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The first chapter
4aal) adbl) Jibeca

Boundary Value Problems

Data on the partial deferential equations:

The partial deferential equations is a equation contains on an
unknown function of two or more variables, as well as on the
various derivatives of the function with respect to these
variables.

Equation rank:

It is a higher order derived in the equation.

2
An example of this is the equation ;—gy =2x-y :Itisofthe
X

second order.

Solve the equation:

It is any function that satisfies the equation. The general
solution contains a number of optional functions equal to the
rank of the equation. The specific solution is a solution that can
be obtained from the general solution after specifying the
optional functions.

Example:

u=xy-1 xy? +F(x)+G(y)

Where F,G are optional functions - this function is a general
solution to the equation



o°u

oxoy -

2X—Y

Because it contains two optional functions F(x),G(y) ,so if
we consider

F(x)=2sinx , G(y)=3y*-5
For example, we get the specific solution

u=x*y—(3)xy? +2sinx+3y* -5

Boundary value issue:

It is a solution to a partial differential equation on the condition
that the solution fulfills certain conditions called Boundary
Conditions

Linear P.D.E.:

The general formula for a second-order linear partial differential

equation in two variables is:

2 2 2
Aau+B ou +Ca—u+D8—u+Ea—u+Fu:G
ox2  oxoy  oy? ox oy

In general, where A,B,.......... , G are functions in x,y , but
they do not include u . An equation to which this formula does
not apply is called nonlinear, and if G=0 , itis called

homogeneous, otherwise it is called non-homogeneous.

The equation is classified as elliptic, hyperbolic, or parabolic
depending on whether the amount B? —4AC s less than,

greater than, or equal to zero.



Some famous equations:
(1)Vibrating String:

If the string is in equilibrium, aligned with an x-axis.

His movement was always completed
at one plane, which was the plane
Xy .

If we assume that u(x,t) is the

displacement of all points of the !

U(x,t)
\

string from the equilibrium position X

at any time, then the partial equation

to which this function is subject is:

o%u  _, 8%
ot? ox?
Wherea?is a natural constant depends on the tension in the
string and the longitudinal density of the string material.
As for the vibrating membrane, its equation is:
o%u L[ é%u o4
Pov il Ew Tt
ot oxX: 0y
Where u(x,y,t) is the displacement of at any time .t

The oscillations that occur in an elastic body are subject to the
following equation:

The oscillations that occur in an elastic body are subject to the
following equation:

o%u L[ d%u d%u d%
22 2t 2T 2
ot ox® o0y° 0z




Where u(x,y,z,t) isthe displacement of any point in the body
from its equilibrium position.

2) Heat conduction equation:

The equation is 2—‘3=K v2u where u(x,y,z,t) isthe

temperature for any point at any time and where K is a natural
constant that depends on the conductivity coefficient and specific
heat, where VZ2u is the Laplacian whose formula is

in Cartesian coordinates they are:

o’u  0%u o4

Vi = + +
ox> oy* o0z?

3) Laplace Equation:

The equation is VZu=0 and this is the equation of heat
conduction in the steady state and that after sufficient time has

passed for it to become aa—l: =0 . So this equation expresses the

electric potential in the static field at the points which has no

electrical charges.

And if it is required to solve this equation in an area Q and the

value of u is given on the borders of this area, then the problem
is called (Dirichelt).

Laplacians in different coordinates:

In cylindrical coordinates



, 2°u lau 1 d%u o4
Vil=—+——+—F —+
op° pOop p° o¢° oz

where p>0 , 0<¢<2r , —0<ZI<®

In spherical coordinates

2
T R A e
re or or ) r¢sing 00 00) r°sin“@ o¢

where p>0 , 0<¢<2r , —0<ZI<®

r>0 , 0<f<x , 0<¢<2r

Theories in solving partial differential equations:

Theorem (1): It is called the principle of addition...
(Superposition Principle)

This theorem states that if functions u, ,u,,........ , u, are
different solutions to a linear partial differential equation and
Cr1Cyyurnrnnnn ,C.are constants, then the function

Uu=c, U, +C, U, +...... +C, U, IS @ solution to the same equation.

Theorem:(2) : The general solution of a non-homogeneous linear
equation is obtained by adding a special solution for the non-
homogeneous linear equation to the general solution for the
homogeneous linear equation.

Separating variables:

The method of separating variables depends on the
assumption that there is a solution to the equation that is in the
form of the product of the functions of each of them for one
variable. After obtaining the specific solutions, the principle of
addition is applied to find the required solution.



Examples

(1) Write the boundary conditions for a string of length L , given
that:

A -Theends x=0 , x=L are fixed.

B - The initial form of the string is given by the function f (x)/
C - The initial distribution of velocities is given by the function
g(x) .

D - The displacement of any point at any time is limited.

The solution
a) y(@O,t)=0 , y(L,t)=0
b) y(x,00=1(x) , O<x<L
) Y (x,0)=9g(x)
d) [y(xt|<M
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Exercises

1) Write the boundary conditions for a string of length L, noting
that:

A- The end x=0 moves so that its movement is given by the

function G(t) .

B- The end x=L is unrestrained and free to move.



2) A thin metal rod placed on an x-axis and its two ends

x=0, x=L are thermally insulated sides.

Write the boundary condition in the following cases:
A- Both ends are fixed at zero degrees.

B- The first end is at zero degrees and the second is insulated,

knowing that f(x) is a function of the initial heat distribution.
sk sk skeoske skeoske sk sk sk sk sk sk sk skeoske skeoske sk sk sk sk sk skeoske skeosk skeoske skeoske sk sk sk skeosk skeske skeoske sk sk sk skosk

Separation of VVariables

Example (1) Find the solution to the boundary problem:

2
ou :28U , 0O0<x<3
ot ox?

With the conditions:
Uuot)=u@Bt)=0 , |U(xt)|< M.

U(x,0) =5sin4zx —3sin8zx + 2sin10xXx.
then suggest the natural meaning of this problem.

The solution

Assume that
U(xt) = X (x). T(t)
Substituting into the equation results:
LXT =2X"T
Dividingby 2 X T results in:

X” T!




The right side of this relationship is a function of the variable t ,
however it is equal to the left side, which does not depend on t.
So we are faced with a function in the variable t that does not
depend on t, and therefore this function must be equal to a
constant amount.

The same statement applies to the left side, which is a function of
x and is equal to the right side, which does not depend on x.
Therefore, the left side is equal to the same constant that the right
side is equal to.

Hence it results that
X” B Tl B

x oot/

Where 4 is an unknown constant, and we will then learn how to
determine its value.

In our problem that we are now discussing, we will set the
constant u=- 4% , that is:

X"+ 22X=0 , T'+22°T=0

We will understand the reason for our situation x =— % shortly.

Now we can say that we are faced with two ordinary differential
equations.

It is as if solving one partial differential equation was reduced by
separating the variables to solving two ordinary differential
equations, and this is of course much easier than solving the
partial equation,

The reason for our situation x=-4? is as follows:

The general thing is that when we solve a partial equation, we
are faced with a general solution from which we want to reach a
specific solution that fulfills the required conditions. The
solution is a comprehensive solution that suits all circumstances,
and therefore we are supposed to remove from the general
solution everything that would not be consistent with our

8



conditions in the issue. Therefore, the constant x from the point
of view of the general solution has no restrictions on its choice,
and accordingly it can be negative or positive. Therefore, if we
had written the second equationin T as T'-2uT =0 , it would

have been the solution to be T =e?#! |
Here we find ourselves faced with two situations:

First: If 4 is negative, then the function T is a decreasing
function, this meaning that its value decreases as the value t
Increases.

Second: If 4 is positive, we get a function that increases with
time and we reach an infinite value.

But one of our conditions in this matter is that |U (x,t)|< M :

That is, U must be limited, regardless of the value of time.

X = A COSAX+ B sinAx , T=C e 2"t

Therefore, the solution that is in it  positive does not suit this
particular issue. Therefore, we must remove from the general
solution what would lead to such a solution, so the constant must
be negative.

As for why we put u=-42 | itis to ensure that the constant is
negative. We put a negative sign in front of a square expression
J%in order to ensure that 4% a positive expression is always
preceded by a negative sign, and thus we ensure that the constant
Is always negative.

Therefore, the solution of the two equations after this procedure is:

X = A COSAX+ B sinAx , T=C e2*!

Hence:



Uxt) =C e‘”2t (A cosAX+ By sinAx)
That is:

U(xt) = e 2"t (AcosAx+ Bsinix)

It now remains to determine the values of the constants A, B, 1
by applying the rest of the conditions.

But : Ut) =0 = Ag 24t

This results inthat A =0 .and then

Applying the other condition: U (3,t) =0 = Be 2* ! sin32
Here we cannot say B =0 otherwise the solutionis U (x,t) =0

This is what is called a trivial solution that fulfills the equation
and its conditions without having any natural meaning.

So the only possibility is that sin34 =0 results in:

Where m=212,3.reeerrnn...

With this, we have not completely determined, but we know that
At cannot take any value except one of the set of values%

72m27r2t M 7z X
~U(xt)=Be ° sin

It is clear that every value of the number m gives us a solution
to the equation, and the general solution is obtained from the
principle of addition.

10



Since the values of m their number are infinite, then the number
of special solutions is infinite, so we are supposed to say that:

2 2
-2m°z-t m 7z X

U(xt)=> B,e ¢ sin
m=1

But the last condition in the problem includes only three terms,
each of which is a sine function, so it suffices to say:

-2 mlzﬂzt —2m§;72t —ngﬂzt

. MrX —=— . My7X —2— . My7X
U(xt)=B, e °® sin—4— + B,e ° sin—2— +B,e ° sin—=
1 3 2 3 3

Applying the last condition:

U (x,0) =5sindzx —3sin8zx + 2sin10x X

m, 7 X m, 7z X M 7 X

= B, sin + B, sin + B3 sin

That is
B,=5 , B,=-3, By=2
ml :12 y m2:24 y m3:30

Thus the solution is:

2 ; _ 2 ; _ 2 )
U(x,t) =5e 3" sindzx — 3e 7 sin8zx + 2 e 207 5in10x x

The natural meaning of the issue:

This problem expresses the thermal conductivity in a thin rod
three units long, with its ends at zero degrees, and the initial
thermal distribution is:

U (x,0) =5sind4zx —3sin8zx + 2sin10z X

The solution we obtained gives the temperature distribution at
any moment.

11



Example (2)Solve the boundary problem

2
e =26U , 0O0<x<3

ot ox?

Uu@t)=U@Bt)=0 , UMKX0)=Ff() , |UXt)|<M.

The solution

This problem is the same as the previous problem, except that the
initial distribution function in the previous problem consists of
three terms of sine functions. However, in this problem, the
initial distribution is given by a function f(x) that may include
an unlimited number of sine functions, and it may not itself have
a direct relationship with the sine functions, and to solve them,
we follow the previous steps until we reach:

2 2
-2m-z-t Mz X

U(xt)=> B,e ° sin
m=1

Applying the last condition we find that:

U(x0)=f(x) =3 B, sinMZX

m=1

Here it is necessary for us to search for a way that enables us to
find values of B,, with information of f(x) .

