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Lecture 1



Physics

Fundamental Science

Concerned with the fundamental principles of the Universe
Foundation of other physical sciences
Has simplicity of fundamental concepts

Divided into five major areas

Classical Mechanics
Relativity
Thermodynamics
Electromagnetism
Optics

Quantum Mechanics



Classical Physics

Mechanics and electromagnetism are basicto °
all other branches of classical and modern
physics
Classical physics
Developed before 1900 —
Our study will start with Classical Mechanics —
Also called Newtonian Mechanics or Mechanics
Modern physics
From about 1900 to the present —



Objectives of Physics

To find the limited number of fundamental -
laws that govern natural phenomena

To use these laws to develop theories that can
predict the results of future experiments

Express the laws in the language of
mathematics

Mathematics provides the bridge between theory —
and experiment



Quantities Used in Mechanics

In mechanics, three basic quantities are used
Length —
Mass —
Time —

Will also use derived quantities

These are other quantities that can be expressed —
in terms of the basic quantities
Example: Area is the product of two lengths

Area is a derived quantity —
Length is the fundamental quantity —



Length

Length is the distance between two points in
space

Units
S| — meter, m —

Defined in terms of a meter — the distance
traveled by light in a vacuum during a given

time
See Table 1.1 for some examples of lengths



Mass

Units
S| — kilogram, kg —
Defined in terms of a kilogram, basedona -

specific cylinder kept at the International
Bureau of Standards

See Table 1.2 for masses of various objects
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Time

Units e
seconds, s —

Defined in terms of the oscillation of radiation °
from a cesium atom

See Table 1.3 for some approximate time
intervals



Reasonableness of Results

When solving a problem, you need to check
your answer to see if it seems reasonable

Reviewing the tables of approximate values °
for length, mass, and time will help you test
for reasonableness



Number Notation

When writing out numbers with many digits,
spacing in groups of three will be used

No commas —
Standard international notation —

Examples:

25100 —
5.123 456 789 12 —



US Customary System

Still used in the US, but text will use SI

Length foot

Mass slug

Time second




Prefixes

Prefixes correspond to powers of 10
Each prefix has a specific name e
Each prefix has a specific abbreviation



Prefixes, cont.

The prefixes can be used with any basic units
They are multipliers of the basic unit

Examples:
1mm=103m —

TABLE 1.4

Prefixes for Powers of Ten
Power Prefix Abbreviation Power Prefix Abbreviation
1024 yoCto y 10° kilo k
10~ zepto s 10° mega M
118 atto a 109 giga G
1615 femto f 1012 tera T
194 pico p 101° peta P
107° nano n 1018 exa E
10~° micro W 102! zetta Z
1073 milli m ¢ yotta ¥
102 centi (o
107! deci d

® 2007 Thomson Higher Education



Model Building

A model is a system of physical components

Useful when you cannot interact directly with the —
phenomenon

ldentifies the physical components —

Makes predictions about the behavior of the —
system

The predictions will be based on interactions among
the components and/or

Based on the interactions between the components °
and the environment



Models of Ma

Some Greeks thought
matter is made of atoms

No additional structure —
JJ Thomson (1897) found -

electrons and showed
atoms had structure

Rutherford (1911) central -
nucleus surrounded by
electrons

Quark composition of a proton
© 2007 Thomson Higher Education



Dimensions and Units

Each dimension can have many actual units
Table 1.5 for the dimensions and units of some derived °

guantities
TABLE 1.5
Dimensions and Units of Four Derived Quantities
Quantity Area Volume Speed Acceleration
Dimensions 1.2 L3 L/T /T2
SI units m? m? m/s m/s?

U.S. customary units fi? ft® ft/s ft /s

® 2007 Thomson Higher Education



Dimensional Analysis, example

Given the equation: x=%at?
Check dimensions on each side: e

L
L—/_F/-ZPV—L

The T%’s cancel, leaving L for the dimensions of
each side

The equation is dimensionally correct —
There are no dimensions for the constant —



Conversion

Always include units for every quantity, you can carry the
units through the entire calculation

Multiply original value by a ratio equal to one -
Example -
15.0in=7cm

2.54cmj =38.1cm

15.0in(

Note the value inside the parentheses is equal to 1 since 1in.is —
defined as 2.54 cm



* Units for physical quantities
1. Basic units

Quantity symbol units
Length L, X Meter. m
Mass M, m Kilogram-Kg
Temperature T Kelvin-K
Time t Second-s
Electric current I Ampere-A
Amount of substance |mol mole
Luminous intensity cd Candle




2. Derived units

Quantity symbol units

Acceleration a m/s?
Displacement S, d, h m

Force F N

Energy E Joule - J, Kgm? s
Velocity V M st

Work w Joule-JNm
Capacitance C Farad - F




Coordinate systems <lilaay) Al

* Many aspects of physics involve description of
the location of an object in space.
s poal) a8 gal liia g 4l 5l el ghall e SN el e
eliadll
* In order to determine the location, we need
coordinate systems (i.e) (Cartesian and polar
systems).
i Jie ciflan) olda ) ling ol sall 2025 ()
Al LBlaa Yl alas ) (ALl 4y 55 sl clilay)




1. Cartesian coordinates:

In Three dimensions (3D)
Y




* |In two dimensions (2D)
Y




* The left-Right horizontal axis is called X-
direction

* The Up-Down direction is called y-axis




2. Polar coordinates (r, ©)

* In mathematics, the polar coordinates system is a
two dimensional coordinate system in which each
point in a plane can be determined by a distance ( r
) from a fixed point and an angle ( © ) from a fixed

direction.
y




Conversion between coordinates

1. Conversion from Cartesian to polar
coordinates

* |f you have a point in Cartesian coordinates
(x,y) and you want to convert it to polar
coordinates (r, ©):

* Example: what are the polar coordinates of
the point (x,y) = (12,5). -




i W -\'(Sil
- U o

e Solution: v- A 14y 128 . r_'// 7
e Using Pythagoras theorem

. &)
/r2=X2+y2:122+52 Coc G = _f_} @
~ r2=144+25 =169 B ><

(o
=
| (r=13) ¢ L .
6 ’\‘O\V\ < ‘E} —/ (_6']

N



To find the angle © we use tangent law:
Tan © = opposite side/adjacent side

= el / Jiid
Tan © =y/x =5/12 d
© =tan!(5/12) =22.6°




0193 \ » (\/\\'\\
e So, to convert from (x,y) to(r, ©), we use:




Sing = )

oy o
j ? /,(_f W - (L b))
oS — J-\) S\I\KLL‘

7 \3-G5 6 = Vcosw() 2.
2. Conversmn from polar to Carte5|an

coordinates

* |f we have a point in polar coordinates (r, ©)
and we want to convert it into Cartesian

coordinates (x,y)

* Example: what are the Cartesian
coordinates of the point (r, ©)=(13,22.6°)

——




Solution:

To find x, use the cosine law

Cos ©= adjacent side/hypotenuse
= sl slaall

Cos 6= x/hypotenuse

Cos 6= x/13

Cos 22.6°= x/13

X=13* Cos 22.6° =12



To findy, use the sine law
sin ©= opposite side/hypotenuse
= 54l / Ll
sin 22.6°=y/13
y=13* sin 22.6°
So, to convert from polar(r, ©) to Cartesian (x,y)
coordinates we use :
X=r cos ©
y=r sin ©



Vector and scalar quantities

e ,
Y \,S ,
e S
1. Scalar quantity: .
gy ol

* A scalar” quantity is a quantity that has
) =T de— . —
)~* ¥ 'magnitude Wthlgmt and no direction.<— ¢,

 Example:( distance, mass, s%égd, volume,

time) s, %2510 \5\

B y 3



/_O\Q;\&\ )
2. Vector quantlty

29 AU | b
* A vector quantlty s a quantlty that has

’\’”’k/mafmtude with Uit and dlrectlon
 Example (displacement, velocity, force, ..... )
(aose 1y 3 t-\‘/ - Y L

> >cwus/\ (o) ay o 3

(o2se L)
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2,0 3\ asow

1- unit vectors <~ lotiss

0/\07) O\D_S\’D C\DA:D)/@ /M O\\
e A unlt vector Is a vector that has magnitude of
Opé unlty and pomt in particular direction= o0

o
¥ — axis =1
y — axis — J
7 — axis — k-
\/W\'\\‘ V-QQ,\-GY‘S X




* Unit vectors are very useful in expressing
other vectors, such as:

- i affe o

b=b,i+b,j+ b,k




I\

—

* Example: ,
LAV AD /J\ CL:«» ot x5\
Nﬁm\ng unit vectors, express the vector that
W o U) s
has a y-c”omponent of 40 units, and x-
com onent of -25 units. S >
P — Az Qy¢ \-(ASB\~0‘ I
* Solution: 05

o= 5,0

a=a.l+a,]
@ZQS :.),\\de) & _EEL_I_ 'q'ﬂj ) :: — %,'Lgkl %1g5 >




Properties of vectors -, o)
—
oYY @lasl
* Notation: Vector (a)

*d Arrow above the symbol < o =/~
*|al magnitude of «— ' do e




LS)\W/J AV
1. Equality of vectors:

 Two vectors are said to be equal if they have
) (—s) SA N

the sarﬁe%agnitude ande)int in the same
’—X’

direction.
23 Y| (o)

/}/, AN
el

O
-

These four vectors
are equal because they have equal
lengths and point in the same
direction.




u\@,& ¥
2. Addlng vectors:

e Commutative law Jall ¢ sild

E b+ a

a -+

’:E‘L

({/
= t:'r'
5 -I-L
|




Z{)) wj&;
* Associative law gl (5l




 Addition of two vectors

e 1-Addition two vectorsin the same
direction

5 (8




AN A, 53 ase
e Ex.: A man walks 54.5m east then aother 30

—_— — ' A
m east, Calculate his dlsplacement reIat|ve to
P n
when he started /\0/),
. > >
* Solution: N R
54.5 m east 30m east
e
e ol )

* Then displacement =54.5 + 30 =84.5 east

C,\

'\) M

Asg




2-Addition two vectors in different

_s¥' directions. .
(— UJ———‘
Ex. : A r?aﬂn walks 95 km, east then another 55
o— |

. km, ~“north.  Calculate  his  resultant
-Vl displacement. p

s

Solution:
Using Pythagoras theorem:




Ezﬂiﬂz_l_gz

¢ =+95% + 552

SN
C=109.8 km




For the direction we have to know the angle

Tan © = opposite side/adjacent side = b/a =
sl [ Jdialll =55/95

Tan © =0.578

© = tan?1(0.578)= 30°

lc| = 109.8 km,

O =30°




< are

?/}P N
* Negative of a vector
,_,—/-’1—\ o s u/)
* The negatlve of a vectorﬂ;ls defined as the

- — WA
yvector that whectr}; added tod glves)Pzéero

e The vectors g and —d have the same
magnitude but point in opposite directions
/_\ ,/—’——/T




>
Y o
I ———
/=
-a
= —t=
a+(-a)=0




P s

Subtracting vectors:

You can subtract one vector from another
First, you reverse the direction of the vector
- Then, add them




AN

£ o




‘\\M M 1 — o)

. Ex A man walks 54.5 m, east then another 30
“?'m west. CaIcHIate his displacement relative to

when he started. V)
e Solution: ‘
= bn
n !
= 54.5m east
—%\ \) &) L -

¢ 5|
S > 30 m west

~ Sy
C_:' YW R0 545 _30-245m E
C:'Z_\’\\S e -
N

_—




Lecture 3

Components of Vectors:

A vector A lying in the x y- plane can be represented by its component vectors A and

A,
K=K +A,

R

A-[K+5 s
IH

A, =Acosb o EA. — X

Ay=Asin0

0
6=tan" | —
A,



Example: A displacement vector? in the xy- plane is 10 m and .?
direction at angle 6 = 30°. Determine the rectangular components ~ |
of X

Solution:

Ax = A cos 6 =10 cos 30° = 8.66 m

Ay=Asin0=10sin30°=5m

The sign of the component Ay and Ay depend on the angle 6

Example: if ty
A
MO Acnegative ()| Aposiive (4
Ay (9) A, positive (+) A, positive (+)
X<& >+X
0 = 120° > A (9) A, negative (-) A positive (+)
\ Ay (.|.) Ay nigative (-) Ay nigative (-)
\%
0 =60° > Ax (+) Y

/

Ay (+)



Unit vectors: is dimensionless vector having a magnitude of exactly one.

