form a single compound proposition.

Logical Operators (Connectives)

We will examine the following logical operators:
* Negation (NOT, —).

* Conjunction (AND, A).

* Disjunction (OR, v).

* Exclusive-or (XOR, @ ).

* Implication (if —then, —>)

* Biconditional (if and only if, <> )

Truth tables can be used to show how these operators can combine
propositions to compound propositions.
1- Negation

Definition. Let p be a proposition. The statement “ it is not the case thatp ‘

is another proposition, called the negation of p and denoted by —.
Example: The negation of the proposition “ Today is Friday” is “It is not
Friday today”.

Now we show the truth table for —

2- Conjunction

Definition.

If p and g are statement variables, the conjunction of p and g is “p and q,”
denoted p A g. It is true when, and only when, both p and g are true. If
either p or g is false, or if both are false, p A g is false.

Now we show the truth tableforp A g
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mm 4
=T
M MM m -

3- Disjunction

Definition.

If p and g are statement variables, the disjunction of p and g is “p or g,”
denoted p v q. It is true when either p is true, or g is true, or both p and g
are true; it is false only when both p and g are false.

Now we show the truth table for p vV q

m m - A
m 4 T4
m - - -

Example:
Construct the truth table for the statement form Vv g) A=(p A q)

Solution:

P 4 pvVq pAq -(pAQ) ®VOA-PAD
T T T T

— 4 4
Mm - < T

T F T F
F T T F
F F F F

Example:
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Construct a truth table for the statement form (p A q) V —r

Solution:

P g r ar pAq

TTT F T T
TTF T T T
TFT F F F
TFF T F T
FTF T F T
FTT F F F
FFT F F F
FFF T F T

4- Exclusive Or (XOR)

Binary Operator, Symbol: ©

m T - -
m 4 H4

T
F
-
F
5- Implication (if - then)

Binary Operator, Symbol: —

m m 4 -
m 4 m A
- - M -

6- Biconditional (if and only if)
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Binary operator, symbol: <

T
F
F
T

m T - 4
Mm -~ T -

Example

Write the statements in symbolic form using the logical operators and the
indicated letters to represent component statements.

1- To take discrete mathematics, you must have taken calculus or a course in
computer science.

Solution:
— P: take discrete mathematics
— Q: take calculus
— R:take a course in computer science
- P>QVR

2- When you buy a new car from Acme Motor Company, you get $2000 back
in cash or a 2% car loan.

Solution:
— P: buy a car from Acme Motor Company
— Q: get $2000 cash back
— R:geta2%carloan
« P>Q@R

3- School is closed if more than 2 feet of snow falls or if the wind chill is
below -100.

Solution:

— P:School is closed
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— Q: 2 feet of snow falls
— R:wind chill is below -100
e QAR—>P

Logical Equivalence

Definition.

Two statement forms are called logically equivalent if, and only if, they
have identical truth values for each possible substitution of statements for
their statement variables. The logical equivalence of statement forms P and
Qis denoted by writing P = Q.

Two statements are called logically equivalent if, and only if, they have
logically equivalent forms when identical component statement variables
are used to replace identical component statements.

Example:

e s M I,
mH 7 a8
e n i s T & I
m m m - >

P Aq and g A p always have the same truth values, so they are
logically equivalent.

Example:
1- Show that the statement forms —(p A q) and —p A —q are not
logically equivalent.
2-—(-p) = p.
3-—-(pA@) =—pV—q.

Equivalence laws
— ldentity laws, PAT=P,
— Dominationlaws, PAF= F,
— Idempotent laws, PAP= P,
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— Double negationlaw, —(—=P)=P

— Commutative laws, PAQ= QAP,

— Associative laws, PA(QAR)= (PAQ)AR,

— Distributive laws, PA(QV R)= (PAQ)V (P AR),
— De Morgan’s laws, — (PAQ)=(—P) v (= Q)

— Law with implication P>Q=-PvQ

Tautologies and Contradictions

Definition.
A tautology is a statement that is always true.

Example:
1) Rv(—=R)
2)=(PAQ) <> (=P)v(= Q)

Definition.
A contradiction is a statement that is always false.

Example:
1) RA(=R)
2)=(=(P A Q) & (=P) v (-Q))

Remark.
The negation of any tautology is a contradiction, and the negation of any
contradiction is a tautology.

Remark.
S1=S,if S1 & Sy is a tautology
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Exercises

1. Show thatP - Q=—P v Q: bytruthtable.
2. Show that (P — Q) A (P = R) =P — (Q A R): by equivalence laws.
3. Show thatp V (p A q) = p by truth table .

4. Show that p V —p is a tautology.
5. Show that p A —p is a contradiction.



Chapter 1

Real Functions

One of the important themes in calculus is the analysis of relationships be-
tween physical or mathematical quantities. Such relationships can be described in
terms of graphs, formulas, numerical data, or words. In this chapter we will de-
velop the concept of a function, which is the basic idea that underlies almost all
mathematical and physical relationships, regardless of the form in which they are
expressed. We will study properties of some of the most basic functions that oc-
cur in calculus.

Let us begin with some illustrative examples.

e Thearea A of acircle depends on its radius r by the equation A = 7r?,
so we say that A is a function of r.

e Volume of a sphere depends on its radius by the equation V = %wr?’.

e Surface area of a cube depends on the length of its side by the equation

S = 62>

e The velocity A of a ball falling freely in the Earth’s gravitational field in-
creases with time A until it hits the ground, so we say that A is a function
of A.

This idea is captured in the following definition:

Definition 1.

If a variable y depends on a variable z in such a way that each value of z de-
termines exactly one value of y, then we say that y is a function of x.

In the mid-eighteenth century the mathematician Euler conceived the idea of
denoting functions by letters of the alphabet, thereby making it possible to de-
scribe functions without stating specific formulas, graphs, or tables.

This suggests the following definition:
Definition 2.

A function f is a rule that associates a unique output with each input. If the input
is denoted by z, then the output is denoted by f(z) (read " f of z").

This output is sometimes called the value of f at x or the image of x un-

1



der f. Sometimes we will want to denote the output by a single letter, say v,
and write

y = f(z)
This equation expresses y as a function of z. The variable z is called the inde-

pendent variable of f , and the variable y is called the dependent variable of f.

This terminology is intended to suggest that z is free to vary, but that once = has
a specific value a corresponding value of y is determined. For now, we will only

consider functions in which the independent and dependent variables are real
numbers, in which case we say that f is a real-valued function of a real variable.

In the previous definition the term unique means "exactly one". Thus, a
function cannot assign two different outputs to the same input.

For example, the following equation

y=aVz? -9

describes y as a function of X because each input x in the interval —3 < x < 3

produces exactly one output y = zvVz? — 9.

Definition 3.

A function f fromset A toset B (writtenas f : A — B) isa rule of corre-
spondence that associates to each element of A, one and only one element of B.
(A function is also called a mapping from A to B.)

We observe that

e Each element of B need not be in the association, but every element of A
must be involved in it. Hence, a function is a one way pairing process.
(Every element of A pairs off with some element of B but not converse-

ly.)
e One element of A cannot be associated to more than one element of B,
but one element of B may correspond to two or more elements of A.

The correspondence from the elements of set A to set B, shown in Figs 1.1-1.3
represents function(s) whereas that shown in Figs 1.4 and 1.5 does not represent
functions.
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Example (1)

For f(z) = 2> — 2z, find and simplify
(@) f(4), (b) f(4+1n), (c) f(4+h)—f(4)
(d) [f(4+h)— f(4)] / h,wWhere h = 0.
Solution
f(4) =4 -24)=16—-8=38
fA+h)=(@4+h)?—-24+h)
= (16 4 8h + k%) — (8 + 2h)
= 8 + 6h + h*
f4+h)— f4)=8+6h+1h*—38
= 6h + h?
[f(4+h)—f(4)]/h=(06h+h")/h=6+h



Domain and Range of a Function

Definition 4.

Let f beafunction fromset Atoset B (f: A — B), then
e The (entire) set A is called the domain of f.
e The (entire) set B is called the codomain of f.

e Anelement y of B that corresponds to some element z of A is denoted
by f(x), and itis called the image of = under f.

e The set of all images constitute the range of f. The range of f is denoted
by f(A) and it is a subset of set B. In other words f(A) C B.
Definition 5.

If y = f(x)then the set of all possible inputs (z -values) is called the domain of
f , and the set of outputs (y -values) that result when x varies over the domain is
called the range of f.

For example, consider the equations

y=2x
and

y=a> z>2

In the first equation there is no restriction on z, so we may assume that any real
value of z is an allowable input. Thus, the equation defines a function f(z) = z

with domain —oo < z < co. In the second equation, the inequality z > 2 re-
stricts the allowable inputs to be greater than or equal to 2, so the equation de-

2

fines a function g(z) = 2%, x > 2 with domain 2 < z < occ.

As z varies over the domain of the function f(z) = 22, the values of y = 22

vary over the interval 0 < y < oo, so this is the range of f. By comparison, as
« varies over the domain of the function g(z) = z% 2 > 2, the values of y = 2
vary over the interval 4 < y < o0, so this is the range of ¢ . It is important to
understand here that even though f(z) = 2% and g(x) = 2*,z > 2 involve the

same formula, we regard them to be different functions because they have differ-
ent domains. In short, to fully describe a function you must not only specify the
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rule that relates the inputs and outputs, but you must also specify the domain, that
IS, the set of allowable inputs.

Example (2)
Find the domain of :

z) = 2° b) f(z) = 1
@ ) ) @)= 5

(€) f(z) =tanz (d) f(x) = Ja? — 5z +6

Solution
(a) The function f has real values for all real z, so its domain is the interval
(—00,00).

(b) The function f has real values for all real x, except z = land =z = 3,
where divisions by zero occur. Thus, the domain is
{12z € Rz = landz = 3} = (—oq,1) U(L,3) U(3,00).

sin x

(c)Since f(z) = tanz = , the function f has real values except where

COST

cosz = 0, and this occurs when z is an odd integer multiple of g Thus,

the domain consists of all real numbers except z = 5 %ﬂ %ﬂ

(d) The function f has real values, except when the expression inside the rad-
ical is negative. Thus the domain consists of all real numbers z such that

2? — 52 4+ 6 = (z — 3)(x — 2) > 0. This inequality is satisfied if z < 2
or x > 3, so the natural domain of f is (—o0,2] U[3,00).

Example (3)

Find the domain and range of

@ f@)=2+Vz—1 (b) flz) = 21

—_

Solution
(@) The domain of f(z) is [1,00). As x varies over the interval [1,00), the value

of ¥z — 1varies over the interval [0,00), so the value of f(z) = 2 + vz — 1 var-
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ies over the interval [2,00), which is the range of f(x).

(b) The given function f(z) is defined for all real = = 1, so the domain of f(x)
IS (—oo,1) U (1,00). To determine the range it will be convenient to introduce a
dependent variable

z+1
z—1

y:

we solve (*) for x in terms of

zy—y=x+1
y—r=9y+1
2y—1)=y+1
oo Ul
y—1
So, the range of the function f(z)is (—oo,1) U (1,00).
Example (4)
Find the domain for ¢(t) = Jo—#2 .
Solution

Here, we must restrict ¢ so that 9 — 2 > 0, in order to avoid nonreal values

for V9 — ¢2 . This is achieved by requiring that t> < 9 or —3 < ¢ < 3. Thus,
the domain of ¢(t) is {t € R : —3 <t < 3}. In interval notation, we can write
the domain as [—3,3].

Example (5)

Determine the domains of the functions

@y=vi—a? 0)y="a? 16 () y= ——

T —2

)y =

©y=—0
22 —9 72 +4

Solution

a. Since y must be real, 4 — 2> > 0 or 22 < 4. The domain is the interval
6



—2<zx<2.

b. Here, 2> —16 > 0, or 2> > 16. The domain consists of the intervals
x> 4and z < —4.

c. The function is defined for every value of z except 2.

d. The function is defined for x = +3.

e. Since z? + 4 = Ofor all z, the domain is the set of all real numbers.
Example (6)
Determine the domain of each of the following functions:

@y=a*+4 ) y="al+4 @ y="al —4 @ y=—

+3

2x 1 2 —1 x
©v=ory M= @v=T =

Solution

(@), (b), (9) all values of z (c) |z| >2 (d) z =3 () z = —1,2 (f)
3<z<3 (ho<z<2.

Example (7)

Find the domains and ranges of the following functions:

r—1 if0<z<1

2x ifx >1

@ﬂ@—xﬂlwﬂ@—{

() f(z) =|=|= the greatest integer less than or equal to z

@y—xj@wm—wﬁawm=4@

@ f(z)=|z—3| () fla) =4 /2 () f(z) =|z|/ =

z ifz >0

s == Jaf 0 s =5 177G

Solution
(a) domain, all numbers; range, y <1
(b) domain, z > 0; range, —1 <y < 0or y > 2

7



(c) domain, all numbers; range, all integers
(d) domain, =z = 2; rangey = 4

(e) domain, all numbers; range, y < 5

(f) domain, z > 0; range, y < 0

(g) domain, all numbers; range, y < 0

(h) domain, z = 0; range, y = 0

(i) domain, x = 0;range, y = —1,1

(j) domain, all numbers; range, y < 0

(K) domain, all numbers; range, y > 0

Example (8)
Find the domains and ranges of the following functions:
[z +2 if—1<x<0b 21w
@FD=1.  to<ae<1 OTD=1,
'xz —1
if 2
© f@)=1z-2 ""7
4 ife =2
Solution

(a) domain = (—1,1], range = [0,2)
(b) domain = (0,2) U [3,4], range = (0,3)
(c) domain and range = set of all real numbers

Types of Functions
(A) One-One Function

Hfo<x <2
if3<z<4

A function is one-one provided distinct elements of the domain are relat-
ed to distinct element of the range. In other words, a function f: A — B

is defined to be one-one if the images of distinct element of A under f
are distinct, that is, for every a,,a, € A, f(a,) = f(a,) = a, = a,.
[It also means that, f(a,) = f(a,) = a, = a,]. A one-one function is al-

so called injective function (Figure 1.6 and 1.7).



}V

JV

Fig. 1.6 Fig. 1.7

(B) Many-One Function
If the range of the function has at least one element, which is the image
for two or more elements of the domain, then the function is said to be
many-one function (Figure 2.8a and b). It means that there is at least one

pair of distinct elements, a;,a, € A, suchthat f(a,;) = f(a,) though
a, = a,. A constant function is a special case of many-one function
(Figures 1.8 and 1.9).

Fig. 1.9 Constant function
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(C) Onto Function
A function f: A — B is called an onto function if each element of the
codomain is involved in the relation. (Here, range of f = codomain B.)
In other words, a function f : A — B is said to be onto if every element
of B is the image of some element of A, under f, that is, for every
b € B, there exist an element a € A such that f(a) = b (Figure 1.10
and 1.11). Onto function is also called surjective function.

A ! B A / B
’-—
Fig. 1.10 Fig. 1.11

(D) Bijective Function (or One-to-One Correspondence)
The most important functions are those which are both one-one and onto.
In a function that is one-one and onto, each image corresponds to exactly
one element of the domain and each element of codomain is involved in
the relation as shown in Figure 1,12. Such a function is also called one-
to-one correspondence or a bijective function.

A if B

One—one and onto function

Fig. 12
Example (9)

Consider the function y = f(z) = 2. Here, for every value of = € R, there
corresponds a single value of ¥, and, conversely, to each y € R, there corre-

sponds a single value of x given by z» = i’,@ Therefore, f specifies a one-to-
one mapping, from R onto R.

10



Example (10)
Consider the function y = g(z) = x*. Here, for every value of z € R, there
corresponds a single value of y € (0,00). However, to every y > 0, there corre-

spond two values of z : x = ++/y . Therefore, " ¢ " is not one-to-one corre-
spondence.
Example (11)

Consider the exponential functiony y = f(z) = e”. It can be shown that the
function y = f(x) = e”is one-to-one mapping from (—oo, c0)onto (0,~c). Note
that for z; = z,, we have e” = e", where z,z, € Rx1,,and ¢",e™ € R .
Consider €™ /e™ =1 =" ™ = lor " ™ = ¢° (since e’ = 1)

r, —z, = 0 =z, = x,. Inother words, e™ = e™ = z, = z,. Thus,

T, = ¥, < e = e". Therefore, " f" defines a one-to-one correspondence
from (—oo, 00)onto (0,00).
Classification of Functions

Even and Odd Functions
(1)  Afunction is an even function if for every z in the domain of f

f(=z) = f(z).
(i) A function is an odd function if for every z in the domain of f
f(=z) = =f().

Example (12)

I. A polynomial function of the following form is an even function:

f(x)=a,+ax’+ax*+---+ax”
Observe that the power of X in each term is an even integer.
1. We have , that cos(—x ) =cosx for allX . Thus, the cosine function is an
even function.

[11. A constant function is always even (why?).

Example (13)

. It can be easily verified that the functions f (X) =X and f (X ) =X >are

odd functions. In fact, any polynomial function in which the power of each
term is an odd integer is an odd function.

I1. We have for all X , Sin(—x ) =—sinX and tan(—x ) = —tanXx . Thus, the
11



sine and the tangent functions are odd functions.
Note

The property of functions whether even or odd is very useful. In particular, it
helps in drawing graph of such functions.

Definition 6.

A function f :IR — IR is said to be periodic, if there exists a real number
p(p #0) suchthat f (x +p)=f (x) forallx e R.

Period of a Periodic Function

If a function f is periodic, then the smallest p > 0, if it exists such that

f (x +p)=f (x) forall X ,is called the period of the function.

Obviously, the period of the sine and cosine functions is 27 . It can be shown
that the period of the tangent function (and that of the cotangent function) is 7z .

Remark

Aperiodic function may not have a period. Note that a constant function f is peri-
odicas f (x +p) =T (x)=constant for all p > 0, however, there is no smallest

p > O for which the relation holds. Hence, there is no period of this function,
though it is periodic by definition.
Algebraic operation on functions

Functions are not numbers. But, just as two numbers a and b can be added to
produce a new number (a + b), two functions f and ¢ can be added to produce

a new function (f + g). This is just one of the several operations on functions.
(a) Sums, Differences, Products and Quotients of Functions

Let f and g be functions. We define the sum f + g, the difference f — g,
and the product f.gto be the functions whose domains consist of all those
numbers that are common in the domains of both f and g and whose
rules are given by

(f +9)(@) = f(z) + g(x)
(f — 9)(z) = f(x) — g(x)
(f-9)(x) = f(z).9(x).

In each case, the domain is consisting of those values of x for which both
f(x)and g(x)are defined.

12



Next, because division by 0 is excluded, we give the definition of quotient

f

of two functions separately as follows: The quotient =is the function
g

whose domain consists of all numbers z in the domains of both f(z) and
g(x) for which g(z) = 0, and whose rule is given by

Ligy =19 gy = 0
g g(z)
Example (14)

Let f(z) = 1 and g(z) = \z . Find the domain and rule of f+g.
X

Solution
The domain of fis z € R:x = 0 and the domain of g(X)
reER:2>0 .

The only numbers in both domains are the positive numbers, which constitute the
domain of f + g.

For the rule, we have
(f +9)(=) = f(z) + g(z) =§+\/;, z > 0.

Example (15)
Let f(z) = V4 — z® and g(x) = ¥z — 1. Find the domain and rule of f- g.

Solution:

The domain of f(x) is the interval [—2,2] and the domain of g(z) is the interval
[1,00). The domain of f- g = [—2,2]N[l,00) = [1,2]. The rule of f- ¢ is given
by

(f-9)(x) = f(z).9(z) = N4 — 2’z —1
=\/(4—x2)(x—1) for 1<z<2

Caution

This example illustrates a surprising fact about the domain of functions combi-
nation . We found that the domain of f(x)- g(z)is the interval [1,2]. Now observe

13



that the expression \f(4 — %) (x — 1) is also meaningful for z in (—oo,—2].

This is true because (4 — z°)(z —1) > 0 =z < —2. However, (—oo,—2] can-

not be considered a part of the domain of f(z).g(z). By definition, the domain of
the resulting function f(z) - g(x)consists of those values of z common to do-
mains of f(z) and g(z). Itis not to be determined from the expression (or the

rule) for f(z).g(x).

Similar comments hold for the domains of f(z) + g(z)and f(x) — g(x).

For the domain of f(z) / g(x), there is an additional requirement that the values
of z, for which g(z) = 0, are excluded.

