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Objectives of Lesson  - 
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History of  differential equations: - 

 

:Definition of DEs and some properties - 
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Example 2: 
 
 
 
 

 
 :Differential EquationOrder of a  - 

The order of an ordinary differential equation is the order of the 

highest order derivative        
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: Linear ODE - 

An ODE is linear if the unknown function and its derivatives  

appear to power one. No product of the unknown function and/or  

its derivatives. 

 
:Nonlinear ODE - 
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:Auxiliary Conditions - 
 

 

 

 

:Value and Initial value Problems-Boundary- 
 

 

:Classification of ODEs - 
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Solutions of Ordinary Differential Equations - 

 For example, this function  

 

olutionUniqueness of a S - 
In order to uniquely specify a solution to an n

th
 order differential 

equation we need n conditions 
 
 
 
 
 
 

Classification of ODEs 
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:Applications of Differential equations -  

 Electric Circuits:-  

 Biological Systems:- 
The SIR epidemic model is one of the simplest compartmental models, and 

many models are derivations of this basic form. The model consists of three 

compartments–S for the number susceptible, I for the number of infectious, and 

R for the number recovered (or immune).  
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First-order differential equations 
Separable Differential Equations 

 
Objectives of  Lesson  - 

 Definition of DE of first order 

 
 

 

 

 
 Separation of Variables 
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Example 7 
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Reducible to Variable Separable Form 
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EquationsHomogenous Differential  
 

 -Homogeneous Function: 
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Example 3 
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Exact Differential Equations & Integrating Factors 
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Integrating Factors 
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-:Examples 
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Linear & and Bernoulli Differential Equations 

-:Integration Factor 
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equations Differential Bernoulli 
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oefficientsEquations with Linear C 

 

Equations with linear coefficients that is, equations of the form 
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Riccati Differential Equation 

  Solution: 
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Chapter Summary: 
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CHAPTER 3 

FIRST-ORDER DIFFERENTIAL EQUATIONS OF HIGHER DEGREE 

3.1 Equations of the First-order and not of First Degree 

3.2 First-Order Equations of Higher Degree Solvable for Derivative p
dx

dy
  

3.3 Equations Solvable for y 

3.4 Equations Solvable for x 

3.5 Equations of the First Degree in x and y - Lagrange and Clairant  

3.6 Exercises  

 

3.1 Equations of the first-Order and not of First Degree  

In this Chapter we discuss briefly basic properties of differential equations of first-order 

and higher degree. In general such equations may not have solutions. We confine 

ourselves to those cases in which solutions exist.  

The most general form of a differential equation of the first order and of higher degree 

say of nth degree can be written as  

......
2

),(2
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),(1 
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




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













n

dx

dy
yxa

n

dx

dy
yxa

n

dx

dy  

…   …  …  0),(),(1  yxna
dx

dy
yxna  

or           pn+a1p
n-1+a2p

n-2+ …….+an-1 p+an=0    (3.1) 
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where 
dx

dy
p   and a1, a2, . . , an  are functions of x and y. 

  (3.1) can be written as 

 F(x, y, p) = 0       (3.2) 

3.2 First-Order Equations of Higher Degree Solvable for p 

Let (3.2) can be solved for p and can be written as 

              (p-q1(x,y))  (p-q2(x,y))  ………. (p-qn(x,y)) = 0 

Equating each factor to zero we get equations of the first order and first degree. One can 

find solutions of these equations by the methods discussed in the previous chapter. Let 

their solution be given as: 

                i(x,y,ci)=0, i=1,2,3 ………n     (3.3) 

Therefore the general solution of (3.1) can be expressed in the form  

                1(x,y,c) 2(x,y,c)………n(x,y,c)  = 0   (3.4) 

where c in any arbitrary constant.  

It can be checked that the sets of solutions represented by (3.3) and (3.4) are identical 

because the validity of (3.4) in equivalent to the validity of (3.3) for at least one i with a 

suitable value of c, namely c=ci 

Example 3.1    Solve 0)( 22

2


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
xy

dx

dy
yx

dx

dy
xy   (3.5) 

Solution:  This is first-order differential equation of degree 2. Let   
dx

dy
p   
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Equation (3.5) can be written as  

                   xy p2+(x2+y2) p+xy=0                (3.6) 

                      (xp+y)(yp+x)=0 

This implies that  

                  xp+y=0, yp+x=0              (3.7) 

By solving equations in (3.7) we get 

                       xy=c1    and   x2+y2=c2 , respectively  

                              ,0y
x

1

dx

dy
or0y

dx

dy
x  Integrating factor  

                               .)( log

1

x
dx

x eex 


     

This gives  

                   y.x  = o.x dx +c1 or xy=c1 

                     
0xdxydyor,0x

dx

dy
y 

 

By integration we get    cxy  2
2
12

2

1
 

                                                 or     x2+y2 = c2, c2 >0,   22 cxc    

The general solution can be written in the form  

                     (x2+y2-c2) (xy-c1)=0                                         (3.8) 
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It can be seen that none of the nontrivial solutions belonging to xy=c1 or x2+y2=c2 is 

valid on the whole real line.  

3.3      Equations Solvable for y 

Let the differential equation given by (3.2) be solvable for y. Then y can be expressed 

as a function x and p, that is,  

                        y= f ),( px                           (3.9) 

Differentiating (3.9) with respect to x we get  

                  
dx

dp
.

p

f

x

f

dx

dy









      (3.10) 

(3.10) is a first order differential equation of first degree in x and p. It may be solved by 

the methods of Chapter 2. Let solution be expressed in the form  

                     0),,( cpx       (3.11) 

The solution of equation (3.9) is obtained by eliminating p between (3.9) and (3.11). If 

elimination of p is not possible then (3.9) and (3.11) together may be considered 

parametric equations of the solutions of (3.9) with p as a parameter. 

Example 3.2:  Solve     y2-1-p2=o 

Solution:  It is clear that the equation is solvable for y, that is  

             21 py                 (3.12) 

By differentiating (3.12) with respect to x we get  
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dx

dp
p

p
dx

dy
2.

21

1

2

1



        or   
dx

dp

p

p
p

21

  

or  0
21

1
1 




















dx

dp

p

p                            (3.13) 

(3.13) gives  p=o   or  0
21

1 




dx

dp

p

p
 

By solving p=0 in (3.12) we get  y=1 

By                       0
dx

dp

p1

1
1

2



  

we get a separable equation in variables p and x. 

                         21 p
dx

dp
  

By solving this we get 

                p=sinh (x+c)         (3.14) 

By eliminating p from (3.12) and (3.14) we obtain  

                 y=cos h (x+c)                        (3.15) 

(3.15) is a general solution. 

Solution y=1 of the given equation is a singular solution as it cannot be obtained by 

giving a particular value to c in (3.15). 

3.4      Equations Solvable for x 

Let equation (3.2) be solvable for x, that is  



OOrrddiinnaarryy  DDiiffffeerreennttiiaall  EEqquuaattiioonnss  ((OODDEEss))  
Chapter 3 

                              x=f(y,p)                        (3.16) 

Then as argued in the previous section for y we get a function  such that  

                     (y, p, c) = 0                  (3.17) 

By eliminating p from (3.16) and (3.17) we get a general solution of (3.2). If elimination 

of p with the help of (3.16) and (3.17) is cumbersome then these equations may be 

considered parametric equations of the solutions of (3.16) with p as a parameter. 

Example 3.3  Solve 0812
3










dx

dy

dx

dy
x  

Solution:   Let  then
dx

dy
p ,   xp3-12p-8=0 

It is solvable for x, that is, 

                  
3

8

2

12

3

812

ppp

p
x 


             (3.18) 

Differentiating (3.18) with respect to y, we get 

3 4

12 8
2 3

dx dp dp

dy p dy p dy
    

3 4

1 24 24
or

dp dp

p p dy p dy
    dp

pp
dyor
















3

24

2

24  

                    c
pp

yor 
2

1224
                   (3.19) 

(3.18) and (3.19) constitute parametric equations of solution of the given differential 

equation. 
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3.5  Equations of the First Degree in x and y – Lagrange’s  

 and Clairaut’s Equation. 

 
Let Equation (3.2) be of the first degree in x and y, then 

              y = x1(p) + 2 (p)               (3.20) 

Equation (3.20) is known as Lagrange’s equation. If 1(p) = p then the equation 

          y = xp + 2 (p)            (3.21) 

is known as Clairaut’s equation. By differentiating (3.20) with respect to x, we get  

           
' '

1 1 2
( ) ( ) ( )

dy dp dp
p x p p

dx dx dx
      

             or  
' '

1 1 2( ) ( ( ) ( ))
dp

p p x p p
dx

            (3.22) 

From (3.22) we get 

             0
dx

dp
))p('

2
x(     for    1(p)=p 

This gives 

                 0
dx

dp
 or   x+ '

2
(p) =0 

                  0
dx

dp
 gives p = c and 

by putting this value in (3.21) we get 

                           y=cx+2(c)  
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This is a general solution of Clairaut’s equation. The elimination of p between 

 x+ '
2

(p) = 0  and (3.21) gives a singular solution. If 1(p)  p for any p, then we 

observe from (3.22) that  0
dx

dp
 everywhere. Division by  

        
dx

dp
)]p(p[ 1  in (3.22) gives x

)p(
1

p

'
1

dp

dx




  = 

)p(
1

p

)p('
2




 

which is a linear equation of first order in x and thus can be solved for x as a function of 

p, which together with (3.20) will form a parametric representation of the general 

solution of (3.20). 

Example 3.4  Solve 
dx

dy

dx

dy
xy

dx

dy


















1  

Solution:  Let 
dx

dy
p   then, (p-1)(y-xp)=p 

This equation can be written as  

                  
1


p

p
xpy  

Differentiating both sides with respect to x we get  

             0
2)1(

1



















p
x

dx

dp
  

Thus either  0
dx

dp
 or   0

2)1(

1





p
x  
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0
dx

dp
 gives p=c . 

Putting p=c in the equation we get 

1

c
y cx

c
  


 (y-cx)(c-1)=c 

which is the required solution. 

3.6 Exercises 

Solve the following differential equations 

1. xe
dx

dy

dx

dy 2
3








  

2. y(y-2)p2  -  (y-2x+xy)p+x=0 

3. 024
2









 xy

dx

dy
 

4. 02 

























 x

dx

dy
xy

dx

dy
xxy

dx

dy
 

5. 0
2

4 









dx

dy
x

dx

dy
xy  

6. 
dx

dy
hx

dx

dy
yy

dx

dy
x 2

















  

7. x
dx

dy
yx

dx

dy
y 








)(

2
 

8. 02
2









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1.1 Random experiments 
A random experiment is an experiment whose outcomes cannot be predicted with 
certainty. However, in most cases the collection of every possible outcome of a random 
experiment can be listed. 
 
1.2 Sample space 
In statistics, the set of all possible outcomes of an experiment is called the sample space 
of the experiment, because it usually consists of the things that can happen when one 
takes a sample. Sample spaces are usually denoted by the letter S. 
Each outcome in a sample space is called an element or a member of the sample space, 
or simply a sample point. 

Example 1.1 
Experiment: Tossing a fair  coin 
Sample space, S={H, T} 
Where: H= Head, T= Tail 

Example 1.2 
Consider the experiment of rolling a six-sided dice and observing the number which 
appears on the uppermost face of the dice. The result can be any of the numbers 1, 2, 3, 
… , 6. This is a random experiment since the outcome is uncertain. 

Example 1.3 
A coin is tossed twice. 
Sample space, S={HH, HT, TH, TT} 

Example 1.4 
Consider the experiment of rolling a red dice and a green dice and observing the number 
which appears on the uppermost face of each dice. The sample space of the experiment 
consists of the following array of 36 outcomes. 
 
The first coordinate of each point is the number which appears on the red dice, while the  
 
second coordinate is the number which appears on the green dice. 

CHAPTER ONE 
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 Green die 

R
e
d

 d
ie

 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) 

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) 

. . . . . . 

