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1- Introduction 

Focus of attention in many modern and practical 

fields is to obtain numerical results that can be 

extrapolated easily and used directly. The acceleration of 

scientific development and the growth of industries and 

reliance on scientific applications has increased the need 

to develop sports sections that deal with such cases. The 

most important of these branches is numerical analysis and 

mathematical programming. 

 

The numerical analysis is the science which aims to 

derive, describe and analyze the ways to obtain 

approximate solutions to mathematical problems That 

suffer from difficulty in solving using analytical methods. 

 

 

Often there are four reasons to use numerical 

analysis, namely: 

 

1- When the problem is difficult to solve with 

analytical methods such as: 

Algebraic equations of the fifth degree and above, 

such as 

56 4 33 1 0x x x x     
 

Non-linear algebraic equations contain some functions, 

such as 

xex x  cos 1 0  

Or finite Integrations of functions is difficult to evaluate 
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2-When the problem is given as a table of schedule 

resulted from the experience of certain, in this case we 

have only numbers, It is difficult, as an example,  to find 

an approximate value of the second derivative at   x = 0.2, 

for the function described in the following table 
 

0.5 0.4 0.3 0.2 0.1 x 
0.0625 0.0256 0.0081 0.0016 0.0001 y 

 

3-When the problem can be solved by analytical methods, 

but the result of the solution has some problems in 

calculating the numerical value, for example, partial 

differential equation 
2

2
U U
t x

 
 

  
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Where 
2 2, 0x t   

.   This solution is difficult to 

accurately calculate its value at a specified value of ,x t . 
 

 

4- Some analytical methods look like to be applicable in 

all situations. An example of this type: the solution of 

algebraic linear system of equations 
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𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1 

𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 = 𝑏2 

                                              . 

                                              . 

                                              . 

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 +⋯+ 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛 

 

 
2 5 11

3 3

4 2 6 41

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

  

   

  

 

using determinants or a reverse way. The accuracy of such 

methods weaken when the  system is large. 

 

 

The numerical analysis strongly requires a good 

knowledge of one of mathematical programming 

technique, which helps student to understand such topics 

of numerical methods and access to numerical solutions of 

the issues addressed by these methods and plot graphs 

illustrate the nature of these solutions and show the 

efficiency of the used numerical methods. 

 

Observers of the technological development in the field of 

computing and the software will find that many of the 

software used for scientific programming has been 

developed in the last two decades.  The newer versions of 

Visual Basic language Appeared as well as C and Fortran. 
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Newer  versions, and more efficient mathematical 

programming software also appeared such as Matlab, 

Mathematica,  Mathcad and Maple. These software is 

added to the existence of other languages such as Pascal, 

Java and the language of PHP. 
 
 

On the other hand, the Foundations of education in the 

Arab world gives great importance to the education of 

students at the level of pre-university basics of dealing 

with the computer, the Internet, and spreadsheet Excel.  

Excel is chosen as one of the programming methods to 

deal with most of what poses in this book. 

 

 

 

We add MATLAB to that as a language specialist in 

mathematical programming through which student may 

work exercises in the chapters of the book, after work 

Introduction adequate for this language. 
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Chapter 1 

 

Errors and Computer Computations 
 

1. Decimal Floating-Point Numbers 

 
Floating point notation 
It is similar to what is called scientific notation in high school 

algebra. For a nonzero number x, we can write it in the form 

𝑥 = 𝜎 ∙ 𝑥̅ ∙ 10𝑒 ................................................................................  (1) 
with e is an integer, 𝑥̅ = (𝑎1. 𝑎2𝑎3 … 𝑎𝑛)10 ,   1 ≤ 𝑥̅ < 10  and 

𝜎 = ±1.  Thus 

124.62 = (1.2462) 210 , with    𝜎 = +1 ,  𝑒 = 2 ,   𝑥̅ = 1.2462. 

 

The general form for the floating point notation for decimal 

numbers is  

𝑥 = 𝜎 ∙ 𝑥̅ ∙ 10𝑒 = 𝜎(𝑎1. 𝑎2𝑎3 … 𝑎𝑛)
10

10𝑒 

                       
with 𝑎1 ≠ 0, so that there are n decimal digits in the significand 

𝑥̅.  

On a decimal computer or calculator, we store x by instead 

storing 𝜎,𝑥̅ and e . 

We must restrict the number of digits in 𝑥̅ and the size of the 

exponent e.    

For example, on a Nokia 6610 Mobile calculator, the number of 

digits kept in 𝑥̅ is 8, and the exponent is restricted to −99 ≤ e ≤ 

99. 

 

 

 

 

 

 

 

 



Binary Floating-Point Numbers 

 

With MATLAB, we can define the corresponding binary 

numbers for integers from zero to ten. Here is the program: 

 

Results Code 
0101 
0110 
0111 
1000 
1001 
1010 

j = 

0000 
0001 
0010 
0011 
0100 

 

i = (0:10); 

j=dec2base(i,2) 

 

 
We now do something similar with the binary representation of 

a number x. Write 

𝑥 = 𝜎 ∙ 𝑥̅ ∙ 2𝑒 ................................................................... (2) 

 

with 1 ≤ 𝑥̅ < (10)2 

 and e an integer. For example, 

𝑥 = 11011.0111 

then =+1, e=4=(100)2  and x =(1.10110111)2 

so 

𝑥 = 1.10110111 ∙ 24
 

The number x is stored in the computer by storing the σ, 𝑥̅, and 

e. On all computers, there are restrictions on the number of 

digits in 𝑥̅ and the size of e. 

 

 

 

Floating Point Numbers Representation 
 

When a number x outside a computer or calculator is converted 

into a machine number, we denote it by 𝑓𝑙(𝑥). On an HP-

calculator, 

𝑓𝑙 (
1

3
) = (3.333333333)

10
10−1 

The decimal fraction of infinite length will not fit in the 

registers of the calculator, but the latter 10-digit number will fit. 
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On a binary computer, we use a similar notation. We shall 

concentrate on a particular form of computer floating point 

number, that called the IEEE floating point  standard, reffered 

to  Instite of Electrical and Electronics Engineers .  

 

In single precision, we write such a number as 
𝑓𝑙(𝑥) = 𝜎(1. 𝑎2𝑎3 … 𝑎24)2 ∙ 2𝑒 

The significand  2 24 2
1. ...x a a  immediately satisfies 

                       1  ≤ x  < (10)2= 210. 

  

The number x will be stored in the computer as follows:   We 

store σ as a single bit, the significand x   as 24 bits, and the 

exponent 8 bits , i.e. 

-(1111110)2 ≤ e <(1111111)2 

In actuality, the limits are 

-(126)10 ≤ e <(127)10 

 

In Double precision arithmetic, we have: 

−(1022)10 ≤ e < (1023)10 

𝑓𝑙(𝑥) = 𝜎(1. 𝑎2𝑎3 … 𝑎53)2 ∙ 2𝑒
 

 

 

 

 

 

 

The Machine Epsilon 
It is a widely used measure of the accuracy possible in 

representing numbers in the machine.   

 

It equal the difference between 1 and the smallest number 

representable in the machine arithmetic that is greater than 1 
 

Let y be the smallest number representable in the machine 

arithmetic that is greater than 1.    

 

The machine epsilon is η = y − 1. 

 

 



 

 

The number 1 has the simple floating point representation 

  0

2
1 1.0...0 2

 
What is the smallest number that is greater than 1?  It is 

 23 0

2
1 2 1.0...01 2 1  

 
and the machine epsilon in IEEE single precision floating point 

format is 

=2-23=1.19x10-7 

This mean that the number 
241 2  can not be represented 

exactly in this format 
 

In Double precision arithmetic we have  

=2-52=2.22x10-16 

 

 

 

2. Rounding And Chopping 
Let us first consider these concepts with decimal arithmetic.   

We write a computer floating point number z  as 

𝑧 = 𝜎 ∙ 𝑥̅ ∙ 10𝑒 = 𝜎(𝑎1. 𝑎2𝑎3 … 𝑎𝑛)
10

10𝑒
 

 

with 𝑎1 ≠ 0, so that there are n decimal digits in the significand 

𝑥̅ = (𝑎1. 𝑎2𝑎3 … 𝑎𝑛)
10

 .  

Given a general number 

                 
𝑥 = 𝜎 ∙ 𝑥̅ ∙ 10𝑒 = 𝜎(𝑎1. 𝑎2𝑎3 … 𝑎𝑛 … )

10
10𝑒

 

, 𝑎1 ≠ 0 

we must shorten it to fit within the computer. This is done by 

either chopping or rounding.  
 

The floating point chopped version of x is given by 
𝑓𝑙(𝑥) = 𝜎(𝑎1. 𝑎2𝑎3 … 𝑎𝑛)1010𝑒 

where we assume that e fits within the bounds required by the 

computer. 

 

For the rounded version, we must decide whether to round up 

or round down. A simplified formula is 
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𝑓𝑙(𝑥) = {

𝜎(𝑎1. 𝑎2𝑎3 … 𝑎𝑛)1010𝑒 ,                                   𝑎𝑛+1 < 5

𝜎[(𝑎1. 𝑎2𝑎3 … 𝑎𝑛)10 + (0.00 … 1)10]10𝑒 ,   𝑎𝑛+1 ≥ 5
 

 

The term (0.00 … 1)10  denotes 10−(𝑛−1) = 10−𝑛+1 giving the 

ordinary sense of rounding with which you are familiar.  
 

 

 

 

 

Chopping/Rounding In Binary 
 

Let    𝑥 = 𝜎(1. 𝑎2𝑎3 … 𝑎𝑛 … )22𝑒  

with all , 2,3,...,ia i n  equal to 0 or 1. Then for a chopped 

floating point representation, we have 
𝑓𝑙(𝑥) = 𝜎(𝑎1. 𝑎2𝑎3 … 𝑎𝑛)22𝑒 

For a rounded floating point representation, we have 

𝑓𝑙(𝑥) = {

𝜎(𝑎1. 𝑎2𝑎3 … 𝑎𝑛)22𝑒 ,                                   𝑎𝑛+1 = 0

𝜎[(𝑎1. 𝑎2𝑎3 … 𝑎𝑛)2 + (0.00 … 1)2]2𝑒 ,   𝑎𝑛+1 = 1
 

 

 

 

Example 1: 

[Q32]  Let 𝑥 > 0 has been represented using a positive binary 

floating-point representation with n bits of precision in the 

significand.   Assume that chopping  is used in going from a 

number x outside the computer to its floating-point 

approximation 𝑓𝑙(𝑥), inside the computer 

(a) Show that  
10 ( ) 2e nx fl x      

 (b( Show that  x ≥ 2e and use (a) to show 

                     
( ) 12

x fl x n

x

     

 

 



Answer: 

(a)the value of x is 

𝑥 = 𝜎(1. 𝑎2𝑎3 … 𝑎𝑛 … )22𝑒                              (1) 

Let n is the number of digits available in the computer 

precision.   The floating point reresentation for x is 

𝑓𝑙(𝑥) = 𝜎(1. 𝑎2𝑎3 … 𝑎𝑛)22𝑒                 (2) 

using chopping in going from a number x outside the computer 

to its binary floating-point approximation 𝑓𝑙(𝑥), inside the 

computer then 

                           𝑓𝑙(𝑥) ≤ 𝑥 

and hence  

   2 1 22 2

0 ( )

1. ... ..... 2 1. ... 2e e
n n n

x fl x

a a a a a 

 

   

  ( 1)
1 2 3 2

( 1)

0. ..... 2

2

e n
n n n

e n

a a a  
  

 

 


 

Since     1 2 30. 1n n na a a     

 

(b) We have from (a) 

                        
1( ) 2e nx fl x   

                                          
(3) 

Since    x ≥ 2e        and by division    

1( ) 12

2
2

e n

e

x fl x n

x

    
                         (4) 
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2- Error Measurements 

 
Basic Definitions 

Let XT denote the true value of some number, usually unknown 

in practice; and let XA denote an approximation of XT. 

 

E(XA )=XT - XA ,                     

AE(XA)= |XT - XA|  

 

Rel(XA)= |XT - XA|/XT  

 

Example(1): 
XT ==3.14159265,    XA=22/7=3.1428571 

Then 
E(XA )= -22/7=3.14159265-3.1428571=-0.00126 

Rel(XA)= =-0.00126/3.14159265=-0.000402 

 
Example(2): 
 

Four students take four  distances to be measured . 

Their results are as follows  

 

 1 2 3 4 

F 100 20 200 400 

P 104 19 194 390 

Where f is the exact value and P is the measured value 

Which of them is the most accurate? 

 

 

 

 

 

 

 

 



Answer: 
The absolute errors are  

 

1 2 3 4 

4 1 6 10 

 

So the 2nd  is the best 
 

 

Taking the relative error 

 

4 3 2 1 

0.025 0.03 0.05 0.04 
 
 

Thus the 4th is the best  

Indeed the relative error is the best error measurement , since it 

takes into account the size of the exact solulion 
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Sources Of Error 
This is a very rough categorization of the sources of error in the 

calculation of the solution of a mathematical model for some 

physical situation 

 
A) Basic Errors 
 

Modelling Error: 

 As an example, if a projectile of mass m is travelling thru the 

earth’s atmosphere, then a popular description of its motion is 

given by 

 
with b ≥ 0. In this, r(t) is the vector position of the projectile; 

and the final term in the equation represents friction احتكاك. If there 

is an error in this a model of a physical situation, then the 

numerical solution of this equation is not going to improve the 

results 

 

 

 

programming errors:  

that often means programming errors.  They are often 

embedded in very large codes which may mask their effect. 

Some simple rules: 

 

(i) Break programs into small testable subprograms. 

(ii) Run test cases for which you know the outcome. 

(iii) When running the full code, look at the output, checking 

whether the output is reasonable or not. 

 

 

Observational Error:  

The radius of an electron is given by 
10(2.997925 ) 10 / sec,

0.000003

C cm



  


 



This error cannot be removed, and it must affect the accuracy of 

any computation in which it is used. We need to be aware of 

these effects and to so arrange the computation as to minimize 

the effects. 

 

 

Rounding/chopping Error: 

       This is the main source of many problems, especially 

problems in solving systems of linear equations. We later look 

at the effects of such errors. 

 

 

Approximation Error:  

This is also called “discretization error” and “truncation error”; 

and it is the main source of error with which we deal in this 

course.   Such errors generally occur when we replace a 

computationally unsolvable problem with a nearby problem that 

is more tractable computationally. 

 

For example, To evaluate 

 

𝐼 = ∫ 𝑒−𝑥2
𝑑𝑥

1

0

 

We usw the Taylor polynomial approximation 

𝑒−𝑥2
≅ 1 − 𝑥2 +

𝑥4

2!
−

𝑥6

3!
+

𝑥8

4!
 

 

Which contains an “approximation error”.    Thus the numerical 

integration 

𝐼 = ∫ [1 − 𝑥2 +
𝑥4

2!
−

𝑥6

3!
+

𝑥8

4!
] 𝑑𝑥

1

0

 

 

Can easily obtained, but it contains an approximation error 
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B) Consequent Errors 

 
Loss Of Significance Errors 

This can be considered a source of error or a consequence of the 

finiteness of  machine arithmetic.  It occurs when we substract 

an approximately equall two numbers. 

 

We begin with some illustrations. 

Example  Define 

                 ( ) 1f x x x x   
   

and consider evaluating it with an increasing positive values of 

x on a 3-digit decimal software which uses rounded arithmetic. 

The values of f (x): 

 
1x x x  

   1x x   x  1x   x  
1.58 0.158 3.162 3.32 10 

0.00 0.00 10.0 10.0 100 

 

 
For 4-digit decimal, we have: 

1x x x  
  1x x   x  1x   x  

1.547 0.1547 3.1623 3.317 10 

5.0 0.05 10.00 10.05 100 

2.0 0.02 31.62 31.64 1000 

0 0 100 100 10000 

 
We notice that the error is still small until the 16-digit decimal 

is reached, then the error become large. 

We can write 

 

𝑓(𝑥) = 𝑥[√𝑥 + 1 − √𝑥] 

= 𝑥[√𝑥 + 1 − √𝑥]
√𝑥 + 1 + √𝑥

√𝑥 + 1 + √𝑥
=

𝑥

√𝑥 + 1 + √𝑥
 

 

 

 

 

 



 

Then the function 

𝑓(𝑥) =
𝑥

√𝑥+1+√𝑥
                                         (2)  

is used with no loss of significance errors. 

Comparing (1) and (2), the previous two tables becomes 

 

 

Error 
1

x

x x  
   

1x x x  
   x  

0.13 1.45 1.58 10 

5.00 5.00 0.00 100 

 

 

Error 1

x

x x  
   

1x x x  
  x  

0.004 1.543 1.547 10 

0.012 4.988 5.0 100 

13.81 15.81 2.0 1000 

50 50 0 10000 

 

 

Using Excel, we have 

 

x 1x x x  
 

 1

x

x x  
 

 Error 

10 1.543471302 1.543471302 1.4386E-15 

100 4.987562112 4.987562112 3.2862E-14 

10000 49.99875006 49.99875006 1.0651E-11 

1E+8 5000.000056 4999.999988 6.8088E-05 

1E+9 15811.39077 15811.3883 0.00247045 

1E+10 49999.94417 50000 0.05583153 

1E+11 158115.2901 158113.883 1.40709731 

1E+12 500003.8072 500000 3.80724681 

1E+13 1578591.764 1581138.83 2547.06611 

1E+14 5029141.903 5000000 29141.9029 

1E+15 0 15811388.3 15811388.3 
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NOISE IN FUNCTION EVALUATION 

 

Whenever a function f (x) is evaluated, there are arithmetic 

operations carried out which involve rounding or chopping 

errors. This means that what the computer eventually returns as 

an answer contains noise. This noise is generally “random” and 

small. But it can affect the accuracy of other calculations which 

depend on f (x).  
 

For example, we  illustrate the evaluation of 
2( ) 4 4f x x x    

which is simply (x-1)3 and has only a single root at x=1. We use 

MATLAB with its IEEE double precision arithmetic and standard 

rounding. 

 

The following Figure contains the graph of the computed values of f(x) 

for 0≤ x≤ 2, Note that the graph of f(x) does not appear to be taken from a 

continuous curve, but rather, it is a narrow "fuzzy band" of seemingly 

random values. This is true of all parts of the computed curve of f(x), but 

it becomes evident only when you look at the curve very closely. 

 
Real plot of f(x) 

 

 

 

 

 

 

 

 

 

 



 

 

        
Numerical plot of f(x) 

 

 

 

Underflow And Overflow Errors 
 

Underflow Errors 

 
If we use numbers that are too small for the floating-point format 

will lead to underflow errors. 

The variable x which agrees underflow is set to be zero from the 

machine. The programer and the user needs to be aware of such 

errors.  This kind of error does not often stop the programm runnig. 
 

Programming Exercise 1: 

Use your favorite program to generate an underflow error on your 

computer, write a program to repeatedly divide by 1010 of a number 

x < 1 and print the result Eventually. you will exceed your machine's 

exponent limit for floating-point numbers. 
 

 

y =1.0000e-40 

y =1.0000e-160 

y =0 

y=0  

x=10e+19; 

for i=1 : 4 
 y=1/(x^i)^i^2 

end 

 
 

Overflow Errors 

 
If we use numbers that are too large for the floating-point format 

will lead to overflow errors. These are generally fatal errors on most 
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computers. With the IEEE floating-point format, overflow errors can 

be carried along as having a value of ±∞ or NaN, depending on the 

context. Usually an overflow error is an indication of a more 

significant problem or error in the program and the user needs to be 

aware of such errors. 

 

This kind of error often stops the programm runnig and give an error 

massage. 

 
Programming Exercise  

Use your favorite program to generate an overflow error on 

your computer, write a program to repeatedly square a number x 

> 1 and print the result Eventually. you will exceed your 

machine's exponent limit for floating-point numbers. 

 

 

y =1.0000e+20 

y =1.0000e+80 

y =1.0000e+180 

y  =  Inf 

x=10e9; 

for i=1 : 4 
 y=(x^i)^i^2 
end 

 
 

 

 

 

[Q33] Define  Loss of significant error, show how you can avoid it 

in the following cases( x close to zero ) 

[1]  
     1 ,  x is largef x log x log x  

.  

[2]  
3( ) 1 1f x x    

[3] 

4 2
( )

x

x
f x

 


 
[Q34] Use Tylor expansion to avoid  Loss of significant error in the 

following cases( x close to zero ) 

[1]   

 

 

 

 (a) 1( )
xe

x
f x

  (b) 
/2

3

log(1 )
( )

xx xe

x
f x

 
  

(c) 
3

sin( )
( )

x x

x
f x


 (d) 

sin( )

tan( )
( )

x x

x
f x


  



 

 

 

 

3. Error Propagation 

 
4.1 Propagation In Arithmetic Operations 

 
Example 

[Q35] Let xT , yT and ω denotes the true values for two numbers 

and the arithmetic operation.  Let also   xA , yA , w* are the 

machine values and arithmetic operation. 

 

Show that the process of rounding or chopping introduce a 

relatively small error into the copmuted value of xA w* yA. 

Answer  

 

Let ω denote arithmetic operation such as +, −, *,   or /.  Let xT , 

yT be the true values and xA , yA are the machine values 

including rounding or chopping error.   

 

 The term              E=xT ω yT -  xA ω yA   

is called  the propagated error; 

 

 

Now, let ω*  denote the same arithmetic operation as it is 

actually carried out in the computer, including rounding or 

chopping error.     

We want to obtain T Tx y  , but we  actually obtain Ax
 ω* Ay .  

The error in this operation is given by 

 

xT ω yT -  xA ω* yA  =[ xT ω yT -  xA ω yA] 

                                              + [xA ω yA -  xA ω* yA] 

The final term in the error introduced by the inexactness of the 

machine arithmetic. We may call it the machine error.  The first 

term is the propagated error. 
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the machine error is often known and bounded. This implies 

that the resulting error  depends on the the propagated error. 

When using IEEE arithmetic operation, we have 

 

 

 

 

xA ω* yA  = fl(xA ω yA  )                                              (1) 

This means that the quantity A Ax y  is computed exactly and is 

then rounded or chopped to fit the answer into the floating point 

representation of the machine. 

 

The formula (1) implies 
 

                      xA ω* yA  = xA ω yA  (1+ ε)                       (2) 

with some limits given for ε. Manipulating (2), we have 

 

                     Rel( xA ω* yA)  = - ε                                        
Thus the process of rounding or chopping introduce a relatively 

small error in the copmuted value.  

 

We now examine the propagated error for particular cases. 

 

 

Propagation In Summation and Subtraction 

 

For ω equal to − or +, we have 

[xT  yT] - [xA  yA]  =[ xT -  xA]  [yT - yA] 

Thus the error in a sum is the sum of the errors in the original 

values, and similarly for subtraction.  

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Example  

 

[Q36] Let xA = 1.36 and yA = 5.431 be correctly rounded from 

xT and yT, to the number of digits shown.  Then give a bound for 

the propagated error in the summation and division processes. 

 

Answer: 

xA = 1.36 and yA = 5.431  

0.005, 0.0005,
A T A T

x x y y     

or. equivalently, 

 
1.355 1.365, 5.4305 5.4315

T T
x y                      (1) 

xA = 1.36 and yA = 5.431  

For the operation of addition 

 

 

xA + yA = 6.791                                        (2) 

For the true value, use (1) to obtain the bounding interval 
1.355 5.4305 1.365 5.4315

T T
x y      

  6.7865 6.7965
T T

x y                          (3) 
To obtain a bound for the propagated error, subtract (2) from (3) 

to get 

   0.0045 0.0055
T T A A

x y x y       

 

With division,          1.36 0.25041
5.431

x A
y A

                   (4) 

Also, For the true value, use (1) to obtain the bounding interval 
1.355 1.365, 5.4305 5.4315

T T
x y                      (1) 

1.355 1.365
5.4305 5.4315

xT
yT

   

                       
Dividing the fractions and rounding to seven digits. we obtain 

0.24951 0.25131
xT
yT

                          (5) 
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To obtain a bound for the propagated error, subtract (4) from (5) 

to get 

0.0001 0.252256 0.0001
xT
yT

     

This technique of obtaining an interval that is guaranteed to 

contain the true answer is called interval arithmetic.  

 

 

It is a useful technique, and it has been implemented on 

computers. both using software and hardware. But for extended 

calculations, interval arithmetic must be implemented with a 

great deal of care or else it will lead to predicted error bounds 

that are far in excess of the true error.  

 

 

 
Propagation In Multiplication 
Example  

Lemma: 

[Q37]   Small relative errors in the values of xA and yA leads 

to a small relative error in the product xA yA. 

 

Proof: 

Consider first ω = *. Then for the relative error in  

*A A A Ax y x y , 

 
Write 

 

 
Then 

 



 (4) 
 

Since we usually have 

 
the relation (4) says 

 

Thus small relative errors in the values of Ax and Ay  leads to 

a small relative error in the product Ax
Ay .   

 

 Also, note that there is some cancellation if these relative errors 

are of opposite sign. 

Propagation In Division 

 
There is a similar result for division: 

 

 
Provided 

 

 
 
Propagation In Function Evaluation 

 
Suppose we evaluate a function 𝑓(𝑥) in the machine. Then the 

result is generally not 𝑓(𝑥), but rather an approximate of it 

which we denote by 𝑓(𝑥 ). Now suppose that we have a 

number 𝑥𝑇 ≅ 𝑥𝐴.  

 

We want to calculate 𝑓(𝑥𝑇), but instead we evaluate 𝑓(𝑥𝐴).  
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The error in this computed quantity is  

 

 ( ) ( ) ( ) ( ) ( ) ( )T A T A A Af x f x f x f x f x f x        

 

 

The quantity 𝑓(𝑥𝑇) − 𝑓(𝑥𝐴) is called the propagated error; and 

it is the error that results from using perfect arithmetic in the 

evaluation of the function. 

 

If the function ( )f x  is differentiable, then we can use the 

“mean-value theorem” to write 

 

 ( ) ( ) ( )T A T Af x f x f c x x    

 

for some c between 𝑥𝑇 and 𝑥𝐴. 

 

 

Since usually xT and xA are close together, we can say c is close 

to either of them, and 

 ( ) ( ) ( )T A T T Af x f x f x x x                  (1) 

 

Example 

[Q38] Consider evaluation 𝑓(𝑥)=a x , where a is a positive 

real number, approximate the propagated error.  Then 

evaluate the condition number for the computation 

and show how it affects in the accuracy. 

============== 
 

Answer 

Define     𝑓(𝑥)=a x 

 

Then (1) yields 

 

 
𝑎𝑥𝑇 − 𝑎𝑥𝐴 ≅ (log 𝑎)𝑎𝑥𝑇( 𝑥𝑇 − 𝑥𝐴) 

divide by 𝑎𝑥𝑇 



 
𝑎𝑥𝑇 − 𝑎𝑥𝐴

𝑎𝑥𝑇
≅ (log 𝑎)( 𝑥𝑇 − 𝑥𝐴) 

 

Multiply on 𝑥𝑇 up and down in the RHS 

𝑅𝑒𝑙(𝑎𝑥𝐴) = 𝑅𝑒𝑙(𝑓(𝑥𝐴)) ≅ 𝑥𝑇(log 𝑎)
𝑥𝑇 − 𝑥𝐴

𝑥𝑇
 

= 𝑥𝑇(log 𝑎) 𝑅𝑒𝑙(𝑥𝐴) = 𝐾 ∙ 𝑅𝑒𝑙(𝑥𝐴) 

 

 

with 𝐾 = 𝑥𝑇(log 𝑎).  

Note that if K = 
410  and Rel(xA) =

710
, then 

                                 310Ax
Rel b   

This is a large decrease in accuracy; and it is independent of 

how we actually calculate 𝑎𝑥 .  

 

Then number K is called a condition number for the 

computation. 

 

 
4. Stable and Unstable Computations 
 

In this section we introduce another idea that occurs repeatedly 

in numerical analysis:  

the different between numerical processes that are stable and 

those that are not. Closely related are the concepts of well-

conditioned problems and badly-conditioned problems. 
 

 

Numerical Instability 

We say that a numerical process is unstable if small errors  

made at one stage of the process are magnified in subsequent  

stages and  decrease the accuracy of the overall calculation. 

 

Example  

[Q39] Consider the sequence of real numbers defined 

inductively by 

0 11,  ,x x ⅓ ........  ..........(1.a) 

xn+1= 13
3

xn- 4
3

xn-1, n≥1................. (1.b) 
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Which has the solution                               

xn=  1
3

n
............................................. (2) 

check the validity of the solution.   Then discuss the stability of 

the solution. 

Answer 

 

we can check the validity of (2) as a solution of (1)  via 

Induction as follows: 

 

Equation (2) is obviously true for n = 0 and 1. If its validity is 

granted for n=k, then substituting from (2) in (1) we obtain 

 

   

   

 

1
13 134 1 4 1
3 3 3 3 3 31 1

1
131 4

3 9 3

1
1
3

k k

k k k

k

k

x x x


 





   

 



 

 

 

The solution of the recurrence formula 
x0=1, x1=⅓,  

            xn+1= 13
3

xn- 4
3

xn-1, n≥1 

is unstabe for two resons:  

1-Any error present in nx is multiplied by 13/3 in computing 

1nx  .   

Hence it propagates more than four times in each iteration  

2- the solution formula xn=  1
3

n
 becomes small and continues 

decreasing as n increases.   So the relative error compare to the 

increasing error become big. 
 

 

Excercises 
 
 

[Q40] Consider the identity 



               

21 cos

0

sin( )

x
x

x
xt dt




 
Explain the difficulty in using the right-hand fraction to 

evaluate this expression when x is close to zero. Give a way to 

avoid this problem. 

[Q41]   Consider the sequence of real numbers defined 

inductively by 

xn+1=100.01xn-xn-1, n≥1                       (1) 

Which has the general solution                               

                 xn=    1
100

100
nn

A B                            (2) 

Find the solution that satisfies the conditions: 

x0=1, x1=0.01,                                      (3) 

and then discuss the stability of the solution. 

 

 

 

 

 

 

 



Chapter 2 

  Solution of linear system equations 
Principle  of Linear System 
 

Systems of linear equations arise in a large number of areas, both directly in 

modeling physical situations and indirectly in the numerical solution of 

other mathematical models.  

 

These applications occur areas of the physical, biological, and social 

sciences. In addition, linear systems are involved in the following: 

optimization theory; solving systems of nonlinear equations; the 

approximation of functions; the numerical solution of boundary value 

problems for ordinary differential equations, partial differential equations, 

and integral equations; statistical inference; and numerous other problems.  

 

Because of importance of linear systems, much research has been devoted to 

their numerical solution. Excellent algorithms have been developed for the 

most common types of problems for linear systems, and some of these are 

defined, analyzed, and illustrated in this chapter. 

 

The most common type of problem is to solve a square linear system 

AX B  
 

of moderate order, with coefficients that are mostly nonzero. Such linear 

systems, of any order, are called dense. For such systems, the coefficient 

matrix A must generally be stored in the main memory of the computer in 

order to efficiently solve the linear system, and thus memory storage 

limitations in most computers will limit the order of the system.  

