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Chapter 1
Introduction to ODEs
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- Objectives of Lesson

e Recall basic definitions of ODEs:
- Order
— Linearity
— Initial conditions

- Solution

* Classify ODEs based on:

— Order, linearity, and conditions.

¢ Classifythe solution methods.
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- History of differential equations:

In mathematics, the history of differential equations traces the development of

"differential equations" from calculus, which itself was independently invented
by English physicist Isaac Newton and German mathematician Gottfried Leibniz.

The history of the subject of differential equations, in concise form, from a
synopsis of the recent article “The History of Differential Equations, 1670-1950"

“Differential equations began with Leibniz, the Bernoulli brothers, and others
from the 1680s, not long after Newton’s ‘fluxional equations’ in the 1670s.”

- Definition of DES and some properties:

Differential Equations

| Definition | A differential equation is an equation involving
derivatives of an unknown function and possibly the
function itself as well as the independent variable.

s 0 2 r - 3 2 N
¥y =sin|{x), (¥ —y¥ +2xy —x" =0, |V +¥ +x=0

| 1st order equations | 2rd order equation |

| Definition | The ordesr of a differential equation is the highest o«des
of the derivatives of the unknown function

appearing in the equation
In the simplest cases, equations may be solved by direct integration.

[EEEBEE ¥ - S(x) =y = —cos(x)+C
y ' =Bx+e" =y =3x"+e"+C, =2 y=x"+e"+Cx+C,
Observe that the set of solutions to the above 15t order equation has 1

parameter, while the solutions to the above 2" order equation
depend on two parameters.
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Derivatives
‘l Derivatives H
|
v L 4
Ordiﬁlry Derivatives Partial Derivatives
dv o
dt o

vis a function of one
independent variable

005

vis a function of
more than one
independent variable

POR

Differential Equations

Differential
Equations

v

v

Ordlnary Differential Equations

M+6tv 1
d

t* -

-

involve one or more

Ordinary derivatives of

unknown functions

Partial Differential Equations
(6 u 6 u 0\
o

involve one or more

partial derivatives of
unknown functions
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Ordinary Differential Equations (ODEs) involve one or
more ordinary derivatives of unknown functions with
respect to one independent variable

Examples :
]

@—V(I) =é l x(t): unknown function

dt_
d*x(t dx(t

g ) -5 ®) +2x(¢) = cos(?)
t: independent variable
Example 2:
l Ordinary ‘
______________________________________ differential
Lot T T uation
d c equa

A _gg <,

.t

dv — 0 8 —i v o (Dependent

dr V,% 4 variable)

unknown
function to be
determined
d v c
=98——— v
dzr

(independent variable)
the variable with respect to which
other variables are differentiated

- Order of a Differential Equation:
The order of an ordinary differential equation is the order of the

highest ‘?( derivative
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Examples -
d’;(tt) —x(@)=é€' First order ODE
dzx(t) _ 5@ 2x(t) =cos(f)  Second order ODE
\ dzx(t) ? dx(t) +2x4 () = Second order ODE

( - Linear ODE: 7
An ODE is linear if the unknown function and its derivatives

appear to power one. No product of the unknown function and/or
its derivatives.

Examples:

dx(f)
O Linear ODE
d*x(®) _dx(?)

oy tAxD=cos) Linear ODE

[d2x<r)]3ab«t)+ -1  Non-linear ODE
dr* dt

- Nonlinear ODE:

Examples of nonlinear ODE:

dt”

() _ L OO g O
” cos(x(t)) =1, " 5 ” X(t) =2
4O _ t)‘ Fx(0) =1
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Ordinary Differential Equations (ODEs)

- Auxiliary Conditions:

o0¥

/
Au x\'(a ry
N\

Conditions
P d

|

!

Initial Conditions

All conditions are at one
point of the independent

\/ variable

P

Boundary Conditions

e The conditions are not at one

point of the independent
variable

X, -Boundary-Value and Anitial value Problem )

AN

4

Initial-VValue Problems

The auxiliary conditions
are at one point of the
independent
variable

\/5&+23i:+x=e‘2‘

Bou ndary—\/aluePProblems

The auxiliary conditions are not at

one point of the independent
variable

More difficult to solve than initial
value problems

X+ 2x 4+ x = e °
x(O0)=1, x(0)=25 x(?) =1, x(;z) — 1.5
g o leme] Taarant |

- Classification of ODEs:

ODEs can be classified in different ways:

e Order

— First order ODE
— Second order ODE
— N order ODE

e Auxiliary conditions
— Initial value problems

— Boundary value problems

e Linearity ')’.
— Linear ODE
—_Nonlinear
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- Solutions of Ordinary Differential Equations

For example, this function
x(2) = cos(27r)
is a solution to the ODE

d?x(0)

Is it unique?
All functions of the form x(7Z) = cos(7 + )
(where ¢ 1s a real constant) are solutions.

| | L— )
- Uniqueness of a Solution
In order to uniquely specify a solution to an n" order differential

equation we need n conditions
d?x(1)

dt>
x(0)=a |_——Two conditions are
2(0) = b needed to uniquely
specify the solution

+4x(0) =0 Second order ODE

Classification of ODESs
ODEs can be classified in different ways:

e Order
— First order ODE
— Second order ODE
— Nt order ODE

e Linearity
— Linear ODE
— Nonlinear ODE

e Auxiliary conditions
— Initial value problems
— Boundary value problems
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- Applications of Differential equations:
e Electric Circuits:-

Differential Equations:
) Eleciric Clreults

L. £ +RT = E (+)

o

i \ R (45\5*"(
e
) AWV
) TE L
7
bathery Q;,\Ju’m
SM.J['LL\

e Biological Systems:-
The SIR epidemic model is one of the simplest compartmental models, and
many models are derivations of this basic form. The model consists of three

compartments—S for the number susceptible, | for the number of infectious, and
R for the number recovered (or immune). < &

as

| Susceptible I E b —ﬂSI
Y3
| Infec‘:'tious | % = ﬁSI — 7/]
Y
+ Jo
| Recovered I dt S ;I/I

Proporfion

L " L . " L
o 10 20 30 40 50 80 7O 80 90 100
Time (days)
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First-Order
Differential Equations



Ordinary Differential Equations (ODEs)
Chapter 2

First-order differential equations
Separable Differential Equations

- Objectives of Lesson

*Differential Equation of first Order and first Degree

* Method of Solution: Separation of Variables

* EquationsReducible to Variable Separable Form

* Class Exercise
Definition of DE of first order v/

A differential equation of the first order and first degree containsindependent
variable x, dependentvariabley and its derivative

dy . d d
é i.e. d—§=f(x, y) or f(x,y, d—i)=0
where f (x, y) is the function of x and y.
For example : xy (y +1)dy = (x> +1)dx, dy _x+vy,
dx x-y
d_y + y =sinx etc.
dx

A separable differential equation is one that can be written so that the
independent variable terms (along with its differential) are collected to one

side of the equal sign, and the dependent variable terms (and its
differential) to the other.

) ) ) d
Example 1: y' = xy? is separable. It is first written as ﬁ = xy?, then
“separated”:

d
—Z=xdx.

y
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. d
This is separated as y_32, = xdx.

d .
fy—}z' = [xdx Integrate both sides.

11 .. :
-3 = Exz +C Don’t forget the constant of integration.
1 1 :
5= C — Exz Negate. The C “absorbs” the negative.

1 2 : .

y = P =T Solve for y. Note that 2C is written as C.

Example 2: Solve the IVP: y' = x + xy, y(0) = 3.

Solution
Write y' as z—z: z—i =X+ xy
Factor: z—i =x(1+y)
Separate: i—yy =xdx (* —+1)
Integrate: i—yy=fxdx - In|1 +y|=§x2+C
Isolate y: 11 +y| = eo.5x2+c S N+y = Ce0-5%*

14y =+Ce®* = Ce®*  (+C =0)
Thus, y = Ce®5*" — 1 is the general solution of y’ = x + x.
* The constant of integration C is just a generic constant at this point. It
absorbs all constants that come near it, so to speak. For example, e¢ = C,
1
—C=0C, 2C =C, o= C, and so on.

* The C can be determined with an initial condition. For example, suppose
we have y' = x4+ xy with y(0) =3. The general solution is y =

C%5%* — 1. To find C, let x =0 and y = 3:
3=Ce%®* -1 - 3=C-1 - C=4

Thus, the particular solution is y = 4e%5%" — 1.
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Example 3
e Solve the following first order nonlinear equation:

dy  x?+1

dx y* -1

Solution

Separating variables, and using calculus, we obtain

(y*-1ydy = (x”+1) dx
[ -Ddy = [(x* +
1 5 1 5

— -y=—x+x+C
3)’ Y 3
y*-3y=x>+3x+C

Example 4:

e Solve the following first order nonlinear equation:

dy 3x*+4x+2
D _2X FIXL 2 here y(0)&—1

Solution
2(y —dy={3x> + 4x + 2)dx
2[(y —Ddy= [ (3x® + 4x+ 2)c
Yy 2y=x'+2x>+2x+C
e The equation above defines the solution y implicitly. An
explicit expression for the solution can be found in this case:

2+ Ja+4{x* +2x> +2x+C)
2

y2—2y—(x3+2x2+2x+C):0 = y=

y:li\/x3+2x2+2:l:+cl

e Suppose we seek a solution satisfying y(0) = -1. Using the
implicit expression of y, we obtain

e Thusthe implicit equation defining y is
y:—2y=x>+2x*+2x+C

D>*-2(-D=C = C=3

e Usingexplicit expression of y,
¥y 2y=x>+2x*+2x+3
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Example 5

e Consider the following initial value problem:

COS X
Y y(0)=1

y'_1+3y3’

Solution
Separating variables and using calculus, we obtain

1+3y” dy = cos xdx
y

(R

ln|y|+y3 =snx+C

e Usingthe initial condition, it follows that

Iny+y’ =sinx+1
e Thus

ycosx

T i y(0)=1 = Iny+yp’ =sinx+1

Y=

Example 6

Solve the differential equation g—y =x-14+xy-v.
X

Solution : The given differential equationis 3—1 =X-1+Xy-Y.

:>d—y—(x -1)+y(x-1)

dy .
= YT =(x-1)dx [Variable separable form]|

Integrating both sides, we get

j-diy = J-(x— 1)dx

v+ 1

ﬁ-loge|y+1|=7’(2_x+c
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Example 7
¢ dy _ xcos“y
MY ix 1-x2
——  Separation
tan y X sin y -
caszy ™ 1-x2 dx cos 3y Y 1-x2 dx
[an cos Py dy = f T
ny y ay 1- x2
j , S -1 [(—2=x d
- —Siny cos = — | 7T = ax
— cos "%y -1 , C
- = T m(1-x2)+ 7

cos 2y = —-In(1-x2)+¢C

secly+n(1-x%)=C

(” Q(- “JS (\"“5\\‘}\ fﬁ_ - _Jﬂ( f‘,m‘“\o A
c\‘/\ -~ge ¢

oS

Ve ) ay . 2 wfﬁféx

4 m

X 1X
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X
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B
EE—— R,




Ordinary Differential Equations (ODEs)
Chapter 2

Differential equation of the form

ﬂ=f(ax+by+c)

dx

Substituteax + by + ¢ = v to reducing variable separable form.

Example 8

Solve the differential equation: (X+ y)2 d_y =1

dx

Solution: We have (x +y)2 :—: =1 ---(1)

dy dv dy _ dv _

= 1
dx dx — dx dx

Putting x+y=v and 1+

in{i), we get

dv Yo 5v2 9V 1.2
v e 1)—1:>v dx 1+v

2 1+v2-1
1+ v 14+v

:{1— 1 Jdv=dx
1+ v2

:I[l-%jdv=jdx:v—tan'1v=x+C
1+v

:>(x+y)-tan'1(x+y)=x+C :>y-tan'1(x+y)=C
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Homogenous Differential Equations

Afunction f (x,y)is called a homogenous function of degree n if f (tx,ty) = "f (x.)

Examples:

2

g (x, y) = X< - Xy + y2 isa homogenous function of degree 2

Since g(tx, ty) =t?x? — (tx)(ty) + t?y? = t?(x? — xy + y?) = t?g(x,y)

Q(x,y) = x3sin (;) — /x% — 4xy is homogenous of degree 2

Method of Solution

dy _ f(x, y)

dx a(x, vy)

. dy dv ‘
= and =¥ = SV inthe equation.
(2) Substitute 'Y = VX I = VXS v
d

\Y
+ e F
\Y, X_dx =F(v)

(1) Write the differential equationin the form

(3) The equationreduces to the form

(4) Separatethe variablesof vand x.

(5) Integrate both sides to obtainthe solutionin terms
of vand x.

(6) Replacev by % to get the solution

Note: you could perform the same steps but with other assumption:

dx du
X=uy and — = U —
) I Ty ”
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Example 1

dy

Solve the differential equation x& =X+Y.

dy

Solution : The given differential equationis xd— =X+Y.
X

_,dy _Xx+y (D)
dx X

It is a homogeneousdifferential equation of degree 1.

dy dv

Putti = d LT =v+x— __{i et
utting y =vx and o =Vv+x (i), weg
V_'_xﬂ=x+vx

dx X

:>v+xj—v=1+v :>xd—v=1 = dv =

X dx
Integrating both sides, we get
J'dv=j%dx =V =loge | x|+C
Y

1dx

=~ =loge || +C [-y=vx] = y=xlogg | x|+Cx

Example 2
(x3+y2/xZT+y%)dx- (xy /a2 +y2)dy=0

—> No Separation

(t3x3+ £2 y?2 [t2 xZ + y2

t3 (x3 + y2/x2 + yz) dx - t3 (xy x2 + yz)dy:O

~~1d
— Homogenous DE of 3" order

dy x3 4+ y2 Y x2+ y?
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d d
Lt y=ur ad == utx—
’ dx dx
4yl ruteiVeieule? o S eutet e (1+u?)
Ut+x—= =
dx xPuvxt+utx 2w xI(14u?)
o rute T4y e (14u?)
k(1Y) oduy(+ud)
du 1+ ul/(1+u?) du 1+ u?(1+u?)
Utx—= - X—=
dx (14 u?) dx (14 u?)
du 1+ ulyV1+u? uy 1+ u?
X— = R
dx w1+ 1l uy 1+ u?
du 1+ i+ ul - uiVI+ul
Y — =
dx uvl+ u?
du 1 [ 1
X — = - uy 1+ u? du = f— dx
dx  y\1+ u? X

0o | =

jZ* u(1+u? )" du = Inx + InC

1 (14+u?2)ts e
= T = Inx + In

[ %(1+(%)2)1'5 = InCx ]
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Example 3

¥

10. (y*-xe v)dx - aydy=0
—  No Separation
ty
(t2y? = ti? e T )dx - thaydy =0
y
t2(yi-xte ¥ )dx - thaydy=0

— Homogenous DE of 2™ order

x
dy yi-xfe’s
dy Xy
dy du
Let y=ux and — = ut+x—
: dx T dx
. du  uixi-gxle® yi- g
utx— = =
dx ux? U
du ui- e U ui- e ¥ -yl
I— = ——— — li¥— =
dx U U u
du -—e7¥ -1
¥—= — ue¥ du= | — dx
dx u j J X

ue“—f&“du = =Inx +inC
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Exact Differential Equations & Intearating Factors
Exact and Integrating factor

M(x.y)dx @ N(x.y)dy =0

An equation 1s said to be solved using exact method only if:

oM
dy
M.

Steps to solve:

Let the solution of the differential equation, F,= C — F=C

Then :
F = [ M(x,y)dx
el +g(v)
9 _ N(x,y)
dy
__________ +g' () =
N(x,y)

Then find the equivalent of
g’ (v) m the right hand side
thus,

gw=[ g madv

F =/[ N(x,y)dy
S + g(x)
oF
- = M(x.y)

__________ +g'(x) =

M(x,y)

Then find the equivalent of
g’ (x) 1in the right hand side
thus,

gx)=[ g’ (x)dx
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Solve the differential equation (2xy — 3x?)dx + (x> — 2y)dy = 0,

Solution The given differential equation is exact because

M N _ 9

— [y =3 =20 =—=—[x2 - 2y].
dy H.v[q t] ' ax Hx[t ﬂ

The general solution, f(x. ¥) = C. is given by

flx.y) = J M(x.y)dx

- J{ny =3 dx=xYy — 23 + gly).

In Section 14.1, you determined g{y) by integrating N(x, y) with respect to y and
reconciling the two expressions for f(x.y). An alternative method is to partially
differentiate this version of f(x. y) with respect to y and compare the result with
N(x. y). In other words,

N(x. )

—

Hay) = aiv [Cy - +gly)] =2+ g’({) =¥l - 1;;.

gly)=-2

Thus, g'(y) = —2y, and it follows that g(y) = —y* + C,. Therefore,
fley) =xy - =y’ + ¢

and the general solution is x’y — x* — y* = C. Figure 15.1 shows the solution curves
that correspond to C = 1, 10, 100, and 1000, I
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Find the particular solution of
(cosx — xsinx + y’)dx + 2xydy =0

that satisfies the initial conditiony = 1 when x = .

Solution The differential equation is exact because

dy ax
i[cravs:r —xsinx + vz]l =2 = i [2xy].
dy ' ax

Because N(x, y) is simpler than M(x. y), it is better to begin by integrating Mx. y).

flx.y) = j Nix.y)dy = j 2xydy = xy* + glx)

Mix.y)

filxy) = %[x_v2 +elx)] =y + 2 = ;:05' ¥ —xsinx + _vzﬁ
i i

MY . I .
g'lx) = cosx — xsmx

Thus. g’(x) = cos x — x sin x and

g(x) = f (cos x — x sin x)dx

=xcosx + C)
which implies that f(x. ¥) = x¥* + x cos x + (. and the general solution is
x_vz + xcosx = C. General solution
Applying the given initial condition produces
m(1)2 + wcos m=C
which implies that C' = 0. Hence, the particular solution is
x_vz + xcosx = 0. Particular solution

The graph of the particular solution is shown in Figure 15.3. Notice that the graph
consists of two parts: the ovals are given by ¥ + cosx = 0. and the y-axis is given
by x = 0. I
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o e¥ (2x2y-xyi+ y)dx— e* (y—x)dy=0
———  No separation
—— No Homogenous
e (2x2y-xy2+y)dx + e (x—y)dy=0
M,=e*Q2x*-2xy+ 1) <«

— M, = N.— Exact

N, —e 4 2x2e* —2xye* «—I

F=/[N(x,y)dy = [e*(x—y)dy

2

F=xye* — yTexz + g(x)
aF
—= M(x,y)

ye X + 2x2ye* —xyZe* + g'(x) Eexz(szy—xy2+y)
gm»m =0 — g = [0dy=C

2 2 2
F=xye* — yTex =C
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(923’ - ycos(xy))dx+ (2xe - xcos(xy) + 2y)dy=0 , y(0)=2
—  No Separation

— No Homogenous
My=2e% = cos(xy)+ xysin(xy) , Ne=2e% = cos(xy)+ xysin (xy)
— Exact
F=C
=] (% = yeos(xy)) dx = xe® = sin(xy)+ g(y)
= =)

2~ xcos(xy) + 2y

: y’
cg(y =2y T oely) = Jayd =

5= xcos(xy) + g'(y) = 2xe

2
F=uxe - sin(xy)+ yT: C

By substitutmg y=2and x=0 —» (=2

2
xe® - sin(xy) + yTz 2
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Integrating Factor wu(x,v)

If M, # N, and there 1s a slight difference between them. you have to

drive an integrating factor using either of the following ways:

M, — N, Ny— M
If —Y——— = If —=X— ¥ —
N M
fix) only ffv) only
‘u!f’x) =g J-f(x) dx ‘u’f-‘;-) =g J-JF(:V) dy

Then multiply the original equation by u# getting a new equation in the
form of :
UM(x,v)de + uN(x,v)dy =0
OR
M (x,v)dc + N (x,v)dv =0

Then solve this new differential equation using the normal exact

method.
Note: To check on your solutions, you must find that:

ﬂirl-_l.- T = }“?x ’
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Examples:-

Solve the differential equation (¥? — x)dx + 2yvdy = 0.

