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Chapter 1

Dirac Formulation of Quantum
Mechanics

The failure of classical mechanics to account for many

experimental resultssuch as the stability of atoms and

matter, blackbody radiation, specific heatof solids, wave-

particle duality of light and material particles, and

such, led physicists to the realization that classical

concepts were inherently inadequate to describe the

physical behavior of events on an atomic scale. To ex-

7



8 CHAPTER 1. DIRAC FORMULATION OF QUANTUM MECHANICS

plainthese phenomena, a fundamental departure from

classical mechanics wasnecessary. This departure took

the form of postulating, as a fundamental law of na-

ture, that there is a limit to the accuracy with which

a measurement(or observation) on a physical system

can be made. That is, the aciual measurement itself

disturbs the system being measured in an uncontrol-

lable way, regardless of the care, skill, or ingenuity of

the experimenter. The disturbance produced by the

measurement in turn requires modification ofthe clas-

sical concept of causality, since, in the classical sense,

there is a causalconnection between the system and

the measurement. This leads to a theoryin which one
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can predict only the probability of obtaining a certain

result when a measurement is made on a system rather

than an exact value, as inthe classical case.

Classical mechanics must be contained as a limiting

case in quantum mechanics because, if the disturbance

caused by an observation may beneglected, classical

mechanics is valid. The quantum description of a

system must shift to a classical description in this

limit, provided the quantum system has a classical

analog. This is called the correspondence principle

andrestricts the possible forms that a quantum theory

may have.

In the following we give a simplified treatment of the
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Dirac formulation ofnonrelativistic quantum mechan-

ics. We restrict ourselves to one-dimensionalproblems,

for the most part, since the extension to three dimen-

sions isfairly straightforward.

The Dirac formulation involves the concept of vectors

(and operators) ina space that may have a finite or

an infinite number of dimensions. Let usgive a sim-

ple illustration of the way in which such vectors arise

in the theory. We shall consider a particle of mass

m constrained to move in one dimensionin a poten-

tial V (q), where q is the coordinate of the particle

which may have any value from −∞ to +∞; that is,

the particle may be anywhere in theone-dimensional
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space. According to the Schrödinger formulation of

wave mechanics, the state of the particle at time t is

described by a wavefunction in the position represen-

tation, ψ(q, t). If no intervening measurements are

made, this state develops in a completely causal way

from thestate at time t0, ψ(q, t0), according to the pos-

tulated Schrödinger wave equation

[
−

~2

2m

∂2

∂q2
+ V (q)

]
ψ(q, t) = i~

∂ψ

∂t
(1.0.1)

where ~ is Planck’s constant divided by 2π, The prob-

ability interpretation (necessary when a measurement

is made to determine the position of the particle) of

ψ(q, t) is as follows: |ψ(q, t)|2dq gives the probability
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of finding the particle between q and q + dq at time t

when a measurement of positionis made.

We may take the Fourier transform of ψ(q, t) to obtain

another wave function

φ(p, t) =
1
√

2π~

∫ +∞

−∞
ψ(q, t)e−ipq/~dq (1.0.2)

This is called the wave function in the momentum rep-

resentation, where prepresents the momentum of the

particle. It is completely determined by ψ(q, t), which

represents the state of the system at time t. It is there-

fore reasonable to say that φ(p, t) represents the same

dynamical state as ψ(q, t).It is just another way of de-

scribing the same state. For the momentum wavefunc-
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tion the probability interpretation is that |φ(p, t)|2dp

gives the probabilitythat a measurement of the mo-

mentum will yield a value between p and p+ dp.

The theory can be developed in an entirely equivalent

way in either theposition or the momentum represen-

tation. In fact, the representation playsa role analo-

gous to a coordinate system in geometry. Since, in

ordinary geometry, problems may be solved by means

of vectors, without the use of acoordinate system (and

in more generality), it is interesting to ask if quantum

mechanics may be formulated without the use of a

particular representation.The results would be inde-

pendent of any particular representation then. The
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obvious advantages of using a representation in such

a formulation wouldnot be lost, however. A conve-

nient representation could always be used tocarry out

a calculation just as a coordinate system may be cho-

sen when vectors are used. This is the goal of the

Dirac formulation of quantum mechanics: to develop

the theory independent of any specific representation.

To see how to go about this program, let us attempt

to give a geometrical interpretation to the wave func-

tion ψ(q) at time t to take advantage of the con-

cept of vectors. The coordinate q can have any value

from −∞ to +∞, as noted earlier. For each spe-

cific value, say q1, q2, q3, . . . , the wave function has a
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value ψ(q1), ψ(q2), ψ(q3), . . . . We may imagine that an

infinite-dimensional space has a set of mutually per-

pendicular axes each labeled by one of the values of

q(q1, q2, q3, . . . ), and that ψ(q1) is the projection of

some vector on the q1 axis, ψ(q2) is the projection

of the same vector on the q2 axis, and so on. The

Figure 1.1: Ket vector and three of its coordinate representatives.fg.1
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vector then represents the state of the system just as

its components do. This vector is not an ordinary

vector since it has a complex character, and we must

have a special notation to designate it, just as we do

for an ordinary vector. Dirac uses the symbol | 〉 to

designate a vector of this type and calls it a ket vec-

tor, or simply a ket, to distinguish it from ordinary

vectors. The particular vector whose components are

ψ(q1), ψ(q2), . . . is called ket ψ and written |ψ〉. Fig-

ure 1.1 shows a diagrammatic sketch of the vector |ψ〉

and its ”components” along the mutuallyperpendicu-

lar axes described above.

By way of analogy, if A is an ordinary vector and
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(x, y, z) represent a cartesian coordinate system, A

may be specified by giving its components along these

axes: A = (Ax, Ay, Az); that is, A can be repre-

sented by its components. Similarly, |ψ〉 may be spec-

ified by its components along the orthogonal q axes:

|ψ〉 = [ψ(q1), ψ(q2), ψ(q3), . . . ]. Thus A represents the

vector equally as well as its components along certain

axes, and |ψ〉 represents thestate of the system just as

well as its components. The vector in this case is said

to be given in the position representation. The vector

A may also be specified by giving its components along

anothercartesian coordinate system (x′, y′, z′) rotated

with respect to (x, y, z) :A = (Ax′, Ay′, Az′). So too
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|ψ〉may be expressed in another representation: |ψ〉 =

[φ(p1), φ(p2), φ(p3), . . . ]. This is called the momentum

representationand is visualized roughly as the compo-

nents of the same vector on a rotatedorthogonal set of

axes; this is shown in Fig. (
fg.2

1.2). The relation between

the q and p axes is given by the Fourier transform.

1.1 KET VECTORS

As noted above, Dirac calls vectors designated by the

symbol |a〉, |x〉, andsuch ket vectors. A general ket is

denoted by | 〉, and the labels insidedesignate partic-

ular kets.

From the discussion above, we associate a ket vector
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Figure 1.2: Ket vector and three of its coordinate representatives.fg.2
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with each state ofthe dynamical system under study.

