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Why we study Mathematics?

Learning math is good for your brain

Practically every career uses math in some way.

Math is all around us and helps us understand the world better

Math is a universal language



Important of Mathematics in Biology and Geology



Why we study Mathematics?

Original Reconstruction



FBI Fingerprint Compression — The U.S. Federal Bureau of Investigation began col-
lecting fingerprints and handprints in 1924 and now has more than 30 million such prints in
its files, all of which are being digitized for storage on computer. It takes about 0.6 megabyte
of storage space to record a fingerprint and 6 megabytes to record a pair of handprints, so
that digitizing the current FBI archive would result in about 200 x 10'? bytes of data to
be stored, which is the capacity of roughly 138 million floppy disks. At today’s prices for
computer equipment, storage media, and labor, this would cost roughly 200 million dollars.
To reduce this cost, the FBI's Criminal Justice Information Service Division began working
in 1993 with the National Institute of Standards, the Los Alamos National Laboratory, and
several other groups to devise compression methods for reducing the storage space. These
methods, which are based on wavelets, are proving to be highly successful. Figure 1 is a

good example—the 1image on the left is an original thumbprint and the one on the right is
a mathematical reconstruction from a 26:1 data compression.

Original Reconstruction



Removing Noise from Data—In fields ranging from planetary science to molecular
spectroscopy, scientists are faced with the problem of recovering a true signal from in-
complete or noisy data. For example, weak signals from deep space probes are often so
overwhelmed with background noise that the signal itself is barely detectable, yet the signal
must be used to produce a photograph or provide other information. Researchers at Stanford
University and elsewhere have been working for several years on using wavelet methods to

filter out such noise. For example, Figure
that has been cleaned up (de-noised) using wavelets.

(8) NMR Spectrum
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Medical Imaging and DNA Structure — Advances in nuclear magnetic resonance
(NMR) have made it possible to determine the structure of biological macromolecules,
study DNA replication, and determine how proteins act as enzymes and antibodies. Related
advances in magnetic resonance imaging (MRI) have made it possible to view internal
human tissue without invasive surgery and to provide real-time images during surgical pro-
cedures (Figure 5). High-quality NMR and MRI would not be possible without mathematical
discoveries that have occurred within the last decade.




Who said that mathematics is not used in practical life? There is a use that you
can eat, or you may already have.

The unique shape of the Pringles is no accident. In 1956, chemist Fredric J. Baur
at Procter & Gamble was commissioned to develop a new type of potato chips,
after frequent customer complaints about them breaking and greasing in their
packages. The man spent two years of his life solving this problem, and ended up
choosing the famous horse saddle shape as his design for the potato, and
cylinders as their container.By the way, this shape is known in mathematics as a
"hyperbolic paraboloid."Every time you open a pack of those potato chips to find
they're all intact, remember it's thanks to the math.



Preliminaries

The real systems

Inequalities

The rectangular coordinate system
The straight line



Math 101: General mathematics- 3Credit (Lecture 2h/w+ tutorial 2h/W)

Contents: Preliminaries the real number system, Inequalities, Absolute values, The rectangular coordinate
system, The straight line. Functions and limits: Functions and their graphs, Operations on functions, The
trigonometric functions, Limit of functions, Continuity of functions. The derivative: Definition of derivative
rules for finding derivative, Derivatives of trigonometric functions, The chain rule, Derivatives of exponential
and logarithm functions, Higher-order derivatives. Applications of the derivatives: Maxima and minima, The
mean theorem. Integral: Antiderivatives (Indefinite integrals), The definite integral, Applications of the
definite integral.
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The real systems

Real Numbers are just numbers like: 1 12.38 ~0.8625

m(pi) 198

In fact:
Nearly any number you can think of is a Real Number

Real Numbers include:

Whole Numbers (like 0, 1, 2, 3, 4, etc)

Rational Numbers (like 3/4, 0.125, 0.333..., 1.1, etc )

Irrational Numbers (like 7T, 2, etc )



https://www.mathsisfun.com/numbers/pi.html

So ... what is NOT a Real Number?

x Imaginary Numbers like v—1 (the square root of minus 1) are not Real Numbers

X Infinity oo is not a Real Number


https://www.mathsisfun.com/numbers/imaginary-numbers.html
https://www.mathsisfun.com/square-root.html
https://www.mathsisfun.com/numbers/infinity.html

The Real Number Line
The Real Number Line is like a geometric line.

A point is chosen on the line to be the "origin". Points to the right are positive, and points
to the left are negative.

15 I L |
-2 o5 - origin

o
Lt

o ra| e
e
M

-4 -3 2 1 0 1 2 3 4

A distance is chosen to be "1", then whole numbers are marked off:
{1,2,3,...}, and also in the negative direction: {...,—3,—-2,—1}


https://www.mathsisfun.com/geometry/line.html

Any point on the line is a Real Number:

*The numbers could be whole (like 7)
«or rational (like 20/9)
«or irrational (like =)

But we won't find Infinity, or an Imaginary Number.

Any Number of Digits

A Real Number can have any number of digits either side of the decimal point
«120.
«0.12345
«12.5509

-0.000 000 0001

There can be an infinite number of digits, such as % = 0.6666 ...



Why are they called "Real” Numbers?
Because they are not Imaginary Numbers

The Real Numbers had no name before Imaginary Numbers were thought of. They got called
"Real" because they were not Imaginary. That is the actual answer!


https://www.mathsisfun.com/numbers/imaginary-numbers.html

Inequalities

Symbol
>

<

2

IA

Words
greater than
less than

greater than or
equal to

less than or equal to

Example
X+3>2
/X <28



We must also pay attention to the direction of the inequality.
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Properties of Inequalities

Transitive Property
When we link up inequalities in order, we can "jump over" the middle inequality.

Ifa<bandb <c, thena <c

It a“ b C

Then: a C



Reversal Property
We can swap a and b over, if we make sure the symbol still "points at" the smaller value.

Ifa>bthenb < a
Ifa<bthenb > a

Addition and Subtraction
Adding c to both sides of an inequality just shifts everything along, and the inequality

stays the same.
Ifa<b,thena+c<b+c

a b a+c b+c

| | | |
- | | 1 [ .




Multiplication and Division
When we multiply both a and b by a positive number, the inequality stays the same.
But when we multiply both a and b by a negative number, the inequality swaps over!

Ex(_z)\fxg-“
P a | a.b a b

I
76 5432101234546 78 910

Notice that a<b becomes b<a after multiplying by (-2)
But the inequality stays the same when multiplying by +3

Here are the rules:

If a < b, and c is positive, then ac < bc
If a < b, and c is negative, then ac > bc (inequality swaps over!)



Additive Inverse

As we just saw, putting minuses in front of a and b changes the direction of the inequality.
This is called the "Additive Inverse":

Ifa < bthen —a > —-b
Ifa > b then —a < —-b

Multiplicative Inverse

Taking the reciprocal (1/value) of both a and b can change the direction of the inequality.
When a and b are both positive or both negative:

Ifa<bthenl1l/a > 1/b

Ifa>bthenl1l/a < 1/b 2 4
| |
2 %


https://www.mathsisfun.com/algebra/reciprocal.html

The straight line

A line has length but has no width or thickness.
A line may be straight, curved, or a combination of these.

A line is designated by the capital letters of any two of its points or by a small letter, thus:

A B

>
'.IIi ‘!/VHGTAB—
C D



Equation of a Straight Line

The equation of a straight line is usually written this way:

y=mx+b
What does it stand for?

y = MX+D

/S

Slope or y value when x=0
Gradient (see Y Intercept)

y = how far up X = how far along

Slope or Gradient

3
I

value of y when x=0

=3
|



Positive or Negative Slope?

Going from left-to-right, the cyclist has to Push on a Positive Slope:




The rectangular coordinate system

The rectangular coordinate system consists of
two real number lines that intersect at a right angle.
The horizontal number line is called the x-axis, and
the vertical number line is called the y-axis. These
two number lines define a flat surface called a plane,
and each point on this plane is associated with
an ordered pair of real numbers (x, y). The first
number is called the x-coordinate, and the second
number is called the y-coordinate. The intersection
of the two axes is known as the origin, which
corresponds to the point (0, 0).