Solution The given equation is not exact because J‘-af}:[.r. v) = 2y and NJ(x.y) = 0.
However, because

M/(x.y) — N4x.y) 2y — 0
Nix. v) 2y

it follows that e/ dx = gldr — ox j5 an integrating factor. Multiplying the given
differential equation by e* produces the exact differential equation

=1 = h(x)

(y2e* — xe¥)dx + 2ye’dy = 0

whose solution is obtained as follows.

flx.y) = f Nix. y)dy = f 2ye* dy = yle* + g(x)

Mix. v)
filxy) =y + g'(x) = yPer — xe*
t Yl
glx) = —xe™
Therefore, g'(x) = —xe* and g(x) = —xe* + e* + ;. which implies that

Sflx, y) = y?e¥ — xe*¥ + e + .

The general solution is 2 — xe* + e = C.ory? —x + 1 = Ce ™

(2y2x—yx?+ x)dy + (y—x)dx=0
——» No Separation
— No Homogenous
(y—x)dx + (2y2x—yx?+ x)dy =0

My = 1 X Ny=2y?2—2xy+1 ————» Not Exact
Find an integrating factor:
N,-M,  2y’-2xy+1—-1  2y?—2xy  2y(y—x) _
v = - = o = o =2y —> f(y) only

2

Therefore, the new equation will be:

e (y—x)dx+e? 2ylx—yx2+ x)dy =0
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(ye?" - xe? )dx+ (2yxe’ ~yxley + xe?" )y =0

P=(
2
o ot 7= 40
0F
e N(x,y)

x(ye}’2*2y+e}’2)— xzye"'2+g’(y) = Zyzxe"lz—yxze}'uxey
sgy) =0 = g(y) =

. . .'I ,
o V' tanxsinly = sin"x + cos”y
——  No separation

—— No Homogenous

ay ) .2 2
d_ fan x sm .?1»' = S§im°x t cos V
X : :

. 2 2 .
(sin“x + cosy)dx+(-tanxsin 2v ) dy =0

M, = -2cosysiny +—

=-s5in 2y — M,# N,—> Not Exact

;
N, = -secxsin2y «——-



Ordinary Differential Equations (ODEs)
Chapter 2

So try to find an integrating factor using either of the above cases:

M, — N, — sin 2y + sec ®x sin 2y _ —sinly+ sec?x sin 2y
N —tan x sin 2y —tan x sin 2y
sin2y (=1 + sec?x) (—1+ sec?x) tan?x .
— tan x sin 2y — tan x —tanx
Since that the result is function in x only, then
f : d f —sinx » 1
u —el —tanxdx — o) o5y — elncosx — sy

Therefore, the new equation will be:
cos x (sin’x + cos 21 )dx + cosx (-tanxsin 2y )dy =0
ol

. 2 . :
(cosxsin®x +cosxcos™yv)dx+ (-sinxsinly)dy =0

. 2 2 : :
(cosxsin“x +cosxcos™v)dx+(-2sinxsinycosy)dy =0

F=/[ N(x,y)dy = [(—2sinxsinycosy)dy
F = sinx cos?y + g(x)
JF

5c = M(x,y)
2 r . 2 2
cosxcosv +g(x) = cosxsin x +cosxcos’y

g'(x) = cosxsin’x — g(x) = [ cosxsin’x dx
_ sin®x
gx) = ——
sin’ x
F= sinx cos?y + T =

C
sin x
sin x cos?y + —3 = C
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Linear & and Bernoulli Differential Equations

To say that a 1% order differential equation can be solved using Linear Method, the
form of the equation must be either:

d d
wt POy =0 O0R o+ PG)x =Q)

Solving Criteria:

OR
dy _ dx _
v P(x)y =Q(x) a+ P(y)x =Q()
Let Let
w(x)= elpax w(y)= elpOay
and the solution will be and the solution will be
p(x) »y= [px)* Q(x)dx p() xx= [u)* Q(y)dy

Integration Factor:-

There i1s a process by which most first-order linear
differential equations can be solved. This uses an
integration factor, denoted pu(x) (Greek letter “mu’”).

The differential equation must be in the form
Y+ )y = gx).

To find pu(x), we perform the following process (next
slide)
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Starting with y’' + f(x)y = g(x), multiply both sides by
mu(x):

)y +u)fxy = px)g(x)
The left side is a product-rule derivative of (u(x)y):
WYY = px)y’ + ' y.
Thus, we have u(x)y’ + ' (xX)y = pu()y’ + p(x)r(x)y.

This forces p'(x) = pu(x)f (x). (next
slide)

Now we find u(x). From the last slide, we had

w (x) = pue)f(x).

This is a separable differential equation... so separate:
du
—— = flx)dx.
() r

Integrating both sides, we have

fﬂa(lﬁ) - ff(x)dx'

After integration, we have

(next slide)

In u(x) = ff(x) dx + C.

Here, we only need one form of the antiderivative, so we
let C = 0. Taking base-e on both sides, we now know

r(x):

u(x) = el F)ax.
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Remark: you don’t need to do all those steps each
time. Just remember that if you have a differential
equation of the form y’' + f(x)y = g(x), then find

Example 1

Find the general solution of the following ODE:

ldy 2y
Oy g2 Xeosx
Solution
by -2 , 2
So o = —V=x"cosx isa linear ODE where P(x) = - and Q(x)
= x%cos x

e
The integrating factor u(x) = e/ PO = /5 & 2 p=2inx = 42

The solutionis u(x) vy = [ u(x)Q(x)dx
X2y = fcosxdx = sinx + C

y = x?sinx + x2C
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Example 2

A rock contains two radioactive isotopes, RA; and RA,, that belong to the
same radioactive series; that is, RA; decays into RA,, which then decays into
stable atoms. Assume that the rate at which RA; decays into RA, is
50e " kg/sec. Because the rate of decay of RA, is proportional to the mass
y(t) of RA, present, the rate of change in RA, is

d—f = Rate of concentration — Rate of decay

dy ¢
i 50e ky

Where k > 0 is the decay constant. If k = 2, ¥(0) = 40 kg then find the
mass y(t) of RA, for t > 0.

Solution

d
d—};+ 2y = 50e" is linear ODE where P(t) = 2and ((t) = 50¢™

The integraing factor u(t) = ¢/ PO = ¢/ 2t = g2
The solution is u(t) y = [ w(t)Q(¢)dt

-25
ety =50 Je'ﬂtdt = Te'at +C

25 g -
y=—e 84 g72(

Since y(0) =40 then € = %so the solution will be

-5 _gp , 185 g
=—¢ " t—¢
i g
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Example: Find the general solution of
v + %y = x.

(Note that f(x) = % and g(x) = x and that x
= 0)
SO ux) =ef (Fax e2nx(—= glnx? — 2

J 1D gxxddx+C
e (x)

Now, use the formula y =

Solve v’ + %y = x. From previous slide, we know that u(x) = x?2.

J (D gxddx+C

Now we use the formula y =

()
2 1 a
S x%xdx + C J x3dx + C X + C
Yy = 2 - 2 - 2
1
- 2 —2
= _—x2 4+ C .
1 x
Thus, y = ixz + Cx 2 is the general solution of

’ 2
5% +;y=x.

Check that y = j:xz + Cx % is the general solution of y’ + %y = x.
First, differentiate y:

_1 2Cx~
y'=5x x

3

Now insert y’ and y into the differential equation and simplify:

1 2/1

o -3 i -2\ —

(Zx 2Cx )+x(4x + Cx ) x
1 2Cx73 ) + ! +2Cx 3| =
2x x 2x x = x

1 1
(zx +§x) + (—2Cx 32 +2Cx3) =x

x+ 0= x.
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Bernoulli Differential equations

Exercise 1.

@ + P(x)y = Q(x)y™

dx
DIVIDE by y™: I+ Pyt = Q)
SET z = yl1—m: 1.e. ﬁ—i = (1 — n)y(l_n_l)%
1.c. (1in)§_§z = y%%
SUBSTITUTE e & + P(x)z = Q(x)
i.e. 4z | Pi(x)z = Q1(x) linear in =
where Pi(x) = (1 —n)P(x)

O (x) = (1 —n)Q(x) .
OR

a

Lt Py = Q) * y"
Divide both sides by w ™
Thus the equation will be:

d
¥ d—y + Plx)y' ™" = Q(x)
A

Then substitute:

Let e =17 ard

du - _ dwv
— = ({(1—n)yv " —=
oo ( } o oo
yor 2¥o_ t  du
- dac (1—m ) dax

So the equation will be :
1 due

(1—rm ) dx

Then multiply both sides byvw (1 —n )

+ P(x) u= Q(x)

o A—mPE) u= (1 —n)e(x)

Let wix)= e fi1—m) p(x) dax

and the solution will be
p(x)*=u= [pu(x)=(1—mn)Q@(x)dx
p(x) = ¥y = [ p(x) * (1 — n)Q(x)dx

T+ POYIxX = QL) * x7
Divide both sides by x ™
Thus the equation will be:
T+ POIxTTT =@
Then substitute:

x—l‘l

Let w=x1"7 and
du _ dax
={1l—mn) x ™ —
dy dy
o dEx 1 du
dy {1—mn) dwv

So the equation will be :

1 die

(i-m) dy + P(y) u= Q(»¥)
Then multiply both sides by { 1 —n )

o : : :

o T —mPO) = —me)

Let p(v) = eJ(l—miplydy

and the solution will be
p(¥) *u= fpu()*(1—n)Q(y)dy

p () =x"" = [ p() = (1 —n)Q(y)dy
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Example 2
. . . d dxr + 5
Find the general solution of 2%Y | tanz - y = @z +5)"
dx cos T
Solution
Divide by 2 to get standard form:
dy 1 T ¢ 5)2, 3
dx i 2 v g = 2cosx .
C e ) dy =
This is of the form p + P(x)y = Q(x)y
1
where Plz) = 5 tanz
4z + 5)2
Q(z) = : ) . )
2cosa
and n = 3
. 1d 1 Adr 4+ 5)2
DIVIDE by y™: 1.e. i ] 4+ Ztanx -y 2 = (4z + 5)
y3dxr 2 2cosw
. dz dy 2 dy
SET z =y " =y 2. je. — =29 32— _° "%
S— Y S ¥ y3 dx
1032:_{_1t (4z + 5)2
———+ —tanx -z = ———
2dx 2 2cosx
d Ar + 5)2
i_e_ _z_tanx.z:ﬂ

dx cos T
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: - _ . _singzx (=)
Integrating factor, IF = ol —tanzdr _ o —255 do [ el T dm]

— elncosz — oo

dz (4z+5)2
COST— —cosxtanxT - z=cosr——
£ CosT
. dz .
ie. cosr— —sinz-z = (4z+5)?
T
ile. cosx-z= f(4:1?—|— 5)%dx
: Ly 1 3
re. cosx-z=|—-)-5dx+5)"+C
4 3
Usezzﬁg: %”%:%(4.1?4—5}34—0
1 1 C
ie. —=-—(4 5)3 .
Ne 2 12(:053:( z+5)"+ COs T

Example
. . . dy — 2221
Find the general solution of - +vy =y 2" Inx

Solution

Standard form: % - ( %) y = (zln x)y?

ie. P(x)= %, Qz)=zlnz,n=2

DIVIDE by 3> FE+E)y=zhz
SET »=g~%: &=y 2=t
—g—;—&-(%):: rln a
1.e. % — % z=—xlnzx
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: ; — dz —lnzr Inz~ 1 1
Integrating factor: IF =e¢ /= = =e = —
T
%g—; - éz = —Inz

l.c. %z =—[lnade+C'
[Use integration by parts: fu%da: = uv — fv‘é—:dm,
: _ dv __
withu=Inz, §2=1]

1.e. iz:—[mlnx—fﬂ:-%dm]—l—c

Usezziz L —z01-lmz)+C.

Ty
Example dy
Find the general solution of ;- =Y cot x + y”cosecx
Solution
Standard form: dz — (cotz) - y = (cosec z) y°
DIVIDE by ?: ?15‘—;}2{ — (cotz) - y=2 = cosec z
! s dz __ —-3dy __ 1 dy
SET z=9y*: = =2y #——2'53'&3

1dz . .
=o'k —cotx -z = cosec x

l.e. é‘% +2cotx -z = -2 cosec x
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. . Ccos T 2 f’(::} d . .
Integrating factor: IF = 2/ S22 % = ¢ /7y dz = 2 In(sing) _ 2 50
+ 2 dz : . :
sin“ - = +2sinx -cosx -z = —28InxT
. d .9 _ .
Le. - [5111 T -z] = -2sInz

ie. zsinz=(-2)-(-cosz)+C
1 sin2:r
US@Z:?: —yr:2€05$+0

2 _ _sin’z

1L.e. Yy = 2cosz+C °

Example
A 30-volt battery is applied to R-L series circuit with R=50 ohm and
L=0.1 henry. Find the current i(t)if i(0) = 0. Determine the time at
which i = 0.25 i, .

Solution

d[(t)

L2 4 Ri(t) = E(D)

d;(t)

O 4 Rice) =
di(t) 3
dt o 1 S0 = 01

2O 4 500 i(e) = 300
dt

u = el s00at

E(t)

— 500t

3
eS00t j(¢) = f300 eS0% dt = - e +C
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3
i(t) = < + Ce—500¢
since i(0) = 0,then C = %
3

— 2 _ 2 _-500t
i(t) = 5 5 —e
Ati(t) = 0.25iss = 0.25 (2) = >then =2 (1 —e

Thent = 5.75 X 10™% sec

—SOOI)
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Equations with Linear Coefficients
Equations with linear coefficients that is, equations of the form

(13) (@yx + byy + ¢)dx + (a,x + byy + ¢,)dy =0 ,

where the a;’s, b;’s. and c¢;’s are constants. We leave it as an exercise to show that when
a,b, = a,b;, equation (13) can be put in the form dv/dx = Glax + b}-‘], which we solved via
the substitution z = ax + by.

Before considering the general case when a0, # a,b, let’s first look at the special situa-
tion when ¢; = ¢, = 0. Equation (13) then becomes

(arx + byy)dx + (axx + byy)dy = 0,
which can be rewritten in the form

dy  ax+ by oap+ by(y/x)
Ay ax+ by  ay+ by(v/x)

This equation is homogeneous, so we can solve it using the method discussed earlier in this
section.
The above discussion suggests the following procedure for solving (13). If a;b, # asb,
then we seek a translation of axes of the form
x=u+h and y=v+k,

where /i and k arc constants, that will change ax + by + ¢; into aqqu + byv and change
a»x + byv + o5 into a,u + brv. Some elementary algebra shows that such a transformation
exists if the system of equations

ah +bk+c¢, =0,

(4) ah + bk + ¢, =0

has a solution. This is ensured by the assumption a0, # a,b,, which is geometrically equiva-
lent to assuming that the two lines described by the system (14) intersect. Now if (4. k) satisfies
(14). then the substitutions x = u + hand y = v + k transform equation (13) into the homo-
geneous equation

dv a + bv  ay + by(v/u)

du asu + by a, + by(vfu)

(15)

which we know how to solve.
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Example
Solve  (=3x+y+06)dc+ (x+y+2)dv=0. (16)

Solution  Since ab, = (=3)(1) # (1)(1) = a,b,. we will use the translation of axes x=u + h,
y = v + k, where hand k satisfy the system

“h+k+6=0,
h+k+2=0.

Solving the above system for /i and k gives h = 1,k = —3. Hence, we let x =u + | and
y = v — 3. Because dy = dv and dx = du, substituting in equation (16) for x and y yields

(=3u+ v)du+ (u+v)dv=0

The last equation is homogeneous, so we let z = v/u. Then dv/du = z + u(dz/du), and, sub-
stituting for v/u, we obtain
dz 3-12

+us = .
¢ du 1+7

Separating variables gives
z+1
2+2%-3

d7 = — lr;!u.
u

%ln\z2 +22-3|=-Inful +C; .

from which it follows that
2+2-3=Cu"’.
When we substitute back in for z, #, and v, we find
(v/ul + 2(vfu) —3=Cu? |
v+ uv - 3ut=C,
(43P +2—1)(y+3)=-3x—-1F=C.

This last equation gives an implicit solution to (16).
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Riccati Differential Equation

Riccati Equation. An eguation of the form

dy TR R o
(18) Ix = f’{_-t){t“ -+ Q*..-t).?_r + R(x)

~— S g
) alled a gengrafized Riccaty equation.

If one s ut'on—sa}-f.]u x)—of (18] is known.
show thAt tHe substitution y = —I—___&v reduges
(18) to a linear equation in .

(b)] Given that u(x) = x is a solution to
C—
dwv v
- _ 3 N -
= r — . —+ = .
dx (5 x) X

~ find all the other solu-
tions to this equation.

Solution:
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Chapter Summary:

In this chapter we have discussed various types of first-order differential equations. The most
important were the separable, linear, and exact equations. Their principal features and method
of solution are outlined below.

Separable Equations: dy/dx = g(x)p(y). Separate the variables and integrate.

Linear Equations: dy/dr + P(x) = Q(x). The integrating factor p = exp[f P(x)a’x] reduces
the equation to d(uy)/dx = pQ, so that uy = fuQdx + C.

Exact Equations: dF(x,y) = 0. Solutions are givdn implicitly by F(x.y) = C. If aM/ay =
aN/ax, then M dx + N dy = 0 is exact and F is given by

F = {de%—g(}-'), where g'(}-‘)ZN—% (de
ay

or

F = [Ndy + h(x) ., where h'(x)=M— i [N.{{\-‘ .

When an equation is not separable, linear, or exact, it may be possible to find an integrat-
ing factor or perform a substitution that will enable us to solve the equation.

Special Integrating Factors: uMdx + uNdy = 0 is exact. If (aM/ay — aN/ax)/N depends
only on x, then

2(x) = exp [(HM{:’JJ; ; EJN[E}x)dx

is an integrating factor. If (aN/ax — aM/ay)/M depends only on v, then

u(y) = exp [ (;aNfax ;,IHM'M"Y)J\’

is an integrating factor.

Homogeneous Equations: dy/dx = G(y/x). Let v = y/x. Then dy/dx = v + x(dv/dx),
and the transformed equation in the variables v and x is separable.