Since we shall postulate that a linearsuperposition of

states of the system is also a state of the system, the

ketvector space must be a linear vector space. A vec-

tor space is said to belinear in the following sense. If

ct and c2 are complex numbers and |a〉 and |b〉 are two

kets, the linear combination

|u〉 = c1|a〉+ c2|b〉 (1.1.1) EQ3

is also a ket vector, since a linear combination of two

states associated with |a〉 and |b〉 is also a state of the

system. If a ket depends on a parameter q′, which may

take on any value in a certain range, q′1 ≤ q′ ≤ q′2, we
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may generalize (
EQ3

1.1.1) to read

|v〉 =

∫ q′2

q′1

c(q′)|q′〉dq′ (1.1.2)

where c(q′) is an ordinary (complex) function of q′ and

the vector |v〉 is in ket space. Kets such as |u〉 (and

|v〉) above are said to be linearly dependent on |a〉 and

|b〉 (or |q′〉)). If, in a certain set of ket vectors (two

or more), none of them can be expressed as a linear

combination of the others, the vectorsare said to be

linearly independent.

Although the classical and quantum superposition prin-

ciples are different,as we shall see below, it may be

stated by way of analogy that, if i, j, and k are three
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mutually perpendicular unit vectors in ordinary space,

any other vector may be written as a linear combina-

tion of these three; that is, anyother constant vector

A may be written as A = c1j + c2j + c3k. On the oth-

erhand, i cannot be expressed as a linear combination

of J and k and is said to be linearly independent of j

and k.

Another assumption in the theory is that if a state is

superimposed withitself, there results not a new state

vector but only the original state again;that is, when

c1|a〉 and c2|a〉 are added, where c1 and c2 are arbi-

trary complex numbers, the result is

c1|a〉+ c2|a〉 = (c1 + c2)|a〉 (1.1.3)
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and the kets c1|a〉, c1|a〉, (c1 + c2)|a〉 all represent the

same state of thesystem, with the exception of the

case c1 + c2 = 0, which corresponds tono state at all.

Thus a state is specified entirely by the direction of

the ketvector. It may be concluded that +|a〉 and

−|a〉 represent the same state. Therefore, there is a

one-to-one correspondence between a state of a syste-

mand a direction in ket vector space. This assumption

is a departure fromclassical mechanics and shows that

the classical and quantum superpositionprinciples are

different.

The ket vector have a finite or an infinite number of-

space maydimensions. The dimensionality is deter-
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mined by the number of linearlyindependent kets in

the space. Since independent states of a quantum sys-

temare represented by independent kets, the dimen-

sionality is determined bythe number of independent

states of the quantum system.

1.2 SCALAR PRODUCT; BRA VECTORS

We have introduced ket vectors in an abstract linear

vector space by sayingthat their projection on a given

set of orthogonal axes in an infinite-dimensional space

gives the values of the wave function y)(q, t) in the

position representation at time t.

The essential definition of kets is that a direction in
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ket space andevery state of the system are in one-to-

one correspondence.

In the study of ordinary vector analysis, we may define

the scalar productof A and B as follows: with every

two vectors A and Bin the space, there isassociated a

real number f , which is written

f = A · B (1.2.1)

The scalar product of any two vectors is then defined,

since the number toassociate with any pair of them

is known. This definition may seem strange at first

but a little reflection shows that it is a more general

definition thanany formulas we might give for finding
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the number f, having been given A and B. One such

formula is f = |A||B| cos θ, where the first two fac-

tors arethe magnitudes of A and B, and 6 is the angle

between them. But the length itself is defined only

in terms of the scalar product of the vector with it-

self,and so the formula does not serve as an effective

definition of a scalarproduct, although it is very useful

in practice.

More generally, the scalar product of a particular vec-

tor B with all other vectors A in the space may be

regarded as a way of defining B. If the set ofnum-

bers f(B) for all A’s is given, B is determined. For

three-dimensional space, it is sufficient to take for A
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the three unit vectors i, j, and k, which arelinearly in-

dependent, and define B by giving its scalar product

with each. Thus

Bx = B · i, By = B · j, Bz = B · k, (1.2.2)

and the three numbers Bx, By, and Bz define B.

It is a postulate of the theory of ordinary vectors that

the function f(B) a linear function of B. This means

that, if B1 and B2 are two vectors,

A · (B1 + B2) = A · B1 + A · B2 (1.2.3)

A · (cB) = c(A · B) (1.2.4)

where c is a number. It is clear that the numbers f(B)

may be considered a function of B since for every A
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there is a number, f(B). This is what is meant by the

expression a function φ(x) of a continuous variable x:

with each x is associated a number φ(x).

After this introduction, we now define scalar products

of ketvectors in the following way. With each ket |a〉

is associated a complexnumber f . (In the examples

above the numbers were real but ket vectors aremore

general vectors than those in ordinary space.) The set

of numbersassociated with different |a〉’s is a function

of |a〉. This function must be a linear function, which

means that if |a1〉 and |a2〉 are two kets, the number

associated with |a1〉 and |a2〉 is the sum of the numbers

associated with |a1〉 and |a2〉 separately, and the num-
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ber associated with c|a〉, where c is a complex number,

is c times the number associated with |a〉, that is,

f(|a1〉+ |a2〉) = f(|a1〉) + f(|a2〉) (1.2.5) EQ5

f(c|a1〉) = cf(|a1〉) (1.2.6) EQ6

Dirac calls the vectors denotedby the symbol 〈 | bra

vectors. We may write the scalar product of (〈f | and

|a〉 as

f(|a〉) = 〈f |a〉 (1.2.7) EQ7

If we give all the numbers f for each ket |a〉, we have

defined 〈f |. The space of bra vectors is different from

the space of ket vectors, just as the reciprocal lat-

tice space was different from the original crystal space.
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The definition here is more general, however, because

f may be a complex number in (
EQ7

1.2.7) whereas it was

real in the crystal example.

When we use the scalar product notation of (
EQ7

1.2.7),

we may rewrite (
EQ5

1.2.5,
EQ6

1.2.6) as

〈f |(|a1〉+ |a2〉) = 〈f |a1〉+ 〈f |a2〉 (1.2.8)

〈f |(c|a1〉) = c〈f |a1〉 (1.2.9)

Since a bra is defined by its scalar product with a

ket, 〈b| = 0 if 〈b|a〉 = 0 for every ket |a〉. Similarly,

〈b1| = 〈b2| if 〈b1|a〉 = 〈b2|a〉 for every |a〉.The sum

of two bras is defined by its scalar product with |a〉.
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Thus

(〈b1|+ 〈b2|)|a〉 = 〈b1|a〉+ 〈b2|a〉 (1.2.10)

(c〈b1|)|a〉 = c〈b1|a〉 (1.2.11)

Thus far we have defined bras only in terms of their

scalar products withkets, and there is no definite re-

lation between them. To give a connection,we make

the following assumption: each ket may be associated

with a singlebra in a unique way; that is, a one-to-one

correspondence between kets andbras is assumed. It

is therefore reasonable to give the bra the same label

asthe ket with which it is associated. Thus 〈a| is the
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bra associated with |a〉 .Similarly, with the ket

|u〉 = |a〉+ |b〉 (1.2.12)

there is associated the bra

〈u| = 〈a|+ 〈b| (1.2.13)

and with the ket

|v〉 = c|a〉 (1.2.14)

where c is a complex number, there is associated the

bra

〈v| = c∗〈a| (1.2.15)

where c∗ is the complex conjugate of c. We shall not

go into the reason for taking c∗ instead of c but just

accept it as a new assumption for simplicity. It is
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therefore reasonable to call the bra associated with a

ket its hermitianadjoint, and vice versa, and write

〈u| = (|u〉)†, |u〉 = (〈u|)†, (1.2.16)

where the dagger means that the bra is changed to its

associated ket (andvice versa) and the complex conju-

gate of any numbers involved.

