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Chapter 1

Sets and Relations

SETS, ELEMENTS

The concept set appears in all branches of mathematics. Intuitively, a set is any well-
defined list or collection of objects, and will be denoted by capital letters A,B,X,Y, ....
The objects comprising the set are called its elements or members and will be denoted by
lower case letters a,b,z,¥,.... The statement “p is an element of A” or, equivalently,
“p belongs to A” is written

peEA
The negation of p € A is written p € A.

There are essentially two ways to specify a particular set. One way, if it is possible,
is by actually listing its members. For example,

t A = {a,e1,0,u}

denotes the set A whose elements are the letters a,¢,i,0 and #. Note that the elements
are separated by commas and enclosed in braces { }. The other way is by stating those
i e
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* B = {xz:x is an integer, z > 0}

which reads “B is the set of x such that x is an integer and x is greater than zero,”
denotes the set B whose elements are the positive integers. A letter, usually z, is used
to denote an arbitrary member of the set; the colon is read as ‘such that’ and the comma
as ‘and’.

% Example 11: The set B above can also be written as B = {1,2,8,...}. Note that -6€& B, 3€B

and = & B.
» Example 1.2: Intervals on the real line, defined below, appear very often in mathematics. Here
a and b are real numbers with a < b.
Open interval from a to b = (a,b) = {x:a<2x<b}
Closed interval from a to b = [@,b] = {x: ¢ =2 = b}
Open-closed interval from a to & = (a,b] = {x: a <z = b}
Closed-open interval from a to b = [a,b) = {x: a =2 <b)

The open-closed and closed-open intervals are also called half-open intervals.

Clos o9 = = bl z2en 1Nte

Two sets A and B are equal, written A = B, if they consist of the same elements, i.e.
if each member of A belongs to B and each member of B belongs to A. The negation of
A =B is written 4 # B.

¥ Example 1.3: Let E = {x: #2—3¢x+2 =0}, F={2,1} and G ={1,2,2,1}. Then E=F=0G.
Observe that a set does not depend on the way in which its elements are displayed.
A set remains the same if its elements are repeated or rearranged.

Sets can be finite or infinite. A set is finite if it consists of » different elements,
where n is some positive integer; otherwise a set is infinite. In particular, a set which
consists of exactly one element is called a singleton set.
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2 SETS AND RELATIONS [CHAP. 1

SUBSETS, SUPERSETS

A set A is a subset of a set B or, equivalently, B is a superset of A, written
ACB or BDA

iff each element in A also belongs to B; that is, if + € A implies xt € B. We also say that
A is contained in B or B contains A. The negation of ACRB is written A¢B or BpA
and states that there is an x € A such that x & B.

Example 21: Consider the sets
A = {1,8,5,7,...}, B = {5,10,15,20, ...}
C = {x: x is prime, ¢ > 2} = {3,5,7,11,...}

Then € C A since every prime number greater than 2 is odd. On the other hand,
B¢A since 10 € B but 10 € A.

Example 2.2: We will let N denote the set of positive integers, Z denote the set of integers, @ de-
note the set of rational numbers and R denote the set of real numbers. Accordingly,

NCcZcQCR

Observe that A CB does not exclude the possibility that A =B. In fact, we are able
to restate the definition of equality of sets as follows:

Definition: | Two sets A and B are equal if and only if ACB and BCA.

In the case that ACB but A +# B, we say that A is a proper subset of B or B contains
A properly. The reader should be warned that some authors use the symbol C for a
subset and the symbol C only for a proper subset.

Our first theorem follows from the preceding definitions.

Theorem 1.1: Let A, B and C be any sets. Then (i) ACA; (ii) if ACB and BCA then
A =B; and (iii) if ACB and BCC then ACC.

UNIVERSAL AND NULL SETS

In any application of the theory of sets, all sets under investigation are subsets of a
fixed set. We call this set the universal set or universe of discourse and denote it in this
chapter by U. It is also convenient to introduce the concept of the empty or null set,
that is, a set which contains no elements. This set, denoted by @, is considered finite and
a subset of every other set. Thus, for any set A, @CACU.

Example 3.1: In plane geometry, the universal set consists of all the points in the plane.
Example 3.2: Let A = {x:x?2 =4, xis odd}. Then A is empty, ie. A = .

Example 3.3: Let B ={®}. Then B+ () for B contains one element.

CLASSES, COLLECTIONS, FAMILIES AND SPACES

Frequently, the members of a set are sets themselves. For example, each line in a set
of lines is a set of points. To help clarify these situations, we use the words ‘“class”,
“collection” and “family” synonymously with set. Usually we use class for a set of sets,
and collection or family for a set of classes. The words subclass, subecollection and
subfamily have meanings analogous to subset.

Example 41: The members of the class {{2, 3}, {2}, {5,6}} are the sets {2,383}, {2} and {5, 6}.




CHAP. 1] . SETS AND RELATIONS 3

Example 4.2: Consider any set A. The power set of A, denoted by P(A4) or 24, is the class of all
subsets of A. In particular, if 4 = {a, b,¢}, then

PA) = {A, {a,b}, {a,c}, {b,c}, {a}, {b}, {c}, P}~

In general, if A is finite, say A has n elements, then P(A) will have 2" elements.
The word space shall mean a non-empty set which possesses some type of mathematical
t vector space metric space or topological space. In such a sitpation, we

structure, e.g. vector space, 1me
will call the elements in a spac

a
=
S
.
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SET OPERATIONS

The union of two sets A and B, denoted by AUB, is the set of all elements which
belong to 4 or B, ie.,

A 11 T

rd A Fo Ry
AUD = .73 A Or T« Dy

Here “or” is used in the sense of “and/or”.

The intersection of two sets A and B, denoted by ANB, is the set of elements which
belong to both A and B, i.e.,

AnNB :-{x:xeA and z € B}
If AnB =, thatis, if A and B do not have any elements in common, then A and B are

said to be disjoint or non-intersecting. A class ¢4 of sets is called a disjoint class of sets
if each pair of distinct sets in o4 is disjoint.

The relative complement of a set B with respect to a set A or, simply the difference of
A and B, denoted by A\ B, is the set of elements which belong to A but which do not
belong to B. In other words,
ANB = {x:x€A, z&€B)}
Observe that A\ B and B are disjoint, i.e. (AN B)NB = Q.
The absolute complement or, simply, complement of a set A, denoted by A¢, is the set

of elements which do not belong to 4, i.e., J
Ac = {(x:z€U, z&A)
In other words, A° is the difference of fhe universal gset U and A
Example 5.1: The following diagrams, called Venn diagrams, illustrate the above set operations.
Here sets are represented by simple plane areas and U, the universal set, by the

area in the entire rectangle.

ANB is shaded AUB is shaded

A \ B is shaded Ac¢ is shaded
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Sets under the above operations satisfy various laws or identities which are listed
in the table below (Table 1). In fact, we state

nevass 1 0 Dt agntiafir +hna Tazzra 13 Mallsa 1
LILCUICIIL 1.5 LS Salldly LUIIC 1la S 11 L al}IC L
LAWS OF THE ALGEBRA OF SETS
Idempotent Laws
la. AUA = A 1b. ANA = A
Associative Laws
2a. (AUB)UC = AU(BUC(C) 2b. (ANB)NC = AN(BNC)
Commutative Laws
3a. AUB = BuAd 3b. AnB = BnA
Distributive Laws
4a. AU(BNC) = (AUB)N(AUC 4b. AN(BUC) = (ANB)U(ANC)
Identity Laws
5a. AUQ = A 5b. AnU = A
6a. AUU = U 6b. AN = O
Complement Laws
7a. AUAc = U . ANAc = @
8a. (A°)c = A 8b. Uce=9@, pc=U
De Morgan’s Laws
9a. (AUB)c = AcnBc 9b. (ANB)c = AcUBc¢

Table 1

Remark: Each of the above laws follows from an analogous logical law. For example,
ANB = {z:2€A and €B} = {x:x€B and xt€A} = BNA

Here we use the fact that the composite statement “p and ¢”, written p A ¢, is logically
equivalent to the composite statement “q and p”, ie. gAp. :

The relationship between set inclusion and the above set operations follows.

Theorem 1.3: Each of the following conditions is equivalent to ACB:
(i) AnB=4 (iii) B°CA* (v) BUA*=U
(iiy AUB =B (iv) ANBc=Q

PRODUCT SETS

Let A and B be two sets. The product set of A and B, written A X B, consists of all
ordered pairs (a,b) where e €4 and b€ B, ie.,

AXB = {{a,b):a€ A, bEB)
The product of a set with itself, say A X A, will be denoted by A2.

Example 61: The reader is familiar with the Cartesian plane R2 = RX R (Fig. 1-1 below).
Here each point P represents an ordered pair (e, b) of real numbers and vice versa.

Example 6.2: Let A = {1,2,8} and B = {a,b}. Then
AXB = {d,a), 1,b), 2,a), 2,b), 3,a), 3,b)}
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Since A and B do not contain many elements, it is possible to represent A X B by
a coordinate diagram as shown in Fig. 1-2 above. Here the vertical lines through
the points of A and the horizontal lines through the points of B meet in 6 points
which represent A X B in the obvious way. The point P is the ordered pair (2, b).

In general, if a set A has s elements and a set B has ¢ elements, then A X B has
s times ¢ elements.

Remark: The notion “ordered pair’ (a,b) is defined rigorously by (a,b) = {{a}, {a,b}}
From this definition, the “order” property may be proven:
{a,b) = (¢,d) implies a=¢ and b=d

The concept of product set can be extended to any finite number of sets in a natural
way. The product set of the sets A4, ..., An, denoted by

A X A3 X -+ X An  or H:LIAi

consists of all m-tuples {(a,,as, ...,an) where a; € A; for each 7.

RELATIONS

A binary relation (or relation) R
in A X B exactly one of the followin

from a set A to a set B assigns to each pair (a,bd)
1o statements:

(i) “a is related to b”, written a R b
(ii) “a is not related to b”, written a R b
A relation from a set A to the same set A is called a relation in A.

Example 7.1:  Set inclusion is a relation in any class of sets. For, given any pair of sets A and B,
either ACB or A¢B.

Observe that any relation R from a set A to a set B uniquely defines a subset B* of
A X B as follows:

¥ —_ (1 hy « ~ D
n — WY, 0 . anv

On the other hand, any subset R* of A X B defines a relation R from A to B as follows:
aRb iff (a,b) € R*

[
e

In view of the cor

orres
redefine a relation by

Definition:| A relation B from A to B is a subset of 4 X B.

The domain of a relation R from A to B is the set of first coordinates of the pairs in R
and its range is the set of second coordinates, i.e.,

domainof B = {a:{a,b)€R}, rangeofR = {b:{a,b)ER}

The inverse of R, denoted by R~1, is the relation from B to A defined by
R™' = {(b,a):{e,b) ER}
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Note that B~! can be obtained by reversing the pairs in E.

Example 7.2: Consider the relation
R = {1,2,{,3), 2,3}
in A = {1,2,8}. Then the domain of R = {1, 2}, the range of R = {2,3}, and
R-1 = {&1, &1, 8,2}

Observe that B and £~1 are identical, respectively, to the relations < and > in

4, ie.
s 1€ @b ER iff a<b and (a,B)ER-! iff a>b

The identity relation in any set A, denoted by A or A, is the set of all pairs in A X A4

with equal coordinates, i.e., A, = {{ma):a€A)

The identity relation is also called the diagonal by virtue of its position in a coordinate

diagram of A X A.

EQUIVALENCE RELATIONS

A relation R in a set A, i.e. a subset B of A X 4, is termed an equivalence relation iff
it satisfies the following axioms:

[E.] For every a € A4, (a,a) €ER.
[E:] If (a,b) € R, then (b,a) €R.
[Es] If (a,b) € R and (b,¢) € R, then (a,c) € R.

In general, a relation is said to be reflexive iff it satisfies [E.], symmetric iff it satisfies [E:]
and transitive iff it satisfies [Es]. Accordingly, a relation R is an equivalence relation iff
it is reflexive, symmetric and transitive.

Example 81: Consider the relation C, i.e, set inclusion. Recall, by Theorem 1.1, that ACA for

every set A, and
if ACB and BCC then AcCC

Hence C is both reflexive and transitive. On the other hand,
ACB and A*#B implies B¢A

Accordingly, C is not symmetric and hence is not an equivalence relation.

Example 8.2: In Euclidian geometry, similarity of triangles is an equivalence relation. For if
a, B and v are any triangles then: (i) « is similar to itself; (ii) if « is similar to 8,
then g is similar to «; and (iii) if « is similar to 8 and 8 is similar to y then « is
similar to 7.

If R is an equivalence relation in A, then the equivalence claés of any element a € A,
denoted by [«], is the set of elements to which a is related:

[a] = {z: {a,z) € R}
The collection of equivalence classes of A, denoted by A/R, is called the quotient of A by R:
A/R = {la]l:a <€ A}
The quotient set A/R possesses the following properties:
Theorem 1.4: Let R be an equivalence relation in A and let {a] be the equivalence class
of a € A, Then:
(i) For every a € A, a€al
(i) [a]l =[b] if and only if (a, b) € R.
(iii) If [a]+ [b], then [a] and [D] are disjoint.



CHAP. 1] SETS AND RELATIONS 7

A class o4 of non-empty subsets of A is éalled a partition of A iff (1) each a €A
belongs to some member of ¢4 and (2) the members of o4 are pair-wise disjoint. Accord-
ingly, the previous theorem implies the following fundamental theorem of equivalence

relations:

Theorem 1.5: Let R be an equivalence relation in A. Then the quotient set A/R is a
partition of A.

Example 83: Let B; be the relation in Z, the set of integers, defined by
x = y (mod5)

which reads “x is congruent to ¥y modulo 5” and which means “x —y is divisible
by 5”. Then Ry is an equivalence relation in Z. There are exactly five distinct

equivalence classes in Z/R;

E, = {...,—10,-5,0,5,10, } = = [—10] = [-5] = [0] = [5] =
E, = {...,-9,—41,6,11i,...} = i—91 = 1[—41 = (1] = (6] =
E, ={...,—8,-8,2,7,12, ...} = =[-8] =131 =121 =1I7] =
E; = {...,-7,-23,8,13,...} = --- = [—-71 = 0—2] = (3] = (8] =
E, = {...,—6,—-1,4,9,14,...} = --« = [-6] = [-1] = [4] = [98] =

Observe that each integer x, which is uniquely expressible in the form x = 5q+r
where 0 = r < 5, is a member of the equivalence class E, where r is the
remainder, Note that the equivalence classes are pairwise disjoint and that

Z = Ey\E\UE,UE,UE,.

COMPOSITION OF RELATIONS
Let U be a relation from A to B and let V be a relation from B to C, iie. UCAXBEB
and V Cc BxC. Then the relation from 4 to C which consists of all ordered pairs

(a,¢y € AXC guch that for some beEB,

(¢, by € U and (b,e) EV
is called the composition of U and V and is denoted by VoU. (The reader should be
warned that some authors denote this relation by UoV.)
It is convenient to introduce some more symbols:
3, there exists 8.t., such that V, for all =, implies

We may then write:

VoU = {(z,y):2EA, yEC

Ab e R st. (2. DYe U (b eV
, Y , Y 0 < s.t. (&, 0) 0,y

Example 91: Let A = {1,2,3,4}, B = {x,y,2,w} and C = {5,6,7,8}, and let
U= {11y 22,3w,4w} and V = {(,5) ¥,6), 8, w0}

That is, U is a relation from A to B and V is a relation from B to C. We-may
illustrate U and V as follows:

Accordingly,
1,5y € VoU sgince y€B and A,y €U, W,5 €YV

1,6y € VoU since y€B and 4,y €U, W,60€EV
B, E€ VolU since w€B and B,w)EU, w,HEV
4, € VoU since w€B and 4, wye U, w,HEV
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No other ordered pairs belong to Vo U, that is,
VolU = {(,5), (1,6), 3,7, 4,D}

Observe that Vo U consists precisely of those pairs (x, y) for which there exists, in
the above diagram, a “path” from x € A to y € C composed of two arrows, one fol-

lowine the-other

1OWIT gttt othner.

Example 9.2: Let U and V be the relations in R defined by
U= {&x,y: 224+y2=1} and V = {y,2):2y+32=4}
Then the relation VoU, the composition of U and V, can be found by eliminating
y from the two equations x24-y2 =1 and 2y + 3z = 4. In other words,
VoU = {{x,2): 422+ 922 —-242z+ 12 = 0}

Example 9.3: Let N denote the set of positive integers, and let R denote the relation < in N, i.e.
(a, » € R iff a<b. Hence (a,b) €ER-1 iff a > b Then

ReR-1 = {{(z,y):2y€EN; IbEN st. (x,bERL (b, ER}
= {(x,y):2yEN; IBEN s.t. b<ux, b<y}
= MN\{IHxMN\{1}) = {@p:cyEN; 2y +*1}
and
R1oR = {(x,yp:2y€EN; IBEN st. (x,b)ER, (b,y) ER1}
{@, ) : x,y €EN;, IBEN st. b>2a, b>y}

Note that RoR~1 = R—-10oR.

Solved Problems

SETS, ELEMENTS, SUBSETS

- 1

™ L

Toat A —
aAdv U AL

Solution:
A g fhe

A 18 U

ent 2, iie. A ={2}. The number 2 belon

10 &, 1.8. A — 0el &

cat
does not equal A. There is a basic difference between an element p and the singleton set {p}.

Determine which of the following sets are equal: @, {0}, {@}.

Solution:

Each is different from the other. The set {0} contains one element, the number zero. The set ¢
contains no elements; it is the null set. The set {(}} also contains one element, the null set.

Determine whether or not each of the following sets is the null set:

(i) X = {xz:22=9,2x=4}, (i) ¥ = {x:ax+x}, (i) Z2={x:2+8=8}.
Solution: .

(i) There is no number which satisfies both %2 =9 and 2x = 4; hence X = (.

(i) We assume that any object is itself, so ¥ is empty. In fact, some texts define the null set by
D = {x:x #*x}.

(ili) The number zero satisfies x4+ 8 = 8; hence Z = {0}. Accordingly, Z # (.

Prove that A = {2,8,4,5} is not a subset of B = {x:x is even}.

Solution:

It is necessary to show that at least one member of A does not belong to B. Since 3€ A and
3€ B, A is not a subset of B.
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%« 5. Prove Theorem 1.1 (iii): If ACB and BCC then ACC.
Solution:
We must show that each element in A also belongs to C. Let x€A. Now ACB implies x € B.
But BCC, so *€C. We have therefore shown that x€ A implies x €C, or ACC.
6. Prove: If A is a subset of the null set @, then A=0.
Solution:
The null set § is a subset of every set; in particular, P CA. But, by hypothesis, A C(; hence,
by Definition 1.1, 4 =@.
¢ 7. Find the power set P(S) of the set S = {1,2,3}.
Solution:
Recall that the power set P(S) of S is the class of all subsets of S. The subsets of S are
{1,2,3}, (1,2}, 1,3}, {2,3}, {1}, {2}, {3} and the empty set (). Hence
PS) = {8, {1,3},{2,8}, {1,2}, {1}, {2}, {3}, ¥}
Note that there are 23 =8 subsets of S.
+8. Find the power set P(S) of S = {3, {1,4}).

Solution:

Note first that S contains two elements, 3 and the set {1,4}. Therefore P(S) contains 22=4
elements: S itself, the empty set (), the singleton set {3} containing 3 and the singleton set {{1,4}}
containing the set {1,4}. In other words,

PS) = {8, 38} L4, @

SET OPERATIONS

~ 9.

Let U= {1,2,...,89}, A=(1,23,4}, B={2,4,6,8) and C = {3,4,5,6).
Find: (i) 4°, (ii) (ANC), (iii) B\ C, (iv) (AUB).

Solution:

10.

~+11.

(i) Ac¢ consists of the elements in U that are not in A; hence Ac¢ = {5,6,7,8,9}.

(ii) ANC consists of the elements in both A and C; hence
ANC = {3,4} and (AnC)Y = {1,2,5,6,7,8,9}

™

\. C consists

N

[=]
=
=+
=
0
e
¢
=2
o]
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€
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=]
(e}
(o]
o
/
Q
It
Py
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e

(iv) A UB consists of the elements in A or B (or both); hence
AUB = {1,2,3,4,6,8;} and (AuB) = {5,7,9}

Prove: (ANBYNB = ©.
Solution: (ANB)NnB = {x:x€ B, x€ A\ B}
{x:x€B,x€A, x&€B} =

since there is no element x satisfying x €B and « € B.

Prove De Morgan’s Law: (AUB)" = A°N Be.
)

s TR\ A I'e ~ A T
UB) = {x:x&AUB}

N

Solution: {
= {x:x2€A4, x& B}

.

{x: x €Ac, x EB¢} = AcnBc
h 5 YR o\, A —
Prove: D\NA = b
B

\ A4

D

Ac
AT,

{x:x€B, x €A} = {x:x€B, x €Ac} = BnAc

i

Solution:
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13. Prove the Distributive Law: AN(BUC) = (ANBYU(ANC).
Solution: AN(BUC) = {x:x€A;x€BUC}
= {@w:x€EA;,cE€EBorx€C}
{x:xc€EA, xEB;or x €A, x€EC}
{x:x€ANB or x€EANC}
= (ANB)U(ANCQC)
Observe that in the third step above we used the analogous logical law
pAl@ver)y = (pragvipAar)
where A reads “and” and v reads ‘“or”.

£ 14. Prove: For any sets A and B, ANBCACAUB.

Solution:

Let x€ ANB; then *x€A and x€B. In particular, x€A. Accordingly, ANBCA. If x€A,
then x €A or x€RB, le. x € AUB. Hence AcAUB. In other words, ANBCACAUB.

15. Prove Theorem 1.3(1): ACPB if and only if ANEB = A.

Solution:

Suppose ACB. Let x€ A; then by hypothesis, * €B. Hence x€A and *€B, ie. x€ ANB.
Accordingly, ACANB. But by the previous problem, ANBCA. Hence ANB = A.

On the other hand, suppose ANB = A. Then in particular, ACANB. But, by the previous
problem, ANBCB. Hence, by Theorem 1.1, A CB.

PRODUCT SETS, RELATIONS, COMPOSITION OF RELATIONS
«16. Let A= {a,b}, B={2,8} and C = {3,4}. Find: (i) 4 x (BUC), (ii) (4 X B)U(A X C).

Solution:

i) First compute BUC = {2,3,4}. Then

AXBUC) = {{(a,2),(a,3),(a,4),b,2), ¥,3),(b,4)}
(iiy First find A X B and A4 X C:
AXB = {(a2),(a,3),(,2,®3}, AXC = {(3),(,4),d3), b4}
Then compute the union of the two sets:
(AXBYUMAXC = {(a,2, a3, b, 2,b,3), 4, b4}

Observe, from (i) and (ii), that A X (BUC) = (A X Byu (4 X O).

17. Prove: A X (BNC) = (A XB)N(A X C).
Solution: AXBNC) = {@xy:2€A4, y€BnC}
= {@xy:2€A, yEB, yeC}
{(@,): (X, ) EAXB, 2, ) EAXC}
= AXBYNAXO)

©18. Let R be the relation < from A = {1,2,3,4} to 12
B = {1,8,5}, ie., (a,D)€ER iff a <b.
(i) Write R as a set of ordered pairs. J B

ii) Plot R on a coordinate diagram of A X B.

(
(iii) Find domain of R, range of B and B~ 4
(iv) Find RoR™. 1 2 3 4
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i) R consists of those ordered pairs (a,b) € A X B such that a < b; hence
R = {{1,8),(,5),(23),(25),(3,5),4,5)}
(ii) R is displayed on the coordinate diagram of A X B as shown above.
(iii) The domain of R is the set of first coordinates of the pairs in K; hence domain of R = {1, 2, 3,4}.

The range of R is the set of second coordinates of the pairs in R; hence range of R = {8,5}.
R-1 can be obtained from R by reversing the pairs in R; hence

R——l = { (3’ 1)’ (5’ 1>’ (3’ 2)’ (5’ 2)’ (5’ 3)’ (5’ 4) }

(iv) To find ReoR~1, construct diagrams of BR~! and R as shown below. Observe that R~1, the
second factor in the product RoR—1, is constructed first. Then

RoR-1 = {(8,8),(3,5), 5,3, 6,5 )

E 19. Let T be the relation in the set of real numbers R defined by
2Ty if both z € [n,n+1] and

Graph the relation T.

Solution:

<
T

T consists of the shaded squares below.

20. Let T Dbe the relation in the set of real numbers R defined by Ty iff 0 = 2 —y = 1.
(i) Express T and T~ Y as subsets of R X R and graph.-
(ii) Show that ToT-! = {(#,7): |z —z| = 1}.
Solution:
(i) T = {@y: 2yER, 0=x—y =1}
Tt = @y wn€el} = (W 2y€ER 0=y-2=1}

The relations T and 7~ are graphed below.

2

Graph of T Graph of T!
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(ii)
ToT-1 =

Let S = {(x,2):|x—2]=1}.

Let (x,2) belong to ToT~1,

Then 3y s.t.

[CHAP. 1

By definition of composition of relations,
{(x,2):
= {(x,2):
= {{x,2):

Iy ER st. (¢, €T, (y,»»ET}
JyER st. y,x0), Y,2)ET}~

IyeER st. 0=y—2=1,0=y—-2=1}
We want to show that ToT-1 = S,

0=y—2,y—2=1. But

fy.._x, y_zfl

y—z=1

y—2=14y—w

r—z=1

Also, 0=y—w, y—2=1 y—ao=1
y—x=1+y—z

1 = o

I CZ <

NIV VARV
\

!
[ury
54

I
«

y—z=1 = =1 iff

ToT-1cCS8.

In other words, =y—ua,

Accordingly, (x,2) €S, ie.
Now let (x,z) belong to S; then |x—z| = 1.
Let ¥y = max (x,2); then 0 =y—x=1 and 0=y—z2=1.

Thus (», 2) also belongs to ToT—-1 je. Sc ToT-1, Hence ToT-1=S8,

21. Prove: For any two relations RC X XY and SCYXZ, (SoR)™' = R7'aS"1
Solution: (SeR)-1 = {(2,x: (x,2) ESoR}
= {Gx: WEY st. x,ER y,)ES}
= {@Zxy: IWEY st. ,y€ES™, (yx) ER1}
R-108-1
22. Prove: For any three relations RC WX X, SCXXY and TCYXZ, (ToS)oR =
TolSo R
< “\U“lv}-
Solution: (T¢S)oR = {(w,2: 3Ix€ X st. (w,2)ER, (¢, ETo S}
= {(wa: WEX, WYEY st. (w,x)ER, @,y €S, W,2ET}
= {(w2): IYyEY st. (wy €ESoR, (y,2)e T}

= To(SoR)

REFLEXIVE, SYMMETRIC, TRANSITIVE AND EQUIVALENCE RELATIONS
23. Prove: Let R be a relation in 4, i.e. R C AX A. Then:

.'11‘ D.

(i) R is reflexive i A, Cn
(ii) R is symmetric iff R R L

(iii) R is transitive iff EoR C R,

(iv) R reflexive implies EoR D B and RoR is reflexive;
(v) R symmetric implies RoR™' = R 'oR;

(

vi) R transitive implies Ko E is transitive.

Solution:

(i) Recall that the diagonal A, = {(g,a): a € A}. Now R is reflexive iff, for every a € A4,
(e, ) ER iff Ay CR.

(i) Follows directlv from the definition of B—! and svmmetric

(i) Follows directly from the definition of R—! and symmetric

(iii) Let (a,e)€E RoR; then 3Ib€ A such that (a,b) ER and (b,¢) € R. But, by transitivity,
(a, b), (b,¢y €E R implies (a,¢) € R. Consequently, RcR C R.

On the other hand, suppose RoR C R. If then (@,c)€E ReRCR. In

other words, R is transitive.

(a, b),(b,¢) E R,
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(iv) Let {(a,0)ER. Now, RoR = {{a,¢): 36 EA sit. (a,b)ER, (b,c) ER}.
But (a,b) € R and, since R is reflexive, (»,b) € R. Thus (¢,b) ER°R, i.ee. RCR°R.
Furthermore, A4 CRC RoR implies RoR is also reflexive.

v) ReR-1 = {{a,c): IbE A st (a,b)E R, (b,c)ER}
= {(a,¢y: IbE A st {(a,b)ER, (beyER1}
= R-1coR

(vi) Let {(a,b),(b,c) € RoR. By (iii), R°R C R, hence {(a,b),(b,ey ER. So (a,c) ER°R, ie., RoR is
transitive.

24. Consider the relation R = {(1,1), 2,3), 3,2} in X = (1,2,3}). Determine whether
or not R is (i) reflexive, (ii) symmetric, (iii} transitive.
Solution:
{) R is not reflexive since 2€ X but (2,2) & R.
(ii) R is symmetric since R~ = R.

(iii) R is not transitive since (3,2)€ R and (2,3) € R but (3,3) € R.

25. Consider the set N X N, i.e. the set of ordered pairs of positive integers. Let R be the
relation = in N X N which is defined by
(a,b) = {c,d) iff ad = bc
Prove that R is an equivalence relation.
Solution:
Note that, for every (a,b) € NXN, (a,b) =~ (a,b) since ab = ba; hence R is reflexive.

Suppose (a, b) = (¢,d). Then ad = be, which implies ¢b =da. Hence (¢,d) >~ (#,b) and, therefore
R is symmetric.

Now suppose {(a,b)=~{c,d) and <{(c,d) =~ (e,f). Then ad =b¢ and e¢f =de. Thus
(ad)(cf) = (be)(de)
and, by cancelling from both sides, af = be. Accordingly, (a,b)~ (e,f) and R is transitive.
Since R is reflexive, symmetric and transitive, B is an equivalence relation.

Observe that if the ordered pair (e, b) is written as a fraction %, then the above relation R is,

in fact, the usual definition of the equality of two fractions, i.e. ?a = c%’ iff ad = be.

26. Prove Theorem 1.4: Let R be an equivalence relation in A and let [a] be the equivalence
class of a € A. Then:
(i) For every a € A4, a € [a].
(i) [a]=[b] if and only if (a,b) € R.
(iii) If [a]+ [b], then [a] and [b] are disjoint.

Solution:
Proof of (i). Since R is reflexive, (a,a) ER for every ¢ € A and therefore a € [a].

Proof of (ii). Suppose (a,b)E R. We want to show that [a] =[b]. Let x €[bl; then
(b,x) € R. But by hypothesis, (a,b) € R; hence by transitivity, (a,«) € R. Accordingly, x € [a],
ie. [b] C[a]- To prove that [a] C [b], we observe that (a,d) € R implies, by symmetry, that
(b,a) € B. Then by a similar argument, we get [a] C [6]. So [a] =[b].

On the other hand, if [a] = [b], then by reflexivity, b € [b] = [a], i.e. (a,b) € R.

Proof of (iii). We prove the equivalent contrapositive statement, ie. if [a]lN[b] = ), then
[el = [b]. If [alN[d] +~ @, there exists an element €A with x €{a]lN{bd]. Hence {(a,x)ER
and (b,xy € R. By symmetry, (x,b) € R and, by transitivity, (a,b) € R. Consequently by (ii),

ro1 __ rLa

fa] =ib].
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Supplementary Problems
—SETS, ELEMENTS, SUVBSE ' — — — — — ———— o —

27. Determine which of the following sets is the empty set:
(1) {r:1<2<2 2R} (ii1) {x: xENM
A7 t ~ ~ & ~= =% \2127 Y. W bl

i) {xz:1<2<2 xEN} (iv) {x: x2<x, x € R}

28, Let A ={1,2,...,8,9}, B = {2,4,6,8}, C = {1,3,5,7,9}, D = {3,4,5} and E = {3,5}. Which
of these sets can equal X if we are given the following information?

(i) X and B are disjoint, (ii) XcD and X¢B, (iii) XCA and X¢C, (iv) XCC and X¢A.

29. State whether each of the following statements is true or false.

(i) Every subset of a finite set is finite. (ii) Every subset of an infinite set is infinite.
30. Discuss all inclusions and membership relations among the following three sets: @, {@}, {®, {@}}.
31. Prove that the closed interval [a, b] is not a subset of the open interval (a, d).
32. Find the power set P(U) of U = {0,1,2} and the power set P(V) of V = {0, {i,2}}.
33. State whether each of the following is true or false. Here S is any non-empty set and 25 is the

t of S.
power set of G) S€25 (i) Sc2s (i) {S}€2S  (iv) {Syces

SET OPERATIONS
34. Let A ={1,2,3{1,23}}, B={1,2,{1,2}}. Find: AUB, AnB, A\B, B\ A.

35. In each of the Venn diagrams below shade: (i) AN(BUC(), (ii) C\\(ANB).

(o ) ()

(a) (5)

36. Prove and show by Venn diagrams: A¢\ B¢ = B\ A.

DN Y
i \ %

= (AR
\ 7_\11\./‘_1

YN A
PRSI

$]

\ \
) ).

37. (i) Prove AN(BN\C) = (AnB)\ (AnC().
(!! = - t
38. Prove: 2428 = 24nB; 24 y2BC24UB, Give an example to show that 24U 2B 5= 24UB,

39. Prove Theorem 1.3: Each of the following conditions is equivalent to ACB:
(i) ANB = A, (ii) AUuB = B, (iii) B<CAc, (iv) AnBc =@, (v) BUAc =T
(Note. ANB = A was already proven equivalent to ACE in Problem 15.)

40, Prove that ACB iff (BNC)uA = BN(CUA) for any C.

PRODUCT SETS, RELATIONS, COMPOSITION OF RELATIONS
41. Prove: A X (BUC) = (A XB)UAXC(C).

o~
&
Qe
-
|
-
-
S
S
-
8

42, Using the definition of ordered pair, ie.
a=cand b=d.

43. Determine the number of distinct relations from a set with m elements to a set with n elements,
where m and n are positive integers.
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44. Let R be the relation in the positive integers N defined by
R = {@y:2y€EN, 42y =12}
(i) Write R as a set of ordered pairs. (ii) Find domain of R, range of R and R~1. (iii) Find RoR.
(iv) Find R~1oR.
45. Consider the relation R = {4,5),(1,4),(4,6),(7,6),(3,7)} in N.
(i) Find domain of R, range of R and R—1. (ii) Find Ro R. (iii) Find R-1cR.
46. Let U and V be the relations in R defined by U = {(x,¥): 2+ 2y =5} and V = {(x,y): 22—y = 3}.
(i) Find VoU. (ii) Find U°V.
47. Consider the relations < and = in R. Show that <uA = = where A is the diagonal.

EQUIVALENCE RELATIONS

48.

50.

51.

52.

27.

31.

32.

33.

34.

State whether each of the following statements is true or false. Assume R and S are (non-empty)
relations in a set A.

(1) If R is symmetric, then R~1 is symmetric.

(2) If R is reflexive, then RNR~1 = Q.

(3) If R is symmetric, then RNR~! = @,

(4) If R and S are transitive, then RUS is transitive.
(5) If R and S are transitive, then RN S is transitive.
(6)

(7)

(8)

If R and S are symmetric, then RUS is symmetric.
If R and S are symmetric, then RNS is symmetric.

If R and S are reflexive, then RNS is reflexive.
Consider N X N, the set of ordered pairs of positive integers. Let = be the relation in N X N defined by
(a,by = (e,dy if a+d=2>+¢

(i) Prove =~ is an equivalence relation, (ii) Find the equivalence class of 2,5, i.e. [, 5)].

Let ~ be the relation in R defined by « ~y iff « — ¥ is an integer. Prove that ~ is an equivalence
relation. -

Let ~ be the relation in the Cartesian plane R? defined by (x,y) ~ (w,z) iff » = w.
Prove that ~ is an equivalence relation and graph several equivalence classes.

Let ¢ and b be arbitrary real numbers. Furthermore, let ~ be the relation in R2 defined by

i o)
\V Y/

The sets in (ii) and (iii) are empty.
a € [e,b] but o€ (a,b).

(V) = {V, {0}, {{1,2}}, 9}

G) T, (i) F, Gii) F, (v) T

AUB ={1,2,3,{1,2},{1,2,3}}, AnB ={1,2}, ANB ={3,{1,2,3})}, B\ 4 = {{1,2}}.
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NG

a
=

(i)C=9, A=B+

@: < . Yfz"
38. Example: A = {1}, B = {2}
43, 2mn

4. (i) R = {10,1),(8,2),(6,3), (4,4), (2,5)}

(ii) domain of R = {10,8,6,4,2}, rangeof R = {1,2,3,4,5},
Bl = {(1,10), (2,8), (3,6), (4,4), (5,2) }

(i) RoR = {(8,5), (4,4)} .
(iv) R-1oR = {(i0,10), (8,8}, (6;,/6>’ 4,4, (2,2)}

45. (i) domainof R = {4,1,7,8}, vr"amg@ of R = {5,4,6,7}, R™1 = {(5,4),(4,1),(6,4),(6,T, (7,3}
(ii) Re°R = {(1,5),(1,6),(3,6)}
(iff) R7'oR = {(4,4),1,1),4,7,(7,4), 77, 3,3}

46. VoU = {(x,yy: e2+y =2}, U°V = {(x,y): 422 — 120+ 2y +4 =0}
48. OHT, T, T, WF, BT, 6T, (T, 8T

Ay Fs . 0y Al
Yo eersy M, N 3) v g

The equivalence classes are the vertical lines.

(
52. B
] ° D) e ®
® ® ) ® J
i[b
® ™ ® ®
® ™ ® ®
o
[ ] [} [ ] [ ]
L ® L] ®

The above gives a typical equivalence class. The distance between adjacent horizontal points is a and
the distance between adjacent vertical points is b.



FUNCTIONS

the collection, f, of such as51gnments is called a functwn (or mapping) from (or on) A

into B and is written

fiA—B o ALB

The unique element in B assigned to a €A by f is denoted by f(a), and called the value of
f at @ or the image of ¢ vnder f. The domain of f is A, the co-domain is B. To each
function f:A-> B there corresponds the relation in A X B given by

{(a,fla)):a€ A}

A A — ifF
y . LR £r Tl , y, ALK

f(a) = g(a) for every a€ A, ie. iff they have the same graph. Accordingly, we do not
distinguish between a function and its graph. A subset f of A X B, i.e. a relation from
A to B, is a function iff it possesses the following property:

[F1 Each a € A appears as the first coordinate in exactly one ordered pair (a, b) in f.

The negation of f =g is written f++ ¢ and is the statement: 3a € A for which f(a) +# g(a).

Example 1.1:

Example 1.2:

Example 1.3:

Let f:R — R be the function which assigns to each real number its square, i.e. for
each x €R, f(x) = 22, Here f is a real-valued function. Its graph, {(x,2?:2 €R},

ig dignlaved in F‘1o- 2-1 below. The range of f is the set of non-negative real num-
1s displayed -1 Delov ne range of ; et egatl rea:

bers, i.e. f[R] = {x x €R, x = 0}.

!
[
|
-

i =
-
N+

Fig.2-1 Fig.2-2

Let A = {a,b,¢,d} and B = {«,y,2,w}. Then the diagram in Fig. 2-2 above
defines a function f from A into B. Here f[A] = {x,y,w}. The graph of f is the

relation
{ (@, y), (b, ), (¢, ), {d, w) }

A function f:A — B is called a constant function if, for some by € B, f(a) = by
for all a € A. Hence the range f[A] of any constant function f is a singieton

set, Le. f[A] = {bo}.

17
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Consider now functions f:A->B and ¢:B - C, illustrated below:

@ > ® >

The function from A into C which maps the element ¢ € A into the element g(f(a)) of C
is called the composition or product of f and ¢ and is denoted by ¢gof. Hence, by definition,

(goNH(a) = g(f(a))

We remark that, if we view fC A X B and g C B X C as relations, we have already
defined a product ¢-f (Chapter 1). However, these two products are the same in that
if f and g are functions then ¢-f is a function and g-f = gof.

If f:X->Y and A C X, then the restriction of f to A, denoted by f| A, is the function

from A into Y defined by
flA(a) = f(a) forall a€A

Equivalently, f|A = f N (AXY). On the other hand, if f: X—> Y is the restriction of
some function g: X*—>Y where X C X*, then g is called an extension of f.

ONE-ONE, ONTO, INVERSE AND IDENTITY FUNCTIONS

>
=ty
<
=
(o]
ot
.
<
=
~h
o
i
o))
|l
.
U
o
| ol
[N
[l
(@)
o
[¢*]
D
=
TF)
o
Q|)
S
‘)
(&)
)
Hi
S
=
(F)
(]
=
&)
)
@}
[t

A function f:A - B is said to be onto (or f is a function from A onto B, or f maps
A onto B) if every b € B is the image of some a € A4, i.e. if

beB > 3a €A for which f(a) =05
Hence if f is onto, f[A] = B.

ha a function
pe I crion.

AU & wuii

nto 4 and is called

t fCAXB n

Y‘ﬂ] 2 g}
o 11 Vi &4 runlwviva o 4

In canaral tha invarg a
n Cia

411 HTIITIAlLl, VIIT 11 VULIS

o 'in na
However, if f is both one-one and onto, then ! is a function from B
the inverse function.

The diagonal A, C AX A is a function and called the identity function on A. It is
also denoted by 14 or 1. Here, 1i(a) =a for every a€ A. Clearly, if f:A-> B, then

1Bof = f = fo 1A
Furthermore, if f is one-one and onto, and so has an inverse function f~!, then

flof =1, and fof"1 =1,
The converse is also true:

Proposition 2.1: Let f:A—> B and g:B—> A satisfy
gef =1, and feg=1,
Then f"!:B—-> A existsand g=f"".

Example 21: Let f:R—>R, g:R—>R and A:R—>R be defined by
fley = €%, gy = 2> —wx and h(z) = 22

The function f shown in Fig. 2-3(a) below is one-one; geometrically, this means
that each horizontal line does not contain more than one point of /. The function ¢
shown in Fig. 2-3(b) below is onto; geometrically this means that each horizontal
line contains at least one point of g. The function & shown in Fig. 2-3(¢) below is
neither one-one nor onto, for h(2) = A(—2) = 4 and R[R] is a proper subset of R,
e.g. —16 & h[R].
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/
/

(@) f(x) = e* (b) gley = #*~w (¢) h{x) = a2

Fig. 2-3

An indexed class of sets, denoted by

{Aiztel}, {43, orsimply (44
assigns a set 4; to each ¢ €I, i.e. is a function from I into a class of sets. The set I is
called the index set, the sets A; are called indexed sets, and each i €1 is called an index.
When the index set I is the set of positive integers, the indexed class {4, 42, ...} is called
a sequence (of sets).

Example 3.1: For each n €N, the positive integers, let
D, = {x:a €N, z is a multiple of n}
Then Dy =1{1,2,3,...}, Dy ={2,4,6,...}, D3 = {3,6,9,...},

The Cartesian product of an indexed class of sets, ¢4 = {A;:7{ €I}, denoted by
[T{Ai:i€l} or [] ., A orsimply [] A
is the set of all functions p: 1 - U;A; such that p(i) = a: € A;. We denote such an element

a N HDrod a 'a a a h n p aYa
O —d A 1 ogy S A I & O a 0 U Sy —d = O

0 0] 7 v i 7:0’
called the ith projection function, from the product set HiAi into the iith coordinate set
A. dafined hv

MY

42y MTLLLTR

wi0(<ai: tED) = a;

Example 3.2: Recall that R3 = R X R X R consists of all 3-tuples p = (a4, a5, a3 of real numbers.
Now let R, R, and B3 denote copies of R. Then p can be viewed as a function on
I = {1,2,3} where p(l) = o, €ER{, p) = a, €ER; and p3) = agER3. In

R* = [I{R,: i€, R,=R)

GENERALIZED OPERATIONS

The notion of union and intersection, originally defined for two sets, may be generali‘zed
to any class o4 of subsets of a universal set U, The union of the sets in o4, denoted by
U{A: A €4}, is the set of elements which belong to at least one set in c4:

U{A:A€cq}) = {x:2€U, JA €4 s.t. x €A)
The intersection of the sets in o4, denoted by M{A: A €4}, is the set of elements which
belong to every set in cA:
N{A:Ace4} = {z:2€U, x€ A forevery A €Ecd)

For an indexed class of subsets of U, say of = {Ai: 1 €I}, we write

U{di:iel), Ued: or U:A;
for the union of the sets in 4, and

N{A:;:iel}, N,,A or M4,
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for the intersection of the sets in <4. We will also write
UL, 4 = AjUAU-+-+  and N A = AjUAU---

for the union and intersection, respectively, of a sequence {A;, As, ...} of subsets of U.

Example 4.1: For each n €N, the positive integers, let D, = {x: 2 €N, 2z is a multiple of n}
(see Example 3.1). Then

U{D;:i=10} = {10,11,12,...} and n2, D, = O
Example 4.2: Let I = [0,1] and, for each (€1, let A; = [0,i]. Then
U;A; = [0,1] and n;A; = {0}
The distributive laws and De Morgan’s laws also hold for these generalized operations:

Theorem 22: For any class of sets o4 = {A;} and any set B,
(l) BU(ﬂiAi) = ﬂi(BUAi) (ll) Bﬂ(UiAi) = Ui(BﬂAi)

o
7
o)
=h
4]

Theorem 23: Let o4 = {A;) be any cl
(1) (UiAi)c = ﬂiA
The following theorem will be used frequently.

Theorem 24: Let A be any set and, for each p € A, let (G, be a subset of A such that
pEG, CA. Then A = U{Gpy:p € A}.

Remark: In the case of an empty class ¢ of subsets of a universal set U, it is convenient
to define
UA:Ae@}) =9 and N{A: A€} = U
Hence Udi:i€®P) =@ and N{Ai:i€e@) =U

ASSOCIATED SET FUNCTIONS

Let f: X—> Y. Then the image f[A] of any subset A of X is the set of images of points
in A, and the inverse image ' [B] of any subset B of Y is the set of points in X whose
images lie in B. That is,

f[A] = {f(x):x €A} and [ '[B] = {z:z €X, f(x) € B}

Example 51: ©Let f:R—> R be defined by f(x) =«2. Then
fl{1,3,4, 7} = {1,9,16,49}, f[(1,2)] = (1,4)
AISO; fwl [{4’ 9}] - {'"33 _2; 2, 3}’ fmI [(1’ 4)} = (1’ 2) U ('—2; '"1)

Thus a function f:X =Y induces a function, also denoted by f, from the power set
P(X) of X into the power set P(Y) of Y, and a function f ! from P(Y) into P(X). The
induced functions f and f~! are called set functions since they are maps of classes (of sets)

into classes.

We remark that the associated set function f~! is not in general the inverse of the
associated set function f. For example, if f is the function in Example 5.1, then

fef((L,2)] = F(L4)] = 1,2)u(=2,-1)

Observe that different brackets are used to distinguish between a function and its associated
set functions, i.e. f(a) denotes a value of the original function, and f[A] and f~![B] denote
values of the associated set functions.
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The associated set functions possess various properties. In particular we state:

x7

Theorem 2.5: Let f:X > Y. Then, for any subsets 4 and B of X,

i) flAUB] = f[A]Uf[B] (iii) f]AN\B] > flA]\ /[B]

(i) f[AnB]Cf[A]Nf[B] (iv) A CB implies f[A] Cf[B]
and, more generally, for any indexed class {A;} of subsets of X,

(i) fluiA] = UiflA] (i) fNiA] © NflAl

The following example shows that the inclusions of (ii) and (iii) cannot in general be
replaced by equality.

Example 5.2: Consider the subsets
A = [1,2] X[1,2] and B = [1,2] X [3,4]
L4
of the plane R? and the projection »:R2—~ R, into
the first coordinate set, i.e. the x-axis. Observe that T3
7[A]=[1,2] and »[B] =[1,2], and that AnB = ¢ 4

2
implies 7[ANB] = (. Hence [1

#[AlN=(B] = [1,2] + #[ANB] =0 .
Furthermore, AN\ B = A, so ce ot q-ﬁ.ll 2

7[ANB] =[1,2] # @ ==[A]\7[B]
On the other hand, the inverse set function is much more ‘“well-behaved” in the sense
that equality holds in both cases. Namely,
Theorem 2.6: Let f:X—> Y. Then for any subsets A and B of Y,
) f'[AUB] = fTHAJUf 1 [B]
i) f[ANB] “‘f“l[ Jnit[B]
iii) f1[AN\B] = 1f‘A1\\f [B]
iv) ACB 1mp11es f1[A)Cf | B]
and, more generally, for any indexed class {A4:} of subsets of Y,
(i FHUA] = UifTT A
(it")  fTHNi Al = nifTH A
we have, as a special case o
Corollary 2.7: Let f X->Y and let ACY. Then f'[A] = (f'[A]e"
Next follows an important relationship between the two set functions.
Theorem 2.8: Let f:X->Y andlet ACX and BCY. Then:
() ACfiof[A] (i) BD fof'[B]

As shown previously, the inclusion in (i) cannot in general be replaced by equality.

ALGEBRA OF REAL-VALUED FUNCTIONS

a~s e

Let #(X,R) denote the collection of all reai-valued functions defined on some set X.
Many operations are inherited by 7(X, R) from corresponding operations in R. Specifically,
let f: X->R and ¢g: X >R and let k€ R: then we define

f+9):X=>R by (f+g)x) = f(z) + g(x)
(k-f):X>R by (k-f)x) = k(f(x)).
(fh:X->R Dby (Ifz) = [f(x)]
(f9): X >R by (f9)(x) = f(z)g(x)

I
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It is also convenient to identify the real number k¥ € R with the constant function f(z) =1k
for every x €R. Then (f+k):X >R is the function

(f+E)x) = flx) + &
Observe that (fg): X - R is not the composition of f and ¢ discussed previously.

Example 6.1: Consider the functions
f={(1),®3} and g = {(a,2),((},-1)}
with domain X = {a, b}, Then
(3f —29)(a) = 3f(a) — 2g(a)
(3f —2g)(b) = 3f(b) — 2g(b)

that is, 3f ~ 29 = {(a,—1),(b,11)}

Il

3(1) —22) = —1
3(3) — 2(—1) = 11

i

Also, since |g|(x) = |g(x)] and (g +3)(x) = g(x) + 8,
gl = {(2,2), (b, 1)} and g+3 = {(a,5),(h,2)}
min. . 1Y Lt /U owey Ll L. L S IS, R
L I1e ColleCuloIl f(A,Ii;) WILIL LIIe d4pove operat > SBEBSES c
some are included in the next theorem.
Theorem 2.9: The collection ¥ (X, R) of all real-valued functions defined on a non-empty
set X together with the above operations satisfies the following axioms

—of a real linear vector spe¢ce:——————— — — — — — — — —
[V:] The operation of addition of functions f and g satisfies:
(1) F+g)+h =7+(g+h)
2) f+9=9+Ff
(8) 30 € F(X,R), ie. 0: X~ R, such that f+0=7.
(4) Foreach f€ F(X,R), 3—f € F(X,R), i.e. —f:X >R, such that
f+(=fH=0o.
[V:] The operation of scalar multiplication k- f of a function f by a real
number k satisfies:
1) k(K-f) = (kk")+f
@ 1-f=f
[Vs] The operations of addition and scalar multiplication satisfy:
(1) k-(f+g) = k-f+k-g
(8) (k+k)f =kef+k-f
Example 6.2: Let X = {1,2,...,m}. Then each function f € F(X,R) may be written as an
ordered m-tuple (f(1), ..., f(m)). Furthermore, if
F =4, ...,0y, and g = by ..., by

then f+g = @+b, agt+ by ..., ap+by)

and, for any k € R, kEef = (kay, ..., ko)
In this case, the real linear (vector) space F(X, R) is called m-dimensional Euclidean
space.

Example 6.3: A function f € F(X,R) is said to be bounded iff
3M € R such that |f(x)] =M for every x €X

Let B(X, R) denote the collection of all bounded functions in F(X,R). Then g(X, R)
possesses the following properties:

(i) If f,9 € BX,R), then f+g € B(X,R).
(iiy If fE€ELX,R) and X ER, then k+f € B(X,R).
Any subset of F(X,R) satisfying (i) and (ii) is called a (linear) subspace of F(X, R).
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Solved Problems

W T MY N PEY T L mr Y

FUNCUCTIOND

1.

