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We have all seen the strange device, known as a
Van De Graaff Generator, that makes your hair
stand on end. The device looks like a big
aluminum ball mounted on a pedestal, and has
the effect pictured on the right. Have you ever
wondered what this device is, how it works, why
it was invented, Surely it wasn't invented to make
children's hair stand on end... Or have you ever
shuffled your feet across the carpet on a dry
winter day and gotten the shock of your life when
you touched something metal? Have you ever
wondered about static electricity and static cling?
If any of these questions have ever crossed your
mind, then here we will be amazingly interesting
as we discuss Van de Graaff generators and static
electricity in general.

1.1 Understanding Static Electricity

To understand the Van de Graaff generator and how it works, you need to
understand static electricity. Almost all of us are familiar with static
electricity because we can see and feel it in the winter. On dry winter days,
static electricity can build up in our bodies and cause a spark to jump from
our bodies to pieces of metal or other people's bodies. We can see, feel and
hear the sound of the spark when it jumps.

In science class you may have also done some experiments with static
electricity. For example, if you rub a glass rod with a silk cloth or if you rub
a piece of amber with wool, the glass and amber will develop a static charge
that can attract small bits of paper or plastic.

To understand what is happening when your body or a glass rod develops a
static charge, you need to think about the atoms that make up everything we
can see. All matter is made up of atoms, which are themselves made up of
charged particles. Atoms have a nucleus consisting of neutrons and protons.
They also have a surrounding "shell™ which is made up electrons. Typically
matter is neutrally charged, meaning that the number of electrons and
protons are the same. If an atom has more electrons than protons, it is
negatively charged. Likewise, if it has more protons than electrons, it is



positively charged. Some atoms hold on to their electrons more tightly than
others do. How strongly matter holds on to its electrons determines its place
in the Triboelectric Series. If a material is more apt to give up electrons
when in contact with another material, it is more positive on the
Triboelectric Series. If a material is more to "capture” electrons when in
contact with another material, it is more negative on the Triboelectric
Series.

The following table shows you the Triboelectric Series for many materials
you find around the house. Positive items in the series are at the top, and
negative items are at the bottom:

Human Hands (usually too moist though) (very positive)
Rabbit Fur

Glass

Human Hair

Nylon

Wool

Fur

Lead

Silk

Aluminum

Paper

Cotton

Steel (neutral)

Wood

Amber

Hard Rubber

Nickel, Copper

Brass, Silver

Gold, Platinum
Polyester

Styrene (Styrofoam)
Saran Wrap
Polyurethane
Polyethylene (like scotch tape)
Polypropylene

Vinyl (PVC)

Silicon

Teflon (very negative)

The relative position of two substances in the Triboelectric series tells you
how they will act when brought into contact. Glass rubbed by silk causes a
charge separation because they are several positions apart in the table. The



same applies for amber and wool. The farther the separation in the table, the
greater the effect.

When two non-conducting materials come into contact with each other, a
chemical bond, known as adhesion, is formed between the two materials.
Depending on the triboelectric properties of the materials, one material may
"capture™ some of the electrons from the other material. If the two materials
are now separated from each other, a charge imbalance will occur. The
material that captured the electron is now negatively charged and the
material that lost an electron is now positively charged. This charge
imbalance is where "static electricity” comes from. The term "static"
electricity is deceptive, because it implies "no motion”, when in reality it is
very common and necessary for charge imbalances to flow. The spark you
feel when you touch a doorknob is an example of such flow.

You may wonder why you don't
see sparks every time you lift a
piece of paper from your desk.
The amount of charge is
dependent on the materials
involved and the amount of
surface area that is connecting
them. Many surfaces, when
viewed with a magnifying device,
appear rough or jagged. If these
surfaces were flattened to allow
for more surface contact to occur,
the charge (voltage) would most definitely increase. Another important
factor in electrostatics is humidity. If it is very humid, the charge imbalance
will not remain for a useful amount of time. Remember that humidity is the
measure of moisture in the air. If the humidity is high, the moisture coats the
surface of the material providing a low-resistance path for electron flow.
This path allows the charges to "recombine™ and thus neutralize the charge
imbalance. Likewise, if it is very dry, a charge can build up to extraordinary
levels, up to tens of thousands of volts!

Think about the shock you get on a dry winter day. Depending on the type
of sole your shoes have and the material of the floor you walk on, you can
build up enough voltage to cause the charge to jump to the doorknob, thus
leaving you neutral. You may remember the old "Static Cling" commercial.
Clothes in the dryer build up an electrostatic charge. The dryer provides a



low moisture environment that rotates, allowing the clothes to continually
contact and separate from each other. The charge can easily be high enough
to cause the material to attract and "stick™ to oppositely charged surfaces
(your body or other clothes in this case). One method you could use to
remove the "static" would be to lightly mist the clothes with some water.
Here again, the water allows the charge to leak away, thus leaving the
material neutral.