(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) 

 

Using the standard notation for sets, we can express this sample space as follows: 
S = {(i, j): i = 1, 2, 3, 4, 5, 6; j = 1, 2, 3, 4, 5, 6}. 

 
 

1.3 The Event 
A subset of a sample space is called an event. The empty set, , is a subset of S and S 

is also a subset of  S.  and S are therefore events. We call  the impossible event 

and S the certain event. A subset of S containing one element of S is called a simple 
event. 

 

Example 1.5 
 
Suppose that we toss a fair coin three times and record the outcomes. 
 
Find: 

1- Sample space. 
2- The events A and B. 

Where A: we observe two heads  
           B:  we observe at least one tail. 
           C:   we observe at least one head. 

 
The sample space is: 
 
S={HHH, HHT, HTH, THH, HTT, THT, TTH, TTT} 
A={HHT, HTH, THH} 
B={ HHT, HTH, THH, HTT, THT, TTH, TTT} 
C={HHH, HHT, HTH, THH, HTT, THT, TTH } 

Example 1.6 
 
Suppose that we toss two dice. 
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Find: 
1- Sample space. 
2- Describe the event A that the total numbers of points rolled with the pair of dice is 

7. 
 
 

The sample space is: 
S={(1,1), (1,2), (1,3), (1,4), (1,5), (1,6) 
(2,1), (2,2), (2,3), (2,4), (2,5), (2,6) 
(3,1), (3,2), (3,3), (3,4), (3,5), (3,6) 
(4,1), (4,2), (4,3), (4,4), (4,5), (4,6) 
(5,1), (5,2), (5,3), (5,4), (5,5), (5,6) 
(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)} 

 
A={(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)} 
 

1.4 Operations on events 

Since an event is a subset of a sample space, we can combine events to form new 

events, using the various set operations. The sample space is considered as the 

universal set. If A and B are two events defined on the same sample space, then: 

(1) Union:
 

{ : }A B x x A or x B      
A  B denotes the event “A or B or both”. Thus the event A  B occurs   if 
either A occurs or B occurs or both A and B occur. 

(2) Intersection:  { : }A B x x A and x B     
          A  B denotes the event “both A and B”. Thus the event A  B occurs if both A  
           and   B occur. 
(3) Complement: { : }cA x x S but x A    

           'cA or A  denotes the event which occurs if and only if A does not occur. 
(4) Difference: { : }A B x x A and x B     
(5) Symmetric Difference:    A B A B B A    

.
 

(6) Distributive law: 
i- : ( ) ( ) ( )A B C A B A C       
ii- ( ) ( ) ( )A B C A B A C       

(7) Demorgan's law: 
i- ( )c c cA B A B    
ii- ( )c c cA B A B    
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B A A A A B 

Example 1.7 
 

Let P be the event that an employee selected at random from an oil drilling company 

smokes cigarettes. Let Q be the event that an employee selected drinks alcoholic 

beverages. Then     is the event that an employee selected either drinks or smokes, or 

drinks and smokes.     is the event that an employee selected drinks and smokes. 

 

Example 1.8 

If A = {x.: 3 < x < 9} and B = {x.: 5 ≤ x < 12}, then A  B = {x.: 3 < x < 12}, 
and 

A  B = {x : 5 ≤ x < 9}. 

 
Sample spaces and events, particularly relationships among events, are often 

depicted by means of Venn diagrams like those of Fig. 1.2. In each case, the 

sample space is represented by a rectangle, whereas events are represented by 

regions within the rectangle, usually by circles or parts of circles. The shaded 

regions of the four diagrams of Fig. 1.2 represent event A, the complement of 

A, the union of events A and B, and the intersection of events A and B. 

 

 

S S S S 

 

 

 

A

 A



A  B A  B 

Fig. 1.2: Venn diagrams showing the complement, union and intersection 
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A4 

A6 

A3 

A2 A1 

A5 

A B 

When we deal with three events, we 

draw the circles as in Fig. 1.3. In this 

diagram, the circles divide the sample 

space into eight regions, numbered 1 

through 8, and it is easy to determine 

whether the 

corresponding events are parts of A or and C or C. 
 

Mutually exclusive (or disjoint) events 
Any two events that cannot occur simultaneously, so that their intersection is 

the impossible event, are said to be mutually exclusive (or disjoint). Thus 
two events 
A  and  B  are  mutually  exclusive  if and only S 

if A  B  .  In general, a collection of events 

A1, A2, …, An, is said to be 

mutually exclusive if there is no 

overlap among any of them. That 

is, if 

Ai 

 Aj  



(i  

j, 

i, j  1, 2, 

... 

n). 

Fig. 1.4 shows several mutually 

exclusive events 
Fig. 1.4: Mutually exclusive events 

 

De Morgan’s Laws 

Venn diagrams are often used to verify 
relationships among sets,   thus making it 

unnecessary to give formal  proofs based on S 
the algebra of sets. To illustrate, let us show 

that   ( A  B) 
c  A

c
 B

c
,   which  expresses the 

fact that the complement of the union of two 
sets equals the intersection of their 
complements. To begin, note that in Figures 
1.5  and  1.6,  A  and  B  are  events  defined  
on the same  sample  space  S.  In  Fig.  1.5,  
the shaded area represents the event ( A  B)

c
. 

 
 
 
 
 
 
 

 

 
 

Fig. 1.5: ( A  B)
c is shaded 

  
 

 4 
1 
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In Fig. 1.6, the area shaded vertically represents S 

the event  Ac  while the area shaded horizontally 

represents  the  event   B
c .  It  follows  that   the 

cross-shaded area represents the event A
c  B

c
. 

But the total shaded area in Fig. 1.5 is identical 

zto the cross-shaded area in Fig. 1.6. We can 

therefore state the following theorem.                  

                                         
 

 

 

                    Fig. 1.6.    A
c
 and B

c are shaded 

 

 
 

1 
 

 

Similarly, we can use Venn diagrams to verify the following two theorems. 

2 

 

3 

 
 

The results given in 1, 2 and 3 are called de Morgan’s laws. 
 

 
Other useful facts concerning operations on events 

The following results can be verified by means of Venn diagrams. 

1. Commutative law 
A  B  B  A; 

2. Associative 
law  

     A  B  B  A. 

A (B  C)  ( A  B)  C; A (B  C)  ( A  B)  C. 

Because of these two statements, we can use the simpler notations 

 A  B  C and A  B  C 

 

without fear of ambiguity when referring to 

3. Distributive law 

A (B  C) and A  (B  C), respectively. 
 
 

A (B  C)  ( A  B) ( A  C); 

 

(A  B)
c = A

c
 B

 c
. 

( A  B)
c =   A

 c
 B

 c
. 

If A, B and C are events defined on the same sample space, then 

 
( A  B  C)

c  A
 c  B 

c  C 
c
, ( A  B  C)

c  A 
c  B 

c  C 
c
, and ( A

c  B
c  C

  c
)
c  A  B  C. 
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If an operation can be performed in n
1 ways and after it is performed in any one 

of these ways, a second operation can be performed in n
2 ways and, after it is 

performed in any one of these ways, a third operation can be performed in n3 

ways, and so on for k operations, then the k operations can be performed together 

in n
1
n

2 ...nk ways. 

4. Other useful results 
(a) , , ( )c c c cS S A A     

(b) ,A S S A       

 

(c) ,c cA A S A A      

 

1.5 Counting sample points 

In this section, we discuss some techniques for determining, without direct 

enumeration, the number of possible outcomes of an experiment. Such 

techniques are useful in finding probabilities of some complex events. 

 
The multiplication principle 

We begin with the following basic principle: 
 

Theorem 1.1 (The multiplication theorem) 

 

 

Example 1. 10 

How many lunches consisting of a soup, sandwich, dessert, and a drink are 

possible if we can select 4 soups, 3 kinds of sandwiches, 5 desserts and 4 

drinks? 

 
Solution 

Here, n1  4, n2  3, n3  5 and n4  4. Hence there are 

n1  n2  n3  n4  4  3 5  4  240 

different ways to choose a lunch. 
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r ! (n  r)! 

 n! 
.
 


n 
r 

The number of combinations of n distinct objects taken r at a time is 

Theorem 1.2 

Example 1.11 

From 4 chemists and 3 physicists, find the number of committees that can be 

formed consisting of 2 chemists and 1 physicist. 

Solution 
 
The number of ways of selecting 2 chemists from 4 is: 

 

 4 4!
6

2 2!2!

 
  

 

  

 

The number of ways of selecting 1 physicist from 3 is: 

 

   
3 3!

3
1 1!2!

 
  

 

 

Using the multiplication theorem (see Theorem 1.4 on page 8) with n1 = 6 and n2 
= 3, it can be seen that we can form n1 × n2 = 6×3 = 18 committees with 2 
chemists and 1 physicist. 

 

1.3 The probability of an event 

1.3.1 Introduction 

It is frequently useful to quantify the likelihood, or chance, that an outcome of 

a random experiment will occur. For example, we may hear a physician say 

that a patient has 50-50 chance of surviving a certain operation. Another 

physician may say that she is 95% certain that a patient has a particular disease. 

A public health nurse may say that 80% of certain clients will break an 

appointment. As these examples suggest, most people express probabilities in 

terms of percentages. However, in dealing with probabilities mathematically, it  
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. 
number of ways that A can occur 

m number of ways the sample space S can occur 

h 
P( A)   

If a trial of an experiment can result in m mutually exclusive and equally likely 

outcomes, and if exactly h of these outcomes correspond to an event A, then the 

probability of event A is  given by 

is convenient to express probabilities as fractions. Thus, we measure the 

probability of the occurrence of some event by a number between zero and 

one. The more likely the event, the closer the number is to one; and the more 

unlikely the event, the closer the number is to zero. 

 

1.3.2 Classical probability 

The classical treatment of probability dates back to the 17th century and the 

work of two mathematicians, Pascal and Fermat [see Todhunter (1931) and 

David (1962)]. Much of this theory developed out of attempts to solve 

problems related to games of chance, such as those involving the rolling of 

dice       [see Jeffreys (1939), Ore (1960), and Keynes (1921)]. We can calculate 

the probability of an event in the classical sense as follows. 

 

Definition 1.1 
 

 
Thus, if all the simple events in S are equally likely, then 

 ( )  
 ( )

 ( )
              

 

where n(A) denotes the number of elements in A. We emphasize that the above 
expression for P(A) is applicable only when all the simple events in S are equally likely. 
 
It is important to realize that here, we are using the same symbol A to represent two 
different things. In the expression n(A), A represents a set (for example, the set of even 
integers less than 7) whereas when we write P(A), A represents an event (for example, 
the score on a die is even).
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Example 1.12 
 

A mixture of candies contains 6 mints, 4 toffees, and 3 chocolates. If a person 

makes a random selection of one of these candies, find the probability of 

getting 

(a) a mint, (b) a toffee or a chocolate. 

 

Solution 
Let M, T, and C represent the events that the person selects, respectively, a 

mint, toffee, or chocolate candy. The total number of candies is 13, all of 

which are equally likely to be selected. 

(a) Since 6 of the 13 candies are mints, 
 

 
(b) 

P(M ) 

P(T  C) 

 6  
13 

n(T  C) 

 
 7 . 

n(S) 13 

 

Example 1.13 
 

The following table shows 100 patients classified according to blood group and 
gender. 

 
 Blood group 

 A B O 

Male 30 20 17 

Female 15 10 8 

 
If a patient is selected at random from this group, find the probability that the 
patient selected: 

(a) is a male and has blood group B, (b) is a female and has blood group A. 

Solution 
There are 100 ways in which we can select a patient from the 100 patients. Since 

the patient is selected at random, all the 100 ways of selecting a patient are equally 

likely. 

 

. 
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n(A) 
.
 