State whether or not each of the diagrams defines a function from 4 = {a,b,¢} into
B = {x,y,z).

A /o VA /aN——A o\
b y b v b vy | U

(4 z [ z c r4

(1 (if) (iii)
Solution:
(i) No. There is nothing assigned to the element b € A.
(ii) No. Two elements, # and 2z, are assigned to ¢ € A.
(iii) Yes.

Let X =1{1, 2,3,4}. State whether or not each of the following relations is a functiofl
int

f X
O F = (@3 LD @162, d)
g = {3, ), 4,2y, (1, 1) }

(ili) 2 = {(2,1), 3,4),(1,4), 2, 1), 4,4y}

Solution:

Recall that a subset f of X X X is a function f:X > X iff each x € X appears as the first
coordinate in exactly one ordered pair in f.

(i) No. Two different ordered pairs (2,3) and (2,1) in f have the same first coordinate.
(ii) No. The element 2€ X does not appear as the first coordinate in any ordered pair in g.

(iii) Yes. Although 2€ X appears as the first coordinate in two ordered pairs in h, these two
ad 3 1al

anna
G PpPails « cyua:.

Consider the functions

= {(1,3)(2,5), (3,3), (4, 1), (5,2) }

~w — /1 AN 9 AN 9D 1IN A N /K O\

g — 1Ly 3y {4y L)y Oy L)y (F,4), (J,0)}
from X = {1,2,3,4,5} into X.
(i) Determine the range of f and of g.
(ii) Find the composition functions geof and feog.
Solution:
(i) Recall that the range of a function is the set of image values, i.e. the set of second coordinates.

Hence range of f = {3,5,1,2} and rangeof g = {4,1,2,3}

(i) Use the definition of the composition function and compute:
go 1) =g(f(1)) = 9(3) =1 (fog)(1) = fleg() = f4) =1
ofN2) =g(f@) =g(B) =3  (Fog)2) = fg(@) = f(1) = 3

(
(
(goNHB) = g(f3) = 9(3) = (fog)(3) =f
(g
(

)

( (93)) = f(1) =38
go R = gy =g =4 (Fog)d) = flgld) = /2 = 5
goNHE) = g(f(d)y) = g(2) =1 (fog)5) = flg(5) = f(3) = 3
In other words, gef = {41,1),(2,3),(3,1), (4,4),(5,1) }

{{1,1),2,3),3,3), (4,5), 5,3) }

-
o

Q
Il

Observe that fog # gof.
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Let the functions f:R—=> R and ¢g:R->R be defined by
fx) =22 +1, gx) = 22— 2
Find formulas defining the product functions gof and fog.

Solution:
Compute gof:R—~> R as follows:

goNx) = glf(x)) = gRx+1) = Qr+1)2—2 = 422+ 4o —1
Observe that the same answer can be found by writing
y=f@y=22+1, z=g@ =y ~-2
and then eliminating y from the two equations:
2=y ~2 = Q+12~2 = 42+ 42 -1

(feg)m) = flglx)) = fl@®~2) = 2(2~2)+1 = 2¢2—3

Prove the associative law for composition of functions, i.e. if f:A—->B, g:B->C and
h:C~-> D, then (hog)of = ho(gof).

Solution:
Since the associative law was proven for composition of relations in general, this result follows.
We also give a direct proof:
({(hog)ef)a)
(o (g o))a)
Hence (hog)of = ho(gof).

Il
I

hg(f(a)), Va€A
hg(f(a)), Va€A

(ho9)f(a))
~(g © )a))

ONE-ONE AND ONTO FUNCTIONS

6.

Let f:A—->B, g:B->C. Prove:

(i) If f and g are onto, then gof:A > C is onto.

(ii) If f and ¢ are one-one, then gof:A - C is one-one.

Solution:

(i) Let ¢€C. Since g is onto, Ib € B s.t. g(b) =c¢. Since f is onto, Ia €A s.t. f(a) =b. But
then (go°f)a) = g(f(a)) = ¢, ie. gof is also onto.

asa {70 ANea {70 O

FE-3-AY a PR J UL G F 7 D AN [ £ N
\11) Duppobe 1€/ )\“) —\g®° fl\w I ie. gu\a)) — guywe ). oS0 ja)
a =4¢ since f is one-one. Accordingly, g°f is also one-one.

Let A =[-1,1] andlet f:A—->A, g:A>A and h:A->A Dbe defined by

f(x) = sinx, g(x) = sinzx, h(z) = sin%x

State whether or not each of the functions is (i) one-one, (ii) onto, (iii) bijective
(i.e. one-one and onto). :

Solution:
The gra nhs of the f1
The of the {
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The function f is one-one; each horizontal line does not contain more than one point of f. It is
not onto smce, for example, sinx =1 for any x€A., On the other hand, g is onto, each horizontal

function % is both one-one and onbo each horizontal line contains exactly one point of k.

8. Prove: Let f:A—-B and g:B - C be one-one and onto; then (gof) ':C—> A exists
and equals f~log™!':C - A.
Solution:
Utilizing Proposition 2.1, we show that:
(f~log—No(gof) = 1, and (gefe(f~log™1) =14

Using the associative law for composition of functions,

(fmlogNo(gofy = flo(g~lo(gof)

= f~lellg=leg)of)

= fote(lef)
= fiof

since g7log =1 and lof = f = feol. Similarly,
P (gofHo(f~log=1) = go(fo(f~log™1y)

— £

J

9. When will a projection function =, : [T{Ai:iel} > A,

igp Ai, 7, be an onto function?

Solution:
A projection function is always onto, providing the Cartesian product [[{A4,:{€ I} is non-empty,
i.e. provided no A; is the empty set.

INDEXED SETS, GENERALIZED OPERATIONS

10. Let A, = {x:2x is a multiple of n}, where n €N, the positive integers, and let
B; = [t,i+1], where i €Z, the integers. Find: (i) AsN4;; (i) U{Ai:¢ € P}, where
P is the set of prime numbers; (iii) Bs N By; (iv) U{Bi:t € Z}; (v) (U{Bi: 1=T}) N 4s.
Solution:
(i) Those numbers which are multiples of both 3 and 5 are the multiples of 15; hence AzNAgz = Ay,
(ii)  Every positive integer except 1 is a multiple of at least one prime number; hence U{A;:71€ P} =

{2,3,4,...} = N\ {1}.

(ili) BsnNB, = {#:3=w =4, 4= =5} = {4}

(iv) Since every real number belongs to at least one interval [i,41+1], U{B;: 1€ Z} = R, the set
of real numbers.

(v) (U{B;:i1=7TH)NAs = {x: 2 is a multiple of 5, * = 7} = A\ {5} = {10,15,20,...}.

11. Let D, = (0, 1/n), where n € N, the positive integers. Find:
(i) DsUDy (iil) DsU Dy (v) U{Di:i€ ACN)
(il) DsnN Dagp (iv) Dsn D, (vi) M{D:i:1 €N}
Solution:
(i)  Sinee (0,1/7)c(0,1/3), DsuD, = Dj.
e (



26 FUNCTIONS [CHAP. 2

(iiiy Let m = min {s, t}, i.e. the smaller of the two numbers s and ¢; then D,, equals D, or D, and
contains the other. So D,UD, = D,,.

(iv) Let M = max {s, t}, ie. the larger of the two numbers. Then DND; = Dy.

v e the smalles mber im 4 en R =D,
(vi) If *x€R, then IEN st. & (0,1/7). Hence N{D;:{EN} = Q.

12. Prove (Distributive Law) Theorem 2.2 (ii): BN (Uier4i)) = U;er (BNA,).
Solution: Bn(uje1A) = {x:2€B, x€ Uje1A}}
= {2:2x€B, IH,EI st. €A}
= {x: 3, €I s.t. weBnAio} )
= ((BNA)Y

i

13. Prove: Let {Ai:¢ €I} be an indexed class of sets and let 7 €I. Then

Nierdi C Ay, C User As
Solution:
Let * € Nje; Ay then x € A; for every ¢€ 1. In particular, weAio. Hence n,;EIAiCAiO.

Now let y €E#,;. Since i) €I, y € U;e1 A;. Hence A; C Ujer 4,

14 Prove Thaoram 2 4 T .ot ho anv gat and faor sach n & lat (7 ha a subsat of Qe
AXe A ALVYVY LilVvVAvill @ X Adv v LA N “ll‘y o v ullu, AL weArLaL l-’ \—AL’ A v \.lp AMuw G DUNDWVY Wi LA DuUuwal
that p € G, C Then A = U{G,:p € A}
Solution:

Let « € U{G,: pE€A}. Then Ap, €A st. x€ Gl’o C A; hence x €A, so U{G,:pEA} CA.
(In other words, if each G, is a subset of A, then the union of the G, is also a subset of A.)

Now let y €A. Then y €G,, so y € U{G,:p€A}. Thus 4 Cc U{G,: p€ A} and the two
sets are equal.

ASSOCIATED SET FUNCTIONS
15. Let A = {1,2,3,4,5} and let f:A~> A be defined by the diagram:

(%)

f
Find (i) f[{1,3,5})), (i) /1 [{2,8,4}],. (i) /71[(3,5))-
Solution:
i)y fH1,38,8} = {f(1), f3), f(5)} = {4}
iy f- 1[{2,3 o= {4,1,8,5}
(iii) f~1[{3,5)] = ® since no element of A has 3 or 5 as an image.

16. Consider the function f:R—> R defined by f(x) = 2. Find:
Q) F1E5Y, () F -9, (i) f [(zie=0)], (iv) f[(z:4=x=25)].
Solution:
iy f1[{25}] = {5, 5} since f(5) =25, f(—5) =25 and since the square of no other number is 25.
(iiy f-1[{—9}] = @ since the square of no real number is —9.
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0o
3

FE-1-1AY £—=1Tf .0 -

(ifi) f~![{x:2x =0}] = {0} since f(0) =0 =0 and since the square of every other real number is
greater than 0.
(iv) f1[{x:4 =2 =25} consists of those numbers x such that 4 = x2 = 25. Accordingly,
frl{z:4 =2 =25y = [2,5]U[-5,~2

17. Prove: Let f:X~—>Y be one-one. Then the associated set function f:P(X)~> P(Y)
is also one-one.
Solution:

If X=¢, then PX)={®}; hence f:PX)-> P(Y) is one-one, for no two different members
of P(X) can have the same image, as there are no two different members in P(X).

If X+ @, P(X) has at least two members. Let A,B € P(X), but A#B. Then IpEX s.t. pEA,

f(p) € f[A]). Hence f[A] +# f[B], and so the induced set function is also one-one.

18. Prove (Theorem 2.5, (i) and (iii)): :
(@) flAUB] = flAJUfB], (b) FIAI\f[B] Cf[A\ B].
Solution:

(e) We first show f[AUB] C f[A] U f[B]. Let y € f[AUB], ie, 3Ix€ AUB st f(x) =y. Then

either x €A or x € B, but . .
x€ A implies f(x) =y€EFf
€f

e
3
]
X
3
2,
)
2]
“d
)
-’

&

In either case, y € f[A] U f[B].
y € f[A] or y € f[B], but
y €Ef[A] implies Ix €A st flx)=y
y € f[B] implies 3FxE€B st f(x) =y
In either case, y = f(x) with * EAUB, ie. y€ f[AUB].

(b) Let y € fJAINFf[B]. Then Ixr €A st. flx)=y, but y E{f(x): x €B}. Hence x&B, or
x €E BN\ A. Accordingly, y € f[A\ B]

t +

19. Prove (Theorem 2.6, (ii) and (iii)):
(@ fHANB] = fA]Inf[B], (b)) fTHANB] = fA]IN Bl

aULAON.

(@) We first show [~ l[ANB  Cf1[AlNnf1[B]. Let x€f1[ANB]. Then f®) EANB so
fley €A and f(x)EB, or * € f1[A] and x € f~1[B]. Hence x € f-1[A] n f~1[B].
For the reverse inclusion, let * € f~1[A]| n f~1[B]. Then f(x)€A and f(x) € B, ie.
flx) EA N B. Hence x € f~1[A n B].

(b) To show [ 1{ANB]cCf1[AI\f"1[B], assume x€ f-1[ANB]. Then f(x)€ANB, ie
fxyEA and f(x)@B. Thus x€f1[A] but &7 '[B], ie. x€f 1[A]\f"1[B] .

For the reverse inclusion, let * € f~1[A|\ f~1[B]. Then f(z)€A but f(x)&B, ie.
fley EANB. Hence x € f 1[AN\B].

ALGEBRA OF REAL-VALUED FUNCTIONS
20. Let X = {a,b,c¢} and let f,g € F(X,R) be as follows:
f = {{a, D), (b,—2),(c,3)}, 9 = {{a,—2),(b,0),(c, 1)}
Find: (i) f +2g, (i) fg —2f, (i) f+4, () |f], (v)f*
Solution:
(i) Compute as follows: (f+2g)a) = f(a) + 2g(a) 1—4 = -3

(f+20)b) = f(b) +29(6) = —2+0 = -2
(f + 29)(e) fley +29(¢) = 3+2 = B

il
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In other words, f + 2¢ = {{(a,—3), (b, —2), (¢, 5) }.
(ii)  Similarly, (Ffg —2f)@) = fla)g(a) — 2f(a) = (1)(—2) —2(1) = —4
(fg —20)(b) = f(b)g(b) — 2f(b) = (—2)(0) — 2(~2) = 4
(Ffg—2N(e) = fle)gle) — 2f(c) = (3)1) —2(3) = —3
That is, fg —2f = {{a,—4), (b,4), (¢, —3)}

(iii) Since, by definition, (f+4)(x) = f(x) + 4, add 4 to each image value, ie. to the second
coordinate in each pair in f. Thus

f+4 = {@5)® 2,0}
(iv) Since |fj(x) = |f(x)|, replace the second coordinate of each pair in f by its absolute value. Thus
Ifl = {{a, 1), (0, 2), (6, 3) }
(v) Since f2(x) = (fH)x) = f(x) f(x) = (f(x))?, replace the second coordinate of each pair in f by its

square. Thus o foan 4 en
. 2= A, 5,9, (€9}

Let 0 € F(X,R) be defined by 0(x) =0 for all z € X.
Prove: For any f€ F(X,R), (i) f+0 =/ and (i) f0 = 0.
Solution:

o ¢+ 6)9& = f(x) + 6(90) = f(x) +0 = f(x) for every x € X; hence f+6 = f. Observe that
A
0 satisfies the conditions of the 0 in the axiom [V;] of Theorem 2.9.

() (FO)e) = f(@)0(x) = f(@)+(©) = 0 = 0(x) forall x€X; hence f0 = 0.

Prove: F(X,R) satisfies the axiom [V;] of Theorem 2.9, ie. if f,g € F(X,R) and

k, k" € R, then:

() ke(f+9) = k-f+k-g, (i) (k+k)f =k f+k-f

Solution:

(i) (k- (F+ o)) = Kk{f+a)x)] = Kkf(x)+gl®)] = kiflx) + klgx)
(kef+keog)e) = (kefle) + (k-g)x) = k(f(2)) + k(g(x))

for all x €X; hence k+(f+g9g) = k-f+ k+g. Observe that we use the fact that k, f(x) and
g(x) are real numbers and satisfy the distributive law.

Ty AN {L L L\ #f
\\Il/ A ’ J v v ’!\

(kof+FK-flley = (k-fle) + & flx) = k(flx)) + K (f(x))
for all x €X; so (k+K)f = kef+ ¥k -f.

o~
[
-,
~——

Supplementary Problems

FUNCTIONS
23, Let f:R—=R and g:R—=>R be defined by f(x) = { , g(®) = 3a+ 1.

24,

20—-5 if x>2
x2— 2| if =2

Find (i) f(=2), (ii) g(=3), (iii) f(4), (iv) (9°)Q), (v) (F°9)@), (vi) (fo)B).

Let f:R—>R and g:R—>R be defined by f(x) = 22+ 3x+1, g(x) = 20— 3.
Find formulas which define the composition functions (i) feog, (ii) gof, (iii) fof.
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Let %: X - X be a constant function, Prove that for any function f: X - X, kof = k. What can
be said about fok?

Consider the function f(x) =& where € R, © = 0. State whether or not each of the following
functions is an extension of f.

(i) g1(») =|x| forall x €ER (iii) gg(x) = (x + |2[)/2 for all x €ER

(i) gs(x) = 2 where 2 € [—1,1] (iv) 1z:R->R

Let ACX and let f: X —> Y. The inclusion function j from A into X, denoted by j: A C X, is
defined by j(a) =a for all a€A. Show that f|A, the restriction of f to A, equals the composition
foi,ie. flA = foj

ONE-ONE, ONTO, INVERSE AND IDENTITY FUNCTIONS
®

28. Prove: For any function f:A-> B, fol, = f = 1gof.

29. Prove: If f:A - B is both one-one and onto, then f~lof = 1, and fof-1 = 1,

30, Prove: If f:A->B and g:B— A satisfy gof = 14, then f is one-one and g is onto.

31. Prove Proposition 2.1: Let f:A—->B and g:B - A satisfy gof = 14 and feg = 1lz. Then
“1; B~ A exists and g = f~ 1L ’

32. Under what conditions will the projection Tiy* [I{A,:iel} —>Aio be one-to-one?

33. Let f:(~1,1) > R be defined by f(») = /(1 —|2|). Prove that f is both one-one and onto.

34, Let R be an equivalence relation in a non-empty set A. The natural function » from A into the
quotient set A/R is defined by 7(a) = [a], the equivalence class of @. Prove that 5 is an onto function.

35. Let f:A -~ B. The relation R in A defined by aRa’ iff jf(a) = f(a¢’) is an equivalence relation.

Let ?denote the correspondence from the quotient set A/R into the range f{A] of f by ?: [a}) = f(a).
(i Prove that ?: A/R - f[A] is a function which is both one-one and onto,
(ii) Prove that f = jO?O 7, where 7:A — A/R is the natural function and j: f[A] c B is the

inclusion function. N Y - e g fie

MWW, -V sy

INDEXED SETS AND GENERALIZED OPERATIONS

36.

37.

38.

39.

Let A, = {x:2 is a multiple of n} = {n,2n,3n, ...}, where n€ N, the positive integers. Find:

(i) AsNAy (i) AgnAg (il) AgUAs (iv) AgnAy; (v) A,UA,, where s, t€N; (vi) A,nA,,
where ¢,t € N. (vii) Prove: If JCN is infinite, then N {411 € J} = (.

Let B; = (4,1 1], an open-closed interval, where i€ Z, the integers. Find:
() B,UBy (i) UB (v) U¥ B,

(i) Bgn B, (ivy BgUBg 1UBg., s€Z (vi) Ujez By,

Let D, = [0,1/n], S, = (0,1/n] and T, = [0,1/n) where n €N, the positive integers. Find:
i) N{D,:n€N}, (1)) N{S,:n€N} (i) N{T,:n EN}L

Prove DeMorgan’s Laws: (i) (U;A4)c = n; 47, (i) (n; A)° = U; 4],
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40. Let o4 = {A;:1 €I} be an indexed class of sets and let Jc K c I. Prove:

FER S0 fA = Ty — safA .~ TFY FATY - (A %= TY — ewm i oA Rl 7
1) U411 €4 C UlA;i1E K}, (i) NMid;:i€J} D N{4;: 1€ K}

Sy

y-f(x) = #?2+ 1. Find: (i) f[{—1,0,1}], (i) f—1[{10,17}], (iii) f[(—2,2)],

43. Prove: Let f:X - Y. Then, for any subsets 4 and B of X,
(a) f[ANB] c flA] n f[B], (b) A C B implies f[A] c f[B]

44, Prove: Let f: X =Y. Then, for any subsets A and B of Y,
(@) f-1[AUB] = f~1[A]U f~1[B], (b) A c B implies f~1[A] c f~1[B]

45. Prove Theorem 2.8: Let f:X ->Y andlet AcX and BcY. Then
(iy Acj-1of[A], (i) B D fof~1[B]

46, Prove: Let f: X =Y be onto. Then the associated set function f: P(X)- P(Y) is also onto.

47, Prove: A function f:X—>Y 1is both one-one and onto if and only if f[Ac¢] = (f[A])c for every
subset A of X.

48. Prove: A function f:X =Y is one-one if and only if A = f~10f[A] for every subset' 4 of X.

ALGEBRA OF REAL-VALUED FUNCTIONS
49, Let X = {a,b,¢} and let f and g be the following real valued functions on X:

f= { (a, 2>, (b,—3>, (e, —l> }; g = {(a;—2), (\b, 0y, {c; 1) }

Find (i) 8/, (ii) 2/ —5g, (iii) fg, (iv) Ifl, (v) f3 (vi) [3f— fgl.

50. Let A be any subset of a universal set U. Then the real-valued function X, U -~ R defined by

X (@) = 1if x€A
4 0if x€A
o nallad $hn chamaatoscatan Farontlnm ~Ff A Damnvra
15 Calltu UIT ol il v JuneLivit vl 41 LIvuve
M Xynp = Xaxpr () X055 = X T xp = Xenp () X457 X~ X4pp0

51. Prove: F(X,R) satisfies the axiom [V,;] of Theorem 2.9; ie. if f€ F(X,R) and k,k’ €R, then
@) ke(K'-f) = (KK")+-f, (i) 1+f=7F

52. For each k €R, let 'l; € ¥(X,R) denote the constant function E(x) =k for all x&€ X.
(i)  Show that the collection (' of constant functions, ie. ( = {fc\: k € R}, is a linear subspace of
T(X, R)'
(ii) Let a:( =R be defined by (k) = k. Show that « is both one-one and onto and that, for

awh e b+ %) = a®) + of)
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23,

24.

26.

Answers to Supplementary Problems
(i) 0, (i) —8, (iii) 3, (iv) =2, (v) 9, (vi) —1
@) (Fog)w) = ga2—62+1, (i) (gof)z) = 202+ 60—1, (iii) (fof)(x) = o+ 6u8+ 1402+ 152+ 5
The function fok is a constant function.

(i) yes, (il) no, (iil) yes, (iv) yes

32

36.

bod
[ol2]

49,

A, is a singleton set, say 4; = {a;}, for i<,

(1) Arg (il) Agy, (i) A3, (iv) Agp, (V) Ay (vi) Ay

(1\ (4. 8], (1) @, (i) (4,21, (iv) (s, s+ 3], (v) (s, s+ 18], (vii R
PR ) 13 A AN ol | A PR 17 =¥/ AT ' 17 ALV S 4 J7 A I
13y S0 {33\ (A { v SNy

A1) Wy, Uy U, ALl A\Vy

() 3f = {(a,6), (b,—9) (c,~3))

(i) 2f—bg = {(a,14), (b,—6), (¢,—T)}
(i) fo = {(a,—4), 4,0), @—1))

(v) 1Al = {(@,2), (b,3), (1}

(v) 2= {(a,8, B, —27),,—1)}

i) 13— fal = {(a,10), (b, 9, (¢,2)}
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Cardinality, Order

EQUIVALENT SETS

A set A is called equivalent to a set B, written A ~ B, if there exists a function f: 4 > B
which is one-one and onto. The function f is then said to define a one-to-one correspond-
ence between the sets A and B.

A set is finite iff it is empty or equivalent to {1,2,...,n) for some n €N; otherwise
it is said to be infinite. Clearly two finite sets are equivalent iff they contain the same
number of elements. Hence, for finite sets, equivalence corresponds to the usual meaning
of two sets containing the same number of elements.

ixample 11:  TLet N = {1,2,3 ...} and E = {2,4,6,...}. The function f:N—>E defined by

et N a; 4nda Ctlo 11

f(x) = 22 is both one-one and onto; hence N is equivalent to E.

Example 1.2: The function f:(~1,1) = R defined by f(x) = #/(1 —|x|) is both one-one and onto.
Hence the open interval (—1,1) is equivalent to R, the set of real numbers.

Observe that an infinite set can be equivalent to a proper subset of itself. This

property is true of infinite sets generally,

Proposition 3.1: The relation in any collection of sets defined by A ~B is an equivalence
relation.

DENUMERABLE AND COUNTABLE SETS
Let N be the set of positive integers {1,2,8,...}. A set X is called denumerable and

ATITITMIA
ciiluiilic

Example 21: The set of terms in any infinite sequence

Uy, O3, A3, o ..
of distinct terms is denumerable, for a sequence is essentially a function f(n) = a,
whose domain is N, So if the a, are distinct, the function is one-one and onto.

Accordingly, each of the following sets is denumerable:
{17%)%)-'-}; {1;—2)3)—4;---}7 {(1,1), <478>7 <9727>7 ---1<nzyn3>7 }

Example 2.2: Consider the product set N X N as exhibited below.
a, 1) (1, 2)~—=(1, 3) 1, 4) —>-

/|
/

“, 3) 4, 4) oot

\

; ay 5] \ A
(4y &) (&4y ) {4y &)

—
IND
" —
[y
~

@3, 1 3, 2)

V/

41 42

. / .

3,3) 3, 4)

NN\
NN\
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The set N X N can be written in an infinite sequence of distinct elements as follows:
1,1, 2,1, 1,2), 1,3), 2,2), ...

(Note that the sequence is determined by ‘“following the arrows” in the above
diagram.) Thus we see that N X N is denumerable.

Example 23: Let M = {0,1,2,3,...} = NuU{0}. Now each positive integer a € N can be
written uniquely in the form a = 27(2s+41) where »,s€ M. The function
F:N—->M X M defined by fla) = (rs)

where r and s are as above, is one-one and onto. Hence M X M is denumerable,
Note that N X N is a subset of M X M,

The following theorems concern denumerable and countable sets,

Theorem 3.2: Every infinite set contains a denumerable subset.

Theorem 3.3: Every subset of a countable set is countable.

T omama 24 Tat [A. A, 1 h
Al A

ALLALECL te'X e v 1421 422y s 0 v g

Then U, 4: is also denumerable.

Theorem 3.5: Let {Ai:i €I} be a countable class of countable sets, i.e. I is countable
and A; is countable for each ¢ €. Then U{A::7 €I} is countable.

A set which is neither finite nor denumerable is said to be non-denumerable or non-
countable.

THE CONTINUUM

Not every infinite set is denumerable; in fact, the next theorem gives a specific and
extremely important example,

Theorem 3.6: The unit interval [0, 1] is non-denumerable.

A set X is said to have the nower of the continuum or is said to have cardinality o iff
wu La AN drviva vy ll“ ~ viic pUvIwY J VIVY wvuvivuuvIivwviir Uil ENS ST Z 7RV § vvol1avye vwr w(/’!/wu!/l/y 110
ol r .
it is equivalent to the unit interval [0, 1].
Ao ahavr Alisad nwakla +haot asrargy intarval Aanan avr ~lagad hag aagwdinalids -
yve SNnow, in a solved prooien, tinat every intervai, open Or Cioseq, nas carainatity c.

By Example 1.2, the open interval (—1,1) is equivalent to R. Hence,

Proposition 3.7: R, the set of real numbers, has cardinality e.

SCHROEDER-BERNSTEIN THEOREM
We write A £ B if A is equivalent to a subset of B, i.e.,
AXB iff 3 B*CB suchthat A~ B*
We also write A<B if A<B but A+ B, ie. A is not equivalent to B.
Example 31:  Since N is a subset of R, we may write N < R. On the other hand, by Proposition
3.7, R is not denumerable, i.,e. R # N, Accordingly, N <R.
Given any pair of sets 4 and B, then at least one of the following must be true:
(i) A~B, (ii) A<Bor B<A, (ilij A<B and B4, (iv) A<LB, A+B and B£A
The celebrated Schroeder-Bernstein Theorem states that, in Case (iii) above, A4 is
- equivalent to B. Namely,
Theorem (Schroeder-Bernstein) 3.8: If A <B and B <A, then A~ B.
The Schroeder-Bernstein Theorem can be restated as follows:
Theorem 3.8: Let XOYDOX, and let X~X;. Then X~ Y.
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We remark that Case (iv) above is impossible. That is,

Theorem (Law of Trichotomy) 3.9: Given any pair of sets A and B, either A<B, A~B

or B<A.

CONCEPT OF CARDINALITY

If A is equivalent to B, i.e. A~ B, then we say that A and B have the same cardinal
number or cardinality. We write #(A) for “the cardinal number (or cardinality) of A”. So

#(A)=#(B) iff A~B
On the other hand, if A <B then we say that A has cardinality less than B or B has
cardinality greater than A, That is,

#(A) < #(B) if A<B
So #(A)=#(B) it A<B. Accordingly, the Schroeder-Bernstein Theorem can be re-
stated as follows:

Theorem 3.8: If #(A)= #(B) and #(B)= #(A), then #(A) = #(B).
The cardinal number of each of the sets

D, A2} A, {23}, {D, {2}, {D, (D31},

is denoted by 0,1,2,3, ..., respectively, and is called a finite cardinal. The cardinal
numbers of N and [0,1] are denoted by

8, = #(V), e = #([0,1])

Accordingly, we may write 0<1<2<3< - <y, <e¢

CANTOR’S THEOREM AND THE CONTINUUM HYPOTHESIS

It is natural to ask if there are infinite cardinal numbers other than 8, and ¢. The
answer is yes. In fact, Cantor’s Theorem determines a set with cardinality greater than
any given set. Namely,

Theorem (Cantor) 3.10: The power set P(A) of any set A has cardinality greater than A.

It is also natural to ask if there exists a set whose cardinality lies between 8, and c.
The conjecture that the answer to this question is negative is known as the Continuum
Hypothesis. That is, .

Continuum Hypothesis: There does not exist a set A with the property that 8, < #(4) <e.
In 1963 it was shown that the Continuum Hypothesis is independent of our axioms

o emd Al S A JUNYIRE 4l o4 Too 18300 el P actialada ~em v sen 11T Tios oo
Ol S€EL LIeory 111 SOINewlldl LIIe dSallle SEIIse Lildl LUucClla s KllLuLl rosiuldle OIl1 pdardiliel 11I1es
is independent of the other axioms of geometry.

PARTIALLY ORDERED SETS

A relation < in a set A is called a partial order (or order) on A iff, for every a,b,c € A:
(i) aga; (ii) axb and b<a implies a=0b; and (iii) ¢ b and b<Xc implies a Lc. The
set A together with the partial order, i.e. the pair (4, ), is called a partially ordered set.
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Recall that a relation is reflexive iff it satisfies (i), and transitive iff it satisfies (iii).
A relation is said to be anti-symmetric iff it satisfies (ii). In other words, a partial order
is a reflexive, anti-symmetric, transitive relation.

Example 4.1:  Set inclusion is a partial order in any class of sets since: (i) ACA for any set A;
(ii) AcB and BCA implies A =B; and (iii) AcB and BCC implies AcCC.

Example 4.2: Let A be any set of real numbers, Then the relation in A defined by « =y is a
partial order and is called the natural order in A.

Example 43: Let X = {a,b,¢,d,e}. Then the diagram

a
y =
/ \
b c
\ d e
defines a partial order in X as follows: <y iff # =y or if one can go from
x to ¥ in the diagram, always moving in the indicated direction, i.e. upward

If e<b in an ordered set, then we say that a precedes or is smaller than b and that
b follows or dominates or is larger than a. Furthermore, we write a <b if a <b but a+b.

A partially ordered set A is said to be totally (or linearly) ordered if, for every a,b €A,
JREVR MU N A > TR TSI S | ee wxridl 4l nodizon ]l caeTmce dalannd Texr e = A
CILIIeL U HU O U U. Ay, LIIC dCL Ol ICdl IIUINpCLrS, WILIL LUIIC Ildiul'dl OLUClh UCLIIICU DYy 44—y
is an example of a totally ordered set.

Example 44: Let A and B be totally ordered. Then the product set A X B can be totally
ordered as follows:

1 P

A MY av 18 ’
yU ) 11 @& N W ur 11

PV R P awnd L /L
W, Uy N (W ala v N v

a
This order is called the lexicographical order of A X B since it is similar to the
way words are arranged in a dictionary.

Remark: If a relation R in a set A defines a partial order, i.e. is reflexive, anti-symmetric
and transitive, then the inverse relation E~! is also a partial order; it is called
the inverse order.

SUBSETS OF ORDERED SETS

Let A be a subset of /a partially ordered set X. Then the order in X induces an
order in A in the following natural way: If ¢,b€ A4, then a<b as elements in A4 iff
a b as elements in X. More precisely, if B is a partial order in X, then the relation
Rs = RN(A x A), called the restriction of R to A, is a partial order in A. The ordered set
(A, Rs) is called a (partially ordered) subset of the ordered set (X, R).

Some subsets of a partially ordered set X may, in fact, be totally ordered. Clearly
if X itself is totally ordered, every subset of X will also be totally ordered.

Example 51: Consider the partial order in W = {a,b,¢,d,e} defined by the diagram
a b
N,
d / \ e

The sets {a,¢,d} and {b,e} are totally ordered subsets, the sets {a, b, ¢} and {d, e}
are not totally ordered subsets.

FIRST AND LAST ELEMENTS

Let X be an ordered set. An element ao € X is a first or smallest element of X iff
ao <z for all x € X. Analogously, an element by € X is a last or largest element of X
iff z<bo forall z €X.
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Example 6.1: Let X = {a,b,¢,d,e} be ordered by the diagram
a
y 4 -
Ve AN
b / ¢

\ d \ e
Then @ is a last element since a follows every element. Note that X has no first
element. The element d is not a first element since d does not precede e.

Example 6.2: The positive integers N with the natural order has 1 as a first element. The
integers Z with the natural order has no first element and no last element.

MAXIMAL AND MINIMAL ELEMENTS

Let X be an ordered set. An element ao€X is maximal iff ao<ax implies z=a, i.e.
if no element follows ao except itself. Similarly, an element b, € X is minimal iff x < b
implies x = by, i.e. if no element precedes b, except itself.

Example 7.1: Let X = {a,b,¢,d,e} be ordered by the diagram in Example 6.1. Then both d
and e are minimal elements. The element ¢ is a maximal element.

Example 7.2: Although R with the natural order is totally ordered it has no minimal and no
maximal elements.

Example 73: Let A = {a;,ay, ...,0,} be a finite totally ordered set. Then A contains pre-
cisely one minimal element and precisely one maximal element, denoted respec-
tively by .
min {ay, ..., a,} and max {ayy ...y Uy}

UPPER AND LOWER BOUNDS

Let A be a subset of a partially ordered set X. An element m € X is a lower bound
of A iff m<x for all x € A4, i.e. if m precedes every element in 4. If some lower bound
of A follows every other lower bound of A, then it is called the greatest lower bound
(g.1.b.) or infimum of A and is denoted by inf (A4).

Similarly, an element\M € X is an upper bound of A iff x<M for all x€ A4, ie. if
M follows every element in A. If some upper bound of A precedes every other upper
bound of A, then it is called the least upper bound (l.u.b.) or supremum of A and is denoted
by sup (4).

A is said to be bounded above if it has an upper bound, and bounded below if it has a
lower bound. If A has both an upper and lower bound, then it is said to be bounded.

Example 8.1: Let X = {a,b,¢,d,¢,f,9} be ordered by the following diagram:

a b
. ol

NN
A

f g
Let B = {c¢,d,e}. Then a, b and c are upper bounds of B, and f is the only lower

bound of B, Note that g is not a lower bound of B since g does not precede d.
Furthermore, ¢ = sup (B) belongs to B, while f = inf (B) does not belong to B.

Example 8.2: Let A be a bounded set of real numbers. Then a fundamental theorem about real
numbers states that, under the natural order, inf (4) and sup (4) exist.
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Example 83: Let Q be the set of rational numbers. Let
B = {x:2€Q,2>0,2 <223}

that is, B consists of those rational points which lie between \/§ and \/_3: on the
real line. Then B has an infinite number of upper and lower bounds, but inf (B)
and sup (B) do not exist. Note that the real numbers V2 and \/§do not belong to Q
and cannot be considered as upper or lower bounds of B.

ZORN’S LEMMA

Zorn’s Lemma i

existence of certain types of elements althoug
these elements.

one of the most important tools in mathematics; it asserts th

tant tools in mathematic
h no constructive process is given to find

Zorn’s Lemma 3.11: Let X be a non-empty partially ordered set in which every totally
ordered subset has an upper bound, Then X contains at least one
maximal element.

Remark, Zorn’s Lemma is equivalent to the classical Axiom of Choice and the Well-
ordering Principle. The proof of this fact, which uses the concept of ordinal
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EQUIVALENT SETS, DENUMERABLE SETS
1. Consider the concentric circles
Ci = {(x,): 22 +y*=a?}, C: = {(x,¥): 2> +y*>=b%)

where, say 0 <a <b. Establish, geometrically, a one-
to-one correspondence between C; and C..

Solution:
Let x € C;. Consider the function f:C; > Cy, where f(x)
is the point of intersection of the radius from the center of C,

FAP. By e SR e P | ral . T < e__ iR FR R, |- & i
\ana (./1) v ¥, anda (./I, as shown 1n tne aqgjacent aliagramnm.

Note that f is both one-one and onto. Thus f defines a one-
to-one correspondence between C; and C,.

2. Prove: The set of raticnal numbers is denumerable.

Let Q1 be the set of positive rational numbers and let @~ be the set of negative rational numbers.
Then Q@ = Q@ U {0} uQt is the set of rational numbers.

Let the function f:Q*t - N X N be defined by
fole) = @@

where p/q is any positive rational number expressed as the ratio of two positive integers. Note f is
one-one; hence Q+ is equivalent to a subset of N X N. But N X N is denumerable (see Example 2.2);
hence @' is also denumerable. Similarly @~ is denumerable. Accordingly, by Theorem 3.5, the union
of Q—, {0} and Q™, i.e. the set of rational numbers, is also denumerable,

3. Prove Proposition 3.1: The relation in any collection of sets defined by A~ B is an
equivalence relation. That is, (i) A~ A for any set A; (ii) if A~ B then B~ A4; and
(iii) if A~B and B~ C then A~C.

Solution:
) The identity function 14: A - A 1is one-one and onto; hence A ~ A.
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(iiy If A~ B, then there exists f:A = B which is one-one and onto. But then f has an inverse
f~1: B~ A which is also one-one and onto. Hence

A~B implies B~ A

£ 5~ D P D _. w7 Al

A D st Al & . R N S, .o PR | . ~ arm e o
a D 7™ U, Ultll uvnelrec exist TUIICLIVILS J a4 7D alla y P # gl V) wnicn are ulle-vliie
and onto. Thus the composition function gof: A — C is also one-one and onto. Hence

A~B and B~ C implies A ~C

-— | NN avso

FEEEAN T+ A oD 4
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Prove: The collection P of all polynomials
P(x) = Qo + mx + -+ k™
with integral coefficients, i.e. where ao, a1, ...,a¢n are integers, is denumerable.

Solution:

For each pair of positive integers (n,m) € NXN, let P, denote the set of polynomials p(x) of
degree m in which

laol + faal + --+ + fau| = n
Observe that P,,, is finite. Accordingly,
P = U{P,n: n,m) € N XN}

is countable since it is a countable union of countable sets. In particular, since P is not finite, P is
denumerable.

3 b

A real number 7 is called an algebraic number if r is a solution to a polynomial equation

pE) = @ + X + -+ W™
with integral coefficients. Prove that the set 4 of algebraic numbers is denumerable.
Solution:
Note, by the preceding problem, that the set E of polynomial equations is denumerable:
E = {py(®) =0, py(2) =0, pslx) =0, ...}
Let A; = {x: 2 is a solution of p,x) = 0}

Since a polynomial of degree n can have at most n roots, each A, is

ot m A, nite. Hence A = W{A,:i€E N}
is denumerable,

Prove Theorem 3.2: Every infinite set X contains a subset D which is denumerable.

Solution:

Let f:P(X)— X be a choice function, i.e. for each non-empty subset A of X, f(A) € A. (Such
a function exists by virtue of the Axiom of Choice.) Consider the following sequence:

a = f(X)

Since X is infinite, X \\{ay, ..., @,—1} is not empty for every n € N. Furthermore, since f is a
choice function, .

a,#a, for 1<mn
Thus the a, are distinct and D = {ay,ay, ...} is a denumerable subset of X.

Essentially, the choice function f “chooses” an element a,€ X, then chooses an element a, from
those elements which “remain” in X, ete. Since X is infinite, the set of elements which “remain” in X
is non-empty.
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7. Prove: Let X be any set and let C(X) be the collection of characteristic functions on X,
i.e. the collection of functions f: X~ {1,0}. Then the power set of X is equivalent
to C(X), ie. P(X)~ C(X).

Solution:

Tk A b ower ciihant Af V24 A = DY T o2 £ .oV Vall A NNE "P: PRV SO T T
Let A be any subset of X, i.e. A € P{4A) Let J.TrAaA) = uila) DBe aennea oy
fa) = _ J"O if x&A
- XA - 1 ep .~ A
(I x4

Then f is one-one and onto. Hence P(X) ~ C(X).

8. Prove: A subset of a denumerable set is either finite or denumerable, i.e. is countable.

Solution:
Let X = {a;,a,, ...} be any denumerable set and let A be a subset of X. If A=(), then A is
finite. If A 5= (), then let n; be the least positive integer such that a, E A; let ny be the least positive

integer such that =, >n; and anzeA; etc, Then A = {anl, 2,...}. If the set of integers
{ny;na, ...} is bounded, then A is finite. Otherwise A is denumerable,

9. Prove Theorem 8.3: Every subset of a countable set is countable.
Solution:
If X is countable, then X is either finite or denumerable. In either case, its subsets are countable,

10. Prove Lemma 3.4;: Let {A), A, ...} be a denumerable disjoint class of denumerable
sets. Then U;Z, A; is denumerable.

Solution:
Since the sets 4; are denumerable, we can write
Ay = {ogg, @9, @13, .-}
A2 = {(1/21, U9y, X235 + » .}
An = {anl: X2y Bp3s - o }

Then U;~, A; = {a;: @) € NXN}. The function f: Uiy A, > N X N defined by flay) = &5
is clearly one-one and onto. Hence U;Z, A; is denumerable since N X N is denumerable,

11. Prove: Let A be an infinite set, let B = {b;, b2, ...} be denumerable, and let A and B
be disjoint. Then AUB ~ A.

Solution:
Since A is infinite, A contains a denumerable subset D = {d;,dy,...}. Let f:AUB-=>A be
defined by the following diagram:

AUB :. (A\D)U(DUB) = {dl!d21d3)"'1 bl’ b2, b3,-.
NSL L

1\ \/\/4
..n:ﬁ"lm.. 20T

(@ if ®*€EAND
f(oc) = d2n—1 if = dn
dzn if = bn

Observe that f is one-one and onto; hence AUB ~ A.

3

s
|

'g:.ﬂ—"

b
/

In other words,
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CONTINUUM, CARDINALITY

12.

Prove that the intervals (0, 1), [0, 1) and (0, 1] have cardinality ¢, i.e. is equivalent to [0,1].

Solution:

(i)  Note that [0,1] {0,1,1/2,1/8, ...} U A, 0, 1) = {1/2,1/3,1/4, ...} U A

l

where A = [0,11\{0,1,1/2,1/3, ...} = (0,1)\{1/2,1/3,1/4, ...}

Consider the function £:]0,1] = (0,1) defined by the following diagram

{0,1,1/2,1/3, ...} U A

13.

14.

1,
{1/2,1/8,1/4,1/5, ...} U A
In other words,
1/2 if x=0
flx) = 1/n+2) if ®=1/n, nEN
L@ if %0, 1/n, n€EN, lLe.if t€A

The function f is one-one and onto, Accordingly, [0,1] ~ (0,1),
(i) The function f:[0,1] > [0,1) defined by

i) = 1/(e+1) if «a=1/n, nEN
) = x if x+#1/n, nEN

is one-one and onto. (It is similar to the function in Part (i)). Hence [0,1] ~ [0,1).

(iii) Let f:[0,1) »(0,1] be defined by f(x) = 1—a. Then f is one-one and onto. Hence
{0,1) ~ (0,1} and, by transitivity, [0,1] ~ (0,1].

In other words, (0,1), [0,1) and (0,1] have cardinality c.

Prove: Each of the following intervals has the power of the continuum, i.e. has
cardinality e: [a,b], (a,b), |a,b) and (a,b]. Here a <b.
Solution:
Let each of the following functions be defined by f(x) = a + (b — a)x:
0,1 25 (@8  [0,) D @) 0D D @y 0,1 L (g3

Each function is one-one and onto. Hence by the preceding problem and Proposition 3.1, each interval
is equivalent to [0,1], i.e. has cardinality e,

Prove Theorem 3.6: The unit interval A = [0,1] is non-denumerable.
Solution:
Method 1. Assume the contrary; then

A = {xly Lo, Xy, - . -}
i.e. the elements of A can be writfen in a sequence,

Each element in A can be written in the form of an infinite decimal as follows:

x; = 0. App Cpn Oyg oo gy o 0o
Xy = 0. Aoy Qg9 Aoz o oo Aoy oo
X3 = 0.0a3; A5 Q33 ... Qg . - -
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j.e. for those numbers which can be written in the form of a decimal in two was, e.g.,
1/2 = .5000... = .4999...

we write the infinite decimal in which all except a finite set of digits are nines.

Now construct the real number o .
Yy = 0.bybobg...b,...

which will belong to A, in the following way: choose b, so b, % a,; and b, %0, choose by so by~ ayy
and b, 0, ete.

Observe that y <, since b, +# a;qy, Yo7 ¥o since by @9y, ete., that is, y+< x,, for n €N, Hence
y & A, which is impossible. Thus the assumption that A is denumerable has led to a contradiction,
Consequently, A is non-denumerable.

Method 2. Assume the contrary. Then, as above,

A = {#, %5 ...}
AT P SN & - e i e _ .4 i I | L, - 1 . ~ 171 s ral - *1_ __ e} ~~ 11 L e b |
Now construct a sequence of closed intervals as follows: Consider the following three closed
sub-intervals of A = [0,1],
0,4, [ 3L [%1 (1)
each having length 1. Now x, cannot belong to all three intervals. Let I, = [a},b,] be one of the

intervals in (Z) such that «; &€ I,.
Now consider the following three closed sub-intervals of I, = [ay,b],
[a1, @y + 3] (o) + &, &, + 2], (e + 2, by (2)
each having length }. Similarly, let I; be one of the intervals in (2) such that w, & I,. '
By continuing in this manner, we obtain a sequence of closed intervals
LOI;DI3D - (3)
such that x,€ I, for all n € N. By the Nested Interval Property (see Appendix A) of the real
numbers, there exists a real number y €A —= [0,1] such that y belongs to every interval in (3). But
yE€EA = {x,®y,...3 1mplies y= L for some myEN

Then by our construction y = L & I’”o’ which contradicts the fact that y belongs to every interval

in (8). Thus our assumption that A is denumerable has led to a contradiction. In other words, A is
non-denumerable.

Prove Theorem (Schroeder-Bernstein) 3.8: Let X DY D X, and let X ~ X;; then X~Y.
Solution:

Since X ~ X,, there exists a function f: X — X, which is one-one and onto. But XDY; hence
the restriction of f to Y, which we shall also denote by f, is also one-one. So Y is equivalent to a

bset of X, ie. Y ~Y here
Subseh of %1 1 Whe XoYoX,0Y,

and f:Y — Y, is one-one and onto. But now YD X,; hence, for similar reasons, X ~ X, where
X>YOX;0Y, 0%,

and f:X; > X, is one-one and onto. Consequently, there exist equivalent sets X;,X,, X3, ... and
equivalent sets Y,,Y,, Y3, ... such that

XDYDX}DYl:)Xz:)Yg:)"'

Let B = XnYnX;nYinXsn¥,n---
Then X = E\DDu\XHuX\Y)u---uB
Y = I\X)uX\Y)Y)uEFr\X)u---uUB

Note further that (XNY) ~ X, \Y) ~ X \Yy) ~ -

Specifically, the function f:(X,\\Y,) = (X,11\ ¥Yr4+1) is one-one and onto.
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Consider the function ¢g:X — Y defined by the following diagram:

M@Qﬁ{g_)/&])/

In other words, _ fly if x€X\Y,orc€X\Y
y@ = @ if x€Y,\X,or x€B

Then g is one-one and onto. Therefore X ~ Y.

Prove Theorem (Cantor) 3.10: The power set P(A) of any arbitrary set A has
cardinality greater than A4, i.e. A <P(A) and hence #(A) < #(P(A)).

Solution:

The function g:A — P(A) which sends each element a €A into the singleton set {a}, i.e
g(a) = {a}, is one-one; hence A < P(4).

If we show that A is not equivalent to P(A), then the theorem will follow. Suppose the contrary,
i.e. let there exist a function f:A — P(A) which is one-one and onto. Call a €A a “bad” element
if @ is not a member of the set which is its image, i.e. if a & f(a). Let B be the set of “bad”

elements, ie.,
B = {x:x€A, €& jfa)

Observe that B is a subset of A, that is, B € P(4). Since f: A — P(A) is onto, there exists
an element b €A with the property that f(d) = B. Question: Is b “bad” or “good”? If b€ B then,
by definition of B, b & f(b) = B which is a contradiction, Likewise, if b&B, then b€ fb) = B
which is also a contradietion. Thus the original assumption, that A4 ~ P(4), has led to a contra-
diction. Accordingly A ~ P(A) is false, and so the theorem is true.

ORDERED SETS AND SUBSETS

17.

Let N, the positive integers, be ordered as follows: each pair of elements a,a” € N can
be written uniquely in the form
a =2r1(2s+1), o = a"(as’+1)
where 7,7,s,8 € {0,1,2,3,...}. Let
a<a if r<r orif r=7 but s<g
Insert the correct symbol, < or >, between each of the following pairs of numbers.
(Here x >y iff y <ux.)
(i) 514, (i) 69, (iii) 3—20, (iv) 14__21
Solution:
The elements in N can be written as follows:

o 1 2 3 4 5 6 7

1o
0|1
1| 2] 6101418 [22]26]30
2| 4f{12|20 |28 [36]44|52]60

Then a number in a higher row precedes a number in a lower row and, if two numbers are in the

same row, the number to the left precedes the number to the right. Accordingly,

(1) 5<14, (i) 6>9, (i) 3<20, (iv) 14> 21
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18. Let A = {a,b,¢} be ordered as in the diagram on the right. a.
Let o4 be the collection of all non-empty totally ordered subsets / \
of A, and let ¢4 be partially ordered by set inclusion. Construct b ¢
a diagram of the order of 4.
Solution:

inclusion, the order of o4 is the following:

{a, b} {a, ¢}

{b}/ \{a}/ \{c}

19. Let A = {2,3,4,...} = N\ {1}, and let A be ordered by “x divides y”. (i) Determine
the minimal elements of A. (ii) Determine the maximal elements of A.

Solution:

(1) If pEA is a prime number, then only p divides p (since 1€& A); hence all prime numbers are
minimal elements. Furthermore, if a € A is not prime, then there is a number b€ A such that
b divides a, i.e. b<a; hence ¢ is not minimal. In other words, the minimal elements are
precisely the prime numbers.

(i) There are no maximal elements since, for every a € A, a divides 2a, for example.

20. Let B = {2,3,4,5,6,8,9,10} be ordered by “x is a multiple of y¥”. (i) Find all maximal
elements of B. (ii) Find all minimal elements of B.

Solution:
Construct a diagram of the order of B as follows:

9/3\6/ 4211\1?0 7
t

(i) The maximal elements are 2, 3 and 5. (ii) The minimal elements are 6, 8, 9 and 10.

21. Let W = {1,2,...,7,8} be ordered as follows:

1 2
N S
N,/

Consider the subset V

(ii) Find the set of lower bot

5,6} of W. (i) Find the set of upper bounds of V.

ds of V. (iii) Does sup (V) exist? (iv) Does inf (V) exist?

Solution:

(i) Each of the elements in {1, 2, 3}, and only these elements, follows every element in ¥V and hence
is an upper bound.