We use the symbols [i. j, k] to represent unit vectors pointing in positive [x, v, z]

Instead of writing: ?x = Al z

? N

Ay=Ayj

—> . .

A=Ak k
i=[j]=|k|=] sy
If we have two vectors i
fzgxim}rjmzk. §=Bxi+B}.j+le~i X

S>> |
A+B=(A+Byi+(A;+By)j+ (A +By)k



Example: A) Find the sum of two displacement vectors A and B lying in the xy- plane
and given b}':?= (2i+2j))m ﬁ =(2i-4j)m

Solution:

> > >
R=A+B=(Qi+2))m+(2i-4)m=4i-2jmmmmp R =4 R, =-2

—>
B) Find the magnitude of R

Solution:

- [— ] 2 2 2 —
R=RI+R: = 4 +(-2%) =20 =45m

C) Find the angle between Ry and Ry +y (90°)

h
R _D
tanp=—2 =_" -5
. 4m

6 = tan’ (-0.5)=-27 with clockwise -X (180°y€ C\‘ > +X
|~

B =-27+ 360 =333 counter clockwise B=4.5m
A 4

-V (270°)



Vectors and Scalar

[1] Multiplving a vector by scalar

Example (1):4*(31+47)=121+16]

—> L >
Example (2): If vector A=1+2j+ 3 k. Find 2A

N

Solution: 2(1+2j+3k)=2i+4j+6k



[2] Multiplving a vector by a vector
There are two methods:

a) The scalar or dot product [e]

e b= al |b| cos 6

cos B =

aeb aebh
) (= cos’

|a| |b] |al |b]

[b|

If 6 =90° *?.?: 0 since cos 90° =0

Example: Vector = has ma gnitude 3. x'ecmr—g has magnitude 4 and the angle between
—> :
?ﬁnd b = 60°. Find ?-?

Snlutinnﬁcf}: lal [b| cos 8 =(3) (4) cos 60=06

b) The vector or cross product
?E?Z al x |b| sin 0

Example: Vector 2 has ma gnitude 3. x'ecmr? has magnitude 4 and the angle between

=and F}: 30°. Find ?x?

—> —>
Solution: |a|=3. |b|=4. 6=30°

?E?Z al x bl s 8= 3x4 s1in 30° =6



b) The vector or cross product
TXB= a| x [b| sin O
Example: Vector = has ma gnitude 3. a'ecmr? has magnitude 4 and the angle between
Zand ?: 30°, Find ?x?
. > —>
Solution: [a|=3. |[b/=4. 6=30°

?}:?: al x [b| sin 6= 3x4 s1n 30°=6

Dot product [e] and cross product [x] of unit vector

a) Dot product [e]

X —> i iei=1 iej=iek=0
y—> ] jej=1 jei=jek=0
7z —> k k e k=1 kliZE-jZ{]

Example: A vector?: 27+27+k ,?= i+7, Find the value of?o?

Solution: ?o? 2T+27+k) e (i+))=2+2+0=4



b) cross product [x]

1X]=k , 1x1=-Kk
jxk=1 , kxj=-1
kKxi=] 1xk=-]

e A A A
Example: find AxB., A=2i+2j+kandB=1+]

i ik
Snlutinn:?x_B}= 2 21 =‘i ;; l‘i 3j+ﬁ ﬂk
110

=20 -] i-[@0-00]i+ [0 -] k=-i+]+0k=-1+]




Chapter 3: Vectors

Two vectors are given as a= i +2j+2k and b=2i+4j+2k . Vector ¢ which
satisfies the relation a-b+c=3i is:

a) 1+3j C)) -it+5j
b) —i +j d) 4i+2j
For any two vectors A and B, if A.B =0 then the angle between them is
a) Zero c) 30 degree
b) 90 degree d) 180 degree
For A =3j-4k and B =-5] + 4k, B.Ais:
a) -31 c)-15i+ 16 ]
b) 31 d) 31j

Three vectors A =i -2j+k, B =5i + 2j —6k and C = 2i + 3j. The value of
(A+B).C

a) 18 c)7
b) 12 d) 14

The sum of two vectors A + B is 4i+], and their difference A-B is -2i+], the
magnitude of vector A is:

a) 1.8 c)4.1
b) 2.8 d1l4

the position vector for a particle in the rectangular coordinate (x, y, z) for
the points (5, -6, 3)

a) r=5i+6j+3k c) r=-6j +3k
b) r =5i-6] +3k d) r = -5i-6j+3k

In scalar product , which of the following is true ?

a) A-B #B-A
b) A-B= —B-A
) A-B=2B-A
dA-B=B-A

The magnitude of A x B equal to

a) A B cos6f
b) A B sinf
c) —AB sinf
d) AB tanf

A vector B is given by its component B, = 2.5 and B, = 7.5 . what the
angle does vector B makes with the positive x-axis

a) 25 c) 55
b) 18 d) 72




10

Let’s the vector A= 51 + 6j -7k the magnitude of this vector is

a) 10.5 c) 20
b) 18 d) -10

11

Let the vector A = 3i -5] +4k and B =7i—8)j— 9k . S = A- B equal

a) 4i—3j-13k

b) - 4i + 3j +13k
c) 10i —12j-13k
d) -10i + 12j -13k

12

The vectors A and its negative vector have

a) Same magnitude and direction

b) Same magnitude and opposite direction
c) Same magnitude only

d) No correct answer

13

A vector has component x= 6 m and y= 8m what its magnitude and
direction

a) 10 mand 30 degrees
b) 14 m and 37 degrees
c) 10 m and 53 degrees
d) 14 m and 53 degrees

14

Referring to the following figure, the correct
relation is:

X
@]

4

>

a) A+B=C
by B+C=A
c) A+C=B
d A+B+C=0

15

Two vectors are given as follows: A =-2i—5j+ 2k, B =-4i-2j—3k. the
angle between the vectorsis ...................

a) 132 c) 67
b) 114 d) 41

16

Two vectors are given as follows: A =—3i+ 6j =5k and B=-2i{" + 3j” +k
The vector dot product A - B equals:

a) -12 c) 14
b) 19 d) 30

17

Two vectors are given as follows: A =—2i - 5j +2k and B=-5i"-2j” -3k
The vector dot product A x B equals:

a) 43 c) 12
b) 18 d) 31




18 | The magnitude of vector A is 6m and vector B = 2i+j (m). If the angle ()
between them is 30 their scalar product (A . B) is:
a) 16.4m? c) 11.6m?
b) 2.24m? d) 32.8m?
19 | Two vectors A=xi+6j and B=2i+yj. The values of x and y satisfying the
relation A + B = 4i+j are:
a) (-1,-2) c) (1,-4)
b) (2.-5) d) (0.-3)
20 | If two vectors have same magnitude and are parallel to each other, then
they are said to be
a) Same C) negative
b) Different d) equal
21 | Position vector r of point A(3,4,5) is
a) 7.07 c) 8.18
b) 3.21 d) 6.54
22 | Scalar product of two vectors is also known as
a) vector product C) point product
b) dot product d) bothaand b
23 | Unit vectors are normally used to represent other vector's
a) place c) velocity
b) direction d) magnitude
24 | Dot product of A.B with angle 0 would produce results equal to
a) A c)AB
b) B d) zero
25 | Cross product of two same vectors is equal to
a) Zero ).

b) 1 d)j




Solved the questions:

[1] Three vectors are given by A=6i, B=9j, and C=(3i+4)).

(a) Find the magnitude and direction of the resultant vector.
(b) What vector must be added to these three to make the
resultant vector zero?

A=6i,
B=9j
C=(-3i+4j)

The resultant vector is A+ B + C = 3i + 13]
The Magnitude of the resultant vector is 13.34 units
The direction is 77° with respect to the positive x-axis

(b) The vector must be added to these three to make the
resultant vector zero is

-3 - 13

[2] A particle moves from a point in the xy plane having
cartesian coordinates (-3.00, -5.00) m to a point with
coordinates (-1.00, 8.00) m.

(a) Write vector expressions for the position vectors in unit-
vector form for these two points.

(b) What is the displacement vector?
The vector position for the first point (-3,-5)m is
A = -3 -5j
The vector position for the first point (-1,8)m is
B=-i+8j

(b) The displacement vector is

B-A=2i+3j



[3] Two vectors are given by A= 4i+3j and B= -i+3j.
Find (a) A.B and (b) the angle between A and B.

(@)

A.B = ABx+A,By

AB=-4+9=5units

(b)

cos 0 =A.B/AB=1/3.16

0="71.6°

[4] Vector A has a magnitude of 5 units, and B has a
magnitude of 9 units. The two vectors make an angle of 50°
with each other. Find A.B

AB=ABcos 0
A.B =5x9cos 50°=28.9 unit

[5] For the three vectors A=3i+j-k, B= -i+2j+5k, and C= 2j-
3k, find C.(A-B)

A - B = 4i -j -6k
C =2j-3k

C.(A-B) =0 -2 + 16 = 14 unit



[6] The scalar product of vectors A and B is 6 units. The
magnitude of each vector is 4 units. Find the angle between
the vectors.

A.B =6 units
A =B =4 units
cos 0 =6/16
0=67.9°

[7] The polar coordinates of a pointarer =5.5mand g =
240°. What are the cartisian coordinates of this point?

X =1rCc0s g=>5.5%c0s240°=-2.75m
y =rsin q =5.5%sin 240° = -4.76 m

[8] A point in the xy plane has cartesian coordinates (-3.00,
5.00) m. What are the polar coordinates of this point?

Aol ) A 30 0K clEany) ¢ Jagasl) g g Cha ) yall

F=A94+25=58m

3l

0= tan-li3 =59

=

-59 with respect to the negative x-axis

0 =121° with respect to the positive x-axis

(-35m = (5.8m, 121°)



[9] A point is located in polar coordinate system by the
coordinates r = 2.5m and g =35°. Find the x andy
coordinates of this point, assuming the two coordinate
system have the same origin.

r=25, 0=35°
X=rcos35=2
y=rsin35=14

[10] Find the magnitude and direction of the resultant of
three displacements having components (3,2) m, (-5, 3) m
and (6, 1) m.

sl LS Agaiall B ) guall ) Jliguad) A A5 JlLY) (pa AdakS JS J gad
A = 3i + 2j
B=-5i+3]
C=6i+]j
AN el Aasall 2 5
A+B+C=4i

[11] Obtain expressions for the position vectors with polar
coordinates (a) 12.8m, 150°; (b) 3.3cm, 60°; (c) 22cm, 215°.