An ordered pair (x, y) represents the
position of a point relative to the origin.
The x-coordinate represents a position to
the right of the origin if it is positive and to
the left of the origin if it is negative. The y-
coordinate represents a position above the
origin if it is positive and below the origin if
it is negative. Using this system, every
position (point) in the plane is uniquely
identified. For example, the pair (2, 3)
denotes the position relative to the origin as
shown:
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This system is often called the Cartesian coordinate system, named
after the French mathematician René Descartes (1596—1650).

The x- and y-axes break the plane into four
regions called quadrants, named using 4

roman numerals I, II, III, and IV, as Quadrant II Quadrant I
pictured. In quadrant I, both coordinates are

. : : (—, 1) i (+,+)
positive. In quadrant II, the x-coordinate is
negative and the y-coordinate is positive. In —s S S S
quadrant III, both coordinates are negative. i
In quadrant IV, the x-coordinate is positive (=s—) (+,-)

and the y-coordinate is negative. Quadrant III | Quadrant IV



FUNCTIONS

One of the important themes in calculus is the analysis of relationships between
physical or mathematical quantities. Such relationships can be described in terms of
graphs, formulas, numerical data, or words. In this chapter we will develop the
concept of a function, which is the basic idea that underlies almost all mathematical
and physical relationships, regardless of the form in which they are expressed. We
will study properties of some of the most basic functions that occur in calculus.



Graphs can be used to describe mathematical equations as well as physical data. For example,
consider the equation

y=2xv9 — x2

x -3 -2 -1 0 1 2 3
y 0 -2V5=-447214 -2v2=-282843 0 2V2=282843 25=447214 0




Some illustrative examples.

The area 4 of a circle depends on its radius » by the equation 4 = pr?,
so we say that 4 1s a function of ».

Volume of a sphere depends on its radius by the equation V' = ;—1 pro.

Surtace area of a cube depends on the length of its side by the equation
S = 6x°
The velocity A of a ball falling freely in the Earth’s gravitational field in-

creases with time 4 until it hits the ground, so we say that 4 is a function
of 4 .



FUNCTIONS

Tables, graphs, and equations provide three methods for describing how one quantity de-
pends on another—numerical, visual, and algebraic. The fundamental importance of this
idea was recognized by Leibniz in 1673 when he coined the term function to describe the

dependence of one quantity on another.

Definition 1.
If a variable y depends on a variable x 1n such a way that each value of x de-

termines exactly one value of v , then we say that v is a function of x .

a5

Compuater

FProgoram
Ilmput x e Output 3:>




Definition 2.

A function f 1s a rule that associates a unique output with each mput. If the input
1s denoted by x , then the output 1s denoted by f(x) (read "/ of x ").

INDEPENDENT AND DEPENDENT VARIABLES

a function f is a rule that associates a unique output f(x)
with each input x. This output 1s sometimes called the value of f at x or the image of x
under f. Sometimes we will want to denote the output by a single letter, say v, and write

y = f(x)
This equation expresses y as a function of x; the variable x is called the independent
variable (or argument) of f, and the variable v is called the dependent variable of f.



Example (1)
For f(x)= x? - 2x . find and simplify
(a) f(4), (b) f[(4+ h), (c) f(4+ A)- f(4)
(d) [F(4+ h)- f(D]/ h, whereh > 0.
Solution
f(H=4-24=16- 8= 8
f(A+ =4+ h)?- 24+ h)
= (16 + 8h+ h?)- (8+ 2h)
= 8+ 6h + h*
f(4+ - f(H= 8+ 6h+ h* - 8
= 6h + h*
[F(4+ ) - fF(D] h= (6h+ h?)/ h= 6+ h



DOMAIN AND RANGE

If v = f(x)then the set of all possible inputs (x -values) 1s called the domain of

f . and the set of outputs (v -values) that result when x wvaries over the domain 13
called the range of 1.

For example,

|
y=x> and y=x", x>2

In the first equation there i1s no restriction on x, so we may assume that any real value
of x is an allowable input. Thus, the equation defines a function f(x) = x? with domain
—oo < X < 0. In the second equation, the inequality x > 2 restricts the allowable inputs
to be greater than or equal to 2, so the equation defines a function g(x) = x*, x = 2 with
domain 2 < x < =oo.

i i






THE ABSOLUTE VALUE FUNCTION

x, x=10
x| =
-x, x <0
If a and b are real numbers, then
(a) | —a| = |a| A number and its negative have the same absolute value.
(b) iI.IF}| = |a| |h| The absolute value of a product is the product of the absolute values.
(c) |a / .-‘_EJl = |a |f |b| The absolute value of a ratio is the ratio of the absolute values.

{d] IliI + b| =< |i1| + |h| The triangle inequality
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Example (2)

Find the domain of :

(@) f&)=x>  (b)f&x)= 1

(x - D(x- 3
(c) fx)= tanx (d) f(x)= vx2- 5x + 6

Solution

(a) The function f has real values for all real x , so its domain is the interval
(—00, ).

(b) The function f has real values for all real x , except x = land x = 3,
where divisions by zero occur. Thus, the domain is

(=22, 1) U (1,3) U (3,)



(c) flx)= tanx (d) f(x)= vx2- 5x+ 6

SiN X

(c)Since f(x)= tanx = , the function f has real values except where

COsX

cosx = 0, and this occurs when x 1s an odd integer multiple ﬂfii . Thus,

]

3p Sp
?_.,...

]

the domain consists of all real numbers except x =

ko |

(d) The function f has real values, except when the expression inside the rad-
ical 1s negative. Thus the domain consists of all real numbers x such that
x?- 5x+ 6= (x- 3)(x- 2)* 0.This inequality is satisfied if x = 2
or x = 3, so the natural domain of f 1s (—o0, 2] U |3, ).



PROPERTIES OF FUNCTIONS
GRAPHS OF FUNCTIONS

If f is areal-valued function of a real variable, then the graph of f in the xy-plane is defined
to be the graph of the equation y = f(x). For example, the graph of the function f(x) = x

is the graph of the equation y = x, shown in Figure That figure also shows the graphs
y=x
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Graphs can provide useful visual information about a function. For example, because
the graph of a function f in the xy-plane consists of all points whose coordinates satisfy
the equation y = f(x), the points on the graph of f are of the form (x, f(x)): hence each
y-coordinate is the value of f at the x-coordinate (Figure a). Pictures of the domain
and range of f can be obtained by projecting the graph of f onto the coordinate axes
(Figure b). The values of x for which f(x) = 0 are the x-coordinates of the points
where the graph of f intersects the x-axis (Figure c); these values of x are called the
zeros of f, the roots of f(x) = 0, or the x-intercepts of y = f(x).

ALY AV AV

y = f(x)

f(x)

Y =

X1 Xr X3

Domain

f has zeros at x, 0, x5, x5

(a) (b) (c)



THE NATURAL DOMAIN

DEFINITION. If areal-valued function of a real variable is defined by a formula,
and 1f no domain is stated explicitly, then it is to be understood that the domain consists
of all real numbers for which the formula yields a real value. This is called the natural
domain of the function.



Example  Find the natural domain of

(a) f(x)=x (b) f(x)=1/[(x — 1)(x —3)]
() f(x)=tanx  (d) f(x) =+x2—5x+6




(a) f(x)=x"

The function f has real values for all real x, so its natural domain 1s the

interval (—oe, 4oc).

(b) f(x)=1/[(x — D)(x —3)]

The function f has real values for all real x, except x = 1 and x = 3, where

divisions by zero occur. Thus, the natural domain is

(x:x#landx #£ 3} = (—o, 1)U (1, 3) U (3, +x)



(c) f(x)=tanx

Since f(x) = tanx = sinx/ cosx, the function f has real values except
where cos x = (0, and this occurs when x is an odd integer multiple of 7r/2. Thus, the natural

domain consists of all real numbers except T m I
X =T —,I — .
2

5

(d) f(x)=+x>—5x+6

The function f has real values, except when the expression inside the radical

is negative. Thus the natural domain consists of all real numbers x such that

X =5x+6=x-3)(x—-2)=0

This inequality is satisfied if x < 2 or x = 3 (verify), so the natural domain of f is

(—oe, 2] U [3, +o)



Even and Odd Functions

(1) A function 1s an even function if for every x in the domain of f

J(-x) = flx).
(1) A function 1s an odd function if for every x in the domain of f
J-x) = - flx).
Example

I. A polynomial function of the following form 1s an even function:

f(-r):ﬂﬂ —|—ﬂ1_r2_|_ﬂ2x4_|____+ﬂ”x2}:

Observe that the power of X in each term is an even integer.
II. We have that cos (—:r ) = cosx forallx . Thus, the cosine function 1s an

even function.