(i) Only 6 and 8 precede every element in V; hence {6,8} is the set of lower bounds.
(iii) Since 3 is a first element in the set of upper bounds of V, sup (V) = 3. Note that 3& V.
(iv) Since 6 is a last element in the set of lower bounds of V, inf (V) = 6. Note that 6€V.
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22. Let 4 be a collection of sets partially ordered by set inclusion, and let B be a sub-
Cti /1) Dvn‘n:\ thaot i+ A c~d ig an 11MNA 1'\ N1 I\'F th [ I(D-BE }

¢l
A

\L) L Lllab T A&cesqd 1lsan UppCIL vuul na U,

n LI\ & -

l'\'{"
(ii) Is U{B: B € B} an upper bound of B?

(i) Let x€ U{B:B € B}; then 3B, €3B st. x €B,. But A is an upper bound of B; so ByCA
and hence x € A. Accordingly, U{B: B & 8} C A.

(11)  Even though B is a subcollection of ¢4, it need not be true that the union of members of B, i.e.
WU{B: B & B}, is a member of c4. In other words, U{B:B &€ B} is an upper bound of B
if and only if it belongs to cA.

—APPLICATIONS OF ZORNS EEMMA— — — — — — — — — — — — —
23. Prove: Let X be a partially ordered set. Then there exists a totally ordered subset
. D X

£ Y wh 2o v
Ol A WII Ll 1S nov

roper subset of any other totally ordered subset of X.

&

Solution:

Let ¢4 be the class of all totally ordered subsets of X. Let ¢4 be partially ordered by set inclusion.
We want to show, by Zorn’s Lemma, that c4 possesses a maximal element. So suppose B = {B;:i € I}
is a totally ordered subclass of 4. Let A = WUIB,:i€I}.

Observe that B,cX forall B,€B implies AcCX

We next show that A is totally ordered. Let a,b € A; then
3B, B, €B suchthat «€ B, b€ B,

But B is totally ordered by set inclusion; hence one o 1, say B, isas t o ther.
quently, a,b € B,. Recall that B, € ‘B is a totally or d ed subset of X; so either a <b or
Then A is a totally ordered subset of X, and so A € cA.

But B;cA for all B;&B; hence A is an upper bound of “B. Since every totally ordered subset
of ¢4 has an upper bound in ¢4, by Zorn’s Lemma, ¢4 has a maximal element, ie. a totally ordered
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Z4. rrove: Lel v b€ a relat irom A to b, 1.e. L C A X D, and suppose the aomain o1

R is A. Then there x1sts a

Solution:

Let ¢4 be the class of subsets of R such that each f € cA4 is a function from a subset of A into B.
Partially order <4 by set inclusion. Observe that if f:A,>B 1is a subset of g:4,—> B then
A, CA,

Now suppose B = {fi:AiqB}iEI is a totally ordered subset of c4. Then (see Problem 44)
f= U;f; is a function from U;A; into B. Furthermore, fCR. Hence f is an upper bound of <.

By Zorn’s Lemma, c4 possesses a maximal element f*:A* - B. If we show that A* = A, then the
theorem is proven.

Suppose A* +* A. Then Fa € A st. a & A*. By hypothesis, the domain of R is A' hence
there exists an ordered pair (a,d) € R. Then f*u {(a,b)} i1s a function from A* U {a}
1. 1n A“ T. +

Dzt £l wo dinfa tlha £t & LIy § Qs A% — A o
But this contradicts the fact t 1. SO0 A7 =
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ubset f* of R such that f* is a function from A into B.
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proven.

Supplementary Problems

EQUIVALENT SETS, CARDINALITY

25, Prove: Every infinite set is equivalent to a proper subset of itself,
26. Prove: If A and B are denumerable, then A X B is denumerable.

27. Prove: The set of points in the plane R? with rational coordinates is denumerable.
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a golution to a polynomial

l.IZ
(32

28. A real number x is called transcendental if 2 is not algebraie, i.e. if =
equation

p@) = ay+ aE+ 0 + apEm = 0
with integral coefficients (see Problem 5). For example, 7 and ¢ are transcendental numbers.
(i) Prove that the set T of transcendental numbers is non-denumerable.

(ii) Prove that T has the power of the continuum, i.e. has cardinality e.

[
[r-]

An

=]
[=]

(i) Show that the operation is well-defined, i.e.,

#(A) = #(A') and #(B) = #(B’) implies #(A) #(B) = #(A") #(B)

or, equivalently, A~A and B~B' impliess (A XB)~(A'X B L wa) = { 4l 50)
o e . R A
(1) Prove: (a) ®,8%, = 85, (&) ¥je=¢, (¢) ce=c ?
30. An operation of addition is defined for cardinal numbers as follows:
#A)+ #B) = #A XA{l} U B X {2} o <o A

(i)  Show that if ANB = (), then #(A) + #(B) = #(AUB). [-. Py .‘ ¥ (- 1%
(ii) Show that the operation is well-defined, i.e.,

#(A) = #(A') and #(B) = #(B’) implies #(A) + #(B) = #(4') + #(B’)

=
=
)
=24
[«]
7
o+
25
foi]
o+
-
Py
t
Py

HA)#B) = gyn

i.e, the operation of powers for cardinals corresponds, in the case of finite cardinals, to the usual
operation of powers of positive integers.

(i1)  Show that the operation is well-defined, i.e.,
#(A) = #(A') and #(B) = #(B’) implies #(A)#B) = g(A")#(B"

A)) = 2#4),

_____ s I 1n sSeL A, s

32. Let ~ be the equivalence relation in R defined by # ~ y iff x — y is rational. Determine the cardinality
of the quotient set R/~.

33. Prove: The cardinal number of the class of all functions from [0,1] into R is 2%

34, Prove that the following two statements of the Schroeder-Bernstéin Thecrem 3.8 are equivalent
(i) If A<B and B <A, then A ~ B.
(i) If XDOY DX, and X ~ X, then X ~ Y.

35. Prove Theorem 3.9: Given any pair o\f sets A and B, ei'ther A<B,A~Bor B<A,
(Hint. Use Zorn’s Lemma.)

ORDERED SETS AND SUBSETS

36. Let A = (N, =), the positive integers with the natural order; and let = (N, =), the positive
infacara M A PN »da TMrwtharnmana Tatr A N P Aamada tha lavianos .-.-.-. jeal wdamnimae ~Ff N Y N
uvocg ol s wiuil Ifllc JAIVCLDC ULLICL L ul Liclinuic, 1ok 22 A D ucliivuuve uviac ICAJLUS l.l JL 1 Ulucl llls Ul 1Y A AN
according fo the order of A and then B. Insert the correct symbol, < or >, between each pair of

elements of N XN.
() 3,8__—QA,1, () €128, (i) 3,3)—3,1), (iv)
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37.

38.

39.

40,

42,

CARDINALITY, ORDER [CHAP. 3
1
Let X = {1,2,3,4,5,6} be ordered as in the adjacent diagram. Consider f
the subset A = {2,3,4} of X. ) Find the maximal elements of X. 2

(i
(i1) Find the minimal elements of X. (iii) Does X have a first element? / \

{iv) Does X have a last element? (v) Find the set of upper bounds of A. 3 ~4

(vi) Find the set of lower bounds of A. (vii) Does sup (4) exist? (viii) Does \ /
inf (A) exist? 5 6

Consider @, the set of rational numbers, with the natural order, and its subset A = {x: v € Q, 23 < 3}.
(i) Is A bounded above? (ii) Is A bounded below? (iii) Does sup (A) exist? (iv) Does inf (4) exist?

Let N, the positive integers, be ordered by “x divides y”, and let ACN. (i) Does inf (A) exist?
(ii) Does sup (A) exist?

Prove: Every finite partially ordered set has a maximal element.

Give an example of an ordered set which has exactly one maximal element but does not have a last
element,

Prove: If R is a partial order on A, then R—! ig also a partial order on A.

ZORN’S LEMMA

43. Consider the proof of the following statement: There exists a finite set of positive integers which is
not a proper subset of any other finite set of positive integers.
Proof. Let c4 be the class of all finite sets of positive integers. Partially order ¢4 by set inclusion.
Now let B = {B;: i €I} be a totally ordered subclass of c4. Consider the set A = U;B;. Observe
that B; c A for every B; € B; hence A is an upper bound of B.
Since every totally ordered subset of o4 has an upper bound, by Zorn’s Lemma, ¢4 has a maximal
element, a finite set which 1s ot a proper subset of another finite set.
Question: Since the statement is clearly false, which step in the proof is incorrect?
44. Prove the following fact which was assumed in the proof in Problem 24: Let {f,: A, > B} be a class
of functions which is totally ordered by set inclusion. Then U,f; is a function from U;A; into B.
45. Prove that the following two statements are equivalent:
(i) (Axiom of Choice.) The product [[{A,:2€ I} of a non-empty class of non-empty sets is
non-empty.
(ii) If ¢4 is a non-empty class of non-empty disjoint sets, then there exists a subset BC U{4:4 €4}
such that the intersection of B and each set A € <4 consists of exactly one element.
46. Prove: If every totally ordered subset of an ordered set X has a lower bound in X, then X has a
minimal element,
Answers to Supplementary Problems
32. ¢ ‘
86. (i) >, (i) >, (il <, (iv) <
87. (i) {1}; (i) {5,6}; (iil) No; (iv) Yez,l; (v) {1, 2}; (vi) {5,6}; (vil) Yes, 2; (viii) No
38, (i) Yes, (ii) No,, (iii) No, (iv) No
39. (i) inf (4) exists iff A¥*@. (ii) sup(A4) exists iff A is finite,
1. a

]ty s+ »

Here o is maximal but o is not a last element,



Chapter 4

Topology of the Line and Plane

REAL LINE

The set of real numbers, denoted by R, plays a dominant role in mathematics and, in
particular, in analysis. In fact, many concepts in topology are abstractions of properties
of sets of real numbers. The set R can be characterized by the statement that R is a
complete, Archimedean ordered field. These notions are explained in the Appendix. Here
we use the order relation in R to define the “usual topology” for R.

We assume the reader is familiar with the geometric representation of R by means of
the points on a straight line. As in Fig. 4-1, a point, called the origin, is chosen to repre-
sent 0 and another point, usually to the right of 0, to represent 1. Then there is a natural
way to pair off the points on the line and the real numbers, i.e. each point will represent a
unique real number and each real number will be represented by a unique point. For
this reason we refer to the line as the real line or real axts. Furthermore, we will use
the words point and number interchangeably.

L i n I Il
T U T T

-2 -1 0 1 2

OPEN SETS IN R

Let A be a set of real numbers. A point p € A is an interior point of A iff p belongs
to some open interval .% which is contained in A:

peES CA

The set A is open (or U-open) iff each of its points is an interior point. (The significance
of U in U-open will appear in the next chapter.)

Example 1.1:  An open interval A = (a, b) is an open set, for we may choose S, = A for each p € A.
Example 1.2: The real line R, itself, is open since any open interval S, must be a subset of R, i.e.
»p €S, CR.

Observe that a set is not open iff there exists a point in the set that is not an interior
point.
Example 13:  The closed interval B = [a,b] is not an open set, for any open interval containing

a br b must contain points outside of B. Hence the end points ¢ and b are not
interior points of B.

Example 1.4: The empty set ) is open since there is no point in @ which is not an interior point.

Example 1.5: The infinite open intervals, i.e. the subsets of R defined and denoted by
e 2€ER, z>a} = (a,»), {x:2€ER, z<a} = (—=
{r:2€R} = R = (—», =)
are open sets. On the other hand, the infinite closed intervals, i.e. the subsets of R
defined and denoted by
{x:2€R, x=a} = [a,%), {2:2€R, x=0a} = (—=,4q]

are not open sets, since @« € R is not an interior point of either [a, ©) or (—=,al,

47
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We state two fundamental theorems about open sets.

Theorem 4.1: The union of any number of open sets in R is open.

Theorem 4.2; The intersection of any finite number of open sets in R is open.

The next example shows that the finiteness condition in the preceding theorem cannot
be removed.
Example 1.6: Consider the class of open intervals and, hence, open sets

4, =lUn1/m) :neN}, ie. {(—1,1), (LD, LY, ..}

Observe that the intersection
Np=14, = {0}

of the open intervals consists of the single point 0 which is not an open set. In
other words, an arbitrary intersection of open sets need not be open.

gv]
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Let A be a subset of R, i.e. a set of real numbers. A point p €R is an accumulation
point or limit point of A iff every open set G containing p contains a point of A different

from p; Le., G open, p €EG implies AN (G {p}) # O
The set of accumulation points of A, denoted by A’, is called the derived set of A.

Example 21: Let A = {1,1 2,3,4, ...}. The point 0 is an accumulation point of A since any
open set G with 0 € G contains an open interval (—aq,a,) C G with —¢; < 0 < a5

which contains points of A.
I
3 2 1

]
s —t—
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29
)

T
—1 —3 -1 -1 - 2
Observe that the limit point 0 of A does not belong to A. Observe also that A does
not contain any other limit points; hence the derived set of A is the singleton set
{0}, ie. A’ = {0}.

Example 2.2: Consider the set Q of rational numbers. Every real number p € R is a limit point
of Q since every open set contains rational numbers, i.e. points of Q.
Example 2.3: The set of integers Z = {...,—2,—1,0,1,2,...} does not have any points of

accumulation, In other words, the derived set of Z is the empty set ©.

Remark: The reader should not confuse the concept “limit point of a set” with the

AifPavant +hanaoh walotad ~anna HEldnid AP gantianea’? Qhrin Af +tha anlvad
Ulilcliclliy, bllngll lcldhcu, LUILLU[JL 111111V 01 4 DU\:[HCIILU . DULLIT 01 e soivea
and supplementary problems will show the relationship between these two
concepts.

BOLZANO-WEIERSTRASS THEOREM

The existence or non-existence of accumulation points for various sets is an important
question in topology. “Not every set, even if it is infinite as in Example 2.8, has a limit
point. There does exist, however, an important general case which gives a positive answer.

Theorem (Bolzano-Weierstrass) 4.3: Let 4 be a bounded, infinite set of real numbers.
Then A has at least one accumulation point.

CLOSED SETS

A subset A of R, i.e. a set of real numbers, is a closed set iff its complement A¢ is an
open set. A closed set can also be described in terms of its accumulation points.

Theorem 4.4: A subset A of R is closed if and only if A contains each of its points of
accumulation.
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Example 3.1: The closed interval [e, b] is a closed set since its complement (—=,a) U (b, =), the
union of two open infinite intervals, 1s open.

Example 3.2: The set A = {1,%, 1, 1,...} is not closed since, as seen in Example 2,1, 0 is a
1imit point of A but does not belong to A.

Example 3.3: The empty set ) and the entire line R are closed sets since their complements R
and (), respectively, are open sets.

Sets may be neither open nor closed as seen in the next example.
Example 34: Consider the open-closed interval A = (a,b]. Note that A is not open since b €A
is not an interior point of A, and is not closed since a € A but is a limit point of A.
HEINE-BOREL THEOREM

One of the most important properties of a closed and bounded interval is given in the
next theorem. Here a class of sets, o4 = {A;}, is said to cover a set A if A is contained
in the union of the members of o4, i.e. A C U; A
Theorem (Heine-Borel) 45: Let A = [c,d] be a closed and bounded interval, and let

G = {Gi:1 €1} be a class of open intervals which covers 4,
ie. ACU;Gi. Then G contains a finite subclass, say
{Gip, ++ -, Gy}, which also covers A4, i.e.,

A CGil U GizU ..o U Gfm
Both conditions, closed and bounded, must be satisfied by A or else the theorem is not
true. We show this by the next two examples.
Example 4.1: Consider the open, bounded unit interval A = (0,1). Observe that the class

_ (1 1),
v = {G"~<n+2’n>'nEN}

of open intervals covers A, ie,,

AcC ) UGHUGDU -

T

|

|

|

T Y T
— 1
1 0 }

But the union of no finite subclass of ¢ contains A.
Example 4.2: Consider the closed infinite interval A = [1, ). The class

g = {(0,2),(1,3),(2,4), ...}
of open intervals covers 4, but no finite subclass does.

3,5) = ?7
t
{
i
3

(2,4) =

1,3) =

‘r

| |
—2 ~1

o+ -0-—1Q
ot----—0

0,2) = ¢
0

,_,_¢L,_4 -0

SEQUENCES

A sequence, denoted by
(51,82, ...), Sn:MEN) or (8
is a function whose domain is N = {1,2,8, ...}, i.e. a sequence assigns a point s. to each
positive integer n €N. The image s, or s(n) of n €N is called the nth term of the sequence.
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Example 5.1; The sequences
(sn> = (1,3’ 5, ceeds (tn) = <—%’ %1_%’1%’ ceeds (un> - (1,0,1’ 0, .

can be defined, respectively, by the formulas
1 ifnisodd

s) = =1, tn) = (FLMZY, un) = H+ (DY = {0 £ s oven

A sequence (s,: n € N) is said to be bounded if its range {s.:n € N} is a bounded set.

Example 5.2: Consider the three sequences in Example 5.1. The range of (s,) is {1,3,5,...}; so
(s,) is not a bounded sequence. The range of (t,) is {—4,1,—4,...} which is
bounded; hence (£,) is a bounded sequence, The range of (u,) is the finite set {0, 1};
80 (u,) is also a bounded sequence.

Observe that (s.:n € N) denotes a sequence and is a function. On the other hand,
{sn: n € N} denotes the range of the sequence and is a set,

CONVERGENT SEQUENCES
The usual definition of a convergent sequence is stated as follows:

Definition:] The sequence (@, as, . ..) of real numbers converges to b € R or, equivalently,

the real number b is the limit of the sequence (a»:n € N), denoted by

lima, = b, lima. = b or a,—b
iR el

e e I e TSI B IR I I SRR S RN 4
U Lere ex1sLs a posSliLive 1nieger o SucCil L

if for every ¢

\/

n>mny implies |an—b] <e

Observe that |a, —b| < ¢ means that b—¢ < a. < b +¢, or, equivalently, that a. belongs
to the open interval (b—e¢ b+¢) containing b. Furthermore, since each term after the
noth lies inside the interval (b—¢ b +¢), only the terms before Ung and there are only a
finite number of them, can lie outside the interval (b —¢ b+¢). Hence we can restate the
preceding definition as follows.

Definition:] The sequence (a,:n € N) converges to b if every open set containing & con-

tains almost all, i.e. all but a finite number, of the terms of the sequence.

Example 6.1: A constant sequence {a; g, &y ...), such as (1,1,1,...) or (—3,—3,—3,...), “con-
verges to a, since each open set containing a, contains every term of the sequence.
Example 62: Each of the sequences
(1,%’%7%’---% (170’%a0’%,0,%’0,--->, (17_%,%7—%7---)

converges to 0 since any open interval containing 0 contains almost all of the terms
of each of the sequences.

Example 63: Consider the sequence (3,1,3, L 2 1. 15 3 je the sequence
DL B 1616
1 cp s
St/ if n is even
a, = 1
1————2(n+1)/2 if n is odd
The points are displayed below:
a4 a; a ag as
o ; PoPn
0 1 1 3 1
i g %

Observe that any open interval containing either 0 or 1 contains an infinite number
of the terms of the sequence. Neither 0 nor 1, however, is a limit of the sequence.
Observe, though, that 0 and 1 are accumulation points of the range of the sequence,
that is, of the set {,1,8, L, % ...},
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SUBSEQUENCES

Consider a sequence (a1, a2, as ...). If (i,) is a sequence of positive integers such that
1 <2< ---, then
. <a/il, a/iz, a’ia, ’ . '>

is called a subsequence of (an:n € N).

Example 7.1: Consider the sequence (a,) = (1,4,4,1,...). Observe that (1,1,1,4,...) is a

subsequence of (a,), but that (4,1,1,4,4,1,...) is not a subsequence of (a,} since

1 appears before % in the original sequence.

Example 7.2:  Although the sequence (},%,8,1,%,...) of Example 6.3 does not converge, it does
have convergent subsequences such as (4, 1,4 y and ($,2,%,45,...). On

y
the other hand, the sequence (,3,5,...)
sequences.

As seen in the preceding example, sequences may or may not have convergent subse-
quences. There does exist a very important general case which gives a positive answer.

Theorem 4.6: Every bounded sequence of real numbers contains a convergent subsequence.

A sequence (a.: % € N) of real numbers is a Cauchy sequence iff for every «> 0 there
exists a positive integer 7, such that

n,m > ny implies |@n— am| <e

In other words, a sequence is a Cauchy sequence iff the terms of the sequence become
arbitrarily close to each other as n gets large.

Example 8.1: Let (a,:7n € N) be a Cauchy sequence of integers, i.e. each term of the sequence
bel{mgs to Z=4{...,—1,0,1,...}. Then the sequence must be of the form
(alr Ag; oo vy ano, b7 by b: .. ->

i.e. the sequence is constant after some ngth term. For if we choose ¢ =1, then

@y €Z and |a, —ay| <4 implies a,=ay,

Example 8.2: We show that every convergent sequence is a Cauchy sequence. Let a, = b and let
e > (. Then there exists n, € N sufficiently large such that
n > ny implies |o,—b| < de and m >ny implies |a, —b| < e
Consequently, n,m > n, implies
ltn—am| = |ap—=b+b—anl = |en—b + [b—ap| < det e = e

Hence (a,) is a Cauchy sequence.

COMPLETENESS

A set A of real numbers is said to be complete if every Cauchy sequence (@, € A : n €N)
of points in A converges to a point in A4.

Example 91: The set Z = {...,—2,-1,0,1,2,...} of integers is complete. For, as seen in
Example 8.1, a Cauchy sequence (a,: n € N) of points in Z is of the form
(@ @ - ., O, b,b,b,...)
which converges to the point b € Z.

Example 9.2: The set Q of rational numbers is not complete. For we can choose a sequence of
rational numbers, such as (1,1.4,1.41,1.412, ...) which converges to the real num-

ber \/_2—, which is not rational, i.e. which does not belong to Q.
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A fundamental property of the entire set R of real numbers is that R is complete.
Namely,

Theorem (Cauchy) 4.7: Every Cauchy sequence of real numbers converges to a real
" number.

CONTINUOUS FUNCTIONS

The usual ¢ — § definition of a continuous function is stated as follows:

Definition: | A function f R~ R is continuous at a point x, if for every «> 0 there exists

|z —ao <& implies  |f(x) — f(xo)] < e

The function f is a conttnuous function if it is continuous at every point.

Observe that |[r—a¢ < § means that 2¢—8 < 2 < x¢+8, or equivalently that x
belongs to the open interval (xo—8§, x0+8). Similarly, |f(z)—f(x¢)] < ¢ means that f(x)
belongs to the open interval (f(zo) —e, f(%o) +¢). Accordingly, the statement

.

[ An Py o 2
|& —do| <0 1

nplies (f(@) — f(®o)]| < e
is equivalent to the statement 7

x E(xo—38,x0+8) implies  f(x) € (f(x0) — ¢ f(x0) +¢)
which is equivalént to the statement

fl(o— 8, xo+ 8)] is contained in  (f(%o) — ¢, f(20) +¢)

wa can reactate th
ec regtate Ur

Hence
ience w an

Definition: ] A function f: R— R is continuous at a point p €R if for any open set Vi)
containing f(p) there exists an open set U, containing p such that f[Uy] C V.
The function f is a continuous function if it is continuous at every point.

The Venn diagram below may be helpful in visualizing this definition.

( o5l /

A continuous function can be completely characterized in terms of open sets as follows:

Theorem 4.8: A function is continuous if and only if the inverse image of every open set
is open.

Observe that Theorem 4.8 also states that a function is not continuous iff there exists
an open set whose inverse image is not open.

Example 10,1;: Consider the function f:R = R defined by
xr—1 if =3
O = iers
3 y if >3
and illustrated in the adjacent diagram.
Note that the inverse of the open interval
(1 3) is the open-closed interval (2,3] which

is not an open set. Hence the function f is
not continuous.
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We now state one important property of continuocus functions which we will refer to
later in the text.

A . Tha+r £. D . D
ICUL CILL 2. ey f . IvTT v

assumes every value between f(a) and f(b

ha anntintinnig an o ~lagad 10
e LUILIIIUuuUUD vl a Uiudcyg 111

In other words, if ¥y, is a real number for which f(a
then

=yo=f(b) or f(b)=1yo=f(a),
320 €R suchthat a=2zo=>b and f(xy) = yo
This theorem is known as the Weierstrass Intermediate Value Theorem.

Remark: A function f:R— R is said to be continuous on a subset D of R if it is con-
tinuous at each point in D.

TOPOLOGY OF THE PLANE

An open disc D in the plane R? is the set of points inside a circle, say, with center
p = (ai,as) and radius §>0, i.e, -

D = {(z,y): (z—@m)’+¥y—a)* <8 = {gE€R:d[® g <8}
L 1k . 7 N N, R R T, . S-S RO Sy AR BIPO J N /p = <a’1’a'2>
Here d(p, q) denotes the usual distance between two points
p = (a1, a2y and ¢ = (by, b)) in R%:
- dp,q) = V(a—bi)®+ (a2 — ba)?
The open disc plays a role in the topology of the plane R?

that is analogous to the role of the open interval in the
topology of the line R.

Let A be a subset of R2. A point »p € A is an interior point of A i{f p belongs to some

open disc D, which is contained in A:

n €N,
c

—
I od et

iAo

The set A is open (or U-open) iff each of its points is an interior point.

Example 11.1: Clearly an open disc, the entire plane R2 and the empty set () are open subsets
of R2. We now show that the intersection of any two open discs, say

Dy = {g€R2:d(p,q <8} ~and D, = {qER?: d(pyq) <33}
is also an open set. For let po €Dy N Dy so

d(p, Po) < 81 and  d(pg, py) < 35

Set r = min{8;—d(pypy)y 82— d(pa,py)} > 0
and let D = {qER?: d(pyq < §r}

Then p,€D C D, N D, or, p; is an interior point of Dy N D,.

A point p €R? is an accumulation point or limit point of a subset A of R? iff every open
set G containing p contains a peoint of A different from p, i.e.,

G CR? open, pEG implies AN(G\{p))+9?
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Example 11.2: Consider the following subset of R2:

A = J’(x,y):y=sin%, x>0\L
l * J

The set A is illustrated in the adjacent
diagram. Observe that the curve, go-
ing from right to left, fluctuates faster
and faster, i.e. that the points where
the curve crosses the x-axis become
closer and closer. The point p = (0,4)
‘is a limit point of A since A will
eventuaily pass through any open disc l

containing p. In fact, each point on B
the y-axis between —1 and 1, i.e. each

point in the set
B = {wy «=0 —1=y=1} uJ
—1d

is a limit point of A.
A subset A of R? is closed iff its complement A¢ is an open subset of R

A sequence (p1, P, ...) of points in R? converges to the point ¢ € R? iff every open’ set
containing ¢ contains almost all of the terms of the sequence. Convergence in the plane
R? can be characterized in terms of convergence in R as follows.

Proposition 4.10: Consider the sequence (p;=(a1,b1), p2==(as,bs), ...) of point in R* and
the point ¢ =(a,b) € R%. Then

pn—~>¢q if andonlyif a.—~>a and b.—b

A function f:R?—> R? is continuous at a point p € R? iff for any open set Vi, contain-
ing f(p) there exists an open set U, containing p such that f[U,] C Viw.

We list theorems for the plane R? which are analagous to theorems for the line R
stated earlier in this chapter.

Theorem 4.1*: The union of any number of open subsets of R? is open.
Theorem 4.2%: The intersection of any finite number of open subsets of R? is open.

Theorem 4.4%*: A subset 4 of R? is closed if and only if A contains each of its accumula-
tion points. :

>
0
%

A function f:R?-> R? is continuous if and only if the inverse image of

every open set is open.

Theorem

T 1

Solved Problems

OPEN SETS, ACCUMULATION POINTS

1. Determine the accumulation points of each set of real numbers:

(i) N; (ii) (e, b]; (iii) Qc, the set of irrational points. ,
Solution:
(i) N, the set of positive integers, does not have any limit points. For if e is any real number, we

can find a § >0 so small that the open set (¢ — 8, ¢ + 8) contains no point of N other than a.

(iiy Every point p in the closed interval [a, bl is a limit point of the open-closed interval (a, b, since
every open interval containing p € [a,b] will contain points of (a,bd] other than p.

(iii) Every real number pER is a limit point of Q¢ since every open interval containing pE€R will
contain points of Qc, i.e. irrational numbers, other than p.
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2. Recall that 4’ denotes the derived set, i.e. set of limit points, of a set A. Find sets 4
such that (i) A and A’ are disjoint, (ii) 4 is a proper subset of A’, (iii) A’ is a proper
subset of A, (iv) A=A4".

Solution:

(i) The set A = {1,%, %, ...} has 0 as its only point of accumulation. Hence A’ = {0} and
A and A’ are disjoint.

(iiy Let A = (a,b], an open-closed interval. As seen in the preceding problem A’ = [a,b], the
closed interval, and so A C A’,

(fif) Let A4 = {0,1,3,%,...}. Then 0, which belongs to A, is the only limit point of A. Hence
A’ = {0} and A’ cC A.

(iv) Let A = [a,b], a closed interval. Then each point in A is a limit point of A and they are the
only limit points. So A = A’ = [a,b].

3. Prove Theorem 4,1*: The union of any number of open subsets of R? is open,
Selution:

Let o4 be a class of open subsets of R2, let H = U{G: G € 4}, and let pE€H. The theorem is
proved if we show that p is an interior point of H, i.e. there exists an open disc D, containing p such .
that D, is contained in H.

Since p€H = U{G:GE A},

3Gy € 4 such that p & Gy
But G, is an open set; hence there exists an open disc D, containing p such that
p E Dl‘ C GQ
Since Gy is a subset of H = U{G:G € 4}, D, is also a subset of H. Thus H is open.
4, Prove: Every open subset G of the plane R? is the union of open discs.
Solution:

Since G is open, for each point p& G there is an open disc D, such that p&D, CG. Then
G = U{Dp:pEG}.

5. Prove Theorem 4.2*. The intersection of any finite number of open subsets of R?
is open.

Solution:

We prove the theorem in the case of two open subsets .of R2. The theorem will then follow by
induction.

Let G and H be open subsets of R2 and let p&G N H; so p&EG and pE H. Hence there exist
open dises D; and Dy such that ‘

pED CG and peD,CH
Then p€D;Nn Dy CGn H. By Example 11.1, the intersection of any two open discs is open; so
there exists an open disc D such that
peDcDinDy,CGnNnH
Hence p is an interior point of G N H and, so, G n H is open.
6. Prove: Let p €(G, an open subset of R2, Then there exists an open disc D with center p

such that p€D C G.

Solution:
By definition of an interior point, there exists an open disc
D, = {g €R? : d(p;,q) <5}, with center p; and radius §, such
that p€ D CG So d(p;,p) <3. Set
r = §—d(p,p) >0

and let D = {qeR:dpq < ir}

Then, as indicated in the diagram, p&€D C D; C G where D is
an open disc with center p.
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Prove: Let p be an accumulation point of a subset A of the plane R?*. Then every
open set containing p contains an infinite number of points of A. '

Solution:

Suppose G is an open set containing p and containing only
a finite number of points, say a4, ..., a,, of A different from p.
By the preceding problem, there exists an open disc D, with
center p and, say, radius § such that p& D, C G. Choose
r > 0 to be less than § and less than the distance from p to
any of the points a,,...,a,,; and let

D = {q€R?:d(p,a)<ir}

Then the open disc D containing p does not contain a4, ..., a,,
and, since D C D, C G, does not contain any other points of
A different from p.

The last statement contradicts the fact that p-is a limit point of A. Hence every open set
containing p contains an infinite number of points of A.

Remark: A similar statement is true for the real line R, i.e. if ¢ ER is a limit point of ACR,
then every open subset of R containing a contains an infinite number of points of A.

Prove: Consider any open disc D, with center p € R? and radius §. Then there exists
an open disc D such that (i) the center of D has rational coordinates, (ii) the radius
of D is rational, and (iii) p €D C D,.

Solution:
Suppose p = (&, b). Then there exist rational numbers

10.

¢ and d such that
a < ¢ < a+t+ s and b <d<b+tis

Let g = (¢,d). Note that d(p,q) < 13. Now choose a ra-
tional number 7 such that %8 <r < £8; and let D be the
open disc with center ¢, which has rational coordinates, and
radius » which is rational, Then, as indicated in the diagram,
pE€D C D,

Prove: Every open subset G of the plane R? is the union of a countable number of
open discs. '

Solution:

Since G is open, for each point p €G there exists an open disc D, with center p such that’
p&eD, CG. But, by the preceding problem, for each disc D, there ex1sts an open disc E, such that
EF’ - np. Qr\

/1\ the center of P has rational coordinates, (i \ the radius n-F E
) the center na ationa. coorginates, (1 e radl ol &

P » CD, CG
Accordingly, G U{E,: pE€G}

4
The theorem now follows from the fact that there are only a countable number of open disecs whose
center has rational coordinates and whose radius is rational,

Prove Theorem (Bolzano-Weierstrass) 4.3: Let A be a bounded infinite set of real
numbers. Then A contains at least one accumulation point.

Solution:
Since A is bounded, A is a subset of a closed interval I, = [ay, by]. Bisect I; at 1(a;+b,). Note
Lot ho +ha aaad guhintaveala oFf T
viiau UUl:ll o1 l/llc Ci1o8eq Supinierva:s o1 Ll, . N
[a1, 3(a; + b))} and [%(al +5y4), by (1)
cannot contain a finite number of points of A since A is infinite. Let Iy = [ay, &) be one of the

intervals in (1) which contains an infinite number of points of A.
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Now bisect I,, As before, one of the two closed intervals
fag, §(az+82)] and  [§(ay+ by), by]

must contain an infinite number of points of A. Call that interval I;.

Continuing this procedure we obtain a sequence of nested closed intervals

I1 oI, 513>
such that each interval I, contains an infinite number of points of 4 and
lim |, = 0

where |I,] denotes the length of the interval I,.

By the Nested Interval Property of the real numbers (see Appendix A), there exists a point p
in each interval I,. We show that p is a limit point of A and th‘,.. the theorem will follow.

e interval I, show that p is a follo
Let S, = (a,b) be an open interval containing p. Since lim |I,| = 0,
3n, € N such that yInQy < min(p—a, b p)
Then the interval I"o is a subset of the open interval S, = (a,b) as indicated in the diagram below.

o Ly

AIIIITTIIIIIIIII VSIS
PIFIFFTFITITTIITIITIVITII7.

a n b
a D /]

Since I, contains an infinite number of points of A, so does the open interval S,. Thus each open

interval containing p contains points of A other than p, i.e. p is a limit point of A.

CLOSED SETS

11.

12.

13.

14,

Prove: A set F is closed if and only if its complement F¢ is open.

Solution:
Note that (F¢)¢ = F'; so F is the complement of F¢. Thus, by definition, ¥ is closed iff F¢ is open.

Prove: The union of a finite number of closed sets is closed.

Solution:
Let Fy, ..., F,, be closed sets and let F = F,U---UF,,. By DeMorgan’s Law,

Fe = (F,Uu---UF) = FinFyn - nNF,,

So F¢ is the intersection of a finite number of open sets F;, and thus F¢ is also open. Hence its
complement Fe¢c = F is closed.

Prove: The intersection of any number of closed sets is closed.

Solution: 7
Let {F;} be a class of closed sets and let ¥ = N; F;. By DeMorgan’s Law,

Fe = (N F)c = u,F;

So Fc is the union of open sets and, hence, is open itself. Consequently, F¢ = F is closed.

Prove Theorem 4.4%: A subset of R? is closed if and only if it contains each of its
accumulation points.

Solution:

Suppose p is a limit point of a closed set F. Then every open disc containing p contains points
of F other than p. Hence there cannot be an open disc D), containing p which is completely contained
in the complement of F. In other words, p is not an interior point of Fc. But F¢ is open since F is
closed; so p does not belong to F¢, ie. p € F.

On the other hand, suppose a set A containsg each of its limit points. We claim that A is closed
or; equivalently; that its complement A¢ is open. Let p € A¢. Since A contains sach of its Hmit points

2100 A COILAlIls eadl Iy POiNGs,

p is not a llmlt point of A. Hence there exists at least one open disc D, containing p such that D,
does not contain any points of A. So D, C A¢, and hence p is an mterlor point of Ac. Since each
3 A 3
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15.

ju—y
=
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TOPOLOGY OF THE LINE AND PLANE [CHAP. 4

Prove: The derived set A’, i.e. set of accumulation points, of an arbitrary subset A
of R? is closed.

Solution:
Let p be a limit point of A’. By Theorem 4.4%, the theorem is proved if we show that p& A4/,
that is, that p is also a limit point of A.

Let G, be an open set containing p. Since p is a limit point of A’, G, contains at least one point
g€ A’ different from p. But G, is an open set containing ¢ € A’; hence G, contains (infinitely many)
points of A. So,

3¢ €A suchthat a+p, ¢+ q, and a € G,

That is, each open set containing p contains points of A other than p; so pE A’.

i oA 1

Prove: Let A be a closed and bounded set of real numbers and let sup (4) = . Then
pEA.

Solution:
Suppose p€A. Let G be an open set containing p. Then G contains an open interval (b,¢) con-
taining p, i.e. such that b < p <e. Since sup(4) =p and p €A,

3a€ A suchthat b<a<p<e

for otherwise b would be an upper bound for A. So a&€(b,¢) C G. Thus each open set containing p
containg a point of A different from p; hence p is a limit point of A. But A is closed; hence, by
Theorem 4.4*, p& A.

Prove Theorem (Heine-Borel) 4.5:
Let I, = [c1,di] be covered by a class G = {(a:, b)):7 €I} of open intervals. Then
< 1.

G contains a finite subclass which also covers I,.
Solution:
Assume that no finite subclass of ¢ covers I;. We bisect I, = [¢;,dy] at L(e; +d;) and consider
the two closed intervals
[er, $(er+dy)]  and  [§(e; +dy), dy] (1)

At least one of these two intervals cannot be covered by a finite subclass of ¢ or else the whole interval
I, will be covered by a finite subclass of ¢. Let I, = [cy,dy] be one of the two intervals in (Z) which
cannot be covered by a finite subclass of §. We now bisect I;. As before, one of the two closed intervals

(6o $(ca+do)] and  [4(co+ dy), dy)
cannot be covered/by a finite subclass of ¢. Call that interval 1.

3[33...

such that each interval I, cannot be covered by a finite subclass of ¢ and lim|l,|] = 0 where |1,
denotes the length of the interval I,.

We continue this procedure and obtain a sequence of nested closed intervals 7, D1

a
2

By the Nested Interval Property of the real numbers (see Appendix), there exists a point p
in each interval I,. In particular, p€1I,. Since ¢ is a cover of I, there exists an open interval
(@i b)) in ¢ which contains p. Hence @, < p < by. Since lim |1, =0,

Ing €N such that |Ini < min(p— e, b —p)

Then, as indicated in the diagram below, the interval I"o is a subset of the one interval (aio’ bio) in g.

I
)
e R -
777,
%, P b

)

But this contradicts our choice of Inﬁ. Thus the original assumption that no finite subclass of ¢
covers I is false and the theorem is true,
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SEQUENCES
18. Write the first six terms of each of the following sequences:
n—1 if nisodd R H if ”:1
(1) sy = 2 ) . (i1) t{n) = 2 if n=2
lw it niseven L(fn —1)+ tHn—2) if n>2

19.

e

Solution:

(1) Two formulas are used to define this function. Substitute 1, 3 and 5 into s(2) = n—1 to get
sy =0, s3=2 and s; =4. Then substitute 2, 4 and 6 into s(n) = n? to get sy, =4, 3, =16 and
8¢ =36. Thus we have (0,4,2,16,4,36,...).

(i) Here the function is defined recursively. Each term after the second is found by adding the
two previous terms. Thus:

t1=1 t4:t3+t2:3+2:5
t2:2 t5:t4+t3:5+3:
ty = t,+t, = 2+1 = 3 tg = t;+t, = 8+5 = 13

Hence we have (1,2,3,5,8,13,...).

Consider the sequence (a, = (—=1)*"'(2n— 1)):
1,-8,5,—-7,9, —11, 13, —15, ...}
Determine whether or not each of the following sequences is a subsequence of {au).
(i) (b = (1,5,-3,-7,9,13, -11, —15, ...)
(i) «(e) = (1,38,5,7,9,11,13, ...)
(iii) (dwy = (=3, -7, —11, —15, —19, 23, .. )

Solution:
(i) Note that 5 appears before —3 in (b,), but —3 appears before 5 in (a,). Hence (b, is not a
subsequence of (a,).

s 3, 7 and 11 do not even appear in (a,); hence (¢, is not a subsequence of (a,).

(A "

(ii)  The term

(ifi) The sequence (d,) is a subsequence of (a,), for (i, =2n) = (2,4,6,...) is a sequence of positive
integers such that 4, <4, <i3< --+; s0

<a’51’ aiz’ .o ‘) = (0/2, Uyy Qgy « . -) - <—'3y —7, -11! .. -)

is a subsequence of (a,).

20. Determine the range of each sequence:

21.

i L& L4L4ELLE 000 (iii) ¢2,4,6,8,10, ...)
(i) (1,0,-1,0,1,0,-1,0,1,0,-1,0, ...)

Solution:
The range of a sequence is the set of image points. Hence the ranges of the sequences are

(i) {1) ‘é‘) ‘é: %) [ '}) (ii) {1) 0, _1}) (lii) {2; 4,6,8, .. ~}

Prove: If the range of a sequence (a,) is finite, then the sequence has a convergent
subsequence.
Solution:

If the range {a,} of (a,) is finite, then one of the image points, say b, appears an infinite number
of times in the sequence. Hence (b,5,b,b,...) Is a subsequence of {(a,) and it converges.
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22. Prove: If lima, =b and lima, = ¢, then b = ¢.

23.

24,

25.

Solutien:

Suppose that b and ¢ are distinet. Let § = |b —¢| > 0. Then the open intervals B = (b— 13,
b+ 15) and C = (c— 13, ¢+ 13), containing b and ¢ respectively, are disjoint. Since (a,) converges
to b, B must contain all except a finite number of the terms of the sequence. Hence C can only
contain a finite number of the terms of the sequence. But this contradicts the fact that {(a,) converges
to ¢. Accordingly, b and ¢ are not distinct.

Prove: If the range {a.} of a sequence (a.) contains an accumulation point b, then the
sequence (a.) contains a subsequence (a; ) which converges to b.
Solution:

choose

0
of the sequence {(a,). W

[¢=3
o
n
[t
=]
o
o
=
Q
(¢
=]
<
o
n
=+ -
=]
g
S
wn

Choose a;, to be a point in S).

Choose ai, to be a point in S, such that i, > 1;, ie. such that a;, appears after a;,
in the sequence (a,).

Choose q;_ to be a point in S; such that i3 > i,.
3

We continue in the same manner.

Observe that we are always able to choose the next term in the sequence (a; ) since there are an
infinite number of the terms of the original sequence (a,) in each interval S,.

We claim that (ain> satisfies the conditions of the theorem. Recall that we choose the terms of
the sequence (a; ) so that i, <1y, <iz < ---; hence (@ ) is a subsequence of (a,. We need to show
that lim a;, = b. Let G be an open set containing b. Then G contains an open interval (d,, ds) con-
taining b; so dy < b < ds. Let § = min(b—d,, do—5b) > 0; then

Ing €N suchthat 1/n, <3
Hence .S’n0 C (d,,ds) C G, and so

n>mn, implies a; €8, C S"o C (dy,dy) C G

Thus G contains almost all the terms of the sequence (a; ) that is, lim @, = b.

Prove Theorem 4.6: Every bounded sequence (a.) of real numbers contains a con-
vergent subsequence.
Solution:

Consider the range {a,} of the sequence {(a,). If the range is finite, then by Problem 21 the
sequence contains a convergent subsequence. On the other hand, if the range is infinite, then, by the
Bolzano-Weierstrass Theorem, the bounded infinite set {a,} contains a limit point. But then, by the
previous problem, the sequence in this case also contains a convergent subsequence.

Prove: Every Cauchy sequence (a.) of real numbers is bounded.
Solution:
Let e = 1. Then, by definition of a Cauchy sequence,

Ing EN such that #n,m =n, implies |a,—a, <1

In parthg_ular, m =n, implies ia’“o4 an <1, or, Tpy =1 <t < an +1
Let a = max (aq, Gg, ..., Wngs @n + 1)
8 = min (e, @, ..., gy Gy~ 1)

Then « is an upper bound for the range {a,} of the sequence (a,) and g8 is a lower bound. Accordingly,
(a,) is a bounded sequence.
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26.

Prove: Let (a.) be a Cauchy sequence. If a subsequence (a;) of (a,) converges to a
point b, then the Cauchy sequence itself converges to b.
Solution:
Let ¢ > 0. We need to find a positive integer n, such that
n>mn; implies la, —b]<e
Since (a,) is a Cauchy sequence,

Ing €N suchthat nm,m>mn, implies |a,— ;] < le

Also, since the subsequence (ai") converges to b,
37, €N suchthat la; —b| < le

mn '

Observe that we can choose i,, so that %, > ng.  Accordingly,

27.

n>ny implies |a,—b = le,— @, +oa;, — b\
= |an—aim| + |aim_b|
< %s -+ %e = €

Hence (a,) converges to b.

Observe that we need 1, > n; in order to state that: = > #n, implies |a,— "'im‘ < Le.

Prove Theorem (Cauchy) 4.7: Every Cauchy sequence (a.y of real numbers converges
to a real number.
Solution:

By Problem 25, the Cauchy sequence (¢, is bounded. Hence, by Theorem 4.6, the bounded
sequence (a,) contains a convergent subsequence (ai"). But, by the preceding problem, the Cauchy

sequence {a,) converges to the same limit as its subsequence (a,-n>. In other words, the Cauchy

[«]
[¥]

. Determine whether or not each of the following subsets of R is complete:

(i) N, the set of positive integers; (ii) QF, the set of irrational numbers.

(i) Let (a,) be a Cauchy sequence of positive integers. If ¢ = %, then

e, —ay| <e=1 implies a, = a,

Therefore, the Cauchy sequence (a,) is of the form (ay,a,, ..., By b,b,b,...) which converges
to the positive integer b. Hence N is complete.

(ii)  Observe that each of the open intervals
(717 1)7 (!%7 %)7 (—%y ‘é)y
contains irrational points. Hence there exists a sequence (a,) of irrational numbers such that
a, belongs to the open interval (—1/n, 1/%). The sequence {a,) will be a Cauchy sequence of
points in Q¢ and it will converge to the rational number 0. Hence Q¢ is not complete.

CONTINUITY

29.

Prove: If the function f:R-—>R is constant, say f(z) =a for every x« €R, then
f is contintious.

Solution:
Method 1. The function f is continuous iff the inverse f~1[G] of any open set G is also open. Since
x) = for every x € R,
flz) =a y - 3 if a€G
R if a€qG

for any open set G. In either case, f~1[G] is open since both R and () are open sets.

=
[ed
-

Method 2. We show that f is contihuous at any point x; using the ¢ — § definition of continuity.

e > 0. Then for any § >0, say 3§ =1,
|@ —agl <1 implies |f(®) —f(xo)) = la—a| = 0 < ¢

Hence f is continuous.
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33.
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Prove: The identity function f: R - R, that is, the function defined by f(x) ==&, is
continuous.

Solution:

Method 1. Let G be any open set. Then f~1[G] = G is also an open set. Accordingly, f is continuous.

Method 2. We show that f is continuous at any point z, using the ¢ — § definition of continuity. Let
¢ > 0. Then choosing ¢ = §,

le —xo) < & implies |f(x)— florg)] = |z — ) < 8 = ¢

Accordingly, f is continuous.

. Prove: Let the functions f: R—=> R and ¢: R-> R be continuous. Then the composition
function gof: R—> R 1is also continuous. e
Solution:

We show that the inverse (gof)~1[G] of any open set G is also open. Since ¢ is continuous, the
inverse g—1[G] is an open set. But since f is continuous, the inverse f~1[g=1[G]] of g~ 1[G] is also
open. Recall that ’

(gof)=1 = frlog1?

TT om s f e £\
nence \Y =1

is an open set. Thus the composition function gof: R— R is continuous.

Prove: Let f:R~—> R be continuous and let f(q) = 0 for every rational number ¢ € Q.
Then f(x) =0 for every real number x €R.

Solution:
Suppose f(p) is not zero for some real number p € R, i.e. suppose

I3pER suchthat fp) =7y, [¥|>0
Choose ¢ = L|y{. Since f is continuous,
35 >0 suchthat |e—p[ <& implies [f(x)—f(p)l <e= [yl
Now there are rational points in every open interval. In particular,
3g€Q suchthat g€ {x:lz—pl <3
which implies e —Fo) = [fp)] = |v] < e = &Yl

an impossibility. Hence f(x) = 0 for every « € R.

Prove Theorem 4.8: A function f:R2- R? is continuous if and only if the inverse
image of every open set is open.

Let f:R2— R2 be continuous and let V be an open subset of R%.. We want to show that f—1[V]
is also an open set. Let p& s '[V]. Then f(p)€ V. By definition of continuity, there exists an
open set U, containing p such that f[U,] C V. Hence (as indicated in the diagram below)

U, © f-1A0,)) € f1 (V]
We have shown that, for every point p € f~1[V], there exists an open set U, such that
pE Up Cf [V]
Accordingly, vl = Wo,: pEfIV]

So f~1{V] is the union of open sets and is, therefore, open itself.
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ad

34.

36.

On the other hand, suppose the inverse of every open set is open. We want to show that f is
continuous at any point- p € R. Let V be an open set containing f(p), i.e. f(p) € V. Then f~1[V] is
an open set containifg p with the property that f[f=1[V]] ¢ V. Hence f is continuous at p.

Give an example of two functions f: R-> R and ¢g: R- R such that f and ¢ are each
discontinuous (not continuous) at every point and such that the sum f + ¢ is continuous
at every point in E.

Solution:
Consider the functions f and g defined by

0 if x is irrational

jO if z is rational B 1 if x is rational
if x 1s irrational

flwy = 11 if « is irrati ) g(x)

The functions f and g are discontinuous at every point in R, but the sum f - g is the constant function
(f + 9)x) = 1 which is continuous.

(1) If f(p)' 0s1t1ve

1.
positive at aver

e. f(p)> en there exists an open interval S containing
nt in S.

n
-
]
=
=t
IS‘
‘}3
‘h

oint

'13

(if) If f(p) is negative, i.e. f(p) < 0, then there exists an open interval S containing »
such that f is negative at every point in S.

Solution:
We prove {i). The

ove (i
continuous at p,
35>0 such that |#—p| <8 implies |[f(»)—f(p) <e

or, equivalently,
x€(p—38,p+s8) implies flx) € (f(p)—¢ f(®)+e) = (0, 2¢)

Thus for every point x in the open interval (p — §, p + 8), f(x) is positive.

Prove: Let f:R - R becontinuous at every point
in a closed interval [a, b], and let f(a) < 0 < f(D).
Then there exists a point p € [a,b] such that
f(p) = 0. (In other words, the graph of a contin-
uous function defined on a closed interval which
lies both below and above the x-axis must cross
the x-axis at at least one point, as indicated in e
the diagram.) '

I -} (S

Solution:
Let A be the set of points in [a, b] at which f is negative, ie,

A = {x:x€]Jab], flx) <0}
Observe that A is not empty since, for example, ¢ €A. Let p = sup(A4) be the least upper bound

for A. Since a €4, ¢ =p; and since b is an upper bound for 4, p=5. So p belongs to the interval
[a, b].
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We claim that f(p) = 0. If f(p) <0, then, by the preceding problem, there is an open interval
(p — 3, p+8) in which f is negative, l.e.,

37.

(p—6,pto) CA

So p cannot be an upper bound for A. On the other hand, if f{(p) > 0, then there exists an interval

pP—8pt+ts)nd = O
which implies that p cannot be a least upper bound for A. Thus f(p) can only be zero, ie. f(p) = 0.

Remark., The theorem is also true and proved similarly in the case f(b) < 0 < f(a).

Prove Theorem (Weierstrass) 4.9: Let f:R—>R be continuous on a closed interval

la,b]. Then the function assumes every value between f(a) and f(b).