 

With the rapid decrease in the cost of computer memory, quite large linear 

systems can be accommodated on some machines, but it is expected that for 

most smaller machines, the practical upper limits on the order will be of size 

100 to 500. Most algorithms for solving such dense systems are based on 

Gaussian elimination, which is defined in Section 4.1. It is a direct method 

in the theoretical sense that if rounding errors are ignored, then the exact 

answer is found in a finite number of  steps.   

 



 17 

 

A second important type of problem is to solve Ax = b when: A is square, 

sparse, and of large order. A sparse matrix is one in which most coefficients 

are zero. Such systems arise in a variety of ways, but we restrict our 

development to those for which there is a simple, known pattern for the 

nonzero coefficients. 

 

These systems arise commonly in the numerical solution of partial 

differential equations.  Iteration methods are the preferred method of 

solution, and these 

are introduced in Section 8.6 through Section 8.9. 
 

In this chapter, direct techniques are considered to solve the linear system  

(1)      

nnnnnn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa







................

.

.

.

................

................

2211

22222121

11212111

 

Which can be written in matrix form as 
AX B                                 

Where 

11 12 1 1 1

21 22 2 2 2

1 2

................

................

... , . , .

... . .

................

n

n

n n nn n n

a a a x b

a a a x b

A X B

a a a x b

     
     
     
       
     
     
     
     

 

 
As an Example: 
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2 5 11

3 3

4 2 6 41

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

  

   

  

 

Can be written as: 
2 1 5

1 1 3

4 2 6

11

3

41

1

2

3



































 

















x

x

x

 

 

 

Methods for solving this problem are classified into two 

categories: 
1-Direct method such as Gaussian elimination.  

2- Indirect or Iteration methods  

 

1 Gaussian Elimination 
This is the formal name given to the method of solving systems of linear 

equations by successively eliminating unknowns and reducing to systems of lower 

order. It is the method most people learn in high school algebra or in an 

undergraduate linear algebra course (in which it is often associated with producing 

the row-echelon form of a matrix). A precise definition is given of Gaussian 

elimination, which is necessary when implementing it on a computer and when 

analyzing the effects of rounding errors that occur when computing with it. 
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 00 

 

 

 



 23 

 

 



 02 

 

 
 

Direct methods 
Gaussian elimination method 

 

Provided 𝑎11 ≠ 0 perform 𝐸𝑗 = 𝐸𝑗 −
𝑎𝑗

𝑎11
𝐸1 , for j=2,3,…n.    

this step will eliminate the coefficient of 𝑥1 in each of these 

rows . the resulting system is 

 

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1        𝐸1 

𝑎̅22𝑥2 + ⋯ + 𝑎̅2𝑛𝑥𝑛 = 𝑏̅2                        𝐸2 

𝑎̅32𝑥2 + 𝑎̅33𝑥3+. . +𝑎̅3𝑛𝑥𝑛 = 𝑏̅3             𝐸3 

. 

. 

. 
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𝑎̅𝑛2𝑥2 + 𝑎̅𝑛3𝑥3+. . . +𝑎̅𝑛𝑛𝑥𝑛 = 𝑏̅𝑛             𝐸𝑛 
 

We change the symbol of coef. from  𝑎   𝑡𝑜 𝑎̅  and 

𝑏  𝑡𝑜 𝑏̅    Since we expect that entries in row 2,3,…n will 

be changed. 

 

For ease of notation we again denote the entry in the 𝑖𝑡ℎrow 

and 𝑗𝑡ℎcolumn by 𝑎𝑖𝑗 . 

 

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1   𝐸1 

𝑎̅22𝑥2 + ⋯ + 𝑎̅2𝑛𝑥𝑛 = 𝑏̅2                         𝐸2 

𝑎̅32𝑥2 + 𝑎̅33𝑥3+. . +𝑎̅3𝑛𝑥𝑛 = 𝑏̅3                𝐸3 

𝑎̅𝑛2𝑥2 + 𝑎̅𝑛3𝑥3+. . . +𝑎̅𝑛𝑛𝑥𝑛 = 𝑏̅𝑛                𝐸𝑛 
 

Provided that 𝑎𝑖𝑖 ≠ 0 perform 

𝐸𝑗 = 𝐸𝑗 −
𝑎𝑗

𝑎𝑖𝑖
𝐸𝑗   , 𝑗 = 𝑖 + 1  , 𝑖 + 2 … 𝑛 

This sequential stop will eliminate     𝑥𝑖  in each row below 

the 𝑖𝑡ℎone . 

The resulting system is 

 

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯            + 𝑎1𝑛𝑥𝑛 = 𝑏1    𝐸1 
                𝑎22𝑥2 + ⋯            + 𝑎̅2𝑛𝑥𝑛 = 𝑏2    𝐸2 

                                𝑎33𝑥3+. . +𝑎3𝑛𝑥𝑛 = 𝑏3     𝐸3 

. 

. 

. 

                                                     𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛     𝐸𝑛 
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This system is called upper triangular system. 

 

Eq.(4) represent triangular system . this system can be solved 

by backward substitution .  
 

he upper triangular system can be solved by backward 

substitution , that is, solving Equation 𝐸𝑛, we obtain  

𝑎𝑛𝑛 𝑥𝑛 =𝑏𝑛: 𝐸𝑛 →      𝑥𝑛 =
𝑏𝑛

𝑎𝑛𝑛
 

substitution with 𝑥𝑛in 𝐸𝑛−1, we obtain : 
𝑎𝑛−1,𝑛−1𝑥𝑛−1 + 𝑎𝑛−1,𝑛𝑥𝑛 = 𝑏𝑛−1 

𝑥𝑛−1 =
𝑏𝑛−1 − 𝑎𝑛−1,𝑛𝑥𝑛

𝑎𝑛−1,𝑛−1
 

 

solving Eq.( 𝐸𝑛)of Eq. (4) 

𝑥𝑛 =
𝑏𝑛

𝑎𝑛𝑛
 

Now , Eq. 𝐸𝑛−1is  

𝑎𝑛−1𝑥𝑛−1 + 𝑎𝑛−1,𝑛𝑥𝑛 = 𝑏𝑛−1 

 

Substitute with 𝑥𝑛,we obtain  

 

𝒙𝒏−𝟏 =
𝒃𝒏−𝟏 − 𝒂𝒏−𝟏,𝒏 𝒙𝒏

𝒂𝒏−𝟏,𝒏−𝟏
 

Continuing this process , we obtain  

𝒙𝒏−𝟐, 𝒙𝒏−𝟑, … , 𝒙𝟑, 𝒙𝟐, 𝒙𝟏 

 

 

Example : use Gaussian method to solve 
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𝑥1 + 2𝑥2 + 𝑥3 = 0               ∶ 𝐸1 

2𝑥1 + 2𝑥2 + 3𝑥3 = 3          ∶ 𝐸2 
−𝑥1 + 3𝑥2 = 2                      ∶ 𝐸3 

 
Answer  

I]: Eliminating coefficients of some 𝑥𝑖  to obtain upper 

triangular system :  

(a) provided 𝑎11 ≠ 0, perfrom 𝐸𝑗 = 𝐸𝑗 −
𝑎𝑗1

𝑎11
𝐸1 

j=2,3,…n 

 

𝑎11 = 1, 𝑗 = 2, 𝑎21 = 2 

𝐸2 = 𝐸2 −
𝑎21

𝑎11
𝐸1 = 𝐸2 −

2

1
𝐸1 

The system become 

𝑥1 + 2𝑥2 + 𝑥3 = 0               ∶ 𝐸1 

      −2𝑥2 + 𝑥3 = 3              ∶ 𝐸2 
−𝑥2 − 𝑥3 = 2                     ∶ 𝐸3 

 

j=3  ,  𝑎31 = −1 

𝐸3 = 𝐸3 −
𝑎31

𝑎11
𝐸1 = 𝐸3 −

(−1)

1
𝐸1 = 𝐸3 + 𝐸1 

𝐸3 ← 𝐸3 + 𝐸1 
 

𝐸3 :          − 𝑥1 − 3𝑥2        = 2 

𝐸1:             𝑥1 + 2𝑥2 + 𝑥3 = 0 
_____________________ 

New 𝐸3:    0 − 𝑥2 + 𝑥3 = 2 

 

The system become 
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𝐸1: 𝑥1 + 2𝑥2 + 𝑥3 = 0 

𝐸2:       −2𝑥2 + 𝑥3 = 3 

𝐸3 :       − 𝑥2 + 𝑥3 = 2 

 

up to now , we eliminate the coefficient of 𝑥1 from 𝐸2 

and𝐸3.   In the next step we shall eliminate 𝑥2 from 𝐸3 to 

complete the shape of upper triangular system: 

 

 

(b) provided 𝑎22 ≠ 0, perfrom 𝐸𝑗 = 𝐸𝑗 −
𝑎𝑗2

𝑎22
𝐸2 

, j=3,4,…n 

𝒂𝟐𝟐 = −2 , 𝑗 = 3, 𝒂𝟑𝟐 = −𝟏 

𝑬𝟑 = 𝑬𝟑 −
𝒂𝟑𝟐

𝒂𝟐𝟐
𝑬𝟐 = 𝑬𝟑 −

(−𝟏)

(−𝟐)
𝑬𝟐 = 𝑬𝟑 −

𝟏

𝟐
𝑬𝟐 

 

 

 

 

𝐸3 ← 𝐸3 −
1

2
𝐸2 

        𝐸3:          −𝑥2 + 𝑥3 = 2 =
4

2
 

−
1

2
𝐸2 :       − 𝑥2 −

1

2
𝑥3 =

−3

2
 

_______________________________________ 

  New 𝐸3:            0 +
1

2
𝑥3 =

1

2
 

 

 

 

 

 



 29 

 

 

The system become  

 

𝑬𝟏: 𝒙𝟏 + 𝟐𝒙𝟐 + 𝒙𝟑 = 0 

𝑬𝟐:       −𝟐𝒙𝟐 + 𝒙𝟑 = 3 

                             𝑬𝟑 :                    
1

2
𝒙𝟑 =

1

2
 

This is the required upper triangular system 

 

the upper triangular system can be solved by backward 

substitution :  

𝑬𝟑:
1

2
𝒙𝟑 =

1

2
→ 𝒙𝟑 = 𝟏 

𝑬𝟐: −𝟐𝒙𝟐+𝒙𝟑 = 𝟑 → −𝟐𝒙𝟐 + 1 = 3 

→ −𝟐𝒙𝟐 = 𝟐 

→ 𝒙𝟐 = −𝟏 

𝑬𝟏: 𝒙𝟏 + 2𝒙𝟐 + 𝒙𝟑 = 0 → 𝒙𝟏 + 𝟐(−𝟏) + 𝟏 = 𝟎 

→ 𝒙𝟏=1 

 

Hence the solution of the given system is  
𝑥1 = 1 , 𝑥2 = −1 , 𝑥3 = 1 

 
 

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
 

 

Iterative methods 

 الطرق التتابعية  4-2
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 تحتت ي لىتع لتكب كتن  لتن العااصتر الفتفر ة        أي هشتة  A ةإذا كانت  اصفتف    

. و تعتمتك هت ا الطترق لىتع النتكتخ لتن  مت          فضل استخكام الطرق التتابعية إنه 

و التعت      صتي ة تتابعيتة تعتمتك لىتع نلمتام اصعتاب   ل  ت           0Xابتكائي لىحتل  

تتيتاب  وت  الحتل الفتحي       2X,1X…,الحل لى ص ل إلى تتابعتا  لتن التير نتا     

X:و س ف ننكأ بكباسة الطر ية اليعي بية . 

 

 methodan eJacobالطر ية اليعي بية  4-2-1

 لاأخ    ا لتناب نلمام اصعاب  

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

31 1 32 2 33 3 3 3

a x a x a x b E

a x a x a x b E

a x a x a x b E

  

  

  

                  (1) 

في  kxلىع  كرة إيجاب  method Jacobeanتعتمك الطر ية اليعي بية 

 كالتالي( 8بك لة باقي المجاهيل لتفن  اصعاب   ) kEاصعابلة بقم 

 

 

 

11

22

33

1
1 1 12 2 13 3

1
2 2 21 1 23 3

1
3 3 31 1 32 2

a

a

a

x b a x a x

x b a x a x

x b a x a x

  

  

  

                                     (2) 

ثم باختياب 
1 2 3

(0) (0) (0) (0), ,
T

X x x x 
   .كتير ب ) م ( ابتكائي لىحل

 ( كالتالي0ثم كتابة العلاقا  التتابعية التمابا لىع اصعاب   )



 31 

1 2 311

2 1 322

3 1 233

( 1) ( ) ( )1
1 12 13

( 1) ( ) ( )1
2 21 23

( 1) ( ) ( )1
3 31 32

k k k

a

k k k

a

k k k

a

x b a x a x

x b a x a x

x b a x a x







   
 

   
 

   
 

                (3) 

3k,...,0,1 حيث     . 

أو طر ية  Jacobean methodه ا الطر ية تسمع الطر ية اليعي بية 

 ا ستنكا   اصتماثىة

 

 :1لثال 

[Q3] Use Jacobean method to solve  

 ة اصعاب   الخطي استخكم الطر ية اليعي بية لحل الالمام التالي

1 2 3

1 2 3

1 2 3

9 10

2 10 3 19

3 4 11 0

x x x

x x x

x x x

  

  

  

 

Starting from 

و ذلك لتتابع  لتتال  لنتكتخاً لن التخم  ا بتكائي  (0) 0,0,0
T

X  

Evaluate the error if you know that the exact is 

 و احسب الخطأ الأقفع   كل تتاب  إذا لىم  أن 1,2, 1
T

X   

 

 الحل: 

0k ( وو  0باستخكام اصعاب   )  نجك أن 



 00 

1 2 311

2 1 322

3 1 233

(1) (0) (0)1
1 12 13

(1) (0) (0)1
2 21 23

(1) (0) (0)1
3 31 32

a

a

a

x b a x a x

x b a x a x

x b a x a x

   
 

   
 

   
 

                                                  

 ولكن لن نلمام اصعاب   اصعطع لك اا

2 3

(0) (0)
11 19, 10, 0a b x x     

1 2 3

1 2 3

1 2 3

9 10

2 10 3 19

3 4 11 0

x x x

x x x

x x x

  

  

  

 

𝒙𝟏 =
𝟏

𝟗
[𝟏𝟎 − 𝒙𝟐 − 𝒙𝟑] 

𝒙𝟐 =
𝟏

𝟏𝟎
[𝟏𝟗 − 𝟐𝒙𝟏 − 𝟑𝒙𝟑] 

𝒙𝟑 =
𝟏

𝟏𝟏
[𝟎 − 𝟑𝒙𝟏 − 𝟒𝒙𝟐] 

 

 وبالتالي  ك ن

 

 

 

1

2

3

(1) 101
9 9

(1) 191
10 10

(1) 1
11

10 0 0 1.111

19 0 0 1.9

0 0 0 0

x

x

x

    

    

   

 

 و باستخكام الحل الفحي  اصعطع 
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1 1 1

2 2

3 3

(1)

(1)
2

(1)
3

1 1.111 0.111

2 1.9 0.1

1 0 1

e x x

e x x

e x x

     

    

      

 

 و  ك ن الخطأ الأقفع 

(1)

1 3 1 3
max max 0.111, 0.1, 1.0i

i i
E e

   
   

1kالتتاب  الثاني باصثل  ك ن ب      نجك أن 

𝒙𝟏 =
𝟏

𝟗
[𝟏𝟎 − 𝒙𝟐 − 𝒙𝟑] 

𝒙𝟐 =
𝟏

𝟏𝟎
[𝟏𝟗 − 𝟐𝒙𝟏 − 𝟑𝒙𝟑] 

𝒙𝟑 =
𝟏

𝟏𝟏
[𝟎 − 𝟑𝒙𝟏 − 𝟒𝒙𝟐] 

 

 

 

 

1 2 311

2 1 322

(2) (1) (1)1
1 12 13

1
9

(2) (1) (1)1
2 21 23

1
10

10 1.9 0 0.9

19 2*1.111 3*0

1.6778

a

a

x b a x a x

x b a x a x

   
 

   

   
 

  



                                   

 
3 1 233

(2) (1) (1)1
3 31 32

1
11

0 3*1.111 4*1.9

0.99

a
x b a x a x   

 

  

 
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 و باستخكام الحل الفحي  اصعطع 

1 1 1

2 2

3 3

(1)

(1)
2

(1)
3

1 0.9 0.1

2 1.6778 0.322

1 0.99 0.01

e x x

e x x

e x x

    

    

      

 

 و  ك ن الخطأ الأقفع 

(1)

1 3 1 3
max max 0.1, 0.322, 0.01 0.322i

i i
E e

   
     

 وتك ن الاتائج كالتالي

       k             x1         x2            x3 

    1.0000    1.1111    1.9000         0 

 

    2.0000    0.9000    1.6778   -0.9939 

 

    3.0000    1.0351    2.0182   -0.8556 

 سيدال: –طريقة جاوس  4-2-2

Gauss-Seidel method 

 لاأخ    الإلتناب نلمام اصعاب  

 
11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 3

1

2 1

3

a x a x a x b E

a x a x a x b E

a x a x a x b E

   


   
   

 

تستع  طر ية جاوس سيكل بافس العلاقا  التتابعية لىطر ية اليعي بية والتي هي 

 لىع الف بة
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     

     

     

 

1

1 1 12 2 13 3

11

1

2 2 21 1 23 3

22

1

3 3 31 1 32 2

33

1

1
2

1

k k k

k k k

k k k

x b a x a x
a

x b a x a x
a

x b a x a x
a








     




     



     


 

اصعى لتتا  التتتي حفتتىاا لىي تتا قنتتل وتعتمتتك الفكتترة اةك تتكة لىتتع استتتخكام كتتل 

  مثلًا؛ لاتك حستا    حسا  كل لركنة.
 1

2

k
x


  ــنجتك أن لتك اا تير نتاً جك تكاً ل     

1x  هو
 1

1

k
x


 قتك   حستابه   الخطت ة الستابية لناوترة وهت  تير تب أحتك  لتن          

 
1

k
x .    ونفس الشتيتخ لاتك حستا 

 1

3

k
x


 حتك ثان  لتك اا تير نتان   

   1 1

1 2,
k k

x x
 

 

 يمكن استخكال ما لتفن  العلاقا  التتابعية اةك كة:

     

     

     

 

1

1 1 12 2 13 3

11

1 1

2 2 21 1 23 3

22

1 1 1

3 3 31 1 32 2

33

1

1
3

1

k k k

k k k

k k k

x b a x a x
a

x b a x a x
a

x b a x a x
a



 

  


     




     



     


 

 سيكال  هي   –و بشكل لام  إن الفي ة التتابعية لطر ية جاوس 

     
1

1 1

1 1

1
(9)

i n
m m m

i i ij j ij j

j j iii

x b a x a x
a


 

  

 
   

 
  
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ni  لكل ,.....,2,1  وn .عدد المعادلات 

 (:2مثال)

 سيكل لتتابع  لتتالي  لحل نلمام اصعاب  -طر ية جاوس استخكم 

[Q4] Use Gauss-Seidel method to solve  

1 2 3 1 2 3 1 2 39 10, 2 10 3 19, 3 4 11 0x x x x x x x x x          

Starting from  (0) 0,0,0
T

X  . Do 2 iterations. Evaluate 

the error if you know that the exact is  1,2, 1
T

X    

 

 احسب الخطأ الأقفع   كل تتاب  إذا لىم  أن الحل الفحي  ه 

 1,2, 1
T

X   

 الحل:

اصعاب    باستخكام 3    0 وبk  نجد أن 

     1 0 0

1 1 12 2 13 3

11

1
x b a x a x

a
   
 

 

 حيث أنه لن نلمام اصعاب   لك اا

   0 0

11 1 2 39, 10, 0a b x x    

 إذن

   1

1

1 10
10 0 0 1.111

9 9
x      
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 وك لك  إن

     1 1 0

2 2 21 1 23 3

22

1
x b a x a x

a
   
 

 

     1

2

1
19 2 1.11 3 1 1.6778

10
x        

 وك لك

     1 1 1

3 3 31 1 32 2

33

1
x b a x a x

a
   
 

 

33 3 31 3211, 0, 3, 4a b a a    

     1

3

1
0 3 1.111 4 1.6778 0.9131

11
x        

 ولحسا  الخطأ الأقفع لك اا

 

 

 

1

1 1 1

1

2 2 2

1

3 3 3

1 1.111 0.111

2 1.6778 0.322

1 0.9131 0.0869

e x x

e x x

e x x

     

    

      

 

 و ك ن الخطأ الأقفع

 1

1 3
max 0.322i

i
E e

 
  

1kالتتاب  الثاني    تفن  



 01 

     

     

     

2 1 1

1 1 12 2 13 3

11

2 2 1

2 2 21 1 23 3

22

2 2 2

3 3 31 1 32 2

33

1

1

1

x b a x a x
a

x b a x a x
a

x b a x a x
a

   
 

   
 

   
 

 

 إذن

     2

1

1
10 1 1.778 1 0.9131 1.0262

9
x        

     2

2

1
19 2 1.0262 3 0.9131 1.9687

10
x        

     2

3

1
0 3 1.0262 4 1.9687 0.9958

11
x        

 ولحسا  الخطأ الأقفع  ك ن

 

 

 

2

1 1 1

2

2 2 2

2

3 3 3

1 1.0262 0.0738

2 1.9687 0.0313

1 0.9958 0.0042

e x x

e x x

e x x

    

    

      

 

 و ك ن الخطأ الأقفع 

 2

3
max 0.0313i
i i

E e
 

  

 وباستمراب تتابعا  الحل   اصثال السابق وفل لىع اةكول التالي

 وتك ن الاتائج كالتالي
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kmax = 

    10 

       k              x1           x2         x3 

    1.0000    1.1111    1.6778   -0.9131 

    2.0000    1.0262    1.9687   -0.9958 

    3.0000    1.0030    1.9981   -1.0001 

    4.0000    1.0002    2.0000   -1.0001 

    5.0000    1.0000    2.0000   -1.0000 

    6.0000    1.0000    2.0000   -1.0000 

    7.0000    1.0000    2.0000   -1.0000 

 
 التكرارية:الطريقة اليعقوبية دراسة الخطأ في  4-2-3

[Q5] Consider the system 𝐴𝑋 = 𝐵, of order 𝑛 such that 𝑎𝑖𝑖 ≠

0 for 𝑖 = 1,2, … , 𝑛.   Study the error of Jacobean method for 

solving this system. Then obtain number of iterations 𝑘 

required to obtain accuracy 𝜀. 

AX إذا كتتتتتان b  نلمتتتتتام خطتتتتتع لتتتتتن بتنتتتتتةn 0بحيتتتتتث
ii

a  لكتتتتتل  

ni ,.....,2,1  . كتابة ه ا الالمام لىع الف بة إنه يمكن   
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 

 

 

11

22

33

1
1 1 12 2 13 3

1
2 2 21 1 23 3

1
3 3 31 1 32 2

a

a

a

x b a x a x

x b a x a x

x b a x a x

  

  

  

                 (1) 

 أو اختفابا

1

1
; 1,2,.....,

n

i i ij j
ii j

j i

x b a x i n
a




 
  

   
 
  

             (2) 

بفرض أن
 0

ix  لكتلni ,.....,2,1         تير تب أولى لىحتل ف  تإن لتكب لتن التير نتا

  الفي ة التكراب ةالأ ضل يمكن الحف ل لىيه لن 

1 2 311

2 1 322

3 1 233

( 1) ( ) ( )1
1 12 13

( 1) ( ) ( )1
2 21 23

( 1) ( ) ( )1
3 31 32

k k k

a

k k k

a

k k k

a

x b a x a x

x b a x a x

x b a x a x







   
 

   
 

   
 

           (3) 

 أو اختفابا

   1

1

1 n
k k

i i ij j
ii j

j i

x b a x
a






 
  

  
 
  

                     (4) 

,.....,1,2  لكل , 0i n k   
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اجعتتتلاستتتتخكام طر يتتتة جتتتاك بع التكراب تتتة .   الآن لكباستتتة الخطتتتأ 

 m
X الخط ة ه  التير ب الااتج  m بالفي ة 4 لىحل التامX لىالمام 1  

وكتت لك  تتإن   m m
e X X     0لكتتلm  هتت ا   تعطتتع الخطتتأ

التير ب. وباستخكام   4  إن  

   1

1

1 n
k k

i i ij j
ii j

j i

x b a x
a






 
  

  
 
  

 

     1

1 1

1 n n
ijm m mi i

i ij j j
ii ii ii iij j

j i j i

ab b
x a x x

a a a a



 
 

     

Replace m by m-1 

     1 1

1 1

1 n n
ijm m mi i

i ij j j
ii ii ii iij j

j i j i

ab b
x a x x

a a a a

 

 
 

      

By subtraction 

        1 1

1

; 1,2,......, ; 1
ijm m m m

i i j j
iij

j i

a
x x x x i n m

a

 




      

 (5) 
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So 

       

   










































1

1

1

1
1

1
max

mm

ij
j ii

ij

m

j

m

j
nj

ij
j ii

ijm

i

m

i

xx
a

a

xx
a

a
xx

 

(6)                                                 
       1 1

1
max

m m m m

j j
j n

x x x x
 

 
  Where  

, we have
1 1

: max
ij

i n j ii
j i

a

a


  


 Now, If we Put:  

        nixxxx mmm

i

m

i ,.....,2,111





 

  إن    i وحيث أن الطرف الأيمن    عتمك لىع

       1 1

1
max

m m m m
i i

i n
x x x x

 

  
   

Using (6), 

       1 1m m m m

i ix x x x
 

 
        

1  الشرط  الشرط  )1(   كا ئ أن تحيق لعاللا  الالمام  

1
1

; 1,2,.....,
n

ij ii
j
j

a a i n



                                       (7) 

   اصفف  ة 
ijaA  تسمع ل يماة اليطر . )7(  التي  تحيق لها الشرط 
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وإذا     1
,

m m
X X

 تير نيان لىحل x  إن  

       1 1m m m m
X X X X

 

 
     

                                    1 2m m
X X

 


     

                                        ...                                                                                                                                                             

   1 0m X X


                    (8) 

  إذا لن ه ا اصعابلة   1m mme X X


    الخطأ لنه  m1 1وإذا  إن  

 0


me   عندماm   

================ 

لىحتل     التي تىزم لىحف ل لىتع تير تب بكقتة    k  الآن لحسا  لكب التكرابا 

. اجعل   X  التام
   

,
m k

X X تير تنان بحيث  km    اجك  

       

   

1

1

.....
m k m m

k k

X X X X

X X



 





   

 
 

 وفل لىع  (8)وباستخكام  



 22 

       

   

1 01

1 0

.....
m k m

k

X X X X

X X



 



   

 




 

     1 01 .....m k X X


     

     1 01 .....m k X X


     

 مجم ع اصتسىسىة الهاكسيةوباستخكام 

       1 0

1

k
m k

X X X X
 


  


 

  وحيث أن
 m

lim X X إن    

     1 0
; 0

1

k
k

X X X X k
 

   





     (7) 

  ولىيه  إنه لىحف ل لىع تير ب
 k

X ةبكق   لىحل التام  X   إنه  ىزم لمتل 

    لرة  بحيث k  التكراب لكب

   1 0

1

k

X X



  


 

 أي أن   



 45 

     
1 0

1 (1 )k log X X log log Log


 
     
 

   (8) 

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 

 :( 3)مثال

 لىالمام الخطع  

864

1252

12

31

321

21







xx

xxx

xx

 

  لىع حل تير تبي بكقةاحسب لكب التكرابا  اللازلة لىحف ل 
310

 بفرض أن   

   0
1,0.2,2 3

T
X  

 له ا الالمام  إن   -الحل :

3

1 3 1

:
ij

i iij

a
Max

a


  

   

i=1: (a12/a11+a13/a11)=(1/2+0)=1/2            i=2: (a21/a22 +a23/a22)=(2/5+2/5)=4/5                i=3: (a31/a33+a32/a33)=(4/6+0/6)=4/6 

 

1 4 4 4
: , ,

2 5 6 5
Max

 
  

 
 

 









































































66667.0

33333.0

6.0

32

2.0

1

0064

52052

0210

68

51

21
1x 
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       

 

1 0 1 0

1 3

20.4 , 0.13333 , 0.3334 10

0.4

i i
i

x x Max x x

Max

 



   

 



 

    إن k وإذا لكب التكرابا  اصطى بة ه 

 
  43 1058.0104.0

541

54  


k
k

 

  06.34k ولا ا 

  35  التكرابا  اصطى بة ه لكبk . 

 



 

1 

 

Chapter 3 

 

Solution of nonlinear equations 

 
Principle  of Root Finding  
We shall study in this chapter numerical method that can 

solve such problems 

The general form of non linear equation is  

𝑓(𝑥) = 0,                                                                       (1) 

 with f a given nonlinear function.  

 

As examples, the nonlinear equations 

56 4 33 1 0x x x x    ,      xex x  cos 1 0  
Have no analytical solution. 

 

Here, we denote such roots or zeroes by the Greek letter α. 

Root finding problems occur in many contexts. Sometimes 

they are a direct formulation of some physical situation;  but 

more often, they are an intermediate step in solving a much 

larger problem. 

 

Graphically, any function y = f (x)  satisfies (1) must pass x 

axis  
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Finding the root α of a given function f (x) corresponds to 

obtaining the point x at which the graph of y = f (x) 

intersects the x-axis. One of the principles of numerical 

analysis is the following.  

 
Since we  cannot solve the given problem, then solve a 

“nearby problem”. 

 

The nearby problem is to find where a straight line 

intersects the x-axis. Thus we seek to replace f x( )  0  by 

that of solving p(x) = 0 for some linear polynomial p(x) that 

approximates f (x) in the vicinity of the root α. 

 
 

                                     

                

y

                            

x

                          

                                                          

y=f(x)                                 
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Given an estimate of α, say α ≈ x0, approximate f(x) by its 

linear Taylor polynomial at (x0 ,  f (x0)): 

     0 0 0( ) 'p x f x x x f x    

If x0 is very close to α, then the root of p(x) should be close 

to α.   Denote this approximating root by x1; repeat the 

process to further improve our estimate of α. 

 
Denoting the root of p(x) = 0 by x1, we solve for x1 in 

     0 0 0' 0f x x x f x    

 
 

0
1 0

0'

f x
x x

f x
   

The general Newton’s method for solving f x( )  0is 

derived exactly as above. The result is a sequence of 

numbers x0, x1 x2…., defined by 
( )

1 '( )
, n 0,1,2,n

n

f x
n n f x

x x      

 
 

          x0                               

               x1 

y

                            

x

                          

  (x0 , f(x0))                    

                                                          

y=f(x)                                 
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Again, we want to know whether these numbers converge to 

the desired root α; and we would also like to know 

something about the speed of convergence (which says 

something about how many such iterates must actually be 

computed).   

 

1- Closed Domain Method 
Two of the simplest methods for finding the roots of a 

nonlinear equation are: 

1. Interval halving (bisection method) 

2. False position method 
 

We start solving (1) , If we have a domain x=a and x=b that 

contains the root (solution) that is  α [𝑎, 𝑏] 

 

The Bisection Method 
Consider y=f (x)   is given 

Let x=a and x=b satisfy 𝑓(𝑎)𝑓(𝑏) < 0. 

Then the interval [𝑎, 𝑏]contains the root. 

The main idea of this method is interval halving  

          

 
(A)  F(a)+,  F(b)-          (B) F(a)-, F(b)+ 
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 Assume that f (x) is continuous on a given interval [𝑎, 𝑏].     