Example (16)

Let f(x) =« + 3 and g(z) = (z — 3)(x + 2). Let us find the domain and rule

of f(z) / g(x).

Solution

Observe that the domains of f(x) and g(x)are all real numbers, but g(x) = 0, for
r =3 and x = —2. It follows that the domain of f(z) / g(x)consists of all real
numbers except z = —2 and x = 3. The

rule of f(z) / g(x)is given by
(i) f(x) r+3

T = = for t = —2and z = 3
g g(z)  (z—-3)(z+2)
Note

We can add or multiply more than two functions. For example, if f,g, and h are
functions, then for all z common to the domains of f, g, and h, we have (

(f + 9+ h)z = f(z) + g(z) + h(z) and (f.g.h)z = f(z).g(z).h(z).
(b)Composition of Functions

Given the two function f and g, the composite function denoted by (
g o f)is defined by

(9 © ))(@) = g(f(x))
and the domain of g(f(z))is the set of all numbers z in the domain of f
such that f(z)is in the domain of g(x). The definition indicates that when
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computing (f o g)(z), we first apply ¢ to = and then the function fto
g(z). We write

(f ° 9)(z) = f(g(z))
Example (17)

t—3 and g(z) = Ja . We may composite them as follows:

Let f(z) =

I (g0 f)(z) = g(f(z)) = g ) =

I (f o g)(z) = f(Nz) =

Remark

Note that (g o f)(z) = (f o ¢)(x)). Thus, composition of functions is not
commutative, (g o f)(x)and (f o g)(x) are usually different.

Domain of a Composite Function

We must be more careful in describing the domain of a composite func-
tion. Let f(x) and g(z) be defined for certain values of x. Then, the do-

main of (g o f)(z) is that part of the domain of f(x) (i.e., those values of
x X) for which g can accept f(x) as input. In the above example, the do-

main of (g o f)(z)is [3,oo , since & must be greater than or equal to 3 in
r—3

order to give a nonnegative number for g to work on.

Example (18)

Consider the function ¢(z) = vz + 7.
We can express ¢(z) as the composition of the two functions g(z) and

f(x), givenby f(z) = 2° + 7and g(z) = Vz.
Now, we have ¢(z) = (g o f)(2) = g(f(z)) = g(a® +7) =Na® + 7

Next, we can also express ¢(z)as the composition of another pair of func-
tions g and f given by f(z) = 2% and g(z) = Vz + 7.

15



Consider ¢(z) = (g o f)(z) = g(f(x)) = g(z*) = g(Nz* + 7).
Example (19)

1
Va® + 3 |

Express ¢(z) as the composition of two function f and g in two ways:

Given ¢(z) =

(i) The function f containing the radical.
(if) The function g containing the radical.

Solution

To solve such problems, it is necessary to develop the ability of decompos-
ing the given function into composite pieces.

l. We choose f(z) = and g(z) = 2°.

1
N
Now, 0(a) = = )(2) = floe)) = f=) = —

(Observe that to express f (g (X)) first we insert the expres-
sion for g (X ) and obtainf (t) , where t stands forg (X ).
Next, we write the expression for f (t) and replace t by

g(x))

Il. Now, we choose f(z) = 1 and g(x) = No* + 3. Then,
T
1

N
(Here again, to express T (g (X)), first we insert the expres-
sion for g (X )and obtain f (t), where f (t) stands for
g (X ). Now we look at the expression for f (t), which sug-
gests that we must take the reciprocal of 1.)

Example (20)

¢(z) = (f 0 9)(z) = flg(z)) = f(N2* +3) =

Let f(z) = vz —1 and g(z) = 1 . We shall determine the functions
T
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gofand fog,andthenfind g(f(5)) and f f(g(i))

Solution
The functionis (g of )(x) given by
1

vz —1

[1,00) . Therefore, the domain of g o f consists of those numbers zin
[1,00) for which g can accept f(x)as input. This demands that

(go f)(z) = g(f(z)) = gNz —1) = . The domain of f(z)is

1

g[\/x—l]:\/xl—l

Therefore, the domain of g o f is (1,00).

must be defined, which requires that = = 1.

The rule for f o gis given by

1 1
(fog)(z) = flg(z)) = f(;) =\ —1
The domain of g(x)is the set of nonzero numbers, that is(—oo,0) U (0,00)
Therefore, the domain of f o g consists of those numbers X in the above

domain for which f can accept g (X) as input. This demands that

f(l) = «/l — 1 must be defined.
T T

. 1 1
It requires thatl —1> 0= = > 1(z must be positive with — > 1).
T T T

So, The domain is (0,1].

Inverse Function f!
If a function "f " is one-to-one and onto, then the correspondence associating
the same pairs of elements in the reverse order is also a function. This reverse

function is denoted by f~*, and we call it the inverse of the function f . Note
that, f~'is also one-to one and onto. See figure 1.13

Remark

A function f has an inverse provided that there exists a function, f~!such that

. the domain of #'is the range of f

. f(z) = y ifand only if f~!(y) = x forall X in the domain of "f "and
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forall y in the range of "f ",

Note
Not every function has an inverse. If a function f : A — B has an inverse, then

f~1: B — Aisdefined, such that, the domain of £ 'is the range of f , and the
range of £~ 'isthe domain of f , associating the same pairs of elements.

f:A>B fiB—>A
One—one and onto One—one and onto

Fig. 1.13

It can be shown that if f has an inverse, then the inverse function is uniquely
determined. Sometimes, we can give a formula for f~*. For example
y = f(z) = 22, then z — f1(y) = %y Similarly, if y — f(z) = 2° — 1, then

z = f'(y) = Vv’ + 1. In each case, we simply solve the equation that deter-
mines X intermsof y . The formulain y expresses the (new) function f!.
We cannot always give the formula for f~1. For example, consider the function

y = f(z) = #° + 22 + 1. It is beyond our capabilities to solve this equation for

X.
Note that, in such cases, we cannot decide whether a given function has an in-
verse or not.

Fortunately, there are criteria that tell whether a given function y = f(z)has an
inverse, irrespective of whether we can solve it for X .

In this notation, the letter X stands for the independent variable and the letter y

the dependent variable for both the mutually inverse functions. Thus the func-
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tions y =X % and y = f/x_ , represent a pair of mutually inverse functions. Al-

so Yy =10" and y =log,, X are mutually inverse functions.

There is a simple relationship between the graphs of two mutually inverse func-
tions y =f (x) and y =f (X)) . They are symmetric with respect to the line
Yy =X (see Figure 1.14 and 1.15).

Fig. 1.15
In the case of simple functions (like linear functions, etc.) there is a three-step
process that gives a formula for the inverse.
Step (1): Solve the equation y = f(x)for X, interms of y .

Step (2): Use the symbol f~!to name the resulting expression in y .
Step (3): Replace y by X to get the formula for f~'(z).
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Example (21)
Consider the function y = f(z) = 3z — 2, x € R, and let us find its inverse

function.

Solution

Step(1): y = f(x) =3z -2 =z = yTH

Step (2): /1(y) = L1

Step (3): /(@) = 1

Example (22)

Let us find the formula for f~'(z)if y = f(z) = : °
— T

Step (1): y = f(z) = —— = 2= —2—

1—=z _1+y
Step (2): /() = - W= D
Step (3): /(2) = - i ~(z = 1)
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Algebraic Functions and Their Combinations
(a) Constant Function:

A function of the form f(z) = a, where "a " is a nonzero real number

(i.e.,, a = 0), is called a constant function. The range of a constant func-
tion consists of only one nonzero number.

(b) Identity Function:

The function f(z) = z is called the identity function . The range of iden-

tity function is all real number. From the functions at (a) and (b) above, we
can build many important functions of calculus: polynomials, rational
functions, power functions, root functions, and so on.

(c) Polynomial Function:

Any function, that can be obtained from the constant functions and the
identity function by using the operations of addition, subtraction, and mul-
tiplication, is called a polynomial function. This amounts to say that " f(z)

" is a polynomial function, if it is of the form
f(@)=a 2" +a, 2" " +.. .+ a2’ +az+a,

where a,,a ., 0y, 0,0, are real numbers (a, = 0)and n isa

ST
nonnegative integer. If the coefficient a, = 0, then "n " (in 2"), the

nonnegative integral exponent of z, is called the degree of the polynomial.
Obviously, the degree of constant functions is zero.

I. Linear Function: Polynomials of degree 1 are called linear functions.
They are of the form f(z) = a,z + a,, with a; = 0. Note that, the

identity function [ f(x) = z] is a particular linear function.

1. f(z) = a2:1:2 + a,z + a,is a second degree polynomial, called a

quadratic function. If the degree of the polynomial is 3, the function
is called a cubic function.

I11.Rational Functions: Quotients of polynomials are called rational
functions. Examples are as follows:

(@) :x—12, fz) =% +\5z; f(z) = 933;_2‘”6”
_ 2 4+ —2
f(x)_a:2+5:c—6.
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Example (23)

2 J—
Let f(z) = £ T2 =2 Find the domain of f.
2> + 51 —6
Solution
We have z? 4 5z — 6 = (z — 1)(z + 6). Therefore, the denominator is 0 for

x =1 and z = —6. Thus, the domain of f consists of all numbers except 1
and —6.

Remark

Sometimes, it may happen that both the numerator and the denominator have
a common factor. For example, we have 22 +z —2 = (z — 1)(x + 2), and
2?4+ 515 — 6 = (v —1)(z + 6). So, we have

o) — 2t o —2 :(x—l)(x—i—Q)
) 56 @-D@+o)

T+ 2
r+ 6

which may be simplified to read , provided = = 1. Note that, while the ex-

T+ 2

pression is meaningful for z = 1, the number 1 is not in the domain of

x4+ 6
function f. (This again suggests that the domain of a combination of functions

must be determined from the original description of the function(s), and not from
their simplified form.)

(d) Power Functions

These are functions, of the form f(z) = z*, where « is real number. Ex-

amples are AL e I e I 3

(e) Root Functions
I. Square root function

Consider the relation y? = . We write itas y = Nz or y = z'/2

and call it the square root function of z. We know that there is no
real number whose square is a negative number. Hence, we define

square root function f(x) = Jz that assigns to each nonnegative
number z the nonnegative number f(x). We emphasize that
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f(z) = Jz is defined only for > Oand that f(x) > 0, for all
x > 0. Accordingly, it is meaningful to write \/g,\/l /3 ,and Jo,

and so on, but ¥—5 has no meaning. Furthermore, while V4 = 42,
we write V4 = 2 and we never write V4 = —2.
I1. Cube Root Function

Consider the relation 3° = z. We write itas y = ¥z or y = 2'/3,

and call it the cube root function. It assigns to any number z, the

unique number y such that y® = z. Of course, our interest lies only

in real roots. In contrast to the square root function, the cube root
function has in its domain all real numbers, including negative num-

bers. For example, Y-8 = -2, Y1 =—1and

327 /64 = —3 /4. Similarly ¥/8 = 2; ¥—125 = -5, and

Y125 = 5. Thus cube root of any negative number is a negative

number and that of any positive number is a positive number.
[11. nth Root Function

We note that cube root function " f(x) = ¥z "is defined for all real
numbers z, whereas square root function " f(z) = Jz " is defined

only for z > 0 with the understanding that Vo >0 (i.e., only
nonnegative square roots are accepted). By extending these concepts
to the roots of higher order, we get that if n is odd, then nth root

function Q/E is defined for all real numbers, and on the other
hand, if n is even, then "% is defined only for z > 0
Note

In view of the above, the expressions¥/—1; ¥—32 and ¥—128 are

meaningful, whereas the expressions V-1; ¥Y-64;and -9 /4
are meaningless. For every positive integer n, we also have

Y1=1% =o.
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Non-algebraic Functions and Their Combinations
I. Trigonometric functions
Let a point p(x,y) moves along a circle perimeter with radius 7 = 1 and

6 is the angle that the revolving line OP makes with the x-axis (see figure
1.16). Then, we can define the sine and cosine functions of @ by:

. T
sinf = =, cos = <

AY

P(cosb.sinb)

2 o3
x“+y- =1

Fig. 1.16
Here , it is important to keep in mind that the angle # can be of any mag-
nitude and sign. Therefore, the terminal side OP can be in any quadrant.
Thus, the angle # that the revolving line makes with the x-axis need not
be acute. However, we define the trigonometric function of the angle ¢
with reference to the right-angled triangle in which the revolving line (as
hypotenuse) makes the angle 6 with the x-axis. Obviously, § may be
acute or obtuse or negative.
There are four other basic trigonometric functions that are defined in terms
of sinf and cos#, we define

tanf = sin 0 , cotf = c‘osﬂ
cos sin 6
1
secl = , cosect = —
cos 6 sin 6

The values of these functions can be quickly computed from the corre-
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sponding values of sin# and cos#.
Properties of trigonometric functions
1. Sine function
Sine function has the following properties(Fig. 1.17)
a.sin: R— R

b. Its domain is R and its range is [—1,1]

c. It is periodic function with period 27, that is
sin(f + 27) = sin 6.

d. It is odd function, that is, sin(—z) = —sinz.

e. Sine function is not one-to-one function.

y=sinx

3
2

y

I :

AN ; &\n T 7}
2r I \ / 0 i' \/27[

Fig. 1.17
2. Cosine function

Cosine function has the following properties (see Fig. 1.18)
a.cos: R— R
b. Its domain is R and its range is [—1,1]
c. It is periodic function with period 27, that is
cos(z + 2m) = cosx .
d. It is even function, that is, cos(—x) = cos .
e. Cosine function is not one-to-one function.

y=Cos X

TN
- N
_iz;_z\_/ 0 \_/

Fig. 1.18

25



3. Tangent function
Tangent function has the following properties (see Fig. 1.19)

a. tan:R—{kw+g}—>R,k€Z.

b. Its domain is R — {km + g}, k € Z anditsrangeis R .

c. It is periodic function with period 7, that is tan(z + 7) = tanx.
d. It is odd function, that is, tan(—z) = —tanz.
e. It is not one-to-one function.

y =tanx AY

Y =

u|:1

Fig. 1.19
4. Secant function
Secant function has the following properties (see Fig. 1.20).

a sec:R—{kw+g}—>R,keZ.

b. Its domain is R — {km + g}, k € Z and its range is

(—o0,—1] U [1,00).
c. It is periodic function with period 27, that is
sec(x + 2m) = secz.
d. It is even function, that is, sec(—z) = secx.
e. It is not one-to-one function.
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1 =secx

[STPN

>NN

~

Fig. 1.20

5. Cosecant function
Cosecant function has the following properties (see Fig. 1.21)

a. cosec: R—{kr} - R ke Z

b. Its domain is R — {kr}, k € Z and its range is
(—o0,—1] U [1,00)

c. It is periodic function with period 27, that is
cosec(x + 2m) = cosec .

d. It is odd function, that is, cosec(—z) = —cosec x.

e. It is not one-to-one fynction.

y ¥ =cosecx
A

Y

E-/Z' T

Fig. 1.21

6. Cotangent function
Cotangent function has the following properties (see Fig. 1.22).
a.cot: R—{kn} - R k € Z.

b. Its domain is R — {kn}, k € Z and its range is R.
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c. It is periodic function with period 7, that is cot(z + m) = cotx .

d. It is odd function, that is, cot(—x) = —cotz.
e. It is not one-to-one function.
¥ =cotx
AV
—T 0 brd >
Fig. 1.22

Some Values of Trigonometric Functions

T T T T 27 3z S5z
X 0 — — — = — — — T
6 4 3 2 3 4 6
sinx O E Q ﬁ 1 ﬁ Q E 0
2 2 2 2 2 2
cosx 1 ﬁ vz 1 0 1 —ﬁ —ﬁ -1
2 2 2 2 2 2

sin(x +7z)=—-sinx

Cos(X + ) =—CosX

Trigonometric ldentities

2r =1

2 1+ tan’z = sec’x

3. 1+ cot?x = cosec? z

4. sin(z + y) = sinzcosy + sinycosx

1. sin®z + cos

5. cos(x £ y) = cosxcosy Fsinzsiny

6 tan(z + y) — tanz 4 tany

1 F tanztany
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7. sin2x = 2sinx cosx

2 2

r=1-—2sin’z =2cos’z — 1

8. cos2r = cos”z — sin
. 9 1 —cos2z
9. sin“x = ——
2
9 14 cos2z
10. cOS" T = ————
2
: 1. . :
11, smxcosy:5[81n(x—|—y)—|—sm(x—y)]
. . 1
12 smxsmyzé[cos(x—y)—cos(x%—y)]
1

13. COSTCOSY = i[cos(x + y) + cos(z — y)]

I1. Trigonometric Functions (With Restricted Domains) and Their In-
verses

We begin with the sine function y =SinX , whose graph appears in
Figure 1.17. Observe from the figure that the sine function is strictly in-

creasing on the mterval{—;,z} . Consequently, the function

f (x)=sinx , for which

. /A
f (x)=sinx, X e[—??}

IS one-to-one, and hence it does have an inverse in this interval. The graph

of is sketched in figure 1.23. Its domain is [—%,%} and its range is

[—1,1] . The inverse of this function is called the inverse sine function.
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) =sin x

0

.
s
%
~
A Y
1
"
R
e’
-
"
¢
-’
L=
Y =
Y =

A
‘\ / Y { 1
. &= 1 i
TV iy
L - ‘\‘ 2 | Z
|
‘\ \\~ :
|
|
______________ _l
: : T ; 5 [ = =
Domain restricted to {-—,—I f(x)=sinx, x € [——,_
22 272
Fig. 1.23

1 . Inverse Sine Function
The inverse sine function, denoted by sin ! is defined by

y=sin"'z,ifandonlyif z = siny and y € [_g,g],
The domain of sin~' z is the closed interval|—1,1] and the range
is the closed interval _E’Z (see Fig. 1.24).
AY
27 o

; 0 :

,I| |

[ . y=sinlx

Fig. 1.24
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Remarks

.1 s . T
sin (—1) = —— as sin(——) = —1.
(1) =~ as sin(~ )

sin 1(0) = 0 as sin(0) = 0
Sinfl(l) =T assinl = 1
26 6 2
sin () = +7 as sin(+5) = £,
20 4 4 2

.1 v . T
sin” (1) = — as sin(—) = 1.
(1) = 7 as sin(7)
The use of the symbol "-1" to represent the inverse sine function

makes it necessary to denote the reciprocal of sinz by(sinz)™' | to

avoid confusion.
A similar convention is applied when using any negative exponent

with a trigonometric function. For instance, = (tanz)!
tanz
1 -1
= (cosz) "~ and so on.
COST

The terminology arc sine is sometimes used in place of inverse sine,
and the notation arc sine is then used instead of sin 'z .

. Inverse Cosine Function
The graph of cosine function Yy =COSX , appears in Figure 1.18.

Observe from the figure that the cosine function is strictly decreas-
ing on the interval [0, 7] . Consequently, the function
f (Xx)=cosx , for which

f (x)=cosx, x €[0,7]
IS one-to-one, and hence it does have an inverse in this interval. The
graph of is sketched in figure 1.25. Its domain is [O, 72] and its
range is [—1,1] . The inverse of this function is called the inverse
cosine function.
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Domain restricted to [0,7] fx)=cosx, x €[0,7]

Fig. 1.25
The inverse cosine function, denoted by cos !z , is defined by
y =cos 1z ,ifandonlyif z = cosy and y € [0,71'] . The do-
main of cos™' z is the closed interval |—1,1] and the range is the
closed interval [0, |(see Fig. 1.26).

e — e T -

|
=

Fig. 1.26
cos '(—1) = 7 as cos(w) = —1.
-1 s T
cos (0) = —as cos(—) = 0.
(0) = as cos(D)
cos (=) = T as cos— = 1
2 3 3 2

cos‘l(ii) = i% as cos(i%) =+ L

Nk
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cos '(1) = 0 as cos(0) = 1.
3 . Inverse Tangent Function
The inverse tangent function, denoted by tan!, is defined by

y = tan 'z , ifand only if, z = tany and —g <y < g . The

domain of tan !z isthe set R of real numbers and the range is

the open interval (_Z I) . The graph of the inverse tangent func-

Y

tion is shown in Figure 1.27.

AY

b=

Y =

|

~

|

—

o
o -

y=tan"lx, (- % r<x< % )

Fig. 1.27

4 . Inverse Cotangent Function
To define the inverse cotangent function, we use the identity

_ _ T .
tan 'z +cot la = 7 where X is any real number.