P( A)   lim 
n    

If some process is repeated a large number of times n, and if some resulting event 

with the characteristic A occurs m times, the relative frequency of occurrence of 

A, m n , will be approximately equal to the probability of A. Thus, 

(a) There are 20 males with blood group B. Therefore the probability that the 

patient selected is a male and has a blood group B is    
  

   
=0.2 

(b) There are 15 females with blood group A. Therefore the probability that 

the patient selected is a female and has blood group A is  
  

   
     =0.15 

 

One advantage of the classical definition of probability is that it does not require 

experimentation. Furthermore, if the outcomes are truely equally likely, then the 

probability assigned to an event is not an approximation. It is an accurate 

description of the frequency with which the event will occur. 

 

1.3.1 Relative frequency probability 

The relative frequency approach was developed by Fisher (1921) and Von 

Mises (1941), and depends on the repeatability of some process and the ability 

to count the number of repetitions, as well as the number of times that some 

event of interest occurs. In this context, we may define the probability of 

observing some characteristic, A, of an event as follows: 

 

Definition 1.2 
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The disadvantage in this approach is that the experiment must be repeatable. 

Remember that any probability obtained this way is an approximation. It is a 

value based on n trials. Further testing might result in a different approximate 

value. 

Example 1.14 
 

The following table gives the frequency distribution of the heights of 150 

students. If a student is selected at random from this group, find the 

probability that the student selected is taller than the modal height of the 

students. 

 
Height(cm) 130 140 150 160 170 180 190 

Frequency 8 16 28 44 33 17 4 

 

Solution 
The modal height of the students is 160 cm. This is the height with the highest 

frequency. The number of students who are taller than 160 cm is (33 + 17 + 4) = 

54. An estimate of the required probability is the relative frequency 
 54  
150 

 

 0.36. 
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1.3.2 Subjective probability 

In the early 1950s, Savage (1972) gave considerable impetus to what is called 

subjective concept of probability. This view holds that probability measures 

the confidence that a particular individual has in the truth of a particular 

proposition. This concept does not depend on the repeatability of any process. 

By applying this concept of probability, one can calculate the probability of an 

event that can only 

happen once, for example, the probability that a cure for HIV/AIDS will be 

discovered within the next 8 years. 

 
Although the subjective view of probability has enjoyed increased attention 

over the years, it has not been fully accepted by statisticians who have 

traditional orientations. 

1.4 Some probability laws 
In the last section, we considered how to interpret probabilities. In this 

section, we consider some laws that govern their behaviour. 

1.4.1 Axioms of probability 

In 1933, the axiomatic approach to probability was formalized by the Russian 

mathematician A. N. Kolmogorov (1964). The basis of this approach is 

embodied in three axioms from which a whole system of probability theory is 

constructed through the use of mathematical logic. The three axioms are as 

follows. 
 

Axioms of probability 

Let S be the sample space of an experiment and P be a set function which 

assigns a number P(A) to every A  S. Then the function P(A) is said to be a 

probability function if it satisfies the following three axioms: 

 
Axiom 1:     P(S) = 1. 

 

Axiom 2:       ( )     for every event A. 

         Axiom 3: If A and B are mutually exclusive    
events, then: 

 
( ) ( ) ( ).P A B P A P B    
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If Φ is a empty set (that is an impossible event), then   P()  0. 

If A be any event of the sample space S, then . 

Theorem 1.3 
 

 

Proof: 
For any event A, A   , Then A and   are two exclusive events, 

 and A A  , 

 
   P A P A  , by axiom 3, we get 

 

       P A P A P A P     , then 

 

  0P   . 

And the proof of the theorem is complete.  

This theorem says that the probability of an impossible event is zero. 

 

Theorem 1.4 
 

Where cA denotes the complement of A with respect to S. 

 

Proof:   

Let A be any subset of S. Then S = A   Ac
. Further A and A

c
 

are mutually exclusive.  Hence, by Axiom 3, we get 

1 = P (S) = P (A     A
c
) 

= P (A) + P (A
c
). 

Hence, we see that 

This completes the proof 
 

P (A
c
) = 1 − P (A). 
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c 

A A 

If A and B are events of the sample space S, then: . 

. 

If A and B are events of the sample space S, then:  

 

 

Theorem 1.5 
 

 

Proof:  

We have ( ) ( )A A B A B     

Where  ( ), ( )A B A B    are exclusive events, ( ) ( )A B A B     . 

 

So   
 ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ).

P A P A B A B P A B P A B

P A B P A P A B

       

    
 

 
 
 
 
 
 
 
 

Theorem 1.6 
 

 
Proof:  
It is easy to see that 

 A B A B A  

We have   ,A B A  are exclusive events 
,  A B A   
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If the events A1, A2 , ..., An are mutually exclusive, then; 

P( A1  A2 ...  An )  P( A1)  P( A2 )  ...  P( An ). 

If A, B, and C are three events defined on the same sample space, then; 
P( A  B  C) = P( A)  P(B)  P(C)  P( A  B) 

 P( A  C)  P(B  C)  P( A  B  C). 

Applying Axiom 3, we obtain 
 

                              p A B p A B A p A p B A       
From Theorem 1.5 

     p B A p B p A B    
We get: 
       p A B p A p B p A B    

 
Corollary 1.1 

If the events A and B are mutually exclusive, then A  B   and so by Theorem 

1.8, P( A  B)  0. Theorem 1.10 then becomes 

P( A  B)  P( A)  P(B). 
 
Corollary 1.1 can be extended by mathematical induction to the following corollary. 

Corollary 1.2 
 
 

 

The following corollary gives an extension of Theorem 1.10 to 3 events. 
 

Corollary 1.3 
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Example 1.15 

The probability that Sara  passes Mathematics is 
 

 
 , and the probability that she passes 

English is 
 

 
 . 

If the probability that she passes both courses is 
 

 
 , what is the probability that she 

passes at least one of the two courses? 
 
 

Solution 

Let M denote the event “Sara passes Mathematics” and E the event “Sara passes 

English”. We wish to find P(M ∪E). By the addition rule of probability, (see Theorem 

1.10 on page 17), 
 

( ) ( ) ( ) ( )

2 4 1 31
.

3 9 4 36

P M E P M P E P M E    

   
 

 
 

Example 1.16 
Refer to Example 1.20 on page 14. If a patient is selected at random from the 

100 patients, find the probability that the patient selected: 

(a) Is a male or has blood group A, 

(b) Does not have blood group A, 

(c) is a female or does not have blood group B. 
 
 

Solution 
There are 100 ways in which we can select a patient from the 100 patients. Since the 
patient is selected at random, all the 100 ways of selecting a patient are equally likely. 
 

Let M denote the event “a patient is a male” and A the event “a patient has blood group 

A”. We 

wish to find P(M ∪ A). By the addition rule of probability, 
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Example 1.17 
Of 200 students in a certain Senior High School, 60 study Mathematics, 40 

study Biology, 30 study Chemistry, 10 study Mathematics and Biology, 5 study 

Mathematics and Chemistry, 3 study Biology and Chemistry and 1 studies the 

three subjects. If a student is selected at random from this group, find the 

probability that the student selected studies at least one of the three subjects. 

 

Solution 
Let S = {the 200 students}, M = {those who study Mathematics}, B = {those 

who study Biology} and C = {those who study Chemistry}.  Then,  n(M)  =  

60,  n(B)  =  40,  n(C)  =  30,  n(M    B)  =  10,  n(M  C) = 5, n(B  C) = 3 

and n(M  B  C) = 1. We are required to calculate P(M  B  C). By 
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Corollary 1.3, 

 

 
 

Example 1.18 

 

If the probabilities are, respectively, 0.08, 0.14, 0.22, and 0.24 that a person 

buying a new car will choose the colour green, white, red, or black, calculate 

the probability that a given buyer will purchase a new car that comes in one of 

these colours. 

 
Solution 
 

Let G, W, R, and B be the events that a buyer selects, respectively, a green, 

white, red or black car. Since the four colours are mutually exclusive, the 

required probability is 
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A  B

A  B 

A  B 
A  B

 

  

0.79 
D  E

0.17 

D  E 

0.03 

D  E 

  

D  E

0.01 

 

 
1.3.1 Two-set problems 

If  A  and  B  are  any  two  events  defined on a S 

sample space S, then we can draw Fig. 1.8. It 

can be seen that S can be split into the following 

four mutually exclusive events: 

A  B, Ac B, A  Bc and Ac Bc. 

Notice that: 

A  ( A  Bc) ( A  B) 

Since A Bc
exclusive, 

and A B are mutually 
Fig. 1.8: Two-set problems 

P( A) 

Similarly, 

P(B) 

Moreover, 

P( A  Bc) 

P(Ac B) 

 P( A  B) ............................................................................................ (1.4) 

 

 P( A  B) ............................................................................................ (1.5) 

( A  Bc) ( A  B) ( A B)  (Ac Bc)  S 

and since the four events are mutually exclusive, 

P( A  Bc)  P( A  B)  P(Ac B)  P(Ac Bc)  P(S)  1. 

 

Example 1.19 
 

The probability that a new airport will get prize for its design is 0.04, the probability that 

it will get prize for the efficient use of materials is 0.2 and the probability that it will get 

both prizes is 0.03. Find the probability that it will get: 

 
(a) At least one of the two prizes, 

  
(b) Only one of the two prizes, 

 
(c) None of the two prizes. 

Solution 
 

Let D denote the event “the airport will get an award for its design”, and E the event 

“the airport will get an award for the efficient use of materials”. 

We are given that P(D)  0.04 , P(E)  0.2 and S 

P(D  E)  0.03. We can therefore draw 

Fig. 1.9. Notice that, since P(D)  0.04, and 

P(D  E)  0.03, P(D  E
c
)  0.04  0.03  0.01. 

(a) We wish to find P(D  E). From Fig. 1.9, 

P(D  E)  0.17  0.03  0.01  0.21 

Alternatively, 

P(D  E) = P(D)  P(E)  P(D  E) Fig. 1.9: A Venn diagram 

= 0.04   0.2  0.03  0.21. 

20 



 

 

    

21 



 

 

and if P(B) = 0, then P(A | B) is undefined. 

P (B )  0 ............................................................................ (1.6) 
P (B ) 

P (A | B )  
P (A  B ) 

, 

If A and B are any two events defined on the same sample space S, the conditional probability 

of A given B, is defined by 

  

1.3 Conditional probability 
A box contains n white balls and m red balls. All the balls are of the same size. 

Without looking, a person takes a ball from the box. Without replacing the 

ball in the box, he then takes a second ball. Let B denote the event “the first 

ball drawn is white” and A the event “the second ball drawn is red”. For the 

first draw, any of the (m + n) balls in the box is equally likely to be drawn, 

while n of these are white. Therefore, 

P(B) 
n 

.
 

m  n 

If the first ball drawn was white, then the probability that the second ball drawn is 
red is 

            
 

     
, since only m of the remaining (m  n 1) balls are red. 

 

We introduce a new notation to describe this probability. We call it the conditional 

probability of 

event A given B. We denote   

it by in the above example, 

 P(A| B). This is usually read as “the probability of A, given B”. 
Thus, 

P (A | B ) 
m 

.
 

m  n  1 

We now give a formal definition of conditional probability. 
 

 

Definition 1.3 
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Example 1.21 

 
Consider the data given in Example 1.13. If a patient is chosen at random from the 100 

patients, find the probability that the patient chosen has blood group A given that he is a 
male. 
 

Solution 

Let M denote the event “the patient chosen is a male” and A the event “the patient 

chosen has blood group A”. We wish to find P( A | M). 
 

 

 
 

Example 1.22 

 

The probability that a regularly scheduled flight departs on time is P(D) = 0.83; the 

probability that it arrives on time is P(A) = 0.82; and the probability that it departs and 

arrives on time is  P(D∩ A) = 0.78. 

 
 Find the probability that a plane: 
 

(a) arrives on time given that it departed on time, 
 

(b) departed on time given that it has arrived on time, 
 

 
(c) arrives on time, given that it did not depart on time. 
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1.6 The multiplication rule 

 

If we multiply each side of Equation (1.6) by P(B), we obtain the following 
multiplication rule, which enables us to calculate the probability that two events will both 

occur. If in an experiment, the events A and B can both occur, then 

P(A∩B) = P(B)P(A B)………………………………………………………….….(1.8) 

Since the events A∩B and B∩A are equivalent, it follows from Equation (1.8) that we 

can also write 

P(A∩B) = P(B∩ A) = P(A)P(B )……………………………………….………(1.9) 

In other words, it does not matter which event is referred to as A and which event is 

referred to as B. 