(a) 12.8m, 150°
x=rcos 0=12.8 cos 150 =-11.1m
y=rsin0=12.8sin 150 =-17.5m

A=-11.1i - 17.5j
foa gall Aaia Aoy Jaldil) BLd 48, jlal) (udi aadiad
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Density and Pressure . - - ]
oV ty Io\by 3o oW\ (-é‘]“‘?? =
The density of a substance is defined as its mass per unit volume. (
— \ — ———
P T o g
V—s &) F

where p is the density. m is the mass of the substance and V is the

volume

The unit of density in SI unit system m@

Density of some substances

Substance p (kg/m’) Substance p (kg/m’)

Ice 0.917-10° Water (1<10°)

Aluminum 2.7%10° Glycerine 1.26+10°
(_Iron™~ (7.86x10°) Ethyl alcohol | 0.8+10°

Copper 8.92-10° Benzene 0.88<10°

Silver 10.5<10° Mercury 13.6-10°

Lead 11.3<10° Air 1.29

Gold 19.3+10° Oxvyeen 1.43

Platinum 21.4<10° Hydrogen 910°

Helium 1.8x10°




O D\ }\,,./ ( .
1- A silicon of mass 50 kg and volume 19910355
—, o -

A)Find it's density =—OW T ————— - ~{
B) Find the specific grawty.i% o ) o \\N) |

= 2.6x103Kg/m?

_M_ 50Kg
p= V

19.2x103m3

2.6x10° Kg/m® < _
S — fv = - 3 g/ 3 = 2'6 " |
( P 1x10° Kg/m* 47__

sg | ,u,Laj de 3.|J| QLS wag :| (AU EI

_ 2- Calculate the mass (m) of an alummum cube have a
X densnty 2 7|g/cm and Volume of 0. 2 cm :

T %

Fo» 1 ok

:;jf_yfl;=pv 27 x02=054 g



" I..‘ d ,1_

-

. Example 2: Asample of iron has a mass of 31.6 g and a

" volume of 4 cm® L~
e Findthe den5|ty of the iron e b
e Find the specific gravity e AR S
i ~ WA
Solution: [~ — 7 : =N
a) X’ \'u' a ——r‘i‘
M=0.0316kg ' - ~ b 1.4 ylo k "
V = 4)(10_6 m3 (\,ll"' a *)] J - -_{_fq_ - “_f_ VAR -6 7%
M 0.0316Kg . \/ 4 KNlag M2
p=—=——"=7750 Kg/m :
V 4x107°m?® _— PR 5/@ .
b) 112 o o 0d LM
7750 e = -
e T
p, 1000 A 'L
S T X s
. et A
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Variation of pressure with depth

« Water pressure and atmospheric pressure increase
with increasing depth i b m 5

[ ]

L s
* The pressure| P at depth h below the water surface:
Given pthe denSIty of the liquid Kg/m®

P, atmospheric pressure (Pascal) . S 0 b2

g=9.8 m/s® Sy

h depth in meter o |

Consider a parcel of liquid at distance d from the surface
as shown in figure 14.3 %

?



This law gives variation
of pressure with depth

AN GE
'k}f‘”iwj

/ The parcel of fluid is in
equilibrium, so the net
force on itis zero.

Figure 14.3 A parcel of fluid in a
larger volume of fluid is singled out



Pascal's Law  Jucb 099

" -_‘,.'| N '., | ----\ | ;
TN bentl el

Pascal s law; A ghange m the pressure applred
tO“a fluid is transmltted undlmmlshed to every

pomt nt of the ﬂwd and tot the waIIs of the

container. . 1,/ -
. Pressure in= pressure out

:"x F in Fout

E\M‘Ain ‘4out :l



Because the increase in
pressure is the same on
the two sides, a small
force F, at the left
produces a much greater
force F, at the right.

‘—“-—D

Ax]

A s
N~ \ m't

Mozl 6 AU




N }MJ l \ i ik
g . ;
" Example 10.2 / /‘Z‘)\U( Ny |
M‘(.‘akulale the pressure at an ocean depth of 500m. Assume the
. density of water is l()’kg!m3 and the atmospheric pressure is
’ 5 =
. \P;J 4/ 1.01x10"Pa.. —_— — N \,\r

o — g

b = ] 0 t“f ;

XY A Po =\, dl Xl 7 szgwm)f -
Solution P = Y 5y KO B : R
wP=F, +pgh = T
e~ —"-—\‘—:l D it e :II"J @, L\ 08_ = &\ll _% \ﬂ J[b;_'-\ e
2 P=1.01x10 + (10" x9.8 x 500) Yy b i

- .. =5x100Pa =V V0% DA e g T
VSl —— i i R ! ap) AW les

i?) A storage tank 12, m gfﬁp is filled with water. The top of tank is open to the air.
What is the at_)_sﬁ_ﬁ% pressure at the bottom of tank? ( hints: air pressure ?
— 5 T N 3 : e
1.013x10°, water density lO_OQﬁkg/m ). |1 Lo - V_} Yloq
Floe = Fot P oy o e ) MT I
-paepba T L G ClE
= (1o x1o )4 (losox 12 x9. 840
_([ "1 \:21?700951:?!5‘1&'!01?’&\ \JL)L'
“ VT o) > =709 1o Pa -




* Matter is cla{sn‘led as beingin one of three states:
o9P1-solid 2 iquid 3- Gases "
* Liquid and gasses are fluids = ol ) S ep )l

— o

e Fluid Statlcs A

o | Pressure P is a scaler quantlty
, The force exerted by bwa statlc fluid on an object is always
perpendlcular to the stirface of the object.

* Pressure P is a scalar quantity and defined as t the ratio

ofma_ “F'mg pvg hg =~ ea \ ), 1 Oy~
B F_mg pVg pAhg _ i Nor f"r‘j ﬁ J(J J Jg
PRLaa~a ~ 4 A S S
Sl e N B jn\l - \ 'j|
Ry '



. - \ :_.- .\____’;. [ ¥ ;f §
;_': 10 A '! A | |, y \ / |

. The umt of pressure is N/M2' Pascal (Pa)
* Atmospheric pressure Pois the pressure of
the earth's atmosphere.

* Po=1atm=1.08'x10"Pa
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* Ex.4: The mattress of water bed is 2 m Ionge by
2m wide and 30 cm deep. ' |
e 1- Find the welght of water in the mattress

e Solution:
# m e B s —

* W=mgand P 74 —) ™Mz J V T leee X [ LRIROR
* The density of water is 1x103 kg/m M= 1200 K &

 The volume of the mattress = long (L)x width (w)x
depth(d)
e =2x2x0.3=1.2m°



pzi?
e M=1.2x103 kg W- oo YA 9 = \\16s \/
+ W=mg=1.2x10%9.8=11760N |
¢ 2- Flnd the pressure exerted by the water bed
on the ffoor when the bed rests in its normal

position. A

i

. P;=F/A= weight/A=11760N/(2x2m¢)= 2940 Pa



6\~ = oy I"r» o Vg /5P 90 5o
5 18 Car llft compressed air ¢ exerts force on small posmon that has
Of ”\&9 2\
C|rcular cross sectlon (A) and radlus of 5 pm The pressure is
iPg transmltted by a Ilqmd toa pggmon that has a radlus of 15 cm:
% A) What is the force must st the corhffréssed alr exerts to llft a
7 car w welghtmg 13300 N? “rowtT ——

* B) Whatis the air pressure produces this force?

« A)

* F1/A1=F2/A2=P

« F1=(A1/A2)F2= m(5x1073m)?

s [Fi=i, 48x10°  mw(15x10~2m)?

(A 'S e

(1.33x10*N)

r-_"l.f’\ Qu\i'l\ = 12 = - ' 9 \1
: .\:“'H__ = - \‘7 =N 135() @] T’\[;C_)(‘.EG‘\
\ﬁ W . l,[‘ CJUI "_\ — E\I _h r‘_—,;__‘ :‘P""‘E _:‘\"3 1(\ n< \4 i ) Y 1. QJ%
| 1 (Skys ) TS KMty 7 pa |€,;(1f.?‘7/"|



B) The air pressure that produces this force

=F1/A1l

= 1.48x10°N/3.14(5x10%m)2
=1.88x10° Pa



Chapter 5
Fluid mechanics

Lecture 12
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Buoyant force and Archimedes's principle

"/—\"
o U; P Q“: Jb /\,\f:; 5 L IS ."; lmuﬂ "
o When a body is immersed completely or partlally ina ﬂmd the
L ﬂUId exerts an up%vlédrd u S Bt T
" fofce on t!\fe body equals to the welght of the fluid displaced
bythe body. - SEeSe———
059 Soluii B aunll @85 DLl 1 Sl 8 Lis> sl WS aus sac 3]
TS oW | 50)l Jiludl
Fg = pngdz'splaced - ' el
. ) . FR = L OC\ —_—
FBﬁ@bJ'I 599 ol g3l B9 . f’af\;\ . | — —
PEC 1 EK_ ‘_‘,/ ﬂ( _T /T
VD|spIaced Cl_)ﬂjl JJLA-'-” ,’-\-3-3\R : U V Oi‘ \ Ir R =
g |

\u'(',l '\lf'\ L}ur



/ H\ ,LJQ)n 7] }9 /\j}\\\ *’u
%j Find the Buoyant force ( Fg) on iron with volume of 2x10* m?

immersed in water? '/ /LJ" B —
The Buoyant force Fg=p;.V. g

= 1300 x 2x10"%x 9.8=1.96 N
'\, ef/ =y

@ m X & P b
@ ) A 2 kg brass block pf den5|ty 8700 kg/m is attached to a string
and submerged under(water) Fmd the Buoyanf force Fg and the
Tension in the rope ? < N 3 gl — ‘
The Buoyant force Fg=p;.V. g P ﬂ? S /- ffw
For volume V=m/p=2/8700=2.3 x 10*m? e y
The Buoyant force Fg= ps.V. g=1000 x 2.3 x 10*x 9.8=2.25 N V- s

gl '_, \/i ¢ F{g:? g g
T+ Fg—mg=0 . v -
T—mg- FB—2x98225 173N R=D yuyo =9

TT_' m‘a H-@“. 2\,(0;_8 -8 = H Q/U' _:J/“

~}
&




Continuity Equation

PR/ RUTYE) [QECI LT AL PEC

. . " LA |/\\:1 .
t-_Jg-_lJ}“ @SJ)AJJ Syl lall P‘.?DkSgL.J_.! ! AN
s A A0 o Q) 2 == —— —.H >
SuS)l Gl o8 ganill de s S ) 3

w3l 8 G5l AE s oo Ui v
a2l -

Continuity equation states that what goes
into the hose must comes out

“ Qin = Qout

fP6 poze bel nuif e ( pjom L9fe)
MUELE" O 12 fJ6 AO|NIIE Of MILEL {|jOMIUE fPLONBY



8 BV, acapu. ' [ _
=—=Co 7

% nstan
Slunitis M*/S o
Q flow rate r/
V volume \“
Ttime )
e
{Q = VA |

v velocity and A area

As the cross section is circular, A=nmnr



(_-,Q\ A (}) O N i

AUl = RV

y iy o oud
S MV, =MV, . e

. .
V=10,

This means that the speed of flow increases by decreasing
the diameter of the tube

“ugudl b8 ani J8 LIS §anill de w5l




, EX A water pipe W|th radlus of 1cm Ieadlng up to the
'hose Water Ieaves the hose with rate of 3 Ilters per

minute. g g | i

* Find velocity of water in the pipe? < i o

+ The hose a radius is 0.5 cm> What is the velocity of
water in the hose? B




e A)

AV 0.003
' = =

|
v

At 60

."’/ I‘I x',
L/ \ J-
—"1,’Il .FI'\ Ead i |'\|||| !
\ i
(Y
e
b | - I‘".I
A

m \
— 5x10-5 I /'I—} - A~

W
\

I

|

e
. 83
¥y
'y
] O n J
<
TR
\/
, X |L.

| / 5_,1
.\_J.I'"l\ B 3y
Q‘- ' -__ 3 | S .'.l‘.l ""‘l
\)1 - L_j__‘____"“— - \__h \
- AN () o
1 V& ra = Vo I




Surface Tension

Surface Tension

Surface tension is a property of liquid surfaces resulting from intermolecular bonding
which causes the liquid to minimise its surface area and resist deformation of its sur-
face. It causes liquids to act rather like they have a thin, elastic skin. This is not true,
but is a useful analogy to visualise the behaviour of liquids.