Since by assumption there is a unique correspondence

between bras andkets, the direction of a bra vector

may represent the state of a quantumsystem equally

as well as does the direction of a ket. They are said

to beduals of one another.

As yet we have not defined the length of a bra or ket.
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We shall considertwo kets |a〉 and |b〉 and the associ-

ated bras 〈a| and 〈b|. From these vectorswe may form

four numbers 〈a|b〉, 〈b|a〉, 〈a|a〉, and 〈b|b〉. In gen-

eral, 〈a|b〉 and 〈b|a〉) will be complex, and we make

the additional assumption that theyare related by

〈a|b〉 = 〈b|a〉∗ (1.2.17) EQ17

where the asterisk means complex conjugate in the

future. With thisassumption, if we let |b〉 = |a〉, we

conclude that 〈a|a〉 is real. We define the length,or

norm, of |a〉 as 〈a|a〉, and so assumption (
EQ17

1.2.17) is

necessary if we want thevectors to have a real norm.

We make the further assumption that the lengthof a
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vector must be positive or zero, that is,

〈a|a〉 ≥ 0 (1.2.18) EQ18

The equality holds only if |a〉 = 0.

The assumptions (
EQ17

1.2.17) and (
EQ18

1.2.18) may be given

motivation from aconsideration of the wave function

ψ(q, t) and its complex conjugate ψ∗(q, t). We visual-

ized ψ(q, t) as components of |ψ〉 in ket space. Like-

wise we mayvisualize ψ∗(q, t) as the components of 〈ψ|

in bra space. We then know from wave mechanics that

the complex numbers ψ∗(q, t)χ(q, t) and χ∗(q, t)ψ(q, t)

are related by

ψ∗(q)χ(q) = [χ∗(q)ψ(q)]∗ (1.2.19)
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and ∫ +∞

−∞
|ψ(q)|2dq ≥ 0 (1.2.20)

Similar relations should hold for bras and kets since

they can be intimatelyrelated to wave functions. This

motivated the assumptions (
EQ17

1.2.17) and (
EQ18

1.2.18).

The concept of orthogonality is also important where

vectors are concerned. In the case of bras and kets, if

the scalar product 〈a|b〉 = 0, the vectors are orthogo-

nal. In wave mechanics, ψ∗(q) and χ(q) are orthogo-

nal if
∫
ψ∗(q)χ(q)dq = 0. The orthogonality involved

here is different from the orthogonality of two ordi-

nary vectors A and B. If A · B = 0, A and B are at

right angles to one another. But A and B are in the
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same vector space. In the present case, 〈a| and |b〉

are in different vector spaces. (See the crystal-lattice

example treated earlier.) Nevertheless, if 〈a|b〉 = 0, it

may be said that |a〉 and |b〉 are orthogonal as well as

〈a| and 〈b|. When 〈a|b〉 = 0, it may also be said that

the associated quantum states of the system that they

represent are orthogonal.

If the norm of all vectors in the space is finite, the

space is called Hilbertspace. The theory must include

vectors of infinite norm, as we shall seelater. The space

of these vectors forms an even more general vector

spacewhich is called ket or bra space. Including vec-

tors of infinite norm requiresthe introduction of the
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Dirac δ function at a later stage.

1.3 LINEAR OPERATORS

sec1.3

The concept of linear operators is already familiar to

the reader. For example, if f(t) is a square integrable

function of a continuous variable t,the function be-

longs to Hilbert space. We may then define the lin-

earoperator djdt in this space by associating another

function g(t) with f(t) and write

g(t) =
d

dt
f(t) (1.3.1)

If, with every f(t) in the space, we associate another

g(t), we have defined the operator d/dt. If, further-
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more, we require that

d

dt
[f1(t) + f2(t)] = g1(t) + g2(t) (1.3.2)

d

dt
cf(t) = cg(t) (1.3.3)

where g1g2, and g are the three functions associated

f1, f2 and f respectively, and c is a number, then d/dt

is a linear operator.

We may similarly define other linear operators such as

integration, multiplication by a constant, and many

others and build up a whole schemeof linear opera-

tors. Clearly, such operators are needed also in vector

spaceto extend its range of applicability.

We must now introduce linear operators in the space
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of ket and bra vectors. If with each ket |a〉 in the space

we associate another ket |b〉, the association may be

used to define an operator D which we may write in

the form

|b〉 = D|a〉 (1.3.4)

where D might mean differentiation, integration, or

something else. Note the convention that an operator

appears to the left of the ket on which it operates.

We are interested only in linear operators; this means

that if |a1〉, |a2〉 and |a〉 are any three kets and c is a

number, D must satisfy the relations

D(|a1〉+ |a2〉) = D|a1〉+D|a2〉 (1.3.5) EQ3.5
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D(c|a〉) = cD|a〉 (1.3.6) EQ3.6

Since an operator is completely defined when its effect

on every ket in thespace is known, two operators D1

and D22 are equal if D1|a〉 = D2|a〉 forevery |a〉. The

null operator, D = 0, is defined by D|a〉 = 0 for every

|a〉.

The identity operator, D = I, is defined by D|a〉 = |a〉

for every |a〉.

At this stage we may build up an algebra of linear

operators. We maydefine the sum of two operators

D1 +D2 by their action on |a〉:

(D1 +D2)|a〉 = D1|a〉+D2|a〉 (1.3.7) EQ3.7
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a product

(D1D2)|a〉 = D1(D2)|a〉 (1.3.8) EQ3.8

From this, if D1 = D2, we can define powers of oper-

ators, and so on.

We also have, for example,

(D1 +D2)|a〉 = (D2 +D1)|a〉 (1.3.9) EQ3.9

[(D1 +D2) +D3]|a〉 = [(D1 + (D2 +D3)|a〉 (1.3.10) EQ3.10

[(D1(D2 +D3)|a〉 = D1D2|a〉+D1D3|a〉 (1.3.11) EQ3.11

The commutator of two operators D1 and D2 is writ-

ten [D1, D2] and isdefined by

[D1, D2] = D1, D2 −D2, D1 (1.3.12)



1.3. LINEAR OPERATORS 43

In general, D1D2 6= D2D1, which is a property held

in common with matrices. The algebra of quantum

mechanics is a noncommutative algebra. Two familiar

linear operators that do not commute are D1 = x

(multiplication by x) and D2 = d/dx (differentiation).

It is easily verified that, if f(x) is a continuous function

of x,

[
x,

d

dx

]
f(x) =

(
x
d

dx
−

d

dx
x
)
f(x) = −f(x) (1.3.13)

so that noncommutating operators are already famil-

iar.

Multiplication by a constant is a linear operation. A

constant operatorcommutes with all linear operators.
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If two operators D1 and D2 satisfy the equations

D1D2 = D2D1 = I (1.3.14)

where I is the identity operator, then D2 is the inverse

of D1 and D1 is the inverse of D2, if the inverse exists.

