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CHAPTER |

Complex Numbers
and Functions

One of the advantages of dealing with the real numbers instead of the
rational numbers is that certain equations which do not have any solu-
tions in the rational numbers have a solution in real numbers. For
instance, x* =2 is such an equation. However, we also know some
equations having no solution in real numbers, for instance x*= —1, or
x?= —2 We define a new kind of number where such equations have
solutions. The new kind of numbers will be called complex numbers.

I, §1. DEFINITION

The complex numbers are a set of objects which can be added and
multiplied, the sum and product of two complex numbers being also a
complex number, and satisfy the following conditions.

1. Every real number is a complex number, and if & f are real
numbers, then their sum and product as complex numbers are
the same as their sum and product as real numbers.

2. There is a complex number denoted by i such that i* = —1.

3. Every complex number can be written uniquely in the form a + bi
where a, b are real numbers.

4. The ordinary laws of arithmetic concerning addition and multipli-
cation are satisfied. We list these laws:

If &, B, y are complex numbers, then («f)y = a(fy), and

e+ P +y=a+(f+3)
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We have a(ff + y) = aff + ay, and (f + y)a = fo + yo.
We have aff = flo, and a+ fi = f +a.
If 1 is the real number one, then la = o
If 0 is the real number zero, then Ox = 0.
We have a + (— )ax = 0.
We shall now draw consequences of these properties. With each

complex number a + bi, we associate the point (a, b) in the plane. Let
& =ay +ayi and fi = b, + b,i be two complex numbers. Then

a4+ f=a, +b +(a;+ b)i

Hence addition of complex numbers is carried out “componentwise”.
For example, (2 + 3i) + (=1 + 5i) = 1 + 8i.

bi a+bi=la,b)
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Figure 1

In multiplying complex numbers, we use the rule i* = —1 to simplify
a product and to put it in the form a + bi. For instance, let o =2 + 3i
and f=1—i Then
aff = (2 + 3i) (1 — i) = 2(1 — i) + 3i(1 — i)
=2-2i+3 -3
=2+i-3(-1)
=2+3+i
=541

Let a=a-+bi be a complex number. We define & to be a — bi.
Thus if & =2 + 3i, then & =2 — 3i. The complex number & is called the
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conjugate of . We see at once that
aX = a® + b2,

With the vector interpretation of complex numbers, we see that o is the
square of the distance of the point (a, b) from the origin.

We now have one more important property of complex numbers,
which will allow us to divide by complex numbers other than 0.

If « = a + bi is a complex number # 0, and if we let

) &
A= ———s
a* + b?
then ad = Aot = L.

The proof of this property is an immediate consequence of the law of
multiplication of complex numbers, because

The number . above is called the inverse of «, and is denoted by a™* or

l/a. If o, B are complex numbers, we often write f/x instead of a™*f (or
Bx~'), just as we did with real numbers. We see that we can divide by
complex numbers # 0.

Example. To find the inverse of (1 + i) we note that the conjugate
of 1 +iis 1 —i and that (1 4+ i)(l —i)= 2. Hence

1—i

._1_"
(1+i)y" = 5

Theorem 1.1. Let «, f be complex numbers. Then

Rl

of =38, a+p=a+p, = i

Proof. The proofs follow immediately from the definitions of addition,

multiplication, and the complex conjugate. We leave them as exercises
(Exercises 3 and 4).

Let o = a + bi be a complex number, where a, b are real. We shall
call a the real part of %, and denote it by Re(xz). Thus

o + & = 2a = 2 Re(2).
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The real number b is called the imaginary part of o and denoted by
Im().

We define the absolute value of a complex number a = a, + ia; (where
a,, a, are real) to be

la] = JSa} + a3.

If we think of o as a point in the plane (a,, a,), then |a] is the length of
the line segment from the origin to «. In terms of the absolute value,
we can write

o &

T

provided & # 0. Indeed, we observe that |a|* = a&.

o2

Figure 2

If & = a, + ia;, we note that
lee] = Ja|
because (—a,)? = a}, so \/a] + a3 = /a? + (—a, ).

Theorem 1.2. The absolute value of a complex number satisfies the
following properties. If o, i are complex numbers, then

lep| = la]|Bl,
la + Bl = lal + 18],

Proof. We have

l«B|? = P = ol = 2| B2
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Taking the square root, we conclude that |a||f|= |eff|, thus proving
the first assertion. As for the second, we have

la+ P =(x + Ma+ B) = (a+ p)E+ )
=of + & +of + pf
= laf? + 2 Re(fa) + B
because «ff = fa. However, we have
2 Re(fim) < 2|pa
because the real part of a complex number is < its absolute value.

Hence
loc+ B < o + 2| | + | B2

= o + 21Bllel + (A1
= (lal + 18D

Taking the square root yields the second assertion of the theorem.

The inequality
Joe + 1 = lael + 181

is called the triangle inequality. It also applies to a sum of several terms.
If z,, ...,z, are complex numbers then we have

lzy 4+ + z,l S lz| + - + |zl

Also observe that for any complex number z, we have

|—z]=|z|.

Prool?

1, §1. EXERCISES

1. Express the following pl t in the form x + iy, where x, y are
real numbers.
(a) (—1+30)7 (b) (1+0(1-10)
() (1+Di2—i d) (i —1(2—1i)
(€) (74 mi){n + i) (N (20 + N)ni
(8 (J20)(r + 3i) (h) (i+ )i—20i+3)

2. Express the following pl k in the form x 4 iy, where x, y are

real numbers.
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1 24i 1
=1 prelilies d) ——
(@) (144 (b) T+ (c) 5—; (d) T
14+ i 2i 1
= ) —_ h) ———
B = O ® 3= ® o+
3. Let « be a complex number # 0. What is the absolute value of «/a? What

is &7
4. Let a, fi be two complex numbers. Show that aff = &f and that

atp=a+p

"

Justify the assertion made in the proof of Theorem 1.2, that the real part of a
complex number is £ its absolute value.

6. Il @ = a + ib with a, b real, then b is called the imaginary part of « and we
write b = Im(e). Show that & — & = 2i Im({z). Show that

Im(a) £ |Im(z)| < |a].

7. Find the real and imaginary parts of (1 + i)'%%

oo

. Prove that for any two complex numbers z, w we have:
(@) |zl = |z = w|+ |wl
(b) |zl —|wl = |z —wl
© lzl—Iwl=lz+wl

9 Leta=a+iband z=x +iy. Let ¢ be real >0. Transform the condition

lz—al=c¢

into an equation involving only x, y, a, b, and ¢, and describe in a simple

way what g ic figure is rep d by this
10. Describe geometrically the sets of points z satisfying the following conditions.
(@ lz—i+3=5 (b) lz—i+3>5
€ lz—i+3=5 (d |lz+2i51
(&) Imz=>0 M Imzz0
(g) Rez>0 (h) Rezz0

I, §2. POLAR FORM
Let (x,y)=x +iy be a complex number. We know that any point in
the plane can be represented by polar coordinates (r, #). We shall now
see how to write our complex number in terms of such polar coordinates.
Let 6 be a real number. We define the expression e to be
e =cos 0 + isin 6.

Thus " is a complex number.
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For example, if @ =n, then e™= —1. Also, ™ =1, and ¢™? =
Furthermore, ¢'®*2" = ¢* for any real 6.

re'? =x +iy

L y=rsin@

x=rcosf

Figure 3

Let x, y be rcal numbers and x + iy a complex number. Let
r= SR
1f (r, 8) are the polar coordinates of the point (x, y) in the plane, then
x=rcosl and y =rsin 8.
Hence

X + iy = rcos f + irsin § = re®,

The expression re’ is called the polar form of the complex number
x + iy. The number 6 is sometimes called the angle, or argument of z,
and we write
f=argz
The most important property of this polar form is given in Theo-
rem 2.1. It will allow us to have a very good geometric interpretation for
the product of two complex numbers.

Theorem 1. Let 6, ¢ be two real numbers. Then

et = gifipln,

Proof. By definition, we have

£i0+e = o040} — cas(f + ) + i sin(f + @)
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Using the addition formulas for sine and cosine, we see that the preced-
ing expression is equal to

cos @ cos @ — sin @ sin ¢ + i(sin 6 cos @ + sin @ cos 6).
This is exactly the same expression as the one we obtain by multiplying
= (cos 6 + i sin B)(cos ¢ + i sin @).
Our theorem is proved.
Theorem 2.1 justifies our notation, by showing that the exponential
of complex numbers satisfies the same formal rule as the exponential of

real numbers.
Let @ = a, + ia, be a complex number. We define ¢° to be

e"te™,
For instance, let & = 2 + 3i. Then e* = e%e?.
Theorem 2.2. Let o, f be complex numbers. Then

P = g%f.

Proof. Let a=a, + ia; and § = b, + ib;. Then
g™+ — play b Hilaytha) _ o0, +by gilay+by)

= ghighigimtity

Using Theorem 2.1, we see that this last expression is equal to
efighpinngibs — ooy plaggh, by

By definition, this is equal to e%e’, thereby proving our theorem.

Theorem 2.2 is very useful in dealing with complex numbers. We shall
now consider several examples to illustrate it.

Example 1. Find a complex number whose square is 4!/,
Let z = 2e™*. Using the rule for exponentials, we see that 22 = 4e'™?2,

Example 2. Let n be a positive integer. Find a complex number w
such that w" = ™2,
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It is clear that the complex number w = e™/?" satisfies our requirement.
In other words, we may express Theorem 2.2 as follows:

Let z; =re™ and z, =r;e" be two complex numbers. To find the
product z,z;, we multiply the absolute values and add the angles. Thus
+8;3)

zyz3=ryrze"™

In many cases, this way of visualizing the product of complex numbers

is more useful than that coming out of the definition.

Warning. We have not touched on the logarithm. As in calculus, we

want to say that & = w if and only if z=logw. Since e** =1 for all
integers k, it follows that the inverse function z = log w is defined only
up to the addition of an integer multiple of 2ni. We shall study the loga-
rithm more closely in Chapter I1, §3, Chapter I, §5, and Chapter 111, §6.

§2. EXERCISES

Put the following complex numbers in polar form.

@) 1+i (b) 1+iy/2 © -3 d) 4i
() 1-i/2 f) —5i (&) -7 )y —1—i
2. Put the following compl bers in the ordinary form x + iy.
(a) e (b) e ) 3e™* (d) me™i=
(e) es () 2 (g) g (h) g~ Sinfa
3. Let @ be a complex number # 0. Show that there are two distinct complex

F

w

numbers whose square is o

. Let a+bi be a 1! ber. Find real bers x, y such that

(x+iy)* =a+bi,

expressing x, y in terms of @ and b.

. Plot all the complex numbers z such that z" =1 on a sheet of graph paper,

forn=2 3,4, and 5.

6. Let a be a complex number #0. Let n be a positive integer. Show that

there are n distinct complex numbers z such that 2" = o Write these complex
numbers in polar form.

. Find the real and imaginary parts of %, taking the fourth root such that its

angle lics between 0 and n/2.

. {a) Describe all complex numbers z such that &* = L.

(b) Let w be a complex number. Let o be a complex number such that
¢* = w. Describe all complex numbers z such that e* = w.
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9. I e = ¢, show that there is an integer k such that z = w + 2nki,
10. (a) If @ is real, show that

e 4 g7 i e —e®
cosf]=——2—— and smG——h_—,

(b) For arbitrary complex z, suppose we define cos z and sin z by replacing
# with z in the above formula. Show that the only values of z for which
cos z = 0 and sin z = 0 are the usual real values from trigonometry.

11, Prove that for any complex number z # | we have

atl _ |

-4
I+ 244" =
z—1

12. Using the preceding exercise, and taking real parts, prove:

3 1
l+|:mzt3+|:uszﬁ-i----+|:u=m£a‘.—_%+im|:£.;;-l'£i
2 sin—
2
for 0 < 6 < 2n.

13. Let z, w be two complex numbers such that Zw # 1. Prove that

e 3
l_;v <1 if|z]<1and |w <1,
P

=] ilflzl=10r|w =1
o Iel= 1 or I

(There are many ways of doing this, One way is as follows. First check that
you may assume that z is real, say z=r. For the first inequality you are
reduced to proving

(r — wir — W) < (1 — rw)(1 — riw).

Expand both sides and make cancellations to simplify the problem.)

I, §3. COMPLEX VALUED FUNCTIONS

Let § be a set of complex numbers. An association which to each
element of 5 associates a complex number is called a complex valued
function, or a function for short. We denote such a function by symbols
like

[:8§=C.
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If z is an element of §, we write the association of the value f(z) to z by
the special arrow

zr fz).

We can write
[fiz) = u(z) + iv(z),

where u(z) and v(z) are real numbers, and thus
2+ ufz), z—u(z)
are real valued functions. We call u the real part of f, and v the imagi-

nary part of f.
We shall usually write

=x+iy
where x, y are real. Then the values of the function f can be wrilten in
the form
S(2) = f(x + iy) = ulx, y) + iv(x, y),
viewing u, v as functions of the two real variables x and y.
Example. For the function
J(z)=x%y + i sin(x + y),
we have the real part,
u(x, y) = x*,
and the imaginary part,
v(x, ¥) = sin(x + y).

Example. The most important examples of complex functions are the
power functions. Let n be a positive integer. Let

flz)=2z2"
Then in polar coordinates, we can write z = re®, and therefore
flz) = r"e™® = r"(cos nfl -+ i sin nf).

For this function, the real part is r"cosnf, and the imaginary part
is r" sin né.
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Let D be the closed disc of radius | centered at the eorigin in C. In
other words, D is the set of complex numbers z such that [z[ = 1. If z is
an clement of D, then z" is also an element of D, and so z~z" maps D
into itself. Let § be the sector of complex numbers re® such that

0=0 = 2a/n,

as shown on Fig. 4.

2mfn

Figure 4
The function of a real variable
resr"
maps the unit interval [0, 1] onto itsell. The [unction
@+ nb
maps the interval
[0, 2n/n] - [0, 2n].

In this way, we see that the function f(z) = z" maps the sector § onto the
full disc of all numbers

W= te",
with 0=t=<1 and 0= ¢ =2n. We may say that the power function

wraps the sector around the disc.
We could give a similar argument with other sectors of angle 2n/n
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as shown on Fig 5. Thus we see that z—=z" wraps the disc n times
around.

Inin

Figure 5

Given a complex number z = re', you should have done Exercise 6
of the preceding section, or at least thought about it. For future refer-
ence, we now give the answer explicitly,. We want to describe all com-
plex numbers w such that w" = z. Write

w=te',
Then
w'=1""" 0=t

If w" =z, then (" =r, and there is a unigue real number t = 0 such that
t" = r. On the other hand, we must also have

e = pf
which is equivalent with
ing = i@ + 2nik,
where k is some integer. Thus we can solve for ¢ and get

_0, ok
LA T

The numbers

W, = elfingZnikin k=0,1,....n—1
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are all distinct, and are drawn on Fig 6. These numbers w, may be
described pictorially as those points on the circle which are the vertices
of a regular polygon with n sides inscribed in the unit circle, with one
vertex being at the point e'*".

. wy -

w3 Wa-1

Figure 6

Each complex number

[+ = g2eikin

is called a root of umity, in fact, an n-th root of unily, because its n-th
power is 1, namely

lcl}u - e!xlhlﬂ =4 eltﬂ = l‘
The points w, are just the product of ¢'" with all the n-th roots of unity,
wy = 'k,

One of the major results of the theory of complex variables is to
reduce the study of certain functions, including most of the common
functions you can think of (like exponentials, logs, sine, cosine) to power
series, which can be approximated by polynomials. Thus the power func-
tion is in some sense the unique basic function out of which the others
are constructed. For this reason it was essential to get a good intuition
of the power function. We postpone discussing the geometric aspects
of the other functions to Chapters VII and VIII, except for some simple
exercises.
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|, §3. EXERCISES

I Let f(z) = 1fz. Describe what f does to the inside and outside of the unit
circle, and also what it does to points on the unit circle. This map is called
inversion through the unit circle,

2 Let f(z) = 1/Z. Describe f in the same manner as in Exercise 1. This map is
called reflection through the unit circle.

3. Let f(z)=e*. Describe the image under f of the set shaded in Fig. 7,
consisting of those points x + iy with =4 < x<}and y= B

Figure 7

4. Let f{z) = e*. Describe the image under [ of the following sets:
(3) Thesetofz=x+iysuchthatx<land0Sy=<n
(b) The set of z = x + iy such that 0 £ y < n (no condition on x).

I, §4. LIMITS AND COMPACT SETS

Let o be a complex number. By the open disc of radius r > 0 centered
at o we mean the set of complex numbers z such that

lz—a|<r

For the closed disc, we use the condition |z — &| = r instead. We shall
deal only with the open disc unless otherwise specified, and thus speak
simply of the disc, denoted by Dfe, r). The closed disc is denoted by
D(a, r).

(ml'.el) U be a subset of the complex plane. We say that U is open if for
every point a in U there is a disc D{a, r) centered at o, and of some
radius r >0 such that this disc D(e, r) is contained in U. We have
illustrated an open set in Fig. 8
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Figure §

Note that the radius r of the disc depends on the point . As « comes
closer to the boundary of U, the radius of the disc will be smaller.

Examples of Open Sets. The first quadrant, consisting of all numbers
z=2x+ iy with x > 0 and y > 0 is open, and drawn on Fig. 9(a).

i

Open Closed first  ©
first quadrant r quadrant .
i - i

»

() (b)

Figure 9

On the other hand, the set consisting of the first quadrant and the
vertical and horizontal axes as on Fig. 9(b) is not open.
The upper half plane by definition is the set of complex numbers

z=x+1iy

with y > 0, It is an open set.

Let S be a subset of the plane. A boundary point of § is a point «
such that every disc D(e r) centered at o and of radius r > 0 contains
both points of § and points not in S. In the closed first quadrant of Fig.
9(b), the points on the x-axis with x = 0 and on the y-axis with y = 0 are
boundary points of the quadrant.

A point & is said to be adherent to S if every disc D(e, r) with r >0
contains some element of S. A point « is said to be an interior point of §
if there exists a disc D(e, r) which is contained in §. Thus an adherent
point can be a boundary point or an interior point of §. A set is called
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closed if it contains all its boundary points. The complement of a closed
set is then open. A

The closure of a set § is defined to be the union of § and all its
boundary points. We denote the closure by §.

A set S is said to be bounded if there exists a number € > 0 such that

lzZl=C for all z in .

For instance, the set in Fig. 10 is bounded. The first quadrant is not
bounded.

Figure 10

The upper half plane is not bounded. The condition for boundedness
means that the set is contained in the closed disc of radius C, as shown
on Fig. 10.
Let f be a function on §, and let & be an adherent point of §. Let
w be a complex number. We say that
w = lim f{z)

ze§

if the following condition is satisfied. Given € > 0 there exists > 0 such
that if ze § and |z — | < 4, then

1f(z) = w| <e
We usually omit the symbols z € S under the limit sign, and write merely

lim f(z).

In some applications « € § and in some applications, « ¢ S.
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Let « € S. We say that [ is continuous at « if
lim f{z) = f(a).

These definitions are completely analogous to those which you should
have had in some analysis or advanced calculus course, so we don’t
spend much time on them. As usual, we have the rules for limits of
sums, products, quotients as in calculus.
If {z,} (n=1,2,...) is a sequence of complex numbers, then we say
that
w= lim z,

A=m
if the following condition is satisfied:
Given € > 0 there exists an integer N such that if n = N, then

lz. —w| <€

Let § be the set of fractions I/m, with n=1,2,.... Let f(l/n)=z,.
Then

limz,=w if and only if lim f{z) = w.
Ll =—0
ze§

Thus basic properties of limits for n — oo are reduced to similar proper-
ties for functions. Note that in this case, the number 0 is not an element
of §.

A sequence {z,} is said to be a Cauchy sequence if, given €, there exists
N such that if m, n 2 N, then

|z, — 2zl < €
Write
z, =X, + iy,.
Since
120 = 2l = /(%0 = Xp)* + (Vu — Y.
and

X = Xul Slza—2zmb  |Ya— al Sz, — 2.l

we conclude that {z,} is Cauchy if and only if the sequences {x,} and
{y.} of real and imaginary parts are also Cauchy. Since we know that
real Cauchy sequences converge (i.e. have limits), we conclude that com-
plex Cauchy sequences also converge.

We note that all the usual theorems about limits hold for complex
numbers: Limits of sums, limits of products, limits of quotients, limits
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of composite functions. The proofs which you had in advanced calculus
hold without change in the present context. It is then usually easy to
compute limits.

Example. Find the limit

- nz
lim
nem | + nz

for any complex number z.
If z=0, it is clear that the limit is 0. Suppose z#0. Then the
quotient whose limit we are supposed to find can be written

nz oz
14nz

1
-4z
n

tm (5 +2) ==

Hence the limit of the quotient is zfz = 1.

But

Compact Sets

We shall now go through the basic results concerning compact sets. Let
S be a set of complex numbers. Let {z,} be a sequence in S. By a point
of accumulation of {z,} we mean a complex number v such that given €
(always assumed > 0) there exist infinitely many integers n such that

lg,— vl <e

We may say that given an open set U containing v, there exist infinitely
many n such that z € U.

Similarly we define the notion of point of accumulation of an infinite
set §. It is a complex number v such that given an open set U contain-
ing v, there exist infinitely many elements of § lying in U. In particular,
a point of accumulation of § is adherent to §.

We assume that the reader is acquainted with the Weierstrass—Bolzano
theorem about sets of real numbers: If § is an infinite bounded set of real
numbers, then § has a point of accumulation.

We define a set of complex numbers § to be compact if every
of elements of § has a point of accumulation in §. This property is
equivalent to the following properties, which could be taken as alternate
definitions:

(a) Every infinite subset of S has a point of accumulation in S.
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(b) Every sequence of elements of § has a convergent subsequence
whose limit is in S.
We leave the proof of the equivalence between the three possible
definitions to the reader.

Theorem 4.1. A set of complex numbers is compact if and only if it is
closed and bounded.

Proof. Assume that § is compact. If § is not bounded, for each posi-
tive integer n there exists z, € S such that

|2.] = n.

Then the sequence {z,} does not have a point of accumulation. Indeed,
if vis a point of accumulation, pick m > 2|v|, and note that |v] > 0.
Then

|2 — vl 2 |2,] = |v] Z n — |0} > |v).

This contradicts the fact that for infinitely many m we must have z,, close
to v. Hence S is bounded., To show S is closed, let v be in its closure.
Given n, there exists z, € § such that

|z, —v] < I/n.

The sequence {z.} converges to v, and has a subsequence converging to
a limit in § because § is assumed compact. This limit must be v, whence
ve S and § is closed.

Conversely, assume that § is closed and bounded, and let B be a
bound, so |z| £ B for all z € S. I we write

z=x+1y,
then |x| < B and |y| = B. Let {z,} be a sequence in S, and write
2, =X, + iy,
There is a subsequence {z, } such that {x, } converges to a real number

a, and there is a sub-subsequence {z, } such that (y, } converges to a
real number b. Then

(20 = X0y +i00,}
converges to a + ib, and § is compact. This proves the theorem.

Theorem 4.2, Let S be a compact set and let S, 28, > be a
sequence of non-empty closed subsets such that S,>8,,,. Then the
intersection of all S, for all n= 1, 2, ... is not empty.
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_ Proof. Let z,€5,. The sequence {z,} has a point of accumulation
in §. Call it . Then v is also a point of accumulation for each sub-
sequence {z,} with k 2 n, and hence lies in the closure of S, for each n,
But §, is assumed closed, and hence ve S, for all n. This proves the
theorem,

Theorem 4.3. Let § be a compact set of complex numbers, and let f be
a continuous function on S. Then the image of [ is compact.

Proof. Let {w,} be a sequence in the image of f, so that
w, = fiz,) for z,e8.

The sequence {z,} has a convergent subsequence {z, }, with a limit v in
5. Since f is continuous, we have

lim w, = lim f(z, ) = f(v).
ke k=w
Hence the given sequence {w,} has a subsequence which converges in
S(S). This proves that f(S) is compact.
Theorem 4.4. Let S be a compact set of complex numbers, and let
f:8=R

be a continuous function. Then f has a maximum on S, that is, there
exists v e § such that f(z) = f(v) for all z € §.

Proof. By Theorem 4.3, we know that f(S) is closed and bounded.
Let b be its least upper bound. Then b is adherent to f(S), whence in
f(S) because f(S) is closed. So there is some ve S such that f(v)=b.
This proves the theorem.

Remarks. In practice, one deals with a continuous function f:§ - C
and one applies Theorem 4.4 to the absolute value of f, which is also
continuous (composite of two continuous functions).

Theorem 4.5. Let § be a compact set, and let f be a continuous
Sunction on S. Then f is uniformly continuous, i.e. given € there exists &
such that whenever z, we § and |z — w| < &, then |f(z) — fiw)l <€

Proof. Suppose the assertion of the theorem is false. Then there exists
€, and for each n there exists a pair of elements z,, w, € § such that

lz, —w|<l/im  but  |flz,) — flw,)l > e
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There is an infinite subset J, of positive integers and some ve S such
that z, » v for n — co and n € J,. There is an infinite subset J; of J; and
ueS such that w, —u for n— oo and neJ;,. Then, taking the limit for
n— oo and n €.J; we obtain Ju — v| = 0 and u = v because

lv—ul = lo—z,] + |2, — wol + |w, — ul-
Hence f(v) — flu) = 0. Furthermore,

1f(z,) = fiw )] £ 1f(z,) = fl)] + 1 f(v) = F@)] + [f{w) = S(w,)]-
Again taking the limit as n — oo and n € J;, we conclude that
Sza) — flw,)
approaches 0. This contradicts the assumption that
1fz.) = flw,)] > €
and proves the theorem.

Let 4, B be two sets of complex numbers. By the distance between
them, denoted by d(A, B), we mean

d(A, B) = glb.|lz — w|,
where the greatest lower bound g.lb. is taken over all elements z € A and
we B. Il B consists of one point, we also write d(A, w) instead of d(4, B).

We shall leave the next two results as easy exercises.

Theorem 4.6. Let S be a closed set of complex numbers, and let v be a
complex number. There exisis a point w e § such that

d(S, v) = |w— v

[Hint: Let E be a closed disc of some suitable radius, centered at v,
and consider the function z—|z —v| for ze SN E.]

Theorem 4.7. Let K be a compact set of complex numbers, and let § be
a closed set. There exist elements z, € K and wy € § such that

d(K, 8) = |z — wg.

[Hint: Consider the function z+—d(S, z) for ze K.]
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Thgorem 48. Let S be compact. Let r be a real number > 0. There
exists a finite number of open discs of radius r whose union contains S.

Proof. Suppose this is false. Let z, €S and let D, be the open disc of
radius r centered at z,. Then D, does not contain §, and there is some
3€S8, z; #2,. Proceeding inductively, suppose we have found open
discs Dy, ..., D, of radius r centered at points Zy, -.-,2,, Tespectively, such
that z,,, does not lie in D, U-:-u D,. We can then find z,,, which does
not lie in Dy u---uD,, and we let D,,, be the disc of radius r centered
at z,4,. Let v be a point of accumulation of the sequence {z,}. By
definition, there exist positive integers m, k with k > m such that

|z, —v] <r/2 and |2 — 0] < rf2.

Then |z, — z,,| < r and this contradicts the property of our sequence {z,}
because z, lies in the disc D,,. This proves the theorem.

Let § be a set of complex numbers, and let [ be some set. Supposr.
that for each i€ we are given an open set U;. We denote this associa-
tion by {U;};.;, and call it a family of open sets. The union of the family
is the set U consisting of all z such that z e U, for some iel. We say
that the family covers S if § is contained in this union, that is, every z€ §
is contained in some U;. We then say that the family {U,},., is an open
covering of S. If J is a subset of I, we call the family {Uj}jes 2 subfamily,
and if it covers § also, we call it a subcovering of 5. In particular, if

Uy, -y,

is a finite number of the open sets U;, we say that it is a finite subcover-
ing of 5 il 5 is contained in the finite union

Uy, ur - u .

Theorem 4.9. Let S be a compact set, and let {U};,, be an open
covering of 8. Then there exists a finite subcovering, that is, a finite
number of open sets U, , ...,U; whose union covers 5.

Proof. By Theorem 4.8, for each n there exists a finite number of open
discs of radius 1/n which cover S. Suppose that there is no finite sub-
covering of 5§ by open sets U;. Then for each n there exists one of the
open discs D, from the preceding finite number such that D, ~ S is not
covered by any finite number of open sets U;. Let z,e D, 8, and let w
be a point of lation of the sequence {z,}. For some index i, we
have w e Uy,. By definition, U;, contains an open disc D of radius r >0
centered at w. Let N be so large that 2/N < r. There exists n > N such
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that
|z, — w| = I/N.

Any point of D, is then at a distance <2/N from w, and hence D, is
contained in D, and thus contained in U,. This contradicts the hypothe-
sis made on D,, and proves the theorem.

I, §4. EXERCISES

I. Let & be a complex number of absolute value < 1. What is lim «"? Proof?
2 If |e| > 1, does lim " exist? Why?

Ll
3. Show that for any complex number z # 1, we have
L3 .
Lbzdodomal L

Il |z| < 1, show that

1
lim [l+z+"'+x'l=i-—,

Y

. Let [ be the function defined by

" |
fa= T

Show that f is the characteristic function of the set {0}, that is, f(0)= I, and
fz3=0ifz #0.

. For |z| # 1 show that the following limit exists:

v f =11
fer= ,E.r: (:" + l)‘

1s it possible to define f(z) when |z] = | in such a way to make f continuous?
6. Let

w

y f
i e

(a) What is the domain of definition of f, that is, for which compiex numbers
= does the limit exist?
(b) Give explicitly the values of f{z) for the various z in the domain of f.

=3

. Show that the series
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converges to 1/{1 —z)* for |z] <1 and to 1/z(1 —z)? for |z] > 1. Prove that
the convergence is uniform for |2] £ ¢ <1 in the first case, and |z| = b> 1 in
the second. [Hinr: Multiply and divide each term by | — =, and do a partial
fraction decomposition, getting a telescoping effect.]

I, §5. COMPLEX DIFFERENTIABILITY

In studying differentiable functions of a real variable, we took such func-
tions defined on intervals. For complex variables, we have to select
domains of definition in an analogous manner.

Let U be an open set, and let z be a point of U. Let f be a function
on U. We say that f is complex differentiable at z if the limit

i 22+ 1) 1)

h=0

exists. This limit is denoted by f'(z) or df/dz.

In this section, differentiable will always mean complex differentiable.

The usual proofs of a first course in calculus concerning basic proper-
ties of differentiability are valid for complex differentiability. We shall
run through them again.

We note that if f is differentiable at z then f is continuous at z
because

lim (f(z + h) — fi2)) = lim ZEH B = SC),
=0 h=0 h

and since the limit of a product is the product of the limits, the limit on
the right-hand side is equal to 0.
We let f, g be functions defined on the open set U. We assume that
[, g are differentiable at z,
Sum. The sum f + g is differentiable at z, and
(f+ar@) =[f"2) +g'lz)

Proof. This is immediate from the theorem that the limit of a sum is
the sum of the limits.

Product. The product fg is differentiable at z, and

(faY(2) = f'(z)g(z) + f(2)g'(z).
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Progf. To determine the limit of the Newton quotient

Sz + h)glz + h) — f(z)g(2)
h

we write the numerator in the form

Sz + hglz + b)Y — f(2)g(z + h) + f(2)g(z + k) — [(z)g(2).

Then the Newton quotient is equal to a sum

wg& +h)+ f{z]g

g+ h — 9@
L

Taking the limits yields the formula.
Quotient. If g(z) # 0, then the quotient f/g is differentiable ar z, and

g(2)f'(z) — f(2)g'(2)
L e 0 L

(flaY(z) = 96

Proof. This is again proved as in ordinary calculus. We first prove
the differentiability of the quotient function 1/g. We have

1 1
gz +h)  gl@) _ _gz+h—gl2) 1
h h gz + hglz)

Taking the limit yields
|
———g'(zh
g ?
which is the usual value. The general formula for a quotient is obtained

from this by writing

fla=r-Vg,

and using the rules for the derivative of a product, and the derivative of
1/g.