We conclude the interval (a,b) must satisfies that the sign of 

f (x) must be changed between a, b. 

The condition                           

𝑓(𝑎)𝑓(𝑏) < 0 …………………………….(2) 

   ensure that we have a root in [𝑎, 𝑏]. 

 
 

 
Fig. 3.1 Bisection method. 
 

Using the intermediat value Theorem, the function f(x) 

must have at least one root in [𝑎, 𝑏]. Usually [a, b] is 

chosen to contain only one 

 

y=f(x)                                 

y

                            

x

                          
I0 

I1

 I2 

x0=a             x1                             xn=b 

 

          x2 

 I0                          
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root , but the following algorithm for the bisection 

method will always converge to some root  in [𝑎, 𝑏]. 
 

Bisection Algorithm 

  

Input: function f (x), An interval [𝑎, 𝑏], small number  

                   3( ) 2 5f x x x   , a=0, b=3 and=0.00001  

Output: a value c satisfies | f(c) |  or  |b - c| 

                                

1. Define take c= (a+ b)/2, evaluate fc=f(c) 

2. If | f(c) |  or  |b - c|   then accept root = c, and exit. 

3. If f(c) f(b)<0, then a= c; otherwise, b =c.   

4. Return to step 1. 

 

 

The interval [𝑎, 𝑏] is halved in size for every pass 

through the algorithm.   Because of step 3, [𝑎, 𝑏] will 

always contain a root of f(x). Since a root a is in [𝑎, 𝑏], 
it must lie within either [𝑎, 𝑐]or [𝑐, 𝑏]; and consequently 

|c- | b- c ,          |c- |  c- a 

This is justification for the test in step 2. On completion 

of the algorithm, c will be an approximation to the root 

with 

|c- | 
 

Example 
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Use bisection method to find the root  of  
𝑓(𝑥) = 𝑥3 − 2𝑥 − 5 

 in[0,3].  to within 0.00001 

 

Answer: 

 

a=0       b=3 

f(a) = f(o) =𝑜3 − 2(𝑜) − 5 = −5 

𝑓(𝑏) = 𝑓(3) = 33 − 2(3) − 5 = 16 

=27 – 6  -  5=16 

f(a) f(b) < 0     , f(b)=16 

 
   α=0                          , b=3 

f(a)=-5 

 

So      x*  [0,3]  

c=
0+3

2
= 1.5 

f(c)=(1.5)3-2(1.5)-5=-4.62 

 

========> 
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a=0            a=1.5     ,      f(b)=16    

f(a)=-5,       c=1.5               b=3 

                  f(c)=-4.625 

 
|fc|=4.625      is not   ,  

|b-c|=|3-1.5|=1.5       is not   

 we must do one more iteration starting from step 1 .      

𝑐 =
𝑎+𝑏

2
=

1.5+3

2
= 2.25  

fc=f(c) =f(1.5)=(1.5)3 − 2(1.5) − 5 = 1.89 

Since fa  fc < 0,then    b=c =2.25 

fb=fc=1.89 
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fc ,   fb=16    

a=1.5   ,     c=2.25            , b=3 

fa=fc=-4.625 

 

 
|fc|=1.89    isnot < 

|b-c|=|3=2.25|           isnot < 

 

We must do more one iteration starting from step2  
 



Solution of nonlinear equations  

 

 10 

Programming home work  

Write program for bisection method to find the 

root of  f (x)  =0 

In the interval [a, b] with accuracy c.   Check 

the program with the example  

f (x)  =  𝑥3 -2x-5 ,      [0,3]        c=0.00001 
 

Matlab program will be as follows 
 

 

 

 

w  =  

   x              fx 

1.5          -4.6250   

2.25         1.8906 

1.8750     -2.1582 

 

…..          ……. 

 

2.0946     0.000 

 

x  
=2.0946 

 

fx 

 = -8.8818e-016 

Clear 

f =@(x)  x^3-2*x-5; 

%--------------------- 

a = 0; fa = f(a); 

b = 3; fb = f(b); 

eps=0.00001; 

x=a;fx=fa; 

w=’x fx’ 

 

while abs(fx)>eps 

x = (a+b)/2; 

fx=f(x); 

w=[x fx] 

if sign(fx) == sign(fa) 

a = x; fa = fx; 

else 

b = x; fb = fx; 

end 

end 

x 

fx 
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Convergence of bisection method 
 

 

 

Let an, bn ,cn defines the values of a ,b , c at iteration no. n. 

then we can write 

 1 1

1
, 1

2
n n n nb a b a n     

 

so 

 1 1

1 1

2 2
n nb a 

 
  

 
 

 
Continuing this, until we reach the initial data, we 

obtain 

 
2

1
; 1

n
b a n   

so 
 

                           1

1

2
n n n

b a b a


                            (*) 
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The root lies at [a, c] or [c, b] 

 

 

 يقثثثم  فيثثثت ف فيلنطثثثا رلل ثثثت  ر ثثثتل    وحيثثثن الج ر ثثث    ,n na c او

 ,n nc b فيمكللت كنتبة 

 
let  be the exact root  
 

 
1

2
n nc b a    

Using (*)  
 

 

 
2

1
n

b a  

  ذلج

                
2

1
n n

c b a      

na 
nc nb 

α 
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This means that nc

  
converges as to   as n  . 

=========================================== 
 

To evaluate number of iteration required to 

obtain a certain accuracy  . 

 

 

 

1

1

2

2 log 2 log

log

log 2

n n

n

c b a

b ab a
n

b a

n

 

 




   


  

 
 
 

 

Example  

Find number  n  of iterations required to obtain 

an error to within 10−3 

If we use bisection method to find the root of 

  6 1f x x x    on [0,2]. 
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Answer  

The formula for the error in bisection method 

is 

 
2

1
n n

c b a     

Since we have b=2 a=0 

|Error|    
1

2n
[2 − 0] =

2

2n =
1

2𝑛−1   0.001   

       
 1/2n-1≤0.001 

1/2n-1≤1/1000 

2n-1≤1000 

 

We know that 210 = 1024  

n-1 = 10  

n=11 
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False Position Method 
The bisection method brackets a root in the interval 

[𝑎, 𝑏]approximates the root as the midpoint of the 

interval. In the false position,  the nonlinear function 

𝑓(𝑥) is assumed to be a linear function 𝑔(𝑥) in the 

interval [𝑎, 𝑏], and the root of the linear function 𝑔(𝑥), 

𝑥 = 𝑐, is taken as the next approximation of the root of 

the nonlinear function 𝑓(𝑥).  
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The process is illustrated graphically in Figure 2. This 

method is also called the linear interpolation method. 

The root of the linear function 𝑔(𝑥), that is, 𝑥 = 𝑐, is 

not the root of the nonlinear function 𝑓(𝑥). It is a false 

position, which gives the method its name. We now 

have two intervals, (a, c) and (c, b). As in the interval-

halving (bisection) method, the interval containing the 

root of the nonlinear function 𝑓(𝑥) is retained.   so the 

root remains bracketed. 

The equation of the linear function 𝑔(𝑥) is 
( ) ( )

( )
f c f b

c b
g x




                                    (1) 

where 𝑓(𝑐) = 0, and the slope of the linear function 

𝑔′(𝑥) is given 
( ) ( )

( )
f b f a

b a
g x




                                         (2) 

Solving Eq. (1) for the value of c which gives 𝑓(𝑐) = 0 

yields 
( )

( )

f b

g x
c b                                               (3) 
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Note that 𝑓(𝑎) and a could have been used in Eqs. (1) 

and (2) instead of 𝑓(𝑏).  

 

Equation (3) is applied repetitively until either one or 

both of the following two 

convergence criteria are satisfied: 
(𝑖)|𝑏 − 𝑎| ≤ 𝜖, (𝑖𝑖)|𝑓(𝑐)| ≤ 𝜖 

 

 

Example 1 

Use False Position Method to find the root of 
3( ) 2 5f x x x    

In the interval[0,3]  

Answer: the iterations are: 

a=0           b=3 

 x0=a                                  xn=b 
 

                                        c 

y

                            

x

                          

                                                          

g(x)                                 

                                                          

y=f(x)                                 
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fa =-5     fb = 6 

x =0.7143    fx =  -6.0641 

a=0.7143           b=3 

x =1.3425  fx = -5.2654 

a =1.3425    b =3 

x = 1.7529    fx = -3.1197 

a =1.7529   b =  3 

x =1.9564   fx =  -1.4248 

a =1.9564  b =3 

 

 

ans = 
         x     f 

 
w = 
    0.7143   -6.0641 
    1.3425   -5.2654 
    1.7529   -3.1197 

    1.9564   -1.4248 
    2.0417   -0.5723 

    2.0748   -0.2179 
    2.0872   -0.0813 

    2.0919   -0.0301 

    2.0936   -0.0111 
    2.0942   -0.0041 

clear 
f =@(x)  x^3-2*x-5; 
%--------------------- 
a = 0; fa = f(a) 
b = 3; fb = f(b) 
eps=0.1; 
%--------------------- 
for i=1:10 
gdx=(fb-fa)/(b-a); 
x = b-fb/gdx; 
fx=f(x); 
 
if sign(fx) == sign(fa) 
a = x; fa = fx; 
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else 
b = x; fb = fx; 
end 
xx(i)=x 
ff(i)=fx 
end 
'       x     f' 
w=[xx' ff'] 

 

 

 1-3تمت ين 

برنتفيج تلطيا رلفترة على الج ينم رلنكرر  لخمسثة تنتباثتو و    ( رسنخدم1) 

) للماتدلثثثةذلثثثس  سثثثت   ثثث      ) tan( ) 0f x x x      درخثثثل رلل ثثثت 

[1.6,3]. 

تلطثثثيا رلفثثثترة  ثثثل ر اثثثتد و  ثثث  برنثثثتفيج تلطثثثيا رلفثثثترة ( رسثثثنخدم 2)

)6رلخ يثثثثة ف  جثثثثتد  ثثثث   للماتدلثثثثة  ) 1 0f x x x     درخثثثثل رلل ثثثثت 

[1, 2]
. 

   ( ف طريقة تلطثيا رلفثترة اجثتد  ث   للدرلثة     3) f x       ذر كثتلج طث 

، فأو د عدد تنتباثتو لنلفيث     1رلفترة رلأصلية رلمحنمل و  د ر    بهت ه  

 0.001رلخ ر زفيية رللازم لل ص    لى دقة 

=f(x)     للدرلثة ( رسنخدم تلطيا رلفترة اجتد 4) cos 0x x   في

 حنى دقة [0,1] رلفترة
310

   . 

(للأخثثث  ف ر عن ثثثت  رلدرلثثثة   5)
2x =5x 3       .   او ثثثد ن ثثثت[ , ]a b  ذي

 . يحن ي على     له ه ر اتدلة
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y ( ر سثثم رلثثدرلنن6)  x2 وsiny x  ف نفثثا رللثثكل. حثثدد نق ثثة

رلنقتطم. خ  فترة تحنث ي نق ثة رلنقثتطم اثم رسثنخدم تلطثيا رلفثترة اجثتد         

=f(x)     للدرلة 2sin 0x x  حنى دقة 
410

   . 

( بتسثنخدرم تلطثيا رلفثترة    6(و)5( صمم برنتفيج فيتتلا   ل رلنمت ين )7) 

 فيرة اخرى ر  ضم رلزرئافيرة و بتسنخدرم 

على الج ينم رلنكرر  لخمسثة تنتباثتو و   ر  ضم رلزرئا برنتفيج  ( رسنخدم8)

) للماتدلثثثةذلثثثس  سثثثت   ثثث      ) tan( ) 0f x x x      درخثثثل رلل ثثثت 

[1.6,3]. 

تلطثثيا رلفثثترة  ثثل ر اثثتد و  ثث      ر  ضثثم رلزرئثثا  برنثثتفيج ( رسثثنخدم 9)

)6رلخ يثثثثة ف  جثثثثتد  ثثثث   للماتدلثثثثة  ) 1 0f x x x     درخثثثثل رلل ثثثثت 

[1, 2]. 

 
2- Open Domain Method 

 
This class of methods need only one point near the 

solution . we name it initial guess or estimate , we 

denote by x0  . 

A sequence of iterated approximation is obtained by the 

formula 

xn+1 = g'(xn) 

 
For some known function g  depends on the used 

method . 
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The interval halving (bisection) method and the false 

position  method presented in Section 3.1  converge 

slowly. More efficient methods for finding the roots of a 

nonlinear equation are desirable. Four such methods are 

presented in this section: 

1. Fixed-point iteration 

2. Newton’s method 

3. The secant method 

4. Aitken method 

These methods are called open domain methods since 

they are not required to keep the root bracketed in a 

closed domain during the refinement process.  Fixed-

point iteration is not a reliable method and is not 

recommended for use. It is included simply for 

completeness since it is a well-known method. Muller’s 

method is similar to the secant method. However, it is 

slightly more complicated, so the secant method is 

generally preferred. Newton’s method and the secant 

method are two of the most efficient methods for 

refining the roots of a nonlinear equation  
 

Newton’s Method 

Consider solving  f (x) = 0  with initial estimate x0 is given 

near the root  α  . The iterates of Newton's method are 

generated by  

 
( )

1 '( )
, n 0,1,2,n

n

f x
n n f x

x x    
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For a general equation f (x) = 0, we assume we are given an 

initial estimate x0 of the root α.  

The first few formulae are: 

 

 

نجثثد لج انريثثد  . اي انلثثت𝑓(𝑥)لدرلثثة فيا ثثتة  α   ر ثثلج نجثثد انريثثد 

𝑦علدهت ينقتطم فيلحلى رلدرلة  x نق ة = 𝑓(𝑥)    فيم مح𝑥. 

 سثألة ل مفينث  فس ف، سألةله ه ر  حلا نجد لجا لتنلت   يمكلاوبمت 

تً )كنقريث  او ابسث    فيسثنقيم  تًد خ ية ه  الج نجقري رلن سألةور  م.يةقري ت

اي انلثثت سثث ف نسثثن د     .رلمحثث   رلسثثي  فيثثم ينقثثتطم  حتلثثة  لحلثثى رلدرلثثة(  

𝑓(𝑥) = 𝑝(𝑥)بحثثثل  0 =  اتدلثثثة رلخثثث  ر سثثثنقيم رلثثث ي يطثثثل بثثثن    0

)رللق ثثة  , ( ))x f x   وهثث  اي نق ثثة عليثثة ونق ثثة رلنمثثت 0 0, ( )x f x 

  ذلج فياتدلنة:

     0

0 0'
f x f x

x x
f x




  

 او رلط  ة:

       0 0 0'f x f x x x f x   
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أي أن xنق ة تقتطم ه ر رلخ  فيم مح  1xوحين  لج 1 0f x  

     0 1 0 00 'f x x x f x   

 او رلط  ة:

 
 

0
1 0

0'

f x
x x

f x
   

،  كنقدير للج   0x    رً محسلتً عن 1x وبمت انة فين ر ن قم الج تك لج

 لنخمن ر بندرئ ،هي  1xفإنة يمكن تكرر  ه ه رلفكرة فيم رعن ت  

 وه ر يؤدي  لى رلنقري  ر ديد 

 
 

1
2 1

1'

f x
x x

f x
  

 بنكرر  ه ه رلاملية س ف نطل على فيننتباة فين رلأعدرد 

1 2 3, , ,....x x x 

ه ه رلأعدرد تسمى رلنقري ثتو    . ورلتي نأفيل الج تنقت    لى ر    ر  ل  

  .ر ننتلية للج  

x1      x0 

α 

(x0 ,  f(x0)) 

y 

x 

y=  f(x) 
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Example 3.2: 

Use Newton formula to obtain the root  of 
2( ) 4 4f x x x    

Starting from x0=0 
 

𝑓 (𝑥)= 𝑥2  4 𝑥 + 4 = 0                ,     

𝑓′(𝑥)= 2𝑥 -  4  

X0 = 0     ,  𝑓 (𝑥0)=   𝑓 (0)=  4     ,  

   𝑓′(𝑥0)= 𝑓′(0)=   -  4  

from the formula  

𝑥𝑛+1 = 𝑥𝑛 −
𝑓 (𝑥𝑛)

𝑓′ (𝑥𝑛)
          n = 0 ,1, 2, …………. 

n = 0    ⟹    𝑥1 = 𝑥0 −
𝑓 (𝑥0)

𝑓′ (𝑥0)
  = 0  

4

−4
  = 1   ,    𝑓 (𝑥1) = 1  ,    

𝑓′(𝑥1) = 2  

n = 1            𝑥2 = 𝑥1 −
𝑓 (𝑥1)

𝑓′ (𝑥1)
 = 1.5               ,               

𝑓 (𝑥2) =  0.25        

n = 2             𝑥3 = 𝑥2 −
𝑓 (𝑥2)

𝑓′ (𝑥2)
 =1.75             ,          

𝑓 (𝑥3) = 0.0625  

Iteration  no 𝑥𝑖  |𝒇 (𝒙𝒊)| 
|𝑥𝑖+1 − 𝑥𝑖| 
 

0 0 4 0 
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Newton's Alghoithm : 

 
Input  : function  𝑓 (𝑥) , its derivative 𝑓′(𝑥) initial 

estimate x0 , small positive value 𝜖 ,largest number of 

iteration N .  

𝑓 (𝑥)= 𝑥2  4 𝑥 + 4 = 0        ,     

 𝑓′(𝑥)= 2𝑥 -  4  ,  𝑥0  = 0   

𝜖 = 1  10−5   ,  N = 10 

Ouput :  𝑥𝑛 that  satisfies  |𝑓 (𝑥𝑛) | ≤ 𝜖  

 

Loop : from  n = 0 to N  

fn  = 𝑓 (𝑥𝑛)   , fdn = 𝑓′(𝑥𝑛)  

         𝑥𝑛𝑝1 = 𝑥𝑛  
fn 

fdn
   

         fnp1 = 𝑓 (𝑥𝑛𝑝1)     

         if  | 𝑓 (𝑥𝑛𝑝1) | ≤ 𝜖   , then  

         output   𝑥𝑛𝑝1  as the root of  𝑓 (𝑥) 

         stop  

        otherwise continue loop 

 

1 1 1 1 

2 1.5 0.25 0.5 

3 1.75 0.0625 0.25 
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Programming Exercise  

Use your favorite program to find numerical solution for the 

following non linear equations using Newton's method with 

the given estimate : 

1- 2( ) 4 4f x x x      ,x0=0 

2- 3( ) 2 5f x x x     , x0=1.5 

3- 6( ) 1 0f x x x      , x0=1.5 

Use your favorite program that uses Newton method for  
6( ) 1 0f x x x     

We use an initial guess of x0=0.0   and 1.0 
 

a = 

         0    1.2000   -1.0000 
a = 

    1.0000    1.1436    0.7860 
a = 

    2.0000    1.1349    0.0930 
a = 

    3.0000    1.1347    0.0019 
a = 

    4.0000    1.1347    0.0000 
a = 

    5.0000    1.1347    0.0000 

f=@(x)(x^6)-x-1; 

fd=@(x)6*(x^5)-1; 
x=1.0; 
n=0; 
while n<6 

    f1=f(x); 

    fd1=fd(x); 

    x=x-f1/fd1; 

    a=[n x f1] 
    n=n+1; 

end 
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As seen from the output, the convergence is very rapid. The 

iterate x6 is accurate to the machine precision of around 16 

decimal digits. This is the typical results seen with 

Newton’s method for most problems, but not all. 

 

Example 3.3: 

consider the nonlinear equation 

f (x) ≡ b − 1/x = 0 

(a)  Use approach of Newton’s method to evaluate a 

recurrence formula that approximate the solution.  

 

(b)  Express the relative error in the n stage of using the 

recurrence formula in terms of the error in the initial stage. 

 

(c)  Evaluate the interval of convergence 
 

Answer: 

(a)  We consider a number b > 0, and the equation 

f (x)≡ b − 1/x = 0                      (1) 

The solution is, of course, α = 1/b.  
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Let x0 be an estimate of the root α = 1/b.  

We have 

  2

1
f x

x
   

 

Using Newton iteration , we have 

 

 
1 , 0,1,......n

n n

n

f x
x x n

f x
   


 

it become 

             1

2

1

1
n

n n

n

b
x

x x

x





   

2بالضرب بسط و مقاما في 
nx 

or simply  

 
 1 2 , 0,1,2,...n n nx x bx n    ................(2)  

for solving (1) 

 

We use a method of analysis which works for only this 

example, and later we use another approach to the general 

Newton’s method. 

 

(b)  Write 

𝑥𝑛+1 = 𝑥𝑛(1 + 1 − 𝑏𝑥𝑛) = 𝑥𝑛(1 + 𝑟𝑛) 

 

Where 𝑟𝑛 = 1 − 𝑏𝑥𝑛 

Note that the error and relative error in xn are given by 
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 
1

,n n n
n n n n

r e r
e x rel x b r

b b b
       ,   

Thus rn is the relative error and we have xn converges to α if 

and only if rn tends to zero. We find a recursion formula for 

rn, recalling that 1n nr bx   for all n. Then 

 

  

 

1 1

2 2

1

1 1

1 1 1

1 1

n n

n n

n n

n n

r bx

bx r

r r

r r

  

  

   

   

 

Thus 
2

1n nr r   

for every integer n ≥ 0. Thus 
2 2 4 2 8

1 0 2 1 0 3 2 0, ,r r r r r r r r      

By induction, we obtain 

                 
2

0 , 0,1,2,....
n

nr r n                                       (3) 

 

(c )  We can use this to analyze the convergence of 

 1 1 , 1n n n n nx x r r bx      

In particular, we have rn  → 0 if and only if 

0 1r   

This is equivalent to saying 

0

0

1 1 1

2
0

bx

x
b

   

 
 

Which is called the ‘interval of convergence’.  
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A look at a graph of f (x) ≡ b −
1
x  will show the reason for 

this condition. If x0 is chosen greater than 
2
b  , then x1 will 

be negative, which is unacceptable. 

 
 

To see why, consider the relative errors in the above. 

Assume the initial guess x0 has been so chosen that 

 Then 

 

 
Thus very few iterates need be computed. 
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ADVANTAGES & DISADVANTAGES 

 

Advantages:  

1. It is rapidly convergent in most cases. 

2. It is simple in its formulation, and therefore relatively easy to apply and 

program. 

3. It is intuitive in its construction. This means it is easier to understand its 

behaviour, when it is likely to behave well and when it may behave poorly. 

 

Disadvantages:  

1. It may not converge. 

2. It is likely to have difficulty if 𝑓′(α) = 0. This condition means the x-

axis is tangent to the graph of y = f (x) at x = α. 

3. It needs to know both f (x) and 𝑓′(𝑥). Contrast this with the bisection 

method which requires only f (x). 

 

AN ERROR FORMULA 

 

Example  

Derive  an error formula for Newton method to solve a 

nonlinear equation then prove that Newton method is 

sensitive for the initial estimate.  find the interval of initial 

estimate for Newton method to be convergent.  

 

Answer: 
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Suppose we use Taylor’s formula to expand f (α) beside x = 

xn. Then we have 

           
21

2
n n n n nf f x x f x x f c         

for some cn  between α and xn. Note that f (α) = 0. Then 

divide both sides of this equation by f '(xn) ≠0, yielding 

 
 

 
 
 

2
0

2

n n
n n

n n

f x f c
x x

f x f x
 


    

 
 

Note that 
( )

1( )
n

n

f x

n nf x
x x      

and thus 

 
 

2
1 ( )

2

n
n n

n

f c
x x

f x



  


   

2
1 ( )n nx M x    ,                           (3.1) 
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where,  since xn close to α, and therefore cn also close to α, we 

have 

 
 

( )

2 ( )2

fn

f
n

f c
M

f x






 






 

Thus Newton’s method is quadratically convergent, 

provided f '(α) ≠0 and f (x) is twice differentiable beside the 

root α. 

 

The error in iteration n+1   is proportial to the 

square error in iteration n  
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We can also use this to explore the ‘interval of convergence’ 

of Newton’s method. Write the above as 

 
''( )2

1 2 '( )
,

f
n n f

x M x M



 


   

,   (3.1b) 

 

 
Multiply both sides by M to get 

𝑀(𝛼 − 𝑥𝑛+1 ) = 𝑀2(𝛼 − 𝑥𝑛)2 = (𝑀(𝛼 − 𝑥𝑛))2 

𝑀(𝛼 − 𝑥𝑛+1 ) = (𝑀(𝛼 − 𝑥𝑛−1))22
 

= ⋯ = ⋯ = ⋯ = (𝑀(𝛼 – 𝑥0))2𝑛
, 𝑛 ≥ 1 
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Then we want the quantity  
2

0( )
n

M x   to decrease; and this 

suggests choosing x0 so that 

 

0( ) 1M x     
2 '( )1

0 ''( )

f

M f
x




                                        (3) 

If |M| is very large, then we may need to have a very good initial guess in 

order to have the iterates x0 converge to α. 

Example  

Estimate the error in Newton method for obtaining the 

root of 
6( ) 1 0f x x x     

Answer 

 

 










 )(2

)(2
1 )()(

n

n

xf

cf
nn xx   

 
4 4

5 5

( ) ( ) 30 15 15
12 ( ) 2 ( ) 6 12(6 1) 6 1

3n n n n

nn n n n

f c f x x x

xf x f x x x

     
   

       

So the error in step n+1 equal the square of the error in step 

n multiply in 3.  
 

Example 

obtain an iterative formula using Newton method to find √𝑎  

for real number a. Use the resulting iterative formula to find  

√5 to three digits of accuracy.  
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Answer 
 

 

x نفرض الج a   2و بتلنتلx a اي 
2( ) 0f x x a   

 و بتسنخدرم قتن لج ني تن

( )

1 '( )
i

i

f x

i i f x
x x    

 
2

1
1 2 2

i

i i

x a a
i i ix x

x x x


      

5a و علدفيت  فإلج 

 51
1 2 i

i i x
x x    

0 فإذر اخ نت 2x   فإلج رلننتباتو ر ننتلية لل ص   للج   تك لج كمت ف

 ر دو  رلنتل 
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n xn f(xn) xn-xn-1 

0 2 -1.000000000 0.250000000 

1 2.250000000 0.062500000 -0.013888889 

2 2.236111111 0.000192901 -0.000043133 

3 2.236067978 0.000000002 0.000000000 

4 2.236067977 0.000000000   

 2: حست  تنتباتو طريقة ني تن اجتد ر    رلتربيا  لث 1-3 دو  

 
 

 

 

THE SECANT METHOD 

 

The Secant Method: 

When the derivative function, 𝑓′(𝑥), is unavailable or 

costly to evaluate, an alternative to Newton’s method is 

required. The preferred alternative is the secant method. 
 

 

The secant method is illustrated graphically in Figure 

3.4. The nonlinear function 𝑓(𝑥) is approximated 

locally by the linear function 𝑔(𝑥), which is the secant 

to 𝑓(𝑥), and the root of 𝑔(𝑥) is taken as an improved 

approximation to the root of the nonlinear function 

𝑓(𝑥).  
 

A secant to a curve is the straight line which passes 

through two points on the curve. 
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The procedure is applied repetitively to convergence. 

Two initial approximations 0 1,x x , which are not 

required to bracket the root, are required to initiate the 

secant method. 
 

The slope of the secant passing through two points, 

1,i ix x , is given by 

     1

1
' i i

i i

f x f x

i x x
g x 






                                            (1) 

 

 

 
 

 

The equation of the secant line is given by 
     1

1
'i i

i i

f x f x

ix x
g x






  

 

where 1( ) 0if x   . Solving this Eq. for xi+1 yields 

 

 xi-1          xi          xi+1                   

y

                            

x

                          

                                                          

g(x)                                 

                                                          

y=f(x)                                 
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 
 1 '

i

i

f x

i i g x
x x                                              (2) 

 
Equations(1)-(2) are applied repetitively until either one 

or both of the following two convergence criteria are 

satisfied: 
(𝑖)|𝑥𝑖+1 − 𝑥𝑖| ≤ 𝜖, (𝑖𝑖)|𝑓(𝑥𝑖)| ≤ 𝜖 

 

 

 

Example 
We solve the equation 

6( ) 1 0f x x x     

which was used previously as an example for both the 

bisection and Newton methods.            The quantity xn − xn-

1 is used as an estimate of α − xn-1. The iterate x9 equals α 

rounded to nine significant digits. As with Newton’s method 

for this equation, the initial iterates do not converge rapidly. 

But as the iterates become closer to α, the speed of 

convergence increases. 

 
Programming Exercise  

Use your Matlab program using Secant method 

for example  to obtain the following results: 
clear 

x0=2.0; 

x1=1.0; 

f0=(x0^6)-x0-1; 

f1=(x1^6)-x1-1; 

n=0; 

 

     n                x0        f0 

a= 

     0            2              61 

a= 
     1            1             -1 
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a='n x0 f0' 

a=[n x0 f0] 

n=1; 

a=[n x1 f1] 

while n<5 

    f0=(x0^6)-x0-1; 

    f1=(x1^6)-x1-1; 

    x=x1-f1*(x1-x0)/(f1-

f0); 

    n=n+1; 

    x0=x1; 

    x1=x; 

    f=(x^6)-x-1; 

    a=[n x f] 

end 

a= 
    2.0000    1.0161   -0.9154 

a= 
    3.0000    1.1906    0.6575 

a= 
 
    4.0000    1.1177   -0.1685 

a= 
 
    5.0000    1.1325   -0.0224 

 
It is clear from the numerical results that the secant method 

requires more iterates than the Newton method. But note 

that the secant method does not require a knowledge of f 

'(x), whereas Newton’s method requires both f (x) and f '(x). 
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Comparison of Newton and Secant Methods 
 

From the foregoing discussion, Newton's method 

converges more rapidly than the secant method. Thus, 

Newton's method should require fewer iterations to 

attain a given error tolerance.  

 
The Newton method 

 
 1 , 0,1,2,......
'

n
n n

n

f x
x x n

f x
     

requires one function and one derivative  evaluations 

per iteration, that of f (xn) and f '(xn). The secant method 

 
requires just two function evaluations per iteration. 

 

The derivative  evaluation is more complicated than 

function evaluation.    Indeed the numerical 

approximation for derivative (5) requires two function 

evaluations. 

 

For this reason, the secant method is often faster in time, 

even though more iterates are needed with it than with 

Newton’s method to attain a similar accuracy. 

 
Advantages & Disadvantages 

Advantages of secant method:  

1. It converges at faster than a linear rate, so that it is more 

rapidly convergent than the bisection method. 
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2. It does not require use of the derivative of the function, 

something that is not available in a number of applications. 

 

3. It requires only one function evaluation per iteration, as 

compared with Newton’s method which requires two. 

 

Disadvantages of secant method: 

1. It may not converge. 

2. There is no guaranteed error bound for the computed 

iterates. 

3. It is likely to have difficulty if ( )f  . This means the x-

axis is tangent to the graph of y = ( )f x  at x = α. 

4. Newton’s method generalizes more easily to new 

methods for solving simultaneous systems of nonlinear 

equations. 

 

 

 
Fixed Point Iteration 
 

One of the most frequently recurring ideas in numerical 

calculations is iteration or successive approximation. 

Taken generally, iteration means the repetition of a 

pattern of action or process.  
 