This is written as

D2 = D−1
1 , D1 = D−1

2 , (1.3.15)

The inverse of a product of operators is

(D1D2D3)
−1 = D−1

3 D−1
2 D−1

1 (1.3.16)

As noted earlier, these properties of operators are

common to finite squarematrices. In fact, later we

shall represent operators by matrices.

We have defined the action of linear operators on kets;
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we must now givemeaning to their operation on a bra.

We shall consider the ket

|b〉 = D|a〉 (1.3.17)

We may take the scalar product of this ket with any

bra, say 〈c|; this scalar product 〈c|b〉 = 〈c|(D|a〉) de-

pends linearly on |a〉 since D is linear. From the def-

inition of a bra, the scalar product 〈c|b〉 may be con-

sidered as the scalar product of |a〉 with some bra, say

〈d|. Then for each 〈c| there corresponds abra 〈d|. The

bra 〈d| depends linearly on 〈c| so that 〈d| is obtained

from 〈c| by the application of a linear operator to 〈c|.

Since this operator is uniquelydetermined by D, we
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may reasonably write

〈d| = 〈c|D (1.3.18)

We adopt the convention that operators always appear

to the right of brasand summarize the definition above

by the relation

〈c|(D|a〉) = (〈c|D)|a〉 (1.3.19)

It therefore is unnecessary to use the parentheses, and

either side may be written 〈c|D|a〉. Therefore, D may

first operate on 〈c| and the result applied to |a〉, or

vice versa. The operator properties given in (
EQ3.5

1.3.5)

to (
EQ3.11

1.3.11) are equally valid whether they are applied

to bras or kets. Note also that 〈c|D|a〉 is a closed-
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bracket expression and is therefore a complex number

ingeneral.

A simple example of a linear operator that occurs fre-

quently in the quantumtheory is |a〉〈b| = P . We see

that P may operate on a ket to give

P |c〉 = |a〉〈b|c〉 (1.3.20)

which is a ket |a〉 multiplied by the number 〈b|c〉, and

〈c|P = 〈c|a〉〈b| (1.3.21)

is a bra 〈b| multiplied by the number 〈c|a〉. It is left as

an exercise to show that P satisfies the requirements

of a linear operator. An example in ordinaryvector

analysis that corresponds approximately to an opera-
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tor such as P isthe dyadic ij. In this case, ij · k = 0,

i · ij = j, and so on.

Linear operators play a central role in the physical in-

terpretation of thetheory. Following Dirac, we make

the assumption that each quantity thatcan be mea-

sured for a physical system (which is called a dynam-

ical variable)can be represented by a particular kind

of linear operator, to be described inthe following sec-

tion. Examples of dynamical variables associated with

linear operators are position (q), momentum (p), an-

gular momentum L, energy (H), and such which oc-

cur in classical mechanics, as well as spin angular mo-

mentum (σ) which has no classical analog. Classi-
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cally these variables commute with each other, but

quantum-mechanically it may be postulated that some

of these operators do not commute. The commutation

relations determine the type of algebra the operators

obey and mark thedeparture of quantum mechanics

from classical mechanics.

1.4 HERMITIAN OPERATORS

Linear operators are, in general, complex quantities;

if we let themcorrespond to dynamical variables, they

would be complex. However, physically,quantities such

as momentum, position, and the like give real num-

bers whenthey are measured. Therefore, the linear
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operators that represent dynamicalvariables must be

restricted to real linear operators. Such operators are

saidto be hermitian and are defined as follows:

The bra associated with the ket |q〉 = L|p〉, where L

is a linear operator,is written

〈q| = 〈p|L† = (L|p〉)† = (|q〉)† (1.4.1)

The symbol L† is called the hermitian adjoint of L;

that is, the bra 〈q|, which is the hermitian adjoint of

|p〉, may be considered the result of some linearoper-

ator acting on 〈p|, which is designated by L†.
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1.5 Examples

Example: Prove that L†† = L

Proof

We let

|b〉 = L|p〉 (1.5.1) EQ5.1

where |p〉 is an arbitrary ket. Its adjoint (associated

bra) is

〈b| = 〈p|L† (1.5.2)

If we take the adjoint again, we obtain

|b〉 = L††|p〉 (1.5.3) EQ5.3
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If we take the scalar product of an arbitrary bra 〈a|

with both (
EQ5.1

1.5.1) and(
EQ5.1

1.5.1) we have

〈a|b〉 = 〈a|L|p〉 = 〈a|L††|p〉 (1.5.4)

Since 〈a| and |p〉 are arbitrary, we have

L = L†† (1.5.5)

If in (
EQ17

1.2.17), we let 〈a| = 〈p|L† and |a〉 = L|p〉 we

have

〈p|L†|b〉 = 〈b|L|p〉∗ (1.5.6) EQ5.6

If a linear operator is self-adjoint,

L = L† (1.5.7)
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the operator is said to be hermitian. From (
EQ5.6

1.5.13), if

L is hermitian, it mustsatisfy the equation

〈p|L|b〉 = 〈b|L|p〉∗ (1.5.8) EQ5.8

for any |b〉 and |p〉. Therefore, any operator that satis-

fies (
EQ5.8

1.5.8) is hermitian.The following properties may

be proved for any linear operator:

(cL|a〉)† = c∗〈a|L† (1.5.9)

where c is a constant,

[(L1 + L2)|a〉]† = 〈a|(L†1 + L†2) (1.5.10)

(L1L2)|a〉]† = 〈a|L†2L
†
1 (1.5.11)

(〈a|L1L2L3)
† = L†3L

†
2l
†
1|a〉 (1.5.12)
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〈a|L1L2|b〉∗ = 〈b|L†2L
†
1|a〉 (1.5.13) EQ5.6

(|a〉〈b|)† = |b〉〈a| (1.5.14)

The algebra of adjoints of operators is the same as for

finite square matrices.

1.6 THE EIGENVALUE PROBLEM

Bras and ket vectors, or rather directions of bras and

kets, are associated with states of a system, and lin-

ear hermitian operators are associated with dynamical

variables that describe the system. In a next section

we show howto relate these mathematical concepts to

physical measurements made onthe system. Before

this, we must introduce the concept of eigenvalues of
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hermitian operators.

An eigenvalue problem is a familiar one in classical

mathematics as well asin classical physics. One of the

simplest examples involves the solution of the equation

Lu(x) = λu(x) (1.6.1)

where L is known to be |d2/dx2 and u(x) and λ are

unknown. If we add the boundary conditions that

u(0) = u(l) = 0, we find that λ can take on only a cer-

tain discrete set of eigenvalues given by λn = π2n2/l2

, where n = 0,±1,±2, . . . . The associated eigenfunc-

tions un(x) are un(x) = sin(nπx/l). Note that the

effect of an operator L on an eigenfunction un(x) is to
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reproduce un(x). If L operates on an arbitrary func-

tion u(x), it will not,in general, reproduce u(x) times

a number.