Equations of the Form: dy/dx = G(ax + by). Letz = ax + by. Thendz/dx = a + b(dy/dx).
and the transformed equation in the variables z and x is separable.

1—n

Bernoulli Equations: dy/dx + P(x)y = Q(x)y". For n+0 or 1, let v=1y . Then
dv/dx = (1 — n)y "(dv/dx). and the transformed equation in the variables v and x is linear.

Linear Coefficients: (a;x + byy + ¢y)dx + (ax + by + c2)dy = 0.  For ab, # a)b,. let
x=u+ handy = v + k., where h and k satisfy

ah + bk +c¢ =0,

ah + b;k + ¢, =0 .
Then the transformed equation in the variables i and v is homogeneous.



Chapter 3

FIRST-ORDER DIFFERENTIAL EQUATIONS OF

HIGHER DEGREE



Ordinary Differential Equations (ODEs)
Chapter 3

CHAPTER 3

FIRST-ORDER DIFFERENTIAL EQUATIONS OF HIGHER DEGREE

3.1  Equations of the First-order and not of First Degree

3.2 irst-Order Equations of Higher Degree Solvable for Derivative 3_y =p
QE X

3.3  Equations Solvable for y

3.4  Equations Solvable for x
3.5 Equations of the First Degree in x and y - Lagrange and Clairant

3.6 Exercises

3.1 Equations of the first-Order and not of First Degree

In this Chapter we discuss briefly basic properties of differential equations of first-order
and higher degree. In general such equations may not have solutions. We confine
ourselves to those cases in which solutions exist.

The most general form of a differential equation of the first order and of higher degree

say of nth degree can be written as

n n-1 n-2
(g—ij +a1(x,y)(3—ij +a2(x,y)(g—ij + ..

d
...... +an_1(x,y)% +an(x,y)=0

or p"+a;p"tapi ... +a,.1 p+a,=0 (3.1)
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where p = j_y and ag, Ay, . ., Ap are functions of X and Y.
X

(3.1) can be written as
F(x,y,p)=0 (3.2)
3.2 First-Order Equations of Higher Degree Solvable for p
Let (3.2) can be solved for p and can be written as
(P-a:(xY)) (P-02(X.Y)) ... (P-an(x,y)) =0
Equating each factor to zero we get equations of the first order and first degree. One can
find solutions of these equations by the methods discussed in the previous chapter. Let
their solution be given as:
fix,y,c)=0, i=1,2,3 ......... n (3.3)

Therefore the general solution of (3.1) can be expressed in the form

f1(x,y,€) f2(x,y,C)......... fa(xy,c) =0 (3.4)

where c in any arbitrary constant.
It can be checked that the sets of solutions represented by (3.3) and (3.4) are identical

because the validity of (3.4) in equivalent to the validity of (3.3) for at least one i with a

suitable value of C, namely C=C;

Example 3. m + (X +y )% + xy) (3.5)

Solution: This is first-order differential equation of degree 2. Let p=

A L @k WY <9

—

ey PPt WV

dx
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Equation (3.5) can be written as

Xy p>+(X°+y%) p+xy=0 (3.6)

(xp+y)(yp+x)=0 _
- P P
This implies that X.Q \'\'-\l ‘3) w, ¥~§
Xp+y=0, yp+x=0 \\4 "\1 \* (3.7)
By solving equations in (3.7) we get L\&{ ’4,1

‘\j \* Xy=C; and X°+y°=C,, respectively

/a/

- *dy dy 1 .

‘1 Xx—2 +y =0 or —=+ =y =0,Integrating factor
dx dx x

Ildx logx
I(X) =e* =e°9%,

This gives

y.X = Jo.x dx +¢1 or Xy=cC;

dy 0

y—+X= or ydy+xdx=0
dx

1
By integration we get Eyz +%X2 =C

or X+y? = ¢, €, >0, —.Jco <x<.[co

The general solution can be written in the form

(X*+y’-C2) (Xy-C1)=0 (3.8)
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It can be seen that none of the nontrivial solutions belonging to Xy=C or X2+y2=cz Is
valid on the whole real line.
3.3 Equations Solvable for y

Let the differential equation given by (3.2) be solvable for y. Then y can be expressed

as a function x and p, that is,
y=f (x,p) (3.9)
Differentiating (3.9) with respect to x we get

dy _of ot dp .
dx ox op dx (3.10)

(3.10) is a first order differential equation of first degree in X and p. It may be solved by
the methods of Chapter 2. Let solution be expressed in the form

@(%p,c)=0 (3.11)
The solution of equation (3.9) is obtained by eliminating p between (3.9) and (3.11). If

elimination of p is not possible then (3.9) and (3.11) together may be considered

unaﬁons I\f the solutions of (3.9) with p as a parameter.
4

Example 3.2: Solve y?-1-p®=0

Solution: It is clear that the equation is solvable for y, that is

y =1+ p2 (3.12)

By differentiating (3.12) with respect to x we get
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dy _1__1 . dp o___P dp
dx 2 14 p2 dx /1+ p2 dx
or p 1—;$ =0 (3.13)
V1+ p2 X
d
(3.13) gives p=0 or 1-—P _SP_g
2 dx
1+p

By solving p=0 in (3.12) we get y=1

1 dp=O
1+p2 dx

By 1-—

we get a separable equation in variables p and x.

dp _ /1+p2

dx
By solving this we get
p=sinh (x+c) (3.14)
By eliminating p from (3.12) and (3.14) we obtain
y=cos h (x+c) (3.15)
(3.15) is a general solution.
Solution y=1 of the given equation is a singular solution as it cannot be obtained by

giving a particular value to c in (3.15).
3.4 Equations Solvable for x

Let equation (3.2) be solvable for x, that is
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x=f(y,p) (3.16)
Then as argued in the previous section for y we get a function ¥ such that
Y(y,p,c)=0 (3.17)
By eliminating p from (3.16) and (3.17) we get a general solution of (3.2). If elimination

of p with the help of (3.16) and (3.17) is cumbersome then these equations may be

considered parametric equations of the solutions of (3.16) with p as a parameter.

3
Example 3.3 Solve x| &Y. | —129Y _g_0
dx dx

Solution: Let p=g—i, then xp°-12p-8=0

It is solvable for x, that is,

12p+8 12 8
X = = +

p3 p2 p3

(3.18)

Differentiating (3.18) with respect to y, we get

d« __,12dp ,8dp 1 _ 24dp 24dp :{ 24 24}1"

dy ~p°dy ptdy p pdy p'dy 02 3
or y=+ﬁ+£+c (3.19)
P p2

(3.18) and (3.19) constitute parametric equations of solution of the given differential

equation.
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3.5 Equations of the First Degree in x and y — Lagrange’s

and Clairaut’s Equation.

Let Equation (3.2) be of the first degree in x and y, then

y=>\<3u(p)+cpz(p)

(3.20)

Equation (3.20) is known as Lagrange’s equation. If ¢1(p) = p then the equation

Yy =Xp + ¢2(p)

(3.21)

is known as Clairaut’s equation. By differentiating (3.20) with respect to X, we get

dy o3 4 ()8R
&—¢51(|0)+><¢1(|0)dX +¢2(p)dx

y p—@(p)=(x¢;<p)+¢;(p»j—§

From (3.22) we get

' d
(x+0,(P) > =0 for u(p)=p

This gives

dp '
—=0o0r Xt =0
~ ¢, (P)
@:0 gives p = c and
dx

by putting this value in (3.21) we get

y=CcX+@(C)

(3.22)
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This is a general solution of Clairaut’s equation. The elimination of p between

x+(p' (p) =0 and (3.21) gives a singular solution. If ¢i(p) # p for any p, then we
2

observe from (3.22) that % # 0 everywhere. Division by
X

N (%)

[p (Pl(p)]dx in (3.22) gives ap p—cpl(p)x P 0,0

which is a linear equation of first order in x and thus can be solved for x as a function of
p, which together with (3.20) will form a parametric representation of the general

solution of (3.20).

dy dy ) _dy
E le 3.4 Sol —-1 —X— ==
xample olve (dx j(y dxj dx

) dy 4
Solution: Let p = ax then, (p-1)(y-Xp)=p

This equation can be written as

p
= Xp+——
y p b1

Differentiating both sides with respect to x we get

d_p X—; =0
dx| " (p-1?

Thus either d—p:Oor X — 12:0
dx (p-1
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dp = O gives p=cC .
dx

Putting p=c in the equation we get

y =cx +L1 = (y-cx)(c-1)=c
C —

which is the required solution.

3.6 Exercises

Solve the following differential equations

3
1 [d_yj _dy 2x
dx dx

2. Y(y-2)p° - (y-2x+xy)p+x=0

2
3. _[d_y) +4y—x2 =0
dx

dy dy dy
=y =Y =L y2x|=0
4, (dx+y+Xj(XdX+y+Xj(dX+ Xj

2
dx
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CHAPTER ONE

Probability

1.1 Random experiments

A random experiment is an experiment whose outcomes cannot be predicted with
certainty. However, in most cases the collection of every possible outcome of a random
experiment can be listed.

1.2 Sample space

In statistics, the set of all possible outcomes of an experiment is called the sample space
of the experiment, because it usually consists of the things that can happen when one
takes a sample. Sample spaces are usually denoted by the letter S.

Each outcome in a sample space is called an element or a member of the sample space,
or simply a sample point.

Example 1.1

Experiment: Tossing a fair coin
Sample space, S={H, T}
Where: H= Head, T'= Tail

Example 1.2

Consider the experiment of rolling a six-sided dice and observing the number which
appears on the uppermost face of the dice. The result can be any of the numbers 1, 2, 3,
..., 6. This is a random experiment since the outcome is uncertain.

Example 1.3
A coin 1s tossed twice.

Sample space, S={HH, HT, TH, TT}

Example 1.4

Consider the experiment of rolling a red dice and a green dice and observing the number
which appears on the uppermost face of each dice. The sample space of the experiment
consists of the following array of 36 outcomes.

The first coordinate of each point is the number which appears on the red dice, while the

second coordinate is the number which appears on the green dice.

( , )
{1 1




Green die

1,1 1,2 1,3 1,4 1,5)
2, 1) 2,2 2,3) 2, 4) 2,5)

Red die

(6,'1) (6; 2) (6; 3) (6,l 4) (6,l 5)

(1, 6)
(2,06)

6,6)

Using the standard notation for sets, we can express this sample space as follows:

S={G,i:i=1,234,506]=12234,5,6}.

1.3 The Event

A subset of a sample space is called an event. The empty set, ¢, is a subset of S and §
is also a subset of S. ¢ and S are therefore events. We call ¢ the impossible event
and S the certain event. A subset of § containing one element of S is called a simple

event.

Example 1.5

Suppose that we toss a fair coin three times and record the outcomes.

Find:
1- Sample space.
2- The events A and B.
Where A: we observe two heads
B: we observe at least one tail.
C: we observe at least one head.

The sample space is:

S={HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
A={HHT, HTH, THH}

B={ HHT, HTH, THH, HTT, THT, TTH, TTT}
C={HHH, HHT, HTH, THH, HTT, THT, TTH }

Example 1.6

Suppose that we toss two dice.

—
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Find:
1- Sample space.

2- Describe the event A that the total numbers of points rolled with the pair of dice is
7.

The sample space is:
S={(1,1), (1,2), (1,3), (1,4), (1,5), (1,0)
2,1), (2,2), (2,3), (2,4), (2,5), (2,0)
(3,1), (3,2), (3,3), (3,4), (3,5), (3,0)
4,1), (4,2), (4,3), (4,4), (4,5), (4,0)
5,1), (5,2), (5,3), (5,4), (5,5), (5,0)
(631)3 (6’2)’ (6’3>’ (674)’ (635), (6’6>}

A:{(1>6)> (2>5>> (394)> (4>3>> (5>2>> (631)}

1.4 Operations on events

Since an event is a subset of a sample space, we can combine events to form new
events, using the various set operations. The sample space is considered as the
universal set. If 4 and B are two events defined on the same sample space, then:

(1) Union: AUB ={x :x €A or x sB}
A U B denotes the event “A or B or both”. Thus the event A UB occurs if
either .4 occurs or B occurs or both .4 and B occur.

(2) Intersection: A~B ={x:x €A and x B}
A N B denotes the event “both .4 and B”. Thus the event A N B occurs if both .4
and B occut.
(3) Complement: A° ={x :x €S but x A}
Acor A’ denotes the event which occurs if and only if A does not occur.
@ Difference: A—B ={x :x €A and x B}
5y Symmetric Difference: AAB =(A-B)u(B A)
) Distributive law:
- tAmn(BuC)=(ANB)UANC)
i- AuBNC)=(AuB)n(AuwC)
7 Demorgan's law:
- (AUB)  =A°B®
li- (ANB) =A° UB*®




Example 1.7

Let P be the event that an employee selected at random from an oil drilling company
smokes cigarettes. Let Q be the event that an employee selected drinks alcoholic
beverages. Then P U Q is the event that an employee selected either drinks or smokes, or
drinks and smokes. P N Q is the event that an employee selected drinks and smokes.

Example 1.8
fA={x:3<x<9}and B= {x:5x<12},then AUB = {x:3 <x <12},
and

ANB={x:5<x<09l

Sample spaces and events, particularly relationships among events, are often
depicted by means of Venn diagrams like those of Fig. 1.2. In each case, the
sample space is represented by a rectangle, whereas events are represented by
regions within the rectangle, usually by circles or parts of circles. The shaded
regions of the four diagrams of Fig. 1.2 represent event .4, the complement of
A, the union of events .4 and B, and the intersection of events .4 and B.

@ @ @)

A AU B ANB
A

!

Fig. 1.2: Venn diagrams showing the complement, union and intersection
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When we deal with three events, we
draw the circles as in Fig. 1.3. In this
diagram, the circles divide the sample
space into eight regions, numbered 1
through 8, and it is easy to determine
whether the

corresponding events are parts of A4 or and Cor C'.

Mutually exclusive (or disjoint) events
Any two events that cannot occur simultaneously, so that their intersection 1s
the impossible event, are said to be mutually exclusive (or disjoint). Thus

two events
A and B are mutually exclusive if and only

if AnB=¢. Ingeneral, a collection of events
A, Ao, ..., A, IS said to be
mutually exclusive if there is no
overlap among any of them. That
is, if NAj= (i# 1,j=1,2, n).
A g ],

Fig. 1.4 shows several mutually
exclusive events

Fig. 1.4: Mutually exclusive events

De Motgan’s Laws

Venn diagrams are often used to verify
relationships among sets, thus making it
unnecessary to give formal proofs based on
the algebra of sets. To illustrate, let us show
that (A UB)“=A°~ B, which expresses the

fact that the complement of the union of two
sets equals the intersection of their
complements. To begin, note that in Figures

15 and 16, A and B are events defined

on the same sample space S. In Fig. 1.5, Fig. 1.5: (A U B)® is shaded
the shaded area represents the event ( A U B)".




In Fig. 1.6, the area shaded vertically represents P SRR R O S

c . . HH A H RE B
the event A" while the area shaded horizontally 7"\
represents the event B®. It follows that the ‘
cross-shaded area represents the event A° N B \ ‘/
But the total shaded area in Fig. 1.5 is identical = \...

zto the cross-shaded area in Fig. 1.6. We can

. C Cc
therefore state the following theorem. Fig. 1.6. A"and B are shaded

(AUB) =A°“"B"

Similarly, we can use Venn diagrams to verify the following two theorems.

(ANB)X= A°UB®

If A, B and C are events defined on the same sample space, then

(AUBUC)Y=A° NB°NC’ (AnBNC)Y=A°UB‘UC’ and (A°UB“UC )°=AnBNC'.

The results given in 1, 2 and 3 are called de Morgan’s laws.

Other useful facts concerning operations on events

The following results can be verified by means of Venn diagrams.

1. Commutative law
AUB=BUA; ANnB=BnNA.

2. Associative
law
Au(BuUC)=(AuB)uC; An(BNnC)=(AnB)nC.
Because of these two statements, we can use the simpler notations
AuBuCandAnNBNC

without fear of ambiguity when referring to A U(B UC) and AN (B NC), respectively.

3. Distributive law
AuBNC)=(AuB)n(AUC);




4. Other useful results
(@ S°=¢, =S, (A°)=A
b) AUS =S, Ang=4¢

© AUA® =S, ANA° =¢

1.5 Counting sample points
In this section, we discuss some techniques for determining, without direct
enumeration, the number of possible outcomes of an experiment. Such
techniques are useful in finding probabilities of some complex events.

The multiplication principle

We begin with the following basic principle:

Theorem 1.1 (The multiplication theorem)

If an operation can be performed in n, ways and after it is performed in any one
of these ways, a second operation can be performed in n, ways and, after it is
performed in any one of these ways, a third operation can be performed in n3

ways, and so on for k operations, then the k operations can be performed together
innn,..n_ways.

Example 1. 10

How many lunches consisting of a soup, sandwich, dessert, and a drink are
possible if we can select 4 soups, 3 kinds of sandwiches, 5 desserts and 4
drinks?

Solution
Here, Ny =4, n, =3, n3=5 and ng = 4. Hence there are
NyXxNoxNgxNg=4x3x5x4=240

different ways to choose a lunch.

e
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Theorem 1.2

The number of combinations of n distinct objects taken r at a time is

(?) T (:!— Ny

Example 1.11

From 4 chemists and 3 physicists, find the number of committees that can be
formed consisting of 2 chemists and 1 physicist.

Solution

The number of ways of selecting 2 chemists from 4 is:

4 1
— 4. :6
[2j 2121

The number of ways of selecting 1 physicist from 3 is:
[3] _ 3 _ 4
1 1121

Using the multiplication theorem (see Theorem 1.4 on page 8) with n; = 6 and n,
= 3, it can be seen that we can form n, X n, = 6X3 = 18 committees with 2
chemists and 1 physicist.

1.3 The probability of an event

1.3.1 Introduction

It is frequently useful to quantity the likelihood, or chance, that an outcome of
a random experiment will occur. For example, we may hear a physician say
that a patient has 50-50 chance of surviving a certain operation. Another
physician may say that she is 95% certain that a patient has a particular disease.
A public health nurse may say that 80% of certain clients will break an
appointment. As these examples suggest, most people express probabilities in
terms of percentages. However, in dealing with probabilities mathematically, it

( o )
L 8




is convenient to express probabilities as fractions. Thus, we measure the
probability of the occurrence of some event by a number between zero and
one. The more likely the event, the closer the number is to one; and the more
unlikely the event, the closer the number is to zero.

1.3.2 Classical probability

The classical treatment of probability dates back to the 17th century and the
work of two mathematicians, Pascal and Fermat [see Todhunter (1931) and
David (1962)]. Much of this theory developed out of attempts to solve
problems related to games of chance, such as those involving the rolling of
dice [see Jettreys (1939), Ore (1960), and Keynes (1921)]. We can calculate
the probability of an event in the classical sense as follows.

Definition 1.1

If a trial of an experiment can result in m mutually exclusive and equally likely
outcomes, and if exactly h of these outcomes correspond to an event A, then the
probability of event A is given by

h number of ways that A can occur
P(A) = _ = .
m number of ways the sample space S can occur

Thus, if all the simple events in § are equally likely, then

n(4)
P(A) = m forall AcS

where 7(A) denotes the number of elements in 4. We emphasize that the above
expression for P(A) is applicable only when all the simple events in § are equally likely.