Solution:

Suppose f(a) < f(b) and let y, be a real number such that f(a) <y, < f(b). We want to prove
that there is a point p such that f(p) = yo. Consider the function g{(x) = f(x) —y, which is also
continuous. Observe that g(a) < 0 < g(b).

By the preceding problem, there exists a point p such that g(p) = f(p) —yo = 0. Hence f(p) = y,.

The case when f(b) < f(a) is proved similarly.

Supplementary Problems

OPEN SETS, CLOSED SETS, ACCUMULATION POINTS

38.

39.

40.

41.

[N
(2

44.

45.

49.

50.

Prove: If A is a finite subset of R, then the derived set A’ of 4 is empty, i.e. A’ = Q.
Prove: Every finite subset of R is closed.
Prove: If ACB, then A'CB’.

Prove: A subset B of R? is closed if and only if d(p,B) = 0 implies p € B, where d(p,B) =
inf {d(p, ¢) : ¢ € B}.

Prove: AUA’ is closed for any set A.

Prove: AUA’ is the smallest closed set containing A4, i.e, if F is closed and A CF CA U 4’
F=A4Au4.

Prove: The set of interior points of any set A, written int(A4), is an open set.

Prove: The set of interior points of A is the largest open set contained in A4, ie. if G is open and
int(A) CGC A, then int{4) = @G.

Prove: The only subsets of R which are both open and closed are (@ and R.

Prove: If the sequence (¢,) converges to b E€R, then the sequence (|a,~—b|) converges to 0.

Prove: If the sequence (¢, converges to 0, and the sequence (b,) is bounded, then the sequence
{ab,) also converges to 0.

Prove: If e¢,—a and b, — b, then the sequence (a,+ b,) converges to a + b.

Prove: If a,-a and b,— b, then the sequence (¢,b,) converges to ab.
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51. Prove: If a,—a and b,—> b where b, 0 and b +* 0, then the sequence (a,/b,) converges to a/b.
52, Prove: If the sequence (a,) converges to b, then every subsequence {a; ) of (a,) also converges to b
"
-+ 53, Prove: If the sequence (a,) converges to b, then either the range {e,} of the sequence (a,) is finite,
or—b—is—an—accumulation point—of the range {u; -
54. Prove: If the sequence {(a,) of distinct elements is bounded and the range {a,} of (a,) has exactly one
limit point b, then the sequence (a,) converges to b.
(Remark: The sequence (1, 52, 1,3,1,4,...) shows that the condition of boundedness cannot be
removed from this theorem.)
CONTINUITY
55. Prove: A function f:R —> R is continuous at a € R if and only if for every sequence (a,) converging
to a, the sequence (f{a,)) converges to f(a).
%+ 56. Prove: Let the function f:R —>R be continuous at p € R. Then there exists an open interval S
containing p such that f is bounded on the open interval S.
+ 57. Give an example of a function f: R — R which is continuous at every point in the open interval
S = (0,1) but which is not bounded on the open interval S.
+ 58. Prove: Let fi R — R be continuous at every point in a closed interval A = [a,b]. Then f is bounded
on A. (Remark: By the preceding problem, this theorem is not true if A is not closed.)
+59, Prove: Let f:R—>R and g:R—>R be continuous. Then the sum (f+g): R—> R is continuous,
where f+ g is defined by (f+9)z) = flx) + g(x).
~ 60. Prove: Let f:R— R Dbe continuous, and let k& be any real number. Then the function (kf): R—>R
is continuous, where kf is defined by {(kf{z) = k(f(x)).
+ 61. Prove: Let f:R—>R and g:R—> R be continuous. Then {x €R: f(z) = g(x)} is a closed set.
2+ 62. Prove: The projection w»,:R2— R is continuous where #, is defined by =.((a,d) = a.
63. Consider the functions f:R—>R and g¢:R—>R defined by
e [sin(/z) if @0 o Josin(xy if x#0
T o if x=0" o lo if x=0
Prove g is continuous at 0 but f is not continuous at 0.
64. Recall that every rational number ¢ € Q can be written uniquely in the form ¢ = a/b where ¢ €12,
bEN, and a and b are relatively prime. Consider the function f: R — R defined by
@) = {0 if x is irrational
A=) = Ll/b if x is rational and « = a/b as above
Prove that f is continuous at every irrational point, but f is discontinuous at every rational point.
Answers to Supplementary Problems
57. Consider the function ¥ \
[—x £ x=0 \
flo) = Ll/x if x>0 \ \
The function f is continuous at every point in R except at 0 as
indicated in the adjacent graph of f. Hence f is continuous at K
every point in the open interval (0,1). But f is not bounded on .
{0,1).
58. Hint. Use the result stated in Problem 56 and the Heine-Borel

Theorem.



Chapter 5

Topological Spaces: Definitions

TOPOLOGICAL SPACES

Let X be a non-empty set. A class T of subsets of X is a topology on X iff T satisfies
the following axioms.

[0.] X and © belong to T.
[0:]1 The union of any number of sets in T belongs to T.

[0:] The intersection of any two sets in 7 belongs to T.

The members of T are then called T-open sets, or simply open sets, and X together with T,
i.e. the pair (X, T) is called a topological space.

Example 1.1:

Example 1,2:

Example 1.3:

Example 1.4:

Example 15:

Let U denote the class of all open sets of real numbers discussed in Chapter 4.
Then U is a topology on R; it is called the usual topology on R. Similarly, the
class U of all open sets in the plane R? is a topology, and also called the usual
topology, on R2. We shall always assume the usual topology on R and R2? unless
otherwise specified.

Consider the following classes of subsets of X = {a, b, ¢,d, ¢}.

Ty = {X: 0, {a}, {c,d}, {a,c,d}, {b,e,d, e}}
T2 = {X! @) {a}’ {C, d}: {a: c, d}! {br ¢, d}}
‘T3 - {Xf @7 {a}’ {C, d}: {a7 ¢, d}: {a, b’ dr e}}

Observe that T, is a topology on X since it satisfies the necessary three axioms
[041, [05] and [03]. But T, is not a topology on X since the union

{a,c,d} U {b,c,d} = {a,b,cd}
of two members of T, does not belong to T,, i.e. T, does not satisfy the axiom [0,].

Also, T4 is not a topology on X since the intersection
{e,c,d} N {a,b,d,e} = {e,d}

of two sets in T3 does not belong to T,, i.e. T3 does not satisfy the axiom [03].

Let ) denote the class of all subsets of X. Observe that ./ satisfies the axioms
for a topology on X. This topology is called the discrete topology; and X together
with its discrete topology, i.e. the pair (X, D), is called a discrete topological space

ar aimnly o diesrets emnan
O SIMp1Y a aisdreie space.

As seen by axiom [0,], a topology on X must contain the sets X and ). The class
(q = {X, 0}, consisting of X and ¢ alone, is itself a topology on X. It is called
the indiscrete topology; and X together with its indiscrete topology, i.e. (X, j), is
called an indiscrete topological space or simply an indiscrete space.

Let T denote the class of all subsets of X whose complements are finite together
with the empty set 0. This clags T is also a topology on X. It is called the
cofinite topology or the T'-topology on X. (The significance of the T'; will appear
in a later chapter.)
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Example 1.6: The intersection 77N T, of any two topologies Ty and T, on X is also a topology
on X. For, by [04], X and @ each belongs to both T and T,; hence X and ) each
belongs to the intersection T, N Ty, ie. Ty N T, satisfies [0;]. Furthermore, if
G,He T,NnT, then, in particular, G,HE€ T, and G,H € T,. But since T, and
T, are topologies, GNHET; and GNHE T,y Accordingly,

GNHET NnT,
In other words T, N T, satisfies [03]. Similarly, T4 N T, satisfies [0,].

The statement in the preceding example can, in fact, be generalized to any collection
of topologies. Namely,

Theorem 5.1: Let {T::7 €I} be any collection of topologies on a set X. Then the inter-
section N;T; is also a topology on X.
In our last example, we show that the union of topologies need not be a topology.

Example 1.7: Each of the classes
Ty = {X,0,{a}} and T, = {X, 9, {b}}
is a topology on X = {a,b,¢}. But the union
T,VT, = {X, 9, {a}, {b}}

is not a topology on X since it violates [0,]. Thatis, {a} € T;UT,, {b} €T UT,
but {a} U {b} = {e, b} does not belong to T;U Ts.

If G is an open set containing a point p € X, then G is called an open neighborhood of p.
Also, G without p, i.e. G\ {p}, is called a deleted open neighborhood of p.

Remark: The axioms [(0:], {O:] and [0:] are equivalent to the following two axioms:

[0f1 The union of any number of sets in T belongs to T.
[05]1 The intersectio{n of any finite number of sets in T belongs to T.

For [07] implies that () belongs to T since

\ UGET : GEP} = @

a tha armnto ninn ~f gote ja tha parnto ant Thairtharmaanae TOFT jvanlicog that YV halanoa o
1.©. UIIT © Ilpby Uulliiuvull vl JSTL 1S5 LT © llpby [elvl ) L UL LVLTLIIIVIT, V) ] uupuca viial <4 MTLULIES LU
T since

NGeET: Gey = X
i.e. the empty intersection of subsets of X is X itself.
ACCUMULATION POINTS
Let X be a topological space. A point p € X is an accumulation point or limit point
falan rallad alarctor masmt av Aoviasod maimf) Aaf o cithaont A Af YV 1 avary nnan ent (1 aantaitnine
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p contains a point of ‘A different from p, i.e,,
- LY an o £ Aamm w12 T AN CAantY ™ A s A
oopen, pEeu impiies {(U\{PyMAF+*Y

The set of accumulation points of A, denoted by A’, is called the derived set of A.

Example 2.1: The class T = {X, @, {a}, {c,d}, {a,6,d}, {b,¢c,de}}

defines a topology on X = {a,b,¢,d,e}. Consider the subset A = {a,b,¢} of X.
Observe that b € X is a limit point of A since the open sets containing b are
{b,e,d, e} and X, and each contains a point of A different from b, i.e, ¢. On the
other hand, the point ¢ € X is not a limit point of A since the open set {a}, which
contains «, does not contain a point of A different from . Similarly, the points
d and e are limit points of 4 and the point ¢ is not a limit point of A.
So A’ = {b,d, e} is the derived set of A.
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Example 2.2: Let X be an indiscrete topological space, i.e. X and () are the only open subsets
of X. Then X is the only open set containing any point p € X. Hence p is an
accumulation point of every subset of X except the empty set @ and the set con-
sisting of p alone, i.e. the singleton set {p}. Accordingly, the derived set A’ of any
subset A of X is as follows:

o ifA=0
A = {p}e = X\ {p} if 4 ={p}
X if A contains two or more points

Observe that, for the usual topology on the line R and the plane R? the above definition
of an accumulation point is the same as that given in Chapter 4.

CLOSED SETS

Let X be a topological space. A subset A of X is a closed set iff its complement A¢ is
an open set.

Example 3.1: The class T = {X, @, {a}, {¢,d}, {a,¢,d}, {b,e,d, e}}
defines a topology on X = {a,b,¢,d,¢}. The closed subsets of X are

0, X, {be,d, e}, {a,b,e}, {b, e}, {a}

that is, the complements of the open subsets of X. Note that there are subsets
of X, such as {b, ¢, d, ¢}, which are both open and closed, and there are subsets of X,

anich age fo Bl which ars neithar gnen nar claogsad
Sucn as &, ¢y, WiniCn are neitaer open nor ci:oésed.

Example 32: Let X be a discrete topological space, i.e. every subset of X is open. Then every
subset of X is also closed since its complement is always open. In other words,
all subsets of X are both open and closed.

Recall that {4 = A, for any subset 4 of a space X. Hence

Proposition 5.2\ In a topological space X, a subset 4 of X is open if and only if its com-
lement is closed.

The axioms [0,], [0:] and [0:] of a topological space and DeMorgan’s Laws give

Theorem 5.3: Let X be a topological space. Then the class of closed subsets of X
possesses the following properties:

(i) X and () are closed sets.
(ii) The intersection of any number of closed sets is closed.
(iiif) The union of any two closed sets is closed.
Closed sets can also be characterized in terms of their limit points as follows:
Theorem 54: A subset A of a topological space X is closed if and only if A contains
each of its accumulation points.

In other words, a set A is closed if and only if the derived set A’ of A is a subset of A4,
i.e. A’ CA.

CLOSURE OF A SET
Let A be a subset of a topological space X. The closure of A, denoted by
A or A-
is the intersection of all closed supersets of A. In other words, if {Fi:? €1} is the class
of all closed subsets of X containing A, then
A = n;F;
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Obs_erve first that A is a closed set since it is the intersection of closed sets. Further-
more, 4 is the smallest closed superset of A, that is, if F' is a closed set containing A4, then

nd

ACACEF
Accordingly, a set A is closed if and only if A =A. We state these results formally:

Proposition 5.5: Let A be the closure of a set A. Then: (i) A is closed; (i) if F is a closed
superset of A, then A C A C F; and (iii) A is closed iff 4 =A.

Example 41: Consider the topology T on X = {a,b,¢,d,e} of Example 3.1 where the closed
subsets of X are
@, X, {b,¢,d, e}, {a,b,e}, {b,e}, {a}

Y = {bye}, {a,¢} = X, {b,d} = {b,c,d,e}

Accordingly,

Example 4.2: Let X be a cofinite topological space, i.e. the complements of finite sets and ¢ are
the open sets. Then the closed sets are precisely the finite subsets of X together
with X. Hence if A € X is finite, its closure A is A itself since 4 is closed. Or_l
the other hand, if A C X is infinite then X is the only closed superset of A; so A
is X. More concisely, for any subset A of a cofinite space X, .

i - [A if A is finite
T X if 4 is infinite

The closure of a set can be completely described in terms of its limit points as follows:

Theorem 5.6: Let A be a subset of a topological space X. Then the closure of A is the
union of A and its set of accumulation points, i.e.,

- A = Aud
A point p € X is called a closure point or adherent point of ACX iff p belongs to the
closure of A, i.e. p€A. In view of the preceding theorem, p € X is a closure point of
ACX iff p €A or p is a limit point of A.

Example 4.3: Consider the set Q of rational numbers. As seen previously, in the usual topology
t ce d is

Lz D gxrnvcs wan T mmavialine ~ C D T o Tl dd iz Af IF 32
1Ul Iy, CVCly Ieal nuiniper w = v 15 g 1V PUlILL Ul Y, fenc

the entire set R of real numbers, i.e. Q@ = R.

A subset A of a topological space X is said to be dense in BCX if B is contained in
the closure of A4, i.e. BCA. In particular, A is dense in X or is a dense subset of X
iff A=2X.

Example 44: Observe in Example 4.1 that

{g,¢} = X and {6,d} = {b,¢,d,¢}
where X = {a, b, ¢,d, ¢}, Hence the set {a, ¢} is a dense subset of X but the set {b, d}

is not.

Example 45: As noted in Example 4 Q = R. In other words, in the usual topology, the set Q

The operator “closure”, assigning to each subset A of X its closure A C X satisfies the
‘four properties appearing in the proposition below, calied the Kuratowski Ciosure Axioms.
In fact, these axioms may be used to define a topology on X, as we shall prove subsequently.

Proposition 5.7: (i) @ =@, (ii) ACA; (iii) AUB = AUB; and (iv) (47) = 4.

INTERIOR, EXTERIOR, BOUNDARY

Tt A Lo o aciihaat ~f o +analacinal anacras YV
1,60 A 0e & SupsSel 01 a topoIogical sSpace A.

0>
]
=

of A if p belongs to an open set G contained in A:
peEGCA where G is open
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The set of interior points of 4, denoted by

is called the interior of A. The interior of A can also be characterized as follows:

Proposition 5.8: The interior of a set 4 is the union of all open subsets of A. Further-
more: (i) A° is open; (ii) A° is the largest open subset of A, ie. if G

The exterior of A, written ext(4), is the interior of the complement of A, i.e. int (A¢).
The boundary of A, written b{(A), is the set of points which do not belong to the interior
or the exterior of A. Next follows an important relationship between interior, exterior
and closure.

Theorem 5.9: Let A be any subset of a topological space X. T}len the closure of A is the
union of the interior and boundary of 4, ie. 4 = A°UDb(4).

Example 5.1: Consider the four intervals [a, b], (a,b), (¢,b] and [e,b) whose endpoints are a
and b. The interior of each is the open interval (e, b) and the boundary of each
is the set of endpoints, i.e. {a, b}.

Example 5.2: Consider the topology
T = X, 0, {a}, {e,d}, {a,¢,d}, {b,¢,d,¢e}}
on X = {a,b,c,d,e}, and the subset A = {b,¢,d} of X. The points ¢ and d are

A

each interior points of 4 since
¢,d € {¢,d} C A

where {¢,d} is an open set. The point b€ A is not an interior point of A4;
so int(4) = {¢,d}. Only the point ¢ € X is exterior to A, i.e. interior to the
complement A¢ = {a,e} of A; hence int(A°) = {a}. Accordingly the boundary
“of A consists of the points b and e, i.e. b (4) = {b,e}.

Example 53: Consider the set Q of rational numbers. Since every open subset of R contains
both rational and irrational points, there are no interior or exterior points of Q;
so int(Q) = @ and int(Q°¢) = . Hence the boundary of Q is the entire set of
real numbers, i.e. b(Q) =R

A subset A of a\tonlogical space X is said to be nowhere dense in X if the interior
of the closure of A is empty, i.e. int(4) = @.

Example 54: Consider the subset A = {1,1,1,%,...} of R. As noted previously, 4 has exactly
one limit point, 0. Hence A= 0,1,%4%3.4 .. .}. Observe that A has no interior
points; so A i1s nowhere dense in R.

Example 55: Let A consist of the rational points between 0 and 1,ie. A = {zx:2€Q, 0 <x <1},
Observe that the interior of A is empty, i.e. int(4) = . But A is not nowhere
dense in R; for the closure of 4 is [0,1], and so

int (4) = int([0,1]) = (0,1)
is not empty.

NEIGHBORHOODS AND NEIGHBORHOOD SYSTEMS

Let » be a point in a topological space X. A subset N of X is a neighborhood of ¢
iff N is a superset of an open set G containing p:

p€E€EGCN where (7 is an open set

In other words, the relation “N is a neighborhood of a point p”’ is the inverse of the relation
“p is an interior point of N”’. The class of all neighborhoods of p € X, denoted by N, is
called the neighborhood system of p.

Example 6.1: Let a be any real number, i.e. @ € R. Then each closed interval [a—§, a+ 8],
with center a, is a neighborhood of @ since it contains the open interval (a— 8, a+8)
containing «. Similarly, if p is a point in the plane R2, then every closed disc
{g € R2 : d(p,q) < § % 0}, with center p, is a neighborhood of p since it contains
the open disc with center p.
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The central facts about the neighborhood system N, of any point p €X are the four
properties appearing in the proposition below, called the Neighborhood Axioms. In fact,

ML

these axioms may be used to define a topology on X, as we shall note subsequently.

g to aach maemher of N
S 1o eac €T O X,

ii) The intersection of any two members of N, belongs to N,.

(
\
(
(iii) Every superset of a member of N, belongs to N,
(

iv) Each member N € N, is a superset of a member G € N, where G
is a neighborhood of each of its points, i.e. G € N, for every g € G.

CONVERGENT SEQUENCES

A sequence (ai,a., ...) of points in a topological space X converges to a point b €X,
or b is the limit of the sequence (a,), denoted by

lima. = b, limae. =D or a.—>D

n=—ce

iff for each open set G containing b there exists a positive integer n; € N such that
‘ n>mno implies a. €G
that is, if G contains almost all, i.e. all except a finite number, of the terms of the sequence.

Example 7.1: Let (#;,aq,...) be a sequence of points in an indiscrete topological space (X, -
Note that: (i) X is the only open set containing any point b € X; and (ii) X con-
# tains every term of the sequence (¢,). Accordingly, the sequence (a,,ds, ...} con-

verges to every point b€ X.

Example 7.2: Let (@, a,,...) be a sequence of points in a discrete topological space (X, 7). Now
for every point b € X, the singleton set {b} is an open set containing b. So, if
a, > b, then the set {b} must contain almost all of the terms of the sequence.
In other words, the sequence (a,) converges to a point b € X iff the sequence is of
the form <(ay, a,, ..., ns b, b, b, ...).

Example 7.3: Let T be the topology on an infinite set X which consists of ) and the complements

of countable sets (see Problem 56). We claim that a sequence (¢{,ao,...) in X
converges to b€ X iff the sequence is also of the form (a,,a,, .. s b,b,b,...),

i.e. the set A consisting of the terms of (a,) different from b is finite. Now A is
countable and so A¢ is an open set containing b. Hence if a, > b then A¢ contains
all except a finite number of the terms of the sequence, and so 4 is finite.

COARSER AND FINER TOPOLOGIES

Let T1 and T2 be topologies on a non-empty set X. Suppose that each Ti-open subset
of X is also a Ts-open subset of X. That is, suppose that T, is a subclass of T, i.e.

Ty C T2. Then we say that T: is coarser or smaller (sometimes called weaker) than T»
ar that T i Ansr or loraer than ‘T' Nhearva +]n0i' tha ceallaction T = T\ Of all t ‘hul
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on X is partially ordered by class 1nclus1on, so we shall also write

olag
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11312 10T 11 19

and we shall say that two topologies on X are not comparable if neither is coarser than
! the other.

Example 8.1: Consider the discrete topology ./, the indiscrete topology 4 and any other topology
T on any set X. Then T is coarser than ) and T is finer than g- That is,
ST <D

Exampie 8.2: Consider the cofinite topology T and the usual topology U on the plane R2. Recall
that every finite subset of R? is a U-closed set; hence the complement of any finite
subset of R2, i.e, any member of T, is also a U-open set. In other words, T is
coarser than U, i.e. T<XU.
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SUBSPACES, RELATIVE TOPOLOGIES
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sections of A with T-open subsets of X is a topology on A4; it is calle
on A or the relativization of T to A, and the topological space (4,T,) is called

of (X, T). In other words, a subset H of A is a T ,-open set, i.e. open relative to A, if and
only if there exists a T-open subset G of X such that

H=GnNnA

]
©
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(1- = {XY @, {a}) {C’d}! {a,c! d}’ {b!c! d! e}}

on X = {q, b, ¢, d, ¢}, and the subset A —{a,d, ¢} of X, Observe that
XnA = A {a}n 4 = {a}, {a,e,d} N A = {a,d}
i =0 todind = (@), eddnd = {4

i

Hence the relativization of T to A is
Ty, = {4, 9, {a}, {d}, {a,d}, {d,e}}
Example 9.2: Consider the usual topology U on R and the relative topology T, on the closed

interval A = [3,8]. Note that the closed-open interval [3,5) is open in the relative
topology on A, i.e. is a T 4-open set, since

3,5) = (2,5 N4

where (2,5) is a T-open subset of R. Thus we see that a set may be open relative
to a subspace but be neither open nor closed in the entire space.

s

EQUIVALENT DEFINITIONS OF TOPOLOGIES

QOur definition of a topological spacé gave axioms for the open sets in the topological
space, that is, we used the open set as the primitive notion for the topology. We now
state two theorems which exhibit alternate methods of defining a topology on a set, using
as primitives the notions of “neighborhood of a point” and ‘“closure of a set”.

Theorem 5.11: Let X be a non-empty set and let there be assigned to each point peX a
class ¢4, of subsets of X satisfying the following axioms:
[A:i] oA, is not empty and p belongs to each member of c4,.
[A:] The intersection of any two members of <4, belongs to oA4,.
[As] Every superset of a member of ¢4, belongs to c4,.
[A:] Each member N € o4, is a superset of a member & € ¢4, such that
G € 4, for every g € G.

Then there exists one and o ly one topology T on X such that <4, is the

T _nmatioaobhhAanlh~n~d asrad eITi

1 -ut:lguuUl.uUUU SySsi€im O

Theorem 5.12: Let X be a non-empty set and let £ be an operation which assigns to each
subset A of X the subset A* of X, satisfying the following axioms, called
the Kuratowski Closure Axioms:

[Ki]l @=0
[Kos] A C Ak
[Ki] (AUB) = A*UB*

IK,1 (Ax\k —
[+ €8 B 0= B

Then there exists one and only one topology T on X such that A* will be
the T-closure of the subset 4 of X
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Solved Problems

mMNADNAT NN TEDA ADLDAY QEymg
TOPOLOGIES, OPEN SETS
1. Let X = {a,b,¢,d,e}. Determine whether or not each of the following classes of
subsets of X is a topology on X.
(i T = {X’ @: {a}: {a’b}’ {a’c}}
(ily T. = {X,Q,{a,b,c}, {a,b,d}, {a,b,cd}}
(iiiy T: = {X, @, {a}, {a,b}, {a,¢,d)}, {a,],c,d)}}
{ s @O (25 10,05, (@4, 6,05, 14,0,6,04;
Solution:
) T, is not a topology on X since
{a,b},{a,¢} € Ty but {a,b}U{a,c} = {a,b,c} & T,
(i) T, is not a topology on X since
{a,b,e},{a,b,d} € T, but {a,b,c}N {a,bd} = {a,b} & T,
(111) T3 is a topology on X since it satisfies the necessary axioms.
i AT ULV 1 MO UIIT LviAaow bUllOlOlels Ul AW, yj ALl <Qll 111111110C UPCIL 11IUCL VAILO ﬂq \l > W/ Yyiuli
q € Q, the rationals. Show that T is not a topology on R.
Sﬁ}utiﬁu
Observe that A = U{4,:q€Q, ¢>V2} = (V2,)
Te dhia imten AP mmamahare af T Lok A 2T cimaa 20 o fnradlos ol TTaan O il b Ty T o1 2 Ll
IS W ulllun vl ICIuets Ul 4, UL A & 4 DIUILE Yy 4 15 1T avivuildl,. Icnee i yiulaved lUQJ allil 15 uneieivic
not a topology on R
3. Let T be a topology on a set X consisting of four sets, i.e.
T = (X,0,4,B)
where A and B are non-empty distinct proper subsets of X. What conditions must
A and B satisfy?
Solution:
Since A N B must also belong to T, there are two possibilities:
Case I. ANB =0
Then AUB cannot be A or B; hence AUB = X. Thus the class {4, B} is a partition of X.
Case I, ANnB=A4A or AnNnB =R
In either case, one of the sets is a subset of the other, and the members of T are totally ordered
by inclusion: 9 cAcBcCcX or pcBC AcX.
4. List all topologies on X = {a,b,c} which consist of exactly four members.

Solution:

Each topology T on X with four members is of the form T = {X,(,A,B} where A and B
correspond to Case I or Case II of the preceding problem,
Case I. {A,B} is a partition of X.

The topologies in this case are the following:

‘Tl = {X’ @r {a}v {b’ C}}, 7-'2 == {X: Q)’ {b}: {a: C}}, Ta = {Xr @: {C}, {a, b}}

Case II, The members of T are totally ordered by inclusion,
The topologies in this case are the following:
Ty = {X, 9, {a}, {a,b}} = {X, 9, {b}, {a, b}}
Ts = {X, 9, {a}, {a,c}} Ty = {X, ©,{c}, {a,c}}
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function from a non-empty set X into a topological space (Y,U).
inverses of open subsets of Y:

= {16 : Gew
Show that T is a topology on X.

Solution:
Since U is a topology, Y, €U. But X = f~1[Y] and ¢ = f~1[®], so X, €T and T
satisfies [04].

Let {4;} be a class of sets in T. By definition, there exist G; €U for which A4;=f"1[G;]. But
Uid; = Uif~HG] = F1uU; G
Since U is a topology, U; G, €U, so U;A; €T, and T satisfies [0,].

Lastly, let A;,A, € T. Then
3G,G, € U suchthat A, = f"1[Gy], A, = f71[G,]
But AN 4, = f[AHGE] N 1G] = F1[GiN Gy
and GiNGy€U. Thus A;NA; €T and [04] is also satisfied.

6. Consider the second axiom for a topolegy T on a set X:
[0:] The union of any number of sets in T belongs to T.
Show that [0:] can be replaced by the following weaker axiom:
{021 The union of any number of sets in 7T\ {X, @} belongs to 7
In other words, show that the axioms [0:], [0:] and [Os] are equivalent to the axioms
[O0:], [02] and [Os].
Solution:
Let T be a class of subsets of X satisfying [0,], [O;] and [0;], and let ¢4 be a subclass of T.
We want to show that T also satisfies [03], i.e. that U{E: E € 4} € T.
Case I. X € A,
Then WU{E :E € c4) = X and therefore belongs to T by [O4].
Case Il. X & cA.
Then UE:E€ced) = ULE:E€cA (X))
But the empty set ¢ does not contribute any elements to a union of sets; hence
UE:E€cd) = ULE:E€A{X)} = U{E:EE€ A (X, 0} @)
Since o4 i1s a subclass of T, AN\ A{X,P} is a subclass of T\ {X,®}, so by [O;] the union in (1)
belongs to T.
7. Prove: Let A be a subset of a topological space X with the property that each point
p € A belongs to an open set G, contained in A. Then A4 is open.
Solution:
For each point p€ A, p€G, CA. Hence U{G,: pE€ A} = A and so A is a union of open sets
and, by [0.], is open.
8. Let T be a class of subsets of X totally ordered by set inclusion. Show that T satisfies

[O:], i.e. the intersection of any two members of T belongs to T.

Solution:
Let A,B€ T. Since T is totally ordered by set inclusion,
either ANB =A or AnB =8B

In either case AN B € T, and so T satisfies [0;].
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9.

10.

Let T be the class of subsets of R consisting of R, ® and all open infinite intervals
E, = (a,©) with ¢« €R. Show that T is a topology on R.

Solution:
Since R and ) belong to T, T satisfies [0;]. Observe that T is totally ordered by set inclusion;
hence T satisfies [0;].

Now let 4 be a subclass of T\ {X, @}, that is ed = {E;:i €I} where I is some set of real
numbers. We want to show that U; E; belongs to T. If I is not bounded from below, ie, if
inf (I) = —», then U;E;, =R, IfIis bounded from below, say inf (I) = {;,, then U, E; = (i, ) = E;_
In either case, U;E;€ T, and T satisfies [0}].

Let T be the class of subsets of N consisting of @ and all subsets of N of the form
E.= {n,n+1,n+2, ...} with n€N.

(i) Show that T is a topology on N,

(ify List the open sets containing the positive integer 6.

Solution:

(i) Since ¢ and E; = {1,2,3,...} = N belong to T, T satisfies [04]. Furthermore, since T is
totally ordered by set inclusion, T also satisfies [0;].

Now let cf be a subclass of T N\ {N, D}, that is, 4 = {E,: n € I} where I is some set of
positive integers. Note that I contains a smallest positive integer ny and
U{E,:n€l} = {ngny+1l,m+2, ...} = E,,0

which belongs to T. Hence T satisfies [O;], and so T is a topology on N.

(1)  Since the non-empty open sets are of the form

E, = {nhnt+tl,n+2 ...}
with n € N, the open sets containing the positive integer 8 are the following
El = N = {1’213:. } E4 - {4)576! }
f 2l o o A 3 bl _ (= o 3
Ly = 12,3,4,...§ Liy 19,0,7, ...}
E; = {3,4,5,...} E¢ = {6,7,8, }

ACCUMULATION POINTS, DERIVED SETS

11.

Let T be the topology on N which consists of (» and all subsets of N of the form
E, = {n,n+1,n+2, ...} where n €N as in Problem 10.

(i) Find the accumulation points of the set A = {4,13,28,37}.
(i) Determine those subsets E of N for which E' =N

Solution:
(1) Observe that the open sets containing any point pE€N are the sets E; where {=p. If nj= 36,
then every open set contammg 7y also contains 37€ A which is dlﬁ‘erent from no, hence no— 36

13 PR PR AP ~ 22 +hoa nan ant E _ b
lh a llllllb pUlllb Ul 1‘1 Ull L!l¢ ounel nariyg, ir ILO ~ 30 LHNEIL Lllt: Uptﬂl SEL uno — l"’O IL() T L ILO’T“A, ey

containg no point of A different from n,. So n;>36 is not a limit point of A. Accordingly,
the derived set of A is A’ = {1,2,3, ..., 34, 35,36}.

(i) If E is an infinite subset of N then E is not bounded from above. So every open set containing
any point p € N will contain points of E other than p. Hence E' =N

On the other hand, if E is finite then E is bounded from above, say, by 1, €N. Then the
open set E, ;. contains no point of E. Hence n,+1€ N is not a limit point of E, and so
E’ ## N.
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12. Let A be a subset of a topological space (X,T). When will a point »p € X not be a
limit point of A?

Solution:

The point p € X is a limit point of A iff every open neighborhood of p contains a point of A4 other

than p, ie.,

PEG and GET implies (G\{p))N4d = O

So p is not a limit point of A if there exists an open set G such that

PEG and (GN\{pHnd4d =9

or, equivalently, pEG and GNA = @ or GNA = {;}

or, equivalently, PEG and GnNAC{p)

13. Let A be any subset of a discrete topological space X. Show that the derived set A’
of A is empty.

Solution:

Let p be any point in X. Recall that every subset of a discrete space is open. Hence, in particul.ar,

the singleton set G = {p} is an open subset of X. But

pEG and GNA = ({pjnd)cip}

Hence, by the above problem, p & A’ for every p€ X, ie. A’ = (.

14. Consider the topology

T = {X,0,{e}, {a,b}, {a,¢,d}, {a, b,c,d}, {a,b,e}}

on X = {a,b,¢,d e}. Determine the derived sets of (i) A = {c,d, e} and (ii) B = {}.

Solution

(i)

(i)

Note that {a, b} and {a, b, e} are open subsets of X and that
a,b€{a,b} and {a,b}n A = @
e€{a,b,e} and {a,b,e}N A = {e}

Hence a, b and e are not limit points of A. On the other hand, every other point in X is a limit
point of A since every open set containing it also contains a point of A different from it.
Accordingly, A’ = {e¢, d},

Note that {a}, {a, b} and {a,c,d} are open subsets of X and that
a€{a} and {a}NB = O
b€ {a,b} and {a,b} N B = {b}
e, d € {a,¢,d} and {a,¢,d}NB = @

Hence a, b, ¢ and d are not limit points of B = {b}. But e is a limit point of B since the open sets
containing e are {a,b, e} and X and each contains the point b € B different from e. Thus B’ = {e}.

15. Prove: If A is a subset of B, then every limit point of A is also a limit point of B, i.e.,
A C B implies A’ CB'.

Solution:

Recall that p€ A’ iff (G\ {p}))NA #* @ for every open set G containing p. But B D 4; hence
GN{PHnB O GN\{PHNA = O

So p€ A’ implies p € B’, ie. A'C B'.
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16. Let T: and T. be topelogies on X such that T: C T», i.e. every Ti-open subset of X is
also a T:-open subset of X. Furthermore, let A be any subset of X.

17.

)

Show that every T.-limit point of A is also a T:-limit point of A.

(i) Construct a space in which a T,-limit point is not a T»-limit point.

Solution:

(1)

(ii)

Let p be a T,-limit point of A; ie. (G\{p})) N A * @ for every GET, such that p€G. But
T,CTy so, in particular, (GN\ {p})N A * @ for every G& T, such that pEQG, ie. p is a
T -limit point of A.

Consider the usual topology U and the discrete topology .2 on R. Note that U C ./ since
contains every subset of R. By Problem 13, 0 is not a .)-limit point of the set A ={1,1,4,...}
since A’ is empty. But 0 is a limit point of A with respect to the usual topology on R.

Prove: Let A and B be subsets of a topological space (X,T). Then (AUBY = A’ U B".
Solution:
Utilizing Problem 15, ACAUB implies A’ C (AUBY
BC AUB implies B C (AUBY
So A’U B’ Cc (AUB)’, and we need only show that

(AuBY Cc AU B

Assume p & A'UB’; thus 3G,H € T such that

pEG@ and GN A C {p} and pE€H and HN B C {p}

But GNnHET, p€GNH and

(GNHYN(AUB) = (GNHNA)U (GNHNB) Cc (GNA)uU (HnB) c {p}u{p} = {p}

7
V

CLOSED SETS, CLOSURE OPERATION, DENSE SETS
18. Consider the following topology on X = {a, b, ¢,d, e}:

19.

(1)
(i1)

T = {X, 0, {a}, {a,b}, {a,¢d}, {a,b,cd}, {a,b,e}}

List the closed subsets of X.
Determine the closure of the sets {a}, {b} and {c, e}.

(iii) Which sets in (ii) are dense in X?

Solution:

()

(if)

(iif)

A set is closed iff its complement is open. Hence write the complement of each set in T:
@, X, {b,c,d, e}, {c,d, e}, {b,e}, {e}, {e,d}

The closure A of any set 4 is the intersection of all closed supersets of A. The only closed
superset of {a} is X: the closed supersets of {b} are {b,e}, {b,c,d,e} and X; and the closed
supersets of {c,e} are {¢, d,e}, {b,¢,d,e} and X. Thus,

{0} = {b,e}, {c,e} ={c,d,e}

'

@ =x,

A set A is dense in X iff A = X; so {a} is the only dense set.

Let T be the topology on N which consists of ¢ and all subsets of N of the form
E, = {nn+1,n+2, ...} where » €N as in Problem 10.

(1)
(i)

Determine the closed subsets of (N, T).
Determine the closure of the sets (7,24,47,85} and {3,6,9,12, ...},

(iii) Determine those subsets of N which are dense in N.

Solution:

(i)

A set is closed iff its complement is open. Hence the closed subsets of N are as follows:
N, @, {1}, {1,2}, {1,2,8}, ..., {1,2,...,m}, ...
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(i1))  The closure of a set is the smallest closed superset. So
{7,24,47,85} = {1,2,...,84,85}, {3,6,9,12, ...} = {1,2,3,...) = N

+ A ~F£ W P LR A
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&
A is finite then its closure is not N, i.e. A is not dense in N.

Let T be the topology on R consisting of R, ¢ and all open infinite intervals E. = (a, =)
where a € R. )

(i) Determine the closed subsets of (R, T).

(ii) Determine the closure of the sets [3,7), {7,24,47,85} and {3,6,9,12,...}.

Solution:

(1) A set is closed iff its complement is open. Hence the closed subsets of (R, T) are (), R and all
closed infinite intervals ES = (—=, qa].

(i1)  The closure of a set is the smallest closed superset. Hence
3,7) = (—=,7], {7,24,47,85} = (—=,85], {3,6,9,12,...} = (—=,=) = R

21.

23.

[\

Let X be a discrete topological space. (i) Determine the closure of any subset A of X,
(ii} Determine the dense subsets of X.

Solution:

(1) Recall that in a discrete space X any A C X is closed; hence A = A4.

(i1) A 1s dense in X iff A=X. But A = A, so X is the only dense subset of X.

T 4 V % - 2 Vi A oo /2y Ty
Lel A pe 4all 1ndaiscrewe space. U) ue
the closure of any subset 4 of X. (ii

Solution:

ermine the closed subsets of X. (ii) Determi
i) Determine the dense subsets of X.

(1) Recall that the only open subsets of an indiscrete space X are X and (); hence the closed subsets
of X are also X and .

(1) If A=0, then A=¢@. If A @, then X is the only closed superset of 4; so A =X. That is,
for any AcX,

O fA=0

X ifA=¢0
sy A~V 2. A ot VP A e V. hovan avery niemoasrdo giiheet oFf Vo2l danas I
(lll) A A 15 QCILSC 1N A 111 A — A, Nence cvely WIN-CIIpPLyY SupstcL Ul A 1d yensce JJl Ps 9

Prove Theorem 5.4: A subset A of a topological space X is closed if and only if 4
contains each of its accumulation points, i.e. 4’ C A.
Solution:

Suppose A is closed, and let p € A, i.e. pE Ac. But A¢, the complement of a closed set, is open;
hence pe A’ for A¢ is an open set such that

pEAC and ANA =0
Thus A’'Cc A if A 1s closed.

Now assume A’CA; we show that Ac¢ is open. Lel pEAc; then p&A4’, so 3 an open set G
such that
pPEG and (G\{PHnd4d =9
But p € A; hence GNnA = G\ {pH)NnAd = ¢

So G c Ac. Thus p is an interior point of A¢, and so A¢ is open.

DPrava I F ic a clogsad sunercet of anv set A then A’ C F
4L L1Uve 41l z A2 QA LiuvoTu »JUIIJCL [S WA VRS uLlJ LA w2y V) -‘J-’ ViIN X1 4 & AN §
Solution:

By Problem 15, A C F implies A’ C F'. But F' C F, by Theorem 5.4, since F' is closed. Thus
A’ c F' c F, which implies A’ C F.
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25. Prove: A U A’ is a closed set.

26.

29.

30.

Solution:
Let p€(AUA’y. Since p&A’, 3 an open set G such that

o= RS | 71~ A — A e (a1
r=ugu alng wiia — Yo Py
However, p € A; hence, in particular, GN A = @,

We also claim that Gn 4’ = @, For if g € G, then
g9€G and GNA = @
where G is an open set, So g € A’ and thus Gn 4’ = . Accordingly,
GNn(AUA) = (GNAYU(GNA) = QU = @

and so G C (Audiye. Thus p is an interior point of (AuUA’) which is therefore an open set.
Hence AUA’ is closed.

Prove Theorem 5.6: A = A U A",
Solution:

Since 4 C A and A is closed, A4’ C (4) C A and hence A UA'CA. But AUA’ is a closed set
containing A, s0 AcAdcAdud. Thus A = Au4d"

Prove: If A C B then A C B.
Solution:
If AcB

Prove: AUB = A U B.
Solution:

Utilizing the preceding problem, A CAUB and Bc AUB; hence (AuByCc AUB. But
(AuB)c (A uUB), a closed set since it is the union of two closed sets. Then (Proposition 5.5)
(AuB)c AUBcC(AuB) and therefore A UB = A U B.

Prove Proposition 5.7 () @ = @; (i) 4 C 4; (il AUB=AUB; and (iv) (47) = A".
Solution:

() and (iv} © and A are closed; hence they are equal to their closures. (i) AcAud = A
(Problem 26). (iii) Preceding problem.

AT TN AN o R ¥4

INTERIOR, EXTERIOR, BOUNDARY

Consider the following topology on X = {a, b,¢,d,e}:
T = {X) @) {a}) {a’b}’ {a/l c’d}) {a) b’ cld}) {a/l b} e}}

(i) Find the interior points of the subset A = {a,b,¢} of X. (ii) Find the exterior
points of A. (iii) Find the boundary points of A.
Solution:
(i) The points a and b are interior points of A since
a,be{a,b) C A = {a,b,e)

where {a, b} is an open set, i.e. since each belongs to an open set contained in A. Note that ¢
is not an interior point of A since ¢ does not belong to any open set contained in A. Hence
int (A) = {a,b} is the interior of 4.

(i) The complement of A is A¢ = {d,e}. Neither d nor ¢ are interior points of A¢ since neither
belongs to any open subset of A¢ = {d,e}. Hence int(Ac¢) = ¢, lLe. there are no exterior
points of A.

(iii) The boundary b (4) of A consists of those points which are neither interior nor exterior to A.
So b(A) = {ed, e}
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31.

32.

Prove Proposition 5.8: The interior of a set A is the union of all open subsets of A.
Furthermore: (i) A° is open; (ii) A° is the largest open subset of 4, i.e. if G is an open
subset of A then G C A° C A; and (iii) A is open iff A = A4°.
Solution:

Let {G;} be the class of all open subsets of 4. If x € A°, then x belongs to an open subset of 4, i.e.,

3i;, such that « € G;,

Hence # € U;&; and s6¢ A° C U;&;. On the other hand, if y€ U,; G, then y €& G"o for some 4.
Thus y € A°, and U;G; C A°. Accordingly, A° = UG,

(1) A° = U;G; is open since it is the union of open sets.
{iiy If G is an open subset of 4 then G € {G;}; so GcC U;G = A° C A.
(i) If Aisopenthen A CTA°CA or A = A° If A = A° then A is open since A° is open.

Let A be a non-empty proper subset of an indiscrete space X. Find the interior,
exterior and boundary of A.

o
o

Solution:
X and @ are the only open subsets of X. Since X' A4, ¢J is the only open subset of A; hence
int (4) = @. Similarly, int(4¢) = (), i.e. the exterior of A is empty. Thus b(4) = X.

. Let T be the topology on R consisting of R, ) and all open infinite intervals E, = (a, »)

where a € R. Find the interior, exterior and boundary of the closed infinite interval
A = {7 )
A =7, ).

Solution:

Since the interior of A is the largest open subset of A, int(4) = (7, ). Note that A¢ = (—«,7)
contains no open set except @; so int(Ac) = ext(4) = . The boundary consists of those points
which do not belong to int (4) or ext (A); hence b(A) = (~,7].

34. Prove Theorem 5.9: A = int(4) U b(A)
Solution:
Since X = int(A)Ub(A)Uext(4), (int(A)Uub(4)¢ = ext(A) and it suffices to show
(Ay = ext (4).
Let p € ext (A); then 3 an open G such that
D EG C A which implies GnNn A4 = @
So p is not a limit point of A4, ie. p & A, and p€A. Hence p € A’UAd =A. In other words,
ext (4) C (A)e.
Now assume p € (A)c = (AUA’J*. Thus p & A’, so 3 an open set & such that
PEG and (G\{pph)n4d = @
But also p€A, so GNnA =@ and pEGC Ac. Thus p €ext(4), and (A)° = ext(4).
35. Show by a counterexample that the function f which assigns to each set its interior, I.e.

f(A) = int(4), does not commute with the function g which assigns to each set its
closure, ie. g(A)=A.

Solution:
Consider Q, the set of rational numbers, as a subset of R with the usual topology. Recall
(Example 5.3) that the interior of Q is empty; hence

@eH@Q = o(f(Q) = g(int(Q) = 9(@) = 9 = 9
On the other hand, § = R and the interior of R is R itself. So
(fea)Q) = flog@) = f@Q = fR) = R

Thus gof 5 feg, or f and g do not commute.
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NEIGHBORHOODS, NEIGHBORHOOD SYSTEMS

37.

38.

T = {X,9, {a},{a,b}, {a,cd}, {abcd}, {ab,e}}
List the neighborhoods (i) of the point e, (ii) of the point c.

Solution:

(i) A neighborhood of ¢ is any superset of an open set containing e. The open sets containing e are
{a,b,e} and X. The supersets of {a,b,e} are {a,b,e}, {a,b,¢,e}, {a,b,d, e} and X; the only
superset of X is X. Accordingly, the class of neighborhoods of e, i.e. the neighborhood system

of ¢, is
N, = {a,be}, {a,b,c,e}, {a,b,d, e}, X}

(ii)  The open sets containing ¢ are {a,¢,d}, {a,b,¢,d} and X. Hence the neighborhood system of ¢ is

2. N4 f5.. -~ M In Bk
N - G, &, Uy, WU

yedy, e, e,
Determine the neighborhood system of a point p in an indiscrete space X.

Solution:
X and ¢ are the only open subsets of X; hence X is the only open set containing p. In addition,
X is the only superset of X. Hence N, = {X}.

Prove: The intersection N N M of any two neighborhoods N and M of a point p is
also a neighborhood of p.

Solution:
N and M are neighborhoods of p, so 3 open sets G, H such that

39.

40.

41.

GCN and peEHCM

Prove: Any superset M of a neighborhood N of a point p is also a neighborhood of .

Solution:
N is a neighborhood of », :

19
M
Z
o=}
<
=
o
=)
[=]
laal
=
)
]
]
2

C M, so

By LY di

Determine whether or not each of the following intervals is a neighborhood of 0 under
the usual topology for the real line R. (i) (—4,4%], (ii) (=1,0], (iii) [0, %), (iv) (0, 1].

Solution:

(i) Note that 0 € (—},}) C (=4, 1] and (=}, 4) is open; so (—4, ] is a neighborhood of 0.

(ii) and (ili) Any U-open set G containing 0 contains an open interval (a,bd) containing 0, ie.
@ < 0 < b; hence G contains points both greater and less than 0. So neither (—1,0] nor [0, 1)
is a neighborhood of 0.

(iv) The interval (0,1] does not even contain 0 and hence is not a neighborhood of 0.

Prove: A set G is open if and only if it is a neighborhood of each of its points.

Solution:
Suppose G is open; then each point p € G belongs to the open set G contained in G. Hence G 1s a
neighborhood of each of its points.

Conversely, suppose G is a neighborhood of each of its points. So, for each point p€G, 3 an
open set G, such that p € G, CG. Hence G = U {G,: p €G} and is open since it is a union of
open sets.
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42, Prove Proposition 5.10: Let N, be the neighborhood system of a point p in a topological

space X. Then:

(i) N, is not empty and p belongs to each member of N .

(i) The intersection of any two members of N, belongs to N,.

(iii) Every superset of a member of N, belongs to N,

(iv) Each member N € N, is a superset of a member G € N, where G is a neighbor-
hood of each of its points.

Solution:

(1) If NeN,, then 3 an open set G such that p € G C N; hence pEN. Note X € N, since X is
an open set containing p; so N, Q.

(i1)  Proven in Problem 38. (iii) Proven in Problem 39.

(iv) If NEN,, then N is a neighborhood of p, so 3 an open set G such that p € G C N. But by
the preceding problem G € N, and G is a neighborhood of each of its points.

SUBSPACES, RELATIVE TOPOLOGIES
43. Consider the following topology on X = {a,b,¢,d,e}:

44.

45.

s

T = {X, 9, {a}, {a,b}, {a,cd}, {a,b,cd}, {a b, e}}
List the members of the relative topology T, on A = {a,c,e}.
Solution:
Ta = {ANG : GET}, s0 the members of T4 are:
AnX =4 An{a} = {a} And{aed = {a,c} An{ab,el = {a,e}
AN =0 Ani{aebd) = {a) And{ab,edy = {a,rc})

In other words, T, = {4, @, {a}, {e,¢}, {a,e}}. Observe that {e,¢} is not open in X, but is
relatively open in A4, ie. is T 4-open.

Consider the usual topology U on the real line R. Describe the relative topology U,

A 4 int AT ~AFf Acitiva +norang
L 1IN Ul puslulliyve lllbﬁstﬂ.b

Solution:
Observe that, for each positive integer mny € N,
e} = NnNnmy—4 ne+ 4
and (ng— 4, np+ }[\ is a U-open set; so every singleton subset {n,} of N is open relative to N. Hence
every subset of N is open relative to N since it is a union of singleton sets. In other words, Uy is

the discrete topology on N.

Let A be a T-open subset of (X,T) and let A CY C X. Show that 4 is also open
relative to the relative topology on Y, ie. A is a T ,-open subset of Y.

Solution:
Ty = {YnG@ :GET}, But ACY and AE€T; so A = YNAETTy.

Consider the usual topology U on the real line R. Determine whether or not each of
the following subsets of I = [0,1] are open relative to I, i.e. T -open: (i) (4,1],
(ii) (4, 3), (iii) (0, &J.

Solution:

(i) Note that (%,1] =1In(,3) and (4,3) is open in R; hence ({,1] is open relative to I.

(if)  Since (3, §’) is open in R, i.e. (3,%) €U, it is open relative I by the preceding problem. In fact,
(L3 =In(, %)

(iii) Since (0, 1] is not the intersection of I with any U-open subset of R, it is not U;-open.
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47.

Let A be a subset of a topological space (X, T). Show that the relative topology T, is
well-defined. In other words, show that T, = {ANG : GET} is a topology on A.
Solution:

Since T is a topology, X and @ belong to 7. Hence A nX = A and An @ = @ both belong
to T which then eafieﬁps o 1.

T »» which then satisfie [0,]
Now let {H;:i €I} be a subclass of T,. By definition of T,, for each 1€I 3 a T-open set
G, such that H; = A n G;. By the distributive law of intersection over union,
UiHy = Ui(ANnGy) = AN (U;6G)
But U;G; €T as it is the union of T-open sets; hence U;H; € T,. Thus T, satisfies [0s].
Now suppose H,H,€ T,. Then 3 G,G, €T such that H, = AnG, and Hy = AN Gy
But G, n G, € T since T is a topology. Hence :

48.