The inverse cotangent function, denoted by cot™! , is defined by

_ s _ .
y =cot lz = 5" tan~'z where X is any real number.

The domain of cot ' z is the set R of real numbers. To obtain the
range, we write the equation in the definition as

cot lz = g —tan 'z (%)

We know that;
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—z<tan_1x<g (< * )
Using (**) in (***), we get

T s 1 s
—— < ——cot "z < —
2 2 2

Subtracting g from each member, we get

—1 < —cot 'z <0
Now, multiplying each member by —1 , we get

O<cotlz<m
The range of the inverse cotangent function is therefore the open in-

terval (0,7)(see Fig. 1.28).

AY

Y =

ro -+
L

fov)
-

19 4

y= cot™! x

Fig. 1.28
llustration

(@) tan (1) = %

(b) tan '(—1) = _%
(¢) cot (1) = g — tan"}(1) = Z
(d) cot (1) = g —tan }(—1) = %T
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5 . Inverse secant Function
The inverse secant function, denoted by sec™!, is defined by

y = sec 'z ,ifand only if, x = secy and y € [0,7] — {g} . The
domain of sec !z isthe set R — (—1,1) of real numbers and the

range is [0, 7] — {g} . The graph of the inverse secant function is

shown in Figure 1.29.

=} l 2

y=secTx
Fig. 1.29
6 . Definition of the Inverse cosecant Function
The inverse secant function, denoted by cosec™!, is defined by
y = cosec Lz , if and only if, x = cosecy and

Y € [—g,g] — {0} . The domain of cosec ! z is the set

R — (—1,1) of real numbers and the range is [—g,g] — {0} .
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The graph of the inverse cosecant function is shown in Figure 1.30.

)
g
C g S
-

-

’
\

\

» X

| 1 | 1
-2 1 1 2

2
“~

y =cosec'x
Fig. 1.30

I11. Exponential Function
The product 2x2x2x2x2x2 =64, is conveniently written in the form

2° =64 , to mean that the number is multiplied by itself, six times. In the

expression 2° , the number "2 “is called the base and "6 " is called the ex-
ponent. We say that the number 64 is expressed in the exponential form as

2° . Similarly, we can write 4> =64 and64" = 64 , which are two other
exponential forms for 64.
In fact, any positive number can be expressed in any number of exponential
form(s), by choosing a positive base and an appropriate exponent.
Definition
The exponential function is defined as

y=fx)=a"a>0a=1

The domain of exponential function is the set of all real numbers R and its
range is the set of positive numbers. This function monotonically increases,
if the base is a > 1 and monotonically decreases if 0 < a <1 (see Fig.
1.31).
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AY

‘yﬂ
Y =

0 0

Fig. 1.31

The Natural Exponential Function
The exponential function to the base e is called the natural exponential

and is usually denoted by y =f (X) =e" (see Fig. 1.32).

AY

Y =

0

Fig. 1.32
Laws of Exponents (or Laws of Indices) for real exponents
For any positive real numbers a #1,b #1, m,n natural numbers and real
variables X,y , the following laws are valid:

. a*. a’ =a*"
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||.a—:ax Y oa#0
ay

m. - (a )y —aY

Iv. (ab) =a*.b"

v.a’ =

1
VI n/am :am/n
The Exponential Series

Now, we will show that,

x? x3® x4

. X
e =1l+—+—+—+—+..
1 2t 31 41

Proof.
1 nx

Consider the expression (1+ —j , by making use of the binomial theo-
n

rem, we can expand this expression and get
1\ nx 1 nx(nx-=1) 1
( j =1+ —+ ( )

1+—

n 1! n 21 n?
N nx (nx —1)(nx _2)i+...
3! n’
X n’(x-1/n) 1
=1+—+
1! 2! n’
3
+n X (X =1/n)(x —2/n)i+m
3! n’
:1+£+x(x —1/n)+x(x —1/n)(x —2/n)+m
1! 2! 3!

But,asn — oo , the terms 1/ N, 2/n , and so on approach O . Therefore,

the right-hand side simplifies to the following:

x x?2 x¥ x*

RHS.=1+—+ +—+ +...
mn 21 31 41

Moreover, the number of terms (being N +1 ) becomes infinitely large as
n — oo , whatever X may be. Hence, the series continues to infinity.
Also,
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IimL.H.S.:Iim(l+l) =£Iim[1+ljJ =e”
n—oo n—oo n n—oo n

We get,
. X
e’ =1+ —+—+—+—+..
i 2t 31 4l

IV. The Logarithmic Function
Firstly, we introduce the concept of logarithm of a positive real number. If
three numbers a,b , and ¢ are so related that
a’ =c
then the exponent "b " is called the logarithm of "C " to the base "a"
We write
log,c =b
It may be noted that the logarithm of a number can be different for different
bases. In the system of logarithms, which we use in our day-to-day calcula-
tions (such as those in the field of engineering, etc.), the base 10 is found
to be most useful. Logarithms to the base 10 are called common loga-
rithms. Once the base "10 " is chosen, it has to be raised with a suitable re-
al number "b "(positive, zero, or negative) so that, it represents the given

(positive) number C , exactly or very close to it.
Thus, we write,

10" =c or 10° ~c where the symbol "~" stands for "very close to".

For example,
log,,100 =2, log,,1000 =3 .

These values of logarithms are exact, since 10 =100 and10® =1000.
On other hand,

log,, 5=0.669, log,,27.8=1.4453
These values of logarithms are not exact, but they are very close to

the numbers in equations, since (10)0'699 ~5, (10)1'4453 ~27.8.

In common logarithms, the base is always10 , so that, if no base is men-
tioned, the base 10 is always understood. However, it is useful only while
dealing with arithmetical calculations.

Important in calculus are logarithms to the base "e ", called natural loga-
rithms . The number™”e ", (which is the base for natural logarithms) is a typ-
ical irrational number, lying between 2 and 3 (e =2.71828. . .).
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The notation for "natural logarithm" is "In ™.

Definition of the logarithm

The logarithm of a given number to a given base, is equal to the power to
which, the base should be raised to get the given number.

We know that  Therefore we say that we write
2°=64 log of 64 to the base 2=6  log,64=6
4°=64 log of 64 to the base 4=3  log,64=3
64'=64 log of 64 to the base 64=1  log,,64=1
52=25 log of 25 to the base 5=2 log, 25=2
5°=1/125  log of 1/125 to the base 5=-3 log, (1/125)=-3
a’=1,(a=0) log of 1 to the base a=0 log,1=0

a'=a log of a to the base a=1 log,a=1

Note

I. From the first three illustrations, we observe that the logarithm of a (posi-
tive) number is different for different bases.

I1.The logarithm of 1 to any base is zero.

1. The logarithm of any number to the same base (as the number itself)

isl (ie. log,a=1 log,,10=1, log, e =1.)
Definition
the general logarithmic function is defined as
y =f (x)=log,x, a>0, a=1
and defined by the condition
y =log,x < a’ =x
The domain of the logarithmic function y =1log, X is the set of all posi-
tive real numbers (0,00), and its range is the open interval (—o,0).

This function monotonically increases if & >1 , and monotonically de-
creases if 0 <a <1 (see Fig. 1.33).
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Fig. 1.33

The logarithmic function, y =log, X is the inverse of the exponential
function y =a*.

The Natural Logarithm

The logarithmic function to the base e is called the natural logarithmic
function and is usually denoted by InXx (orlog, X ) see Fig. 1.34.

AY y=¢ y=x

P
-

10

P'=(1.609.5)
5

P'=(0,1)
P':(-l.(l.ﬂ\:

|

v=Inx

P = (5. 1.609)

X

=5

P=(1.0) 10
P =(0.368. -1)
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The Common Logarithm
The logarithmic function to the base 10 is called the common logarithmic

function and sometimes denoted by logXx .
The fundamental Laws of Logarithms
(i) log,b* =xlog,b

Proof.

Let b=a" = log,b =u

. L.H.S.=log, (au )X :Ioga(aux)

=uXx =xlog,b =R.H.S.
(i1) log,(x y) =log, x +log, y

(ii)log, (1] =log, x —log, Yy
y

Change of Base

We will now show that, if we are given the logarithm of a number, to any
base, then we can easily compute the logarithm of that number to any other
base. The following relation states the rule.

log, X
log, a

log, X =

(1)

Proof.
Let

x =b’, a=b°* =>x =a’"
The left hand side of (1)

L.H.S.=log, x =log,a’" _Y (2)
C
The right hand side of (1)

log,a log,b® ¢
Comparing (2) and (3) we have the result.

y
RHS — log,x log,b” vy 3)
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Relation Between Exponential Function and Logarithmic Function
Now, it is easy to show that

aIogax — X

Proof.
Let

a|Oga X _ t (1)

Taking the logarithm to base a for both sides of (1), we have
log,a%* =log,t = log, x =log,t
So, we have
t =X
Corollaries
.y =Inx < x =e” .

Ly =a* = Iny =xIna.

In X
1. log,x =—.

Ina
V. Ine” =x .
V.e™ =x .

V.Hyperbolic Functions and Their Properties

Certain special combinations of € and e ™ appear so often in both math-
ematics and science that they are given special names.

Definitions

The functions

: e’ —e™” e’ +e”
sinhx =———, coshx =— (1)
2 2
are respectively, called the hyperbolic sine and hyperbolic cosine.
the parametric equations X =cosht , y =sinht describe the right

branch of the unit hyperbola X = y 2=1 [which is the special case of the
2 2

X
hyperbola—-— )b/—z =1 ](Figure 1.35). Moreover, the parameter 1t is re-
a

lated to the shaded area S by t =2S.
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Fig. 1.35

There are six basic hyperbolic functions. The other four hyperbolic func-
tions are defined in the terms of the hyperbolic sine and hyperbolic cosine.
Definitions

The functions

sinhx e" —e
tanhx = =—
coshx e” +e
coshx e* +e™
cothx =— =—
sinhx e”* —e
1 2
sechx = =—
coshx e” +e
1 2
cosechx = =

sinhx e* —e™

are respectively called the hyperbolic tangent, the hyperbolic cotangent, the
hyperbolic secant, and the hyperbolic cosecant.

Hyperbolic functions are connected by a number of algebraic relations simi-
lar to those connecting trigonometric functions. In particular, the fundamen-
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tal identity for the hyperbolic functions is
cosh®x —sinh*x =1
1—tanh®x =sech®x
1—coth? x =—cosech?®x
cosh(x £y )=coshx coshy +sinhx sinhy
sinh(x +y )=sinhx coshy +sinhy coshx
If y is replaced by X in these identities we obtain,
cosh(2x ) =cosh”x +sinh*x
sinh(2x ) = 2sinhx coshx

Note
From the definitions (1) , we can obtain

sinhx +coshx =e*
coshx —sinhx =e™
It is, therefore, apparent that any combination of the exponentials €” and

e ™ can be replaced by a combination of sinhx and coshx and con-
versely.
The important hyperbolic identities

cosh®x —sinh?x =1

sinh2x = 2sinhx cosh x

cosh 2x = cosh?x —sinh®x

sech®x =1-tanh®x

cosech®x =coth®x —1

sinh(x £y )=sinhx coshy +sinhy coshx

cosh(x £y )=coshx coshy #sinhx sinhy

Note

Hyperbolic functions are defined in terms of exponential functions. This is
very different from the way we defined trigonometric functions. However,
if you study complex analysis, you will discover that trigonometric func-
tions can also be defined in terms of exponential functions of a complex
variable.
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The Properties of Hyperbolic Functions

The graphs of hyperbolic cosine and hyperbolic sine are shown in Figs.
1.36 and 1.37.

At X =0, coshx =1 andsinhx =0 . Note that these value are same as
in the case of corresponding trigonometric functions atX =0 . Therefore,
all the hyperbolic functions have the same values at X =0 that the corre-
sponding trigonometric functions have.

Further, note that

sinh(—x)ze 2—e e T
cosh(—x)ze_ ;e _¢ +2e‘ = cosh x

Thus, hyperbolic sine is an odd function and the hyperbolic cosine is an
even function. So the graph of sinh X is symmetric with respect to the
origin and that of coshX is symmetric about the y —axis .

Y

y =sinhx
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Y =

o -4
<
2

y =coshx

Fig. 1.37

. The domain of the function SinhX is the set of all real numbers
R and its range is (—o0,0) (Fig. 1.36).

. The domain of the function coshX is the set of all real numbers
R and its range is [1,00) (Fig. 1.37).

. The domain of the function tanhXx is the set of all real numbers
R and its range is (—1,1) (Fig. 1.38).

. The domain of the function cothX is the set of all real numbers
R exceptat x =0 (R—{0}) and its range is

R —[-11] = (=00, 1) U (1, 0) (Fig. 1.39).

. The domain of the function sechx is the set of all real numbers
R and its range is (0,1] (Fig. 1.40).

. The domain of the function cothX is the set of all real numbers
R exceptat X =0 (R —{0}) and its range is (R —{0})

(Fig. 1.41).
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_a} v =cosechx

Fig. 1.41

V1. Inverse Hyperbolic Functions

1.

Inverse Hyperbolic Sine Function.

From the graph of the hyperbolic sine in Figure 1.36, observe that
the hyperbolic sine is one-to-one. Furthermore, the hyperbolic sine is
continuous and increasing on its domain. Thus, this function has an
inverse that we now define.

Definition (A): The inverse hyperbolic sine function denoted by

sinh™ X , is defined as follows:
y =sinh™x , ifand only if, X =sinhy , where y is any real
number (Figure 1.42).

Both, the domain and range of sinh™x , are the set R of real
numbers. From the definition (A),

sinh(sinh™*x ) =x and sinh*(sinhy ) =y
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2.

\ 2

Fig.1.42

Inverse Hyperbolic Cosine Function
As in the case of inverse trigonometric functions, we restrict the do-

main and define a new function f (X ) =coshx, X >0 as follows:
The domain of this function is the interval [0,0) and the range is the
interval[1,00) . Because f (X ) is continuous and increasing on its

domain, it has an inverse, called the inverse hyperbolic cosine func-

tion.
Definition (B): The inverse hyperbolic cosine function denoted by

cosh™x , is defined as follows:
y =cosh™x, ifandonlyif x =coshy, y >0

The domain of cosh™ X is in the interval [1,00) and the range is in
the interval [0,0) ( See Fig. 1.43) . From the definition (B),

cosh(cosh‘lx ) —xif x >1,

and cosh™(coshy )=y if y >0
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3. Inverse Hyperbolic Tangent Function

b -

The hyperbolic tangent function is one-to-one and has an inverse.
Definition (C): The inverse hyperbolic tangent function denoted by

tanh ™ x is defined as follows:

y =tanh™'x if and only if, x =tanhy,

where y is any real number.

The domain of the inverse hyperbolic tangent function is the interval
(—o0,00) and the range is the set R of real numbers. The graph of

tanh™ x appears in Figure 1.44.

o, e 0 6

Fig.1.44

1
1

I
|
[
[
|
4

4. Inverse Hyperbolic Cotangent Function.
The hyperbolic cotangent function is one-to-one and has an inverse.

The graphsof y = coth™x is given in Figures 1.45.
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5.

The domain of the inverse hyperbolic cotangent function is
(—0,1) U (1,0) and the range is (—o0,0) W (0,0).

N

¥ =coth™ x

S
-—m Em e o e . e o

Fig. 1.45
Inverse Hyperbolic Secant Function.
We restrict the domain of hyperbolic secant function and define a
new function f (X ) =sechx, x >0 as follows:

The domain of this function is the interval [0, 00) and the range is the

interval (0,1] . Because f (X ) is continuous and increasing on its

domain, it has an inverse, called the inverse hyperbolic secant func-
tion.
Definition (D): The inverse hyperbolic secant function denoted by

sech™ X , is defined as follows:
y =sech™x, ifandonlyif x =coshy, y >0
The domain of sech™ X is the interval (0,1] and the range is the in-
terval [0, 00) (see Fig. 1.46).
From the definition (D),
sech(sech™x )=x if 0<x <1,

== == o o o aw (Ew Em Em Em Ew

and sech™(sechy )=y if y >0
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Inverse Hyperbolic Cosecant Function.

The hyperbolic cosecant function is one-to-one and has an inverse.
The graphs of Y =cosech™X is given in Figures 1.47.

The domain of the inverse hyperbolic cotangent function is
(—0,0) U (0,0) and the range is (—o0,0) W (0,0).

vy =cosech™ x

Fig. 1.47
Logarithm Equivalents of the Inverse Hyperbolic Functions
Since the hyperbolic functions are defined in terms of €* and e ™ ,
it is not too surprising that the inverse hyperbolic functions can be
expressed in terms of the natural logarithm. Following are these ex-
pressions for the six inverse hyperbolic functions we have discussed.
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sinh ' x :In(x +x/x2+1), X eR
cosh™x =In(x +»\/x2—1), X >1

tanh™ x =1In 1+x x| <1
2 1-x
coth™x :lln x+1 x| >1
2 X —1
’ . 2
sech™*x =In[uj,0<x <1
X
, 2
cosech™x =In[ﬂ}|x|>0
X

To prove
sinh'x = In(x + /X2 +1), X eR

Let y =sinh™ X
From definition (A)

y y
: —e
X =sinhy =

e’y 4o’

J1+x2 =\fl+sinh2y =coshy = 5

AX +1+x2 =e”
U
y =sinh™x :In(x +\/1+7)
To prove

cosh™x = In(x NG —1), x| =1

Let y =cosh™x
From definition (B)
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e’ +e”’
X =coshy =——

y _e_y

Jx? —1=\/cosh2y —1=sinhy & -c

X +Axi-1=¢’
U

y =cosh™'x = In(x N —1)

To prove
1, (1+X
tanh™x ==In| —— |, x| <1
2 \1-x
Let y =tanh™x
From definition (C)
e’ —e”’ e¥ -1
X =tanhy = —=—
e’ +e” e +1

X (e2y +1):e2y ~1=e¥ (x -1)=—x -1

o2y _1+x e g /1+x
1-X 1—X

But €” >0 , we have

oV — 1+X
1-X

y —lln(lﬂ()
2 \1-X

The other relations can be proved in similar way.
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Chapter 2

Limits of Real Functions

Introduction

Addition, subtraction, multiplication, division, raising
to a power, extracting a root, taking a logarithm, or a modu-
lus are operations of elementary mathematics. In order to
pass from elementary mathematics to higher mathematics,
we must add to this list one more mathematical operation,
namely, "finding the limit of a function".

The notion of limit is an important new idea that lies at
the foundation of Calculus. In fact, we might define Calcu-
lus as the study of limits. It is, therefore, important that we
have a deep understanding of this concept. Although the
topic of limit is rather theoretical in nature, we shall try to
represent it in a very simple and concrete way.

Useful Notations
e Meaning of the notation X —a Let X be a variable
and "a" be a constant. If X assumes values nearer and
nearer to "a" (without assuming the value "a" itself),
then we say X tends to a (or X approaches a) and we
write X —a. In other words, the procedure of giving
values to X (from the domain of "f ") nearer and
nearer to "a", but not permitting X to assume the val-
ue "a", is denoted by the symbol "X —a". Thus,
X — 1 means, we assign values to X which are nearer
and nearer to 1 (but not permitting X to assume the
value 1), which means that X comes closer and closer
to "1" reducing the distance between "X " and "1", in
the process. Thus, by the statement "X " tends to "a",
we mean that:
= X #4a,
= (X assumes values nearer and nearer to a, and
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= The way in which x should approach a is not spec-
ified. (Different ways of approaching “a” are given
below.)

Meaning of X —>a

If we consider X to be approaching closer and closer to
"a" from the left side (i.e., through the values less than
"a"), then we denote this procedure by writing

X —>a andreaditas "X "tendsto "a minus".

Meaning of X —a”

If we consider X approaching closer and closer to "a™
through the values greater than "a " (i.e., X approach-
ing "a" from the right side), then this procedure is de-

noted by writing X —>a" and we read it as "X "
tends to "a plus".

Example (1)
Consider the function

f (x)=3x +5, x €(2,3)U(3,5]

Note the following points
1. "4" is in the domain of f ,and it can be approached

2.

from both the sides. Therefore, we can writeX —4 .
"5 "isin the domain of f ,but X can approach 5 ,
only from the left of 5 (i.e., through values of X <5).