Here we need what is called Fourier analysis, and so the goal of this
example is to explain to us the reason for using this method, which
we will discuss in the next chapter. This method will be similar to

the same method used in the next chapter to determine ©»

12



Exercises

1)  Solve the following boundary problem:

oU _ oU

—=—, U(0y)=8e"
oX oy ©.y)

sk sk sk st st sk sk sk sk sk sk sk sk sk sk sk sk sk st sk skeoske sk sk skeoskeoskeoskeoskoskeoskeoskeoskeoske sk sk sk sk ske sk sk sk
2) Solve the previous exercise provided that:
U(0,y)=8e3 +4¢™Y

sk sk st st sfe st sk sk sk sk sk sk sk sk sk sk sk sk s sk skeosie sk skeoskeoskeoskeoskeoskeoskeoskeoskeoseoskeosie s oo ok sk

3)Find the solution to the following marginal problem and explain its
natural meaning:
2 2
8\2(:166\2( , 0O<x<2
ot O X

Y(0,t) =0 , Y(2,t) =0, Y(x0) =6sin zx — 3sindrXx,

Y, (x,0) =0 , Y (x,t)|< M.

13



The second chapter

Fourier Series ..... s ddaduia

We have seen in the last chapter that the function f(x) can be

expressed as a sum of some sine and cosine functions, and since
these functions are periodic functions then f(x) must be periodic

Definition:

f(x) is called a periodic functions if f(x+ p)= f(x), where p is

a positive constant and the least value of it is called the period of
the function.

For example sinx its period is 27 , tanx its periodis ~, and

2
cos nx its period is =% .
n

The following figures are another examples for periodic functions.

() )

Orthogonal Functions

In case of the vectors we say that the tow vectors A, B are
orthogonal if AeB=AB, +AB, + A;B, =0, and based on that



it can be say that the two functions A(x),B(x) are orthogonal on

b
the interval (ab) if |A(Y)B(X)dx=0,

Also it can be say that A is a unit vector if Ae A=A’=1  and
so in case of functions it can say that the function A(x) isa

b
normal function if [A?()dx=1 |

Examples for the Orthogonal Functions

Example (1):Prove that

n K7 X
(@ [sin == dx = jcos—dx =0 ; k=1,2,3,...
) ) L 7 Nz X
(b) jcos MZX 05 72X gx— :.[ sin sin dx
“ L J L
0 m=n
B L m=n
r Vi Mz X
(C)ISiI’]—C —— dx =0
i L
The solution
L k7 X L k7 X
(@ [ sin =— dx :——cos—}
L L kz L

__ L ( coskr—cos(-kz) ) =0
kz

And by the same method we can prove that

L
jcos@dx=0



(b) if m=n then

; mz X Nz X ; (m-n)zx
b COS —— C0S—— dx = cos ————— dx
(b) JL L L % _-[L L

de}o

And by the same method we can prove that if m=n then_

L L

| cosz(i)d =% | (1+ cos NZXy dx = L
L L

L L

| S|n2(—jdx=% [ (1- 2n7”() dx = L
L ‘L

Generally if @.(X) where k=12,..... are some functions
has the following properties

j-¢m(x)¢n(x)dx —0 for m=n

hoofdx=1  for m=r

D C— T

Then it can be say that these functions are Orthonormal, and
which can be written in an another way as



[ 8,004, (dx =5,

Where

Omn iscalled  Kronecker Symbol, and example for this kind of

2 .
these functions we see that the group ~ @ (X) = \/;.sm M7X  are

Orthonormal functions on the interval (0, 7) . you can verify
for that.

Orthogonality with respect to weight Functions

b
1f ¥ (w, OW)dX =5, where w(X)>0 isa known

function , then it can be say that the group {w, (X)} are

Orthonormal functions with respect to the weight function w(x)
, and in this case it can be considered that the group

$n (X) = \/W(X)y,, (X) are Orthonormal functions with respect to a

weight function & (X) as

The expansion by Orthonormal Functions:

As in the case of the vector A which can be written in term of

the Orthonormal vectors 1, J,K in the form A=Ci+C, j+CkK,

We can write f (X) as an expansion of the Orthonormal Functions
in the form



F(x)= Y cudh (X)

This can be considered as a generalized for Fourier theorem

which can be disused later where the coefficients C,, can be
determined from

C,=

F ()¢, (x)dx

D ) T

Piecewise Continuous Functions:

< fx-0)
The function is called / -~

a pricewise continuous

function on some interval if: L/ L\

(1) The interval can be divided into a finite number of subintervals such that

the function itself is continuous on each of it.

(2) The limits at the points of discontinuity are finite values.

The Fourier series:

If the function f(x) is defined on the interval (-L,L) and
periodic with period 2L, then its Fourier series is

f(x) = & > (an cos 77X b, sin mj ..................................... ()]
2 — L L



where the coefficients a, ,b, can be determined from the
following formulas:

The proof:

Here we shall use the idea of the orthogonality of functions
which mentioned in the Fourier series and has been proved in
the last example .

(a) By taking the integral from —L to L for both sides we
get

L L 0 L L
_ij(x)dx - azf)jdx T gl anjcos””Lde T bnjsin“”Lde

-L -L

L
Thus ap = + [ 00 dx

Now multiplying both sides by cos ? and integrate we

get
jf(x)cost j s—X dx
L -L
e < nz X mz X
+ a coS d
Zl " jL L L




'm=1,2,3, ..

_|
=
[
w
Q
3
Il
=
Le—\r
—
P
>
p
(o]
o
w
‘X
o
x

(b) multiplying both sides by sin ? and integrate we

get

L mz X a, - mz X < L Nz X mz X
[ £ sin="= dx =<2 [sin="= dx + > a, [ cos ——= sin—-—"= dx
o L 2 3L s L L

0 L

_nzX . mxx
+ > by sin—= sin —~ dx = 0 + 0 + by L
= L L

L
Thus  bp=1 [ f(x) sin ? dx
-L

We can take the limits of integrals from any point to another
point such that the distance between them is equal to value of
the period

The Dirichlet conditions for convergence of Fourier series:

The Fourier series will converge to the function f(x) if:

(a) The function f(x) is defined and single-valued except
possibly at a finite number of points on the interval (-L,L) this
condition necessary but not sufficient.

(b) f(x) is periodic function with period 2L
(c) f(x), f'(x) are piecewise continuous.

If these conditions are satisfied then the series (1) with the
coefficients (2) will convergent to the function f(x) at the points



f(x+0)+ f(x-0)

of continuity and to at the points of
discontinuity.

We can note the convergent of Fourier series to the function
f (x) from the following figure:

We suppose that f(X) = Tg + T, + T, + ceoevervennns where
a T X 27 X
T, :?0 leaicosT , T, =a, cos——
P
[ A~
-"f/ A'I//X\:\?\? Tg = &
7 NN N
/ N\
f ffff \ ". \Ilch+Tl+T2
{ f”f \\I'l\ '.\ f X
\ \\_?‘/}/
\\\L_// " f(x) I,+T,

Odd & Even Functions

The f(x) iscalled odd if f(-x)=- f(x) , examples for that

x3 . x> =3x>+2x , sinx , tan3x

While f(x) is called evenif f(-x)= f(x), examples for that
X —X

x* . 2x>+5 , cosx , ¥ +e

Half —Range Series:




If the function is odd then cosine terms will vanish, whil If the
function is even then sine terms will vanish, and in these cases
the coefficients will take the following formulas:

5 . NzX dd
a, =0 , bn:tjf(x)sdex 0
0
L Nz X
b,=0 an:% [ 10 cos =~ dx even
0

The benefit of half range of Fourier series:

There are some functions that are not periodic at all. Rather,
they may be defined over a period and undefined outside this
period. However, we can find a Fourier series (half the period)
for them

For example, we assume that a rod has length L at both ends
x=0 , x=L

‘x\ VN m{;
and that f(x) istheload -————- A ‘ _

distribution

function on the interval (0, L) TN Q

Thatis, f(x) is defined on the \ /0
Interval (0, L) and is not defined
Outside this interval. In this case we
Can make a hypothetical extension
or odd according to our desire, as in the figure

On the interval (-L,0) , the extension can be even

Then we also consider that the function repeats periodically
before and after the period (- L, L). Then we can find the half-



range series for the periodic extended function that we created,
and let us assume that this function is F(x).

It is clear that the values of the periodic extended function F(x)
agree with the values of the non-periodic function f(x) in the
interval (0, L) , and therefore F(x) can be taken as
representative of the function f(x) inthe interval (0, L)
without paying attention to the values of the function F(x)
outside this period.

Complex Fourier Series:

Because of the equality e'? =cos@+ising the Fourier series
take the form

. N X . N X

© L
_ T R | e
f(x) _n;wc“ e . LG = 5L _ij(x)e L dx

Double Fourier Series:

We can generalize the Fourier series for a function with one
variable to find the Fourier series for a function with two
variables , in this case the double sine Fourier series is

f(xy)=> Z - smLLX sin 7Y
m=1 n=1

1 Lo

There are similar formulas for the double cosine Fourier series
or the mixed Fourier series. Also it can be generalize this idea fo
three variables or more.

Example (1):Find the Fourier series for the periodic function on a
period as f(x) = x?  0<X<27

The solution

The function is shown

10



in the figure

to the Fourier series we should find the coefficients a, , a, , b,
as follows

c+2L 2r ) 87;2
_ 1 _ 1 _ ot
ao—l_jf(x)dx_ﬁjxdx_3
C 0
c+2L
an:&.cf f(x)cosnLLde
:ljﬂxzcoswdx—liﬂxzcosnxdx
7} jn Z
. 2 4
:1{ 2 sinnx o co;nx)+2(—smnx)} =4 nso
T n n n 0 n
1C+2L Nz X
by =+ | f(x)sin == dx
C
1 2 N7ZX 1 2
_ 1 2 i - 1 2 o
_ﬂgxsm”dx_ﬂgx sinnx dx
) 2 4
— CcoS nX - -
_ 1 Xz(i)_z)(( S|nnx)+2(cosnx) _ —Ar
/4 n n2 n3 0 n

So the Fourier series for this periodic function f(x) = x>
takes the form

11



2 0
f(x) = x% = 4z~ + > 4 cosnx — 4—”sinnx
3 n=1 n2 n
4’ 4
= T+4cosx + CO0S2X + 5cos3x F o,

—4rsinxXx —2zsin2x — 4:;[sin?,x e

Example (2):Show that the Fourier series of the even function
does not contain the sine functions and its coefficients are

L
2 Nz X
< !) f(x) cos - dx

The solution

nzX

L 0
J' (x) sin —— X dx = J' f(x) sin —— dx + f(x) sin w dx(‘)

I—\l—\
O —r

E

l—\

X=—U dossd) sdnis Iy Seslbal Seyis JsY) delall sl oY1
Let x=—u inthe first integral 1, , then we have

nzu

L
n””) d(-u) = Ll [ f sin 2 du
0

0
| = % [ f(-u) sin(

:le f(—x) sin (

0

—nzx -1 Nz X
)d(x) = 1 ! F( sin == dx

It is clear that this integral is equal and opposite to the second
integral, then b, = 0.

This means that the Fourier series of the even function does not
contain the sine functions.

Now

j' f(x) cos—dx +%

f (x) cos nzx dx
L L

-

O —r

12



Let x=—u inthe first integral 1, , then we see that its value is
totally equal to the second integral, that is

L
5 N7 X
£ [ £00 cos - dx

Example (3):Find the Fourier series for the periodic function on a
. 5
period as f(X)==Xx ,-m<X<m
7T

The solution

17 175
3, :E_[Tf (x)dx :E_J;;de =0

:—jf( ) cos X =1j§x cosnxdx
T m

By taking the integral by parts we have

a, —%{ x% —%Isinnxdx}

-7 -1

e
L n 1. n

{0-0}=0

5
2
5
— 2

T
It is clear that
a,=0&a, =0

And this true because that the function is odd so it must get this result
without proceed these integral.