Examples. As in ordinary calculus, from the formula for a product
and induction, we see that for any positive integer n,

dz"

I = ",
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The rule for a quotient also shows that this formula remains valid when
n is a negative integer.
The derivative of z%/(2z — 1) is

(22— 1)2z — 22
2z -1

This formula is valid for any complex number z such that 2z — 1 # 0.
More generally, let

J(2) = P(z)/Q(z2),

where P, Q are polynomials. Then f is differentiable at any point z
where Q(z) # 0.

Last comes the chain rule. Let U, V be open sets in C, and let
frUu=V and gV-C

be functions, such that the image of f is contained in V. Then we can
form the composite function g o f such that

(g )2)=g(f(z).

Chain Rule. Let w= f{z). Assume that [ is differentiable at z, and g is
differentiable at w. Then g o [ is differentiable at z, and

(g f)(2)=g'(f(2)f (2}
Progf. Again the proof is the same as in calculus, and depends on
expressing differentiability by an equivalent property not involving de-
nominators, as follows.

Suppose that f is differentiable at z, and let

o(h) (.

_fz+h—Jz)
- h

Then
(1) Sz + by = flz) = ["(2)h + ho(h),
and

2) lim @(h) = 0.
h=0
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Furthermore, even though ¢ is at first defined only for sufficiently small
h and h # 0, we may also define (0) =0, and formula (1) remains valid
for h=0

Conversely, suppose that there exists a function ¢ defined for suffi-
ciently small h and a number a such that

() [z + h) = f(z) = ah + hep(h)
and
2) Pn: @(h)=0.

Dividing by h in formula (1') and taking the limit as h— 0, we see that
the limit exists and is equal to a. Thus f'(z) exists and is equal to a.
Hence the existence of a function ¢ satisfying (1'), (2) is equivalent to
differentiability.
We apply this to a proof of the chain rule. Let w = f{(z), and
k= fiz + k) — f(2),
so that

a(fz + W) — g(f(2)) = gtw + k) — g(w).
There exists a function (k) such that lim (k) = 0 and
glw + k) — g(w) = g'(whk + ks (k)
= g'W Sz + b= f(2)) + (/z + B) = [k,
Dividing by h yields

] hy—ge
goflz+ .r: 9°0@ _ o

+ h) — -
W) flz ; f(z)+ flz +f;') f(Z}Mk}_
As h =0, we note that k— 0 also by the continuity of f, whence (k) — 0
by assumption. Taking the limit of this last expression as h — 0 proves
the chain rule.

A function f defined on an open set U is said to be differentiable if it
is differentiable at every point. We then also say that f is holomorphic
on U. The word holomorphic is usually used in order not to have to
specify complex differentiability as distinguished from real differentiability.
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In line with general terminology, a holomorphic function
fiU=V

from an open set into another is called a holomorphic isomorphism if
there exists a holomorphic function

g:V=U
such that g is the inverse of f, that is,
gef=idy and feg=id,.

A holomorphic isomorphism of U with itself is called a holomorphic
automorphism. In the next chapter we discuss this notion in connection
with functions defined by power series.

I, §6. THE CAUCHY-RIEMANN EQUATIONS

Let f be a function on an open set U, and write f in terms of its real
and imaginary parts,

Slx + iy) = ulx, y) + iv(x, y).

It is reasonable to ask what the condition of differentiability means in
terms of u and v. We shall analyze this situation in detail in Chapter
VII1, but both for the sake of tradition, and because there is some need
psychologically to see right away what the answer is, we derive the
equivalent conditions on u, v for f to be holomorphic.
At a fixed z, let ['(z) = a + bi. Let w=h + ik, with h, k real. Suppose
that :
Sz +w) = f(z) = (2w + a(w)w,

where

lim afw) = 0.

w0
Then

['(z)w = (a + bi)(h + ki) = ah — bk + i(bh + ak).

On the other hand, let

F:U—R?
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be the map (often called vector field) such that
Fix, y) = (ulx, ), v(x, ).
We call F the (real) vector field associated with £ Then
F(x+ h, y + k) — F(x, y) = (ah — bk, bh + ak) + o, (h, k}h + a3(h, k)k,

where @, (h, k), a3(h, k) are functions tending to 0 as (h,k) tends to 0.
Hence if we assume that f is holomorphic, we conclude that F is differ-
entiable in the sense of real variables, and that its derivative is repre-
sented by the (Jacobian) matrix

du du

a —b ox dy
Jolx, ) = e
) (b “) dv v

ox dy
This shows that

and

du A fu i)

=5 an o

These are called the Cauchy—Riemann equations.

Conversely, let u(x,y) and v(x,)) be two functions satislying the
Cauchy-Riemann equations, and continuously differentiable in the sense
of real functions. Define

J2) =[x + iy) = ux, y) + iv(x, y).
Then it is immediately verified by reversing the above steps that f is

complex-differentiable, i.e. holomorphic.
The Jacobian determinant Ay of the associated vector field F is

au\?  fau\t fau\? fau\?
w3+ () -G + G)
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Hence A; = 0, and is #0 if and only if f'(z) # 0. We have

Apx ) =111

We now drop these considerations until Chapter VIIL

The study of the real part of a holomorphic function and its relation
with the function itself will be carried out more substantially in Chapter
VIIL It is important, and much of that chapter depends only on el
tary facts. However, the most important part of complex analysis at the
present level lies in the power series aspects and the immediate applica-
tions of Cauchy’s theorem. The real part plays no role in these matters.
Thus we do not wish to interrupt the straightforward flow of the book
now towards these topics.

However, the reader may read immediately the more elementary parts
§1 and §2 of Chapter VIII, which can be understood already at this
point.

I, §6. EXERCISE
I. Prove in detail that if u, v satisfy the Cauchy—Riemann equations, then the

function
J2) = fix + iy) = ulx, y) + iv{x, y)

is holomorphic.

I, §7. ANGLES UNDER HOLOMORPHIC MAPS
In this section, we give a simple geometric property of holomorphic
maps. Roughly speaking, they preserve angles. We make this precise as
follows.
Let U be an open set in C and let
y:[a, b] = U
be a curve in U, so we write
() = x(e) + iy(r).

We assume that y is differentiable, so its derivative is given by

V() = x'(1) + iy'(e)-
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Let f: U — C be holomorphic. We let the reader verify the chain rule

& 160) = bow o

We interpret y'(f) as a vector in the direction of a tangent vector at the
point y(t). This derivative y'(t), if not 0, defines the direction of the curve
at the point.
YD) Hb)
10
la)
Figure 11

Consider two curves y and n passing through the same point z,. Say

2o = ¥(to) = ni1,).

Then the tangent vectors y'(ty) and n'(t,) determine an angle 8 which is
defined to be the angle between the curves.

Figure 12

Applying f, the curves foy and fen pass through the point f{z,), and
by the chain rule, tangent vectors of these image curves are

S (za)y'(te) and [z’ (ey)

Theorem 7.1. If ['(zo) # O then the angle between the curves y, n at z,
is the same as the angle between the curves fey, fon at flzo)

Proof, Geometrically speaking, the tangent vectors under [ are
changed by multiplication with f’(z), which can be represented in polar
coordinates as a dilation and a rotation, so preserves the angles.
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We shall now give a more formal argument, dealing with the cosine
and sine of angles.

Let z, w be complex numbers,

z=a+bi and w=c+di,
where a, b, ¢, d are real. Then
2W = ac + bd + i(bc — ad).
. Define the scalar product

(n {z, w) = Re(zw).

'_'l‘hen {z, w) is the ordinary scalar product of the vectors (a, b) and (c, d)
in R%. Let f(z, w) be the angle between z and w. Then ¥

{zw)

(2) W)= .
cos f(z, w) Teliwl

Since sin f = ccs(& - ;). we can define

(3) sin O(z, w) = M
Izflwl

This gives us the desired precise formulas for the cosine and sine of an
angle, which determine the angle.
Let f'(zg) =& Then

(4) {oz, aw)d = Re(uzEW) = oF Re(z@) = |a|*{z, w)

because oF = |a|” is real. It follows immediately from the above formulas
that

(5) cos B(az, aw) = cos Bz, w) and sin B{eez, aw) = sin 8z, w).
This proves the theorem.

A map which preserves angles is called conformal. Thus we can say
that a holomorphic map with non-zero derivative is conformal. The
complex conjugate of a holomorphic map also preserves angles, if we
disregard the orientation of an angle.

In Chapter VII, we shall consider holomorphic maps which have in-
verse holomorphic maps, and therefore such that their derivatives are
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never equal to 0. The theorem proved in this section gives additional
geometric information concerning the nature of such maps But the em-
phasis of the theorem in this section is local, whereas the emphasis in
Chapter VII will be global. The word “conformal”, however, has become
a code word for this kind of map, even in the global case, which explains
the title of Chapter VII. The reader will notice that the local property of
preserving angles is irrelevant for the global arguments given in Chapter
VI, having to do with inverse mappings. Thus in Chapter VII, we shall
use a terminology which emphasizes the invertibility, namely the termi-
nology of isomorphisms and automorphisms.

In this terminology, we can say that a holomorphic isomorphism is
conformal. The converse is false in general. For instance, let U be the
open set obtained by deleting the origin from the complex numbers.
The function

S:U—=U  givenby zms2°
has everywhere non-zero derivative in U, but it does not admit an in-

verse function. This function f is definitely conformal. The invertibility
is true locally, however. See Theorem 5.1 of Chapter 11,



CHAPTER I

Power Series

So far, we have given only rational functions as examples of holomorphic

functions. We shall study other ways of defining such functions. One

of the principal ways will be by means of power series. Thus we shall see
that the series

2.2

1+z+ 5 + 3

Hozee
converges for all z to define a function which is equal to e*. Similarly,
we shall extend the values of sinz and cosz by their usual series to
complex valued functions of a complex variable, and we shall see that
they have similar properties to the functions of a real variable which you
already know.

First we shall learn to manipulate power series formally. In elemen-
tary calculus courses, we derived Taylor's formula with an error term.
Here we are concerned with the full power series. In a way, we pick up
where calculus left off, We study systematically sums, products, inverses,
and composition of power series, and then relate the formal operations
with questions of convergence.

Il, §1. FORMAL POWER SERIES

We select at first a neutral letter, say T. In writing a formal power series

Y aT " =ag+a,T+aT 4
n=0

a7
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what is essential are its “coefficients” a,, a,, a;, ... which we shall take
as complex numbers. Thus the above series may be defined as the func-
tion

n—a,

from the integers = 0 to the complex numbers.
We could use other letters besides T, writing

/(1) =Y a,T",
Jf(r] = znlr“i
flz)= Eanz.'

In such notation, [ does not denote a function, but a formal expression.
Also, as a matter of notation, we write a single term

a,T"

to denote the power series such that a, =0 if k # n. For instance, we
would write
5T3

for the power series
04 0T +0T% 4 5T + 0T* 4 -,
such that @, = 5 and a, = 0 if k # 3.

By definition, we call a;, the constant term of f.
Ir

f=%a,T" and g=YbT"
are such formal power series, we define their sum to be
f+8=%cT" where ¢, =a, +b,.

We define their product to be

=

fo=%d,T", where d, =Y ab,

n=k*
k=0

The sum and product are therefore defined just as for polynomials. The
first few terms of the product can be written as

Ja=agho + (aohy +a,bo)T + (agh, + a, b, + ayby)T? +---.



(11, §1] FORMAL POWER SERIES 39

If a is a complex number, we define
of =} (ea,)T"
to be the power series whose n-th coefficient is «a,. Thus we can multi-
ply power series by numbers.

Just as for polynomials, one verifies that the sum and product are
associative, commutative, and distributive, Thus in particular, if f, g, h
are power serics, then

flg + )= fg+ fh (distributivity).
We omit the proof, which is just elementary algebra.

The zero power series is the series such that a, =0 for all integers
nz0.

Suppose a power series is of the form

f=aT +a,T""+ -,

and a, # 0. Thus r is the smallest integer n such that a, #£ 0. Then we
call r the order of f, and write

r =ord f.
If ord g = 5, so that
9= bT 4 by, T 4+,
and b, 3 0, then by definition,
fg =a,b,T™* + higher terms,

and a,b, # 0. Hence

ord fg = ord f + ord g.

A power series has order 0 if and only if it starts with a non-zero
constant term. For instance, the geometric series

4+ T+ T2+ T4

has order 0.
Let f=Ya,T" be a power series. We say that g=3 b, T" is an



40 POWER SERIES [11, §1]

inverse for [ if
fo=1

In view of the relation for orders which we just mentioned, we note that
if an inverse exists, then we must have

od f=ord g=0.

In other words, both f and g start with non-zero constant terms. The
converse is true:

If [ has a non-zero constant term, then f has an inverse as a power
series.

Proof. Considering ag'f instead of f, we are reduced to the case

when the constant term is equal to 1. We first note that the old geo-
metric series gives us a formal inverse,

=l4r+riq-.

l—r
Written multiplicatively, this amounts to

(l=nl+r+r+-)=ldrtrddomr(lfr4+r4-)
=ldrdrig—r—pi—-
=1
Next, write

f=1—h where h=—(a,T+a,T?+ ).
To find the inverse (1 — k)™ is now easy, namely it is the power series
=) @=1+h+h 404,
We have to verily that this makes sense. Any finite sum
T h+h? e ™

makes sense because we have defined sums and products of power series.
Observe that the order of h" is at least n, because h" is of the form

(—1)"a} T" + higher terms.
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Thus in the above sum (), if m > n, then the term h™ has all coefficients
of order < n equal to 0. Thus we may define the n-th coefficient of ¢ to
be the n-th coefficient of the finite sum

L+h+h?4og hn

It is then easy to verify that

(I=Me=(0—-h(l+h+h+h+)
is equal to

| + a power series of arbitrarily high order,

and consequently is equal to 1. Hence we have found the desired inverse
for f.

Example. Let
T* T*

cos'r=l—ﬁ+ﬁ—- ¥

be the formal power series whose coefficients are the same as for the
Taylor expansion of the ordinary cosine function in elementary calculus.
We want to write down the first few terms of its (formal) inverse,
1
cos T’
Up to terms of order 4, these will be the same as
e T’_T_‘+‘__
T2 T* — 2 At
G T
Tl T‘ i
+(-2_!_E+...) +...

Ti T‘ T‘
=1 e e s 48 e e
R TRY 2

1 -1 1 .
F ol i ac]lTe X
_1+2T +(24 +4)T + higher terms.

This gives us the coefficients of 1/cos T up to order 4.
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The substitution of h in the geometric series used to find an inverse
can be generalized. Let

[=YaT"
be a power series, and let
WT)=¢e,T 4

be a power series whose constant term is 0, so ord h = 1. Then we may
“substitute” h in [ to define a power series f e h or f(h), by

(fohNT) = f(MT) = foh=ay+ah+ ayh® +a;h* + -
in a natural way. Indeed, the finite sums
ag+ ah+ -+ ah"

are defined by the ordinary sum and product of power series. If m > n,
then a, h™ has order > n; in other words, it is a power series starting
with non-zero terms of order > n. Consequently we can define the
power series f o h as that series whose n-th coefficient is the n-th coefficient
of

ag+ ah+ -+ ah"

This composition of power series, like addition and multiplication,
can therefore be computed by working only with poelynomials. In fact,
it is useful to discuss this approximation by polynomials a little more
systematically.

We say that two power series f =3 a,T" and g= ¥ b,T" are con-
gruent mod TV and write f = g (mod T") if

a,=b, for n=0,....N - L
This means that the terms of order = N — 1 coincide for the two power
series. Given the power series f, there is a unique polynomial P(T) of
degree = N — | such that
ATy=P(T) (mod T"),
namely the polynomial

P(T)=ag+a, T+ +ay, T*1,
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If f = [, and g, = g, (mod T™), then
fitogi=f+9, and  fig,=fg, (mod T).
If hy, hy are power series with zero constant term, and

hy=h; (mod T),
then
L (D) = f3(h(T))  (mod T).
Proof. We leave the sum and product to the reader. Let us look
at the proof for the composition f,oh, and f;oh,. First suppose h

has zero constant term. Let P, P, be the polynomials of degree N — |
such that

fi=P  and f,=P, (mod T").
Then by hypothesis, P, = P, = P is the same polynomial, and
Sl = Ry = Py(h) = f(h) (mod T*).
Next let Q be the polynomial of degree N — 1 such that
hy(T) = hy(T) = Q(T) (mod T").
Write P=ag +a, T+ -+ ay_, T""'. Then

Phy) = ag + ayhy + - + ay_ hi ™!
=ag+a,Q+ +ay,Q0""
=ag+ah;+ -+ ay b
= P(h;) (mod T™)
This proves the desired property, that f; e h, = f; o h, (mod T%).

With these rules we can compute the coefficients of various operations
between power series by reducing the computations to polynomial opera-
tions, which amount to high-school algebra. Indeed, two power series
[, g are equal if and only if

f=g (mod T")

for every positive integer N. Verifying that f=g (mod T") can be
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done by working entirely with polynomials of degree < N.
If fi. [ are power series, then

Uh + L)) = fith) + fa(h),
i) = fift),  and  (fi/) (R = fi(h)fa(h)
if ord f; = 0. If g, h have constant terms equal to 0, then
flg(h) = (f = g)(h).

Progf. In each case, the proof is obtained by reducing the statement
to the polynomial case, and seeing that the required properties hold for
polynomials, which is standard. For instance, for the associativity of
composition, given a positive integer N, let P, Q, R be polynomials of
degree = N — 1 such that

f=P, g=0Q, h=R (mod TV)
The ordinary theory of polynomials shows that
P(Q(R)) = (P = Q)(R).
The left-hand side is congruent to f(g(h)), and the right-hand side is

congruent to (f o g)(h) (mod T™) by the properties which have already
been proved. Hence

S(g(h) = (f o g)h) (mod T*).
This is true for each N, whence f(g(h)) = (f ¢ g)(h), as desired.
In applications it is useful to consider power series which have a finite
number of terms involving l/z, and this amounts also to considering
arbitrary quotients of power series as lollows.

Just as fractions m/n are formed with integers m, n and n # 0, we can
form quotients

Ilg = f(T)g(T)

of power series such that g # 0. Two such quotients f/g and fila, are
regarded as equal if and only if

fa, = fia,

which is exactly the condition under which we regard two rational num-
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bers m/n and m,/n, as equal. We have then defined for power series all
the operations of arithmetic.
Let

f(T)=a,T" + ap, T"*' +--= ¥ a,T"
ngm
be a power series with a,, # 0. We may then write f in the form
f=a,T™"(1 + kT)),

where h(T) has zero term. Ce

quently 1/f has the form

W S, T 1+ WT)

We know how to invert 1 + h(T), say

(L+MT) ' =1+ b, T+b T+,
Then 1/f(T) has the shape
l;‘)"=a,;'L“u +a;‘bl;_l+---_
T ™
It is a power series with a finite number of terms having negative powers

of T. In this manner, one sees that an arbitrary quotient can always be
expressed as a power series of the form

Jlg =28+ S0 g gy T4 €T 4 oo

™ w1
= Z CKT-‘
ng-—m

If e_, # 0, then we call —m the order of f/g. It is again verified as for
power series without negative terms that if

e=flg and @ =f/g,
then
ord ¢, = ord ¢ + ord g, .

Example. Find the terms of order =3 in the power series for 1/sin T.
By definition,
sinT=T—=T33! 4+ T35 —---
=T(l — T3+ T*51 — ).
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1
1=T?3 4+ TH5! + -~

(14 T2/31 = T%/5! 4+ (T*/3!)* + higher terms

1 T
+§;T+(ia—lji'—§;)r + higher terms.

This does what we wanted.

I, §1. EXERCISES

We shall write the formal power series in terms of = because that's the way they
arise in practice. The series for sin z, cos z, €7, elc. are to be viewed as formal
series.

1. Give the terms of order < 3 in the power series:

(a) & sin: (b} (sin )(cos 2) {© ';z_ !
e* —cos:z 1 c0sz

@ R (e cos = n sin =
sin = i

(g) = (h) e%fsin =

2 Let f(z} =Y a,=" Define f{—z)=Y¥a,(—2)"=Y a(—1)=". We define fiz) to
be even if a,=0 for n odd. We define f(z) to be odd if a, =0 for n even.
Verify that f is even il and only if f{—z)= f(z) and [ is odd if and only if
fl=z}=—flz) ?

3. Define the Bernoulli numbers B, by the power series

Prove the recursion formula

B, B,_, 1 ifn=1,
— R g
nl0! (n=1) 11! 11n— 1)t {O il n> 1.

Then B, = 1. Compute B,, By, By. B,. Show that B, =0 if n is odd # 1.

4. Show that
s 1 - ==l
ety el 2 B, o,

2 — ™R St
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Replace z by 2niz to show that

Rz cot iz = "in [—Ir% By, 2

5. Express the power series for tanz, zfsinz, zcotz in terms of Bernoulli
numbers.

6. (Difference Eqgs ). Given pl bers ap, ay, wy, uy define a, for
nz2 by

a, =t d,  + ua, 5.
If we have a factorization
T =y T—uy=(T—o)(T—«), and aze,
show that the numbers a, are given by
a,= Aa" + Ba™

with suitable 4, B. Find 4, B in terms of ay, a,, ¢, «'. Consider the power
series

F(T)= ’in a, "

Show that it represents a rational function, and give its partial fraction decom-
position.

7. More generally, let ag, ...,a,_; be given complex numbers. Let u,, ....u, be
complex number such that the polynomial
P(T)=T" =@, T™™" + =+ u)
has distinct roots &, , ...,,. Define a, for n=r by
A, = a,  + -+ 0,a,.,.
Show that there exist numbers 4, , ...,4, such that for all n,

a, = Aaf +-* + A,

Il, §2. CONVERGENT POWER SERIES

We first recall some terminology about series of complex numbers.
Let {z,} be a sequence of complex numbers. Consider the series

[~18
-
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We define the partial sum

~=

Sa=

=2, 42+ "+ I,
k

1

We say that the series converges if there is some w such that

lim s, =w
n-

exists, in which case we say that w is equal to the sum of the series, that
is,
w= Z,.

[~18

If A=Y &, and B=} f, are two convergent series, with partial sums

s,= 2, and a_=}“:,|3~,

k=1 k=]
then the sum and product converge. Namely,

A+B=3(0+p)
AB = lim 5,1,

Let {c,} be a series of real numbers ¢, = 0. If the partial sums

Eo

are bounded, we recall from calculus that the series converges, and that
the least upper bound of these partial sums is the limit.

Let ¥ a, be a series of complex numbers. We shall say that this series
converges absolutely if the real positive series

2lal
converges. If a series converges absolutely, then it converges. Indeed, let
n
Sy = E Oy
k=1
be the partial sums. Then for m = n we have

Sp = S = Oy + 000 40,



[11, §2] CONVERGENT POWER SERIES 49

whence
I, =sal = X el
k=m+1

Assuming absolute convergence, given € there exists N such that if n,
m 2 N, then the right-hand side of this last expression is <e¢, thereby
proving that the partial sums form a Cauchy sequence, and hence that
the series converges.

We have the usual test for convergence:

Let §' c, be a series of real numbers = 0 which converges. If |o,| < ¢,
for all n, then the series Y a, converges absolutely.

Proof. The partial sums

n n
E oyl = E Cx
k=i k=1

are also bounded, and the absolute convergence follows.

In the sequel we shall also assume some standard facts about abso-
lutely convergent series, namely:

(i) If a series 3" o, is absolutely convergent, then the series obtained by
any rearrangement of the terms is also absolutely convergent, and
converges to the same limit.

(ii) If a double series

5(E)

is absolutely convergenmt, then the order of summation can be inter-
changed, and the series so obtained is absolutely convergent, and
converges to the same value.

The proof is easily obtained by considering approximating partial
sums (finite sums), and estimating the tail ends. We omit it.

We shall now consider series of functions, and deal with questions of
uniformity.

Let § be a set, and f a bounded [function on S. Then we define the
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Ifls=1s51= p [f(2)l,

where sup means least upper bound. It is a norm in the sense that for
two functions f, g we have | f + gl = |/l + llgll, and for any number ¢
we have [lcf|| = |c| Sl Also =0 if and only if | £ =0.

Let {f,} (n=1,2,...) be a sequence of functions on §. We shall say
that this sequence converges uniformly on S if there exists a function f on
§ satisfying the following properties. Given €, there exists N such that if
n= N, then

IfHh=Tl<e

We say that {f,} is a Cauchy sequence (for the sup norm), if given ¢,
there exists N such that if m, n = N, then

If—fall <€
In this case, for each z € §, the sequence of complex numbers
{£2)}
converges, because for each z € §, we have the inequality
1/a2) = Jale) = L = Jull-

Th 2.1. If a sequence {f,} of functions on S is Cauchy, then it

converges uniformly.

Proof. Foreach ze 8, let
S(z) = lim f(z).
Given €, there exists N such that if m, n = N, then

ISz = fu2)l <€  forall zeS.

Let n= N. Given z€§ select m = N sufficiently large (depending on z)
such that

1f(z) = ful2) <€
Then
1£(2) = ful2)] = 11(2) — fal2)] + | ful2) = fif2)]
<€+ fu— Ll
< 2e.
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This is true for any z, and therefore ||f — f,| < 2¢, which proves the
theorem.

Remark. It is immediately seen that if the functions f, in the theorem
are bounded, then the limiting function f is also bounded.

Consider a series of functions, ¥ f,. Let
s"=.‘zlf‘=f’+f’+m+f'

be the partial sum. We say that the series converges uniformly if the
sequence of partial sums {s,} converges uniformly.
A series ) f, is said to converge absolutely if for each z € § the series

pAIAE]

converges.
The next theorem is sometimes called the comparison test.

Theorem 2.2. Let {c,} be a
that

of real bers =0, and assume

Len

converges. Let {f,} be a sequence of functions on S such that | f,| < e,
Sor all n. Then Y f, converges uniformly and absolutely.

Proof. Say m =n. We have an estimate for the difference of partial
sums,

ls—sds 3 16l 3 a
k=m+1 k=m+1

The assumption that } ¢, converges implies at once the uniform conver-
gence of the partial sums. The argument also shows that the convergence
is absolute.

Theorem 23. Let S be a set of complex numbers, and ler {f,} be a
sequence of continuous functions on S. [f this sequence converges uni-
Sformly, then the limit function [ is also continuous.

Progf. You should already have seen this theorem some time during a
calculus course. We reproduce the proof for convenience. Let aeS.
Select n so large that ||/ — f,l <e. For this choice of n, using the
continuity of f, at a, select 4 such that whenever |z — a| < § we have

1ful2) = fila)| <€
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Then

1f2) = [ = |1(z) — L) + |2} = foled] + | fufe) — fedl.

The first and third term on the right are bounded by ||/ — f,l <€ The
middle term is < e. Hence

1(z) = fle)l < 3¢,

and our theorem is proved.
We now consider the power series, where the functions f, are

fl2)=a,z",

with complex numbers a,,.

Theorem 2.4. Let {a,} be a sequence of complex bers, and let r be
a number > 0 such that the series

2 la|r"

converges. Then the series Y a,z" converges absolutely and uniformly
Jor|z| .

Proof. Special case of the comparison test.
Example. For any r > 0, the series
¥ z"nt
converges absolutely and uniformly for |z| < r. Indeed, let

c,=r"nl.
Then

Take n 2 2r. Then the right-hand side is < 1/2. Hence for all n suffi-
ciently large, we have

Car1 = *cn *

Therefore there exists some positive integer ng such that

& S C2"™,
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for some constant C and all n = n,. We may therefore compare our series
with a geometric series to get the absolute and uniform convergence.

The series
o

exp(z) = Zb z"n!

therefore defines a continuous function for all values of z. Similarly, the
series

. 2 i . Z2nt1
smz—:—im!+§—--- _..Zbl_l)(ln—-l—fr!
and
o o ] .
N T e

converge absolutely and uniformly for all |z| = r. They give extensions of
the sine and cosine functions to the complex numbers. We shall see later
that exp(z) = e” as defined in Chapter I, and that these series define the
unique analytic functions which coincide with the usual exponential, sine,
and cosine functions, respectively, when z is real.

Theorem 2.5. Let ) a,z" be a power series. If it does not converge
absolutely for all z, then there exists a number r such that the series con-
verges absolutely for |z| < r and does not converge absolutely for |z| > r.

Proof. Suppose that the series does nol converge absolutely for all =
Let r be the least upper bound of those numbers s = 0 such that

Y la,ls"

converges. Then Z |a,||z]" diverges if |z| > r, and converges if [z] <r by
the comparison test, so our assertion is obvious.

The number r in Theorem 2.5 is called the radius of convergence of the
power series. If the power series converges absolutely for all z, then we
say that its radius of convergence is infinity. When the radius of conver-
gence is 0, then the series converges absolutely only for z = 0.

If a power series has a non-zero radius of convergence, then it is
called a convergent power series. If D is a disc centered at the origin and
contained in the disc D(0, r), where r is the radius of convergence, then
we say that the power series converges on D.

The radius of convergence can be determined in terms of the co-
efficients. Let , be a sequence of real numbers. We recall that a point of
accumulation of this sequence is a number ¢ such that, given €, there exist



54 POWER SERIES (11, §21

infinitely many indices n such that
lt,—t] <€

In other words, infinitely many points of the sequence lie in a given
interval centered at 1. An elementary property of real numbers asserts
that every bounded sequence has a point of acc lation (Weierstrass—
Balzano theorem),

Assume now that {t,} is a bounded sequence. Let § be the set of
points of accumulation, so that § looks like Fig. 1.

We define the limit superior, lim sup, of the sequence to be
A = lim sup 1, = least upper bound of §.

Then the reader will verify at once that A is itself a point of accumulation
of the sequence, and is therefore the largest such point. Furthermore, 4
has the following properties:

Given €, there exist only finitely many n such that 1,2 A+ € There
exist infinitely many n such that

L2l—c

Proof. 1f there were infinitely many n such that t, = 1 + ¢, then the
sequence {r,} would have a point of accumulation

zl+e>1],

contrary to assumption. On the other hand, since 1 itself is a point of
accumulation, given the e-interval about J, there have to be infinitely
many n such that f, lies in this e-interval, thus proving the second
assertion.

We leave it to the reader to verify that if a number 1 has the above
properties, then it is the lim sup of the sequence.

For convenience, if {t,} is not bounded from above, we define its
lim sup to be infinity, written co.



[11, §2] CONVERGENT POWER SERIES 55

As an exercise, you should prove:

Let {t,}, {s,} be sequences of real numbers = 0. Let

t=limsupt, and § = lim sup s,.
Then
lim sup(t, + s, ) =t + 5

If t #0, then
lim sup(t,s,) = ts.

If lim t, exists, then t = lim t,,.
LEd- 3 A

This last statement says that if the sequence has an ordinary limit, then
that limit is the lim sup of the sequence.

The second statement is often applied in case one sequence has a
lim sup, and the other sequence has a limit # 0. The hypothesis t 0 is
made only to allow the possibility that s = co, in which case ts is under-
stood to be oo. If 5+ oo, and 1 # oo, and lim 1, exists, then it is true
unrestrictedly that

lim sup(t,s,) = ts.

Theorem 2.6. Ler ) a,z" be a power series, and let r be its radius of
convergence. Then

% = lim sup|a,|*".

If r =0, this relation is to be interpreted as meaning that the sequence
{la,|""} is not bounded. If r= oo, it is to be interpreted as meaning
that lim sup|a,|"" = 0.

Progf. Let t = lim sup|a,|'™. Suppose first that t #0, co. Given € >0,
there exist only a finite number of n such that |a,|'" = t + €. Thus for all
but a finite number of n, we have

laal = (t + €),
whence the series ) a,z" converges absolutely if |z| < 1/(t + €), by com-

parison with the geometric series. Therefore the radius of convergence r
satisfies r = 1/(t + €) for every € > 0, whence r = 1/t
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Conversely, given € there exist infinitely many n such that |a,|'"" 2t — €,
and therefore

la, = (¢ — e

Hence the series 3 a,z" does not converge if |z| = 1/(r— €), because its
n-th term does not even tend to 0. Therefore the radius of convergence r
satisfies r = 1/(t — €) for every € > 0, whence r < 1/t. This concludes the
proof in case t #£ 0, wo.