The size of the surface tension can be measured by determining the force required

to hold in place a wire that is being used to stretch a film of liquid as in Figure 13.2. The
surface tension is defined as the force per unit length along a line where the force is

parallel to the surface and perpendicular to the line:

ol
=1

The length over which the force is being applied in the diagram shown is fwice the
length of the wire, as the liquid film has two surfaces. The surface tension y has the

unitsof Nm~'.



=

Fixed wire Movable wire
Liquid film._ N o—"

G

«—{— =
=

— .
e e

111

Figure 13.2 A thin film of fiuid is held in a metal loop, one side of which is movable.



Problem: A thin film of a mystery fluid is formed on a device like that shown in Figure 13.2. If the width of the
apparatus is 3 cm and the force required to hold the movable wire steady is 4.8 mN, what is the surface tension of
the fluid?

Solution: The surface tension can be found using Eq.

=~

T:

where F=4.8x 10~ N and L= 0.06 m. Itis important to remember that L is twice the width of the apparatus as there
are two surfaces to the fluid.

This gives a surface tension of:

-3
A0 oeNm
0.06 m




Viscosity

Viscosity is the resistance of the fluid to flow. We define it by finding the shear
stress required to generate a shear-strain rate of one per second. (If you're thinking
‘one what?’, remember that strain is dimensionless — it is a ratio of distances.)

Imagine a fluid with depth L between two plates of surface area A. To cause the
top plate to move at the constant speed v, which will give us a constant shear-strain
rate, we need to apply a steady force F to the top plate which just balances the kinetic
friction force of the fluid on the plate. To keep the lower plate stationary, an equal and
opposite force needs to be applied to it, so a shear stress of & % to the fluid causes the top
layer of fluid to move at a velocity v, whilst the bottom layer of fluid is stationary. The



shear strain in the fluid is constantly increasing, and the rate of increase of shear strain
is equal to the change in strain, divided by the time interval Ar:

Ax/L
At

Rate of change of strain = - %

It is found experimentally that for some fluids the shear stress is proportional to
the shear strain rate, and the proportionality constant is the fluid viscosity, 1. (n is the

Greek letter eta.)
F v

A L
Viscosity is a property of the fluid. Fluids with high viscosity do not flow readily; a
large shear stress is required to produce a given shear strain rate or flow rate. Fluids
with a low viscosity, e.g. water, flow readily. Viscosity has units of N s m~2, which is
equivalent to Pa s. The poise, a non-SI unit, is sometimes used instead, where 1 Nsm™?
= 10 poise.



» The viscosity of simple quﬁi'ds...
» decreases with increasing temperature
* increases under very high pressures.

» The viscosity of gases...
* increases with increasing temperature
* is independent of pressure and density.

viscous fluid A viscous fluid is one where we cannot ignore the effects of friction within the fluid
and between the fluid and neighbouring interfaces.

viscosity () Ameasure of the internal friction of a fluid. Itis a property of a particular fluid, and
is a measure of the fluid's resistance to flow. The viscosity has units of N s m™, which are
the same as Pas.



Bernoulli’s Principle and l;compresslble Fluid Flow

Bernoulli's principle is named after Daniel Bernoulli (1700-1782), one of several fa-
mous men from his family, and is in essence a statement of the law of energy conserva-
tion for fluids. When viscosity can be neglected, an increase in fluid velocity is accom-
panied by a decrease in pressure and/or a decrease in gravitational potential energy

(see Figure 14.4).

v - e——

\

-/
h, —Pa;—// _____________ -
: Y,

Figure 14.4 Bernoulli's principle allows the combination of pressure, speed, and height of a fluid at one point to be
compared to the same three properties at a different point in the fluid.




We can use this to write an equation relating together pressure, speed and elevation
for the case of an incompressible fluid. This will be valid for most liquids, and for gases
when no expansion or compression is happening. In addition, if the fluid flow is lam-
inar, steady (i.e., independent of time), and we can ignore the effects of friction, then
we have Bernoulli’s equation:

P+%pvz+pgh=constant (14.3)

In the above equation, P is the pressure at a chosen point, g is the acceleration due
to gravity, v is the fluid velocity along a streamline at the point, h is the height of the
point above a selected reference level, and p is the density of the fluid. By constant, we
mean that the sum is constant along a streamline.



Applications of Bernoulli’s Equation
Fluid Flow Out of a Tank

How fast will water flow from the outlet pipe of a tank and what does it depend on? We
can apply Bernoulli’s equation to show that it depends on the height of water above
the outlet, provided the surface area of the tank, A, is significantly greater than the
cross-sectional area of the outlet, A,. Figure 14.6 shows such a case.

Figure 14.6 Speed of water flowing out a hole in a tank depends only upon the height of liquid in the tank and that
liquid's density



]

Applying Bernoulli’s equation to water at the surface (subscript ‘s’) of the tank and
at the outlet ('0’) of the tank we have

1 , 1
P+ Epv;+pgh,= Po+5pv§+pgho

Now we assume that both the surface of the tank and the tank outlet are at atmo-
spheric pressure, so

1 1
2P0 +ghs = 5pU; +pgho






Lecture 6

Electric Charge and Coulomb’s
Law



Electric Charge and Coulomb’s Law

In this chapter we will describe the following
properties of charge:

-Types of electric charges
-Electric charge and its conservation
- Forces among two charges (Coulomb’s law)

- Force from many charges



ELECTRIC CHARGE

Structure of an Atom

Electrons __, o

Electron
<-— —cloud

O

.
O
Nucleus /

Protons
& neutrons O O




ELECTRIC CHARGE

= All ordinary matter contains
both positive and negative

charge.

= You do not usually notice This object is neutral
the charge because most X+ X-X+
matter contains the exact © © © O |positive charge +8
same number of positive @ O © O |negative ““f’tﬂ"] %
and negative charges. 0RO o

= An object is electrically
neutral when it has equal
amounts of both types of
charge.



ELECTRIC CHARGE

= Objects can lose or gain electric charges.

= The net charge is also sometimes called
excess charge because a charged object
has an excess of either positive or
negative charges.

= A tiny imbalance in either positive or

negative charge on an object is the cause
of static electricity.



ELECTRIC CHARGE

= Electric charge is a
property of tiny particles
In atoms.

= A quantity of charge
should always be
identified with a positive
or a negative sign.

= The unit of electric charge
is the coulomb (C).

Charge
(coulombs)
Electron
Amgxm'“ -1,602 %10
Proton
AETS <10 | +1.602 %10
~  Neutron
/1,5?5 107 0



ELECTRIC CHARGE

The Transfer of Charge

Some materials attract electrons
more than others.



ELECTRIC CHARGE

The Transfer of Charge

Glass Rod

As the glass rod is rubbed &2 against silk,
electrons are pulled off the glass onto the silk.



ELECTRIC CHARGE

The Transfer of Charge

Glass Rod

Usually matter is charge neutral, because the number of
electrons and protons are equal. But here the silk has an
excess of electrons and the rod a deficit.
A0 slute b gi gl g il g iSIV lanae Y (i il Aalaia 33l () oS5 Lo sale
e glajlls s S il agal ) sl La (S



ELECTRIC CHARGE

The Transfer of Charge

Glass and silk are insulators:
charges stuck on them stay put.
A 3 sl e alls Fla 0 ey
LlSe b i g Alaildl) cilin



Electric Charge and Its Conservation

Macroscopic objects can be charged by rubbing <& _s

=

(b)

Copyright © 2005 Pearson Prentice Hall, Inc.



Electric Charge and Its Conservation

Charge comes in two
types, positive and
negative; like charges
repel and opposite
charges attract

™
>
(a) Two charged plastic rulers repel
%@
(b) Two charged glass rods repel
—

7 %

(c) Charged glass rod attracts
charged plastic ruler

Copyright © 2005 Pearson Prentice Hall, Inc.



Charges and Forces

= Electric forces are created between all electric charges.

= Because there are two kinds of charge (positive and
negative) the electrical force between charges can attract
or repel.

= In any process the charge at the beginning equals the
charge at the end of the process.

Like charges repel

OO 1=

Unlike charges attract

OO




Charges and Forces




Coulomb’s Law

Q1 Q2

Q |:21 |:12 Q
r

<€ >

x Coulomb determined

= Force is proportional to the product of the charges
g, and g, along the lines joing them

= Force inversely proportional square of the distance
m e

e JEal e [Q4] 1]/ 117

m OF

= [Fial= K [Q4] 1Q: / 117



Coulomb’s Law

Q1 Q2

@ |:21 |:12 Q
r

<€ >

= The force on Q, due to Q, is equal in
magnitude but opposite in direction to the
force on Q, due to Q..

E21 = —ElZ

16



Coulomb’s Law

The magnitude of the force of interaction between two
point charges is directly proportional to the product of the
charges and inversely proportional to the square of the
distance between them

- K\qlqz\
r
K = 1 - K=9x10°Nm?/C?
Ame,

e, =8.85x107°C*/Nm*

where ¢, is the permittivity of free space



Example 1

A -3uC charge is placed 100 mm from a + 3uC charge
calculate the force between two charges
-3 uC 3 uC

Q 100 mm =©

= First we convert to appropriate units
3 uC = 3x10°C, 100 mm = 100x103m = 0.1 m

-6 -6
‘ChCIz‘ (9X109 Nm2/c ) 5, (3x10 C)(3X210 C)
r° (0.1m)
=8.1N (Attraction force)

F=K



Quiz 1

Object A has a charge of +2 uC and Object B
has a charge of +6 uC. Which statement is
true?

, . B: FAB—-FBA
n C: 3FAB=_FBA



Force from many charges

Q.

|:41

|:21

Q1
" &
Force on charge is vector
.. sum of forces from all
Principle of charges
superposition

Fo=Fy t F31 +Fy




Example 2

Two charges g, = -8 uC and g, = +12 uC are placed 120 mm apart in
the air as shown. What is the resultant force on a third charge
g; = -4 uC placed midway between the other two charges?

F
- >
31 > >F,
d;--8 nC qs =-4 pC 3 Q. +12
‘ 60 mm ‘ 60 mm ‘

‘Ch%‘

8x107°C)(4x107°C
Fis = = (9x10°N.m*/C )( ) > ) _ 80 N (Repulsion, to the right).
(0.06 m)
-6 -6
Fs=K \q2q3\ = (9x10°N.m?/ C?) (12x107°C)(4x10°C) _ ;50 (Attraction, to the right).
r? (0.06 m)*

The resultant force F is the vector sum of F,5; and F,5. Thus
F=80N+ 120 N = 200 N (Directed to the right)



Example 3

Two equal positive point charges q; = g, =2uC interact with a third
point charge g;=4 uC. Find the magnitude and direction of the
resultant force on gs.

q; =2 pC

30, cm
40 cm

30 q5=4 nC
q, =2pC

e We have to compute the force each charge exerts on g; and then find the vector
sum of the forces.