Here we calculate only b, as

:_If (x) smnixdx _—J'Ex sinnxadx

—T

13



By taking the integral by parts we have

5 —cosx \I© 17
b =—<|x + — | cosnhxdx
" nz{{ ( n ﬂ_n n_J; }

5 [—-mcosnm —mcosnTw
:—2 +O
n n
_—10cosnr

T

T n

Therefore we can write the coefficients b, as

-10

—— ,neven
by = 1no7r

~—— ,nodd

nm

Example (4):Find the half Fourier series (a) the sine (b) the

cosine for the function f(x) = X ;. 0<x<?2
The solution
(a) The figure shows the real function £

And the function after the expanding

It to be periodic odd function L/
7 |2 ;Q,’ I2

. . . // / ;/
Now since the function is odd . / 7
Then a,=0 = a=0
And

2 < Nz X 2 2 nz X 4
b, = £ g f(x) sin="= dx = 5 '([ X sin—— dx = — cosnx

Thus the Fourier series is

14



O e ™

— —4cosnrx Nz X
f(x) = Z —
n=1 n
4 T X 1 .2 1 37X
= — (sin— — =sin— + = Sin— ...............
V4 2 2
And
L Nz X 2 Nz X 4
b, = 2 [ £ sin——= dx = 2 [ xsin="=dx = — cosnz
L L 2 nz
0 0
Thus the Fourier series is
— —4 cosnrx Nz X
f(x) =D, —
n=1 n
4 . 1 27T X 1 . 37X
= — (Ssin— — =sin—— + = Sin— .......cc..... )
Vs 2 2 2
(b)The figure shows the real function
And the function after the expanding
It to be periodic even function P
e R R
Now since the function is even then
2
b,=0 , ao—fxdx:
0
2
f(x) cos 22X dx = % [ x cos 17X gy = =% (cozsn:z DA
o n-rz

Thus the Fourier series is

15




F(x) = Z -4 cosnrxr i N X

o1 n 2
4 . X 1 . 2zx 1 . 3zx
= — (sin=— — Zsin—= + = sin— .......cco..... )
T 2 3 2

Note that the second series convergences faster than the first series.

Example (5):1n case of the double Fourier series

F(xy) =Y Y By sin 2% sin 1Y
m=1 n=1 I—1 L2
Find the formula of calculating the coefficients B
The solution

If we consider y as a parameter, then we can write the series in
the form

f(xy)=> C, sin% .......................................... 1
m=1
where
i B,, sSin Ly ............................................. (2)
n= 2

In this case C,, will be function of y

If we consider the series (2) as an expansion for the function of C,,
then

2

L
|_22 [ Cm sin Y gy
0 2

Also from (1) we get

16



That is

L
. MmzX . NzX
B,, = f(x,y) sin sin dxd
] [ fOo sinTp7sin ST ady

1 2

o

Exercises

(1)Find the coefficients of the periodic function

0 : -5<x<0
f(x) =
3 0<x<5

Then draw its figure and find its Fourier series, then redefine the
function at the points x =-5 , x =0 , x =5 such that the

series will converge to the function in the interval -5 < x <5

(2)Find the half cosine Fourier series for the following

Applications for Fourier Analyses:

Example (1): A thin metal disk with a diameter of one unit,
insulated on both sides, with half of its edge kept at a constant
temperature u; and the other half at a constant temperature u, .

Find the heat distribution in the steady state.

The solution

We use the polar coordinates
$ul
The equation of the heat distribution

in the steady state which is Laplace //ﬁ;\\
2 A
! d

equation v2u = 0 , that is KJ

luz

17



2 2
N KT RN
op pop  p°op
where the boundary conditions are
uy @ 0O0< g <7
u(l, ¢)= ,Ju(p, @) < M
U, : 7 < ¢ <2rx
uy : O0< ¢ <
u(l, ¢) =
Uy @ 7 < ¢ <2x

To separate the variables, we assume that
u(p, ¢)=P(p) ®©(9)

By substituting into the differential equation and dividing by P @ , we
get:
p2 P” + p Pl _ q)”

_ 32
P )

Therefore
"+ 1D =0 , p’P"+pP —-2P =0

Note: the constant has been chosen to be positive such that each side after
separation variables will equal to A% not — A2 as in another example before.
Here the causes not the condition |u(p, ¢)| < M , but the equation

®" + J22d = 0 must contains the sine and cosine functions because the
solution @ (¢) of itis periodic.

We return to the tow ordinary deferential, the first its solution will be
O (p) = A cosAg + Bysin 1¢

While the second of Euler type its special solution are ,o’1 : ,o"1 , and
its general solution is

P(p) = A p* + By p"

18



Here comes the role of the condition that the function be finite. It is clear

that each of the two limits ,o/l : ,o"7L does not reach an infinite value
when p it reaches its maximum value at the circumference of the
circle, where the two halves of the diameter are a finite value. But the
problem appears at the center of the disk p =0 , where the second term

,o_’1 = % reaches an infinite value.

o)

Therefore, this must be B, =0 , this is the result of applying the

condition that the function be finite everywhere. Also - as we pointed out
- the solution must be in a periodic manner, and its period must also be
27 specifically. So then A it must be in the form.

A=m , m=01,2,3,....
And the conclusion is
u(p, ¢)=p"(Ancosmg + By sin mg )

By applying the addition principle it result

u(1,¢):%+ i ( Apcosmg + B, sinmg )
m=1

By applying the boundary condition, it results that

u(1,¢):%+ i ( Apcosmg + B, sin mg )
m=1

According to Fourier's theorem, we get the coefficients
A, » By asfollows:

2
%z% [ u(, ¢) cosmg dg
0
V4 27
= %j u; cosmg d¢ + % [ u, cosmg d¢
0 T

The resultis

19



. That is, all transactions Ay, progress except Ay = Uj + Uy .

:The other set of transactions By, is obtained from

/4 2r
Bm:%julsinm¢ dg + %j U, sinmg dg¢
0 /4

(up—uy) (1—cos mrx)
mr

Then the temperature distribution in the steady state becomes as follows:

(u;—Uu,) (1-cos mz) p"

U, + U - :
u(p, ) = 1TZ+ z pou sin mg
m=1
_ Wt 2(U-Up) (psing + £ p3sin3g + oo )
2 V4 3

Example (1): A thin plate in the form of a square with one side
length, with both faces insulated, and all its edges preserved in a
degree Zero... If the initial temperature distribution is known,

find the general distribution

The solution
‘:—A:\JLAL‘L\]\ Aozl
2 2
(0,1) /222011117 (L) U _ g 2u o, ouy
/ D —a bl
00| 7 /(10

20



/] lu(x, y)| < M,

u,y,t) =u(l,y,t) =u(x,0,t)=u(x,1,t)=0
u(x,y,0) = f(xy)

e glaall SIS oAl as sl Al g f (X, Y) Cas
u= X(x)Y(y) T() s ol el Gl yaaiall Jaad]

The deferential equation is

2 2
a_u:K(8u+au

)

The conditions are

u(,y,t) =u(@,y,t) =u(x,0,t) =u(x,1,t)=0
u(x,y,0)=f(xy)

lu(x, y)| < M,
Where f(x,y) isthe known initial heat distribution function
To separate the variables, assume that u= X(x)Y(y) T(t)

After substituting into the equation and dividingby K XY T

T :X+Y—:—ﬂ,2
KT X Y

we get

Thatis T'+ KA2T=0 b = -}

21



Thus, we have applied the first condition for the finite function.

The second equation also separates the variables, so we get

x” Y” 2 2
L L
X v H

Where — 4% is another optional constant. It was chosen so that
it is negative. However, if we had chosen it as positive and then
applied the remaining conditions, we would have obtained the

trivial solution. The student can verify this.
That is X"+ X =0 , Y'+(A2-u?)Y =0
The solutions of these equations are:

X =a, cos uX+Db, sin ux ,

Y=a,cos -’ y+b,sinJ¥—-p’y,

. —KA%t
T=a,e

Then

—KA%t

u(x,y,t)=-e (a, cosux+a,sinux)

(a, COSJA* —p® y+ Db, sin A —u®y)
Where we have integrated a; to the rest of the constants.
Applying the condition u (0,y,t) =0 weget a =0.

Applying the condition u(x,0,t) =0 weget a,=0.

22



Thatis  u(x,y,t)= Be %" sin ux sin A% -2 y)

Applying the condition u(1,y,t) =0 weget u=mxz.

Applying the condition u (x,1,t) =0 weget A -u® =nr.
That is: A=~vm? +n?

By applying the principle of addition, we obtain the general

solution:

u(x,y,ty=> > B,, e ™™ sinmzx sinnzy

m=1l n=1

Applying the condition u(x,y,0) = f(x,y) Wwe get:

f(xy)=> > By, sih mzx sinnzy

m=1n=1

It is a double Fourier series whose coefficients are:
11
By, = 4 j' _[ f(x,y) sihnmzx sinnzy dxdy
00

If f(x,y) were a known function, we could calculate this

integral, obtain the numerical values of the coefficients B, ,

and then substitute them into the final formula of the function

u(x,y,t).

23



Exercises

(1) Find the solution to the problem of thermal conductivity of a

thin rod, where
2

u = o 0 <x<3

ot ox>

Such that u (0,t) = u(3,t) = 0 , and Note that the initial

temperature 25 °C for all points of the rod.

(2) A thin rod with insulated sides and insulated at both ends
x=0, x=L . Ifthe primary heat distribution is given by the
function f (x) so find the general distribution.

(3) state Solution to Laplace's equation in two dimensions: A
thin square plate of unit side length, three of which are
preserved on Zero degrees and the fourth side is at a degree .
Find the steady- heat distribution.
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The third chapter

Fourier Integral& Transform..... 98 Jgadg s

The needs to Fourier Integral:

In the previous chapter we study periodic functions with finite period, but if

L — ooand if the interval of the function is unbounded, then the Fourier series
tends to Fourier integral.

Fourier transform techniques have been widely used to solve problems involving
semi-infinite or totally infinite range of the variables or unbounded regions. In
order to deal with such problems, it is necessary to generalize Fourier series to
include infinite intervals and to introduce the concept of Fourier integral. In this
chapterwe deal wi, th Fourier integral representations and Fourier transform, with
some applications to Diffusion, Wave and Laplace equations.

Fourier Integral:

We have seen before that the periodic function f (x )with period 2L which satisfy
Dirichlet conditions in the interval (—L,L) can be represented in the form of
Fourier series as

f(x) :—+Za cos—+b sin 11X (1)
= L

L
_[ f cos—dx
-L
Where ) (2)
j f sm—dx
-L

I_|H l_lH

That series can be extended to some non —periodic functions also, provided the
integral of modulus of such a function satisfies the condition

[[f (O <M (M smny

—00

Substituting equation (2)in equation (1), we get



=l 1] & { nmu nmx . Nmu . nnx}
f (u)du + — f (u)<cos cos +5sin sin du

which after interchanging the order of summation and integration can be reduced to
the form

1 % © nm(u —x)
:I_'[Lf u)du +_'[f )Z{cos#du (3)

Further, if we assume that the function f (x ) is absolutely integrable , and

allowing L > o ie., T‘f (x)x <o, we get

—o0

In the remaining part of the infinite sum of equation (3) , if we set As =m/L, the
equation reduces to

/A "
f()=lim= [ f () cos{nas(u—x)jasdu  (5)

As—0 TE—TE/AS n=1

As L > & As — 0, implying that As is small positive number and the points
nAs are equally spaced along the axis of s, then the series (5) under the
integral can be approximated to

Tcos{s (u—x )}ds =0 as As >0
0

Thus equation (5) can be rewritten as

:—J'f _[cos (u—x)jdsdu (6)



Or in the form

a |

a

If we put

A(a):%_ff (u)cosow du

B(a)= %_T f (u)sinaudu

P

Then the equation (7) takes the form
1% :
f =—||A B dud 9
(x) n![ (o)cosax +B (a)sinox |dudo  (9)

The equation (9) with the equations (8) is called Fourier Integral.