III. A constant function is always even (why?).
Example

I. It can be easily verified that the functions # (x ) =x and f (x ) = x "are

odd functions. In fact, any polynomial function in which the power of each
term 1s an odd integer is an odd function.



Period of a Periodic Function

If a function f is periodic, then the smallest p > 0, if it exists such that

f(x +p)=Ff(x) forall x ,is called the period of the function.

Obviously, the period of the sine and cosine functions 1s 277 . It can be shown
that the period of the tangent function (and that of the cotangent function) i1s 7 .
Remark

Aperiodic function may not have a period. Note that a constant function f 1s peri-
odic as f (x + p) =7 (x ) =constant for all p > 0, however, there is no smallest

p >0 for which the relation holds. Hence, there is no period of this function,
though 1t 1s periodic by definition.



Algebraic operation on functions

Functions are not numbers. But, just as two numbers @ and b can be added to
produce a new number (@ + b ), two functions / and g can be added to produce

a new function (f + g). This 13 just one of the several operations on functions.
(a) Sums, Differences, Products and Quotients of Functions

Let f and g be functions. We define the sum f + g, the difference f - g,
and the product f.gto be the functions whose domains consist of all those
numbers that are common in the domains of both f and ¢ and whose

rules are given by

U+ &) = flx) + glx)
(/- &)= flx)- gx)
(f8)x) = flx).glx).

In each case, the domain 1s consisting of those values of x for which both
f(x)and g(x)are defined.



Next, because division by 0 1s excluded, we give the definition of quotient

/

of two functions separately as follows: The quotient —1s the function
g

whose domain consists of all numbers x 1n the domains of both f(x) and
g(x) for which g(x) # 0, and whose rule 1s given by

J ooy Jx)
! (x g(x)#0
g( ) g(x)



Algebraic Functions and Their Combinations

Polynomial Function:

Any function, that can be obtained from the constant functions and the
identity function by using the operations of addition, subtraction, and mul-
tiplication, 1s called a polynomial function. This amounts to say that " f(x)

" 15 a polynomuial function, if 1t 1s of the form
N e n-1 2 _
fxX)=ax"+a, x"" "+ ...+ ax"+ ax+ a

where a_.a

a0 1a-....05,04,a, are real numbers, a,, # 0, and n 1sa

nonnegative integer. If the coefficienta,, # 0, then "»n " (1n x" ), the
nonnegative integral exponent of x , 18 called the degree of the polynomual.
Obviously, the degree of constant functions 1s zero.



Constant Function:

A function of the form f(x) = a., where "a " 1s a nonzero real number and

1s called a constant function. The range of a constant function consists of
only one nonzero number.

I. Linear Function: Polynomials of degree 1 are called linear functions.
They are of the form f(x) = ax + a,, witha; # 0. Note that, the

identity function [ f(x) = x ] 1s a particular linear function.

II. f(x)= a?rz + ax + a,ls a second degree polynomial, called a

quadratic function. If the degree of the polynomial 1s 3, the function
i1s called a cubic function.

ITII.Rational Functions: Quotients of polynomuals are called rational
functions. Examples are as follows:



3
flx) = LE f)=x3+ 50 fe)= 12 2t + p

x x- 2

2

xc+x- 2
flx) = > .
X+ 3x - 6
Example
2 4 o
Let 7(x) = ~ %~ 2 Find the domain of 7.
x’+5x-6
Solution

We have x* + 5x - 6 = (x - D(x + 6). Therefore, the denominator is 0 for

x = 1 and x = - 6. Thus, the domain of f consists of all numbers except 1
and - 6.



Non-algebraic Functions and Their Combinations
Trigonometric functions

Let a point p(x.¥) moves along a circle perimeter with radius # = 1 and

g 18 the angle that the revolving line OP makes with the x-axis (see figure
1.16). Then, we can define the sine and cosine functions of g by:
. X v
si g = —, Cosqg = —
I I



P (cos&.sin &)

*

%9\ siné?

M\

" )
0 >~ cos & /V N

2 2
X< +y< =1



There are four other basic trigonometric functions that are defined in terms
of sing and cosg. we define

S1N COS
fang = q, cotg = — d
COs ¢ S111 ¢f
1 1
secqg = , cosecqg = ——
Cosqg S111 ¢f

The values of these functions can be quickly computed from the corre-
sponding values of smmg and cosg.



Properties of trigonometric functions

1. Sine function
Sine function has the following properties
Its domain 1s R and 1ts range 1s [- L 1]
It 1s periodic function with period 2p, that 1s
sin(g + 2p) = smgq.
It 15 odd function, that 1s, smn(-x) = - smnx.

y = sSsIin x




2. Cosine function

Cosine function has the following properties
Its domain 1s R and 1ts range 1s [- 1 1}

It 15 periodic function with period 2p, that 1s
cos(x + 2p) = cosx.

It 1s even function, that 1s, cos(- x) = cosx.

Y = COS X

_ T T 3 %
=g 2 2 T 2 2 =
= e
k O /T}\

2

o




Tangent function

Y=




Cosecant function Secant function Cotangent function

1
COSeCc 6 = ,1 : SEC O = 1 : cotO =
sin O cos 6 tan ©




Tl'igunumétrir Identities

1.

2z
3.
4
2

. ’J' ’J'
sy + cos“xy = 1

) §)
]+ tan“x = sec™x

D g,
1+ cot™x = cosec™ x
sin(x £ y) = sSInx COSy = Sy COSX
Cos(x = y) = COSx COSy 1M SINx SIn y
fanx = tany
tan(x = y) = -

lmtanx tany



LIMITS AND
CONTINUITY

LIMITS (AN INFORMAL VIEW). If the values of f(x) can be made as close as
we like to L by taking values of x sufficiently close to a (but not equal to a), then we
write

lim f(x) =L

X —d

which is read “the limit of f(x) as x approaches a is L.”



Example the limit

. X
him

x—0 . J/x 4+ | — 1

( X )(\/m—1)_x(\/mﬂ)=x(\/m+1) —Vxr 1 +1

Vx+1 - 1) Wx+1 - 1) x+1-1 X

. X
hhm

x—= X _|_ | — 1|



51N X

lim —
r—0 x
X $1MN X
(RADIANS) Y=

+1.0 0.84147
+0.9 0.87036
+0.8 0.89670
+0.7 0.92031 4y
+0.6 0.94107
+0.5 0.95885
+0.4 0.97355
+0.3 0.98507
+0.2 0.99335
+0.1 0.99833

As x approaches 0 from the left
+0.01 0.99998 or right, f(x) approaches 1.




ONE-SIDED LIMITS

) X ) X
lim u =1 and lim u = —1
r—0r x xr—0- X

L




ONE-SIDED LIMITS . If the values of f(x) can be made
as close as we like to L by taking values of x sutficiently close to a (but greater than a),
then we write

]im+ f(x) =L

which is read “the limit of f(x) as x approaches a from the right is L.” Similarly, if the

values of f(x) can be made as close as we like to L by taking values of x sufficiently
close to a (but less than a), then we write

lim f(x)=L

X—da

which is read “the limit of f(x) as x approaches a from the left is L.”



COMPUTING LIMITS
SOME BASIC LIMITS

THEOREM. Leta and k be real numbers.

Iim k =k lim x = a
X—a X—a
. ] ) 1
Im — = —c Im — = 4=
xr—0 X r—0" X
example,

lim 3 =3, lim 3 = 3, lim 3 = 3

x—»—25 x—10 X—+IT



5x7 + 4
Example 2 Find lim i .
x—2 x—23

Solution.
Sx3 44 lim(5x7+4)
lim -
x—=2 x—3 ]ll’l'%:_r (x — 3)
- 5-224+4

= — = —44
2-3



Example 3 Find
2—x 2—x 2 x

@ lim ——pr—es () lim s () lim

Y —
im ——% &

r—4 (X —4}{.1' +E]



COMPUTING LIMITS: END BEHAVIOR

THEOREM. Suppose that
Iim f(x)=L; and lim g(x) =

X— 4w X— 4o
That is, the limits exist and have values L, and L, respectively. Then,
(@ lim [f()+g®]= lim f(x)+ lim g(x) =L+ L,

X — 4 X — o X— 4=
(b)  lim [f(x)—g(0)]= lim f(x)— lim g(x)=L;— L
(c) Igmx [f(x)g(x)] = (xgmx f(x)) (Iﬁﬂgxgix}) = L,L
lim f(x)
. f(l'} L xX— -+t L LI .
(d) xl_lﬂx o) linl e - Ly provided L, #£ 0
(e) 111141 v f(x) = n .linl f(x) = {’/L_, provided Ly > 0 if n is even.