To illustrate a more specific use of the idea of iteration, 

we consider the problem of solving a (usually) nonlinear 

equation of the form 
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( )x g x                                                                    (1) 

 

where g is assumed to be a differentiable function 

whose value can be computed for any given value of a 

real variable x  within a certain interval. Using the 

method of iteration, one starts with an initial 

approximation 0x , and computes the sequence 

1 0 2 1 3 2( ), ( ), ( ) ,....x g x x g x x g x  
                      (2) 

 

 

Each computation of the type 1 ( )i ix g x  is called a fixed 

point iteration. 

As i
ix  to be better 

and better estimates of the desired root.  

If the sequence  nx  converges to a limiting value α then 

we have 
 

1lim lim ( ) ( )
n n

n nx g x g
 

   
   

so x   satisfies the equation ( )x g x .  One can then 

stop the iterations when the desired accuracy has been 

attained. 

Example  

 

 : 1مثال

  ست      ر اتدلة رلغ  خ ية  رللق ة رلثتبنةرسنخدم طريقة 

2( ) 5 0f x x    

 فين خلا  رلطيغة رلننتباية 
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21
1 5

1i i ix x x     

0بتلقر  فين  2.5x . 
 الحل:

 

clear 
'  i   x    ' 
x=2.5; 
i=0; 

while i<5 
x=1+x-(x^2)/5; 
i=i+1; 
a=[i x ] 
 End 

 

         i              x   

a=   

    1.0000    2.2500 

a=   

    2.0000    2.2375 

a=   
    3.0000    2.2362 

a=   
    4.0000    2.2361 

a=   

    5.0000    2.2361 

 
The Newton method and the secant method  are examples of 

one-point and two-point iteration methods respectively. In 

this section, we give a more general introduction to iteration 

methods, presenting a general theory for one-point iteration 

formulas. 

 
Example  

 
Consider solving the equation 

2( ) 5 0f x x                                                                    (1) 

for the root 5  = 2.2361. Test which  of these four iteration 

methods to solve this equation converges? 

 

2

1 1

21 1
1 15 2

1. 5 2. 5 /

3. 1 4. 5 /

n n n n n

n n n n n n

x x x x x

x x x x x x

 

 

   

    
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^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
All four iterations have the property that if the sequence 

 {xn| n≥0} has a limit α, then is a root of (1).  

 

For each equation, check this as follows: Replace xn and xn+1 by 

α, and then show that this implies α= 5 . In the following 

Exercise, you shall evaluate  the iterates xn for these four 

iteration methods.  

 

Programming Exercise : 
Write Matlab program evaluate the iteraion values for (1) 

making use of the above four methods statrting from x0=2.5 

to obtain the following table: 

x2=2.5; 

x3=2.5; 

x4=2.5; 

n=0; 

while n<5 

x1=5+x1-x1^2; 

x2=5/x2; 

x3=1+x3-

0.2*x3^2; 

x4=0.5*(x4+5/x

4); 

a=[n x1 x2 x3 

x4] 
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n=n+1; 

 End 

 

 
To explain these numerical results. we present a general theory 

for one point iteration formula.  
 

As another example, note that the Newton method 

 
is also a fixed point iteration, for the equation 

 
In general, we are interested in solving equations 

 
by means of fixed point iteration: 

 
If the iterates xn converge to a point α. then 

 

 

 
Existence Theorem 
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We begin by asking whether the equation x = g(x) 

has a solution. For this to occur, the graphs of y = 

x and y = g(x) must intersect. The lemmas and 

theorems in the section give conditions under 

which we are guaranteed there is a fixed point α. 

 
Lemma: Let g(x) be a continuous function on the interval 

[a, b], and suppose it satisfies the property 

                                       
(1) 

Then the equation x = g(x) has at least one solution α in the 

interval [a, b]. See the graphs for examples. 
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Theorem(1): Assume g(x) and g'(x) exist and are continuous 

on the interval [a, b]; and further, assume 

     (2) 

Then: 

S1. The equation x = g(x) has a unique solution α in [a, b]. 
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S2. For any initial guess x0 in [a, b], the iteration 

 
will converge to α. 

 

S3.                

 

 

S4. 

Thus for xn close to α, 

 

 
Proof. Note first that the hypotheses on g allow us to use the 

previous Lemma to assert the existence of at least one 

solution to x = g(x). In addition. using the mean value 

theorem, we have that for any two points w and z in [a, b]  

 
for some c between w and z. By using (2), we obtain 

 

                                                        
(3) 

 

S1. Suppose there are two solutions, denoted by  

and . By subtracting these, we find that 

 
Take absolute values and use (3): 
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Since , we must have ; and thus, the 

equation x=g(x) has only one solution in the interval [a, b]. 

 

 

S2. From the assumption (1), it can be shown that for any 

initial guess x0 in [a, b], the iterates xn will all remain in [a, 

b].    

 

For example, if , then (1) implies 

. Since x1= g(x0),this shows x1 is in [a,b]. 

Repeat the argument to show that x2 = g(x1) is in [a, b], and 

continue the argument inductively.    

To show that the iterates converge, subtract xn+1 = g(xn) 

from , obtaining 

                      (4) 

for some Cn between and xn. Using the assumption (2), 

we get 

 
Inductively. we can then show that 

                          (5) 
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Since , the right side of (5) goes to zero as 

, and this then shows that 

 
 

S3. Use (3) with n = 1 to obtain 

0 1 1 0x x x x       

Using triangle inequilty 

 
combining this to (5) we obtain the required. 

 

S4. Use (4) to write 

 

 

Each cn is between , by S2, Thus, 

. Combine this with the continuity of the function 

g'(x) to obtain 

 
thus proving the required  
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Corollary: 

 

Assume that g(x) and g'(x) are continuous for some interval 

c < x < d, with the fixed point α contained in this interval. 

Moreover, assume that 

 

| g'()|<1                                                (7) 

 

Then, there is an interval [a, b] around α for which the 

hypotheses, and hence also the conclusions, of Theorem(1)  

are true.  

 

If the contrary, | g'()|<1, then the iteration method 

 will not converge to α,  

 

 

{When| g'()|=1,no conclusion can be drawn; and 

even if convergence occurs, the method would be far too 

slow for the iteration method to be practical} 
 

Answer of Example 3.6: 

Using the result, ( ) 1g     as a condition for convergence, 

we can examine the iteration methods in example 1, namely: 
 

 

2

1 1

21 1
1 15 2

1. 5 2. 5 /

3. 1 4. 5 /

n n n n n

n n n n n n

x x x x x

x x x x x x

 

 

   

    
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Thus, the iteration 1 will not converge to 5 . 

.  

We cannot conclude that the iteration. converges or 

diverges. But from Table 1, it is clear that the iterates will 

not converge to α. 

 

From the corollary, the iteration will converge. And from(5 

), 

 
when xn is close to α. The errors decrease by approximately 

a factor of 0.1 with each iteration. 

 

 Thus. the condition for convergence is easily satisfied. Note 

that this is Newton's method for computing 5 . 

 

 
Remark: 

It is often difficult to know how to convert a rootfinding 

problem f(x) = 0 into a fixed point problem x = g(x) that 

leads to a convergent method.  

 

The possible behavior of the fixed point iterates xn is shown 

graphically in Figure 1, for various sizes of g'(α). To see the 

convergence, consider the case of x1 = g(xo), the height of 

the graph of y = g(x) at xo . We bring the number x1 back to 

the x-axis by using the line y = x and the height y = x1. We 
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continue this with each iterate, obtaining a stairstep 

behavior when g'(α)>0. When g'(α)<0. the iterates oscillate 

around the fixed point α, as can be seen in Figure 1. 
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Example  
In Table 1, we give results from the iteration 3 

 
 

along with more information on the convergence of the 

iterates. The errors are given, along with the ratios 

 
Empirically, the values of r converge to g'(α)= 0.105573, 

which agrees with(S4)(see the following table). 
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HIGHER ORDER METHODS 

 

The convergence formula gives less information 

in the case  g'(α)= 0,  

 

although the convergence is clearly quite good.  

 

To improve on the results in Existence Theorem, consider 

the Taylor expansion of g (xn) about α , assuming that g (x) 

is twice continuously differentiable: 

g (xn)= g(α)+                                                                   (8) 
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with cn between xn and α. Using g(xn) = xn+1 and g(α) = α. 

Also assume g'(α) = 0. 

Then 

 
 

Thus if g'(α)= 0, the fixed point iteration is quadratically 

convergent or better.  More ever 

 
 

If g"(α) ≠0, then this formula shows. that the iteration xn+l 

= g(xn)is of order 2 or is quadrarically convergent. 

 

If also g"(α)= 0, and perhaps also some higher-order 

derivatives are zero at α, then expand the Taylor series 

through higher-order terms in (8), until the final error term 

contains a derivative of g that is nonzero at α. This leads to 

methods with an order of convergence greater than 2. 

 

 
Aitken Error Estimation and Extrapolation 

Example  
Write with proof the Aitken’s extrapolation formula with an 

algorithm to program it, derive from it Aitken’s error 

estimation formula  

Answer 
Recall the result 
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for the iteration 

 
 

Thus 

 

                               (1)                                               

with                         and |λ| < 1. 

 

If we were to know λ, then we could solve (1) for α: 

 
Usually, we write this as a modification of the currently 

computed iterate xn: 

          (2) 

The formula 

 

 
is said to be an extrapolation of the numbers xn−1 and xn.  

 

Now for estimating λ , from (1) 

 

we have 
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                    (3) 

Unfortunately this also involves the unknown root α which we 

seek; and we must find some other way of  estimating λ. 

 

To calculate λ consider the ratio 

 

           (4) 

 

To see this is approximately λ as xn approaches α, write 

 
 

with cn between xn−1 and xn−2. As the iterates approach α, the 

number cn must also approach α. Thus λn approaches λ as xn → 

α. 

 

 

We combine these results(2)-(4) to obtain the estimation 

,                  (5) 

 

 

 
We can also rewrite (5) as 

 
This is called Aitken’s error estimation formula. 
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The accuracy of these procedures is tied directly to the accuracy 

of the formulas( from (11)) 

, 

 
If this is accurate, then so are the above extrapolation  and error 

estimation formulas. 

 
Example  

Consider the iteration 

 
for solving 

x=6.28+sinx 

So, g(x)=6.28+sinx,   Iterates are shown on the 

accompanying sheet, including calculations of λn, the error 

estimate 

 
The latter is called “Estimate” in the table. In this instance, 

 
 

 
and therefore the convergence is very slow. This is apparent 

in the table. 

 
Programming Exercise 
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Use Matlab program to calculates Aitken’s error estimation 

for example 3.8 to obtain the following table.   Detect if the 

iterations converge rapidly or slowly. 

 
 
Aitken’s Algorithm 

 
Step 1: Select x0 

Step 2: Calculate 

 
Step3: Calculate 

 

 
 

Step 4: Calculate 

 
and calculate x6 as the extrapolate of {x3, x4, x5}. 

             5 4

4 3
5

x x

x x





 ,   5

5
6 5 5 41

x x x x



    
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Continue this procedure. 

 

Of course in practice we will have some kind of error test to 

stop this procedure when believe we have sufficient 

accuracy. 

 
General Comments 
Aitken extrapolation can greatly accelerate the convergence 

of a linearly convergent iteration 

 
This shows the power of understanding the behaviour of the 

error in a numerical process. From that understanding, we 

can often improve the accuracy, thru extrapolation or some 

other procedure. 

This is a justification for using mathematical analyses to 

understand numerical methods. We will see this repeated at 

later points in the course, and it holds with many different 

types of problems and numerical methods for their solution. 
 

Example 3 

Consider solving 
6( ) 1 0f x x x     

for its positive root α. An initial guess x0 can be generated 

from a graph of y = f (x). The iteration is given by 
6

1 5

1
, 0

6 1

n n
n n

n

x x
x x n

x


 
  


 

We use an initial guess of 0 1.5x  .  We shall take 

1n nx x   as the numerical error. 
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Excercises 
32

 ( او د صيغة تنتباية بتسنخدرم طريقة ني تن اجتد قيمة كل فين:1)

1( ) , ( )n

a
i a ii 

وذلثس حنثى دقثة الااثة      a=5, n=2وفيثن اثم او ثد قيمثة كثل فيلهثت علثدفيت        

 في رضم علرية؟

( فيثم تغثي    1برنتفيج فيتتلا )و ركسل( ل ريقثة نيث تن  ثثت  )   ( اعد تلفي  2)

 ، فيتذر تلاحظ؟0x=100 ,5.0 ,1.5.نق ة رل درية  لى

cosx( رسنخدم طريقة ني تن   ست      ر اتدلة    رلخ ية 3) x؟ 

( فين خلا  د رسة تقدير رلخ أ ل ريقة نيث تن او ثد فياثد  رلنقثت   علثد      4)

)6حسثثت   ثث   ر اتدلثثة  ثث  رلخ يثثة   ) 1f x x x  فيثثن اثثم حثثدد  ، و

 (.1تنتباتو. قت لج ذلس فيم رللنتئج رلاددية  ثت  ) 4رلخ أ ر ن قم باد 

 ثثث  ( رسثثثنخدم ركسثثثل ليقثثثة طريقثثثة نيثثث تن   سثثثت   ثثث   ر اتدلثثثة  5)

 رلخ ية

6( ) 1f x x x    

0وذلس بدءر فين 1.5x  .(  1وقت لج رللنتئج فيم فيثت.) 

 

 ( لك  ن  ق طريقة ني تن اجتد او      في    للماتدلة: 6)
( ) sin 0f x x   

]او ثثثد اكثثثي فثثثترة  , ]a b نيثثث تن  ثثثل هثثث ه رلثثثتي تنقثثثت   فيهثثثت طريقثثثة

 ر سألة؟
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ر سثم رلدرلثة ر ا ثتة لناثرف او   ث   في  ث ، اثم حثدد رلفثترة           :تسثهيل 

 رلتي   يدخل فيم ه ر ر    اي   و  اخرى؟

cosx ست      ر اتدلة    رلخ ية  ( رسنخدم طريقة رلقتطم7) x؟ 

 سثثت   ثث   ر اتدلثثة  ثث  رلخ يثثة    ( رسثثنخدم طثثريقتي نيثث تن ورلقثثتطم 8)

3
sin( )x xe  ؟ 

 ( رسثثثثثنخدم طريقثثثثثة نيثثثثث تن   سثثثثثت   ثثثثث   ر اتدلثثثثثة  ثثثثث  رلخ يثثثثثة        9)

𝑓(𝑥) = 𝑥2 − 4𝑥 +  ؟0x=بدءر فين 4

 

 (1)  Find a recurrence relation for Newton's method to 

find values of 

               1( ) , ( )n

a
i a ii  

Then find the value of each of them when a=5, n=2 to 

within 3 digits of accuracy. 

 

 (i  نضع )  N N Nf x x a x a x a      

1 1 1

1

1

1

N N
i i

i i iN N
i i

i i N
i

x a x a
x x x N

NNx x

a
x N x

N x

  



  
    

 

 
   

 

 

25aفإذا أخذنا   ،3N   سوف يكون هو الحل الجدول التالي فإن

 أيضاً 
n xn f (xn) xn-xn-1 

0 2 -17.000000000 1.416666667 

1 3.416666667 14.884837963 -0.425028092 
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2 2.991638575 1.774870159 -0.066103900 

3 2.925534675 0.038929063 -0.001516150 

4 2.924018525 0.000020171   

 

 

(2) rerun your program for Newton's method for 

Example 1 with interchange of the initial point to x0=1.5, 

5.0, 100.  What is your remarks. 

(3) Use Newton's method to find root for the nonlinear 

equation cosx x  
 

 

 

( فين خلا  د رسة تقدير رلخ أ ل ريقة ني تن او د فياد  رلنقت   علد 4) 

)6حست      ر اتدلة رلغ  خ ية  ) 1f x x x    ، و فين ام حدد

 (.1تنتباتو. قت لج ذلس فيم رللنتئج رلاددية  ثت  ) 4رلخ أ ر ن قم باد 

 
 ر اتدلة رلغ  خ ية( رسنخدم  كسل ليقة طريقة ني تن   ست      5)

6( ) 1f x x x    
0 ذلس بدءر فين و 1.5x  .(  1قت لج رللنتئج فيم فيثت.) 

 

 ( لك  ن  ق طريقة ني تن اجتد او      في    للماتدلة 6)

( ) sin 0f x x   

]او د اكي فترة  , ]a b طريقة ني تن  ل ه ه ر سألة. رلتي تنقت   فيهت 
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  سم رلدرلة ر ا تة لنارف او      في    ام حدد رلفترة رلتي   تسهيل:

 يدخل فيم ه ر ر    اية   و  اخرى

cosx ست      ر اتدلة رلغ  خ ية  ( رسنخدم طريقة رلقتطم7) x 

 ر اتدلة رلغ  خ ية ست       ( رسنخدم طريقتي ني تن و رلقتطم8)

3
sin( )x xe  . 

[1](a) Derive  an error formula for Newton method to solve a 

nonlinear equation then prove that Newton method is sensitive for the 

initial guess. 

Answer : In the text 

 

[1] (b) consider computing a  using Newton's method.  Find the 

interval D that must contains x0 such that  Newton iteration is 

convergent 

Answer : In the text 

*[1] (c) consider computing m a  using Newton's method.  Find the 

interval D that must contains x0 such that  Newton iteration is 

convergent 

**[2] (a) use Newton's method  to find a recurrence relation for the 

computation of ln( )u , with 0u  . 
**[2]  (b) Derive an error formula for Newton method then derive a 

formula for the relative error in the n+1 stage in terms of the previous 

stage for problem  [2] (a).  

**[2] (c ) find the interval D that must contains x0 such that  Newton 

iteration is convergent in evaluating ln( )u ,  2u e .  
Exercise  

 [1] (a) On most computers. the computation of a  is based on 

Newton's method. Set up the Newton iteration for solving x2-

a=0, and show that it can be written in the form 
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 (b) Write without proof  the error formula for Newton method 

then derive a formula for the relative error in the n+1 stage in 

terms of the previous stage. 

 

(c) find the interval D that must contains x0 such that  Newton 

iteration is convergent 

(d ) For x0 near a , the last formula becomes 

 
 

Assuming Rel(x0) = 0.1, use this formula to estimate 

the relative error in x1, x2, x3, and x4. 

 

Answer: 

a) x a  

 

( )
1 '( )

, n 0,1,2,n

n

f x
n n f x

x x    
 

 

b)  The error formula for Newton method  

 

                    (1) 
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For xn close to α, and therefore cn also close to α, 

 

 We can also use this to explore the ‘interval of 

convergence’ of Newton’s method. Write the above as 

  

                                             (2) 

 

Multiply both sides by M to get 
2

1( ) ( )n nM x M x     

  2 2
1( ) ( ) , 0n nM x M x n    

 

                     
2

0( )
n

M x   

Then we want the quantity  
2

0( )
n

M x   to decrease; 

and this suggests choosing x0 so that 

 

0( ) 1M x     
2 '( )1

0 ''( )

f

M f
x




                                        (3) 

If |M| is very large, then we may need to have a very 

good initial guess in order to have the iterates x0 

converge to α. 
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 (c )  
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*[2] (d) consider computing a solution for the nonlinear equation  

f (x) ≡ b − 1/x = 0 

using Newton's method.  Find the interval D that must contains x0 

such that  Newton iteration is convergent 

[3] state a convergence Corollary for the fixed point method. Then 

apply it to check the convergence of the following iteration formula: 

 

2

1 1

21 1
1 15 2

1. 5 2. 5 /

3. 1 4. 5 /

n n n n n

n n n n n n

x x x x x

x x x x x x

 

 

   

    
 

[4] write with proof the Aitken’s extrapolation formula with an 

algorithm to program it, derive from it Aitken’s error estimation 

formula  
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Interpolation  
 

4.1 Principle  of Linear Interpolation  
 

 

In many applications, the function may be given as a table. For example: 

 

1.0       0.8       0.6       0.4    

   

0.2    

   

0.0    

   

𝑥 

1.0  

  

0.64     0.36     0.16  

   

0.04  

   

0.0    

   

𝑓(𝑥) 

 

It is required from the given values of the function { 𝑓(𝑥𝑖),i=1,2,3,4 }  to obtain a 

value of  𝑓(𝑥) for certain value of x , as an example 𝑓 (3.55) . or the value of  𝑥 for 

certain value of   𝑓(𝑥) , as an example ; what is 𝑥 when   𝑓(𝑥)= 0.11. 

 

This problem is called an interpolation problem .  

 

To solve it , we define polynomial   𝑝𝑛(𝑥)   of degree n to be an approximation of   

𝑓(𝑥).  The polynomial curve must pass on the given points 

  

 
 

 

1-Lagrange Interpolation 

 

a- Linear Interpolation 
Consider 1 1( , ), ( , )o ox y x y , then the line pass through them is 

1
1 0 1

0 1 1 0

( ) ox x x x
y p x y y

x x x x

 
  

 
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We define 

1
0 1

0 1 1 0

( ) , ( ) ox xx x
L x L x

x x x x


 

 
                     (1) 

Which has the properties 

0 0 0 1 1 0 1 1( ) 1, ( ) 0, ( ) 0, ( ) 1L x L x L x L x                    (2) 

 

These function  ( ) 0, 0,1,jL x j   are called Lagrange  functions or multiplies. 

 

 
 

So 

1 0 0 1 1( ) ( ) ( )p x L x y L x y                                                        (3) 

And then 

1 0 0 0 0 1 0 1 0 1 0( ) ( ) ( ) 1( ) 0( )p x L x y L x y y y y      

1 1 0 1 0 1 1 1 0 1 1( ) ( ) ( ) 0( ) 1( )p x L x y L x y y y y      

Or 

                           1( )i ip x y , 0,1i  . 

 

Example 

Find the linear polynomial that passes through the three points (1, 1), (4, 2).  Then 

find the value of the function at x=3 

Answer: Let    1 1( , ) 4,2 , ( , ) 1,1o ox y x y   then 

1 1
0 3

0 1

1
( ) ( 1)

4 1

x x x
L x x

x x

 
   

 
 

1
1 3

1 0

4
( ) ( 4)

1 4

ox x x
L x x

x x

 
    

 
 

Since 0 0 1 1( ) 2, ( ) 1f x y f x y     then 

1 0 0 1 1( ) ( ) ( ) ( ) ( )p x L x f x L x f x   

         1 1
3 3
( 1)(2) ( )( 4)(1)x x      

         2 1
3 3
( 1) ( 4)x x     2 2 1 4

3 3 3 3
x x     

         1 2
3 3
x   

x0             x1 

y1=f(x1)                               

y

                            

x

                          

y0=f(x0)                               

y=f(x)                               
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at x=3 
51 2

1 3 3 3
(3) (3)p     

 

b- quadratic Interpolation 
Let ( )f x  is defined at three points: 

                               1 1 2 2( , ), ( , ), ( , )o ox y x y x y , 

Then 

2 0 0 1 1 2 2( ) ( ) ( ) ( )p x L x y L x y L x y                                   (4) 

where 

  

  
1 2

0

0 1 0 2

( ) ,
x x x x

L x
x x x x

 


 
 

  

  
0 2

1

1 0 1 2

( )
x x x x

L x
x x x x

 


 
 

  

  
0 1

2

2 0 2 1

( )
x x x x

L x
x x x x

 


 
                                                     (5) 

with 

( ) 1, ( ) 0, , , 0,1,2i i i jL x L x i j i j                         (6) 

 

Example 

Find the polynomial of degree 2 that passes through the three points (2, 7), (1, -1) and 

(0,-1).  Then find the value of the function at x=3 

Answer: Let  
 

2 1 0 i 

2 1 0 ix 

7 -1 0 iy 

 

 

 

 
  

 

0

1

1 2 1
( 1)( 2)

(0 1)(0 2) 2

( 0)( 2)
( 2) ( 2)

(1 0)(1 2) 1

x x
L x x x

x x x
L x x x x

 
    

 

 
      

 

 

 2

( 0)( 1)
( 1)

(2 0)(2 1) 2

x x x
L x x

 
  

 
 

Then  

2 0 0 1 1 2 2

1 7
( ) ( ) ( ) ( ) ( 1)( 2) ( 2) ( 1)

2 2
P x L x y L x y L x y x x x x x x


            

2

1 7
(3) ( ) (3 1)(3 2) 3(3 2) (3)(3 1) 23

2 2
f P x


          
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c- Higher degree interpolation(Lagrange interpolation) 

 

We consider the following data is given. 

 
Then Lagrange polynomial interpolation is 

 
𝑝𝑛(𝑥) = ∑ 𝐿𝑗(𝑥)𝑦𝑖

𝑛
𝑗=0 ………………………..(1) 

Where 

0 1 1 1

0 1 1 1

( )( )...( )( )...( )
( )

( )( )...( )( )...( )

i i n
i

i i i i i i i n

x x x x x x x x x x
L x

x x x x x x x x x x

 

 

    


    
 

 

0

( )

( )

n
k

i kk
k i

x x

x x






  

We have 

1 ,
( )

0 ,
i j ij

i j
L x

i j



  


 

 
Home work : 

Use the following data obtain a suitable interpolation polynomial and then find the value of the 

function at = 5 . 

 

4 3 2 1 0 𝒊 

6 4 3 2 1 x 
216 64 27 8 1 y 

 

 

Answer,  

we have n=4 so 

𝐿0(𝑥) =
(𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3)(𝑥 − 𝑥4)

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)(𝑥0 − 𝑥3)(𝑥0 − 𝑥4)
 

=
(𝑥 − 2)(𝑥 − 3)(𝑥 − 4)(𝑥 − 6)

(1 − 2)(1 − 3)(1 − 4)(1 − 6)
 

            =
−1

30
(𝑥 − 2)(𝑥 − 3)(𝑥 − 4)(𝑥 − 6) 
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𝐿1(𝑥) =
(𝑥 − 𝑥0)(𝑥 − 𝑥2)(𝑥 − 𝑥3)(𝑥 − 𝑥4)

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)(𝑥1 − 𝑥3)(𝑥1 − 𝑥4)
 

=
−1

8
(𝑥 − 1)(𝑥 − 3)(𝑥 − 4)(𝑥 − 6) 

𝐿2(𝑥) =
(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥3)(𝑥 − 𝑥4)

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)(𝑥2 − 𝑥3)(𝑥2 − 𝑥4)
 

=
1

6
(𝑥 − 1)(𝑥 − 2)(𝑥 − 4)(𝑥 − 6) 

𝐿3(𝑥) =
(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥4)

(𝑥3 − 𝑥0)(𝑥3 − 𝑥1)(𝑥3 − 𝑥2)(𝑥3 − 𝑥4)
 

=
−1

12
(𝑥 − 1)(𝑥 − 2)(𝑥 − 3)(𝑥 − 6) 

𝐿4(𝑥) =
(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3)

(𝑥4 − 𝑥0)(𝑥4 − 𝑥1)(𝑥4 − 𝑥2)(𝑥4 − 𝑥3)
 

=
1

120
(𝑥 − 1)(𝑥 − 2)(𝑥 − 3)(𝑥 − 4) 

 

𝑃4(𝑥) = 𝐿0(𝑥)𝑦0 + 𝐿1(𝑥)𝑦1 + 𝐿2(𝑥)𝑦2 + 𝐿3(𝑥)𝑦3 + 𝐿4(𝑥)𝑦4 

=
−1

30
(𝑥 − 2)(𝑥 − 3)(𝑥 − 4)(𝑥 − 6)(1) 

+
−1

8
(𝑥 − 1)(𝑥 − 3)(𝑥 − 4)(𝑥 − 6)(8) 

+
1

6
(𝑥 − 1)(𝑥 − 2)(𝑥 − 4)(𝑥 − 6)(27) 

+
−1

12
(𝑥 − 1)(𝑥 − 2)(𝑥 − 3)(𝑥 − 6)(64) 

+
1

120
(𝑥 − 1)(𝑥 − 2)(𝑥 − 3)(𝑥 − 4)(216) 

 

𝑃4(5) =
−1

30
(5 − 2)(5 − 3)(5 − 4)(5 − 6) 

−(5 − 1)(5 − 3)(5 − 4)(5 − 6) 

+
27

6
(5 − 1)(5 − 2)(5 − 4)(5 − 6) 

 −
64

12
(5 − 1)(5 − 2)(5 − 3)(5 − 6) 

+
216

120
(5 − 1)(5 − 2)(5 − 3)(5 − 4) = 125 

 
The Matlab program is as follows 

clear 
x = [1 2 3 4 6]; y = [1 8 27 64 216];  

v = 
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l = lag_intrp(x,y);  
xx = [1: 0.2 : 6]; yy = polyval(l,xx);  
clf, plot(xx,yy,'b', x,y,'*','LineWidth',2)  
ylabel('y','FontSize',12) 
xlabel('x','FontSize',12) 
xx0=5; 
yy0 = polyval(l,xx0); 
v=[xx0 yy0] 

    5.0000  125.0000 

function [l,L] = lag_intrp(x,y) 
N = length(x)-1;  
l = 0; 
for m = 1:N + 1 
P = 1; 
for k = 1:N + 1 
if k ~= m, P = conv(P,[1 -x(k)])/(x(m)-x(k)); end 
end 
L(m,:) = P;  
l = l + y(m)*P;  
end 

 
The function w=conv(u,v) used in this program is the product of 

multiplication(element by element) for two matrices u,v, with dimensions 

m = length(u)  and n = length(v) 
Then we have 

w(n) = u(1)*v(n)+u(2)*v(n-1)+ ... +u(n)*v(1) 

 

 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

50

100

150

200

250

y

x
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Theory of interpolation 
 

and we seek a polynomial 𝑃(𝑥) of lowest possible degree for which 
                    ( ) , 0,1,...,n i ip x y i n   

Such a polynomial is said to interpolate the data. 

 

Does such a polynomial exist, and if so, what is its degree? Is it unique? What is a 

formula for producing 𝑃(𝑥) from the given data? 

By writing 

     (1) 

for a general polynomial of degree m, we see there are m + 1 independent parameters a0 , a1, ••• , 

am. Since (1) imposes n + 1 conditions on 𝑃(𝑥), it is reasonable to first consider the case when 

m = n. Then we want to find a0 , a1, ••• , an such that 

(2) 

This is a system of n + 1 linear equations in n + 1 unknowns, and solving it is 

completely equivalent to solving the polynomial interpolation problem. In vector and 

matrix notation, the system is 
 

Xa=Y                          (3) 
with 

 
The matrix  X is called a Vandermonde matrix. 

 

 Here is the theorem that governs this polynomials. 

 
Theorem 3.1 

 Given n + 1 distinct points x 0 , ••. , xn and n + 1 ordinates y0 , ••• , yn,  there is a 

polynomial p(x) of degree n that interpolates y; at Xi i = 0, 1, ... , n. This polynomial p(x) is 

unique among the set of all polynomials of degree at most n. 
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Proof  
It can be shown that for the matrix X in (3), 

(4) 
 This shows that det(X)  0, since the points X; are distinct. Thus X is nonsingular and 

the system Xa = y has a unique solution a. This proves the existence and uniqueness of 

an interpolating polynomial of degree  n. 