It should be noted that when dirt is in the air, the air will break down much
more easily in an electric field. This means that the dirt allows the air to
become ionized more easily. lonized air is : "hl!"{/

v ’
actually air that has been stripped of its ‘ Y '
electrons. When this occurs, it is said to be N\ P r4

plasma, which is a pretty good conductor.
Generally speaking, adding impurities to air
improves its conductivity. You should now
realize that having impurities in the air has
the same effect as having moisture in the air.
Neither condition is at all desirable for
electrostatics. The presence of these
impurities in the air, usually means that they
are also on the materials you are using. The
air conditions are a good gauge for your
material conditions, the materials will generally break down like air, only
much sooner.

[Note: Do not make the mistake of thinking that electrostatic charges are
caused by friction. Many assume this to be true. Rubbing a balloon on your
head or dragging your feet on the carpet will build up a charge.
Electrostatics and friction are related in that they both are products of
adhesion as discussed above. Rubbing materials together can increase the
electrostatic charge because more surface area is being contacted, but
friction itself has nothing to do with the electrostatic charge]

For further information see appendix A (Understanding the Van de Graaff
generator)



1.2 Properties of electrostatic

1.2.1 Electric charge

If a rod of ebonite is rubbed with fur, or a fountain pen with a coat-sleeve, it
gains the power to attract light bodies, such as pieces of paper or tin foil.
The discovery that a body could be made attractive by rubbing is attributed
to Thales (640-548 B.C). He seems to have been led to it through the
Greeks’ practice of spinning silk with an amber spindle; the rubbing of the
spindle cause the silk to be attracted to it. The Greek world of amber is
electron, and a body made attractive by rubbing is said to be electrified or
charged. The branch of electricity is called Electrostatics.

1.2.2 Conductor and insulator
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Conductor Insulator Semiconductor

Figure 1.1
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1.2.3 Positive and negative charge
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Like charge repel one another and unlike charges attract one another as
shown in figure 1.1 where a suspended rubber rod is negatively charged is
attracted to the glass rod. But another negatively charged rubber rod will
repel the suspended rubber rod.



Rubber /' Rubber

Figure 1.2
Unlike charges attract one another and like charge repel one another
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1.2.4 Charge is conserved
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1.2.5 Charge and Matter
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Particle  Symbol Charge Mass
1.6x10°C  1.67x107K

0 1.67x10°2K
-1.6x10°C  1.67x10°%

Table 1.1
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Coulomb’s law

2.1 Coulomb’s Law

2.2 Calculation of the electric force

2.2.1 Electric force between two electric charges

2.2.2 Electric force between more than two electric charges

2.3 Problems

Coulomb’s law
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» head
In 1785, Coulomb established the fundamental law of
electric force between two stationary, charged ‘
particles. Experiments show that an electric force has [ rof—fier

21 COlllOlIlb’S LaW % suspension

the following properties:
(1) The force is inversely proportional to the square
of separation, r?, between the two charged particles.
F o !
2 (2.2)

(2) The force is proportional to the product of charge
g: and the charge g on the particles.

Focq,0, (2.2)

(3) The force is attractive if the charges are of opposite sign and repulsive
if the charges have the same sign.

We can conclude that

Fo 0l
r2
LF=K q% 2.3)

where K is the coulomb constant = 9 x 10° N.m?/C?.,

The above equation is called Coulomb’s law, which is used to calculate the
force between electric charges. In that equation F is measured in Newton
(N), g is measured in unit of coulomb (C) and r in meter (m).

The coristant K can be written as
K =
Adze,

where &, is known as the Permittivity constant of free space.

&, = 8.85 x 1072 C?/N.m?
K= 1 1

= — = 9x10°N.m?/ C?
47 x8.85x10




2.2 Calculation of the electric force
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2.2.1 Electric force between two electric charges
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Figure 2.2(a) Figure 2.2(b)
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Example 2.1

Calculate the value of two equal charges if they repel one another with
a force of 0.1N when situated 50cm apart in a vacuum.

’’’’’’

Solution

F — K qqu
r2

Since 1=02

9 2
0.1= 9X10—>;q
(0.5)

q=1.7x10°C = 1.7uC

0.IN skt Aoliiall 3 g8l Jaad Al s ll) da8 o4 022

2.2.2 Electric force between more than two electric charges
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Fi=Fp+Fia+Fy,+Fg (2.4)
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Example 2.2

In figure 2.4, two equal positive charges g=2x10°C interact with a third

charge Q=4x10°C. Find the magnitude and direction of the resultant
force on Q

Q1:

p 1 Figure 2.4
" Solution

5l e Clual g€ ol Gl Q Aindl) e 5 5l B el (5l Alana say
O iy st Qu&Op crindl) of Ly .Q Amdl) o das US L iy A
b}ﬂ\w‘j‘)\&&u\.\.}jw%u)ﬂ\ ubQM\u&Mw‘

qQ s (4x10°°)(2x107°)
Foar = K—=9x10 o, = 0.29N = F,,
(0:9)