Thus, in this case, it is meaningful to write X —>5
but we cannot write X — 5.

"2"is not in the domain of f , but X can approach “2”,
from the right of " 2" (i.e., through values ofX > 2).

Thus, in this case, it is meaningful to write X — 2" , but
we cannot write X — 2~ or X — 2.

4. "3 "isnotinthe domain of f ,but X can approach "

3 " from both the sides of "3 ". Thus, we can write
X >3 and X >3 orx >3

Notes
1. If X can approach "a " from both sides, then for an
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arbitrary small 6 >0 , X always belongs to the

o -neighborhood of "a", thatis, X € (@—¢J,a+ ) with
X #a. This is equivalent to assigning values to "X ", clos-
er and closer to "a"from both sides of "a". (This proce-
dure is useful for studying the values of a function in the
neighborhood of the given point "a".)

} ° ° ® }

a-9 X—> a —~X a+ 0

2. If X —>a (i.e., if approaches "a"from the left) then,
for an arbitrary small & > 0 , X always belongs

(@a-o,a)

T T T
a0 Ry a

3. 1f X —>a’ (i.e., if x approaches “a” from the right)
then, for an arbitrary smallé >0 , X always belongs to

(a,a+9)

® @ ®
a & ¥ a+ o

Definition of the limit

Let f(x) be a function. If x assumes values nearer and near-
er to the number "a "except possibly the value "a" and f(x)
assumes the values nearer and nearer tol , which is a finite
real number, then we say that f(x) tends to the limit | as x
tends to a, and we write

limf (x) =1

X—a

Notice that the function f need not even be defined at "a".
If f (X) assumes the values nearer and nearer to | as X
approaches closer and closer to "a" from the left side, then
the number "l " is the limit of f (X ) as X approaches "a
"from the left and we write
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limf (x) =1

X—a
If f (X) assumes the values nearer and nearer to | as x
approaches closer and closer to "a" from the right side,
then the number "l " is the limit of T (X) as X approach-

es "a"from the right and we write
Iimf (x)=1

x —a*

Since "a" may be approached from both the sides of a
(i.e., left side and right side of a) when we say that

limf (x) =1
X —a
we really mean to say that
imf (x)=1=1limf (x)
X —a~ x —a*

If these conditions are not satisfied simultaneously, we say
that limf (x) does not exist.

X—a

Example (2)
Consider
X2 —
f(x)= , X #2
X -2
Find limf (x).
X —>2
Solution

We prepare the following calculations, by choosing succes-
sive values of x from a small neighborhood of 2 (say
o0 =0.1is neighborhood of 2) and compute correspond-

ing valuesf (X) . Fromthe calculations, we get the data of
our interest, which is given in Table 2.1.
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X f(x) X f(x)

1.91 3.91 2.1 4.1

1.92 3.92 2.01 4.01

1.96 3.96 2.001 4.001

1.99 3.99 2.0001 4.0001

1.997 3.997 2.00001 4.00001

1.9998 3.9998 2.000001 4.000001

1.999998 3.999998 2.0000001 4.0000001

1.99999999 3.99999999 | 2.00000001 4.00000001

2 Not defined | 2 Not defined
Table 2.1

From the table, we observe that as X approaches 2, f (X)
takes up values closer and closer to 4.We, therefore, say
that the limit of f (X ) as X approaches 2, is 4. In symbols,

we write
limf (x)=4

X —2

Note that the preparation of Table 2.1 is time consuming
and tedious. On the other hand, we have

2
F(x)= X —4 _ (x =2)(x +2)
X —2 (x =2)

Note that, if (X —2) =0, (i.e., if X # 2) then we can
cancel the factor (X —2 ) from the numerator and the de-
nominator of the above expression on the right-hand side of
Equation (1), and get,

f(X)=x+2,x #2 (2)
Thus, we have two Equations (1) and (2), both representing
the same function f (X ) , when X # 2 . We may choose

X #2 (1)
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any of them for computing the limit of the function in ques-
tion. Obviously, the Equation (2) is simpler to handle in

view of the difficulty observed in connection with the ex-
2

, X # 2 , in listing the values of f (X) in

pression >
X —
the neighborhood of 2. Hence, we choose the expression
(f (Xx) =X +2) for computing the limit in question. We
get
2

limf (x) = lim2—= x 22

X —2 x>2 X 4+ 2
:Iirr;(x +2), X #2
=2+2=4

Note that whereas f (2) does not exist (since 2 is not in

the domain of "f "), Iirr;f (x) exists, and it is given by
X —>

the number 4. This shows that the existence or nonexist-

ence of the limit of a function at a point does not depend on
the existence or nonexistence of the value of the function at

that point.
Example (3)
Consider
G(x)=x +2,x # 2
X =2
Note that this function is defined for all real values of X,

. X +2
except X =2 . However, the limit Ilrr; > X #2
X—> X —

does not exist (see Fig. 2.1).
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-4

This is because, as X — 2" , the numerator (X +2 ) ap-
proaches the number 4 whereas the denominator approach-

es the number "0" from right, so that G (X ) approaches

positive large values. On the other hand, as X — 2" , the
numerator (X +2 ) approaches the number 4 whereas the
denominator approaches the number "0 "from left, so that

G (X ) approaches negative large values. Whenever such a

situation arises, we say that the limit of the function does
not exist. Later , we shall introduce infinity as limit of a
function.

Example (4)

Let

X+5 x>0
f(x)=
X+2, x<0
Find Iirrgf (x).
Solution
Observe that f (0) is not defined. Let us study the values

f (x) asof x — 0. We note that as
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X >0 =fXx)>2.
On the other hand, as
X >0"=f (x)—>5.
Thus
limf (x)=limf (x).
X —0" x —0*
When this happens, we say that the limit of the function

does not exist.
Example (5)

2Xx =1, 1<x<?2
f(x)=
4x -5, 2<x <3
Observe that f (2) is not defined. Let us study the values
of f (X) asx — 2 . We prepare Table 2.2.

X f (xX) X f (x)
1.9 2.8 2.1 3.4
1.99 2.98 2.01 3.04
1.999 2.998 2.001 3.004
1.9999 2.9998 2.0001 3.0004
1.9999 2.99998 2.00001 3.00004

Asx »2° f(x) >3 Asx —>2" f(x) >3

Table 2.2
From Table 2.2, we observe that
limf (x)=3
X =2
And
limf (x)=3

x =2+
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Thus, the left-hand limit of f (x) at X =2 is equal to its
right-hand limit atXx =2 . In this case, we say
that the limitof f (X) as x =2 exists, and we write

I|rr21f (x) =

Example (6)
Let

X, X <1

f(x) =12, X =1

X+2, x>1
Find IIrqf (x)
Solution

We have the following observations:
(@ limf (x)=1 (left-hand limit)

X -1
(b) Iir[lf (x) =3 (right-hand limit)
© f@ =2
Thus
limf (x) =1= Ilmf (x)=3

X =1

Obviously, IIrrllf (X) does not exist.
X —

Example (7)
Let

1
f (x —x;tl
(X) —

Find limf (x)

X —1

Solution

Observe thatas X —1" (as X assumes values closer and
closer to 1 from the right hand side) f (X ) gets larger and

larger positive values. On the other hand, when X — 1" (as
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X assumes values closer and closer to 1 from the left hand
side), T (x) gets larger and larger negative values (see
Fig. 2.2).
Thus, limf (x) does not exist.

X —1

10

=
Ln

i
I
I
I
I
[
- -3 . 5 10
-
H\-I
-0.5 I
B
“1ok b
1

fx) =—. x =1
x —1
Fig. 2.2
Example (8)
Evaluate the following limit
. _sinx : .
lim——, (x inradians)
x—=>0 X
Solution

Here, there is no way of canceling terms in the numerator
and denominator. Since SinX — 0 asx — 0, the quo-

. SINX
tient

: 0
might appear to approach6 . But, we know

0
that 6 is undefined, so if the above limit exists, then we

must find it by a different technique. Since we do not have
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. ... SInXx )
any other simpler way of rewriting to obtain the

X
sin X
X

values of x close to 0 and angles x (in sin x) in radians.
(Other methods of finding this limit will be discussed later.)

limit, we use a calculator to find the values of for

i sin X
X sin X -
X

-0.10  0.0998333 0.99833
-0.09 0.0898785 0.99865
-0.05 0.0499792 0.99958
-0.03  0.0299955 0.99985
-0.02  0.0199987 0.99993
-0.01 0.00999983  0.999983
0.00 0.00000 Not defined
0.01 0.00999983  0.999983
0.02  0.0199987 0.99993
0.03  0.0299955 0.99985

Table 2.3
From Table 2.3, it is obvious that, asx — O , either from

SIN X
the right or from the left, the value of

approaches

closer and closer to the number 1. We, therefore, agree to
write

. sinXx

Iim——=1

x=0 X

This limit is used very often to find the limits of many trig-
onometric functions (including various functions involving
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trigonometric functions), and plays a very important role in
deriving many useful results.

Simpler and Powerful Rules for Finding Limits (Alge-
bra of Limits)

Limits are extremely important throughout Calculus. A
general method, we can prepare a table listing values of X
, closer and closer to “a”, and the corresponding values

f (X) . Such atable may help us guess a number to which
f (X) approaches, suggesting the limitof f (X) ,as
X — a. However, such a process of finding the values of

“f”as X —a is both time consuming and generally very
tedious.

Let N be a positive integer, K be a constant, andf (X) ,
g(x) and h(x) be functions, such that limf (x) |

X —a

limg(x) and limh(x) exist. Then
X —a X —a

1. limk =k
X —a

2. imx =a
X —a

3 !(ILT; [f (x)J_rg(x)]:IXiLr;f (x)ilxiigg(x)
4. limk .f (x) =k.IXiLr;f (x)

5, E'ETZ [f (x).g(x)]:lxig;f (x).IXiLr;g(x)
limf

jim %) _ s 0 Climg(x) =0

<2 g(x)  limg(x) ' o

7. IXirg[f x)]" :[Ixin;f (x)]"

8. limy/f (x) :Q/Iimf (x) provided limf (x) >0

X—a

when n is even.
im(f 2g)(x) =limf (g(x))=f (limg(x))

[{e]
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10. If £ (x) <g(x) <h(x) forall x near a, except

possibly ata. If limf (x) =limh(x) =1, then
X —a X —a
limg(x) =1I.
X—a
Example (9)
Find the following limit
jim X1
x —1 X1/3 -1

Solution
Here, we observe that the indices of x are fractions. Hence,
it is not possible to factorize both numerator and denomina-

tor. We substituteX = y12 . Required limit is
vsa 3
fim* T jim Y~
x->lx¥ e -1 y-il y -1
Cim Y =Dy +1)
Ly =Dy +y +y +1)
2
lim— Y+t 3
yoly +y +y +1 4

Example (10)
Determine the following limit

J1+x -1

lim
x =0 X
Solution
Puty =1+X ,thenasx 0=y — 1. Hence, the lim-
y1/2 _1
it reduces to the form lim
y —1 y -1
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Example (11)
One can show that lim \/x_ =0 but it must be clear that

x —>0*

neither lim/x nor lim /X exists (because JX s not

x—0 X —0"
defined to the left of 0).
Methods for Evaluating Limits of VVarious Algebraic
Functions
1. Direct Method [or Method of Direct Substitution]
This method is applicable in the case of very simple
functions, in which the value of the function and the lim-
it of the function both are the same.
Example (12)
lim[x % +3]=limx 2 +1im3=4+3=7

X —2 X —2 X —2
Example (13)
[x —142 Iing\/x —1+Iirr22
Ilm[ ]= X —> X —>
x=5" \Ix +31 lim«/x +31

X—5
Example (14)

wWIN

_4_
6

2

limX =2 y %3
x—>1x_3

lim(x % —9)

_ x>l

= X —4
lim(x —3)

X —1

2. Factorization Method

. f(x
For computing limit(s) of the type, lim x) , Where

x-a (X )
f (@)=0andg(a) =0, the direct substitution method

fails. In such cases, we search for a common factor
(X —a ) in f(x) and g(x) by factorizing them and cancel-
ing this factor to reduce the quotient to the simplest form
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and then apply the direct method to obtain the limit.
[Remember that X — a means thatX #a , at any stage.

In other words (X —a) = 0 , at any stage. This permits

us to cancel the common factor (x — a) from both numer-
ator and denominator.
Example (15)
Evaluate
X2 —4x +3
lim

x>1 X% 42X —3

Solution
2
lim x2 4x +3:”m(x 3)(x -1)
x>l X“ 42X =3 x21(x +3)(x -1)

——2 [x ~)#0]

Note: For evaluating lim
x-a (X)

, we may also follow

the following steps:

l. Putx =a+h (~.x >aas h—>0)

I1. Simplify numerator and denominator and cancel the
common factorh .

l11. Put h =0, in the remaining expression in h and ob-
tain the limit.

Example (16)

Evaluate

o x3-8x2+16x
lim .
x=4 X7 —x —60
Solution
o x3-8x2+16x
lim -
x=4  X*—x —60
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_ X (X —8x +16)
:“m 3 2 2

x—=4 X*—4x“+4x° -16x +15x —-60
- X (X % —4x —4x +16)

x=4 (X —A)[(x —4) +4x +15]

B X(X —=4)(x —4)
ot (X —4)[(x —4) +4x +15]
X (x —4)

TXoa[(X —4)+4x +15]

An Important Standard Limit

n n
: —a g} :
lim =na"™*, nisnaturalnumber (*)
X—a X_a
Example (17)
Evaluate

Iimxn X" X" X3+ X2+EX =N

. nisnatural number

X1 x -1

Solution

Iimxn X" X"+ X X2 +X —n

X1 x -1

_lim X" A" XX T+ X —(L4+1+1+....ntimes)
x -1 X -1

_ Iim(xn D+ X" =D+ 4+ (X -D+(X*-D+(x -1
x -1 X -1
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o (x"=-D .. (x"'-1D .. (x"?%-1
:Ilmgﬂlmgﬂlmg
x=>0 x —1 x=>0 ¥ =1 X =0 X —1

3 2
. (x°-1 . (x -1 . (x =1
+...+I|mg+llmg+llmu
x =0 X—l x —0 X—l x —0 X_]_
n
=n+n-1+n-2+..+1=——
n(n+1)
The above formula can be used to evaluate limits of the
Xn_an
Iim ——
X —a Xm_a”
For this purpose, we write
x"—a" x"—-a" x™—am
Iim——=lim—+lim—

x—a X" —q" x-a X —a x=0 X —a
and apply the standard limit to obtain
o x"=a" n .
Ilm—m - =—a"™" (**)
x>ax " —a"  m
Example (18)

Evaluate
ox°-a’
lim 3
X—)B.X _a
Solution
5 5
X _a 5 5_3
| 5 =-a
x-a x°—a° 3
Remark

Formula (*) has been proved for natural numbers n and m.
However, the result is true for rational values of n and m.
The following examples tell how this is justified.

72



Example (19)
Evaluate
X 14 _ 1]]4

lim————

Note : In such cases the important point is that the given
limit can be converted in the form (*) by substitution as fol-
lows.

Here, the indices of x are fractions and hence we cannot
factorize. The denominators of these indices are 4 and 3.
Their L.C.M. is 12. Therefore, we use the substitution

X =t*?, for our purpose.
Solution

Put x =t (t >1lasx —1)
Xl/4 _11/4 - t3_13 _3

IXIEQ x V3 _q13 - tl_r)?t4 14 Z
Note
We can also apply Corollary (**) directly and obtain the

limit as follows:
x“—f4_U41m4&{§

lim

oL 1 1/3 4
Example (20)
Find
x5 g5
!(I_rg X v2 31/2
Solution
lim2 3% _ 215 32512 _ 4 3-U10
x-3 x V232 1/2 5
Example (21)
Evaluate
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x 2-273

lim
X =2 X—2
Solution
—3_ -3 .
IimX 2 = 3_2—3—1:_3_2—4:_3
x=2 X —2 1 16

Note : To evaluate limits of this type, it is always useful to

convert the given limit to the standard form as follows:
ox7P=27 1/x*-1/2°
lim———=1Iim
x>2 X —2 X —2 X —2

1 x°*-2° 1 . oas 3

== Ilm 3 = ——3_2 = ——
x=>2 —8X° X —2 64 16
Example (22)
Evaluate
lim (x +2)° —(a+2)"°
X —a X _a
Solution
lim (x +2)° —(a+2)"°
X—a X _a
im X 2)® —(a+2)*"®
X +2—>a+2 (X + 2) _ (a 4 2)
5
_ 2 (a4 2)73
3( )
Example (23)
Evaluate
C1-x7
lem 1_ X -2/3
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Solution

“ml -1/3 _I (X]./3_1)/X1/3
X—>11—X 2/3 X —1 (X 2/3_1)/X2/3
1/3 1/3 1/3
i x"=1) s, x7-1
=1m 2/3 I™lim 2/3
X —1 X — x—1 X -1
1
2

Method of Simplification

Sometimes it is required to simplify the given function and
then evaluate the limit.

Example (24)

Evaluate
) 1 5
lim —
H5(x -5 x2—5x)
Solution
i 1 5 ) X =5
lim — =lim(——
H5(x -5 x2—5x) Hs(x2—5x)
) X —5 101
=lim———=lim===

x—>Ox(X _5)_x—>5)( 5
Example (25)

Evaluate
) 1
lim (— +—
x>2'X“4+5Xx +6 X +3Xx +2

Solution

We have

75



: 1
lim (— +—
Xx>2'X“+5X +6 X +3X +2
1
= lim[ + ]
x>2°(x +2)(x +3) (X +2)(x +1)
_ lim (X +D)+(x +3)
o2 (X +2)(X +2)(X +3)
2(Xx +2)
= lim
x>=2 (X +1)(Xx +2)(x +3)

) 2
= lim =2
x>2(x +1)(X +3)
Method of Rationalization
If the numerator or the denominator or both contain func-

tions of the type [/f (X) —g(x)] or
[\ff (x) - \/g (x )] and the direct method fails to give the
limit, we rationalize the given

function by multiplying and dividing by [/f (x) +g(x)]
or [\/f (x)+ \/g (x)], as the case may be. After simpli-

fication of the function, we evaluate the limit by the earlier
methods.

Example (26)

Evaluate

lim

X
=0 1+x —1
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Solution
Consider

im—%_ _im X »\/1+x +1
H0«/’1+x —1 *01+x -1 x/l+x +1

im XNV D e (X +1) = 2

x—>0 (1+X) -1 X =0
Example (27)

lim—__ X 3
X3 X —2 -4 —x
Solution
Consider
lim___ X 3
x93 x —2 —J4—X
im X —3 »\/x 2 +J4-X

o3 X —2 —Ja—x Jx—2+J4 X
(X - (WX -2 +J4-x)

alt (x =2)—-(4-x)

(X - (WX -2 +J4-x)

alt 2(x —3)

_) m(x/X —2-|2-°\/4—X)

X —3

=1

Example (28)
Evaluate

Ja+x —Ja—x
H‘)\/b +X —+/b —x
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Solution
im Ja+x —+Ja—x
>0 b +x —b —x

:Ixigg{(\/a+x —Ja-—x )x yartx tva—» }

Ja+XxX ++4a—x

. B~ ><\/b+x+\/b—x
Tllm’{(Jb+X vb X) Jb +x +\/b+x}

—Iim{ 2X . 2X }
0| Ja+x +4a-x  Jb+x ++b—x
2db b

2da Va
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Infinite Limits
So far we have considered the cases whereas X —a (a
finite number), f (x) — 1 , (a finite number).

But, it may happenthatas x —a , f (X) increases (or

decreases) endlessly. Symbolically, we express these
statements as follows:
limf (x)=o0, lImf (x) =00

x—at

X—a

Or
limf (x) =0, limf (x) =—oo

X —a

1
Consider the graph of f (x) = ry as shown in Figure

2.3. Note that it makes no sense to ask lim (why?),
X2 —2

but we think it is reasonable to write lim = —o0 and

x—>2" X — 2

lim
X2t X —2
this situation.