Fourier Integral convergent to  the values of the function f (x ) at the points of

continuity, and to the average of the values of the function at the points of
discontinuity as in the case of Fourier series.

Different formulas for Fourier Integral:

Substituting equation (8)in equation (9), then Fourier Integral takes the form



[ [ (W)coso(x ~u)dudar  (10)

0 —o

f(x)=2

E
which can be rewritten in the form

1 Hf e Vguda (L1

—OO —00

and by redistribute the amount e V) —giex g Tial then the equation (11),

becomes
1 o0 -a o0 _.a
f (X):g_:I Xdoc_J;of (u)e el du (12)

If the function f (x )is odd, then the equation (12)takes the form
f (x)=gjsinaxdaj'f (u) sinaudu (13)
T

while if the function f (x )is even, then the equation (12)takes the form

Fourier transform:

The (12) can be rewritten in the form

where
= _[f (u)e™"“du (16)

The function F (a) is called Fourier transform for the function f (x ) and can
be written in the form



F (o) =3{f (x )}=_Tf e ™du (17

while the function f (x ) is called the inverse Fourier transform for the function

F(a) and can be written in the form

f(x)=3*{F(a)}===[F(a)e'“da  (18)

—lou 1 oX
Each of the functions € & e is called kernel of the transform.

, 1 . , -
In some circumstances the amount o N the equation (18) can be redistribute
T

equally between the two equations (17) & (18) in the form

1 1
—— , ——, Or put it in the equation
N2 2T P a

The tow equations (17) & (18) are called The Fourier transform pair.

(17) instead of equation (18)

Sone and Cosine Fourier transform:

If the function f (x )is odd, then The Fourier transform pair (17) & (18)
becomes

F (a)zs{f (x )}=2Tf (u)sin audu
0 (19)
_1{F(a)}:%.([F(a)sinocxdoc

—
—~~
X
~
Il

L

while if the function f (x )is even, then The Fourier transform pair (17) & (18)
becomes



o0

F. (o) =3{f (x )}=2jf (u)cos o du
0 ) L (20)
_1{F(a)}:%£F(a)cosax da

—h
)
—~~
X
~
Il
L

Properties of Fourier transform:

(1)Linearity Property:

If F(a)&F,(a) arethe Fourier transform of f,(x )&f,(x )respectively
then

where ¢, &C, are constants.

The proof

S{eafa(x)+Cof 5 (x )= [ €7 (cif y (u) +C,f 5 (u) M

—00

=c, [ fy(u)e " du +c, [ £, (u)e ' du =c,F (a)+C,Fy(a)

(2) Shifting Property:

If F(o)is the Fourier transform of f (x )then Fourier transform of the function

f (x —a),a=const.is e'“F(a),i.e.,
3{f (x —a)}=e"**F (a)

The proof

From the definition of Fourier transform then the equation (17)



Fo)=3{f (x)}=[f (u)e™™du  (17)
and therefore
F()=3{f (x —a)}= [ (u-a)e "y
and by put u—a=v =du =dv we get
3{f (x —a)} = Tf (v)e vy
—g'oa Tf (v)e "™ dv ="°F (a)

(3) Change of scale Property:

If F(o)is the Fourier transform of f (x )then Fourier transform of the function

f (ax ),a=const. is EF(gl,i,e,, S{f (ax )}ZEF(EJ

a a a a

The proof

From the definition of Fourier transform then the equation (17)

F (o) =3{f (x )}:_Tf (U)e™du  (17)

and therefore
3{f (ax )} = Tf (au)e™*'du

and by put au =v =du =dv /a we get



(4)Modulation Property:

If F(o)is the Fourier transform of f (x )then Fourier transform of the function

f (ax ),a=const. is EF(gj,i,e,, S{f (ax )}ZEF[EJ

a a a a

The proof

From the definition of Fourier transform then the equation (17)

Fo)=3{f (x)}= [ ()e ™y (17)
and therefore
SIF ()} = [ 1 (au)e
and by put au =v =du =dv /a we get

3{f (ax )}:_Tf (v)e_igvdv

_1 jf (v)e_i?/dv =£F(gj
a a \a

—0o0

If F(o)is the Fourier transform of f (x )then Fourier transform of the function

f (x )cosax ,a=const. is %[F(a—a)+F(a+a)],i.e.,

3{f (x)cosax }:%[F (0—a)+F(a+a)]



(5 Differentiation Property:

If F(o)is the Fourier transform of f (x )and its first (r —1) derivatives are

continuous and if its rth derivative is piecewise continuous then Fourier transform
of the function f (r)(x) is (i oc)Ir F(a),l.e.,
()= (-ia) F(a) ,r=012,...

The proof

From the definition of Fourier transform then the equation (17)

F (o) =3{f (x )}:_Tf (W)e™du  (17)
and therefore
SO0} = [10@)e  au=F(a) 3 3

Integrating by parts, we get

J1O@)e du=l D) ioge [ - [0 (x)(<io)e e

If we assume that f "™ (x )—>0asx —> =+, we may write the above result in
the form

F(a)=—(ia)F"(a)=—(ia) F" D (a)=..= (i) F ()
Hence

and therefore



(6) Convolution Theorem:

If F(a) &G (a)are the Fourier transform of f (x) & g (x )respectively

then the product of F (o) &G () IS Fourier transform of the convolution
of f(x)&g(x)
je, Sif*gj=3f}3g]

where is the convolution of the two functions is defined as

f (x)*g(x):_off (U)g (x —u)du

Now

it ()00} =3 1 (o x = e | [ w)ox - o

Which can be rewritten in the form

o0 o0

3{f (x)*g(x)}= I jf (u)e g (x —u)dudx

—00 —00

Since f (x) & g (x ) are absolutely integrable , the order of integration can be
interchanged and, therefore

3{f (x)*g(x )}:_]Of (u)ﬁ) g (x —u)e ™ dx }du

—00

iou

And by multiplication with the amount e
equation becomes

and dividing on it, then the last

3{f (x)*g(x )}:_]Of (u)ﬁ g (x —u)e e Taugy }du

—00

Let x —u=y =dx =dy , we get



S{f (x)*g(x )} =T f(u )D? g(y)e" e *dy }du
Which can be rearrange it in the form
SIF (x)#g (x)) = [ F (W)e"du [ g(y)e "™ dx =F (o) G ()

Hence the theorem is proved.

It can verify that

F)*g(x)=g(x)*f (x)
f(x)*[g(x)xh(x)]=[f (X)*g(x)]*h( )
f(x)x[g(x)+h(x)]=[f (x)*g(x)]+f (x

Examples

1:x|<a
Example(1):Find the Fourier transform of the function f (x):{o : :
x|>a

) Isinaacomxda | (ii) J-sinu du
(04

—00 0

And hence evaluate (i

The solution

The curve of the function




f (X ) takes the form

From the definition of Fourier transform

F () =3{f (<)) = [  (u)e " du

and by substituting about the function f (x ) , we get

a _ e—iocu a eiaa_e—ioca

F(a)zs{f (x )}z_[ e gy = |-— = _
-l (N0
—-a —-a
_ 2sinca
o
We note that
el F ()

F(O)—)Za as a—0
And the curve of the transform
function

| N\ N\
at a =3 takes the front figure N o AN S27 3

3 3
Now
1 % - 1 % 2sinca ;
f(x)=3YHF(a)l=— | F(a)e'®*dor=— e'*™d
()= 5 HF (@)} =5 [ F(@) o
o f (x):i ZSInOLa(comx +isinax )da
2«
:1 IS'naacosaxda+i _[S'naasinocx da
T ca oo

and since sinaa & a are odd functions then the function under the second

integration will be odd and so the second integration tends to zero and the result
becomes



s o«

(n :x|<a
7 sinoiacosox 1:[x|<a
J. da=n == i|x|=a
e a 0:x|>a |2

0 :x|>a

And that the result of the first integration (i )
_If we put_x =0 &a =1in the last integration (i ), where it is clear that x <1

so we chose the first value in (i ), that is

. rsinu sinu s
i —du=n = |—du=—
( ) _-[O u -([ u 2

Example(2):Find the Fourier transform of the function  f (x ):e‘xz/2

The solution

From the definition of Fourier transform

F(oc):j e 2g-tauy,

ocz/Z

if we multiply and dividing by the amount € inside the last integral the
result becomes



1 u2+2iau —ocz)

Fa)= g V2o gatf2g =02y — Ie_z( e ™2 du
o 1/ 5 .. . \2 00 1 . \2
——(u“+2iou+(ia 2 ——(Uu+la 2
=_[e2( ( ))e“/zdu='[e2( )e‘“/zdu
u-+io
Let =t =du :\/Edt . then the transform will be

2
F(o)=v2e™/2 [ e dt=v2e "2 Jr=\2ne "

Example(3):Find the Fourier transform of the function ~ f (x ):ea‘x‘

The solution

From the definition of Fourier transform
w -
Fa)= _[ e?*leTaugy
—00

—X X <0

X|=
where ‘ ‘ {X >0 then the result becomes



F(a)= j e e Toqy +jea“e‘i““du

—o0 0
0 0
_ J‘ e—(a+ioc)u du +J‘e(a—ia)udu _ 1 - + l-
2 ’ —(a+ia) a-ia
20
a’ + o’

Example(4):Find the cosine and sine Fourier transform of the function
f(x)=e™

. COS X N

And h luat i) | 5—=da , (i) | —5—=du

nd hence evaluate (i) E[oc2+b2 a , (ii) '([ocz+b2
The solution

From the definition of the cosine and sine Fourier transform we get

F, (o) =3{f (x)}= ZTf (u)cos awdu = ZTe‘b” cos o du
0 0

o0

F, (o) =3{f (x )}=2J'f (u)sin acudu :ZTe‘b“ sin oudu

0 0
Let i b
Ilzj'e “Meosaudu & IZ:Ie " sin awu du
0 0

Integrating by parts, we have



1 —bu - aoo —bu .: 1 (04
l,=| —=e " cosau | —— e "sinoudu =———1 1
: ( b * jo b! * b 'z W
0 aoo b
——\e
b

|, = (—le‘b“ sin au)
b

Solving equations (1) & (2) we obtain

" cos audu :%Il (2)

| — b o
== —
o’ +b?

b o
Hence Fc(a)zz(a2+b2j &Fs(a):Z(aersz

And by find the invers Fourier transform, we get

f (x)zs—l{p(a)}zigﬁ(a)cowx da=%£a2+b2c05ax do
T—cowx do == f (x)
OOL2+ 2 2
T COSaX on M
Therefore Imda —%f (x )_% X

0
And this is the first integral required.

Similarly, it can be shown that the second integral is

o0

J~ oczlnoc>2( du = e
5 o +b 2
0 :0<x <a
Example(5):Find the sine Fourier transform of the function f (X )={x :a<x <b
0: x>b

The solution




From the definition of the cosine and sine Fourier transform we get

(o) =3{f (x)}= ZTf (u)sin audu = Z?X sin ou du

0 a

u cosou ° 1b
:2{(— j +—I coS audu}
o a O3

2(acoma—b cosaa asinob —sin ocaj

(04 OLZ

The solution

From the definition of the cosine and sine Fourier transform we get

OO o0

f(x)=3" Z[ o)sin ax da—%gljazsinocx da
]9(0‘ +1) smaxdoc:g Ismocx do ]9 sinax
Ty oc(1+oc ) T % Ooc(1+oc )
But _([Sinaax doc:g
2|t .7 sinax
Hence f o =; ' £ (1+a ) (2)

And by differentiation w.r.t. x , we get
df 2| 7 cosax
—=—|—|—da 2

And by differentiation w.r.t. x another once, we get



O

sin ax

I 1 (3)
+a )

Subtracting equation (1) from equation (3), it is clear that

2 o -
ﬁ_f _EDSlnax doc—E}:O
dx 2 Ty, o 2

This is an ordinary linear differential of second order with constant coefficients, its
solution is found to be

f =ce” +ce™ (4)
Therefore
%—cleX —ce’”

When x =0=f (0)
(2) will be

1 , this is from equation (1) , and from equation

Also from equation (4) , Using these results, we get
c,+¢c,=1 & ¢ —-c,=-1
And by solving these equations we get c,=0 & ¢,=1

Therefore

f(x)=e™

Example(7):This example is an application for the convolution theorem



Solve the following integral equation  y(X) = g(x) + jy(u)r(x —u)du

where r(x) , 9(X) are given functions.