 

Example 1.23 
Suppose that we have a fuse box containing 20 fuses, of which 5 are defective. If 2 fuses 
are selected at random and removed from the box in succession without replacing the 
first, what is the probability that  both fuses are defective? 
 

Solution 

Let A denote the event that the first fuse is defective and B the event that the second 
fuse is defective.  
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We wish to find P(A∩B). The probability of first removing a defective fuse is 
 

  
 . If the 

first fuse is defective, then the probability of removing a second defective fuse from the 

remaining 4 is 
 

  
 . By the  multiplication rule, 

 

 
 

Example 1.24 

 
Bag 1 contains 4 white balls and 3 green balls, and bag 2 contains 3 white balls and 5 
green balls. A ball is drawn from bag 1 and placed unseen in bag 2. Find the probability 
that a ball now drawn from bag 2 is 
 

(a) green, 
  

(b) (b) white. 
 

Solution 

 

Let G1, G2 , W1 and W2 represent, respectively, the events of drawing a green ball from 
bag 1, a green  ball from bag 2, a white ball from bag 1 and a white ball from bag 2. 
 

(a) We wish to find P(G2 ).  
 

We can express G2 in the form G2 = (G1 ∩G2 )∪(W1 ∩G2 ). 

 

 The events (G1 ∩G2 ) and (W1 ∩G2 ) are mutually exclusive and so 
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P( A  B  C)  P( A) P(B  A) P(C   A  B) , where P( A)  0 and P( A  B)  0. 

Theorem 1.7 
 

 

Proof 

By the associative law, 
A  B  C = ( A  B)  C. Therefore, 

P( A  B  C) = P[( A  B)  C] 

= P( A  B) P(C A  B) 

= P( A) P(B A) P(C A  B). 

Theorem 1.7 can be extended by mathematical induction to the following theorem. 

Theorem 1.8 
 

 
 

Example 1.25 

A box contains 5 red, 4 white and 3 blue balls. If three balls are drawn successively 

from the box, find the probability that they are drawn in the order red, white and 

blue if each ball is not replaced. 
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Two events with nonzero probabilities are independent if and only if, any 

one of the following equivalent statements is true. 

 

(a)  P(A | B)  P( A), (b)  P(B |A)  P(B), (c) P( A  B)  P( A)P(B). 

 

1.4 Independent events 
 

If the events A and B are independent, then the multiplication theorem becomes 

P( A  B)  P( A) P(B). This result illustrates the following general result. 
 

Definition 1.4 

Two events  that are not independent are said to be dependent. Usually, 

physical conditions under  which an experiment is performed will enable us to 

decide whether or not two or more events are independent. In particular, the 

outcomes of unrelated parts of an experiment can be treated as independent. 

 

Example 1.26 
A small town has one fire engine and one ambulance available for 

emergencies. The probability that a fire engine is available when needed is 

0.96, and the probability that the ambulance is available when called is 0.90. In 

the event of an injury resulting from a burning building, find the probability 

that both the ambulance and the fire engine will be available. 

 

Solution 
Let A and B represent the respective events that the fire engine and the 

ambulance are available. The two events are independent and so 
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Example 1.27 

 

 
 

Definition 1.6 
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Example 28: 
 

If A and B are independent, Prove that: 
1- Ac and Bc are  independent. 
2- Ac and B  are  independent. 
3- A  and Bc are  independent. 

 
Solution: 
 
 A and B are independent: 
 

     

     

     

      

     

   

.

1

1

1 1

1 1

.

cc c

c c

P A B P A P B

P A B P A B P A B

P A P B P A B

P A P B P A

P A P B

P A P B

 

     

    

   

  



 

 

 Ac and Bc are  independent. 
 

 

     

   

    

 

2 ( )

. ( )

1

( ).

c

c

c

P A B P B A P B P A B

P B P A P B

P B P A

P B P A

A are B independent

      

 

 





 

 

     

   
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1
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c

c
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A are B independent
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A3 

A4 

A2 

 

A5 
A1 

 

P(B)   P( Ai )P(B A
i 
). 

If A1 , A2 , …, An form a partition of a sample space S, then for any event B 

defined on S such that P(B)  0 , 
 

1.3 Bayes’ theorem 

1.3.1 The total probability rule S 

In Fig. 1.11, the events A1 , A2 , A3 , A4 , A5 are 

mutually exclusive and S = A1  A2  A3  A4  A5 . 

These events are said to form a partition of the 

sample space S. By a partition of S, we mean a 

collection of mutually exclusive events whose union is 

S. In general, the events A1 , 

partition of the sample space S if 

A2 , …, An form a Fig. 1.11: A partition of a 
sample space 

n 

(a) Ai      (i = 1, 2, …, n), (b) Ai    Aj    (i ≠ j, i, j = 1, 2, …, n), (c) S  U Ai . 
i1 

In Fig. 1.11, it can be seen that if B is an event defined on the sample space S such that P(B) > 0, then 

B  ( A1  B)  ( A2  B) ...  ( A5  B). 

Since ( A1  B), ( A2  B), ..., ( A5  B) are mutually exclusive events, 

P(B) = P( A1  B)  P( A2  B)  ...  P( A5  B) 

= P( A1)P(B   A1)  P( A2 )P(B  A2 )  ...  P( A5 )  P(B  A5 ). 

 

 

The following theorem gives the general result. 

 

Theorem 1.9 
 
 

 
 
 
     

  
 
 
 

This result is called the total probability rule. 
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Example 1.29 
 

In a certain assembly plant, three machines A, B, and C make 30%, 45% and 25%, 
respectively, of the products. It is known from past experience that 2% of the products 

made by machine A, 3% of the products made by machine B and 2% of the products 

made by machine C are defective. If a finished product is selected at random, what is the 
probability that it is defective? 

 

Solution 

Let A1 denote the event “the finished product was made by machine A”, 

A2 denote the event “the finished product was made by machine B”, 

A3 denote the event “the finished product was made by machine C”, 

and let D denote the event “the finished product is defective”.  

We wish to find P(D).  
 
We are given that: 
 

 
1.9.2 Bayes’ theorem 
Consider the following example. 
 

Example 1.30 

 
In Example 1.29, if a finished product is found to be defective, what is the probability 

that it was made by machine A1? 
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Theorem 1.10 (Bayes’ theorem) 
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Example 1.31 
 

A consulting firm rents cars from three agencies: 30% from agency A, 20% from agency 

B and 50% from agency C. 15% of the cars from A, 10% of the cars from B and 6% of 

the cars from C have bad tyres. If a car rented by the firm has bad tyres, find the 

probability that it came from agency C. 
 

Solution 

 

Let A1 denote the event “the car came from agency A”, 

A2 denote the event “the car came from agency B”, 

A3 denote the event “the car came from agency C”, 
 

and let T denote the event “a car rented by the firm has bad tyres”. We wish to find 

P(A3 | T). We are 
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1. Use Venn diagrams to verify that: 
(a) A  ( A  B)  A, (b) ( A  B) ( A  B)  A, 

 
(c) 

 
A (B  C)  ( A  B) ( A  C). 

2. A experiment involves tossing a red and a green dice, and recording the 
numbers that come up  
(a) List the elements corresponding to the event, A, that the sum is greater than 

8. 
(b) List the elements corresponding to the event, B, that a 2 occurs on either 

dice. 
(c) List the elements corresponding to the event, C, that a number greater 

than 4 comes up on the green die. 
(d) List the elements corresponding to the following events 

(i) A  C, (ii) A  B, (iii) B  C. 

3. Consider the experiment of rolling two dice. 
(a) Let F = “the sum of the two numbers which appear  on  the  dice  is  8”.  

List  the  sample points in F. 
(b) Let I = “the sum of the two numbers which appear on the dice is even”. 

List the sample     points in I. 
(c) Let J = “the number on the red dice is 3”. List the sample points in J. 
(d) Let G = {(1, 1), (1, 2), (2, 1)}, 

H = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)}. 
Are the events G and H mutually exclusive? 

(e) List the sample points in G  H . 
(f) Let L = {(2, 2)}. Are the events G and L mutually exclusive? 

4. In how many ways can 3 of 20 laboratory assistants be chosen to assist with an 
experiment? 

5. Out of 6 mathematicians and 8 physicists, a committee consisting of 3 
mathematicians and 4 physicists is to be formed. In how many ways can this be 
done? 

6. Let A and B be events with P( A)  0.25, P(B)  0.40 and P( A  B)  0.15. 

Find:  (i) P( Ac B c )      (ii) P( A  B c),   (iii) P( Ac  B). 

7. Samples of a cast aluminum part are classified on the basis of surface finish 

(in microinches) and length measurements. The results of 100 parts are 

summarized below. 

 

Exercise 1 
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 length 

excellent good 

surface 

finish 

excellent 75 7 

good 10 8 

Let A denote the event that a sample has excellent surface finish, and let B 

denote the event that a sample has excellent length. Find 
(a) P( A), (b) P(B), (c) P( Ac), (d) P( A  B), (e) P( A  B). 

 

8. In a space lot, the primary computer system is backed up by two secondary 

systems. They operate independently of one another and each is 90% 

reliable. Find the probability that all three systems will be operable at the 

time of the launch. 

9. Show that if A1 and A2 are independent, then A1 and Ac
2 are also 

independent.  

10.  Kofi feels that the probability that he will get an A in the first Physics test 

is 0.5 and the probability that he will get A's in the first and second Physics 

tests is 1/3  .  

If Kofi is correct, what is the conditional probability that he will get an A in 

the second test, given that he gets an A in the first test? 

11.  In rolling 2 balanced dice, if the sum of the two values is 7, what is the 

probability that one of the values is 1? 

12.  A random sample of 200 adults are classified below by sex and their level of 
education attained. 

 

Education Male Female 

Elementary 38 45 

High School 28 50 

University 22 17 

 

If a person is chosen at random from this group, find the probability that: 

(a) the person is a male, given that the person has High School education, 

(b) the person does not have a university degree, given that the person is a 
female. 

13.  In an experiment to study the relationship of hypertension and smoking habits, 
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the following data were collected for 180 individuals. 
 
 

 Non-smokers Moderate smokers Heavy smokers 

Hypertension 21 36 30 

No hypertension 48 26 19 

 

If one of these individuals is selected at random, find the probability that the 
person is 

(a) experiencing hypertension, given that he/she is a heavy smoker; 

(b) a non-smoker, given that he/she is experiencing no hypertension. 

14. The probability that a married man watches a certain television show is 0.4 

and the probability that a married woman watches the show is 0.5. The 

probability that a man watches the show, given that his wife does is 0.7. 

Find the probability that 
(a) a married couple watches the show; 

(b) a wife watches the show given that her husband does; 

(c) at least 1 person of a married couple will watch the show. 

15. A town has 2 fire engines operating independently. The probability that a 

specific engine is available when needed is 0.96. 
(a) What is the probability that neither is available when needed? 

(b) What is the probability that exactly one fire engine is available when needed? 

 

16.  A factory employs three machine operators, George, Andrew and Eric, to 

produce its brand of goods. George works 45% of the time, Andrew works 

30% of the time and Eric works 25% of the time. Each operator is prone 

to produce defective items. George produces defective items 2% of the 

time, Andrew produces defective items 4% of the time while Eric produces 

defective items 6% of the time. If a defective item is produced, what is the 

probability that it was produced by Andrew? 

17. In a certain assembly plant, three machines B1, B2 and B3, make 30%, 45% 

and 25%, respectively, of the products. It is known from past experience 

that 2%, 3%, and 2% of the products made by B1, B2 and B3, respectively, 

are defective. 
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(a) If a finished product is selected at random, what is the probability that it 

is defective? 

(b) If a finished product is found to be defective, what is the probability 

that it was produced by B3? 