Moreover, these statements are also true if x — —oe.



REMARK. Asinthe remark following Theorem results (a) and (¢) can be extended to
sums or products of any finite number of functions. In particular, for any positive integer n,

X— 42 X — oo X —» —oo X —» —0oo

lim (f(x))" = ( lim f{IJ) lim (f(x))" = ( lim f{IJ)

Also, since lim, _, . .(1/x) = 0, if n is a positive integer, then

1 1y 1 Y
lim—:(lim —):U lim —:(lim —) =0
x— 4= xn X—+4m X x——oo N X——oo X



LIMITS OF x" AS x — +oo

Iim x"=4w, n=1,273,... -0, n=1273,5,..

e S

!

|
:
.I_
b
~
|

2,4,6, ..




LIMITS OF POLYNOMIALS AS

X — o0
lim (cg +cx+ -+ f,,x") = lim ¢, x"
lim (cu +copx+ -0+ r:,,x") = lim c,x"
e S X — 4o
Example
lim (7x° —4x° +2x —9) = lim 7x° = —w

lim (—4x® +17x° =5x 4+ 1) = lim —4x® = —=

X —% —0IC X — —0IC



LIMITS OF RATIONAL FUNCTIONS
AS x — +oo

3x+5
Example Find lim .
P el

Solution. Divide the numerator and denominator by the highest power of x that occurs
in the denominator; that is, x! = x. We obtain

3x+5 . xG+5/x) . 3+5/x Jim 3 +5/x)

lim = lim = lim = —
x—+m by —8 r—o+ex(6—8/x) r—+=6—8/x _]ml (6 —8/x)
lim 34+ lim 5/x 345 lim 1/x
L X —= oo X— 4 _ X — 4o
lim 6 — lim 8x 6—8 lim 1/x
X — oo X— 4o X — 4+
B 34+(5-0) B 1

6—(8-0) 2 <



Example 4 Find

.
dx- — x

I
R S

Solution (a). Divide the numerator and denominator by the highest power of x that occurs
in the denominator, namely x*. We obtain

o 4xT—x o x34/x = 1/x%) o 4/x —1/x?
lim = lim = lim
x—»—w2x3 =5 x—o—= x3(2-=5/xY) x—>—w 2 —=5/x3
. 2
Jim @/x =120 4000 0

im 2—5/x>) 2—(5-0) 2

X— —0o



5x° —2x2 + 1
(b) lim = T
x>—»  3x +5

Solution (b). Divide the numerator and denominator by x to obtain

5x3 —2x2 41 5x2 —2x + 1
im 2 T im 2 +Hlx

x——o 3Ix+5 x— —x 3+45/x
where the final step is justified by the fact that

| 3
5x2 —2x—> 4w, ——0, and 34 =—3
X X

ds X —» —o0,



LIMITS INVOLVING RADICALS

3x+5
Example 5 Find lim d £

x—+= | 6x — 8

Solution.
. "3/3x+5 ‘_:.,/1, 3x +5
itV 6xr — 8 Vit 6x — 8

3/ 1

2

Example 3



Example 6 Find

. oVxr42
(a) lim

x—+w 3x — 6

Solution (a). As x — +«, the values of x under consideration are positive, so we can
replace |x| by x where helpful. We obtain

o Vx2+2 . Vx2+2/|x]| - Vx2+2//x2

X— 4= 3x—6 r—>+.c (3x—6)/|\f| 1_1"*'1 (3\7-—6)/.\?

1 +2/2 [lim v1+2/x?
_ llm _ .t—~>.+x
x—>+= 3 —6/x lim (3 —6/x)

X— 4=

i 5| (lim 1) + (2, 1m 1)
Jim 3-6/x) (-rl_i’r51rx3)—(6 lim l/x)

X— 4o
V1+@2-0) _ 4

3—(6-0) 3




-
242
(b) lim il

x——x= 3x —6

Solution (b). As x — —oo, the values of x under consideration are negative, so we can
replace |x| by —x where helpful. We obtain

. *».fI1+2 . Va2 +2/x| . VxZ+2/vx?

1171 1171 1111

x——= 3x —6 r——= (3x —6)/|x] r—-=3x —6)/(—x)
V142/x2 1

I I —_— —
T e 3+ 6/x 3 <




Continuity

DEFINITION A function is continuous at a number a if

. f(a) is defined (that is, a is in the domain of f)
2. lim f(x) exists

X—rd

3. lim f(x) = f(a)

X—*

THEOREM. Polynomials are continuous everywhere.

THEOREM. A rational function is continuous at every number where the de nominator is nonzero.




Example Determine whether the following functions are continuous at x = 2.

2 2
2’ x°—4 x°—4
f(x}:i_;, g(x) = x—2" X #2 hix)=4{ x—2~ X 72
3, I=2, 4, I:Z
IE—
lim f(x) = lim g(x) = lim A(x) = lim — lim (x +2) =4
x—2 x—2 x—2 x—2 X — x—2




b

y = flx)

X
| I | I -

|
|
|
|
|
|
2

The function f i1s undefined at x = 2,

and hence 1s not continuous at x = 2

x> —4
2
gx)y=3 x—2 *7
3 x=2
A Y
B y=g(x)
____l
3/;
|
4.
- | .
I R T B
»
2

The function g is defined at x = 2,
but its value there 1s g(2) = 3,

hence,

g 1s also not continuous at x = 2



2
x-—4

hix) =4 x—2

-
L
I

B
-
1
o

The value of the function h at x = 21s h(2) = 4,

h 1s continuous at x = 2

I. fla) is defined (that is, a is in the domain of f)
2. lim f(x) exists

X—=dl

3. lim f(x) = f(a)

X—=dd




Show that there is a root of the equation 413 _ EIIE 1+ 3y —2=1

Let

f(x) =4x" — 6x" + 3x — 2.

We are looking for a solution of the given equation, that is,
a number c between 1 and 2 such that
fle) = 0.

between 1 and 2

f)=4—-6+3—-2=—-1<0

fl2)=32-24+6—-2=12=0
Thus f(1) < 0 < f(2);

Now f ( X) is continuous since it is a polynomial,

So is, a number ¢ between 1 and 2 such that there is a root at it



SOME PROPERTIES OF CONTINUOUS FUNCTIONS

THEOREM. [If the functions f and g are continuous at c, then
(a) f + g is continuous at c.
(b) f — g is continuous at c.
(c) fg is continuous at c.
(d) f/gis continuous at c if g(c) # 0 and has a discontinuity at ¢ if g(c) = 0.



THEOREM. A rational function is continuous at every number where the de-
nominator is ROnzero.

Example 3 For what values of x is there a hole or a gap in the graph of

2 -9

= ?
’ x2—-5x+6

Solution. The function being graphed is a rational function, and hence is continuous at
every number where the denominator is nonzero. Solving the equation

2 —=5x4+6=0

yields discontinuities at x = 2 and at x = 3. <



LIMITS AND CONTINUITY OF TRIGONOMETRIC FUNCTIONS

Iimsinxy =sine and hm cosx = cosc

X—*C X—C




THEOREM. If ¢ is any number in the natural domain of the stated trigonometric
function, then

Iim sinx = sinc lim cosx = cosc lim tanx = tanc
X —=C X —= X —=C
Iim cscx = csc e Iim sec x = secc lim cotx = cote
X—C X —= X—=C

Example 1 Find the limit

) (J:2 — l)
lim cos
x—1 X — l

Solufion. Recall from the last section that since the cosine function is continuous every-

where.

]irnI cos(g(x)) = cos( lirnI g(x))

provided lim, _, ; g(x) exists. Thus,

21
lim cos (I ) = lim cos(x + 1) = cos (limI (x + l}) = cos 2 <1

x—1 X — l r—1 X —



THEOREM.