The case when t=0 or oo will be left to the reader. The above
arguments apply, even with some simplifications.

Corollary 2.7. If lim |a,|"" =t exists, then r = 1/t

Proof. If the limit exists, then ¢ is the only point of accumulation of
the sequence |a,|'™, and the theorem states that t = 1/r.

Corollary 2.8. Suppose that ¥ a,z" has a radius of convergence greater
than 0. Then there exists a positive number C such that if A > 1/r then

la,| < CA"  for all n.
Proof. Let s=1/4 so 0 <s <r at the beginning of the proof of the
theorem.

In the next examples, we shall use a weak form of Stirling’s formula,
namely

n!=n"¢e"u, where limul" = 1,

You can prove this estimate by comparing the integral

n
j logxdx=nlogn—n+1
1

with the upper and lower Riemann sums on the interval [1, n], using the
partition consisting of the integers from 1 to n. This is a very simple
exercise in calculus Exponentiating the inequalities given by the
Riemann sums yields the weak form of Stirling’s formula.

Let {a,}, {b,} be two sequences of positive numbers. We shall write

a,=bh, for nsew
if for each n there exists a positive real number u, such that lim wh =1,

and @, = bu,. If lima}" exists, and a, =b,, then lim b exists and is
equal to lim a;'. We can use this result in the following examples.
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Example. The radius of convergence of the series ¥ n!z" is 0. Indeed,
we have n! = n"¢™ and (n!)' is unbounded as n — oo.

Example. The radius of convergence of ¥ (1/n!)z" is infinity, because
Ifn!=e"n" so (1/n))"" =0 as n— oo.

Example. The radius of convergence of ¥ (n!/n")z" is e, because
nlfn" = e™ so lim(n!n™)V" = ™1,

I_Lutin Test. Let {a,} be a sequence of positive numbers, and assume that
lim a,41/a,=A =z 0. Then lim a.l""' = A also.

Froof. Suppose first A > 0 for simplicity. Given ¢ > 0, let ny be such

that A — € < ap1/a, = A+ e if n = np. Without loss of generality, we can
assume e < A so A —e> 0. Write

'ﬁﬂkMHakM
a=a || —]]—.
ki O jmn, Tk

Then by induction, there exist constants Cj(e) and Ca(e) such that
Cile(A—e)" ™ s a,5 Coe)(A+¢)" ™,

Put Ci(e) = Ci(e)(4 — €)™ and Cj(e) = Ca(c)(4 +€)". Then
Ci(e)'/"(4—¢) s all" < CY(e)""(4 + o).

There exists N = np such that for n = N we have

Ci(e)'" =1 +81(n) where 5,(n)] < ¢/(4 —¢),
and similarly Ci(€)'/" =1 4 &(n) with |62(n)| < /(4 +¢€). Then
A—e+8(n)(Ad—e) Sal" <A+ e+8(n)(A+e).
This shows that |a\’" — A| < 2¢, and concludes the proof of the ratio test

when 4 > 0. If 4 =0, one can simply replace the terms on the left of the
inequalities by 0 throughout.

Example (The Binomial Series). Let o be any complex number s 0.
Define the binomial coefficients as usual,

(rx)= afe— 1) (e—n+1)

n n!
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and the binomial series

(1 + Ty = B(T) = 3:-: (:) T

o

The radius of convergence of the binomial series is 1 if « is not equal to
an integer = 0.

By convention,

Proof. Under the stated assumption, none of the coefficients a, are 0,
and we have
ot — ,||

lans1/an] = m

The limit is 1 as n— oo, so we can apply the ratio test.

Warning. Let r be the radius of convergence of the series f(z).
Nothing has been said about possible convergence il |z| =r. Many cases
can occur concerning convergence or non-convergence on this circle. See
Exercises 6 and 8 for example.

11, §2. EXERCISES
1. Let |2| < 1. Express the sum of the geometric series ¥, a” in its usual
simple form.
2. Let r be a real number, 0 £ r < 1. Show that the series
- -
X re™ and ¥ et
a=0 n=—m

converge (6 is real). Express these series in simple terms using the usual
formula for a geometric series.

3. Show that the usual power series for log(l + z) or log(l — z) from elementary
lculus converges absolutely for |z < 1.
4. Determine the radius of et for the following power series.
(a) Yo"z (b) ¥ zn"
() Y 2=" (d) ¥ (logn)z"
&) Y2 0 ¥ iz
nl (h) z{n R .
(g) ):"—.? @’



[11, §2] CONVERGENT POWER SERIES 59

Lol

o

10.

Let f(z) =} a,z" have radius of convergence r > 0. Show that the following
series have the same radius of convergence:
(@) ¥ na,z" (b) ¥ n'a,z"

() ¥ n'a,z" for any positive integer d (d) ¥ na,z"*
LE]

Give an example of a power series whose radius of convergence is 1, and
such that the corresponding function is continuous on the closed unit disc.
[Hint: Try ¥ 2%/n*]

Let a, b be two pl bers, and ne that b is not equal to any
integer < 0. Show that the radius of convergence of the series

ala+1)-(a+n) .
2 ban”

is at least 1. Show that this radius can be o in some cases.

Let {a,} be a d ing seq of positive t pproaching 0. Prove
that the power series ¥ a,z" is uniformly convergent on the domain of z such
that

lz21 =1 and |z—-1]23,

where § > 0. [Hint: For this problem and the next, use summation by parts,
see Appendix, §1.]

(Abel's Theorem). Let i’ a,z" be a power series with radius of convergence
w0

-
= 1. Assume that the scries ) a, converges. Let 0 S x < | Prove that
o=t

- =
lim ¥ a,,x"'--};aa,,,

z=1 n=0

Remark. This result amounts to proving an interchange of limits. If
sx)= lE apxt,
=1

then one wants to prove that

lim lim 5,(x) = lim lim s,{x).
A=m x—=1 x=1 n=m

Cf. Theorem 3.5 of Chapter VII in my Undergraduate Analysis, Springer-
Verlag, 1983.

Let ¥ a,z" and ¥ b,z" be two power series, with radius of convergence r and
5, respectively. What can you say about the radius of convergence of the
series:

@ Y(a,+b)" ® Eabz"

11. Let &, p be complex numbers with |a| < |f|. Let

Mz) =3 (3" — 5p")2"
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Determine the radius of convergence of f{z).
12. Let {a,} be the sequence of real L defined by the conditions:

ag=1a,=2 and a, =8,y + 3 for n2z2

Determine the radius of convergence of the power series

[Hint: What is the gencral solution of a difference equation? CE Exercise 6
of §1.]

13. More generally, let u,, u; be complex numbers such that the polynomial
PT) =T —u,T—u, =(T—a,(T—at;)
has two distinct roots with |a,| < |a,|. Let a,, a, be given, and let
Gy = U Gyy + Uzl,.z for nz2

What is the radius of convergence of the series § a, T"?

Il, §3. RELATIONS BETWEEN FORMAL AND
CONVERGENT SERIES

Sums and Products
Let f = f(T) and g = g(T) be formal power series. We may form their
formal product and sum, f+ g and fg. If f converges absolutely for

some complex number z, then we have the value f(z), and similarly for
g(z).

Theorem 3.1. If f, g are power series which converge absolutely on the
disc D(0, 1), then f + g and fg also converge absolutely on this disc. If o
is a complex number, af converges absolutely on this disc, and we have

S+ 0@ =fE) +g(z), (o)) = f(z)g(z).
(ef)(z) = & f(2)
Sor all z in the disc.

Proof. We give the proof for the product, which is the hardest. Let

f=Yar" and g="5bT"
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so that
fo=YcT where ¢,= 7Y ab,,.
=)
Let 0 <5 <r. We know that there exists a positive number C such that
for all n,

la,| £Cfs" and  |b| = Cfs".
Then

= C .C (n+ 1yc?
led = *Zo lagh, 4] = (n + ”;E > e

Therefore
(n + 1yHnCHn

|C,,| Un = p

But lim (n + 1)"CY" = 1. Hence

LEk
lim sup|c,|¥" < 1/s.
This is true for every s <r. It follows that lim sup|c,|"" = I/r, thereby

proving that the formal product converges absolutely on the same disc.
We have also shown that the series of positive terms

X "
boallzl
"Zb ago lau|[basl Izl
converges.
Let
JlT)=ag +a, T+ +ayT",

and similarly, let gy(T) be the polynomial consisting of the terms of
order £ N in the power series for g. Then

f2)= firl‘ﬂ fulz)  and  g(z) = ﬁ;n gnlz).

Furthermore,
Uaina) = fu@a(el £ 3 3 lalbyallzl"

In view of the convergence proved above, for N sufficiently large the
right-hand side is arbitrarily small, and hence

Siz)glz) = li:ﬂ Sulz)an(z) = (fa)(z),
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thereby proving the theorem for the product.

The previous theorem shows that a formal power series determines a
function on the disc of absolute convergence. We can raise the question:
If two formal power series f, g give rise to the same function on some
neighborhood of 0, are they equal as formal power series? Subtracting g
from f, this amounts to asking: If a power series determines the zero
function on some disc centered at the origin, is it the zero series, ie. are
all its coefficients equal to 0?7 The answer is yes. In fact, more is true.

Theorem 3.2

(a) Let f(T)=73a,T" be a non-constant power series, having a non-
zero radius of convergence. If f(0) =0, then there exists s> 0 such
that f(z) # 0 for all z with |z| £, and z £ 0.

(b) Let f(T) =3 a.T" and g(T) =3 b,T" be two convergent power
series. Suppose that f(x) = g(x) for all points x in an infinite set
having 0 as a point of accumulation. Then [(T)=g(T), that is
ay = by for all n.

Proof. We can write

f(z) = a,z™ + higher terms,  and a, # 0
=a,z"(1 + bz + byz* +++*)
= a,z"(1 + h(z)),

where h(z) = b,z + b,2* + -+~ is a power series having a non-zero radius
of convergence, and zero constant term. For all sufficiently small |z|, the
value |h(z)| is small, and hence

1+ hiz) # 0.

Il z # 0, then a,z™ # 0. This proves the first part of the theorem. .

For part (b), let h(t) = f(T) — g(T) = ¥ (a, — b,)T". We have h(x)=0
for an infinite set of points x having 0 as point of accumulation. By part
(a), this implies that h(T) is the zero power series, so a, = b, for all n,
thus proving the theorem.

Example. There exists at most one convergent power series f(T) =
Y. a,T" such that for some interval [ —¢, €] we have f(x) = e* for all x in
[—¢,€]. This proves the uniqueness of any power series extension of the
exponential function to all complex numbers. Similarly, one has the
uniqueness of the power series extending the sine and cosine functions.
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Furthermore, let exp(z) =Y z/n!. Then
expliz) = ¥ (iz)/n!.

Summing over even n and odd n, we find that

expliz) = C(z) + i8(z),
where C(:) and S(z) are the power series for the cosine and sine of z
respectively. Hence e” for real @ coincides with exp(if)) as given by the

power series expansion.
Quite generally, if g(T'), #(T) are power series with 0 constant term, then

exp(g(T) + h(T)) = (expa(T)) (exph(T)).
Proof. On one hand, by definition,
Z (9(T) + h('r))

exp(g(T) + h(T))

and on the other hand,

n—k
(expg(T)) (exph(T)) = E z a(;}(:( ;;})I

ng”ﬁm)qm

In particular, for complex numbers =, w we have
exp(z +w) = (exp=)(expw),

because we can apply the above identity to g(T') = =T and &{T) = wT, and
then substitute T = 1. Thus we see that the exponential function e* defined
in Chapter I has the same values as the function defined by the usual power
series exp(z). From now on, we make no distinction between e” and exp(=).

Theorem 3.2 also allows us to conclude that any polynomial relation
between the elementary functions which have a convergent Taylor expan-
sion at the origin also holds for the extension of these functions as
complex power series.

Example. We can now conclude that sin® =+ cos?= = |, where sinz =
S(z), cosz=C(z) are dcﬁn:d by the usual power series. Indeed, the
power series S(z)* + C(5)" has infinite radius of convergence, and has
value 1 for all real =. Theorem 3.2 implies that there is at most one series
having this pTDpel‘l)'. and that is the series |, as desired. It would be
disagreeable to show directly that the formal power series for the sine and
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cosine satisfy this relation. It is easier to do it through elementary calculus
as above.

Example. Let m be a positive integer. We have seen in §2 that the
binomial series
- LS -fl
Biz)=} (n)ﬂ

with & = I/m has a radius of convergence = I, and thus converges ab-
solutely for |z] < I. By elementary calculus, we have

Bix)"=1+x

when x is real, and |x| < | (or even when |x| is sufficiently small). There-
fore B(T)Y" is the unique formal power series such that

Bx"=1+x
for all sufficiently small real x, and therefore we conclude that
B(M"=1+T
In this manner, we see that we can take m-th roots
(1 + =)t

by the binomial series when |z| < 1.

Quoticnts
In our discussion of formal power series, besides the polynomial rela-
tions, we dealt with quotients and also composition of series. We still
have to relaie these to the convergent case. It will be convenient to
introduce a simple notation to estimate power series.
Let f(T)=Y a,T" be a power series. Let
e(T) =Y ¢, T"

be a power series with real coefficients ¢, = 0. We say that f is domi-
nated by ¢, and write

J<¢ o f(T)<e(T)

if la,| = ¢, for all n. It is clear that if @, ¢ are power series with real co-
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efficients = 0 and if

I<e,  a<y,
then
f+g<e+y and  Jyg<o)
Theorem 3.3. Suppose that f has a non-zero radius of convergence, and
non-zero constant term. Let g be the formal power series which is inverse
to f, that is, fg= 1. Then g also has a non-zero radius of convergence.

Proof. Multiplying f by some constant, we may assume without loss
of generality that the constant term is I, so we write

S=1+a,T+a,T*+--=1-h(T),

where h(T) has constant term equal to 0. By Corollary 2.8, we know
that there exists a number A > 0 such that

la S 4% n2L

{We can take C = | by picking 4 large enough.) Then

1 1
—_—— =] 4} MTPE 4.
7 - T=’D + h(T) + h(TY
But
& o AT
h;n<_);a P
Therefore 1/f(T) = g(T) satisfies
AT (4 1
on<\Hyarta—am T T At
1—AT
But
IAT = (1 — AT)(1 + 24T + (2AT) + )
b=1—a7
<(1+ AT)1 + 24T + QAT + ).
Therefore g(T) is dominated by a product of power series having non-

zero radius of convergence, whence g(T) itself a non-zero radius of con-
vergence, as was to be shown.
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Composition of Series

Theorem 3.4. Let
fla) =} az" and h(z)= ¥ b,2"
n20 nzl

be convergent power series, and assume that the constant term of h is 0.
Assume that f(z) is absolutely convergent for |z] S, with r > 0, and
that s > 0 is a number such that

Zlbls"=r.

Let g = f(h) be the formal power series obtained by composition,

= 3 ny

atT}y= ..;o a“(kz’l AT ) '

Then g converges absolutely for |z| = s, and for such z,
9(2) = f(h(z).

Proof. Let g(T)=Y ¢, T". Then g(T) is dominated by the series
o< £ la( £ i)

and by hypothesis, the series on the right converges absolutely for |z] £ s,
5o glz) converges absolutely for |z| = 5. Let

D =as+a, T+ +ay, T}

be the polynomial of degree < N — 1 beginning the power series f. Then
S = fulbT) < 5. el (ﬁ BT,

and f(h(T)) = g(T) by definition. By the absolute convergence we con-
clude: Given e, there exists N, such that if N = N, and |z| < 5, then

lg(z) — fu(h(z))] < e.

Since the polynomials fy converge uniformly to the function f on the
closed disc of radius r, we can pick N, sufficiently large so that for
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N = N, we have
|fu(h(z) = f(hi=)] < e
This proves that
lg(z) — f(h(2))] < 2e,

for every €, whence g(z) — f(h(z)) = 0, thereby proving the theorem.

Example. Let m be a positive integer, and let h(z) be a convergent
power series with zero constant term. Then we can form the m-th root

(1 + hz))¥m

by the binomial expansion, and this m-th root is a convergent power
series whose m-th power is 1 + h(z).

Example. Define

fwy=}% (—H"_’]--

n=1

Readers should immediately recognize that the series on the right is the
usual series of calculus for log(l + w) when w= x and x is real. This
series converges absolutely for [w] < 1. We can therefore define log z for
lz—1]<1 by

logz= f(z—1).

We leave it as Exercise 1 to verify that exp log z = z.

Il, §3. EXERCISES
1. {a} Use the above definition of log z for |z — 1| < | 10 prove that explogz =z,
[Hint: What are the values on the left when z = x is real?]

{b) Let z,# 0. Let = be any complex number such that exp(ae) =z, For
|z = 2ol < lzo| define

Iog:=_f(%— 1) +a= f(?) +a

Prove that exp log z = z for |z — 25| < |zql-

- Warning. The above definitions in parts (a) and (b) may differ by a
constant. Since you should have proved that exp log === in both cases,
and since exp(w;) = exp(wz) if and only if there exists an integer k such
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that wy = w; + 2nik, it follows that if we denote the two logs by log, and
log,, respectively, then log, () = log,(z) + Znik.
2. (a) Letexp(T) =52, 7"/n!and log(l + T) = S5, (=1)*"'T* k. Show that
explog{l +T)=1+7T and logexp(T)=T.
{b) Let iy(T) and hy(T) be formal power series with 0 constant terms. Prove
that log((1 + iy (T)) (1 + ha(T))) = log(1 + I (T)) +log(1 + I (T)).
(¢) For complex numbers &, fi show that log(l + 7)* =« log(] + T) and

1+ 1+ T =1+ 7)™

3. Prove that for all complex = we have
e o 4 it i . gle — gois
cosz=—0 an sin z 3
4. Show that the only complex numbers = such that sin = =0 are = = kn, where k
is an integer. State and prove a similar statement for cos z.
5. Find the power series expansion of f{z) = 1/(z + 1)(z + 2), and find the radius
of convergence.
6. The L d 1 ials can be defined as the coefficients Fyx) of the series

expansion of
1
=
=1+ Pla)z + Ple)z? + -+ Pla)=" + -+,

Calculate the first four Legendre polynomials.

Il, §4. ANALYTIC FUNCTIONS

So far we have looked at power series expansions at the origin. Let f be
a function defined in some neighborhood of a point z,. We say that f is
analytic at z, if there exists a power series

o

2, a(z — zo)"

n=0

and some r > 0 such that the series converges absolutely for |z — zo) <,
and such that for such z, we have

flz)= ):n a(z — zp)"
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Suppose f is a function on an open set U. We say that f is analytic on
U if f is analytic at every point of U.

In the light of the uniqueness theorem for power series, Theorem 3.2,
we see that the above power series expressing f in some peighborhood of
2y is uniquely determined. We have

flzo)=0 ifandonlyif a;=0.

A point z, such that f(zo) =0 is called a zero of f. Instead of saying
that f is analytic at z,, we also say that { has a power series expansion
at zo (meaning that the values of f(z) for z near z, are given by an ab-
solutely convergent power series as above).

If § is an arbitrary set, not necessarily open, it is useful to make the
convention that a function is analytic on § if it is the restriction of an
analytic function on an open set containing S. This is useful, for in-
stance, when § is a closed disc.

The theorem concerning sums, products, quotients and composites of
convergent power series now immediately imply:

If f, g are analytic on U, so are [ + g, fg. Also fig is analytic on the
open subset of z € U such thar g(z) # 0.

If g: U—V is analytic and f: V — C is analytic, then [ e g is analytic.
For this last assertion, we note that if z, € U and glzy) = wg, 50
g(z) = wo + Zb,,(z —z)" and f(w)= Za,.(nr— wo)"
nzl nzl

for w near wy, then g(z) —wp is represented by a power series h(z — zp)
without constant term, so that Theorem 3.4 applies: We can “substitute”

flg(2) = ¥ a.(g(z) = wo)'

to get the power series representation for f(g(z)) in a neighborhood of
Zg- . .
The next theorem, although easy to prove, requires being .'_;taled. It
gives us in practice a way of finding a power series expansion for a
function at a point.

Theorem 4.1. Let f(z) =Y a,z" be a power series whose radius of con-
vergence is r. Then f is analytic on the open disc D(0, r).

Progf. We have to show that f has a power series expansion at an
arbitrary point zo of the disc, so |zol<r. Let s>0 be such that
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Izol + s <r. We shall see that f can be represented by a convergent
power series at z,, converging absolutely on a disc of radius 5 centered

at zq.

r

Figure 2

We write

z=zg+ (2 —2p)
so that

2= (20 + (z — z))"

Then

f0=3 (‘);D (:) e — z.,;r)_

If |z — 24| < 5 then |zg] + |2 — 24| < r, and hence the series

£ ladtizol +12 - zolr = 5 “’"'[,io WETS zn]":l

converges. Then we can interchange the order of summation, to get

fa=3 [f a (D za‘*](z - ),

k=0 | n=
which converges absolutely also, as was to be shown,

Example. Let us find the terms of order =3 in the power series
expansion of the function

f@=2}z+2)
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at the point z, = 1. We write
z=1+(z-1), E+2=3+@-1)

Let = denote congruence mod(z — 1)* (so disregard terms of order > 3)
Then

22=1422-1)+@z—1)3
z+2=3(!+%{2—1])

1
242

W -

1
1+§(z— 1)

1
%(I - E(: — 1)+ -311—(2 —-12 - 37[3(: — 1P+ )

Hence

2

2125{1+2(2—l]+(z—1)’]

1 | 1 1
x j(l - j(z -+ i:(z -1 -—?(z - l}“)

= %[l -+ ;{z -1+ G + 31—2)(2 1P+ (—% + ;! - EEJ-){: - I)’].

These are the desired terms of the expansion.

Remark. Making a translation, the theorem shows that if f has a
power series expansion on a disc D(zy, r), that is,

J@&) =3 a,(z — z,)"

for |z — z4| < r, then f is analytic on this disc.

Il, §4. EXERCISES
I. Find the terms of order <3 in the power series expansion of the function
fle)=2fz—Datz=1.

2. Find the terms of order <3 in the power series expansion of the function
@) =z—DNz+3)(z+2atz=1
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I, §5. DIFFERENTIATION OF POWER SERIES

Let D(0,r) be a disc of radius r > 0. A function f on the disc for which
there exists a power series ) a,z" having a radius of convergence =r
and such that

Sz =Y a,2"

for all z in the disc is said to admit a power series expansion on this disc.
We shall now see that such a function is holomorphic, and that its
derivative is given by the “obvious” power series.

Indeed, define the formal derived series to be

Y na,z"' =a, + 24,z + 3a;2* +--.

Theorem 5.1. If f(z) =} a,z" has radius of convergence r, then:

(i) The series Y na,z"~ has the same radius of convergence.
(i} The funcrion [ is holomorphic on D(0, r), and its derivative is equal
to ) naz"".

Proof. By Theorem 2.6, we have

lim sup|a, | = 1/r.
But
lim sup |na,|"" = lim sup n'"|a,|'".

Since lim n¥" = 1, the sequences
|na |  and la, |V

have the same lim sup, and therefore the series )" a,z" and } na,z" have
the same radius of convergence. Then

Yna,z""  and ¥ na,z"

converge absolutely for the same values of z, so the first part of the
theorem is proved.

As to the second, let |z| <r, and & > 0 be such that |z] + 8 <r. We
consider complex numbers h such that

|h] < é.
We have

fz+ =Y a,z+hy
=¥ a,(z" + nz""'h + h2B,(z, b)),
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\nfhere Ffz, h) is a polynomial in z and h, with positive integer coeffi-
cients, in fact

Blnh=73 (:)n*-’z"-*_

k=2

Note that we have the estimate:

1Bz Hl < 3 (:)6'-*1z1"'*= P(l2],8).
k=2
Subtracting series, we find

Slz+h) = flz) = ¥ na,z"'h=hY a,Pfz, h),

and since the series on the left is absolutely convergent, so is the series
on the right. We divide by h to get

f_—[z + T —J@ — Y naz"' =hYy a,Pzh)

For |h| < 8, we have the estimate

IX a. Bz W] £ ¥ la,| | Rz, b
< Ylan|Pa(l2],0)-
This last expression is fixed, independent of h. Hence
|h Y a, Pz, W] < |l L la,| B(lz], 8).

As h approaches 0, the right-hand side approaches 0, and therefore

lim |k ¥ a,By(z, h)] = 0.

h=0
This proves that J is differentiable, and that its derivative at z is given by
the series Y na,z""', as was to be shown.

Remark. Conversely, we shall see after Cauchy’s theorem that a fune-
tion which is differentiable admits power series expansion—a very re-
markable fact, characteristic of complex differentiability.

From the theorem, we see that the k-th derivative of f is given by the

series
T™(z) = k! a, + hy(2),
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where h, is a power series without constant term. Therefore we obtain
the standard expression for the cocfficients of the power series in terms of
the derivatives, namely

_I"0

n nl

If we deal with the expansion at a point z, namely
flz) =8y + aylz — 2o) + a3(z — 20)? + e,

then we find

o J m(zu)_

" n!

It is utterly trivial that the formally integrated series

S a, n+l

,.an-{-lz

has radius of convergence at least r, because its coefficients are smaller in
absolute value than the coefficients of f. Since the derivative of this
integrated series is exactly the series for f, it follows from Theorem 6.1
that the integrated series has the same radius of convergence as f.

Let f be a function on an open set U. If g is a holomorphic function
on U such that g' = f, then g is called a primitive for f. We see that a
function which has a power series expansion on a disc always has a
primitive on that disc. In other words, an analytic function has a local
primitive at every point.

Example. The function 1/z is analytic on the open set U consisting of
the plane from which the origin has been deleted. Indeed, for z, # 0, we
have the power series expansion

1 1 1
Zo+2—25 2ol + (2 — 2o)20)

1 1
=5 (=g )

converging on some disc |z — zo] < r. Hence 1/z has a primitive on such
a disc, and this primitive may be called log =.

1_
.=
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Il, §5. EXERCISES

In Exercises 1 through 5, also determine the radius of convergence of the given
series.

1. Let
zl.l
M= Z Ez.l'_l}i
Prove that f*(z) = f{z).
2 Let
o z]n
o= 2 o
Prove that
2f*(2) + 2'(2) = 42%(2).
3 Let
£ ¢ 2
)"[z)-z—iq,.g__?_q..”

Show that f'(z) = 1/(z* + 1).

4. Let
- 55w ()
Prove that
2J(2) + 27'(2) + 220 (z) = 0.
5. For any positive integer k, let

= 1" An+h
a=3 LL_(;) i

s=o #iin 4+ k)!

Prove that
R + 252 + (22 — K )4z = 0.

6. (a) For |z — 1| < 1, show that the derivative of the function

tog 2 =tog(1 + (e~ ) = § (—1y &=
=l

is 1/z

(b} Let 2, #0. For |z—z,| < 1, define f{z) = ¥ (= 1)""*((z — zo)/zo)"/n. Show
that ["(z) = 1/=.
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I, §6. THE INVERSE AND OPEN MAPPING THEOREMS

Let f be an analytic function on an open sct U‘. and let f(U)= W }Ne
shall say that f is an analytic isomorphism if V' is open and there exists
an analytic function

gV U

such that fog=id, and go f = id, in other words, f and g are inverse
functions to each other.

We say that f is a local analytic isomorphism or is locally invertible at
a point z, if there exists an open set U containing z, such that f is an
analytic isomorphism on U.

Remark. The word “inverse” is used in two senses: the sense of §l,
when we consider the reciprocal 1/f of a function f, and in the current
sense, which may be called the compesition inverse, i.e. an inverse for the
composite of mappings. The context makes clear which is meant. In this
section, we mean the composition inverse.

Theorem 6.1.

{a) Ler f(T)=a,T + higher terms be a formal power series with
a, #0. Then there exists a unigue power series g(T) such that
f(g(T)) = T. This power series also satisfies g(f(T)) = T.

(b) If [ is @ convergent power series, so is g.

{c) Let [ be an analytic function on an open set U containing z,.
Suppose that f'(z) # 0. Then f is a local analytic isomorphism at
20»

Progf. We first deal with the formal power series problem (a), and we

find first a formal inverse for f(T). For convenience of notation below
we write f(T) in the form

[(N=aT- 3 aT"
We seek a power series
g(T) = ZI b, T"

such that
flgm)=T

The solution to this problem is given by solving the equations in terms
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of the coefficients of the power series

a;g(T) — ayg(TP¥ —---=T.

These equations are of the form
ayb, = Flas,....a,,by,....b,;)=0, and ab=1 forn=1,

where F, is a polynomial with positive integer coefficients (generalized
binomial coefficients). In fact, one sees at once that

Elazy-os@uibyy oo byy)
= .R:P,.,,[bl N I i Y (/RPN Sy

where again F , is a polynomial with positive coefficients. In this man-
ner we can solve recursively for the coefficients

by, by, ...

since b, appears linearly with coefficient a, # 0 in these equations, and
the other terms do not contain b,. This shows that a formal inverse
exists and is uniquely determined.

Next we prove that g(f(T)) = T. By what we have proved already,
there exists a power series h(T) = ¢, T + higher terms with ¢, # 0 such
that g(h(T)) = T. Then using f(g(T)) = T and g(h(T)) = T, we obtain:

g(f(1) = g(flgh(T)) = g(H(T)) = T,

which proves the desired formal relation.

Assume next that [ is convergent.

We must now show that g(z) is absolutely convergent on some disc.
To simplify the number of symbols used, we assume that a, = |. This
loses no generality, because if we find a convergent inverse power series
for a7'f(z), we immediately get the convergent inverse power series for
f(z) itsell.

= Sm=T- 3 ar

be a power series with af real = 0 such that |a,| < a3 for all n. Let (T)
be the formal inverse of [*(T), so

.@;(1")="§1 6T ¢ =1

Then we have
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o — Plat, ....88, 0y eeniCug) =0

with those same polynomials P, as before. By induction, it therefore
follows that ¢, is real = 0, and also that

1Bal < €4

since b, = P(ay,...,b—;) It suffices therefore to pick the series f* so
that it has an easily computed formal inverse @ which is easily verified to
have a positive radius of convergence.

It is now a simple matter to carry out this idea, and we pick for f* a
geometric series. There exists A > 0 such that for all n we have

la,l £ A"
(We can omit 2 constant C in front of A" by picking A sufficiently large.)
Then oo
Ty = T-“);} AT = T—m.
The power series @(T) is such that f*(¢(T)) = T, namely

A(T)?
o(T) —de "
which is equivalent with the quadratic equation
(A2 + A)o(TP — (1 + AT)p(T) + T =0.

This equation has the solution

_1+4T- V(U + AT —4T(4% + A)

o2 AT+ A)

The expression under the radical sign is of the form

1+ Aﬂ’(l AT ’”)

(1 + AT

and its square root is given by

AT(A? + A)\1P
+ AT}(I - W}T) 2

We use the binomial expansion to find the square root of a series of the
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form 1+ h(T) when h(T) has zero constant term. It is now clear that
@(T) is obtained by composition of convergent power series, and hence
has a non-zero radius of convergence. This proves that the power series
g(T) also converges.

Finally, for (c), suppose first that z, = 0 and f(z,) = 0, so f is analytic
on an open set containing 0. This means that f has a convergent power
series expansion at 0, so we view [ as being defined on its open disc of
CONvergence

f:D=C.

Let V;, be an open disc centered at 0 such that ¥} is contained in the disc
of convergence of g, and such that g(¥;) = D. Such a neighborhood of 0
exists simply because g is continuous. Let U, = f~'(V,) be the set of all
z € D such that f(z) = V. Let

o=V,

be the restriction of f to U,. We claim that f, is an analytic isomor-
phism. Note that g(V;) = U, because for we ¥, we have f(g(w)) =w by
Theorem 3.4, so we consider the restriction g, of g to ¥, as mapping

go: Vo= U

Again by Theorem 3.4, for z& U, we have go(fy(z)) =z, which proves
that f, and g, are inverse to each other, and concludes the prool of
Theorem 6.1{c) in case z; = 0 and f{z,) = 0.