 

 
To prove uniqueness, suppose q(x) is another polynomial of 

degree : n that satisfies (1). Define 

r(x) = p(x)- q(x) 
Then degree r(x)  n, and 

r(xi) = p(xi) - q(xi) = yi- yi = 0,   i=0,1, ... ,n 

Since r(x) has n + 1 zeros, we must have r(x) = 0. This proves 

p(x) = q(x), completing the proof.                                                

================================= 
If a function f(x) is given, then we can form an approximation to it using the interpolating 

polynomial 

0

( ) ( )
n

n i i
i

P x L x y



                                   (7) 

This interpolates f(x) at x 0 , ••• , xn. For example, we later consider f(x) =log10 x with linear 

interpolation. The basic result used in analyzing the error of interpolation is the following 

theorem. As a notation, £{a, b, c, ... } denotes the smallest interval containing all of the real 

numbers a, b, c, ... . 

 
 

Theorem 2  

Let x0 , x1, ..• , xn be distinct real numbers, and let f be a given real valued function with n + 

1 continuous derivatives on the interval It = £{t, x0 , ••• , xn}, with t some given real number. 

 

Then. there exists  It, with 

 (8) 
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The error of Lagrange interpolation is 

𝑅(𝑥) = 𝑓(𝑥) − 𝑃𝑛(𝑥) =
𝑓(𝑛+1)(𝑐)

(n + 1)!


𝑘=0

𝑛

(𝑥 − 𝑥𝑘) 

 
Proof: 

 Note that the result is trivially true if t is any node point, since then both sides of (8) are 

zero. Assume t does not equal any node point. Then define 

 
(9) 

With 

 
The function G(x) is n + 1 times continuously differentiable on the 

interval I, as are E(x) and  (x). Also, 
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This may seem a "tricky" derivation, but it is a commonly used 

technique for obtaining some error formulas. 

 

Example For n = 1, using x in place of t, 

 
(10) 

for some x  £{x0 , x1, x}. The subscript x on ~x shows explicitly that  depends on x; 

usually we omit the subscript, for convenience.  

We now apply the n = 1 case to the common high school technique of linear interpolation in 

a logarithm table. Let 

 

 

 
This shows that the error function E(x) looks very much like a quadratic polynomial, 

especially if the distance h = x1 - x 0 is reasonably small. For a uniform bound on [x 0 , x1] 

 
(11) 

for x 0 1, as is usual in a logarithm table. Note that the interpolation error in a standard 

table is much less for x near 10 than near 1. Also, the maximum error is near the midpoint 

of [x 0 , x1]. 

For a four-place table, h = .01, 
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Since the entries in the table are given to four digits (e.g., log10 2 = .3010), this result is 

sufficiently accurate. Why do we need a more accurate five-place table if the preceding is so 

accurate? Because we have neglected to include the effects of the rounding errors present in 

the table entries. For example, with log 10 2= .3010. 

 
and this will dominate the interpolation error if x0 or x1 = 2. 

 

Example 3 

If the function 𝑓(𝑥) = sin (𝜋𝑥) is approximated by a polynomial of degree 9 that 

interpolates 𝑓(𝑥) at ten points in the interval [0,1], estimate the error on this interval  

Solution 

To answer this question, we use R(x) in the preceding theorem. Obviously, 

 

 
 

Estimate ( not evaluate or calculate)  

So it is enough to define a bound  for R(x) ;   

|𝑥 − 𝑥𝑖 | ≤ 1               𝑖 = 1, … … . , 𝑛 
 

 

So  

 

 

and If (l0)( ζx) I ≤  1.  

 

So, for all x in [0,1], 
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 (:4)مثال 

𝑓(𝑥)مال لل البب ك)أ( احسببا اأ ببت اع عنببا ت بب  ا بب   = sin (𝜋𝑥) ت بب  ال ة بب𝑥 =
1

3
كببة   با بب ا ا  

𝑥0ال ةاطخ يار اح ود لاجرانج ب =
1

3
, 𝑥1 =

1

6
, 𝑥2 =

1

2
 . 

𝒇(𝒙)مال لل البب   كوذلببع ت بب  ا بب   )ب( احسببا خ ببت الا بب كمال    = 𝒔𝒊𝒏 (𝝅𝒙)     ت بب  ال ة بب𝒙 =
𝟏

𝟑
 

𝒙𝟎 ال ةاطخ يار اكة   ح ود لاجرانج ببا  ا ا   =
𝟏

𝟑
, 𝒙𝟏 =

𝟏

𝟔
, 𝒙𝟐 =

𝟏

𝟐
 . 

 
 الحل :

 (3أ( بال ععيض في )

(2 1)0 1 2
2

( )( )( )
( ) ( )

(2 1)!

x x x x x x
R x f   




 

(3)

1 1
( 0)( )( )

2 6 ( )
3!

x x x

f 
  

  

 وحيث إنَّ:

(1) (2) 2 (3) 3( ) cos( ), ( ) sin( ), ( ) cos( ),f x x f x x f x x          

 

3
2

1 1
( )( )

2 6( ) cos( )
6

x x x

R x  
  

 

)cos(1ولكن وبذلع يكعن و أن 

1 1 1 1 1
3 3 2 3 6
( )( ) 31

2 3 6
( )R 

  
 =0.04791 

 

 ( نج  أن:2)-(1ب( با  ا ا  )

1
0 1 26 2 2

sin 0 0, sin , sin 1y y y        

2 0 0 1 1 2 2( ) ( ) ( ) ( )p x L x y L x y L x y   

1 2
0

0 1 0 2

1 1
( )( )

( )( ) 6 2( )
1 1( )( )

6 2

x x
x x x x

L x
x x x x

 
 

 
    

   
  

 

0 2
1

1 0 1 2

1
( )

( )( ) 2( )
1 1 1( )( )

6 6 2

x x
x x x x

L x
x x x x


 

 
   

 
 

 

1

3
x 



4Chapter  

 13 

0 1
2

2 0 2 1

1
( )

( )( ) 6( )
1 1 1( )( )

2 2 6

x x
x x x x

L x
x x x x


 

 
   

 
 

 

2 0 0 1 1 2 2( ) ( ) ( ) ( )

1 1 11
( )( ) ( )( )

16 2 62*0 * *1
1 1 1 1 1 1 1 12

6 2 6 6 2 2 2 6

p x L x y L x y L x y

x x x xx x

  

  
  

      
         
      

 

 

1 1
2 2 6
( ) 9 ( ) 6 ( )P x x x x x      

1 1 1
2 23 3 3 3

( ) ( ) sin( ) ( )

0.866234 0.83333 0.032903

f P P  

  
 

 

 

Rounding error analysis for linear interpolation 
 Let 

 

 
(12) 

 
(13) 
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(14) 

 

 
(15) 

 

 

Example  
For the earlier logarithm example using a four-place table, 

 

 
The rounding error is the only significant error in using linear interpolation in a five-

place logarithm table. In fact, it would seem worthwhile to increase the five-place table 

to a six-place table, without changing the mesh size h. Then we would have a maximum 

error for  (x) of 5.5 X 10-7, without any  significant increase in computation. These 

arguments on rounding error generalize to higher degree polynomial interpolation, 

although the result on Max IR(x)l is slightly 

more complicated . 

 
None of the results of this section take into account new rounding errors that occur in the 

evaluation of pn(x). These are minimized by results given in the next section. 

 

Convergence of Interpolating Polynomials Theorem 

 If  f is a continuous function on [a, b], then there is a system of prescribed system of 

nodes 

               
such that the polynomials pn is an interpolation to f at these nodes satisfy 

  
 

The Weierstrass Approximation Theorem 

If f is continuous on [a,b] and if ε > 0, then there is a polynomial p satisfying 

 on the interval[a,b]. 
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PROBLEM SET 
1- Determine whether the algorithm 

x= anbn 

for i = 1,2,. . ., n do 

x =(x + an-i)b, 

end 
computes 

                              
2- What is the final value of v in the algorithm shown? 
v = Ci-1 

for j = i, i +1, . . , n do 
v = vx + Cj 

end 
 

What is the number of additions and subtractions involved in this algorithm? 
 

3- Write an efficient algorithm for evaluating 

                       

51

)ال ال الج ول ال الي لةيم ( 1) )y f x  .(323.5)احساf 

325.0 324.2 322.8 321.0 x 
2.51188 2.51081 2.50893 2.50651 y 

 

 نةاط كما في الج ول ال الي 4( إذا أت يت نيم ال ال  ت   2)

x f (x) 

3.35 0.298507 

3.40 0.294118 

3.50 0.285714 

3.60 0.277778 

 y =f (3.44))أ( ا  ا   صيغ  لاجرانج الا  كمالي  اأ ي  لحساب 

 y =f (3.44))ب( ا  ا   صيغ  لاجرانج الا  كمالي  التربيعي  لحساب 

 y =f (3.44))ج( ا  ا   صيغ  لاجرانج الا  كمالي  ال كعيبي  لحساب 

 فاحسا اأ ت اع لق لهذا ال ةريا. y =f (x)= 1 /xوإذا تلمت أن ال ال  اعس كمل  هي 

y كعن لل ال( 3) sin x خ يار اكة   ح ود لاجرانج ب 
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2

1
,

6

1
,0 11  xxxo

 
 : الآتي من اععلعمات  ال رج  الةاني من  للا  كمالأوج  صيغه لاجرانج ( 4)

1 0 -2 x 
1.45 -1.65 10.75 f(x) 

 .f(0.5)ثم أوج  

0.376y( أوج  نيم  تةريبي  لب 5) e :با  ا ا  صيغ  لاجرانج إذا تلمت أن 

x y 

0.3 1.35 

0.32 1.377 

0.34 1.405 

0.36 1.433 

0.38 1.462 

0.4 1.492 

 

 

4.2 Finite differences interpolation 

Let 𝑦 = 𝑓(𝑥)  is a given function.  We denote   for the change in the 

independent variable.  Then the formula 

.....................(1) 

is called finite differences from the first order.  For higher order we have  

∆𝑛𝑦 = ∆(∆𝑛−1𝑦),   𝑛 = 2,3, … 

 

             
As an example: 

   
from (1) we have:  

𝑓(𝑥 +∆𝑥)= 𝑓(𝑥)  +∆ 𝑓(𝑥)   

𝑓(𝑥 +∆𝑥)=(1+∆) 𝑓(𝑥)  ................................................................ (2) 

 

 Appling (2) n times we obtain 

                       (3) 

using binomial theorem 

                                (4) 

where 

x h

  y f x f x x f x   ( ) ( ) ( )

  

  

 

2

2

2 2

y f x x f x

f x x f x x f x x f x

f x x f x x f x

  

      

    

{ ( ) ( )}

{ ( ) ( )} { ( ) ( )}

( ) ( ) ( )

f x n x f xn( ) ( ) ( )   1

f x n x C f xm
n

m

n
m( ) ( ) 



 
0
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Equation (4) express the iterative values of  𝑓(𝑥)   in terms of its finite differences. 

 

Example: 

Obtain all finite differences for the function 𝑝(𝑥) = 𝑥3 with ∆𝑥 = 1. 
 

Answer: 
 

∆𝑝(𝑥) = (𝑥 + 1)3
− 𝑥3 = 3𝑥2 + 3𝑥 + 1, 

∆2𝑝(𝑥) = [3(𝑥 + 1)2 + 3(𝑥 + 1) + 1]-[3𝑥2 + 3𝑥 + 1] 

= 6𝑥 + 6 

∆3𝑝(𝑥) = [6(𝑥 + 1) + 6] − [6𝑥 + 6]=6 

∆𝑛𝑝(𝑥) = 0, 𝑛 > 3 

 
Finite Difference Table 
 

It is convenient to put the finite differences from different orders  in table.  We have 

two types of tables:  

 (I) Horizontal table for  finite differences 

(II) Diagonal  table for  finite differences 

The Diagonal table is as follows 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 

 

 
 

 
  

 
   

 

 
And the Horizontal table is as follows 

       

.... ...     

... ...     

... ...     

.... ... ... ... ... ... 

C
n

m

n

m n m
m
n 









 



!

!( )!

4 y3y2 yyyx

4 yo

3yo

3
1y

2 yo

2
1y

2
2y

yo

y1

y2

y3

yo

y1

y2

y3

y4

x0

x1

x2

x3

x4

4 y3 y2 yyyx
2 yo

yoyoxo

2
1yy1y1x1

2
2yy2y2x2
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Generalized powers 
 

The n degree of Generalized power for number x is defined by multiplication of n 

factors, the first is x and the next is ( x-h) where h is constant.  
 

 

Let  , then we can evaluate the finite differences for  as follows  

 
Thus,  

)*(                       
The second order finite difference is 

 
Or,  

    

 
Similarly, 

 

 

 

Newton First Formula for interpolation 

Let the values  be given for ,  and  a given 

step. 

We require a polynomial  of most n degree that interpolates a function f and 

satisfies  

(1)      
Taking differences, we have  

 

For Newton method we put the interpolated polynomial on the form 

x
n

x x h x h x n h

x x x x x x h

x x at hn n

[ ]
( )( )...[ ( ) ]

, , ( ),[ ] [1] [ ]

[ ]

    

   

 

2 1

1

0

0 2

x h x n[ ]

x x h x

x h x x h x n h x x h x n h

x x h x n h nh

nhx

n n n

n

[ ] [ ] [ ]

[ ]

( )

( ) (( )...[ ( ) ) ( )...[ ( ) ]

( )...[ ( ) ]

  

        

   

 

2 1

2

1

x nhxn n[ ] [ ] 1

   2 1

21

x x nhx

nh n hx

n n n

n

[ ] [ ] [ ]

[ ]

( ) ( )

( )

 

 





   2 1

2 21

x x nhx

n n h x

n n n

n

[ ] [ ] [ ]

[ ]

( ) ( )

( )

 

 





nkx

nkxhknnnnx

nk

knknk



 

0

,....,2,1,)]1()....[2)(1(

][

][][

y f xi i ( ) x x ihi o  i n 01, ,..., h

p xn ( )

p x y i nn i i( ) , , ,...,  0 1

 m
n o

m
op x y m n( ) , , ,...,  0 1
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(2)      
 

Using Generalized power 

(3)       

To obtain the coefficient 𝑎𝑖, we set  𝑥 = 𝑥0 in (3),   

 
Taking first order differences 

 

     
(4)  

Set 𝑥 = 𝑥0 in (4) 

 

Taking second order differences and Setting  

 

 
 

Continue in this iteration, we obtain: 

 

With  

Substituting with  in (3) we obtain 

                      
(5) 

  Putting  we obtain 

 

Substituting in (4) we obtain 

))....()((

.......))(()()(

11

121





non

ooon

xxxxxxa

xxxxaxxaaxp

][

]2[
2

]1[
1

)(.....

)()()(

n
on

ooon

xxa

xxaxxaaxp





p x y an o o o( )  

x nhxn n[ ] [ ] 1

p x a h a h x x na h x xn o n o
n( ) ( ) ..... ( )[ ] [ ]      

1 2
1 12

 



p x y a h

a
y

h

n o o

o

( )

!

 

 

1

1
1

x xo

 



2 2 2
2

2

2

2

2

2

p x y h a

a
y

h

n o o

o

( ) !

!

 

 

a
y

i h
i ni

i
o
i

 


!
, , , ,....,0 1 2

1!0،  yyo

ai

pn o
o

o
o

o

n
o
n o

n

x y
y

h
x x

y

h
x x

y

n h
x x

( )
!

( )
!

( ) .......

!
( )

[ ] [ ]

[ ]

     

 

 



1 2

1
2

2

2

q
x x

h

o


( ) ( )
.
( )

......
( ( ) ))

( )...( ), , , ,....,

[ ]x x

h

x x

h

x x h

h

x x i h

h

q q q i i n

o
i

i
o o o


     

    

1

1 1 0 1 2
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( 1) ( 1)...( 1)2

0 0 0 02! !
( ) ...

q q q q q n n

n n
P x y q y y y

   
         

(6)   

 

which is the Newton First Formula for interpolation. 
 

Example 
Find Newton interpolation polynomial defined by the data: 

 

5 4 3 2 1 0 𝑥 

15.2 14.0 12.4 10.4 8.0 5.2 𝑦 

Answer: 

We write first the difference table: 
 

𝑥 𝑦    

0 5.2  
2.8 

  

1 8.0  -0.4  
 
2 

 
10.4 

2.4  
-0.4 

0 

 
3 

 
12.4 

2.0  
-0.4 

0 
 

 
4 

 
14.0 

1.6  
-0.4 

 

 
5 

 
15.2 

1.2   

We have  
So using (4) 

   

0.4
2

5.2 2.8 ( 1)y x x x     

Or 

            

 

 

52

ببببن الصبببةية   ت ببب  نبببيم الحببب ود كبببة  حسبببا ( ا1)

 وا    ج ج ول الفروق.

 لل الب  الا ب كمالي  حب ود نيبعتن     كبة   اعغلةب   الفبتر  فيأوجب    اأ ع ( بات بار2)

 بالج ول  اعع ا
3.70 3.65 3.60 3.55 3.50 x 

40.447 38.475 36.598 34.813 33.115 y 

 2 3

x ho  0 1,

x ho  0 1,

y x x  52 3 0 2 2. .

y x x x   3 28 4 1xx x 4 1,

h  0 05.[ . , . ]35 37

y ex
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 ال ال ل ي ا ج ول نيم ( 3)
1050 1040 1030 1020 1010 1000 x 

3.021189 3.017033 3.012837 3.008600 3.004321 3.000000 
y 

 

 أوج  نيم 

ال البب جبب ول نببيم   بمعرفبب( 4) الحبب ود مببن في إلى   ، ال اليبب  ببباأ ع 

أوج   

كببعن الفببروق ايماميبب  لل البب  ( 5)  xxf     للبيانببات بالجبب ول ال بباليو ثببم أوجبب  كببة ات حبب ود نيببعتن

 . 15.2للفروق ايمامي  ل ةريا 

2.4 2.3 2.2 2.1 2.0 x 
1.549193 1.516575 1.483240 1.449138 1.414214 f (x) 

( كعّن الفروق األفي  لل ال 6)  xxf         و ثم أوج  كة ات حب ود نيبعتن للفبروق األفيب  و وا ب ا

 . 35.2,  15.2كل م ها لإيجاد تةريا للةيم

 ( ا  ا   تعريف الةعى اععمم  لا    اج صيغ  نيعتن األفي .7)

 لا  كمال ال ال  اعع ا  بالج ول ال الي:  األفي  ( أوج  كة   ح ود نيعتن8)
10 8 6 4 x 

20 8 3 1 y 
 

 

 

 

4.3  Divided Differences 
 

The Lagrange form of the interpolation polynomial can be used for interpolation 

to a function given in tabular form. But there are other forms that are much more 

convenient such as Divided Differences which will be developed in this section. With 

the Lagrange form, it is inconvenient to pass from one interpolation polynomial to 

another of degree one greater. Such a comparison of different degree interpolation 

polynomials is a useful technique in deciding what degree polynomial to use. The 

formulas developed in this section are for nonevenly spaced grid points {xi}. We would 

like to write 

 

𝑝𝑛(𝑥) = 𝑝𝑛−1(𝑥) + 𝐶(𝑥),        (*) 

𝐶(𝑥)𝑖𝑠 𝑎 𝑐𝑜𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚 

 

 

y x log( )

log( )1044

y x sin x o15 x o 55 5h

Sin o14
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Since 𝑝𝑛(𝑥𝑛) = 𝑓(𝑥𝑛), we have from (*) 
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Divided Differences interpolation 
Consider 𝑓(𝑥) is given at 𝑥0, 𝑥1, … … 𝑥𝑛 

Such that ∆𝑥𝑖 = 𝑥𝑖+1 − 𝑥𝑖 ≠ 0, 𝑖 = 0,1,2 … are not equal.  Then divided difference 

formula from first order is  

[𝑥𝑖 , 𝑥𝑖+1] =
𝑦𝑖+1−𝑦𝑖

𝑥𝑖+1−𝑥𝑖
  ; i= 0,1,2,………… 

𝑖 = 0 → [𝑥0, 𝑥1] =
𝑦1 − 𝑦0

𝑥1 − 𝑥0
    ,  

𝑖 = 1 → [𝑥1, 𝑥2] =
𝑦2 − 𝑦1

𝑥2 − 𝑥1
 , … … 

 
[𝒙𝒊 , 𝒙𝒊+𝟏, 𝒙𝒊+𝟐] [𝒙𝒊 , 𝒙𝒊+𝟏] 𝑓(𝑥) x  

[𝒙𝟎 , 𝒙𝟏, 𝒙𝟐] [𝒙𝟎 , 𝒙𝟏] 𝒚𝟎 𝒙𝟎 

[𝒙𝟏 , 𝒙𝟐, 𝒙𝟑] [𝒙𝟏 , 𝒙𝟐] 𝒚𝟏 𝒙𝟏 

[𝒙𝟐 , 𝒙𝟑, 𝒙𝟒] [𝒙𝟐 , 𝒙𝟑] 𝒚𝟐 𝒙𝟐 

….. [𝒙𝟑 , 𝒙𝟒] 𝒚𝟑 𝒙𝟑 

…… [𝒙𝟒 , 𝒙𝟓] 𝒚𝟒 𝒙𝟒 

…..  … … 

 

 

Example: 

Obtain the divided difference for the following given function 

 

5.0 3.0 2.5 1.0 0.5 0 x  

-5 -23 -20.63 -9 -6.125 -5 y 

 

 

Answer 

𝑥0 = 0, 𝑥1 = 0.5,  𝑥2 = 1.0, 𝑥3 = 2.5, 𝑥4 = 3, 𝑥5 = 5 

[𝑥0, 𝑥1] =
𝑦1 − 𝑦0

𝑥1 − 𝑥0
=

−6.125 + 5

0.5 − 0
= −2.25 

[𝑥1, 𝑥2] =
𝑦2 − 𝑦1

𝑥2 − 𝑥1
=

−9 + 6.125

1.5 − 0.5
= −5.75 

. 
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. 

. 

 

 

 

 

 

 

 

 

 

 

 

 

============================== 

Divided difference is similar to differentiation 

[𝑥𝑖 , 𝑥𝑖+1] =
𝑦𝑖+1 − 𝑦𝑖

𝑥𝑖+1 − 𝑥𝑖
=

𝑓(𝑥𝑖 + ∆𝑥𝑖) − 𝑓(𝑥𝑖)

∆𝑥𝑖
 

𝑓′ = 𝑙𝑖𝑚∆×→0    
𝑓(𝑥+∆×)−𝑓(𝑥)

∆×
                       

 ============================== 

The second order divided differences is 

[𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2] =
[𝑥𝑖+1,𝑥𝑖+2]−[𝑥𝑖,𝑥𝑖+1]

𝑥𝑖+2−𝑥𝑖
            ,i=0,1,2,……….. 

 

 
Examples: 

[𝑥0, 𝑥1, 𝑥2] =
[𝑥1, 𝑥2] − [𝑥0, 𝑥1]

𝑥2 − 𝑥0
=

−5.75 + 2.25

1.0 − 0
= −3.5 

 

[𝑥1, 𝑥2, 𝑥3] =
[𝑥2, 𝑥3] − [𝑥1, 𝑥2]

𝑥3 − 𝑥1
=

−7.75 + 5.75

2.5 − 0.5
= −1 

. 

. 

. 

 

i x f(x) [𝑥𝑖 , 𝑥𝑖+1] 
0 0 -5 [𝑥0, 𝑥1]=-2.25 

1 0.5 -6.125 [𝑥1, 𝑥2]=-5.75 

2 1.0 -9 [𝑥2, 𝑥3] =
−7.75 

3 2.5 -20.63 [𝑥3, 𝑥4] =
−4.75 

4 3.0 -23 [𝑥4, 𝑥5] = 9 

5 5.0 -5  

i x f(x) [𝑥𝑖 , 𝑥𝑖+1]  [𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2] 
0 0 -5 [𝑥0, 𝑥1]=-2.25 [𝑥0, 𝑥1, 𝑥2] = −3.5 

1 0.5 -6.125 [𝑥1, 𝑥2]=-5.75 [𝑥1, 𝑥2, 𝑥3] = −1 

2 1.0 -9 [𝑥2, 𝑥3] = −7.75 [𝑥2, 𝑥3, 𝑥4] = 1.5 

3 2.5 -20.63 [𝑥3, 𝑥4] = −4.75 [𝑥3, 𝑥4, 𝑥5] = 5.5 
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The general formula for divided differences is 

[𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2, … … 𝑥𝑖+𝑛] =
[𝑥𝑖+1, 𝑥𝑖+2, … 𝑥𝑖+𝑛] − [𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2, … … 𝑥𝑖+𝑛−1]

𝑥𝑖+𝑛 − 𝑥𝑖
 

 

 
Examples: 

[𝑥0, 𝑥1, 𝑥2, 𝑥3] =
[𝑥1, 𝑥2, 𝑥3] − [𝑥0, 𝑥1, 𝑥2]

𝑥3 − 𝑥0
=

−1 + 3.5

2.5 − 0
= 1 

. 

. 

. 

 

 

Newton's polynomial for 

divided difference 

interpolation formula is 

𝑝0(𝑥) = f(𝑥0) = 𝑦0 

𝑝1(𝑥) = f(𝑥0) + (𝑥 − 𝑥0)[𝑥0, 𝑥1] 
𝑝2(𝑥) = f(𝑥0) + (𝑥 − 𝑥0)[𝑥0, 𝑥1] + (𝑥 − 𝑥0)(𝑥 − 𝑥1)[𝑥0, 𝑥1, 𝑥] 
𝑝𝑛(𝑥) = f(𝑥0) + (𝑥 − 𝑥0)[𝑥0, 𝑥1] + (𝑥 − 𝑥0)(𝑥 − 𝑥1)[𝑥0, 𝑥1, 𝑥2]+..  

                 + (𝑥 − 𝑥0)(𝑥 − 𝑥1) … (𝑥 − 𝑥𝑛−1)[𝑥0, 𝑥1, … … 𝑥𝑛] 
 

This is called Newton's divided difference formula for the interpolation polynomial. 

 

It is much better for computation than the Lagrange formula (although there are 

variants of the Lagrange formula that are more efficient than the Lagrange formula). 

 

4 3.0 -23 [𝑥4, 𝑥5] = 9  

5 5.0 -5   

i 𝑥 𝑓(𝑥) [𝑥𝑖 , 𝑥𝑖+1]  [𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2] [𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2, 𝑥𝑖+3] 
0 0 -5 [𝑥0, 𝑥1]=-2.25 [𝑥0, 𝑥1, 𝑥2] = −3.5 [𝑥0, 𝑥1, 𝑥2, 𝑥3] = 1 

1 0.5 -6.125 [𝑥1, 𝑥2]=-5.75 [𝑥1, 𝑥2, 𝑥3] = −1 [𝑥1, 𝑥2, 𝑥3, 𝑥4] = 1 

2 1.0 -9 [𝑥2, 𝑥3] = −7.75 [𝑥2, 𝑥3, 𝑥4] = 1.5 [𝑥2, 𝑥3, 𝑥4, 𝑥5] = 1 

3 2.5 -20.63 [𝑥3, 𝑥4] = −4.75 [𝑥3, 𝑥4, 𝑥5] = 5.5  

4 3.0 -23 [𝑥4, 𝑥5] = 9   

5 5.0 -5    



Interpolation 

 

 26 

To construct the divided differences, use the format shown in Table 3.1. Each 

numerator of a difference is obtained by differencing the two adjacent entries in the 

column to the left of the column you are constructing. 

 

 

Example  

Obtain the Newton's divided difference polynomial for interpolating the given 

function tabulated below. Then find f(2.0). 

 

5.0 3.0 2.5 1.0 0.5 0 x  

-5 -23 -20.63 -9 -6.125 -5 y 

 

f(𝑥0)=-5 , [𝑥0, 𝑥1] = −2.25 , [𝑥0, 𝑥1, 𝑥2] = −3.5 , [𝑥0, 𝑥1, 𝑥2, 𝑥3] = 1 

 

𝑝𝑛(𝑥) = f(𝑥0) + (𝑥 − 𝑥0)[𝑥0, 𝑥1] + (𝑥 − 𝑥0)(𝑥 − 𝑥1)[𝑥0, 𝑥1, 𝑥2]+.. 
+(𝑥 − 𝑥0)(𝑥 − 𝑥1) … (𝑥 − 𝑥𝑛−1)[𝑥0, 𝑥1, … … 𝑥𝑛] 

 

𝑝3(𝑥) = f(𝑥0) + (𝑥 − 𝑥0)[𝑥0, 𝑥1] + (𝑥 − 𝑥0)(𝑥 − 𝑥1)[𝑥0𝑥1, 𝑥2] + 

+(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)[𝑥0, 𝑥1, 𝑥2, 𝑥3] + 0 + 0 

 

we stop since divided differences of higher order is zero 

 

=-5+(x-0)[-2.25]+(x-0)(x-0.5) [-3. 5]+(x-0)(x-0. 5)(x-1)[1] 

f(2) ≅ 𝑝𝑛(2) = −5 + 2[−2.25] + 2(2 − 0.5)[−3.5] + 2(2 − 0.5)(2 − 1)(1) 

=-17 

 

A simple algorithm can be given for constructing the differences 

 
which are necessary for evaluating the Newton form (3.2.9). 

 

 

 

Algorithm for Divided Differences 

An algorithm for computing a divided difference table can be very efficient and is 

recommended as the best means for producing an interpolating polynomial. 

 

The data of interpolation are 

𝑥𝑖  , 𝑦𝑖 = 𝑓(𝑥), 𝑖 = 0,1,2, … 𝑛 

Set 𝑑0,𝑖 = 𝑓(𝑥𝑖 )  zero order divided difference 

                                                      𝑑0,0 = f(𝑥0) 

[𝑥𝑖 , 𝑥𝑖+1] =
𝑦𝑖+1−𝑦𝑖

𝑥𝑖+1−𝑥𝑖
                      𝑑1,0 = [𝑥0, 𝑥1] 
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1st  order  divided difference     𝑑1,𝑖 =
𝑑0,𝑖+1−𝑑0,𝑖

𝑥𝑖+1−𝑥𝑖
   

[𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2] =
[𝑥𝑖+1, 𝑥𝑖+2] − [𝑥𝑖 , 𝑥𝑖+1]

𝑥𝑖+2 − 𝑥𝑖
 

 

                                                    𝑑2,0 = [𝑥0, 𝑥1, 𝑥2]     

2nd order divided difference     𝑑2,𝑖 =
 𝑑1,𝑖+1− 𝑑1,𝑖

𝑥𝑖+2−𝑥𝑖
           

                                                𝑑3,𝑖 =
𝑑2,𝑖+1−𝑑2,𝑖

𝑥𝑖+3−𝑥𝑖
 

                      𝑑𝑘,𝑖 =
𝑑𝑘−1,𝑖+1−𝑑𝑘−1,𝑖

𝑥𝑖+𝑘−𝑥𝑖
    ,  k=0,1,2,…n, i=0,1,…n 

 

 

Algorithm for divided differences 

Input : 𝑥𝑖 , 𝑓(𝑥𝑖), 𝑖 = 0,1, … 𝑛 

Output: divided differences of order  k, k=0,1,…n  

               for i=0,1,…n-k, 𝑑𝑖,𝑘  

Step1 : set 𝑑0,𝑖=f(𝑥𝑖)  ,i=0,1,…n 

Step2 : for k= 1,2,…n   

             and i=0,1,…n-k do step3 

step3 : set 𝑑𝑘,𝑖 = (𝑑𝑘−1,𝑖+1 − 𝑑𝑘−1,𝑖 )/(𝑥𝑖+𝑘 − 𝑥𝑖) 

End 

 

Algorithm for  Newton interpolation polynomial  

𝑝𝑛(𝑥) = f(𝑥0) + (𝑥 − 𝑥0)[𝑥0, 𝑥1] + (𝑥 − 𝑥0)(𝑥 − 𝑥1)[𝑥0, 𝑥1, 𝑥2, ]
+ (𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)[𝑥0, 𝑥1, 𝑥2, 𝑥3] 

+ ⋯ + (𝑥 − 𝑥0)(𝑥 − 𝑥1) … (𝑥 − 𝑥𝑛−1)[𝑥0, 𝑥1, … … 𝑥𝑛] 
=𝑑0,0 +(𝑥 − 𝑥0)𝑑1,0 + (𝑥 − 𝑥0)(𝑥 − 𝑥1)𝑑2,0 + (𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)𝑑3,0 + 

+ ⋯ + (𝑥 − 𝑥0)(𝑥 − 𝑥1) … (𝑥 − 𝑥𝑛−1)𝑑𝑛,0 

=∑  [∏ (𝑥 − 𝑥𝑖)k−1

i=0 ]𝑑𝑘,0
n
n=0  

 

 

 

Algorithm for  Newton interpolation polynomial  

Input : 𝑥𝑖 , 𝑑𝑘,𝑜  , i=0,1,…n   , k=0,1,…n  , value x=t 

Output 𝑓(𝑡) ≅ 𝑝𝑛(𝑡) 

Step1 : p=0,  PI=1 

Step2: for k=0 to n 

Step3 : for i=0 to n-1 

PI=pI*(t-𝑥𝑖 ) 

Step4 : p=p + pI *𝑑𝑘,𝑖 

End 
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Exercise 

Consider the following data for 𝑓(𝑥)= √𝑥 Obtain Newton's polynomial that 

interpolate 𝑓(𝑥).   Then find 𝑓(2.05).   Evaluate the numerical error. 