18.  A large industrial firm uses local hotels A, B and C to provide overnight 

accommodation for its clients. From past experience, it is known that 20% 

of the clients are assigned rooms at hotel A, 50% at hotel B, and 30% at 

hotel C. If the plumbing is faulty in 5% of the rooms at hotel A, in 4% of 

the rooms at hotel B, and in 8% of the rooms at hotel C, what is the 

probability that: 

(a) a client will be assigned a room with faulty plumbing? 

(b) a person with a room having faulty plumbing was assigned 

accommodation at hotel B? 

19. Suppose that at a certain accounting office, 30%, 25% and 45% of the 

statements are prepared by  Mr. George, Mr. Charles and Mrs. Joyce, 

respectively. These employees are very reliable. Nevertheless, they are in 

error some of the time. Suppose that 0.01%, 0.005% and 0.003% of the 

statements prepared by Mr. George, Mr. Charles and Mrs. Joyce, 

respectively, are in error. If a statement from the accounting office is in  

20. error, what is the probability that it was prepared (caused) by Mr. George? 

21. A certain construction company buys 20%, 30%, and 50% of their nails 

from hardware suppliers A, B, and C, respectively. Suppose it is known that 

0.05%, 0.02% and 0.01% of the nails from A, B, and C, respectively, are 

defective. 

(a) What percentage of the nails purchased by the construction company 

are defective? 

(b) If a nail purchased by the construction company is defective, what is the 

probability that it came from the supplier C? 
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Random Variables and Probability Distributions 

 
 
 

 

 

2.1 The concept of a random variable 

Results of random experiments are often summarized in terms of numerical 

values. Consider, for example, the experiment of testing two electronic 

components. When an electronic component is tested, it is either defective 

or non-defective. The sample space of the experiment may therefore be 

written as S = {NN, DN, ND, DD}, where N denotes non-defective and D 

denotes defective. 
 

Let X denote the number of electronic 

components which are defective. One is 

naturally interested in the possible values of 

X. Can X take the value 3? What about the 

value 1.5? The values X can take are 0, 1 and 

2. Notice that X takes the value 0 at the 

sample point NN and the value 1 at the 

sample points DN and ND. What value does 

X take at the sample point DD? 
 

It can be seen that X assigns a unique real 

number X(s) to each sample point s of S (see 

Fig. 2.1). X is therefore a function with 

domain S and co-domain C = {0, 1, 2}. Such 

a function is called a random variable. 

Definition 2.1: 
 

X 
S C 

NN 2 

DN 
1
 

ND 

DD 0 

Fig. 2.1 

 

 

 

CHAPTER TWO 

A random variable is a function that assigns a real number to each 
element in the sample space of a random experiment. 
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A random variable is denoted by an uppercase letter, such as X, and a 
corresponding lowercase letter, such as x, is used to denote a possible value 

of X. We refer to the set of possible values of a random variable X as the 

range of X. 

 

Example 2.1 
 
Three balls are drawn in succession without replacement from a box 
containing 5 white and 4 green balls. Let Y denote the number of white balls 
selected. The possible outcomes and the values y of Y are: 
 

outcome GGG GGW GWG WGG GWW WGW WWG WWW 

y 0 1 1 1 2 2 2 3 

 

where G denotes “green” and W denotes “white” and the ith letter in a 

triple, denotes the colour of the ith ball drawn (i = 1, 2, 3). For example, 

GWG means the first ball drawn is green, the second ball drawn is white and 

the third ball drawn is green. 
 

Example 2.2 
 
A coin is tossed three times, X is the number of heads. 
 
S={HHH, HTH, HHT, THH, HTT, THT, TTH, TTT} 
 
X(HHH)=3, X(HTH)=2, …, X(TTT)=0 
 

 ( )    (   )    (   )  
 

 
 

 ( )    (   )    (           )  
 

 
 

 ( )    (   )    (           )  
 

 
 

 ( )    (   )    (   )  
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A random variable is discrete if it can assume a finite or a countably 
infinite set of values. 

If the range of a random variable X contains an interval (either finite or infinite) 

of real numbers, then X is a continuous random variable. 

X 0 1 2 3 Sum 

P( X  x) 1

8
 

3

8
 

3

8
 

1

8
 ( ) 1P x   

 

1
, 0,3

8

3
( ) , 1, 2

8

0 .

x

P x x

o w







 





                                     

Definition 2.2 (Discrete random variable) 
 

 
 

Definition 2.3 (Continuous random variable) 

 

In most practical problems, continuous random variables represent 

measured data, such as heights, weights, temperatures, distances, or life 

periods, whereas discrete random variables represent count data, such as the 

number of defectives in a sample of n items or the number of road traffic 

accidents in Accra in a week. 

2.2 Discrete probability distributions 

When dealing with a random variable, it is not enough just to determine what 

values are possible. We also need to determine what is probable. Consider the 

following example. 
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Example 2.4 
Fifty taxi drivers were asked of the number of road traffic accidents they 

have had in a year. The results are given in Table 2.1. 

Table 2.1: Number of accidents per year of 50 taxi drivers 
 

Number of accidents 0 1 2 3 4 5 

Frequency 15 12 9 7 5 2 

 

Suppose we select a taxi driver from this group and X is the number of road 

traffic accidents the person selected had in a year. What values can X take? 

X can take the values 0, 1, 2, 4 and 5. What is the probability that X = 0? 

Out of the 50 equally likely ways of selecting a taxi driver, there are 15 ways 

in which the taxi driver selected had no accident in a year. Hence the 

probability that X = 0 is 

 
   

  
        

This is written  as  

              (   )        
Similarly,   

 (   )  
  

  
      

   

         Table 2.2 gives the Possible values x, of X and their probabilities. Table 2.2 is 
called the probability distribution of X. Note that the values of X exhaust all possible 
cases and hence the probabilities add up to 1. 

Table 2.2: The probability distribution of X 

 

x 0 1 2 3 4 5 

P( X  x) 0.30 0.24 0.18 0.14 0.10 0.04 

Example 2.5 
A shipment of 8 similar microcomputers to a retail outlet contains 3 that are 

defective. If a school makes a random purchase of 2 of these computers, 

find the probability distribution of the number of defectives. 

Solution 
Let X be the number of defective computers purchased by the school. X can take the values 0, 
1, and 2. Now,  
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Representation of the probability distribution of a discrete random variable 

The probability distribution of a discrete random variable X can be represented by a 

table, a formula or a graph. 

 

Tabular form 
For a random variable that can assume a small number of values, it is simplest to 

present its probability distribution in the form of a table having two rows: the upper 

row contains the possible values the random variable assumes and the lower row 

contains the corresponding probabilities of the values (see Table 2.3). 

Table 2.3: The probability distribution of X 

 

x x1 x2 … xn 

P( X  x) p(x1 ) p( x2 ) … p( xn ) 

 

Formula 
Frequently, it is convenient to represent the probability distribution of a discrete random 

variable by a formula. For example, 

f (x)  1 , 
7 

x = 1, 2, …, 7 

defines a probability distribution of a discrete random variable. 
 

The values of a discrete random variable are often called mass points; and 

 

f (x j ) 

 
 

denotes the mass 

associated with the mass point x j . The function f (x)  P( X  x) is therefore called the probability 

mass function of the random variable X. Other terms used are frequency function and probability 

function. Also, the notation p(x) is sometimes used instead of f (x) for probability mass functions. 
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2 

3 

4 

5 

A function f (x) is the probability mass function of a discrete random variable X if 

it has the following two properties: 
 

(1) p (x)  0 for all x, (2)  p(x)  1. 
all x 

Definition 2.4 Probability mass function 

 
 

Graphical form 

The probability distribution of a 

discrete random variable can also 

be represented graphically, as 

shown in Fig. 2.2. Such a graph is 

called a  probability  graph  (see 

Fig. 2.2). 

 
 

P 
(x1) 



x1 

 

p (x ) 





x2 

p (x) 







x3 

 
p (x ) 





x4 

 

 

 
p(x ) 


x5 x 

                                                                                             Fig. 2.2: Probability graph 

The probability distribution of a discrete random variable can also be 

represented by a probability histogram (see Fig. 2.3). Similar to the 

probability graph, the height of each rectangle  of  a probability histogram is 

equal to the probability that the random variable takes on the value which 

corresponds to the mid-point of the base. 
 

 

p (xi ) 

 

 

 

 
 

x1 x2 x3 x4 x5 x6 x 

Fig. 2.3: Probability histogram 
 

Random variables are so important in random experiments that sometimes 

we essentially ignore the original sample space of the experiment and focus 

on the probability distribution of the random variable. In this manner, a 

random variable can simplify the description and analysis of a random 

experiment. 
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20 

Example 2.6 
Determine whether each of the following can serve as a probability mass 

function of a discrete random variable: 

(a) f (x)  1 (x  2), 
2 

x = 1, 2, 3, 4. (b) g(x)  1 (x  1), 
10 

x = 0, 1, 2, 3. 

(c) h(x)  1   x
2      ,  x = 0, 1, 2, 3, 4. 

 

Solution 

(a) f (1)  1 (1 2)   1 . 
2 2 

f (1) is negative and so f (x) cannot serve as a probability mass function 

 
 

(b) 

of a discrete random variable. 
3 

g(x)  0  for all values of x, and  
x0 

 
g(x)  1 (1 2  3  4)  1. 

10 

 
 

g(x) 

 
 

is therefore the probability 

mass function of a discrete random variable. 
 

(a) (c) h(x)  0 
4 

for all values of x and   
x0 

h(x)  1 (0 1 4  9 16)  1.5. 
20 

4 


x0 

h(x)  1 and so h(x) 

cannot serve as a probability mass function of a discrete random variable. 

 

Example 2.7 
 

The following table gives the probability distribution of a random variable X. 
 

x 1 2 3 4 

p(x) 1 
4 

c 
1 
2 

1 
8 

(a) Find the value of the constant c. 

 

(b) Represent the probability distribution by: 
 

 

(i) a probability graph, (ii) a probability histogram. 

 

(c) Find (i) P( X  1), (ii) P(0  X  2), (i)  P( X  2). 
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2.3 Continuous probability distributions 
 
In Section 2.2, we learnt that for a complete characterization of a discrete random 
variable, it is necessary and sufficient to know the probability mass function of the 

random variable. Corresponding to every continuous random variable X, there is a 

function f, called the probability density function (p.d.f.) of X such that 
 

 
For a complete characterization of a continuous random variable, it is necessary and 
sufficient to know the p.d.f. of the random variable. 
 

 
 

Thus a continuous random variable has a probability of zero of assuming 

exactly any of its values. At first this may seem startling, but it becomes 

more plausible when we consider an example. Consider a random variable 

whose values are the heights of all people over twenty years of age. Between 

any two values, say 162.99 and 163.01 centimetres, there are infinite number 

of heights, one of which is 163 centimetres. The probability of selecting a 

person at random who is exactly 163 centimetres tall and not one of the 

infinitely large set of heights so close to 163 centimetres that you cannot 
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humanly measure the difference, is remote, and thus we assign a probability 

of zero to the event. 

As an immediate consequence of Equation (2.1), if X is a continuous random 

variable, then for any numbers a and b, with a ≤ b, 

P(a ≤  X  ≤  b)  =  P(a ≤ X < b)  =  P(a < X ≤ b) = P(a < X < b). ........ (2.2) 

That is, it does not matter whether we include an endpoint of the interval or 

not. This is not true, though, when X is discrete. 

Example 2.8 
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Example 2.9 
 

Refer to Example 2.8. Find: 
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Example 2.10 
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Example 2.11 
 

A random variable X has p.d.f. given by 
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The cumulative distribution function F (x) of a discrete random 

variable X with probability mass function f (x) is defined by 

F (x)  P( X  x)   f (xi ). 
xi x 

2.4 The cumulative distribution function 

There are many problems where we may wish to compute the probability that the observed value of a 
random variable X will be less than or equal to some real number x. For example, what are the 
chances that a certain candidate will get no more than 30% of the votes? What are the chances that the 

prices of gold will remain at or below $800 per ounce? Writing  F (x)  P( X  x)  for every real 

number x, we define F (x) to be the cumulative distribution function of X, or more simply, the 

distribution function of the random variable X. 
 