It is important to realize that here, we are using the same symbol A to represent two
different things. In the expression n(A), A represents a set (for example, the set of even
integers less than 7) whereas when we write P(A), A represents an event (for example,
the score on a die is even).




Example 1.12

A mixture of candies contains 6 mints, 4 toffees, and 3 chocolates. If a person
makes a random selection of one of these candies, find the probability of
getting

(a) 2 mint, (b) a toffee or a chocolate.

Solution
Let M, T, and C represent the events that the person selects, respectively, a

mint, toffee, or chocolate candy. The total number of candies is 13, all of
which are equally likely to be selected.

(a) Since 6 of the 13 candies are mints,

P(M) = &.
b P(TUC)= nTul _7
n(s) 13

Example 1.13

The following table shows 100 patients classified according to blood group and

gender.
Blood group
A ‘ B O
Male 30 20 17
Female 15 10 8

If a patient is selected at random from this group, find the probability that the
patient selected:

(a) is a male and has blood group B, (b) is a female and has blood group A.

Solution

There are 100 ways in which we can select a patient from the 100 patients. Since

the patient 1s selected at random, all the 100 ways of selecting a patient are equally
likely.

10
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@ There are 20 males with blood group B. Therefore the probability that the

patient selected is a male and has a blood group B is %20.2

® There are 15 females with blood group 4. Therefore the probability that

the patient selected is a female and has blood group A is 11750 =0.15

One advantage of the classical definition of probability is that it does not require
experimentation. Furthermore, if the outcomes are truely equally likely, then the
probability assigned to an event is not an approximation. It is an accurate
description of the frequency with which the event will occur.

1.3.1 Relative frequency probability

The relative frequency approach was developed by Fisher (1921) and Von
Mises (1941), and depends on the repeatability of some process and the ability
to count the number of repetitions, as well as the number of times that some
event of interest occurs. In this context, we may define the probability of
observing some characteristic, A, of an event as follows:

Definition 1.2

If some process is repeated a large number of times n, and if some resulting event
with the characteristic A occurs m times, the relative frequency of occ?rrence of
A, mn, will be approximately equal to the probability of A. Thus,

P(A) = lim XA
n—>o p

11
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The disadvantage in this approach is that the experiment must be repeatable.
Remember that any probability obtained this way is an approximation. It is a
value based on 7 trials. Further testing might result in a different approximate
value.

Example 1.14

The following table gives the frequency distribution of the heights of 150
students. If a student is selected at random from this group, find the
probability that the student selected is taller than the modal height of the
students.

Height(cm) | 130 | 140 | 150 | 160 | 170 | 180 | 190
Frequency | 8 | 16 | 28 | 44 | 33 | 17 | 4

Solution
The modal height of the students is 160 cm. This is the height with the highest
trequency. The number of students who are taller than 160 cm is (33 + 17 + 4) =
54. An estimate of the required probability is the relative frequency

2% =0.36.

12
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1.3.2 Subjective probability

In the early 1950s, Savage (1972) gave considerable impetus to what is called
subjective concept of probability. This view holds that probability measures
the confidence that a particular individual has in the truth of a particular
proposition. This concept does not depend on the repeatability of any process.
By applying this concept of probability, one can calculate the probability of an
event that can only

happen once, for example, the probability that a cure for HIV/AIDS will be
discovered within the next 8 years.

Although the subjective view of probability has enjoyed increased attention
over the years, it has not been fully accepted by statisticians who have
traditional orientations.

1.4 Some probability laws

In the last section, we considered how to interpret probabilities. In this
section, we consider some laws that govern their behaviour.

14.1 Axioms of probability

In 1933, the axiomatic approach to probability was formalized by the Russian
mathematician A. N. Kolmogorov (1964). The basis of this approach is
embodied in three axioms from which a whole system of probability theory is
constructed through the use of mathematical logic. The three axioms are as
follows.

Axioms of probability
Let § be the sample space of an experiment and P be a set function which

assigns a number P(A) to every .4 < S. Then the function P(A) is said to be a
probability function if it satistfies the following three axioms:

Axiom1:  P(§) = 1.

Axiom 2: 0 < P(A) <1 for every event A.

Axiom 3: If A and B are mutually exclusive
events, then: P(AUB)=P(A)+P(B).

13
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Theorem 1.3

If @ is a empty set (that is an impossible event), then P(¢) = 0.

Proof:
For any event A, ANg=¢, Then A and ¢ are two exclusive events,
and Aug=A,

P(AU¢):P(A), by axiom 3, we get

P(AUg)=P(A)=P(A)+P(4), then
P (¢)=0.

And the proof of the theorem is complete.
This theorem says that the probability of an impossible event is zero.

Theorem 1.4

If A be any event of the sample space S, then P (4 )=1-P(4).

Where A°denotes the complement of A with respect to S.

Proof:
Let A be any subset of S. Then S = A U A®. Further A and A°
are mutually exclusive. Hence, by Axiom 3, we get
1=P(S)=P (AU A"
=P (A) + P (A°).
Hence, we see that

This completes the proof

P(A)=1-P(A).

14
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D -

Theorem 1.5

If A and B are events of the sample space S, then: P(4 -B)=P(4)-P(4 N B).

Proof:
We have A=(A-B)U(ANB)
Where (A-B), (AnB) are exclusive events, (A-B)n(ANB)=4¢.

P(A)=P((A-B)U(ANB))=P(A-B)+P(ANB),
~P(A-B)=P(A)-P(A NB).

S

D

Theorem 1.6

If A and B are events of the sample space S, then: P(AUB) =P (A) + P B) - P (AN B).

Proof: S
It 1s easy to see that

AUB =AU(B -A)

We have A, (B -A) are exclusive events

AN(B-A)=4,

15
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Applying Axiom 3, we obtain

P(AUB)=p[AU(B-A)]=p(A)+p(B-A)
From Theorem 1.5
p(B-A)=p(B)-p(ANB)

We get:

p(AUB)=p(A)+p(B)-p(ANB)

Corollary 1.1

If the events A and B are mutually exclusive, then A N B = ¢ and so by Theorem
1.8, P(A n B) =0. Theorem 1.10 then becomes

P(AUB) = P(A)+P(B).

Corollary 1.1 can be extended by mathematical induction to the following corollary.

Corollary 1.2

If the events A1, A2, ..., Ap are mutually exclusive, then;
P(AiUA2U... UAn)=P(A1) +P(A2)+...+P(An).

The following corollary gives an extension of Theorem 1.10 to 3 events.

Corollary 1.3

If A, B, and C are three events defined on the same sample space, then;
P(AUBUC)=P(A)+P(B)+P(C)-P(ANB)

-P(ANnC) -P(BNC) +P(AnBNC).

16
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Example 1.15
The probability that Sara passes Mathematics is % , and the probability that she passes

English 1s g :
If the probability that she passes both courses is % , what is the probability that she

passes at least one of the two courses?

Solution

Let M denote the event “Sara passes Mathematics” and E the event “Sara passes
English”. We wish to find P(M U E). By the addition rule of probability, (see Theorem
1.10 on page 17),

P(M UE)=P(M)+P(E)-P(M nE)
4 1 31

2
=—+ =—.
3 9 4 36

Example 1.16
Refer to Example 1.20 on page 14. If a patient is selected at random from the
100 patients, find the probability that the patient selected:
(@ Is a male or has blood group A,
() Does not have blood group A,
(© 1is a female or does not have blood group B.

Solution
There are 100 ways in which we can select a patient from the 100 patients. Since the
patient is selected at random, all the 100 ways of selecting a patient are equally likely.

Let M denote the event “a patient is a male” and A the event “a patient has blood group
A”. We
wish to find P(M U A). By the addition rule of probability,

'
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(a) Let M denote the event “a patient 15 a male” and 4 the event “a patient has blood group 4", We
wish to find P(M L A). By the addition rule of probability,
P(Mud) = P(M) + P(4) - P(Mn4)
_ n(M) s n(d)  n(Mn4d)

100 100 100

- 60 45 30 _ 8 _
100 * 00 100 100 082
(b) We wish to find P(4'). By Theorem 1.9,

T R T N Y.
P4) = 1-P4) =1 100_1 100—0.53.

(c) Let F denote the event “a patient selected 1s a female” and B the event “a patient selected has blood

group B”. We wish to find P(FuUB). By the addition rule of probability,

P(Fk_.JB") - P(F) + P(B') _ P(Fr'wB")
= P(F) + {I-P(B)} - P(FNB
- 33 130 23 0
} m+(1—m)—m— -5 = 08,

Example 1.17
Of 200 students in a certain Senior High School, 60 study Mathematics, 40
study Biology, 30 study Chemistry, 10 study Mathematics and Biology, 5 study
Mathematics and Chemistry, 3 study Biology and Chemistry and 1 studies the
three subjects. If a student is selected at random from this group, find the
probability that the student selected studies at least one of the three subjects.

Solution
Let § = {the 200 students}, M = {those who study Mathematics}, B = {those
who study Biology} and C = {those who study Chemistry}. Then, »(M) =

00, n(B) = 40, »(C) = 30, n(M n B) = 10, s(M "N C)=5nBNC) =3
and (M N B m C) = 1. We are required to calculate P(M U B U C). By

[ 18]



Corollary 1.3,

PMuBuUC) = P(M) + P(B) + P(C) - P(MnB)
~-P(MnC) - P(BNnC) + AM BN ()

_ 60 , 40 . 30 10 5 3 L _ 13
" 200 T 200 T 200 20 200 200 T30 2000

Example 1.18

If the probabilities are, respectively, 0.08, 0.14, 0.22, and 0.24 that a person
buying a new car will choose the colour green, white, red, or black, calculate
the probability that a given buyer will purchase a new car that comes in one of
these colouts.

Solution

Let G, W, R, and B be the events that a buyer selects, respectively, a green,
white, red or black car. Since the four colours are mutually exclusive, the

required probability is

P(GUW URUB) = P(G) + P(W) + P(R) + P(B)
= 008 +0.14+022+ 024 = 0.68.

19
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1.3.1 Two-set problems

If A and B are any two events defined on a S

sample space S, then we can draw Fig. 1.8. It A B
can be seen that S can be split into the following
four mutually exclusive events: A
ANnB,A°nB, AnB®and A° " B
Notice that:

A

A=(ANnB)YU(ANB)

ImB!
Since AnB° and ANB are mutuall -
exc|usive, a utuatly Flg 1.8; Two-set prObIemS
P(A) = P(ANB) £ P(ANB) oottt (1.4
Similarly,
P(B) = P(A*MB) + P ANB) ittt (1.5)
Moreover,

(ANB)YU(ANB)U(A'NB)U(A*nB)=S
and since the four events are mutually exclusive,

P(ANB®) + P(ANB) + P(A°B) + P(A° B =P(S) =1.

Example 1.19

The probability that a new airport will get prize for its design is 0.04, the probability that
it will get prize for the efficient use of materials is 0.2 and the probability that it will get
both prizes is 0.03. Find the probability that it will get:

(a) Atleast one of the two prizes,

(b) Only one of the two prizes,

(c) None of the two prizes.

Solution

Let D denote the event “the airport will get an award for its design”, and E the event
“the airport will get an award for the efficient use of materials”.

We are given that P(D) =0.04, P(E)=0.2 and S
P(DNE)=0.03. We can therefore draw D,
Fig. 1.9. Notice that, since P(D)=0.04, and
P(D A E) = 0.03, P(D ~ E%) = 0.04 — 0.03 = 0.01.
(a) We wish to find P(D U E). From Fig. 1.9,

>

P(DUE) =0.17 +0.03 + 0.01 = 0.21 ' ' 0.79

Alternatively, D' AE

P(D UE) =P(D)+P(E) - P(DnE) Fig. 1.9: A Venn diagram
=0.04 + 0.2 -0.03=0.21.
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e proba ty that it w t only one o e awards 15
b) The probability that it will get only f th ds i
P(D~E)+P(D°~E)=0.01+0.17=0.18.

(@ We wish to find P(D° ~ E*). From Fag. 1.9,
P(D°~ E°) = 0.79.
Alternatively, using Theorem 1.6, we obtain
P(D° ~E%) = 1- P[(D° ~ E)"]
=1- PDUE) =1- 021. (from part (a))

=0.79.
Example 1.20
The events 4, B and C have probabilities P(4)= i . P(B) 213 and P(O)= i Furthermore,
AnC=¢. BAC=¢and P(4nB)=;. Find:
(a) P[(4~B)°] (b) P(4 B, (© P[(4wB)°,
@ P(AB). ® () P(AUBUC).
Solution

(a) Applying Theorem 1.4, we obtan . s
P[(A~B)"] =1-P(AnB)=1-= ==,

6 6
(b) P(AnB°) =P(A)—P(4nB), (see Equation (1.4) on page 20)
1
—1_1 ==,
2 6 3

(c) Applying Theorem 1.6, we obtain
P[(AuB) ] =1-P(AuB)=1-{P(4A) + P(B) —P(AnB)}
- 1_(1+;_1‘)=1_z=1_
2 3 6 3 3
(d) P(A°"~B°) = P[(4w B)7], (see Theorem 1.1 on page 6)

= %_. (trom paxt (c)).

(e) Applying Corollary 1.3, we obtain
P(AUBuUC) = P(A)+P(B)+P(C)-P(AnB) -P(ANnC)-P(BNC)+P(ANnBNC).

o111 1
_+_ —_— o = - = —,
3ty s 0-0+0=0
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1.3 Conditional probability

A box contains 7 white balls and 7 red balls. All the balls are of the same size.
Without looking, a person takes a ball from the box. Without replacing the
ball in the box, he then takes a second ball. Let B denote the event “the first
ball drawn is white” and A the event “the second ball drawn is red”. For the
tirst draw, any of the (» + #) balls in the box is equally likely to be drawn,

while 7 of these are white. Therefore,
n
m+n
If the first ball drawn was white, then the probability that the second ball drawn 1s

red is

P(B) =

m

, since only 7 of the remaining (M + N —1) balls are red.
m+n—1

We introduce a new notation to describe this probability. We call it the conditional
probability of

event A given B. We denote  P(A| B). This is usually read as “the probability of A4, given B”.
it by in the above example, ~ Thus,

P(A|B)=—"

m+n-1"

We now give a formal definition of conditional probability.

Definition 1.3

If A and B are any two events defined on the same sample space S, the conditional probability
of A given B, is defined by

and if P(B) = 0, then P(A | B) is undefined.

P(ANB)

PAIB) =

B (=) T (1.6)

In particular, if 5 1s a tinite, equiprobable sample space (see page 3), then:

L :J?(Ar‘wB) :M(B) ad <o
P(AnB) 7;7(5‘) . P(B) (S’ and
p(A\B):{MﬁB)} /{M)} _UOB)
- n(S) n(S) n(B)

'
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Example 1.21

Consider the data given in Example 1.13. If a patient is chosen at random from the 100
patients, find the probability that the patient chosen has blood group A given that he is a

male.

Solution
Let M denote the event “the patient chosen is a male” and A the event “the patient

chosen has blood group A”. We wish to find P( A | M).

o

~ AnD 30/ 3
P(4 P(AnM) _ 30/100 _ 30

M') =

P(M) 67/100 67

Alternatively, since the sample space 1s finite and equiprobable,

Example 1.22

The probability that a regulatly scheduled flight departs on time is P(D) = 0.83; the
probability that it arrives on time is P(A) = 0.82; and the probability that it departs and
arrives on time is P(DN A) = 0.78.

Find the probability that a plane:
(a) arrives on time given that it departed on time,

(b)  departed on time given that it has arrived on time,

(c) arrives on time, given that it did not depart on time.

o
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Solution

(a) The probability that a plane arrives on tume given that st departed on time is

P(Dn4) 078
P(D) 083

(b) The probability that a plane departed on time given that it has arrived on time is

P(D|A) _ PDn4) 078 0.5
P(4) 0.82
(c) We wish to find P(_’A‘ D*). Now,
P(A4nD")  P(4)-P(A4nD)  082-0.78
P(D’) 1-P(D) 1-0.83

= 0.94.

P(4D) =

= 0.24.

P(4|D") =

The notion of conditional probabdity provides the capability of re-evaluating the idea of probabdity of

an event 11 the light of additional mformation, that 15, when it 1s known that another event has occurred.

The probability P (4‘ B ) 1s an updating of P(A) based on the knowledge that event B has occurred.

1.6 The multiplication rule

If we multiply each side of Equation (1.6) by P(B), we obtain the following
multiplication rule, which enables us to calculate the probability that two events will both
occur. If in an experiment, the events A and B can both occur, then

PANB) = PB)IP(AB) .t (1.8)

Since the events AN B and BN A atre equivalent, it follows from Equation (1.8) that we
can also write

PANB)= P(BN A)= PAP(B)..ureiiiiii e, (1.9)
In other words, it does not matter which event is referred to as A and which event is
referred to as B.

Example 1.23

Suppose that we have a fuse box containing 20 fuses, of which 5 are defective. If 2 fuses
are selected at random and removed from the box in succession without replacing the
first, what is the probability that both fuses are defective?

Solution
Let A denote the event that the first fuse is defective and B the event that the second
fuse is defective.

24
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We wish to find P(AN B). The probability of first removing a defective fuse is % . If the
first fuse is defective, then the probability of removing a second defective fuse from the

. .4 T
remaining 4 is . By the multiplication rule,

P(A~B) = P(A)P(B|A4) = (2—1)(%) = L

Example 1.24

Bag 1 contains 4 white balls and 3 green balls, and bag 2 contains 3 white balls and 5
green balls. A ball is drawn from bag 1 and placed unseen in bag 2. Find the probability
that a ball now drawn from bag 2 is

(a) green,

() (b) white.

Solution

Let Gy, Gy, Wy and W, represent, respectively, the events of drawing a green ball from
bag 1, a green ball from bag 2, a white ball from bag 1 and a white ball from bag 2.

(a) We wish to find P(G; ).
We can express Gy in the form G, = (G NG, )U (W NG,).

The events (G; NG, ) and (W; NG, ) are mutually exclusive and so

'
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P(GE) = P(GinG,y) + P G,)
= P(G))P(G,|Gy) + P(W)P(G,| ).

Using the tree diagram in Fig. 1.10, we obtain

piee) - (2)E) « (45 - 2

PO, ~ 1) =(2)(2)
Fig. 1.10: Tree diagram for Example 1.31

(b) We wsh to find P(IT5). We can express ; 1n the form 5 = (Gy N, ) U (1, n11;). The events
Gy NIy and Ty N1 are mutually exclusive and so

P(Ty) =P(GynT,) + Py nIT,)

:P(GI)P(% G]) + P(WI)P(WE‘WI)
3,3, 4,400
Ty T IRy T

The multiplication rule can be applied to two or more events. For three events 4, B and C the

multiplication rule takes the foﬂou-'ing form.

26
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Theorem 1.7

P(ANBNC)=P(A)P(B|A)P(C| AnB), where P(A) =0 and P(A N B) #0.