We may similarly formulate an eigenvalue problem for

operators in ket (and bra) space. We let L be a linear

operator and |a〉 a ket. If L operates on |a〉 and gives

|a〉 multiplied by a number l, then |a〉 is an eigenket

of L and l is the associated eigenvalue. This may be

written

L|a〉 = l|a〉 (1.6.2)

This is an eigenvalue problem: L is a known operator,

and l and |a〉 are unknown, and we are asked to find

kets which, when acted on by L,reproduce the same
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ket times a number subject to a set of boundary con-

ditions.It is customary to label an eigenket with its

eigenvalue; with this convention,we may rewrite the

eigenvalue equation as

L|l〉 = l|l〉 (1.6.3) EQ6.3

The eigenvalue problem may equally well be formu-

lated in terms of bras:

〈d|D = d〈d| (1.6.4)

For simplicity, in this book we shall usually consider

cases in which thereis only one eigenvalue for each

eigenvector. If more than one independent eigenvec-

tor can be associated with a given eigenvalue, the sys-
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tem is saidto be degenerate.

If |l〉 is an eigenket of L, then, by (
EQ6.3

1.6.3), any constant

c times |l〉 is also an eigenket with the same eigenvalue.

In line with earlier assumptions, the states represented

by |l〉 and c|l〉 are the same state.

We shall be interested usually in the solution of the

eigenvalue problem forlinear hermitian operators for

reasons that should become clear in the nextsection.

Before attempting the solutions of any specific eigen-

value problem, we shall prove two very important the-

orems valid for all linear hermitian operators.
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1.7 THEOREMS

sec.1.7

Theorem 1

The eigenvalues of a linear hermitian operator are real.

Proof

We let L be a linear hermitian operator. The eigen-

values of L satisfy the equation

L|l〉 = l|l〉 (1.7.1) EQ7.1

If we form the scalar product of both sides with 〈l|,

we have

〈l|L|l〉 = l〈l|l〉 (1.7.2) EQ7.2
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If we take the complex conjugate of both sides, we

obtain,

〈l|L|l〉∗ = 〈l|L†|l〉 = l∗〈l|l〉 (1.7.3) EQ7.3

But since L† = L, and 〈l|l〉 6= 0, comparison of (
EQ7.3

1.7.3)

and (
EQ7.3

1.7.3 shows that l = l∗, and the theorem is

proved. We see that 〈l|l〉 = 0 only in the trivial case,

in which|l〉 = 0. Note that the norm 〈l|l〉 is real.

Theorem 2

Two eigenvectors of a linear hermitian operator L be-

longing to different eigenvalues are orthogonal.

Proof
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We let l′ and l′′ be two eigenvalues of L and |l′〉 and

|l′′〉 be the associated eigenkets.Then (L = L†; l′ and

l′′ are real).

L|l′〉 = l′|l′〉 (1.7.4) EQ7.4

〈l′′|L = l′′〈l′′| (1.7.5) EQ7.5

If we form the scalar product of (
EQ7.4

1.7.4) with 〈l′′|, the

scalar product of (
EQ7.5

1.7.5) with |l′〉, and subtract, we

find that

(l′ − l′′)〈l′|l′′〉 = 0 (1.7.6)

Since l′ 6= l′′ by assumption, then 〈l′|l′′〉 = 0, and the

theorem is proved. From (
EQ7.4

1.7.4) and (
EQ7.5

1.7.5) we see

that the eigenvalues associated with eigenkets are the
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sameas those associated with eigenbras.

The solution of an eigenvalue problem in many cases is

complicated. Weshall now solve a particularly simple

one to illustrate the method. Later, we may discuss a

physical system that may be described by this exam-

plebut for the moment we shall consider it merely as

a mathematical example.

We suppose a linear hermitian operator σz that satis-

fies an auxiliary condition

σ2
z = I (1.7.7) EQ7.7
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where I is the identity operator, and we wish to solve

the eigenvalue problem

σz|s〉 = s|s〉 (1.7.8) EQ7.8

From Theorem 1, we know that s is real, and from

Theorem 2 we know that 〈s′|s′′〉 = 0 s′ 6= s′′.

To solve for the eigenvalues and eigenvectors, we mul-

tiply both sides of (
EQ7.8

1.7.8) from the left by σz, use

(
EQ7.7

1.7.7) and (
EQ7.8

1.7.8), and obtain

σ2
z|s〉 = |s〉 = sσz|s〉 = s2|s〉 (1.7.9)

or

(s2 − 1)|s〉 = 0 (1.7.10)
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If we form the scalar product of this with 〈s|, we see

that, since 〈s|s〉 is positive and not zero, the eigenval-

ues of az are given by

s = ±1 (1.7.11)

Since by assumption there can be no degeneracy (two

eigenvalues the same),there are only two eigenvalues,

and so we may rewrite (
EQ7.8

1.7.8) as

σz|+ 1〉 = +1|+ 1〉, σz| − 1〉 = −1| − 1〉 (1.7.12) EQ7.12

By Theorem 2 we know that

〈+1| − 1〉 = 〈−1|+ 1〉 = 0 (1.7.13) EQ7.13

These are the orthogonality relations obeyed by eigen-

vectors belonging todifferent eigenvalues.
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As we know, any eigenket multiplied by a constant is

also an eigenketbelonging to the same eigenvalue. We

may therefore choose a constant sothat the norm of

the eigenvectors is unity as long as the norm is finite

and write

〈+1|+ 1〉 = 〈−1| − 1〉 = 1 (1.7.14) EQ7.14

These are the normalization conditions. Normaliza-

tion does not specify the vector uniquely; we may

still multiply | + 1) by eiα since 〈+1| will bemulti-

plied by e−iα, where α is real, and (
EQ7.14

1.7.14) will be left

unchanged. Such a phase shift is of no physical signifi-

cance in the theory, and we shallusually choose α = 0.
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For any eigenvalue problem in which the norm of the

vectors is finite, theeigenvectors may always be nor-

malized and (
EQ7.13

1.7.13) and (
EQ7.14

1.7.14) combined into the

orthogonality relations

〈l′|l′′〉 = δl′l′′ (1.7.15)

where δl′l′′ is the Kronecker δ defined by

δij =

{
1 if i = j

0 if i 6= j
(1.7.16)

When the vectors have an infinite norm, these results

have to be generalized,as we discuss later.

Anticipating future work, we shall now show that az

may be representedby a 2× 2 matrix given by

σz =

1 0

0 1

 (1.7.17) EQ7.17
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To show this, we form the scalar products of both

equations (
EQ7.12

1.7.12) with 〈+1| and 〈−1|, respectively.

If we use (
EQ7.13

1.7.13) and (
EQ7.14

1.7.14), we obtain theso-called

”matrix elements” of σz given by

〈+1|σz|+ 1〉 = 1 〈+1|σz| − 1〉 = 0 (1.7.18)

〈−1|σz|+ 1〉 = 0 〈−1|σz| − 1〉 = −1 (1.7.19)

We then may group these results into a matrix such as

(
EQ7.17

1.7.17), with the convention that the rows are labeled

by the eigenbras and the columns bythe eigenkets.

Any ket in the space may be expressed in terms of the

eigenkets |+ 1〉 and | − 1〉. When this can be done, it

is said that the eigenkets form a completeset by def-
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inition. Again we are anticipating the results of the

next section.