= 00. The following definition relates to
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Definition (Infinite Limits)
We say that limf (x)=oo ,if f (X) gets larger and

X—a

larger without bound, when X assumes values nearer and
nearer to "a". On other hand, we say that

limf (x)=—o0 ,if f (X) ispermitted to assume

X—a

smaller and smaller values endlessly, when X assumes
values nearer and nearer to "a".
Example (29)

Find
. 1 :
lim ——— and lim ———
x>2" (X —2) x>2" (X —2)
Solution
1
The graph of f (X)=-——— isshown in Figure 2.4.
(x —2)
sof :
[ I
25F 1
[ |
!
fx)= G2
Fig. 2.4

We think it is quite clear that
X—2" (X — 2)
And
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lim ————=®

X 2% (X —2)

Since both limits areco , we could also write
] 1
|Im—2 =00

X —>2 (X _2)

Example (30)

Find
) X +1
lim >
x-2"X“+5X +6

Solution
) X +1 ) X +1
lim > = lim

x>2"X°=BX +6 x-2" (X —2)(Xx —3)

As X —> 2" 'weseethat X +1—>3,x —3—>-1,and
X —2 — 0 . Thus, the numerator is approaching 3, but the
denominator is negative and approaching 0. We conclude
that

X +1
im =
x>2" (X —2)(x —3)

Asymptotes
Definition: An asymptote to a curve is defined as a straight
line, which has the property that the distance from a point
on the curve to the line tends to zero as the distance of this
point to the origin increases without bound. There are verti-
cal, horizontal asymptotes.
Vertical Asymptotes
The graph of the function y =f (X ) has a vertical asymp-
tote forx —a , if limf (x) =00 or limf (x)=—o0

X —a

X—a
(see Figure 3.3a and b). The equation of the vertical asymp-
tote has the formx =a . (In Figure 2.53, itisx =0 , and
in Figure 2.5b itisXx =a .)
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OA Y a

Y &

Fig. 2.5
Horizontal Asymptotes
The graph of the function y =f (X ) for x — oo or for

X — —oo , has a horizontal asymptote, if

limf (x)=b Or limf (x)=Db ,where b is a finite

X —>00 X —>—00

number. It may happen that either only one or none of these
limits is finite. Then, the graph has either one or no hori-
zontal asymptote. Of course, the graph of a function may
have two horizontal asymptotes. The equation of the hori-
zontal asymptote has the formy =a . (In Figure 2.6a, it is

y =b , and in Figure 2.6b the two asymptotes are y =+1
)
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v=fix)

=} v '
Y= - \/.\'3+ |

Y =
Il
|

0 T..

Fig. 2.6

Example (31)
Find the asymptotes to the curve

y = 1
X —3
Solution:
We have
) 1
lim ——=0
X >k X _3

Therefore, the curve has a horizontal asymptote at y =0
Further, we observe that

] 1
lim——=-w
x—=3" X —3
and
) 1
lim—=w
x—3" X —3

Hence, the curve has a vertical asymptote at X =3 (see
Figure 2.7).
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0

Fig. 2.7
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Limit at Infinity
The symbol for infinity is “co . In modern mathematics,
the symbol “oo ” is not a number, and not all algebraic op-
erations are defined for this symbol.
Often we shall have to study the behavior of functions of
X, as X becomes infinitely large, that is, when x is permitted
to assume larger and larger values exceeding any bound K,
no matter how big K is chosen.
For example, take

f(n)=

Then if n takes the values 1, 2, 3, .. ., 100, the class, or set,
consisting of the values off (n) , for various values of n

consisting of the fractions( 1, 1/2, 1/3, . .. 1/100).
We wish to discuss the behavior of this function for very

L
.

. : : 1
large values of n. It is immediately obvious that f (n) =—
n
becomes very small when n is very large.
. 1
Note: It is wrong to say that — =0 whenn =oo . Remem-
n
ber that oo is not a number, so it cannot be equated to any
1
number, howsoever large. Further, — can never be equat-
n
ed to zero, however big n is chosen. However, it makes

: 1
sense to say that the function f (n) =— tends to zero for
n

values of n that tend to infinity.
If we now consider the function
f (n)=n?,
it is clear that this function can be made as large as we

please by taking sufficiently large values of n. We may
therefore, say that the function
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f (n)=n®
tends to infinity when n tends to infinity.
Now, let us consider the function

f (n)=-n®
In this case, we say that f(n) tends to —oo when n tends to

oo . We would usually write these statements briefly as
given below:

N2 >0 as N —>ow

—n®-—>—-0w as N —w
Consider the function

f(x)=

We ask the question:
What happensto f (X ) as X gets larger and larger? In

symbols, we ask for the value limf (x)

X —00

We use the symbol X — oo as a shorthand way of saying
that X gets larger and larger without bound.

(When we writeX — oo , we are not implying that some-
where far, far to the right on the x-axis, there is a number
bigger than all other numbers to which x is approaching.
Rather, we use X — oo to say that x is permitted to assume
larger and larger values endlessly.)

In Table 2.4, we have listed values of f (X ) , for larger and

larger values of x, for several values of X .

X
1+x2
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X

s )= x°+1
10 0.099
100 0.010
1000 0.001
10,000 0.0001
\! \!
o0 0

Table 2.4

It appears that f (X ) gets smaller and smaller as x gets
larger and larger. Therefore, we

=0

lim —
x-o X “+1
Experimenting with large negative values of x, would again
lead us to write
lim ——=0
x—>-o X © +1
Definitions of Limits X — +o0
If f (X) gets closer and closer to the value | as X is

permitted to assume larger and larger values endless-
ly(without bound). In symbols, we write

limf (x) =1

X —00
Definitions of Limits X — —o0
If f (X) gets closer and closer to the value | as X is
permitted to assume larger and larger negative values end-
lessly(without bound). In symbols, we write

limf (x)=I

X —>—00
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Simpler and Powerful Rules for Finding Limits
X — Fo0

1. limx" =

X —00

2. limx" =00, (niseven)

X —>*to0

3. lim x" =—o0, (nisodd)

.1

4. lim —=0
X >0 ¥

5. 1fF f (x)=ax" +ax" +ax"?+..+a, ,then
limf (x)=a, lim x"

X —>+o0 X —Fo0

x"+ax"t+ax"?+..+a
It f(x)= X AT :

6. — — — , then
boX ™ +b X" +b,x" " +...+b,,
_ lim x "
limf (x)=—2>—
X >0 b, lim x
X —>t00
Example (31)
Find
.2
lim >
x—>—0] 4 X
Solution

Here we use a standard trick: dividing numerator and de-
nominator by the highest power of x that appears in the de-
nominator.
. o2x° . 2x° [ x° .2
lim > = lim s = lim ——=2
Xxo-o]4 X7 xomw][XT4+X7[/X7 xo-(0+1
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Exercise
Evaluate the following limits

(i) lim 2X 2 —4x +5
x> 3X % —X +7

(i) lim (2x =1)*(3x -1*
xoo(2x +1)%

(iii)lim(m—&)

X —0
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Chapter 3

Continuity of Real Functions
Introduction
We can introduce the concept of continuity proceeding from a graphic repre-
sentation of a function.
A function is continuous if its graph is unbroken, i.e., free from sudden
jumps or gaps.
Suppose a function is defined on an interval | . We say that the function is
continuous on the interval | , if its graph consists of one continuous curve,
so that it can be drawn without lifting the pencil. There is no break in any of
the graphs of continuous functions (Figure 3.1a-b).

Ay
F AY

=

folx) = x?

(a) (h)

Fig. 3.1
If the graph of a function is broken at any point "a" of an interval, we say
that the function is not continuous (or that it is discontinuous) at “a”.
The Natural Domain
If the domain of the given function is not specified, we take the domain as
the largest set of real numbers for which the rule of the function makes sense
and gives real-number values. This is called the natural domain of the func-
tion.
To understand the concept of continuity better, it is useful to study the fol-
lowing graphs of functions, which represent discontinuous functions.

The graph of the function f, (X ) appears in Figure 3.2a. It consist of all
points on the line Yy =2Xx + 3, except(2,5). The graph has a break at the
point (1, 5). Here f (X ) is not continuous at X =1 since “1” is not in the
domain of f (X ). We say that f,(x) is not defined at X =1 .We can
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Y =

0

Jix) =2x+3, 0% | Hx)= —L\ =0

Fig. 3.2 |
also say that f,(x)is continuous for all X , except forx =1 . It is also cor-
rect to say that f (X ) is discontinuous at X =1(or that it is discontinuous in
any interval containing “1”).

Now consider the functionf ,(Xx) = ,X #0. Its graph appears in the

X2

1
Figure 3.2b. Observe that asX — 0, — —> o , which means that f,(x)
X

1
does not exist at X =0 or that f,(X ) = — is not defined atx =0 .We say
X

that in any interval containing "0*", the function f (X )is discontinuous

at the pointx =0 .
Note
We say that a function f (X ) is not defined at X =a if either "a " is not in

the domainof f (X) or f (X) > asx —a.

We give below some more situations when a function may be discontinuous
“at a point", in the interval of its definition. The functions f (X ) is defined
for allX . Note that the point (1, 5) is torn out from the graph of f,(X) and
shifted to the location (1, 2). Here, the point (1, 5) of the graph jumps out
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from the height 5 to 2, creating a break in the graph at X =1 (Figures 3.3
and 3.4).

The graph of the function f,(X ), shows a break at the pointx =1 . Here, a

portion of the graph has a finite vertical jump at X =1 making the graph
discontinuous at X =1.

2
'/ ) 1 3
J_’,r+,‘ if x#1
)= 2 it ®=l
Fig.3.3

£ 34x ifx<l1
(x) =
t 3—x, ifx>1

Fig.3.4
Next, consider the graph of the function f (X ) (Fig. 3.5). The function

f5(x) isnot defined at X =0 but it is defined for all other values of x. We
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1 1
observe thatas X - 0", — —> o0 ,andas X >0, — — —o0. Thus,
X X

f<(x) is discontinuous at the point X =0.

AY
|
|

-

Fig. 3.5

From the above discussion (and the graphs), it is clear that the question of
continuity must be considered only for those points, which are in the domain
of the function. However, a point of discontinuity may or may not be in the
domain of the function.
Definition
Let a function “f (x) ” be defined in an intervall , and let “a > be any
pointinl . The function “f ” is said to be continuous at the point “a”, if and
only if the following three conditions are met:

(i) f (x) isdefinedatx =a

(ii) lin;f (x )exists

(i) limf (x)=f (@)
x —0
In fact, these three conditions of continuity “at a point™, are summed up in
the following short definition.
A function f(x) is said to be continuous at a pointx =a , if the limit of the
function asX —a , is equal to the value of the function forx =a , which
we express by the statement,

limf (x)=f (a) (*)
X —a
There is another way to express continuity of a function at a point “a”. In the
statement (*), if we replace X bya+h ,thenasx —a , we have h — 0.
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Thus, the statement
Lingf (@+h)=f (a)

defines continuity of the function “f ” at “a”.
Remark
I. f(x) is defined at X =a means, the value f(a) is a finite number.

I1. f(x) is not defined at X =a means, either the point (a,f (a)) is
missing from the graph (which also means that “a” is not in the do-
main of “f ) or f(a) is not finite [i.e., asx —a ,f (x) >+ ].

1. limf (x) exists means XIirgl_f (x) =Xlir£1+f (x) and both being fi-

X —a
nite
Note
It is important to remember that the value f(a) and Ixingf (x )are two differ-
-

ent concepts and hence even when both the numbers exist, they may be dif-
ferent. The concept of continuity of the function (at any pointx =a , in its
domain) is based on the existence and equality of these
two values, at “a”.
Definition [Discontinuity]
We can say that, a function defined on an interval | is discontinuous at a
point & € | , if at least one of the following
conditions occur at the point X =a.

I. The function f(x) is not defined atx =a ,

1. limf (x) does not exist [which  means that

X—a

limf (x)= limf (x) or at least one of the one-sided limits is infi-
x—a’

X—a
nite],
Hi.limf (x)=f (@) , in the arbitrary approach of X —a (which

X—a

means that the expressions on the right and the left both exist but they
are unequal).
One-Sided Continuity
In Chapter 2, the concept of limit of a function was extended to include one-
sided limits (and limits involving oo). The importance of one-sided limits
has since been seen in testing the continuity of a function at any point and in
identifying the type of discontinuity at that point.
Now, we extend the concept of limit to define the concept of one-sided con-
tinuity, which is useful in defining continuity in a closed interval.
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Example(1)
Consider the function f (X ) = JX . We know that the domain of the square
root function f (X) =X is [0,00) Therefore, the limf (x) does not

X —0
exist. As a consequence, under the definition of continuity, the square root
function f (x) = JX is not continuous at X =0 (Why?).
However, it has a right-hand limit at O . We express this fact by saying that

the square root function f (X ) = JX is continuous from the right of “0”.We

can give the following definitions of one-sided continuity.
Definition [Continuity from the Right]
A function f(x) is continuous from the right at a point “a” in its domain, if

limf (x)=f (a)

Definition [Continuity from the Left]
A function f(x) is continuous from the left at a point “a” in its domain, if

limf (x)=f (a)

X—a
In view of the above definitions a function whose domain is a singleton is
considered continuous at that point.
Continuity on An Interval
We say that a function is continuous on an open interval if it is continuous at
each point there. It must be clear that each point in the interval has to satisfy
all the three conditions of continuity at a point as stated in the definition (1).

When we consider a closed interval [a,b] we face a problem as we have

seen in the case of the square root functionf (x) = NG
We overcome this situation by agreeing as follows: we say that “f ™ is con-
tinuous on closed interval [a,b], if it is continuous at each point of (a,b)

and if the following limits exist:
Iimf (x)=f (@) and ILT-f (x)=f (b)

Example (2)
Given

X
f(x)=——.
() =>"—
Test the continuity of the function in the intervals (1, 2), [1, 2], and (1, 3).
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Solution
Note that, f(x) is not defined for X =2 . Accordingly, f(x) is continuous
In any interval which does not contain 2. Thus, “f ” is continuous on (1, 2),
but it is discontinuous on [1, 2] and on (1, 3).
Some Theorems on Continuity (Without Proof)
l. If f (x) and g(x) are two functions continuous at the number “a”,

f(x)
g(x)

then f (x)£g(x), f (x).g(x) are continuous at “a” and is
continuous at “a”, provided thatg (a) = 0.

I1. Continuity of a Composite Function: If the function g (X ) is continu-
ous at “a” and the function f (X) is continuous atg(a), then the
composite function (f o g)(X) is continuous at “a”.

Continuity of Some Elementary Functions
It can be shown that
I. A constant function is continuous for all x.

1. A polynomial function f (x)=ax" +ax "™ +...+a_ is continuous
for all values of x on (—o0,0) .

1. x", n >0 is continuous for all values of x.
IV. A rational function is continuous at every point in its domain.

1 . :
V. —,n> 0 is continuous for all values of x, exceptX =0 .
X

VI. Trigonometric functions: f (x)=sinx and g(x)=cosx are con-
tinuous on (—o0,00) . Other trigonometric functions (i.e., tan x, cot X,

sec X, cosec x) are continuous for all values of x for which they are de-

fined.
VII. Inverse trigonometric functions are continuous for all values of x for

which they are defined.
VIII.The exponential function: ff (X )=a" is continuous on(—o0,0). (In

particular, f (X)=e”™ is continuous for all x.)
IX. The logarithmic function:f (x)=1log,Xx , (@>0) is continuous o
(0,00).
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Example (3)
Discus the continuity of the function

f (x):m at X =0.
X

Solution
The arrows at the ends of the rectilinear portions of the graph mean that for
X =0, the function is not defined but for the values of x less than zero the
value of the function is “—1 >, and for the values of x exceeding zero, it is
equal to “1”. Hence, the function has no limit asx = 0. Thus, the function
f (x) discontinuous at X =0.
Example (4)
The greatest integer function of X denoted by f (X ) =[x ] is defined as:
[X ] = the greatest integer less than or equal to X . Thus, for all numbers X

less than 2 but near 2, [X ] =1, and for all numbers greater than 2 but near 2,

[x]=2.
The graph of [X Jtakes a jump at each integer as clear from the graph (Fig.
3.6).

Now, for any integer number K , we have
lim[x]=k =1, butwhen lim[x]=k.

x —k~ x—k*

Thus, Iinl'(l[x] does not exist. Thus, [ ] is not continuous for any integer
X —>

X.
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Example (5)
Find any points of discontinuity for the function f (X ) given by
X' =3x*+2x -1

P ="

Solution
The denominator is zero when X =+2 . Hence “f (X )” is not defined at

+2 and accordingly it is discontinuous at these points. Otherwise, the func-
tion is “well behaved”. In fact, any rational function (i.e., any quotient of
polynomials) is discontinuous at points where the denominator becomes 0,
but it is continuous at all other points.
Example (6)
Check whether the function

2 11

f(x)=
() V% 42

is continuous atx =0.
Solution
Note that the function f (X ) is not defined at X =0 . To check whether this

function is continuous at X =0 , we compute its one-sided limits.

As X >0, 1—>—oo,sothat 2" 0.
X
1/x
limf (x)=lim 22 _0+1 1

K0 x>0 22 41 042 2

1
However, as X — 0", — — o0, so that 2 — 0.
X

Ux 1/x =1/x
Slimf (x) = lim 22 = jim 2 4¥22 )
X —>0" x>0t 29 411 x>0t 2 X(l-|—2 X)
. 14227 140
= lim = =1

00 14279140
Therefore, the f (X ) is discontinuous at X =0 .
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Example (7)
Prove that the function defined by
.1 .
xsin—, ifx #0
f(x)= X
0, ifx =0
is continuous at X =0.
Solution

We shall compute the left-hand limit and right-hand limit of this function, at
X =0.

limf (x)= Iimxsinlz(lim x)(Iimsinl):O

x—0" x—0" X x—0" x—0" X

limf (x)=limx sinlz(lim x)(lim sinl) =0
x —0" X x —0" x—0" X

x —0*

.1
(Since SIn— is a bounded function, which lies between —1 and 1.)

X
As limf (x)=1limf (x)=f (0), f (x) is continuous atx =0 .
x—0~ x —0"
Example (8)
1.
sin—,ifx #0
f(x)= X

0, ifx =0
Test the continuity of f(x) atx =0.
Solution

.1
Note that f(x) is defined for all X . Ilrrgsm— does not exist. [Indeed, the
X—> X

.1 ) : : .
limsin— oscillates between —1 and 1]. Hence, the given function f(x) is

X —0 X
not continuous at X =0 .
Note

.1
The function sin— is defined for all values of X except forx =0 . It does
X

not approach either a finite limit or infinity asXx — O . The graph of this
function is shown below (Fig. 3.7).
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]
Fig. 3.7
Example (9)
xzsinl, if x 20
f(x)= X
0, if x =0
Test the continuity of f (x) atx =0.
Solution
Note that f (X )is defined for all X . We have
. f(0)=0
1. limf (x)=|imxzsin£=0
x—0 x—0 X
III.Iirrgf (x)=f (0)=0

Thus, f (x) is continuous at X =0.

Example (10)
Test the continuity/discontinuity of the following function atx =0 .

e
F(x)= et ifx =0
0, ifx =0
Solution
Observe that,
. £(0)=0
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el 0

1. limf (x)=Ilim =0 and
X0 0 L1e? 140
1/x 1/x
limf (x)=lim = lim
x —0* ( ) x—>0+:|_-|-e]'/X x—>0+ellx (e—]Jx+1)
1 1

= lim —;
H0+(e X+1) 0+1

Thus, IIrrgf (x ) does not exist. We conclude that f(x) is discontinuous at
X —>

X =0.
Example (11)

sin 2x y
f(x)=< x
1 X =0

#0

Is f (x) continuous at X =0 ?

Solution

Note that the function is defined for all x. To find whether f(x) is continuous
at X =0 or not, we check the left-hand and the right-hand limits atX =0.

L f(0)=1

0 timf (x) = lim 32X 5 4ng limf (x) = lim sin2x _ .
x—0" x=>00 X x-0" X
Thus, IIrrgf (x)=2

limf (x)#f (0)

We conclude that f(x) is discontinuous at X =0.
Example (12)
Let
sm X

f(x)=
Define a function g (X) which is contlnuous, and g(x)=f (x) forall
X #0.
Solution

sin X
We have limf (x)=lim——=1

X —0 x —0 X
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Let
sinx
g(x)=17 x
1
Then, g(x) is continuous at “0”. Since Iirrg g (x)=g(0) =1. Furthermore,

X =0

g(x)=f (x) forallx =0, as was desired.
Note

SINX
The graph (Fig. 3.8)of the function

Is given below. It gives a feel of

how it becomes continuous when we redefine itat X =0 as 1.