Hllle = (AIIGI)II(AIIGz) = AII(Gllle)

belongs to T,. Accordingly, T4 satisfies [Q;] and is a topology on A.

Let (X, T) be a subspace of (Y,7*) and let (Y,T*) be a subspace of (Z,T**). Show
that (X, T) is also a subspace of (Z, T**).

Solution: . ]
Since XcYcZ, (X,T) is a subspace of (Z, T**) if and only if ‘T;;*’ =T. Let GE€T; now

T: = T, so 3IG* €Ty for which G = X nG* But T* = T;% so 3IG* € T#* such that
G* = Y n G**. Thus

G=XnG* =XnYnG* = Xn@E

since XCY; so GETE". Accordingly, T C TE*.

HET** sachthat G = X n H. But YnHE

h %4 ral
INOW assume U

=
XA (YnH)ET: = T. Si
n(rnH) €Ty Since v N (WnH) = XnH = G

we have G € T. Accordingly, T%* C T and the theorem is proved.

MISCELLANEOUS PROBLEMS

49,

50.

51.

Let P(X) be the power set, i.e. class of subsets, of a non-empty set X. Furthermore,
let &:P(X)->PX) be the identity mapping, i.e. for each A C X, k(4) = A.

(i) Verify that & satisfies the Kuratowski Closure Axioms of Theorem 5.12.

(ii) Determine the topology on X induced by k.

Solution:
{iy k(D) = @, so {K,] is satisfied. HAUB) = AuB = k{A) U k(B), so {K;] is satisfied
k(A) = A DA, so [K,] is satisfied. k(k(A)) = Kk(A), so [K,] is satisfied.

{(ii) A subset FCX is closed in the topology induced by k if and only if k(F)=F. But k(4)= A
for every ACX, so every set is closed and %k induces the discrete topology.

Let T be the cofinite topology on the real line R, and let (a1, as, ...) be a sequence in R
with distinct terms. Show that (a.) converges to every real number p € R.

Solution:

Let G be any open set containing p€ R. By definition of the cofinite topology, G¢ is a finite set
and hence can contain only a finite number of the terms of the sequence (¢,) since the terms are
distinet. Thus G contains almost all of the terms of (&,), and so (a,) converges to p.

Let T be the collection of all topologies on a non-empty set X, partially ordered by class
inclusion. Show that T is a complete lattice, i.e. if S is a non-empty subcollection of T
then sup (S) and inf () exist.
Solution:

Let T, = n{T:T€S}). By Theorem 5.1, T is a topology; so T, €T and T, = inf (S).

Now let B be the collection of all upper bounds of §. Observe that B is non-empty since, for
example, the diserete topology .0 on X belongs to B. Let T, = n {T: T € B}. Again by Theorem 5.1,
T, is a topology on X and, furthermore, Ty = sup (§).
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Let X be a non-empty set and, for each point p € X, let ¢4, denote the class of subsets

of X containing p.
(1) Verify that o4, satisfies the Neighborhood Axioms of Theorem 5.11.
(ii) Determine the induced topology on X.

Solution:
(i) Since pE€X, X €4}, and, so, o4, D. By hypothesis, p belongs to each member of o4,. Hence
FA|] is satisfied.
If M,N€€cq,, then p€EM and pEN, and so pEM N N. Hence MnNNEceq, and so
[A;] is satisfied.

If N€Ecd, and Nc M, ie. if pENCM, then pEM. Hence M€ca4, and so [A3] is
satisfied

By definition of c4,, every ACX has the property that A€ eq, for every p€ A. Hence [Ay]
is satisfied.

(ii) A subset A C X is open in the induced topology if and only if A€cd, for every pS A. Since
every subset of X has this property, the induced topology on X is the discrete topology.

Supplementary Problems

TOPOLOGICAL SPACES

53.

54.

55.

56.

57.

58.

59.

60.

List all possible topologies on the set X = {ea,b}.

Prove Theorem 5.1: Let {T,:7€ I} be any collection of topologies on a set X. Then the intersection
M; T; is also a topology on X.

Let X be an infinite set and let T be a topology on X in which all infinite subsets of X are open. Show
that T is the discrete topology on X. o

Let X be an infinite set and let T consist of ¢ and all subsets of X whose complements are countable.
(i) Prove that (X, T) is a topological space.
(ii) If X is countable, describe the topology determined by 7.

Let T = {R%,®} U {G,:k €R} Dbe the class of subsets of the plane R2 where
G, = {2,y €ER, x> y+k}

(i) Prove that T is a topology on R2.
(i) Is T a topology on R2 if “k € R” is replaced by “¢ €EN”? by “k€Q”?

Prove that (R2, T) is a topological space where the elements of T are (» and the complements of finite
sets of lines and points.

Let {p} be an arbitrary singleton set such that p €R; e.g. {R}. Furthermore, let R* = Ru {p} and
let T be the class of subsets of R* consisting of all U-open subsets of R and the complements (relative
to R*) of all bounded U-closed subsets of R. Prove that T is a topology on R*.

Let {p} be an arbitrary singleton set such that p€R; and let R* = RU {p}. Furthermore, let T
be the class of subsets of R* consisting of all subsets of R and the complements (relative to R*) of all
finite subsets of R. Prove that T is a topology on R*.

ACCUMULATION POINTS, DERIVED SETS

61.

62.

o
aud

Prove: A’ U B = (AuB).
Prove: If p is a limit point of the set 4, then p is also a limit point of A\ {p}.
Prove: Let X be a cofinite topological space. Then A’ is closed for any subset A of X.

Consider the topological space (R,T) where T consists of R, () and all open infinite intervals

E, = (a,»), « €ER. Find the derived set of: (i) the interval [4,10); (ii) Z, the set of integers.
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6. Let 7 be the topology on R* = R U {p} defined In Problem 53.

i) Determine the accumulation points of the following sets:

1Y anen inte l o o infn anen interus a o o
i1y Open interval (w b) a, LER (2) infinite open interval (w, W), @ €R

,\
=
=

-~

(ii) Determine those subsets of R* which have p as a limit point.

66. Let T, and T, be topologies on a set X with T, coarser than T,, i.e. T{C Ts.

) Show that every T,-accumulation point of a subset A of X is also a Ti-accumulation point.
(ii)  Construct an example in which the converse of (i) does not hold.

CLOSED SETS, CLOSURE OF A SET, DENSE SUBSETS

67. Construct a non-discrete topological space in which the closed sets are identical to the open sets.
68. Prove: AN BC An B. Construct an example in which equality does not hold.
69. Prove: AN B c (AN B). Construct an example in which equality does not hold.

70. Prove: If A is open, then A n Bc A n B.

71. Prove: Let A be a dense subset of (X,T), and let B be a non-empty open subset of X. Then
AN B >~ Q.

72. Let T, and T, be topologies on X with T coarser than T,. Show that the T,-closure of any subset
A of X is contained in the Ty-closure of A.

73. Show that every non-finite subset of an infinite cofinite space X is dense in X.

74. Show that every non-empty open subset of an indiscrete space

YV o _A, LV v
X is dense in X.

INTERIOR, EXTERIOR, BOUNDARY
75. Let X be a discrete space and let ACX. Find (i) int(4), (ii) ext(4), and (ii1) b (A4).

76. Prove: (i) b(A)C A if and only if A is closed.
(if) b(A)N A = ¢ if and only if A is open.
(iii) b(4) = ¢@ if and only if A is both open and closed.
7. Provee If AN B = ¢, then b(AUB) = b(A4) Ub(B).
78. Prove: (i) A° N B° = (AnB)°; (ii) A° U B° C (AUB)°. Construct an example in which equality
in (ii) does not hold.
7. Prove: b(A°)C b(A). Construct an example in which equality does not hold.

80. Show that int (4) U ext (4) need not be dense in a space X. (It is true if X =R.)

81. Prove: Let T; and T, be topologies on X with T, coarser than T,, i.e. T; C Ty, and let A C X. Then:
(i) The T;-interior of A is a subset of the T,-interior of A.
(ii) The T,-boundary of A is a subset of the T,-boundary of A.

NEIGHBORHOODS, NEIGHBORHOOD SYSTEMS
82. Let X be a cofinite topological space. Show that every neighborhood of a point p €X is an open set.

83. Let X be an indiscrete space. Determine the neighborhood system N, of any point pEX.

84. Show that if N, is finite, t

SUBSPACES, RELATIVE TOPOLOGIES

85. Show that every subspace of a discrete space is also discrete.

86. Show that every subspace of an indiscrete space is indiscrete.
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87.

88.

89.

o
&
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Let (Y, Ty) be a subspace of (X, T). Show that ECY is Ty-closed if and only if E = Y N F, where
F is a T-closed subset of X.

Let (A4, T4) be a subspace of (X, T). Prove that T, consists of the members of T contained in A, i.e.
Ty, = {G:GC A, GE€ T}, if and only if A is a T-open subset of X.

Let (Y, Ty) be a subspace of (X, 7). For any subset A of ¥, let A and A° be the closure and interior
of A with respect to T and let (A)y and (A°)y be the closure and interior of A with respect to Ty.
Prove (i) (A)y = ANnY, (i) 4° = (4%yn Y°.

Tot 4 R a“d C be Sn'lnsnts of a tnnnlnninn'l anana writ ralally: IRUNY 24 T£ A R aoand A1 1R avae oiven
Iet A, B an ubse opological space X with CCcAu B, If A B and AUB are given
the relative topologies, prove that C is open with respect to AUB if and only if CN A is open with

respect to A and Cn B is open with respect to B.

EQUIVALENT DEFINITIONS OF TOPOLOGIES

91.

92,

93.

]
[

95.

Prove Theorem 5.11: Let X be a non-empty set and let there be assigned to each point p€X a class
cd, of subsets of X satisfying the following axioms:

[A;]1 o4, is not empty and p belongs to each member of o4,

[A;] The intersection of any two members of o4, belongs to oA,

[A3;] Every superset of a member of o4, belongs to o4,

[A;] Each member NEo/!p is a superset of a member G E€cd, such that GE€ 4, for every g EG.

Then there exists one and only one topology T on X such that o4, is the T-neighborhood system of
the point p € X.

Prove Theorem 5.12: Let X be a non-empty set and let k:P(X)— P(X) satisfy the following
Kuratowski Closure Axioms: r

[Kd k(@)= 0, I1K,] ACkA), [Kg]l k(AUB) = k(A) U k(B), [K4]1 k(k(4)) = k(4)
Then there exists one and only one topology T on X such that k(A4) will be the T-closure of ACX.

Prove: Let X be a non-empty set and let 1: P(X) > P(X) satisfy the following properties:
(i) 4X)=X, (i) H{4)c A (iil) (AUB) = #(A) U UB), (iv) (i(4)) = i(A)

Then there exists one and only one topology T on X such that i(A) will be the T-interior of ACX.

Prove: Let X be a non-empty set and let ¥ be a class of subsets of X satisfying t
properties:

(1) X and @ belong to F.

(i1) The intersection of any number of members of J belongs to ¥.

(1i1) The union of any two members of F belongs to ¥.

Then there exists one and only one topology T on X such that the members of ¥ are precisely the
T-closed subsets of X.

Let a neighborhood of a real number pER be any set containing p and containing all the rational

numbers of some open interval (a,b) where a < p < b.

(i) Show that these neighborhoods actually satisfy the neighborhood axioms and hence define a
topology on the real line R.

(ii) Show that any set of irrational numbers does not contain any accumulation points.
FZT 2NN Qlinwir +hod s gantianas of ivratisanal mitmmhare geh oo ;19 _Jjo _J/A \ Anna At Aanvavton
\lll) SOHNOW uriau d,ll‘y DC\{LI-C 1C¢ Ul 111 aviviial LUIIIDEL By SULEL ad N TTayTIOyT] Xy o a0 [y UULTD ULV LUILYTL ET,

{X,0), {X,{a}, 0}, {X,{b},0} and {X,{e},{d}, D}

(i1) Discrete topology.

(1) (—=,10] (i) R

@y (1) [a, 8], 2) [e, =)V {p}, (3) R*.  (ii) Unbounded subsets of R.
X = {a,b, ¢},
(1) 4, (ii) 4¢, (i) ©

Let X = {a,b} be an indiscrete space and let 4 = {a}.
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Continuity and Topological Equivalence

CONTINUOUS FUNCTIONS

Let (X, T) and (Y, T%) be topological spaces. A function f from X into Y is continuous
relative to T and T*, or T-T* conlinuous, or simply continuous, iff the inverse image

17 Irl -~ P I, T and

f71[H] of every T*-open subset H of Y is a T-open subset of X, that is, iff

HeT* implies f'[H €T
We shall write f: (X, T) > (Y, T*) for a function from X into Y when it is convenient to
indicate the topologies involved.

Example 1.1:  Consider the following topologies on X = {e,b,¢,d} and Y = {x,y,2, w} respec-
tively:
= {X, 0, {a}, {a,b}, {a,b,¢}}, T* = {Y, 0, {x}, {¥}, {29}, {y,2 w}}
Also consider the functions f: X —>Y and g:X—>Y defined by the diagrams

below: /Zk /;\ :/\‘//z
P SR b N
e YA A

The function f is continuous since the inverse of each member of the topology T*
on Y is a member of the topology T on X. The function g is not continuous since
{y,2,w} € T*, ie. is an open subset of Y, but its inverse image g~ ![{y,z, w}] =
{¢,d} is not an open subset of X, i.e. does not belong to T.

Example 1.28 Consider any discrete space (X, 7)) and any topological space (Y,T). Then every
function f: X - Y is /D-T continuous. For if H is any open subset of Y, its inverse
f~1[H] is an open subset of X since every subset of a discrete space is open.

Example 1.3: Let f:X =Y where X and Y are topological spaces, and let B be a base for the

topology on Y. Suppose for each member B € B, f~![B] is an open subset of X;

- then f is a continuous function. For let H be an open subset of Y; then H = U;B;,
a union of members of 8. But

foUH] = f7UuBy] = UfTt[B]

and each f~![B;] is open by hypothesis; hence f~! [H] is the union of open sets and
is therefore open. Accordingly, f is eontinuous.

We formally state the result of the preceding example.

Proposition 7.1: A function f: X = Y is continuous iff the inverse of each member of a
base B for Y is an open subset of X.

This proposition can in fact be strengthened as follows:

Theorem 7.2: Let of be a subbase for a topological space Y. Then a function f: XY
is continuous iff the inverse of each member of o is an open subset of X.

97
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Example 1.4:7 The projection mappings from the plane R? into the line R are both continuous
elative tothe opologie or_example the preiection: R2— R

defined by #({x,¥)) = y. Ten the inverse of any open interval (@, b} is an infinite
open strip as illustrated below:

771 [(a, b)] is shaded

r Hence by Proposition 7.1, the inverse of every open subset of R is open in R?, i.e.

’ 7 is continuous,
Example 15: The absolutesvalue function f on R, ie f(x) =|x] for z €R, is continuous.
For if A :“\(a,b) is an open interval in R, then
%) if a<b=0
f~ra] = (—b, b) if a<0<b

(=b,~a)U (g,b) if 0=a<b
as 1llustrated below. In each case f~1[A] is open; hence f is continuous.

~ AN

N\

f'I[A] = @ fﬁl [A] = (—byb) f—l[A] = (__b’...a) U (U/,b)

Continuous functions can be characterized by their behavior with respect to closed sets, -
as follows:

Theorem 7.3: A function f: X —-Y is continuous if and only if the inverse image of
every closed subset of Y is a closed subset of X.

CONTINUOUS FUNCTIONS AND ARBITRARY CLOSENESS
, Let X be a topological space. A point p € X is said to be arbitrarily closg to a set

AcCX if : o . .
either (i) p €A or (ii) p is an accumulation point of 4 ‘
" Recall that A = A U A’; so the closure of A_consists precisely of those points in X which
are arbitrarily close to A. Recall also that 4 = A° U Db (4); hence p is arbitrarily close to
A if p is either an interior or a boundary point of A.
. Continuous functions can also be characterized as those functions which preserve
Y arbitrary closeness, namely,
Theorem 7.4: A function f: X - Y is continuous if and only if, for any p € X and any

AcCX, )
] p arbitrarily close to A =  f(p) arbitrarily close to f[A]

or ‘ peAd > f(p)€EflA]

or flA] < flA]
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CONTINUITY AT A POINT

Continuity as we have defined it is a global property, that is, it restricts the way in
which a function behaves on the entire se . i i
concept of continuity at a point.

A function f: XY is continuous at p € X iff the inverse image f~1[H]| of every
open set H C Y containing f(p) is a superset of an open set G C X containing p or,
equivalently, iff the inverse image of every neighborhood of f(p) is a neighborhood of p, i.e,,

NewW,, > fIINEN,

Notice that, with respect to the usual topology on the real line R, this definition coin-
cides with the «— § definition of continuity at a point for functions f:R—> R. In fact, the
relationship between local and global continuity for functions f: R—> R holds true in
general; namely,

Theorem 7.5: Let X and Y be topological spaces. Then a function f: X - Y is continuous

if and only if it is continuous at every point of X.

SEQUENTIAL CONTINUITY AT A POINT

A function f: X =Y is sequentially continuous at a point p € X iff for every sequence
(@) in X converging to p, the sequence (f(a.)) in Y converges to f(p), i.e.,

a.>p implies  f(ax) = f(p)

Sequential continuity and continuity at a point are related as follows:
Proposition 7.6: If a function f: X =Y is continucus at p € X, then it is sequentially

Remark:

continuous at p.

The converse of the previous proposition is not true. Consider, for example,
the topology T on the real line R consisting of ¢ and the complements of
countable sets. Recall (see Example 7.3 of Chapter 5) that a sequence (a.)
converges to p if and only if it has the form

<a1, ag, ..oy a"O’ py pr pr . ">

Then for any function f: (R, T) > (X, T%),
(@) = f(@), ..., flax), f(D), f®), f(D), ...)

converges to f(p). In other words, every function on (R, T) is sequentially con-
tinuous. On the other hand, the function f(R,T)~> (R,U) defined by f(x)=x,
i.e. the identity function, is not 7-U continuous since f~'[(0,1)] = (0,1) is

am o T e mwn et Tliind ~£ T
Inov 4 1 -0peIl SUDSCL 0L Iv.

OPEN AND CLOSED FUNCTIONS

A continuous function has the property that the inverse image of every open set is
open and the inverse image of every ciosed set is closed. It is natural then to ask about
the following types of functions:

(1) A function f: X —>7Y is called an open (or tnterior) function if the image of every
open set is open.

(2) A function g: X ->Y is called a closed function if the image of every closed set
is closed.

In general, functions which are ope
function in our first example is open a

need not be closed and vice versa. In fact, the
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Ex@p]e 21: Consider the projection mapping »:R2—> R of the plane R? into the gx-axis, ie,
. r((x y)) = z, Observe that the prOJectlon 77[ ] of any open dlSc DCR? is an

belongs to an open mtervaI contamed in r[G], or ’/T[G] is open. Accordmgly, 7T is

an open function. On the other hand, = is not a closed functlon, for the set

~A = {z,y: xy =1, x >0} is closed, but its projection #[A] = (0, «) is not
< closed, (See diagrams below.)

7[A]

HOMEOMORPHIC SPACES.

A topological space (X, T) is, as we have seen, a set X together with a distinguished
class T of subsets of X, satisfying certain axioms. Between any two such spaces (X, T)
and (Y, T#) there are many functions f: X > Y. We choose to discuss continuous, or open,
or closed functions rather than arbitrary functions since it is these functions which preserve

Vi Y alFe 22N

some aspecz of the structure of the Spaces (A, 1) and (I , T )

Now Suppose there is some bijective (i.e. one-one and onto) ma}iping f:X~->Y. Then
f induces a bijective function f:%P(X)=> P(Y) from the power set of X, i.e. the class of
subsets of X, into the power set of Y. If this induced function also takes T onto T*, i.e.
defines a Ullt:-\U—One COi‘i‘eSpOi‘luclec between the open gets in X and the open sets in Y,

then the spaces (X,T) and (Y,T*) are identical from the topological point of view.
Specifically: -

Definition:| Two topological spaces X and Y are called homeomorphic or topologically
equivalent if there exists a bijective (i.e. one-one, onto} function f:X->Y
such that f and f~! are continuous. The function f is called a homeomorphism.

M3 L2 .-n . ~ ~y ~T

A function f is called bicontinuous or topological if f is open and continuous. Thus
f: X - Y is a homeomorphism iff f is bicontinuous and bijective.
Example 31: Let X = (—1,1). The function f:X —> R defined by f(x) = tan 472 is one-one,
onto and continuous., Furthermore, the inverse function f~1 is also continuous,
Hence the real line R and the open interval (—1,1) are homeomorphic.

Example 3.2: Let X and Y be discrete spaces. Then, as seen in Example 1.2, all functions from
one to the other are continuous. Hence X and Y are homeomorphic iff there exists
a one-one, onto function from one to the other, Le. iff they are cardinally equivalent.

g
Proposition 7.7: The relation in any collection of topological spaces defined by “X is
. ? homeomorphic to Y’ is an equivalence relation.

Thus, by the Fundamental Theorem on Equivalence Relations, any collectlon of topo-
logical spaces can be partitioned into classes of topologically equivalent spaces.

TOPOLOGICAL PROPERTIES ‘
A property P of sets is called topological or a topological invariant if whenever a

nnnnnnnnnnnnn T\ haa D than aveary anaso }\n

LUpUlUglLdl apalc (11- l) Had 4L uUigll ovely opa\/t:
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Example 4.1: As seen in Example 3.1, the real line R is homeomorphic to the open interval
X = (—1,1). Hence length is not a topological property since X and R have different
Iengths, and boundedness is not a topological property since X is bounded but R
is not.

Example 4.2: Let X be the set of positive real numbers, i.e. X = (0, »). The function f: X > X
defined by f(x) =1/« is a homeomorphism from X onto X, Observe that the

sequence
a (an\ = (1.1 1 hY

gy 3 -
corresponds, under the homeomorphism, to the sequence

TIAY 1 9 2 \
MAWn/)) ALy & 9y ee o)

The sequence (a,) is a Cauchy sequence; the sequence {f(a,)) is not. Hence the
property of being a Cauchy sequence is not topological.

Most of topology is an investigation of the consequences of certain topological properties

aqa eaomnacrtnece and ronnectodnsce In fact formally tanaloov jg thae cfnrhr of tanalooical
as compaciness ang connecieaness. in 1act, iormauny 0poiegy 18 ine StUugy o¢I opoacgica:

invariants. In the next example, connectedness is defined and is shown to be a topological
property.

Example 4.3: A topological space (X, T) is disconnected iff X is the union of two open, non-empty,
disjoint subsets, i.e.

= GUH where GHET, GNH =¢ but GH=Q

If /: X > Y is a homeomorphism then X = G U H if and only if Y = f[G) v f{H]
and so Y is disconnected if and only if X is.

The space (X, T) is connected iff it is not disconnected.

T S INDUCED BY FUNCTIONS

Let {(Y,T,)} be any collection of topological spaces and for each Y, let there be given
a function f,: X > Y. defined on some arbitrary non-empty set X. We want to investigate
those topologies on X with respect to which all the functions f, are continuous. Recall that
f, is continuous relative to some topology on X provided the inverse image of each open
subset of Y, is an open subset of X. Thus we consider the following class of subsets of X:

d = UIf'H:HeT)

That is, ~f consists of the inverse image of each open subset of every space Y. The
topology T on X generated by ~f is called the topology induced (or generated) by the func-
tions f. The main properties of T are listed in the next theorem.

Theorem 7.8: (i) All the functions f, are continuous relative to T.

(ii) T is the intersection of all the topologies on X with respect to which
the functions f, are continuous. .

(iii) T is the smallest, i.e. coarsest, topology on X with respect to which
the functions f, are continuous.

(iv) o is a subbase for the topology T.
We shall call ~f the defining subbase for the topology induced by the functions f, i.e.
the coarsest topology on X with respect to which the functions f, are continuous.

Example 51: Let 7; and 7, be the projections of the plane R2 into R, i.e.,
iz, y) = ¢ and  w(lx, ) =y

Observe, as illustrated below, that the inverse image of an open interval (a,b) in R
is an infinite open strip in R2
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7171 [(a, b)] L [(a, B)]

ecall that these infinite open strips form a subbase for the usual to

Accordingly, the usual topology on R2 is the smallest topology on R2 with respect
to which the projections 7, and =y are continuous.

Solved Problems

CONTINUOUS FUNCTIONS

1. Prove: Let f:X->Y be a constant function, say f(x)=p €Y, for every x € X.
Then f is continuous relative to any topology T on X and any topology T* on Y.
Solution:

We need to show that the inversg image of any T*-open subset of Y is a T-open subset of X.
Let HE T*. Now f(x) = p for all x € X, so
X if peEH
fHE = P
O if pegH
In either case f~1[H] is an open subset of X since X and @ belong to every topology T on X.

2. Prove: Let f:X~->Y be any function. If (Y, 4) is an indiscrete space, then

f:(X,T)> (Y, 4) is continuous for any T.
Solution: (

We want to show that the inverse image of every open subset of Y is an open subset of X.
Since (Y, ) is an indiscrete space, ¥ and ) are the only open subsets of Y. But

L
fUYl =X, f1[p =9 )
and X and © belong to any topology T on X. Hence f is continuous for any 7.
3. Let U be the usual topology on the real line R and

let 7 be the upper limit topology on R which is gen-
erated by the open-closed intervals (a,b]. Further- 4
more, let f:R-> R be defined by

{x if =1
z+2 ifx>1

A

fley =

(See diagram on the right.)

(i) Show that f is not U-U continuous.
(ii) Show that f is T-T continuous.

Solution:
(i) Let A4 = (—3,2). Then f-1[A] = (-3,1]. Now A €U but f71[A]€ U, so f is not U-U
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4.

5.

(ii) Let A = (a,b]. Then:

(a, b] if e<b=1
(a,1] if a<1<b=3
fitar = (a, b—2] if a<1<8<b
b 0] if 1=g<b=3
(1, b—2] if 1=Sa<3<b
(@—2,b—2] if 3=a<b

In each case, f~1[A] is a T-open set. Hence f is T-T continuous.

Suppose a function f: (X, T:) - (Y, T:2) is not T:-T: continuous. Show that if T7 is
a topology on X coarser than T, and if TJ is a topology on Y finer than T, i.e. T C T,
and T» C TF, then f is also not T§-TF continuous.

Solution:
Since f:(X,T,) > (Y,T,) is not continuous,

3G €T, forwhich f 1[Gl & T,

Now, T, CT; and TsC ‘T; Hence G E€ T, implies GET,, and f-! [G] € T, implies
f~1|G| & T;. Thus f is not continuous with respect to T, and T.

Show that the identity function ¢: (X, T)~> (X, T*) is continuous if and only if T is
finer than 7%, ie. T* C T.

Solution:
By definition, { is T-T* continuous if and only if

GeET* = i l[GET

But 77![G] = @G, so ¢ is T-T* continuous, if and only if

GET* = GE€T
that is, T*C T. ’

Prove Theorem 7.2: Let f:(X,T)~ (Y, T*), and let o be a subbase for the topology
‘T'* on V MThaon f i eantinn o 1 ar o nb

11 14 1 o ™mao o o
A 1iv 11 AN LWLl vVIILIUAV U L V\/LJ PUSLYNE Y VoY L VILC Ou
base ~f is an open subset of X, i.e. f~

Solution:
Suppose f-![S] €T for every S E€f. We want to show that f is continuous, ie. GET*

implies f~![G] € T. Let G € T*. By definition of subbase,
G = Ui (Sil Ne+«+* N Sini) where Sik < é

—1 g
1

FrUS;, N NSy T = UG
= WSyl n e 0 Sy, ])

But S; €.f implies f~! [Sik] € T. Hence f~1[G] €T since it is the union of finite intersections

Q
I

Hence, f

of open sets. Accordingly, f is continuous.

On the other hand, if f is continuous then the inverse of all open sets, including the members
of ~f are open.

Let f be a function from a topological space X into the unit interval [0,1]. Show
that if f~'[(a,1]] and f 1[[0,D)] are open subsets of X for all 0<a,b <1, then

f is continuous.

Solution:

Recall that the intervals (a,1] and [0, b) form a subbase for the unit interval I = [0,1]. Hence
£ ia eontinuon s by the nrecedine nrohlem. ia by hagrem 7.9
J 18 COonuInuUsuUs 0y unt preceqing prooiem, i.e. Oy 1nesrem i.c
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8. Prove: Let the functions f: X—-Y and g: Y—>Z be continuous. Then the compo-
sition function gof: X - Z is also continuous.
Solution:

Let G be an open subset of Z, Then g ~1[G] is open in Y since g is continuous. But f is also
continuous, so f~1[g71[G]] is open in X. Now

(geH=1[G] = f1[g71[G]]

I'hus (g°7)~* [G] 15 open 1n X for every open subset G of £, or, g ©f 15 continuous.

9. Prove: Let {T:} be a collection of topologies on a set X. If a function f: X->Y is
continuous with respect to each T, then f is continuous with respect to the intersection
topology T = M:; T.

Solution:
Let G be an open subset of Y. Then, by hypothesis, 1 [G] belongs to each 7;. Hence f~1[G]
belongs to the intersection, i.e. f71{G] € N;T; = T, and so f is continuous with respect to 7.

10. Prove Theorem 7.3: A function f: X - Y is continuous if and only if the inverse
image of every closed subset of Y is a closed subset of X.

Solution:

Suppgse f: X —>Y is continuous, and [
f71[F] is open in X. But f-1[F¢] = (f~!

Conversely, assume F closed in Y implies f—1
Then G¢ is closed in Y, and so f~1[G¢] = (f~2[G])* is closed in X. Accordingly, f~1[G] is open and
therefore f is continuous.

a closed subset of V. Then F'¢ is onen. and so
a ad subset of ¥. lhen { 15 open

t F be a close t
F)e; therefore f~1[F] is closed.
[F] closed in X. Let G be an open subset of Y.

11. Prove Theorem 7.4: A function f: X -=>Y is continuous if and only if, for every

subset 4 C X, f[A] Cf[A]l.
Solution: o
Suppose f:X — Y is continuous. Now f[A] C f[4], so

A c f-flA]] c Fr(flA]]

But f[A] is closed, and so f~1[f[A]] is also closed; hence

A c A c 4]

and therefore flA] c fIA] = fif~ A7

Conversely, assume f{A] C flJA] for any A C X, and let F be a closed subset of Y. Set
A = f71[F|; we wish to show that A is also closed or, equivalently, that A=A4. Now

Hence A c f1[flA]) c fI[F] = A

But ACc A4, so A=A and f is continuous.

12. Prove: Let f:(X,T)->(Y,T*) be continuous. Then f,:(4,T,)~> (Y,T*) is con-
tinuous, where 4 C X and f, is the restriction of f to 4.
Solution:
Observe that f;'[G] = AN f-1[G] for any GCY.
Let GET* Then f-1(G] €T, and s0o AN f~1[G] €T, by definition of the induced topology.
Thus A N f-1[G] = f,'[G] €ET,, so fa is continuous.
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._S!

CONTINUITY AT A POINT

13. Under what conditions will a function f: XY not be continuous at a point p € X?

Solution:

A function f:X —>Y 1is continuous at p €X iff, for every open set H C Y containing f(p),
f1[H] is a superset of an open set containing p. Hence f is not continuous at p € X if there exists
at least one open set H C Y containing f(p) such that f—1[H] does not contain an open set containing p.

Equlvalently, f:X—->Y is not continuous at p €X iff 3 a neighborhood N of f(p) such that
f~1[N] is not a neighborhood of p.

14. Consider the following topology defined on X =

{a,b, ¢, d}: /\ 7/ \

T = (X0, (0}, (5}, (8,5}, (b,e,d)) L
Let the function f:X > X be defined by the adjoin-
ing diagram. ¢ ¢
(i) Show that f is not continuous at c. d \ d
(i ) Show that f is continuous at d.
Sol

()
) Observe that {a,b} is an open set containing f(¢) = b and that f~1[{e,b}] = {a,¢}. Hence f i
not continuous at ¢ smnce there exists no open set containing ¢ which is contained in {a, ¢}.

=

(11) The only open sets containing f(d) = ¢ are {b,¢,d} and X. Note that f~![{d,¢,d}] = X and
f1[X] = X. Hence { is continuous at d since the inverse of each open set containing f(d) is an
open set containing d.

15. Suppose a singleton set {p} is an open subset of a topological space X. Show that for
any topological space ¥ and any function f: X ->Y, f is continuous at p € X.

Solution:
Let HCY be an open set containing f(p). But

fMEH > pef-1H > {p}cf-1[H]

Hence f is continuous at p.

16. Prove: If f: X - Y 1is continuous at » € X, then the restriction of f to a subset con-
taining p is also continuous at p. More precisely, let A be a subset of a topological
space (X,T) such that p€A CX, and let f,: A4->Y denote the restriction of
f:X->Y to A. Then if f is T-continuous at p, f, will be T,-continuous at p where

T, is the relative topology on A.
Solution:
Let HCY be an open set containing f(p). Since f is continuous at p,
3GET suchthat p€&€GCf1[H|
and so pEAnGCAnf—I[H]:fA_l[H]

But, by definition of the induced topology, A N G € T,; hence f, is T 4-continuous at p.

17. Prove Theorem 7.5: Let X and Y be topological spaces. Then a function f: X->Y
is continuous if and only if it is continuous at every point p € X,
Solution:

Assume f is continuous, and let H C Y be an open set containing f(p). But then p € f-1[H],
and f~![H] 1s open. Hence f is continuous at p.

Now suppose f is continuous at every point p € X, and let H C Y be open. For every p € f-1[H],
there exists an open set G, C X such that p € G, Cf~1[H]. Hence f~1[H] = QU{G,:p Ef1[H]}
a union of open sets. Accordingly, f~1[H] is open and so f is continuous.
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18. Prove Proposition 7.6: If a function f: XY 1is continuous at » € X, then it is
sequentially continuous at p, i.e. .= p > f(a.) > f(p).

Solution:
We need to show that any neighborhood N of f(p) contains almost all the terms of the sequence

(flay), flag), .. .).

Let N be a neighborhood of f(p). By hypothesis, f is continuous at p; hence M = f~1[N] is a
neighborhood of p. If the sequence (a,) converges to p, then M contains almost all the terms of the
sequence (a4, ¢s, ...), 1.e. &, € M for almost all " € N. But

@, €M > fla,) € fIM] = f[f71[N]] =

Hence f(a,) € N for almost all n € N, and so the sequence (f(a,)) converges to f(p). Accordingly, f is

NArITa MUY | S init
seyucii l'd,lIy CUlltl 1Uous dlf M

OPEN AND CLOSED FUNCTIONS, HOMEOMORPHISMS

19. Give an example of a real function f:R - R such that f is continuous and closed, but
not open.

Solution:
Let f be a constant function, say f(x) = 1 for all x €ER. Then f[A] = {1} for any A C R. Hence
f is a closed function and is not an open function. Furthermore, f is continuous.

20. Let the real function f: R—> R be defined by f(x)= 2% Show that f is not open.

Solution:

Let A = (—1,1), an open set. Note that f[4] = [0,1), which is not open; hence f 15 not an open
function,

1
21. Let B be a base for a topological space X. Show that if f: X—> Y has the property

that f[B] is open for every B € B, then f is an open function.
Solution: )

We want to show that the image of every open subset of X 15 open in Y. Let G C X be open. By
definition of a base, G = U;B; where B;€B. Now f[G] = f[u;B;] = u;f[Bj]. By hypothesis,

each f [B;] is open In ¥ and so f[G], a union of open sets, is also open in Y; hence f is an open function.

22. Show that the closed interval 4 = [a,b] is homeomorphic to the closed unit interval
I =10,1].

Solution:
The linear function f:I > A defined by f(x) = (b—a)x + a is one-one, onto and bicontinuous.
Hence f is a homeomorphism.

23. Show that area is not a topological property.

Solution:

The open dise D = {(r,e):r < 1} with radius 1 is homeomorphic to the open disc
D* = {(r,9): r < 2} with radius 2. In fact, the function f: D — D* defined by f((r,8)) = (2r,8)
i o hamoanmaornhicm Hare (1. 8) denctes +]-\n v\nTav canrdinatos af o nal nt in the nlane »n2
in a llulllCUjllULylllDlllq AR LT \l, LB VAR yu s MUUA\AIAIGV\/D Ui @ pUILIV LIl vIIT ylall\, AV

24. Let f:(X,T)~> (Y,T*) be one-one and open, let A C X, and let f[A] = B. Show that
the function f,:(4,7T,)~> (B,T5) is also one-one and open. Here f, denotes the
om0 L L A i d T an A T o T s T ad i dmamn T et
reswriction 01 y 10 A, ana A anQa i1 g are wne reiavive puwglt:b
Solution

TP £ ia nananna than avnry vaatriatinn af £ o alan Aana_ana hoanan n rnand anl® ahay +that £ 1o Arnan
11l ! 1n vIIe=u. lc, Vil CVCJ..Y ATDLLILViIVUIL UL J iD aiov UIIC-UIIC’ IITIILT W I1ooy Ulll: DIIUVY viiav JA i UPCII.
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25.

Let H C A be T -open. Then by definition of the relative topology, H = ANG where GET.
Since f is one-one, f[A N G] = f[A] N f[G], and so

falH] = f[H] = f[AnG| = flA|nf[G] = Bn f[G]
Since f is open and G € T, f[G] € T*. Thus B n f[G] ET; and so fu:(A,T,) > (B, T}) is open

Let f:(X,T)- (Y, T*) be a homeomorphism and let (A, T,) be any subspace of (X, T).
Show that f,: (4,7, > (B,T}) is also a homeomorphism where f, is the restriction
of f to A, f[A] =B, and T} is the relative topology on B.

Solution:

Since f is one-one and onto, f4:A — B, where B = f[A], is also one-one and onto. Hence we
need only show that f, 1s bicontinuous, 1.e. open and continuous. By the preceding probiem f, is open.
Furthermore, the restriction of any continuous function is also continuous; hence fq: (4,T,) — (B,T%)
is a homeomorphism.

26.

-

Show that any interval A = (a,b) is connected as a subspace of the real line R. (See
Example 4.3 for the definition of connectedness.)

Solution:
Suppose A is not connected. Then 3 open sets G,H C R such that An G and A N H are non-
empty, disjoint and satisfy (AN G)Yu (A nH) = A. Define the function f:4—->R by

fa) (1 if x€ANG
* 0 if xt€ANH

-

27.

Then f 1s continuous, for the inverse of any open set is either AN G, AN H, @ or A and so is open.
But then the intermediate value theorem applies, so 3x, €A for which fl(zg) = 1. But this 15
impossible, so A 18 connected.

Show that the following subsets of the plane R? are not homeomorphic, where the
topologies are the relativized usual topologies:

X = (a: d(x,po) =1 or d(x,pl) =1; po= (0, =1y, p1 = (0, 1>}
Y = {x . d(x,p) = 1, D= (0’ 5>}
T g = (0)
0 \ / 4 \
LENY S S R S &
Y

Solution:
Suppose there exists a homeomorphism f: X = Y; let ¢ = f(0), X* = X\ {0}, and Y* =Y\ {¢}.
Then f:X*—>Y#* is also a homeomorphism with respect to the relative topologies (see Problem 25).

We show that Y* is connected. For if ¢ = (b + cos ¢, sin 8,), then the function
g:(0,27) > Y* defined by g(8) = (b -+ cos (8,4 8), sin(g,+ 8))
is a homeomorphism. But the interval (0, 27) is connected, so Y* is also connected.
On the other hand, X* is not connected; for the sets
G = {(z,y): x>0} and ‘H = {{z,y): x2<0}

are both open in R2, so G* = X*NG and H* = X*NH are open subsets of X*. Furthermore,
G* and H* are non-empty, disjoint and satisfy G*UH* = X*. Since connectedness is a topological
property, X* is not homeomorphic to Y* and therefore there can exist no such function f.
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TOPOLOGIES INDUCED BY FUNCTIONS

28

Let {f:i: X - (Y:, T)} be a collection of constant functions from an arbitrary set X
into the topological spaces (Y3, T;). Determine the coarsest topology on X with respect

29.

to which the functions Ji are continuous.

Solution:

Recall (see Problem 1) that a constant function f: X =Y 1is continuous with respect to every
topology on X. Hence all the constant functions f; are continuous with respect to the indiscrete
topology {X,®} on-X. Since the indiscrete topology {X,®) on X is the coarsest topology on X, it is
also the coarsest topology on X with respect to which the constant functions are continuous.

Consider the foilowing topology on Y = {a,b,c,d}:

T = {Y,9, {c}, {a,b,¢}, {c, dy}
Let X =1{1,2,3,4) ‘and let the functions f: X->(Y,T) and g: X~ (Y, T) be defined by

n

£
Find the defining subbase of for the topology T# on X induced by f and g, i.e. the
coarsest topology with respect to which f and g are continuous.

Solution:

30.

Recall that o = {JYHITHETYU{g Y[H|THET)
that is, of consists of the inverses under f and g of the open subsets of ¥. Hence

o = {X, 9 (1,24}, {3}, {2,3}, {1,2,3}, {2,3,4}}

—

Let T be the topology on the real line R generated by the closed-open intervals [a, b), and
let T* be the tqpology on R induced by the collection of all linear functions

f:R=>(R,T) defined by f(x) =ar+b, a,b€R
Show that T* is the discrete topology on R.

Solution: -
We want to show that, for every p € R, the singleton set {p} is a T*-open set. Consider the
T-open set A = [L1,2) and the functions f:R—>(R,T) and g:R- (R,T) defined by
' fo) = x—p+1 and gl@) = —wc—p+1
and illustrated below,

/ p pt+l
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Now A € T implies

f71[A] = [p,p+1) and g '[A] = (p—1,p]
belong to the defining subbase f for the topology T% Hence the intersection
p—Lp nlpp+l) = Ip}

belongs to T#, and so T* is the discrete topology on R.

31. Prove Theorem 7.9: Let {f,:X - (Y,T)} be a collection of functions defined on an
arbitrary non-empty set X, let
S o= U 'H HET)
and let T be the topology on X generated by /. Then:

(i)  All the functions f, are continuous relative to T.
(iiy If T% is the intersection of all topologies on X with re spect to which the functions

AIILC I HCCLIOI O Al s DI 2

f. are continuous, then T = T*,

(ili) T is the coarsest topology on X with respect to which the functions f, are continuous.

(iv) - is a'subbase for 7.

Solution:

(i) For any function f;:(X,T)~>(Y,T), if HET, then f '[H|€-fCT. Hence all the f
are continuous with respect to T.

(ii) By Problem 9, all the functions f; are also continuous with respect to T#; hence -f C T*# and,
since T is the topology generated by of, T C T#. On the other hand, T is one of the topologies
with respect to which the f; are continuous; hence T# C T and so T = T*.

(iii) Follows from (ii).

(iv) Follows from the fact that any class of sets is a subbase of the topology it generates.

Supplementary Problems

CONTINUOUS FUNCTIONS
32, Prove that f:X > Y is continuous if and only if f-1[4A°] C (f~!1[4]})> for every A C X.

33. Let X and Y be topological spaces with X = EuF. Let f:E—-Y and g:F—-Y, with f=g on
EnF, be continuous with respect to the relative topologies. Note that h = fug is a function from
X into Y. (i) Show, by an example, that & need not be continuous. (ii} Prove: If F and F are both
open, then h is continuous. (iii) Prove: If E and F are both closed, then % is continuous.

Let 7: X =Y be continuous. Sho is also continuous where f[X] has the relati

topology.

@2
[N

35. Let X be a topological space and let X, " X - R be the characteristic function for some subsét A
of X. Show that X, is continuous at p € X, if and only if p is not an element of the boundary of A.
(Recall XA(x) =1 if xr€ A, and XA(x) =0 if x € Ae)

ﬂﬂﬂﬂﬂﬂ 4Ll .
UUllbluEl Lll¢

rea
then X is a discrete space.

5.
fas
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OPEN AND CLOSED FUNCTIONS

37. Let f:(X,T)—>(Y,T*). Prove the following:
(i)  f is closed if and only if f[A] C f[A] for every A C X;
(i) f is open if and only if f[A°] C (f[A])° for every A C X,

J 11 anc only 11 L B i =T
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38. Show that the function f: (0, ©) > [~1,1] defined by f(x) = sin (1/x) is continuous, but neither open
nor closed, where (0, =) and [—1,1] have the relativized usual topologies.

s
o
g}
<
>
3
o
-
@®
ot

: ; F+ (X T -V
I'rove: L J:{X,T) @1
*

is a base for T

T*y he o
s £ ) GG U

40. Give an example of a function f:X —>Y and a subset A C X such that f is open but f,, the
restriction of f to A, is not open,

HOMEOMORPHISMS, TOPOLOGICAL PROPERTIES

41, Let f: X—>Y and g¢g:Y —>Z be continuous. Show that if gof: X —>2Z is a homeomorphism, then
g one-one (or f onto) implies that f and ¢ are homeomorphisms.

42. Prove that each of the following is a topological property: (i) accumulation point, (ii) interior,

(iii) boundary, (iv) density, and (v) neighborhood.

43, Prove: Let f: X —=Y be a homeomorphism and let A C X have the property that 4 n A4’ = .
Then flA] N {(Ff{A])’ = @. (A subset A C X having the property A N A’ = @ 1is called isolated. The
property of being isolated is thus a topological property.)

TOPOLOGIES INDUCED BY FUNCTIONS

44. Consider the following topology on Y = {a,b,¢,d}): T = {Y, @, {a, b}, {¢c,d}}. Let X = {1,2,8,4,5}
and let f: X—->Y and g:X—->Y Dbe as follows:

f = {d,a,(2,a), (3,b), (4,b), (5,d)}, g = {10, 2,b), 3,d), (4, ay, (5,¢)}

Find the defining subhhase for the tonologv on X induced bv f and o.
............... g subbase Ior the topology on induced by f and g.

45. Let f:X —>(Y,T*). Show that if ~f is the defining subbase for the topology T induced by the one
function f, then f = T.

46. Prove: Let {f;: X > (Y,,T))} be a collection of functions defined on an arbitrary set X, and let of; be
a subbase for the topology T; on Y. Then the class f* = U, {f '[S]: S € of;} has the following
properties: (i) ~f* is a subclass of the defining subbase ~f of the topology 7 on X induced by the
functions f;; (ii) ~f* is also a subbase for 7.

47. Show that the coarsest topology on the real line R with respect to which the linear functions
f:R=>(R,U) defined by fley = ax+b, a,bER

are continuous is also the usual topology U.

Answers to Supplementary Problems

33. (i) Let X = (0,2) and let E = (0,1) and F = [1,2). Then f(x)=1 and g(x) =2 are each con-
tinuous, but A = fUg Is not continuous.

44‘ {X, @s {1y 2’ 3, 4}, {5}: {2y 4}, {1’35 5}}

45. Hint. Show that of is a topology.



Metric and Normed Spaces

METRICS

Let X be a nor-empty set. A real-valued function d defined on X X X, i.e. ordered pairs
of elements in X, is called a metric or distance function on X iff it satisfies, for every
a,b,¢c € X, the following axioms:

[M:] d(a,b)=0 and d(a,a)=0.

[M:] (Symmetry) d(a,b) = d(b,a).

[M;] (Triangle Inequality) d(a,c) = d(a,b) + d(D,¢).
[My] If a=+D, then d(a,b) > 0.

The real number d(a, b) is called the distance from a to b.

Observe that [M,] states that the distance from any point to another is never negative,
and that the distance from a point to itself is zero. The axiom [M:] states that the
distance from a point a to a point b is the same as the distance from b to a; hence we speak
of the distance between a and b.

[M;] is called the Triangle Inequality because if a, b b
and c are points in the plane R? as illustrated on the right,

then {M;] states that the length d{a, ¢) of one side of the 3 /\ s

triangle is less than or equal to the sum d(a,b) + d(b, ¢) 7 \
of the lengths of the other two sides of the triangle. The

last axiom [M.] states that the distance between two dis- a AN
tinct points is positive.

d(e, ¢)

We now give some examples of metrics. That they actually satisfy the required axioms
will be verified later.

Example 1.1:  The function d defined by d(a,b) = |a — b], where ¢ and b are real numbers, is
a metric and called the usual metric on the real line R. Furthermore, the function
d defined by
dp,q) = \/(al—— by? -+ (ag — by)?

where p = (a1, @) and g = (by, by) are points in the plane R? is a metric and
called the usual metric on R2. We shall assume these metrics on R and R2, respec-
tively, unless otherwise specified. ’

Example 1.2: Let X be any non-empty set and let d be the function defined by

a e —_
d( b) J v 11 a—=20
a =
» -
1 ifasb
ML e T Jc o smncdendn A V ML Aladanznzg Piren ads e o civalless 2n11,.0 dl... fantaesnel
1nern a4 15 a Ievric vi A, 1 IS UlIsiallCe 1ulcuion 4 15 usually callea uvne uvrivend

metric on X.

Example 1.3:  Let ([0, 1] denote the class of continuous functions on the closed unit interval [0, 1].
A metric is defined on the class C[0,1] as follows:

1
ae) = f I — ool de
o

111
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Here d(f,g) is precisely the area of the region which lies between the functions
as illustrated below.

w N g
~ *
< TN~ a#t.9)
\
A
—
0 - 1 0 1
ALy e aliadad
Gij, g) is snaqaea
S
Example 14: Again let ([0,1] denote the collection of contmuous functions on [0,1]. Another
metric is defined on 0. 1] as follows:
..................... ([0,1] as follows: B
- d*(f,g) = sup{f(x) — g(x)|: x€[0,1]} ,
Here d*(f, g) is precisely the greatest vertical gap between the functions as illus-
- trated above.

Example 15: Let p = {a,,ay) and ¢ = (b,, bo) be arbitrary points in the plane R2, i.e. ordered
pairs of real numbers. The functions d, and dy defined by

dl(p, ) = max (Jla, — by, las — byl),  do(d, @) = [ag — by| + |as — by

o
£u
o
wn
P
3
?3 £

ar

A function p satisfying [M:], [M:] and [M;], i.e. not necessarily [Ma], is called a
pseudometric. Many of the results-for metrics are also true for pseudometrics.

DISTANCE BETWEEN SETS, DIAMETERS
Let d be a metric on a set X. The distance between a point p € X and a non-empty
subset A4 of X is denoted and defined by
d(p,A) = inf{d(p,a): a €4} s
i.e. the greatest lower bound of the distances from p to points of A. The distance between‘.
two non-empty subsets A and B of X is denoted and defined by
- d(A,B) = inf {d(e,b): a €A, bEB)
i.e. the greatest lower bound of the distances from points in A to points in B.
The diameter of a non-empty subset 4 of X is denoted and defined by
d(4) = sup{d(a,a’): a,a’ € A}
i.e. the least upper bound of the distances between points in 4. If the diameter of 4 is
finite, i.e. d(4) < «, then A is said to be bounded; if not, i.e. d(4) =, then A is said to
be unbounded.
Example 2.1: Let d be the trivial metric on a non-empty set X. Then for p € X and 4,B C X,

1 if pgd 1 if AnB = .

amay = {1 HrEL aam = |1 TANE=0
(0 if p€EA 0 f ANB+ 9O

Example 2.2:  Consider the following intervals on the real line R: 4 = [0,1), B = (1, 2].

\ If d denotes the usual metric on R, then d(4,B) = 0. On the other hand,
' if d* denotes the trivial metric on R, then d*(A,B) = 1 since A and B are disjoint.

The next propogition clearly follows from the above definitions:
Proposition 8.1: Let A and B be non-empty subsets of X and let p € X. Then:
i) d(p,A), d(A, B) and d(A) are non-negative real numbers.
1) If p €A, then r]( ):0,

~
frany
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(i) If AN B is non-empty, then d(4,B) = 0.
(iv) If A is finite, then d(4) < %, ie. A is bounded.