The solution

By taking the Fourier transform for both sides and using the convolution theorem
we get

y(a) =G(a)+Y(a)R(a)
where R(«x) , G(«) arenow known function because they are the Fourier

transform of the given functions, then we have the result

G(a)
1-R(x)

y(a) =
It is clear that Y () is a known Fourier transform of the unknown function
Y(X) which can be get it by taking the inverse Fourier transform as

1) G() |17 Ga) iw
y(x) =3 {1—R(a)}_27z_[01—R(a)e da

Example(8):This is another example of application for the convolution theorem

y(u)du 1
Solve the following integral equation j (X—U)? + a2 T2 1Db?

The solution

By taking the Fourier transform for R.H.S

{ +b2} ]; _+b2




Cosax |
- ZI X% + b2

This integral has been given in example (4) before, and as a result

L G LY
v Gl @
o~ 1 T —aa
get so also and we > b2l ge )

Now by taking the Fourier transform for both sides of the given equation and using
the convolution theorem we get

ssfortalolts) ©

Substituting from (1), (2) in (3) we get

z—aa_z -ba a _(b-a
Y(a)ae = be or Y (a):ge 02y,

Therefore

y(X) = % [eY (a)da

a
=—je (b=2)a cosaxda



a(b—a)
" bax®+(b—a)’]

where we use the relation €'“ = COSaX + i SinaxX and the second term is
tends to zero where the inside function is odd, and change the boundary of the
integration from zero to 9© instead of from —Oto O

of the two functions

f(x)=e™ &g(x)=e™, clarify that

< 2
{(a o )(b2+a | mablasn) (o0

The solution

The cosine Fourier transform takes the form

0

F. (o) =3{f (x)}= ij (u)cos audu = ZTe “ cos audu
0 0

a
=2
(a2+a2j

This result has been given in example (4) before, and as a result

Similarly the cosine Fourier transform of the second function takes the form

G, (a)=3{G (x)} = TG (u)cos audu = Te ™ ¢cos audu
0 0

Il
VRN
(e
N
~

b?+a

Therefore



o0 0

IFC (0)G (a)d o =jFC (a)d oajg (u')cos audu

= 4139 (u)du IFC (o)d oicos aud o = %If (u)g (u)du
That is [F. ()G (oc)doc:%]?f (U)o (u)du

Substituting about  f (x )=e ™™ & g(x)=e™™) we get

< 2% 2% —au , —bu 27 ~(a+b)u 2( 1 j
F, ()G (a)da == |f du== du== du=—| —
[Fe(o)e (a)do=JF (g u)de =T fe e au="fe 6o - 2 o

< abd o 2
Therefore '([(a2+0c2)(b2+0c2):75(a+b) a&b >0
) % dao 2
Thatls '([(a2+a2)(b2+oc2):nab(a+b) a&b >0

Exercises

(1) Clarify that the two equations (3) , (4) in Fourier integral are equal.



(2)If the cosine Fourier transform of the function f (x ) is F,(a)

Then find f (x)

(2) Solve the following integral equation

jf(x)sinaxdx:
0

Application for Fourier integral:

O:a>1

l-a:0<a <1

— an e—aa

Example(1):Find the limited solution of Laplace equation Vv?v =0,

for the half plane 'Y > O, where V is given by the function

axis .

The solution

The boundary value problem is given by

2 2
\v(x,y)\<|\/| o’v 0oV

ox> oy

__|_—2:0, V(X,O): f(X)’

For the separation of the variables let V = XY

Then T

X

x” __Y_"_
Y

—)?

f(X) atthe X



X"+ 12X =0, Y'-2Y =0
V(X,Y) = (a,COSAX + b, sin Ax)(a,e” +b,e ™)
And because that V(X, ¥) is must to be bounded then @, =0

Then V(X y) =e " (AcosAx + Bsin ix)

And because there is no conditions on the parameter A then by apply the
addition principle we get

v(X,y) = .[ e ¥[A(1)cosAx + B(A)sinAx]dA
0
Andsince V(X,0) = f(X)  then

f(x)= T[A(}t) CosAX + B(A)sinAx[dA

From Fourier integral we have:

A() == [ f(u)cosudu
7Z—w

B(4) == [ f (u)sinAudu
7z—m
Then

v(x,y) =2 T Te—iy f (U)cosA(x — u)dudA

A=0u=—0



Example(2):Show that the result of the above example can be reduced to

1 yf(u)
v(x,y)_ﬂj “+(u—-x)? du

—00

The solution

V(X,y) = i T f (u)ﬁe‘ﬂy CoSA(X — u)dﬂ}du

Then by taking the internal integral, we find

[ y
e ¥ cosA(x—u)dA =
! ( ) y* + (U —x)?

. 1 yf(u)
..v(x,y)_ﬂj 2+(u—x)2du

Example(3):Use the Fourier transform to solve the following boundary
value problem

ou ou
—=k—,u(x,0) = f(x) ,
e, (x,0) = f(x)

Then explain the physical meaning of that problem.

u(x,t) <u| ,—oo < x<o0

The solution

By taking Fourier transform for the problem we get

%S{u} - ka3

Here we used the differentiation property number(5)

And this is an ordinary differential equation for the function S{U} its solution is:



S{u}=c(a)e ™"

Ifwe put t=0, then S{U(X,O)}: S{f (X)}: c(@)

That is S{U}: S{f }-e_k(ﬁ (1)

So to apply the convolution theorem, then we should write the second factor in the
R,H,S. in the form of an integral ,where there a known integral which is

© , 1 |7 -8
e ™ cosAxdx==.|—eM
j P 2\ M

0

v o[ 17X -
—kat __ 4kt _ 4kt
cromwhich € =2 yT E[e cosaxdx = 2__[0 YT cosaxdx
—ka?t _ 1 _%
Then © _F{\/ 4k7zte (2

from (1) ,(2) we get

It clear that the convolution theorem can be applied to give

1 X
u(x,t) = f(x)*.,[——e 2«
(x,t) (),/4”t



0 1 _(x—w)2
:jf(w),/me 4 dwy

This result can be simplified, if we make the following transform

(W—x)* 2 X—W
- 7 =7 Or . =
4kt 2~/ kt

Then the result is

0

Su(xt) = % o™ f (x—22vkt)az

the physical meaning of that problem is the heat conduction in a thin infinite length
bar.




The fourth chapter

Laplace Transform ..... ¢« N J 2 glas

In Laplase tmsform we can take s as a real variable but in some
circumstances may be taken as a complex variable.

So The Laplase tmsform can be written as:

R ()} = f(s) = T F(t)e 'dt

We can said That f (s)is existence if the integral jF(t Je~dt s
0

convergence if some certain conditions can be satisfied for the function
F (t ) which we will be discuss later.

Definition : Let F(t) be acontinuous and single-valued function of
real variable t defined forall O<t <oo ,and isof exponential order.
Then The Laplase tmsform of F(t) is defined as a function f (s)

Denoted by the integral :
IF e tdt = f(s) (1)
0

Over that range of values of s for which the integral exists. Here s is
a parameter, real or complex. Obviously, L {F (t)} is a function of s
_ -1 _ Thus:
LF@)=f(s) & L ()} =F (1)
where L is the operator which transform F (t) into f (s),is called

The Laplase tmsform operator , and L™ is The Inverse Laplase tmsform

Operator.



The Laplase tmsform belongs to the family of  “integral transform .
An integral transform f (s) of the function F (t) is defined by an

integral of the form:

b

JK(s.t)F(t)dt =f (s)

Where K (s,t) ,afunction of tow variables s &t , is called the kernel of

—st
the integral transform. Here the kernel of The Laplase tmsform is €

.we show before the kernel of Fourier transform

In the following schedule we rote The Laplase tmsform for some
elementary functions which we shall prove through the examples.

F(®) F(t) = 1(s)
1
1 — ,$>0
S
1
t — ,$>0
S
n!
t" n+l ,$>0
S
pdt _1 ,S>a
s—a
: a
sinat 3 ,$>0
s“+a
S
cosat R ,$>0
s“+a
. a
sinhat 2 ,s>\a\
S —a
S
coshat — ,s>|a|
s°—a




Example(1) :Find The Laplase tmsform for the following functions:
1-0 ,2-1,3-t,4-t*,4-t* 5-t" 6,7

The solution

In the tow cases 4 & 5 was the same as in the case 1 with rebate n of

times .
© 0 —(s—aj @

6— :L{ea‘}:jeate‘“dt:je_(s_a)tdtz € _ L s >a
0 0 _(S_a)o S—-a
0 0 e—(s+a)t @ 1

7-— :L{e‘at}:.[e‘ate‘“dt:je_(s*a)tdt: = s >a
. : ~(s+a)| s+a

Example(2):Find The Laplase tmsform for the following functions:

l-cosat , 2-sinst

The solution




1- : L{cost}:jcost e S dt =Re jeiat e S dt =Re L{eia‘}
0 0

1 S +ia S
—=Re ——=——-5,5>0
s —ia s“+a‘ s‘+a

=Re

2— L{sint}:Tsint e Stdt =Im Teia‘ e Sdt =Im L{eia‘}
0 0

1 S +1la a
—=Im———=——-,5>0
s —ia s“+a“ s‘+a

=Im

Example(2):Find The Laplase tmsform for the following functions:

l-coshat , 2-sinhat

The solution

By using the result of the previous example we get:

—at
e’ }:%[L{e"’“}+L{ea‘}]=SZS—a2 s>l

e R I

e at

1- :L {cosht}=L {

eat

—-2-:L {sinht}zL{

Properties of Laplace transform:
(1) Linearity property:

If ¢, &c,are any tow constants and f,(s) &f,(s)are the Laplce transform
respectively of F (t) &F,(t) , then:

L {c,Fy(t) &C,F, (1)} =ciL {Fy(t)} +c,L {Fy(t)} =c,fy(s)+C,f 5(s)



The proof

L{c,Fy(t)+c R, ()} = [ e (cyFy(t) +c,F, (t) it

O = 8

=C1I F (t)edt +c2_[ F,(t)e™Sdt =c,f (s)+c,f,(s)
0 0

Example:
o{at? —3cos2t +5e = 4rit? |- 3¢{cos2t )+ 5efc )

S 1
)+ 5(&)

s*+4

- 4(3)-3(

8 3s 3)

— +
s s?+4 s+1

(2) First Shifting Property:

If f (s) isthe Laplcetransform of F(t), then Laplcetransform of
e®F(t)is f (s—a) ie.,: L{eatF(t)}:f (s-a)

The proof

H{F ()} = ]Oe‘S‘F(t)dt = f(s)

()= Te‘(s‘a)‘F(t)dt - f(s—a)



_ ) s+1 s+1
Example: L{e tcosZt}:(S +1)2+4:SZ+28+5

(3) Second Shifting Property:
If f(s)is theLaplcetransform of F(t),then Laplcetransform of
G(t)is e™™f (s) ,where G(t)={F(t -8) t>a ie.,:

0 ‘t<a
L{G(t)}=e"™f (s) .