 

2.4 2.3 2.2 2.1 2.0 x  

2.549193 2.516575 2.483240 2.449138 2.414214 y 

 

 

An error formula divided differences 
𝑓(𝑥) − 𝑝𝑛(𝑥) = (𝑥 − 𝑥1)(𝑥 − 𝑥1) … (𝑥, 𝑥𝑛)[𝑥0, 𝑥1, … 𝑥𝑛, 𝑥] (1) 

Comparing (1) , with the error of Lagrange formula 

𝑓(𝑥) − 𝑝𝑛(𝑥) =
(𝑥−𝑥0)(𝑥−𝑥1)…(𝑥−𝑥𝑛)

(𝑛+1)     !
 𝑓(𝑛+1(𝑐)  (2) 

With c is somewhere between 𝑥0, 𝑥1, … 𝑥𝑛 𝑎𝑛𝑑 𝑥  

So we can approximate  

[𝑥0, 𝑥1, … 𝑥𝑛, 𝑥] ≅
𝑓(𝑛+1(𝑐)  

(𝑛+1)  !
                       (3) 

 

 

 
 

Remark  

The divided differences symbol 
[𝑥0, 𝑥1, … 𝑥𝑛] = 𝑓[𝑥0, 𝑥1, … 𝑥𝑛, 𝑥] 



4Chapter  

 29 

As written in some books 

 

 
 

Example 1 

Compute a divided difference table for these function values: 

                              Table (1) 

Solution 

We arrange the given table vertically and compute divided differences by use of 

Formula (11), arriving at 
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p(x) = 1 + 2(x - 3) - 3

8
(x - 3)(x -1) + 7

40
 (x - 3)(x -1)(x - 5) 

 

 
in which 
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Do the general case by a similar procedure. Integrate once and 

reduce to one lower dimension. Then invoke the induction hypothesis and use (3.2.7) 

to complete the proof.  
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3.3 Finite Differences and Table-Oriented 

Interpolation Formulas 

151 of 663 
 

 

In the preceding section, we discussed the problem of interpolating a function by a 

polynomial. We return to that problem now. Let f be a function whose values are 

known or computable at a set of points (nodes) xo, x1, . . . ,  xn. We assume in this 

section that these points are distinct, but they need not be equally spaced on the real 

line.  

 

We know that there exists a unique polynomial p of degree at most n that interpolates 

f at the n + 1 nodes: 

 

                                   
 

 

Of course, the polynomial p can be constructed as a linear combination of the basic 

polynomials 1,x,x2, .. ., xn, namely, 

0

( )
n

k
k

k

p x c x



  . 

 As discussed in the previous section, this basis is not recommended, and we prefer to 

use a basis appropriate to the Newton form of the interpolating polynomial: 
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These lead to the Newton form 

                                         
The interpolation conditions (1)  give rise to a linear system of equations for the 

determination of the unknown coefficients cj: 

 

                      
In this system of equations, the coefficient matrix is an (n + 1) x (n + 1) matrix A 

whose elements are 

 

                        
The matrix A is lower triangular because 

                    
 

For example, consider the case of three nodes with 

                         
Setting x = x0, x = x1, and x = x2, we have a lower triangular system 
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In solving Equation (2) for c0, c1, . . . , cn, we can start at the top and work down, 

computing the coefficients cj in the order given by their  subscripts. In this process, 

see that c0 depends only on f(xo), that c1 depends on f(xo) and f(x1), and so 

Thus, cn depends on f at xo, x1, . . . ,  xn. We define 

                                     
 

to be the coefficient of qn when  interpolates f at xo, x1, . . . ,  xn. Since 

 

                 
 

we can also say that f [xo, x1, . . . ,  xn] is the coefficient of xn in the polynomial of 

degree at most n that interpolates f at xo, x1, . . . ,  xn.  

In all of the preceding description, n can take on arbitrary values. The expressions f 

[xo, x1, . . . ,  xn ] are called divided differences of f. 

 

Explicit formulae for the first few divided differences will now be given. First, f [xo]  

is the coefficient of  x0  in the polynomial of degree 0  interpolating f at xo.    Thus, we 

must have 

                                 
The quantity f [xo, x1] is the coefficient of x in the polynomial of degree at most 1 

interpolating f at xo and x1. Since that polynomial is 

                            
we see that the coefficient of q1 (x) is 

                                     
This gives a hint as to why the term divided difference was adopted. A divided 

difference table of the following form can be displayed 

 

                                            
and the interpolation polynomial is easily formed from 

                                   
 

Formulae (7) and (9) can also be obtained by solving for c0 and c1 in System (5), 

because c0 = f[xo] and c1 = f [xo, x], in accordance with Equation (6). Equation (1) 

allows us to write the Newton interpolating polynomial in the form 
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Higher-Order Divided Differences 

 

THEOREM1 Divided differences satisfy the equation 

               
 

The preceding theorem gives us these particular formulae: 

                        
In these formulae, xo, x1, . . . can be interpreted independent variables. Because 

of that, we also have equations such as 

      
 

Here   are differences of order 

0, 1, 2, 3, etc., respectively. 

 

If a table of function values (xi, f(xi)) is given, we can construct from it a 

table of divided differences. This is customarily laid out in the following form, where 

differences of orders 0, 1, 2, 3 are shown in each successive column:  

 

                    
The information to the left of the vertical line is given, and the quantities on the right 

are to be computed. Formula (11) is used to do this. The recursive nature of Formula 

(11) dictates the triangular form of the divided difference table. For example, the data 

given do not allow us to compute  

By comparing Equations (10) and (11), we see that the coefficients required in the 

Newton interpolating polynomial occupy the top row in the divided difference table. 
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Algorithm for Divided Differences 

An algorithm for computing a divided difference table can be very efficient and is 

recommended as the best means for producing an interpolating polynomial. 

 

Let us change the notation so that our divided difference table has the entries as 

shown here: 

 
The vertical line separates the data (on the left) from the entries to be computed.    It 

is clear that we have set 

                       
An algorithm is obtained from a direct translation of Equation (13), and goes as 

follows: 

 

                               

 
In this algorithm, the numbers ci0 (which are input)  
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are the values of the function f at the points xi . They are also the values that the 

interpolating polynomial will have at those points.  

 

The interpolating polynomial, of course, is 

                   

                                  

 
 

 

Programming Exercise  

Use your favorite program that Compute a divided difference table for these function 

values: 

                               
========================================== 

 

Divided Difference Properties 

Divided Difference symmetry THEOREM  

The divided difference is a symmetric function of its arguments. Thus, if 

(zo, z1, . . . ,  zn) is a permutation of (xo, x1, . . . ,  xn) then 

                                      

  

 

Divided Difference Error THEOREM  

Let p be the polynomial of degree at most n that interpolates a function f at a set of n 

+ 1 distinct nodes, xo, x1, . . . ,  xn. If t is a point different from the nodes, then 

                                            

Proof 
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 First, let q be the polynomial of degree at most n + 1 that interpolates f at the nodes 

xo, x1, . . . ,  xn, t . We know that q is obtained from p by adding one term. In fact, 

                             
Since q(t) = f(t), we obtain at once (by letting x = t) 

                       
Divided Difference estimation  THEOREM   

If f is n times continuously differentiable on [a, b] and if xo, x1, . . . ,  xn are distinct 

points in [a, b], then there exists a point ξ in (a, b) such that 

 

                                  
 

Proof 

 First, let p be the polynomial of degree at most n - 1 that interpolates f at the nodes 

xo, x1, . . . ,  xn-1. By Error In Polynomial Interpolation Theorem  of the previous 

section , there exists a point ξ in (a, b) such that 

                       
By Theorem of Error in this section, 

                    
By comparing Equations (18) and (19), we deduce Equation (17). 

 

 

3. Hermite Interpolation 

 

The term Hermite interpolation refers to the interpolation of a function and some of 

its derivatives at a set of nodes. (A more precise definition will be given later.)  When 

a distinction is being made between this type of interpolation and the simpler type (in 

which no derivatives are interpolated) the latter is often termed Lagrange 

interpolation. 

 

Basic Concepts 

An instructive and useful example of Hermite interpolation is the following. We 

require a polynomial of least degree that interpolates a function f and its derivative f ' 

at two distinct points, say xo and x1. The polynomial sought will satisfy these four 

conditions:   
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Since there are four conditions, it seems reasonable to look for a solution in ∏3, the 

linear space of all polynomials of degree at most 3. An element of ∏3 has four 

coefficients at our disposal. Rather than writing p( x) in terms of 1, x, x2, x3, 

 
 however, let us write 

 
since this will simplify the work. This leads to 

 
The four conditions on p can now be written in the form 

 

                                
 

Obviously, a and b are obtained at once. Then c can be determined from the third 

equation, in which the terms involving a and b should be transferred to the left side. 

Finally, d can be determined from the fourth equation. Hence, the problem is 

solvable-no matter what the values of f(xi) and f '(xi) may be. 

 

In general, if values of a function f and some of its derivatives are to be  interpolated 

by a polynomial, we shall encounter some difficulties because the linear systems of 

equations (from which we expect to compute the coefficients in the polynomial) may 

be singular. A simple example will illustrate this. 

 

Example 1 

Find a polynomial p that assumes these values: 

                      
Solution 

Since there are three conditions, we try a quadratic, 

                       
The condition p(0) = 0 leads to a = 0. The other two conditions lead to 

                          
 

Thus, no quadratic solves our problem. Notice that the coefficient matrix is singular. 

 

If we now try a cubic polynomial for the same problem, we discover that there exists 

a solution but it is not unique.  

 
We notice that a = 0 as before. The remaining conditions are 
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The solution of this system is d = -4 and b + c = 5. 

 

The general problem of this type obviously has some intriguing difficulties 

associated with it.  

 

A large class of interpolation problems having unique solutions will now be 

discussed. The problems in this restricted class are the ones generally known as 

Hermite interpolation.  

 

 

In a Hermite problem, it is assumed that whenever a derivative  is to be 

prescribed  توصف (at a node xi), then   and p(xi) will 

also be prescribed.  

 

We choose our notation so that at node xi, ki interpolatory conditions are prescribed. 

Notice that ki may vary with i. Let the nodes xo, x1, . . . ,  xn, and suppose that at node 

xi these interpolation conditions are given: 

                             
The total number of conditions on p is denoted by m + 1, and therefore 

                                             
 

THEOREM 1 There exists a unique polynomial p in ∏m fulfilling the Hermite 

interpolation conditions in Equation (1). 

 

 

Example 2 

What happens in Hermite interpolation when there is only one node? 

Solution 

In this case, we require a polynomial p of degree k, say, for which 

                                   (*) 

 

The solution is the Taylor polynomial 
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Newton Divided Difference Method for Hermite problem 

 

Now let us explain how the Newton divided difference method can be extended to 

solve Hermite interpolation problems. We begin with a simple case in which a 

quadratic polynomial p is sought taking prescribed values: 

 
We write the divided difference table in this form: 

 
 

The question marks stand for entries that are not yet computed. Observe that xo 

appears twice in the argument column since two conditions are being imposed on p at 

xo. Note further that the prescribed value of p' (xo) has been placed in the column of 

first-order divided differences. This is in accordance with the equation 

 
This equation justifies our defining 

 
 

The remaining entries in the divided difference table can be computed in the usual 

way. The difficulty to be expected when the nodes are repeated occurs only at the 

entry c10, and the value of c10 has been supplied by the data rather than being 

computed.  The entries denoted by question marks are then computed in the usual 

way: 

 
and 
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The interpolating polynomial is written in the usual way: 

 

 
Returning to the example used at the beginning of this section, in which we require a 

polynomial that interpolates a function f and its derivative f ' at two distinct points, 

say xo and x1. The polynomial sought will satisfy these four conditions:   

                                 
We can obtain the interpolation polynomial 

 
directly from the following divided difference table 

 
 

The divided differences in this table can be defined in accordance with Theorem of 

estimation in Section 4.2. That theorem asserts the existence of a point ξ such that 

 
Here it must be assumed that f (k) exists and is continuous in the smallest interval 

containing the nodes xo, x1, . . . , xk. The point ξ will lie in the same interval. If the 

length of that interval shrinks to zero, we obtain in the limit 

                            
Notice that when k ≥ 2, we must be careful to include the factor 1/ k!. 

 

Example 3 

Use the extended Newton divided difference algorithm to determine a polynomial 

that takes these values: 

 
 

Solution 

extended Newton divided difference table for this problem is of the form 

 
Here xo and x1 appears twice and three times in the argument column since two and 

three conditions are being imposed on p at xo and x1 respectively.  

We put the data in the divided difference array as follows, using "?" to signify that 

quantities are to be computed.  
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Notice that in row 3, a second difference of 4 is inserted in accordance with Formula 

(7) in the case k = 2. 

 
The remaining entries in the divided difference table can be computed in the usual 

way as follows: 

 
 

 
The final result is: 
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When the array is completed, the numbers in the top row (excluding the node) are the 

coefficients in the interpolating polynomial: 

 
An error formula for this type of Hermite interpolation is given in the next theorem. 

 

THEOREM of Hermite interpolation error formula  

Let  xo, x1, . . . , xn be distinct nodes in [a,b] and let fC2n+2[a, b]. If p is the 

polynomial of degree at most 2n + 1 such that 

 
then to each x in [a, b] there corresponds a point ξ in (a, b) such that 

 
 

 

 

 

5- PIECEWISE POLYNOMIAL INTERPOLATION 

 

Recall the preceding three section, we study some interpolation methods.  There 

method may fail in some cases such as when the interpolated function f (x) is  

oscillatory.      

 

To obtain interpolants that are better behaved, we look at other forms of interpolating 

functions.    Consider the data 

 
 

What are methods of interpolating this data, other than using a degree 6 polynomial. 

Shown in the text are the graphs of the degree 6 polynomial interpolant, along with 

those of piecewise linear and a piecewise quadratic interpolating functions. 

Since we only have the data to consider, we would generally want to use an 

interpolant that had somewhat the shape of that of the piecewise linear interpolant. 
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Piecewise Polynomial Functions 

 

Consider being given a set of data points (x1, y1), ...,(xn, yn), with 

 Then the simplest way to connect the points (xj, yj) is by 

straight line segments. This is called a piecewise linear interpolant of the data {(xj, 

yj)}. 

 
 

 This graph has “corners”, and often we expect the interpolant to have a smooth 

graph. 

 

To obtain a somewhat smoother graph, consider using piecewise quadratic 

interpolation. Begin by constructing the quadratic polynomial that interpolates 

 
Then construct the quadratic polynomial that interpolates 
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Continue this process of constructing quadratic interpolants on the subintervals 

 

 
If the number of subintervals is even (and therefore n is odd), then this process comes 

out fine, with the last interval being [xn−2, xn]. This was illustrated on the graph for 

the preceding data. If, however, n is even, then the approximation on the last interval 

must be handled by some modification of this procedure. Suggest such! 

 

With piecewise quadratic interpolants, however, there are “corners” on the graph of 

the interpolating function.   With our preceding example, they are at x3 and x5. we can 

avoid this by enlarging the polynomial power for interpolation. 

 
 

Smooth Non-Oscillatory Interpolation 

Let data points (x1, y1), ..., (xn, yn) be given, as let  

Consider finding functions s(x) for which the following properties hold: 

(1) s(xi) = yi, i= 1, ..., n 

(2) s(x), s'(x), s''(x) are continuous on [x1, xn]. 
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Then among such functions s(x) satisfying these properties, find the one which 

minimizes the integral 

 
The idea of minimizing the integral is to obtain an interpolating function for which 

the first derivative does not change rapidly. It turns out there is a unique solution to 

this problem, and it is called a natural cubic spline function. 

 

SPLINE FUNCTIONS 

Let a set of node points {xi} be given, satisfying 

 
for some numbers a and b. Often we use [a, b] =[x1, xn]. A cubic spline function s(x) 

on [a, b] with “breakpoints” or “knots” {xi} has the following properties: 

 

1. On each of the intervals 

       [a, x1], [x1, x2], ..., [xn−1, b] 

               s(x) is a polynomial of degree ≤ 3. 

2. s(x), s'(x), s''(x) are continuous on [a, b]. 

 

In the case that we have given data points (x1, y1),...,(xn, yn), we say s(x) is a cubic  

interpolating spline function for this data if 

 

3. s(xi) = yi, i = 1, ..., n. 

 

EXAMPLE 

Define 

 
This is a cubic spline function on (−∞, ∞) with the single breakpoint x1 = α. 

Combinations of these form more complicated cubic spline functions. For example, 

 
is a cubic spline function on (−∞, ∞) with the breakpoints x1=1, x2=3. 

Define 

 
with p3(x) some cubic polynomial. Then s(x) is a cubic spline function on (−∞, ∞) 

with breakpoints {x1, ..., xn}. 

Return to the earlier problem of choosing an interpolating function s(x) to minimize 

the integral 
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There is a unique solution to problem. The solution s(x) is a cubic interpolating spline 

function, and moreover, it satisfies 

 
Spline functions satisfying these boundary conditions are called “natural” cubic 

spline functions, and the solution to our minimization problem is a “natural cubic 

interpolatory spline function”. We will show a method to construct this function from 

the interpolation data. 

 

Motivation for these boundary conditions can be given by looking at the physics of 

bending thin beams of flexible materials to pass thru the given data. To the left of x1 

and to the right of xn, the beam is straight and therefore the second derivatives are 

zero at the transition points x1 and xn. 

 

Construction Of The Interpolating Spline Function 

 

To make the presentation more specific, suppose we have data 

(x1, y1) , (x2, y2) , (x3, y3) , (x4, y4) 

With 

x1 < x2 < x3 < x4. 

Then on each of the intervals  

                            [x1, x2] , [x2, x3] , [x3, x4] 

 
s(x) is a cubic polynomial. Taking the first interval, s(x) is a cubic polynomial and 

s''(x) is a linear polynomial.   Let 

                           Mi = s''(xi), i = 1, 2, 3, 4 

Then on [x1, x2], 

1x 2x 3x 4x 
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We can find s(x) by integrating twice: 

 
We determine the constants of integration by using 

                 s(x1) = y1, s(x2) = y2                                                      (*) 

Then 
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for x1 ≤ x ≤ x2. 

 

We can repeat this on the intervals [x2, x3] and [x3, x4], obtaining similar formulas.      

For x2 ≤ x ≤ x3, 

 
For x3 ≤ x ≤ x4, 

 

 
We still do not know the values of the second derivatives {M1, M2, M3, M4}. The 

above formulas guarantee that s(x) and s''(x) are continuous for x1 ≤ x ≤ x4. For 

example, the formula on [x1, x2] yields 

                      s(x2) = y2, s''(x2) = M2 

The formula on [x2, x3] also yields 

                      s(x2) = y2, s''(x2) = M2 

All that is lacking is to make s'(x) continuous at x2 and x3. Thus we require 

s'(x2 + 0) = s'(x2 − 0) 

s'(x3 + 0) = s'(x3 − 0)                                   

This means 

              (**) 

and similarly for x3. 

To simplify the presentation somewhat, I assume in the following that our node 

points are equally spaced: 

                                 x2 = x1 + h, x3 = x1 +2h, x4 = x1 + 3h 

Then our earlier formulas simplify to 
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for x1 ≤ x ≤ x2, with similar formulas on [x2, x3] and [x3, x4]. 

Without going thru all of the algebra, the conditions (**) leads to the following pair 

of equations. 

 

 
This gives us two equations in four unknowns. The earlier boundary conditions on 

s''(x) gives us immediately 

                               M1 = M4 = 0 

 
Then we can solve the linear system for M2 and M3. 

 

[Q] Construct cubic spline interpolation  function that interpolates the data (x1, y1) , 

(x2, y2) , (x3, y3) , (x4, y4),  

with the conditions 𝑓′′(𝑥1) = 𝑓′′(𝑥4) = 0. 

 

 

EXAMPLE 

Consider the interpolation data points 

 
In this case, h = 1, and linear system becomes 
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This has the solution 

                                  M2 =½, M3 = 0 

This leads to the spline function formula on each subinterval. 

On [1, 2], 

 
Similarly, for 2 ≤ x ≤ 3, 

 
and for 3 ≤ x ≤ 4, 

 
so 
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Graph of example of natural cubic spline interpolation 

 

 

THE GENERAL PROBLEM 

Consider the spline interpolation problem with n nodes 

                   (x1, y1) , (x2, y2) , ..., (xn, yn) 

and assume the node points {xi} are evenly spaced, 

                   xj = x1 + (j − 1) h, j = 1, ..., n 

We have that the interpolating spline s(x) on xj ≤ x ≤ xj+1 is given by 

 

 
for j = 1, ..., n − 1. 

To enforce continuity of s'(x) at the interior node points x2, ..., xn−1, the second 

derivatives{Mj}must satisfy the linear equations 

 
for j = 2, ..., n − 1. Writing them out, 
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This is a system of n −2 equations in the n unknowns {M1, ..., Mn}. Two more 

conditions must be imposed on s(x) in order to have the number of equations equal 

the number of unknowns, namely n. With the added boundary conditions, this form 

of linear system can be solved very efficiently. 

 

 

ERROR IN CUBIC SPLINE INTERPOLATION 

 

Let an interval [a, b] be given, and then define 

 
Suppose we want to approximate a given function f (x) on the interval [a,b] using 

cubic spline interpolation.   Define 

yi = f (xi), j = 1, ..., n 

 

Let sn(x) denote the cubic spline interpolating this data.    Then it can be shown that 

for a suitable constant c, 

 

 
The corresponding bound for natural cubic spline interpolation contains only a term 

of h2 rather than h4; it does not converge to zero as rapidly. 
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Numerical Differentiation  
 

 

Principle  of Linear Numerical Differentiation  
 

There are two major reasons for considering numerically 

approximations of the differentiation process. 

 

1. Approximation of derivatives in ordinary differential 

equations and partial differential equations. This is done in 

order to reduce the differential equation to a form that can be 

solved more easily than the original differential equation. 

 

2. Forming the derivative of a function 𝑓(𝑥) which is known 

only as empirical data {(𝑥𝑖 , 𝑦𝑖) | i = 1, . . . , m}.     The data 

generally is known only approximately,   so that 𝑦𝑖 ≅ 𝑓 (𝑥𝑖), 
i = 1, . . . , m. 

 

4.1 differentiation for the first order derivative 
4.1.1 differentiation depends on two points 
 

Example1: 

Use Taylor's expansion to obtain two different formulae for 

finite difference approximation of 𝑓′(𝑥 ) that depend on two 

points. 

Answer: 

Consider Taylor's expansion for function 𝑓(𝑥) at a point x=a, 

so 
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𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)𝑓(1)(𝑎) +
1

2
(𝑥 − 𝑎)2𝑓(2)(𝑎) 

+⋯+
1

𝑛!
(𝑥 − 𝑎)𝑛𝑓(𝑛)(𝑎)…………(1) 

Take ia x  and ix x h  , so i ix a x h x h     , Eq(1) become 
2 3 (3) 4 (4)1 1 1

2! 3! 4!
( ) ( ) ( ) ( ) ( ) ( ) ....i i i i i if x h f x hf x h f x h f x h f x       

         (2) 

 
2 3 (3) 4 (4)1 1 1

2! 3! 4!
( ) ( ) ( ) ( ) ( ) ( ) ....i i i i i if x h f x hf x h f x h f x h f x       

 

By canceling terms of degree higher than 2, we obtain 
21

2!
( ) ( ) ( ) ( ),i i i i if x h f x hf x h f c x c x h         

Dividing by h 

 

𝑓′(𝑥𝑖) =
𝑓(𝑥𝑖+ℎ)−𝑓(𝑥𝑖)

2ℎ
−

ℎ

2
𝑓′′(),   𝑥𝑖 ≤ 𝑐 ≤ 𝑥𝑖 + ℎ.....(3) 

Formula (3) is called a forward difference formula for 

approximating f '(x). 

 

We can write: 

𝒇′(𝒙𝒊) = 𝑫𝑭 + 𝑬𝑭 

Where 

𝑫𝑭 =
𝑓(𝑥𝑖+ℎ)−𝑓(𝑥𝑖)

2ℎ
,   𝑬𝑭 = −

ℎ

2
𝑓′′() 

𝑫𝑭 called a forward difference formula for approximating 

𝑓′(𝑥 ) and 𝑬𝑭 is the error. 

 

Take ia x  and ix x h  , so i ix a x h x h      , Eq(1) become 
2 3 (3) 4 (4)1 1 1

2! 3! 4!
( ) ( ) ( ) ( ) ( ) ( ) ....i i i i i if x h f x hf x h f x h f x h f x         

        (4) 
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21

2!
( ) ( ) ( ) ( ),i i i i if x h f x hf x h f c x h c x          

Dividing by h 

 

 

 

 

𝑓′(𝑥𝑖) =
𝑓(𝑥𝑖)−𝑓(𝑥𝑖−ℎ)

2ℎ
+

ℎ

2
𝑓′′(),   𝑥𝑖 − ℎ ≤ 𝑐 ≤ 𝑥𝑖.....(3) 

 

 

Formula (5) is called a backward difference formula for 

approximating 𝑓′(𝑥 ). 
 

forward and backward difference are called two points 

methods 

 

Example2: 

Use forward difference formula for approximating 𝑓(𝑥) = 𝑥3  
at 𝑥 = 2.  Take 0.01h  .   Compute the numerical and 

estimated errors. 

 

Answer: 

 

 
( )i Ff x F E                                                       

( ) ( ) 1
2

, ( ),i if x h f x

F i ih
F E hf c x c x h

         
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   1 1 8.120601  8.0

0.01
12.0601F

f x h f x
D

h


 
    
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^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  

This is the matlab program for numerical differentiation 

by forward difference formula. 

 

 

forward FD Differentiation is 

DIFf =3.0003 

x=1.0; 

h = 0.0001; 
f = @(x) x.^3; 
fp=f(x+h); 

f0=f(x); 

st='forward FD 

Differentiation is' 

DIFf = (fp-f0)/h 

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
Example3: 

Consider the function given by the following data 

 

0.5 0.4 0.3 0.2 0.1 x 
0.0625 0.0256 0.0081 0.0016 0.0001 y 

Use forward and backward difference formula for 

approximating 𝑓′(𝑥)  at 𝑥 = 0.2.   Compute the numerical and 

estimated errors if 𝑓(𝑥) = 𝑥4. 

 

Answer: 
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 
   

 

1 1
1

0.0081 0.0016 0.0065
0.065

0.1 0.1

0.2 0.032 0.065 0.032 0.033e

f x h f x
f x

h

f Error

  
    

    

 

 
 

 
   1 1

1

0.0016 0.0001
0.015

0.1

f x f x h
f x

h

  
    

0.032 0.015 0.017Error    



Chapter 1 

 243 
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   2 20.1
12 0.6

2 2

h
Error f c c c    

Select 1 0.2c x   

    
2

0.6 0.2 0.6 0.04 0.024   

 
 

 

4.1.2 differentiation depends on three points 
 

Example1: 

Use Taylor's expansion to obtain different formulae for finite 

difference approximation of 𝑓′(𝑥𝑖) that depend on three 

points. 

Answer: 

Consider Taylor's expansion for function 𝑓(𝑥) at a point 𝑥 =
𝑎, so 
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𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)𝑓(1)(𝑎) +
1

2
(𝑥 − 𝑎)2𝑓(2)(𝑎) 

+⋯+
1

𝑛!
(𝑥 − 𝑎)𝑛𝑓(𝑛)(𝑎)…………(1) 

Take ia x  and ix x h  , so i ix a x h x h     , Eq(1) become 
2 3 (3) 4 (4)1 1 1

2! 3! 4!
( ) ( ) ( ) ( ) ( ) ( ) ....i i i i i if x h f x hf x h f x h f x h f x       

         (2) 

Take ia x  and ix x h  , so i ix a x h x h      , Eq(1) become 
2 3 (3) 4 (4)1 1 1

2! 3! 4!
( ) ( ) ( ) ( ) ( ) ( ) ....i i i i i if x h f x hf x h f x h f x h f x       

        (3) 

We use Eq.(2)-(3) to obtain 
 

2 3 (3) 4 (4)1 1 1
2! 3! 4!

2 3 (3) 4 (4)1 1 1
2! 3! 4!

( ) ( ) ( ) ( ) ( ) ( ) ( ) ....

( ) ( ) ( ) ( ) ( ) ....

i i i i i i i

i i i i i

f x h f x h f x hf x h f x h f x h f x

f x hf x h f x h f x h f x

         

        

 
So 

3 (3) 6 (6)2 2
3! 6!

( ) ( ) 2 ( ) ( ) ( ) ....i i i i if x h f x h hf x h f x h f x      
 

 
3 (3)2

6
( ) ( ) 2 ( ) ( ),i i i i if x h f x h hf x h f c x h c x h          

Dividing by 2h 

𝑓′(𝑥𝑖) =
𝑓(𝑥𝑖+ℎ)−𝑓(𝑥𝑖−ℎ)

2ℎ
−

ℎ2

6
𝑓′′′(), i ix h c x h                        

(4) 

 

This is the central method 
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Example3: 

Consider the function given by the following data 

 

0.5 0.4 0.3 0.2 0.1 x 
0.0625 0.0256 0.0081 0.0016 0.0001 y 

Use backward and central difference formula for 

approximating 𝑓′(𝑥)  at 𝑥 = 0.2.   Compute the numerical and 

estimated errors for each if 𝑓(𝑥) = 𝑥4.  Which of them is the 

best. 