AY

Fig. 3.8
Example (13)
Discuss the continuity of the function

X 2
: (& -1 X 20
f (x)=<sinx In(1+x)
2In3, x =0
Solution:
Given f (0)=2In3
X _ 1)2
limf (x)=lim— (3 -1)
X0 x-0sinx In(1+x)

(3X _1j2
~ X RUE 2
—0sink n@+x) | 11 =(In3)
X X
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Thus, we have Iirrgf (x) =Tt (0). Hence, f (x) is discontinuous at
X —>

X =0.
Example (14)
Find the value of K , if
1—coskx
f (x)=< xsinx
2, X =0

X %0

IS continuous.
Solution
Since f (X ) is continuous atX =0 ,

limf (x)=f (0) =2

Hence our problem reduces to computing the limit of f(x) asx — 0.
Consider,

. 5 kX
: . 1-coskx . 2sin
limf (x)=liMm—— =lim——=
X —0 x=0 X SINX X —0 XZSIHX
X
., kX
2
_Ilm 28|n - k2 21_ k2
_x—>0(kX)2 4 sinx 4 1 - 2
27 k?* x
Thus,
2
7:2:k =i2
Example (15)
(SX —ZX).X
If f(x)= c 3 , for X #0, is continuous atX =0, find
COSOX —COSoX
f (0).
Solution

It is given that f (X ) is continuous atX =0 . Therefore, by definition, we
have,
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limf (x)=f (0)

Thus, our problem is reduced to computing the Iirrgf (x) .
X —>

Now,
_ _ (5X -2 ).x
limf (x)=1lim
x—0 x—0 COS5X — C0S3X
5¢-2")x —
=lim ( . ) (since cosA—cosB :—ZsinA +B sinA B
x—>0 —28IN4X .sIN X 2 2
5 -1 2" -1
. X X IN5—-1In2 1.5
=lim-~— ——~ = =——In—
X -0 _8sm4x sinXx -8 8
AX X
Example (16)
The function f (X)) is defined by
e TITX v x0
fx)=4 *
1
—, x =0
(2
is continuous atX =0 . What is Iirrgf (x)?

Solution
If the problem is read carefully, it must be clear that we do not have to com-

pute Iirr(}f (x)]. Since, f (x) is continuous at X =0 ,

i 1
IXILTgf (x)=f (0) :E
Example (17)
Discus the continuity of the function
f(x)= % atx =2

Solution
Since f (X) is not defined at X =2 . Hence, f (X ) is discontinuous at 2.
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Again, IirrZ]f (x ) does not exist (see Fig. 3.9) (Why?).
X—

.V
I

’ﬂn:x—°

Fig. 3.9

Fig. 3.10

Example (18)
Discus the continuity of the function

1
——, X #2
f(X)=4x -2
3, X =2
at X =2
Solution
Here , the graph of f (X ) has a break at 2 (see Fig.3.10 ).We check

the conditions of f (X ), at X =2 . Observe that
. f(2)=3
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I lim —— = —oo.and  lim

=00, Thus, lim does not
o2 X 2 o2 X 2 12X —2
exist.
Obviously, f (x) is discontinuous atx = 2.
Example (19)
Discus the continuity of the function
x -3, x #3
f(x)=
2, X =3
Solution
We check the three conditions of continuity atX =3
. T (3)=2
1. limf (x)=1lim(B3—-x)=0,and limf (x)=lim(x —3)=0.
X —3~ X —3" x —3" x —3"
Thus, lim|x —3| exists and equals O (see Fig. 3.11).

X —0

nlimf (x) #f (3)

Thus, f (X ) is discontinuous at 3.

Fig. 3.11

Example (20)
Discus the continuity of the function

2
F(x) = X“+2, x>1
bx -1, x <1

Solution

The functions having values X > +2 and 5x —1are polynomials and are
therefore continuous everywhere. Thus, the only number at which continuity
Is questionable is 1. We check the three conditions for continuity at “1”.
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. £ (Q)=4.Thus, f (1) exists.
. limf (x)—Ilm(x +2) =3 and Ilmf (x)—llm(5x -1)=4

X -1

Thus, limf (x) = limf (x). Therefore, Iquf (X) does not exist,
X —1" x —1* X =

and so “f (x) ”is discontinuous atX =1.

Example (21)
Discus the continuity of the function

{x +6, X >3
f(x)=

X, X <3
Solution
We observe that,
l. f(3)—9
Cdimf (x)=limx?=9, and Ilmf x)= I|m(x +3)=9,
X —3 X—3

Thus, Ier;f (x)=f () and f (x) is contlnuous at X =3

Example (22)
Discus the continuity of the function

X+2, X>2
f(X){
X 2, X <2

Solution
Since “f (x) > is not defined atx = 2 , it is discontinuous there. (It is con-

tinuous for all other x.). Note that
limf (x)= I|m(x )=4 and I|mf (x)= I|m(x +2)=4

X—2"
Thus limf (x) =4 exists.

X—2

Example (23)
Discus the continuity of the function

2
<
f(x)={x . X <1
X, x>1

Solution
Note that
. f()=1
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I limf (x) = lim(x2) =1 and limf (x) = lim(x ) =1. Thus
X =1~ X =1 x =1t x -1

limf (x) =1 exists (see Fig. 3.12).

X —1

i limf (<) =f @) =1

Fig. 3.12
Example (24)
Discus the continuity of the function

f(x)=

X2

1+x 2

Solution
Here again “f (x ) is a rational function, but its denominator (1+ X * ) is
never 0. Thus, “f (x)” is defined for all x and therefore “f ” is continuous

for every real value of x.

Example (25)

Show that the function f (X ) =5 is continuous for every value of X .
Solution

We must verify that the conditions for continuity at arbitrary point X =a
are satisfied.

. f (@)=5
I limf (x)=5and limf (x)=5.Thus, limf (x)=5

i limf (x) =f (a)

Therefore, f (X ) is continuous atx =a.
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Example (26)

Let
-1, x <0
f (x)=sgnx =<0, x =0
1, x>0

Discus the continuity of f (X).

Solution

The function f(x) is called signum function (or sign function) denoted by
sgnx and read “signumof x > (Figure 3.13). (It gives the sign of X .)
Note that the function sgn X is defined for all X .

AV

3 S
I

Fig. 3.13
Because
sgnx =-1, Ifx <0,sgnx =0, Ifx =0and sgn x =1, If x >0,
we have
limsgnx = lim (-1) =-1, Iinolsgnx = Iirg(l)zl

x—0" x—0"

Thus, the left-hand limit and the right-hand limit are not equal, which means
that limsgnx does not exist. Accordingly, f(x) is discontinuous atX =0.

x—0
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Chapter 4

Differentiation of Real Functions
Let y =f (X) be a given function defined in an open interval (a, b). Let
the points X and (X + AX ) both belong to the domain of function f (X )

where AX is an arbitrary nonzero number. From the function f(x), we form
a new function

Af (X +Ax)—f (X
sx) = AT+ A0 -1 ()
AX AX
The limit of this ratio, asAX — 0 , may or may not exist. If
Iimf (X +Ax)—f (x)

Ax—0 AX
exists, then we call it the derivative of f (X ) with respect to X . It is de-
dy df
noted by f '(X) or y_a
dx dx

Derivative of a Function at a Particular Point

The derivative of a function y =f (X ) at a particular point X =X, in the
domain of f (X ) is given by the limit

- f (x,+Ax)—f (x,)

li
AXx —0 AX

if this limit exists. It is denoted by f '(X,).
If we replace (X, + AX ) by X , and accordingly AX =X —X, , then the de-
rivative of f (X) at x, is given by
. F(x)—1f (x
f I(Xl): ||m ( ) ( 1)

X —Xq X —X,

if this limit exists.

In all cases, the number X, at which f ’ is evaluated is held fixed during
the limit operation. Here, X is the variable and X, is regarded as a constant.
Note

Observe that if f '(X,) exists, then the letter X in (C) can be replaced by
any other letter. For example, we can write
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f /(a) = lim =T @) (*)
b2 t-a

Example (1)
Let
2

X
f (x)=—+1.
(x) 1

Find f (1) and f '(3)
Solution
Using (*), we obtain

5
214)+1-%
(x“14)+ 2

f'(=1) = lim
( ) X —>—1 X_(_]_)
x* 1
— 1/4)(x?-1
i 44 _ i ¢ (x*-1)
x>-1 x +1  x-o-1 X +1
1/ 2
—(x°-1
_lim 4( ): lim 1/ 4)(x +D(x -1
x>-1 X +1 x—>-1 X +1
. 1
= lim@/4)(x ~1) ==
(x2/4)+1-13
f'(3) =lim 4
X —3 X —3
2 _ 1/4)(x?* -9
@ AxT-9era )(x*-9)
X —3 X —3 X —3 X —3
1/4)(x2-1 _
i € )( ):"m(l/4)(x £3)(x —3)
X —3 X —3 X —3 X —3

. 1
= lim(@/ 4)(x +3) =~
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Next, we give the following formal definitions.

Differentiability of Functions
I. Functions differentiable at a point

If a function has a derivative at X, of its domain, then it is said to be

differentiable atX, .
Il. Functions differentiable in an open interval
A function is differentiable in an open interval (a,b) if it is differen-

tiable at every number in the open interval.

I11.Functions differentiable in a closed interval
If f(X) is defined in a closed interval [a, b], then the definitions of the
derivatives at the end points are modified so that the point ( X + AX)

lies in the interval [a,b ] Hence, we define the one side derivative at
the end points as follows:
The right-hand derivative
. f(x)-f (a
f/(@)=Ilim -7 @
x—a* X —a
The left-hand derivative
. fFx)-f @
f'(b)=Ilim (x) (b)
X —a" X —=b

IVV. Differentiable Function
If a function is differentiable at every number in its domain, it is
called a differentiable function.

Note

The above definition appears to be quite simple, but certain situations might
create confusion. Hence, to get a clear idea of a differentiable function, it is
useful to consider the following example:

Example (2)

Check the differentiability of the function f (X )= JX atx =0

Solution
The right-hand derivative

f 10) = lim T ) =F @ _ o VX -0

X —0" X —0 x=0" X —0

lim L
= — =00
x —0" */X

The left-hand derivative
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£ 10) = tim L= @ _ i ¥x =0

X —0" X —0 x>0~ X —0

= lim —= doesnotexist
X —0" 4/

Here, the domain of f (X ) is [0,00) but f '(x) does not existatx =0 .
Thus, T (X) is not differentiable at “O », which is in the domain of f (x).
Therefore, we will say that f (X ) is not a differentiable function.

However, if we define the function f (X ) = JX in the open interval (0,00),
then it becomes a differentiable function.
In view of the above, we agree to say that if the domain of f '(x ) is the

same as that of (X ) , then f (X ) is a differentiable function.

Nearly every function we will encounter is differentiable at all numbers or

all but finitely many numbers in its domain.

Note

To obtain the derivative of a function, by using the definition of the deriva-
tive, is known as the method of finding the derivative from the first princi-

ple.
Notation for Derivative

We know that differentiation of y =f (X ) by the first principle involves
two steps:
f (x +Ax)—f (x)

AX

. (X +Ax)—f (X
II. Second, the evaluation of the limit AIlmo ( A ) ( )
X —> X

(X +Ax)—f (X
L1, If the limit, lim ( )T ()
AX —0 AX
, d : o :
the symbol f '(x) or d—y and call it the derivative of the function
X
f(x).
Note
We can look at the process of differentiation as an operation. The operation
of obtainingf '(x) , fromf (X ) , is called differentiation of f (X ) . The

I. First, the formation of the difference quotient

exists, then we denote it by
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d . : : : : :
symbol e Is assigned for this operation. We call it the operator of differ-
X
entiation.

: .. d
The Operator of Differentiation d_
X

: . : d
In view of the above discussion, we can say that the symbol d_ stands for
X

the operation of computing the derivative of a given function by the first

. d :
principle. In other words, we agree to say that d_ constructs from the dif-
X

f (X +Ax)—f (x)
AX

(treating the difference quotient as a function of variable AX )
Note

ference quotient , and determines its limitas AX —0

. d . . : .
The notation d_ should be interpreted as a single entity and not as a ratio.
X

(It reads “d over dx™). It is also used in a formula to stand

d
for the phrase “the derivative of ”. Thus, the symbol d_ Is used to define
X

the derivatives of combinations of functions.

Derivatives of Simple Algebraic Functions

Now, we proceed to evaluate the derivatives of some simple algebraic func-
tions by definition.

Example (3)

Let y =f (X)=x", n eN. Then, we have

oy dy df (x) (X +AX)-f (X)
1:(X)_dx -~ dx _AIXITO AX
_Iim (X +Ax) —x o
Ax —0 AX

Example (4)
Lety =f (X)=Xx“, & €R . Then, we have
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oy dy df (x) o f (X +AX)-f (X)
f(x)_dx_ dx _AIXITO AX
i X)X
Ax—0 AX

Remark

o (x +AXx ) —x“°
To obtain, the limit lim ( )

, by making use of binomial
Ax —0 AX

(X +Ax )" —x“
as follows:

theorem , we can expand the amount

AX
X +AX ) =x% x“(1+Ax Ix) —=x* |
( ) = ( ) (smceA—X<1)
AX AX X
2 3
“ l+gAX+a(a—l) AX +05(05—1)(05—2) AX oy
1 x 2! X 3! X
N AX
a-1 . a-2 . . a-3
ax (AX)+a(a 1)x (Ax)z+a(a D(a —2)x (AX)3+...
_ 2! 3!
AX
a-1 . a-2 . . a-3
_ax Jr05(05 1)x (AX)+05(05 D(ax —2)x (AX)2+...
1! 2! 3!
So, we have
X +AX ) —=x*
lim ( )
AXx —0 AX
a-1 . a-2 . . a-3
:"m(ax +05(05 1)x (AX)+a(a D(a —2)x (AX)2+...]
ax—ol 1]l 2! 3!
— aX a-1
Note

Later, where the method of logarithmic differentiation is discussed, we shall
show prove the above formula by using logarithmic differentiation .
Example (5)

Find the derivative of Yy :\fx_
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Solution

dx dx dx 2
1o 1
2 2%

Now, Let Us Consider the Derivative of a Constant, y =f (x)=C.
d_y_“mf (X +Ax)—f (x)

dx x-0 AX
~lim&—=% ¢
x—=0  AX
Example (6)
Find the derivative of
f (X)=+3Xx +7
Solution
f ,(X):“mf (x +h)—f (x)
h—0 h

- Iim\/g(x +h)+7-3x +7
B h—0 h
By rationalizing the numerator, we get

f '(X)=Iim\/3(x +h)+7 -3 +7 J3(x +h)+7 +3x +7

h—>0 h 3 )+ 7 +/3x +7
. 3(x+h)+7-(3x +7)
=lim
=0 f3(X +h)+7 +/3x +7
. 3h
=lim
=0 f3(X +h)+7 ++/3x +7
: 3
=lim
*HO\/B(X +h)+7 +3x +7
3

2 3x +7
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Example (7)
1
Find the derivative of f (X)=—.

X
f(x+h)—f (x)
h

Solution

f'(x)=Ilim

h—0

=lim

1/ (x +h)=1//x
h—0 h

By rationalizing the numerator, we get

, X +h =1/x 170X +h +1/Jx
f'(x)=1Ilim :
h—>0 h /X +h +1/x

1/(x +h)-1/x

=lim
H’h(l/«/x +h +1/Jx_)
X —X —h
_lim X (x +h)
H’h(l/«/x +h +1/Jx_)
-1
. X(x +h)
=lim
“O(llx/x +h +1/Jx_)
-1 1 1

X220 2

Rules of Differentiation of Functions

d
We find the result of applying the operator d_ to certain combinations of
X

differentiable functions, namely, sums, products, and ratios. (It turns
out that the rules for differentiating such combinations of functions are easi-
ly established in terms of the derivatives of the constituent functions).

I. Derivative of a sum (or difference) of functions

Let f,(x) and f,(X) be differentiable functions of X , with the
same domain, then
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dx [f,()+f,(x)]= d o (x)+ —,(0)

This rule can be extended to the derlvatlve of the sum (or difference)
of any finite number of differentiable functions, with the same do-
main. Thus,

;_X[fl(x)ifz(x)i---ifn(x)]

d d d
=—Ff (X)) x—Ff. (xX)xt...£—F (X
dxl()dxz() OIXn()

The Constant Rule for Derivatives
If k isanyconstant, f (X) is any differentiable function, then

d d
ok f 0] =k - ()

The derivative of product of two functions
Let f,(x) and f,(X) be differentiable functions of X , then

d—x[fl(x).fz(x)] f(x) )+, (X) F(x)

This rule can be extended to the product of more than two functions
(and in general for a product of finite number of differentiable func-
tions). Thus,

[f (x)f,(x)f,(x)]= [(f (x)f,(x)) ()]

=(f,(x)f, (X)) Fa(x)+T, (X) (fl(X)-fz(X))

=(f,(x)f, (X)) f(x)+f, (X)|:f (X) f ,(X)+f, (x) f(x)}

V. The derlvatlve of quotient of two functlons

Let f,(x) and f,(X) be differentiable functions of X, then

q (fl(x)j f (X) L Fa(x)= f(X) L T2()
fa(x) [f,00)]
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Example (8)

IX +1+x -1 dy
, find —

IX +1-+/x -1 dx

If y=

Solution

VX HLEX =L X L EX -1
T VO R S Y
C(x+D)+(x 1)+ 2Vx +1Vx -1
- (x +1)—(x -1)
=X +4X +1Jx -1
Jdy \/ﬁ Jx -1
Tox F 2% +1

X

|

=1+

Example (9)

Jad¥
N

Solution

o (Hf ) ( 2 e+
dx [ \/5 _ \/x_ ]
Ak e
- 2 2
[Va—x | x[Va—x ]
The Derivative of a Composite Function
We have already introduced the concept of composite functions in Chapter

1. Many of the functions we encounter in mathematics and in applications
are composite functions. Consider the following examples:

Ify =

_ 3 10 . 3 3 . .
.y —(X +1) is a function of X°+1,and X~ +1 isa function of
X .
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10
So, Yy = (X 3 +1) can be considered as a composition of two func-

tions as follows
y =u" u=x>+1=(y ou)(x)

:y(u(x)):y(x3+1):(x3+1)10
1.y =3/x*+1 isafunctionof x* +1,and x * +1 is a function of

X . S0, y =3/x*+1can be considered as a composition of two
functions as follows

y =3, u =X*+1=(y ou)(x)
Sy ) =y xf+D) =P 11

X 10 X 10 X 10
1. y :7(E+lj is a function of (E+lj : (E+lj is a func-

tion of £+1, and XE+1 is a function of X .

10
Thus, Y :()(3 +1)10 Y =3xt+1y = Y'I(XE_H) and so on are ex-

amples of composite functions of X . If we could discover a general rule for
the derivative of a composite function in terms of the component functions,
then we would be able to find its derivative without resorting to the defini-
tion of the derivative.

To find the derivative of a composite function, we apply the chain rule,
which is one of the important computational theorems in calculus. It as-
sumes a very suggestive form in the Leibniz notation .

The Chain Rule

If y =f (U) is a differentiable function of u and U =g (x) is a differen-

tiable functions of X , such that the composite function

y =(f og)(x)=f (g(x)) is defined, then g—y is given by
X
dy dy du
dx du dx
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d
If y isafunction of u , definedby y =f (U) and & exists, and if U is

du
a function of X defined by u =g (X ) and j—u exists, then y
X
dy dy du *)
dx du dx

Note
Here, it is important to note that in the product of derivatives on RHS, there

: . d d
are two separate operators of differentiation, namely, d_ andd—. Hence,
u X

dy . : . .

d—y is not obtained by canceling du from the numerator and the denomina-
X

tor.