2.4.1 The cumulative distribution function of a discrete random variable 

Definition 2.5 (Cumulative distribution function) 

 
 
 

If X takes on only a finite number of values 

of X  is given by 

x1, x2 , ..., xn 

, 

then the cumulative distribution function

 

 
Fig. 2.8 depicts the graph of F(x). It can be seen that F(x) is discontinuous at the points 

x1, x2 , ..., xn. At these points, F(x) is continuous from the right but discontinuous from 
the left. Because of the shape of its graph, the cumulative distribution function of a 

discrete random variable is called a staircase function or a step function. Notice that 

F(x) has a jump of height f (xi ) at the point  xi and is constant in the interval (xi , xi+1 ). 
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   Fig. 2.8: A typical cumulative distribution function of a discrete random variable 
 
 

 

Example 2.12 
The following table gives the probability mass function of X. Find the 
cumulative distribution function of X and sketch its graph. 
 

x 0 1 2 3 4 

f (x)  1  
16 

1 
4 

3 
8 

1 
4 

 1  
16 53 



 

 

 

                        Fig. 2.9: The cumulative distribution function for Example 2.12 
 

Notice that even if the random variable X can assume only integers, the cumulative 

distribution function of X can be defined for non-integers. For example, in Example 

2.12, 
5

(1.5)
16

F  , 
11

(2.5)
16

F   

To find the probability mass function,  f (x), corresponding to a given cumulative 

distribution function,  F(x), we first find the points where F(x) is discontinuous. We 

then find the magnitudes  of the jumps at these points. If F(x) has a jump at the point xi 

, then f (xi ) is equal to the magnitude of this jump. Example 2.13 illustrates the 
procedure.  
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the distribution function of the random variable X. 

f (t)dt for  x  , is called the cumulative distribution function or 


Let X be a continuous random variable with probability density function f. The function 
 

 

Example 2.13 

 

Suppose the cumulative distribution function of X is 
 

 
 
 

2.4.2 The cumulative distribution function of a continuous random variable 

 

As in the case of discrete random variables, we are often interested in the 

probability that the value of a particular continuous random variable will be 

less than or equal to a given number. Again, as in the case of discrete 

random variables, the mathematical function used to designate a probability 

of this type is called a cumulative distribution function. The formal 

definition follows. 
 

Definition 2.6 (Cumulative distribution function) 
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As an immediate consequence of Definition 2.6, we can write the following two 
results 

b a 

P(a  X  b)      
f (t) dt      

f (t) dt    F (b)   F (a) ....................................... (2.3) 

 

and f (x) 
d  

F (x) ................................................................................................... (2.4) 
dx 

Example 2.14 

A continuous random variable X has the p.d.f. 
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Example 2.15 

 

Let X be a continuous random variable with cumulative distribution function given by 
 

 
 

Solution 

 

By applying Equation (2.4) on page 51, we find that the p.d.f. of X is given by 
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2.5 Expected Value of Random Variables 

A random variable X is characterized by its probability density function, which 

defines the relative likelihood of assuming one value over the others. In Chapter 3, 

we have seen that given a probability density function f of a random variable X, one 

can construct the distribution function F of it through summation or integration. 

Conversely, the density function f(x) can be obtained as the marginal value or 

derivative of F (x). The density function can be used to infer a number of 

characteristics of the underlying random variable. The two most important 

attributes are measures of location and dispersion. In this section, we treat the 

measure of location and treat the other measure in the next section. 

Definition 2.5.1  Let X be a random variable with space RX  and probability density 

function f(x). The mean µX   ( E ( X ) ) of the random variable X is defined as 

if the right hand side exists. 
 

The mean of a random variable is a composite of its values weighted by the 

corresponding probabilities. The mean is a measure of central tendency: the value 

that the random variable takes “on average.” The mean is also called the expected 

value of the random variable X and is denoted by E(X). The symbol E is called the 

expectation operator. The expected value of a random variable may or may not 

exist. 

Properties of Expected Values 

1- E( c) = c 

. ( ) . ( )

( )

. ( ) . ( )

c P x c P x c

E c

c f x dx c f x dx c

 

 

 

 


 


 
  


 

 
 

2- E( ax+b) = a E(x)+b 
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( ). ( ) . ( ) . ( ) ( )

( )

( ). ( ) . . ( ) . ( ) ( )

ax b P x a x P x b P x a E x b

E ax b

ax b f x dx a x f x dx b f x dx a E x b

  

  

  

  


    


  

     


  

  

 

3- ( )y g x  

( ). ( )

( ) ( ( ))

( ). ( )

g x P x

E y E g x

g x f x dx













  






 

4- 1 2 1 2( ( ) ( )) ( ( )) ( ( ))E g x g x E g x E g x  
-
 

0

0

5 ( ) ( )

( )

n
n n i i i

i

n
n n i i i

i

n
E a bx a b E x

i

n
a bx a b x

i









 
    

 

 
   

 





 

Example 2.16. If X is a uniform random variable on the interval (2,7), then 

what is the mean of X? 
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Example  2.17. If the probability density of X is given by : 

 2

4
, 0 1

1( )

0 .

x
xf x

o w




 

 



 

1- Find the expected value of X 

2- Find E(y) where y=(3+2x)2 

Solution: 

   

      

 

1 1

2 2

0 0

2 1

0

( ) . ( )

4 2 2

1 1

2 2
ln 1 | ln 2 ln 1

2
ln 2

E x x f x dx

x x
dx dx

x x

x



 





 
 

   





 
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2-
2(3 2 )y x   

2
2 2

0

2 0 0 1 1 1 0 2 2

2
( ) (3 2 ) 3 2 ( )

2 2 2
3 2 ( ) 3 2 ( ) 3 2 ( )

0 1 2

i i i

i

E y E x E x
i

E x E x E x





 
    

 

     
       
     



 

 

2
( ) ln 2E x


  

 

   

 

 

2 2

1 1 12 2

22 2

0 0 0

1 1

1 1 1

0 02

0 0

1

( ) . ( )

4 4 1 1 4 1
1

11 1

4 4 1 4
| tan |

1

4 4
1 tan 1 1

4

4
1

E x x f x dx

x x
dx dx dx

xx x

dx dx x x
x

 

  



 









 
   

 

   


 
    

 

 



  

 
 

 

2 0 0 1 1 1 0 2 2

2 0 1 1 0 2

2 2 2
( ) 3 2 ( ) 3 2 ( ) 3 2 ( )

0 1 2

2 2 2ln 4 4
3 2 3 2 3 2 ( 1)

0 1 2

E y E x E x E x

 

     
       
     

     
        
     
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Example  2.18. If the probability mass function of  X is given by : 

 

2 10

3
( ) , 0,1,2

12

3

x x
P x x

  
  

   
 
 
 

 

 

1- Find the expected value of  this random variable X? 

2- Find E(y) where y=(3+2x)3. 

 

Solution: 

2 10 10!
0 3 63!7!(0)

12!12 11

3!9!3

P

  
  
    
 
 
 

 

 

2 10 10!
1 2 92!8!(1)

12!12 22

3!9!3

P

  
  
    
 
 
 

 

 

 

2 10

2 1 10 1
(2)

12!12 22

3!9!3

P

  
  
    
 
 
 

 

2

0

( ) . ( )

0. (0) (1) 2. (2)

9 1 11 1
2.

22 22 22 2

x

E x x P x

P P P





  

   


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2-E(y) where y=(3+2x)
3
. 

 
3

3 3

0

3 0 0 2 1 1 1 2 2 0 3 3

3
( ) (3 2 ) 3 2 ( )

3 3 3 3
3 2 ( ) 3 2 ( ) 3 2 ( ) 3 2 ( )

0 1 2 3

i i i

i

E y E x E x
i

E x E x E x E x





 
    

 

       
          
       



0

2
2 2

0

2
3 3

0

1
( ) 1, ( ) ,

2

( ) . ( )

0. (0) (1) 4. (2)

9 1 13
4. .

22 22 22

( ) . ( )

0. (0) (1) 8. (2)

9 1 17
8. .

22 22 22

x

x

E x E x

E x x P x

P P P

E x x P x

P P P





 



  

  



  

  





 

3

3 0 0 2 1 1 1 2 2 0 3 3

3 3 2 2 2 3 3

3 3 2 2 3

( ) (3 2 )

3 3 3 3
3 2 ( ) 3 2 ( ) 3 2 ( ) 3 2 ( )

0 1 2 3

3 3 2 ( ) 3 2 ( ) 2 ( )

1 13 17
3 3 2 3 2 2

2 22 22

E y E x

E x E x E x E x

E x E x E x

  

       
          
       

   

     
        

     
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2.6 Variance of Random Variables 

The spread of the distribution of a random variable X is its variance. 

Definition 4.4. Let X be a random variable with mean x . The variance of  X, 

denoted by V (X), is defined as 

V (X) = E [ X − x ]2. 

 

It is also denoted by 
2

x   . The positive square root of the variance is called the 

standard deviation of the random variable X. Like variance, the standard deviation 

also measures the spread. The following theorem tells us how to compute the 

variance in an alternative way. 

Theorem 2.6.1. If X is a random variable with mean x  and variance 2

x   then 

 
2 2 2( )x xE x    

 

 
 

Theorem 2.6.2.  

If X is a random variable with mean x  and variance 2

x  , then 

V (a X + b) = a2 V (X), 
 

where a and b are arbitrary real constants. 
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Example  2.19. Let X have the density function 
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Example 2.20. If the probability density function of the random variable is 
 

 

then what is the variance of X? 

Answer: 

 Since V (X) = E(X2) − 
2

x    , we need to find the first and 

 
second moments of X. The first moment of X is given by 

x   = E(X) 
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The second moment  E(X2) of X is given by 
 
 
 

 

 

Thus, the variance of X is given by 

 

2 2 1 1
( ) ( ) 0

6 6
xV x E x       
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Properties of the Variance 

 

Let be  random variable and and two real numbers then 
 

2( ) ( )V ax b a V x   

 
Proof: 

2 2

2 2 2

2

( ) ( ( )) ( ( ) )

( ( )) ( ( ))

( )

V ax b E ax b E ax b E ax b E ax b

E ax aE x a E x E x

a V x

        

   


 

 

Theorem 2.6.3: 
 

If X is random variable has mean  and variance 
2  ,then  

, ( ) 0, ( ) 1
x

y E y V y





    

 

Proof: 
 

 

2

2 2 2

1 1
( ) ( ) ( ) ( ) 0

1 1
( ) ( ) ( ) ( ) 1

x
E y E E x E x

x
V y V V x V x


 

  

 


   


     


     

 

 
 
 
 

Standard deviation: 
 
 

( )V x   
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Example 2.21 : 
 
If the probability mass function of X is given by : 

1
( ) , 1,2, 3, 4, 5, 6

6
P x x   

 
1- Find the variance of X and the standard deviation of X? 

2- Find the variance of Y where 5 3Y x    
 
Solution: 
 

6

1

1 21 7
( ) ( ) (1 2 3 4 5 6)

6 6 2x

E x x P x


          

 
6

2 2

1

1 91
( ) ( ) (1 4 9 16 25 36)

6 6x

E x x P x


       
 

 

 

 
22 91 49 35

( ) ( ) ( )
6 4 12

V x E x E x    

 

35
( )

12
V x    

 

35
( ) (5 3) 25 ( ) 25.

12
V y V x V x

 
     

 
 

 

Example 2.22 : 
 
If the probability density function of X is given by : 
 

3 28
( ) , 0

3

xf x x e x   

 
1- Find the variance of X and the standard deviation of X? 

2- Find the variance of Y where 5 3Y x    
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Solution: 

1

0

4
4 2

0 0 0

5
2 2 5 2

0 0 0

( 1)!