=0.29N

\q1q3\ _ (OX10°Nm? /C )(2x10‘6C)(4x10‘6C)

2 F =Fp =K
ol r2 (0.5m)?



Example 3

Fysm/e

F, =F;C0s0+F,;c080 =2x(0.29 N) (—j = 0.46N

0.4m
0.5m

>

The total force on Q is in the x direction, with magnitude 0.46 N.



Example 4( Homework )

Solve the example 3 if the lower charge is negative.

The total force on Q is in the -X direction, with magnitude 0.46 ..N



Example 5

Three point charges lie along the x axis as shown in
Figure. The positive charge q; =15.0 pC is at x=2 m,
the positive charge g, =6.00 uC is at the origin, and
the net force acting on g5 is zero. What is the distance
X coordinate of q5?

y

- 200 m ———

- X ——etg— 2 () — x —»

—@———@—
fa Fog g5 Fi3 71




Example

As shown in the figure

5

y

—— 200 m ——

-—t—-‘-— 200 — x —=

—— -

Fs=F3-F =0
Fig = Fy
72
K ‘Q1q23‘ _K ‘Q2q23‘
I3 P
5 6
(2-x)2 x?

~6(2-x)*=15x* =3x*+8x-8=0
SX=0.775m, x=-3.44m (refused)

Fog g5 Fig q1

A



= Thank you



Example 6

Two particles, each with charge Q, and a third particle,
with charge q, are placed at the vertices of an
equilateral triangle as shown. The total force on the

particle with charge q is: i %::
< X >

F,; cos O F,3 cos 0
A. parallel to the left side of the triangle
B. parallel to the right side of the triangle
C. parallel to the bottom side of the triangle Q(+ +Q
D. perpendicular to the bottom side of the triangle
E. perpendicular to the left side of the triangle




Quiz 1

what is the resultant force on the charge in the center of
the square? (q=1x107 C and a = 5cm).

0\ /ca

Q?‘\C

d -

- q



Example 7

what is the resultant force on the charge in the lower
left corner of the square? (gq=1x10" C and a = 5cm).

a @ @

20 @ @ =

(The resultant force equals = 0.175 N, with the direction -15.5° with
respect to the x-axis)



F, = F, + F;
i
Pt |
F, =K —33
g
.
Pt |
F, =Kk—34
: —=
|
i gt
sl
F,=Kk—33
3

s

Solution

N Maal) B gl g, o Bl jlaka Gilaa e clial&l) 3 LAY oo (g gail) Lilaa LS Lia BaY

F,, = 0.072 N, F,; = 0.036 N,

O
F,, =0.144 N

MM g alida o g8l Jue bl oY 5 pdlia EOEN 5 o8l aan aodaied Y L) Ua BaY
Cpdd Ao iy Al 5Jﬁ\dhljx,ydﬁulﬂag.w3“ubﬂw\gw
gmad F13 854l dala o) (sl
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Solution

|

I
v
|
Wl
.|.
)
4a

[
o
ke

k
b

[
o
ke

b
A
[

b
C&)
b
)

F,=0.144N F,;=0.036N, F,=0.072N,



F3, = F3sin 45 = 0.025 N
Fi3, = F3€0s 45 = 0.025 N

F, = Fisy + Fq = 0.025 + 0.144 = 0.169 N
F, = Fs, - A, = 0.025 - 0.072 = -0.047 N

= The resultant force equals

= Thedirecti -

= 0.175 N

f= J{F"] +(5) ) the x-axis equal
= =-15.5
o F

g =tan —
Fx



Quiz 2

= A charge Q is fixed at each of two opposite
corners of a square as shown in figure 2.6. A
charge g is placed at each of the other two
corners. (a) If the resultant electrical force on
Qis Zero, how are Q and g related.







g Lecture 7/

Electric Field

RIS



Electric Field

In this chapter, the following topics will be
covered:

+ Calculating the electric field generated by a point

charge.

+ Using the principle of superposition to determine the
electric field created by a collection of point charges as
well as continuous charge distributions.

+ Once the electric field at a point P is known,
calculating the electric force on any charge placed at ~.

+ Defining the notion of an “electric dipole”



Electric Field

= Electric field is said to exist in the region of
space around a charged object: the source
charge.



Electric Field

= Concept of test charge:

= Small and positive E
= Does not affect charge P
distribution Qo
O\
F=K Q?O — (A, -
r
Qo

Electric Field E is defined as the force acting on a test
particle divided by the charge of that test particle



Electric Field

- Thus Electric Field
from a single charge
E IS
F
E=—
+Q
0 QO
r
r
« Q%

S E=—T =Kg

% 2

-



Electric Field Lines

The properties of electric field lines can be summarized as
follows:

1. Electric field lines originate from +ve charges and end on -ve
charges.

For —ve the lines are For +ve the lines are
directed radially inward directed radially outward



Electric Field Lines

Qe Q_ Q3 —1-Q

> + > —> | -|— H—>

< + > —>| - |— H—>"
<€ + > —_—| - |e—— +— -
> + > —>| -|e— H—>"
> + > —>| -|e— ="
% + > —| -— "
< + > —> | - |— ]

2. The electric field lines are always perpendicular to the

surface of a metal or conductor under electrostatic
conditions.

3. No two field lines cross each other..



Electric Field Lines

4. The tangent to a field line at any point gives the direction of E.

5. The field lines are closer where the field is strong, the lines
are farther apart where the field is weak.

e s R




A\ A

e

% The lines must begin on positive The electric field lines for two point
charges and terminate on negative Charges of equal magnitude and
charge. opposite sign ( )

% The number of lines drawn leaving a
positive charge or approaching,
negative charge is proportional to the
magnitude of the charge.

% No two field lines can cross.


http://fr.wikiversity.org/wiki/Fichier:Camposcargas.PNG

Example 1

A 3nC charge is placed 100 mm from a point P, calculate
the electric field at the point

+3 nC P

Q 100 r>nm

= First we convert to appropriate units
3 nC = 3x10°C, 100 mm = 100x103m = 0.1 m

-9
r (0.1m)

=2/00N/C —>

E=K—=



Electric Field due to a point charge

1-The direction of the electric field at a point due to
positive charge is directed outward from the point
away from the charge.

2-The direction of the electric field at a point due to
negative charge is directed from the point to the
charge



Quiz 1
Point charge Q; has a charge of +6 uC and
another point charge Q, has a charge of -6 uC.

What is the relation between E; and E, at a
point P at a distance r from each of them.

( > >
@~




Electric Field from many charges

QQZ
°Q3

Electric field at a point is
vector sum of electric field

from all charges

Principle of

superposition E=E,+ Ez n E3




Example 2

Two charges gq; = -8 nC and g, = +12 nC are placed 120 mm apart in
the air as shown in figure. What is the resultant electric field at a point
midway between the two charges?

«— E
El E2
e
p
_-8 nC . @< . _+12nC
A= ‘ 60 mm ¢ 60 mm ‘qz
-9
E, =K ‘q‘ = (9x10°N.m*/C* )(8’(10 C) _20x10°N/C (to the left).
r? (0.06 m)?
E,=K ‘qz‘ (12x107C) =30x10°N/C (to the left).

= (9x10°N.m?/C?)
(0.06 m)?

The resultant electric field E is the vector sum of E; and E,. Thus
E = -20000 N/C - 30000 N/C = -50000 N/C (Directed to the left)



Example 3

Two equal positive point charges q; = g, =2nC are located as shown in
figure. Find the magnitude and direction of the resultant electric field
at a point p.

g, =2 nC

30, cm
40 cm

30|cm P

g, =2nC

e We have to compute the electric field of each charge exerts on point p and then
find the vector sum of the electric fields.

(2x107°C)
(0.5m)*

+E,=E, =K ‘qﬂ = (9x10°N.m*/ C?) =72N/C




Example 3

g, =2 nC

g, =2nC

E, =E;cos0+E,cos0=2x(72N/C) (M—m] =115.2N/C >

0.5m

The total electric field on p is in x direction, with magnitude 115.2
N/C.



Example 4

Solve the example 3 if the lower charge is negative.

2 nC

30|cm
40 cm

30 |cm

-2 nC

The total electric field at P is in the -y direction, with magnitude



Example 5

Two point charges lie along the x axis as shown in
figure. The positive charge g, =15.0 pC is at x=2 m,
the positive charge g, =6.00 uC is at the origin, and
the net electric field acting on point P is zero. What is
the distance x coordinate of point P?

'\.

e——— 2.00 m ———>

- X -“ 2.00 — x —»
E E2

, 1 :
— . —> & x

q9 P 71




Example 5

As shown in the figure

E=E,-E,

_ - X 2.00 — x —»
E, =E, -“
E E2 ‘

—@<~—0——9
K‘?—;‘zK‘?—ZZ‘ 92 P q
1 2

15 6
(2-x)* X

~6(2-x)*=15x% =3x*+8x-8=0
X=0.775m, x=-3.44m (refused)

e——— 2.00 m ———>




Quiz 2

Two particles, each with charge Q, and a point P, are
placed at the vertices of an equilateral triangle as shown
in the figure. The total electric field at point P is:

parallel to the left side of the triangle

parallel to the right side of the triangle

parallel to the bottom side of the triangle
perpendicular to the bottom side of the triangle
perpendicular to the left side of the triangle

+Q

mooOwx




Quiz 3

what is the resultant electric field on the point P in the
center of the square? (q=1x107 C and a = 5cm).




Quiz 4

what is the resultant electric field on a point P in the
lower left corner of the square? (gq=1x10" C and
a = 5cm).




Lecture 8

Gauss’s Law



s Electric Flux
= Gauss’s Law

= Examples of using Gauss’s
Law

= Properties of Conductors




The product of the magnitude of the electric field E
and surface area A perpendicular to the field is called
the electric flux ¢

Area = A

nCase 1: /
For a constant field
perpendicular to a surface A

The electricflux @ = EA

=l



E cosO
m Case 2 |
If the surface under A Vi

consideration is not <Y Esino
perpendicular to the fielc p
The electric flux can be
calculated from

ezl

The electric flux ¢ = E A cos©

Where 0 is the angle between the uniform
electric field and the normal to the surface of
area A.



n Case 3:

= The electric field may vary over a
large surface.

= Consider a general surface divided
into a large number of small
elements, each of area AA. In this
case The electric flux through this
element is

Total Flux=Y E; AA, c0s0; =) ¢= [EdAcosb

Surface



= Remember that

= =» The dot product of two vectors A
A and B is equal to /
A.B= A B cosB B
= The general form of the Electric Flux:
0 = jE.dA: jE dA cosd
Surface Surface
If the electric filed is uniform through a surface area A

o=E IdAcosG):EAcose
Surface



What is Gauss’s Law?

Gauss's Law does not tell us anything new,
it is NOT a new law of physics, but
another way of expressing Coulomb’s Law

Gauss’s Law is sometimes easier to use
than Coulomb’s Law, especially if there
is lots of symmetry in the problem

Gauss's Law relates flux through a
closed surface to charge within that
surface




The total flux passing through a closed
surface is equal to the net charge enclosed

within that surface divided by permittivity of
the vacuum g

O = {E-dA="

surface €0

£, = 8.85x10™"* Farads per metre (F-/m).