The general case is reduced to the above case by translation, as one
says. Indeed, for an arbitrary f, with f(z) =Y a,(z —z,)", change vari-
ables and let

w=z—120, FOW)=/(2) —f(zn)=§]‘ a,w”.

Then we may apply the previous special case to F and find a local
inverse G for F. Let w, = f(zg), and let

glw) = G(w — wy) + 2.
Then g is a local inverse for f, thus finishing the proof of Theorem 6.1.

There are (at least) four ways of proving the inverse function theorem.

|. The way we have just gone through, by estimating the formal in-
verse to show that it converges.
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2. Reproducing the real variable proof for real functions of class C'.
By the contraction principle, (shrinking lemma), one first shows that the
map is locally surjective, and one constructs a local inverse, which is
shown to be differentiable, and whose derivative satisfies, for w = f{(z), the
relation

g'(w) = 1/f"().

The reader should be able to copy the proof from any standard book on
analysis, (certainly from my Undergraduate Analysis [La 83]).

3. Assuming the theorem for C* real functions. One can show (and
we shall do so later when we discuss the real aspects of an analytic
function) that an analytic function is C™, as a lunction of (x, y), writing

z=x+Iiy

The hypothesis f'(zq) # 0 (namely a, # 0) is then seen to amount to the
property that the Jacobian of the real function of two variables has non-
zero determinant, whence f has a C* inverse locally by the real theorem.
It is then an easy matter to show by the chain rule that this inverse
satisfies the Cauchy-Riemann equations, and is therefore holomorphic,
whence analytic by the theory which follows Cauchy's theorem.

4. Giving an argument based on more complex function theory, and
carried out in Theorem 1.7 of Chapter VI.

All four methods are important, and are used in various contexts
in analysis, both of functions of one variable, and functions of several
variables.

Let U be an open set and let f be a function on U. We say that f is
an open mapping if for every open subset U’ of U the image f(U") is
open.

Theorem 6.1 shows that the particular type of function considered
there, ie. with non-zero first coefficient in the power series expansion, is
locally open. We shall now consider arbitrary analytic functions, first at
the origin.

Let

=% az"

be a convergent non-constant power series, and let m = ord f, so that

Jf{(z) = a,,z" + higher terms, a, #0.
= a,z"(1 + h(2)),
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where h(z) is convergent, and has zero constant term. Let a be a com-
plex number such that a™ = a,,. Then we can write f(z) in the form

f(2) = (az(1 + k()"

wl_mere hy(z) is a convergent power serics with zero constant term, ob-
tained from the binomial expansion

(1 + h(z))™ = | + hy(z),
and

Silz) = az(1 + hy(2)) = az + azh,(z)

is a power series whose coefficient of z is a # 0. Theorem 6.1 therefore
applies to f;(z), which is therefore locally open at the origin. We have

Mz) = filz)™

Let U be an open disc centered at the origin on which f, converges.
Then f,(U) contains an open disc V. The image of ¥ under the map

wi—w™
is a disc. Hence f{U) contains an open disc centered at the origin.
Theorem 6.2. Let f be analytic on an open set U, and assume that for
each point of U, f is not constant on a given neighborhood of that
point. Then [ is an open mapping.
Proof. We apply the preceding discussion to the power series expan-
sion of f at a point of U, so the proof is obvious in the light of what we
have already done.

The construction in fact yielded the following statement which it is
worthwhile extracting as a theorem.

Theorem 6.3. Let f be analytic at a point zq,
fle)=ao+ ¥, a,lz =z

withm =1 and a, #0. Then there exists a local analytic isomorphism
o at 0 such that

J(z) = ag + olz — zo)™
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We interpret Theorem 6.3 as follows. Let
U=V

be an analytic isomorphism. We write w = tf(z). We may view { as a
change of coordinates, from the coordinate z to the coordinate w. In
Theorem 6.3 we may therefore write

Slz)=ap + w",

where w = @z — z). The expansion for f in terms of the coordinate
w is therefore much simpler than in terms of the coordinate z.

We also get a criterion for a function to have an analytic inverse on a
whole open set.

Theorem 6.4. Let [ be analytic on an open set U, and assume that f is
injective. Let V = f{U) be its image. Then f:U—V is an analytic
isomorphism, and ['(z) # 0 for all ze U.

Proof. The function f between U and V is bijective, so we can define
an inverse mapping g: ¥ — U. Let z; be a point of U, and let the power
series expansion of [ at z; be as in Theorem 6.3. If m > | then we see
that f cannot be injective, because the m-th power function in a neigh-
borhood of the origin is not injective (it wraps the disc m times around).
Hence m = 1, and Theorem 6.1 now shows that the inverse function g is
analytic at f{z;). This proves the theorem.

Example 1. Let f{z) = 3 — 5z + higher terms. Then f(0) = 3, and
[0)=a,=-5%0.
Hence [ is a local analytic isomorphism, or locally invertible, at 0.
Example 2. Let f(z) = 2 — 2z + z>. We want to determine whether f

is locally invertible at z = 1. We write the power series expansion of f at
1, namely

fO=14+@Ez—-1Y=1+a,z—1)%
Here we have a; = 0. Hence f is not locally invertible at z = 1.

Example 3. Let f(z) = cos z. Determine whether f is locally invertible
at z=10. In this case,

2
S =1-— % + higher terms,

so a; = 0 and f is not locally invertible.



[11, §7] THE LOCAL MAXIMUM MODULUS PRINCIPLE 83

Example 4. Let f(z) =z Then j'(z) = 3z® and ['(0)=0. Thus [ is
not locally invertible at 0. On the other hand, f’(z) # 0 if z # 0. Hence
if z5# 0 then f is locally invertible at z,. However, let U be the open
set obtained by deleting the origin from C. Then f is not invertible on
U. (Why?)

Il, §6. EXERCISES

Determine which of the following functions are local analytic isomorphism at the
given point. Give the reason for your answer.

L fiz)=efatz=0.
2. flz) =sin(z*) at z =0.
L fizd=(z—Wz=2atz=1
4. flzy=(sinz)* at z=0.
5 flz)=coszatz=n.
6. Linear Differential Equations. Prove:
Theorem. Let ag(z), ....a,(2z) be analytic functions in a neighborhood of 0.
Assume that ag(0) # 0. Given numbers cq, ...,C4—y, there exists a unigue ana-
Iytic function f at 0 such that
i =¢, for n=0,... k=1
and such that
ag(2) D (2) + a, (2)D* 7 flz) + - + a2 () = 0.
[Hint; First you may assume ag(z)=1 (why?. Then solve for [ by a formal
power series, Then prove this formal series converges.]
7. Ordinary Differential Equations. Prove:
Theorem. Let g be analytic at 0. There exists a unique analytic function f at 0
satisfying
SO =0, and J'(z)=glS ().
[Hint: Again find a formal solution, and then prove that it converges.]

[Note: You will find the above two problems worked out in the Appendix, §3,
but please try to do them first before looking up the solutions.]

I, §7. THE LOCAL MAXIMUM MODULUS PRINCIPLE

This principle is an immediate application of the open mapping theorem,
and so we give it here, to emphasize its direct dependence with the
preceding section. On the other hand, we wait for a later chapter for less
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basic applications mostly for psychological reasons. We want to alter-
nate the formal operations with power series and the techniques which
will arise from Cauchy’s theorem. The later chapter could logically be
read almost in its entirety after the present section, however.

We say that a function [ is locally constant at a point z, if there exists
an open set D (or a disc) containing z, such that f is constant on D.

Theorem 7.1. Let [ be analytic on an open set U. Let zoeU be a
maximum for |f|, that is,

If(zo)l 2 1f(2)l,  forall zeU.
Then [ is locally constant at z,.
Proof. The function [ has a power series expansion at z,,
fle)=ag +ay(z —zo) +---.
If f is not the constant a, = f(zg), then by Theorem 6.2 we know that f
is an open mapping in a neighborhood of z, and therefore the image of
f contains a disc D(ag, 5) of radius s > 0, centered at a,. Hence the set

of numbers |f(z)], for z in a neighborhood of z,, contains an open
interval around ay, so | f(z)] = | f{z)] for some 2. Hence

1/(zo)l = laol
cannot be a maximum for f, a contradiction which proves the theorem.

Corollary 7.2. Let f be analytic on an open set U, and let zye U be a
maximum for the real part Re f, that is,

Re fizy) Z Re flz), Jorall zelU.
Then f is locally constant at z,.
Progf. The function e/ is analytic on U, and if
S(z) = ulz) + iv(z)
is the expression of f in terms of its real and imaginary parts, then
|7 = guis),

Hence a2 maximum for Ref is also a maximum for |e/?|, and the
corollary follows from the theorem.



(11, §71 THE LOCAL MAXIMUM MODULUS PRINCIPLE 85

The theorem is often applied when f is analytic on an open set U
and is continuous at the boundary of U. Then a maximum for |f(z)|
necessarily occurs on the boundary of U. For this one needs that U
is connected, and the relevant form of the theorem will be proved as
Theorem 1.3 of the next chapter.

We shall give here one more example of the power of the maximum
modulus principle, and postpone to a later chapter some of the other
applications.

Theorem 7.3. Let
fle)=ag+az+ - +a,z*

be a polynomial, not constant, and say ay# 0. Then f has some com-
plex zero, i.e. a number zq such that f(z,) = 0.

Proof. Suppose otherwise, so that 1/f(z) is defined for all z, and
defines an analytic function. Writing

o a0 | ayz
Z) =g\ —+—++1),
Ji@)=a, (a,z‘ a,2 )

one sees that
lim 1/f{z) = 0.
el

Let & be some complex number such that f(x)# 0. Pick a positive
number R large enough such that || < R, and if |z| = R, then

A S
1@~ @l

Let § be the closed disc of radius R centered at the origin. Then S is
closed and bounded, and 1/]f(z)] is continuous on §, whence has a maxi-
mum on §, say at z,. By construction, this point z; cannot be on the
boundary of the disc, and must be an interior point. By the maximum
modulus principle, we conclude that 1/f(z) is locally constant at z,. This
is obviously impossible since f itsell is not locally constant, say from the
expansion

J(2) = bo + bylz — zo) + -+ + bulz — 2o)",

with suitable coefficients by, ...,b; and b, # 0. This proves the theorem,



CHAPTER Il

Cauchy’s Theorem, First Part

1il, §1. HOLOMORPHIC FUNCTIONS ON
CONNECTED SETS

Let [a, b] be a closed interval of real numbers. By a curve y (defined on
this interval) we mean a function

yi[a, b]=C
which we assume to be of class C'.
lé)
1lm
Figure 1
We recall what this means. We write
() = i) + iya(e),

where y, is the real part of y, and y, is its imaginary part. For instance,
the curve

y(@)=cosf +isinh, 0=Z0=<2nm

is the unit circle. OF class C' means that the functions y, (1), y,(r) have
continuous derivatives in the ordinary sense of calculus. We have drawn

86
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a curve in Fig. 1. Thus a curve is a parametrized curve. We call y(a) the
beginning point, and y(b) the end point of the curve. By a point on the
curve we mean a point w such that w = y(t) for some ¢ in the interval of
definition of y.

We define the derivative y'(f) in the obvious way, namely
y'(e) = yile) + ivale)
It is easily verified as usual that the rules for the derivative of a sum,
product, quotient, and chain rule are valid in this case, and we leave this
as an exercise. In fact, prove systematically the following statements:
Let F:[a,b] - C and G:[a,b] =+ C be complex valued differentiable
functions, defined on the same interval. Then:

(F+GY=F +G,
(FGY = FG' + F'G,
(F/GY = (GF' — FG')/G?
{this quotient rule being valid only on the set where G(f) # 0).
- Let ¢: [c, d] = [a, b] be a differentiable function. Then y ey is differ-
entiable, and

{y o Y (0) =y (Pl (o),

as illustrated on Fig. 2(i).

5 v T ¥
p—_—t — = — .
[ d a b

Figure 2(i)
Finally suppose y is a curve in an open set U and
f:Uu=C

is a holomorphic function. Then the composite [ ey is differentiable (as
a function of the real variable ) and

(fepy) = 1ok,
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as illustrated on Fig. 2(ii).

1
%—*».—u
a b

Figure 2(ii)

It is technically convenient to deal with a generalization of curves. By
a path we shall mean a sequence of curves,

7= {Ti V20 eei¥n}

(so each curve y; is C') such that the end point of j; is equal to the
beginning point of y,,. If y; is defined on the interval [a;, b;], this means
that

}‘;{bﬂ = Ti+1 {ﬂ;ﬂ )

We have drawn a path on Fig. 3, where z; is the end point of . We
call y,(a,) the beginning point of y, and y,(b,) the end point of 3. The path
is said to lie in an open set U if each curve y; lies in U, ie. for each ¢, the
point y(r) lies in U.

T4
0 T 3

Figure 3

We define an open set U to be connected if given two points a and
in U, there exists a path {y,,...,.} in U such that a is the beginning
point of y, and f is the end point of y,; in other words, if there exists a
path in U which joins « to f. In Fig. 4 we have drawn an open set
which is not connected. In Fig. 5 we have drawn a connected open set.
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(The definition of connected applies of course equally well to a set which
is not necessarily open. It is usually called pathwise connected, but for
open sets, this coincides with another possible definition. See the appen-
dix of this section.)

Figure 4

Figure 5

Theorem 1.1. Let U be a connected open set, and let [ be a holomor-
phic function on U. If [* =0 then [ is constant.

Proof. Let @, f# be two points in U, and suppose first that y is a curve
joining & to f, so that

ylay=a and  yb)=4p.

The function

1= /(1)
is differentiable, and by the chain rule, its derivative is
I'yoh'tn=0.
Hence this function is constant, and therefore

Si@) = f(y(a) = f(v(b)) = S(B).
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Next, suppose that y = {y,,...,7,} is a path joining a to f, and let z
be the end point of y;, putting

fo=0; z,=p.
By what we have just proved, we have

&)= flzo) = flzy) = flz;) = - = flz,) = f(B),
thereby proving the theorem.

If f is a function on an open set U and g is a holomorphic function
on U such that g’ = f, then we call g a primitive of f on U. Theorem
.1 says that on a connected open set, a primitive of f is uniquely
determined up to a constant, ie. if g, and g, are two primitives, then
g1 — g, is constant, because the derivative of g, — g, is equal to 0.

In what follows we shall attempt to get primitives by integration. On
the other hand, primitives can also be written down directly.

Example. For each integer n# —1, the function f{z) =z" has the
usual primitive
zn+l

n+ 1"

Let § be a set of points, and let z, e 5. We say that z, is isolated in §
if there exists a disc D(zq, r) of some radius r > 0 such that D(z,, r) does
not contain any point of § other than z;. We say that § is discrete if
every point of § is isolated.

Theorem 1.2. Let U be a connected open set.

(i) If [ is analytic on U and not constant, then the set of zeros of f
on U is discrete.

(i) Let f, g be analytic on U. Let S be a set of points in U which is
not discrete (so some point of S is not isolated). Assume that
fz)=g(z) forall zin S. Then [ =g on U.

Proof. We observe that (i) follows from (i). It suffices to consider the
difference f —g. Therefore we set about to prove (i. We know from
Theorem 3.2 of the preceding chapter that either f is locally constant
and equal to O in the neighborhood of a zero zg, or z, is an isolated
ZETO.

Suppose that [ is equal to 0 in the neighborhood of some point z,.
We have to prove that f(z) =0 for all ze U. Let § be the set of points z
such that f is equal to 0 in a neighborhood of z. Then § is open. By
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Theorem 1.6 below, it will suffice to prove that § is closed in U. Let z,
be a point in the closure of § in U. Since f is continuous, it follows that
flz;)=0. If z; is not in S, then there exist points of § arbitrarily close
to z,, and by Theorem 3.2 of the preceding chapter, it follows that f is
locally equal to 0 in a neighborhood of z,. Hence in fact z, €S, so § is
closed in U. This concludes the proof.

Remarks. The argument using open and closed subsets of U applies
in very general situations, and shows how to get a global statement on a
connected set U knowing only a local property as in Theorem 3.2 of the
preceding chapter.

It will be proved in Chapter V, §l, that a function is holomorphic if
and only if it is analytic. Thus Theorem 1.2 will also apply to holomor-
phic functions.

The second part of Theorem 1.2 will be used later in the study of
analytic continuation, but we make some comments here in anticipation.
Let [ be an analytic function defined on an open set U and let g be an
analytic function defined on an open set V. Suppose that U and V have
a non-empty intersection, as illustrated on Fig. 6. If U, V are connected,
and if f{z)=g(z) for all zeUnV, ie. if f and g are equal on the
intersection U~ ¥, then Theorem 1.2 tells us that g is the only possible
analytic function on V¥ having this property. In the applications, we shall
be interested in extending the domain of definition of an analytic func-
tion f, and Theorem 1.2 guarantees the uniqueness of the extended func-
tion. We say that g is the analytic continuation of f to V.

&

Figure 6

It is also appropriate here to formulate the global version of the
maximum modulus principle.

Theorem 13. Let U be a connected open set, and let [ be an analytic
function on U. If zg€ U is a maximum point for |f), that is

1f(z0)l 2 |f(2)]

for all z € U, then f is constant on U.
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Proof. By Theorem 6.1 of the preceding chapter, we know that f is
locally constant at z,. Therefore [ is constant on U by Theorem 1.2(ii)
(compare the constant function and f). This concludes the prool.

Corollary 1.4. Let U be a connected open set and U€ its closure. Let [
be a continuous function on U, analytic and non-constant on U. If z
is @ maximum for f on US, that is, | f(zo)| 2 |f(2)| for all z € U*, then z;
lies on the boundary of U*®.

Proof. This comes from a direct application of Theorem 1.3.

Remark. If U¢ is closed and bounded, then a continuous function has
a maximum on U*, so a maximum for f always exists in Corollary 1.4.

A dix: Connected

The purpose of this appendix is to put together a couple of statements
describing connectedness in various terms. Essentially we want to prove
that two possible definitions of connectedness are equivalent. For pur-
poses of this appendix, we use the words pathwise connected for the
notion we have already defined. Let U be an open set in the complex
numbers. We say that U is topologically connected if U cannot be ex-
pressed as a union U= Vu W, where V, W are open, non-empty, and
disjoint. We start with what amounts to a remark. Let S be a subset of
U. We say that § is closed in U if given z € U and z in the closure of §,
then z e §.

Lemma 1.5. Let § be a subset of an open set U. Then § is closed in U
if and only if the complement of S in U is open, that is, U — § is open.
In particular, if S is both open and closed in U, then U — § is also open
and closed in U.

Proof. Exercise 1.

Theorem 1.6. Let U be an open set. Then U is pathwise connected if
and only if U is topologically connected.

Proof of Theorem 1.6. Assume that U is pathwise connected. We
want to prove that U is topologically connected. Suppose not. Then
U= Vu W where V, W are non-empty and open. Let z, € V and z, e W.
By assumption there exists a path y: [a, b] - U such that y(a) = z, and
y(b) = z,. Let T be the set of t € [a, b] such that y(t)e V. Then T is not
empty because a€ T, and T is bounded by b. Let ¢ be the least upper
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bound of T. Then ¢ # b. By definition of an upper bound, there exists a
sequence of real numbers t,, with ¢ <, < b such that y(t,)e W, and 1,
converges to ¢. Since y is continuous, it follows that y(c) = lim y(t,), and
since W is closed in U, it follows that y(c)e W. On the other hand, by
definition of a least upper bound, there exists a seq of real numb

s, with a s, < ¢ such that s, converges to ¢, and y(s,)e V. Since y is
continuous, it follows that y(¢) = lim y(s,), and since V is closed in U, it
follows that y(c) € ¥, which is a contradiction proving that U is topologi-
cally connected.

Conversely, assume U is topologically connected. We want to prove
that U is pathwise connected. Let zoe U. Let V be the set of poinlts in
U which can be joined to z; by a path in U. Then V is open. Indeed,
suppose that there is a path in U joining z, to z,. Since U is open,
there exists a disc D(z,,r) of radius r > 0 contained in U. Then every
element of this disc can be joined to z; by a line segment in the disc, and
can therefore be joined to z, by a path in U, so V is open. We assert
further that V is closed. To see this, let {z,} be a sequence in V converg-
ing to a point u in U. Since U is open, there exists a disc D{u,r) of
radius r > 0 contained in U. For some n the point z, lies in D{u,r).
Then there is a line segment in D(u, r) joining u and z,, and so u can be
joined by a path to z,. This proves that V is closed. Hence V is both
open and closed, and by assumption, V¥ = U. This proves that U is
pathwise connected, and concludes the proof of Theorem L.6.

Warning. The equivalence of the two notions of connectedness for
open sets may not be valid for other types of sets. For instance, consider
the set consisting of the horizontal positive x-axis, together with vertical
segments of length 1 above the points 1, 1/2, 1/3, ...,1/n, ... and also
above 0. Now delete the originn The remaining set is topologically
connected but not pathwise connected. Draw the picture! Also compare
with inaccessible points as in Chapter X, §4.

I, §1. EXERCISES

. Prove Lemma 1.5.

2. Let U be a bounded open connected set, {f} a sequence of continuous
functions on the dosure of U, analytic on U. Assume that {f} converges
uniformly on the boundary of U. Prove that {f,} converges uniformly on U.

3. Let a,, ...,a, be points on the unit circle. Prove that there exists a point z on
the unit circle so that the product of the distances from z to the a; is at least
1. (You may use the maximum principle.)
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lll, §2. INTEGRALS OVER PATHS

Let F:[a, b] - C be a continuous function.
Write F in terms of its real and imaginary parts, say

F(e) = u(t) + iv(t).
Define the indefinite integral by

j.F(t) dt = ‘[u[!] dt +i J.u(!'] dr.

Verify that integration by parts is valid (assuming that F’ and G' exist
and are continuous), namely

IF(f)G'(.r} dt = F(G(r) — J-G(J}F’(:) dt.

(The proof is the same as in ordinary calculus, from the derivative of a
product.)
We define the integral of F over [a, b] to be

[: F(t)dt = E u(r) dr + EJ: v(r) dr.

Thus the integral is defined in terms of the ordinary integrals of the real
functions u and v. Consequently, by the fund. tal theorem of calculus
the function

[+ ‘r F(s)ds

is differentiable, and its derivative is F(t), because this assertion is true if
we replace F by u and v, respectively.

Using simple properties of the integral of real-valued functions, one
has the inequality

r F(n) dr' < r IF()] de.

Work it out as Exercise 11.
Let f be a continuous function on an open set U, and suppose that y
is a curve in U, meaning that all values y(f) lie in U for a<t < b We
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define the integral of f along y to be

I L= [: O de.

This is also frequently written

J. 1(z) d=.

Example 1. Let f(z) = 1/z. Let y(f) = ¢*. Then
¥(6) = ie®.

We want to find the value of the integral of f over the circle,

j.ldz
vz

50 0 < @ = 2n. By definition, this integral is equal to

= | Im
-[ -n—,fe"dﬂ=if dfl = 2mi.
o €

95

As in calculus, we have defined the integral over parametrized curves.
In practice, we sometimes describe a curve without giving an explicit
parametrization. The context should always make it clear what is meant.
Furthermore, one can also easily see that the integral is independent of

the parametrization, in the following manner
Let
g:[a,b] = [¢,d]

be a C! function, such that g(a) = ¢, g(b) = d, and let

Y:[e,d]=C

Fib) = gld)

)= is) and 5 = glr)

@)= g le)
Figure 7
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be a curve. Then we may form the composed curve

() = ylglr).
We find:

_[ I= be (y(0)y'(0) dt
. j"fw(em)w(gm;m a:
= r Sy (s) ds

ny

Thus the integral of f along the curve is independent of the parametriza-
tion.
Ify = {y,,...,3} is a path, then we define

J:f=i;‘l iy

to be the sum of the integrals of | over each curve y; of the path.

Theorem 2.1. Let [ be continuous on an open set U, and suppose that f
has a primitive g, that is, g is holomorphic and g' = f. Let «, fi be two
points of U, and let y be a path in U joining « to ff. Then

_[ J=g(p) — gla),

and in particular, this integral depends only on the beginning and end
point of the path. It is independent of the path itself.

Proof. Assume first that the path is a curve. Then

(]
_[ fE)dz= I g'(y()y'(0) de.

By the chain rule, the expression under the integral sign is the derivative

d
@ aly(0).
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Hence by ordinary calculus, the integral is equal to

a(y(n) Fu a(y(b) — g(v(a)),

which proves the theorem in this case. In general, if the path consists of
CUTVES ¥y, ...,Yy, and z; is the end point of y;, then by the case we have
just settled, we find
j S =glz,) — glzo) + glz2) — g(zy) + -+ + glz,) — glza-y)
T
=glz,) — glzo),

which proves the theorem.

Example 2. Let f(z) = z*. Then f has a primitive, g(z) = z*/4. Hence
the integral of f from 2 + 3i to | — i over any path is equal to

(L—i* (2+3F

4 4

Example 3. Let f(z) =¢". Find the integral of f from 1 to in taken
over a line segment. Here again [*(z) = f{(z), so f has a primitive. Thus
the integral is independent of the path and equal to e™ —e' = —1 —e.

By a closed path, we mean a path whose beginning point is equal to
its end point. We may now give an important example of the theorem:

If [ is a continuous function on U admitting a holomorphic primitive g,
and y is any closed path in U, then

£f=&

Example 4. Let f(z) = z", where n is an integer # —1. Then for any
closed path y (or any closed path not passing through the origin if n is
negative), we have

J. z"dz =0,
¥

This is true because z" has the primitive z"*'f(n + 1). [When n is nega-
tive, we have to assume that the closed path does not pass through the
origin, because the function is then not defined at the origin.]
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Putting this together with Example 1, we have the following tabula-
tion. Let Cg be the circle of radius R centered at the origin oriented
counterclockwise. Let n be an integer. Then:

z,dz_{o if n#—1,
Ca T 2w ifn=—1

Of course, in Example 1 we did the computation when R = [, but you
can check that one gets the same value for arbitrary R. In the exercises,
you can check similar values for the integral around a circle centered
around any point z;.

We shall see later that holomorphic functions are analytic. In that
case, in the domain of convergence a power series

E an(z - z0]“
can be integrated term by term, and thus integrals of holomorphic func-

tions are reduced to integrals of polynomials. This is the reason why
there is no need here to give further examples.

Theorem 2.2. Let U be a connected open set, and let [ be a continuous
Junction on U. If the integral of [ along any closed path in U is equal
to 0, then f has a primitive g on U, that is, a function g which is
holomorphic such that g' = f.

Proof. Pick a point z, in U and define

a(z) = ‘[ I8

where the integral is taken along any path from z, to z in U. Il y, i are
two sucl:h paths, and 5~ is the reverse path of y (c[ Exercise 9), then
{177} is a closed path, and by Exercise 9 we know that

[r=]s

Therefore the integral defining g is independent of the path from z, to z,
and defines the function. We have

glz+h—glz) 1 [=**
#—h—_FJ‘_. JL) dg,
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and the integral from z to z + h can be taken along a segment in U from
ztoz+ h Write

J€) = f(z) + oll),

where lim @({) = O (this can be done by the continuity of [ at z). Then
{—z

1 [Tt 1 [=** 1 [=+*
,-'L f(CJd€=,—I£ f(I}dC+5J; (L) dl

=f(=}+'3£

The length of the interval from z to z + h is |hl. Hence the integral on
the right is estimated by (see below, Theorem 2.3)

@(0) di.

ITIM max [@({)

1
|
where the max is taken for { on the interval. This max tends to 0 as
h— 0, and this proves the theorem.

Remarks. The reader should recognize Theorems 2.1 and 2.2 as being
the exact analogues for (complex) differentiable functions of the standard
theorems of advanced calculus concerning the relation between the exist-
ence of a primitive (potential function for a vector field), and the inde-
pendence of the integral (of a vector field) from the path. We shall see
later that a holomorphic function is infinitely complex differentiable, and
therefore that f itselfl is analytic.

Let y be a curve, y: [a, b] = C, assumed of class C' as always. The
speed is defined as usual to be |y’(t)l, and the length L(y) is defined to be
the integral of the speed,

b
L(?)"J [y’ ()l de.
If y = {y;,..,7a} is 2 path, then by definition
L) = 3. Lo

Let [ be a bounded function on a set §. We let [|f]| be the sup norm,
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written | f|s if the reference to S needs to be made for clarity, so that

I = sup [f=)

is the least upper bound of the values |f(z)| for z€ S.

Let f be continuous on an open set U. By standard results of elemen-
tary real analysis, Theorem 4.3 of Chapter I, the image of a curve or a
path y is closed and bounded, ie. compact. If the curve is in U, then the
function

t f(y(0)
is continuous, and hence f is bounded on the image of y. By the
compactness of the image of y, we can always find an open subset of U
containing y, on which f is bounded. If y is defined on [a, b], we let
ISl = max |f{y(0)].
1ufab)

Theorem 2.3. Let [ be a continuous function on U. Let y be a path in
U. Then

” f| = I/, LG)-
Progf. 1y is a curve, then

I

_[ Sy de

éIuMMWWm
= IS 1L

as was to be shown. The statement for a path follows by taking an
appropriate sum.

Theorem 24. Let {f,} be a sequence of conti Sfunctions on U,
converging uniformly to a function f. Then

HmLL=Lﬁ

If ¥ f, is a series of continuous functions converging uniformly on U,
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then

[zr-x[n

Progf. The first assertion is immediate from the ineguality.

U,f' - If| = Lif. = f12 1= FILG).

The second follows from the first because uniform convergence of a series
is defined in terms of the uniform convergence of its partial sums,

Ss=hit++f
This proves the theorem.

Example 5. Let f be analytic on an open set containing the closed
disc D(0, R} of radius R centered at the origin, except possibly at the
origin. Suppose [ has a power series expansion

a_p o
fey="F+ D haz ezt
possibly with negative terms, such that the series with non-negative terms

=
Z; a.z"
=

has a radius of convergence > R. Let Cg be the circle of radius R
centered at the origin. Then

‘[ flz) dz = 2mia_,.

Cr

This is a special case of Theorem 2.4 and Example 4, by letting
Si(z) = .-=Z- a,z*.

Each f, is a finite sum, so the integral of f is the sum of the integrals of
the individual terms, which were evaluated in Example 4.
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I, §2. EXERCISES

1. (a) Given an arbitrary point z,, let C be a circle of radius r > 0 centered at
2, oriented counterclockwise. Find the integral

j. (z—zp)" dz
€

for all integers n, positive or negative.
(b) Suppose [ has a power series expansion

fm=j oz = 2o)"

which is absolutely convergent on a disc of radius > R centered at z,.
Let Cp be the circle of radius R centered at z,. Find the integral

Sz)d=.
Cn

Find the integral of f{z) = e* from —3 to 3 taken along a semicircle. Is this
integral different from the integral taken over the line segment between the
two points?

s

i

Sketch the following curves with 0 =1 = 1.
(a) yit)=1+ir

(b) plr)=e™™"

(c) y(t)=e™

) yty=1+it+¢

&

Find the integral of each one of the following functions over each one of the
curves in Exercise 3.

(a) flay=2"

(b) flay=2

€ flz)=1/=

. Find the integral

un

-[ ze*' dz
¥

{a) from the point i to the point —i+ 2, taken along a straight line seg-
ment, and
{b) from 0 to | + i along the parabola y = x*

J-sinzdz
¥

from the origin to the point | + i, taken along the parabola

6. Find the integral

y=x2
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7. Let o be a vertical segment, say parametrized by
oft) =z, + ite, —1s1=1,

where z, is a fixed complex number, and ¢ is a fixed real number > 0. (Draw
the picture)) Let &= z4 + x and o' = z; — x, where x is real positive. Find

fim (l —;,)dx.
0 Ja\Z—& z—o

(Draw the picture.) Warning: The answer is not 0!