Extension of Chain Rule (i.e. The Compound Chain Rule)

In general, if y =f (t), t=g(),and u=h(x), where :j—)t/, g—t and
u

du d
— exist, then y isa function of X and & exists, given by
dx dx
dy dy dt du
dx dt du dx
Thus, the derivative of Yy is obtained in a chain-like fashion. In practice, it
is convenient to identify the functions t, U , and so on at different stages of

differentiation.
Remark
In formula (*), y is represented in two different ways: once as a function of

. . dy . .
X and once as a function of U . The expression & is the derivative of y ,

dx

dy

when Y is regarded as a function of X . In the same way, au Is the deriva-
u

tive of y , when Yy is regarded as a function of u . Formula (*) is especially
useful when y is not given explicitly in terms of X , but is given in terms
of an intermediate variable .
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Example (10)

If y =,/X_2,ﬁnd dy
X +2 dx

Solution
Letu =>_= —y=U.
X +1
Then,
dy 1 du_ 4
du 2Ju dx (x +2)2
dy dydu 1 4
— — : ;
dx du dx 5 X =1 (x +1)
X +1

Example (11)
Iy =(x*+3), find dy

dx
Solution
Letu=x°+3 =y =u’.
Then,

d—y=5u4, d—u:3x2
du dx

dy _dy du :5(X3+3)4-3X2215X2(X3+3)4

dx du dx
Derivatives of Trigonometric Functions
By using the basic trigonometric limits and applying the definition of the de-
rivative, we can compute the derivatives of all basic trigonometric functions.
The Derivatives of SinX and cosx (From the First Principle)
To find the derivative of f (X)=sinx , using the definition of the deriva-

tive. We have,

F/(x) = Iimf (X +Ax)—1f (x)
AXx —0 AX
provided the limit on the RHS exists.
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d . . sin(X +AXx )—sinx
—(sinx )= lim ( )
dx AX —0 AX
_ lim SiNX COSAX +COSX SiNAX —Sinx
_Ax—>0 AX

("~ sin(x +y)=sinx cosy +cosx siny )

sin x (cosAx —1)+sin AX COSX

d—(sinx): lim

dx AX —0 AX
_sinx (cosAx —1 ) In AX . (cosAx -1
= |lim ( )+cosx lim > .+ lim ( )=O}
Ax—0 AX Ax—0  AX Ax—0 AX

=04+ C0OSX =C0SX

Similarly we can find the derivative of f (X)=C0SX , using the defini-
tion of the derivative. We have,
(X +AX)—f (X
AX —0 AX
provided the limit on the RHS exists.

d _ Cos(X + AX ) —COSX
—(cosx ) = lim cos
dx Ax—0 AX
_ i SOSX COSAX —SinX sin AX —CosX
_Ax—>0 AX

("~ cos(x +y)=cosx cosy —sinxsiny )

d—(cosx): jim COSX (cosAx —1)—sinx sin Ax

dX AX =0 AX
. CcosX (cosAx -1 ) ] i . COSAX —1
= |lim ( )—smx lim Sin AX .+ lim ( ):O}
AX —0 AX AX —0 AX AX —0 AX

=0-sinXx =-sinXx.
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Theorem
If f (x) is adifferentiable function of X ,

:—X[sin(f (x))]:cos[f (x)]-;—xf (x) [bychainrule]
=f '(x)[ cos(f (x))]

;—X[cos(f (x)) |=-sin[f (x)]-;—xf (x) [oychainrule]
=—f '(x)[sin(f (x))]

The Derivative of tanx
d oy 9 (sinx j_(cosx)(cosx)—(—sinx)(sinx)

dx dx \ cosx cos® X
COS’ X +5Sin° X 1 ,
= _ =———=sec’X
cos? X cos? X

The Derivative of cOtX

d d (cosxj (—sinx )(sinx ) —(cosx )(cosx )
—Ccotx = _ = :
dx dx \ sinx sin®x

cos® X +sin’x 1 ,
=— — = ———— =—C0Sec” X
SIn“ X SIn“ X
The Derivative of secXx

A oy = [ 1 j_o.(cosx)—(—sinx).l

dx dx \ cosx cos? X

sinx 1 sinx
= — = =secx tanx
COS“X  COSX COSX

The Derivative of cosecXx

d d 1 0.(sinx )—(cosx ).1
—COSEeCX =—| —— | = —

dx X \ sinX sin” x

COS X 1 cosx
=—— = - = —C0Secx cotx
sSin“ x sinx sinx
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Theorem
If f (x) is adifferentiable function of X ,

;—X[tan(f (x)) |=sec?[f (x)]-%f (x) [bychainrule]

=1 '(x)[ sec’(f (x))]
éi—[cot(f(x))]::—cosecz[f(x)]-é%—f(x) [by chain rule]

=—f '(x)[ cosec? (f (x)) |
:_X[Sec(f (X))]:sec[f (x)]-tan[f (x)]-%f (x) [bychainrule]

=f '(x)[ sec(f (x))-tan(f (x))]
a cosec(f (x)) |=—cosec|f (x)|-cot|f O()-ji—f(x) [bychainrule]
o Lcosee( 60))]=—coseelf (0)]-cotf ()] o

=—f '(x)[ cosec(f (x))-cot(f (x))]

Example (12)
Differentiate

y :(x3 +5X 2)sinx .
Solution

d—y:(x3+5x2).d—sinx +sinx.d—(x3+5x2)
dx dx dx
:(x3+5x2).cosx +s.inx.(3x2 +10x)

Example (13)

1-sinx

£y = [F2SNX g
1+sinXx dx

Solution
1-sinx

Letu = - , then y :\/u_and
1+sinx

dy dy du
dx du dx
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dy 1
du 2vu’
du (—cosx )(1+sinx )—(cosx )(1-sinx )
dx (1+sinx )’
—2C0SX
(1+sinx )’

.dy 1 | —2cosx
Cdx o 2Ju | (1+sinx )’

_ /1+sinx COS X
1-sinx | (1+sinx )’

Example (14)

tanx +secx d
Ify = find -

tanx —secx dx
Solution:

dy (sec’x +secx tanx )(tanx —secx )

dx (tanx —secx )’

(SeCZX —Secx tanx )(tanx +SeCcX )

(tanx —secx )2

_ 2secx tan®x —2sec’ X

(tanx —secx )’

_ 2secx (tanx +secx )
B (tanx —secx )
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Derivative of Exponential Function
To find the derivative of the exponential function y =f (x)=a", we use
the principal definition

d_y:f ) = lim f (x +Ax)—f (x)
dx Ax =0 AX
a.x+Ax _ax axan _ax
=lim—=Ilm—
AX —0 AX AX —>0 AX
. a.x (an _1) . aAX _1
= lim =a" lim
Ax =0 AX AX =0 AX
=a“Ina
So, we have
d
—a* =a"Ina
dx
Also, we have

d
—e* =e" Ine =¢”
dx

Derivatives of Logarithmic Function

To find the derivative of the natural logarithmic function y =f (X ) =1Inx,
we use the principal definition
d . f(x+Ax)-f (X
=1 (x)= fim (x +4x) -1 )
X

Ax —0 AX

1/Ax
_ lim iln(u A—Xj _ limIn| 1+ A—Xj
Ax—0 AX X Ax —0 X

x/ax VX B X | AX
I |imK1+A—Xj } —In Iim(1+A—Xj }
AX =0 X AX =0 X

— Ine¥ _1
X
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So, we have

—Inx =—
X X
Also, we have
d (nxj
—log, X =—| —
X X \Ina
1 d 1 1
=——Inx =—.=—
Ina dx Ina x

Example (15)

SinX —cosX ) —COSX +SinX

X3 +7X —5):3x2+7

X

5

1
(ax —tanx +Inx):aX Ina—sec’x +—
(x +e” —secx ):5x“+eX —secx tanx

o o o o
><|Q_><|Q_><|Q_ |o_
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Exercise

Find the derivative of
the following functions
with respect to X

Answer

log,, X

e’ (sinx —cosx )
sin® x

a* n
— Ina——
X X

(cosx —x sinx )Inx —cosx

2
(Inx)
COSX +X sinx Inx
X COS X

Example (16)
Differentiate
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Solution

dy d d
< =3 —log.x +log. x —3*
dx dx Js Js dx
11
=3 —=|+1log.x (3 In3
(In5 X )Jr Js ( )

Example (17)
Differentiate with respect to X , the function

y =log, a
Solution
We have,
Ina
y = Iogx a=—-
In x
d_y:| d_i:| a -1/
dx dx Inx [|nx]
~ —Ina
X [Inx]2
Exercise Answer
(1) Differentiate x Inx 1+Inx
(2) If 'y =(x*+2x)3", find g_y atx =2 36(1+2In3)
X
(3) Ify:6xtanx,findd—yatx:0 0

dx

Theorem
If f (X) is a differentiable function of X ,

d f (x) f (x) d .

—la =a -Ina-—f (x) [bychainrule

"] —f (x) Dby ]
=a' % .Ina-f '(x)
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d f (x) f(x) d .
—le —=e -—f (x) [bychainrule
e T (x) [y ]

=f '(x)-af )
1 d .
—[loga [f 0)]]= Ina T OIXf(x) [bychainrule]
1 f'(x)
Ina f(x)
d 1 d
d—x[ln[f (x)]]:T o
_F'(x)
- f(x)

f (x) [bychainrule]

Example (18)

: _dy
If y =In(In(sinx)) find— .
y =In(In(sinx ) find_~
Solution

Let t =sinx, u =In(sinx) . Then, y =Inu and u =Int.
So, we have

dy dy du dt
dx du dt dx
dy 1 du 1 dt
—_— =, — =—, —:COSX
du u dt t dx
dy 11 1 1
2 =Z.2.cosXx =—— .———.COSX
dx u't In(sinx ) sinx
_ cotx
In(sinx )

Example (19)

If y =+/secv/X : find j—y
X
Solution:

Let t=+/X,U=secy/Xx .Theny =+Ju, u=sect
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dy dy du dt 1
= — —= sect tant.—
dx du dt ‘dx 2Ju 2J_
—_.Sec J_ tan J_
2 sec\/x_ '\/_

_Sec \/x_ tan \/x_
4\/x_ sec\/x_

Example (20)

£y = In ,1+s!nmx fddy
1—sinmx dx

Solution
Let t:w u :‘/wfhen y =Inu, u =\/t_
1—sinmx 1—sin mx
dy dy du dt
dx du dt dx
1 1 mcosmx (1-sinmx )+mcosmx (1+sinmx )
u 2+t (1-sinmx )’

_\/1—sinmx 1\/1—sinmx 2m cosmx
1+sinmx 2\ 1+sinmx '(l—sin MX )2
mcosmx _ mcosmx _ m

— — — > = =m Secmx
1-sIin“mx COS” mX cosmx

Simpler method for other similar problems:

When computing derivatives by the chain rule, we do not actually write the
function t, U and so on, but bear them in mind, and keep on obtaining the

derivatives of the component functions, stepwise, as shown in the following

solved examples.

Example (21)
: ., dy
If y =In(sinx?) find —=.
y ( ) " dx
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Solution

g—i = ;—X[In(sinx 2)}

d .
= ——.—Ssinx
sinx “ dx
1 d
=— 2.cosxz.—(x"‘)
sinx dx

1
=———.C0SX *.2X =2X COtx *
sinx

Note
Observe that when we differentiate a function by using the chain rule, we

differentiate from the outside inward. Thus, to differentiatesin(3x +5) ,
we first differentiate the outer function sSinX (at3x +5 ) and then differen-
tiate the inner function3x +5 atx . Similarly, to differentiateCOSX , we
first differentiate the outer function cosx (atx *) and then

differentiate the inner functionx ’ , at X . The chain rule can be applied to
even longer composites. The procedure is always the same:

Differentiate from outside inward and multiply the resulting derivatives
(evaluated at the appropriate numbers).

For example,

;—X[sin(cos(tanS X ))}
= [cos(cos(tan5 X ))}[—sin(taﬁx )}(Stan4 X )sec? x
Example (22)

iy =In(In(Inx)) findg—y.
X
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Solution
We have

) In(llnx)ddx (In(lnx))

1 1 d
= . —Inx
In(Inx ) Inx dx

1 11
In(Inx) Inx x
B 1

_x(mx)[m(MX)]

Example (23)
If y =|n(|n(|nx3)) fing 2.

dx
Solution
We have
dy d
v d—x[ln(ln(lnx 3))}
1 d
:Inﬂnx3)dx(h10nX3))
1 1 d 3

=|n0nx3)1nxgdxlnx
1.1.1dx3
In(Inx ) Inx® x* dx
1 1 1

_ . ——.3x 2
In(lnx"’)lnx3 X3
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Example (24)

x3 . dy
If y =" , find—
y in i
Solution
We have,
dy _d we_ e d
dx dx dx
:ex3(3x2):3x2e
Example (25)
If y =+cos/X , find jl
X
Solution
We have,
b = | Yoos
— = —4/COSVX
dx dx \/_
1
= cos\/_
2/cos/x dx
1
-~ (-sinx
2 cos\/x_( )
1
——_—  (=sinVx
2\/005\/X_( )

sian_

4\/ X COS \/x_

Example (26)
If y =sin(log,,x ) ; find

dy
dx
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We have,

d d .
%za(sm(logmx )

d
=cos(log,, x )d—x(logmx)

1

_ cos(log,,x )

X In10
Example (27)
If y =In[sinx +cosx |[; findj—i .
Solution
We have Gy d
d—de—X(In[smx +cosX |)
1

d , .
= — (sinx +cosx )
SinX +Ccosx dx

1 :
= — (cosx —sinx )
SiNX + COSX
_ COSX —sinx
SINX + COSX
Example (28)
» _dy
If y =2"cos(3x —2) ; find—=.
dx
Solution
We have

dy d .,
v 2 cos(3x—2)]
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= 2" ;—X[cos(?,x —2) |+ cos(3x —2)]%2X

= 2" [ —sin(3x —2)}%(3x —~2)+[cos(3x —2)](2*In2)
= 2" [ =sin(3x —2) |(3)+| cos(3x —Z)J(ZX In 2)
=2"[In2cos(3x —2)—3sin(3x —2) ]

Example (29)

If y= 1 ;findd—y.
X Inx dx

Solution
dy d 1
dx dx | xInx

We have
(0)(x Inx )—(1)d(x Inx )
_ dx

(x Inx)2
x(i)+(lnx)(l) _ 1+Inx
- (x Inx)2 - (x Inx)2

Summary of Differentiation Rules
Derivative of a sum (difference) of functions)

d d d

— I, (x)xf, (x)|[=—1F,(x)x—F (X
OIX[1() »(x)] o 1()dx 2(X)
Derivative of a constant multiple of a function

d d

— |k f (x)[=k —f (x

dx [k 00l dx 0
Derivative of a product of functions

d d d
&[fl(x)fz(x)] :fl(x)&fz(x)"'fz(x)&fl(x)

Derivative of ratio of functions
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5 _fl(X)} f (x) fi00- f(x) fa(x)
dx | T,(x) [f,00)]

Derivative of comp03|te functlons (the chain rule)

o[ (060)]= 5[ @I g 0]
Summary of basic functlons derivatives.
y dy

dx
[f ()], @R aff ()] 7[F ()]

f'(x
JHe) 2 f((z )
sin[f (x)] cos[f (x)] (f '(x))
cos[f (x)] —sin[f (x)](f "(x))
tan[f '(x)] sec’[f (x)](f '(x))
cot[f (x)] —cosec’[f (x)](f '(x))
sec[f (x)] sec[f (x)]tan[f (x)](f '(x))
cosec[f (x)] —cosec[f (x)]cot[f (x)](f '(x))
y dy
a' ® a f<x>][f '(x)][Ina]
e ) [e ™ ](f(x))
f'(

In[f (x)] f (
e L




Exercise : Differentiate the following functions w.r.t. X :

@ y =In(In(sinx )) (2) y :[In(ln(lnx))}4 (3)y =+sinVx

(4)y =cos(x%e*) (8 y = S‘DX_& 6)y =e*

X 1+ cosx
7))y =22 8) v =log. (lo 9Q)y =In, |————
(7 y (8) y =log, (log;x) (9)y «/1_0083)(

Implicit Functions and Their Differentiation
First, let us distinguish between explicit and implicit functions. Functions of

the form, y =f (X)) in which y (alone) is directly expressed in terms of

the function(s) of X , are called explicit functions.
Example (30)

Yy =X’+3x -2, y =sinx +2* ,y = X +3;
1+X

y =cosX +In(L+x?) and so on.

Not all functions, however, can be defined by equations of this type. For ex-
ample, we cannot solve the following equations for y (alone) in terms of

the functions of X .
Examples (31)

X*+y®=2xy, y>+3y*—2x*+2=0, x°+y*=36

siny =xsin(@a+y), y®+7y =x>andso on.

Such relations connecting X and Yy are called implicit relations. An implic-
it relation (in X andy ) may represent jointly two or more functions X .

As an example, the relation X “ 4+ y °=36 jointly represents two functions:

Yy =436—x% and y =—/36—-x"7.

Remark

Every explicit function ¥ =T (X ) can also be expressed as an implicit
function. For example, we may write the above equation in the form

y —f (X) =0 and call it an implicit function of X . Thus, the term explicit
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function and implicit function do not characterize the nature of a function
but merely the way a function is defined.
The Differentiation of implicit Functions
The technique of implicit differentiation is based on the chain rule.
For example, consider the equation
y 47y =x°
Differentiating both the sides with respectto X , treating y as a function of
X , we get (via the rule for differentiating a composite function)

dy _dy 2

3y? 2L 72 —3x *

y dx dx )
dy

Now solving (*) for d_ , We get
X

2
Y (ay247)=ax - Do
dx dx. 3y +7
Note that, the above expression for j—y involves both X andy . Ifitis re-
X

quired to find the value of the derivative of an implicit function for a given
value of X , then we have to first find the corresponding value of y , using

d
the given relation . This will help in computing the value of d—y at those
X
points.
Example (32)
dy

Find —— ,if y°+3y*—2x*=-4.
dx

Solution
Differentiating both sides of the given equation “with respect to X ” (using
the chain rule), we obtain

5y4d—y+6y dy 4x =0

dx dx
dy .
We now solve for d_x , Obtaining
(5y4+6y)d—y=4x P 44X
dx dx 5y”+6y
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Derivatives of the Inverse Trigonometric Functions
I. Derivative of the Inverse Sine Function

Let y =sin~" X , which is equivalent to

. T T
X =siny andy e{——,—}

2 2
Differentiating both the sides of this equation with respect to X , we
obtain
d d 1
1=[cosy | y W
dx dx cosy

T T . .
Ify e [—E,E} COS Y is non-negative.

Here, we have to write the right-hand side in terms of X .
Since, Siny =X , we have

cosy =+1-sin’y =+yJ1-x?

Of these two values for cosy , we should take COSY =~/1—X?,
: T T
since Y e[—— —]

22
So, we have
d—y:d—[sin‘lx]z t 1
dx dx cosy 1—x2
—[sin‘lx]: !
X 1-x?

Theorem (A): If f (X) is a differentiable function of X

L -d f (x) [bychainrule]

d .

—|sin(f (x)) |=

om0 L 2
F(x)
1-[f (x)]
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Example (33)
Fing 2 Jif y =sinT'x?
dx
Solution

dy :d—sin‘lx 22X

dx dx N 4
Derivative of the Inverse Cosine Function
Lety = cOS ™" X , which is equivalent to

x =cosy andy €[0,7]

Differentiating both the sides of this equation with respect to X , we
obtain

. d d 1
1=[-siny] y & __ _
dx  dx siny
If y €[0,7], siny is non-negative.
Here, we have to write the right-hand side in terms of X .
Since, COSy =X , we have

siny =+/1-cos’y =+1-x2

Of these two values for Siny , we should take Siny =+/1—x 2,
since y €[0,7].