To show that any ket |P 〉 in the space may be ex-

panded in terms of | + 1〉 and | + 1〉, we write the

identity

|P 〉 = I|P 〉 =
1

2
(I + σz + I − σz)|P 〉 (1.7.20)

=
1

2
(I + σz)|P 〉+

1

2
(I − σz)|P 〉 (1.7.21) EQ7.21

We consider each factor separately. On using (
EQ7.7

1.7.7),

we have

σz

[1
2

(I + σz)|P 〉
]

= 1
[1
2

(σz + I)|P 〉
]

(1.7.22)

so that 1
2
(I + σz)|P 〉 is an eigenket of σz with eigen-

value +1. It may therefore differ from | + 1〉 only by
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a constant, and we may write

1

2
(I + σz)|P 〉 = c1|+ 1〉 (1.7.23) EQ7.23

where c1 is a constant. Similarly, we see that the last

term in (
EQ7.21

1.7.21) is given by

σz

[1
2

(I − σz)|P 〉
]

= −1
[1
2

(I − σz)|P 〉
]

(1.7.24)

so that we may write

1

2
(I − σz)|P 〉 = c2| − 1〉 (1.7.25) EQ7.25

where c2 is another constant. Thus (
EQ7.21

1.7.21) may be

written by using (
EQ7.23

1.7.23) and (
EQ7.25

1.7.25) as

|P 〉 = c1|+ 1〉+ c2| − 1〉 (1.7.26) EQ7.26

as originally stated. Any ket is therefore linearly de-

pendent on the kets | + 1〉 and | − 1〉, and we have
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proved that the set {|+ 1〉, | − 1〉} is complete.

We may also derive the so-called completeness relation

in this simple example. We multiply (
EQ7.26

1.7.26) from the

left alternatively by 〈+1| and 〈−1|,use the orthonor-

mality relations (
EQ7.13

1.7.13) and (
EQ7.14

1.7.14), and see that

c1 = 〈+1|P 〉 c2 = 〈−1|P 〉 (1.7.27) EQ7.27

If we substitute these into (
EQ7.26

1.7.26), we obtain

|P 〉 =
(
|+ 1〉〈+1|+ | − 1〉〈−1|

)
|P 〉 (1.7.28)

Since |P 〉 is arbitrary, this equation will be satisfied if

|+ 1〉〈+1|+ | − 1〉〈−1| = I (1.7.29)

which is the completeness or closure relation. We dis-

cuss the completenessrelation for general hermitian
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operators in the next section.

The Hilbert space in this example is two-dimensional

because weconsidered only nondegenerate eigenvalues.

If we substitute (
EQ7.27

1.7.27) in (
EQ7.23

1.7.23) and (
EQ7.25

1.7.25), we

have the results

1

2
(I + σz)|P 〉 = |+ 1〉〈+1| (1.7.30) EQ7.30

1

2
(I − σz)|P 〉 = | − 1〉〈−1| (1.7.31) EQ7.31

We may subtract these equations to obtain σz:

σz = |+ 1〉〈+1| − | − 1〉〈−1| (1.7.32)

so that we have expressed az in terms of operators

of the type |a〉〈a| mentioned near the end of Section

(
sec1.3

1.3). Eigenvalues of an operator are sometimesre-
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ferred to as its spectrum.



Chapter 2

ORBITAL ANGULAR
MOMENTUM; ELECTRON SPIN

2.1 EIGENVALUES AND EIGENVECTORS OF AN-

GULAR MOMENTUM

Befpre we proceed, it essential to note that, if a sin-

gle measurement of an observable is made, one of its

eigenvalues is obtained. The ability to solve eigenvalue

problems is therefore essential torelate the theory to

experiment. Thus far we have solved only one such

problem, in Section
sec.1.7

1.7, where the observable satis-

73
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fied the algebraic equationa σ2
z = 1. In that case the

Hilbert space consisted of only two eigenvectors,and

the eigenvalue spectrum had only the two discrete val-

ues +1 and −1.

Now for a single particle of mass m constrained to

move in one dimension in a field of force. Classically,

this system may be described completely by a position

coordinate q and a momentum p. If we specify both

these quantities at a certain time, we have specified

the classical state of thesystem at this time.

Alternatively, to treat this system quantum-mechanically,

according to the theory wehave developed thus far, we

associate with each of these dynamical variables(since
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they are observable) a linear hermitian operator which

we shall call q and p. As operators, they satisfy

p = p† q = q† (2.1.1)

After the operators needed to describe the physical

system are enumerated,the next step in setting up the

quantum problem is to specify the algebra that the

operators must obey. This requires an additional pos-

tulate for the theory;it is given in terms of the com-

mutation relations for p and q, namely,

[q, q] = [p, p] = 0 (2.1.2) EQ2.1.2

[q, p] = qp− pq = i~ (2.1.3) EQ2.1.3
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where ~ is Planck’s constant divided by 2π; that is,

we postulate that p and q satisfy the commutation re-

lations above. Classically, q and p commute sothat,

to the extent they do not commute, the quantum and

classical systems differ. Accordingly, the classical sys-

tem is quantized when the observablesq and p satisfy

(
EQ2.1.2

2.1.2,
EQ2.1.3

2.1.3). The justification for the quantum postu-

late is theremarkable agreement between theory and

experiment. It is possibly the mostprofound and fun-

damental postulate in the theory.

If ~ → 0, q and p will commute so that classical me-

chanics should becontained in the quantum formula-

tion in the limit as ~→ 0. This is just the correspon-
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dence principle.

It is said that q and p obey a noncommutative al-

gebra. Before proceeding,let us develop a few useful

algebraic relations. If l is an integer, we mayprove by

mathematical induction from (
EQ2.1.2

2.1.2,
EQ2.1.3

2.1.3) that

[q, pl] = i~lpl−1 = i~
∂

∂p
pl (2.1.4) EQ2.1.4

[p, ql] = −i~lql−1 = −i~
∂

∂q
ql (2.1.5) EQ2.1.5

Bearing in mind these above attributes of the oper-

ators q and p, we will be ready to proceed towards

the next subjet, namely, Orbital angular momentum.

Orbital angular momentum plays an essential role in

quantum mechanics just as it does in classical mechan-
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ics. Classically, the angular momentum about a point

0 is defined by

I = r× p (2.1.6) EQ2.1.6

where r is the radius vector from 0 to the particle and

p is its linear momentum. Since I is an observable,

we postulate that I is a hermitian operator defined by

(
EQ2.1.6

2.1.6) where r and p are the coordinate and momen-

tum operators. We’et [q1, q2, q3] be the three coordi-

nate operators corresponding to r and [p1, p2, p3] = p

be the corresponding momentum operators. We pos-

tulate as in (
EQ2.1.2

2.1.2,
EQ2.1.3

2.1.3) that these operators obey the
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commutation relations

[qi, pj] = i~δij; [qi, qj] = [pi, pj] = 0 (2.1.7) EQ2.1.7

where i and j = 1, 2, or 3. This says that q1 and p2

commute, for example. In other words, measurements

of a coordinate in one direction does notinterfere with

the measurement of the momentum in an orthogonal

directionas it does in the same direction.