8 Let x> 0. Find the limit:
8
tim I (__'- St )d:.
8w Jop I +iX [—ix
9. Let y:[a, b] — C be a curve. Define the reverse or opposite curve to be

7 [a,b]=C

such that y7(1) = yla + b — ). Show that

[ #=-[

10. Let [a, 5] and [c,d] be two intervals (not reduced to a point). Show that
there is a function g{f) = rt + s such that g is strictly increasing, gla) = ¢ and
g{b) = d. Thus a curve can be parametrized by any given interval

11. Let F be a continuous complex-valued function on the interval [a, b]. Prove

that
b b
lJ. F(r)d.!léj |F{e)] dr.

[Hint: Let P=[a=ag, a,, ....d,=b] be a partition of [a,b] From the
definition of integrals with Riemann sums, the integral

L] "=
J. F(t)dr is approximated by the Riemann sum lxn Fla) a4y — a)
.
whenever max(ay,, — @) is small, and
b o
I |F()l dt is approximated by gﬂ |Fla)an,, — a).

The proof is concluded by using the triangle inequality.]
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i, §3. LOCAL PRIMITIVE FOR A
HOLOMORPHIC FUNCTION

Let U be a connected open set, and let f be holomorphic on U. Let
2o € U. We want to define a primitive for f on some open disc centered
at zg, ie. locally at z,. The natural way is to define such a primitive by
an integral,

o) = J e,

taken along some path from z, to z. However, the integral may depend
on the path.

It turns out that we may define g locally by using only a special type
of path. Indeed, suppose U is a disc centered at z,. Let ze U. We
select for a path from z, to : the edges of a rectangle as shown on
Fig. 8.

Figure 8§

We then have restricted our choice of path to two possible choices as
shown. We shall see that we get the same value for the integrals in the
two cases. It will be shown afterwards that the integral then gives us a
primitive.

By a rectangle R we shall mean a rectangle whose sides are vertical or
horizontal, and R is meant as the set of points inside and on the bound-
ary of the rectangle, so R is d to be closed. The path describing
the boundary of the rectangle taken counterclockwise will be also called
the boundary of the rectangle, and will be denoted by

@R.

If § is an arbitrary set of points, we say that a function f is holo-
morphic on § if it is holomorphic on some open set containing §.
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Theorem 3.1 (Goursat). Let R be a rectangle, and let f be a Sfunction
holomorphic on R. Then

f=0
R

Proof. Decompose the rectangle into four rectangles by bisecting the
sides, as shown on Fig. 9.

b R Ra
v R R3 4
Figure 9
Then
4
AN
R =1 Jor,

Consequently,

+

Js1=E L

and there is one rectangle, say R'", among R,, R,, R,, R, such that

|
= - 2
Ln"'f| 4 .Ln I

Next we decompose R into four rectangles, again bisecting the sides
of R™ as shown on Fig. 10.

For one of the four rectangles thus obtained, say R®), we have the

.[ RY f l : f|
AR il Jﬁk‘" ’
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Rﬁl
e R

Figure 10

We continue in this way, to obtain a sequence of rectangles

R(l} = Rl‘ll = RI!) =R

Joet 2]t
Jut 23]

On the other hand, let L, be the length of dR™. Then

such that

Then

1
Loy = iLn
so that by induction,
Ly=5ks,
where L, = length of dR.
We contend that the intersection
@
ﬂ Rin
n=1

consists of a single point z;. Since the diameter of R™ tends to 0 as n
becomes large, it is immediate that there is at most one point in the
intersection. Let a, be the center of R™. Then the sequence {z,} is a
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Cauchy sequence, because given €, let N be such that the diameter of
R™ is less than e. If n, m = N, then &, «,, lic in R™ and so

let, — | = diam R™ < ¢,
Let zp =lima,. Then z, lies in each rectangle, because each rectangle
is closed. Hence zy lies in the intersection of the rectangles R™ for
N=1,2, ..., as desired. (See also Theorem 4.2 of Chapter 1.)

Since f is differentiable at z,, there is a disc V centered at z; such
that for all =€ V¥ we have

JG) = flz0) + f'(20Mz — 20) + (2 — 2)h(2),

where
lim hiz) = 0.

z=zg

If n is sufficiently large, then R™ is contained in ¥, and then
j flz)dz== J. Szg) dz +f’(zo)J. (z — z5) dz
AR PR AR

+ J. (z — zp)hiz) dz.
PRI

By Example 4 of §2, we know that the first two integrals on the right of
this equality sign are 0. Hence

J. f=_[ (z — zp)h(z) dz,
R~ AR

and we obtain the inequalities

Jurlzll.sl=

= %Ln diam R™ sup|h(z)],

4"

I (z — zg)hiz) dz
aRe

where the sup is taken for all ze R™. But diam R™ = (1/2") diam R.

This yields
J f| = L diam R sup|h(z)|.
R
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The right-hand side tends to 0 as n becomes large, and consequently

_f /=0,
R

as was to be shown.

We carry out the program outlined at the beginning of the section to
find a primitive locally.

Theorem 3.2. Let U be a disc centered at a point z,. Let [ be
continuous on U, and assume that for each rectangle R contained in U

we have
j f=0
2R

For each point z, in the disc, define

glz,) = _[ £

where the integral is taken along the sides of a rectangle R whose
opposite vertices are zo and z,. Then g is holomorphic on U and is a
primitive for f, namely

g'(2) = f(2).
Proof. We have

Zp+h
glz, + k)—§(2|3=[ S(2) dz
I +h

A,

=y

-—
—

Figure 11
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The integral between z, and z, + h is taken over the bottom side h, and
vertical side h, of the rectangle shown in Fig. 11. Since f is continuous
at z,, there exists a function (z) such that

lim $(z) =0

and

1@) = flz,) + (z)

2,4k 2 +h
glzy + h) — glz,) =I flzy) dz +‘[ Ylz)dz

= hf(z,) + I i) dz.

We divide by h and take the limit as h—0. The length of the path from
z, to z, + h is bounded by [h,| + |h;|. Hence we get a bound

| [r+h
|ij Plz) dz

where the sup is taken for z on the path of integration. The expression
on the right therefore tends to 0 as h—0. Hence

< ;‘;l?;”"" + lhal) supl2)l,

Yy 280~ 8R) "; =9 _ e,

h=0

as was to be shown.

Knowing that a primitive for f exists on a disc U centered at z,, we
can now conclude that the integral of f along any path between z, and z
in U is independent of the path, according to Theorem 2.1, and we find:

Theorem 33. Let U be a disc and suppose that [ is holomorphic on U.
Then [ has a primitive on U, and the integral of f along any closed
path in U is 0.

Remark. In Theorem 7.2 we shall prove that a holomorphic function
is analytic Applying this result to the function g in Theorem 3.2, we
shall conclude that the function f in Theorem 3.2 is analytic. See Theo-
rem 7.7.
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i, §4. ANOTHER DESCRIPTION OF THE
INTEGRAL ALONG A PATH

Knowing the existence of a local primitive for a holomorphic function
allows us to describe its integral along a path in a way which makes no
use of the differentiability of the path, and would apply to a continuous
path as well. We start with curves.

Lemma 4.1. Let y: [a, b] — U be a continuous curve in an open set U.
Then there is some positive number r> 0 such that every point on the
curve lies at distance = r from the complement of U.

Figure 12

Progf. The image of y is compact. Consider the function

@(t) = min [y() — wl,

where the minimum is taken for all w in the complement of U. This
minimum exists because it suffices to consider w lying inside some big
circle. Then ¢(t) is easily verified to be a continuous function of t,
whence @ has a minimum on [a, b], and this minimum cannot be 0
because U is open. This proves our assertion.

Let P = [ag,...,a,) be a partition of the interval [a, b]. We also write
P in the form

Let {Dg,...,D,} be a sequence of discs. We shall say that this sequence
of discs is connected by the curve along the partition if D; contains the
image y([a;, a;4,]). The lollowing figure illustrates this.

One can always find a partition and such a connected sequence of
discs. Indeed, let € > 0 be a positive number such that € < r/2 where r is
as in Lemma 4.1, Since y is uniformly continuous, there exists & such
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Figure 13

that if 1, se[a,b] and |t —s| <&, then |p(t) — y(s)] <e. We select an
integer n and a partition P such that each interval [a;, a;,,] has length
< 4. Then the image y([a;, a;,,]) lies in a disc D; centered at y(a;) of
radius €, and this disc is contained in U.

Let / be holomorphic on U Let ¥;: [a;, 8i41] — U be the restriction of y
to the smaller interval [a;,ai44). Then

JI=‘§: ¥

Let y(a;) = z;, and let g; be a primitive of f on the disc D;. If each y, is
of class C' then we find:

-[ f= :_i:' [aizis1) — gilz)]-

Thus even though f may not have a primitive g on the whole open set
U, its integral can nevertheless be expressed in terms of local primitives
by decomposing the curve as a sum of sufficiently smaller curves. The
same formula then applies to a path.

This procedure allows us to define the integral of f along any continu-
ous curve; we do not need to assume any differentiability property of the
curve. We need only apply the above procedure, but then we must show
that the expression

:Z; [g:dzia1) — ailz:)]

is independent of the choice of partition of the interval [a, b] and of the
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choices of the discs D; containing y([a;, a;4,1). Then this sum can be
taken as the definition of the integral

J

The reader interested only in applications may omit the foi]o_wing consid-
erations. First we state formally this independence, repeating the con-
struction.

Lemma 4.2. Let y: [a, b] = U be a continuous curve. Let
Gg=asaSa;s--Sa,=b

be a partition of [a, b] such that the image y([a;, a;+,]) is contained in
a disc D;, and D, is contained in U. Let [ be holomorphic on U and let
g; be a primitive of [ on D;.

Let z; = y(a;). Then the sum

=1
‘tf.‘; Laizist) — gilzi)]

is independent of the choices of partitions, discs Dy, and primitives g; on
D; subject to the stated conditions.

Progf. First let us work with the given partition, but let B; be another
disc containing the image y([a;, a;4,]), and B; contained in U. Let h; be
a primitive of f on B,. Then both g;, h; are primitives of f on the
intersection B;n D;, which is open and connected. Hence there exists a
constant C; such that g;=h, + C, on B,nD,. Therefore the differences
are equal:

gilzina) — 9idz;) = hilzih,) — hilz))-

Thus we have proved that given the partition, the value of the sum is
independent of the choices of primitives and choices of discs.

Given two partitions, we can always find a common refinement, as in
elementary calculus. Recall that a partition

Q= [bn- ”'vbml

is called a refinement of the partition P if every point of P is among the
points of Q, that is if each a; is equal to some b. Two partitions always
have a common refinement, which we obtain by inserting all the points
of one partition into the other. Furthermore, we can obtain a refinement
of a partition by inserting one point at a time. Thus it suffices to prove
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that if the partition Q is a refinement of the partition P obtained by
inserting one point, then Lemma 4.2 is valid in this case. So we can
suppose that Q is obtained by inserting some point ¢ in some interval
[ax, ay4,] for some k, that is Q is the partition

[0, - 18k, € By -4, )

We have already shown that given a partition, the value of the sum as in
the statement of the lemma is independent of the choice of discs and
primitives as described in the lemma. Hence for this new partition @, we
can take the same discs D; for all the old intervals [a;, a;,,] when i #k,
and we take the disc D, for the intervals [a,,c] and [c, a,4,] Similarly,
we take the primitive g; on D; as before, and g, on D,. Then the sum
with respect to the new partition is the same as for the old one, except
that the single term

gulzea) — aulz)

is now replaced by two terms

ailzin) — (@) + au(¥(0) — gulz,).
This does not change the value, and concludes the proof of Lemma 4.2.

For any continuous path y: [a, b] -+ U we may thus define

'[rf = Li; [gl[?(ﬂtﬂl) = gl(ﬂai)}]

for any partition [ay.4a,,...,a,] of [a, b] such that y([a;, a;,,]) is con-
tained in a disc D;, D, = U, and g; is a primitive of f on D;. We have
just proved that the expression on the right-hand side is independent of
the choices made, and we had scen previously that if y is piecewise C!
then the expression on the right-hand side gives the same value as the
definition used in §2. It is often convenient to have the additional flexi-
bility provided by arbitrary continuous paths.

Remark. The technique of propagating discs along a curve will again
be used in the chapter on holomorphic continuation along a curve.

As an application, we shall now sce that if two paths lie “close to-
gether”, and have the same beginning point and the same end point, then
the integrals of f along the two paths have the same value. We must
define precisely what we mean by “close together”. After a repara-
metrization, we may assume that the two paths are defined over the same
interval [a,b]. We say that they are close together if there exists a
partition

a=aSaSa s 2a=>5
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and for each i =0, ...,n— 1 there exists a disc D; contained in U such
that the images of cach segment [a;, a;4,] under the two paths y, y are
contained in D;, that is,

Wla oy D= D and  nl[ag, @iy 1) = D

Lemma 4.3. Let y, 5 be two continuous paths in an open set U, and
assume that they have the same beginning point and the same end point.
Assume also that they are close together. Let [ be holomorphic on U.

Then
[r-]s

Proof. We suppose that the paths are defined on the same interval
[a, b], and we choose a partition and discs D, as above. Let g, be a
primitive of f on D,. Let

7 = yla;) and wi = nla;).

We illustrate the paths and their partition in Fig. 14.

'- " TO=a =

20 =y (a) =n (a} = wp

Figure 14

But g;4; and g; are primitives of { on the connected open set Dy, N D;,
SO g4y — g; is constant on Dy, nD;. But Dy, n D, contains 24, and
Wiy, . Consequently

Girr(2i01) = Graa(wyy,) = 9ilzis1) = Gilwisy):

Then we find

o
j;f" ‘[ f= ;Zn Coiziss) = ailz) — (gilwisy) — gitw)))]

= :—io [{gizi) — 9{(W|+;]} —(gilz) — Qi{wﬂ}]
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= Ga-1(2,) = Gu-1(w,) — (90(20) — Golwo))
=0,

because the two paths have the same beginning point z, = wg, and the
same end point z, = w,. This proves the lemmas.

One can also formulate an analogous lemma for closed paths.

Lemma 4.4. Let y, n be closed continuous paths in the open set U, say
defined on the same interval [a, b]. Assume that they are close together.
Let f be holomorphic on U. Then

Jo- s

Proof. The proof is the same as above, except that the reason why we
find 0 in the last step is now slightly different. Since the paths are closed,
we have

=1z, and Wo = Wy,
as illustrated in Fig. 15. The two primitives g,_, and g, differ by a
constant on some disc contained in U and containing z,, wy. Hence the

last expression obtained in the proof of Lemma 4.3 is again equal to 0,
as was to be shown.

Figure 15

I, §5. THE HOMOTOPY FORM OF CAUCHY'S THEOREM
Let y, n be two paths in an open set U. After a reparametrization if
necessary, we assume that they are defined over the same interval [a, b].
We shall say that y is homotopic to » if there exists a continuous function

W:fa b] % [e,d]=U
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defined on a rectangle [a, b] * [c, d], such that
Ui, e)=y() and (. d)=n()

for all t € [a, b]. ) )
For each number s in the interval [, d], we may view the function
such that

Ult) = it 5)

as a conti curve, defined on [a, b], and we may view the family of
continuous curves \J, as a deformation of the path y to the path n. The
picture is drawn on Fig. 16. The paths have been drawn with the same
end points because that's what we are going to use in practice, Formally,
we say that the homotopy  leaves the end points fixed if we have

Yla,s)=vl@) and (b s)=y(b)

for all values of s in [c, d]. In the sequel it will be always understood that
when we speak of a homotopy of paths having the same end points, then
the homotopy leaves the end points fixed.

Similarly, when we speak of a homotopy of closed paths, we assume
always that each path y, is a closed path. These additional requirements
are now regarded as part of the definition of homotopy and will not be
repeated each time.

Theorem 5.1. Let y, y be paths in an open set U having the same
beginning point and the same end point. Assume that they are homo-
topic in U. Let f be holomorphic on U. Then

[r=[s

Theorem 5.2. Let y, n be closed paths in U, and assume that they are

Tb)

7 (o)
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homotopic in U. Let f be holomorphic on U. Then

o[

In particular, if y is homotopic to a point in U, then

jf=a

Either of these statements may be viewed as a form of Cauchy’s
theorem. We prove Theorem 5.2 in detail, and leave Theorem 5.1 to the
reader; the proof is entirely similar using Lemma 4.3 instead of Lemma
4.4 from the preceding section. The idea is that the homotopy gives us a
finite sequence of paths close to each other in the sense of these lemmas,
50 that the integral of f over each successive path is unchanged.

The formal prool runs as follows. Let

:[a, bl % [c,d] - U

be the homotopy. The image of i is compact, and hence has distance
> 0 from the complement of U'. By uniform continuity we can therefore
find partitions

a=a;Sa S

A

a,=bh,
c=cp S, S Sc,=d

1A

of these intervals, such that if
§;; = small rectangle [g;, a;4,] % [¢}, €441

then the image /(S;;) is contained in a disc D;; which is itsell contained
in U. Let y; be the inuous curve defined by

Yl =vitgh  J=0,...m

Then the continuous curves y;, 4, are close together, and we can apply
the lemma of the preceding section to conclude that

J.a,f= L,.;f'

Since i, = y and ), =y, we see that the theorem is proved.

Remark. It is usually not difficult, although sometimes it is tedious, to
exhibit 2 homotopy between continuous curves. Most of the time, one
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can achieve this homotopy by simple formulas when the curves are given
explicitly.

Example. Let z, w be two points in the complex numbers. The seg-
ment between z, w, denoted by [z, w], is the set of points

z4tw—2, O0=r=],

or equivalently,
{1 —t)z + tw, 0=:=1L

A set § of complex numbers is called convex, if, whenever z, we S, then
the segment [z, w] is also contained in S. We observe that a disc and a
rectangle are convex.

Lemma 5.3. Let S be a convex set, and let v, n be continuous closed
curves in 5. Then vy, n are homotopic in 5.

Proof. We define
Y, s) = sp(e) + (1 — s)nle)

It is immediately verified that each curve yf, defined by y(t) = {(r, 5) is a
closed curve, and i is continuous. Also

Wit 0y =n() and  Y(r, 1)=y()

so the curves are homotopic. Note that the homotopy is given by a
linear function, so if y, y are smooth curves, that is C! curves, then each
curve i, is also of class C'.

We say that an open set U is simply connected if it is connected and if
every closed path in U is homotopic to a point. By Lemma 5.3, a
convex open set is simply connected. Other examples of simply con-
nected open sets will be given in the exercises. Simply connected open
sets will be used in an essential way in the next section.

Remark. The technique used in this section, propagating along curves,
will again be used in the theory of analytic continuation in Chapter XI, §1,
which actually could be read immediately as a continuation of this section.

I, §5. EXERCISES

1. A set S is called star-shaped il there exists a point z; in S such that the line
segment between z, and any point z in § is contained in S. Prove that a
star-shaped set is simply connected, that is, every closed path is homotopic to
a point.
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2. Let U be the open set obtained from C by deleting the set of real numbers
= 0. Prove that U is simply connected.

3. Let V be the open set obtained from C by deleting the set of real numbers
= 0. Prove that V¥ is simply connected.

4. (a) Let U be a simply connected open set and let [ be an analytic function
on U. Is f(U) simply connected?
(b) Let H be the upper half-plane, that is, the set of complex numbers
z=2x+iy such that y=> 0. Let f{z) = ¢***. What is the image f(H)? Is
J(H) simply connected?

I, §6. EXISTENCE OF GLOBAL PRIMITIVES.
DEFINITION OF THE LOGARITHM

In §3 we constructed locally a primitive for a holomorphic function by
integrating. We now have the means of constructing primitives for a
much wider class of open sets.

Theorem 6.1. Let [ be holomorphic on a simply connected open set U.
Let z,e U. For any point z € U the integral

glz) = J 0 dg
is independent of the path in U from z, to z, and g is a primitive for f,
namely g'(z) = f(z).

Proof. Let y,, y, be two paths in U from z, to z. Let y; be the
reverse path of y,, from 2 to z;. Then

y={n:}

is a closed path, and by the first form of Cauchy's theorem,

_Lfd-Lf=Lf=0-

Since the integral of f over y; is the negative of the integral of f over
¥z, we have proved the first assertion.

As to the second, to prove the differentiability of g at a point z,, il z
is mear z,, then we may select a path from z, to z by passing through
z,, that is

9) = 9lz,) + _f 1
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and we have already seen that this latter integral defines a local primitive
for f in a neighborhood of z;. Hence

g'z) = f(2),

as desired.

Example. Let U be the plane from which a ray starting from the
origin has been deleted. Then U is simply connected.

Proof. Let y be any closed path in U. For simplicity, suppose the ray
is the negative x-axis, as on Fig. 17. Then the path may be described in
terms of polar coordinates,

Y =rie®™, astsh,
with —m < 8(r) < n. We define the homotopy by
Yl W) = rlua + (1 — w)e®==  0=u<l
Geometrically, we are folding back the angle towards 0, and we are
contracting the distance r{t) towards r{a). It is clear that ¢ has the
desired property.

Remark. You could also note that the open set U is star-shaped
(proof?), and so if you did Exercise 1 of §5, you don't need the above
argument to show that U is simply connected.

Example (Definition of the Logarithm). Let U be a simply connected
open set not containing 0. Pick a point zoe U. Let w, be a complex

Fold back

Figure 17
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number such that
e =g,
(Any two such numbers differ by an integral multiple of 2ni.) Define
log z = wy + F %dc.
Then log z (which depends on the choice of z, and w, only) is a primi-

tive for 1/z on U, and any other primitive differs from this one by a
constant.

Let Lo(l +w) =3 (—1"""w"n be the usual power series for the log
in a neighborhood of 1. If z is near z,, then the function

Flz) = wy + Lo(l + (z — 2o)/2,)

defines an analytic function. By Exercise 6 of Chapter II, §5, we have
F'(z) = 1/z. Hence there exists a constant K such that for all z near z,
we have logz= F(z) + K. Since both logz, = w, and Flzg) = wy, it
follows that K =0, so

logz = Flz) for z near z,.
Consequently, by Exercise | of Chapter II, §3, we find that
P ] for z near z,.

Furthermore, given z, € U, we have

= xy |
L= lAl
20 =n £
so by a similar argument, we see that log z is analytic on U. The two
analytic functions e'*** and z are equal near z,. Since U is connected,
they are equal on U by Theorem L.2(ii), and the equation ¢'f*=:
remains valid for all ze U.
If L(z) is a primitive for 1/z on U such that ¢! = z, then there exists
an integer k such that

Liz) = log z + 2mik.

Indeed, if we let g(z) = L(z) — log z, then ™% = |, so g(z) = 2nik for some
integer k.



122 CAUCHY'S THEOREM, FIRST PART [111, §6]

Example. Let V be the open set obtained by deleting the negative real
axis from C, and write a complex number z € V in the form

z=re" with —n<f<m
We can select some z; € V' with
it

zp =rge

For a positive real number r we let log r be the usual real logarithm, and
we let

log zo = log ry + iy
Then V is simply connected, and for all z e V we have
logz=1logr+i@ with —-n<f<n
For a numerical example, we have

| —i = re® = /Zel-n/9)
log(l — i) = Llog 2 _%_

Example. On the other hand, let U be the open sel obtained by de-
leting the positive real axis from C, ie. U= C— R;;. Take 0 <@ <2n.
For this determination of the logarithm, let us find log(l — i). We write

1—i=re =274,

log(1 —l']z}log2+£-?—r.

We see concretely how the values of the logarithm depend on the choice
of open set and the choice of a range for the angle.

Definition of z° for any complex a. By using the logarithm, we can
define z under the following conditions.

Let U be simply connected not containing 0. Let & be a complex
number 0. Fix a determination of the log on U. With respect to this
determination, we define

2% = golosz,

Then z* is analytic on U.
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Example. Let U be the open set obtained by deleting the positive real
axis from the complex plane. We define the log to have the values

log re” = log r + if,

where 0 < # < 2n. This is also called a principal value for the log in that
open set. Then

logi = inf2 and log(—i) = 3mif2.

Tn this case,

= 2
il = giloRi — pni2 _ p-mi2.

Definition of log f(z). Let U be a simply connected open set and let [
be an analytic function on U such that f(z) #0 for all ze U. We want
to define log f(z). If we had this logarithm, obeying the same formalism
as in ordinary calculus, then we should have

d oy I'(z)
mf (2)= m

Conversely, this suggests the correct definition. Select a point zge U.
Let wg be a complex number such that exp(wg) = f(zs). Since f is

assumed to be without zeros on U, the function f'/f is analytic on U.
Therefore we can define an analytic function L, on U by the integral

d
r log f(z) =

3 II(L’]
Lz} = w, +J —dl.
LENE N (]
The function L, depends on the choice of z, and wp, and we shall
determine the extent of this dependence in a moment. The integral can
be taken along any path in U from 2 to z because U is assumed to be
simply connected. From the definition, we get the derivative

z) = ['(@)[(2)-
This derivative is independent of the choice of zo and wy, so choosing a
different z, and w, changes L, at most by an ad«_:h'ti\re constant which we
shall prove is an integral multiple of 2mi. We claim that

exp Ly(z) = f(2).

To prove this formula, abbreviate Lg(z) by L(z), and differentiate
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e Mf(z). We find:

4 g-trf(a) = =~ L0) ) + €0 )
F
— et (L 1) 7o)
(- Fg o
=0
Therefore e %f(z) is constant on U since U is connected. By definition
eTteolf(zy) = e7"of(zo) = I,
s0 the constant is 1, and we have proved that exp L,{(z) = f(z) for z e U.
If we change the choice of z, and w, such that e“® = f{z;), then the
new value for L;(z) which we obtain is simply
log f(z) + 2nik for some integer k,
because the exponential of both values gives f{z).

Remark. The integral for log f(z) which we wrote down cannot be
written in the form
I!(x) ld(
sz &

because even though U is simply connected, the image f(U) may
not be simply connected, as you can see in Exercise 7. Of course, if
y:[a,b]— U is a path from z; to z, then we may form the composite
path fey: [a, b]— C. Then we could take the integral

J'.."l:l 1 d(
Tizgh for ¢
along the path fey. In this case, by the chain rule,
=) 1 (b)) 1
—dl = J —d
-[H!ul..fcr 4 Firan). foy & K
L]
1
=‘[ oo (o) de
_ J‘ 1©
oW

1o
which is the integral that was used to define L(z).
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lll, §6. EXERCISES

L

("

- Compute the following values when the log is defined by its principal value on

the open set U equal to the plane with the positive real axis deleted.

(a) logi (b) log(—i) () log(—1+1)
) i () (—if 0 (=
® (=17 (h) log(—1—1i)

Compute the values of the same expressions as in Exercise 1 (except () and
(g)) when the open set consists of the plane from which the negative real axis
has been deleted. Then take —n<f < n

. Let U be the plane with the negative real axis deleted. Let y > 0. Find the

limit
lim [log(a + iy) — logla — iy)]
=0

where a = 0, and also where a < 0,

. Let U be the plane with the positive real axis deleted. Find the limit

li:: Dogla + iy) — logfa — iy)]

where a < 0, and also where a > 0.

. Over what kind of open sets could you define an analytic function z', or

more generally = for any positive integer n? Give examples, taking the open
set to be as “large” as possible.

Let U be a simply connected open set. Let f be analytic on U and assume
that f{z) # 0 for all ze U. Show that there exists an analytic function g on U

such that g* = f. Does this last assertion remain true if 2 is replaced by an
arbitrary positive integer n?

Let U be the upper halfl plane, isting of all I bers z = x + iy
with y> 0. Let o(z) =e*"= Prove that ¢(U) is the open unit disc from the
origin has been deleted.

Let U be the open set obtained by deleting 0 and the
the complex numbers. For an integer m = 1 define

; i L. ... LYXE"
L_,,{Z]=(DGZ— +i+ +; T

Show that L. (=)= L_,(2), and that L (z) =logz. Thus L__ is an m-fold
integral of the logarithm.

gative real axis from

i, §7. THE LOCAL CAUCHY FORMULA

We shall next give an application of the homotopy Theorem 5.2 to prove
that a holomorphic function is analytic. The property of being analytic is
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local: it means that a function has a power series expansion at every
point (absolutely convergent on a disc of positive radius centered at the
point).

Theorem 7.1 (Local Cauchy Formula). Let D be a closed disc of
positive radius, and let f be holomorphic on D (that is, on an open disc
U containing D). Let y be the circle which is the boundary of D. Then
Jor every zo € D we have

_ 1 Jz)
flzo) = I Je=: z.,dz‘
Progf. Let C, be the circle of radius r centered at z,, as illustrated on
Fig 18.

2

Figure 18

Then for small r, y and C, are homotopic. The idea for constructing the
homotopy is to shrink y toward C, along the rays cmanating from z,.
The formula can easily be given. Let z, be the point of intersection of a
line through z and z, with the circle of radius r, as shown on Fig. 18.
Then
z =25

Z=2o+7r i

|z — 2|

Let 9(¢) (0 =1 £ 2n) parametrize the circle y. Substituting y(t) for z we
obtain
1) — 2o
YO, =20+ r D0
© ) — 2l
Now define the homotopy by letting
hit, ) = wyp(r), + (1 — wy(e) for 0Zuszl

Let U be an open disc containing D, and let U, be the open set obtained
by removing z, from U. Then h{t, u) € Uy, that is, z, does not lie in the
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image of h, because the segment between z and the point z, lies entirely
outside the open disc of radius r centered at z,. Thus y is homotopic to
C, in U,.

Let

Jz) — flzo)

z—1z

glz) =

for ze D and z #2,. Then g is holomorphic on the open set U,. By

Theorem 5.2, we get
J. glz)dz = J‘ glz) dz.
¥ L=

Since [ is differentiable at z,, it follows that g is bounded in a neighbor-
hood of z;. Let B be a bound, so let |g(z)| = B for all z sufficiently close
to zo. Then for r sufficiently small we get

U glz) dz
&

and the right side approaches 0 as r approaches 0. Hence we conclude
that

< B(length of C,) = B2nr,

j glz)dz = 0.
¥
But then
@) 4 _ [ S 4, _
2= io yE—2Zp
= flzo)2mi.

This proves the theorem.

Theorem 7.2. Let f be holomorphic on an open set U. Then [ is
analytic on U.

Proof. We must show that f has a power series expansion at every
point z, of U. Because U is open, for each z; e U there is some R > 0
such that the closed disc D{zo, R) centered at z, and of radius R is
contained in U. We are therefore reduced to proving the following theo-
rem, which will give us even more information concerning the power
series expansion of [ at 2.
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Theorem 7.3. Let f be holomarphic on a closed disc D(zo, R), R > 0.
Let Cy be the circle bounding the disc. Then [ has a power series
expansion

ey =2 alz — zo)"

whose coefficients a, are given by the formula:

I = J(E)
a, = Ff‘ Nzo) = J. = zorn

Furthermore, if ||fllg denotes the sup norm of f on the circle Cg, then
we have the estimate

la,| = 1 la/R™
In particular, the radius of convergence of the series is 2 R.
Progf. By Theorem 7.1, for all z inside the circle Cy, we have

I S

IO =5 ). t=:%

Let 0 <5< R. Let D(z,,s) be the disc of radius s centered at z,. We
shall see that f has a power series expansion on this disc. We write

1 1 _ | 1
C—Z_C"zo"(z—zn]_c—zn ]__f—zo
(-2

1 z—12 (x — zo)z )
=— 1+ + 4+
{— zo( [ L — 2z,
This geometric series converges absolutely and uniformly for |z — z,) < s
because

275l cgr <1
{—124

The function f is bounded on y. By Theorem 2.4 of Chapter 111, we can
therefore integrate term by term, and we find

_e [ 0
o= 5 55 )t

Z ay(z —z)",
o

df-(z — zo)"
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where

_1 [
= 2 I T=zr %

This proves that f is analytic, and gives us the coefficients of its power
series expansion on the disc of radius R.

In particular, we now see that a function is analytic if and only if it is
holomorphic. The two words will be used interchangeably from now on.