. sInXx
(a) lim = ]
xr—0 X
AV _
| _ sinx
Y=z
__I__I_,l-""l’-l-( | | .
-2 - 2
. SINX
| = ]
ot S

| — cosx
(b) lim =
x—0 X
AV
l —cos x
-y =
—Elrr"'lﬁa.l___l..f'l";m .
- — 2n
l —cosx




Proof (b). For this proof we will use the limit in part (a), the continuity of the sine function,

and the trigonometric identity sin® x = 1 — cos? x. We obtain
.1 —cosx ) l —cosx 1+ cosx ) sin’ x
lim = lim : = lim
x—0 X x—0 X | 4+ cosx r—=0 (1 4+ cosx)x

‘ SIM 0
_ ( g smx) ( o sinx ) — ) (_) 0 1
r—0 X xr—=01 4 cosx 1 + 1

Example 2 Find

in 20 in 3
(a) lim (b) lim — (c) lim ——

r—0 X d—1 H x—0 sIn 5x




Solution (a).

~ tanx ) SN X |
Iim = lim ( : ) = (1) =1

r—0 X x—=10 X COS X

Solution (b). The trick is to multiply and divide by 2, which will make the denominator
the same as the argument of the sine function [ just as in Theorem 2.6.3(a)]:

sin 26 sin 26 sin 26
lim o—— = lim 2+ —— =2 lim —
g —0 H 2 ZH 8—=0 219
Now make the substitution x = 26, and use the fact that x — 0 as & — (). This yields
sin 26 sin 28 SIN X
lim = 2 lim — 2 lim =2(1) =2
a—=0 @ -0 20 x—0 x

Solution (c).

sIn 3x SIN 3X
~ sin3x , X _ T3y 3.1 3
lim — — lim — = lim . = = — =7
x—0 s1nSx r—0 sin Sx x—0 sin Sx 5-1 5

X S5x



Derivatives and rates of change

DEFINITION The tangent line to the curve y = f(x) at the point Pla, f(a)) is
the line through P with slope

f(x) — fla)

m = lim

X—d X — il




DEFINITION The derivative of a function f at a number a, denoted by f'(q), is

f'(a) = lim fla+h) —fla)

h—0 h

EXAMPLE  Find the derivative of the function f(x) = x* — 8x + 9 at the number a.



fla + h) — fla)

fla) = lim h
_Hm[{a+h}3—8(ﬂ+h}—|—9]—[a3—Ea—l—'}]
h—0 h
_Hmﬂz-l-lﬂh-l-hz—ﬂﬂ—3h+9—£12-|—3ﬂ—9
h—0 h
~ 2ah + h* — 8h _
= lim = lim (2a + h — 8)
h—=0 h h—s)

= 2a — 8



DERIVATIVE NOTATION

émm — )

d
d—[f(l)] — ff(l?n)
X

X=AQ




Find the derivative with respect to x of f(x) = x> — x.

fl(x) = 3x* — 1

—x]|  =3(1")—-1=2,

=1




TECHNIQUES OF DIFFERENTIATION

THEOREM. The derivative of a constant function is 0, that is, if ¢ is any real
number, then

d AY
E[E‘]—U

Example i[S] -0
dx

Y =

- ————



THEOREM (The Power Rule).

If n is any integer, then — [IH ] — B Iﬂ—l
dx
Example
Tl=st Tl=1a0 =1, =
i[r'g]= 9x—9-1 — _gy—10




THEOREM. [If f is differentiable at x and c is any real number, then cf is also
differentiable at x and

j—x[cf(x}] _ cé[f(x)]

Example
d

dx

[4x%] = 4i[.xg] = 4[8x"] = 32x’
dx

i_lz__ilz__ 11
d,x[x]_( l)dI[I]_ 12x



THEOREM. [If f and g are differentiable at x, then so are f + g and f — g and

d d d
—[f() +g()] = T [f()] + —[g(x)]

d d d
E[f(l} —g(x)] = E[f(f)] - E[E(I}]

Example
d d d
E[ﬁ + x?%] = E[f‘] + E[f] — 4x° 4+ 2x
d d d
—[6x" —9] = —[6x''] — —[9] = 66x'" — 0 = 66x "

dx dx dx



THEOREM (The Product Rule).

If f and g are differentiable at x, then so is the product f-g, and

d d d
d—[f(.r)g(-r)] = fx)—[g(x)] + gx)—[f(x)]
X dx dx

The product rule can be written in function notation as

(f-8) =fg+gf



Example Find dy/dx if y = (4x* — 1)(7x° + x).

Method 1. (Using the Product Rule)

dy - i 2 3
E_dx[@x D(7x” + x)]

d d
= (4x? = D)—[Tx? + x]+ (Tx° + x)—[4x* — 1]
dx dx

= (4x? — DRIx*+ 1)+ (7x° + x)(8x) = 140x* — 9x% — 1
Method II. (Multiplying First)
y = (4.?‘:E — l}(?.x3 +x) = 28x° —3x° — x
Thus,

dy d
d—} = ——[28x° = 3> — x] = 140x* — 927 — |
X X



THEOREM (The Quotient Rule).

If f and g are differentiable at x and g(x) # 0,
then f/g is differentiable at x and

d d
d [f(x)] E(I)E[f(-’f}]—f(x)a[g(x)]

dx | g0) |~ [g(x)]2

The quotient rule can be written in function notation as

(i)’_ g-f' —f¢
g g’




Example

x* —1

x4+ 1

f(x) =

-2 - (x4+1)i[ﬁ—1]—(.1:3—1)i[x4+1]
d_}‘_ d | x”—1 dx dx

dx_ﬂ_f‘-l—l_ (.1:4+1)2
l.f.]::4 + 1)(2x) — {::.:2 — 1)(4.1:3}

—2x

(x5 1)’
4x3 + 2x 2x(x* = 2x2 = 1)

(v + 1)’ (v + 1)’



HIGHER DERIVATIVES

o ff=U = =", ="

Example If f(x) = 3x* — 2x° + x? —4x + 2, then
fl(x) =12x° —6x*4+2x —4
f"(x) =36x%—12x+2
(x) =72x — 12
FP(x) =172
fO) =0



Successive derivatives can also be denoted as follows:

J'x) = ;;I[f(-x)]

, d T d 42 In general, we write
fr) =——| - [f(x)]] = 5 f()] B
: I
" ﬂ' dE d3 d.]i’”
o=zl [ﬂx)] el 100

dy d*y d’y dy d"y
dx dx? dx® dx*  dx"
or more briefly,

F."' rt H {-I'-'l} ’{;;}
} ? y ¥ y ? y : B | } y = oa o




DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

d d

— (sin x) = cos x — (csc x) = —csc x cot x
dx dx

d _ d

— (cos x) = —sin x — (sec x) = sec x tan x
dx dx

d d

— (tan x) = sec™x — (cot x) = —csc’x
dx dx



Example  Find f'(x)if f(x) = x*tanx.

fl(x) = x*- d—[tﬂnI] + tan x - d—[xz] — x?sec’x + 2xtanx
X X



SIN X

Example  Finddy/dxify = .
' 1 + cosx

d d
dy (1 4+ cosx) - E[sinx]—sinx- E[l + cos x|

dx (1 4+ cosx)?

(1 4+ cosx)(cosx) — (sinx)(—sinx)

(1 + cos x)*°

7 .
cosx + cos“x 4+ sin“ x cosx + 1 |

(1 4+ cos x)? " (14+cosx)?  1+4+cosx



Example Find y"(7/4) if y(x) = sec x.

y'(x) = sec x tan x

y'(x) =secx - —[tanx] 4+ tanx - —[sec x|
dx dx

— S€eCcXx - EEEEI lanx - secx lan x

— sec’ x + sec x tan” x
Thus.
v'(/4) = sec’ (/4) + sec(m/4) tan” (r/4)

= (V2 + (V2)(1)? =32



DERIVATIVE OF THE NATURAL EXPONENTIAL FUNCTION

EXAMPLE If f(x) = e* — x, find f'" and f".