Answer: 

 

 
 

                 xi-1              xi            xi+1 

 

               f ' (xi)                                            C 

 

y 

 

  x 
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1 1 10.2, ( ) 0.0081, ( ) 0.0001, 0.1x f x h f x h h      

 

 
   

 
1 1

1

0.0081 0.0.01 0.0080
0.04

2 2 0.1 0.2

f x h f x h
f x

h

   
     

       
34 34 , 0.2 4 0.2 0.032ef x x f x x f      

 

   ' '
1 1 0.04 0.032 0.08e aError f x f x      

   2 (3)12 , 24f x x f x x    
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   
2 2

(3) (0.1)
24 0.01*24 0.24 (0.1) 0.024

6 6

h
R f c c c    

 

 

 

Differentiation Using Interpolation 

Use Lagrange interpolation formula to derive an 

approximation for the first derivative of 𝑓(𝑥) at a point 

belong to a set of  three equally spaced nodes. 
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Let Pn(x) be the degree n polynomial that interpolates 𝑓(𝑥) at 

n + 1 node points x0, x1, . . . , xn. To calculate f '(x) at some 

point x = t, use 

 
Many different formulas can be obtained by varying n and by 

varying the placement of the nodes x0, . . . , xn  . 

 

Example. Take n = 2, and use equally spaced nodes  

x0, x1 = x0 + h, x2 = x1 + h.  

Then 

 
with 

 
Forming the derivatives of these Lagrange basis functions and 

evaluating them at x = x1 

 
For the error, 
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with x1 − h ≤ c2 ≤ x1 + h. 

 

 

Undetermined Coefficients 
Use Undetermined Coefficients to Derive an 

approximation for  f ''(x).  estimate the error. 

 
Derive an approximation for f ''(x) at x = t. Write 

                                
(1) 

with A, B, and C are unspecified constants. Use Taylor 

polynomial approximations 

      (2) 

 

 
Substitute into (1) and rearrange: 
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           (3) 

 
To have 

                               (4) 

for arbitrary functions f (x), require 

 
Solution: 

                       (5) 

This determines 

                     
(6) 

For the error, substitute (2) into (3): 

 
Thus 
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      (6) 

 

 

 

Example. Let f (x) = cos(x), t = ; use (14) to calculate f ''(t) 

= − cos ( ) 

 
 

 
5.2 differentiation for the Second order derivative 

 

Example4: 

Use Taylor's expansion to obtain different formulae for finite 

difference approximation of f ''(x).  

 

Answer: 

Consider Taylor's expansion for function f(x) at a point x=a, so 

𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)𝑓(1)(𝑎) +
1

2
(𝑥 − 𝑎)2𝑓(2)(𝑎) 

+⋯+
1

𝑛!
(𝑥 − 𝑎)𝑛𝑓(𝑛)(𝑎)…………(1) 
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Take ia x  and ix x h  , so i ix a x h x h     , Eq(1) become 
2 3 (3) 4 (4)1 1 1

2! 3! 4!
( ) ( ) ( ) ( ) ( ) ( ) ....i i i i i if x h f x hf x h f x h f x h f x       

         (2) 

Take ia x  and ix x h  , so i ix a x h x h      , Eq(1) become 
2 3 (3) 4 (4)1 1 1

2! 3! 4!
( ) ( ) ( ) ( ) ( ) ( ) ....i i i i i if x h f x hf x h f x h f x h f x       

        (3) 

We use Eq.(2)-(3) to obtain 
 

𝑓′′(𝑥𝑖) =
𝑓(𝑥𝑖+ℎ)−2𝑓(𝑥𝑖)+𝑓(𝑥𝑖−ℎ)

ℎ2
−

ℎ2

12
𝑓(4)(𝑐), 𝑥𝑖 − ℎ ≤ 𝑐 ≤ 𝑥𝑖 + ℎ.....(4) 

 

 

 
 

 

Example5: 

Consider the function given by the following data 
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0.5 0.4 0.3 0.2 0.1 x 
0.0625 0.0256 0.0081 0.0016 0.0001 y 

Use difference formula for approximating 𝑓′′(𝑥)  at 𝑥 = 0.2.   

Compute the numerical and estimated errors for each if 

𝑓(𝑥) = 𝑥4.  

Answer: 

 

 
𝑓′′(𝑥𝑖) =

𝑓(𝑥𝑖+ℎ)−2𝑓(𝑥𝑖)+𝑓(𝑥𝑖−ℎ)

ℎ2
−

ℎ2

12
𝑓(4)(𝑐), 𝑥𝑖 − ℎ ≤ 𝑐 ≤ 𝑥𝑖 + ℎ 

 
 

𝑓′′(0.2) =
0.0081−2(0.0016)+0.0001

(0.1)2
=

0.0082−0.0032

0.01
=

0.005

0.01
= 0.5

       
2

212 , 0.2 12 0.2 12 0.04 0.48ef x x f      

   ' '
1 1 0.48 0.5 0.02e aError f x f x      

22 (0.1)(4)

12 12
( ) (24) 0.01*2 0.02hR f c     

 
Programming home work  

Write program for approximating  
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Chapter 6 

 

 

 

Numerical Integration 
 

 

0-Introduction 
The problem of evaluating definite integrals arises both in 

mathematics and beyond, in many areas of science and 

engineering. At some point in our mathematical education 

we all learned to calculate simple integrals such as 
∫ 𝑥2𝑑𝑥 

1

0
 or ∫ cos 𝑥 𝑑𝑥 

𝜋

0
 

 
using a table of integrals, we obtain the values of them to 

be [3 −1] and 0 respectively; but  

 
Most of integration such as 

xe dx xe dx xe dxx x x3 4 5

0

1

0

1

0

1

  , ,  

Have no analytical solution. 

Moreover , if the function is given as a table 
1.0       0.8       0.6       0.4       0.2       0.0       𝑥 
1.0    0.64     0.36     0.16     0.04     0.0       𝑓(𝑥) 
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and ∫ 𝑓(𝑥)d𝑥
1

0
 is required, and also in this case on 

analytic solution can be done. 

In these cases , we turn to numerical integration 

 
a continuous real-valued function 𝑓(𝑥) defined on a 

closed interval [𝑎, 𝑏] of the real line such that the definite 

integral 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥 
𝑏

𝑎
                                (1) 

is very hard to reduce to an entry in the table of integrals 

by means of the usual tricks of variable substitution and 

integration by parts 

 
The purpose of this chapter, is to answer this question. 

Specifically, we shall address the problem of evaluating 

approximately, by applying the results of polynomial 

interpolation to derive formulae for numerical integration 

(also called numerical quadrature rules).  

 

 

6.1 Rules for single integrations 
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The physical meaning of ∫ 𝑓(𝑥)𝑑𝑥 
𝑏

𝑎
 is the area between the 

lines x=a , x=b and between x axis and the curve 𝑦 = 𝑓(𝑥) 

 

We draw a line between (a, 𝑓 (a)) and (b, 𝑓 (b)) and then 

take the area between this line and x as is as an 

approximation for the required  integration  

 

 

The Basic Trapezoidal Rule 
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The idea of Numerical integration depends on 

constructing Taylor polynomial approximations 𝑝𝑛(𝑥) as 

an interpolation for 𝑓(𝑥). So we have: 

 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥 
𝑏

𝑎
= ∫ 𝑝𝑛(𝑥)𝑑𝑥 

𝑏

𝑎
                           (1) 

 

 

The interval [𝑎, 𝑏] is divided into 𝑛 subinterval making 

use of the points 0 1 2, , ,...., nx x x x  in the given interval. 

These points are equidistance . So we have    

0 0 1 1i nx a,x x ih , i ,..., n , x b      ,                  (2) 

The integration is evaluated using the function values at 

these points. 
 

 

Linear Numerical Integration  
 

In this case, we use polynomial approximations 𝑝1(𝑥) of 

degree one as an interpolation for 𝑓(𝑥). The resulting 

rule is called the trapezoidal rule. 

𝑝1(𝑥) = 𝛼 + 𝛽𝑥 

The unknown constants 𝛼 and 𝛽 can be evaluated using 

the function values at the points: 

(𝑎, 𝑓(𝑎)), (𝑏, 𝑓(𝑏)) (How?) 

 

 

h
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In the other hand, we approximate the area under the 

curve of 𝑓(𝑥) by the area under the segment pass 

through (𝑎, 𝑓(𝑎)), (𝑏, 𝑓(𝑏)). 

 
 

 

 
Illustrating I ≈ T1(f ) 

 

 

 

   x0=a                h                                x1=b 

                                                         f(b) 

  f(a)                                                             P1(x) 

 

y

                            

x
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The area of the trapezoidal is half of average base (the two 

bases are 𝑓(𝑎), 𝑓(𝑏))multiplied on the altitude b-a.  

 

Take h=b-a.  Then the area of trapezoidal is  

𝑇1 =
𝑓(𝑎)+𝑓(𝑏)

2
ℎ=

ℎ

2
[𝑓(𝑎) + 𝑓(𝑏)] 

Then the basic trapezoidal rule for 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥 
𝑏

𝑎
 is 

𝑇1 =
𝑓(𝑎)+𝑓(𝑏)

2
ℎ=

ℎ

2
[𝑓(𝑎) + 𝑓(𝑏)]……………………(3) 

 

Example: 

Approximate ∫
𝑑𝑥

1+𝑥2 
1

0
using basic trapezoidal rule , then 

evaluate the numerical error. 
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Answer:  

𝑓(𝑥) =
1

1 + 𝑥2
 , 𝑎 = 0  , 𝑏 = 1 

f(a)=f(0)=1        f(b)=f(1)= 
1

2
 

h=b-a=1-0=1 

𝑇1 =
ℎ

2
[𝑓(𝑎) + 𝑓(𝑏)] 

 

𝑇1 =
ℎ

2
[𝑓(𝑎) + 𝑓(𝑏)] =

1

2
[1 +

1

2
] = 0.75 

 

To obtain the numerical error we must have the exact 

solution first : 
𝑑

𝑑𝑥
tan−1 𝑥 =

1

1 + 𝑥2
→ ∫

𝑑𝑥

1 + 𝑥2
= tan−1 𝑥 + 𝑐 

 

 

sin 0 = 0       cos 0 = 1 

tan 0 =
sin 0

cos 0
= 0 

0 = tan−1 c 

sin 450 = √2
1

= cos 450 

tan 450 =
sin 450

cos 450 = 1 

𝜋

4
= 450 = tan−1 1 

𝜋 = 1800 =
22

7
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1 1

420
tan (1) 0.785714286

1

dx
I

x

   
  

numerical error then is  
 

2

1 1 0.785714286 0.75 0.035714286 3.5 10E I T         

 

Obtaining Greater Accuracy 

 

To improve our estimate of the integral 

                        
One direction is to increase the degree of the approximation, 

moving next to a quadratic interpolating polynomial for f 

(x). We first look at an alternative.   Instead of using the 

trapezoidal rule on the original interval [a, b], apply it to 

integrals of f (x) over smaller subintervals. For example: 

 
 

Example 2   

divide the interval [0,1] into two halves then evaluate the 

integral of
1

1+𝑥2  in each.    Find an approximation for 

∫
𝑑𝑥

1+𝑥2

1

0
.    Evaluate the numerical error 

Answer: since 
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∫
𝑑𝑥

1 + 𝑥2

1

0

= ∫
𝑑𝑥

1 + 𝑥2

1
2

0

+ ∫
𝑑𝑥

1 + 𝑥2

1

1
2

 

Then 1
2

h   so applying  

 

𝑇1 =
ℎ

2
[𝑓(𝑎) + 𝑓(𝑏)] 

in each subinterval 

       
1 1
2 2

1 1
2 2

1 1
4 4

( ) ( )1 1
1 2 2 2 2

( ) ( )1 1 1
2 2 21 1

31
40

0 1

1

0.775

T f f f f

 

         

      
   

 

 

 
1 1

420
tan (1) 0.785714286

1

dx
I

x

   
  

2

1 0.785714286 0.775 0.010714286 1.1 10E I T         

 

𝐸2 = 1.1 × 10−2 

If we compare the error  

 

𝐸1 > 𝐸2 

 

 

We conclude from the result of example 2 that dividing the 

interval and evaluating 𝑇1in each sub interaval will decrease 

the error 
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Working with this conclusion , we shall divide [a, b] into n 

equally subintervals using the points 

 

 

 

 

The Composite Trapezoidal Rule 
Derive composite trapezoidal rule for integration 

starting from linear interpolant 

 

Consider approximating ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
.   We divide [𝑎, 𝑏]to n 

subinterval with equally spaced points  

𝑥𝑖 = 𝑎 + 𝑖ℎ    , ℎ =
𝑏 − 𝑎

𝑛
 , 𝑖 = 0,1, … , 𝑛 

And then evaluate 𝑇1 in each  

𝑇1 =
ℎ

2
[𝑓(𝑎) + 𝑓(𝑏)] 
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We can continue as above by dividing [𝑎, 𝑏] into even 

smaller subintervals and applying 

 

∫ 𝑓(𝑥)𝑑𝑥 =
ℎ

2
[𝑓(𝛼) + 𝑓(𝛽)]

𝛽

𝛼

 

 

on each of the smaller subintervals. Begin by introducing a 

positive integer n≥ 1, 

                         

Then 

𝑇𝑛 = ∫ 𝑓(𝑥)𝑑𝑥

𝑥1

𝑎

+ ∫ 𝑓(𝑥)𝑑𝑥

𝑥2

𝑥1

+ ⋯ + ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑥𝑛−1

 

 

         

 

    

   a  h  x1 h      x2                          xn-1  h  b 

                                                         f(b) 

  f(a)   f(x1)                      

                     f(x2)                f(xn-1) 

x

                          

y
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Use [α, β] = [x0, x1], [x1, x2], ..., [xn−1, xn], for each of which 

the subinterval has length h.      Then applying 

     

The numerical integration  is approximated by summation 

of all trapezoidal resulting from passing lines between the 

points:  

              1 1 2 2 -1 -1, ,  ,  ,  ,  ,..., ,  , ,  n na f a x f x x f x x f x b f b  

 

We have: 

      𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 , 𝑇1 =

ℎ

2
[𝑓(𝑎) + 𝑓(𝑏)], ℎ = 𝑏 − 𝑎 

𝑇𝑛 = ∫ 𝑓(𝑥)𝑑𝑥

𝑥1

𝑎

+ ∫ 𝑓(𝑥)𝑑𝑥

𝑥2

𝑥1

+ ⋯ + ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑥𝑛−1

 

       = 
ℎ

2
[𝑓(𝑎) + 𝑓(𝑥1)] +

ℎ

2
[𝑓(𝑥1) + 𝑓(𝑥2)] + ⋯ + 

ℎ

2
[𝑓(𝑥𝑛−1) + 𝑓(𝑏)]  

=
ℎ

2
{𝑓(𝑎) + 𝑓(𝑥1) + 𝑓(𝑥1) + 𝑓(𝑥2) + ⋯ + 𝑓(𝑥𝑛−1)

+ 𝑓(𝑏)} 

=
ℎ

2
{𝑓(𝑎) + 2𝑓(x1) + ⋯ + 2𝑓(𝑥𝑛−1) + 𝑓(𝑏)} 

=
ℎ

2
{𝑓(𝑎) + 2 ∑ 𝐹(𝑛−1

𝑖=1 xi)+f(b)}= 𝑇𝑛(𝑓) 

Thus 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

= 𝑇n + RT 
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Where

 

𝑇n =
ℎ

2
[𝑓(𝑎) + 𝑓(𝑏) + 2 ∑ 𝑓(𝑥𝑖)

𝑛−1

𝑖=1

] 

 

and 

   
2

12

b a h

TR f '' c ,a c b


                                              (4) 

 

 

𝑇𝑛 is called composite trapezoidal rule  

 

Example 3 :  

Approximate ∫ 𝑓(𝑥)𝑑𝑥
1

0
 using composite trapezoidal rule for 

the function 𝑓(𝑥) is given by the table 

 

              a=𝑥0        𝑥1           𝑥2           𝑥3         𝑥4      𝑥5 = 𝑥𝑛
𝑏 

  

1 0.8 0.6 0.4 0.2 0 𝑥 

1 0.64 0.36 0.16 0.04 0 𝑓(𝑥) 

n=5  
b−a

n
=

1

n
=

1

5
= 0.2 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

= 𝑇n + RT 

 

Where

 

𝑇n =
ℎ

2
[𝑓(𝑎) + 𝑓(𝑏) + 2 ∑ 𝑓(𝑥𝑖)

𝑛−1

𝑖=1

] 
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ℎ = 𝑥𝑖+1 − 𝑥𝑖 = 0.2  

So 

 𝑇5 =
0.2

2
[0 + 1 + 2(0.04 + 0.16 + 0.36 + 0.64)] = 0.34 

 

 

 (:3مثال )

∫استتدم ق عدةتت ه اتتحر اللتتتمل في دسدبتت      تتد       𝑓(𝑥)𝑑𝑥
1

0
 

 العمفة بدلج ول افيددفيي: 𝑓(𝑥)في  افية

1.0 0.8 0.6 0.4 0.2 0.0 𝑥 

1.0 0.64 0.36 0.16 0.04 0.0 𝑓(𝑥) 

 

 الحل:

هتتي ةتت ن افيل تتدما  متتابدا بل تتد وا تت ا   𝑛  هتت ا ال تتلفية فيتت  لد 

 وبدفيددفيي:

n=5 ℎ =
𝑏−𝑎

𝑛
= 0.2, ℎ = 𝑥𝑖+1 − 𝑥𝑖 = 0.2 

 وعدنان احر اللتمل   ه ا ال لفية  دعين بن :

𝑇𝑛(𝑓) =
ℎ

2
{𝑓(𝑎) + 2 ∑ 𝑓(𝑛−1

𝑖=1 𝑥𝑖) + 𝑓(𝑏)} 

 وبدفيددفيي:

𝑇5 =
0.2

2
[0 + 1 + 2(0.04 + 0.16 + 0.36 + 0.64)] = 0.34 

 

 

Error formula for Trapezoidal rule 

𝑅𝑇 = 𝐼 − 𝑇𝑛 =
−(𝑎 − 𝑏)ℎ2

12
 𝑓′′(𝑐), 𝑎 ≤ 𝑐 ≤ 𝑏 
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Example : Estimate the error for using Trapezoidal rule to 

obtain∫ 𝑥2𝑑𝑥
1

0
, with n=5 

 

Answer: 

 

a=0  b=1 h=
𝑎−𝑏

𝑛
=

1

5
= 0.2 

𝑓(𝑥) = 𝑥2    𝑓′(𝑥) = 2𝑥    𝑓′′(𝑥) = 2     

 

|𝑅𝑇| =
1(0.2)2

12
  (2) =0.00667 

 

 

Consider approximating  ∫ 𝑥3𝑑𝑥
1

0
 using composite trapezoidal 

rule. Estimate the error, with n=10 

 

Answer: 

The error formula is 

𝑅𝑇 =
−(𝑏 − 𝑎)ℎ2

12
𝑓′′(𝑐), 𝑎 ≤ 𝑐 ≤ 𝑏 

𝑓(𝑥) = 𝑥3 , 𝑓′ = 3𝑥2 , 𝑓′′ = 6𝑥 

𝑎 = 0 , 𝑏 = 1 , ℎ =
𝑏 − 𝑎

𝜋
=

1

10
− 0.1 

RT =
−(1 − 0)(0.1)2

12
6(c), 0 ≤ c ≤ 1 

=
−0.01

2
𝑐 = −0.005𝑐 

|𝑅𝑇| = 0.005𝑐 

Since this value increases when c increases . we 

shall take the greatest value in [0.1] as an estimation 
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|RT| ≤ 0.005(1) 

|RT| ≤ 0.005 

 

Programming Exercise 

Write  

 

 
given 𝑓(𝑥),a ,b and number of subintervals n . test 

your program for 

𝑓(𝑥) = 𝑥2 , 𝑎 = 0 , 𝑏 = 𝑛 , take n = 5,10,100,1000 

and complete the table: 

 

n error 

5  

10  

100  

100  

 

Tn =
h

2
 [f(a) + f(b) + 2 ∑ f(xi

n−1

i=1

)] , ℎ =
b − a

n
 

 
Algorithm for Trapezoidal rule 
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Input : f(x) as a function , 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 

           a,b,n  

Output : 𝑇𝑛 that proximates ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 , the error  

Sept1 : h=(b-a)/n 

Step2 : T=f(a)+f(b) 

Step3:for i=1  to  n-1 do step4  
Step 4 : T = T + 2 ∗ f(xi) 

Step5 : Tn=T*h/2 

Step6 : E = |Tn − I|  
=========== 

T =f(a)+f(b) 

i = 1 → T = T + 2f(x1) 

i = 2 → T = T + 2f(x2) 
 

============== 
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بدتلا ا وكدحلتد فهتر افيتللم ال دبت ا وافيت        وإذا عملد بعم  بمندبج 

)3بممجلد فهر تسدب  افي افية )f x x  بدسدم اق طم  ة احر اللتمل؛ فتنن

 ها: N=10ندتج تشغه  افيبرندبج ةل  

st=  

trapezoidal integraion is 

INTf 

= 0.2525 

  

--------------------------------------- 
بهلمتتتد نتتتدتج تشتتتغه  افيبرنتتتدبج ةلتتت   

N=100 ها 

--------------------------------------- 

st=  

trapezoidal integraion is 

INTf=  

0.2500 

a=0.0; 

b=1.0; 
N=10; 
h = (b - a)/N; 
for i=1:N 
x(i) = a +i*h; 
end 
f = @(x) x.^3; 
fa=f(a); 
fb=f(b); 

sumf=0.0; 
for i=1:N-1  
sumf=sumf+f(x(i)); 

end 
st='trapezoidal integraion is' 
INTf = 0.5*h*(fa+fb+2*sumf) 

 

   الثتتتدل افي تتتدبا ؛ إذا ة تتت   ن( : 4)بثتتتدل
2( )f x x    فد  تتتلخ ا فيتتتل

 .داععافيد م لخ, وا فيل ال

 

 الح :  هث  ن
2( )f x x فنن : 

3
1

2 1 3
0

0

1 1 1
(1) 0 0.3333

3 3 3

x

I x dx      

 إذن ا فيل   افيد م لخ.
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5 0.3333 0.0.34 0.00667E I T     

   عدة ه احر اللتمل تدعين بن  داععصهغة ا فيل ال

a c b   , 

2

( ) ( )
12

T

h
R b a f c   

 وفيسن  

2( ) 2 2f x x f x f    
2 2(0.2)

( ) (1 0) (2)
12 12

h
R b a f c    

3(0.04) 0.02
1 (2) 0.00667 6.6 10

12 3

     

 

Basic Simpson’s Rule 
Derive Simpson’s rule for integration via quadratic 

interpolant 

 

 

Consider 𝑓(𝑥) is defined at three points 

(a, 𝑓 (a)) , (𝑥1, 𝑓(𝑥1)) and (b, 𝑓 (b)) 
 

In this case, we use polynomial approximations 𝑝2(𝑥) of 

degree two as an interpolation for 𝑓(𝑥). The resulting 

rule is called the trapezoidal rule. 

𝑝2(𝑥) = 𝛼 + 𝛽𝑥 + 𝛾𝑥2 

The unknown constants 𝛼, 𝛽 and  𝛾 can be evaluated 

using the function values at the points: 

(𝑎, 𝑓(𝑎)), (𝑥1, 𝑓(𝑥1), (𝑏, 𝑓(𝑏)) 
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In the other hand, we want to approximate 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 

using quadratic interpolation of f (x). Interpolate f (x) at the 

points {a, c, b}, with  Also let 

 The quadratic interpolating polynomial is 

given by 

 

 
Replacing f (x) by P2(x), we obtain the approximation 

 

 
Then the basic Simpson's Rule for numerical integration is 

∫ 𝑓(𝑥)𝑑𝑥 ≅ 𝑠2

𝑏

𝑎

=
ℎ

3
[𝑓(𝑎) + 4𝑓(𝑥1) + 𝑓(𝑏)] 

 

                                     (5) 
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Where 1 2
a bx   

 

ℎ =
𝑏 − 𝑎

2
 

 

 

This is called Simpson’s rule. 

 

 
 
 

 
Illustration of I ≈ S2(f ) 

 

 الأسدسهة سهمح اناحر  افيدسدب  بفيم  ة:3-6 اس 

 

 

Approximate ∫
𝑑𝑥

1+𝑥2 
1

0
using basic Simpson's rule , then 

evaluate the numerical error. 
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𝑓(𝑎) = 𝑓(0) =
1

1+0
= 1               𝑓 (

1

2
) =

1

1+(
1

2
)2

=
4

5
 

𝑓(𝑏) = 𝑓(1) =
1

1+12 =
1

2
             ℎ =

𝑏−𝑎

2
=

1−0

2
=

1

2
        

𝑥1 =
𝑎 + 𝑏

2
=

0 + 1

2
=

1

2
 

The numerical value for integration is 

     2 14
3

h
S f a f x f b      

h=(b-a)/2=1/2  

 

     
 1

2

1
4

1 1
2 2 3 21

47
60

4 1
3

0.783333

a b
h

S f a f f b


          

   

=
1

2(3)
[1 + 4 (

4

5
) +

1

2
] =

47

60
= 0.78333 

The exact solution is  
1 1

420
tan (1) 0.785714286

1

dx
I

x

   


 

Hence the error is  
2

2 0.785714286 0.783333 0.02409 2.4 10E I S         

 

 
 

Composite Simpson’s Rule 
Derive composite Simpson’s rule for integration via 

quadratic interpolant 
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We divide the interval [𝑎, 𝑏] to even number of intervals n 

using the points  

a = x0 < x1 < x2 < ⋯ < xn−1 < xn = b 

With h =
b−a

n
 and xk = a + kh 

K=0,1,2,…,n 

 

 

 

As with the trapezoidal rule, we can apply Simpson’s rule 

on smaller subdivisions in order to obtain better accuracy in 

approximating 

 
Again, Simpson’s rule is given by 

 
Let n be a positive even integer, and 

 
Then write 

 
Apply 
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to each of these subintegrals, with 

 
In all cases,(β − α)/2 = h. Then 

 
This can be simplified to 

 
بتتتن الأع تتتدق بدستتتدم اق  nوفيدت تتتين ت م تتتلخ افيدسدبتتت  ن  تتت  افيلفيتتتد  إ  

  افيل دم

0 1 2 2, , ,..., , 2ka x x x x b k n  
 

The composite Simpon Rule for integration then is 

 

 
b

n S

a

I f x dx S R    
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Where  

                                  Odd values of the function 

𝑠𝑛 =
ℎ

3
[𝑓(𝑎) + 4{𝑓(𝑥1) + 𝑓(𝑥3) + ⋯ + 𝑓(𝑥𝑛−1)} 

              Even values of the function 

+2[𝑓(𝑥2) + 𝑓(𝑥4) + ⋯ + 𝑓(𝑥𝑛−2)] + 𝑓(𝑏)] 
 
 

This is called the “composite Simpson’s rule” or more 

simply, Simpson’s rule 

 

Set n=2k 

sn =
h

3
[f(a) + 4{f(x1) + f(x3) + ⋯ + f(x2k−1)} 

+2[f(x2) + f(x4) + ⋯ + f(x2k−2)] + f(b)] 
 

 

And the error is obtained by 

 

𝑅𝑠 = 𝐼 − 𝑆𝑛 =
−(𝑏 − 𝑎)ℎ4

180
𝑓(4)(𝑐), 𝑎 ≤ 𝑐 ≤ 𝑏 

 

Example:  

(a) Approximate ∫ 𝑓(𝑥)𝑑𝑥
1

0
 using composite 

Simpson’s rule for the function f(x) is given by the 

table 
1.2 1.0 0.8 0.6 0.4 0.2 0.0 x  
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1.44 1.0 0.64 0.36 0.16 0.04 0.0  f x 

 

 الح :

ف ال نح ن نظماا لأن طم  ة سمح ان تمهز افي همة افيفمن ة ةن افيزوجهة 

 افي ه  كدفيددفيي:

𝑓(𝑥0) = 𝑓(𝑎) = 𝑓(0) = 0, 
𝑓(𝑥6) =  𝑓(𝑏) = 𝑓(1.2) = 1.44 

 

 افي ه  افيفمن ة    افي ه  افيزوجهة 

𝑘         𝑓(𝑥𝑘)                           𝑘         𝑓(𝑥𝑘) 

1         0.04                             2         0.16 

3         0.36                            4         0.64 

5         1.0      

_____________________________________________   المجماع

          1.40                                         0.80 

 

𝑆6 =
0.2

3
[0 + 4{1.4} + 2{0.80} + 1.44] 

=
0.2

3
[5.6 + 1.6 + 1.44] 

=
0.2

3
[5.6 + 1.6 + 1.44] =

0.2

3
(8.64) = 0.567 
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 (b) If 𝑓(𝑥) = 𝑥2 evaluate the numerical and estimated 

error. 

 

 
 

       الح :

∫ 𝑥2𝑑𝑥 

1.2

0

=
𝑥3

3
|
0

1.2

=
(1.2)3

3
= 0.567 

 

إذن ا فيل   افيد م لخ    

𝐸 = 0.567 − 0.567 = 0 

 

𝑅𝑠 =
−(𝑏 − 𝑎)ℎ4

180
𝑓(4)(𝑐) 

)(4)  و هث  ن ) 0f x  0   إذنR . 
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 (: 8بثدل )

بين ا فيل الداعع ةل  اسدم اق كٍ  بن عدة ه احر اللتمل وعدة ه عدرن 

∫ سمح ان فيدسدب  افي افية sin(𝑥) 𝑑𝑥
𝜋

2
0

𝑛و     = 10 

 الح : 

𝑓(𝑥) = 𝑠𝑖𝑛(𝑥), [𝑎, 𝑏] = [0,
𝜋

2
] , 𝑛 = 10. 

 

 بدسدم اق عدة ه احر اللتمل

𝑅𝑇 =
−(𝑎 − 𝑏)ℎ2

12
𝑓′′(𝑐), 𝑎 ≤ 𝑐 ≤ 𝑏 

𝑓(𝑥) = sin 𝑥 , 𝑓′(𝑥) = cos 𝑥 , 𝑓′′(𝑥) = − sin 𝑥. 
 

|𝑅𝑇| =
(𝑎 − 𝑏)ℎ2

12
|𝑓′′(𝑐)| 

ℎ =
𝑏 − 𝑎

𝑛
=

𝜋
2

− 0

𝑛
=

𝜋

2𝑛
 

|𝑅𝑇| ≤
(0 −

𝜋
2

)(
𝜋

2(10)
)2

12
(1) = 0.02 
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 و بدسدم اق عدة ه سمح ان

 

𝑅𝑠 = 𝐼 − 𝑆𝑛 =
−(𝑏 − 𝑎)ℎ4

180
𝑓(4)(𝑐), 𝑎 ≤ 𝑐 ≤ 𝑏 

(3) (4)cos sinf x f x    

 :و هث إن

sin 1x  

|𝑅𝑠| =
(𝑏 − 𝑎)ℎ4

180
|𝑓(4)(𝑐)| 

|𝑅𝑠| ≤
(

𝜋
2

− 0)

180
(

𝜋

2(10)
)

4

(1) = 5.3 ∗ 10−6 

 

Consider using Simpson's rule to evaluate ∫ sin(𝑥) 𝑑𝑥
𝜋

2
0

.  