Proof

By the associative law,
ANnBnNC=(AnNB)n C. Therefore,
P(ANBAC) =P[(AnB)C]
=P(ANB)P(C/ANB)
= P(A) P(B|A) P(C|A n B).

Theorem 1.7 can be extended by mathematical induction to the following theorem.

Theorem 1.8

For any events 4, 4,, ..., 4, (n>2)
P(4 Ay oo 4,)) = P(4)P(4y| 4)P(A3| 4 N 4y). P(A, | 4~ 4y 4, ).

Example 1.25
A box contains 5 red, 4 white and 3 blue balls. If three balls are drawn successively
from the box, find the probability that they are drawn in the order red, white and
blue if each ball is not replaced.

Solution

Let R e the event “red on fiest deaw”, IV the event “wlite on second draw” and B the event “blue on

third draw”. We wish to find P(R A 7 nB). Siace thete ace 5 balls out of 12 balls, P(R)= If the

12
first ball drawn 15 sed, then these are 4 whute balls out of the 11 balls remaining 1 the box. Hence
P R)= 2 Tfthe fist bal s red and the second ball s white, then there are 3 blue balls out of the

1
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10 balls remaining i the box. It follows that P(B‘ Rnl)= % Hence by Theorem 1.11,

e o =)

2\11)\0) 22

1.4 Independent events

If the events .4 and B are independent, then the multiplication theorem becomes

P(A n B)=P(A) P(B). This result illustrates the following general result.

Two events with nonzero probabilities are independent if and only if, any
one of the following equivalent statements is true.

(@) P(A|B)=P(A), (b) P(B|A)=P(B), (c) P(AnB)=P(A)P(B).

Definition 1.4

Two events that are not independent are said to be dependent. Usually,
physical conditions under which an experiment is performed will enable us to
decide whether or not two or more events are independent. In particular, the

outcomes of unrelated parts of an experiment can be treated as independent.

Example 1.26
A small town has one fire engine and one ambulance available for
emergencies. The probability that a fire engine is available when needed is
0.96, and the probability that the ambulance is available when called 1s 0.90. In
the event of an injury resulting from a burning building, find the probability
that both the ambulance and the fire engine will be available.

Solution
Let A and B represent the respective events that the fire engine and the
ambulance are available. The two events are independent and so

N



P(A~B) = P(A)P(B) = (0.96)(0.90) = 0.864.
Example 1.27

A pai of fair dice 1s thrown twice. Find the probabulity of getting totals of 7 and 11.

Solution
Let 4, 4,, B, and B, be the respective events that a total of 7 occurs on the first throw, a total of 7

occurs on the second throw, a total of 11 occurs on the first throw and a total of 11 occurs on the

second throw. We are mnterested 1n the probabuity of the event (4 N B,)U (4, N B)). It s clear that the
events 4, 4, B and B, are mdependent. Moreover, 4 NB, and 4, B, are mutually exclusive

events. Hence,

P(4,nB))u(4,nB)]

P(4,B,) + P(4,nB)
P(4)P(B,) + P(4,)P(B,)

[ltd) + (I = &

Definition 1.6
The three events 4, 4), and 4; are mdependent if and only 1f:
P(4n4,)=P(4)P(4,). P(4n4)=P(4)P(4).

That 15, theee events 4, 4), and 4; are mdependent if and only if they are pairwise independent, and

P(4 N4, n4;)=P(4)P(4,)P(4). It can be proved that if the above equations are satistied, so is

any equation we obtain b}-’ replacing an event b}-’ its complement on hoth sides of one of the original

[ » )



Example 28:

If A and B are independent, Prove that:
1- A°and B are independent.
2- Aand B are independent.
3- A and B° are independent.

Solution:

A and B are independent:

P(AnB)=P(A).P(B)

P(A°nB°)=P(AUB) =1-P(AUB)
=1-P(A)-P(B)+P(ANB)
=1-P(A)-P(B)(1-P(A))

=(1-P(A))(1-P(B))

=P (A°).P(B°)

A‘and B are independent.

2-P(A°nB)=P(B-A)=P(B)-P(ANB)
=P(B)-P(A)P(B)
=P (B)(1-P(A))
=P(B)P(A°)

~.A° are B independent

3-P(AnB°)=P(A-B)=P(A)-P(ANB)
=P(A)-P(A).P(B)
~P(A)(1-P(B))
=P(A).P(B°)

~.A are B° independent

r—
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1.3 Bayes’ theorem

1.3.1 The total probability rule S

In Fig. 1.11, the events A, Ay, Az, Ay, Agare
mutually exclusive and § = AjU AU A3U Ay U A5
These events are said to form a partition of the
Aq
. . . Ay A
collection of mutually exclusive events whose union is 3

S. In general, the events Ay, Ay, ..., A,forma Fig. 1.11: A partition of a
sample space

sample space §. By a partition of §, we mean a

partition of the sample space S if
n

@ A#=0 (=120, O ANA =0 G#j6j=1,2..,1, (S=UA.
i=1

In Fig. 1.11, it can be seen that if B is an event defined on the sample space § such that P(B) > 0, then
B=(A1nB)u(AynB)u..U(Asn B).
Since (A; N B), (A, N B), ..., (As N B) are mutually exclusive events,
PB) =P(A1nB)+P(A,nB)+..+P(A5nB)
= P( A]_)P(B |A1) + P( A2 )P(B |A2) + ...+ P( A5) P(B/A5 )

The following theorem gives the general result.

Theorem 1.9

If A1, A2, ..., An form a partition of a sample space S, then for any event B
defined on S such that P(B) > 0,

P(B) =X P(A)PB A).
i=1

This result is called the total probability rule.

31

—~—
'



Example 1.29

In a certain assembly plant, three machines A, B, and C make 30%, 45% and 25%,
respectively, of the products. It is known from past experience that 2% of the products
made by machine A, 3% of the products made by machine B and 2% of the products
made by machine C ate defective. If a finished product is selected at random, what is the
probability that it is defective?

Solution
Let A; denote the event “the finished product was made by machine A”,

A, denote the event “the finished product was made by machine B”,
Az denote the event “the finished product was made by machine C”,
and let D denote the event “the finished product is defective”.

We wish to find P(D).

We are given that:

P(4)=03, P(4)=045, P(4,)=025. P(D|4)=002 P(D

3

4,)=003 and P(D|4,)=0.02.

4;, 4;and 4; torm a partition of the sample space. Hence,
P(D) = P(4)P(D|4)+P(4))P(D|4,)+P(4;)P(D|4;)

= 05x002 + 045X003 + 025%0.02
= 0.0245.

The probﬂbﬂjt;' that a finished produt:t selected at random s defectsve 15 0.0245.

1.9.2 Bayes’ theorem
Consider the following example.

Example 1.30

In Example 1.29, if a finished product is found to be defective, what 1s the probability
that it was made by machine A;?
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Solution
We wish to find P(4 ‘ D). By the multiplication rule,
A) (0.3)(0.02)

P(Al I"_‘\D) _ P(Al)P(D _ — 0245
P(D) P(D) 0.0245 o

P4

D) =
The probability that a defective tinished product was made by machine -4, 1s 0.245.

Example 1.37 was solved by using Bayes’ theorem. We now state the theorem.

Theorem 1.10 (Bayes’ theorem)

Let 4;. 4,. .... 4, be a collection of events which partition a sample space S. Let B be an
event defined on S such that P(B) # 0. Then for any of the events 4. (j=1.2,....n)
P(4,)P(B|4;)
P(4;|B)=—" ‘ I forj=1,2,....n.
R
> P(4;)P(B|4;)
i=1
Proof
By the definition of conditional probability,
P(4;nB
ol - 248
P(B)
Using Theorem 1.13 1n the denomunator, we obtamn
P(4;nB P(A4;)P(B|4;
P(AJ,-‘B):” (Ji' } _ ”(J)(|j}.
LP(4)P(Bl4) 1 P(4)PBI4)
1= i=]

which completes the proof.

Bayes’ theorem was named after the English philosopher and theologian, Reverend Thomas Bayes
(1702 — 1761). The theorem 1s applicable m situations where quantities of the form P(B |A!-} and P(4,)

are known and we wish to determine P(A]|B} The following example dlustrates an application of

B::lj,'f:s2 theorem.
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Example 1.31

A consulting firm rents cars from three agencies: 30% from agency A, 20% from agency
B and 50% from agency C. 15% of the cars from A, 10% of the cats from B and 6% of
the cars from C have bad tyres. If a car rented by the firm has bad tyres, find the
probability that it came from agency C.

Solution

Let A; denote the event “the car came from agency A”,
A, denote the event “the car came from agency B”,
A3 denote the event “the car came from agency C”,

and let T denote the event “a car rented by the firm has bad tyres”. We wish to find
P(A3 | T). We are
siven P(4)=03, P(4)=02, P(4;)=05, P(T|4)=0.15, P(T|4,)=0.1 and P(T|4;)=0.06.
4, 4and 4; are mutually exclusive and P(4)+P(4)+P(4)=1 and so 4y, 4yand 4; form a

partition of the sample space. Hence, by Bayes’ theorem,
P(4;)P (T‘Aﬂ
P(4)P(T|4)+ P(d)P(T|4y)+ P()P(T
0.5x0.06

0.3x0.15 + 02x0.1 + 0.5x0.06
0.3158.

P(4]T) =

4)

'
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1

Exercise 1

1. ULse[ Ve};ﬁ!dia!gréms to verify that:
@ AU(ANB)=A b)) (AnB)U(ANB)=A () AuBNC)=(AuUB)N(AUC).

2. A experiment involves tossing a red and a green dice, and recording the
numbers that come up
@ List the elements corresponding to the event, 4, that the sum is greater than
8.
) List the elements corresponding to the event, B, that a 2 occurs on either
dice.
(© List the elements corresponding to the event, C, that a number greater

than 4 comes up on the green die. '
@ List the elements corresponding to the following events

9 ANC, (i) AN B, (i) BN C.

3. Consider the experiment of rolling two dice.
@ Let F'= “the sum of the two numbers which appear on the dice is 8.
List the sample points in F.
) Let I = “the sum of the two numbers which appear on the dice is even”.
List the sample  points in .

© Let ] = “the number on the red dice is 3”. List the sample points in J.
d Let G={(1,1),(1,2), (2, 1)},
H={1,1),(1,2),,3),1,4), 1,5), 1, 06)}.

Are the events G and H mutually exclusive?
(e) List the sample points in G " H.

® Let .= {(2,2)}. Are the events G and L. mutually exclusive?

4. In how many ways can 3 of 20 laboratory assistants be chosen to assist with an
experiment?

5 Out of 6 mathematicians and 8 physicists, a committee consisting of 3
mathematicians and 4 physicists is to be formed. In how many ways can this be
done?

6. Let A and B be events with P( A) =0.25, P(B) = 0.40 and P(A N B) =0.15.
Find: (i) P(A‘nB<) (i) P(ANnB®), (i) P( A°n B).

7. Samples of a cast aluminum part are classified on the basis of surface finish
(in microinches) and length measurements. The results of 100 parts are
summarized below.
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length

excellent good

surface
finish

Let A denote the event that a sample has excellent surface finish, and let B
denote the event that a sample has excellent length.  Find

() P(A), (b) P(B).(9) P(A), (dP(ANB), (9 P(AUB).

8. In a space lot, the primary computer system is backed up by two secondary
systems. They operate independently of one another and each is 90%
reliable. Find the probability that all three systems will be operable at the
time of the launch.

9. Show thatif A, and A, are independent, then A; and AS, are also
independent.

10. Kofi feels that the probability that he will get an A in the first Physics test
is 0.5 and the probability that he will get A's in the first and second Physics
testsis 1/3 .

If Kofi is correct, what is the conditional probability that he will get an A in
the second test, given that he gets an A in the first test?

11. In rolling 2 balanced dice, if the sum of the two values is 7, what is the
probability that one of the values 1s 17

12 A random sample of 200 adults are classified below by sex and their level of
education attained.

Education Male Female
Elementary 38 45
High School 28 50
University 2 17

If a person is chosen at random from this group, find the probability that:
(a) the person is a male, given that the person has High School education,

(b) the person does not have a university degree, given that the person is a
temale.

13. In an experiment to study the relationship of hypertension and smoking habits,

[ )



14.

15.

16.

17.

the following data were collected for 180 individuals.

Non-smokers | Moderate smokers | Heavy smokers

Hypertension 21 36 30
No hypertension 48 26 19

If one of these individuals is selected at random, find the probability that the
person is

@ expetiencing hypertension, given that he/she is a heavy smoker;

) a non-smoker, given that he/she is experiencing no hypertension.

The probability that a married man watches a certain television show is 0.4
and the probability that a married woman watches the show is 0.5. The
probability that a man watches the show, given that his wife does is 0.7.

Find the probability that
@ a married couple watches the show;
b a wife watches the show given that her husband does;

(© atleast 1 person of a married couple will watch the show.

A town has 2 fire engines operating independently. The probability that a

specific engine is available when needed 1s 0.96.
@ What is the probability that neither is available when needed?
b What is the probability that exactly one fire engine is available when needed?

A factory employs three machine operators, George, Andrew and Eric, to
produce its brand of goods. George works 45% of the time, Andrew works
30% of the time and Eric works 25% of the time. Each operator is prone
to produce defective items. George produces defective items 2% of the
time, Andrew produces defective items 4% of the time while Eric produces
defective items 6% of the time. If a defective item is produced, what is the
probability that it was produced by Andrew?

In a certain assembly plant, three machines B1, B2 and B3, make 30%, 45%
and 25%, respectively, of the products. It is known from past experience

that 2%, 3%, and 2% of the products made by B1, B2 and B3, respectively,
are defective.
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18.

19.

20.

21.

(a) If a finished product is selected at random, what is the probability that it
is defective?

(b) If a finished product is found to be defective, what is the probability
that it was produced by B3?

A large industrial firm uses local hotels A, B and C to provide overnight
accommodation for its clients. From past experience, it is known that 20%
of the clients are assigned rooms at hotel A, 50% at hotel B, and 30% at
hotel C. If the plumbing is faulty in 5% of the rooms at hotel A, in 4% of
the rooms at hotel B, and in 8% of the rooms at hotel C, what is the
probability that:

(a) a client will be assigned a room with faulty plumbing?

(b) a person with a room having faulty plumbing was assigned

accommodation at hotel B?

Suppose that at a certain accounting office, 30%, 25% and 45% of the
statements are prepared by Mr. George, Mr. Charles and Mrs. Joyce,
respectively. These employees are very reliable. Nevertheless, they are in
error some of the time. Suppose that 0.01%, 0.005% and 0.003% of the
statements prepared by Mr. George, Mr. Charles and Mrs. Joyce,
respectively, are in error. If a statement from the accounting office is in

error, what is the probability that it was prepared (caused) by Mr. George?

A certain construction company buys 20%, 30%, and 50% of their nails
trom hardware suppliers A, B, and C, respectively. Suppose it is known that
0.05%, 0.02% and 0.01% of the nails from A, B, and C, respectively, are

defective.

(a) What percentage of the nails purchased by the construction company

are defective?

(b) If a nail purchased by the construction company is defective, what is the
probability that it came from the supplier C?
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CHAPTER TWO

Random Variables and Probability Distributions TI

2.1 The concept of a random variable

Results of random experiments are often summarized in terms of numerical
values. Consider, for example, the experiment of testing two electronic
components. When an electronic component is tested, it is either defective
or non-defective. The sample space of the experiment may therefore be

written as § = {NN, DN, ND, DD}, where N denotes non-defective and D
denotes defective.

Let X denote the number of electronic
components which are defective. One is
naturally interested in the possible values of
X. Can X take the value 3?2 What about the
value 1.5? The values X can take are 0, 1 and
2. Notice that X takes the value O at the
sample point NN and the value 1 at the
sample points DN and ND. What value does
X take at the sample point DD?

It can be seen that X assigns a unique real
number X(s) to each sample point s of § (see
Fig. 2.1). X is therefore a function with

domain § and co-domain C' = {0, 1, 2}. Such
a function is called a random variable.

Definition 2.1:

A random variable is a function that assigns a real number to each
element in the sample space of a random experiment.

( )|
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A random variable is denoted by an uppercase letter, such as X, and a
corresponding lowercase letter, such as x; is used to denote a possible value
of X. We refer to the set of possible values of a random variable X as the
range of X.

Example 2.1

Three balls are drawn in succession without replacement from a box
containing 5 white and 4 green balls. Let Y denote the number of white balls
selected. The possible outcomes and the values y of Y are:

outcome | GGG | GGW | GWG | WGG | GWW | WGW | WWG | WWW
y 0 1 1 1 2 2 2 3

where G denotes “green” and I denotes “white” and the z'th letter in a

triple, denotes the colour of the M ball drawn (z =1, 2, 3). For example,
GIWG means the first ball drawn is green, the second ball drawn is white and
the third ball drawn is green.

Example 2.2
A coin is tossed three times, X is the number of heads.
S={HHH, HTH, HHT, THH, HTT, THT, TTH, TTT}

X(HHH)=3, X(HTH)=2, ..., X(I'TT)=0

P(3) = B.(X=3) = B.(HHH) = %

P(2) = B.(X = 2) = B.(HTH,HHT, THH) = g
P(1) = B.(X = 1) = P.(HTT, THT, TTH) = g
P(0) = P.(X = 0) = R.(TTT) = %

[ )



X 0 1 2 3 Sum
P(X = X) 1 3 3 1
= = = = P(x)=1
8 8 8 8 2P )
1 , X =0,3
8
3
P(x)=<= X =1,2
(x) 5
0] ow

“

Definition 2.2  (Discrete random variable)

A random variable is discrete if it can assume a finite or a countably
infinite set of values.

Definition 2.3 (Continuous random variable)

If the range of a random variable X contains an interval (either finite or infinite)
of real numbers, then X is a continuous random variable.

In most practical problems, continuous random variables represent
measured data, such as heights, weights, temperatures, distances, or life
periods, whereas discrete random variables represent count data, such as the
number of defectives in a sample of # items or the number of road traffic

accidents in Accra in a week.

2.2 Discrete probability distributions

When dealing with a random variable, it is not enough just to determine what
values are possible. We also need to determine what is probable. Consider the
tollowing example.

'
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Example 2.4
Fifty taxi drivers were asked of the number of road traffic accidents they

have had in a year. The results are given in Table 2.1.

Table 2.1: Number of accidents per year of 50 taxi drivers

Number of accidents 0 1 2 3 4 5

Suppose we select a taxi driver from this group and X is the number of road
traffic accidents the person selected had in a year. What values can X take?
X can take the values 0, 1, 2, 4 and 5. What is the probability that X = 0?
Out of the 50 equally likely ways of selecting a taxi driver, there are 15 ways
in which the taxi driver selected had no accident in a year. Hence the

probability that X = 0 is

15 _ 0.30.
50

This is written as

P(X=0)=0.30
Similarly,

12
P(X =1) =5 =030

Table 2.2 gives the Possible values x;, of X and their probabilities. Table 2.2 is
called the probability distribution of X. Note that the values of X exhaust all possible
cases and hence the probabilities add up to 1.