OPEN SPHERES

Let d be a metric on a set X.  For any point p € X and any real number § >0, we shall
let Sa(p, 8) or simply S(p, 8) denote the set of points within a distance of § from p:

S(p,8) = {x:d®7x)<8)

called a spherical neighborhood -or ball. \
Example 3\1 Consider the point p = (0,0) in the-plane R?,

and the real number § =1. If d is the usual
metric on R2, thenw S;(p, 8) is the open unit
disc illustrated on the right. On the other
hand, if d; and d, are the metrics on R2

Sdl(p, 8) and Sdz(p, 8) are the subsets of R2
which are illustrated below.

N

Sdl(p, 8) is shaded Sdz(p, 8) is shaded
Example 3.2: Let d denote the trivial metric on some set X, and let p € X. Recall that the
distance between p and every other point in X is exactly 1. Hence
X if §>1
{py if =1

Example 3.3: Let d be the usual metric on the real line R, i.e. d(e, b) = |a —b]. Then the open
sphere S(p, §) is the open interval (p — 8§, p + §).

- S(p
¢ ~Ar

, 8 =

5

Example 34: Let d be the metric on the collection C[0,1] of all continuous functions on {0,1]
defined by
d(f,9) = sup{l[f() — g(@)|: x€[0,1]}

(see Example 1.4). Given § >0 and a function f,€ ([0,1], then the open
sphere S(f,, 8) consists of all continuous functions g which lie in the area bounded

by fo— & and fo+ &, as indicated in the diagram below:

f0+31
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One important/ property of open spheres in metric
spaces is given ),\the next lemma. 7.

Lemma 8.2: Let S be an_open sphere Wlth center p and

exists an open sphere T centered at ¢ such
that T is contained in S. (See the adjacent
Venn diagram.)

METRIC TOPOLOGIES, METRIC SPACES

In canaral tha int ctinn of twan anan anhe res noad nat he an anan anhe
in generail, tne intersection 601 two open spire need niov O€ an opehn Sprc

we will show that every point in the 1ntersectlon of two open spheres does belong to an
open sphere contained in the lntersectlon Namely,

Lemma 8.3: Let S; and S: be open spheres and let p € S:1 N S,. Then there exists an
open sphere S, with center p such that p € S, € S1 N S..
Hence by virtue of Theorem 6.1-we have

e ¢
Theorem 8.4: The class of open spheres in a set X with metric d is a base for a topology
on X.

n
<. i

¥

Definition: | Let d be a metric on a non-empty set X. The topology T on X generated by

the class of open spheres in X is called the metric topology (or, the topology

LILU/I/L(,EU; Uy Lﬂe _I_I_IELI lL LL) .E' ur Lllel more, Llle beb A LUgBLIIEI WILII Ult: Lopolugy

T induced by the metric d is called a metric space and is denoted by (X, d).

Thus a metric é})ace is a topological space in which the topology is induced by a metric.
Accordingly, all concepts defined for topological spaces are also defined for metric spaces.

Far axvamnla we can gneal abhont anen ceote clacsed ceote neiochharhande accumnlatian
AT UL Cﬂulllt"\/’ ¥ U vl ot’\/u-l). I uMUMU Ut’\/ll O\IVO’ AU ROw IJ\IUNJ, BEA WYY AS UUUO’ AV uiii Uil viul

points, clesure, etc., for metric spaces

Example 41: If d is the usual metric on the real line R, ie. d(g,b) = @ — b|, then the open
spheres in R are precisely the finite open intervals. Hence the usual metric on R
induces the usual topology on R. Similarly, the usual metric on the plane R2
induces the usual topology on R2,

Example 42: Let d be the trivial metric on some set X. Note that for any p € X, S(p, 1) = {p}.
. Hence every singleton set is open and so every set is open. In other words, the
trivial metric on X induces the discrete topology on X.

Example 4.3: Let (X, d) be a metric space and let ¥ be a non-empty subset of X. The restriction
of the function d to the points in the subset Y, also denoted by d, is a metric on Y.
We call (Y,d) a metric subspace of (X,d). In fact, (Y,d) is a subspace of (X, d),
i.e. has the relative topology.

Frequently the same symbol, say X, is used to denote both a metric space cmd the
underlying set on Wthh the metric is defined.

PROPERTIES OF METRIC TOPOLOGIES

Since the topology of 2 metric space X is derived from a metric, one would correctly

a re
expect that the topological properties of X are related to the distance properties of X.
For example,
Theorem 85: ILet » be a point in a metric space X. Then the countable class of open
spheres, {S(p, 1), S(p, %), S(p, %), ...} 1s a local base at p.

Theorem 8.6: The closure A of a subset 4 of a metric space X is the set of points whose
distance from A is zero, iie. A = {x:d(x,A)=0}.
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Observe that axiom [M4] implies that the only point with zero distance from a singleton
set {p} is the point’p itself,i.e.,

AN

) dixz,{p}) = 0 implies xz =7

e

Hence by the preéeding theorem, singleton sets {p} in a metric space are closed. Accord-
ingly, finite unions of singleton sets, i.e. finite sets, are also closed. We state this result
formally:

Corollary 8.7: In a metric space X all finite sets are closed.

hus we see that a metric space X possesses certain topological properties which do
not hold for topological spaces in general.

N(\a\)t\follows anifimportant “separation” property of metric spaces.

Theorem 8.8 ’Separ—atibﬁ Axiom): Let A and B be closed disjoint subsets of a metric
\ : space X. Then there exist disjoint open sets G and H
S 4 such that A CG and B CH. (See Venn diagram

Y : below.}

o ——
N

/' \\ // - \\
| a Vo B )
u I \ L]
\\ U / \u " //

~— -~

—_——

One might suspect from the above theorem that the distance between two disjoint
closed sets is greater than zero. The next example shows that this is not true.

Example 51: . ,Gpnsider the following sets in the plane R2 which are illustrated below:

EQUIVALENT METRICS

Two metrics d and d* on a set X are said to be equivalent iff they induce the same
topology on X, i.e. iff the d-open spheres and the d*-open spheres in X are bases for the
same topology on X.

Example 6.1: The usual metric d and the metrics d; and dy, defined in Example 1.5, all induce
the usual topology on the plane R2, since the class of open spheres of each metric
(illustrated below) is a base for the usual topology on R2,

| s |

\ ]

| -
i

[}

| s —J

I
l !
Sd(p, 8) Sdl(p: 6)

Hence the metrics are equivalent.
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Example 6.2: Consider the metric d on a non-empty set X defined by
rn L ~ s L
& U /e 1
da, b) =
(a. b) JLo if a=b
Observe that s4(p,1) = {p}; so singleton sets are open and d induces the discrete

topology on X. Accordingly, d is equivalent to the trivial metric on X which also
induces the discrete topology.

The next proposition clearly follows from the above definition.

Proposition 8.9: The relation “d is equivalent to d*” is an equivalence relation in any
collection of metrics on a set X.

METRIZATION PROBLEM

metrlc don X Wthh 1nduces the topology T. The topologlcal space (X, T) is sald to be
metrizable if such a metric exists.

Example 7.1:  Every discrete space (X, D) is metrizable since the trivial metric on X induces
the discrete topology 2.

Example 7.2: Consider the topological space (R, U), the real line R with the usual topology U.
Observe that (R, U) is metrizable since the usual metric on R induces the usual

topology on R, Similarly, the plane R? with the usual topology is metrizable.
Example 7.3: An indiscrete space (X, ) where X consists of more than one point is not metriz-

able. For X and ( are the only closed sets in an indiscrete space (X, §). But by

Corollary 8.7 all finite sets in a metric space are closed. Hence X and ¢ cannot
be the only closed sets in a topology on X induced by a metric. Accordingly,
(X, (i\ is not metrizable,

The metrization problem in topology consists of finding necessary and sufficient topo-
logical conditions for a topological space to be metrizable. An important partial solution
to this problem was given in 1924 by Urysohn as a result of his celebrated Urysohn’s
Lemma. 1t was not until 1950 that a complete solution to this problem was given
independently by a number of mathematicians. We will prove Urysohn’s results later.
The complete solution to the metrization problem is beyond the scope of this text and the
reader is referred to the classical text of Kelley, General Topology.

ISOMETRIC METRIC SPACES

A metric space (X,d) is isometric to a metric space (Y,e) iff there exists a one-one,
onto function f:X =Y which preserves distances, i.e. for all p,q € X,

dp,q) = e(f(p), f(9)

Observe that the relation “(X, d) is isometric to (Y,e)” is an equivalence relation in any
collection of metric spaces. Furthermore,

Theorem 8.10: If the metric space (X, d) is isometric to (Y, e), then (X, d) is also homeo-
morphic to (Y,e).

The next example shows that the converse of the above theorem is not true, i.e. two
metric spaces can be homeomorphic but not isometric.

Example 81: Let d be the trivial metric on a set X and let ¢ be the metric on a set Y defined by

f2 if a#b
e(a, b =
(@, ) 10 if a=d
Assume that X and Y have the same cardinality greater than one. Then (X, d)
and (Y, e) are not isometric since distances between points in each space are differ-
ent. But both d and ¢ induce the discrete topology, and two discrete spaces with

DoL qQuc SCIe SCre SPACES

the same cardinality are homeomorphic; so (X,d) and (Y,e¢) are homeomorphic.
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EUCLIDEAN m-SPACE

Recall that R™ denotes the product set of m copies of the set R of real numbers, ie.
congsists of all m-tuples (a1, az, ,dn) of real numbers. e function d defined by
{m [ o,
dp,q) = Vie—b)2+ -+ + (@n—bn)? = (@i—b)? = D lai— bi?
i=1 i=1
where 1 = (g4 a,y and ¢ = (b, by, is a metrie, called the Fuclidean metric on

© V W1y e 0 ey By &I \Wly o o oy Uiiigy Ped

R™. We assume this metric on R™ unless 0therw1Se specified. The metric space R™ with

the Euclidean metric is called Fuclidean m-space and will also be denoted by E™.
Theorem B8.11: Euclidean m-space is a metric space.
Observe that Euclidean 1-space is precisely the real line R with the usual metric

Euclidean 2-space is the lane R? with the usual metric.

HILBERT SPACE
The class of all infinite real sequences "
(@, @y, ...) such that D a} <
n=1

i.e. such that the series ai + a2 + --- converges, is denoted by R”
Example 9.1: Consider the sequences
o — 11 1 and o — (1 1 1 1
P (7 &, =<7 ]G q V9 4 gy 0/
Sinece 12+ 12 4+ ..+ does not converge, p is not a point in R™, On the other
hand, the series 1%+ ()2 + (1)> + +-+ does converge; hence ¢ is a point in R%.

Now let p = (a.) and q = (b,) belong to R*. The function d defined by

dp,q) = i |, — b2

n=1
is 2 metric and called the l»-metric on R”. We assume this metric on R® unless otherwise
specified. The metric space consisting of R” with the l:-metric is called Hilbert space or
lr-space and will also be denoted by H. We formally state:

Theorem 8.12: Hilbert space (or l:-space) is a metric space.

Example 9.2: Let H,, denote the subspace of Hilbert space H consisting of all sequences of

£
the form (@), @y ooy Appeys Ay 0,0,0, .. 0

Observe that H,, is isometric and hence homeomorphic to Euclidean m-space by
the natural identification
Ay ooy @) € @y, ..., 0,,0,0, ..

Hilbert space exhibits two phenomena (not occurring in Euclidean m-space) described
in the examples below:

Example 9.3: Consider the sequence (p,) of points in Hilbert space where p, = (@, dox, .. .) is
defined by a; = 8;; lLe ap =1 if i =k, and ay = 0 if ¢ # k. Observe, as illus-
trated below, that the projection (=i(p,)} of (p,) into each coordinate space con-

verges to zero:
p, = (1,0,0,0, ...

)

P, = (0,1,0,0,...)

Ps — <0,0, 1, 0, )

Ps — (0,0,0, 1, )
Vil

0 = (0,0,0,0,...)

But the sequence (p,) does not converge to 0, since d(p,,0) =1 for every k € N;
in fact, (p,) has no convergent subsequence,
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nace of H which consgists of all

la O A« T.ot H# Aan ote the proper 1mha nai
1€ V.. UL ¢ | 1€ PrOopeYy suonspace 01 ax waila COonsists oI poins 1in a2

whose first coordinate is zero. Observe that the function f:H - H* defined by
fllagy aoy o)) =(0,ay, a9, ...) is one-one, onto and preserves distances. Hence

Hilbert space is isometric to a proper subspace of itself.

CONVERGENCE AND CONTINUITY IN METRIC SPACES

The following definitions of convergence and continuity in metric spaces are frequently
used. Observe their similarity to the usual « — 8 definitions.

Definition: The

ne Oy, A, .. .Y

A1 B2 0 e W/

seque d) co
b € X if for every ¢ >0 there ex1sts a positive 1nteger No such that

—b
o]
=]
-5
ot
473
Y
=
avl
- 13
D
—
.E
(@]
1421
ol
»
[«
2
—_
>
=
Q
=]
'3
("D
3
03
1]
n
ot
=]

n>mny implies d(a. D) <e
Definition: Let (X,d) and (Y, d*) be metric spaces. A function f from X into Y is con-
tinuous at p € X if for every ¢ > 0 there exists a & > 0 such that
d(p,x) <8 implies d*(f(p), f(x)) <e

The above definitions are equivalent to the definitions of convergence and continuity
(in the metric topology) which were given for topological spaces in general.

Let V be a real linear vector space, that is, V under an operation of vector addition
and of scalar multiplication by real numbers satisfies the axioms [V.], [V:] and | V3] of
Chapter 2, Page 22. A function which assigns to each vector » €V the real number ||v||
is a norm on V iff it satisfies, for all v, w €V and k € R, the following axioms:

[N\] |jv]|=0 and |jp]|=0 iff v=0.
N1 [0+l = [lol] + [jl].
INsJ - [feoll =[] (o]l

A linear space V together with a norm is called a normed linear vector space or snnply
a normed space. The real number ||v|| is called the norm of the vector v.

Theorem 8.13: Let V be a normed space. The function d defined by
d(v,w) = v —wl|
where v,w €V, is a metric, called the induced metric on V.

Thus every normed space with the induced metric is a metric space and hence is also

a topological space.

Example 101: The product set R™ is a linear vector space with addition defined by
@y, - Ay -+ by, oL byy = ey +Hby, o, ey by
and scalar multiplication defined by
kay, ...,apn) = (kay, ..., kay

The function on R™M defin

[RCI Al \/a1 k= S = Sl

is a norm and called the Euclidean norm on R™. Note that the Euclidean norm
on R™ induces the Euclidean metric on R™, If p = (a;,a5 a3 is a point in R3,
then ||p|| corresponds precisely to the “length” of the arrow (or vector) from the
origin to the point p as illustrated below.
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I —

Y . T =

Exampfe 10.2: The following two functions are also norms on the linear space R™:
ey, - am |l = max(lay], lag, ..., lan)
ey, el = e + lag] + -+ + |ag]

Let 7(X,R) be the collection of all real-valued functions on a non-empty set X. Recall
(see Theorem 2. §) that #(X,R) is a linear space with vector addition and scalar multipli-
cation defined as fo ollows: / y

(F+ o)) = f(x) + g(x) and (kH(2) = kf(x)
We shall frequently want to study classes of functions with certain other properties such
as boundedness, continuity, etc. We shall use the following result from linear algebra:

Proposition 8.14: 7 Let <4(X, R) be a non-empty subcollectlon of ¥(X,R) satisfying the fol-
;7 lowing two properties:

- - (i) If f,9 €cA(X,R), then the sum f+g € 4(X,R).
a t i

h

W~

C (ify If fEe4(X,R) and k €R, then the scalar multiple
kf € cA(X, R)
) Mhan '~ (Y P\ ig itanld o linmoawn vvontar ananra -
< A 1icy)] &1 \11) 1\!) 19, 1LDTlL, a llllval vouLul DLJaL,C
¢

Example 10.3: The class ([0,1] of all continuous real functions on the interval I = [0, 1] is a
linear space since the sum and scalar multiples of continuous functions are con-
/tjr/uous. The function on ([0,1] defined by

1
W= | 1 d
‘ 0
is a norm which induces the metric on ([0,1] defined in Example 1.3.

Example 10.4: The function on the linear space C[‘O, 1] defined by
| il = sup (@) : = € 0,1])

is also a norm. This norm induces the metric on (10,1} defined in Example 1.4.

Example 105: Let B(X, R) denote the subcollection of F(X, R) consisting of all bounded functions
f: X = R. Then B(X,R) is a linear space since the sum and scalar multiples of
bounded functions are also bounded. The function on B(X, R) defined by

AL = sup{f(®)| : = € X}

1S a norm. 4

Example 10.6: We show later that the class R” of all real sequences (e,) such that 3 a,2 < =
is a linear space. The function on R* defined by

Kanll = Af3 a2

is a norm and called the ly-norm on R®. Observe that this norm induces the
l,-metric in Hilbert space.
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Solved Problems
METRICS
1. Show that in the definition of a metric the axiom |Ms] can be replaced by the followin
(weaker) axiom:
[M;] If a,b,c €X are distinct then d(a,c) = d(a,b) + d(b, ¢).

Solution:
Suppose a = b. Then

d(a,¢) = d(b,¢) = d(b,b) + d(b,¢) = d(a,b) + d(b,¢)
If b = ¢, the arguinent is similar. Lastly, suppose a = ¢; then
dla,¢) = 0 = d(a,b) + d(b,c)
Thus the Triangle Inequality follows from [M;] if the points a, b and ¢ are not all distinct.

g

2. Show that the trivial metric on a set X is a metric, i.e. that the function d defined by

1 if a#b
d(a,b J
| (@.0) 10 ifa=b
satisfies [M,], [M.], [M;] and [Mq].

Solution:

Let a,b€ X. Then d{(a,b) =1 or d(a,b)=10. In either case, d(a,b) =0. Also, if a =0b
then, by definition of d, d{a,b) = 0. Hence d satisfies [M,].

Let o, b€ X. If as<b, then b= a. Hence d(e,b) =1 and d(b,a) = 1. Accordingly, d(a,b) =
d(b,a). On the other hand, if @ = b then b = a and therefore d(a,b) = 0 = d(b,a). Hence d satisfies
[M,]. :

Now let a,b,¢ € X be distinct points. Then d(a,¢) =1, d(a,b) =1 and d(b,¢) =1. Hence

and d satisfies [MX]. da,0) = 1 = 141 = de,b) + d(b,0)

Lastly, let a,b€ X and a #b. Then d(a,b) =1. Hence d(a,b)>* 0, and d satisfies [M,].

3. Let d be a metric on a non-empty set X. Show that the function e defined by
e(a,b) = min(1, d(a,D))
where a,b € X, is also a metric on X.

Solution:
Let a,b€ X. Since d is a metric, d(a, d) is non-negative. Hence e(a, b), which is either 1 or
d(a,b), is also non-negative. Furthermore, if « = b then

e(a,b) = min(l,d(e,b)) = min(lL,0 = 0
Hence e satisfies [M,].

Now let a,b € X. By definition e{a,b) = d(a,b) or e(a,b) = 1. Suppose e(a,b) = d(a,b);
then d(a,b) < 1. Since d is a metric, d(b,a) = d(a,b) < 1. Consequently,

e(b,a) = d(b,a) = d(a,b) = e(a,b)
On the other hand, suppose e(a,b) = 1; then d(a,b) = 1. Hence d(b,a) = d(a,b) = 1. Consequently,

!
[y

e{a, B)
In either case e satisfies [M,].

Now let a,b,c € X. We want to prove the Triangle Inequality
ea,c) = e(a,b) + e(b,c)
Observe that e(a,¢) = min(1, d(a,¢)) = 1. Hence if e(a,b) = 1 or e(b,¢} = 1, the Triangle
Inequality holds. But if both e(a,b) <1 and e(b,¢) < 1, then e(a,b) = d(a,b) and e(b,e) = d(b,c).
Accordingly, e(a,e) = min(1, d(a,¢)) = d(a,e) = d(a,b) + d(b,e) = e{(a,b) + e(b,c)
Thus in all cases the Triangle Inequality holds. Hance e satisfies [M;].

Finally, let o,b€ X and a>b. Then d(e,b)> 0. Hence e(e,b) = min(l, d(a,d)) is also
not zero. Thus ¢ satisfies [My]. s -
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4. Let d be a metric on a non-empty set X. Show that the function e¢ defined by

e b) = d(a,b)
@9 = 11 d(a,b)
where a,b € X, is also a metric on X.

Solution:
Since d is a metrie, ¢ clearly satisfies [M,;], [M,] and [M,]. Hence we only need to show that
e satisfies [M,], the Triangle Inequality. Let a,b,¢ € X; then

d(a, b) _ d(a, b)

1T da,b) + dib.e) — 1+ da,b) e(a, b)
d(b, c) d{b, ) _ b
and T ¥ d@b) + dbo — 1+ dbe - %9
Since d is a metrie, 'd(a, ¢) = d(a,b) + d(b,c). Hence
@ - —dwa  _ _d@b + db,0
ane = T1 da, o) 1 + d(a, b) + d(b,0)
" 73 F Y P 7S RPN Y
_ aa, o) (o, o) =
= TTdab) +dbe T T+ dab) + db.0 e(a, b) + e(b,c)

Thus ¢ is a metric.

OPEN SPHERES

5. Prove Lemma 8.2: Let S be an open sphere with center p and radius 8§, i.e. S = S{p,8).
Then for every point q¢ € S there exists an open sphere T centered at q such that T is
contained in S.

Solution:
Now d(g,p) <8 since g€ 8 = S(p,8). Hence /\

e = § —dlg,p) > 0 €
*x
Woe claim that the here 7T = S{g.¢), with center g o
i i [l Y 7 Wil CCNwer b
T

anon annhe
Yy & Ciqaii [ 41 Open 5pac

and radius ¢, is a subset of S.

Let x € T = S(g,¢). Then d(x,q) <e=05—d(g,p). So, by Do
the Triangle Inequality, /
d

dix,p) = d(x,q) + d(g,p) < [§ —d(g,p)] +d(g,p) = 3
Thus x € S = S(p, §) since its distance from p is less than §.
So € T implies x € S, i.e. T is a subset of S (as indicated in
the adjacent Venn diagram).

S

6. Let 8 and 8. be real numbers such that 0 < 8§ = §;. Show that the open sphere S(p, §))
is a subset of the open sphere S(p, 52).

Solution:
Let x € S(p,8,). Then d{x,p) <38, = 8;. Hence x € S(p,ss) and thus S(p, 8;) C S(p, 8y).

7. Show that if S and T are open spheres with the same center, then one of them is a
subset of the other.

Solution:
Say S = S(p,8,) and T = S(p,8,), i.e. S and T have the same center p with radii 5, and §,
RTINS T Tyt fileo, & S @ aee & = AT nam s Ty dLa ann o T0 LT Y Y — mo— o
respectively. but eithieér o) — 0g Or 09 — 0;. IlEliceé DYy tne preceding problem either > T 1 or I C o,
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8. Prove Lemma 8.3: Let S, and S: be open spheres and let p € Sy N Ss. Then there
exists an open sphere S, with center » such that »p €S, C S, N S..

Solution:

Since —p € S7 and Sy is an open sphere, there exists by
Lemma 8.2 an open sphere Sl with center p such that pEST cS,).
Similarly there exists an open sphere Sz with center p such that
PES,CS.. Now S; and S5 each has center p; so by Problem 7
one of them, say Sf:, is contained in the other. Thus we have

PESICcS, and pESIcSicS,

Accordingly, pE€ S;CS;NnS,. Hence we may take S, = i
{See adjacent diagram.)

METRIC TOPOLOGIES

9. Prove: Let X be a metric space, and let .2, denote the class of open spheres with center
p € X. Then /, is a local base at p.
Let G be an open subset of X containing p. Since the open spheres in X form a base for the

metric topology, 3 an open sphere S such that p€ S c G. But by Lemma 82 3 an open sphere
S, € 0, l.e. with center p, such that p €S, CSC G. Hence D), is a local base at p.

o

10. Prove Theorem 8.5: Let X be a metric space. Then the countable class of open spheres
Z = {81, Sm%), S® 5, ...}
with center p € X, is a local base at p.

Solution:
Let G be an open subset of X containing p. By the preceding problem, 3 an open sphere S(p, 9)
with center p such that p € S(p,8) C G. Since § > 0,

In, EN  such that 1/ny <8

11. Prove Theorem 8.6: The closure A of a subset A of a metric space X is the set of
points whose distance from A4 is zero: A = {x:d(x,A4) = 0}.
Solution:
Suppose d(p, A) = 0. Then every open sphere with center p, and therefore every open set G
containing p, also contains at least one point of A. Hence p € A or p is a limit point of A, and so

pE A.
On the other hand, suppose d(p,A) = ¢ > 0. Then the open sphere S(p, J¢) with center p contains
no point of A. Hence p belongs to the exterior of A, and so p &€ A. Accordingly, A = {x: d(x,4) = 0}.

12. Show that a subset F' of a metric space X is closed if and only if {x:d(x, F)=0} C F.

Solution:
This follows directly from Problem 11 and the fact that a set is closed iff it is equal to its closure.

13. If F is a closed subset of a metric space X and p € X does not belong to F, i.e. p € F,
then d(p,F) = 0. :
Solution:
If d(p,F) =0 and F is closed, then by Problem 12, p € F. But by hypothesis p& F; so
d(p, F) = 0.
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14. Prove Theorem 8.8: Let A and B be closed disjoint subsets of a metric space X. Then
there exist disjoint open sets G and H such that A C G and B C H.

If elthezf\A or B is empty, say 4 = ), then  and X are open disjoint sets such that A Cc @

and BC X. Hence we may assume A and B are non-empty.

+Let @ € A. Since 4 and B are disjoint, « € B.
But B is closed; hence by the preceding problem,

Jh ¥ Dy - o ~. n [ J-Ppte RUpEry D L L — i R ey 3 AN
dia,p) = ¢, > (. oSimilarly, if 0 € 5, then d{b,A) =
8, > 0. Set 3
~ -
o —_ Qi 12 ) PR | o —_— (o748 NN I WY
Sg = (@&, g04) ana Op = (0, 50p)
N
so a €8, and b €S, (Seethe adjacent Venn dia-

rn hY

gram.) : .

We claim that the sets
G = U{S e €A}y and H = U{S;: bEB}

satlsfy the requlred conditions of the theorem Now G and H are open since they are each the union
ofi open spheres Furthermore, ¢ € S, implies A C G, and b € S implies B ¢ H. We must show that
G = .
SN o - \
Suppos¢ G H # (0, say pEG T
€A,

L

Suppose G n H
/ o

3 q, €B such that pE S”o’ pE Sbo
>

Let d(ag, by) = € > 0. Then d(ay, B) = 3q, = ¢ and d{bg, A) = 3p, =e¢ But pe S“o and p € Sbo’ 50
dlag,p) < 43, and  d(p,by) < }dp,

Therefore by the Triangle Inequality,

- - ——
d(ay, by) e = d(ag, p) + d(p, by) < Sao + %ﬁbﬂ = %e + %);e = %e
/ BN
P Y WS PV & SRS and IT v dicial TS RS R SR SUR TN,
all 1I lpUDDlUlllh)’. I1CNLE 7 allQ 41 4al't Ulojulllt ald uhne wcurciin 1s v ue

EQUIVALENT METRICS

15. Let d and e be metrics on a set X such that for each
d-open sphere Sq with center p € X there exists an
e-open sphere S. with center » such that S.C Sa.
Show that the topology T induced by d is coarser
(smaller) than the topology 7. induced- by e, i.e.
Ta C Te.

Solution:

Let G &€ T3. We want to show that G is also an e-open
set. Let p € G. Since G is d-open there exists a d-open
sphere S with center p such that p € S; C G. By hypothesis,
there exists an e-open sphere S (p) with center p such that
p €S.{p) CS,;CaG. Accordingly, G = WU{S.p):p € G}.
Thus G G5 the union of e-open spheres, and so it is e-open.
Hence T4C T,.

16. Let d and e be metrics on a set X such that for each d-open sphere S; with center
p € X there exists an e-open sphere S. with center p such that S. C S4, and for each
e-open sphere SF with center p € X there exists a d-open sphere S; such that S; C S*.
Show that d and e are equivalent metrics, i.e. that they induce the same topology on X.
Solution:

By Problem 15, the topology T4 induced by d is coarser than the topology T, induced by e, i.e
T4C T, Also by Problem 15, T,C T4 Therefore T4= T,
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17. Show that the usual metric d on the plane R? is equivalent to the metrics d; and d: on .
R? defined in Example 1.5.

Solution: . .

Observe that we can inscribe a square in any circle as shown in ¥ig. (a) below, and we can
ingeribe a circle in a square as shown in Fig. (b). Now the points inside a circle form a d-open sphere
and the points inside a square form a d;-open sphere, so the metrics d and d, are equivalent by
Problem 186.

Furthermore/,;we can inscribe a “diamond” in any circle as shown in Fig. (¢), and we can inscribe
a circle in any diamiond as shown in Fig. (d). Since the points inside a “diamond” form a dy-open
sphere, the metrics™d and dy are equivalent by Problem 186.

Fig. (a) " Fig. (b) Fig. (c) Fig. (d)

18, L\e_t/Qfé, 1] denote the collection of all real continuous functions defined on I = 10, 1].
Consider the metrics d and e on ([0, 1] defined by
- - 1
adf,0) = suplf@) —d@): a1, elfg) = | V@) - @) do

0
(see Example 1.3 and Example 1.4). Show that the topology T, induced by d is not
coarser than the topology T, induced by e, ie. T, ¢ T,.

Solution:

Let.p be the constant function p(x) =2 and let ¢ =1. Then the sphere S;(p,¢) consmts of all
functions g for which g lies between the functions p—1 and p +1, ie. such that 1 < g(x) <3 for /
all x &1, )

!

|

]
A

|
!1

1s |
I

It is sufficient to show that S;(p,¢) contains no e-open sphere with center p; ie. for every § > 0,
S.(p,8) & Sa(p,e). Let § > 0. Consider the function ¢ consisting of the line segments between the
points (0,4) and (18, 2) and between (}s,2) and (1,2), i.e. defined by ~

r A ~ad QN

@) ) (—4w%/8) + 4 if wa<%8

x =

7 2 if s=a=1

(see diagram above). Observe that the ‘“area’” between p and ¢ is 13, ie. e(p,g) = L3. Then
g€ S,(p,8). But d(p,g) =2 so q@&Sy»e. Thus S,(»,3) ¢ Sg(p,¢) for any & >0. Hence

Tad T

19. Let ([a,b] denote the collection of all continuous functions on a closed interval
X = [a,b]. Consider the metrics d and e on ([a, b] defined by
b

AG9) = s li@) —g@|: e € X),  efo) = [ @) - o) de
Show that the topology T, induced by e is coarser than the topology T, induced by 4, i.e.

T,CT,

4
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Solution:
Let S.(p,e) be any e-open sphere in ([a, b] with center » € ([a,b]. Tet § = ¢/(b—a). In view
of Problem 15 it is sufficient to show that Sy(p, §), the d-open sphere with center p and radius §, is a

subset of S.(p,e), le. Su(p, 8) C S.iw,e).
Let f € Sy(p,8); then sup {[p(x) — f(x)]} < & = ¢/(b—a)

Hence

etnd) = | @)= fwide = | sup{ip) = @)} ds < | Jb-wde =

Ya a

So f€ S.p,¢) and therefore S;(p,8) C S.(p, 6.

NORMED SPACES

20.

21.

Prove Theorem 8.13: The function d defined by d(v,w) = ||lv—wl||, where v and w
are vectors in a normed space V, is a metric on V.
Solution:

Note that by [N,;],

dlv,w) = lv—wl| = 0 and d(v,v) = |jlv=—w|] = ||0i] =0
Hence d satisfies [M;]. Also, by [Ny],
dw,w) = [lv—wll = (D=2 = |-1][lw—=2j] = llw—2]] = dw,v)
Hence d satisfies IM;]. By IN,1, |lv +w!| = |lv]l + ljw|| for all v,w € V. Accordingly if «, b,c €V,
then substituting » = a—b% and w = b—c¢ we have
la—el] = e=b +@®—0l = [v+twl] = [l + lw] = la=>] + [b—el
that is, d(a,c¢) = d(a,t) + d(b,c). Hence d satisfies [M;].

Finally, if v # w then v—w # 0; hence by [N;], d(v,w) = |/w—w}l > 0. Thus d satisfies [M,].

Prove the Cauchy-Schwarz Inequality: For any pair of points p = {(ai, ...,an) and
q = <b1,...,bm> il’l Rm,

Sunl = Wil = y Sy 0

where 'Ipl| is the Euclidean norm.

Solution:
If p=0 or ¢q=0, then the inequality reduces to 0 =0 and is therefore true. So we need only
consider the case in which p =<0 and ¢>0, ie. in which ||p||# 0 and |iq|} # 0.

Now for any real numbers z, vy € R, 0 = (x—y)2 = x2— 2xy +y2 or, equivalently,
20y = o2 4 y2 (1)

Since x and y are arbitrary real numbers, we can let z = lay/|'p|l and y = |4l/llg]' in (7). So,
for any 4, R
%ai‘l 1 _

ol T4l

(2)

But by definition of the Euclidean norm, a2 = lip|[2 and 142 = |l¢}|2. So summing (2) with
respect to 7 and using |a;b;] = la;! b, we have

n

S lah] S el 3 (b

%2 IR U = S S
[P ql! LplE |'ql* o= a1
m\ ]
S |oyby
= _
that is, 17—‘1 =
pll Ilqll

Multiplying both sides by |/p|| ||¢|| gives us the required inequality.
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Prove Minkowski’s Inequality: For any pair of points p = (¢, ...,an) and ¢ =
<b1, e ey bm> in Rm,

p+al = ol +ldl i Dla+bl = I (ol + VD bP

Solution:

If |lp+4qll = 0, the inequality clearly holds. Hence we need only consider the case in which
{lp+4qll # 0.

Observe that, for real numbers a;, b, € R, we have |o;+ & = |a;j + [§;. Hence

llp + qlI2 p la;+ b2 = la; + byl la; + by

23.

24.

I\

2 la; +byf (Jaif + [by)
2 e+ bl lail + 2o+ byl [by)

But by the Cauchy-Schwarz Inequality,
2 fa;i+bf el = flp+glllipll  and e+ bl b} = lp +ql llgl]
Then lp+dq'2 = lp+dalilpll + llp+dqlllldl = llp+qll(lpl+1lglD

Since we are considering the case ||p+¢|l # 0, we can divide by |lp+ ¢l/; this yields the required
inequality.

Prove that the Euclidean norm,

Ip] = VX lw?  where p = (ay,...,a.) €R"

satisfies the required axtoms [N.}, [Nz} and [Ns].

Solution:

Now [N,] follows from properties of the real numbers, and [N,] is Minkowski’s Inequality which
was proven in the preceding problem. Hence we only need to show that [N;] holds. But for any
vector p = (&, ...,a,} and any real number k € R,

Hkpi‘[ = Hk<a1’ ey am)” = H(ka’h ceey kam)”
2 ka2 = 3 kPR agl2 = k2 2 fayf?
VikP V2 a2 = kN Zlal? = k]l

i

I

Hence [N3] also holds.

Prove Theorem 8.11: Kuclidean m-space is a metric space, i.e. the Euclidean metric
on R™ satisfies the axioms [M;] to [M.].
Solution:

Use Problem 23 and the fact that the Euclidean metric on R” is induced by the Euclidean norm
on R™.

25. Let (a., s, ...) be a convergent sequence of real numbers with the property that

26.

a,=b for all n € N. Show that lima., = b.

Solution:
Suppose lima, = a>b and set ¢ = a—b > 0. Since a,~ «a,

dng €N such that a—a, = jadanoi <e=a—b

0
Thus iy, < —b and therefore b < Gy which contradicts the hypothesis. Accordingly, lim a, = b.

Prove Minkowski’s inequality for infinite sums: If (an), (ba) € R°° then

ot bl = o] +[bal] Lo 4 S lant bif 3 3 b
Oy + On = 429 n 1.e. an af? (In + 2
Solution: Vn:l \/ \/

By Minkowski’s inequality for finite sums,
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[m : [ o [ m
n§1 ia/n‘+‘ bn‘Q = 2 iazn‘Q ngl ‘G/np = 2 ‘a/n“? V 2 ‘bnkz

Since the above is true for every m € N, by the preceding problem it is also true in the limit.

27. Show that the L-norm on R%, ie. |||l = {2 |an[> satisfies the required axioms
[N:], [Nz] and [Ns].

Solution:
This is similar to the proof in Problem 23 that the Euclidean norm satisfies the axioms [N;], [N;]
and [N,].

28. Prove Theorem 8.12: Hilbert space (or l-space) is a metric space.

Solution:
Use Problem 27 and the fact that the l,-metric on R” is induced by the l,-norm.

29. Let ¢ and b be real numbers with the property that a = b + ¢ for every > 0. Show
that a = b.

Solution;
Suppese o > b. Then ¢ = b+ where 38 >0. Set «=13. Now o > b+

pose 4 -~

e > 0. But this contradicts the hypothesis; so a = b.

po=

30. Let I = [0,1]. Show that the following is a norm on ([0,1]: ||f]| = sup {/f(»)]}.

Solution:
Recall that a real continuous function on a closed interval is bounded; so ||f|| is well-defined.
Since |f(x)] =0 for every x €1, |lIf]l =0; also lfil =0 iff |f(x)] =0 for every w €I, ie. iff
= 0. Thus [N;] is satisfied.

Let ¢ > 0. Then 3z, €I such that
f+gll = sup{[f(x) +g@)} = |f(xg) + glxg) + ¢
= [f(zo)l + lg(x)| + «
= sup {{f(®)]} + sup{lg@)]} + .
= L+ Yol + ¢
WA + Vgl and [N,] is satisfied.

i

Hence by Problem 29, ||f + gl
Now let k= R. Then

likA)

I

sup {|(kf)(z)]} = sup{lkf(@)} = sup{k| |f(x}]}
Ik sup {|f(=)1} = k[ [Ifll

Il

and [N;] is satisfied.

Supplementary Problems

METRICS

31. Let B(X,Y) be the collection of all bounded functions from an arbitrary set X into a metric space
(Y,d). Show that the function e is a metric on B(X,Y):

e(f,9) = sup{d(f(z),9(x) : x € X}

32. Let d),...,d, be metries on X,,...,X,, respectively. Show that the following functions are
metrics on the product set X =[[;X;

d(p; Q) = max {dl(afl; bl)’ « ey dm(a’m! bm)}} e(p! (I) = dl(afl’ b]) + tt + dm(a’my bm)

Here, p=(ay, ..., @nh @=(by, ..., b, € X = [ X
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33.

34.

35.

36.

37.
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Let R* = RU {»,—=} be the extended real line and let f:R*—>{-1,1{ be defined by f(x) =
/1 +1x)) if x&€R, f(x) =1 and f(—«») = —1. Show that the following function is a metric on
R*: dlx,y) = [flx) — Ayl

Let R+ denote the non-negative real numbers, and let f: R+ > R+ be a continuous function such
that (i) £f(0) =0, (ii) flx+y) = f(x)+ fy), and (iii) © < y implies f(x) < f(y). Show that if d is
a metric on any set X then the composition function fod is also a metric on X.

Let p be a pseudometric on some set X. Let ~ be the relation in X defined by
a~b iff pla,d)=0
(i) Show that ~ is an equivalence relation in X.
(if)  Show that the following function is a metric on the quotient set X/~ = {[al:a€ X}:
d([a], [b]) = pla,b). Here [a] denotes the equivalence class of ¢ € X.
Let ®[0,1] denote the collection of (Riemann) integrable functions on [0,1]. Show that the following

function is a pseudometric on ®|[0,1]:
.1

plf,9) = J [flx) — g(x)| do
1]

Also show by a counterexample that p is not a metriec.

Show that a function d is a metric on a set X iff it satisfies the following two conditions:
() d(a,b) =0 iff a=b; (i) dla,c) = d(a,b) + d(c,b).

DISTANCES BETWEEN SETS, DIAMETERS

38.

39.

40.

41,

42.

Give an example of two closed subsets A and B of the real line R such that
dA,B) =0 but ANB =0

Let d be a metric on X. Show that for any subsets A,B C X:
(iy d(AUB) = d(A) + d(B) + d(A,B) and (i) d(4) = d(A).

Let d be a metric on X and let A be any arbitrary subset of X. Show that the function f:X—->R
defined by f(x) = d(x, A) 1s continuous.

Consider the function d:RZ-> R defined by d{(e,b) = |a—b] (i.e. the usuval metric on R). Show
that d is continuous wi ith reswect to the usual tonologies on the line B and the nlane R2
tha IS CONUInuous wiln respect U0 Tn€ usua: t0poiogies on ine iine & ana we piane mne.

Let A be any subset of a metric space X. Show that d(4) = d(A).

METRIC TOPOLOGIES

43,

44,

45.

46.

[
-3

Let (A, d) be a metric subspace of (X,d). Show that (4, d) is also a topological subspace of (X dj, i
the restriction of d to A induces the relative topology on A.

Prove: If the topological space (X,T) is homeomorphic to a metric space (Y,d), then (X,T) is
metrizable,

Prove Theorem 8.10: If (X,d) is isometric to (Y, ¢), then (X, d) is also homeomorphic to (Y, ¢).

Give an example to show that the closure of an open sphere

Sp,8) = {x:d(p,x) <8}
need not be the “closed sphere”

S(p,8) = {z: d(p,x) =38}
Qhaow that g olocsed anhare Si(n 8 = {r: din ») =< 8Y 1s elosed
WDILUW uliauv a Ciudclu sSpuacrc ISRV Lo« UM, ) vy 2 LiusTu
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48. Prove: The sequence (o, a,, ...) converges to the point p in a metric space X if and only if the
sequence of real numbers (d(ay, p), d(as, ), ...) converges to 0 € R, i.e. lima, = p iff lim d(a,, p) = 0.

49. Prove: If limea, = p and limb, = q 1in a metric space X, then the sequence of real numbers

\ T

{(d{ay, by}, didg, by}, ...) converges to d(p,q) € R, Le. lm da, b,) = d{iima,, limb,).

EQUIVALENT METRICS
50. Let d be a metric on X. Show that the following metric is equivalent to d: e(a, b) = min {1, d(«, b)}.

51. Let d be a metric on X. Show that the following metric is equivalent to d: e(a,b) = — d(a, b)
i | \, U) 1 + d(a,, b)
52, Let d and ¢ be metrics on X. Suppose 3k,k’ € R such that, for every a,b € X,
7 d(a,b) = Eke(a,b) and e(a,b) = k'd(a,b)

Show that d and e are equivalent metrics.
EUCLIDEAN m-SPACE, HILBERT SPACE
53. Let p; = (ayy, iz, «+ oy Q1p), Pa = (Ga1, Az ooy Bzp), -.. be points in Euclidean m-space. Show that

Pn=q = (b, by, ..., by if and only if, for k=1,...,m, (o G, g, ...} converges to by; ie. the

projection (mi(p,)) converges to =.(gq) in each coordinate space.

54, Show that if G is an open subset of Hilbert Space H, then Ip = (a,) € G such that a;+ 0.

55. Let H* denote the proper subspace of Hilbert Space M which consists of all points in H whose first
coordinate is zero. (i) Show that H* is closed. (ii) Show that H* is nowhere dense in H, i.e.
int (H*) = .

56. Let p; = (ay1, @0, ...), Pz = (Goy, @29, ...}, ... be points in R™ and suppose that the sequence of real

numbers (wp(Py)) = (Qipr Cop, Pag, « o) coﬁverge to b, € R for every k& N.
(i Show that g = ¢by,b,,...) belongs to R®.

.
(i)  Show that the sequence (p, ps, ...) converges to gq.

HILBERT CUBE

57. The set I of all real sequences {a,, as, ...) such that 0 = a, 5;1{, for every m & N, is called the
Hilbert cube.

(i)  Show that I is a subset of R™.
(ii) Show that I is a closed and bounded subset of R”.

NORMED SPACES

58. Let B(X,R) denote the class of all real bounded functions f:X —> R defined on some non-empty
set X. Show that the following is a norm on B(X,R): ||f|| = sup {|f(»)]: x € X}.

59. Two norms, [|---||; and ||-++||s, on a linear space X are equivalent iff they induce equivalent metrics
on X, i.e. iff they determine the same topology on X. Show that [|-++[|; is equivalent to ||---||; if and
only if Hay, a4, by, b; € R such that, for all z € X,

ay l|2)ly < Jjzilz < byjlzlly  and  agllx|ly < [lx]]; < ballxli
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60. Let ||---|| be the Euclidean norm and let d be the induced Euclidean metric on the plane R2, Consider -~
the function ¢ defined by
< ey~ [l Tallag el = Yl
S Y [ d(p, a) it |lpll = llai]

(i)  Show that e is a metric on R2.

(ii) Describe an open sphere in the metric space (R2, ¢). 3,

1

61. ﬁ\how that the.foliowing is a nérm on ([0,1]: Hifll = ‘Jf 1f(z)| do. ’

0

62. Let X-be a normed space. Show that the function f:(i\X»R defined by f(x) = }j2|| is continuous.

e

~ Answers 1o Supplementary Problems

//‘ A/"

36. The function £:[0,1] = R defined by

1 it w=0
fle) = {0 if0<z=1

38.

46.

58,

60.

is (Riemann) integrable, i.e. belongs to ®[0,1]. The zero function g:[0,1] > R, ie. g(z) =0 for all
2z €[0,1], also belongs to ®[0,1]. But po(f,9) =0 and f+#g. Hence p is not a metric as it does
not satisfy [M,].

!

Let A = (2,345, ...} and B = {2},3L, 4%, ...}.
(<J

Let d be the trivial metric on a set X containing more than one point. Then, for any p € X,

S(p,1) = {z:dp,n)<1} = {p}
S@,1) = {p:dpxn=1 = X

But d induces the discrete topology on X, and so every subset of X is both open and closed. Thus

8pD) = {m = {p # S D

Hint. Proof is similar to that of Problem 30, =
(ii) If li»|| = 8, then S(p, 8) is an arc of the circle {x: |z}l =|lp/|}. If {|p|| < s, then S(p,s) consists
of the points interior to the circle {z:|jz|| = &-||p||} and the points on an arc of the circle
{o: Hafl = {lol]}.
——~F
7 _\\/ S(p, 8)
!
! \
! \
~ \ ,"
\ /
AN /
~ g
=T
llpl] = 3 [Inl] <8

<
+

@
I

1 1
o)+ o de = | (f@) + lg@) de
J, ' ‘}0

<



Chapter 10

o . a® . ® o /
Separation Axioms
INTRODUCTION
Many properties of a topological space X depend upon the distribution of the open sets

anapr D~ 7 Qnac nana mrnra 11l-alsy canarahla Brat Av carnn

111 thv b})abe L\.ngllly Bpﬁdk\llls, a SPGLC lb 188807 § - llht:ly LU UC SCPAl aUlt:, or 111bb vl bﬂLUllu
countable, if there are “few” open sets; on the other hand, an arbitrary function on X to
some topological space is more likely to be continuous, or a sequence to have a unique limit,
if the space has ‘“many” open sets.

The separation axioms of Alexandroff and Hopf, discussed in this chapter, postulate
the existence of ““enough” open sets.

TI'SPACES
A ological

ix L/Ut.l xv gica

+
[T.] Given any pair of distinet points a,b € X, each belongs to an open set which does
not contain the other.

.
TQ =8Maro 1 1
LiAID a 4 IFopull s i

In other words, there exist open sets G and H such that
aE€G b&EG and beH, a¢ H

The open sets G and H are not necessarily disjoint.

Our next theorem gives a very simple characterization of Ti-spaces.

Theorem 10.1: A topological space X is a T:-space if and only if every singleton subset
(p} of X is closed.

Since finite unions of closed sets are closed, the above theorem implies:
Corollary 10.2: (X, T) is a T:-space if and only if T contains the cofinite topology on X.

Example 1.1: Every metric space X is a T;-space, since we proved that finite subsets of X are
closed.

Example 1.2: Consider the topology T = {X,®, {a}} on the set X = {a,b}. Observe that X is the
only open set containing b, but it also contains a. Hence (X,T) does not' satisfy
[T,], ie. (X,T) is not a T;-space. Note that the singleton set {a¢} is not closed
since its complement {a}c = {b} is not open.

Example 13: The cofinite topology on X is the coarsest topology on X for which (X,T) is a
T,-space (Corollary 10.2). Hence the cofinite topology is also called the T';-topology.

HAUSDORFF SPACES

A topological space X is a Hausdorff space or Tr-space iff it satisfies the following
axiom:

[T:]1 Each pair of distinct points a,b € X belong respectively to disjoint open sets.

139
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Observe that a Hausdorff space is always a Ti-space.

Example 2.1: We show that every metric space X is Hausdorft.

Let a,b € X be distinct points; hence by [My] d{a,b) = ¢ >> 0. Consider
the open spheres G = S(a, l¢} and H — S(b, l¢), centered at « and b respec-
H are disjoint. For if p€ G n H, then d{a,p) < %e
and d(p, b} < Le; hence by the Triangle Inequality,
d{a,b) = dla,p) +d(p,b) < L+ Le = 2e

5

2
P ot £ ond
tnac r ana «

Lro e Ao alsin
tively. vve ciaim

But this contradicts the fact that d(e,b) = e Hence G and H are disjoint, i.e.
a and b belong respectively to the disjoint open spheres G and H. Accordingly,
X is Hausdorff.

We formally state the result in the preceding example, namely:
Theorem 10.3: Every metric space is a Hausdorff space.

Example 2.2: Let T be the cofinite topology, i.e. T;-topology, on the real line R. We show that
(R, T) is not Hausdorff. Let G and H be any non-empty T-open sets. Now
G and H are infinite since they are complements of finite sets. If G H — @,
then G, an infinite set, would be contained in the finite complement of H; hence
G and H are not disjoint. Accordingly, no pair of distinct points in R belongs,
respectively, to disjoint T-open sets. Thus T,-spaces need not be Hausdorff.

As noted previously, a sequence (a1, as ...) of points in a topological space X could,

aroa O— 1A = = N+ b annen
Y = O v cl

The converse of the above theorem is not true unless we add additional conditions.
Theorem 10.5: Let X be first countable. Then X is Hausdorff if and only if every con-
vergent sequence has a unique limit.
Remark: The notion of a sequence has been generalized to that of a net (Moore-Smith
sequence) and to that of a filter with the following results:

Theorem 10.4A: X is a Hausdorff space if and only if every convergent net in
X has a unique limit.

Theorem 10.4B: X is a Hausdorff space if and only if every convergent filter
in X has a unique limit.

The definitions of net and filter and the proofs of the above theorems lie
beyond the scope of this text.

REGULAR SPACES
A topological space X is regular iff it satisfies the following axiom:

[R] If F is a closed subset of X and p € X does not belong to F', then there exist disjoint
open sets G and H such that F C G and p € H.

A regular space need not be a T(-space, as seen by the next example.

Example 3.i: Consider the topology T = {X, @, {a}, {b,c}} on the set X = {a,b,c}. Observe
that the closed subsets of X are also X, &, {a¢} and {b,¢} and that (X,T) does
satisfy [R]. On the other hand, (X, T) is not a T',-space since there are finite sets,
e.g. {b}, which are not closed.
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A regular space X which also satisfies the separation axiom [T:], i.e. a regular
T.-space, is called a Ts-space.

Example 3.2: Let X be a T;-space. Then X is also a Hausdorff space, i.e. a T,-space. For let
a,b € X be distinct points. Since X is a T',-space, {a} is a closed set; and since
a and b are distinet, b & {a}. Accordingly, by [R], there exist disjoint open sets
G and H such that {a} € G and b & H. Hence a and b belong respectively to
disjoint open sets G and H.

NORMAL SPACES

A topological space X is normal iff X satisfies the following axiom:

[N] If F., and F» are disjoint closed subsets of X, then there exist disjoint open sets
G and H such that F: C G and F. C H.

A normal space can also be characterized as follows:

Theorem 10.6: A topological space X is normal if and only if for every closed set F
and open set H containing F there exists an open set G such that
FCGCGCH.

Example 4.1: Every metric space is normal by virtue of the Separation Theorem 8.8.