The proof

HG()} = Te‘S‘G(t)dt = ja.e‘StG(t)dt + Te‘StG(t)dt

=0+ je‘S‘F(t—a)dt

t=a
Then by using the transform U =t—a we get:

0

HG(t)}= Te‘““*a)F(u)du =e™ j e *F(u)du=e"f(s)

0

Example:



If f{t3}=—4=—4 then

-2s

L{G (t)}:ﬁe4 where G(t):{

(t—2)3 t>2
0 <2

(4) Change of scale Property:

If f (s) isthe Laplcetransform of F(t), then Laplcetransform of

F(at) is 1f (EJ ie.,: L{F(at)}: 1f (ij

a a a a

The proof

K{F(at)}=§f(§) o HF®)) = F(s) o

JF (at )e~dt = j F(u)e ™ du/a
0

0

L{F (at)}

S

= {j‘) F(u)e _(ajudu = gf (zj

H{F ()} = Te‘StF(t)dt = f(s)

e F ()= Te‘(s‘a)‘F(t)dt - f(s—a)



Example:

E{sinBt}z1 1 _ 3

g24q1 then 35241 s?+9
3

g Msint}=

(5) The differentiation Property:

If f (s) isthe Laplcetransform of F(t), then Laplcetransform of
F(t)is :
L{FD ()} =" (s)=5""F (0)=s"*F*(0)...—sF"2(0)~F""(0)

The proof

From the definition of Laplace transform we find that:
L{F (0)f=[F (tpdt=f F (1) +s[eF (t)t
0 0

=—F (0)+sf (s)=sf (s)-F(0)
Similarly it can be shown that

L{F(Z)(t)}:TF(Z)(t)e‘Stdt =sL{F'(t)} -F (0)=s[sf (s)-F (0)]-F'(0)
=s’f (s)—sF(0)-F (0)

Thus in general

L{F®D ()} =5 (s)-5"YF (0)=s" F (0)...—sF " @ (0)-F "} (0)



Example: If

S i S -9
/icos3t{= —— /3—-3sin3t; =5 -1=
) -9
/3—3sIn3t;=S5 1=
{ } (32+9) s°+9

H{F (1)} = s2 (s)—SF(0) — F'(0)

HFO @)} =5"f(5)—s"*F(0)— 5" ?*F'(0) —.....— SF "2 (0) - F " (0)

6) The Integration Property:

If f (s) isthe Laplcetransform of F(t), then Laplcetransform of

s L{lp(upu}:@ :

S

The proof

t
By supposing That G(u) = j F(U)du then it result that
0

G'(t)=F(t),G(0)=0
and by taking Laplace transform of both sides it follows that :

HF )} =G (1)} =s{G}-G(0) = s/{G (1)}
z{j F(u)du} = ({G}= 1)

S



. 2 ‘. 2
: /3sin2t ;= /< 1sin2udu; =
Example: If { } 214 then {}[ } s(s2 +4)

And to satisfying from that we see that

t
F(t) = fsin 2udu = %(1—00520
0

.'.K{F(t)}:%[ﬁ{l}—é{cosZt}]:lF— s } 2

2ls s°+4 :s(32+4)

t
F(t) = [sin2udu= %(1—c032t)
0

.'.K{F(t)}:%[E{l}—é{cosZt}]:lF— s } 2

2|s s?+4 :s(sz+4)

7) Multiplication by power of t :

If f (s) is the Laplcetransform of F(t), then:

L{tjt”F(u )du}—(—l)”dnf—(s)—(—l)”f M(s)

n
5 ds

The proof

From the definition of Laplace transform we find that:

f(s):L{F'(t)}:IF'(t)e-stdt

Hence

10



g—sf (s):L{F(t)}:g—SEF(t)e“dt}

Interchanging the operations of differentiation and integration for which we
assume that the necessary are satisfied, and since there are two variables
s &t , we use the notation of partial differentiation and obtain:

ds 0S

df (s) ]"g{ SE(t t}:_Te—sttF (t)dt =L {tF (t)}

Therefore

df (s)

L{tF (t)}=- o5

By repeated application of the above result, it can be shown that

e - S

df 5) 0 « [o-st
. zgg{e F (t)dt | =—[e'tF (t)dt =L {tF ()}

df (s)

L{tF (t)}=- =

1
Example: If g{em} g_o then
d,6 1 1
re® j=—— =
{ } ds s—2) (s—2)?
d? 1 2
el = _
Also { } dSZ(S—Z) (5_2)3

11



8) Division by of t :

If f (s) is the Laplcetransform of F(t), then:

L{@}:f (5)=[f (u)du

S

The proof

From the definition of Laplace transform we find that:

f(s):L{F'(t)}zzp'(t)e-stdt

Integrating the above equation with respect to s betweenthelimts s & o
[1 (s)“F(t)e“dt}:J‘F(t){je“ds}dt |
S 0 0 S F (t)

0 o-st o w . ' t
:£F (t){ ~ l dtngt(t)e dtzL{Ft—(t)}

L{Ft—(t)} [t (s)

Note: In applying this rule, should be careful. Since F (t )/t may have an

0

[t (s)

S

infinite discontinuity at t =0, it may not be integrable . If F (t)/t is not
integrable, then its Laplace transform does not exit. For example,at t =0,
the function sint /t does not have an infinite discontinuity, while the the
function cost/t has an infinite discontinuity.

: 1 sint
: Si tsinty = lim>— =1
Example: Since { } s2 +1 and b then

12



9) Transform of periodic function:

If F(t)is a periodic function with period T , then

If f (s) is the Laplcetransform of F(t), then:
L IF —St dU/( —ST )

The proof

From the definition of Laplace transform we find that:
. © T 00
f(s)=L{F (1)} =[F (t)edt = [eF (t)dt + [e™F (t )t
0

If we substitute t =u +T in the second integral on the right-hand side and
write dt =du, we have

f(s)=L{F(t)} :Tje—stp (t)dt +Te_s(”+T)F (U+T )du

TJ. SUE(t)dt +e " Ie “UF (u)du
0

]
= [e™*F (t)dt +e~f (s)
0

Rearranging,

we get

13



Therefore

Hence it is the result.

Example: Find the Laplace transform the of periodic function
F(T ):Tt— of period 0<t <T

The solution

14



10) The function of transformation at the infinity:

If L{F(T)}=f(s) | then limf (s)=0
2 2
sf (s) =1+ 52 I +23 :1+ZS;28
(s+1)"+1 (s+1) +1 S°+2s+2
2
S limst (s) = liml+ im—S 25 14 fim—2t25  _g.9-0
e 5o so0s2425+2  soelt2/s+2/s

11) Initial —value Theorem :

If F(T)&F(T) are Laplace transformable and L {F (T )j=f (s),

then the behavior of F (t) in the neighborhood of ~ t — 0 corresponds to the
behavior of  sf (s) in the neighborhood of S — 00 . Mathematically

ItirglF(t) = limsf (s)

The proof

From the property of derivative, we have

L{F/(t)}=sf (s)-F(0)

S —

Taking the limit % on both sides, we get

o0

lim [e™F'(t)dt = limsf (s)—limF (0)

S —0 S —o0 S —0

Since s isindependent of t, we can take the limit before integrating the
lift-hand side of the last equation, thus getting

15



0

lim [e~F"(t)dt :T[Iime‘StF'(t)}it -0

S —0 S —0

And the equation becomes

limsf (s)=F(0)=IlimF(0)

S —0 S —0

Hence the result.

Example: Verify the initial value theorem for the function
F(T)=1+e™(sint +cost)
The solution
fsle daand Allall o2g3 sl 6] jal
By taking Laplace transform we have
f(s)=L {1+e‘t (sint +cost)} =L{}+L {e‘t (sint +cost)}

1 1 s+1

+ 2 + 2
S (s+1)"+1 (s+1) +1

S Al Y dpals g Jsaall aladinl o3 La

Here we used both of the schedule and the first shifting property

2 2
~sf (s) =1+ 52 S +23 :1+ZS;25
(s+1)"+1 (s+1)"+1 S“+25+2
. . _ s%+2s . 1+2/s
s limsf (s) =lim1+ lim———=1+ -=1+1=2
0 soo 550§ ° +25 2 s—>oo1+2/s+2/s
oSy

but

liMF (t)=F (0)=1+1=2

t—0

. limsf (s)=limF(t)

S —00 t—0

16



Hence the result.

12) Final-value Theorem :

If F(T)&F (T) are Laplace transformable and L {F (T )} =f (s),
then the behavior of F(t) in the neighborhood of T —> o0 corresponds to the

behavior of  sf (s) in the neighborhood of S — 0 . Mathematically
LimF (t)=Limsf (s)

t—o s—0

The proof

From the property of derivative, we have
L{F’(t)}:sf (s)-F(0)
Taking the limit S — 0 on both sides, we get

o0

lim [e™'F (t)dt =limsf (s)-limF (0)

S—)OO s—0 s—0

Since s isindependent of t, we can take the limit before integrating the
lift-hand side of the last equation, thus getting

o0 o0

lim e‘StF'(t)dt:I[!ig?)e‘StF'(t)}jt:T[!T?)F'(t)}it

:[F(t)]: =limF (t)-F (0)

0
t—ow
Using the result in the above equation, we get
limst (5)=MF©) jims (s)=F (0)= limF (0)

S —0 S —0

Hence the result
We can apply the example in the last property for this property

17



11) generalization of the Initial —value Theorem :

. F(t
I ['ﬂ}% =1 then the value of the function F(t) will be corresponding to

the values of G(t) | thisas t issmall and this can be represented as

t—>0 as F(@{)=G()

. f(s)
Similarly if !LT@ =1 then for the biggest values of S the function T (S)
will be corresponding to the values of  g(S), and this can be represented as
f(s)=g(s)as s—>

Therefore we can reformulate the Initial —value Theorem as

If F(t) zG(t) as t—0
then f(s)=g(s) as S—>®
where f(s)= K{F(t)} : g(s) = f{g (t)}

12) generalization of the Final —value Theorem :

If t—oow as F(@)=G()

Then f(s)=g(s) as s—0

where f(s)= K{F (t)} : g(s) = f{g (t)}

18



Method for finding Laplace transform :

st
(1) The role of Laplace transform f(s)= je “F(t)dt
0

(2)The series method where F (t)can represented as

F(t)=a, +at+at*+.. = apt

n=0

(3)Using the properties of Laplace transform .