There remains only to estimate the integral to get an estimate for the
coefficients. The estimate is taken as usual, equal to the product of the
sup norm of the expression under the integral sign, and the length of the
curve which is 2rnR. For all { on the circle, we have

I — 2l =R,

so the desired estimate falls out. Taking the n-th root of |a,|, we con-
clude at once that the radius of convergence is at least R.

Remark. From the statement about the radius of convergence in Theo-
rem 7.3 we now see that if R is the radius of convergence of a power
series, then its analytic function does not extend to a disc of radius > R;
otherwise the given power series would have a larger radius of conver-
gence, and would represent this analytic function on the bigger disc. For
example, let

f(2) = eflz — 1).

Then [ is analytic except at z = |. From the theorem, we conclude:

The radius of convergence of the power series for [ at the origin is 1.

The radius of convergence of the power series for f at 2 is 1.

The radius of convergence of the power series for [ at 5 is 4.

The radius of convergence of the power series for [ at —3 is 4.

A function f is called entire if it is holomorphic on all of C. We also
conclude from the above remark and the theorem that if a function is

entire, then its power series converges for all ze C, in other words the
radius of convergence is co.

Corollary 7.4. Let f be an entire function, and let ||fl be its sup
norm on the circle of radius R. Suppose that there exists a constant C
and a positive integer k such that

Iz < CR*

for arbitrarily large R. Then [ is a polynomial of degree = k.
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Proof. Exercise 3, but we carry out one important special case ex-
plicitly:

Theorem 7.5 (Liouville’s Theorem). A bounded entire function is con-
Stant.

Proof. 1f [ is bounded, then [|f]z is bounded for all R. In the
preceding theorem, we let R tend to infinity, and conclude that the
coefficients are all equal to 0 if n = 1. This proves Liouville’s theorem.

We have already proved that a polynomial always has a root in the
complex numbers. We give here the more usual proof as a corollary of
Liouville’s theorem.

Corollary 7.6. A polynomial over the complex numbers which does not
have a root in C is constant.

Proof. Let f(z) be a non-constant polynomial,
flz) = a,z" + - + ag,
with a, # 0. Suppose that f(z) # 0 for all z. Then the function
g9(z) = 1/f(2)
is defined for all z and analytic on C. On the other hand, writing
@) =a,z(1 + byfz + - + b,/z")

with appropriate constants b, , ... b, we see that | f(z)| is large when [z] is
large, and hence that |g(z)] = 0 as |z] - co. For sufficiently large radius
R, |g(z)| is small for z outside the closed disc of radius R, and |g(z)| has a
maximum on this disc since the disc is compact. Hence g is a bounded
entire function, and therefore constant by Liouville’s theorem. This is
obviously a contradiction, proving that f must have a zero somewhere
in C.

We end this section by pointing out that the main argument of Theo-
rem 7.3 can be used essentially unchanged to define an analytic function
and its derivatives by means of an integral, as follows.

Theorem 7.7. Let y be a path in an apen set U and let g be a
continuous function on y (ie. on the image y([a, b)) if y is defined on
[a, b]). If z is not on y, define

_ | ald)
Jiz)= rE—:—;dC-
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Then f is analytic on the complement of y in U, and its derivatives are

given by
(LTI gll)
4 .[ ([ z]"”

Froof. Let zgeU and z, not on y. Since the image of y is com-
pact, there is a2 minimum distance between z, and points on y. Select
D<R {dlst(-o yh and take R also small enough that the closed disc
D(zq, R) is contained in U. Now we are essentially in the situation of
Theorem 7.3. We may repeat the arguments of the proof. We select
0<s <R, and we simply replace [ by g inside the integral sign. We
expand 1/({ —:z) by means of the geometric series, and proceed with-
out any further change to see that f' has a power series expansion
[ =Y a,(z — =), where now the coefficients a, are given by

J‘ 4(0)
{{ — zor-’]

We know from Chapter II, §5 that a, = f"™(z,)/n!, which gives us the
proof of Theorem 7.7.

There is also another way of looking at Theorem 7.7. Indeed, from
the formula for f, it is natural to think that one can differentiate with
respect to z under the integral sign. This differentiation will be justified
in Theorem A3, §6, Chapter VIII, which the reader may wish to look at
now. Then one gets the integral formula also for the derivatives.

From Theorem 7.7 we obtain a bound for the derivative of an analytic
function in terms of the function itself. This is of course completely
different from what happens for real differentiable functions.

Corollary 7.8. Let f be analytic on a closed disc D(zo,R), R>0. Let
0 < R; < R. Denote by |flg the sup norm of f on the circle of radius
R. Then for z € D(zq, Ry) we have

(=) = mllﬂlx

Proof. This is immediate by using Theorem 7.1, and putting g=/f
inside the integral, with a factor of 1/2ni in front. The factor R in the
numerator comes from the length of the circle in the integral. The 2= in
the denominator cancels the 2n in the numerator, coming from the
formula for the length of the circle.

Note that if R, is close to R, then the denominator may be corre-
spondingly large. On the other hand, suppose Ry=R/2. Then the
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estimate reads
n!

j{“l_ - e Lag
S S

which is thus entirely in terms of f, n, and R.
Finally we return to reconsider Theorem 3.2 in light of the fact that a
holomorphic function is analytic.

Theorem 7.9 (Morera’s Theorem). Ler U be an open set in C and ler [
be continuous on U. Assume that the integral of f along the boundary
of every closed rectangle contained in U is 0. Then [ is analytic.

Proof. By Theorem 3.2, we know that f has a local primitive g at
every point on U, and hence that g is holomorphic. By Theorem 7.2, we
conclude that g is analytic, and hence that ¢’ = f is analytic, as was to be
shown.

We have now come to the end of a chain of ideas linking complex
differentiability and power series expansions. The next two chapters treat
different applications, and can be read in any order, but we have to
project the book in a totally ordered way on the page axis, so we have
to choose an order for them. The next chapter will study more system-
atically a global version of Cauchy’s formula and winding numbers,
which amounts to studying the relation between an integral and the
winding number which we already encountered in some way via the
logarithm. After that in Chapter V, we return to analytic considerations
and estimates.

I, §7. EXERCISES

1. Find the integrals over the unit circle y:

- T - -
(a) J-id: Ib) J-s"j‘d: (<) Jm—" }d.-
T = ¥ ¥

2. Write out completely the proof of Theorem 7.6 to see that all the steps in the
proof of Theorem 7.3 apply.

3. Prove Corollary 74.



CHAPTER IV

Winding Numbers and
Cauchy’s Theorem

We wish to give a general global criterion when the integral of a holo-
morphic function along a closed path is 0. In practice, we meet two
types of properties of paths: (1} properties of homotopy, and (2) prop-
erties having to do with integration, relating to the number of times a
curve “winds” around a point, as we already saw when we evaluated the

integral
1
I =2

along a circle centered at z. These properties are of course related, but
they also exist independently of each other, so we now consider those
conditions on a closed path y when

=

for all holomorphic functions f, and also describe what the value of this
integral may be if not 0.

We shall give two proofs for the global version of Cauchy's theorem.
Artin's proof depends only on Goursat's theorem for the integral of
a holomorphic function around a rectangle, and a sell-contained topo-
logical lemma, having only to do with paths and not holomorphic func-
tions. Dixon's proof uses some of the applications to holomorphic func-
tions which bypass the topological considerations.

In this chapter, paths are again assumed to be piecewise C', and curves
are again C'. i

133
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IV, §1. THE WINDING NUMBER

In an example of Chapter 111, §2, we found that

1 1
E’E.I.y;dz_l‘

il y is a circle around the origin, oriented counterclockwise. It is there-
fore reasonable to define for any closed path y its winding number with
respect to a point o to be

Wiy, o) = LJ : dz,

2ni J,z—ua

provided the path does not pass through & If y is a curve defined on an
interval [a, b], then this integral can be written in the form

by
J T J. ERACIH
yE—=10 2 ) —a

Intuitively, the integral of 1/(z — &) should be called log(z — a), but it
depends on the path. Later, we shall analyze this situation more closely,
but for the moment, we need only the definition above without dealing
with the log formally, although the interpretation in terms of the log is
suggestive.

The definition of the winding number would be improper if the follow-
ing lemma were not true.

Lemma 1.1. If y is a closed path, then W(y, o) is an integer.

Proof. Let y={y,,...,),} where each y, is a curve defined on an
interval [a;, b;]. After a reparametrization of each curve if necessary, we
may assume without loss of generality that by =a;,, fori=1, ...,n— L
Then y is defined and continuous on an interval [a, b], where a = a,,
b=, and y is differentiable on each open interval Ja, b[, (at the end
points, y is merely right and left differentiable). Let

Fo= | X0 ;
tr} .l..l-(tlﬂ:rdf

Then F is continuous on [a,b] and differentiable for ¢ +# a;, b. Its
derivative is

Py =19
9 W) —a
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(Intuitively, F(r) = log(y(t) — ) except for the dependence of path and a
constant of integration, but this suggests our next step.) We compule the
derivative of another function:

2 (30— &) = ey () — e ) - ) = 0.
Hence there is a constant C such that e ™ {(y(t) — ) = C, so
y(t) — a = CeF™,
Since y is a closed path, we have y(a) = y(b), and
Cef® = y(b) — o = y(a) — o = CeF,
Since y(a) — & # 0 we conclude that C # 0, so that
eFta) _ gFib)
Hence there is an integer k such that
F(b) = Fla) + 2mik.
But F(a) =0, so F(b) = 2nik, thereby proving the lemma.

The winding number of the curve in Fig. 1 with respect lo « is equal
to 2.

(o

Figure 1

Lemma 1.2. Let y be a path. Then the function of o defined by

1
m—uI dz
,z—a

for & not on the path, is a continuous function of o
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Proof. Given e, not on the path, we have to see that

E=ta)e

tends to 0 as & tends to o,. This integral is estimated as follows. The
function ¢ |eg — ¥(f)] is continuous and not 0, hence it has a minimum,
the minimum distance between o, and the path, say

min |eeg — (t)] = 5.
1
If & is sufficiently close to e, then |a — y(t)] = s/2, as illustrated in Fig 2.

¥

52

Figure 2

We have

1 I ]

z—o z—op (z2—a){z— o)
whence the estimate

z—n z—o

1
= .\’z_ﬂ lee — axgl.
Consequently, we get

1 1 " 1
[, =) el s e canon

The right-hand side tends to 0 as « tends to a,, and the continuity is
proved.
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Lemma 13. Let y be a closed path. Let S be a connected set not
intersecting y. Then the function

1 1
g o— | ——dz
i ), z—a
is constant for a in S. If § is not bounded, then this constant is 0.

Proof. We know from Lemma 1.1 that the integral is the winding
number, and is therefore an integer. If a function takes its values in the
integers, and is continuous, then it is constant on any curve, and conse-
quently constant on a connected set. If § is not bounded, then for a
arbitrarily large, the integrand has arbitrarily small absolute value, that
= 1

|z —al

is arbitrarily small, and estimating the integral shows that it must be
equal to 0, as desired.

Example. Let U be the open set in Fig. 3. Then the set of points not
in U consists of two connected components, one inside U and the other
unbounded. Let y be the closed curve shown in the figure, and let &, be
the point inside y, whereas o, is the point outside U, in the unbounded
connected region. Then

Wiy, a) =1, but Wiy, a3) =0

Figure 3
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We have drawn a curve extending from a, towards infinity, such that
W(y, &) = 0 for a on this curve, according to the argument of Lemma 1.3.

IV, §2. THE GLOBAL CAUCHY THEOREM

Let U be an open set. Let y be a closed path in U. We want to give
conditions that
Jr-e
¥

for every holomorphic function / on U. We already know from the
example of a winding circle that if the path winds around some point
outside of U (in this example, the center of the circle), then definitely we
can find functions whose integral is not equal to 0, and even with the
special functions

1

z—o

) =

where o is a point not in U. The remarkable fact about Cauchy's
theorem is that it will tell us this is the only obstruction possible to

having
=

for all possible functions f. In other words, the functions

1
z—a'

ag U,

suffice to determine the behavior of [, f for all possible functions. With
this in mind, we want to give a name to those closed paths in U having
the property that they do not wind around points in the complement of
U. The name we choose is homologous to 0, for historical reasons.
Thus formally, we say that a closed path y in U is homologous to 0 in U

if
J- ! dz =0
-

for every point & not in U, or in other words, more briefly,

Wiy, x)=0

for every such point.
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Similarly, let y, n be closed paths in U. We say that they are homolo-
gous in U il
Wiy, o) = Wiy, o

for every point & in the complement of U. It will also follow from
Cauchy’s theorem that if y and n are homologous, then

=[5

for all holomorphic functions f on U.

Theorem 2.1.

(i) If y. n are closed paths in U and are homotopic, then they are
homologous.

(i)} If v, n are closed paths in U and are close together then they are
homologous.

Proof. The first statement follows from Theorem 5.2 of the preceding
chapter because the function 1f{z — &) is analytic on U for a¢ U. The
second statement is a special case of Lemma 4.4 of the preceding chapter.

Next we draw some examples of homologous paths.

In Fig. 4, the curves y and n are homologous. Indeed, il o is a point
inside the curves, then the winding number is 1, and if & is a point in the
connected part going to infinity, then the winding number is 0.

Figure 4

In Fig. 5 the path indicated is supposed to go around the top hole
counterclockwise once, then around the bottom hole counterclockwise
once, then around the top in the opposite direction, and then around the
bottom in the opposite direction. This path is homologous to 0, but not
homotopic to a point.
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Figure 5

In Fig. 6, we are dealing with a simple closed curve, whose inside is
contained in U, and the figure is intended to show that y can be de-
formed to a point, so that y is homologous to 0.

Figure 6

Given an open set U, we wish to determine in a simple way those
closed paths which are not homologous to 0. For instance, the open set
U might be as in Fig. 7, with three holes in it, at points z,, z,, z,, s0
these points are assumed not to be in U.

Figure 7
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Let y be a closed path in U, and let f be holomorphic on U. We
illustrate y in Fig. 8.

Figure §

In that figure, we see that y winds around the three points, and winds
once. Let y,, y3, ¥3 be small circles centered at z,, z,, z; respectively,
and oriented counterclockwise, as shown on Fig. 8. Then it is reasonable

to expect that
R R R

This will in fact be proved after Cauchy’s theorem. We observe that
taking ¥,, ¥2, ¥s together does not constitute a “path” in the sense we
have used that word, because, for instance, they form a disconnected set.
However, it is convenient to have a terminology for a formal sum like
Y1 + ¥2 + 73, and to give it a name #, so that we can write

[

The name that is standard is the name chain. Thus let, in general,
Yis ---+¥ be curves, and let my, ...,m, be integers which need not be
positive. A formal sum

P=myyy b A my, = Z: my,;

will be called a chain. If each curve y; is a curve in an open set U, we
call y a chain in U. We say that the chain is closed if it is a finite sum of
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closed paths. If y is a chain as above, we define

fro5a]s

If y=Y my, is a closed chain, where each y; is a closed path, then its
winding number with respect to a point @ not on the chain is defined as
before,

1 1
Wiy, o) = — dz.
. 2mi ,[.z—u
If y, y are closed chains in U, then we have
Wiy + n, ) = Wiy, «) + Wy, a).
We say that y is homologous to y in U, and write y ~ n, if
W(y. a) = Wiy, o)
for every point o ¢ U. We say that y is homologous to 0 in U and write
y~0if
Wiy, ) =0
for every point e ¢ U.

Example. Let y be the curve illustrated in Fig. 9, and let U be the
plane from which three points z,, 2,, zy have been deleted. Let y,, v3, ¥a
be small circles centered at z,, z,, z; respectively, oriented counterclock-
wise. Then it will be shown after Cauchy’s theorem that

¥~ ¥+ 22+ 2y,

OR 02 ©);

T T2 ]

Figure 9
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so that for any function f holomorphic on U, we have

j‘rf='|-nf+2Lf+2Lﬁ

The above discussion and definition of chain provided motivation for
what follows. We now go back to the formal development, and state the
global version of Cauchy's theorem.

Theorem 2.2 (Cauchy's Theorem). Let y be a closed chain in an open
set U, and assume that y is homologous to 0 in U. Let [ be holo-
morphic in U. Then
J- =0
¥

A proof will be given in the next section. Observe that all we shall
need of the holomorphic property is the existence of a primitive locally at
every point of U, which was proved in the preceding chapter.

Corollary 2.3. If y, y are closed chains in U and v, y are homologous in

U, then
[r-]s

Proof. Apply Cauchy's theorem to the closed chain y — .

Before giving the proof of Cauchy’s theorem, we state two important
applications, showing how one reduces integrals along complicated paths
to integrals over small circles.

Theorem 2.4.

(a) Let U be an open set and y a closed chain in U such that y is
homologous to 0 in U. Let zy, ...,z, be a finite number of distinet
points of U. Let y; (i=1,...,n) be the boundary of a closed disc
D; contained in U, containing z,, and oriented counterclockwise. We
assume that D; does not intersect D, if i #j. Let

m; = Wiy, z;).

Let U* be the set obtained by deleting z,, ...z, from U. Then y is
homologous to ¥, my; in U*.
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(b) Let [ be holomorphic on U*. Then

Jo=timl s

Proof. Let C=y—3 my. Let « be a point outside U. Then
W(C,a) = W(y, o) — 3 mW(y,a)=0

because a is outside every small circle y,. If & =z, for some k, then
Wiy, z)=1ili=kand 0 if i # k by Lemma 1.3. Hence

WI(C, z,) = Wiy, z,) —m, = 0.

This proves that C is homologous to 0 in U*. We apply Theorem 2.2 to
conclude the prool

The theorem is illustrated in Fig. 10. We have

Y~ =t —W21— ¥ — 2,

Ja=efm2f =l s

Figure 10

The theorem will be applied in many cases when U is a disc, say
centered at the origin, and y is a circle in U. Then certainly y is homo-
topic to @ point in U, and therefore homologous to 0 in U. Let z,, ...z,
be points inside the circle, as on Fig. 11. Then Theorem 2.4 tells us that

J‘,f_ -'); c,'r'
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where C; is a small circle around z;. (Circles throughout are assumed
oriented counterclockwise unless otherwise specified.)

Figure 11

In Example 5 of Chapter III, §2. we gave explicitly the values of the
integrals around small circles in terms of the power series expansion of f
around the points z,, ...,z,. We may also state the global version of
Cauchy’s formula.

Theorem 2.5 (Cauchy’s Formula). Let y be a closed chain in U, homo-
logous to 0 in U. Let f be analytic on U, let z, be in U and not on y.
Then

[ _f@

2ni ),z —zq

dz = Wiy, 2o)f(zo).

Proof. We base this proof on Theorems 2.2 and 24. An independent
proof will be given below. By assumption, in a neighborhood of z,, we
have a power series expansion

f(z) = ag + a,(z — o) + higher terms, with ag = filz,).

Let C, be the circle of radius r centered at z, for a small value of r. By
Theorem 2.4, the integral over y can be replaced by the integral over C,
times the appropriate winding number, that is

1 T e 1 & e
i g dz = Wiy, Zo}lm. ‘Lr .Eazu a,(z — z)"" dz = W(y, z;)a,,
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because we can integrate term by term by Theorem 2.4 of Chapter III,
and we can apply Example 5 or Exercise 1 of Chapter III, §2, to con-
clude the proof.

Example. Using Theorem 2.5, we find the integral

3
‘[ = dz
y z
taken over a path y not passing through the origin, and having winding
number 1 with respect to 0, that is, W(y, 0)=1. We let U=C. Then y

is homologous to 0 in U, and in fact y is homotopic to a point. Hence
Theorem 2.5 applies by letting zo = 0, and we find

el
I — dz = 2mie® = 2ni.
5

Remark 1. We have shown that Theorem 2.2 (Cauchy's theorem)
implies Theorem 2.5 (Cauchy’s formula), Conversely, it is easily seen that
Cauchy's formula implies Cauchy’s theorem. Namely, we let z, be a
point in U not on y, and we let

F(z)=(z — 2 (2).

Applying Cauchy's formula to F yields

1 L[ F@a , B
i—ﬂ-]._[f(z} dz = E_[,z- = dz = F(zo)W(y, 20) = 0,
as desired.

Remark 2. In older texts, Cauchy's theorem is usually stated for the
integral over a simple closed curve, in the following form:

Let U be an open set, f holomorphic on U and let y be a simple closed
curve whose interior is contained in U. Then

fr-e

It was realized for a long time that it is rather hard to prove that a
simple closed curve decomposes the plane into two regions, its interior
and exterior. It is not even easy to define what is meant by “interior” or
“exterior” a priori. In fact, the theorem would be that the plane from



[1v, §2] THE GLOBAL CAUCHY THEOREM 147

which one deletes the curve consists of two connected sets. For all
points in one of the sets the winding ber with respect to the curve is
1, and for all points in the other, the winding number is 0. In any case,
these general results are irrelevant in the applications. Indeed, both in
theoretical work and in practical applications, the statement of Cauchy's
theorem as we gave it is quite efficient. In special cases, it is usually
immediate to define the “interior” and “exterior” having the above prop-
erty, for instance for circles or rectangles. One can apply Theorem 2.2
without appealing to any complicated result about general closed curves.

Dixon’s Proof of Theorem 2.5 (Cauchy’s Formula)

The proof we gave of Theorem 2.5 was based on Theorem 2.2 via
Theorem 2.4. We shall now reproduce Dixon's proof of Theorem 2.5,
which is direct, and is based only on Cauchy’s formula for a circle
and Liouville’s theorem. Those results were proved in Chapter III, §7.
Dixon’s proof goes as follows.

We define a function g on U x U by:

SN =S
glz,w) = w—z
f'(z) il w=z

For each w, the function z+sg(z, w) is analytic. Furthermore, g is contin-
uous on U x U. This is obvious for points off the diagonal, and if
(zos 2o) is on the diagonal, then for (2, w) close to (2, Zo)

ote, )~ gtz 200 = [ QO - G

The integral can be taken along the line segment from z to w. Estimat-
ing the right-hand side, we see that 1/]w — z| cancels the length of the
interval, and the expression under the integral sign tends to 0 by the
continuity of f*, as (z, w) approaches (zq, 2o). Thus g is continuous.

Let V be the open set of complex numbers z not on y such that
W(y,z) =0. By the hypothesis of Cauchy’s theorem, we know that V'
contains the complement of U. Hence C=Uu V. We now define a
function h on C by two integrals:

h(z)=ﬁ‘[ glz,w)dw i zel,

h(z) = 1S

- dw il zelV
mi | w—2z
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We note that for ze Un V, the two definitions of h coincide. We shall
prove that h is a bounded entire function, whence constant by Liouvilles
theorem, whence equal to 0 by letting z tend to infinity for ze ¥, and
using the definition of h. It is then clear that for z e U the first integral
being zero immediately implies Cauchy's formula

; j I 4= syWer, 2

2mi J,w—2z

We have already seen in Remark 1 that Cauchy’s formula implies
Cauchy's theorem.

There remains therefore to prove that h is an analytic function and is
bounded. We first prove that h is analytic. It is immediate that h is
analytic on V. Hence it suffices to prove that h is analytic on U. So let
zo€ U. From the uniform continuity of g on compact subsets of U x U
it follows at once that h is continuous. To prove that h is analytic, by
Theorem 3.2 of Chapter 11, and the fact that a holomorphic function is
analytic, it suffices to prove that in some disc centered at z,, the integral
of h around the boundary of any rectangle contained in the disc is 0.
But we have

1
J‘" hiz)dz = = .Ln J.r glz, w) dw dz

1
i J; ,Ln g(z, w) dz dw.

Since for each w, the function z+ g(z, w) is analytic, we obtain the value
0, thereby concluding the proof that h is analytic.

As for the boundedness, suppose that z lies outside a large circle.
Then
I

w—2z

]

W=z

dw=f(z]j dw=10

because the winding number of y with respect to z is 0 by Lemma 1.3 of
Chapter IV. Furthermore, if |z| = oo then

™
w—z

o]

¥

It follows that h is bounded outside a large circle, whence bounded since
h is analytic. This concludes the proof.
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IV, §2. EXERCISES

1. {a) Show that the association fi—J*/f (where f is holomorphic) sends
products to sums.
(b) If P(z) =(z—a,)(z — a,), where a,, ...,qa, are the roots, what is P*/P?
c) Let y be a closed path such that none of the roots of P lie on y. Show
that

1
T L(P‘JP](ndz = Wiy, a;) + - + Wiy, a,)

(%]

. Let f(z) = (z — z¢)"h(z), where h is analytic on an open set U, and h(z) # 0 for
all ze U. Let y be a closed path homologous to 0 in U, and such that z, does
not lic on 3. Prove that

L[ f@ B
i L m dz = W(y, zo)m.

3. Let U be a simply connected open set and let zy,...,z, be points of U. Let
U*=U—{z1,...,2a} be the set obtained from U by deleting the points
Ziy-.., 2 Let f be analytic on U*. Let 3, be a small circle centered at z; and
let

=] SO

Let h(z) = f(z) = ¥ a/(z — z). Prove that there exists an analytic function &
on U* such that H'=h.

Note. The train of thought of the above ises will be p d sy icall
in Chapter V1, Theorem 1.5.

IV, §3. ARTIN'S PROOF

In this section we prove Theorem 2.2 by making greater usc of topologi-
cal considerations. We reduce Theorem 2.2 to a theorem which involves
only the winding number, and not the holomorphic function f, and we
state this result as Theorem 3.2. The application to the holomorphic
function will then be immediate by applying some results of Chapter III.
We have already found that integrating along sides of a rectangle works
better than over arbitrary curves. We pursue this idea. A path will be
said to be rectangular if every curve of the path is either 2 horizontal
segment or a vertical segment. We shall see that every path is homolo-
gous with a rectangular path, and in fact we prove:

Lemma 3.1. Let y be a path in an open set U. Then there exists a
rectangular path y with the same end points, and such that y, y are close
together in U in the sense of Chapter 111, §4. In particular, y and y are
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homologous in U, and for any holomorphic function [ on U we have

Jir=s

Proof. Suppose y is defined on an interval [a, b]. We take a partition
of the interval,

a=ag,<a;Sa; < =a,=b
such that the image of each small interval
y([a;, a;s,1)
is contained in a disc D; on which f has a primitive. Then we replace

the curve y on the interval [a;, a;,,,] by the rectangular curve drawn on
Fig. 12. This proves the lemma.

Figure 12

In the figure, we let z; = y(a;).
If y is a closed path, then it is clear that the rectangular path con-
structed in the lemma is also a closed path, looking like this:

4

L"_._
L1
B

Figure 13
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The lemma reduces the proof of Cauchy's theorem to the case when y
is a rectangular closed chain. We shall now reduce Cauchy's theorem to
the case of rectangles by stating and proving a theorem having nothing
to do with holomorphic functions. We need a little more terminology.

Let y be a curve in an open set U, defined on an interval [a, b]. Let

a=a,Sa, S S - Sa=b
be a partition of the interval. Let
v lag apy ] = U

be the restriction of y to the smaller interval [a,, a;,,]. Then we agree to
call the chain
YitVa+ o+,

a subdivision of y. Furthermore, if »; is obtained from y; by another
parametrization, we again agree to call the chain

Myt ngdc -,
a subdivision of y. For any practical purposes, the chains y and
Mt g+t

do not differ from each other. In Fig. 14 we illustrate such a chain y and
a subdivision 5, 4 1y + N3 + M-

nz m

-
Figure 14

Similarly, if y =¥ m;y, is a chain, and {n,} is a subdivision of y,, we
call
E': Z Mgty
Ll
a subdivision of y.

Theorem 3.2. Let y be a rectangular closed chain in U, and assume that
v is homologous to 0 in U, ie.

Wiy, a)=0

for every point « nor in U. Then there exist rectangles Ry,...,Ry
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contained in U, such that if 8R; is the boundary of R; oriented counter-
clockwise, then a subdivision of y is equal to

N
> - OR;

i=1
for some integers m;.

Lemma 3.1 and Theorem 3.2 make Cauchy's Theorem 2.2 obvious
because we know that for any holomorphic function [ on U, we have

j.an.’r:n

by Goursat’s theorem. Hence the integral of f over the subdivision of y
is also equal to 0, whence the integral of f over y is also equal to 0.

We now prove the theorem. Given the rectangular chain y, we draw
all vertical and horizontal lines passing through the sides of the chain, as
illustrated on Fig. 15.

Y

Figure 15

Then these vertical and horizontal lines decompose the plane into rectan-
gles, and rectangular regions extending to infinity in the vertical and
horizontal direction. Let R; be one of the rectangles, and let &; be a
point inside R;. Let

m; = W(y, ;).
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For some rectangles we have m; =0, and for some rectangles, we have
m; #0. We let R, ...,R, be those rectangles such that my, ..My are
not 0, and we let @R, be the boundary of R, for i =1, ...,N, oriented
counterclockwise. We shall prove the following two assertions:

1. Every rectangle R; such that m, # 0 is contained in U.
2. Some subdivision of ¥ is equal to

5
Y. maR;.

=
This will prove the desired theorem.

A ion 1. By assumption, &; must be in U, because W(y, «) =0 for
every point o outside of U. Since the winding number is constant on
connected sets, it is constant on the interior of R,, hence #£0, and the
interior of R, is contained in U. If a boundary point of R, is on y, then
it is in U. If a boundary point of R; is not on y, then the winding
number with respect to y is defined, and is equal to m, # 0 by continuity
(Lemma 3.2). This proves that the whole rectangle R;, including its
boundary, is contained in U, and proves the first assertion.

Assertion 2. We now replace y by an appropriate subdivision. The
vertical and horizontal lines cut y in various points. We can then find a
subdivision n of y such that every curve occurring in # is some side of a
rectangle, or the finite side of one of the infinite rectangular regions. The
subdivision 5 is the sum of such sides, taken with appropriate multi-
plicities. If a finite side of an infinite rectangle occurs in the subdivision,
after inserting one more horizontal or vertical line, we may assume that
this side is also the side of a finite rectangle in the grid. Thus without loss
of generality, we may assume that every side of the subdivision is also the
side of one of the finite rectangles in the grid formed by the horizontal and
vertical lines.

It will now suffice to prove that

n= Zm.-ﬁR..

Suppose n — 3 m;@R; is not the 0 chain. Then it contains some horizontal
or vertical segment o, so that we can write

n— Zm;é‘R; =ma+ C*,

where m is an integer, and C* is a chain of vertical and horizontal segments
other than ¢. Then ¢ is the side of a finite rectangle R;,. We take o with
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the orientation arising from the counterclockwise orientation of the
boundary of the rectangle Ry. Then the closed chain

C=n—3 maR —mdRy

does not contain o. Let % be a point interior to Ry, and let o be a point
near ¢ but on the opposite side from &, as shown on the figure.

» e o -x

Figure 16

Since n — 3" m;éR; — mé Ry does not contain o, the points % and & are
connected by a line segment which does not intersect C. Therefore

W(C, %) = W(C,).
But W(p. o) =my and W(éRj,u)=0 unless i=k, in which case
W(éR,2)=1. Similarly, if «' is inside some finite rectangle R;, so
o' = a;, we have
[0 i j#E,
W(a&‘“‘]_{l if j=k
If « is in an infinite rectangle, then W(Z&R;,2") = 0. Hence:

W(C,m) = W(u - Zm,-&R,- - mE‘Rhn:k) =M — By — = —m;
W(C o) = W(q -3 méRi— Jarﬁﬁk.a’) =0

This proves that m =0, and concludes the proof that y — 5" m,dR, = 0.






CHAPTER V

Applications of Cauchy’s
Integral Formula

In this chapter, we return to the ideas of Theorem 7.3 of Chapter III,
which we interrupted to discuss some topological considerations about
winding numbers. We come back to analysis. We shall give various
applications of the fact that the derivative of an analytic function can be
expressed as an integral This is completely different from real analysis,
where the derivative of a real function often is less differentiable than the
function itself. In complex analysis, one can exploit the phenomenon in
various ways, For instance, in real analysis, a uniform limit of a se-
quence of differentiable functions may be only continuous. However, in
complex analysis, we shall see that a uniform limit of analytic functions
is analytic.