1

2

8 8 1
( ) ( ) 5

3 3 16 2 12

1 24
4! 2

12 12

8 8 1
( ) ( ) 6

3 3 32 2 24

1 120
5! 5

24 24

n x

x y

x y

n n x e dx

y dy
E x x f x dx x e dx e

y dy
E x x f x dx x e dx e





 

  

 

  

 

  



   

  

   

  



  

  

 

 
22( ) ( ) ( ) 5 4 1V x E x E x      

 
 

( ) 1 1V x     

 

 ( ) (5 3) 25 ( ) 25. 1 25V y V x V x      
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1. A discrete random variable X has a probability mass function given by: 

             f (x) = c(x +1),     x = 0, 1, 2, 3. 

 

(a) Find the value of the constant c. 
(b) Draw (i) a probability graph, 

(ii) a probability histogram, to represent f (x). 

(c) Find: (i) P(0 ≤ X < 2),  (ii) P(X >1). 
 

2. Determine whether each of the following functions can serve as a probability mass 
function of a discrete random variable: 
 

(a) f (x) = (x −1),      x = 0, 1, 2, 3. 

(b)  g(x) = x,             x = 1, 2, 3, 4. 

(c)  h(x) = x ,            x = –1, 0, 1, 2. 
 

3. Let X be a random variable whose probability mass function is defined by the 
values 
 

     f (−2) =
 

  
 , f (0) =

 

  
  , f (4) =

 

  
  , f (11) = 

 

  
. 

 
Find: 

 (a) P(−2 ≤ X < 4),      (b) P(X > 0),          (c) P(X ≤ 4). 

 
4. A Check whether the following functions satisfy the conditions of a probability 

mass function. 
 

(a)  f (x) = 
 

 
,              x = –3, 0, 1, 4.  

(b) f (x) = 
 

 
 ,              x = 1, 2, 3, 4. 

(c) f (x) =1− x,           x = 0, 
 

 
 
 

 
. 

Exercise 2 
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 (d) )  f (x) = (
 

 
) ,     x = 1, 2, 3, 4, … . 

 

5. Consider a throw of two fair dice. Let X denote the sum of the numbers on the 
two dice. 
 
(a) Find the probability mass function of X. 

 
(b) Find: (i) P(X = 7), (ii) P(X > 8), (iii) P(3 < X <11). 
 

 

6. The sample space of an experiment is {a, b, c, d, e, f }, and each outcome is equally 
likely. A random variable X, is defined as follows: 
 

outcome a b c d e f 

X 0 0 1.5 1.5 2 3 

 
 

(a) Determine the probability distribution of X. 

(b) Find: (i) P(X =1.5), (ii) P(0.5 < X < 2.7), (iii) P(X > 3), (iv) P(0 ≤ X < 2). 

 
7. Determine the value of c so that each of the following can serve as a probability 

mass function of a discrete random variable. 
 
(a) f (x) = c(x2 + 4),                           x = 0, 1, 2, 3. 

(b) f (x) = c
2 3

3x x

  
  

   ,       x = 0, 1, 2. 

 

8. A discrete random variable X has the probability mass function given by 
 

1
1

a , 1,2,3,...
3

f (x) =

0, elsewhere.

x

x

  
  

 






 

 
(a) Find the value of a.        (b) Find P(X = 3). 
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9. Show that the following functions are probability density functions for some value 

of c and determine c. 
4

2

, 0
(a) f (x) =

0, elsewhere.

, 1 10
(b) f (x) =

0, elsewhere.

xc e x

c x x

 



   



 

(1 2 ), 0 2
(c) f (x) =

0, elsewhere.

1
, 0

(d) f (x) = 2

0, elsewhere.

cx

c x x

e x

  










 

10. Suppose that in a certain region, the daily rainfall (in inches) is a continuous 
random variable X with p.d.f. f (x) given by 

 

23
(2 ), 0 2

f (x) = 4

0, elsewhere.

x x x


  




 

       Find the probability that on a given day in this region the rainfall is 
(a) not more than 1 inch,                (b) greater than 1.5 inches, 
(c) equal to 1 inch,                          (d) less than 1 inch. 
 

11. Let X be a continuous random variable with p.d.f. 
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4 , 0.5 0

f (x) = 4 , 0 0.5

0, elsewhere.

x x

x x

   


 



 

 

(a) Sketch the graph of f (x). 
(b) Find:  

(i) P(X ≤ −0.3),    (ii) P(X ≤ 0.3),         (iii) P(−0.2 ≤ X ≤ 0.2). 

 
12. The pressure (measured in kg/cm2) at a certain valve is a random variable X 

whose p.d.f. is 

 26
3 , 0 3

f (x) = 27

0, elsewhere.

x x x


  




 

Find the probability that the pressure at this valve is 
(a) less than 2 kg/cm2, (b) greater than 2 kg/cm2, (c) between 1.5 and 2.5 kg/cm2. 

 
13.   Let X denote the length in minutes of a long-distance telephone 

conversation. Assume that the p.d.f. of X is given by 

1 10
10

, 0f (x) =

0, elsewhere.

x

e x


 



 

(a) Verify that f is a p.d.f. of a continuous random variable. 
(b) Find the probability that a randomly selected call will last: 
(i) at most 7 minutes, (ii) at least 7 minutes, (iii) exactly 7 minutes. 
 

14. A continuous random variable X has the p.d.f. 
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 
2

1 , 2 5
f (x) = 27

0, elsewhere.

x x


  




 

Find: (a) P(X < 4), (b) P(3 < X < 4). 
 

15.  The proportion of people who respond to a certain mail-order solicitation is 
a continuous random variable X with p.d.f. 

 
2

1 , 2 5
f (x) = 27

0, elsewhere.

x x


  




 

(a) Find P(0 < X < 0.8). 
(b) Find the probability that more than 0.25  but fewer than 0.5 of the people 
contacted will respond to this type of solicitation. 

16. A continuous random variable X that can assume values between x = 1 and x 
= 3 has a p.d.f. given by  

1
f (x) =

2
 

 
(a) Show that the area under the curve is equal to 1. 

 

(b) Find: (i) P(2 < X < 2.5),          (ii) P(X ≤1.6). 

 
 
 

17. Which of the following functions are probability density functions? 
 

(a) 

, 0.5 0.5
f (x) =

0, elsewhere.

x x  

  
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(b) 

1
, 1 1

g(x) = 2

0, elsewhere.

x


  




 

 (c )

1
, 0 1

f(x) =

0, elsewhere.

x
x


 





 

(d ) 

1
, 0 1

3
h(x) =

2
, 2 3

3

x

x


 


  


 

 
 

18.  The random variable X has the p.d.f. 

1
, 0 30

f(x) = 30

0, elsewhere.

x


 




 

 
Find:  
 
(a) P(X > 25| X >15),        (b) P(X < 20 | X >15), 
 
(c) P(X >15 |X < 22),         (d) P(X <13 |X <18). 
 

19.  Let X be a discrete random variable whose only possible values are 1, 2 and 
5. Find the cumulative distribution function of X if the probability mass function 
of X is defined by the following values: 

1 1 1
(1) , (2) , (5) .

4 2 4
f f f    
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20.  Let X be a discrete random variable whose cumulative distribution function 
is 

0, 3

1
, 3 6

6
F(x) =

1
6 10

2

1, x 10.

x

x

x

 

   


  

 

 

 
            (a) Find: 

                         (i) P(X ≤ 4), (ii) P(−5 < X ≤ 4), (iii) P(X = 4). 

(b) Find the probability mass function of X. 
 

21.  Let X be a discrete random variable with cumulative distribution function 
 

0, 1

0.1, 1 3

F(x) = 0.4 3 5

0.9 5 5.5

1, x 5.5.

x

x

x

x




 


 
  




 

 
 (a) Find : 

                (i) P(X ≤ 3),   (ii) P(X ≤ 4), (iii) P(1.5 < X ≤ 5.2). 

(b) Find the probability mass function of X. 
 

22. Let X be a discrete random variable whose only possible values are −5, −1, 0, 

and 7.  
 
Find the cumulative distribution function of X if the probability mass function of 
X is defined by the values : 

f (−5) = 0.3, f (−1) = 0.1, f (0) = 0.2, and f (7) = 0.4. 
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23.  Let 

2

0, 0

F(x) = x , 0 1

1, x 1

x

x




 
 

 

be the cumulative distribution function of the random variable X. Find: 
 

(a) P(X ≤ −1), (b) P(X ≤ 0.5), (c) P(X > 0.4), 

(d) P(0.2 < X ≤ 0.5), (e) P(X > 0.4 |  X > 0.2). 

 
24. The weekly profit (in thousands) from a certain concession is a random 

variable X whose distribution function is given by: 
 

2 3

0, 0

F(x) = 3x-3x , 0 1

1, x 1

x

x x




  
 

 

 
 (a) Find the probability of a weekly profit of less than  2 000.00. 
(b) Find the probability of a weekly profit of at least  500.00. 

 
25. Suppose the cumulative distribution function of the random variable X is 

 

0, 2

F(x) = 0.25x+0.5, 2 2

1, x 2

x

x

 


  
 

 

(a) Find the p.d.f. of X. 
 

(b) Calculate: 

(i) P(X <1.8),  (ii) P(X > −1.5),  (iii) P(X < −2),  (iv) P(X >1 | X > 0.5). 

 
26.  A continuous random variable X has the p.d.f. 
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, 0
f(x) =

0, x 0

cxe x 




 

 
where c is a constant. 
 
(a) Find the value of c. 
(b) Find the cumulative distribution function of X and sketch its graph. 
(c) Find (i) P(X > 8 |X > 3), (ii) P(X >1 X < 4). 
 

27. The distribution function of X is given by: 

2

0, 0

, 0 2
8

F(x) =

, 2 4
16

1, x 4

x

x
x

x
x



  


  





 

 (a) Find the p.d.f. of X. 

(b) Find (i) P(1≤ X ≤ 3), (ii) P(X < 3), (iii) P(X >1| X > 2). 

 
 
 

28.  The shelf life, in days, for bottles of a certain prescribed medicine is a 
random variable with p.d.f. 

 
3

20000
, x 0

100f(x) =

0,

x

elsewhere








 

 
Find the probability that a bottle of this medicine will have a shelf life of 
(a) at least 200 days, (b) between 80 and 120 days. 
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29.  A random variable X has distribution function given by 

2

2

0, 1

1
( 1) , 1 0

2
F(x) =

1
1 (1 ) , 0 1

2

1, x 1

x

x x

x x

 

    


    

 

 

 
Find the p.d.f. of X. 

 
 

30.  A random variable X has the p.d.f. given by 

1
, 0 2

f(x) = 2

0,

x x

elsewhere


 





 

 
 (a) Find the cumulative distribution function of X and sketch its graph. 

(b) Compute (i) P(X ≤ 2), (ii) P(X ≤ 2 |1≤ X < 3). 
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31. A discrete random variable X has probability mass function of the form 

 
(8 ), 0,1,2,3,4,5.

p(x) =
0, otherwise

c x for x 



 

 (a) Find the constant c.      (b) Find P (X > 2). 
 (c) Find the expected value E(X) for the random variable X. 
 
  

32.  A random variable X has a cumulative distribution function  
 

1
, 0 1

2
F(x) =

1 3
, 1

2 2

x x

x x


 


   


 

 
(a) Graph F (x). (b) Graph f(x). (c) Find P (X ≤ 0.5).  
(d) Find P (X ≥ 0.5). (e) Find P (X ≤ 1.25). (f) Find P (X = 1.25). 
  

33.   Let X be a random variable with probability density function  

1
, 1,2,3,4,5.

p(x) = 15

0, otherwise

x for x







 

 (a) Find the expected value of X.    (b) Find the variance of X.  
(c) Find the expected value of 2X     (d) Find the variance of 2X + 3.  
(e) Find the expected value of 3X − 5X2 + 1. 

34. 5. The measured radius of a circle, R, has probability density function 

6 (1 ), 0 1
f(x) =

0,

r r x

otherwise

  



 

(a) Find the expected value of the radius.  
(b)  Find the variance of  r. 
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Chapter Three 

 

 

3.1  Special Probability Distribution 
 

1- Binomial Distribution  
 

Consider a fixed number n of mutually independent Bernoulli trails. Suppose 
these trials have same probability of success, say p. A random variable X is 
called a binomial random variable if it represents the total number of 
successes in n independent Bernoulli trials.  
Now we determine the probability mass function of a binomial random 
variable. Recall that the probability mass function of X is defined as  
 
p(x) = P (X = x).  
 