From (
EQ2.1.6

2.1.6) and (
EQ2.1.7

2.1.7), we see that

l1 = q2p3 − q3p2 (2.1.8) EQ2.1.8

l2 = q3p1 − q1p3 (2.1.9) EQ2.1.9

l3 = q1p2 − q2p1 (2.1.10) EQ2.1.10
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If we use (
EQ2.1.7

2.1.7), we may easily show that

[lx, ly] = i~lz (2.1.11) EQ2.1.11

[ly, lz] = i~lx (2.1.12) EQ2.1.12

[lz, lx] = i~ly (2.1.13) EQ2.1.13

so that no additional postulates are needed to quantize

I. Note also since, for example, q2 and p3 commute as

do q3 and p2. we do not have to worry aboutordering

of the separate factors in l1, l2, and l3.

The total angular momentum is

I2 = l21 + l23 + l23 (2.1.14)

Also,

[I2, li] = 0 Try to prove (2.1.15) EQ2.1.15
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That is, each component of the angular momentum

separately commutes with I2.

It is convenient to define two nonhermitian operators

l± by

l± = l1 ± il2 (2.1.16)

or

l1 =
1

2
(l− + l+) (2.1.17) EQ2.1.17

l2 =
1

2
i(l− − l+) (2.1.18) EQ2.1.18

Since l1 and l2 are hermitian it follows that

l+ = l†− (2.1.19)

In terms of l±, we see that

I2 = l23 +
1

2
(l+l− + l−l+) (2.1.20) EQ2.1.20
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We will leave as an exercise to show that

[I2, l±] = 0 (2.1.21) EQ2.1.21

[lz, l±] = ±~l± (2.1.22) EQ2.1.22

[l+, l−] = 2~l3 (2.1.23) EQ2.1.23

If we alternatively add and subtract (
EQ2.1.23

2.1.23) from (
EQ2.1.20

2.1.20)

we obtain

l+l− = I2 − l23 + ~l3 (2.1.24) EQ2.1.24

l−l+ = I2 − l23 − ~l3 (2.1.25) EQ2.1.25

We have shown that I2 commutes with l1, l2, and l3

but the components donot commute with each other.

We have shown that any two operators thatcommute

may be simultaneously diagonalized. We may there-
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fore obtain a representation in which both are diag-

onal; that is, we may find eigenvectors which are si-

multaneous eigenvectors of two commuting operators.

Considerthe eigenvalue problems

lz|µ; ν〉 = µ~|µ; ν〉 (2.1.26) EQ2.1.26

I2|µ; ν〉 = ν~2|µ; ν〉 (2.1.27) EQ2.1.27

Since [lz, I
2] = 0 we see that

I2lz|µ; ν〉 = µ~I2|µ; ν〉 = µν~3|µ; ν〉 (2.1.28) EQ2.1.28

= lzI
2|µ; ν〉 (2.1.29) EQ2.1.29

We wish to obtain the eigenvalues µ and ν by tech-

niques similar to those used for the harmonic oscilla-

tor.
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By (
EQ2.1.21

2.1.21) we have

I2l± = l±I2 (2.1.30)

By (
EQ2.1.26

2.1.26) we see that

I2{l±|µ; ν〉} = ν~2{l±|µ; ν〉} (2.1.31) EQ2.1.31

This says that if |µ; ν〉 is an eigenket of I2 with eigen-

value ν~2, then l+|µ; ν〉 and l−|µ; ν〉 are also eigenkets

with the same eigenvalue.

Consider next (
EQ2.1.22

2.1.22):

lzl± = l±lz + ~l± (2.1.32) EQ2.1.32

It therefore follows from (
EQ2.1.26

2.1.26,
EQ2.1.27

2.1.27) that

lz{l±|µ; ν〉} = (µ± 1)~{l±|µ; ν〉} (2.1.33) EQ2.1.33
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Thus if |µ; ν〉 is an eigenvector of lz with eigenvalue

µ~ then l+|µ; ν〉 is an eigenvector of lz with eigenvalue

(µ+1)~ and l−|µ; ν〉 is an eigenvector of lz with eigen-

value (µ− 1)~, both with the same ν by (
EQ2.1.31

2.1.31). We

have thus generated two additional eigenvectors of lz

from the original whose eigenvalues differ by ±~. We

may obviously continue this process and obtain the

infinite sequence

|µ; ν〉 l+|µ; ν〉 l2+|µ; ν〉 l3+|µ; ν〉 . . . (2.1.34) EQ2.1.34

µ~ (µ+ 1)~ (µ+ 2)~ (µ+ 3)~ . . . (2.1.35) EQ2.1.35

|µ; ν〉 l−|µ; ν〉 l2−|µ; ν〉 l3−|µ; ν〉 . . . (2.1.36) EQ2.1.36

µ~ (µ− 1)~ (µ− 2)~ (µ− 3)~ . . . (2.1.37) EQ2.1.37
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where ν is unchanged.

Since the norm of a vector must be greater than or

equal to zero, we assume that

〈µ; ν|µ; ν〉 > 0 (2.1.38) EQ2.1.38

That is, the original vector exists. Then since l− = l†+,

we have

〈µ; ν|l−l+|µ; ν〉 = 〈µ; ν|(I2 − l2z − ~lz)|µ; ν〉 (2.1.39)

= ~2(ν − µ2 − µ)〈µ; ν|µ; ν〉 ≥ 0 (2.1.40)

where we used (
EQ2.1.25

2.1.25) and (
EQ2.1.26

2.1.26,
EQ2.1.27

2.1.27). By (
EQ2.1.38

2.1.38),

it follows that

ν − µ2 − µ ≥ 0 (2.1.41) EQ2.1.41
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where ν is fixed. This tells us that for any given ν if µ

gets arbitrarily big either positively or negatively the

vector l+|µ; ν〉 would develop a negative norm which is

forbidden. We must therefore anticipate an upper and

lower bound on µ for each ν. The equality is satisfied

above for

µ = −
1

2
±
√

1

4
+ ν (2.1.42)

which are the two bounds on µ for fixed ν. Let l be

the largest value µ may have so that

l ≡ −
1

2
+

√
1

4
+ ν (2.1.43)

or

ν = l(l + 1) (2.1.44)
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When µ = l, we have

l+|l; ν〉 = 0 (2.1.45) EQ2.1.45

since otherwise we would generate an eigenvector with

eigenvalue µ = l + 1 which would violate (
EQ2.1.41

2.1.41).

If we start with state |l; ν〉 and apply l− k times then

we generate state |l − k; ν〉 by (
EQ2.1.34

2.1.34-
EQ2.1.37

2.1.37). The

length of l−|l− k; ν〉 is

〈l−k; ν|l+l−|l−k; ν〉 = 〈l−k; ν|(I2− l23− ~l3)|l−k; ν〉

(2.1.46) EQ2.1.46

= {ν−(l−k)2+(l−k)}~2〈l−k; ν|l−k; ν〉 ≥ 0 (2.1.47)

If |l− k; ν〉 6= 0, then since ν = l(l + 1), we conclude

l(l + 1)− (l− k)2 + (l + k) ≥ 0 (2.1.48)
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This puts a limit on the size of k

(l− k) =
1

2
±
√

1

4
+ l(l + 1) (2.1.49)

or kmax is determined by

l−kmax =
1

2
−
√

1

4
+ l(l + 1) =

1

2
−
√(

l +
1

2

)2

(2.1.50)

so that

kmax = 2l (2.1.51)

But k is a positive integer so 2l must be a positive

integer. Therefore, l may have only the values

l = 0,
1

2
, 1,

3

2
, 2,

5

2
, . . . (2.1.52)

When kmax = 2l, we conclude that

l−|l− kmax; ν〉 = l−| − l; ν〉 = 0 (2.1.53) EQ2.1.53
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Therefore µ ranges between +1 and |1 in unit steps.