Principle of superposition:

Since the flux is related to

the number of field lines

passing through a surface D, = &Jr&
the total flux is the total gy &
from each charge

In general

For any
surface




What flux is passing through each of these surfaces?

'Q/SO 0 +Qlgy +2Qlg
@, V




Strategy for Solving Gauss’ Law Problems

e Select a Gaussian surface with symmetry that matches the
charge distribution.

e Draw the Gaussian surface so that the electric field is either
constant or zero at all points on the Gaussian surface.

e Determine the direction of Eon the Gaussian surface.
e Evaluate the electric flux

e Determine the charge inside the Gaussian surface.

e Solve for E



Worked example 1

Starting with Gauss’s law, calculate the
electric field due to an isolated point
charge +q.

We choose a Gaussian surface that is
a sphere of radius r centered on the

point charge. The field is radial
outward by symmetry and therefore
everywhere perpendicular to the
Gaussian surface.

(p: IE dACOSO ||~ (p:EA:E(4TEr2)
Surface

—EAC0OSO=E A



Worked example 1

Gauss’s law then gives:




Worked example 2

A conducting sphere of radius R with a net charge Q on its
surface. Use Gauss’s law to find the electric field everywhere.

1- The electric field for r<R

The Gaussian surface is a sphere of radius r
where r<R

Uin =0

0= jE dA cosd = T —

Surface 80

L E=0 r<R



Worked example 2

2- The electric field for r>R

The Gaussian surface is a sphere of radius r
where >R

0=0

0= IE dA coso = E A cosd
Surface

0=EA=E (4nr?)




Worked example 2

3- The electric field for r=R

To calculate the electric filed at the surface of the conducting
sphere, we can put r=R at the electric field in case 2 outside the
sphere

q
E:k?




Conductors in Electrostatic

Equilibrium

A good electrical conductor contains charges (electrons)
that are not bound to any atom and therefore are free
to move about within the material. When there is no net

motion of charge within a conductor, the conductor is in
electrostatic equilibrium.

Properties of conductors in electrostatic equilibrium

®»The electric field is zero everywhere inside the
conductor



Conductors in Electrostatic

Equilibrium

®»The electric field is always perpendicular to the
surface of a conductor

®»Any excess charge on an isolated conductor must
reside on its surface.

®The electric field is stronger where ’/ [
the surface is more sharply curved. %\M// 4

\ </ﬁ N
/ D\
\\\_*_



3 Lecture 9

Electrical Potential



Outlines

= Work & Energy

= Electric Potential Energy

= Electric Potential

= Potential & Superposition

= Electric Equi-potential Lines

s Electric Potential due to Continues
Charge Distribution



Work

= You do work when you push an object up a
hill

= The longer the hill the more work you do:
more distance

= [he steeper the hill the more work you do:
more force

The work W done on an object by an

agent exerting a constant force is the W = F”d
product of the component of the force

in the direction of the displacement and
the magnitude of the displacement



Electric Potential Energy

W =Fd
= QEd
¥ iau :—QEui

AU:Electric Potential Energy

av=2Y _ _Eg

Q

AV:Potential difference




Example 1

A proton of charge 1.6x101° C and mass of 1.67x102%/ kg is
released from rest at point A in a uniform electric field that has
a magnitude of 80 KV/m. The proton undergoes a displacement
of magnitude d=0.50 m to point B in the direction of E. Find the
speed of the proton after completing the displacement.

-
AU =-EQd e
AK+AU =0 d; L]
. AK =-AU = EQd ;
‘d;)l;":a:

0.5mv;i —0.5m v = EQd e ———




Example 1

0.5m v —O.S\Qvf = EQd 2 _I' - o
0.5mv; =EQd .
i V2 _ EQd —_f l?E
o o -I: _______
0.om
. _ [EQd _ [(80000v/m)f1 6x10*CJ0.5m)
0 Vosm 0.5x(1.67x10 7 kg

—2.7685x10°m/s

el



Potential Difference in an
Electric Field

For an infinitesimal displacement ds of a point
charge g immersed in an electric field from
point A to point B, the electric potential energy

difference, o
A .’/ ath “‘acia nne |||

AU:UB—UA:—quBE.d_s | \\
A i
_ / !

E ds cosO

B
AU=URp-Up=—-q |
B “A A



Potential Difference in an
Electric Field

The potential difference AV= Vg - V, between
two points A and B in an electric field

A / Path Field line |||

B___
wAU=Ug-U, =—q [ Eds /
A !

B B
AV =Vg -V, =—jE.ds:—jEcoseds
A A



Electric Potential Due to Point Charges

An isolated positive point charge g produces an electric field
directed radially outward from the charge. To find the electric
potential at a point located a distance r from the charge,

v-Xd
r P o



Electric Potential Due to Point Charges

We obtain the electric
potential resulting from
two or more point

charges by applying the
superposition
principle

Principle of | \,_ kS di
superposition







Potential Energy Due to Point Charges

The potential energy U of a system of two charged particles is

given by
Q-

U = kqqu C|1 @
I
If the system consists of more than two charged particles, we
can obtain the total potential energy of the system by
calculating U for every pair of charges and summing the terms
algebraically.

I

U — ka,q, N kQ,03 N Kg,03

15 13 23




Example 2

1
A charge q;=2.0 yC is located at ad,
the origin and a charge q,=-6.0 pC —— g —6.00uC
is located at (0, 3) m.
(A)Find the total electric potential  -0Um
due to these charges at the point P, 2 00 i

whose coordinates are (4, 0) m. CI1
Lf 4.0 m 4"
Lk, _ k(ql N Cb]
£ I n hn

2x10—6c:+—6x10—6c
4m 5m

V:(gxlogNmZ/CZI

— —6.29x10° volt



Example 2

—‘ll

d
— (= =6.00 C

(B) Find the potential energy of the
system of the two charges plus a third
charge g;= 3.0 yC as the latter charge 300 m
moves from infinity to point P 200 uC  3.00 uC

&

H— X
U - Kty | Kaids | ka,0s A %

= 4.0 m

£P; 13 3
(2x107°C)(-6x107°C) . (2x107°C)(3x10°°C) .
3m 4dm

(3x107°C)(-6x107°C)
)
5m

U = (9x10°Nm? / C2)(

Calculate your self ....... . U= Joule



Quiz 1

Charges +Q and —Q are arranged at the corners of a square as

shown. Determine the electric field E and the electric potential V
at P, the center of the square.

Q@ ®, Q@ ©o

M
©

Il
-
Il

<
1l
<



Equipotential Lines Surfaces

1- Field lines help us visualize electric fields. In a similar way, the potential at
various points in an electric field can be represented graphically by

equipotential surfaces.
2- The equipotential surfaces are perpendicular to electric field lines.

An electric field produced by an

A spherically sysmmetric electric .
- electric dipole

field produced by a point charge

A uniform electric field produced A p ~ 1
by an infinite sheet of charge N\ i y . \__/ . A ’
* x‘f > ., III"' s o \\“-. | / /

-

&

Y
.(+ ’._:,,
) e oy "‘\\
7
L&
%
"
rd
i
r

Y
~

\

-

|
\‘\
y 4
Y
1
LY

il



Electric Potential due to
Continues Charge Distribution

A conducting sphere of radius R with a net charge Q
on its surface. Find the electric potential everywhere.

1- The electric field for r>R

Q
E=k— mm) vzkg

I
2- The electric field for r=R

g Q
E~k7 ) V:k% 2
3- The electric potential for r<R V4 F}
Q 2
E=0 mm) v=k s R
.




Electric Potential due to
Continues Charge Distribution

r<R

E=0 mm) V=k2

R

According to the previous example, we can conclude
that in an electrostatic equilibrium, the electric
potential at any point inside the conductor is constant
and equals to the potential at any point on its surface



Electric Potential due to
Continues Charge Distribution

An Insulating Sphere of radius R has a uniform charge
density p and a total positive charge Q.

1- The electric field for r>R

E-k  mm) V:k%

r2

2- The electric field for r=R

F - kFg ) vok®

3- The electric field for r<R




Example 3

Two spherical conductors of radii R, and R, are separated by a
distance much greater than the radius of either sphere. The
spheres are connected by a conducting wire as shown in Figure.
The charges on the spheres in equilibrium are g; and q,,
respectively, and they are uniformly charged. Find the ratio of

the magnitudes of the electric fields at the surfaces of the
spheres.



Example 3

Since the spheres are connected by a conducting wire ,they must
both be at the same potential V, given by

0, P 9@ _ 9%
V=k—=—==k== Iﬂ:>
R, R, R; Ry
d; R,

! C|2_Rz

Since the spheres are very far apart, their surfaces are uniformly
charged and we can express the electric field at their surfaces as,

Therefore, the ratio of charges is

K2 E, R R R
El=Ki EZ:Kq—2 ||]|:>E1: R12 _ % Rg El:Rl ng_Z
R12 R% E2 Kq_2 q2 Rf 2 2 Rl 1



3 Lecture 10

Electric Capacitance



Outlines

= Capacitors and Capacitance
= Calculating the Capacitance

= Capacitors in Parallel and in
Series

= Energy Stored in the Capacitors
= Capacitor with a Dielectric



Capacitors and Capacitance

s [ake two chunks of
conductor

= Separated by

*T(
S )1

insulator

= Apply a potential V
between them

= Charge will appear on
the conductors, with +g
on the higher-potential
and —q on the lower
potential conductor

V



P 9
!«! o L

Crfagladia g 8 o) (B Gullida Gliady ¢l padia (plia ga (e A sSa 45 gara ]
At 4l e oJLAJ\&\JALAgSﬁQ{SgJUJAQS\MQ:A%ﬁJJ\M\gﬁ
LY ABMally CiSall A CiS g L CiiSally

%%‘@VABJBm‘tﬂ%vBJAm‘CﬂdﬁvA&ﬂa
IS My gV et A e g il agan Bale ey CiiSall A ]
q +A8 L) Adalaal)
C=_"

V



Capacitors and Capacitance

conductor

S

. insulator - - - - -




Capacitors and Capacitance

2 el m A capacitor is
electric element to
store electric charge .

A 7
,,::* = It consists of two
i 74 conductors of any

] shape placed near one
e pion | o another separated by

an insulator called
dielectric .



Capacitance

The magnitude g of the charge on each plate of a
capacitor is directly proportional to the magnitude
V of the potential difference between the plates:

q=CV == c=1 = R

V La)

where C is the capacitance

SI Unit of Capacitance: T /.

COUIOmb/VO|t= farad (F) Terminal



1- Parallel-Plate Capacitor

A

Separation d E

/ Area A -q

Calculate field strength E as a function of charge £qg on the
plates

Integrate field to calculate potential V between the plates
q=CV, C=q/V



1- Parallel-Plate Capacitor

Dielectric with permittivity €

ped

Metal plates, C = —
Yeach with area A V

¢ Y C:%
d

g, = 8.854x107*(F/m)

. vacuumpermitivity




1- Parallel-Plate Capacitor

A
d

= [wo factors affecting the value of
capacitance:

« Area: the larger the area, the greater
the capacitance.

= Spacing between the plates: the
smaller the spacing, the greater the
capacitance.



2- Cylindrical Capacitor

= [WO concentric
cylindrical conductors,
overlap length L

= Separated by a
dielectric (insulator)




2- Cylindrical Capacitor

= If we can take the (\/
length L of the
capacitor to be much e
larger than the inside
radius b of the outer

tube) ther ey

~ 2mgyl
Inb—Ina




3- Spherical Capacitor

A capacitor that consists of
fostdmery ekt tywo concentric spherical

. "' shells, of radii a and b.