F0) = (e = 1) = - (e")

['(x) = (E' — 1) = I(ff*"’}

d
dx

d
dx

E[EI)ZE‘
(x) =e" — 1
(1) = e*



The chain rule

THEOREM (The Chain Rule).  If g is differentiable at x and f is differentiable at
g(x), then the composition f og is differentiable at x. Moreover,

{fﬂg)x{l') — ff(g(x))gr{-t} then v = f{h‘] and
Alternatively, if
dy dy du
y= f(g(x)) and u = g(x) dx - du * dx

d
—[f(g(:N] = f(gx)) - g'(x)
d_l ”"-—-..1%__—_-"

q"-|---.,".__,.—l--"'

Derivative of | Derivative
the outside of the inside
evaluated at

the 1nside




lf(gix )= fl(g(x)) - g'(x)

”"-h_-..,'_._,.——-l-"'"-_-..“_,—l-"

Dernvative of | Derivative
the outside of the inside
evaluated at

the 1nside

For example,

dlﬂ{ > 4+ 9)]
— [cos(x* —
dx

. 9
—sin(x~ +9)

l"_.__-I.,,_l-"'
Derivative of the
outside evaluated
al the inside

2x

"—.l_._‘-"

Dervative
of the 1nside



d
—[f(gx)] = fl(gx)) - g'(x)
l‘:j_l — —

”"--—..1‘_,—--"

Derivative of = Derivative
the outside of the inside
evaluated at

the 1nside

(
—_[lzmE x]=— [{tan _1:)2] = 52131‘111 + ESECEI] — 2tan x sec” x

X X o > o
Derivative of Denivative
the outside of the 1nside

evaluated at
the inside



IMPLICIT DIFFERENTIATION

An equation of the form y = f(x) is said to define y explicitly as a function of x because

the variable y appears alone on one side of the equation. Flx) = x—1
x4 1

12+y2=1 yx+vyv+1=ux

define vy implicitly as a function of x.



Example 1 Use implicit differentiation to find dy/dx if 5y> 4+ siny = x°.
d d
—[5v2 — — [x?
dx[ y-+siny] = o [x7]

d d

55[}’2] + E[Siﬂ yl =2x

The chain rule was

d d
5 (Zyd—y) + (cos y}—y = 2x used here because

v 15 a functon of x.

dy dy
10y— + (cos y)— 2x

dx

dy 2x
dx 10y 4 cosy

Solving for dy/dx we obtain



Example Find the slopes of the curve y* — x 4+ 1 = 0 at the points (2, —1) and (2, 1).

d d

— — 1] = 0

Ty = x 1] = (0]

d[E] d[]'d[ll ﬂlr[0]

d,:r:y de Cdx " dx
dy

2 1 =0

yd.t

dy 1

dx 2y



At(2,—1)wehave y = —1,and at (2, 1) we have y = 1, so the slopes of the curve at those

points are
dy 1 dy 1

dx |x= 2 dx =2 2

ALY




Roll’s theorem and the mean value theorem

THEOREM (Rolle’s Theorem). Let [ be differentiable on (a, b) and continuous
on la, bl. If f(a) = f(b) = 0, then there is at least one number c in (a, b) such that

f'(c) = 0.

Example The function f(x) = sinx has roots at x = 0 and x = 2m. Verify the
hypotheses and conclusion of Rolle’s Theorem for f(x) = sinx on [0, 27].

Solution. Since f is continuous and differentiable everywhere, it is differentiable on
(0, 27) and continuous on [0, 2r]. Thus, Rolle’s Theorem guarantees that there is at least

one number ¢ in the interval (0, 277) such that f'(c) = 0. Since f'(x) = cos x, we can find
¢ by solving the equation cos ¢ = () on the interval (0, 27r). This yields two values for c,

namely ¢; = /2 and ¢; = 37/2 (Figure 4.8.2).






THEOREM (Mean-Value Theorem). Let [ be differentiable on (a, b) and continu-
ous on |a, b). Then there is at least one number c in (a., b) such that

f(b) — f(a)
b —a

file) =

B(b, f(b))




Example

(a)

(b)

Generate the graph of f(x) = (x>/4) + 1 over the interval [0, 2], and use it to deter-
mine the number of tangent lines to the graph of f over the interval (0, 2) that are
parallel to the secant line joining the endpoints of the graph.

Show that f satisfies the hypotheses of the Mean-Value Theorem on the interval [0, 2],
and find all values of ¢ in the interval (0, 2) whose existence is guaranteed by the Mean-
Value Theorem. Confirm that these values of ¢ are consistent with your graph in part (a).






Solution (a). The graph of f in Figure suggests that there is only one tangent line
over the interval (0, 2) that is parallel to the secant line joining the endpoints.

Solution (b). The function f is continuous and differentiable everywhere because it is
a polynomial. In particular, f is continuous on [(), 2] and differentiable on (0, 2), so the
hypotheses of the Mean-Value Theorem are satisfied with a = 0 and b = 2. But

fla)=fO)=1, f(b)= f(2)=3

j 3x? ’ 3¢?
fix) = 1 f(f)ZT
so In this case Equation (1) becomes
3¢ 3-1 ,
% = m or 3¢ =4

which has the two solutions ¢ = +2/+/3 &~ +1.15. However, only the positive solution
lies in the interval (0, 2); this value of ¢ is consistent with Figure



In general, an exponential function is a function of the form

f(x) =a"

where a 1s a positive constant. Let’s recall what this means.
If x = n, a positive integer, then

nm ——

a = d*d=* """ *d

My -
W

n factors



LAWS OF EXPONENTS If a and b are positive numbers and x and y are any real
numbers, then

. a"™ = a'a’ 2. at = 3. (") =a” 4. (ab)* = a'b”




Ya



INVERSE FUNCTIONS AND LOGARITHMS

the formulation of an inverse function given by

ffl) =y <= f(y=x

log x=y <= a' =x

log.(a*)

a

log,, x

X

X

forevery x € R

for every x = ()



LAWS OF LOGARITHMS If x and y are positive numbers, then
I. log (xy) = log_x + log,y

2. lﬂgﬂ(i) = log,x — log,y
y

3. log (x") = rlog,_x (where r is any real number)



the natural logarithm and has a special notation:

log,x =Inx

nx=y < e'=x

Ine = 1

In(e*) = x xe R In x
log,.x = ]

e = x x=0 na







INVERSE TRIGONOMETRIC FUNCTIONS

fflix) =y < fly)=x

. =1 . T T
siim- x =y <= siny=ux and _?E;'TE;E




EXAMPLE  Evaluate (a) sin"(%) and (b) tan(arcsin %)

SOLUTION
(a) We have

() =7

because sin(77/6) = 5 and /6 lies between — /2 and /2.

(b) Let # = arcsin 3, so sin 8 = 5. Then we can draw a right triangle with angle # as in
Figure 19 and deduce from the Pythagorean Theorem that the third side has length
V9 — 1 = 2./2. This enables us to read from the triangle that

tan(ar{:sin%) = tan 0 = ﬁ



DERIVATIVE OF THE NATURAL EXPONENTIAL FUNCTION

d
- (ef) =¢




DERIVATIVES OF LOGARITHMIC FUNCTIONS

1

dd
. (log, x)

xIna

d
o (In x) =

1

X

EXAMPLE Differentiate y = In(x” + 1).

SOLUTION To use the Chain Rule, we let u = x° + 1. Then y = In u, so

dy

dy du

ldu_

dx

du dx

u dx

1

P+ 1

(3x7)

3x°

x + 1




DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS

d . | 1

— (sin 'x) = —

dx ( ) V91— x?
d | 1
— (cos™ 'x) = ——

dx { ) N
d |

— (tan 'x) =

dx 1 + x°

d ]
— (csc~lx) = — ,

dx { ) x4/x* — 1
d l

— (sec” lx) = .

dx { ) x4/ x* — 1
d l

— (cot ™ 'x) = —

dx { ) ] + x



d
EXAMPLE Find — In(sin x).
dx

ownow d_ oLy
dx sin x dx sin x

COS X = cot x

EXAMPLE Differentiate f(x) = 4/In x.

SOLUTION This time the logarithm is the inner function, so the Chain Rule gives

) =" Ly = L1
f'(x) = 3(In x)~" dr(lnﬂ 2 /Inx x 2x+/In x




LOGARITHMIC DIFFERENTIATION

EXAMPLE  Differentiate y = xV".