Example 4.2: Consider the topology T = {X, ¢, {a}, {b}, {a,b}} on the set X = {a,b,c}.
Observe that the closed sets are X, @, {b,¢}, {¢,c} and {¢}. If F, and F, are dis-
joint closed subsets of (X, T), then one of them, say F'|, must be the empty set @.
Hence @ and X are disjoint open sets and F; € @ and F, < X. In other words,

singleton set {a} is not closed. Furthermore, (X,T) is not a regular space since
&Sl ond tha anly anen alinaraet of the slaand ant {21 ja which alan cantaing ~
& & 10y, ana i Ny Open SUperset 01 uid CLoSaa 8Cu 105 15 .a Willil aist Cinwaliis o.

A normal space X which also satisfies the separation axiom [T:], i.e. a normal T:-space,
is called a Ts-space.

Exampie 4.3: Let X be a Ty-space. Then X is also a regular T,-space, i.e. T3-space. For sup-
pose F is a closed subset of X and p € X does not belong to F. By IT;]1, {p} is
closed; and since F' and {p} are disjoint, by [N], there exist disjoint open sets
G and H such that Fc G and p€ {p} C H.

Now a metric space is both a normal space and a Ti-space, i.e. a Ts-space. The follow-

O De L1ifldl

ing diagram illustrates the relationship between the spaces discussed in this chapter.

Topological spaces

T -spaces

Ty-spaces (Hausdorff)

T;-spaces (regular T,-spaces)

T ;-spaces (normal T';-spaces)

Metric spaces
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™~

URYSOHN’S LEMMA AND METRIZATION THEOREM

Next comes the classical result of Urysohn.

Theorem (Urysohm’s Lemma) 10.7: Let F; and F be disjoint closed subsets of a normal
space X. Then there exists a continuous function
f: X ~—[0,1] such that

fIFi] = {0y and f[F:] = {1}

One important consequence of Urysohn’s Lemma gives a partial solution to the metri-
zation problem as discussed in Chapter 8. Namely,

Urysohn’s Metrization Theorem 10.8: Every second countable normal T:-space is metriz-
able.

In fact, we will prove that every second countable normal T)-space is homeomorphic
to a subset of the Hilbert cube in R™

FUNCTIONS THAT SEPARATE POINTS

Let 4 = {fi:i€1I) be a class of functions from a set X into a set Y. The class <4 of
functions is said to separate points iff for any pair of distinct points a,b € X there exists
a function f in o4 such that f(a) == f(b).

Exaniple 5.1: Consider the class of real-valued functions
ed = {fi(x) = sinz, fy(x) = sin 22, fy(x) = sin 3z, ...}
defined on R. Observe that for every function f, &€ c4, f,(0)= f,(z) = 0. Hence
the class ¢4 does not separate points.

Example 5.2: Let ((X,R) denote the class of all real-valued continuous functions on a topological
' space X. We show that if ((X, R) separates points, then X is a Hausdorff space.
Let a,b € X be distinet points. By hypothesis, there exists a continuous function
f: X > R such that f(a) # f(b). But R is a Hausdorff space; hence there exist
disjoint open subsets G and H of R containing f(a) and f(b) respectively. Accord-
ingly, the inverses f~![Gl and f~![H]| are disjoint, open and contain a and b
respectively. In other words, X is a Hausdorff space.

—

We formally state the result in the preceding example.

Proposition 10.9: If the class ((X,R) of all real-valued continuous functions on a topo-
logical space X separates points, then X is a Hausdorff space.

COMPLETELY REGULAR SPACES
A topological space X is completely regular iff it satisfies the following axiom:
[CR|] If F is a closed subset of X and p € X does not belong to F, then there exists a
continuous function f:X - [0,1] such that f(p) =0 and f|F|= {1}.
We show later that

Proposition 10.10: A completely regular space is also regular.

A completely regular space X which also satisfies [T:], i.e. a completely regular
T,-space, is called a Tychonoff space. By virtue of Urysohn’s Lemma, a Ti-space is a
Tychonoff space and, by Proposition 10.10, a Tychonoff space is a Tsspace. Hence a
Tychonoff space, i.e. a completely regular T:-space, is sometimes called a T:-space.

One important property of Tychonoff spaces is the following:

Theorem 10.11: The class (X, R) of all real-valued continuous functions on a completely

regular Ti-space X separates points.
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Solved Problems

T,-SPACES 4

1. Prove Theorem 10.1: A topological space X is a T,-space if and only if every singleton
subset of X is closed.
Solution:

Suppose X is a T,-space and p € X. We show that {p}¢ is open. Let z € {p}c. Then x = p,

and so by [T] _ _ o B - i
3 an open set G, such that *x& G, but p€& G,

Hence xz& G, C {p}°, and hence {p}c = U{G,:z &€ {p}c}. Accordingly {p}c, a union of open sets,
is open and {p} is closed.

Conversely, suppose {p} is closed for every p&E X. Let «,bE X with a #b. Now
a#b > b&{a}; hence {a}¢ is an open set containing b but n ining i i

open set containing ¢ but not containing b. Accordingly, X is a T,-space.

&}
t+
[
Q
o]
ct

2. Show that the property of being a Ti-space is hereditary, 1.e. every subspace of a
T.-space is also a Ti-space.

Solution:

Let (X,T) be a T;-space and let (Y, Ty) be a subspace of (X,T). We show that every singleton
subset {p} of ¥ is a Ty-closed set or, equivalently, that Y\ {p} is T y-open. Since (X,7) is a
T,-space, X \ {p} is T-open. But

PEYCX = Y& \Ap)) = Y\ {p

q by definition of sul Y\ {p} is & To- Thys (¥ Tl is al T

3. Show that a finite subset of a T:-space X has no accumulation points.

Solution:

Suppose A C X has n elements, say A = {a,, ...,a,}. Since A is finite it is closed and therefore
contains all of its accumulation points. But {a,, ...,a,} is also finite and hence closed. Accordingly,
the complement {ag ...,a,}" of {ay, ...,a,} 1is open, contains a@,, and contains no points of A

different from a,. Hence a, is~not an accumulation point of A. Similarly, no other point of 4 is an
accumulation point of A and so A has no accumulation points.

4. Show that every finite Ti-space X is a discrete space.

Solution:
Every subset of X is finite and therefore closed. Hence every subset of X is also open, i.e. X is a

5. Prove: Let X be a Ti-space. Then the following are equivalent:
(i » € X is an accumulation point of A.
(ii) Every open set containing p contains an infinite number of points of A.

Solution:

By definition of an accumulation point of a set, (ii) = (i); hence we only need to prove that
) = (ii).

Suppose G is an open set containing p and only containing a finite number of points of A

different from p; say
B = (G\ {p}) N A = {a’lf Agy vy a’n}

Now B, a finite subset of a T;-space, is closed and so B¢ is open. Set H = G n B¢, Then H is open,
p € H and H contains no points of A4 different from p. Hence p is not an accumulation point of A4

and so (i) => (ii).



144

6.

7‘

SEPARATION -AXIOMS [CHAP. 10
{

Let X be a T.-space ang let By, be a local base at p € X. Show that if ¢ € X is distinct
from p, then some member of B, does not contain ¢. .

Solution:
Since p7 ¢ and X satisfies [T;], 3 an open set G C X containing p but not containing q. Now
B, is a local base at p, so G is a superset of some B € B, and B also does not contain gq.

-
P

[N
Let X be a T-space which satisfies the first axiom of countability _ Show that if
p € X is an accumulation pomt of A C X, then there- exists a sequence of distinct

~terms in A convergmg to p. "’ \ s

golutlon. ) )

Let B = {B,} -be a nested local base at p. Set B = B;. Since p is a limit pom% of A, Bi
(gontams a point a;, € A different from p. By the precedmg problem,

o

3 BiQ < B such that ay & B’iQ

Similarly Bi; contair{s a point a, € A different from p and, since a; & Biz, different from «;. Again

" by the preceding problem, -
v Her &P 1B ,EB suwhthat @B,
Furthermore, - a; € By, a5 & Bi3 > B,> By,
Centlnuing in this manner we obtain a subsequence {Bil,BiQ, vy of B and -a sequence
(czt,l,oer,i .y of distinct terms in A with @&, € B,-l, o & Bi2, .... But {Bin} is also a nested local

base at p; hence (a,) converges to p.

HAUbDORFF SPACES

8.

Show that the property of being a Hausdorff space is hereditary, i.e. every subspace
of a Hausdorff space is also Hausdorft.

Solution: .

Let (X.T) be a Hausdorff space and let (V,Tv) be a subspace of (X,T). Furthermore, let

Let (X,T) be a Hausdorff space and let (¥,Ty) be a subspace of (X,T). Furthermore, let
a,b€Y c X with a7 b. By hypothesis, (X, T) is Hausdorff; hence

’ A GHeT such that e G, b€H and GnH = ¢
By definition of a subspa@7< NG and YN H are T ,-open sets. Furthermore,

- 0eEG a€EY S eE€EYNG !
-7

beH, bEY => bEYH
GnH=¢ = (XYaGn(¥nH) =YaGnH) =Yn0 =0

{as indicated in the diagram below). Accordingly (Y,T,) is also a Hausdorff space.

Let T be the topology on the real line R generated by the open-closed intervals (a, b].
Show that (R, T) is Hausdorff.

[SIP FREL
DOLULion.,

Let ¢,b € R with a# b, say a<b, Choose G=(a—1,¢] and H = (a,b]. Then

GHET, a«a€G, beH and GNnH = ¢
Hence (X, T) is Hausdorff.
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10.

[
-

Prove Theorem 10.4: Let X be a Hausdorff space. Then every convergent sequence
in X has a unique limit.

Solution: .
Suppose {ay, a3 ...) converges to ¢ and b, and suppose a7 b. Since X is Hausdorff, 3 open sets

G and H such that
aeG, bEH and GNn H = ¢

By hypothesis, (a,) converges to a; hence

> n. impliess a. & G
n; Implies «, &

i.e. G contains all except a finite number of the terms of the sequence. But G and H are disjoint;
hence H can only contain those terms of the sequence which do not belong to G and there are only a
finite number of these. Accordingly, {(a,) cannot converge to b. But this violates the hypothesis;
hence a = b. ’

Prove Theorem 10.5: Let X be a first countable space. Then the following are
equivalent: (1) X is Hausdorff. (ii) Every convergent sequence has a unique limit.

Solution:

By the preceding problem, (i) = (ii); hence we need only show that (if) = (i). Suppose X is
not Hausdorff. Then 3 a,b € X, a # b, with the property that every open set containing e has
a non-empty intersection with every open set containing b.

Now let {G,} and {H,} be nested local bases at « and b respectively. Then G, N H, # ¢ for
every n € N, and so

3 (aq, dgy .. ) such that 2% = Gl n Hl’ L] = GQ N HQ,

Accordingly, (a,) converges to both ¢ and b. In other words, (i) = (i).

NORMAL SPACES AND URYSOHN’S LEMMA

12.

13.

Prove Theorem 10.6;: Let X be a topological space. Then the following conditions are
equivalent: (i) X is normal. (ii) If H is an open superset of a closed set F', then there
such that FcGCc G H

axicste an one ot A
eX1sSts an ¢ope et sucn that [ C & G O,

3
wn
“

Solution:
(i) = (i1). Let F < H, with F closed and H open. Then Hc¢ is closed, and F N He = @. But

X is normal; hence

3 open sets G, G* such that FcG, HHcG* and GNnG* =@
But GNnG* =0 > GcG#e and Hec G¥ = G¥* CH
Furthermore, G*¢ is closed; hence F ¢ G ¢ G ¢ G# ¢ H.
(if) = (i). Let F'; and F'; be disjoint closed sets. Then F, C F5, and F; is open. By (ii),
3 an open set G such that F,cGC GcC F;
But GcF5 = F,cGe and GcG = GnGe=9

Furthermore, Ge is open. Thus F,cGand F, C G- with G, Gc disjoint open sets; hence X is normal.

Let B be a base for a normal T:-space X. Show that for each Gi € B and any point
p € Gy, there exists a member G; € B such that p € G; C Gu.

Solution:
Since X is a Ty -space, {p} is closed; hence G, is an open superset of the closed set {p}. By

Theorem 10.6,
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14.

15.

m £m+1 1

3 an open set G such that {pycGcGcg,

Since p € G, there is a member G; of the base B such that pe& G, CG, so p€ §j < G. But
G c G; hence p€ @G, G,

Let D be the set of dyadic fractions (fractions whose denominators are powers of 2) in
the unit interval [0, 1], i.e,

D — {%’%y%y%’%;%r%rf—ﬁ"--;ig,---}
Show that D is dense in [0, 1].

Solution:
To show that D = [0,1], it is sufficient to show that any open interval (a— 3§, ¢+ §) centered

1
at any point « & [0,1} contains a point of D. Observe that lim ? = 0;
= T

power g = 2" such that 0 < 1/q < §. Consider the intervals

o (2] [+ - P [
iq, q!q, quS e q 3 q s q H

Since [0,1] is the union of the above intervals, one of them, say [ﬂ, —w—l:l contains a, ie.

hence there exists a

=g . But =< §; hence
q q q m
a—8 < E = a < a+ 8

In other words, the open interval (a— 3§, @+ §) contains the point m/g which belongs to D. Thus
D is dense in [0,1].

Prove Theorem (Urysohn’s Lemma) 10.7: Let F; and F. be disjoint closed subsets of
a normal space X. Then there exists a continuous function f: X - [0,1] such that
f[F1] = {0} and f[F:] = {1}.
Solution:

By hypothesis, F; N F', = @; hence F; C F;. In particular, since Fs is a closed set, F'§ is an
open superset of the closed set F';. By Theorem 10.4, there exists an open set G, such that

Fi C Gz ¢ Gyyp C F3

Observe that G,y is an open superset of the closed set F';, and F'5 is an open superset of the closed
set G;,5. Hence, by Theorem 10.4, there exist open sets G,,; and Gy, such that

F, C Gy C a1/4 C Gy C 51/2 C Gyy C §3/4 g
We continue in this manner and obtain for each t & D, where D is the set of dyadic fractions in
[0,1], an open set G; with the property that if ¢,7, €D and t; <t, then G, C G,
Define the function f on X as follows:
inf{t:x € G} if x&F,
fle) = .
\]. if x & Fz

Observe that, for every ¢ € X, 0 = f(x) =1, ie. f maps X into [0,1]. Observe also that F, C G,
for all t € D; hence f[F,] = {0}. Moreover, by definition, f[F,] = {1}. Consequently, the only thing
left for us to prove is that f is continuous.

Now f is continuous if the inverses of the sets [0,a) and (b,1] are open subsets of X (see
Problem 7, Chapter 7). We claim that

1o, o)
fLb, 1] = U{G;:t>b} 2)

il

UG, : t<a} (1)

Then each is the union of open sets and is therefore open,
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16.

. We first prove (). Let « € f-1[[0,a)|. Then f{x) < [0,a), ie. 0= f(x) < a. Since D is dense
in |0,1], there exists t. € D such that f(x) < ¢, < a. In other words,

fley = inf{t:axeqG) < f, < @

ACCI‘inl X vhere - a lence C L

R
element in f~1[[0,a)| also belongs to WU{G,:t< a}, ie.,
F00) UG t<a

s

On the other hand, suppose y € U{G,:t < a}. Then 3 t, €D such that t, < a and y € G, .
Therefore . !
fyy = inf{t:yeG) =t, < a

Hence y also belongs to f~1{[0,a)|, In other words,
U{G : t<a} < [ 1[0,a)]
The above two results imply (1).
We now prove (2). Let x€ f~1[(,1]]. Then f()€ (b,1], ie. b < flx) =1. Since D is dense
in |0,1}, there exist t,,f, € D such that b < ¢, <t, < f(x). In other words,
flowy = inf{t: e G} > ty
Hence « € G‘2. Observe that t; < ¢, implies th cC Gtz. Hence x does not belong to th either. Accord-
ingly, « € Gr, where ¢, > b; hence x € U{G’: ¢t > b}. Consequently,

FUb 1l ¢ U{Gi: t> b}

On the other hand, let y € U{G{: t > b). Then there exists t, €D such that t, > b and
= C_;?y; hence ¥ does not belong to 5,y. But ¢t < t, implies G, C th c éty; hence y € G, for every t

less than ¢, Consequently, .
flyy = inf{t:yEG) = ¢, > b

Hence y € f~1((b,1]). In other words,
U{Gy: t>b} < f71[(b,1]]

The above two results imply (2). Hence f is continuous and Urysohn’s Lemma is proven.

Prove Urysohn’s Metrization Theorem 10.8; Every second countable normal Ti-space
X is metrizable. (In fact, X is homeomorphic to a subset of the Hilbert cube I of R™)

___________________ 411 vlilevlil LY

Solution:

If X is finite, then X is a discrete space and hence X is homeomorphic to any subset of H with an
equivalent number of points. If X is infinite, then X contains a denumerable base B = {G{,G,,G,, ...}
where none of the members of B is X itself.

mL
1

Tres o acrimtta el o e mmnh 7Y I s mvicba crmin (Y 3a R cispkh dlod 3 — % PR
BY a previous proplem, 10r eacn u; in "o unere exists some u] In "o sucCll uiaav u] o UI e ciass

of all such pairs (G}, G;), where C_?_i C G;, is denumerable; hence we can denote them by P, P, ...
where P, = <Gjn’ Gin>' Observe that an C Gin implies that G]-n and an are disjoint closed subsets
of X. Hence by Urysohn’s Lemma there exists a function f,:X - {0,1] such that f,[G;{ =10}
and f,[G;] = {1}. :

Now define a function f: X -1 as follows:
e = <f1 @) @) fyl) >
CU) - 9 22 s o3 e .

L Fai®) |
Observe that, for all n € N, 0 = f,(x) =1 implies I on I =

hence f(x) is a point in the Hilbert

s

s

cube I (Recall that I = {(e,): ¢, € R, nEN, 0 = a, = 1/0}, see Page 129.)

We now show that f is one-to-one. Let x and y be distinct points in X. Since X is a T-space,
there exists a member G, of the base B such that x € G; but ¥y € G, By a previous problem, there
exists a pair P,, = (G, G) such that wEéjC G;. By definition, f,(x) =0 since x € éj, and
fmly) = 1 since y & Gy, ie. ¥ € G;. Hence f(x)+ f(y) since they differ in the mth coordinate. Thus

f is one-to-one.
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We now prove that f is continuous. Let ¢ > 0. Observe that f is continuous at p € X if there

exists an open neighborhood G of p such that x € G 1mplies ||f(x) — f(p)]| < ¢ or, equivalently,
IF(x) — f(p)I'? < % Recall that
o |f () — f,(p)2

@ - flz = = —

n=1 22n

27 1 /99n - 2m

R 7 IR T SRR TS DU SEN S N I 11 NN = AT A4, L QT 170
rurunermore, sSince vne values or j, lie 1in LU, J.J, \Un\d/) - j" \p}( ) — L7/&=. INOLe Lﬂd ‘n 1/ &=
converges; hence there exists an ny = ny(e), which is independent of x and p, such that

& fal@) = fo(P)? ¢

x) — 2 = Yo7l M i

£y = Fp)] 2 o 5
Now each function f,:X - [0,1] is continuous; hence there exists an open neighborhood G, of p
such that « € G, implies f,(x) —f,(p)2 < e2/2ny. Let G = G;n -+ N G"o' Since G is a finite
open neighborhood of p. Furthermore, if € G

intersection of open neighborhoods of p, G is also an

5148 1 opell neiZ nporn I

then | |
fale) ~ fa(p)i® 2 ) e
= e = 3PP <o (£) v f = e
n=1 22n \ 2ny / 2
Hence f is continuous.
Now let Y denote the range of f’ ie. Y = { cI We want to prove that f*l Y - 18" also

X] Cc L ant to pr X isalso
continuous. Observe that continuity in Y is equivalent to sequential continuity; hence f~! is con-
tinuous at f(p) € Y if for every sequence {f(y,)) converging to f(p), the sequence (y,) converges to p.

Suppose f~1! is not continuous, i.e. suppose (¥,) does not converge to p. Then there exists an open
neighborhood G of p such that G does not contain an infinite number of the terms of (y,). Hence we
can choose a subsequence (x,) of (y,) such that all the terms of (x,) lie outside of G. Since p € G,
there exists a member G; in the base B such that p € G, C G. Furthermore, by a previous problem,
there exists a pair P, = (G, G,) such that p & éj C G; C G. Observe that, for all n € N, 2z, & G;
hence «, € G;. Accordn)ély, fm(®) =0 and f,lx,) =1. Then |f,(x,)—fu@|2 =1 and

. T e X0 S W
fe) =@ = 2= =

oy

In other wnrdq for every n € N s (15' Y

.......... i f () > 1/2m, Therefore the

N, IAC o) || nce (f(x,)) does not
converge to f(p). But thls contrad:cts the fact that every subsequence of

nsl =Y

seqt n
f(¥,)) should also converge

to f(p). Hence f~! is continuous. Hence f is a homeomorphism and X is homeomorphic to a subset
PR N TT211. . _ 4 R P A _AA.A 1 ‘.N1__ vz - a1
OI Lhe rliilperv cupe. ACCO mngly, A is m t'l: lLd.UL

REGULAR AND COMPLETELY REGULAR SPACES
17. Prove Proposition 10.10: A completely regular space X is also regular.

Solution:

Let F be a closed subset of X and suppose p € X does not belong to F. By hypothesis, X is
completely regular; hence there exists a continuous funetion f:X - [0,1] such that f(p) =0 and
fIF] = {1}. But R and its subspace [0,1] are Hausdorff spaces; hence there are disjoint open sets
G and H containing 0 and 1 respectively. Accordingly, their inverses f~ ! [G] and f~! [H]| are disjoint,
open and contain p and F' respectively. In other words, X is also regular.

18. Prove Theorem 10.11: The class C(X,R) of all real-valued continuous functions on a
completely regular T -space X separates points.

Solution:

Let @ and b be distinct points in X. Since X is a T-space, {b} is a closed set. Also, since @ and b
are distinet, e & {b}. By hypothesis, X is completely regular; hence there exists a real-valued con-
tinuous funetion f on X such that f{la) =0 and f”h]] =S [1] Accordingly, fla) # f(}))

vintuilus CLiUii on A sl uviav S v oana W2y — iy fccorain gy, I\

19. Let (Y, T,) be a subspace of (X,7) and let p€ Y and AcCY cX. Show that if p
does not belong to the T -closure of A, then p & A, the T-closure of A.

Solution:
Now, by a property of subspaces (see Problem 89, Chapter 5),
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Ty-closure of A = Y n A

But p€ Y and p € Ty-closure of A; hence p & 4. (Observe that, in particular, if F is a Ty-closed
subset of Y and p € F, then p & F.)

20. Show that the property of being a regular space is hereditary, i.e. every subspace of a
regular space is regular.
Solution:
Let (X,T) be a regular space and let (¥, Ty) be a subspace of (X,T). Furthermore, let p & Y
and let F' be a Ty-closed subset of Y such that p € . Now by Problem 19, p € F', the T-closure
of F'. By hypothesis, (X, T) is regular; hence

3 GHET suchthat FcCG, p€H and GnH =@

But YN G and Y n H are Ty-open subsets of Y, and

FCcY, FCFcG => FcYn@G

pEY, peH = peEYnH
GnH=20¢ > (YonG)n(YnH) =9

Accordingly, (Y;TY) is also regular.

e

-~ Supplementary Problems

T,-SPACES
21. Show that the property of being a T',-space is topological.

22. Show, by a counterexample, that the image of a T;-space under a continuous map need not be T,.
23. Let (X,T) be a T|-space and let T < T* Show that (X, T*) is also a T -space.

24. Prove: X is a T;-space if and only if every p € X is the intersection of all open sets containing it,

ie Imt = MNG: G onen, pE GY
fe. {p} Y {G: G open, p € G}.
25. A topological space X is called a T-space if it satisfies the following axiom: ~

[To] For any pair of distinet points in X, there exists an open set containing one of the points
but not the other.

(1) Give an example of a T-space which is not a T-space.

(i) Show that every T,-space is also a Ty-space.

26. Let X be a T;-space containing at least two points. Show that if B is a base for X then B\ {X} is
also a base for X.

HAUSDORFF SPACES
27. Show that the property of being a Hausdorff space is topological.

1Y) v PRV Yl A | _ TT o e am A 14 [y ot = T ke (o] Fpyp— P BRI " s - A o P - B RS, PP ) -
&8.  Lelt \A, 1) e a rnausaorim space anda lev s b F ohNnow tnat (A, £ 7) Is als0 a 1ausaoril space
429. Show that if a4, ..., a, are distinct points in a Hausdorff space X, then there exists a disjoint class

( {G4, ...,G,,} of open subsets of X such that a, €G,, ..., q,€G,,.

Prove: Let X be an infinite Hausdorff space. Then there exists an infinite disjoint class of open

subsets of X.

[A
[
=
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31.
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Prove: Let f:X->Y and ¢g:X->Y be continuous functions from a topological space X into a

Hausdorff space Y. Then A = {x: f(x) = g(x)} is a closed subset of X.

NORMAL SPACES

32.

-~ 33.

34.

35.

~ 36.

37.

Show that the property of being a normal space is topological.

Let T be the topology on the real line R generated by the closed-open intervals [a,b). Show that
(R, T) is a normal space. W 5}\"‘ NI Caeolne - & -3 R L B

e, ti. n - % AT )

O e b

Let T be the topology on the plane R2 generated by the half-open rectangles,
la,b) X [e,d) = {x,y:a=x<b,c=y<d}

Furthermore, let A consist of the points on the line ¥ = {(x,y): x+y =1} C R? whose coordinates
are rational and let B = Y \ A.
(1) Show that A and B are closed subsets of (R2, T).

[ <3 IRV IR T o SR IR I U FOP I o S,
DIIUW Llldl LUIELre €XI5L 110 UisjJOIrnu £ ~0perl supseLs U 4l

and so (R2,T) is not normal.

{33
\I(

ey

Let A be a closed subset of a normal T,-space. Show that A with the relative topology is also a
normal T';-space.

A
Let X be an ordered set and let T be the order topology on X, i.e. T is generated by the subsets of X
of the form {x:x < a} and {x:« > a}. Show that (X,T) is a normal space.

Prove: Let X be a normal space. Then X is regular if and only if X is completely regular.

URYSOHN’S LEMMA

an
23,

39.

~41.

REGULAR AND COMPLETELY REGULAR SPACES
42.

43.

44.

- - 45,

Prove: If for every two disjoint closed subsets F; and F', of a topological space X, there exists a
continuous function f:X — [0,1] such that /[#;] = {0} and fFF,] = {1}, then X is a normal space.
(Note that this is the converse of Urysohn’s Lemma.)

Prove the following generalization of Urysohn’s Lemma: Let F'; and F, be disjoint closed subsets of
a normal space X. Then there exists a continuous funetion f: X - [a,b] sueh that f[F,] = {a} and

fIF;] = (b}

Prove the Tietze Extension Theorem: Let F be a closed subset of a normal space X and let
f:F —[a,b] be a real continuous function. Then f has a continuous extension f*:X — [a, bt

Prove Urysohn’s Lemma using the Tietze Extension Theorem.

Show that the property of being a regular space is topological. 5
Show that the property of being completely regular is topological. -

Show that the property of being a completely regular space is hereditary, that is, every subspace of
a completely regular space is also completely regular.

Prove: Let X be a regular Lindelof space. Then X is normal.

Answers to Supplementary Problems

(i) Let X = {a,b} and T = {X, {a}, @}.
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, Compactness .
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COVERS .

Let o4 = {G;} be a class of subsets of X such that A C U;G; for some A C X. Recall
dlad A te Al aallad o ,}iﬁ.,\,ﬂ A A oA o omasns monione 1 moale £ te aman IOVE T
uat ¢4 15 ulicll Callcu a Cover VUl 21, allu all opeit cover 11 calll Uy I.b v pcll. rurvierimnore, i1

a finite subelass of ef.is also a cover of 4, i.e. if
/ pal q Tt A Pal U al
:I Lnl, .. ,Ln = CcA SUcCIl LItdl Py S Liil T kd\tn’
then o4 \15 said ‘go be reducible to a finite cover, or contams a finite subcover.
Eﬁmple 11: Consider the class = {Dy:p€EZX1Z}
< . where D, s the open disc in the plane R2?
c with radius 1 and center p = {m, n), m and .~

n integers. Then c4 is a cover of R?2, ie.

every point in RZ, belongs to at least one

’ £ member of 4. On the other hand, the class
of open discs B = {D :pE ZXZ}, where,
D, has center p and radlus 1, is not a cover

\of R2. For exampl%the point (3,3 € R2
“does mnot belong to any-member of B, as
shown in the figure.

S
%

B is displayed

s

E;cample L2 Consider the classical .
) Heine-Borel Theorem: Let A = [a,b] be a closed and bounded interval
’ and let {G;} be a class of open sets such that A C U;G;. Then one

can select a finite number of the open sets, say G,~1, .. "Gim’ so that

A~ (1 (1 a1 7
ﬂLulU Uui'
1 m

By virtue of the above terminology, the Heme-Borel Theorem can be restated as

follows:
Heine-Borel Theorem: Every open cover of a closed and bounded interval
A = [a,b] is reducible to a finite cover.

s

COMPACT SETS
The \concept of compactness is no doubt motivated by the property of a closed and
1 Theorem. Namely,

ii 2l ao atadad e a
UULUIUt:U inve al ad stateu i bllt: lebblbdnl ﬂtﬂllltﬂ-DUle

rv
A subset A of t pological space X is compact if every open cover of A is

In other words, if A is compact and A C U;G;, where the G; are open sets, then one
can select a finite number of the open sets, say G, ..., G, so that A C G,—1 UG

Example 21: By the Heine-Borel Theorem, every closed and bounded interval [a b] on the real
line R is compact.

Example 2.2: Let A be any finite subset of a topological space X, say A = {ay,...,4,}. Then
A is necessarily compact. For if ¢ ={G;} is an open cover of A, then each point
. in A belongs to one of the members of G, say «, & Gl ) vy Uy & Gp o Accord-
N ingly, ACG UG U~--UG "

151

N
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Since a set A is compact iff every open cover of A contains a finite subcover, we only
have to nvhth1+ oane onan cnvar nf A4 with na finita anhe var to nrove that 1e nat comnaet
A3 ¥V O UV L<sxina Vil VL VWY L VA 4 ¥Y ALLL JV EXF S RV S ) L¥4 i v HL\JV\I VILEALV £ B A LIVL WU LLyu\./b

Example 2.3: The open interval A = (0,1) on the real line R with the usual topology is not
compact. Consider, for example, the class of open intervals

g = {0 G &L &L 0
Observe that A = U¥_; G,, where G, = (w jr 2,%) ; hence ¢ is an open cover

of A.

s
I

. ! G5 ‘ : GE
e T 9
11 1 |G4| ] | Gl
I e i Q
A \ !
v T 1 1 1 1
T TTT T T 1 T 1
o ~7hE 4 3 1
5 F
But ¢ contains no finite subcover. For let
g* = { a’Iy ])) (a'Zv P ): *ry (a’mr bm)}
be any finite subclass of ¢. If ¢ = min (a4, ...,a,) then ¢ >0 and

(o, b)) Ut U (g, by) C (e 1)

But (0,¢] and (e, 1) are disjoint; hence ¢* is not a cover of A, and so 4 is not
compact.

Example 2.4: We show that a continuous image of a compact set is also compact, i.e. if the func-
tion f:X > Y is continuous and A is a compact subset of X, then its image f{A]
is a compact subset of Y. For suppose ¢ = {G;} is an open cover of f[4], i.e.
flA] € U;G;. Then

A c [THfIA]] € fHViG] = v fTGY
Hence 4 = {f (G|} is a cover of A. Now f is continuous and each G, is an

open set, so each f~![G;] is also open. In other words, ¢{ is an open cover of A.
But A is compact, so 4 is reducible to a finite cover, say

Acf G lu--uftG |
Accordingly,
flA] © fIFTHG U UG 1] € G U UG,
Thus f[A] is compact.

We formally state the result in Example 2.4:
Theorem 11.1: Continuous images of compact sets are compact.

Compactness is an absolute property of a set. Namely,
Lg B} PR 11 D I T ~4 T4 PRESEY A ERPUNII Y 2 T nd Y mLA,_ ﬂﬂﬂﬂﬂﬂﬂﬂﬂ P P
1neorem L1els LeL d UU a sunsetl UJ. a L [JU L0224 l Cal S PAC (A, 1), 1 1en d lb L,Ulllpd&,b wiin
respect to T if and only if A is compact with respect to the relative

topology Ta on A.

Accordingly, we can frequently limit our investigation of compactness to those topo-
logical spaces which are themselves compact, i.e. to compact spaces.

SUBSETS OF COMPACT SPACES
A subset of a compact space need not be compact. For example, the closed unit interval

[0, 1] is compact by the Heine-Borel Theorem, but the open interval (0, 1) is a subset of [0, 1]
which, by Example 2.3 above, is not compact. We do, however, have the following

Theorem 11.3: Let F be a closed subset of a compact space X. Then £ is also compact.
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Proof: Let ¢ = (G;} be an open cover of F,ie. F C U;G;. Then X = (U;G) U F¢,
that is, G* = [G;} U [F¢} is a cover of X. But F* is open since F is closed, so G* is an
open cover of X. By hypothesis, X is compact; hence ¢* is reducible to a finite cover
of X, say

X = GiU"'UGimUFC, Gikeg

1

But F' and F* are disjoint; hence

FcGyu- - UG G, € G

m’

We have just shown that any open cover G = {G:} of F contains a finite subcover, i.e.
F' is compact.

A class {Ai} of sets is said to have the finite intersection property if every finite sub-
S n-emp

elag 1A, A h a no mntv intereection 1e A . NN A. £ (7\
Lians [ A2 s a 11U dliprLy 1AL SBTUVIUNL, 1.T. 4;.1 i i A.z.z m 7
Example 3.1: Consider the following class of open intervals:
A = {0,1),(0,1),0,1),01), ..}
Now ¢4 has the finite intersection property, for
(0,(11) n (O:az) a---n (07am) = (01 b)
where b = min(a,, ..., a,) > 0. Observe that ¢4 itself has an empty intersection.
Example 2.2 Consider the followine class of closed infinite intervals
Example 3.2 Consider the folloewing class of closed infinite intervals
B = {..., (==,=2], (—m, —1], (==, 0], (=, 1], (—=, 2], ...}

Note that B has an empty intersection, i.e. M{B,: nE€Z} = (@ where B, =(—=, n).
But any finite subclass of B has a non-empty intersection. In other words, B satis-
fies the finite intersection property.

~

With the above terminology, we can now state the notion of compactness in terms of
the closed subsets of a topological space.

Theorem 11.4: A topological space X is compact if and only if every class {F;} of closed
subsets of X which satisfies the finite intersection property has, itself, a
non-empty intersection.

COMPACTNESS AND HAUSDORFF SPACES

Here we relate the concept of compactness to the separation property of Hausdorff
spaces.

Theorem 11.5: Every compact subset of a Hausdorff space is closed.

The above theorem is not true in general; for example, finite sets are always compact
and yet there exist topological spaces whose finite subsets are not all closed.

Theorem 11.6: Let A and B be disjoint compact subsets of a Hausdorff space X. Then
there exist disjoint open sets G and H such that A C G and BCH,

LiiCle 2.8 L Lpeil o &l £ SLli: viigd v uiifa — A1

In particular, suppose X is both Hausdorff and compact and F: and F. are disjoint
closed subsets of X. By Theorem 11.3, F'; and F, are compact and, by Theorem 11.6,
F, and F, are subsets, respectively, of disjoint open sets. In other words,

Corollary 11.7: Every compact Hausdorff space is normal.
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Thus metric spaces and compact Hausdorff spaces are both contained in the class of
Ti-spaces, i.e. normal T;-spaces.

compact metric
Hausdorff :

spaces
spaces

T,-spaces (normal T,-spaces)

The following theorem plays a very important role in geometry.
Theorem 11.8: Let f be a one-one continuous function from a compact space X into a

Hausdorff space Y. Then X and f[X] are homeomorphic.

The next example shows that the above theorem is not true in general.

Example 41: Let f be the function from the half-open interval X = [0,1) into the plane R?
defined by f(t) = (cos 2xt, sin 27t). Observe that f maps X onto the unit circle and

that f is one-one and continuous.
1
f /‘f\
T —

But the half-open interval [0,1) is not homeomorphic to the circle. For
example, if we delete the point t = 1 from X, X will not be connected; but if we
delete any point from a circle, the circle is still connected. The reason that
Theorem 11.8 does not apply in this case is that X is not compact.

Example 4.2: Let f be a one-one continuous function from the closed unit interval I = [0,1] into
Euclidean™n-space R". Observe that I is compact by the Heine-Borel Theorem and
that R" is a metric space and therefore Hausdorff. By virtue of Theorem 11.8,
I and f[I] are homeomorphic.

SEQUENTIALLY COMPACT SETS

A subset A of a topological space X is sequentially compact iff every sequence in A
contains a subsequence which converges to a point in A.

Example 5.1: Let A be a finite subset of a topological space X. Then A is necessarily sequen-
tially compact. For if (s,,8; ...) is a sequence in A, then at least one of the
elements in A, say @, must appear an infinite number of times in the sequence.
Hence (ay, ag, g ...} is a subsequence of (s,), it converges, and furthermore it
converges to the point a; belonging to A.

Example 5.2: The open interval A = (0,1) on the real line R with the usual topology is not
sequentially compact. Consider, for example, the sequence (s,) = <2’8’Z"">
in A. Observe that (s,) converges to 0 and therefore every subsequence also con-

vearocas to 0 But 0 does not belone to A In ather words the seguence /s A
verges 1o U, But U goes not beiong 10 A, in ouner woras, ule ecqucuu— (sp) In A

does not contain a subsequence which converges to a point in A, ie. A is not
sequentially compact.

In general, there exist compact sets which are not sequentially compact and vice versa,
although in metric spaces, as we show later, they are equivalent.

Remark: Historically, the ter bzcompact was used to denote

+arm ocamnact wag nead
LOLILL CVILIPALUU V/Wald uovu

c+
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COUNTABLY COMPACT SETS

A subset A of a topological space X is countably compact iff every infinite subset B
A has an accumulation point in A. This definition is no doubt motivated by the

Bolzano-Weierstrass Theorem: Every bounded infinite set of real numbers has an ac-

21IM11 ] 1[\ n
cumuiation %

Example 6.1: Every bounded closed interval A = {a,b} is countably compact. For if B is an

’ infinite subset of A, then B is also bounded and, by the Bolzano-Weierstrass

‘ Theorem, B has an accumulation point p. Furthermore, since A is closed, the
accumulation point p of B belongs to A, i.e. A is countably compact.

Example 6.2: The open interval A = (0,1) 1is not countably compact. For consider the infinite
subset B = %,%,;}, ...} of A =(0,1). Observe that B has exactly one

limit point which is 0 and that 0 does not belong to A. Hence A is not countably
compact.

The general relationship between compact, sequentially compaet and countably compact
sets is given in the following diagram and theorem.

compact — countably compact «— sequentially compact

Theorem 11.9: Let A be a subset of a topological space X. If A is compact or sequentially
compact, then A is also countably compact.

.

The next example shows that neither arrow in the above diagram can be reversed.

Example 6.3: Let T be the topology on N, the set of positive integers, generated by the following
sets:
{1, 2}, {8, 4}, {5, 6},

Let A be a non-empty subset of N, say ng€ A. If ny is odd, then ny+1 is a
limit point of A; and if ny is even, then ny—1 is a limit point of A. In either
case, A has an accumulation point. Accordingly, (N,T) is countably compact.

On the other hand, (N, T) is not compact since
A = {{1,2}, (8,4}, {5,6}, ...}

is an open cover of N with no finite subcover. Furthermore, (N, T) is not sequen-
tially compact, since the sequence (1,2,3,...) contains no convergent subsequence.

LOCALLY COMPACT SPACES
A topological space X is locally compact iff every point in X has a compact neighborhood.

Example 7.1: Consider the real line R with the usual topology. Observe that each point p & R
is interior to a closed interval, e.g. [p— 8, p + 8|, and that the closed interval is
compact by the Heine-Borel Theorem. Hence R is a locally compact space. On the
other hand, R is not a compact space; for example, the class

A = {..., (-3, -1), (—2,0), (—1,1), (0,2), (1, 3), ...}
is an open cover of R but contains no finite subcover.
Thus we see, by the above example, that a locally compact space need not be compact.

On the other hand, since a topological space is always a neighborhood of each of its points,
the converse is true. That is,

Proposition 11.10: Every compact space is locally compact.
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v

COMPACTIFICATION

A topological space X is said to be embedded in a topological spacg@ Y if X is homeo-

morphic t6 a subspace of Y. Furthermore, if ¥ is a compact space, then Y is called a

compactzﬁcatwn of X. Frequently, the compactification of a space X is accomplished by

adjoining one or more points to X and then deﬁmng an appropriate topology on the
enlarged set so.that the enlarged space is compact and contains X as a subspace.

Example 8.1;j Consider the real line R with the usual topology 7,{/ We adjoin two new poits,

. denoted by = and —w=, to R and call the enlarged set R* = RU {—=, =} the

extended real line. The order relation in R can be extended to R* by deﬁnmg
> It —wo <@g < o for'any a & R. The class of subsets of R* of the form

/
~ { 1 { 11— >
i

\u,u; = 1Jo.w X u}, (o, = 1w.u, .1,} and { W,w) = {.l/:.b u/}

is a base for a topology U* on R*. Furthermore, (R*, U*) is a éompact space and
_ contains (R, U) as a subspace, and so it is a compactification of (R, U). o

Recall that the real line R with the usual topology is homeomorphic to any open

. interval (a,b) of real numbers. The above space (R*, U*) can, in fact, be showir to be

homeomorphlc to any closed mterval [a, b] which is compact by the classical Heine-Borel”

. Theorem. . -
Example 8.2: jLet;'C denote the (x,¥)-plane in Eu-
{ “clidian 3-space R3, and let S denote Iz

the sphere—with—center <6; 6,1y on

the z-axis and radius 1. The line

ﬂ passmg through the “north pole”

=(0,0,2)€S and any point pEC

o) mtersects the sphere S in-exactly

>~  one point p’ distinct from <«, as
shown in the figure.

Let f: C->S be defined by

- _fp)=p’. Then f is, in fact, a

homeomorphism from the plane C,

which is not compact, onto the sub-

{ set SN\ {»} of the sphere S, and S

- is compact. Hence S is a compacti-
fication of C

» Now let (X, T) be any topological space. We shall define the Alexandrov or one-pdi%t
compactification of (X,T) which we denote by (X, T.). Here:

(1) X, = XU {=x}, where «, called the pomt at mﬁmty, is distinet from every
other point in X. >

x

(2) T. consists of the following sets:
{1\ aach mamhar nf tha tonalnovy T on X

\1i) Talii ILuTILvTL Ul LT Wy Lué‘, L Ui 43,

(ii) the complement in X, of any closed and compact subset of X.
We formaliy state: .
Proposition 11.11: The above class T, lis a topology on X, and (X, T,) is a compactifica-
tion of (X, T).

In general, the space (X, T,,) may not possess properties similar to those of the original
space. There does exist one important relationship between the two spaces; namely,

Theorem 11.12: If (X, T) is a locally-compact Hausdorff space, then (X, T.,) is a compact
Hausdorff space.

Using Urysohn S lemma we obtain an important result used in measure and integration
theory: N

Corollary 11.13: Let E be a compact subset of a locally compact Hausdorff space X, and
let £ be a subset of an open set G+ X. Then there exists a continuous
function f: X - [0,1] such that f[E} = {0} and f[G°] = {1).

o

ey
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13

COMPACTNESS IN METRIC SPACES

Compactness in metric spaces can be summarized by the following

Theorem 11.14: Let A be a subset of a metric space X, Then the following statements
are equivalent: (i) A is compact, (ii) A is countably compact, and
(i1i) A is sequentially compact.

Historically, metric spaces were investigated before topological spaces; hence the above
theorem gives the main reason that the terms compact and sequentially compact are some-
times used synonymously.

Thes\\/ﬁ'/bof of the above theorem requires the introduction of two auxiliary metric

concépt which are interesting in their own right: that of a totally bounded set and that

of a Lebesgue number for a cover.

B
P

TOTALLY BOUNDED SETS e

Lét 2 be a subset of a metric space X and let e> 0. A finite set of points N =
{e1, €2 . ..,em) is called an enet for A if for every point p € A there exists an ei, EN

~.

Example 91: Let A4 = {{x,y): 22 +y? < 4}, i.e. A is the open dise centered ét the origin and
; T of radius 2. If ¢ = 3/2, then the set
o N = {d,=1),,0), 1), 0,—1), 0,0, ©0,1), (-1, —1), (-1,0), (-1, 1)}

is an e-net for A. “On the other hand, if ¢k 4, then N is not an e-net for A.
For example, p = (%, %) » belongs to A but the distance between p and any point
in N is greater than ?‘1,-

A is shaded

N is displayed

b X , ) [
Recall that the diameter of A, d(A), is deﬁngd by d(A) = sup{d(a,a):a,a’ € A} and
that A is bounded if d(A) < .

Deﬁnition:l A subset A of a metric space X is totally bounded-if A possesses an e-net for
every > 0.

A totally bounded set can also be described as follows:

Propos(tion" 11.15: A set A is totally bounded if and ohly if for every ¢ > 0 there exists a
v decomposition of A into a finite number of sets, each with diameter
less than e

We first show that a bounded set need not be totally bounded.

A TT1

Example 5.2: Tet A be the subset of Hilbert Space, i.e. of Iy-space, consisting of the following
s ~ <
points: ’ =
e = (1,0,0,...) O
€y — (O, 1,0, cel)

e = (0,0,1,...)
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Observe that d(e,e) = \/5 if ¢+ 5. Hence A is bounded; in fact,

d(A) = sup{dle,e): e,e; EA} = V2

On the other hand, A is not totally bounded. For if «= 1% he only non-empty

b
nta ata with
Cu

1"1(1~1an“
S, L.e. 5els wiln one

subsets of A with diameter less tha < are the g
supsets 01 A wWiln giameler ies8s nan ¢ are ine sing.eto?

point. Accordingly, the infinite set A cannot be decomposed into a finite number
of disjoint subsets each with diameter less than 1.

The converse of the previous statement is true. Namely,
Proposition 11.16: Totally bounded sets are bounded.

One relationship between compactness and total boundedness is as follows:

Lemma 11.17: Sequentially compact sets are totally bounded.

LEBESGUE NUMBERS FOR COVERS

Let o4 = {G;} be a cover for a subset A of a metric space X. A real number § >0
is called a Lebesgue number for the cover if for each subset of A with diameter less than §
there is a member of the cover which contains A.

One relationship between compactness and Lebesgue number for a cover is as follows:

Lemma (Lebesgue) 11.18: Every open cover of a sequentially compact subset of tric
space has a (positive) Lebesggn number.

Solved Problems

Solution:
Let ¢ = {G;} be an open cover of X. Choose G, &€ G. Since T is the cofinite topology, Gg is a

finite set, say Gj = {a,,...,a,). Since ¢ is a cover of X,

foreach a, €G; 3 Gy €¢ suchthat a,€ Gi,

Hence G C G,»I U-- UG and X = GyU Gy = Gy U G,»1 U--- UG . Thus X is compact.

2. Show that any infinite subset A of a discrete topological space X is not compact.

Selution:
Recall that A is not compact if we can exhibit an open cover of A with no finite subcover.

Consider the class of = {{a}: ¢ € A} of singleton subsets of A. Observe that: (i) c4 is a cover of 4;
in fact A = U{{e}:a€ A}. (ii) ¢4 is an open cover of A since all subsets of a discrete space are
open. (iii) No proper subclass of ¢4 is a cover of A. (iv) cA is infinite since A is infinite. Accordingly,
the open cover c4 of A contains no finite subcover, so A is not compact.

Since finite sets are always compact, we have also proven that a subset of a discrete space is
compact if and only if it is finite.
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3.

Prove Theorem 11.2: Let A be a subset of a topological space (X, T). Then the
following are equivalent:

(i) A is compact with respect to T.
(ii) A is compact with respect to the relative topology T, on A.

Solution:
(i) > (ii): Let {G;} be a T,-open cover of A. By definition of the relative topology,

3 HieT such that G, = ANnH;cCH,

Hence A c UG ¢ uH;

and therefore {H;} is a T-open cover of A. By (i), 4 is T-compact, so {H;} contains a finite sub-
cover, say

AcH u---UH , H €{H}
But then
A C An(HiIu---uHim) = (AnHiI)u U(AﬂHim) = Gilu UGy
Thus {G,;} contains a finite subcover {Gil’ ce G;m} and (A, T,) is compact.

(i) > (1): Let {H;} be a T-open cover of A. Set G; = A N H;; then
ACcuUuH = A CANn(YH) = UAnH) = UG
But G;&€ T,, so {G;} is a T -open cover of A. By hypothesis, A is T -compact; thus {G;} contains
a finite subcover {Gil' .. "Gim}' Accordingly,

i

A C Gilu UG, = (AmHLI)u ot U@ANH; ) = An(H U-sUH; ) C Hy v -+ UH;

Thus {H;} is reducible to a finite cover {Hil, ..., H; } and therefore A is compact with respect to T.

Let (Y, T*) be a subspace of (X,T) and let¢ A CYC X. Show that A is T-compact
if and only if A is T*-compact.
Solution:

Let T, and T: be the relative topologies on A. Then, by the preceding problem, A is T- or
T*-compact if and only if A is T4- or T -compact; but T, = T4

Prove that the following statements are equivalent:

(i) X is compact.

(i) For every class {Fi} of closed subsets of X, N;Fi= ¢ implies {F;} contains a
finite subclass {Fi,...,Fi,} with Fiy 0 - NF, = @.

Solution:
(i) = (it): Suppose N;F, = . Then, by DeMorgan’s Law,

X = @c = (N Fy)c = U F;

an L\ g an anan cover of X cinece each K. is eclocsed. Rut hv hvnothesics X iz comnact: hence
80 W', 18 an open cover of X, smee each I'; 15 closed, But by hypothesis, X 18 compact; hence
3 F{, Y € {Fi} such that X = Ffl U U Ff
1 m

Thus by DeMorgan’s Law,
(Z):Xe:(Fcu...qu)c:Ficlcn...anc :Filn...np.
m m

and we have shown that (i) = (ii).
(i1) = (i): Let {G;} be an open cover of X, i.e. X = U;G;. By DeMorgan’s Law,

f
i7

@ = X = (UG = NG}
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Since each G; is open, {G;} is a class of closed sets and, by above, has an empty intersection. Hence
by hypothesis,

€ {G} such that Gf n--nNnG =0

m m

aGf ., G

{‘)

o~

Thus by DeMorgan’s Law,
= (¢ = (Gicln...nG:'m)c = Gl?l"u UG?;L = Gilu UG

Accordingly, X is compact and so (ii) = (i).

Prove Theorem 11.4: A topological space X is compact if and only if every class {F;}
of closed subsets of X which satisfies the finite intersection property has, itself, a

amnty Intarcae
11U11-C111y b‘y 131LCT1LOCTU

Solution:
Utilizing the preceding problem, it suffices to show that the following statements are equivalent,

where {F;} is any class of closed subsets of X:
(1) Fon--nF; #@ Yi,..nin > NF#9

(if) NFi=0 > 3iy...,i, st. 0 nF =0

But these statements are contrapositives.

rr ok a2t s nEnEEe s N Wk nin

COMPACTNESS AND HAUSDORFTF SPACES

7. Prove: Let A be a compact subset of a Hausdorff space X and suppose p € X\ 4.
Then
3 open sets G,H such that pe€G, ACH, GNH =0
Solution:
Let a€A. Since p&€ A, p+# a. By hypothesis, X is Hausdorff; hence
3 open sets G, H,  such that r€EGy, acH, GonH, = ¢
Hence A c U{H,:a€ A}, ie. {H,:a€ A} is an open cover of A. But A is compact, so
3 H,,..,H, € {H;} such that A cHyu-UH,
Now let H = HaI U---uy Ham and G = Ga1 Nn---nN G“m' H and G are open since they are
respectively the union and finite intersection of open sets. Turthermore, A c H and p € G since
p belongs to each G“i individually.
Lastly we claim that G N H = ¢. Note first that Gai al H“i = (# implies that G N H“i = @,
Thus, by the distributive law,
GnH = Gn(H, U---UH, ) = (GNH, ) U --- U(GNH, ) = QU ---UP =
Thus the proof is complete.
8 Let A be a compact subset of a Hausdorff space X. Show that if p € A, then there
is an open set G such that p € G C A-.
Solution:
By Problem 7 there exist open sets G and H such that p€ G, ACH and GNn H = @.
Hence GNA = @, and p € G C A-.
9. Prove Theorem 11.5: Let A be a compact subset of a Hausdorff space X. Then A is

closed.