Thus, to find the probability mass function of X we have to find the probability of x 
successes in n independent trails.  
 
If we have x successes in n trails, then the probability of each n-tuple with x successes and 
n - x failures is 
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Example  3.1. Is the real valued function f(x) given by: 
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Example 3.2.  
 
On a five-question multiple-choice test there are five possible answers, of 
which one is correct. If a student guesses randomly and independently, what 
is the probability that she is correct only on two questions?  
 

Answer:  
 
Here the probability of success is p = 1/5, and thus  

1 −p = 4/5 . 

 

There different ways she can be correct on two questions.  

Therefore, the probability that she is correct on two questions is 
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Example 3.3.  
 
What is the probability of rolling two sixes and three nonsixes in 5 
independent casts of a fair dice?  
 
Answer:  
Let the random variable X denote the number of sixes in 5 in- dependent casts 
of a fair die. Then X is a binomial random variable with probability of success 
p and n= 5. The probability of getting a six is p = 1/6.  
Hence 

 
 

Example 3.4. 
 
 What is the probability of rolling at most two "three" in 5 independent casts 
of a fair dice?  
 
Answer:  
 
Let the random variable X denote number of three in 5 independent casts of a 
fair dice. Then X is a binomial random variable with probability of success p 
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and n = 5. The probability of getting a three is p = 1/6 . Hence, the probability 
of rolling at most two three is 
 

P (X ≤ 2) = F (2) = P(0) +P(1) + P(2) 
 

 
 
 

Theorem 3.1.1.  
 
If X is a binomial random variable with parameters p and n, then the mean, variance and 
moment generating functions are respectively given by 
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0

1

0

1

1

0

( ) . ( )

. , 1

!
.

!( )!

( 1)!

( 1)!( )!

, 1, ( 1).

!

!( )!

n
x n x

x

n
x n x

x

n
x n x

x

m
y m y

y

E x x P x

n
x p q where q p

x

n
p x p q

x n x

n
np p q

x n x

where y x m n

m
np p q np

y m y





 



 









 
   

 







 

   

 











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 

 

2 2

2

0

2

0

1

1

1

1

1

1

2

( ) . ( )

. , 1

!
.

!( )!

( 1)!
.
( 1)!( )!

( 1)!
1 1 .

( 1)!( )!

( 1)!
1 .

( 1)!( )!

(

n
x n x

x

n
x n x

x

n
x n x

x

n
x n x

x

n
x n x

x

E x x P x

n
x p q where q p

x

n
x p q

x n x

n
np x p q

x n x

n
np x p q

x n x

n
np np x p q

x n x

np np n









 



 



 





 
   

 







 


  

 


  

 

  













2

2

2

0

2

2 2

2 2 2 2

( 2)!
1)

( 2)!( )!

, 2, ( 2).

!
( 1)

!( )!

( 1)

( ) ( ) ( ( ))

( 1)

(1 )

n
x n x

x

m
y m y

y

n
p q

x n x

where y x m n

m
np np n p q

y m y

np n n p

V x E x E x

np n n p n p np np

np p npq

 









 

   

  


  

 

     

  




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Example 3.5: 
 
Afair coin is tossed 12 times: 
 
Find the probability of getting five heads and seven tails. 
 
Solution: 
 

5 7

( )

12, 5

12 1 1
(5)

5 2 2

x n x
n

P x p q
x

n x

P
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2. Poisson Distribution  
 
In this section, we define an important discrete distribution which is widely 
used for modeling many real life situations. First, we define this distribution 
and then we present some of its important properties. 
 

Definition 3.2.  

A random variable X is said to have a Poisson distribution if its probability 

density function is given by 
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Example 3.6.  

Is the real valued function defined by 

 

 

Theorem 3.7. 

 If X ~ POI(λ), then 

E(X) = λ 

V (X) = λ 

M(t) = e 

 ( e

t 1) . 
 
 
Proof: 
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We find the moment generating function of X. 
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Example 3.8. 
 
 A random variable X has a Poisson distribution with a mean of 3. What is the 
probability that X is bounded by 1 and 3, that is, P (1 ≤ X ≤ 3)? 
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Example  3.9.  
 
The number of traffic accidents per week in a small city has a Poisson 
distribution with mean equal to 3. What is the probability of exactly 2 
accidents occur in 2 weeks? 
 
 
Answer:  
 
The mean traffic accident is 3. Thus, the mean accidents in two weeks are 
λ = (3) (2) = 6. 
 
Since 
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Example 3.10. 
 
 Let X have a Poisson distribution with parameter λ= 1. What is the probability that  

X ≥ 2 given  that X ≤ 4? 
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Example 3.11.  
 
If the moment generating function of a random 
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 3.2 SOME SPECIAL CONTINUOUS DISTRIBUTIONS  
 
In this chapter, we study some well-known continuous probability density functions. We 
want to study them because they arise in many applications. We begin with the simplest 
probability density function. 
 

1- An Exponential Distribution  
 

Definition 3.2.1. 
 

 A continuous random variable is said to be an exponential random variable with 
parameter θ if its probability density function is of the form 
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reduces to the exponential distribution. Hence most of the information about an 
exponential distribution can be obtained from the gamma distribution. 

 
Example  3.12.  
 
What is the cumulative density function of a random variable which has an exponential 
distribution with variance 25? 

 
Answer:  

 
Since an exponential distribution is a special case of the gamma distribution with α = 1, 
from Theorem 6.3, we get V(X) = θ2. But this is given to be 25. Thus, θ2 = 25 or θ = 5. 
Hence, the probability density function of X is 
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2. Normal Distribution  
 
Among continuous probability distributions, the normal distribution is very 
well known since it arises in many applications. Normal distribution was 
discovered by a French mathematician Abraham DeMoivre (1667-1754). 
DeMoivre wrote two important books. One is called the Annuities Upon Lives, 
the first book on actuarial sciences and the second book is called the Doctrine 
of Chances, one of the early books on the probability theory. Pierre- Simon 
Laplace (1749-1827) applied normal distribution to astronomy. Carl Friedrich 
Gauss (1777-1855) used normal distribution in his studies of problems in 
physics and astronomy. Adolphe Quetelet (1796-1874) demonstrated that 
man’s physical traits (such as height, chest expansion, weight etc.) as well as 
social traits follow normal distribution. The main importance of normal 
distribution lies on the central limit theorem which says that the sample mean 
has a normal distribution if the sample size is large.  
Definition 6.7. A random variable X is said to have a normal distribution if its 
probability density function is given by 
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Example 3.13. 
 
 Is the real valued function defined by 

 
 

 
Answer: 
 

 To answer this question, we must check that f is nonnegative and it integrates to 1. The 
nonnegative part is trivial since the exponential function is always positive. Hence using 
property of the gamma function, we show that f integrates to 1 on R . 
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The following theorem tells us that the parameter μ is the mean and the parameter σ2 is the 
variance of the normal distribution. 

 

Theorem 3.2.1.   If X ~ N(μ, σ2), then  
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Example 3.14.  
 
If X is any random variable with mean μ and variance σ2 > 0, then what are 

the mean and variance of the random variable 
X

Y





 ?  

 
Answer:  
 
The mean of the random variable Y is 
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Hence, if we define a new random variable by taking a random variable and subtracting 
its mean from it and then dividing the resulting by its standard deviation, then this new 
random variable will have zero mean and unit variance. 
 
Definition 3.2.2. 

 
 A normal random variable is said to be standard normal, if its mean is zero 
and variance is one. We denote a standard normal random variable X by  
X ~ N(0, 1).  
 
The probability density function of standard normal distribution is the 
following: 
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f x e x
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Example 3.15.  
 
If X ~ N(0, 1), what is the probability of the random variable X less than or 
equal to −1.72? 
 

 
 
 
 

Example 3.16.  
 

If Z ~ N(0, 1), what is the value of the constant c such that P (|Z| ≤ c) = 0.95? 

 
 

Hence  

P (Z ≤ c) = 0.975,  

and from this using the table we get  

c = 1.96.  
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The following theorem is very important and allows us to find probabilities by using 

the standard normal table. 
 

Theorem 3.2.2.  
 

If X ~ N(μ, σ2), then the random variable 
 

 
 
 

Proof: 
 We will show that Z is standard normal by finding the probability density function of Z. 
We compute the probability density of Z by cumulative distribution function method. 
 
 

 
 

The following example illustrates how to use standard normal table to find probability 

for normal random variables.  
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Example 3.17.  
 

If X ~ N(3, 16), then what is P (4 ≤ X ≤ 8)?  

 

Answer: 

 
Example 3.18.  

 

If X ~ N(25, 36), then what is the value of the constant c such that  

 

P (|X − 25| ≤ c) = 0.9544?  

 

Answer:  
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Example 3.19.  

 

a) What is the probability that Z for a standard normal probability distribution is 

between -0.76 and 0.76 ? 

b) What is the probability that Z for a standard normal probability distribution is 

smaller than – 0.76  or larger than  0.76 ? 

 

Solution: 

 

The calculation of probability is as follows: 

 

a) P(- 0.76 < z <0.76) = P( z < 0.76) - P(z < - 0.76) 

 

                                = 0.7764 – 0.2236 

 

                                = 0.5528 

 
 

b)  (        )⋃(      )   (        )  (      )   
 
= 0.2236 +(1-0.7664)=0.4472 
 
 

Example 3.20 

 
A city installs 2000 electric lamps for street lighting. These lamps have a 
mean burning life of 1000 hours with a standard deviation of 200 hours. The 
normal distribution is a close approximation to this case. 
 
a) What is the probability that a lamp will fail in the first 700 burning hours? 
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c) How many lamps are expected to fail between 900 and 1300 burning 
hours? 
 
This is a continuation of part (b). The expected number of failures is given by 
the total number of lamps multiplied by the probability of failure in that interval. 
Then the expected number of failures = (2000) (0.6247) = 1249.4 or 1250 
lamps. Because the burning life of each lamp is a random variable, the actual 
number of failures between 900 and 1300 burning hours would be only 
approximately 1250. 
 
d) What is the probability that a lamp will burn for exactly 900 hours? 
Since the burning life is a continuous random variable, the probability of a life 
of exactly 900 burning hours (not 900.1 hours or 900.01 hours or 900.001 
hours, etc.) is zero. Another way of looking at it is that there are an infinite 
number of possible lifetimes between 899 and 901 hours, so the probability of 
any one of them is one divided by infinity, so zero. We saw this before in 
Example 6.2. 
 
e) What is the probability that a lamp will burn between 899 hours and 901 
hours before it fails? 
 
Since this is an interval rather than a single exact value, the probability of 
failure in this interval is not infinitesimal (although in this instance the 
probability is small). 
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1. What is the probability of getting exactly 3 heads in 5 flips of a fair coin? 
 

2. On six successive flips of a fair coin, what is the probability of observing 3 heads 
and 3 tails? 
 

3. If a fair coin is tossed 4 times, what is the probability of getting at least two heads? 
 

4. Suppose X has a Poisson distribution with a standard deviation of 4. What is the 
conditional  probability that X is exactly 1 given that X ≥ 1 ? 

 
5. Let X have a Poisson distribution with parameter λ= 2. What is the probability that 

X ≥ 5 given that X ≤ 8? 
 

6. Find the mean and variance of  an exponential distribution? 
 
 

7. What is the probability that a normal random variable with mean 6 and standard 
deviation 3 will fall between 5.7 and 7.5 ? 
 

8. If in a certain normal distribution of X, the probability is 0.5 that X is less than 500 
and 0.0227 that X is greater than 650. What is the standard deviation of X?  
 
 

9. 11. If X ~ N(5, 4), then what is the probability that 8 < Y < 13 where Y = 2X + 1? 
 

 
 
 
 
 
 
 

Exercise  3 
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