SOLUTION | Using logarithmic differentiation, we have

Iny=1Inx"* = /x Inx

!

y |

W i e
—\/; x+(ln.x)2\/;

, 1 g In x (2 +Inx
)y = vl == —_— = x\' —_———
Y= 5 7 2/ e

SOLUTION 2 Another method is to write x¥* = (e™*)¥*:

d d

SN (x\:';) i s (e\? ln.\') - e\:‘I In x dLlr (\/; In x)

dx dx

~(2+Inx -
= XV 5 (as 1n Solution 1)
:;X



THE NUMBER e AS A LIMIT

e = lim (1 + x)"*

x—=()

If weputn = 1/x ,thenn — 9 as x — (" and so an alternative expression

l Il
e = lim (] — —)
f—=0 H




INTEGRATION

THE AREA PROBLEM. Given a function f that is continuous and nonnegative
on an interval [a, b], find the area between the graph of f and the interval [a, ] on the
xX-axis

AY

/

y = flx)




THE INDEFINITE INTEGRAL

DEFINITION. A function F 1s called an anfiderivative of a function f on a given
interval I if F'(x) = f(x) for all x in the interval.

1 .3

For example, the function F(x) = x~ is an antiderivative of f(x) = x2

, d
F'(x) = —[5x7] =x* = f(x)

3

However, F(x) = —:!..I 1s not the only antiderivative of f on this interval. If we add any

constant C to %3:3, then the function G(x) = %3:3 + C 1s also an antiderivative of f | since

d
Gx)=—[*+C]l=x"+0= f(x)
dx



The process of finding antiderivatives is called antidifferentiation or integration. Thus, if

d
ﬂ,—[F{IHZf{I) (1)
X

then integrating (or antidifferentiating) the function f(x) produces an antiderivative of the
form F(x) + C. To emphasize this process, Equation (1) 1s recast using infegral notation,

f f(x)dx = F(x) 4+ C 2)

where C is understood to represent an arbitrary constant. It is important to note that (1) and
(2) are just different notations to express [hE same fact. For example,

fxz dx = %f + C 1s equivalent to [317 ]



The differential symbol, dx, in the differentiation and antidifferentiation operations

d
El] and f[ |dx

d
EIFU)JZJ‘"U) and ff[f}dsz{f]+C

are equivalent statements.



DERIVATIVE

EQUIVALENT

FORMULA INTEGREATION FORMULA
d ;3 2 2 3
Er[I]=h flr dr=x"+0C

d \r ] 1

R fzﬁ
i[tanr]=aeczr fﬁEEEIdI=LEIJ1I+C
i[ﬂjﬂ] = %H”I f%umdu — '+ C







DIFFERENTIATION FORMULA

INTEGRATION FORMULA

d
dx

r+
2] e

(x] = 1

i [sin x] = cos x

d [—cos x] = sin x

dx

d [tan x] = sec” x
dx

d [—cot x] = csc”x
dx

[sec x| = secxtanx

dx
d
— [—cscx] = cscxcotx
X

fdx=.r+E

Ir-l-l
xdy = +C (r£-1)
r+ 1

cosxdyx=smx+C

sinxdy=—-cosx+C

seciyxdr=tanx+C

csel xdr = —cotx+C

secxtanxdy=secx+ C

cscxcotxdy = —-cscx+ C

— e e




PROPERTIES OF THE INDEFINITE INTEGRAL

THEOREM. Suppose that F(x) and G(x) are antiderivatives of f(x) and g(x),
respectively, and that c is a constant. Then:

(a) A constant factor can be moved through an integral sign; that is,

fr:f{x) dx =cF(x)+ C

(b) An antiderivative of a sum is the sum of the antiderivatives; that is,

f[f(x) +gx)]dx=F(x)+G(x)+C

(¢) An antiderivative of a difference is the difference of the antiderivatives; that is,

f[f(x) —g)]dx =F(x) —Gx)+C



Example  Evaluate

[a)fﬂlccns.x dx (b]f{x+xz)d:c

Solution (a). Since F(x) = sinx is an antiderivative for f(x) = cosx
obtain

f4cnsxdx :4fcnsx dx =4sinx + C

Solution (b).
., ¥ X
{x+,1:“)dx:fxdx+fxzdx = E+?+C



Example  Evaluate

12 — 24
(ﬂ}f COS X (b]f i
sin> 1: 4

Solution (a).

COSs X 1 cosx
f a'J:_f : : dx:fc:scxcﬂtxdx:—{:scx + C

"'":l[l X SINX SIN X

Solution (b).

E_ 4
f‘f 2 d::f(l-z)dr:f(r?—zm
I




INTEGRATION BY SUBSTITUTION

d
d—[F(g(I))] = F'(g(x))g'(x)
X

which we can write in integral form as

f F'(g(x))g'(x)dx = F(g(x)) +C

or since F 1s an antiderivative of f,

ff(g(x))g’(x)dx = F(gx))+C



Example 1 Evaluate f (x> + 1) . 2x dx.

Solution. letu = x*+ 1, then du/dx = 2x, du = 2x dx. Thus,

51 2 151
f.[,:cl‘ur1)5‘“-2;{.41=f.w5“ﬁm=‘;—1+C_(“J‘T :1 " ¢



Example 2

fsin(.r+9)d.r=/sinudu=—cnsu-l—C=—ms(.:c+9}+C

Hu=x+9
du=1-dx =dx
24 _824
f(x—ﬁ)ﬂd;r:=[uﬂdu=z—4+(f— & 24) + C
H=x—28

du=1-dx =dx



Example 3 Evaluatefcas Sxdx.

Solution.

1 1 1 1
fcusixdx:f(cnsu) : gdu = gfcnsudu= gsinu+C= 55in5.r+C'

= 5x

du =5dxordx = %du



Example 4

d 3d 3 3 /1 4
f I 5=/ ;{=3fu_5du=——H-4+C=——(—I—3) + C
(Lx —8) u 4 4\3

_ 1.
= 3zx ]

du = % dx ordx = 3du




U= X
du =mdx ordx = -_l; du

1

nxdx = —— +

1

X

/ sec wx dx

| | |
= ——+4+ —tanu+C=——+ —tannx + C

X

T

X

T



Example 6 Evaluate f sin” x cos x dx.

Solution. 1f we let u = sin x, then

du
— =cosx, SO0 du=cosxdx

dx

Thus.

3
fﬂinEICDSIdI=fHEdH= Ii+C'_




Example 7 Evaluate cOs VX dx.

Jx
Solution. 1f we let u = /x, then
du | 1

]
— sO du = dx or 2du—= —dx

dx — 2/x’ 2/x Jx

Thus,

COS +/x
NE

dx = | 2cosudu =2[cnsudm=251uu+c — 2sina/x + C



Example 8 Evaluate f t+V/3 — 5t5dt.

Solution.
1 1
fﬁ?/:&-ﬁﬁd: - _Ef I du = —E[um’du
u =3 -5
du = —25t*dt or — & du = t*dt
1 H4s’3 3

— C=—" (3-55*41C
254f3+ 100( )




Example 9 Evaluate f x*vx — ldx.

Solution. Let
u=x—1 sothat du = dx
From the first equality in (4)
=+ 1) =u"+2u+1
so that

fxzxfx— l dx =[(H2+2u+l}~/ﬁdu =f{u5m—|-2u3m-|—u”3)du

_ 2,72 4 4,52 4 2 3/
= su"" + 3 + 3 +C

S =D+ =D+ 2 - DY+ C



Example 10 Evaluate/cnijdx.