So, we have
d—y:d—[cos‘lx]:— 1
dx dx siny 1—x 2
—[cosx |=- L
X 1-x°

Theorem (B): If f (X) is a differentiable function of X ,

d 1 d :
— | cosH(f (X)) |=— .—f (x) [bychainrule]

f'(x)
1-[f ()]
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Example (34)
d

Find ,if y =cose*
dx

Solution

2X
e P

dx dx N

Derivative of the Inverse Tangent Function
Let y =tan~'x , which is equivalent to

/4
X =tany and - —
y y{ : 2}

Differentiating both the sides of this equation with respect to X , we
obtain

dy _ dy
1=/ sec® — 2 =
[ y ]dx dx sec’y

Here, we have to write the right-hand side in terms of X .
Since, X =tany, , we have

sec’y =1+tan’y =1+x°

So, we have
dy d . 1 1
—:—[tanlx]: = — = >
dx dx sec’y 1+tan“y 1+X
d 4
—|tan—"x |=
dx[ ] 1+x°

Theorem (C): If f (X) is a differentiable function of X ,

:—X[tan‘l(f (X))] = 1+[f1(x)]2 .ddx f (x) [bychainrule]
f'(x)
1+ [f ()T
Example (35)
Find dy Jif y —tant_1

dx 1+ X

161



Solution
B 1

nl( 1 j_ (1+x)” 1

14X )

dy d

dx dx

+( 1 jz (x +1)° +1
1+X

IVV. The Derivative of Inverse Cotangent function
From the definition of inverse cotangent function, we have

y =cot™'x =%—tan‘1x

Differentiating both sides with respect toX , we get

dy _ d_cot‘lx - d—(%) —d—tan‘lx

dx dx dx dx 1
A 1 _ 1
1+x% 1+x°
Theorem (D): If T (X ) is a differentiable function of X |,
d—cot‘l[f (x)]=- 1 Z-d f(x)
dx 1+[f (x)] dx
X))
1+[f ()]

V. Derivative of the Inverse Secant Function
Let y =Sec™ X , which is equivalent to

X =secy andy e[O,ﬂ]—{%}

Differentiating both the sides of this equation with respect to X , we
obtain

1:[secytany]0Iy :>dy = 1
dx dx secytany

Ify e [O,ﬂ']—{g}, secy tany is non-negative.
Here, we have to write the right-hand side in terms of X .
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VI.

Since, X =Secy , we have

secy tany =secy./sec’y —1=x+x’-1

So, we have
d—yzd—[sec‘lx]= 1 = L
dx dx Secy fan y secy SeC2 y -1
1

Xx?%-1

d_[sec—lx]:;
dx xyx2-1

Theorem (E): If f (X) is a differentiable function of X ,

d 1 d
—secH[f (x)]= —f (x)
e 1100 £ Oy[f )] -1 9
)
f o[ )] -1

The Derivative of Inverse Cosecant function
From the definition of inverse cosecant function, we have

_ 7 _
y =CO0Sec X = —sec Lx

Differentiating both sides with respect toX , we get

dy d 1 d (ﬂ'j d 1
— =—C0SeC "X =—| — |——sec " x
dx dx dx \ 2 .

1 1
_0— __
X4Xx2-1 xa/x?-1

Theorem (D): If T (X) is a differentiable function of X ,
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1 LI
£ ()y[f 0O -1 I

f'(x)
f)y[f ()] -1

d . o
o COSEC [f (x)]=

Example (36)

If y =tan1(1+—xj , find dy
1-X

Solution

dy 1 d {1+x}

14X 2

Example (37)

_ a2x
If y =cos™ = ° | find dy
1+e* dx

Solution
We have,
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B 1 .{(—Zezx (1+e>) (227 )(1-e” )]
1_[1—e“ T (1+e™ )
_ 2eX2X

Example (38)

J1+x2%-1

J with respect to X .
X

Differentiate y = tanl(

Solution
We have,

2 (1 +x? )
Example (39)
Differentiate

y =sin”* (x Vi-x ~x N7
Solution
dy _ L [ﬂ-fﬂ}
o J (x|
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1

:\/1—(Xx/1—7x—\/X_*/l—T)2
><{(x )(Zﬁ—x}(m)@‘(JX_)(JJ—XTJ_(;X_)(W)}

) 1 2 —3x 3x° -1
_Jl—(xm—ﬁﬂ)z L\/l_x +2\/X_\/1_7}

Example (40)

If y =sec™ 1+4 , find dy
1—4* dx

Solution

1-4 J\(1-4*

di: 1+ 4" 11 g Y dx(ij:]
d [ + j\/( + ] _1d
e

(#nae) (e s)

(1-4")
- 2x+1 |n 2
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Derivatives of Hyperbolic Functions

The formulas for the derivatives of the hyperbolic sine and hyperbolic cosine
functions are obtained by considering their definitions, and differentiating
the expressions involving exponential functions. Thus,

d—(sinhx)z dje -e” | (e +e’ — cosh x
dx dx 2 2
d—(COShX)= de +e — i =sinh X
dx dx 2 2

From these formulas and the chain rule we have the following theorem.
Theorem (A): If T (X) is a differentiable function of X ,

;—X[sinh(f (x))]=[cosh(f (x))]f "(x)

;—X[cosh(f (x))]=[sinh(f (x))]f "(x)

The derivative of tanhX may be found from the exponential definition or

we may use the above result(s) (i.e., the derivatives of sinhx andcoshx ).
Since

tanhx — sinh x
cosh x
Then,
h?x —sinh?®x 1
OI—[tanhx]=COS ZS = — =sech”x
dx cosh” x cosh” x

The formulas for the derivatives of the remaining three hyperbolic functions
are

a4 coth x ] = —cosech’x,

dx -

d .

— sechx]:—sechx tanh x ,

dx -

dd—'cosechx | =—cosechx cothx.
l
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From these formulas and the chain rule, we have the following theorem.
Theorem (B): If f (X) is a differentiable function of X,

9 rtanhf (x)]=|sech®f (x) |f '(x)

dx * To-

OI—'cothf (x)]=| —cosech?f (X)]f '(x)

dx - -

;—X:sechf (x)]=[-sechf (x)tanhf (x)]f '(x)
;—X:cosechf (x)]=[-cosechf (x)cothf (x)]f '(x)

Differentiation of Inverse Hyperbolic Functions
Inverse hyperbolic functions correspond to inverse circular functions, and
their derivatives are found by similar methods.

. Derivative of y =sinh™X
Let y =sinh™x . Then X =sinhy
Differentiating both sides w.r.t. X

1:[coshy]3—y
X

dy 1 1 1
— = = =
dx coshy [i+sinh?y 1+x’
1. Derivative of y =cosh™x

Let y =cosh™X . Then X =coshy
Differentiating both sides w.r.t. X

: dy
1= hy [—=—
[sm y ]dx

dy 1 1 1

— = — = =
dx sinhy Jeosh?y -1 +/x2-1
1. Derivative of y =tanh™x

Let y =tanh™x . Then X =tanhy
Differentiating both sides w.r.t. X
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_ dy
1= [sech2 y ]dx

dy 1 1 1

dx sech’y 1—tanh®x 1-x°?
The differential coefficient of the reciprocals of the above can be found by
the same methods.

They are,
y =sech™x dy___ 1
dX  x1-x?2
y =cosech™x dy___ 1
dX  x1+x?
. dy 1
=coth™*x L =-
y dx  x°-1

From these formulas and the chain rule, we can obtain the following results.
If f (X) is a differentiable function of X

el (0 ()] - \/[ff(;(())(])z +1
;—X:cosh‘l(f (x))]z [ff()’((>)<])2 — f(x)>1
;—X:tanh‘l(f (x))] =ﬁ, f (x)|<1
sl ] fllfx[f) O]
Lo e )Jflix[f) T
;—X:coth‘l(f (x))]:—[fle(%, [ o)[>1
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Example (41)
dy

Find - if y =tanh™(cos2x ) .
X
Solution
We have,
dy d 1
—— =—| tanh™(cos 2x
dx dx[ ( )]
1 .
= =-(—2sin 2x)
1—(cos2x )
:—2_3|2n X __ : 2 = —2C0Sec2X
sin“ 2X sin 2x
Example (42)
o dy I
Find— ,if y =sinh™(tanx ) .
VL (tanx )
Solution

dy dr.  _
d7:d_x[smh *(tanx )]

2
,  Secx

1
= -SEC” X

V1+tan®x ) [secx |

=|secx|
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Derivatives Higher Orders
We have studied several methods of finding derivatives of differentiable

functions. If y =f (X) is a differentiable function of X , then its deriva-
tive is denoted by

d—yorf '(x) or y'

dx

The notation f "(X) suggests that the derivative of f (X) is also a function
of X . Ifthe function f '(x) is in turn differentiable, its derivative is called
the second derivative (or the derivative of the second order) of the original
function f (X ) and is denoted byf (X ) . This leads us to the concept of
the derivatives of higher orders.

, vt e T+ AX) T (x)

f(x)=[f"(x)] —A|)!r_1>’]o o

d (dyj:dzy or —d(f (X)):f”(x) ory"”
dx \dx / dx? dx

2

dcy
dx 2

We write,

Similarly, we can find the derivative of provided it exists, and is de-

3

d’y
dx ®
y =f (X) and so on.

r

noted by [or f "'(X) ory

], called the third derivative of
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Notations for Derivatives of y =f (X)

Order of Derivative Prime Notation (') Leibniz Notation
1st y'orf'(x) dy
dx
d?y
2nd "orf "(x
y (x) 0 2
'y
3rd " orf "'(x
y (x) VE
. . d 4y
4th Yoorf Y (x
y (x) v
nth y ™ orf ™M (x) d Sn/
dx

Example (43)
If y =2x°—x°+3, then

2

Y _toxt2x, 9Y _sox-2
dx X

3 4
9Y _1o0x2, 9 _ 40
dx dx
d®y d°y d"y

L — 240, L =0, —2=0
dx dx dx

Note that, for a polynomial function f (x ) of degree 5, f ™ (x) =0 for

n >6 . More generally, the (n +1)™ and all higher derivatives of any pol-
ynomial of degree n are equal to 0.

However, there are functions [like SinX , cosx , e , Inx , and their ex-
tended forms, [that is sin(ax +b) , cos(ax +b),e™ , In(ax +b)or
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more general ones likesin(f (x)) , e' ™’ and log, (f (x)) ]that can be

differentiated any number of times and f (X ) is never 0.
Example (44)
Let us find the nth derivatives of the following:

(i)x" (ii)e”

Gija*  (iv)sinx

Solution
l. Lety =Xx"
. d_y_ n-1 dzy _ _ n-2 dsy _ . . n-3
..dx_nx , OIXZ_n(n 1)x ,dx3_n(n 1)(n—-2)x
d"y

. Lety =e”
2 3
_..d_y_ex’ dy _e* d’y o
dx dx 2 dx*
d’y _ o«
dx "
lll.Lety =a*
. dy X dzy X 2 d3y X 3
=R Ina, 3 =(a )(Ina) T =(a )(Ina)
d"y

V. Lety =sinx
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Ly
" dx
2

d°y ﬁj : ( ﬁj T . ( 7[)
> =COS| X +— |=sIn| | X +— |+ = |=SIN| X +2-—
dx 2 2) 2 2

3
>;:cos x+2-£j:sin (x +2-£j+z :sin(x +3-£j
dx 2 2) 2 2

d )n/ :COS(X +(n —1)-£jzsin((x _|_(n _1).£)_|_£j:sin(x +n.£j

Exercise
find the nth derivatives of the following:

(1) cosx (2)Xl

. T
= COSX :sm(x —l—Ej,

o

(3)Inx
Derivatives of Higher Orders: Product of Two Functions (Leibniz For-

mula)
It helps us to find the nth derivative of the product of two functions.

Let f (x)andg(x) be functionsof X andy =f (X)-g(x).
Then, the nth derivative of y is
y " =Cof W(x)-g(x)+Cf "P(x)-g'(x)
+CIF D(x)-9"()+CF “0(x)-9"(X)

+-+Cf (x)-g ™ (x).

Where,

n n!

“ ki(n-k)!
Note
When one of the functions in the above theorem is of the formx ™, m e N,
then we should choose it as (the second function) g (X ) , and the other as
(the first function)f (x) , because X ™, m e N shall have only m deriva-
tives (and not more).
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Example (45)
Ify =e*x?  findy ™.

Solution

f(x)=e” g(x)=x"

f'(x)=ae® g'(x)=2x

f"(x)=a%™ g"(x)=2

fOx)=ae™  g"(x)=0=g“(x)=--=g"(x)

y ™ =a"e*x?+2na"e*x +(n)(n-1)a" %™

Example (46)
Let us compute the 100th  derivative of the functiony =X >sinXx .

Solution
We have

y 4 = (sinx )" x 2 + 200(sinx )™ x +(100)(99)(sinx )

All the subsequent terms are omitted here since they are identically equal to
zero. Consequently,

y ¢ =x Zsin(x +1oo-%j+200x sin(x +99-%)+99003in(x +98-%)

(98)

=x %sinx —200x cosx —9900sinx

The Method of Logarithmic Differentiation
For (complicated) functions such as general exponential functions and other
expressions involving products, quotients, and powers of functions.)

d (x")
dx

;_X(Xn):nx n-1

Recall that to find the derivative , We use the power rule

Also, we get

d n n-1,,
d—X[f o))" =n[f O "(x)

using power rule and the chain rule.
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.. d
But, we cannot use the power rule to find —(ex ) . Thus,

dx
d X X -1
—(e*)#x e
(&)
d o . .
Recall that, d—(ax ) =a”* Ina, which is the differentiation formula for the
X
exponential function.
Thus, we get,

d
—e" =e*Ine =e”
dx

and

d
—[af (X)] =a'®.f'(x)-Ina
dx
using differentiation formula for exponential function and the chain rule.

: _ d
Now, we ask the question; what can we write for d—(x X )?
X

. o d -
Of course, it would be sheer nonsense to wrlted—(x X ) =% -x <1,
X

It is for these types of functions, and more generally for functions of the type

g(x)
y =[f (x)]
where both f (X ) and g (X ) are differentiable functions of X , that we can

use the technique of logarithmic differentiation for computing their deriva-
tives. This technique is also used to simplify differentiation of many (com-
plicated) functions involving products, quotients, and powers of different
functions. We list below the right technique for differentiating each of the
following forms of functions:

[f (x)]"— Power rule
a' *) — Differentiation formula for exponential functions

[f )™ — Logarithmic differentiation

Remark
The technique of logarithmic differentiation is so powerful that it can be
used for each of these forms.
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Procedure of Logarithmic Differentiation

The procedure of logarithmic differentiation involves taking natural loga-
rithm of each side of the given equation. After simplifying (by using proper-
ties of logarithms), we differentiate both sides w.r.t. X .

The usefulness of the process is due to the fact that the differentiation of the
product of functions is reduced to that of a sum; of their quotients to that of a
difference; and of the general exponential to that of the product of simpler
functions.

The following solved examples will illustrate the process of logarithmic dif-
ferentiation.

First, we start with the differentiation of certain (complicated) function in-
volving products, quotients, and powers of functions.

Example (47)

: d
If y =esin2x cosx , find Y
dx
Solution

Taking the natural logarithm of both sides, we get

Iny =5Ine” +Insin2x +Incosx
Differentiating w.r.t. X , we get

ldy _5 X +— -(2c052x)—smx

ydx e* sin 2x COS X
=5+2cot2x —tanx

j—y:y[5+2cot2x —tanx |

X

=e ™ sin2x cosx [5+2cot2x —tanx ]
Example (48)
. d
If y =e™ sin®x tan®x , find—-.
dx
Solution
Taking the natural logarithms of both sides, we get

Iny =4Ine* +2Insinx +3Intanx
Differentiating w.r.t. X , we get
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1dy e* 2cosx 3sec’x
———=4—+— +
y dx e’  sinx tan x
=4+ 2Cc0otX +—
Sin X COSX
OI—y:y[4+200tx +_—}
dx sin X COSX

=e*™sin®x tan®x | 4+ 2cotx +—
sSin X cosX

Example (49)
oy [E02) oy
(1-x)(2—x) dx

Solution
Taking natural logarithm of both sides, we get

Iny =%[In(1+x)+ln(2+x)—In(l—x)—ln(2—x)]

Differentiating w.r.t. X , we get
1 dy l{ 1 1 1 1 }
——=— + + +
ydx 2[1+x 2+x 1l-x 2-X

_1{ 2 4 }
2|1-x? 4-x?
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|

:\/(1+x)(2+x)[ 63X’ }
(1-x)(2-x)| (1-x?)(4-x?)

]Q(X).

Now, we consider functions of the type [f (x)
Example (50)

ify =5 find 3.
dx
Solution
Taking natural logarithm of each side, we get
Iny =tanx In5

Differentiating w.r.t. X , we get

ld—yzseczx In5
y dx

dy 2
—=vy|secxIn5
dx y[ ]

=5 sec’x In5 |
Example (51)

If x*, findd—y.
dx
Solution
Taking the natural logarithm of each side, we obtain
Iny =xInx

Differentiating both sides w.r.t. X , we have
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id_y:X .£+1-Inx =1+Inx

y dx X
dy x
d—X:y[1+Inx]:x [1+Inx ]
Example (52)
If y=x* | find dy
dx
Solution
Taking the natural logarithm of each side, we get

Iny =x" Inx
Differentiating both sides w.r.t. X , we get

id_yz(xx )(lj+(lnx )[xX (1+Inx )]

y dx X
3—i=)’{xx_l+(lnx)[xx (1+Inx)]}

=x* {xx‘qu(Inx)[xX (1+Inx)]}
Example (53)
Ity =(x*)",then findj—i.
Solution

We have Yy =(xX )X =x*

Taking natural logarithm of both sides, we get
Iny =x?Inx

Differentiating w.r.t. X , we get

id—y:xz(l)qt(xz)lnx
y dx X
dy _

o y[x +x2Inx]

2
=x* [x +x2Inx]
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Example (54)

Ity =(Inx)" find .

dx
Solution
Taking natural logarithm of both the sides, we get
Iny =x In[Inx ]

Differentiating both sides w.r.t. X, we get

id_y:x (i-ijﬂ-ln(lnx)
y dx

Inx X

dy 1

— =y |—+In(l

dx y{Inx " n( nx)}

_(Inx [%Hn(lnx)}
Example (55)
ity =(cosx ™ find 2.
dx

Solution
Taking natural logarithm of both sides, we get

Iny =sinx Incosx
Differentiating both sides w.r.t. X , we get

ldy . [ sinx }
——Z =sinx |- +cosx (Incosx )
y dx COS X

dy { { sinx} }
—— =y Jsinx | - +cosx (Incosx )
dx COSX

. H
=(cosx )™ {cosx (Incosx ) - 2= }

COSX
Example (56)

Inx . dy

If y =(tanx find —.

y =(tanx)™ find -
Solution

Taking natural logarithm of each side, we get
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Iny =Inx -tanx
Differentiating both sides w.r.t. X , we get

2
id_yzlnx-seC X +£In(tanx)
y dx tanx X

In(t
d_y:y{ | Inx n(anx)}
dx SINX COSX X

:(tanx)m{ Inx +In<tanx>}

Sin X COSX X
Example (57)

. tanx . dy
If y =(SInX , find —.
v = ) dx
Solution
Taking the natural logarithm of each side, we get
Iny =tanx -In(sinx )

Differentiating both sides w.r.t. X , we have

id_y:tanx _ X fsec?x Insinx
y dx Sin X
dy

oY [1+seczx .Insinx]
= (sinx )™ [1+seczx -Insinx}
Example (58)

Inx . dy
If y =(COSX , find —
y ( ) dx
Solution
Taking the natural logarithm of each side, we get

y =Inx -Incosx
Differentiating both sides w.r.t. X , we get

182



1 dy —sinx 1
—— =Inx - +—Incosx
y dx COSX X

d—y:y[ilncosx —tanx -Inx}
dx X

1
= (cosx )InX [—In COSX — tanx -Inx}
X

Example (59)
d
If x¥-y*=1,find &
dx
Solution
Taking natural logarithm of both sides, we get

InxY +Iny* =0

yinx +xIny =0
Differentiating w.r.t. X , we get

y -£+(Inx)d—y+x -id—y+lny =0

X dx y dx
d—y(lnx +£]:—l—lny
dx y X

y
dy __X+Iny
alx Inx + %
y

_y+x:Iny  y(y+x-iny)

(me)

y
Example (60)

find d_y

dx
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Solution
Puttingu =X’ and Vv =y * , we get

u+v =a’
Differentiating w.r.t. X , we have

LA *
dx dx
Now, consider u =X’
Taking natural logarithm of both sides, we get
Inu=y Inx
Differentiating both sides w.r.t X , we get
ldu 1 dy

udx X dx

du u{l+d—y-lnx}
dx X dx

:xy{l+d—y-lnx} (**)
X dx

Now, consider v =y *

Taking natural logarithm of both sides, we get

Inv =xIny
Differentiating both sides w.r.t . X , we get
1dv 1ldy
——=X- +Iny
v dx y dx
d—V:v x dy +Iny
dx y dx
x d
=y {——yﬂny} (**)
y dx

Using (**) and (***) in (*), we get
xy[l+d—y-lnx} y” —d—y+lny
X dx y dx
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d_y X7 Inx +yxi}:{xyl+yX Iny}
dx y X

cdy  xP(y/x)+y*iny
Tdx - x)Inx +y*(x1y)
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