(4) Using the schedule.

Examples and exercises

_ F(t) = 5:0<t<3
1)Find /{F(t)} where “10-t>3

The solution

5 :0<t<3
F(t) =
0O :t>3

0 3 0
HF ()= j e ' F(t)dt = j 5e~tdt + j 0.edt
0 0 3

z{F(t)}=5£t

—S

s 51-e®)
o s




2 Find  ({F(t)} where ¢{4e® +6t° —3sin4t+2cos2t)

3) Find E{F(t)} for the following
3
i?e® | rle @ sinat} | rfe¥ coshst} , r{e (3cosbt —5sin6t)|

The solution
(3
2 2 . 4
E{tz}:s—3, then /{t?%e® | = oay ,then ¢{sin4t}= T
e sinat}= 4 ;then ¢{cosh5t}=
(s+2)*+16 s2 _25
4t _ s—4
E{e coshSt}——(S_4)2_25,
S
¢{coshst} = TS e alda

5t -5t
f{e‘“coshSt}:f{e‘”(e +2e )}

N %de%ﬁlg{e_t}z %(si9 " 511)

_s-4  s-4
s*—8s-9 (s—4)°-25

20



S g6 y_35-30
s?+36 s?+36° s°+36
3(s+2)—30
(s+2)*+36

¢{3cos6t —5sin6t} = 3(

E{e‘2t (3cos6t —5sin 6t)}=

4 Find  H{F(@®)} for

cos(t—%r) > 2?7[
F(t) = 5
0 < 2
L 3
The solution

cos(t—z—”) -t >2—7Z
3 3
F(t) =+
0 -t <2—7T
3
27
3 K 27
(FM)}= [oedt+ [ e costt—=-)dt
0 2%/ 3
2 2 _2£
T s+l TS %R 3
= je ( 3)cosudu:e 3 je‘sucosuduzsi
u+0 u+0 s°+1

This solution has been done by the direct method but we can solve by using
the second shifting property as

21



27zS

S se 3
K{cost}:Serl {F(t)}= ]

int 4,1
5) If f{%}:tan (g) then find  /{F (t)}

6) Find {fsmu }

7)Find a)  ({tsinat]  p) ﬂ{tzcosat}

tsint
8) Prove that _[ dt=>
9) Draw the curve of the period function whichis 27 ,

then find /{F (t)}

10) Verify the initial value theorem and the final value theorem for the
function F(t) =3se™

22



The fifth chapter
(eiSad) By CB gl

The Inverse Laplace Transform

If f(s) =L{F(t)} then the function F(t) is called
inverse laplace transform of the function f(s) and can be written as
F(t) = L7Y{f(s)} ,anexample for this is

F(t) =L {H%} =e %

Generally if there exist a schedule for laplace transform then it can
be another schedule for inverse laplace transform, also we can find
some properties and rules for inverse laplace transform as in the
flowing:

(1) Linearity property:

If ¢, &c,are constants and F; (t) &F,(t)are invers Laplace trans.
for f;(s) &f,(s) respectively, then:

e fi(8) + c2f2(8)} =1 L7HA(S)} + . L7H{f2 ()}

Example:



4 3s 5
L‘l{ — + }
s—2 s24+416 s2+4

1 S 1
= 4L‘1{ } —3L71 5L‘1{ }
s—2 {52+16}+ s2+4

= 4e%t — 3 cos4t + 5sin 2t

(1) Eirst shifting Property
LYHf(s)} =F@)then L H{f(s+a)} =e%F(t)
The proof
Since L {F(t)} = f(s) then L Yf(s)} =F()

Recalling the first shifting property of Laplace trans. ,we find that
L{e®Ft)}=f(s+a) then L H{f(s+a)} =e%F(t)

Thus that is the required .

Example: Since L1 {5214} = sin 2t then
L‘l{ L } =11 {;} = Letsin 2t

$2—-2s+5 (s—1)%2+4 2

(3)Second shifting Property

F(t—a) t>a
0 t<a

) = F@ e L e ()} =

_ 1 :
Example: Since L 1{ } = sint then

s241

L_l{ e—ns/s} _ sin (t—g) t >

2
S4+1 0 t <

I

19 w
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(4)Chanage of scale Property

L)) =F@ten LMf@s)}= -F(;)

a

The proof
Since L {F(0)} = f(s) then  f(s) = [ F(t) dt

Therefore

(0.0)

f(as) = f F(t)e st dt

0

Let at = x — dt = dx/a ,then we get

f(as) = %LOOF(E) e *dx = %F(g)

~ L™Yf(as)} = %F (2)

Example: Since L_l{ } = cos 4t

s2+16

_1{ 2s } 1 4¢ 1

— oS — = —cos 2T
22 +16) 2272 T2

(5)Multiplication by power of :

If L=1{f(5)} = F(t) then L {% F()} = ~0"F(©)




The proof
From the definition of Multiplication by power of t if L {F(t)} =
f(s) then L{E"F(£)} = (—1)" = f(S) .then we get

= {;—;f(s)} = ()" (D)

Example: Since L™1 {5214-1} = sint then
1 —2s .
: {(52 ¥ 1)2} - st

(6)Dividing by t

F(t)

it LIF(D} = f(s) ten L{T2} = [7 fw) du

This leads to L_l{fooof(u) du} = @

1 1 1
Example: Since L™1 { } = L1 {— — —} =1—e tthen

s(s+1) s s+1
o ) R
L1 j (1— ! )du = L—l{lin(“E)} _l-e
u u+1 t
0

(7)Integration property

it LM} =22 en L[ f(u) du} = 22

The proof

Let G(t):th(u)du ~G(0)=0 &G'(t)=F(t)

Also  L{G'(t)}=sL{G(t)}-G(0)=sL{G(t)}



Thatis L{G (t)}:w , therefore L~ {ﬁ}: ()=;[F(u)du

S

(7]

This result can be generalized to show that

Ll{fs(—f)}zG(t):lF(u)du=”j ........ jF(u)du

1
s*+4

_ 1 .
Example: Since ¢ 1{ }: ES'nZt then

t
J‘ESiI’IZUdU=l(1—COSZt)
s(s +1) 0 2 2

(8)Differentiation property

if (H{f(s)}=F(t) and F(0)=0 then ¢{sf(s)}=F'(t)

Andif F(0)#0 then E‘l{sf (s)- F(O)} = F'(t)

s°+1

fl{ ZS 1}:%sint:cost
s? +

(9) Convolution Theorem

it ({f(S)}=F(t)and ¢{g(s)}=G(t) then

Example: Since [1{ 2 }zsint and SIN0 =0 then

£ (s).g(s)}= j F(u)G(t—u)du=F =G

The integral is called the convolutionof F(t) & G(t) andis
denotedby F(t) * G(t)

The proof



From the definition of Laplace transform we have

- E F(v)e™dv }[IG (u)e~*"du } = TT F(V)G(u)e SV gvdu

00

:I ﬁF gy }m

Let u +v =t =dt =dv in the inner integral, then

f(s)g =j DF Stdt}iu

Change the order of integration we get

= l:.t.F(t ~u)G (u )du}dt

0

O =3 §

:L_]F(t -u)G (u)du}

=LﬁF(t -u)G (u)du}

And from this we get

Llﬂ'F(t —u)G (u )du}:Ll{F(t)*G u)h=f (s)a(s)

4] 1 _
Example: Since * 1{a} =€ and ! 1{

then

t t
fl{ : } = Ie“ez(t‘“’du :je”e‘”du
(s-D(s-2)] .



(10) Heaviside Expansion Theorem:

Let P(S)and Q(S) be two polynomials where the degree of P(S)is
lower than that of Q(S) which has N of different roots they are

El{w} _ Zn: P(ak)eakt
Q(s) i Q)
The proof

We can write the ratio in the theorem as

P(S): P(s) A + A, +ot Ar

Q) Tlsoay) o) G-o) e

k=1

This was done by using partial fraction. Multiplying both sides by
(s —oy ) and taking the limit as s — o, , we obtain the coefficients

i PO ) (o)
A T R T

And since this limit takes the indeterminate form % , then by using

L Hospital” role , we get A , =F (o) lim &%) = CI:/((ak ))
s, S o

Hence




Ll{P(S)}: F (o) s,y Flon) gos _3- F(o(;kk))eoth

Q(s)) 6'(w)  G'(ay) (G

Example: Find the inverse Laplace transform for the function
2
s°+1

by using Heaviside Expansion
s3+3s2+2s y using P

The solution

Put p(s)=s®+1 &Q(s)=s’+3s*+2s=s(s+1)(s +2)

It is clear that Q (s ) has three different roots 0,—1,—2 and the degree of

P (s)is lower than that of Q(S) , then by using Heaviside Expansion,
we get:

Ll{P(s)}_Ll{ s2+1 }_ FO) o F(D) o F(2)

Q(s) s*+3s?+2s| G'(0) G/(-1) G'(-2)

2
L™ — > 42—1 L gt 2
S°+35°+25 2

Method for finding Laplace transform :
(1) Using the schedule.

(2)Using the properties of Laplace transform as we will see in the
examples

(3) The series method where can represented as

f(s):&+%+a—§+ ..........
s s s
2 3
Then f_l{f(s)}ZF(t)=%+%+%+%+ ..........

(4) Heaviside Expansion Theorem.

(5)The partial fraction method, as in the following example



2

2
St | AL A A L a1 paf 1 ]5 ) 1
S°+35°+2s S S+1 s+2 2 S s+1) 2 S+2

Note: If we can solve any example by Heaviside theorem we can solve
it by the partial fraction method also but the inverse is not always correct.

.(6)The formula of the complex inverse transform

Examples

Introduction: The number n! is a function for the number n, and this
function is considered as a special case from the Jama function T'(X) .