Find n required to obtain an error within 10−5. 

 
 

 الح : صهغة ا فيل الداعع فيفيم  ة سمح ان تدعين بن 
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4
(4)( )

( ) ,
180

b a h
R f c a c b


    

𝑅𝑠 =
−(𝑏 − 𝑎)ℎ4

180
𝑓(4)(𝑐), 𝑎 ≤ 𝑐 ≤ 𝑏 

 و هث إن افي افية العفيده هي:

( ) sin( )f x x 

 وافيتي تسان الشد ة افيمابعة لهد

   4
1f x  

 و هث إن افيلفيد 

 , 0,
2

a b
 

  
 


 

 إذن:

 
4 40.00873

2 180
R h h 


 

 وفي تمال ة ى نعة خمس بااضع ةشم ة نسدلخ 
40.00873 0.000005h   

4 0.000005 5
0.000573

0.00873 8730
h    

 الج ر افيتربهعيوبلخ  
2 0.0239h  

 وبلخ  الج ر افيتربهعي بمه  خمى 

0.1547h  
𝑏 − 𝑎

𝑛
≤ 0.1547 

𝜋

2𝑛
≤ 0.1547 
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1

𝑛
≤

2(0.1547)

𝜋
 

𝑛 ≥
𝜋

2(0.1547)
= 10.5 

 

 
 

 

 
2 0.0239h   

 وبلخ  الج ر افيتربهعي بمه  خمى 

0.1547h  
b a b a

n h
h n             22

2(0.15) 7(2)(0.15)
10.5n     

11n وبدفيددفيي فنن   سال تعفيي ة ى الأع  نعة خم ة بااضع ةشم ة إذا

 اسدم ق سمح ان   افيدسدب  افيع ن 
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Trapezoidal Error Formula Theorem 
Let f (x) have two continuous derivatives on the interval a ≤ 

x ≤ b. Then 

 
for some cn in the interval [𝑎, 𝑏]. 

 

The above formula says that the error decreases in a manner 

that is roughly proportional to h2. Thus doubling n (and 

halving h) should cause the error to decrease by a factor of  

approximately 4. This is what we observed with a past 

example from the preceding section. 

 

Example 

Consider evaluating 

 
using the trapezoidal method Tn( f  ). How large should n be 

chosen in order to ensure that 

 
We begin by calculating the derivatives: 

 
From a graph of f '' (x), 
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Recall that b − a = 2. Therefore, 

 

We bound since we do not know cn, and 

therefore we must assume theworst possible case, that 

which makes the error formula largest. That is what has 

been done above. 

             (1) 

To ensure this, we choose h so small that 

 
This is equivalent to choosing h and n to satisfy 

 
Thus n ≥ 517 will imply (1). 

 
 1-6تمارين

( في دسدب  1) 
1

20 1

dx
I

x


 4 ا  لخT 4 وS   ث  ا  لخ ا فيل افيع ن

 و ا فيل الداعع و عدرن بهل مد.
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5( نفمض  ن 2) 31 1
2 2 4 4

(0) 1, ( ) , (1) 2, ( ) ( )f f f f f      

إذا كدنت صهغة احر اللتمل تعفيي   وج  عهمة 
1

7
4

0

( )f x dx  

( بدسدم اق افيبرندبج العموض   ه ا افيفم  فيمهغة احر اللتمل كاّن 3)

في دستتدبلاا افيددفيهتتة ا و  هتتث  ن الحتت    2,4,8,256n=حيثث   nTجتت ول في تته  

افيمتهح بددح  بدق ك  تسدب  ا  ضت  في دت ول ا فيتل افيعت ن  و ا فيتل      

 افيل بي.

(a)  1
2

0

sin( ) 1xe x dx e


               (b) 
7
3

1

3
10

0

x dx   

(c) 
cos 1

0

sinx

ee xdx e


   

(d) 2

3

1 1

1 ( )

0

tan (3 ) tan ( )dx

x 
  

 
    

 ( بدسدم اق بمندبج طم  ة سمح ان.3( كمر افيدمم ن )4)

( عدرن بين ا فيل الداعع ةل  إسدم اق ك  بن عدة ه احر اللتمل و 5)

 عدة ه سمح ان فيدسدب  افي افية   

 (i) f(x)=x7-4x3                

(ii)f(x)=1/(1+x) 

لح د  ت م لخ   n=2,4,8,256  هث ( اسدم ق صهغة احر اللتمل6) 

 في  وال افيددفيهة ا  افيلفيد  العفيى y =f (x)في م د ة تحت اللتلى 

(a)  
1

2

0

lnx xdx                       (b) 
2

5

0

xe dx

  

(c)  2

9

2

5

3

x

x
dx

                       (d) 
1

0

xx e dx  
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 ( بدسدم اق طم  ة سمح ان.6( كمر افيدمم ن )7)

( إذا كدن تفيحها صهغة احر اللتتمل في دسدبت    8) 
2

0

( )f x dx   ا  4تعفيتي

 .f(1)فلوج  عهمة  2و ةل  تفيحها صهغة سهمح ان تعفيي 

افيلازبة لح د  افيدسدب  افيددفيي صتهتد لأربعة  h( ا  لخ ال دفة 9) 

 رعدق ةشم ة بدسدم اق عدة ه احر اللتمل:

2

1

I dx / x  

 

 
6.2- Error Analysis for single numerical integration 
 

Derive the error formula for the trapezoidal method 

for numerical integrations then derive an asymptotic 

error estimate 
There are two stages in deriving the error: 

 

(1) Obtain the error formula for the case of a single 

subinterval (n = 1); 

(2) Use this to obtain the general error formula given earlier. 

 

For the trapezoidal method with only a single subinterval, 

we have 

From Trapezoidal Error Formula Theorem with  h =(b-a) 

 
for some c in the interval [α, α + h]. 
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Recall that the general trapezoidal rule Tn( f ) was obtained 

by applying the simple trapezoidal rule to a subdivision of 

the original interval of  integration. Recall defining and 

writing 

 
Then the error 

 
can be analyzed by adding together the errors over the 

subintervals  [x0, x1], [x1, x2], ..., [xn−1, xn]. Recall 
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Then on [xj−1, xj] , 

 

with xj−1 ≤  ≤ xj, but otherwise γj unknown. 

Then combining these errors, we obtain 

 
This formula can be further simplified, and we will do so in 

two ways. 

Rewrite this error as 

 
Denote the quantity inside the brackets by ζn. This number 

satisfies 

 
Since f ''(x) is a continuous function (by original 

assumption), we have that there must be some number cn in 

[𝑎, 𝑏] for which 

                          
Recall also that hn = b − a. Then 
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This is the error formula given on the first slide. 

 

An Error Estimate 
We now obtain a way to estimate the error ( )T

nE f   Return to 

the formula 

 
and rewrite it as 

 
The quantity 

 
is a Riemann sum for the integral 

 
By this we mean 

 
Thus 
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for larger values of n. Combining this with the earlier error 

formula we have 

 
This is a computable estimate of the error in the numerical 

 
integration. It is called an asymptotic error estimate. 

 

Example.  

Consider evaluating the integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
  

 where 

[𝑎, 𝑏] = [0, 𝜋] and ( ) cosxf x e x by the trapezoidal 

rule.  Prove that the error  and the error estimate  are 

quite close(assume that |𝑓′′(𝑥)| ≤ 14.921). Evaluate 

the corrected trapezoidal rule 

Answer 

 

Consider evaluating 

 
In this case, 

 
Then 
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Also 

 

For evaluating the integral I by the 

trapezoidal rule, we see that the error 

( )T

nE f  and the error estimate ( )T

nE f  are 

quite close. Therefore 

 

This last formula is called the corrected 

trapezoidal rule. We see it gives a much 

smaller error for essentially the same amount 

of work; and it converges much more rapidly.      

In general, 
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This is the corrected trapezoidal rule. It is easy to 

obtain from the trapezoidal rule, and in most cases, it 

converges more rapidly than the trapezoidal rule. 
 

Simpson’s Rule Error Formula 

Recall the general Simpson’s rule 

 
For its error, we have 

 
for some a ≤ cn ≤ b, with cn otherwise unknown. For an 

asymptotic error estimate, 

 
 

Discussion 

For Simpson’s error formula, both formulas assume that the 

integrand f (x) has four continuous derivatives on the 
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interval [a, b]. What happens when this is not valid? We 

return later to this question. 

 

Both formulas also say the error should decrease by a factor 

of around 16 when n is doubled.  Compare these results with 

those for the trapezoidal 

rule error formulas:. 

 
Example 6 

Consider evaluating 

 
using Simpson’s rule Sn( f ). How large should n be chosen 

in order to ensure that 

 
Begin by noting that 

 
Then 
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Then  is true if 

 
Therefore, choosing n ≥ 32 will give the desired error 

bound. Compare this with the earlier trapezoidal example in 

which n ≥ 517 was needed. 

For the asymptotic error estimate, we have 

 

 
 

Integrating Sqrt(x) 

Consider the numerical approximation of 
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In the following table, we give the errors when using both 

the trapezoidal and Simpson rules. 

 
The rate of convergence is slower because the function f (x) 

=sqrt(x) is not sufficiently differentiable on [0, 1]. Both 

methods converge with a rate proportional to h1.5. 

 

 

 

ASYMPTOTIC ERROR FORMULAS 
 

If we have a numerical integration formula, 

 
let ( )nE f  denote its error, 

 
We say another formula ( )nE f is an asymptotic error 

formula for this numerical integration if it satisfies 
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Equivalently, 

 
These conditions say that ( )nE f  looks  increasingly like 

( )nE f  as n increases, and thus 

( ) ( )n nE f E f  

Example. 

 

 For the trapezoidal rule, 

 
where f (x) has two continuous derivatives on the interval [a, 

b]. 

 

Example. 

 

 For Simpson’s rule, 

 
where f (x) has four continuous derivatives on the interval 

[𝑎, 𝑏]. 

 

Note that both of these formulas can be written in an 

equivalent form as 
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for appropriate constant c and exponent p. With the 

trapezoidal rule, p = 2  

 
and 

 
and for Simpson’s rule, p = 4 with a suitable c 

The formula 

             (2) 

 

occurs for many other numerical integration formulas that 

we have not yet defined or studied. In addition, if we use the 

trapezoidal or Simpson rules with an integrand f (x) which is 
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not sufficiently differentiable, then (2) may hold with an 

exponent p that is less than the ideal. 

 

Application Of Asymptotic Error Formulas 
Assume we know that an asymptotic error formula 

E=  

is valid for some numerical integration rule denoted by In. 

Initially, assume we know the exponent p. Then imagine 

calculating both In and I2n. With I2n, we have 

 
This leads to 

 

 
The formula 



Numerical Integration  

 308 

                                            (4) 

is called Richardson’s extrapolation formula. 

 

Example. 

With the trapezoidal rule and with the integrand  f (x) 

having two continuous derivatives, 

 
                          (22-1=4-1=3) 

 

Example. 

 With Simpson’s rule and with the integrand f (x) having 

four continuous derivatives, 

 
                          (24-1=16-1=15) 

 

We can also use the formula (4) to obtain error estimation 

formulas: 

  (5) 

This is called Richardson’s error estimate. For example, 

with the trapezoidal rule, 
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6.3 Gaussian Numerical Integration 
We look for numerical integration formulas 

 
which are to be exact for polynomials of as large degree as 

possible. There are no restrictions placed on the nodes {xi} 

nor the weights {wi} in working towards that goal. The 

motivation is that if it is exact for high degree polynomials, 

then perhaps it will be very accurate when integrating 

functions that are well approximated by polynomials. 

 

There is no guarantee that such an approach will work.  In 

fact, it turns out to be a bad idea when the node points {xi} 

are required to be evenly spaced over the interval of 

integration. But without this restriction on {xi} we are able 

to develop a very accurate set of quadrature formulas. 

 

 

The case n = 1. We want a formula 
(1)Evaluate Gaussian numerical integration formula when there is 

only one node.  
(1b) prove that the midpoint integration rule is a spectral case of 

Gaussian numerical integration. 

 

Answer: 

We look for numerical integration formulas 
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The weight w1 and the node x1 are to be so chosen that the 

formula is exact for polynomials of as large degree as 

possible. 

 

To do this we substitute f (x) = 1 and f (x) = x. The first 

choice leads to 

 
The choice f (x) = x leads to 

 
The desired formula is 

 
We say it has degree of precision equal to 1.  since it 

integrates exactly all linear polynomials.  It is called the 

midpoint rule. 
 

 

The case n = 2. We want a formula 
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(2) obtain 3 precision formula for Gaussian 

integration. Then use it to obtain ∫ 𝒇(𝒙)𝒅𝒙
𝟏

−𝟏
 , 

where 𝒇(𝒙) = 𝒙𝟑. 
Answer: 

 
The weights w1, w2 and the nodes x1, x2 are to be so chosen 

that the formula is exact for polynomials of as large a degree 

as possible. We substitute and force equality for 

 
This leads to the system 

 
The solution is given by 

 
This yields the formula 

     (1) 
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We say it has degree of precision equal to 3 since it 

integrates exactly all polynomials of degree ≤ 3. We can 

verify directly that it does not integrate exactly f (x) = x4. 

 
Thus (1) has degree of precision exactly 3. 

 

 

EXAMPLE  

For an Integrated function which is not  in a polynomial 

form, we have as an example: 

 
The formula (1) yields 
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The General Case 

We want to find the weights {wi} and nodes {xi} so as to 

have 

 
be exact for a polynomials f (x) of as large a degree as 

possible. As unknowns, there are n weights wi and n nodes 

xi. Thus it makes sense to initially impose 2n conditions so 

as to obtain 2n equations for the 2n unknowns. We require 

the quadrature formula to be exact for the cases 

 فإننا نحتاج لمثل هذا العدد من الشروط 2nلأن عدد المجاهيل 

 
Then we obtain the system of equations 

 
for i = 0, 1, 2, ..., 2n − 1. For the right sides, 
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The system of equations 

 
 

has a solution, and the solution is unique except for re-

ordering the unknowns. The resulting numerical integration 

rule is called Gaussian quadrature. 

 

In fact, the nodes and weights are not found by solving this 

system. Rather, the nodes and weights have other properties 

which enable them to be found more easily by other 

methods. There are programs to produce them; and most 

subroutine libraries have either a program to produce them 

or tables of them for commonly  used cases. 

 

 

Symmetry Of Formula 

The nodes and weights possess symmetry properties.    In 

particular, 

 
 

Change Of Interval Of Integration 

Integrals on other finite intervals [a, b] can be converted to 

integrals over [−1, 1], as follows: 
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based on the change of integration variables 

 
 

EXAMPLE  

Over the interval [0, π], use 

 
Then 

 
EXAMPLE 

Consider again the integrals used before : 
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Compare these results with those before 

 

 

An Error Formula 

Let f (x) be continuous for a ≤ x ≤ b; let n ≥ 1.   Then, for the 

Gaussian numerical integration formula 

 
on [a, b], the error in In satisfies 

 
Here ρ2n−1(f ) is the minimax error of degree 2n − 1 for f (x) 

on [𝑎, 𝑏]: 

 
 

EXAMPLE  



6Chapter  

 317 

Let f (x) = 
2xe     . Then the minimax errors ρm(f ) are given 

in the following table. 

 
Using this table, apply (3) to 

 
For n = 3, (3) implies 

 
The actual error is 9.55E − 6. 

 

 

Weighted Gaussian Quadrature 
Consider needing to evaluate integrals such as 

 
How do we proceed? Consider numerical integration 

formulas 

 
in which f (x) is considered a “nice” function (one with 

several continuous derivatives). The function w(x) is 
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allowed to be singular, but must be integrable.     We 

assume here that [a, b] is a finite interval. The 

function w(x) is called a “weight function”, and it is 

implicitly absorbed into the definition of the quadrature 

weights {wi}. We again determine the nodes 

{xi} and weights {wi} so as to make the integration formula 

exact for f (x) a polynomial of as large a degree as possible. 

The resulting numerical integration formula 

 
is called a Gaussian quadrature formula with weight 

function w(x). We determine the nodes {xi} and weights 

{wi} by requiring exactness in the above formula for 

 
To make the derivation more understandable, we consider 

the particular case 

 
We follow the same pattern as used ear 

 

The case n = 1. We want a formula 

 
The weight w1 and the node x1 are to be so chosen that the 

formula is exact for polynomials of as large a degree as 

possible. Choosing f (x) = 1, we have 
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Choosing f (x) = x, we have 

 
Thus 

 
has degree of precision 1. 

 

The case n = 2. We want a formula 

 
 

The weights w1, w2 and the nodes x1, x2 are to be so chosen 

that the formula is exact for polynomials of as large a degree 

as possible. We determine them by requiring equality for 

 
This leads to the system 
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The solution is 

 
Numerically, 

 
The formula 

 
has degree of precision 3. 

 

 

EXAMPLE  

Consider evaluating the integral 
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In applying (4), we take f (x) = cosx. Then 

 
The true answer is 

 
and our numerical answer is in error by E2= .000128. 

 

This is quite a good answer involving very little 

computational effort (once the formula has been 

determined).   In contrast, the trapezoidal and Simpson rules 

applied to (5) would converge very slowly because the first 

derivative of the integrand is singular at the origin. 

 

 

 

 

 

 

 

 

 

6.4 Numerical approximation of Singular integrals  
 

 إذا تح ا     افيشمطين:  singularدب  بعد   سان افيدس

  ن  سان في  افية السدب ة ن فية انفمدل ناخ  نفيد  افيدسدب  بث :) ( 
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3 2

23 1 0
, , tan

1

dx dx
xdx

xx



                                                 

 غير مح ون بث : افيدسدب   ن  سان نفيد ) ( 

                                       
0

2 21
, ,

1

xdx dx
e dx

x x

 

    

غير بعد  وافيفيم  افيع ن ة لح د  افيدسدب  افيع ن  تفترض  ن افيدسدب  

non singular  دت ا  ن    : 

 افي افية السدب ة نظدبهة ا   :

 بدم ة. -3عدب ة في دفدض .      -finite    .2بلد هة  -1

ته ار   وذفيك   نفيد  افيدسدب  .وبدفيددفيي يمسن تمثه  افي افية بمد    ة 

 ه ا افيلفيد .

 :. و بدفيددفيي فنن افيدسدب   سان ة ى افيماره( فتره افيدسدب  بلد هة2)

( ) , ,
b

a
f x dx a b R     

و يجلخ  ولا تحا   افيدسدب  بعد  إ  تسدب  غير بعد  ث  تفيحها إ  ى 

  .  عهمة ت مبهة في دسدب افيفيم  افيع ن ة لح د

 

 بعد ة إ  تسدبلاا غير بعد ة و فهمد   ي ن كم طم  تحا   افيدسدبلاا

 
 

 تسدب  افي وال ذاا ن دم الانفمدل 6-2-1

ا وةل  ذفيك xوفه د تسان افي افية السدب ة غير مح ونه ةل  بعض عه  

 ن اق بنزافية الاةدلال بن  ى افيفيم  افيددفيهة :
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 افيدعا ض -1  

 :( 1)بثدل 

 سدب افيد اسدم ق افيدعا ض   إزافية إةدلال
1

0

cosx
I dx

x
   

0x افيدسدب  بعد  ةل الح : ه ا   فحدسدم اق افيدعا ض 
2x t   نج

   ن

2
1 1

2

0 0

cos
.2 2 cos

t
I tdt t dt

t
    

 غير بعد . وها تسدبلا 

 

  راسدم اق بد    ة ته ا  -2 

 ن  ز   إةدلال  رته ا بد    ةوضح كه  يمسن لاسدم اق  :(2)لدبث

افيدسدب   

1

0

sin x
I dx

x
  

0x افيدسدب  بعد  ةل ه ا الح :   نج   ن ربد    ة ته ا فحدسدم اق 

 
 

1 2 1

1

1
sin( )

2 1 !

k k

k

x
x

k

 







  

 إذن 
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 

 

 

 

1 2 1
1 1

0 0
1

1 2 2
1

0
1

1sin 1

2 1 !

1

2 1 !

k k

k

k k

k

xx
I dx dx

x x k

x
dx

k

 



 




 








 


 

 وها تسدبلا غير بعد .  

 
 

 افيدسدب  افيددزئ-3 

                        افيدسدب                      إزافية إةدلال افيدسدب  افيددزئاسدم ق  :( 3)بثدل

1

0

cos x
I dx

x
     

0x افيدسدب  بعد  ةل ه ا الح :   نج   افيدسدب  افيددزئ فحدسدم اق

  ن

 
1

1

2 1

0

0

1

0

cos
2 .( sin )

1

2

2cos1 2 2 sin

x x
I x x dx

x xdx

 
 

   
 
 

 





 

 غير بعد . وها تسدبلا
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إذا كدنت ن فيتة الاةتدلال ناخت  افيلفيتد  فننتر   تزق ت  ته  افيدسدبت          -4

إ  تسدب ين بد  ه  افيلفيد  إ  جزئين ةل  ن فية الاةدلال ث  افيدعدب  بع 

 ك  ن فية ة ى   ا:

     
c

c
f x dx f x dx f x dx

 

 
     

      , ( )
b c b

a a c
f x dx f x dx f x dx f c      

 ة ن   ه ي c  هث

 

                                            

 ة ى فتره غير مح ونهافيدسدبلاا  6-2-2

 وفهر تسان فتره افيدسدب  لا ن دئهة 

 

 :( 4)بثدل

20وضح كه  يمسن  ن تز   إةدلال افيدسدب   1

x

x

e
I dx

xe







 

)  ن دم ق افيدعا ضالح :  ) xx ln t t e       

 

0
1

2 20
1

1
( )

( ) 1 1 ( )

t dt
I dt

tln t t t ln t


 

       

                 و هث  ن
0

lim ( ) 0
t

t ln t


 

 فنن ه ا افيدسدب  غير بعد . 

 

  ن  سحد  اةدلال افيدسدب  افيددفيي ث  بين كه  يمسن  :( 5)بثدل

 إزافيد د
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 0 1

dx

x x




  

مح ون, وثدنهدا لأن افيدسدب  هلد بعد  في ححين:  ولاا لأن افيلفيد  غير الح : 

 الح  الأسف   ؤن  إ  افيلان د ة. بن افيدعم   افي دبا سال ن    افيدسدب 

1x لجزئين ةل   فلتم  ة ى 

     

1

0 0 11 1 1

dx dx dx

x x x x x x

 

 
  

    

  ا ضنلخ  افيدعلد حدر الح ون فننو لح  افيدسدب  نون اةد                            

2, 2x u dx udu    

 فيكون

 

1

2 20 0 1
2 2

1 11

dx du du

u ux x

 

 
 

    

 و  هث  ن افي افية افيعس هة في  افية السدب ة   الجزئين هي
1tan u

بعمفة  

 فننر  دضح  نر ع  تم إزافية الاةدلال.، 0,1and ةل 

 

افيلازق اسدم اب د في تمال ة ى ت م لخ  nوج  ة ن افيل دم أ :( 6)بثدل

 في دسدب  

1

0

sin x
dx

x 
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65 بدسدم اق عدة ه احر اللتمل ب عة 10  

 الح :

 هث  ن 
sin

( )
x

f x
x

   0غير بعهلة ةلx    و ا بعد ف  ا افيدسدب

 فيدتا  ر إ  تسدب  غير بعد  ن دم ق بد    ة ته ار:
 

3 5 7

sin .......
3! 5! 7!

x x x
x x        

2 4 6

3 5

sin
( ) 1 ....

3! 5! 7!

2 4 6
( ) .....

6 5! 7!

x x x x
f x

x

x x x
f x

     


    

 

2 4

2 4

1 4(3) 6(5)
( ) .....

3 1 2 3 4 5 1 2 3 4 5 6 7

1
.....

3 10 168

x x
f x

x x

     
         

    

0  و هث  ن 1x  
2 41

( ) .....
3 10 168

x x
f x       

0xفننر ةل        نج   ن 
1

(0) 0.3333
3

f    

1xوةل       نج   ن      

1 1 1
(1) .....

3 10 168
f         
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واضح  ن ه ا افي همة فين تدمفيى  
1

0.5
2

    إذن الح  الأعمى

 ل هدس الشد ة بن المتحة افيثدنهة ها

 
1

( )
2

f x   

 

               ت   م ا فيلوبدفيددفيي  سان 

2( )
( )

12

b a
R h f c


  

2 21

12 2 24

h h
   

 و هث  ن افي عة الفي ابة هي
65 10 

2
6 2 6 65 10 24(5) 10 120 10

24

h
h         

31.095 10h    

 و هث  ن
1 1

91.287
b a

h n
n n h


     

92n وبدفيددفيي يمسن إخدهدر  

 
 

 2-6تمدر ن

   ن  سحد  اةدلال افيدسدب  افيددفيي ث  بين كه  يمسن إزافيد د( 1) 
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(i)

 

4

2 31 2

dx

x 
                                    (ii) 

21

ln x
I dx

x



   

(iii) 
 

2
3

3

0
1

dx

x 
                                (iv)  

0
1 xx e dx

   

 ( ندعش إتمدل افي افية2)
3

2 3

2 3

1, 0 0.1

( ) 1.001 0.03( 0.1) 0.3( 0.1) 2( 0.1) 0.1 0.2

1.009 0.15( 0.2) 0.9( 0.2) 2( 0.2) 0.2 0.3

x x

f x x x x x

x x x x

   


        
        

 

 لإيجدن ت م لخ فيت طم  تي احر اللتمل و سمح انث  اسدم ق ك  بن 
0.3

0
( )f x dx .أوجد حداً للخطأ المتوقع في كل حالة 

 ن  ز   إةدلال  ربد    ة ته ا( وضح كه  يمسن لاسدم اق 3)

 افيدسدب 

/2 cos

0

xdx

x
dx



  

 .ث  ا  لخ عهمدر ة ن د

 
 

 

 

 

6.5 Multiple Integrals 
The techniques discussed in the previous sections can be 

modified in a straightforward manner for use in the 
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approximation of multiple integrals. Let us first consider 

The double integral 

 
where R is a rectangular region in the plane: 

 
for some constant and b, c, and d (see Figure ). We will 

employ the Composite Simpson's rule to illustrate the 

approximation technique. although any other approximation 

formula could be used without major modifications. 
 

 
 

Suppose that even integers n and m are chosen to determine 

the step sizes    h = (b -a)/n and k = (d - c)/m. We first write 

the double integral as an iterated integral. 
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and use the Composite Simpson's rule to approximate 

 
treating x as a constant. Let yj = c + jk for each j = 0,1,.. . 

.m. Then 

 
for some, μ in (c, d). Thus 

 
Composite Simpson's rule is now employed on each integral 

in this equation. Let 

xi =a + ih for each i =0,1,2.. ,n. Then for each j = 0,1,… ,m, 

we have 
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for some  in (a, b). The resulting approximation has the 

form 

 
 

The error term. E. is given by 
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If is continuous. the Intermediate Value Theorem 

and Mean Value Theorem for Integrals can be used to show 

that the error formula can be simplified to 

 

for some in R.If is also 

continuous, the Weighted Mean Value Theorem for 

Integrals implies that 

 

for some in R. Since m = (d - c)/k, the error term 

has the form 

 
or 
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Example:  

Evaluate the error when simpson' s rule is used to 

approximate the double integral  

 
With n=m=4 
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Numerical Integration  

 338 
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Numerical Integration  

 340 

 
 

EXAM PLE 1 The Composite Simpson's rule applied to 

approximate 

 
with n = 4 and m = 2 uses the step sizes h = 0.15 and k = 

0.25. The region of integration R is shown in Figure  

together with the nodes (xi, yj) far i = 0, 1,2,3,4 and j = 0, 

1,2, and the coefficients wi,j of f(xi,yi) = In(xi + 2yi) in the 

sum. 
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The approximation is 

 
Since 

 

 
the error is bounded by 
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The actual value of the integral to 10 decimal places is 

 
so the approximation is accurate to within 2.1 X 10-6. 

 

The same techniques can be applied for the approximation 

of triple integrals. as well as higher integrals for functions of 

more than three variables. The number of functional 

evaluations required for the approximation is the product of 

the number required when the method is applied to each 

variable. 

 

To reduce the number of functional evaluations. more 

efficient methods such as Gaussian quadrature, Romberg 

integration, or Adaptive quadrature can be incorporated in 

place of Simpson's formula. The following example 

illustrates the use of Gaussian quadrature for the integral 

considered in Example I. 

 

 

EXAM PLE 2 

Consider the double integral given in Example 1. Before 

employing a Gaussian quadrature technique to approximate 

this integral, we must transform the region of integration 

 
into 

 
The linear transformations that accomplish this are 
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Employing this change of variables gives an integral on 

which Gaussian quadrature can be applied: 

 
The Gaussian quadrature formula for n = 3 in both u and v 

requires that we use the nodes 

 
The associated weights are found in Table 4.3 (Section 4.5) 

to be C3.2 = 0.88 and c3.1 = c3.3 = 0.55,so 

 

 
Even though this result requires only 9 functional 

evaluations compared to 15 for 

the Composite Simpson's rule considered in Example I, the 

result is accurate to within 4.8 X 10-9, compared to an 

accuracy of only 2X10-6forSimpson's rule. 

 

The use of approximation methods for double integrals is 

not limited to integrals with rectangular regions of 

integration. The techniques previously discussed can be 

modified to approximate double integrals with variable 

inner limits-that is. integrals of the form  
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For this type of integral we begin as before by applying 

Simpson's Composite rule to integrate with respect to both 

variables. The step size for the variable x is h = (b - a)/2, but 

the step size k(x) for y varies with x (see Figure 4.16 on 

page 152): 

 
Consequently, 
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The program DINTGL44 applies the Composite Simpson's 

rule to a double integral in this form and is also appropriate. 

of course. when c(x) == c and d(x) == d. 

To apply Gaussian quadrarure to the double integral first 

requires transforming, for 

each x in [a,b1, the interval [c(x),d(x)] to [-1, t] and then 

applying Gaussian quadrature.    This results in the formula 
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where, as before, the roots  and coefficients  come 

from Table 4.6. Now the interval [a,b] is transformed to [-

1,1], and Gaussian quadrature is applied to approximate the 

integral on the right side of this equation. The program 

DGQINT45 uses this technique 

 
EXAMPLE 

Applying Simpson's double integral program DINTGL44 

with n = m = 10 to 

 

requires 121 evaluations of the function f(x,y) =  and 

produces the approximation 0.0333054, accurate to nearly 7 

decimal places, to the volume of the solid shown in Figure 

4.17. Applying the Gaussian quadrature program 

DGQINT45 with n = m. = .5  requires  only 25 function 

evaluations and gives the approximation, 0.3330556611. 

which IS accurate . . . . to 11 decimal places. 
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EXERCISE SET 4.7 

1. Use Composite Simpson’s rule for double integrals with n = m= 4 

to approximate the following double integrals. Compare the results to 

the exact answer 
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2- Find the smallest values for n = m so that Composite Simpson’s  

can be used to approximate the integrals in Exercise 1 to within 10-6 of 

the actual value. 
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[6] Find the smallest values for n = m so that Composite 

Simpson’s rule for double integrals can be used to 

approximate the integral 

  

to within 10-6 of the actual value. 

Answer 

  

Since n=m, so h=k,  

  

  

h=(b-a)/n=(1/2n) 

    n=4 