Table 2.2: The probability distribution of X

x 0 1 2 3 4 5

Example 2.5
A shipment of 8 similar microcomputers to a retail outlet contains 3 that are
defective. If a school makes a random purchase of 2 of these computers,
tind the probability distribution of the number of defectives.

Solution
Let X be the number of defective computers purchased by the school. X can take the values 0,
1, and 2. Now,




s s e
P(XZUJ:@=£- P(X=1)=[‘1.)%):%. P(Xzz):%
(2) (2) (2]

The probability distribution of X 1s given in the following table.

Representation of the probability distribution of a discrete random variable
The probability distribution of a discrete random variable X can be represented by a
table, a formula or a graph.

Tabular form
For a random variable that can assume a small number of values, it is simplest to
present its probability distribution in the form of a table having two rows: the upper
row contains the possible values the random variable assumes and the lower row
contains the corresponding probabilities of the values (see Table 2.3).

Table 2.3: The probability distribution of X

x X1 Xo Xn
P(X=X) | p(x) | PO%) | -+ | P(X,)

Formula
Frequently, it is convenient to represent the probability distribution of a discrete random
variable by a formula. For example,

f(><)=%, x=1,2,...,7

defines a probability distribution of a discrete random variable.

The values of a discrete random variable are often called mass points; and f (Xj ) denotes the mass
associated with the mass point Xj. The function f(X)=P(X=X) is therefore called the probability

mass function of the random variable X. Other terms used are frequency function and probability

function. Also, the notation p(x) is sometimes used instead of f(X) for probability mass functions.
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Definition 2.4  Probability mass function

A function f (X) is the probability mass function of a discrete random variable X if
it has the following two properties:

@ p(X)=0forallx, (2) 2 p(x)=1.

all x

Graphical form P (¥
The probability distribution of a P (%) ‘ P ()
X3

‘ p(xy
X4 )(]5 :X

Fig. 2.2: Probability graph

discrete random wvariable can also

P
0f0)
be represented graphically, as 1 ‘
shown in Fig. 2.2. Such a graph is X5
X1

called a probability graph (see
Fig. 2.2).

The probability distribution of a discrete random variable can also be
represented by a probability histogram (see Fig. 2.3). Similar to the
probability graph, the height of each rectangle of a probability histogram is
equal to the probability that the random variable takes on the value which
corresponds to the mid-point of the base.

A

p(Xi)

N R 5 & % % X
Fig. 2.3: Probability histogram
Random variables are so important in random experiments that sometimes
we essentially ignore the original sample space of the experiment and focus
on the probability distribution of the random variable. In this manner, a

random variable can simplify the description and analysis of a random
experiment.
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Example 2.6
Determine whether each of the following can serve as a probability mass
function of a discrete random variable:
@ f0=20-2,  w=1234 B 90 =K+D w=0,1,23

L x=0,1,2,3,4.
©h) = L *®

Solution

(a) f)= i (1-2)=- i f (@) is negative and so f(X) cannot serve as a probability mass function

of a discrete random variable.

3
1
(b) g(x) =0 for all values of x, and D, 9(x) =TO (1+2+3+4)=1 g(X) is therefore the probability
x=0
mass function of a discrete random variable.

4 4
1
(@) () h(X) =0 for all values of xand . h(x) :_2(()0 +1+4+9 +16) = 1.5, > h(x)#1andso h(x)
x=0 x=0
cannot serve as a probability mass function of a discrete random variable.

Example 2.7

The following table gives the probability distribution of a random variable X.

@ Find the value of the constant .

® Represent the probability distribution by

@ a probability graph, (i) a probability histogram.

© Find @ P(X>1), () P(0<X<2), b0 P(Xx=2).
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Solution

3
(a) Ep(.r}zli%—r-l—%—é:l:bc:%.
x=0
(b) (1) Fig. 2.4 1s the required probability graph.
(1) Fig. 2.5 15 the required probabiity ustogram.
pl) (),
l- . —m —
7
1] 1
¥ 3
o I :
0 1 2 3 4 05 15 25 35 457
Fig. 2.4: Probability graph Fig. 2.5: Probability histogram
for Example 2.7 for Example 2.7

() () P(X>1)=1-PX<l)=1-PX=]) = 1-% - %

Alternatively,

P(X>1) = P(X=2) + P(X=3) + P(X=4) = ¢ + 3 + 1 = 7
@ PO<X<2)=PX=1=1
i) P(X22) = P(X=2) + P(X=3) + PX=4) = 1+ 1+ = 3
Alternatively,
P(X22) = 1-P(X<2) = 1-P(X=1) = 1-1 = 3
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2.3 Continuous probability distributions

In Section 2.2, we learnt that for a complete characterization of a discrete random
variable, it is necessary and sufficient to know the probability mass function of the
random variable. Corresponding to every continuous random variable X, there is a
function f, called the probability density function (p.d.f)) of X such that

) f(x)20, (b)jm f)de=1, (c}P(niXﬂb}:jb £(x)dr.

=0 a

For a complete characterization of a continuous random variable, it is necessary and
sufficient to know the p.d.f. of the random variable.

Geometrically, relation (c) means the
following: the probabiity that a continuous fx)A Pla=X<h)
random vanable X takes values in the interval
(a, b) 15 equal to the area of the region defined
by the p.d.f of X the straght lines x = g and

x = b, and the x-axs (see Fig. 2.6). >
a b X
A consequence of X bemng a continuous Fig. 2.6:  Probability as an area
random vazable 15 that for any value in the under a p.df.
range of X[ say x,
P(X =1)= J; fOdi=0 21

Thus a continuous random variable has a probability of zero of assuming
exactly any of its values. At first this may seem startling, but it becomes
more plausible when we consider an example. Consider a random variable
whose values are the heights of all people over twenty years of age. Between
any two values, say 162.99 and 163.01 centimetres, there are infinite number
of heights, one of which is 163 centimetres. The probability of selecting a
person at random who is exactly 163 centimetres tall and not one of the
infinitely large set of heights so close to 163 centimetres that you cannot

(o)



humanly measure the difference, is remote, and thus we assign a probability
of zero to the event.

As an immediate consequence of Equation (2.1), if X is a continuous random
variable, then for any numbers z and b, with a < J,
Pa= X = b)) = Pa=X<b = Pa<X=b=Pa<X<hbh..... 2.2)

That is, it does not matter whether we include an endpoint of the interval or
not. This is not true, though, when X is discrete.

Example 2.8
(a) Show that
f(x}:%xl' D<x<s,

0, elsewhere,

15 the p.d.f. of a continuous random vanable X

(b) Sketch the graph of f(x).

Solution

2) We have to show that f(x)20 for all x-and ) f(x)dr=1. Tt s clear that f(x)20 forall x
/ |

" ().

3

Moeores, | fdx = [ fla)dr + jj o + [

- -0

Ji[)dx + I;%xzdr ~ J*;de

0+ {%ﬂ; +0 = 1
JEA

Hence, f(x) 1s the p.d.f of a continuous

random variable.

b) Fig. 2.7 shows a sketch of the eraph of f(X).
) Tg grap

0 3 )1"
Fig. .7: Thep.df of X
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Example 2.9
Refer to Example 2.8. Find:

(@) P(X<2). () P(X>1). () PRSX<3)

Solution

2 -0 2
@ PX<2) = [ fdr = [ fx)de + [ ()

= J_ﬂm{]dx + Iﬂ?%xzdx
-0+ [L°] - &
) P = [ ) = J‘f flo + [

1
—
el
| =—=
P
=
=
_I_
 —
>
=




Example 2.10

A random vanable X has the p.d.f. given by
f(x)= c?x/;. D<x<l
0. elsewhere.

(a) Find the value of the constant .

(b) Caleulate P(X <).

Solution

(a) The value of ¢1s given by the equation
.0

1 = Ilf(ﬂdx = J_mf(x)dx + j[l:f(l’)dx y lf(I)dx
2'1
-0 | . ;
=J {}dr+Jc\/§dr+Jm(}dr=[}+H_ +ﬂ:%c
- : : 32
40
= ¢ = 13
3
Thus, f(x)= 2\[;- O<x<l
0. elsewhere.
.1 0 1
(b) P(X{%] = J_“mf[:;l:)dx :j_mf(l’)dx . Iﬂ4f(x)dx
1 3 %
- J*l{}dx + I;%J;dx =+ {ﬁ _ %
0

The following example dllustrates how conditional probability can be applied to random vamables.

'
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Example 2.11

A random variable X has p.d.f. given by

m):{ﬁ 0<x<10,

0. elsewhere,

Find: (3) P(X>8X>5). (b) P(X>7X<9).

Solution

B PX>8X>35) = P(X>8.X>5 _PX>8)
P(X>5  P(X>5)

[ 10 10
= ,\jﬂ ﬁ{l’l’)/(.l‘j ﬁ{ﬁ")

- 10
= [l [0, = 00-8)00-9) = &

b) P(X>7x<9) = PX>7.X<9)_ P(1<X<9)
P(X <9) P(X<9)

+9 AN/ '
_ J?%dx]/mﬂﬁdx)

- 9
= [l ], = o= = 4.

0
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2.4 The cumulative distribution function

There are many problems where we may wish to compute the probability that the observed value of a
random variable X will be less than or equal to some real number x. For example, what are the
chances that a certain candidate will get no more than 30% of the votes? What are the chances that the

prices of gold will remain at or below $800 per ounce? Writing F(X) =P(X <X) for every real
number x, we define  F (X) to be the cumulative distribution function of X, or more simply, the

distribution function of the random variable X.

2.4.1 The cumulative distribution function of a discrete random variable

Definition 2.5 (Cumulative distribution function)

The cumulative distribution function F (X) of a discrete random
variable X with probability mass function f (X) is defined by
FX)=P(X<x)= D f(x)

Xj <X
If X takes on only a finite number of values X1, X2, ..., Xn then the cumulative distribution function
of X is given by ,
0, —0 <X <N,
fx). X £X <.
fx)+ f(xp). X SX <1,

)+ )+t f5)=L 3, <x<en

.

Fig. 2.8 depicts the graph of F(X). It can be seen that F(X) is discontinuous at the points
X1, X2, «..y Xn. At these points, F(X) is continuous from the right but discontinuous from
the left. Because of the shape of its graph, the cumulative distribution function of a
discrete random variable is called a staircase function or a step function. Notice that

F(X) has a jump of height f (X; ) at the point X; and is constant in the interval (X;, Xj.1) .

'
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F(A z flx)=1

Fig. 2.8: A typical cumulative distribution function of a discrete random variable

| }
' X
1,

Properties of F{x)

The cumulative distribution function of a discrete random variable has the following properties:
(1) 0SF(x)<1 forallx.

(2) If x< y. then F(x) < F(y). This means that F 1s 2 non-decreasing function.

(3) lm F(x)=0 and lm F(x)=1.

X——o X—w

(4) Fis nght-continuous. Thatss, lm F(x)=F(a) for all points 4.

X—a+

Notice that F(x) 1s not continuous from the left, thatss, lim F(x)# F(a) for all pomts a. This 1s
X—>a-

because we have defined F(x) by F(x)=P(X <x). If Fx) 1s defined by F(x)=P(X <x). it will be

continuous from the left, but not from the nght.

Example 2.12
The following table gives the probability mass function of X. Find the
cumulative distribution function of X and sketch its graph.

x 0 1 2 3 4
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Solution
If x<0. F(x) = P(X<x) = 0.
If 0<x<l F(x) = f(0) = &.

IfF1<x<2 F(x) = f(0) + f) = & + 1 = 3.

If2<x<3, F(0) =f0) + fO + ) = 5+ 5+ 3 = 15
If3<x<4. FO) =fO +fO+fQ+fB=f+++3+1=2
IFx24, FO) = fO+ O+ fQ+f)+f@ =L + L+ 3+ 14 Lo
The cumulative distribution function of X 1s therefore given by
[0, x =0,
1
1—_6. 0=<x<l.
=, l=x< 2,
FO=11 5 s
ﬁ. AR .
15 - -
E. 3 B 4
1. x=4,
Fig. 2.9 shows the graph of F(x).
Fi:
()
14 * >
I ;
3 i
E — |
1 | |
2 :
1 .'_'
g |
|
: : : : }x
0 1 2 3 4

Fig. 2.9: The cumulative distribution function for Example 2.12

Notice that even if the random variable X can assume only integers, the cumulative

distribution function of X can be defined for non-integers. For example, in Example

5 11
212, FA5) ==, F(25) ==
To find the probability mass function, f (X), corresponding to a given cumulative
distribution function, F(X), we first find the points where F(X) is discontinuous. We
then find the magnitudes of the jumps at these points. If F(X) has a jump at the point X;

, then f (X;) is equal to the magnitude of this jump. Example 2.13 illustrates the
procedure.
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Example 2.13

Suppose the cumulative distribution function of X is

0. x<-2.
02, -2<x<0.

F=107  0<x<n.
L. 2<x.

Determune the probability mass function of X

Solution

F(x) 1s discontiuous at the pomts —2, 0 and 2. The jump at the pomnt 215 0.2 -0 = 0.2 and so
f(=2) = 02. The jump at the pomt 0 s 07-02 = 05, and so f(0)=0.5. Simdarly
f(2)=1-0.7=0.3. The following table gives the probabulity mass function of X

® ~2 0 2

2.4.2 The cumulative distribution function of a continuous random variable

As in the case of discrete random variables, we are often interested in the
probability that the value of a particular continuous random variable will be
less than or equal to a given number. Again, as in the case of discrete
random variables, the mathematical function used to designate a probability

of this type is called a cumulative distribution function. The formal
definition follows.

Definition 2.6 ~ (Cumulative distribution function)

Let X be a continuous random variable with probability density function /. The function

F(x)=P(X<x)= j:o f (t)dt for —oo< X < o0, is called the cumulative distribution function or

the distribution function of the random variable X.
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As an immediate consequence of Definition 2.6, we can write the following two

results
b a

Pla<X<b) = f@dt—[ f@)dt=F®) —F@ 2.3)

and f(x) = iF(x) ................................................................................................... (2.4)
dx
Example 2.14

A continuous random variable X has the p.d.f.

_ 1y, —l<x<2.
f(x)—{fb_

elsewhere.

(a) Find the distnbution function of X and sketch its graph.
(b) Find PO< X <1).

Solution
(a) If x=—L then

F(x) = J; f(t)dt = J’;udr = 0.
If -1=x=2, then

F@=]" fwdr = | odr+ [ Lrdr = 1] = L+

9
If x= 2. then
x -1 2 » X
F(x) = [ fdr = [_f@de + [ f@yde + [ foydr
-1 2 C
= 0dr + j 12dr + jlﬂa‘r F(x)
— -13 2 1 'y
1377 1
= 0+ [gf }_1+{]= 5@+ = 1. 0.8 -
Therefore, 0.6 -
[ 0. x<-1, 04
F(x) = {3(7+D).  -1=x<2 0.2 1
T T T T T X
11- X2 a0 1 F 3 %
Fig. 2.10 shows the graph of F(x). Notice Fig. 2.10: The distribution function
that F(x) is a continuous, non-decreasing for Example 2.14
function.

() PO<X<I) = FO) - F(0) = {@*+ 1) -L0+1 = L
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Example 2.15

Let X be a continuous random vatiable with cumulative distribution function given by

0. <
F(x) = %xz. D<x<2,
1, x =2

Find the p.d.f. of X.
Solution

By applying Equation (2.4) on page 51, we find that the p.d.f. of X is given by

_dFR)  Jgn 0<x<),

f(x)

dx 0. elsewhere.

Properties of H{x)

Let Fx) be the distubution function of a contiuous random vanable. F(x) has the following
propertes:

I F(=0) = lm F(x) =0, F(+0) = lim F(x) = L.

X - I

2. The function F(x) 15 the probabulity of an event, and so 0 SF(x) €1, —0<x<m,

3. F(x) 15 continmous everywhere.

d
4 aF (%) exsts at all points x:

5. F(x) 1s a non-decreasing function of x, that s, if X, £¥,, then F(x;) < F(x,).

'
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2.5 Expected Value of Random Variables

A random variable X is characterized by its probability density function, which
defines the relative likelihood of assuming one value over the others. In Chapter 3,
we have seen that given a probability density function f of a random variable X, one
can construct the distribution function F of it through summation or integration.
Conversely, the density function f(x) can be obtained as the marginal value or
derivative of I (x). The density function can be used to infer a number of
characteristics of the underlying random wvariable. The two most important
attributes are measures of location and dispersion. In this section, we treat the

measure of location and treat the other measure in the next section.
Definition 2.5.1 Let X be a random variable with space R, and probability density
function f(x). The mean p,, (E (X)) of the random variable X is defined as

Z z f(2) if X is discrete
fx = TERX

ffcx v f(x)dr  if X is continuous

if the right hand side exists.

The mean of a random variable is a composite of its values weighted by the
corresponding probabilities. The mean is a measure of central tendency: the value
that the random variable takes “on average.” The mean is also called the expected
value of the random variable X and is denoted by E(X). The symbol E is called the
expectation operator. The expected value of a random variable may or may not

exist.

Properties of Expected Values

1- E(c)=c

S eP(x)=c> P(x)=c

E ()=

[e 0]

jc.f (x )dx =C.Tf (x)dx =c

2- E(ax+b) =a Ex)+b
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i(ax +b).P(x)=aix.P(x)+ib.P(x)=aE(x)+b
E (ax +b) =
j(ax +b).f (x)dx =a. jx f (x)dx + jbf (x)dx =aE (x)+b

—o0

3- Yy =0(x)

S g (x)-P(x)

E(y)=E(@X))=1..
jg(x).f (x )dx

4- E(9,(x)+9,(X))=E(9,(xX))+E(g,(x))

E@+hx)" i( ja”'b E(x')

(a+bx)" :Zm a™i b x’

Example 2.16. If X is a uniform random variable on the interval (2,7), then

what is the mean of X?

The Density Function

0.3
s o E(X) = (2+7)/2
0.2}
0.15
0.1
0.05

0 2 4 6 =} 10 i
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Answer: The density function of X is

% if 2 «< @< T
Flx) =

] otherwise.

Thus the mean or the expected value of X is

. —E)= | f()dx

T

7
?5

2
2

In general, if X ~ UNIF (a. b), then E(X) = a+b

Example 2.17. If the probability density of X is given by :

4
f(x)={7(1+x?)’
0 ow

O0<x <1

1- Find the expected value of X
2- Find E(y) where y=(3+2x)

Solution:
E(x)z_fx.f (x )dx

T 4x _2F  2x
_'([ﬂ(1+x2)dx_7z-([(1+x2)dx

= Zn(1+x 2)|g:§(|n(z)—ln(1))

7w

—Z1n(2)

T
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2y =(3+2x)?
2 (2) .. . |
E(y)=E @B+2x)*= Z[jBZ'Z'E(x')

:[5)32 2°E(x°)+[ j 2'E (X )+[§j3° 2°E (x ?)

E(x)zilnz

E(xz)zsz.f (x )dx

t 4x? _ 4 1+ x 2 4 1
_07;(1+x ) -‘.(1+x ) ;-([1_1+x2

2 2 0 0} 2 1 1 1 2 (0] 2 2
E(y)=[oj3 2" E (x )+[1j3 2°E (x )+[2j3 2°E (X 9)

2 2 2
=[ jsz 2°+[ j31 o1 '”4+[ j3° 222 _q)
@) 1 7T 2 T
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Example 2.18. If the probability mass function of X is given by :

[2 J (10 j
3
P(x)=-" ) x =012
12
3
1- Find the expected value of this random variable X?