It is conventional to let µ = m and to designate ν by

l since ν = l(l + 1) and write

l3|m; l〉 = m~|m; l〉 (2.1.54) EQ2.1.54

I2|m; l〉 = l(l + 1)~2|m; l〉 (2.1.55) EQ2.1.55

where the eigenvalues are

l = 0,
1

2
, 1,

3

2
, 2,

5

2
, . . . (2.1.56)

m = −l,−l + 1,−l + 2, . . . , l− 2, l− 1, l (2.1.57)

The eigenvectors are orthogonal since I2 and l3 are

hermitian so that

〈m′; l′|m; l〉 = δll′δmm′ (2.1.58) EQ2.1.58
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so that the matrix elements of l3 and I2 are

〈m′; l′|l3|m; l〉 = m~δll′δmm′ (2.1.59) EQ2.1.59

〈m′; l′|I2|m; l〉 = l(l + 1)~2δll′δmm′ (2.1.60) EQ2.1.60

Let us next obtain the matrix elements of l± in the

representation in which l3 and I2 are diagonal. We

have shown that l+|m; l〉 is an eigenvector of I2 with

eigenvalue l(l+ 1)~2 and also an eigenvector of l3 with

eigenvalue (m+1)~. Therefore, l+|m; l〉 can differ from

|m + 1; l〉 by a complex constant. We may therefore

write

l+|m; l〉 = λl,m~|m+ 1; l〉 (2.1.61) EQ2.1.61
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So that

〈m+ 1; l|l+|m; l〉 = λl,m~ (2.1.62)

If we take the complex conjugate of both sides, we

have

〈m; l|l−|m+ 1; l〉 = λ∗l,m~ (2.1.63)

This relation is satisfied if

l−|m+ 1; l〉 = λ∗l,m~|m; l〉 (2.1.64) EQ2.1.64

Consider next

l−l+|m; l〉 = l−λl,m~|m+ 1; l〉 (2.1.65)

= ~2|λl,m|2|m; l〉 (2.1.66)

= [I2 − l23 − ~l3]|m; l〉 (2.1.67)

= [l(l + 1)−m2 −m]~2|m; l〉 (2.1.68)
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where we used (
EQ2.1.61

2.1.61), (
EQ2.1.64

2.1.64), (
EQ2.1.24

2.1.24), and (
EQ2.1.55

2.1.55).

Therefore, we conclude that

λl,m =
√
l(l + 1)−m(m+ 1) (2.1.69)

=
√

(l−m)(l +m+ 1) (2.1.70)

and

l+|m; l〉 = ~
√

(l−m)(l +m+ 1)|m+ 1; l〉 (2.1.71)

l−|m; l〉 = ~
√

(l−m+ 1)(l +m)|m− 1; l〉 (2.1.72)

so the matrix elements are

〈m′; l′|l+|m; l〉 = ~
√

(l−m)(l +m+ 1)δll′δm′m+1

(2.1.73) EQ2.1.73

〈m′; l′|l−|m; l〉 = ~
√

(l−m+ 1)(l +m)δll′δm′m−1

(2.1.74) EQ2.1.74
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If we use (
EQ2.1.17

2.1.17,
EQ2.1.18

2.1.18), we obtain the nonvanishing

matrix elements

〈m+ 1; l|l1|m; l〉 =
~
2

√
(l−m)(l +m+ 1) (2.1.75) EQ2.1.75

〈m− 1; l|l1|m; l〉 =
~
2

√
(l−m+ 1)(l +m) (2.1.76) EQ2.1.76

〈m+ 1; l|l2|m; l〉 = −i
~
2

√
(l−m)(l +m+ 1) (2.1.77) EQ2.1.77

〈m− 1; l|l2|m; l〉 = i
~
2

√
(l−m+ 1)(l +m) (2.1.78) EQ2.1.78

We shall write out a few of these explicitly. For l = 0,

we have explicitly the null matrices

l3 = 0, I2 = 0, l1 = 0 = l2 (2.1.79)

Next for l = 1
2
, m = ±1

2
, the matrix elements are

l3 =
~
2

1 0

0 −1

 I2 =
3~2

4

1 0

0 1

 (2.1.80)
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l1 =
~
2

0 1

1 0

 l2 =
~
2

 0 i

−i 0

 (2.1.81)

while the state vectors become

∣∣∣+
1

2
;
1

2

〉
=

1

0

 ∣∣∣− 1

2
;
1

2

〉
=

0

1

 (2.1.82)

For l = 1, m = −1, 0,+1, and we have

l3 = ~

1 0 0

0 0 0

0 0 −1

 I2 = 2~2

1 0 0

0 1 0

0 0 1

 (2.1.83)

l1 =
~
√

2

0 1 0

1 0 1

0 1 0

 l2 =
~
√

2

0 −i 0

i 0 −i
0 i 0

 (2.1.84)

while

|+ 1; 1〉 =

1

0

0

 |0; 1〉 =

0

1

0

 | − 1; 1〉 =

0

0

1


(2.1.85)



96 CHAPTER 2. ORBITAL ANGULAR MOMENTUM; ELECTRON SPIN

It was left to the reader to proceed for computing

the previous matrices for l = 3
2
, m = ±3

2
,±1

2
so the

matrices are 4× 4.

We have chosen I2 and l3 as the two commuting op-

erators to diagonalize.We could have also chosen I2

and l1 or I2 and l2. We say that the 3 or z-axis is

the axis of quantization when we diagonalize I2 and

l3. There is obviously nothing unique about the z-

axis here. If we, for example, applied a uniform mag-

netic field in a certain direction, then it would usually

be advantageous tochoose this direction as the axis of

quantization.

We have shown that lz may have integral or half-
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integral multiples of has its eigenvalues. Simply this

result arises because of the commutation relations (
EQ2.1.11

2.1.11-

EQ2.1.13

2.1.13) and (
EQ2.1.15

2.1.15) and has nothing to do with the

definitions (
EQ2.1.8

2.1.8-
EQ2.1.10

2.1.10) of I in terms of the coordi-

nates and momentum. However, if I is to represen-

torbital angular momentum, then the eigenvectors of

I2 and l3 must have coordinate or momentum repre-

sentatives. That is, we must be able to expressthe I

matrices in terms of coordinate and momentum ma-

trices. We show inthe next section that this is only

possible if we restrict the eigenvalues of lz to be an

integer times ~. The half-integer values do not have a

classical analog in that |m; l〉 does not have a coordi-
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nate representative when m is a half-integer.

We have no reason for throwing out half-integral

values if we say thesecorrespond to intrinsically quan-

tum mechanical effects which have no classicalanalog.

We call such intrinsic angular momentum spin angu-

lar momentum.It turns out indeed that some particles

have not only orbital angularmomentum but in addi-

tion are born with spin angular momentum. Electrons

areborn with a spin l = 1
2

so m = ±1
2
. Effects due to

this can be measuredexperimentally and all attempts

to explain these effects classically have failed.
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