Solution:
We prove, equivalently, that Ac is open, Let p & AC Le.
an open set G, such that p € G, C Ac. Hence Ac = U{G
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10. Prove Theorem 11.6: Let A and B be disjoint compact subsets of a Hausdorff space X.
Then there exist disjoint open sets G and H such that A C ¢ and R C H.

Seolution:
Let a€ A. Then a & B, for A and B are disjoint. By hypothesis, B is compact; hence by
Problem 1 there exist open sets G, and H, such that

a€G,, BcH, and G, nH, = @

Since ¢ € G;, {G,:a € A} is an open cover of A. Since A is compact, we can select a finite number
af tha anen aote aow £ o~ Flhat A~ (3 0 o Y Thratbavmacne P o~ H o -0 ~ I
UL ulIcT PCIL DELD, naly \J'aI’ .. ’\J'a ) bU vilauv L3 ual A o ua . LUl l/llt',llllultﬂ’ D N J.Jal L v I.Jam

i Ty An © 1 m’ - i
and B C H. In addition, G and H are open as they are the union and finite intersection respectively
of open sets. The theorem is proven if we show that G and H are disjoint. First observe that, for
each 1, Gai N Hai = (@ implies Gai N H = (. Hence, by the distributive law,

GNnH = (G,L,u--uG, YNnH = (G

Ny T palt v e%d

NAYU UG, NH = @uU - ---UJ®B = &
4 e a 7 tad b4 ~

“ m

Thus the theorem is proven,

11. Prove Theorem 11.8: Let f be a one-one continuous function from a compact space X
into a Hausdorff space Y. Then X and f[X) are homeomorphic. &g f-.‘, Pl debo e 7

Solution:

Now f:X - f[X] is onto and, by hypothesis, one-one and continuous, so f~!: f[X] > X exists.
We must show that f—! is continuous. Recall that f—! is continuous if, for every closed subset F
of X, (f")~1[F] = f[F] is a closed subset of f[X]. By Theorem 11.3, the closed subset F of the
compact space X is also compact. Since f is continuous, f[F'] is a compact subset of f[X]. But the
subspace f[X] of the Hausdorff space Y is also Hausdorff; hence by Theorem 11.5, f[F| is closed.
Accordingly, f~! is continuous, so f: X - f[X] is a homeomorphism, and X and f[X] are homeomorphic.

12. Let (X, T) be compact and let (X, T*) be Hausdorff. Show that if T7#* C T, then T* =1T.

Solution:

Consider the function f:(X,T) - (X, T*) defined by f(x) = x, ie. the identity function on X.
Now f is one-one and onto. Furthermore, f is continuous since T* C 7. Thus by the preceding
problem, f is a homeomorphism and therefore T% = T.

SEQUENTIALLY AND COUNTABLY COMPACT SETS .

13. Show that a continuous image of a sequentially compact set is sequentially compact.

Soiution:

Let f: X~ Y be a continuous function and let A be a sequentially compact subset of X. We
want to show that f[A] is a sequentially compact subset of Y. Let (by, by ...) be a sequence in
flA]. Then

3 ay,d5 ... €A such that flay) =b,, ¥rne&N

But A is sequentially compact, so the sequence (a;,as, ...) contains a subsequence (a,ll, Qigy - .} which

conyerges to a point a, € A. Now f is continuous and hence sequentially continuous, so

(f(ay ) f(alz) ) = (b by, . ..)  converges to flay) € flA]

Thus f[A] is sequentially compact.
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14.

Let T be the topology on X which consists of ¢
sets of X. Show that every infinite subset of

and the complements of countable sub-
Y is no

('D

auentially commnact
quentially compact.

Solution:
Recall (Example 7.3, Page 71) that a sequence in (X, T) converges iff it is of the form

<ali Ay, ..., ano, p, 0P ~~~>

15.

16.

17.

that is, 15 constant from some termi on. Hence if 4 is an infinite subset of X, there exists a sequence
(b, in A with distinet terms. Thus (b,) does not contain any convergent subsequence, and 4 is not
sequentially compact.

Show that: (i) a continuous image of a countably compact set need not be count-
ably compact; (ii) a closed subset of a countably compact space is countably
compact.

Solution:

(i) Let X = (N,T) where T is the topology on the positive integers N generated by the sets
{1,2}, {3,4}, {5,6}, .... By Example 6.3, X is countably compact. Let Y = (N,.J)) where 1
is the discrete topology on N. Now Y is not countably compact. On the other hand, the function

—-f : X > Y which maps 2n and 2n — 1 onto n for n € N is continuous and maps the countably com-
pact set X onto the non-countably compact set Y.

(i) Suppose X is countably compact and suppose F' is a closed subset of X. Let A be an infinite subset
of F. Since F <X, A is also an infinite subset of X. By hypothesis, X is countably compact; then
A has an accumulation point p& X, Since A CF, p is also an accumulation point of F'. But F ig

closed and so contains its accumulation points; hence p € F. We have shown that any infinite
subset A of F has an accumulation point p € F, that is, that F' is countably compact,

Prove: Let X be compact. Then X is also countably compact.

Solution:
Let A be a subset of X with no accumulation points in X. Then each point p € X belongs to an
v g

onen set F' which containg at most one noint of A. QObhserve that the class {G, . :p &

open S6L coniains ong poiily [ 625534 ciass Lp - P

cover of the compact set X and, hence, contains a finite subcover, say 'G,)], e Gy

Hence ACXCG,,IU-'-UG

P

But each G, contains at most one point of A; hence A, a subset of Gpl U U Gl,', can contain at
1 mt

most m points, i.e. A is finite. Accordingly, every infinite subset of X contains an accumulation point
in X, i.e. X is countably compact.

Prove: Let X be sequentially compact. Then X is also countably compact.
Solution:

Let A be any infinite subset of X. Then there exists a sequence (a;,a,,...) in A with distinet
terms. Since X is sequentially compact, the sequence (a,) contains a subsequence (a;,, @y, ...) (also
with distinct terms) which converges to a point p € X. Hence every open neighborhood of p contains
an infinite number of the terms of the convergent subsequence (az ). But the terms are distinct; hence
every open neighborhood of p contains an infinite number of points in A. Accordingly, p € X is an
accumulation point of 4. In other words, X is countably compact.

Remark: Note that Problems 16 and 17 imply Theorem 11.9.
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S»

18. Prove: Let A C X be sequentially compact. Then every countable open cover of A is

reducible to a finite cover.
Solution:

We may assume A is infinite, for otherwise the proof is trivial. We prove the contrapositive, i.e.
assume 3 a countable open cover {G;:i& N} with no finite subcover. We define the sequence
(a5 as, ...) as follows. o

Let n; be the smallest positive integer such that A n Gn1 # . Choose a¢; €A DN G"l' Let ny

be the least positive integer larger than n», such that A N an # (. Choose
as € (AN Gn2) A4 n G"1)

‘Such a point always exists, for otherwise G,,,1 covers A. Continuing in this manner, we obtain the

sequence (@i, ds, ..:) with the property that, for every i & N,

“€ANG,, & U_[(ANnG, ) and  m >y

73 We claim that (a;) has no convergent subsequence in A. Let p € A. Then

({ - 3 Gio € {Gy} such that pE Gio
Now AN G # (), since pE AN Glo’ hence
P ‘. 3 jEN such that an,u\ = Gy,

But_\by the choice of the sequence (a;,ay, ...)

1} - wi iy
Accordingly, since G0 is an open set containing p, no subsequence of (a;) converges to p. But p was
arbitrarv, so A ig not seguentially commnact
arbitrary, so is not sequentially compaet
/‘M
o v N

COMPACTNESS IN METRIC SPACES
19. Prove Lemma 11.17: Let A be a sequentially compact subset of a metric space X.

[

1nen A is tonauy Dounqea
Solution:

weé prove the contrapositive of the above statement, i.e. if A is not totally bounded, then A is not
sequentially compact. If A is not totally bounded then there exists an ¢ > 0 such that A possesses
no (ﬁnite) enet. Let a, € A. Then there exists a point @y €A with d(a,, as) =¢ for otherwise
{a;} would be an enet for. A. Similarly, there exists a point a3EA with d(a;,a3) =¢ and

d(ag, a3) =¢, for otherwise. {al,az} would be an e-net for A. Contmumg in this manner, we arrive at

" a sequence (ay, as, ...) with the property that d(a;, @ a;) =¢ for i+#j. Thus the sequence (a,) cannot

contain any subsequence which converges. In other words, 4 is not sequentiaily compact.

D

~ T mmmean o /T L-._N _-\ 11 1Q. T 4 A — (717 i~ &~ PRy, _i.__A_- ~L o ST Aasad s 11
L’IUVG Lemima (LEDesSEUC) 11.10. LelL o1 — {Uiy DEe all Opeil Cover U1 4 sSeyu Llaily
compact set A. Then <4 has a (positive) Lebesgue number.

Solution:

Suppose ¢4 does not have a Lebesgue number. Then for each positive integer n € N there exists
a subset B, of A with the property that

0<dB,) <1/n and B, ¢ G; for every G; in ¢4

For each n € N, choose a point b, € B,. Since A is sequen- T TN

tially compact, the sequence (b4, 0o, .. .) contains a subsequence
Bino

(bil, bi2, . ..A)/v\v}ﬁch converges to a point p €A,

Since p € A, p belongs to an open set G, in the cover cA.
Hence there exists an open sphere S(p,¢), with center p and
radius e, such that p € S(p,¢) C G,. Since (bin) converges to p,

there exists a positive integer i"o such that

d(p, bl"u) < —é—e, bino (S Bino and d(Bino) < —%—e
Using the Triangle Inequality we get Bi”o C S(p,e) C Gp. But
this contradicts the fact that Binn¢ G; for every G; in the

cover c4. Accordingly ¢4 does possess a Lebesgue number.
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21.

22.

23.

24.
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Prove: Let A be a countably compact subset of a metric space X. Then A is also
sequentially compact.

Solution:
Let (@, a9, ...) be a sequence in A. If the set B = {a,,a,, ...} is finite, then one of the points,
say a;, satisfies a; = a; for infinitely many j€ N. Hence (g ..) is a subsequence of (a,)

10 Eo’ 1,0 .

which converges to the point @y, in A.

On the other hand, suppose B = {a,,a,, ...} is infinite. By hypothesis, A is countably compact.
Hence the infinite subset B of A contains an accumulation point p in A. But X is a metric space;
hence we can choose a subsequence (a; p Gigr - - .y of the sequence (a,) which converges to the point p
in A. In other words, A is sequentlally compact.

Prove Theorem 11.14: Let A be a subset of a metric space X. Then the following are
equivalent: (i) A is compact, (ii) A is countably compact, and (iii) A is sequentially
compact.

Solution:

Recall (see Theorem 11.8) that (i) implies (ii) in every topological space; hence it is true for a
metric space. In the preceding probiem we prowved that (ii) implies (iii). Accordingly, the theorem is
proven if we show that (iii1) implies (1).

Let A be sequentially compact, and let ¢4 = {G,;} be an open cover of A. We want to show
that A is compact, i.e. that-c4 possesses a finite subcover. By hypothesis, A is sequentially compact;
hence, by Lemma 11.18, the cover c4 possesses a Lebesgue number § > 0. In addition, by Lemma 11.17,
A is totally bounded. Hence there is a decomposition of A into a finite number of subsets, say
B, ...,B,, with d(B;) <§. But § is a Lebesgue number for o4; hence there are open sets
Gil’ . G,»m € ¢4 such that

D -~ D —

Dy C by vy D & U
Accordingly, A c BjuB,U ---UB, C GiIUGiZU UGy
Thus cA possesses a finite subcover {G,-l, .. ”Gim}’ 1.e. A 1s compact.

Let A be a compact subset of a metric space (X,d). Show that for any B C X there
is a point p €A such that d(p, B) = d(4,B).
Solution:
Let d(A,B) = e Since d(A,B) = inf{d(a,b):a € A, b € B}, for every positive integer n € N,
3 ea,€4, b,eB such that e = d(a, b)) < et+l/n
Now A is compact and hence sequentially compact; so the sequence (@,, @, ...} has a subsequence
which converges to a point p € A. We claim that d(p,B) = d(A,B) = e

Suppose d(p,B) > ¢, say d(p,B) = ¢+8 where § > 0. Since a subsequence of (a,) converges

to p,
3 npE€EN such that d(p,ano) < $3 and dla,; bno) <etliny < et ds

Then A, ) + A, by) < §3 + e+ 38 = e+ 8 = d@,B) = d(p,ba)

But this contradicts the Triangle Inequality; hence d(p, B) = d(A, B).

Let A be a compact subset of a metric space (X,d) and let B be a closed subset of X
such that A N B = ¢. Show that d(4,B)> 0.

Solution:
Suppose d(4,B) = 0. Then, by the preceding problem,

I peA such that d(p,B) = d(A,B) =

:l.

is closed nd th srefore contains all points whose distance from B is zero. Thus p&€ B and
so p€EANB. this contradicts the hypothesis; hence d(A,B) > 0.

o
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25.

Prove: Let f be a continuous function from a compact metric space (X, d) into a metric
space (Y,d*). Then [ is uniformly continuous, i.e. for every « > 0 there exists a § > 0

such that
d(z,y) <8 = d*(f(z), f(¥)) <«

(Remark: Uniform continuity is a stronger condition than continuity, in that the 8§
above depends only upon the ¢ and not also on any particular point.)

Solution:
Let ¢ > 0. Since f is continuous, for each point p € X there exists an open sphere S(p,$,) such

v € S(p.8) > fl@) € S(Fp) e

e th he A = D

and hence also sequentially compact. Therefore the cover c4 possesses a Lebesgue number § > 0.

A

Now let z,y & X with d(x,y) < 8. But d(x,y) = d{x,y} < § implies {x,y} is contained in a
member S(pq, Spo) of the cover A. Now

X, Y € S(pO! 81)0) é f(w)) f(y) € S(f(?o), ’%E)

But the sphere S(f(py), 1¢) has diameter e Accordingly,
diz,y) <8 = dF[f@=),fly) < e

Y3 &7 R

In other words, f is uniformly continuous.

Supplementary Problems

COMPACT SPACES

26. Prove: If E is compact and F is closed, then ENF is compact.

27, Let Ay ...,A, be compact subsets of a topological space X. Show that A, U --- U A, is also
compact.

28. Prove that compactness is a topological property.

hd . - -

29, Piove Proposition 11.11: The class T, is a topology on X and (X, T, ) is a compactification of
(X,T). (Here (X, T,) is the Alexandrov one-point compactification of (X, T).)

30. Prove Theorem 11.12: If ¢(X,T) is a locally compact Hausdorff space, then (X, T.) is a compact

Hausdorff space.

SEQUENTIALLY AND COUNTABLY COMPACT SPACES

3i.

w
34

[
-

Show that sequential compactness is a topological property.

Show that countable compactness is a topological property.

Suppose (X, T) is countably compact and 7% =7T. Show that (X, T¥) is also countably compact.

Prove: Let X be a topological space such that every countable open cover of X is reducible to a finite
cover. Then X is countably compact.
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36.

317.

COMPACTNESS (CHAP, 11

Prove: Let X be a T;-space. Then X is countably compact if and only if every countable open cover
of X is reducible to a finite cover.

Prove: Let X be a second countable T,-space. Then X is compact if and only if X is countably
compact.

TOTALLY BOUNDED SETS

38.

Prove Proposition 11.15: A set A is totally bounded if and only if for every ¢ > 0 there exists a
decomposition of A into a finite number of sets each with diameter less than e.

39.

40.

'
5\‘3

Prove Proposition 11.16; Totally bounded sets are bounded.

Show that every subset of a totally bounded set is totally bounded.

Show that if A is totally bounded then 4 is also totally bounded.

COMPACTNESS AND METRIC SPACES

43.

4.

45,

46.

47.

48,

Prove: A compact subset of a metric space X is closed and bounded.

Prove: Let f:X —Y be a continuous function from a compact space X into a metric space Y.
Then f[X| is a bounded subset of Y.

Prove: A subset 4 of the rea) line R is compact if angd only if A is closed and bounded.
Prove: Let A be a compact subset of a metric space X. Then the derived set A’ of A is compact.
Prove: The Hilbert cube I = {(a,): 0 = a, = 1/n} is a compact subset of R”.

Prove: Let A and B be compact subsets of a metric space X. Then there exist a € A and be B
such that d(a,b) = d(4, B).

LOCALLY COMPACT SPACES

49.

50.

51,

52,

53.

Show that local compactness is a topological property.

Show that every discrete space is locally compact.

Show that every indiscrete space is locally compact,

Show that the plane R2? with the usual topology is locally compact.

Prove: Let A be a closed subset of a locally compact space (X, T). Then A with the relative topology
is locally compact.



Chapter 13

Connectedness

SEPARATED SETS

Two subsets A and B of a topological space X are said to be separated if (i) A and B
are disjoint, and (ii) neither contains an accumulation point of the other. In other words,
A and B are separated iff

AND — A A A ~ND _
ANDpb =4 ana AND =
Example 1.1: Consider the following intervals on the real line R:

A = (0,1, B=(1,2) and C = [2,3)

Now A and B are separated since A = [0,1] and B = 1,2], and so AN B -and

A N B are empty. On the other hand, B and C are not separated since 2€ C
is a limit point of B; thus:

BnC = [1,2]n(23) = {2} = @
Example 1.2:  Consider the following subsets of the plane R?

A = {0p:i=y=1}

B = {=zy:y=sin(l/x), 0 < 2=1}

TN
A \D

Now T
ANOV

ase oint in A 1
v eéaln tIn A1
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rated sets.

CONNECTED SETS

A subset A of a topological space X is disconnected if there exist open sub-
sets G and H of X such that A N G and A N H are disjoint non-empty sets

whose union is A. In this case, G U H is called a disconnection of A. A setis
connected if it is not disconnected.

Observe that A=(ANGUM@NH) if ACGUH
and » = (ANGN(ANH) if GNHCA"

Therefore G U H is a disconnection of A if and only if
ANG+#@, ANH # @, ACGUH, and GNHCA*

Note that the empty set ¢ and singleton sets {p} are always connected.

180
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AN

Example 21: The following subset of the plane R2? is disconnected: \

A = {(my): 22—y =4}
"
s
<
:
For the two open half-planes
py G = {,p:2<—=1} and H = {x,y:2z>1}
form a disconnection of A as indicated in the diagram above.
Exampie 2.2: Consider the following topology on X = {4, b,¢,4d,e}:

. T = (X, 9, {a,b,¢}, {c,d,e}, {c}}
Now 4 = {a,d, e} is disconnected. For let G = {a,b,¢} and H = {¢,d, e}; then
\ A \QG = {a} and AN H = {d,¢} are non-empty disjoint sets whose union is A.
(Observe that G and H are not disjoint.)

N
The basic relationship between connectedness and separat

ion follows:.
Mhoaavarm 12 1. A ant 1iga snmnantad 1 f and anly if 1 T + tha y1ninn nf +twn nan_amniv
2 nvil 11 anG Oy 11 1v 15 TOv uii€ uUniCll O1 VWO NON-CIlipLy

n
em is.40 431 DU UIv LvviliiTuulou
-

separated sets. , ) "

The following proposition is very useful.
Proposition 13.2; If} A and B are connected sets which are not separated, then A U B is
conneueu N <
E(ample 23: Let A and B be the subsets of the plane R2 defined and illustrated in Example 1.2. ~

We show later that A and B are each connected. But A and B are not separated;

hence, by the previous proposition, 4 U B is a connected set. o -
5’ ( 1
CONNECTED SPACES

Connectedness, like compactness, is an absolute property of a set; namely,

Theorem 13.3: Let A be a subset of a topological space (X,T). Then A is connected with
respect to 7 if and only if A is connected with respect to the relative P
topology T 4 on A.

Accordingly, we can frequently limit our investigation of connectedness to those topo-
logical spaces which are themselves connected, i.e. to connected spaces.

1:  Let X be a topological space which is disconnected, an t G U H be a disconnec
tion of X; then
X = XnGUEnH and (XnGnXnH =@
But XnG =G and X n H = H; thus X is disconnected if and only if there
exist non-empty open sets G and H such that

X=GUH and GoH =9

B

In view of the discussion in the above example, we can give a simp/ll'e characterization
of connected spaces. '
Theorem 13.4: A topological space X is connected if and only if (i) X is not the union

of two non-empty disjoint open sets; or, equivalently, (il) X and ga are
the only subsets of X which are both open and closed.
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Example 3.2: Consider the following topology on X = {a, b, ¢, d, e}:

T = (X, 9, {a}, {c,d}, {a,¢,d}, {b,c,d, e}}
Now X is disconnected; for {a} and {b, ¢, d, ¢} are complements and hence both open
and closed. In other words,

X = {a}u {b,c,d, e}

is a disconnection of X. Observe that the relative topology on the subset
A = {b,d,e} is {4, @, {d}}. Accordingly, A is connected since 4 and @ are the
only subsets of A both open and closed in the relative topology.

Example 3.3: The real line R with the usual topology is a connected space since R and ¢ are the
only subsets of R which are both open and closed.

Example 3.4: Let f be a continuous function from a connected space X into a topological space Y.
Thus f: X = f[X] is continuous (where f[X] has the relative topology).

We show that f[X] is connected. Suppose f[X] is disconnected; say G and H
form a disconnection of f[X|. Then

and so X = f71[Gluft[Hl and fLU[GInf"t[H = @

Since f is continuous, f~!1[G] and f~1[H] are open subsets of X and hence form
a disconnection of X, which is impossible. Thus if X is connected, so is f[X].

We state the result of the preceding example as a theorem.

Theorem 13.5: Continuous images of connected sets are connected.

Example 3.5: Let X be a disconnected space; say, G U H is a disconnection of X. Then the

. 0 if x€G . . . ;
function f(x) = i is a continuous function from X onto the dis-
1 if z€ H

crete space Y = {0,1}.

On the other hand, by Theorem 13.5, a continuous image of a connected space X cannot
be the disconnected discrete space Y = {0,1}. In other words,

Lemma 13.6: A topological space X is connected if and only if the only continuous func-
tions from X into Y = {0,1} are the constant functions, f(z) = 0 or

flx) = 1.

CONNECTEDNESS ON THE REAL LINE

The connected sets of real numbers can be simply described as follows:

Theorem 13.7: A subset E of the real line R containing at least two points is connected
if and only if ¥ is an interval.

Recall that the intervals on the real line R are of the following form:

(—=,a), (—=,al, (a,*), [a,>), (—=, ), infinite intervals

An interval F can be characterized by the following property:
a, bel, a<x<db > x€F

Since the continuous image of a connected set is connected, we have the following generali-
zation of the Weierstrass Intermediate Value Theorem (see Page 53, Theorem 4.9):

Theorem 13.8: Let f: X >R Dbe a real continuous function defined on a connected set X.
Then f assumes as a value each number between any two of its values.

_____ Clii aAlly
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Example 4.1: An interesting application of the theory of connectedness is the following “fixed-
point theorem™ TLet I =[0,1] and let f:I—>1I be continuous; then 3p € I such
that f(p) = p.

This theorem can be interpreted geometrically. Note first that the graph of
f:I—1T lies in the unit square

R = {zy:0=2=1,0=y=1}

The theorem then states that the graph of f, which connects a point on the left
edge of the square to a point on the right edge of the square, must intersect the
diagonal line A at, say, (p, p) as indicated in the diagram.

"
~

Uy Py

"OMPONENTS

A component E of a topological space X is a maximal connected subset of X; that is
FE is connected and E is not a proper subset of any connected subset of X. Clearly F is
non-empty. The central facts about the components of a space are contained in the
following theorem.

Theorem 13.9: The components of a topological space X form a partition of X, i.e. they
are disjoint and their union is X. Every connected subset of X is con-
tained in some component.

Thus each point p € X belongs to a unique component of X, called the component of p.

Example 5.1: If X is connected, then X has only one component: X-itself.

Example 5.2: Consider the following topology on X = {a,b,c,d,e}:

T = (X, 9, {a}, {c,d}, {a,¢,d}, {b,c,d,e}}
The components of X are {a} and {b,c,d,e}. Any other connected subset of X,
such as {b,d, e} (see Example 3.2), is a subset of one of the components.

The statement in Example 5.1 is used to prove that connectedness is product invariant;

1hod o
tnay is,

Theorem 13.10: The product of connected spaces is connected.

Corollary 13.11: Euclidean m-space R™ is connected.

LOCALLY CONNECTED SPACES

A topological space X is locally connected at p € X iff every open set containing p
contains a connected open set containing p, i.e. if the open connected sets containing p
form a local base at p. X is said to be locally connected if it is locally connected at each
of its points or, equivalently, if the open connected subsets of X form a base for X.

Example 6.1: Every discrete space X is locally connected. For if p &€ X, then {p} is an open
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Example 6.2: Let A and B be the subsets of the plane R2 of Example 1.2, Now A U B is a con-
nected set. But A U B is not locally connected at p = (0,1). For example, the
open disc with center p and radius 1 does not contain any connected neighbor-
hood of p.

\ / :
t /J’ l
ol
ol
PATHS y
Let I = [0,1], the closed unit interval. A path from a point a to a point b in a

topological space X is a continuous function f:I->X with f(0) =« and f(1) = b.
a 1s called the initial point and b is called the terminal point of the path.

AN Example 7.1:

Example 7.2:

Example 7.3:
s

-

For any p € X, the constant function e,:I—> X defined by e,(s) = p is continu-

ous and hence a path. It is called the constant path at p.

ket f:I->X be a path from « to b. Then the function ?: I— X defined by

f(s8) = f(1—s) is a path from b to a.

Let f: I—>X be a path from a to b and let g: I > X be a path from b to c.
Then the juxtaposition of the two paths f and g, denoted by f *g, is the function

fxg:I-> X defined by

2
: (Frg)s) = {f( ?

(25 — 1)

i 0=g=1
if 0=s=1

“if \%

=s=1

Here

which is a path from a to ¢ obtained by following the path f from a to b and then

£,

1
.Luuuwlug g from U«LM Cs

ARCWISE CONNECTED SETS

A subset F of a topological space X is said to be arcwise connected if for any two
points a,b € E' there is a path f:I-> X from a to b which is contained in E, i.e. f[I| C E.
The maximal arcwise connected subsets of X, called_arcwise connected components, form
a partition of X. The relationship between connectedness and arcwise connectedness

follows:

~

* Theorem 13.12: Arcwise connected sets are connected.

The converse of thls theorem is not true, as seen 1n the next example.

Example 8.1:

P

Example 8.2:

ConSIder the following subsets of the plane R2:

A | VP n =
A {te,): 0=w=1, y = x/n, n € N}
B = {x0:1=2=1}
Here A consists of t oints on®the line seo-
AT L 13D L0 UL UL v LIi D ULE Vllt LII3CS Dt‘s

e A con he po
ents joining the origin (0,0) to the points
(1 1/n), n € N; and B consists of the points on
the x-axis between 4 and 1. Now A and B are
both arcwise connected, hence also connected.
Furthermore, A and B are not separated since
each p € B is a limit point of A; and so A UB
is connected. But A U B is not arewise con-
nected; in fact, there exists no path from any
point in A to any point in B.

Let A and B be the subsets of the plane R2 defined in Example 1.2.

14 27
3
th >A
i._
:
»
1 1
Now A and B

are continuous images of intervals and are therefore connected. Moreover, A and
B are not separated sets and so A U B is connected. But 4 U B Is not arcwise

connected; in fact, there exists no path from a point in A to a point In B.

.
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‘into g. The function H is called a homotopy
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The topology of the plane R? is an essential part of the theory of functions of a complex
variable. In this case, a‘region is defined as an open connected subset of the plane. The
following theor;em plays an important role in this theory.

HOMOTOPIC PATHS
Let f:I1->X and g¢g:I—+X be two.paths with the same initial point »p € X and the

. same terminal point ¢ € X. Then f is said to be homotopic to g, written f = g, if there

exists a continuous function

’ H:2P-X
such that -
H(s,0) = f(s) H(0,t) = p
H(s,1) = g(s) H(,?) q
tantad 4+1. ~d A n e

as indicated in the adjacei L dlagrarmi. We
then say that f can be continuously deformed

from f to g. )
Example 9.1: Let X be the set of points between two concentric {cn‘cles (called an annulus).
Then the paths f and g,in the diagram on the left below are homotopic, whereas
B the paths f’ and g’ in the diagram on the right below are not homotopic.
— A .
~ .

7

Example 9.2: Let f: 1> X be any path. Then f=f, ie f is homotopic to itself. For the
function H :02 > X defined by
. H(s,t) = f(s)
is a homotopy‘from f to f.

-

Example 93: Let f=~g¢g and, say, H: 12— X is a homotopy from f to g. Then the function
- A B

~ H:I?2> X defined by A ) )

‘ H(s,t) = H(s,1—1t)

P is a homotopy from g to f, and so g == f.

Example 94: Let f~g and g = hk; say, F': 12> X is a homotopy from ftog and G: 2> X
is®a homotopy from g to k. The function H: I2 > X defined by

F(s, 2t) if 0=¢t=1

G(s,2t—1) if 4=t=1
is a bomotopy from f to &, and so f=~h. The homotopy H can be interpreted
geometrically as compressing the domains of F and G into one square.

H(s, t)

Late)
z
oy - n

domain of G —» %

______ < domain of H

domain of F' = ﬂ ﬂ H | mf\ﬂ

I 70
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The previous three relations imply the following proposition:

Proposition 13.14: The homotopy relation is an equivalence relation in the collection of
all paths from a to b.

SIMPLY CONNECTED SPACES

A path f:1- X with the same initial and terminal point, say f(0) = f(1) = p, is called
a closed path at p € X. In particular, the constant path e,:I > X defined by en(s) = p

is a closed path at p. A closed path f:I-= X is said to be contractable to a point if it is
homotopic to the constant path.

R

N - <
A topolo/gical space is ;‘sg,jmply connected iff every cloged path in X is contractable to a

point. ™ T
Example 10.1: An open disc in the ﬁlane RZ is simply connected, whereas an annulus is not simply
connected since there are closed curves, as indicated in the diagram, that are not
contractable to a point.

<

simply connected not simply connected
r AN v
k?
I
\
& [
Qalyvnd Dweahlamg
DULVCU X 1OUILCHIS

SEPARATED SETS

1. Show that if A and B are non-empty separated sets, then A U B ig disconnected.-

Selution:
Since A and B are separated, AN B =0 and AnNB =¢. Let G=Bc and H = Ac. Then

G and H are open and

(AuBynG = A and (AUB)NH =B

are non-empty disjoint sets whose union is A U B. Thus G and H form a disconnection of A U B,
and so A U B is disconnected.
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2. Let G U H be a disconnection of A. Show that A N G and A N H are separated sets.

Solution:
Now A N G and A N H are disjoint; hence we need only show that each set contains no accumu-
lation point of the other, Let » be an accumulation point of A N G, and suppose p& A N H. Then
H is an open set containing p and so H contains a point of A N G distinct from p, ie. (ANG) N H + Q.
But
ANGHNANH) =9 = AnGnNH
Accordingly, p&A N H. ;

Similarly, if p is an accumulation point of A N H, then p @A NG Thus ANG and AN H
are separated sets.

non-empty separated sets.

Solution:

We show, equivalently, that A is disconnected if and only if A is the union of two non-empty
separated sets. Suppose A is disconnected, and let G U H be a fisconnection of A. Then A is the
union of non-empty sets A N G and A N H which are, by the preceding problem, separated. On the
other hand, if A is the union of two non-empty separated sets, then A is disconnected by Problem 1.

-~

4. Let G U H be a disconnection of A and let B be a connected subset of A. Show that -
niﬂqnv Bﬁ”:m or RN — and an aithar R (2} or R H
NrAULLNL P oAx y/ i £F V1 X yj’ vilva [SAVS AR ¥y § AF N A L A7 N AL
Solution:

Now B C A, and so

ACGUH = BCGUH and GNHCA® > GnHCBe

Thus if both B n G and B n H are non-empty, then G U H forms a disconnection of B. But B is
connected; hence the conclusion follows.

5. Prove Proposition 13.2: If A and B are connected sets which are not separated, then
A U B is connected.
Solution:
Suppose A U B is disconnected and suppose G U H is a disconnection of A U B. Since 4 is a

connected subset of A U B, either A C G or A C H by the preceding problem. Similarly, either
BcCcG or BCH.

Now if ACG and BC H (or BC G and A C H), then, by Problem 2,
(AUB)NnG = A and (AUB)NH = B

are separated sets. But this contradicts the hypothesis; hence either A UBCG or A UBCH,
and so G U H is not a disconnection of A U B. In other words, A U B is connected.

6. Prove: Let o4 = {Ai} be a class of connected subsets of X such that no two members
of ¢4 are separated. Then B = U;A, is connected.
Solution:

Suppose B is not connected and G U H is a disconnection of B, Now each A; &€ ¢4 is connected
and so (Problem 4) is contained in either G or H and disjoint from the other. Furthermore, any two
members Ail,AiZE ed are not separated and so, by Proposition 13.2, Ai1 U Ai2 is connected; then
Ai1 U Ai2 is contained in G or H and disjoint from the other. Accordingly, all the members of oA,
and hence B = U;A; must be contained in either G or H and disjoint from the other. But this
contradicts the fact that G U H is a disconnection of B; hence B is connected.
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section. Then B
Solution:

Since NM;4; # @, any two members of ¢4 are not disjoint and so are not separated; hence, by
the preceding problem, B = U;A; is connected,

8. Let A be a connected subset of X and let A € BC A. Show that B is connected and
hence, in particular, A is connected.
“Solution:
Suppose B is disconnected and suppose G U H is a disconnection of B. Now A is a connected
subset of B and so, by Problem 4, either ANH = @ or ANnG =¢; say, AnH = (. Then
He is a closed superset of A and therefore A Cc B C A ¢ H¢. Consequently, BN H = (. But this
contradicts the fact that G U H is a disconnection of B; hence B is connected.

CONNECTED SPACES . ‘

[+) T.at ]r\n a tanoloacical anaca Qhaw that tha fallowine coanditiong are agnivalant
e AiTU L2 <« UUyULUE AL DA AILINSYY VilA U Vil AVsiAv 5V diipE VULAiMLUVIUVLILD A v Lyyulivoaviviav
(i) X is disconnected. .
133\ Mhawra avicta 0 rnan_amntyr nnanan gihoand ~F Vo lhaisl o hatl, ~anaim o A Alacad
\11} 1ITIT TXISLS 4 HUN-CIHPLY PIOUPCL SUBSTL UL A WIHILIL IS DULIL Vpell allu Lluscu.
Solution:
(i) = (ii): Suppose X = G U H where G and H are non-empty and open. Then & is a non-empty .

proper subset of X and, since G = H¢, G is both open and closed.

(ii) > (i): Suppose A is a non-empty proper subset of X which is both open and closed. Then Ac
is also non-empty and open, and X = A U A¢. Accerdingly, X is disconnected.

10. Prove Theorem 13.3: Let A be a subset of a topological space (X, T) and let T, be the
relative topology on A. Then A is T-connected if and only if 4 is T -connected

Solution:

Suppose A is disconnected with G U H forming a T-disconnection of A. Now G,HE€ T and so
ANnG, AnH € T,. Accordingly, AnG and A N H form a T ,-disconnection of A; hence A is
T 4-disconnected.

On the other hand, suppose A is T 4-disconnected, say G* and H* form a T ,-disconnection of A.
Then G*, H*€ T, and so ¥ 4

IGHeT such that G*¥ =ANG and H*=AnNH

But ANG*=AnNANG=4A4nG and AnH* = AnAnH=AnH

Hence G U H is a T-disconnection of A and so A is T-disconnected.

11. Let p,q € X. The subsets A,,...,An of X are said to form a simple (finite) chain
joining p to q if A, (and only A,) contains p, A= (and only An) contains ¢, and
AinA; =9 iff li—j] > 1.

Prove: Let X be connected and let ¢4 be an open cover of X. Then any pair of
points in X can be joined by a simple chain consisting of members of oA.
Solution:

Let p be any arbitrary point in X and let H consist of those points in X which can be joined

to p by some simple chain consisting of members of ¢4. Now H +# @, since p € H. We claim that
H is both open and closed and so H = X since X is connected.
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12.

et h€H Then 3G,...,G,Ec4 which form a simple chain from 2 to p. But if
N\ Gy, then G, ...,G, form a simple chain from x to p, and if y € G, N Gy, then Gy, ...,G,

hoin fram o7 o o o indicoia PRPNN
irom ¥ vo p, as inai cated in the diagram below.

N ~\

o *p
°x
Gy Gs "
Thus G, is a subset of H, ie. h C G, C H. Hence H is a neighborhood of each of its points, and
so H is open.

Now let g€ He. Since o4 is a cover of X, 3G €4 such that g€ G, and G is open. If
GNH + @, 3h€eGNHCH and so 3G,,...,G,, €4 forming a simple chain from k to p.
But then either G Gk, , G, Where we consider the maximum k for which G intersects Gy, or

€c 0
so g E G C He, Thus Hec is an open set, and so Hec = H is closed.

Prove Theorem 13.7: Let E be a subset of the real line R containing at least two
points. Then E is connected if and only if F is an interval.

Solution: .
Suppose E is not an interval; then ,

13.

1 a,bEE, pE&E such that a<p<b

Set G = (—»,p) and H = (p,*). Then’ a €G and b€ H, and hence EN G and E N H are
non-empty disjoint sets whose union is E. Thus E is disconnected.

Now suppose E is an interval and, furthermore, assume E is disconnected; say, G and H form a
disconnection of E. Set A = ENG and B =E NH; then E = AUB, Now A and B are non-
empty, say, a €A, beB a<b and p = sup{A4 N [a,b]}. Since [a,b] is a closed set, p E [a,b]
and hence p € E.

Suppose p€A = ENG. Then p<bd and pE€ G. Since G is an open set

386>0 such that p+se€G and p+8§<b

Hence p+8 € E and so p+§ € A. But this contradicts the definition of p, i.e. p = sup {4 N [a, b]}.
Therefore p € A.

On the other hand, sunnose n € R =FEFn H 'thn in narticumr n € H. Since H is an onen set,

Un the other hand, suppese p < £ i/ H, Then, In particygar, p © 1 Since 1 1s an open set;
36*>0 such that [p—8*p|]CH and a<p-—s§*

T aa fan _ o 1 — E¥ awmd o« lan __ &% 1 — D PR O | o — Q% .1 ~ A rey o ST Iy

rience |p oF, p|C L ana So ¥4 o7, p| C b, Accor aingiy, ¥ oY, PN A . DUL wnen

p—S' is an upper bound for A N [a,b], which is impossible since p = sup {4 N [a, b]}. Hence
p & B. But this contradicts the fact that p € E, and so E is connected.

Prove (see Example 4.1): Let I = [0,1] and let f:I—> I be continuous. Then Ap €/
such that f(p) =

Solution:
If f(0) =0 or f(1) =1, the theorem follows; hence we ¥
can assume that £(0) > 0 and f(1) < 1. Since f is continu- ¢ //
ous, the graph of the function A
-1
F:I-R? definedby F(x) = (w,f(x)) /
is also continuous. //
Set G = {@,y):x<y}, H = {(x,y):y <=z}, then 4
0, f(0)) € G, (1,f(1)) € H. Hence if F[I] does not contain a 4 H
point of the diagonal //
A= {x,y:e=y} = RRN(GUH) // F[I]
then G U H is a disconnection of F[I|. But this contradicts yan 1 x
the fact that F[I], the continuous image of a connected set, is /
connected; hence F[I] contains a point (p,p) €4, and so 7/

fip) = p.

JAMT
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COMPONENTS
14. Show that every component E is closed.

Solution:
Now E is connected and so, by Problem 6, E is connected, E C E. But E, a component, is a
maximal connected set; hence E = E’, and so E is closed.

15. Prove: T.et p € X and let o4, = {4;} be the class of connected subsets of X con-
taining p. Furthermore, let C, = U;A;. Then: (i) C, is connected. (ii) If B is a
connected subset of X containing p, then B C C,. (iii) C, is a maximal connected
subset of X, i.e. a component.

Solution:

(i) If B is a connected subset of X containing p, then B€cd, andso BC C, = U{A;: 4, € cAp;.

(iii) Let C, C D, where D is connected. Then p € D and hence, by (ii), D C C,; that is, C, = D.
Therefore C, is a eomponent.

16. Prove Theorem 13.9: The components of X form a partition of X. Every connected

subset of X is contained in some component.
Solution: ¢

Consider the class ¢ = {C,:p € X} where C, 'is defined as in the preceding problem. We claim
that  consists of the components of X. By the ’pi‘eceumg problem, each up € ( is a component. On
the other hand, if D is a component, then D contains some point p, € X and so D C C But D is a

component; hence D = C

We now show that C is a partition of X. Clearly, X = u {C,: p € X}; hence we need only show
that distinct components are disjoint or, equivalently, if C, n C, + @, then C, = C,. Let a € C, N C,
Then C, Cc C, and C, C C,, since C, and C, are connected sets containing a. But C, and C, are
components; hence C, = C, = C,.

nnected subset of X, then £ mdain nt n & and s K c O
n t < a wn CU

atly i€ B s —am containg "ot o
T €ciea suoset 01 4, Unen 14 coniains a point py a ana |6 Po

T o 7 a na ey nn
Lidduly, 11 44 1S 4 non-er 1puy COI1

by the preceding problem. If E = (), then E is contained in every component.

17. Show that if X and Y are connected spaces, then X XY is connected. Hence a finite
product of connected spaces is connected. @
Solution:
Let p = (x,y) and ¢ = (xy,¥,) be any pair of pomts in XXY. Now {x,} XY is homeo-

Y4 <

morpmc to Y and is therefore connected. blmllal‘ly, X X in} is connected.

But {z} XY N XX {y,} = {x,y}; hence {x;} XY UX X {y,} is connected. Accordingly,

» and ¢ hp]nno- to the same component. But » and ¢ were arbitrary; hence X X Y has one component

..... UL ere 4arbiirary. one cor

and is therefore connected,.

18. Prove Theorem 13.10: The product of connected spaces is connected, i.e. connectedness
is a product invariant property.

Solution:

Let {X;:i{€ 1} be a collection of connected spaces and let X = [I; X, be the product space.
Taiatd avrean s ad . v A 14 0~V A dhn narirenmant A€ g YA Alodee ot asrowsy
Irur b]lULlllUlU, 1L [J —_— \wl l/ C l) C P29 ana le 4 . A Ut} LIIC culniponcenu UJ. M VVC lellll bllab C\’Cl‘y
point & = (x;: 1€ I) € X belongs to the closure of E and hence belongs to E since E is closed.
Now let

G = X d70, iy X Gy Xoree X Gy

be any basic open set containing » € X. Now
H = H{{ai}:i%il,...,M}XXiIX e Xle
is homeomorphic to Xh X oo X Xim and hence connected. Furthermore, p € H and so H is a subset

of E, the component of p. But G N H is non-empty; hence G contains a point of E. Accordingly,
2 € E =E. Thus X has one component and is therefore connected.
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ARCWISE CONNECTED SETS -

19.

20.

21.

22,

23.

24.

Let f:I~ X be any path in X. Show that f[I], the range of f, is connected.

Solution:
I =[0,1] is connected and f is continuous; hence, by Theorem 135, f[I] is connected.

Prove: Continuous images of arcwise connected sets are arcwise connected.

Solution:
Let E' C X be arcwise connected and let f: X > Y be continuous. We claim that f[E] is arcwise
connected. For let p,q € f[E].. Then 3Ap* q* €EE such that f(p*) =p and f(g*) =q. But E is

3 apath g: 1> X such that 9(0) = p*, g(1) = q¢* and g[I|CE

™
Now the composition of continuous functions is continuous and so fog:I-Y is continuous.
Furthermore,
fog(0) = f(p*) =p, feg(l) =fl¢*)=q and fFfogll] = flg[l]] C f[E]

Thus f[E] is arcwise connected.

Prove Theorem 13.12: Every arcwise connected set A is connected.
Solution:

If A is empty, then A is connected. ¥ Suppose A is not empty; say, p € A. Now A is arcwise
connected and so, for each a € 4, there is a path f,: I > A from p to a. Furthermore,

a € fI]CA andso A = U{f|l]:a€ A}
But p € f,[I], for every a € A: hence N{f,JIl:a€ A} is non-empty. Moreover, each f,[I] is

connected and so, by Problem 7, A is connected.

Prove: Let ¢4 be a class of arcwise connected subsets of X with a non-empty inter-
section. Then B = U{A: A €4} is arcwise connected.
Solution:
Let a,b € B. Then
34,4, €A such that a€E A, bEA,

Now ¢4 has a non-empty intersection; say, p€ N{A: A€ c4}. Then p€ A, and, since A, is
arcwise connected, there is a path f:I1-A,CB from a to p. Similarly, there is a path
g:1-A,CB frof'p to b. The juxtaposition of the two paths (see Example 7.3) is a path from
a to b contained in B. Hence B is arcwise connected.

Show that an cpen disc D in the plane R? is arcwise connected.

Solution:
Let p = (a;, b)), ¢ = (a5,by) € D. The function f:1- R? defined by
f(t) = (“1 + t(G/Q - a,l), bl + t(bz b bl))
is a path from p to ¢ which is contained in D. (Geometrically, f[I] is the li
p and ¢q.) Hence D is arcwise connected.

Prove Theorem 13.13: Let E be a non-empty open connected subset of the plane R2
Then E is arcwise connected.

Solution:

Method 1.

Let p € E and let G consist of those points in £ which can be joined to p by a path in £. We
claim that G is open, For let ¢ € GC E. Now E is open and so 3 an open dise D with center ¢
such that ¢ € D c E. But D is arcwise connected; hence each point z € D can be joined to ¢ which
can be joined to p. Hence each point x € D can be joined to p, and so ¢&€ D C G. Accordingly,
G is open.
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ioined to £ bv a nath

Now set H = EN\ G, ie. I st: hos s in whicl inot Join 0 £ by a path
in E. We claim that H is open. For let ¢* € H CE. Since E is open, 3 an open disc D* with
center ¢* such that ¢* € D* C E. Since D* is arcwise connected, each x € D* cannot be joined

E U & 4
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to p with a path in E, and so ¢* € D* C H. Hence H is open.
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But E is connected and therefore E cannot be the union of two non-empty disjoint open sets.
Then H = @, and so E = G is arcwise connected.

Method 2.

Since E is open, E is the union of open discs. But F is connected; hence, by Problem 11, 3 open
disecs S, ..., S, CE which form a simple chain joining any p € ¥ to any ¢ € E. Let a; be the
€ S; N S;;+ (- Then the polygonal arc joining p to a, to b, to a,, ete., is contained

itl
f the discs and hence is contained in £. Thus E is arcwise connected.

TOTALLY DISCONNECTED SPACES

25. A topological space X is said to be toially disconnected if for each pair of points
p,q € X there exists a disconnection G U H of X with p € G and ¢ € H. Show that
the real line R with the topology T generated by the open closed intervals (a,b] is
totally disconnected.

Solution:

Let p,q € R; say, p<q. Then G = (—=,p] and H = (p,») are open disjoint sets whose
union is R, i.e. G U H is a disconnection of R. But p € G and ¢ € H; hence (R,T) is totally dis-
connected.

26. Show that the set Q of rational numbers with the relative usual topology is totally
disconnected.

Solution:
Let p,q € Cf say, p < q. Now there exists an irrational number @ such that p <a <gq.

Set G = {x€Q: x<a} and H = {x€Q: x> a}. Then G U H is a disconnection of Q,
and p € G and ¢ € H. Thus Q is totally disconnected.

27. Prove: The components of a totally disconnected space X are the singleton subsets of X.

Solution:

Let E be a component of X and suppose p,q €E with p ¢q. Since X is totally disconnected,
there exists a disconnection G U H of X such that p €G and ¢ &€ H. Consequently, E NG and
E N H are non-empty and so G U H is a disconnection of E. But this contradicts the fact that E is
a component and so is connected. Hence E consists of exactly one point.

LOCALLY CONNECTED SPACES
28. Prove: Let E be a component in a locally connected space X. Then E is open.

Solution:
Let p € E. Since X is locally connected, p belongs to at least one open connected set G,. But
FE is the component of p; hence

pEGCE and so E = WU{G,:pEE)}

Therefore E is open, as it is the union of open sets.
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29.

Prove: Let X and Y be locally connected. Then X X Y is locally connected.

30.

Solution:
Now X is locally connected iff X possesses a base B consisting of connected sets. Similarly,
anf

sacana a haoaa R aanaigtinoe
RCH//CS 4 vas o CONSIsSving

(GXH: GE B, HE B*)

is a base for the product space X X Y. Now each G X H is connected since G and H are connected.
In other words, X X Y possesses a base consisting of connected sets and so X X Y is locally connected.

Prove: Let {Xi} be a collection of connected locally connected spaces. Then the
product space X = [], X, is locally connected.

Solution:
Let Gbe an open subset of X containing » = (a¢;: ¢ €I) € X. Then there exists a member of
the defining base )
B = GiIX"‘ XGthH{XI'i?é'll,,'lm}

such that p€B C G, and so @, = Gi}c' Now each coordinate space is locally connected, and so there
exists connected open subsets Hi C Xi such that

o, € H; CG-, ey aimEHimCGim

X H{Xi: i?é'l:l,.,.,im}

. is connected and each H. is connectad H also connected Furtharmare
1S connecte 18 connectea cvea.  urtne ore

and p€E HCBCG. Accordingly, X is

—

ocally connected.

Supplementary Problems

CONNECTED SPACES

31.

Show that if (X,T) is connected and T* < T, then (X, T*) is connected.

32. Show that if (X, T) is disconnected and T < T*, then (X, T*) is disconnected.

33. Show that every indiscrete space is connected.

34. Show, by a counterexample, that connectedness is not a hereditary property.

35. Prove: If A, A, ... is a sequence of connected sets such that A; and 4, are not separated, A2 and
A, are not separated, etc., then A, U A, U --+ is connected.

36. Prove: Let E be a connected subset of a T;-space containing more than one element. Then E is infinite.

37.

Prove: A topological space X is connected if and only if every non-empty proper subset of X has a
non-empty boundary.

COMPONENTS

38. Determine the components of a discrete space.
39. Determine the components of a cofinite space.

40. Show that any pair of components are separated.
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41. Prove: If X has a finite number of components, then each component is both open and closed.

42. Prove: If E is a non-empty connected subset of X which is both open and closed, then E is a component.

43. Prove: Let E be a component of ¥ and let f: X > Y be continuous. Then f~1[E] is a union of
components of X. .

44. Prove: Let X be a compact space. If the components of X are open, then there are only a finite
number of them.

46. Prove: The arcwise connected components of X form a partition of X.

47. Prove: Every component of X is partitioned by arcwise connected components.

MISCELLANEOUS PROBLEMS

48. Show that an indiscrete space is simply connected.

49. Show that a totally disconnected space is Hausdorff.

50. Prove: Let G be an open subset of a locally connected space X. Then G is locally connected.

51. Let A = {a,b} be discrete and let I = [0,1]. Show that the product space X =[]{4;: A;=4,i€l}
is not locally connected. Hence locally connectedness is not product invariant.

52. Show that “simply connected” is a topological property.

53. Prove: Let X be locally connected. Then'X is connected if and only if there exists a simple chain of
connectedgets joining any pair of points in X.