2- Find E(y) where y=(3+2x)’.

Solution:
[2j(lo 10!
O 3 3171 6
P O _— _— = — _— —
© 12 1221 11
3 3191

G COlE

22
3 j 31901
(2)E°)
2 1 10 1
P2 = 12 — 121 T 5o
[3 j 31901

E(x)=ZZ:x.P(x)

_ 0P (O + P @)+ 2.P(2)
o 1 11 1

22 22 22 2

[ o2 )



2-E(y) where y=(3+2x)°.

E(y)=E(3+2x)3=ZS:G3j 3T 2'EW(x")

i=0

= [zjeﬁ 2°E(x°)+[fj32 2lE(x1)+@j31 22E(x2)+@j3° 2°E (x?)

1

E(x°) =1 E®)=73,

E(xz)zzzlxz-F’(X)

—O0O.PO)+P @ +4.P (2)

o 1 13
= —— + 4. = -
22 22 22

E(x3)22x3.P(x)

— 0O.P(O) + P +8.P(2)

O 1 17
—— — 8_ — -
22 22 22

E(y)=E@+2x)*’=
_ [3)33 2°E(x°)+@j32 21E(x1)+@j31 22E(X2)+@j3° 2°E (x7)

=3° +3F 2E(x)+3% 22E(x?) + 2°E (x ®)
P A P A LY (1
2 22 22
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2.6 Variance of Random Variables

The spread of the distribution of a random variable X 1s its variance.

Definition 4.4. Let X be a random variable with mean £¢, . The variance of X,
denoted by V (X), is defined as

VX) = E[X~ 4 12

It is also denoted by o’ . 'The positive square root of the variance is called the

standard deviation of the random variable X. Like variance, the standard deviation
also measures the spread. The following theorem tells us how to compute the

variance in an alternative way.

Theorem 2.6.1. If X is a random variable with mean z¢, and variance o> then

X

ol =E(X?)—

Proof:
Vx)=E[X - ux]?
=E(X2) -2 pn,XEX) +u}
=EX2) —2ux E(X) + (ux)=
=EX2) —z2uxpux + ( ux )
= E(X2) — (ux)>.
Theorem 2.6.2.

X . . . 2
If X 1s a random variable with mean z¢, and variance o | then

V@X+b)=a2 Vv (X),

where a and b are arbitrary real constants.
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Proof:

V@aX +b) =E[(aX +Db) —pax+b]?
=E[aX +b-E(@aX +D)]?
=E[aX +b-aux+ -Db]?
=Ea2[X —ux]?

- a2E[X —px]°
= a? V(X).

Example 2.19. Let X have the density function

2. for 0<mx< ke
= =& =
flax) = {

() otherwise,

For what value of k is the variance of X equal to 2? Answer: The
expected value of X is

ok
E(X) = / x fx) dx
il

E{X'ﬁ:/ x? flx)dr

s
= [ 2 2% dlar
0 e

[ ]
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Hence, the variance is given by
V(X) = EX2) - (ux)*
=(2/49)k*-(4/9) k2

Since this variance is given to be 2, we get

L ke=o2
18

and this implies that k = +6. But k is given to be greater than o,
hence k must be equal to 6.

Example 2.20. If the probability density function of the random variable is

1—|z| for|z| <1
flz) =

0 otherwise,

then what is the variance of X?

Answer:
Since V (X) = E(X2) — 447, we need to find the first and

second moments of X. The first moment of X is given by

Ay = EX)

= f x f(x)dx
1
= / (1 — |=z|) dx
—1
0 1
=/ 3;[1—|—:1;)d:1;—|—/ (1l — x)dx
—1 0

0 1
= / (x + x2)dx + f (x — x2) dx
—1 0
1 1 1 1
3 2 2 3
0.
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The second moment E(X2) of X is given by

I
g
I

fx z? f(z)dx

22 (1 — |z|) dx

[y

1

1
w2(1+.1:)d.1:+f z? (1 — z)dx
1 0

1

=

(2% + 2%) dx + / (2 — %) d
1 0

e | =
+

Wl =

N

Il
O:_l»—lozln—l\’ |\f_—,\’

Thus, the variance of X is given by

V (x)=E(x?)—uf =2 —0=

oO|r

The Graph of the Function f(x) = 1-|x|

'
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Properties of the Variance

Let X be random variable and a and b two real numbers then

V (ax +b) =a*V (x)

Proof:

V (ax +b)=E (ax +b —E (ax +b))*=E (ax +b —E (ax)—b)?
—E(ax —aE (x))’=a’E(x —E (x))?

=a’Vv (x)

Theorem 2.6.3:

. . . 2
If X is random variable has mean £ and variance o ,then

y ==—£. E(y)=0V (y)=1
O

Proof:

E()=EC )= ZE(x — @) =—(E(X)-u)=0

X — 1 1 o
IU)Z?V (X —,U)Z?V (X)Z?Zl

V(y)=V(

Standard deviation:

o =.JV (X)

'
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Example 2.21 :

If the probability mass function of X is given by :

P(x)=X, x=12 34,56
(3]

1- Find the variance of X and the standard deviation of X?
2- Find the variance of Y where Y =5bx —3

Solution:
6
EX)=>xP(X)=2@+2+3+4+5+6) =227
x =1 6 6 2
2 o 2 1 o1
E(x®) =2 x*P(x)=2@1+4+9+16+25+36) = —
X =1

\4 (X)ZE(XZ)_(E(X))Z:91_49:35

6 4 12
35
=JV (X) =,]/—
o (x) 1>
35
V (y)=V (bx —3) =25V (x) = 25'[5]
Example 2.22 :

If the probability density function of X is given by :
- 8 3 —2X
f(x)=Zx"e™, X =0

1- Find the variance of X and the standard deviation of X?
2- Find the variance of Y where Y =5X —3

[ o)



Solution:

[n = (n —1)!=Tx n—la X dx
RN

E ) =[x f ()dx == [x % 2dx =2
0 0

1,,_24_,

12 12

V x)=Ex?)—(E())" =5-4=1

o =.JV (X =\/1=1

V (y)=V (bx —3)=25V (x)=25.(1)=25
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| Exercise 2 J

5 i

1. A discrete random variable X has a probability mass function given by:

f(x)= c(x+1l), x=0,1,2,3.

(a) Find the value of the constant C.

(b) Draw (1) a probability graph,

(ii) a probability histogram, to represent f (X).
(c) Find: (i) P(0 £ X< 2), (i) P(X >1).

2. Determine whether each of the following functions can serve as a probability mass
function of a discrete random variable:

@f(x)= (x-1), x=0,1,23.
(b) g(x) = X, X=1,2 3, 4.
(©) h(x) = x, X=-1,0,1, 2.

3. Let X be a random variable whose probability mass function is defined by the

values
1 2 4 3
t (=2) Zl—o,f(O) =10 , 4 =70 , £ (11) =10

Find:
() P22X <4, (b)PX>0), (o) PX £ 4).

4. A Check whether the following functions satisfy the conditions of a probability
mass function.

ORIOER X =-3,0,1, 4
OHOEES X=1,23,4
(© f(x) =1- x, x:O,%,z.
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) f(x)= (%)X, X=1,2,3,4, ...

5. Consider a throw of two fair dice. L.et X denote the sum of the numbers on the
two dice.

(a) Find the probability mass function of X.

(b)Find: () P(X = 7), (i) P(X > 8), (iii) P(3 < X <11).

6. The sample space of an experiment is {a, b, ¢, d, e, f }, and each outcome is equally
likely. A random variable X 1s defined as follows:

outcome a b C d e t

X 0 0 1.5 1.5 2 3

(a) Determine the probability distribution of X.
(b) Find: (i) P(X =1.5), (ii) P(0.5 < X < 2.7), (iii) P(X > 3), (iv) P(0 £ X < 2).

7. Determine the value of ¢ so that each of the following can serve as a probability
mass function of a discrete random wvariable.

(@) f (x) = c(> + 4), x=0,1,2,3.

> bl >

2\(3
(b)f(x)=c[xj[3_xj’ x=0,1,2

8. A discrete random variable X has the probability mass function given by

f x —1
a(lJ , x =12,3,...
3

0, elsewhere.

f(X) =+

(a) Find the value of a. (b) Find P(X = 3).

[ 2]



9. Show that the following functions are probability density functions for some value
of c and determine c.

ce ¥ X >0
a) f(x) = ’
@ 1) {O, elsewhere.
Cc X2, —1<x <10
(b) f(x) =
O, elsewhere.
c (1+2x), O<x <2
(c) f(x)=
0, elsewhere.
1
—e &, X >0
d)f(x)=412
0, elsewhere.
10. Suppose that in a certain region, the daily rainfall (in inches) is a continuous

random variable X with p.d.f. f (x) given by

3
= (2x —x ?), O<Xx <2

0, elsewhere.

Find the probability that on a given day in this region the rainfall is

(a) not more than 1 inch, (b) greater than 1.5 inches,
(c) equal to 1 inch, (d) less than 1 inch.
11. Let X be a continuous random variable with p.d.f.

'
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—4x , —05<x <0
f (X) =<4x, O<x <0.5
0, elsewhere.

(a) Sketch the graph of f (x).
(b) Find:
() PX£-0.3), (i) P(X£0.3), (iii) P(-0.2£ X £0.2).

12. The pressure (measured in kg/cm?2) at a certain valve is a random variable X
whose p.d.f. is

6
F(x) = E(Bx—xz), O<x <3

0O, elsewhere.

Find the probability that the pressure at this valve 1s
(2) less than 2 kg/cm2, (b) greater than 2 kg/cm2, (c) between 1.5 and 2.5 kg/cm?2.

13. Let X denote the length in minutes of a long-distance telephone
conversation. Assume that the p.d.f. of X is given by

X

f(X): %e_ﬁ, X >0
0, elsewhere.

(a) Verity that fis a p.d.f. of a continuous random variable.
(b) Find the probability that a randomly selected call will last:
(1) at most 7 minutes, (i1) at least 7 minutes, (i11) exactly 7 minutes.

14. A continuous random variable X has the p.d.f.
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2
f(x) =427
0, elsewhere.

(1+x), 2<Xx <5

Find: (2) P(X < 4), (b) P(3 < X < 4).

15. The proportion of people who respond to a certain mail-order solicitation is
a continuous random variable X with p.d.f.

2
f(x)={§<1+x)’ 2<x <5

0O, elsewhere.

(a) Find P(0 < X < 0.8).
(b) Find the probability that more than 0.25 but fewer than 0.5 of the people
contacted will respond to this type of solicitation.

16. A continuous random variable X that can assume values between x = 1 and x

= 3 has a p.d.f. given by

JOEE

(a) Show that the area under the curve is equal to 1.

() Find: (i) P2 < X < 2.5), (i) P(X £1.6).

17. Which of the following functions are probability density functions?

X, —05<x <0.5
f(x) =
(a) 0, elsewhere.

'
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1, —1<x <1
(b) 90) =12
0, elsewhere.
1
S—— O<x <1
(c) f(x) =< x
0, elsewhere.
%, O<x <1
h(x) =
(d) E 2<X <3
3
18. The random variable X has the p.d.f.
1
0, elsewhere.

Find:
(a) PX > 25| X >15), (b) P(X <20 | X >15),
() PX >15 | X < 22), (d) PX <13 | X <18).

19. Let X be a discrete random variable whose only possible values are 1, 2 and
5. Find the cumulative distribution function of X if the probability mass function

of X is defined by the following values:

f (1)=%,f (2):%, f (5):%.
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20.

Let X be a discrete random variable whose cumulative distribution function
1s

N

0, X < —3
l, —3<X <6
F(X):<i
— 6<x <10
2
|1 X =10.
(a) Find:

() P(X < 4), (i) P(-5< X < 4), i) P(X = 4).
(b) Find the probability mass function of X,

21. Let X be a discrete random variable with cumulative distribution function
(0, X <1
0.1, 1<x <3
F(x) =10.4 3<x <5
0.9 5<x <«<5.5
1, X =5.5.
(a) Find :

) P(X £3), (i) PX L4, (i) P(1.5 <X £5.2).
(b) Find the probability mass function of X.

22. Let X be a discrete random variable whose only possible values are =5, =1, 0,
and 7.

Find the cumulative distribution function of X if the probability mass function of
X is defined by the values :

f(=5) =03, f (1) = 0.1, £(0) = 0.2, and f (7) = 0.4.
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23. Let

0, X <0
F(x) =4 X7, 0<x <1
1, X =1

be the cumulative distribution function of the random variable X. Find:

() P(X £ -1), (b) P(X £ 0.5), (c) P(X > 0.4),
(d) P(0.2 < X £0.5), () P(X > 0.4 | X>0.2).

24, The weekly profit (in thousands) from a certain concession is a random
variable X whose distribution function is given by

O, x <O
F(X) =4 3x-3x% +x 2, 0<x <1
1, X=1

(a) Find the probability of a weekly profit of less than 2 000.00.
(b) Find the probability of a weekly profit of at least 500.00.

25. Suppose the cumulative distribution function of the random variable X is
O, X <2
F(x) =4 0.25%x+0.5, —2<Xx <2
1, X =2

(a) Find the p.d.f. of X.

(b) Calculate:
i) PX <1.8), (i) PX > —1.5), (i) PX <—2), (iv) PX>1 | X > 0.5).

26. A continuous random variable X has the p.d.f.
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e X =0
f(x) = ’
() {0

, X <0

where c is a constant.

(a) Find the value of c.

(b) Find the cumulative distribution function of X and sketch its graph.
(c) Find (i) PX > 8 | X > 3), (i) PX >1 X < 4).

27, The distribution function of X is given by:
(0, X <O
%, 0O<x <2
F(X) =41 .
X, 2<x <4
16
1, X =4

-

(a) Find the p.d.f. of X.
(b) Find (i) P(1£ X £ 3), (i) P(X < 3), (iii) PX >1| X > 2).

28. The shelf life, in days, for bottles of a certain prescribed medicine is a
random variable with p.d.f.

20000
f(x) =4 (x +100)*"

o, elsewhere

x=0

Find the probability that a bottle of this medicine will have a shelf life of
(a) at least 200 days, (b) between 80 and 120 days.
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29. A random variable X has distribution function given by

~

0, X <—1

i(x +1)?, —1<x <O
F(x) =+ 2 1
1—5(1—x)2, 0O<x <1

1, X =1

“

Find the p.d.f. of X.

30. A random variable X has the p.d.f. given by
1
£(x) = EX’ O=x =<2
0, elsewhere

(a) Find the cumulative distribution function of X and sketch its graph.
(b) Compute (i) P(X < 2), (i) PX £ 2 | 1£ X < 3).
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31. A discrete random variable X has probability mass function of the form

c(8—x), for x =0,1,2,3,4,5.
p(x) = i
0, otherwise

(a) Find the constantc.  (b) Find P (X > 2).
(c) Find the expected value E(X) for the random variable X.

32. A random variable X has a cumulative distribution function
%x O<x <1
F(x) = 1 3
X —— 1< X < —
2 2

(a) Graph F (x). (b) Graph {(x). (c) Find P (X = 0.5).
(d) Find P (X = 0.5). (e) Find P (X = 1.25). (f) Find P (X = 1.25).

33. Let X be a random variable with probability density function
1
—X, forx =1,2,3,4,5.
pP(x) =415
0, otherwise

(a) Find the expected value of X. (b) Find the variance of X.
(c) Find the expected value of 2X  (d) Find the variance of 2X + 3.
(e) Find the expected value of 3X — 5X° + 1.

34. 5. The measured radius of a circle, R, has probability density function
f(x):{6r(l—r), 0 < x _<1
0, otherwise

(a) Find the expected value of the radius.
(b) Find the variance of r.
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Chapter Three "

3.1 Special Probability Distribution

1- Binomial Distribution

Consider a fixed number n of mutually independent Bernoulli trails. Suppose
these trials have same probability of success, say p. A random variable X is
called a binomial random variable if it represents the total number of
successes in n independent Bernoulli trials.

Now we determine the probability mass function of a binomial random
variable. Recall that the probability mass function of X is defined as

p(x) =P (X =x).

Thus, to find the probability mass function of X we have to find the probability of x
successes in n independent trails.

If we have x successes in n trails, then the probability of each n-tuple with x successes and
n - x failures is

: n—x
pr(1—-p)t—
(1) . . .
However, there are ‘ ‘ tuples with x successes and n-x failures in n
LX)

trials.
Hence

P(X =x)= (:) pt(l—p)"*.

Therefore, the probability density function of X is

(n) B
P(x) = ‘ r‘ pr(1-p)t™*, x=0,1,2,..,1
Al

82

—~—
'



Definition 5.2. The random variable X is called the binomial

random variable with parameters p and n if its probability mass
function is ofthe form

(1)
P(x) = | . ‘ p*(1-p)"P™" x=0,1,2,...n
Y

where 0 < p < 1 is the probability of success.

We will denote a binomial random variable with parameters p and n
as X ~ BIN(n, p).

FDF of X~BIN{20, 0.7) FDF of X~BIN{20, 0.3)
0.3
b3
.25 -
1.1 »
L. .z .--
nasf s
- .
0 fix) * .
oL i)
L
n.n . 0.5 * .
-' . - L]
--8-00-00000 » - 8-0-4-0-888
[] a n i il * *I'I'- b in . 1% BN *

Example 3.1. Is the real valued function f(x) given by:

fﬁ"-l
P(x) = l ) | p*(1-p)"t™Y, x=0,1,2,..

where n and p are parameters, a probability mass function?
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Answer: To answer this question, we have to check that p(x) is

nonnegative And > p(x) is1.Itis easy to see that p(x) > o.
x=0

We show that sum is one.

i
! L1

n n (n) .

dp(x)=>| |p"(1-p)

x=0 x=0 \ X
=(p+l-p)=l

Hence p(x) is really a probability mass function.

Example 3.2.

On a five-question multiple-choice test there are five possible answers, of
which one is correct. If a student guesses randomly and independently, what
is the probability that she is correct only on two questions?

Answer:

Here the probability of success is p = 1/5, and thus
1-p=4/5.

There different ways she can be correct on two questions.

Therefore, the probability that she is correct on two questions is

o
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i

| ) p?(1 —p)?

1 2 4 3
D D

_ %40 _ (9048,

P(correct on two questions) :(

e

Example 3.3.

What is the probability of rolling two sixes and three nonsixes in 5
independent casts of a fair dice?

Answer:

Let the random variable X denote the number of sixes in 5 in- dependent casts
of a fair die. Then X is a binomial random variable with probability of success
p and n= 5. The probability of getting a sixis p = 1/6.

Hence

%

5
p(x=2=p(2)=

Al

Lo 50
(6) (6)
= 0.160751.

Example 3.4.

What is the probability of rolling at most two "three" in 5 independent casts
of a fair dice?