We shall also study a point where a function is analytic near the
point, but not necessarily at the point itself. Such points are the isolated
singular points of the function, and the behavior of the function can be
described rather accurately near these points,

V, §1. UNIFORM LIMITS OF ANALYTIC FUNCTIONS

We first prove a general theorem that the uniform limit of analytic
functions is analytic. This will allow us to define analytic functions by
uniformly convergent series, and we shall give several examples, in text
and in the exercises.

Theorem 1.1. Let {f,} be a sequence of hol phic functions on an
open set U. Assume that for each compact subset K of U the sequence
converges uniformly on K, and let the limit function be f. Then f is
holomorphic.

156
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Proof. Let z5e U, and let Dy be a closed disc of radius R centered at
2p and contained in U. Then the sequence {f,} converges uniformly on
Dg. Let Cy be the circle which is the boundary of Dy. Let Dy be the
closed disc of radius R/2 centered at z,. Then for z € Dy, we have

! iA(9)
f-'[zlﬂﬁv[c.c_zdc.

and |{ —z| =2 R/2. Since {f,) converges uniformly, for |z — zo| £ R/2, we

get
f(ﬂ:L_L 1O 4

2mi {—z

By Theorem 7.7 of Chapter 111 it follows that f is holomorphic on a
neighborhood of z4. Since this is true for every z, in U, we have proved
what we wanted.

Theorem 1.2. Ler {f,} be a sequence of analytic functions on an open
set U, converging uniformly on every compact subset K of U to a
Junction f. Then the sequence of derivatives {f,'} converges uniformly
on every compact subset K, and lim f) = .

Proof. The proof will be left as an exercise to the reader. [Hint:
Cover the compact set with a finite number of closed discs contained in
U, and of sufficiently small radius. Cauchy's formula expresses the deriv-
ative f; as an integral, and one can argue as in the previous theorem.]

Example. Let

s

flz) =

1
n

L

=1

We shall prove that this function is holomorphic for Rez > 1. Each
term
Jolz) = n7= = g7=loen
is an entire function. Let z = x + iy. We have
Ie—:mnl = |E—J=lnne—fylnnl =n"x
Let ¢ > |. For x 2 ¢ we have [n™| £ n™ and the series
= 1

w=t n

converges for ¢ > 1. Hence the series ) f,(z) converges uniformly and
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absolutely for Re z = ¢, and therefore defines a holomorphic function for
Re z >c¢. This is true for every ¢ > 1, and hence [ is holomorphic for
Rez>1.

In the same example, we have

oy —logn
R =—z—.
By Theorem 1.2, it follows that
-
(2= 2__:) =

in this same region.

V, §1. EXERCISES

1. Let f be analytic on an open set U, let z, e U and f'(z,) # 0. Show that

2mi _-I' 1 -
Tz Je @ —fz)
where C is a small circle centered at z,.
2. Weierstrass” theorem for a real interval [a, b] states that a continuous func-
tion can be unifermly approximated by polynomials. Is this conclusion still

true for the closed unit disc, ic. can every continuous function on the disc be
uniformly approximated by pol ials?

3. Let a> 0. Show that each of the following series represents a holomorphic
function:

(a) 5_1_ e™ for Rez>0;
n=]l

(b) i ——— for Rez>0;
«=i (@ + n)
©

1
Larnr for Rez > 1.

(<)

4. Show that each of the two series converges uniformly on each closed disc
lzlscwithD<ec<1:

ast 1 =27 g .Z:;(l—z"F'

5. Prove that the two series in Exercise 4 are actually equal. [Hinr; Write each
one in a double series and reverse the order of summation.]
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6. Dirichlet Series. Let {a,} be a seq of pl b Show that the
series § a /n’, if it converges absolutely for some complex s, converges abso-
lutely in a right half-plane Re(s) > o,, and uniformly in Re(s) > o + ¢ for every
€ >0 Show that the series defines an analytic function in this half plane,
The number oy is called the abscissa of convergence.

The next ises give expressions and esti for an analytic function in
terms of integrals.

7. Let f be analytic on a closed disc D of radius b >0, centered at z,. Show
that

s ” Six + i) dy dx = flzo)
nb o

[Hinr: Use polar coordinates and Cauchy’s formula. Without loss of gen-
erality, you may assume that z, = 0. WhyT]

8 Let D be the unit disc and let § be the unit square, that is, the set of
complex numbers = such that 0 < Re(z) <1 and 0 <Im(z) < 1. Let /1D ~§
be an analytic isomorphism such that f(0) = (1 +i)2. Let u, v be the real
and imaginary parts of f respectively. C the i 1

MEEGIEE

9. (a) Let f be an analytic isomorphism on the unit disc D, and let

=30

be its power series expansion. Prove that
L3 3
area f(D)=n_nlal’.

n=]

(b) Suppose that [ is an analytic isomorphism on the closed unit disc b,
and that |f(z)] = 1 if |z] = 1, and f(0) = 0. Prove that area f(D) = =

10. Let f be analytic on the unit disc D and assume that [[p|f]* dx dy exists.
Let
flzy= Zﬂ a,z"

Prove that

- T 2
= J.L 1f(z) dx dy = _Ze la,1/(2n + 2).

For the next exercise, recall that a norm || | on a space of functions asso-
ciates to each function f a real number 2 0, satisfying the following conditions:

N 1. We have [|fl = 0 if and only if f=0.
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N 2. If ¢ is a complex number, then ||¢f]| = |el LSl
N3 I/ +agl =110+ lgl.

11. Let A be the closure of a bounded open set in the plane. Let f, g be
continuous functions on A. Define their scalar product

gy = ” S(2)a(z) dy dx

and define the associated L*-norm by its square,

= [ [ 1 ayas
A
Show that || ], does define a norm. Prove the Schwarz inequality

<A@ = 1fNz0gls-
On the other hand, define

Iy = J.I | f(z)] dy dx.
4

Show that fi—[Ifll, is @ norm on the space of continuous functions on A,

called the L'-norm. This is just preliminary. Prove:

(a) Let 0 <s<R. Prove that there exist constants C,, C, having the fol-
lowing property. If f is analytic on a closed disc D of radius R, then

10 = Cilflig = Gllflape

where || ||, is the sup norm on the closed disc of radius s, and the L, 1*
norms refer to the integral over the disc of radius R.

(b) Let {f.} be a sequence of holomorphic functions on an open set U, and
assume that this sequence is L?-Cauchy. Show that it converges uni-
formly on compact subsets of U.

12, Let U, ¥ be open discs centered at the origin. Let f = f{z, w) be a continuous
function on the product U x ¥, such that for each w the function zw f{= w)
and for each z the function wis [z, w) are analytic on U and V, respectively.
Show that f has a power series expansion

flzm =} a,z"w"

which converges absolutely and uniformly for |z| £ r and |w| = r, for some
positive number r. [Hint: Apply Cauchy’s formula for derivatives twice, with
respect to the two variables to get an estimate for the coefficients a,,.]
Generalize to several variables instead of two variables.

Note. This exercise is really quite trivial, although it is not 1l lized

that it i so. The point is that the finetion [ is I o be continuous. T that
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assumption is not made, the situation becomes much more difficult to handlc,
and the result is known as Hartogs' theorem. In practice, continuity is indeed

satisfied.
V, §2. LAURENT SERIES

By a Laurent series, we mean a series

flay= .2 a,z".

Let A be a set of complex numbers. We say that the Laurent series
converges absolutely (resp. uniformly) on 4 if the two series

rte= "gn az" and  fT(2)= Z,D a,z"

converge absolutely (resp. uniformly) on A. If that is the case, then f(z)
is regarded as the sum,

f&)=f*2)+ (2.

Let r, R be positive numbers with 0 =r < R. We shall consider the
annulus A consisting of all complex numbers z such that

rslzl =R
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Theorem 2.1. Let A be the above annulus, and let f be a holomorphic
Sfunction on A. Let r <5 <8 < R. Then [ has a Laurent expansion

f&)= ¥ az
A=—m
which converges absolutely and uniformly on s £ |z| = S. Let Cz and C,
be the circles of radius R and r, respectively. Then the coefficients a,
are obtained by the usual formula:

a=a| Ba & nzo

"2 Jo £

1 L) %
o =35= c,(T”dc if n<0.

Proof. For some € >0 we may assume (by the definition of what it
means for f to be holomorphic on the closed annulus) that f is holo-
morphic on the open annulus U of complex numbers z such that

r—e<|zl<R+e

The chain Cp — C, is homologous to 0 on U, because if a point lies in
the outer part then its winding number is zero by the usual Lemma 1.3
of Chapter IV, and if the point lies in the disc inside the annulus, then its
winding number is 0. Cauchy's formula then implies that for z in the

annulus,
f(z}=i,j‘ S dl — I—I -’mdc.

2ni Je,{—2 2mi cl—z

We may now prove the theorem. The first integral is handled just as
in the ordinary case of the derivation of Cauchy's formula, and the
second is handled in a similar manner as follows. We write

Then

50 the geometric series converges,

11 1 t I\
zl—m“;(‘ +;+(;) *)
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We can then integrate term by term, and the desired expansion falls out.

To show the uniqueness of the coefficients, integrate the series 3~ a,5"e™

against e for a given integer k, term by term from 0 to 2z All terms

(;m]} out except for n =k, showing that the k-th coefficient is determined
y J-

An example of a [unction with a Laurent series with infinitely many
negative terms is given by e, that is, by substituting 1/z in the ordinary
exponential series.

If an annulus is centered at a point z,, then one obtains a Laurent
series at z,, of the form

f(z}=_i aulz— 2l

Example. We want 1o find the Laurent series for

1
&)= prg

for 0 < |z] < I. We write f in partial fractions:
1 1

1=

z—1 =z
Then for one term we get the geometric series,
—— —-—-z=—{1+z+z’+‘"]

whence

1
ML N
b e z—1z

On the other hand, suppose we want the Laurent series for [z] > I. Then
we write

1 1 1 1 11 )

e — = Y S

z—1 z(l—l[z) z( ¥t

1 1 1
f(2]=;i+;§+z—‘+"‘-

whence

V, §2. EXERCISES

1. Prove that the Laurent series can be differentiated term by term in the usual
manner to give the derivative of f on the annulus.

2. Let f be holomorphic on the annulus A, defined by 0 <r =|z| = R.




("

&
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=

L
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Prove that there exist functions f;, f; such that f; is holomorphic for
|zl £ R, f; is holomorphic for |z] 2 r and

f=hH+f

on the annulus,

. Is there a polynomial P(z) such that P(z}e'  is an entire function? Justify

your answer. What is the Laurent expansion of eV for |z| # 07

. Expand the function

T
142

flzy=

(a) in a series of positive powers of z, and
(b) in a series of negative powers of z.
In each case, specify the region in which the expansion is valid.

. Give the Laurent expansions for the following functions:
(@) zfiz +2) for |z| > 2 (b) smlfzforz#0
() coslfzforz0 () ﬁ for |z| = 3
Prove the following expansions:

(a) e*=¢+z):fl$[z-lr

(b) Ifz=z;(—l]“(x—l)" forjz— 1] <1

(© l;zl=l+i(n+l)n:x+lr' forjz+ 1| <1
m=

Expand (a) cos z, (b) sin z in a power series about n/2.

1
R g
a) In the disc |z] < 1.
(b) Inthe annulus 1 <jz] <2
() In the region 2 < |z|.

- Find the Laurent serics for f:

Find the Laurent series for (z+ 1){z—1) in the region (a) |z| <1;
(b) |z] > 1.

Find the Laurent series for 1/z*(1 — z) in the regions:
fa) O <zl <1;(b)|z] > L.

. Find the power series expansion of
fla)= “—[l
14z

around the point z= 1, and find the radius of convergence of this serics,
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12. Find the Laurent expansion of

flzy= {—:_—”1]?”—”;
forl <fzl<2
13, Obtain the first four terms of the Laurent series expansion of
o= s
valid for 0 < |z] < L.

*14. Assume that f is analytic in the upper half plane, and that f is periodic of
pericd 1. Show that f has an expansion of the form

f= _f: c et
where

1
é= J. flx + iy)e=2mim=ein gy
o

for any value of y > 0. [Hint: Show that there is an analytic function f*
on a disc from which the origin is deleted such that

S = fie)

What is the Laurent series for f*7 Abbreviate g = ™=,

*15. Assumptions being as in Exercise 14, suppose in addition that there exists
¥o =0 such that f(z)= f{x + i) is bounded in the domain y = y,. Prove
that the coefficients ¢, are equal to 0 for n<0. Is the converse true?
Proof?

V, §3. ISOLATED SINGULARITIES

Let z, be a complex number and let D be an open disc centered at z,.
Let U be the open set obtained by removing zp from D. A function f
which is analytic on U is said to have an isolated singularity at z,, We
suppose this is the case.

Removable Singularities

Theorem 3.1. If [ is bounded in some neighborhood of zo, then one can
define f(zo) in a unigue way such that the function is also analytic at
Zpe
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Proof. Say zo, = 0. By §2, we know that f has a Laurent expansion
= a,z" + o
f(ﬂ .';o nzﬁ

for 0 <|z| < R. We have to show a,=0 if n<0. Let n=—m with
m > 0. We have

1 m—1
T _I-C'I(C)C d,

for any circle C, of small radius r. Since f is assumed bounded near 0 it
follows that the right-hand side tends to 0 as r tends to 0, whence
a_,, =0, as was to be shown. (The uniqueness is clear by continuity.)

In the case of Theorem 3.1 it is customary to say that z, is a remoy-
able singularity.

Poles

Suppose the Laurent expansion of f in the neighborhood of a singularity
2, has only a finite number of negative terms,

.

==y

+ertagtaylz—zo)+ -,

and a_,, # 0. Then f is said to have a pole of order (or multiplicity m) at
z,. However, we still say that the order of f at z, is —m, that is,

ord, f= —m,
because we want the formula
ord, (fg) = ord,, [+ ord. g
to be true. This situation is characterized as follows:

[ has a pole of order m at zo if and only if f(z)(z — 2z5)™ is holomorphic
ar z, and has no zero at z,.

The proof is immediate and is left to the reader.
If g is holomorphic at z, and g(z,) # 0, then the function f defined by

Mz) = (z = 20) "g(2)
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in a neighborhood of z, from which z, is deleted, has a pole of order m.
We abide by the convention that a pole is a zero of negative order.
A pole of order 1 is said to be a simple pole.

Examples. The function 1/z has a simple pole at the origin.
The function 1/sin z has a simple pole at the origin. This comes from
the power series expansion, since

sin z = z(l + higher terms),
and

1 1 .
T ;(I + higher terms)

by inverting the series 1{1 —h) =1 + h+ h? 4 -+ for |h] < 1.

Let f be defined on an open set U except at a discrete set of points §
which are poles. Then we say that f is meromorphic on U. If z, is such
a point, then there exists an integer m such that (z — z4)"f(z) is holo-
morphic in a neighborhood of z,. Thus f is the quotient of two holo-
morphic functions in the neighborhood of a point. We say that [ is
meromorphic at a point z, if f is meromorphic on some open set U
containing z;.

Example. Let P(z) be a polynomial. Then f(z) = 1/P(z) is a mero-
morphic function. This is immediately seen by factoring P(z) into linear
factors.

Example. A meromorphic function can be defined often by a uni-
formly convergent series. For instance, let

1 & z
fa= =5 ,.; 2 —nt

We claim that f is meromorphic on C and has simple poles at the
integers, but is holomorphic elsewhere.

We prove that f has these properties inside every disc of radius R
centered at the origin. Let R >0 and let N > 2R. Write

[(z) = glz) + h(z),

where

z L z
= ] hiz) = P —
9(z) = ..gl 2 —n il @) -=§+1 22 —n
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Then g is a rational function, and is therefore meromorphic on C.
Furthermore, from its expression as a finite sum, we see that g has
simple poles at the integers n such that |n| = N.

For the infinite series defining h, we apply Theorem 1.1 and prove that
the series is uniformly convergent. For |z] < R we have the estimate

R 1 R
—RZ nil—(Rmy

z
|22 —n?

[y

The denominator satisfies

I —(Rm? 23
for n> N > 2R. Hence
ﬁg%‘, for nZ2R.

Therefore the series for h converges uniformly in the disc |z] < R, and h
is holomorphic in this disc. This proves the desired assertion.

Essential Singularities

If the Laurent series has a infinite number of negative terms, then we say
that z, is an essential singularity of f.

Example, The function f{z) = e"* has an essential singularity at z =0
because its Laurent series is

z"n!

ite

Th 32 (C i-Wei ). Let 0 be an essential singularity
of the function f, and let D be a disc centered at 0 on which [ is
holomorphic except at 0. Let U be the complement of 0 in D, Then
J(U) is dense in the complex numbers. In other words, the values of [
on U come arbitrarily close to any complex number,

Progf. Suppose the theorem is false. There exists a complex number «
and a positive number s > 0 such that

1flz) —a] >s forall ze U.
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The function
1

T)=——
ot flz)—«o
is then holomorphic on U, and bounded on the disc D. Hence 0 is a
removable singularity of g, and g may be extended to a holomorphic
l'un_ction on all of D. It then follows that 1/g(z) has at most a pole at 0,
v{hzch means that f{z) — & has at most a pole, contradicting the hypothe-
sis that f(z) has an essential singularity (infinitely many terms of negative
order in its Laurent series). This proves the theorem.

Actually, it was proved by Picard that f not only comes arbitrarily
close to every complex number, but takes on every complex value except
possibly one. The function e'* omits the value 0, so it is necessary to
allow for this one omission. See Chapter X1, §3 and Chapter XII, §2.

We recall that an analytic isomorphism

J: U=V

from one open set to another is an analytic function such that there
exists another analytic function

g:V=U
satisfying
Jeg=idy and gof=idy,

where id is the identity function. An analytic automorphism of U is an
analytic isomorphism of U with itself.

Using the Casorati-Weierstrass theorem, we shall prove:

Theorem 3.3. The only analytic automorphisms of C are the functions
of the form f(z) = az + b, where a, b are constants, a # 0.

Progf. Let [ be an analytic automorphism of C. After making a
translation by —f(0), we may assume without loss of generality that
f(0) = 0. We then have to prove that f(z)} = az for some constant a. Let

hiz) = f(1/2) for z#0.

Then h is defined for all complex numbers except for the origin. We first
prove that h cannot have an essential singularity at 0. Since f is a local
analytic isomorphism at 0, f gives a bijection between an open neighbor-
hood of 0 with some open neighborhood of 0. Since f is also an analytic
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isomorphism of C, it follows that there exists § > 0 and ¢ > 0 such that if
|wl > 1/& then |f(w)l >c. Let z=1/w or w=1/z. Then |h(z)] > ¢ for
|zl <d. If 0 is an essential singularity, this contradicts the Casorati-
‘Weierstrass theorem.

Let f(z) =3 a,z" so h(z) =Y a,(1/z)". Since 0 is not an essential
singularity of h, it follows that the series for h, hence for f, has only a
finite number of terms, and

fle)=ap+ayz -+ +ayz"
is a polynomial of degree N for some N. If [ has two distinct roots, then
f cannot be injective, contradicting the fact that f has an inverse func-
tion. Hence f has only one root, and

J(2) = afz — 2"

for some z,. If N = 1, it is then clear that f is not injective so we must
have N = |, and the theorem is proved.

V, §3. EXERCISES

1. Show that the following series define a meromorphic function on C and
determine the set of poles, and their orders.

S et & 1 - -
= -)=:h nt(n+z) ™ .Zn 2+t © Sz +n)?
2 sinnz 1 CJ 1 1
@ ugl nlz® + n) © ;+ ,.Z’g [z —n + E]

2. Show that the function
3,1

fe) = .Z. nzl 1 8

is defined and continuous for the real values of z. Determine the region of
the complex plane in which this function is analytic. Determine its poles.

£(2)

defines an analytic function on a disc of radius 1 centered at —i.
4. Let {z,} be a sequence of disti I bers such that

3. Show that the series

1
iwp converges.

z
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o

Prove that the series

- 1 1
.?.:i ({z -z _2_3)
defines & meromorphic function on €. Where are the poles of this function?

Let f be meromorphic on € but not entire. Let g(z) = /. Show that g is
not meromorphic on C.

Let [ be a no entire function, ie. a function analytic on all of C.
Show that the image of f is dense in C.

. Let f be meromorphic on an open set U. Let

p:V=U

be an analytic isomorphism. Suppose ¢(z,) = w,, and f has order n at wy.
Show that fo¢ has order n at z,. In other words, the order is invariant
under analytic isomorphisms. [Here n is a positive or negative integer.]

. A meromorphic function f is said to be periodic with period w if

flz+w)=/f(2) for all ze C. Let f be a meromorphic function, and suppose f
is periodic with three periods wy, wa, wy which are linearly independent over
the rational numbers. Prove that f is constant. [Hinr: Prove that there exist
elements w which are integral linear binations of wy, wy, wy and arbitrarily
small in absolute value.] The ial function is an ple of a singly

periodic function, Examples of doubly periodic functions will be given in
Chapter XIV.

Let f be meromorphic on C, and suppose

lim |f{z)] = oo
|al=m

Prove that f is a rational function. (You cannot assume as given that f has
only a finite number of poles,)

(The Riemann Sphere). Let S be the union of C and a single other point
denoted by co, and called infinity. Let f be a function on 8. Let t = 1/z, and
define

glt) = fiifn)

for t #0, co. We say that f has an isolated singularity (resp. is phic
resp. is holomorphic) at infinity if g has an isolated singularity (resp. is mero-
morphic, resp. is holomorphic) at 0. The order of g at 0 will also be called
the order of [ at infinity, If g has a removable singularity at 0, and so can be
defined as a holomorphic function in a neighborhood of 0, then we say that f
is holomorphic at infinity.

We say that f is meromorphic on § if f is meromorphic on C and is also
meromorphic at infinity. We say that f is holomorphic on § if f is holo-
morphic on C and is also holomorphic at infinity.
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Prove:

The only meromorphic functions on S are the rational functions, that is, quo-
tients of polynomials. The only holomorphic functions on S are the constants.
If f is holomorphic on C and has a pole at infinity, then [ is a polynomial.

In this last case, how would you describe the order of f at infinity in terms
of the polynomial?

. Let f be a meromorphic function on the Ri sphere, so a rational

function by Exercise 10. Prove that

Yord, [=0,
7

where the sum is taken over all points P which are either points of C, or
P =,

. Let P;(i=1,...,r) be points of C or oo, and let m; be integers such that

imi=ﬂ,

Prove that there exists a meromorphic function f on the Riemann sphere
such that

ordg, f=m; for i=1,....r

and ordy f =0 if P # P,



CHAPTER VI

Calculus of Residues

We have established all the theorems needed to compute integrals of
analytic functions in terms of their power series expansions. We first
give the general statements covering this situation, and then apply them
to examples.

Vi, §1. THE RESIDUE FORMULA

Let
fe)= ¥ ale—zop

have a Laurent expansion at a point z,. We call a_, the residue of f at
z,, and write

a_, = Res_ [.
Theorem 1.1. Let z, be an isolated singularity of f, and let C be a

small circle oriented counterclockwise, centered at zo such that [ is
holomorphic on C and its interior, except possibly at zp. Then

J- f() d = 2ria_, = 2i Res,_ f.
[

Proof. Since the series for f{{) converges uniformly and absolutely for
{ on the circle, we may integrate it term by term. The integral of

173
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({ — 2o)" over the circle is equal to O for all values of n except possibly
when n= —1, in which case we know that the value is 2ni, ¢f Examples
1 and 4 of Chapter 111, §2. This proves the theorem.

From this local result, we may then deduce a global result for more
general paths, by using the reduction of Theorem 2.4, Chapter IV.

Theorem 1.2 (Residue Formula). Let U be an open set, and y a closed
chain in U such that y is homologous to 0 in U. Let f be analytic on U
except at a finite number of points z,, ...,z,. Let m;= W(y, z;). Then

J‘rf = Zn\/—_lzi m;* Res, f.

Proof. Immediate by plugging Theorem 1.1 in the above mentioned
theorem of Chapter IV.

Theorem 1.2 is used most often when U is simply connected, in which
case every closed path is homologous to 0 in U, and the hypothesis on y
need not be mentioned explicitly. In the applications, U will be a disc,
or the inside of a rectangle, where the simple connectedness is obvious.

Remark. The notation ./—1 is the standard device used when we
don't want to confuse the complex number i with an index i.

We shall give examples how to find residues.
A pole of a function f is said to be simple if it is of order 1, in which
case the power series expansion of [ is of type

a—y
z—12,

i) =

+ ag + higher terms,

and a_, #0.

Lemma 1.3.

(a) Let f have a simple pole at zq, and let g be holomorphic at z,.
Then

Res, (/) = gl(zo) Res. (/).

(b) Suppose f(zo) = 0 but ['(zo) #£0. Then 1/f has a pole of order |
at zo and the residue of 1/f at zy is 1/f'(z,).
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Proof. (a) Let f(z) = a_,/(z — z,) + higher terms. Say z, = 0 for sim-
plicity of notation. We have

J(=)glz) = (%+ "')(bo 4Bz +-r)
a_by

= =5 <+ higher terms,

50 our asserlion is clear.
(b) Let flzo) =0 but f'(zo)#0. Then f(z)=a,(z— zy)+ higher
terms, and a; # 0. Say z, = 0 for simplicity. Then
fliz)=a,z(1 + h) with ordhz1,
50
E
1)

so res(1/f) = a;' = 1/f°(0), as was to be shown.

b : S i
—;{I h+ h? — )—a-l-hlghertem:.s.

Remark. Part (a) of the lemma merely repeats what you should have
seen before, to make this chapter more syst tic

Example. We give an example for part (b) of the lemma. Let f(z) =
sinz. Then f has a simple zero at z =m, because [’(z)=cosz and
fiim)= —1 #0. Hence 1/f{z) has a simple pole at z = r, and

1 1
res, —— =
sinz cosm

2
Example. Find the residue of f{z) = zzﬁ atz =1,

To do this, we write

Jo = e=n

Note that g(z) = z%/(z + 1) is holomorphic at 1, and that the residue of
Ifiz— 1) is 1. Hence

Res, f=g(1) = 1/2.
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Example. Find the residue of (sin £)/z? at z = 0. We have

sinz | 2

= l-i— higher terms.
z

Hence the desired residue is 1.
z!
i = tz=1.
Example. Find the residue of f{(z) m at z
We note that the function

21

z+4+1

glz) =

is holomorphic at z = |, and has an expansion of type

g(z) = by + by(z — 1) + higher terms.

glz) by b, ..
o T el ey

f{ﬂ-*(

and therefore the residue of f at | is b,, which we must now find. We
write z = 1 +(z — 1), 50 that

2 L4+2z=1)+(z+1)*

z+1 20 +3z=-1)

Inverting by the geometric series gives

= 1 3
LTS

Therefore
s 1 3
ﬂ"_z“—'!(z — e ol

whence Res, [ = 3/4.
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Example. Let C be a circle centered at 1, of radius 1. Let

3
o= ne—nr
Find I f.
c
The function f has only two singularities, at | and —1, and the circle

is contained in a disc of radius > I, centered at 1, on which f is
holomorphic except at z = 1. Hence the residue formula and the preced-
ing example give us

Lf- 2ni-3.

Figure 1

If C is the boundary of the rectangle as shown on Fig. 2, then we also
find

J. f=2mi-3.
c

Figure 2
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Example. Let f(z)=z*—2z+ 3. Let C be a rectangle as shown on
Fig. 3, oriented clockwise. Find

1
— .
Lﬂi) :

ol +iy/2

o —iy2

Figure 3

The roots of f(z) are found by the quadratic formula to be

2+./-8

2

and so are z; =1 + r'ﬁ and z; =1 — iﬁ. The rectangle goes around
these two points, in the clockwise direction. The residue of 1/f(z) at z, is
1/(z, — z;) because f has a simple pole at z;. The residue of 1/f(z) at z,
is 1{z; — z,) for the same reason. The desired integral is equal to

— 2mi(sum of the residues) = 0.

Example. Let [ be the same function as in the preceding example, but
now find the integral of 1/f over the rectangle as shown on Fig. 4. The
rectangle is oriented clockwise. In this case, we have seen that the resi-
due at | — iﬁ is

1 1
2= -2/2
Therefore the integral over the rectangle is equal to

—2ni(residue) = —2nmif{ —2i\/2) = n/,/2.
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]
-

Figure 4

MNext we give an example which has theoretical significance, besides
computational significance.

Example. Let [ have a power series expansion with only a finite
number of negative terms (so at most a pole), say at the origin,

J(z) = a,z™ + higher terms,  a, #0,
and m may be positive or negative. Then we can write
f(2) = auz"(1 + hiz)),

where h(z) is a power series with zero constant term. For any two
functions f, g we know the derivative of the product,

(foy =1"g+ fg',
so that dividing by fg yields
o 1, o
I R

Therefore we find for f(z) = (a,z™)(1 + h(z),

1@
S(z)

m H(z)
=T + hiz)

and K(2)/(1 + h(2)) is holomorphic at 0. Consequently, we get:
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Lemma 1.4. Let [ be meromorphic at 0. Then
Reso ['/f = ordo [

and for any point z, where f has at most a pole,
Res., f'/f = ord.,f.

Theorem 1.5. Let y be a closed chain in U, homologous to 0 in U. Let
f be meromorphic on U, with only a finite number of zeros and poles,
say at the points z,, ...,z,, none of which lie on y. Let m; = W(y, ;).

Then
f [if =25/ =T miord, f.
¥

Proof. This is immediate by plugging the statement of the lemma into
the residue formula.

In applications, y is frequently equal to a circle C, or a rectangle, and
the points z,, ...,z, are inside C. Suppose that the zeros of f inside C
are

(- PR . X

and the poles are
by, .ob,.
Then in the case,

L fif=my=1 (.zl ord,, f — ; mul,, ,r).

We follow our convention whereby the multiplicity of a pole is the nega-
tive of the order of f at the pole, so that

muly, = —ord, f
by definition.
If one counts zeros and poles with their multiplicities, one may re-
phrase the above formula in the more suggestive fashion:

Let C be a simple closed curve, and let [ be meromorphic on C and its
interior. Assume that { has no zero or pole on C. Then

J J'Jf = 2ni (number of zeros — number of poles),
c
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where number of zeros = number of zeros of f in the interior of C, and
number of poles = number of poles of f in the interior of C.

Of course, we have not proved that a simple closed curve has an
“interior”. The theorem is applied in practice only when the curve is so
explicitly given (as with a circle or rectangle) that it is clear what “inte-
rior” is meant.

Besides, one can (not so artificially) formalize what is needed of the
notion of “interior”" so that one can use the standard language. Let y be
a closed path. We say that y has an interior if W(y, o) =0 or | for every
complex number « which does not lie on y. Then the set of points «
such that W(y, ) = | will be called the interior of y. It’s that simple.

Theorem 1.6 (Rouché’s Theorem). Let y be a closed path homologous to
0 in U and asswme that y has an interior. Let f, g be analytic on U,
and

1f(2) = glz)l < | 1(2)l

for z ony. Then f and g have the same number of zeros in the interior
of 7.

Proof. Note that the ption implies ically that f, g have
no zero on 3. We have

g(2) |
=——1|<1
Jiz)
for z on y. Then the values of the lunction g/f are contained in the open
disc with center | and radius 1. Let F = g/f. Then Fey is a closed path
contained in that disc, and therefore

W(Foy,00=0

because 0 lies outside the disc. If y is defined on [a, b] then

1L, ("F)
;""L?@m“‘""

0=W{Fu}r,0]=j
Fer
=I F'[F

=J‘ g'la— fIf.

What we want now follows from Theorem 1.5, as desired.
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Example. Let P(z)= 2% — 52> +2—2. We want to find the number
of roots of this polynomial inside the unit circle. Let

flz) = —52°
For |z| = 1 it is immediate that
[f(z2)— Plz) = |—2* — z + 2| < |f(2)| = 5.
Hence f and P have the same number of zeros inside the unit circle, and
this number is clearly equal to 3. (Remember, you have to count multi-
plicities, and the equation
522 =0

has one zero with multiplicity 3.)