.'.C:q = 4me, ab
V b-a




Parallel Combination

a
= The potential difference V /e ‘
across each capacitoristhe |, 1, o sl

i e
Same. ‘
Y o

n Q=0 + O b

= Apply Q = Cl/'to each capacitor to find .

CTV= C]_V + C2V ‘ CTV — V (C1+ Cz)




q,=C\V; q,=C)V; q,=C,V
g=0Q,+q,+(, =(C1+C2+C3)V



V
e Jeand ALl dalaal) a4 by g= CV :Asall Gigal)

C=(C,+C+C,)



Parallel Combination

G

- i
S —
- -
-
e




Series Combination

[ 2N

m V= V1 + V2 T
= The charge, Q, on each igii Ci V=¥
capacitor is the same. vV, =V ¢c X
Q;=Q,=Q tOmm— - Y, =V,
g T A2
= Apply Q = Cl/to each 2
capacitor. .
Q/C; = Q/C, + Q/C, ©
1/CG = 1/C; + 1/C, Y =:QC
Y o

1/CT= 1/C1+ 1/C2 B



232l Jpmgs

N o Jouai

O =C1V1;
0 =C2V2;
O =C3V3




ol Juand Allad) Lalaal) pa 45 j8allye V =

4 J LN LN
C C




Series Combination

1/Ceq = 1/C, + 1/G,




Summary

Capacitors are energy storage devices.

The equations for equivalent capacitance for




Example 1

Find the equivalent capacitance seen between
terminals a and b of the circuit in figure

d uF 60 uF
|| ||
[ | O da

C

eq

2() MF e 6 I-LF —— 20 “F e PR

O b



Example 1

_ _ _ - 20x5
e 20uiFand5uF canacitorsare In series: .. =4 uF
60 uF 20+5
o a
CCL|
4 /J'F s 6 “F —— 20 “F e -
O b

e 4 uF capacitor is in parallel with the 6 uF

and 20 uF capacitors: 60|¢F
| O a
S A4+64+20=30uF b C,,

30 uF =

O b



Example 1

e 30— 1 capacitor Is Inseries with
the 60— 1F capacitor.

~ 30x60
“30+60

uF =20 uF

20 #F ——— e




Example 2

a) the capacitance between
points B and C

=G+ G
= 100 + 250 = 350 pF

b) the capacitance between
points A and C

1/C=1/G + 1/C,
= 1/500 + 1/350
C; = 206 pF

100 uF
5(% MF ﬁ”
C
All B i
s
]
6V
C
500 uF BCSI(')ZUF
4_| |_F—| | $
A [E5
]
206 pF
| $
A B |




Example 2

c) the charge on the - 1

C;= 500 pF capacitor e S
e
Q=CV=206x10°x6 Il c,

=1.24x 103 C |
Q5= @+

d) the potential difference across A and B

V3 = Q3 /G5
=1.24 x 103/ 500 x 10 = 2.48




Example 3

Find the equivalent capacitance between points a and b
for the group of capacitors connected as shown in Fig.
Take C; = 5.00 pF, C, = 10.0 yF, and C; = 2.00 pF.

L I

c —( L4 j1—333 F . N
s \500 100/ H

C =2(333)+2.00=8.66 uF e, T%ec,
Cop =2(100)=200 uF

C —( L )1— 604 UF 2 v
“ \866 200 il



Example 4

Four capacitors are connected as shown in Fig. Find the
equivalent capacitance between points a and b. Calculate
the charge on each capacitor if V,, = 15.0 V.

1 1 1 5.0 uF - 5.00 yF
T

c, 150 300 -
C,=250 uFr '
Cp =2 5O+ 6.00 N 8 50 IUF 6.00 gl

-1
[ 1 1)
Ca=| + | =[596ur
850 uE 200 uF




Example 4

0 =CAV =(596 uF)(150V)=| 895 uC
Q.= 89.5uF  on 20.0pF

AV, across the parallel connection=Q/C,
=89.5uC/8.5uF =10.53 V

Q¢= C AV, = (6.0pF)(10.53V)=63.2uC on 6.0uF

The charge on 15.0uF and 3.0uF

=89.5uC - 63.2 pC = 26.3 uC



Example 5

= For the circuit in figure, find the voltages v,
and v,.

20 mF 30 mF

+Ul— +Z}2_

30V t 40mF =— ¢v3 =—/— 20 mF




Example 5

= Two parallel capacitors:

SC =1 } - mMF=10mF

€q

+ 4+
60 30 20 30V
= [otal charge

eq

q=C,v=10x10°x30=0.3C

= This is the charge on the 20-mF and 30-mF

capacitors, because they are in series with the 30-v

source.



= Therefore,

q 03
' C, 20x10°

g 0.3

Example 4

15V,

30V

cq

V, = =10V

27 C, 30x10°



1- What single capacitor can replace the four
shown here?

2- How much charge can the system hold?
3- How much charge is on one of the 2 pyF
capacitors?



Quiz 2

(a) Find the equivalent capacitance for the combination of
capacitances shown in figure across which potential
difference V is applied. Assume C,=12.0 uF, C,=5.3 pF,
C;=4.5 uF

(b) The potential difference applied to the input terminals
in Figure (a) isV = 12.5 V. What is the charge on C,?

() (&) ()



Energy Storage in Capacitors




Effect of a dielectric on capacitance

A dielectric is
placed between
capacitance

a non-conducting material that, when
the plates of a capacitor, increases the

C=KC

air

!

i

4 4 & & A 4 & & &

+++++++4+ 4+

+iJ

K=/ C,;,




Effect of a dielectric on capacitance

DIELECTRIC
CONSTANT:
K=C/Co
= ratio of the
capacitances

Vacuum Dielectric

Note - the charge is
constant |

Q=Q,

{
Electrometer Electrometer -
. o CV=C,V,

Copyright © Addison Wesley Longman, Inc.

v=(¢,/C)V, mmp [NV /k




Dielectrics Strength

Dielectric Strength®
Material Diclectric Constant & (10° V/m)
Air {dry) 1004 59 3
Bakelite 4.9 24
Fused quanz 3.78 8
Mylar 32 7
Neoprene rubber 6.7 12
Nylon 3.4 14
Paper = 16
Paraffin-impregnated A5 11
pdper
Polystyrene 256 24
Polyvinyl chloride 3.4 40
Porcelain G 12
Pyrex glass 5.6 14
Silicone oil 2.5 15
Strontinm titanate 253 8
Teflon 2.1 Gl
Yacuum 1.000 00 -
Water x| —_—

“Dielectric
strength” is the
maximum field
In the
dielectric
before
breakdown.

(a spark or
flow of charge)

E =V _/d



Example 5

Determine (a) the capacitance and (b) the maximum
potential difference that can be applied to a Teflon-
filed (k=2.1, E. ,,=60x10° V/m) parallel-plate
capacitor having a plate area of 1.75 cm? and plate
separation of 0.04 mm.

ke, a 210(885x1077 F/m }(175x107 m ?)
0 -11

Cc= - - =813x10 " F=[ 813 pF

d 400x10 " m

AVy e = By 1, d=(60.0x10° V/m )(400x107 m | =[ 240 kv

m ax m




Example 6

A parallel-plate capacitor is constructed using a dielectric
material whose dielectric constant is k=3.00 and whose

dielectric strength is E_ ., =2.00 x 10% V/m. The desired
capacitance is 0.250 uF, and the capacitor must withstand a
maximum potential difference of 4000 V. Find the minimum
area of the capacitor plates.

k=3.00, E.. =2.00 x 108V/m, AV._= 4000V

AVpax= Emaxd )

d=Av,./E__ =4000V/2.00 x 108 V/m
= 0.00002 m




Example 6

ke, A

C= —0.25x10°°F

cd  (0.25x10°F)0.00002m)
ke,  3.0x(8.85x1072F/m)

~0.188 m°

A




Problems

1-Find the capacitance of the following configuration.
All capacitances are in microfarads.

g —

L]

/ 1.0° ¢ 4:}*« T
|
4”"7 ] H Pf] pELE P
e
= i
o T el 4 . = B
!'IIr"r \ Iil.:" a |&' (¥ o Iil..-r
I 1 |7 '| L Hh'-.
\ /8.0 H‘ \Fr L)
20l o M Rt

- F
6.0



Problems

2- Find (a) the equivalent capacitance of the
capacitors in Figure. (b) the charge on each
capacitor, and (c) the potential difference
across each capacitor.

6.00 uF

ROOUF—— 2.00uF = —8.00uF

— | —

9.00V




Problems

3- Find (a) the equivalent capacitance of the
capacitors in Figure. (b) the charge on each
capacitor, and (c) the potential difference
across each capacitor.

3.00 uF  6.00 uF

200 uF  4.00 uF




Problems

4-A 3.0 mF capacitor is connected to a 12.0 V
battery. How much energy is stored in the
capacitor? (b) Had the capacitor been
connected to a 6.0 V battery, how much
energy would have been stored?

5- A 12.0 V battery is connected to a capacitor,
resulting in 54.0 uC of charge stored on the
capacitor. How much energy is stored in the

capacitor?



Lecture 11

Kirchhoff Laws
Current and Voltage



Outlines

= Circuit definitions

« Ohm's Law

= Resistors in Series and Parallel
= Kirchhoff Current Law

=« Kirchhoff Voltage Law



Circuit Definitions

« Node — any point where 2 or more
circuit elements are connected
together

=« Branch — a circuit element between
two nodes

= Loop — a collection of branches that
form a closed path returning to the
same node without going through
any other nodes or branches twice



Example

= How many nodes, branches & loops?

o 11




Example

= | hree nodes
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Example

« Three Loops, if starting at node A

A B

C

JS 9 gl Syuxll ggoxoall -
.0 Saoluw wal



Ohm's Law

R
Va O VWV O Vb
T'—_
AV _
AV=1R mm) 12? > I:Va Vb
R

AV: Voltage difference
R: Resistance
[: Current



Resistors in Series

I I
R 5 Ry . W'\I,
‘T:s* _\.i 1“ | ‘ HH3=H]+H
at: |
A v d
. | AV
[ A~
=1, =1 AV= AV,+ AV,

I[Re=I; R+ L, R,




Resistors in Parallel

a A , > " | |
T — ], 'L‘r
I I I

AV

I=1, + 1, AV= AV,= AV,

AV/ Req= AV,/R; + AV,/ R,




Power Dissipation in Resistors

The instantaneous power dissipation P of a
resistor is given by the product of the voltage
across it and the current passing through it.
Combining this result with Ohm’s law gives:

P =V
P=12R

P=V2R



Kirchhoff's Current Law (KCL)

Kirchhoff's Current Law states that the algebraic sum of the
currents entering at a node equals the sum of the currents

leavil 1J that node.
< ih =

|2 3

= At a point where three wires are connected as in the
diagram above, the equation can written as

I,=1,+1,



Kirchhoff's Voltage Law (KVL)

Kirchhoff's Voltage Law states that the algebraic
sum of voltage source and voltage drop in a
circuit is zero

R
Vg — Vo = Vo = Vp3 =0 |l ey
or Vrs X

Vg = Vpy + Viy + Vi3

—r— Vs




Kirchhoff's Voltage Law (KVL)




Kirchhoff's Voltage Law (KVL)




Example 1

A single-loop circuit contains two resistors and two

batteries as shown in Figure. Find the current in the
circuit.