Answer:

Let the random variable X denote number of three in 5 independent casts of a
fair dice. Then X is a binomial random variable with probability of success p
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and n = 5. The probability of getting a three is p = 1/6 . Hence, the probability
of rolling at most two three is

P (X <2) = F (2) = P(0) +P(1) + P(2)

OO RO OO @
GIONGE

| . . . .
=3 (0.9421 + 0.9734) = 0.9577 (from binomial table)
FDF of X~BIN(5, 1/6)
0.5
048 .
0.3
0.2
!
ot s
.
& &
| | A i 4 i
Theorem 3.1.1.

If X is a binomial random variable with parameters p and n, then the mean, variance and
moment generating functions are respectively given by

ux =np

2

¢c- =np(1-p)

X

M (D) = [(1-p)+pe']”.
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Proof: First, we determine the moment generating function M(t) of
X and then we generate mean and variance from M(t).

M(t) = E (')

A n

— Z elT (T> JU.T.' I:J_ . lU)i-'.t—.?’:
z=0 "

S5 () e
=0 =

= (pe"+1—p)"

E(x)=> x.P(x)
n n
= E x.[ jpxq”", where q =1—p
X =0 X
n n! X — n—x
— p > X. P g

= XxXI(n—x)!

_ C (n _1)I X —1, N—X
_npz(x —1)|(n—x)'p .

where, v =X —1, m = (n —1).

=n p’g™ ™ =n
pyZ;‘)y'(m y)' . P
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E(Xx?)=> x2.P(x)

n N
= > xz.( jpxqr‘x, where q =1—p
X =0 X

:ixz n! pan—x
“~ x I(Nn —x)!

— S (n _1)! X —1,y N—X
=P 2 Xt —xy1 P @

“ — 1)1 i
=P i P

n—X

— o . (n _1)! x —1

=np+np2> (X —1). STy P a
— 2 _ N (n—2)! x —2
=np +np-(n 1));(X “>y1n —xy1 P @
where, v =X —2, m = (n — 2).

= np + nNp?(n —1)i m ! pYyqm™-Y

yoy I(m —y)!
—np +n(n —1p-*
V (X)=E X)) —(E(X))*
=nNnp +nNn(N —Dp* —n*p® =np —np~

—nNp@— p) = npq
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Example 3.5:
Afair coin is tossed 12 times:
Find the probability of getting five heads and seven tails.

Solution:

P(x)=@j p* q"

n =12, x =5

o-(2)2) ()
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2. Poisson Distribution

In this section, we define an important discrete distribution which is widely
used for modeling many real life situations. First, we define this distribution
and then we present some of its important properties.

Definition 3.2.
A random variable X is said to have a Poisson distribution if its probability
density function is given by

-4 ax
i x=0.12....o

P(x)=
x!

where 0 < A < @ is a parameter. We denote such a random variable

by X ~ POI(A).
FLF of X-FOTi2)
POF of X~POT20) 0.4
0.14 =
0.2 0.3
"
i 0o
[ .'-'. b
'] L *
0.0 . .,- B3
0. -I .,‘ o} " b (]
[ ™ .
-I-I-II-I-H"‘.. "'lllil-lnl- W e *
D I | n 40 2 e
1] 1 & E ]

The probability density function f is called the Poisson distribution
after Simeon D. Poisson (1781-1840).
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Example 3.6.

Is the real valued function defined by

-4 J_;.r
: x=012... .«

P(x)=5

x!
where 0 < A < @ is a parameter, a probability mass function?

Answer: It is easy to check p(x) = 0. We show that > p(x) is

x=0

equal to one.

o o E—J. PR iy il P
xX)= =e —=e e =1
; p( ; x! ; x!
Theorem 3.7.
If X ~ POI(V), then
EX) =X
VX) =2
M) = e+ (et=1)
Proof:

o e—/’l,/ftx—l oo e—/l//LX—l
— a3 S A a3 S A where y —x 1
A

'
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/’LXZ:;(X —1+1) < —D1

oo — A x —1 oo — A >x —1
asS- e 4 +AS (x —HE £
x—1 (x —1)! x —1 (x —D!

A+ AZ2D> < — 21
X =2 -

A+ A E , WwWhere y =x —2
vy =0 (y)!

A+ A=
(x)=E (x?*) —(E (x))*

(X)= A+ —A~°
= A

'
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We find the moment generating function of X.

M(1) = E(e¥)

Il
n:.
b
]
’T‘|
= e
Tt
H

I
ml
=
]
™
4
Fni
et
"1.| N

I
ﬂnl
Tt
(]
—
l'.n
-,
e
p—
H

=
T
— E—}n. EAB
E"}' (e"—1]
Thus,
M (t) = Aet e e 1),
andl
E(X)= M'(0) = A
Similarly,
M"(t) = Aeter ("1 4 (A Ef}g er (e =11
Hence
M7(0) = E(X?) = X% + )\,
Theretfore

V) =EX2) - (EX))*=r2+h-22=A

This completes the proof.
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Example 3.8.

A random variable X has a Poisson distribution with a mean of 3. What is the

probability that X is bounded by 1 and 3, that1s, P (1 = X = 3)?

Answer:
Ex)=3=~x
;x e—.-".
p(x)="2
X!
Hence
31 —3
plx) = E: x=012
Therefore

P(1=X=3)=p()+p(2)+p(3)

9 27

=3e 4 e —_—

2 i
=126 7%,
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Example 3.9.

The number of traffic accidents per week in a small city has a Poisson
distribution with mean equal to 3. What is the probability of exactly 2
accidents occur in 2 weeks?

Answer:

The mean traffic accident is 3. Thus, the mean accidents in two weeks are
A=(3)(2) =6.

Since
J;-I E—i
p(x)=
x!
We get
62 et _
p(2) = =18¢™°
bl ]
PDF of X-POIE)
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Example 3.10.

Let X have a Poisson distribution with parameter A= 1. What is the probability that
X >2 given that X <47

Answer:

. , Pc=X=
P(Xz2 | X<4)= %@54]4]'

4
PRSX <4 =)

Il
v
L[]+
e

And

P(X <)=L
{'_-'

Therefore, we have

P(Xz2 | X=4)=17/65.
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Example 3.11.

If the moment generating function of a random

variable X is M(t) = e4® ff‘t‘l), then what are the mean and variance
of X? What is the probability that X is between 3 and 6, that is P
(3 <X <6)?

Answer: Since the moment generating function of X is given by
M(t) = e4-6 (e'-1)

we conclude that X ~ POI(A) with A = 4.6. Thus, by Theorem 5.8,
we get

E(X) = 4.6 = V(X).

P(3<X<06)=p4)+p(5)
=F(5)-F(3)

= 0.686 - 0.326
= 0.36.
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3.2 SOME SPECIAL CONTINUOUS DISTRIBUTIONS

In this chapter, we study some well-known continuous probability density functions. We
want to study them because they arise in many applications. We begin with the simplest
probability density function.

1- An Exponential Distribution

Definition 3.2.1.

A continuous random variable is said to be an exponential random variable with
parameter 6 if its probability density function is of the form

% e~ % ifr>0

flx) =

-
e

otherwise.

where 0 > 0. If a random variable X has an exponential density
function with parameter 0, then we denote it by writing X ~ EXP (0).

Exponential Distributions

L
0.4 ﬂi EXP(2)

An exponential distribution is a special case of the gamma
distribution. If the parameter a = 1, then the gamma distribution
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reduces to the exponential distribution. Hence most of the information about an
exponential distribution can be obtained from the gamma distribution.

Example 3.12.

What is the cumulative density function of a random variable which has an exponential
distribution with variance 257

Answer:

Since an exponential distribution is a special case of the gamma distribution with o = 1,
from Theorem 6.3, we get V(X) = 6% But this is given to be 25. Thus, 6> = 25 or 0 = 5.
Hence, the probability density function of X is

s

Flr)= f(E) dt
0
r J. 3
= f —e 5 dt
o 92
1 ¢ 1T
= - l—:E_?
3] 1
=1—¢e%.
¥ CDF of X~EXP(5)
L
0.9
0n.e
Frz)
o.4
n.z
n “ [ R " n 1% 1d *
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2. Normal Distribution

Among continuous probability distributions, the normal distribution is very
well known since it arises in many applications. Normal distribution was
discovered by a French mathematician Abraham DeMoivre (1667-1754).
DeMoivre wrote two important books. One is called the Annuities Upon Lives,
the first book on actuarial sciences and the second book is called the Doctrine
of Chances, one of the early books on the probability theory. Pierre- Simon
Laplace (1749-1827) applied normal distribution to astronomy. Carl Friedrich
Gauss (1777-1855) used normal distribution in his studies of problems in
physics and astronomy. Adolphe Quetelet (1796-1874) demonstrated that
man’s physical traits (such as height, chest expansion, weight etc.) as well as
social traits follow normal distribution. The main importance of normal
distribution lies on the central limit theorem which says that the sample mean
has a normal distribution if the sample size is large.
Definition 6.7. A random variable X is said to have a normal distribution if its
probability density function is given by
flx) 1 o5 (%) X L Lo
o \_;'HE |

where —» < 1 < @ and 0 < 02 < « are arbitrary parameters. If X has
a normal distribution with parameters p and o2, then we write

X ~ N(u, 02).
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Example 3.13.

Is the real valued function defined by

:—u)f

|77 - Lrd

o
—
E=
™
I
I‘ B
-

a probability density function of some random variable X?

Answer:
To answer this question, we must check that f is nonnegative and it integrates to 1. The
nonnegative part 1s trivial since the exponential function 1s always positive. Hence using

property of the gamma function, we show that f integrates to 1 on R .

1 [ 1
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The following theorem tells us that the parameter p 1s the mean and the parameter 62 is the
variance of the normal distribution.

Theorem 3.2.1. If X ~ N(u, 02), then

E(X)=yu
Var(X) = o

O+ 27
2
2 2
_E{X H—O t} +,ut+0'2—
< 1 2 (o2
— e dX
c O+ 27
2 2
R
_‘[O 27 y
2
21
t bl
o
2
,ut+0'2t—
M, (t)=e
([ 102 ]



M, (t):(,u+0'2t)e 2,

M, (O):,u:E(X).

2 2
2 ,ut+02t— ,ut+02t—
2 2

+o0¢

M, (t):(,u+0'2t) e

M’ (O):,u2 +02,

E(x?)=M", (O):,u2+0'2.

V (x)=E(x?)~-(E(x))

=,uz+(72—,u2=(72.

Example 3.14.

If X is any random variable with mean p and variance 62 > 0, then what are

) i X —
the mean and variance of the random variable Y = - ~ ?

Answer:

The mean of the random variable Y is
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- X —
E(Y) = E(—“)
o)
1 s
= — F (X — )
-
]' & 3 F
= — (E(X) — p)
po
1 :
= — [ — )
o

_—
—
s

The variance of Y is given bv
r r ' Ea -'-Y — |‘.lll
Viar(Y ) = Var (—

7
1 . :
= Var (X — wu)

q
—

Hence, if we define a new random variable by taking a random variable and subtracting
its mean from it and then dividing the resulting by its standard deviation, then this new
random variable will have zero mean and unit variance.

Definition 3.2.2.

A normal random variable is said to be standard normal, if its mean is zero
and variance is one. We denote a standard normal random variable X by

X ~ N(o, 1).

The probability density function of standard normal distribution is the
following:

e 2 —o0 <X <o

f(x)zm




Example 3.15.
If X ~ N(o, 1), what is the probability of the random variable X less than or
equal to —1.72?
Answer:
P(X=-172)=1-P(X =172)
=1-0.9573 (from table)

Example 3.16.
It Z ~ N(0, 1), what is the value of the constant c such that P (|Z| = ¢) = 0.95?
Answer:
0.95=P(|Z] =¢)

=P(-c<Z <o)
=P(Z<c)-P(Z<-c)
=2P(Z<c)-1.

Hence

P (Z<c)=0.975,
and from this using the table we get
c =1.96.
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The following theorem is very important and allows us to find probabilities by using
the standard normal table.

Theorem 3.2.2.

If X ~ N(u, 62), then the random variable

g _X—H

~ N(o, 1).
O

Proof:
We will show that Z is standard normal by finding the probability density function of Z.
We compute the probability density of Z by cumulative distribution function method.

F(z)=P[Z <z
X—u
= r E ¥
. T
=P(X<az+pu)
RERT | )2
= / B At B
o =0 T \r"lf:-.'}J_
| - L
= — e 7 dw, where w =
Jo oV2T J
Hence
. 1 1,2
fl2) =F(2)= —¢e72°
fi
V2T

The following example illustrates how to use standard normal table to find probability
for normal random variables.
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Example 3.17.

If X ~ N(3, 16), then what is P (4 < X < 8)?

Answer:
. c oo 43 X -3 ,8—3)
PHEAE&J—P( T 271 %73
1 3
-r(3c253)
=P(Z<1.25)-P(Z < 0.25)
= 0.8944 - 0.5987
= 0.2957.
Example 3.18.

If X ~ N(25, 36), then what is the value of the constant ¢ such that
P (|X — 25| <¢c)=10.9544?

Answer:

0.9544 = P (| X — 25| < ¢

[
[
s
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Hence

P (g < %) = 0.9772

and from this, using the normal table, we get
c/b=2 or c=12.

Example 3.19.

a) What is the probability that Z for a standard normal probability distribution is
between -0.76 and 0.76 ?

b) What is the probability that Z for a standard normal probability distribution is
smaller than — 0.76 or larger than 0.76 ?
Solution:
The calculation of probability is as follows:
a) P(-0.76 <z<0.76) =P(z<0.76) - P(z <- 0.76)

=0.7764 — 0.2236

=0.5528

b) P(z < —0.76) U(z > 0.76) = P(z < —0.76) + (z > 0.76) =

= 0.2236 +(1-0.7664)=0.4472

Example 3.20

A city installs 2000 electric lamps for street lighting. These lamps have a
mean burning life of 1000 hours with a standard deviation of 200 hours. The
normal distribution is a close approximation to this case.

a) What is the probability that a lamp will fail in the first 700 burning hours?
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X~ 700—1000

. —
-,

T 6 200

From Table Al for 7, =—
Pr [ X <700] =Pr [Z < -1.50]

= ®O(-1.50)
= 0.0668

Then Pr [burning life < 700 hours] = 0.0668

or 0.067.

—-1.50

b) What is the probability that a lamp will fail
between 900 and 1300 burning hours?

-1 900-1000
R 200

=—0.50 =(-0.5)+(-0.00)

g -u 1300-1000
206 200

=+1.50 =(+1.5)+(0.00)

From Table Al, ®(z,) = ®(-0.50) = 0.3085
and (7)) = D(1.50) = 0.9332

Then Pr [900 hours < burning life < 1300 hours]

= (D(Zg) - (D(:1)

=0.9332 - 0.3085
= 0.6247 or 0.625.

—~—
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1.50 = (~1.5) + (=0.00).

Required
Area

700 1000 x hours
z, 0 z
Figure 7.7:

Probabilities for
Example 7.2(a)

X hours

900 1000 1300
z; 0 Z z

Figure 7.8:
Probabilities for
Example 7.2(b)
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c) How many lamps are expected to fail between 900 and 1300 burning
hours?

This is a continuation of part (b). The expected number of failures is given by
the total number of lamps multiplied by the probability of failure in that interval.
Then the expected number of failures = (2000) (0.6247) = 1249.4 or 1250
lamps. Because the burning life of each lamp is a random variable, the actual
number of failures between 900 and 1300 burning hours would be only
approximately 1250.

d) What is the probability that a lamp will burn for exactly 900 hours?

Since the burning life is a continuous random variable, the probability of a life
of exactly 900 burning hours (not 900.1 hours or 900.01 hours or 900.001
hours, etc.) is zero. Another way of looking at it is that there are an infinite
number of possible lifetimes between 899 and 901 hours, so the probability of
any one of them is one divided by infinity, so zero. We saw this before in
Example 6.2.

e) What is the probability that a lamp will burn between 899 hours and 901
hours before it fails?

Since this is an interval rather than a single exact value, the probability of
failure in this interval is not infinitesimal (although in this instance the
probability is small).

- 09 — Req'd
:lz.xl W _ 899 1000:_0‘505 e
0 200 .
901 — 1 :
9011000 _ o :
) 200 /1 \

899 9011000 X hours

We could apply linear interpolation between the values n oz 0z
given in Table Al. However, considering that in practice Figure 7.9:
the parameters are not known exactly and the real distribu- Probabilities for
tion may not be exactly a normal distribution, the extra Example 7.2(e)

precision is not worthwhile.
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Pr [899 hours < burning life < 901 hours]
~ O (-0.49) - @ (-0.50)
=0 (-04-0.09) - ® (-0.5-0.00)
=0.3121 - 0.3085
=0.0036 or 0.4%

(0.3% would also be a reasonable approximation).

After how many burning hours would we expect 10% of the lamps to be left?
This corresponds to the time at which

Pr [burning life > x, hours] = (.10,

so Pr [burning life < x, hours] = 1 = 0.10 = 0.90.
Thus, Pr[Z<z,]=0.90

1000 X, X hours

or ®(z,) =0.90 0z 2
From Table Al,
o R Figure 7.10:
O(1.2 +0.08) = 0.8997 Probabilities for
and O(1.2 +0.09)=0.9015 Example 7.2(f)

Once again, we could apply linear interpolation but the accuracy of the
calculation probably does not justify it.

Since (0.90 - 0.8997) << (0.9015 - 0.90), let us take 7, = 1.28. Then we have
=008
0
x,—1000
200
X, = (200)(1.28) +1000=1256

=1.28
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Then after 1256 hours of burning, we would expect 10% of the lamps to be
left. And again, because the burning time 15 a random vartable, performing the
experiment would give a result which would be close to 1236 hours but probably
not exactly that, even 1f the normal distribution with the given values of the mean
and standard deviation applied exactly.

Atter how many burning hours would we expect 90% of the lamps to be left”

We won't draw another diagram, but imagine looking at Figure 7.10 from the

back.

Pr{Z <z,] =010 0r 0(z) = 0.10. From Table Al we find
0(-1.2-0.08) = 0.1003
0(-1.2-0.09) = 0,098

50 7, = -1.28. (Do you see any resemblance to the answer to part (f)? Look again
at equation 7.9.)

. b ) 1000 e
0 200

X, =1000=-256

Y, =14

After 744 hours we would expect 90% of the lamps to be left,
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iﬁExerCise 3 —————————————

EEEET AR AR R

1.

What is the probability of getting exactly 3 heads in 5 flips of a fair coin?

On six successive flips of a fair coin, what is the probability of observing 3 heads
and 3 tails?

. If a fair coin is tossed 4 times, what is the probability of getting at least two heads?

Suppose X has a Poisson distribution with a standard deviation of 4. What 1s the
conditional probability that X is exactly 1 given that X = 17

. Let X have a Poisson distribution with parameter A= 2. What is the probability that

X 2 5 given that X = 8?

. Find the mean and variance of an exponential distribution?

. What is the probability that a normal random variable with mean 6 and standard

deviation 3 will fall between 5.7 and 7.5 ?

. If in a certain normal distribution of X, the probability is 0.5 that X is less than 500

and 0.0227 that X is greater than 650. What is the standard deviation of X?

. 11. It X ~ N(5, 4), then what is the probability that 8 <Y < 13 where Y = 2X + 17
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