We shall use Rouché’s theorem to give an alternative treatment of the
inverse function theorem, not depending on solving for an inverse power

series as was done in Chapter II, §5.

Theorem 1.7. Let [ be analytic in a neighborhood of a point zy, and
assume [*(zg) #£ 0. Then [ is a local analytic isomorphism at zg.

Proof. Making translations, we may assume without loss of generality
that zo = 0 and f{(z5) = 0, so that

s@ =¥ a2

and mz 1. Since f'(0) =a, we have m= 1 and a, # 0. Dividing by a,
we may assume without loss of generality that a, = 1. Thus f has the
power series expansion

f(z) =z + h(z),
where h(z) is divisible by z2. In particular, if we restrict the values of z
to some sufficiently small disc around 0, then there is a constant K >0
such that
1(z) — 2| = K]zI%.

Let C, be the circle of radius r, and let |a| < r/2. Let r be sufficiently
small, and let

) =flz)—e« and gfg)=z—e
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We have the inequality

1£:(2) — gu(2)] = | fiz) — 2] < K|z,
If z is on C,, that is |z| = r, then
Klz|* = Kr? < |z — o] = |g.(2)]
because |z — | > r/2 and Kr? < /2 (for instance, taking r < 1/2K). By
Rouché's theorem, f, and g, have the same number of zeros inside C,,

and since g, has exactly one zero, it follows that f, has exactly one zero.
This means that the equation

fe)=a

has exactly one solution inside C, if |a| < r/2.
Let U be the set of points z inside C, such that

/&) <rf2.
Then U is open because [ is continuous, and we have just shown that
f:U=D(0,r/2)
is a bijection of U with the disc of radius r/2. The argument we have

given also shows that f is an open mapping, and hence the inverse
function

@: D0, rf2) - U

is continuous. There remains only to prove that ¢ is analytic As in
freshman calculus, we write the Newton quotient

ewl—elv) _  z—2
W= w T2 = flz,)

Fix w, with |w,| < /2, and let w approach w,. Since @ is continuous, it
must be that z = @(w) approaches z; = g(w,). Thus the right-hand side
approaches

11" (zy),

provided we took r so small that f'(z;) # 0 for all z, inside the circle of
radius r, which is possible by the continuity of ' and the fact that
(D) # 0. This proves that ¢ is holomorphic, whence analytic and con-
cludes the proof of the theorem.



184 CALCULUS OF RESIDUES (v, §11

Residues of Differentials

Let f(T)=Y a,T" be a power scries with a finite number of negative
terms. We defined the residue to be a_,. This was convenient for a
number of applications, but in some sense so far it constituted an incom-
plete treatment of the situation with residues because this definition did
not take into account the chain rule when computing integrals by means
of residues. We shall now fill the remaining gap.

Let U be an open set in C. We define a meromorphic differential on
U to be an expression of the form

w = f{z)dz

where f is meromorphic on U. Let zoe U. Then f has a power series
expansion at z,, say

o

(1) f2)= ¥ aylz—zo)" = folz — 2o).

Often one wants to make a change of coordinate. Thus we define a
function w to be a local coordinate at z, if w has a zero of order 1 at z,.
Then w is a local isomorphism at 2z, and there is a power series h such
that

2) z — 24 = h(w) = ¢; w + higher terms with ¢; #0.
Then substituting (2) in (1) we obtain
3) (2) dz = fo(h(w))l' (w) dw = g(w) dw,

where g(w) = fo(h(w))l'{w) also has a power series expansion in terms of
w. We denote the coefficients of this power series by b,, so that

@ gw)= 3 bw".

Since h(w) has order 1, K'(0) = ¢, #0, it follows that the power series for
g also has order m. Of course, the coefficients for the power series of g
seem to be complicated expressions in the coefficients for the power series
for f. However, it turns out that the really important coefficient, namely
the residue b_;, has a remarkable invariance property, stated in the next
theorem.

Theorem 1.8. Let w be a local coordinate at z,. Let « be a mero-
morphic differential in a neighborhood of 2o, and write w = f(z) dz =
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g(w) dw, where f, g are meromorphic functions, with the power series
expansions as in (1) and (4) above. Then the residues of the power series
for [ and g are equal, that is

by=a_,.

Proof. Let y be a small circle around z, in the z-plane. Let w = ¢(z).
Then

1 1
b, = T " g(w) dw = e Lf(z} dr=d.,;

which proves the theorem.

In light of Theorem 1.8, we define the residue of a meromorphic
differential f(z)d= at a point z, as follows. We let w be a local coordi-
nate at zo. (Thus w may be z — z;, but there are plenty of other local
coordinates)) We write the differential as a power series in w,

w=g(wdw  with g(w)=3 bw"

and we define the residue of the diff ial to be

res. (@) = b_y.

This value b_, is independent of the choice of coordinate at z;. Using
residues of differentials rather than residues of power series will be espe-
cially appropriate when the change of variables formula enters into con-
sideration, for example in Exercises 35 and 36 below, when we deal with
residues “at infinity" using the change of coordinate w = 1/z.

Remark. We could have defined a meromorphic differential on U also
as an expression of the form fdg where [ and g are meromorphic. If w
is a local coordinate at z,, then both f and g have power series expan-
sions in terms of w, so

fdg =f(W):—i dw,

However, if U is an open set and f is a meromorphic function on U, not
constant, then note that d log [ is a meromorphic differential on U, be-

cause
f—(i] dz.

J@)

Even though log f itself is not well defined on U, because of the ambigu-

dlog f(z) =



186 CALCULUS OF RESIDUES [VvL, §11

ity arising from the constant of integration, taking the derivative elimi-
nates this constant, so that the differential itself is well defined.

Vi, §1. EXERCISES

Find the residues of the following functions at (.

L (22 + 1)z 2 (z2* + 3z = 5)2
32z =) +2) 4. (22 + 1)fz(2® = 5)
5. (sin z)fz* 6. (sin z)/z*

7. (sin z)/z® 8. (sin z)/z”

9. ez 10. &%2*
1. &/ 12 e¥fe*
13. £ log(l + z) 14. e¥fsin z

Find the residues of the following functions at 1.
15 022 = )z+2) 16. (z* = 1)(z + 2/=* — 1)?

17. Factor the polynomial z" — 1 into factors of degree 1. Find the residue at 1
of 1/(z" — 1).

18. Let zy, ...,z, be distinct complex numbers. Let C be a circle around z, such
that C and its interior do not contain z; for j > 1. Let

fedy=(z — 2 )z — z,) (2 — 2.}

Find
1
— 7,
.[cf(z) =
19. Find the residue at i of ]{(z' — 1). Find the integral
1
L F-n"

where C is a arde of radius 1,2 centered at i.

20. (a) Find the integral

1
J'Czi-lz+5dz'

where C is a rectangle oriented clockwise, as shown on the figure.
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Figure 5
(b) Find the integral J 1/(z* + z + 1) dz over the same C.
¢

(c) Find the integral J 1/{z* — z + 1) dz over this same C.
[

21. (a) Let #1y .eeiZ, be disti pl b Dy ine explicitly the
partial fraction decomposition (ie. the bers a;):

1 ay 4 a,
(z—z,)(z—z) z-2 +z-z,'

(b) Let P(z) be a polynomial of degree <n— 1, and let a,, ...,a, be distinct
I b A that there is a partial fraction decomposition

of the form
P(z) €y . Cy
(z—ay)(z—a,) z—n,+ +z—u,,‘
Prove that
i Play)

(ay — a)-+(a, — a,)’
and similarly for the other coefficients ¢;.

22, Let [ be analytic on an open disc centered at a poinl z,, except at the point
itsell where f has a simple pole with residue equal to an integer n. Show that
there is an analytic function g on the disc such that [ = g'fg, and

glz) =z — zo)"hiz), where h is analytic and  hizy) # 0.

(To make life simpler, you may assume z, = 0.)

23. (a) Let f be a function which is analytic on the upper hall plane, and on
the real line. Assume that there exist numbers B >0 and ¢ > 0 such
that

B
I.."(()él—c-l*.
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for all {. Prove that for any z in the upper hall plane, we have the
integral formula

e

mi J_t—2

[Hint: Consider the integral over the path shown on the figure, and take the
limit as R — co.]

Sr

-R
Figure 6

The path consists of the segment from —R to R on the real axis, and the

semicircle Sy as shown.

{(b) By using a path similar to the previous one, but slightly raised over the
real axis, and taking a limit, prove that the formula is still true if instead
of assuming that f is analytic on the real line, one merely assumes that [
is continuous on the line, but otherwise satisfies the same hypotl as
before.

24. Determine the poles and find the residues of the following fi
(a) Ifsin = (b) 1/(1—¢")  {c) =/(1 —cosz).

25, Show that

cose™ .
—— dz = 2ni-sin |
P

fet=t

26. Find the integrals, where C is the circle of radius & centered at the origin.

(a) J' —,l— d= b) -[ —ldx
csinz cl—cosz

(c) J. lL;,ﬂ': (d) J.tan zdz
il c

(©) J.—l—t:—n‘z
cl—sinz
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27

29.

30.

3L

32

33

35

Let f be holomorphic on and inside the unit circle, |z| < 1, except for a pole
of order 1 at 2 point 2, on the circle. Let f =Y a,2" be the power series for
S on the open disc, Prove that

lim 22— Ty
em gy

- Let a be real > 1, Prove that the equation z¢®~* = | has a single solution with

|z] £ 1, which is real and positive.

Let U be a connected open set, and let D be an open disc whose closure is
contained in U. Let f be analytic on U and not constant. Assume that the
absolute value |f] is on the boundary of D. Prove that [ has at
least one zero in D. [Him: Consider g(z) = f(z) — flz,) with z,e D]

Let f be a function analytic inside and on the unit circle. Suppose that
|flz) = z| < |z| on the unit circle.

(a) Show that |f'(1/2)] £ 8.

(b) Show that [ has precisely one zero inside of the unit circle.

Determine the number of zeros of the polynomial

R L S P L
inside the circle
(a) of radius 1,
(b) of radius 2, centered at the origin.
(¢) Determine the number of zeros of the polynomial

228 —6l 424 1=0

in the annulus | S |z| £ 2

Let f, h be analytic on the closed disc of radius R, and assume that f{z) # 0
for z on the circle of radius R. Prove that there exists e > 0 such that f{z)
and f{z) + €h(z) have the same number of zeros inside the circle of radius R.
Loosely speaking, we may say that f and a small perturbation of f have the
same number of zeros inside the circle.

Let flz) = a,2" + +**+ ay be a polynomial with a, # 0. Use Rouché’s theo-
rem to show that f(z) and a,z" have the same number of zeros in a disc of
radius R for R sufficiently large.

{a) Let f be analytic on the closed unit disc. Assume that |f(z)| = 1if|z| =1,
and f is not constant. Prove that the image of f contains the unit disc.

(b) Let f be analytic on the closed unit disc 5. Assume that there exists some
point zp € D such that |f(z)] < 1, and that |f(z)] =1 if |z] = 1. Prove
that f(D) contains the unit disc.

Let Ffz}= )i z*kl. Given R, prove that P, has no zeros in the disc of
k=0
radius R for all n sufficiently large.
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36.

3

Let z,, ...,z, be distinct complex numbers contained in the disc |z| < R. Let
f be analytic on the closed disc D(0, R). Let

Ofz) =z —2,)(z — Z.)
Prove that

P{z}=—.[ Fipt= 200 ['”Qm

is a polynomial of degree n — | having the same value as f at the points

F S

Let f be analytic on C with the exception of a finite number of isolated
singularities which may be poles. Define the residue at infinity

1
res,, flz)dz = et J:::-n flz)dz

for R so large that [ has no singularities in |z| 2 R.

(a) Show that res,, f(z) dz is independent of R.

(b) Show that the sum of the residues of f at all singularities and the
residue at infinity is equal to 0.

. Cauchy's Residue Formula on the Riemann Sphere. Recall Exercise 2 of

Chapter V, §3 on the Riemann sphere. By a (meromorphic) differential w on
the Riemann sphere S, we mean an expression of the form

w = flz) dz,

where f is a rational function. For any point z, € C the residue of @ at =, is
defined to be the usual residue of f{z)dz at z,. For the point oo, we wrile
t=1fz

1 1
dr = —?dz and dz = =g dt,

S0 we write

w=ftlftl(—'_l,)d: = —r—l,m;::-d:.

The residue of w at infinity is then defined to be the residue of — o (lﬂj dt

at r=10. Prove:

(a) 3 residues w =0, if the sum is taken over all points of C and also
infinity.

(b) Let y be a circle of radius R centered at the origin in C. If R is
sufficiently large, show that

1
1-’_[:-[ Nz)dz = —residue of f{z) dz at infinity.
¥
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[]

39. (a)
(b)
(e)
(d)

(Instead of a circle, you can also take a simple closed curve such that all
the poles of f in C lie in its interior.)
If R is arbitrary, and f has no pole on the circle, show that

1
=— | flz)dz = - residues of f(z) dz outside the circle,
¥

e including the residue at co.

[MNote: In dealing with (a) and (b, you can either find a direct algebraic
proof of (a), as in Exercise 38 and deduce (b) from it, or you can prove
(b) directly, using a change of variables t = 1z, and then deduce (a) from
(b} You probably should carry both ideas out completely to understand
fully what's going on.]

Let P(z) be a polynomial. Show directly from the power series expan-
sions of P(z)dz that P(z)dz has 0 residue in C and at infinity.

Let o be a complex number. Show that dz/(z —a) has residue —1 at
infinity.

Let m be an integer = 2. Show that dz/(z — o)™ has residue 0 at infinity
and at all complex numbers.

Let f(z) be a rational function, The theorem concerning the partial
fraction decomposition of f states that f has an expression

fa=% }f{ G4 P(2)

1 wm=t (2 — o)™

where a,, ...,a, are the roots of the denominator of f, a; are constants,
and P is some polynomial. Using this theorem, give a direct (algebraic)
proof of Exercise 37(a).

40, Let a, b & C with |a] and |b| < R. Let Cg be the circle of radius R. Evaluate

zdz

aJz-az-b

The square root is chosen so that the integrand is continuous for |z] > R and
has limit 1 as |z] — oo.

VI, §2. EVALUATION OF DEFINITE INTEGRALS

Let f(x) be a continuous function of a real variable x. We want to
compute

o B
[ reyas=jim [ rey s+ fim | re0 ax

We shall use the following method. We let y be the closed path as
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indicated on Fig. 7, consisting of a segment on the real line, and a
semicircle.

S

Figure 7

We suppose that f(x) is the restriction to the line of a function [ on the
upper half plane, meromorphic and having only a finite number of poles.
We let J; be the segment from —R to R, and let S; be the semicircle. If
we can prove that

lim f=0

Rem JS,

then by the residue formula, we obtain

J. JS(x)dx = 2ni ¥ residues of f in the upper hall plane.

For this method to work, it suffices to know that f(z) goes sufficiently
fast to 0 when |z| becomes large, so that the integral over the semicircle
tends to 0 as the radius R becomes large. It is easy to state conditions
under which this is true.

Theorem 2.1. Suppose that rherg exists a number B > 0 such that for
all |z| sufficiently large, we have

1/(2)] = Bjzl*.

Then

lim f=0

R~w s,
and the above formula is valid.
Proof. The integral is estimated by the sup norm of f, which is B/R?

by assumption, multiplied by the length of the semicircle, which is nR.
Since nB/R tends to 0 as R — oo, our theorem is proved.
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Remark. We really did not need an R?, only R'** for some a > 0, so0
the theorem could be correspondingly strengthened.

Example. Let us compute

|
j:m > | dx.

The function 1f{z* + 1) is meromorphic on C, and its poles are at the
zeros of z* + 1, that is the solutions of z* = — 1, which are

g k=1, —1,3 -3.

Let f(z) = z* + 1. Since f’(z) = 4z° # 0 unless z = 0, we conclude that all
the zeros of f are simple. The two zeros in the upper half plane are

z; =€  and oz, ="M

The residues of 1/f(z) at these points are 1/f'(z;), 1/f’(z;), respectively,
by Lemma 1.3(b), and

[(z) =42} =4, ['(z;) = 4z] = 4e" P,
The estimate

1
*+1

|§B;’R"

is satisfied for some constant B when |z| = R. Hence the theorem
applies, and

= 1
dx = 2mi(Le "1 + Le7mit
I.,, x*+1 il * )

= %‘.e-xiﬁ‘(e—h(u + l)

=’§('\;{)u —i)

The estimate for 1/(z* +1) on a circle of radius R presented no
subtlety. We give an example where the estimate takes into account a
different phenomenon, and a different path. The fact that the integral
over the part going to infinity like the semicircle tends to 0 will be due
to a more conditional convergence, and the evaluation of an integral
explicitly.
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Fourier Transforms

Integrals of the form discussed in the next examples are called Fourier
transforms, and the technique shows how to evaluate them.

Theorem 2.2. Let f be meromorphic on C, having only a finite number
of poles, not lying on the real axis. Suppose that there is a constant K
such that

1) = Kfjz]

Jor all sufficiently large |z|. Let a > 0. Then

o
j f(x)e"* dx = 2ni' } residues of e*f(z) in the upper half plane.

Proof. For simplicity, take a = 1. We integrate over any rectangle as
shown on Fig. &, taking T= A + B. Taking A4, B > 0 sufficiently large,
it suffices to prove that the integral over the three sides other than the
bottom side tend to 0 as A, B tend to infinity.

=A +iT" ir B+il

Figure 8

Note that
e = enxu,-) = pi%a™y,
In absolute value this is e*, and tends to 0 rapidly as y tends to infinity.

We show that the integral over the top tends to 0. Parametrizing the
top by x +iT, with —4 5 x £ B, we find

B
—I ef(z)dz = I ee Tf(x + iT) dx
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and in absolute value, this is less than

B
e"J Iflx+iT)|dx = e-’gm + B).
A

Having picked T= A + B shows that this integral becomes small as 4, B
become large, as desired.
For the right-hand side, we pick the parametrization

B+iy, with 0Zy=sT,

and we find that the right-hand side integral is bounded by

-
” e (B + iy) dy
o

KT K
o =y =it =T
gﬂLe dy=g(l—e),

which tends to 0 as B becomes large. A similar estimate shows that the
integral over the left side tends to 0, and proves what we wanted.

Next we show an adjustment of the above techniques when the func-
tion may have some singularity on the real axis. We do this by an
example.

E ple. Let us comp
on B
fzj. s“”‘dx=!‘[ S .
o X L) X

—e ix L3
=l_ljrnU E—-dx+J e—-dx],
2ie=0|)_ o X i X

Note that the integral I converges, although not absolutely. It is an
oscillatory integral. The estimate for convergence comes from integration
by parts, and is left to the reader. We can then use the technique of
complex analysis to evaluate the integral. We use the closed path C as
shown on Fig. 9. To compute such an integral, one has to show that both
limits exist, and then one can deal with the more symmetric expression

R
J:nf(x) dx = ;;ﬂ J“Rf(x] dx.

o]

Figure 9
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Let S(e) be the small semicircle from € to —e, oriented counterclock-
wise, and let S{R) be the big semicircle from R to —R similarly oriented.
The function e*/z has no pole inside C, and consequently

o=_[ ei=,fg.h=J- +J‘_‘-I +J-Reﬁfzdz.
c sm J-r Jsio Je
J.-' + ‘[R efrdz= j. e fz dz — j e“fzdz
-R « S(a) SiEy

=Is0 — 'fS(RI ¥

Hence

We now assert that

lim Igg, = 0.
R—=w
Proof. We have for = = R(cos @ + i sin 8),

® glRcosd—Ruind »
Isimy= Rie"™ d@
s L TR e

so that
L]

Usim| = J- e=Run® 4p — 2-[ e~ Rsind 4o
]

0

But if 0 = 6 = n/2, then sin # = 26/r (any similar estimate would do), and
hence

n2
TANES j e~2Ren 4o
o

(1—e™

W
R
by freshman calculus. This proves our asscrtion.

There remains to evaluate the limit of I, as € = 0. We state this as a
general lemma.

Lemma. Let g have a simple pole at 0. Then

lim I g(z) dz = mi Resy(g).
Sie)
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Proof. Write
9(z) = % + hiz),
where h is holomorphic at 0. Then the integral of i over S(e) approaches
0 as € —+ 0 because the length of S(¢) approaches 0 and h is bounded near

the nr]g_in, A direct integration of afz shows that the integral of a/z over
the semicircle is equal to mia. This proves the lemma.

We may therefore put everything together to find the value

“ sin x
,L de=ﬂf2.

Trigonometric Integrals

We wish to evaluate an integral of the form
n
I Q(cos 6, sin ) d6,
0

where Q is a rational function of two variables, Q = Q(x, y), which we
assume is continuous on the unit circle. Since

e’ 4 g7 . N
ws&——z and sm&————z_. '

we see that these expressions are equal to

z+ 1)z z—1/z
2 2i

respectively, when z lies on the unit circle, z = ¢*. It is therefore natural

to consider the function
1 {1 A | 1
o(a(++3)5(:-3))

iz

fla)=

(the denominator iz is put there for a purpose which will become appar-
ent in a moment). This function f is a rational function of z, and in view
of our assumption on @, it has no pole on the unit circle.
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Theorem 2.3. Let Q(x,y) be a rational function which is continuous
when x* + y* = |. Let f(z) be as above. Then

r
j Qlcos 8, sin @) df = 2ni ) residues of f inside the unit circle.
0

Progf. Let C be the unit circle. Then
J. f(z)dz = 2ni § residues of f inside the circle.
: o]
On the other hand, by definition the integral on the left is equal to
= n
I Sfle™)ie™ d = J- Q(cos 6, sin 6) d6,
0 0

as desired. [The term iz in the denominator of f was introduced to
cancel ie”® at this point.]

Example. Let us compute the integral

ir 1 d
I—L atend ™

where a is real > 1. By the theorem,

- 2i sy s
I=2ryr of T 3iaz — nside circle.

The only pole inside the circle is at

o= —ia+ia* —1

and the residue is

Consequently,
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Mellin Transforms

We give a final example introducing new complications. Integrals of type
- dx
ol ——
L S —

are called Mellin transforms (they can be viewed as functions of a). We
wish to show how to evaluate them, We assume that f(z) is analytic on C
except for a finite number of poles, none of which lies on the positive real
axis 0 <x, and we also assume that a is not an integer. Then under
appropriate conditions on the behavior of f near 0, and when x becomes
large, we can show that the following formula holds:

* dx ne™"o - =
flx)x* —= —— ¥ residues of f(z)z°™" at the
L s SID T voles of f, excluding the residue at 0.

We comment right away on what we mean by z°', namely z°7" is
defined as

za-l = eu-l)luz'

where the log is defined on the simply connected set equal to the plane
from which the axis x 20 has been deleted. We take the value for the
log such that if z = re*® and 0 < @ < 2, then
log z = log r + ifl.
Then, for instance,
log i = mif2 and log(—i) = 3mif2.
Precise sufficient conditions under which the formula is true are given
in the next theorem. They involve suitable estimates for the function f
near 0 and infinity.

Theorem 2.4. The formula given for the integral
‘[m_f{x)x" E, with a=>0,
° x

is valid under the following conditions:
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. There exists a number b > a such that
Ifiz) < izl for |z] - co.
2. There exists a number b’ with 0 < b’ < a such that
If(2) < Yzl for |zl =0

The symbol < means that the left-hand side is less than or equal to
some constant times the right-hand side.

For definiteness, we carry oul the arguments on a concrete example,
and let the reader verify that the arguments work under the conditions
stated in Theorem 2.4.

Example. We shall eval for0<a<2:

7 * T
o X417 x sin an

j"” 1 dx _ mcos arn/2

We choose the closed path C as on Fig. 10. Then C consists of two line
segments L* and L™, and two pieces of semicircles S(R) and — S(e), if we
take S(e) oriented in counterclockwise direction. The angle @ which the
two segments L* and L~ make with the positive real axis will tend to 0.

S(R)

L+

Figure 10

We let

l a=1
y(ZJ—z, ¥
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Then g(z) has only simple poles at z =i and z = —i, where the residues
are found to be:

1

1 :
at i: —ele-legl _e{a—llmﬂ‘
2i 2i

nl plo=113nig2

1
U —it — o glo=1)1081-0 _
a—t % 2i

The sum of the residues inside C is therefore equal to
%{,‘a-lwﬂ — elo-Nanifly - _ joui cos(an/2),

after observing that e™? = i, ¢™3"2 < j, and factoring out ¢*™ from the
sum.

The residue formula yields
2mi ¥ residues = Iggy + Ip- — Is + I,
where Iy denotes the integral of f(z) over the path X. We shall prove:

The integrals Igy, and Ig,, tend to 0 as R becomes large and € becomes
small, independently of the angle ¢.

Proof. First estimate the integral over S(R). When comparing func-
tions of R, it is useful to use the following notation. Let F(R) and G(R)
be functions of R, and assume that G(R) is >0 for all R sufficiently
large. We write

F(R) < G(R) (for R — o)
if there exists a constant K such that

|F(R)| = KG(R)

for all R sufficiently large.
With this notation, using z°7! = e~ 1% and
llogz| <log R+ 6 =log R + 2m,
we find

12271 ] = |ete~ttenz| g Ra1,
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Consequently from |1/(z? + 1)| < 1/R? for |z| = R, we find

” flz)z"" dz
StR)

Since we assumed that a <2, the quotient R°/R? approaches 0 as R
becomes large, as desired. The estimate is independent of ¢.
We use a similar estimating notation for functions of €,

1
< 2nR wR—-imax|z"‘I < R°/R%.

Fle) < Ge) (fore—0)
i there exists a constant K such that
|F(e)l = KGle)
for all € > 0 sufficiently small. With this notation, for |z| = € we have
[2971] = |ete~11oBs| & gom1,

S(2)z°7 dz| < 2mee®™ € €.

Sied

Again since we assumed that a > 0, the right-hand side approaches 0 and
€ tends to 0, as desired. The estimate is independent of ¢.

There remains to analyze the sums of the integrals over L* and L.
We parametrize L* by

z(r)=re®, €srsR,

50 that log z(r) = log r + ip. Then
R
J f(z}ela‘-l.nu: dz = I f{reh)e(a—lulegyuv)eip dr
Lr (3
R
= J. Slre')ete—Nivgiepa=t gy
R
--j. fx)x*"dx  as -0

On the other hand, —L~ is parametrized by

2(r)=re*?,  e<rsR,
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and log z(r) = log r + (2% — g). Consequently,
I f(z)etn-llln.z dz = _-[R f(re—h)ra-vleln-ulz.-ipjeéﬂn—hl dr
L .
R
P _j. f(r\el']r"le‘“”-'l dr
R
—r—j Slx)xe1g?mia dx as g —0.
Hence as ¢ — 0, we find
R
‘[ + J. fz)z*? dz—-‘[ Jx)x"H (1 = ™) dx
L L «
R
= E"'J )((x]xa—l(e—nh - l?-l-] dx
R
= 2ie™ sin na I Sx)x""" dx.
Let C = C(R, €, ) denote the path of integration. We obtain
j. S(2)2°7" dz = 2ni Y residues of f(z)z°" except at 0
CiR. .9}

= Isin. g t Isiepy + E(R, € @)

R
+ 2ie™* sin rzaj. flx)x*" dx.

The expression E(R, €, ) denotes a term which goes to 0 as ¢ goes to 0,
and we have put subscripts on the integrals along the ares of the circle
to show that they depend on R, €, . We divide by 2ie™ sin na, and let
@ tend to 0. Then E(R, €, ¢) approaches 0. Consequently,

F me”™" s + 1
#=1 —_ ““"'E = ljm SR T TStee)
I ‘ T v .n-h“; “ie"“sinna

The right-hand side has been seen to be uniformly small, independently
of ¢, and tends to 0 when R— oo and € —+0. Taking the limits as
R —+ o0 and € — 0 proves what we wanted.

Finally, we observe that in situations of contour integrals as we just
considered, it is often the practice to draw the limit contour as in Fig. 11.
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It is then understood that the value for the log when integrating over
the segment from € to R from left to right, and the value for the log
when integrating over the segment from R to €, are different, arising from
the analytic expressions for the log with values f=0 for the first and
8 = 2 for the second.

Figure 11

For the Mellin transform of the gamma function, which provides an
interesting special concrete case of the considerations of this section, see
Exercise 7 of Chapter XV, §2.

Vi, §2. EXERCISES
Find the following integrals.

¥ |
1. (a) J-_“= = dx = 2n/3

(b) Show that for a positive integer n = 2,

=1 nfn
_L I+ x'dx = in nfn’

[Hint: Try the path from 0 to R. then R to Re®™™, then back to 0, or
apply a general theorem.]

o xl x xl
2. (a) -Lmdx=nﬁ;2 {b) L wpdx=ml6

3. Show that
® x-=1 dx dn . In
o 5 sin 5

-
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4.

-

™~

8.

Evaluate

-z
e
dz,
-|-\‘ ?
where y is:

(a) the square with vertices | +1, —1 4§ —1—§ 1 —i
(b) the ellipse defined by the equation

xR
Ei+b =]

(The answer is 0 in both cases)

- e(ﬂx
. (a) J. dx=mne™ fa=>0

X +1

(b) For any real number a > 0,

® cosx
dx = ne™fa.
_[_m? +a "

[Hint: This is the real part of the integral obtained by replacing cos x
by e*.]

Leta, b> (. Let T=2h. Show that

L [T gle
l—-l. = —de—e™
2ni Jyz—ib

Formulate a similar estimate when a < 0.

1
s E(] —e ) e

Let ¢ > 0 and a > 0. Taking the integral over the vertical line, prove that
0 ifa<l,
l e +im n,z .
z—,ﬁj.'_m-;dzt 1 fa=),
I ifa>1

If a = 1, the integral is to be interpreted as the limit
e 4o e HT
J‘ = lim
e=io T==m Je=iT

[Hint: If a>1, i da le with comers ¢— Ai, ¢+ Bi,
—X +Bi, =X —Ai, and let X —weo. Ma<l, replace —X by X]

{a) Show that for a > 0 we have

*  cosx a(l +a)
T s P
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(b) Show that for a > b > 0 we have

= o5 X d n 1 1
o (X% + a%)(x* + b%) *T i \be  ae)
“ sin? x ; i . 2ixy)y2
9. —x,—d'.x = n/2. [Hint: Consider the integral of (1 — **)/x%.]
o

10. -I. G,MT:, dx = $ for @ > 0. The integral is meant to be interpreted as

the limit:
-a=4 a=$ B
lim lim +J + I 7
B~= §=0 J-B —a+d atd
€Os X

1 - il
. ey g

Use the indicated contour:

=R +m wf R+mi

Figure 12

® x sin x 1
12 dx =—me™® i 3
Lm = = e il a > Q.

"

——dx=—
—af +1 sin na

13 for 0<a<l.

= ], ¥
14. (a) J {ng x)i dx = n*/8. Use the contour
o +x

R

-R -& & R
Figure 13
= log x _
(b) J-n e dx = —njd.

L) a d_
15. (a) J X E ' ro<a<l
o l4+x x sinna
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= X" dx

b M S . B
(b} o T+x'x  3sin(na/3)

for D<a<3

16. Let f be a continuous function, and suppose that the integral
L dx
a
,[J S x

is absolutely convergent. Show that it is equal to the integral

»
J. Jle'ye™ dr.
Il we put glr} = fle'), this shows that a Mellin transform is essentially a
Fourier transfc up to a change of variabl
17 - L d'B——-ﬂzx il 0<a<1. The answer comes out the
“Jo T+a" —2acosf 1—a a=r

negative of that if a > 1.

x 1
15 I T =2

o

* 1
19. f Tz =5

o

" adf 3% adf _ =
Clod¥sini 8 )y 1428 —cosf 144
2 1 n(2a + 1)
. = = fi 0.
2 _L @rsn e A rae o7

in 1
— L d0=2m/.
* _L ey

£y 1 2na
X do = for0<b<a
2 J:, {a + b cos 0) @ “

24, Let n be an even integer. Find

=
J- (cos O) dff

o

by the method of residues.
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