Apply KVL at the loop £, =60V
. - |t = ,
6 -1(8)-12-1(10)=0 '
_6 - I (18) — O RE: 00 CR] oo
I =-0.333 Ampere

The negative sign for I indicates |
that the direction of the current -1+
is opposite the assumed E2= 12V
direction.




Example 2

Find the three currents I;, I,, and I; oy

Apply KCL at node ¢ *I - r/
N R

Apply KVL at loop1 by | m—*fl

AL (©)-10-L () =0mp @) |1 v

Apply KVL at loop2 m ‘4

10 -1, (6)-I; (2) = 0 ) (3)

Solving equations 1, 2, 3 mp [,=2 A [, =-3A I;=-1A



Example 3

E,=2.1V E,=6.3V R,=1.7 Q, R,=3.5Q
(a) Find the three currents I, I,, and I,
(b) Find the potential difference between a and b

At node a: apply KCL
L=1,,1, (1)




Example 3

I Ri

— W

—— VWV

I R,
For loop 1: apply KVL

For loop 2: apply KVL
I3R1'E2+I3R1+E2+12R2=0

2I,R-I,R,=E,-E; (2)

LR,+2I.R,=0 (3)

Solving equations 1,2,3: [,=0.82A [,=-0.40A 1,=0.42A



0 Example 3

Find the potential difference
between aand b

ab
For the loop shown: apply KVL -[C

T
b

Vap —LRy-E;=0 Vap = LR+ E,

Vab =Va_Vb= ('O-40)(3.5)+ 6.3
= 4.9 Volt



Quiz 1

Find the three currents I, I,, and I;

20V
|| 10Q 1,
200 I'D
B .
_/\/W C @ E
I  »
> —VW\—— l
100 ; @ 302 I




Quiz 2

Determine (a) the current in each resistor and (b) the
potential difference across the 200 Q resistor.

200V——  360V_o0— 80.0V——

—

200 ) % 80.0 {1% 20.0 11% 70.0 {1%




Quiz 3

Find (a) the current in each resistor and (b) the power
delivered to each resistor.

E_jhn ) 28.0 0

|,
RAAS

120V

- 1< 12.0 )
|,

Lr“i

MW

16.0 1)



Quiz 4
Calculate the currents (a) I, (b) I,, and (c) L.

2.00 02

'

24,0V — 4.00 Q) #Jﬁ
- .
——AMA———
3.00 )

120V—— 1.00 ﬂg 'LIE

5.00 {1

_AM_







Lecture 12

Magnetic field



What is a Magnet?



What Materials are Magnetic?

Lrearigls ¢ HED Tresnss W Doy

CO Cobalt

F@ lron

Atomic Number: 26
Atomic Mass:55.85

’ 4
Atomic Number: 27 N‘L NleCl
Atomic Mass: 58.93
Atomic Number: 28
Atomic Mass: 58.96




What Do Magnets Do?

v Attract or repel other magnets (exert a
force)

v Attract other magnetic metals ,I

vHave at least 2 distinct ends (poles) each




Magnetic Poles

= Magnetic Poles: A region on a magnet
which produces magnetic forces

= The poles of a suspended magnet will align
themselves to the poles of the Earth

= Fundamental Rule: Like poles repel;
opposite poles attract



Magnetic Poles

= Magnetic poles behave similarly to
electric charges EXCEPT:

= Electric charges can be
isolated

= Magnetic poles cannot




Magnetic Poles

Magnetic poles: always pairs

A permanent magnet can be split into two
or more magnets, each with N and S poles
which cannot be isolated.

This suggests that the magnetic effect of
a permanent magnet comes from
microscopic, circulating electric currents.



Magnetic Poles

)

No effect

Copyright © 2004 Pearson Education, Inc.. publishing as Addison Wesley
Copyright © 2004 Pearson Education, Inc.. publishing as Addison Wesley



Magnetic Fields

= Magnetic Field: The space around a magnet in which
a magnetic force is exerted

= The magnetic field lines are directed away from north
poles and toward south poles

= The strength of magnetic fields are measured in units
of Tesla (T), The older unit Gauss is sometimes used.

= Earth’s magnetic field strength is about 104 Tesla

or about 1 Gauss



Magnetic Fields

 Field is stronger
where field lines

are closer.




What Causes a Magnetic Field?

= Magnetic fields are produced by moving
electric charges.

= Electrons in atoms both orbit and “spin”.

= In most materials, electron spin contributes
more to magnetism than electron orbital
motion.

= Electrons are (very) tiny magnets.



What Causes a Magnetic Field?

= In most atoms, the magnetic fields generated by
each electron cancel each other out.

= In an atom two electrons can pair up and occupy
an energy level, but their spins are opposite of
each other, canceling their magnetic field.

= In a few atoms (like Fe, Co, and Ni) there are
unpaired electrons in different energy levels
whose spins can align and give the atoms an
overall magnetic field.



What Causes a Magnetic Field?

North—= | ' <—South  Moving molten
iron in Earth’s

| v \\;/15 | S — Bl outer core

.~ —Geographic Polelll i Ma’f:(jnetic Pole

\

A}

S e B causes most of
Pt O s
S 400 magnetic field.

Magnetic field
poles are NOT
aligned with
_ - geographic
eg\riao;l:_?c e ¥ poles.




Magnetic Domains

= A region in which many atoms have
their magnetic fields aligned is called a
magnetic domain.



demagnetised

magnetised

Domain theory

0 e S G
/\/\/\\‘\
\\\\ SN
o A=/
\_j\/\\
e SN

VIV

Microscopic structure

Electron spin, inside atoms,
IS the main cause of
ferromagnetism.



How Magnets Attract

= A magnet near an unmagnetized piece of
Iron causes:
= Growth of aligned domains in the iron

= Rotation of domains to align with the magnetic
field

» Attractive magnetic force on the iron

= This causes the iron to become temporarily
magnetized



Making a Magnet

= You can make a magnet by:

1- Placing a magnetic material like iron in a strong
magnetic field

2- Stroking a magnetic material like iron with a
strong magnet

3- by using DC coil carrying current.

= Since moving charges create magnetic fields, an
electric current creates a magnetic field.

= A coil of wire can concentrate the magnetic field
and create an electromagnet.



Making a Magnet

Magnetic
e i e field
,’/—‘._ ‘“‘\
- "—_—-" ________ ~‘~\ \\\
- — —
N e S ~— ~
/// s g RS T T i N
T T T o TR A SOE b T,
\/(/’ - i N
WV Y /I
§\\\\\§\\\ S N f/j/éé
\§§\\ O —3 1 1
_225S Nf=——=2 Ironbar EZ<_
SR S§§\
a7y e \QQ\
///( \\\Q
,//(\ //\ \
\\\\\\ T med
~ - // 7,
~ //
\\ -
Permanent
magnet

Fig. 13-7: Magnetizing an iron bar by induction.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



Magnetic Forces on Charges

= A static electric charge does not feel a magnetic
field. No magnetic force is exerted on it.

= If an electric charge moves, it generates its own
magnetic field, which interacts with the original

magnetic field, so:

= A magnetic field exer
electric charge (and t

's a force on a moving

NUS currents).



Magnetic Flux ©

= Magnetic flux is defined as the number of lines of
force flowing outward from a magnet’s north pole.

« Symbol: ®

= Units:
= maxwell (Mx) equals one field line
= weber (Wb) One weber (Wb) = 1 x 108 lines or Mx



Magnetic Flux ®

B

Fig. 13-5: Total flux ® is 6 lines or 6 Mx. Flux density B at point P is 2 lines per square centimeter
or 2 G.



Magnetic Flux Density B

= Flux density is the number of lines per unit area of
a section perpendicular to the direction of flux.

« Symbol: B
« Equation: B=® [/ area=® /A

= Flux Density Units
= Gauss (G) = 1 Mx/cm? (cgs unit)
= Tesla (T) = 1 Wb/meter? (SI unit)



Magnetic Flux ®

B

Fig. 13-5: Total flux ® is 6 lines or 6 Mx. Flux density B at point P is 2 lines per square centimeter
or 2 G.



Magnetic Flux ©

The product of the magnitude of the Magnetic field B
and surface area A perpendicular to the field is called
the Magnetic flux ¢

Area =A

nlase 1: /
For a constant field
perpendicular to a surface A

The magneticfluxp =B A



Magnetic Flux ©

n (ase 2:

If the surface under 4 Norma
consideration is not \ 2
perpendicular to the field p
The magnetic flux can be | B

calculated from

The magnetic flux ¢ = B A cos0

Where 0 is the angle between the uniform
magnetic field and the normal to the surface of
area A.



Magnetic Flux ®

n Case 3:

= The magnetic field may vary over a
large surface.

= Consider a general surface divided
into a large number of small
elements, each of area AA. In this
case The magnetic flux through this
element is

@ = B; AA, C0s6,
@, = B, dA, cosé



Magnetic Flux Density B

= Magnetic flux density (Magnetic Induction ) at
a point is determined by the field strength and the

material present

B=uH

where
u is the permeability of the material.
H magnetic field strength



Magnetic field strength (H)

Py Magnetic Moment =m.L
m Magnetic strength




Biot-Savart law’s

History

= 1819 Hans Christian Oersted discovered that a
compass needle was deflected by a current carrying
wire

= Then in 1920s Jean-Baptiste Biot and Felix Savart
performed experiements to determine the force
exerted on a compass by a current carrying wire

= There results were as follows ...



Biot-Savart law’s

dB the magnetic field produced
by a small section of wire

ds a vector the length of the
small section of wire in the
direction of the current

r the positional vector from the
section of wire to where the
magnetic field is measured

I the current in the wire
@ angle between ds & r



Biot — Savart Law

dB perpendicular to ds dB perpendicular to r
|dB| inversely proportional to |r|? |dB| proportional to current I
|dB| proportional to |ds| |dB| proportional to sin &
dsxr
These results could be summarised dB o | ‘ ‘2
r
1, |, dsxT
Putting in the constant dB=| ~— |l —;
4] r
- I'm
_ _ ty =4rx107" —
Where p, Is the permeablity of free space A




Electric Field & Magnetic Field

Electric forces acting at a distance Magnetic forces acting at a distance

through electric field. through Magnetic field.
Vector field, E. " \S/ector field, B I .

e = Source: moving electric charge
Source: electric charge. _ (current or magnetic substance, such
Positive charge (+) and negative as permanent magnet).
charge (-). = North pole (N) and south pole (S)
Opposite charges attract, like = Opposite poles attract, like poles
charges repel. repel.

Electric field lines visualizing the = Magnetic field lines visualizing the
direction and magnitude of E. direction and magnitude of B.

- &
@ O .
+ @

October 31, 2007



What is electromagnetic induction?

Electromagnetic induction is the process by which a current can be induced to
flow due to a changing magnetic field.

In our article on the magnetic force we looked at the force experienced by moving
charges in a magnetic field. The force on a current-carrying wire due to the
electrons which move within it when a magnetic field is present is a classic
example. This process also works in reverse. Either moving a wire through a
magnetic field or (equivalently) changing the strength of the magnetic field over
time can cause a current to flow.

Faraday's law, due to 19" century physicist Michael Faraday. This relates the rate
of change of magnetic flux through a loop to the magnitude of the electro-motive
force E induced in the loop

— d®
&= "4

The electromotive force or EMF refers to the potential difference across the
unloaded loop (i.e. when the resistance in the circuit is high). In practice it is often
sufficient to think of EMF as voltage since both voltage and EMF are measured
using the same unit, the volt


https://www.khanacademy.org/science/physics/magnetic-forces-and-magnetic-fields/magnets-magnetic/a/what-is-magnetic-force
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