And at that time while N! s defined for the positive integer numbers
only then I'(x) is defined for the integer and the ratio numbers which
are positive and negative. If xis positive integer then I'(x +1) =n!, and

in case X :% then F(%) =/ .Butif n is positive integer then

N=n(N-)(N—=2) cc.ccvvenrn.e. 2.1, and in the general case I'(x) thereisa
similar formula as in following example

r(g):ZE_E_E r(l):m_sﬁ
2 22 2 2 27 16

(1) Find each of the following

3 4

. [5s+4 2s-18 24-30+s
(i) ¢ -— +
S s +9 S

The solution

5 4 28 18 24 30
f_l ....... =f_l _—t—— + + _
o) {82 s s*+9 s*+9 ' 37/2}

5
2

t

2 3
_5t +4(t2—|)— 20053t+18(%sin3t)+ 24t3—|—30( )

rco)

—5t+2t?>—2c0s3t+ 6 sin3t+ 4t3—£t5/2

Jr



ey 4 6 3+4s 8—06s
(i) ¢ - — +—
2s—3 9s°-16 16s5°+9

The solution

. . 3 1 4 S _>
4 { ....... }—f {S 3/2 3(52 16/9) 9(32—16/9) 2(8 +9/16) 8(5 +9/16)}

—3e%2 —lsinh ﬂt—ﬂ coshﬁt+ 2 sin §t —§cos§t
4 3 9 3 3 4 8 4

(2) by using the convolution theorem find each of

S
. ﬁ_l
(I) {(52+a2)2}
The solution
gl{zszz}zgl{st'zlz} )
(s“+a“) s°+a° s“+a
S 1 sinat
¢ =cosat , /™ = :
{52+a2} {52+a2} a =

t
6‘1{%} =1j cosau sina(t—u) du
a 0

(s“+a“)

1 . .
=— jcosau (sinatcosau—cosatsinau)du

1 . 1 .
:—smatjcoszaudu—— cosat | sinaucosaudu
a a



t t -
1+cos2au 1 sin2au
) natj—du——cosatj du
a 0 a 0
=isinat (1 +sm2at) _1 Cosat(l—COSZat)
a 2 4a a 4a
; )
=lsinat (3 +sm atcosat) _1 cosat(sm at)
a 2 2a a
_ tsinat
2a
1
.. -1
1] l . 5
(i {32(s+1)2}
The solution

z‘l{%} =t ,z‘l{%} =t e
S (s +1) i

El{;} = ju e’ (t—u) du = je‘“ (ut—u?) du

s? (s +1)?
D te dhan 5 il Jalsall o) jaf any g

0 > 1 > —te ' +2et 4t -2
s° (s +1)

(3) by using the Heaviside expansion find each of
= 3s+1
(s—=1)(s*+1)

The solution




p(s) =3s+1 ,Q(s) =s®—-s’+s-1 ,Q(s)=3s*-2s+1

=1 , a,=1 , oay=-
i { 35+1 }: PO o, PO o, PED
(s-)(s"+)) QO Qi) Q (1)
4 t 3i+1 it —3i+1 it
=—e + e e

el 4 .
2 —2-21 —2+21
_2¢! +(—1—% i) (Cost +isint) + (—1+% i) (cost—isint)

= 2e' —2cost + sint

Exercises

(1) Find each of the following

6s—4 3s+7
) I A B i) ¢
0 {sz—4s+ 20} W {52—23—3}
4s5+12 : 1
i) ¢ iv) ¢
(m {32 +83+16} ) {,/2s+3}
1 a
1)e° _coszﬁ _ Lles
(2) If S % = \/H then find 7 T
SZ

(3)By using the property E‘l{f () (s)}z(—l)n t" F(t) find



(4) Find f‘l{ln (1+ Siz)}

L))
(5) )By using the property l l{%}: IF(U) du find
0

1 1
f {33(52+1)}

_ S 1 . . 1 1
6)If /7 =Ztsint  thenfind ¢
(6) {(3%1)2} 2 enin {(5%1)2}

(7) By using the ratio fraction find each of the following

)il 38T iy o] 25"-4
i ¢ {32—23—3} (¢ {(S+1)(S—2)(5—3)}

- 552 -155-11 o 3s+1
W ee-2°] M -0+

N s?+2s5+3
(v) ¢ 2 2
(s“+2s+2)(s“+2s+5)



The six chapter

alad) Lbaliil) el Ja B Gt N J 3 ga% iyl

Laplace transform Application for solution of Ordinary
differential equation with the constant coefficients

Laplace transform will be used for solving this kind of equations .for
example if it required to solve the linear equation of second order

2
3tZ+a(;—:+ﬂY=F(t) OFY 4 @Y+ BY = FO) s ®

Where «, [ are constants with the boundary conditions

YO)=A , Y (0)=B e oo e eeeeerre (2)

Where A, Bare known constants. Then by taking Laplace transform for
both sides of equation (1) and applying the conditions (2)we shall get an

algebraic equation contain the function Y(S) =/ {Y (t)} . then we want
to find the inverse Laplace transform for the function Y(S).

This method can be applied for solving equations with order bigger
than second order as we shall see in some examples.

The ordinary differential equations with variable coefficients

Laplace transform will be used for solving some equations of this kind

especially when its boundaries of the form t™Y (" (t) , where the

dm
oy ™t
o & O ()3 as we

Laplace transform for this boundary is (—1)m
shall see later in the exercises.

The simultaneous differential equations

Laplace transform will be used for solving two or more of simultaneous
differential equations as it will be clear from some examples.

The partial differential equations




Laplace transform will be used for solving the partial differential

equations of this kind under boundary conditions as we shall see later in
the examples.

Examples and exercises

(1) Find the solution of the following equation under the
mentioned conditions

Y'+Y =t , Y(@)=1 , Y'(0)=—2

(2)Find the solution of the following equation under the mentioned
conditions

Y -3Y +2Y =4e* , Y(0)=-3 , Y'(0)=5

The solution

By taking Laplace transform for both sides and substituting by the
boundary conditions we get

(32y—3s—5)—3(sy+3)++2y=SKL2
2 4
(s°—3s+2) y+ 33—14:—2
S_

4 L 14-3s _ —3s%+20s - 24
(s2=35+2)(s—2) (s°-3s+2) (s—-1(s—2)°

y:

yo T, 4, 4
s—1 s-2 (s—2)2

Y=—7e' +4e% +4te?



(3)Find the solution of the following equation under the mentioned
conditions

Y +2Y +5Y =e'sint , Y(0)=0 , Y'(0)=1

(4)Find the solution of the following equation under the mentioned
conditions

Y -3Y +3Y -Y =t’e" , Y(@0)=1 , Y'(0)=0 Y (0)=-2

(5)Find the solution of the following equation under the mentioned
conditions

Y +9Y =cos2t , Y(0)=1 , Y(r/2)=-1

The solution

By taking Laplace transform for both sides and substituting by the
boundary_conditions and since Y (0) is unknown so we shall suppose that
is equal to constant C we get

(s°y-sY(0)-Y (0)) +9y=

s?+4

S

s?+4

(s?+9)y —s—c =

yo StC S
$2+9 (s?+9)(s*+4)




yo S, ¢ s s
s?+9 s?+9 5(s*+4) 5(s*+9)

S C S
2 T3 +t= 2
s°+9° s°+9 5(s°+4)

4

g(

Y=ﬂ Ccos3t + ¢ sin3t + 1 cos2t
5 3 5

To determine the constant ¢ we use the condition Y(%): —1to be c:%

and from that we get

Y:g cos3t + gsin 3t +1 CoS2t

(6)Find the solution of the following equation under the mentioned
conditions
Y +a?Y =F(t) , YO)=1 , Y'(0)=-2

The solution

By taking Laplace transform for both sides and substituting by the
boundary conditions we get

(s’y—sY(0)-Y (0)) +a’ y=({F (t)}=f (s)
(s’y—s+2)+a’y= f(s)

s—2 f(s)
2 7 T2 2
S +a ST +a

sin at

Y =cos at 2 sinat + F(t)*
a

t
Y —cos at —2 sinat +£J'F(u) sina(t —u) du
a ay



(7)Find the solution of the following equation under the mentioned
conditions

tY +2Y +tYy =0 , Y(@=1 , Y(x)=0

The solution

By taking Laplace transform for both sides and substituting by the
boundary conditions we get

since Y (0) is unknown so we shall suppose that is equal to constant C
we get

~ 9 (?y-sv(0)-Y'(0) +2(sy- Y (0)) - ¥ =0
ds ds

—s%y —2sy+1+2sy—2—y =0

-1
s? +1

—(s*+1)y -1=0 or y=

And the solution of this equation is
y=—tan s+ A

But from the final value property we find that

y—>0 as s—

And the result of that we get A :%

Y=Z—tan‘1s:tan‘11:]3 du =€{Sint}
2 s Jut+l t

It is clear that this function satisfies the condition : Y (z) =0, so this is
the required.



(8)Find the solution of the following simultaneous equations under the
mentioned conditions

dX

— =2X-3Y , X(0)=8
dt
d—Y:Y -2 X , Y(0)=3
dt

The solution

By taking Laplace transform for both sides in the two equations and
substituting by the boundary conditions we get

Suppose that  ¢{X }=x , ¢{Y}=y,then
SX—8=2x-3 or (s—2)x+3y=8
sy—-3=y -2 or 2x+(s—-1)y=3

POl X, Y ) Al oyl cplalaall Gala Ja

By solving these equations we get

8

3 s-1_ &-17 _ 8&-17 _ 5 3
s—-2 3| s*-3s-4 (s+1(s—4) s+1 s-4
2

3 3s—22 3s—22 3) 2

s
2 J— J—

s—2 3| s2-3s—4 (s+1)(s—4) s+1 s—4
2

X =07 {x}=3e" +3e"

Y=¢"{y}=5e"-2e"



(9)Find the solution of the following simultaneous equations under the
mentioned conditions

2

d >2(+d—Y+3x =15¢™ X (0)=35 , X (0)=-48
dt®>  dt

2
3tZ—4Zi(+3Y:15sin2t Y (0) =27 Y (0)=-55

dgijad) Alalddl) ey aleal)  Jo ciliudal

_____ das Ja g il a4 jal) lialiil) c¥aleall Ja 31,88 (DY g e addiiag
CAEQY) 8 s e WS daad) Biledl) Ja B 6l -

0<x <b , t20 dus Xt cosda A4 U(xt) of pasis

u(x,s) of o

ol Tl U(xt) Al by Jisas 4
u(x,s)= U} = [U(xt) e dt
0
Lo U(x L) Aala el il dul

g{a_u} = Ia_u e_St dt
ot ot

0

=-—se U(xt)

g sjU (x,t) e*'dt
0 0

=su(x,s) —sU(x,0)

f{a—u} Ia_u estar =4 Jut) e dt VU e
OX ] 3 OX dt g dx



o ) Sy Ay Hlall ey

E{Ztig} =s?u(x,s) —s U(x.0) —U,(x,0)

/ o*u| _d?u SIS
ox* dx?

Ol g A4

© 35Sl Ja 5 ) ae A8Y1 Alalaall Ja aa sl (1

N L,y U(x0=6e> , Ut <M
OX ot

;BJ§M\L})ﬂ\@@S’\MauA\d;a;jT(2
u _ o

ol U(x,0)=3sin2zx , U(@Ot)=0 ,UlLt)=0 ,0<x<1
X

13583 Ja g ) e ) Allall Jaaal (1
2 2
0 Z -4 8\2( +Y =16x +205sin X
ot OX
oy yall

YO,t)=0 ,Y(z,t)=167 ,Y,(x,0)=0
Y (X,0) =16 x +12 sin 2x — 8 sin 3x

(3) sl Ja
POl i Y st 23k

2 .



c ol Y(x,0) Y, (x,0) e ol g

2 .
s’ y—165x—12sin 2x+8's sin3x—4% +y= 16x | 20sinX
X S S

JSAIL Aladia yie Aale Alialdt Aoz ) g (8 Leraa g oSy Al

) .
4 d—zl —(s*+1) y=-165x-12ssinx—8 sin3x _16, _20sinx (2)
dx S S
;e ol gaas
YO.)=0 Y(r,=167 )

Li sl e 05 (2) Astaall Lalal) Jal

Y, =ax+bsin x +csin 2x +dsin 3x

P sh palaldl

16x 20sinx 12 ssin2x 8ssin3x
p = t T2 T2
S s(s°+5) s°+17 s°+37

(4)

(s Amilaidl il da ) AsaSill Jall
)
L7 x ENER
y. =C e ? +cC,e?
+ sed alad) Jall L
Y=Yp+ Y. (6

Lo R (6) Wl 3 (3) Ll G sl

1 1
—=Js?n1 =/s?4+1 x

c,+c,=0 ,c,e 2 +c, e2 =0

¢, =0 ,c,=0............ (o a1 (g



_16x 20sin x 12s sin2x _SSsinSX

+ +
s s(s?® +5) s? +17 s?+37
s o) i onSal) il o) el

Y (x,t) =16X + 4 sinx(1—cosv/5 t) +12sin2x cos v17 t —8'sin3x cos v/37 t
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