Solution. The only compositions in the integrand that suggest themselves are

cos’ x = (cos .:::)3 and cos’x = {cnsx)z

However, neither the substitution # = cos x nor the substitution u = cos” x work (verify).
Following the suggestion in Step 1(c), we write

S
fcnsj.xd;.: =[c05“x cosx dx

. . . .
and solve the equation du = cos x dx for u = sinx. Since sin” x + cos
have

fcnsj.xd;.: =[c053x cosx dx = f{l — sin’x) cosx dx = f{l —u?)du

H3

—u— —+C=sinx —-sin’x +C
I 3 -+ Sin x 3'f;m X 4+

2x = 1, we then



b
Jf(x)dsz(x)+c f f(x)dx = F(b) — F(a)

DEFINITION.
(a) If ai1sinthe domain of f, we define

f” f(x)dx =0

(b) If f 1sintegrable on |a, b], then we define

f f(x)dx = — f(.:t)d.:t



v = fl(x)

=

(I C b >
b C b
f Fox)dx = f o) dx + f £x) dx



2
Example Evaluate f x| dx.
~1

Solution. Since |x| = x when x > 0 and |x| = —x when x < 0,

2 0 2
f |.I:|d.r=f |.r|d.r+[ x| dx
—1 —1 0
0 2
=f (—I)d.1:+f xdx
~1 0

x27" _|_,:I:1 1—1+2—5
o2 2, 2




2
Example 1 Evaluate f xdx.
|

-2

2
1 1 1 3
dx = —x°| ==2) = =(1)’=2—- - ==
f]xx ?| =303 > =3

Example

9 9 9 9
2 2 52
f ﬁdx:fﬁd,x] =fx”ﬂd,x] = -.;:3”3] =ZQ27-1) ==
] 1 ] 3 | 3 3



9 9
fﬁﬁﬂ:f ¥ dx = 2x ”E] = 2(2187 — 128) = L8 = 5882
4 4 4

/2 - 1 1 |
£ ?d.}f: _ o8t ——[cns(%)—cnsﬂ]:—#ﬂ—l]:g

/3
f secxdx = tanx _tan(3)—tan0 \/_ 0=\/§
0

40

/4

/4
f secxtanx dx = sec.:r;] — sec (%) — sec( ) V2 -42=0

/4 —m/4






DUMMY VARIABLES

y=flx)

b
A=ff(x)dx

f(r) dt




THEOREM (The Fundamental Theorem of Calculus, Part2). If [ is continuous on an

interval I, then f has an antiderivative on I. In particular, if a is any number in I, then
the function F defined by

F(x}:f f(t)dt

is an antiderivative of f on I; thatis, F'(x) = f(x) for each x in I, or in an alternative
notation

d X
— [ f f(r}dr] — )

Example Find

i L o]



Example Find

il




2
evaluate f x(x? + 1) dx.
0

Solution by If we let
u=x>+1 sothat du =2xdx

then we obtain

1 4 2 14
fx(x2+1)3dr=§fu3du=%+(f=(x Jgr L ¢

Thus,

2 2 2 4
f x(x2 4 1)dx = [/x(x3+1)3dx] _ &+ ]
0 x=0 8 x=0




Example  Evaluate

/8 5
(a) f sin® 2xcos2xdx  (b) f (2x —5)(x —3)’ dx
0 2

Solution (a). Let

so that du = 2cos2x dx (CII‘ % du = cos 2x dr)

it = Sin2x
With this substitution,
if x=0, wu=sm0)=0

if x=7/8, u=sin(x/4) =1/J2

SO
i|“ﬁ

/8 1 1/vV2 1
f sin® 2x cos 2x dx = —f wdu = — -
0 2 Jo 2

R

1
—0 -
[6(«/5}'5 ] 96



Solution (b). Let

u—=x—3 sothat du = dx

This leaves a factor of 2x + 5 unresolved in the integrand. However,

x=u+3 s0o 2x—5=2u+3)—-5=2u+1
With this substitution,

if x=2, u=2-3=-1

if x=5, u=5-3=2

50

5 2 2
f(lx—S)(.x—S}gdx=f (2u+l}ugdu=f Qu'® + u”) du

1 -1

2

_|_

1

71! N 3 10 2 12 N 210
-+ o) =Gt i) -

11 10

_ 52,233 _ 4?42
110 110

11

10

)



Maximum and Minimum Values

DEFINITION A function f has an absolute maximum (or global maximum)

at ¢ if f(c) = f(x) for all x in D, where D is the domain of f. The number f(c) is
called the maximum value of f on D. Stmilarly, f has an absolute minimum at ¢
if f(¢) = f(x) for all x in D and the number f(c) is called the minimum value of f

on D. The maximum and minimum values of f are called the extreme values of f.

V4

v
AT |\J

_, ' fid)




If f(x) = x7, then f(x) = f(0) because x* = 0 for all x. Therefore f(0) = 0
1s the absolute (and local) minimum value of f. This corresponds to the fact that the
origin is the lowest point on the parabola y = x*.




THE EXTREME VALUE THEOREM If f is continuous on a closed interval [a, b].
then f attains an absolute maximum value f(c) and an absolute minimum value
f(d) at some numbers ¢ and d in [a, b].

ava

| 3
O0f a ¢¢ d ¢, b x

Va




FERMAT’S THEOREM If f has a local maximum or minimum at ¢, and if f'(c)
exists, then f'(c) = 0.

YA
(c. flc))
g @ 5(d)
| | T
0 C d X




271stwart



Acritical number

DEFINITION A critical number of a function f is a number ¢ in the domain of
f such that either f'(c) = 0 or f'(c) does not exist.

i7 EXAMPLE  Find the critical numbers of f(x) = x*°(4 — x).




L7 EXAMPLE  Find the critical numbers of f(x) = x*°(4 — x).

SOLUTION The Product Rule gives

3(4 — x)

fr[.l') __ IL‘“E[_]) 4 [4 _ I)(%I—E.fﬁ] = —I3f5 + 51335

_ —5x+34-x) 12— 8x
B 5x2/5 g2/

[The same result could be obtained by first writing f(x) = 4x*° — x*>.] Therefore
f'(x) = 0if 12 — 8x = 0, that is, x = 3, and f'(x) does not exist when x = 0. Thus the

.. 3
critical numbers are 5 and 0.

O



If f has a local maximum or minimum at ¢, then ¢ 1s a critical number of f.

To find an absolute maximum or minimum of a continuous function on a closed interval,
we note that either it 1s local [in which case it occurs at a critical number by (7)] or it occurs
at an endpoint of the interval. Thus the following three-step procedure always works.

THE CLOSED INTERVAL METHOD To find the absolufe maximum and minimum
values of a continuous function f on a closed interval [a, b]:

|. Find the values of f at the critical numbers of f in (a, b).
2. Find the values of f at the endpoints of the interval.

3. The largest of the values from Steps 1 and 2 is the absolute maximum value;
the smallest of these values is the absolute minimum value.




L1 EXAMPLE Find the absolute maximum and minimum values of the function

flx)=x"—3x" + 1 —=x=4

SOLUTION Since f 1S continuous on [—]g, 4], we can use the Closed Interval Method:
flx)=x*—3x"+1
f'(x) = 3x* — 6x = 3x(x — 2)

Since f'(x) exists for all x, the only critical numbers of f occur when f'(x) = 0, that is,
|

x = 0 or x = 2. Notice that each of these critical numbers lies in the interval (_j, 4].
The values of f at these critical numbers are

f0) =1 f(2)=-3
The values of f at the endpoints of the interval are

f(—2) =% @) =17



Comparing these four numbers, we see that the absolute maximum value is f(4) = 17
and the absolute minimum value is f(2) = —3.

Note that in this example the absolute maximum occurs at an endpoint, whereas the
absolute minimum occurs at a critical number. The graph of f 1s sketched in Figure 12. [

VA

201 y=x"—3x"+1

15+ |




EXAMPLE The Hubble Space Telescope was deployed on April 24, 1990, by the space
shuttle Discovery. A model for the velocity of the shuttle during this mission, from liftoff
at = 0 until the solid rocket boosters were jettisoned at 1 = 126 s, 1s given by

o(t) = 0.001302¢° — 0.09029¢* + 23.61¢t — 3.083

(in feet per second). Using this model, estimate the absolute maximum and minimum
values of the acceleration of the shuttle between liftoff and the jettisoning of the boosters.



SOLUTION We are asked for the extreme values not of the given velocity function, but
rather of the acceleration function. So we first need to differentiate to find the acceleration:

d
alt) = v'(t) = E (0.001302¢° — 0.09029¢* + 23.61t — 3.083)

= (0.003906¢* — 0.18058¢f + 23.61

We now apply the Closed Interval Method to the continuous function @ on the interval
0 =1 = 126. Its derivative is

a'(t) = 0.007812t — 0.18058

The only critical number occurs when a'(f) = 0:

0.18058
t = = 23.12
0.007812




Evaluating a(t) at the critical number and at the endpoints, we have
a(0) = 23.61 alt;) = 21.52 a(126) = 62.87

So the maximum acceleration is about 62.87 ft/s* and the minimum acceleration is
about 21.52 ft/s".