T GBS ye ) 6l Antie Julay

F.=Fcos@ = 029(04\] 0.23N

0.3
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D> F, =2x0.23=046N
> F, =0
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Example 2.3
In figure 2.5 what is the resultant force on the charge in the lower left
corner of the square? Assume that g=1x10" C and a = 5cm

q -q

Figure 2.5

\\\\\\

Solution

For simplicity we number the charges as shown in figure 2.5, then we
determine the direction of the electric forces acted on the charge in the
lower left corner of the square g;

r
Fo=Fp+Fs+Fy

2

F, =K %
2

F, =K —2q2q

a2
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F12=0.072 N,
F13=0.036 N,
F14=0.144 N
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zuad F13 55l
Fisx=F13s8in45=0.025N &
F13y = F13 cos 45 =0.025 N

Fx = Fi3x + F14=0.025 + 0.144 = 0.169 N
Fy=Fi3y - F1=0.025-0.072 = -0.047 N

ALy s slad) 85 sl A e ol o e Jan Al 5 LaY)

The resultant force equals q2 3
-q
F.=J(F)’+(F) = o0175N
The direction with respect to the Xx-axis
equals 1 4
0=tan* g 24 F -2q

£ =155 . X
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Example 2.4

A charge Q is fixed at each of two opposite corners of a square as shown
in figure 2.6. A charge q is placed at each of the other two corners. (a)
If the resultant electrical force on Q is Zero, how are Q and q related.

A4
Fig g - 5
y 12 -q
CPo— Q
FuY
a

Figure 2.6
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Solution

4ld ¢ haall 4y slue g ,AY) it A Q sl e L eSl (5 sl Alana (585 Jn
Olia (1) 8, Q L) wie olat¥) 8 AuSlatia s il 8 3y glucia (5 5all el () 55 o oy
O dAmse (3) 5(1) Qs A (4) 5 (2) ot K G Gasi ey Giahy s
+(1) Al o s sl 5 il

Ayl dllia o Badl Frg sl aaie dilad any .(2.6) 03D e sl clalad) aaas
sl agilianae (5585 Of Sy Al colial (KA 8 rn ge 58 LS Baalaiio 5 58 g
Aol U S ) Alimne G 5 | g (5 bt Y] LS pall Aliane il€ 13 | i

Fx:02> Flz-F13X=O
then
F1, = Fi3cos 45



F3sin©

A 2
F,3c0s0 ol F -q

-q0)

(Q1_,QQ 1 —

— - = =

2 2 2 g 232
Fy:_O: F13y-F14:0 —>Q:2\/2q
Fiz3sin45=Fy
R o

——== q= «—

20 \/E az 2_\/5

O A g jia o5k Q Lo sl Alians Juad AN 5 Q o D) 4 o2
O 6l Q 5Ll Sl 5L
=-2
Q 5




,,,,,

Example 2.5

Two fixed charges, 1uC and -3uC are separated by 10cm as shown in
figure 2.7 (a) where may a third charge be located so that no force acts
on it? (b) is the equilibrium stable or unstable for the third charge?

3 1 2
F F
SR WG (D A\
O——@ e
d e T— >

Figure 2.7

.....

Solution
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(b) This equilibrium is unstable!! Why!!




§ """ Example 2.6

Two charges are located on the positive x-axis of a coordinate system,
as shown in figure 2.8. Charge q;=2nC is 2cm from the origin, and
charge g,=-3nC is 4cm from the origin. What is the total force exerted
by these two charges on a charge g;=5nC located at the origin?

Fa g Fg 02 01
< *— ® ®

4— 2cm —»:

4— 4cm —P
Figure 2.8

\ """" Solution

The total force on qz is the vector sum of the forces due to q; and
individually.

Fa1 = (9x10°)(2 x10°)(5 x10°)

, =2.25x107*N
(0.02)

Fe2 = (9x10°)(3x10°)(5x10°)

. = 0.84x10* N
(0.04)

LS Lealatl s Fag W lie 35 5 4 g indll e g0 Leilb fumpa O Aindl) of Cum
Fap blsia ilas 340 g 2l e 55 s Alla g Ll Wl (S8 8 s
: JEIS L) panlls Lol (S Fg Alandl 3530 (8 Il

Fo=Fy+Fy
4 4 4
S F3=084%x10 -2.25x10 =-1.41x10 N

The total force is directed to the left, with magnitude 1.41x10N.



2.3 Problems

2.1) Two protons in a molecule are
separated by a distance of 3.8x10
m. Find the electrostatic force
exerted by one proton on the other.

2.2) A 6.7uC charge is located 5m
from a -8.4uC charge. Find the
electrostatic force exerted by one
on the other.

2.3) Two fixed charges, +1.0x10°C
and -3.0x10°C, are 10cm apart. (a)
Where may a third charge be
located so that no force acts on it?
(b) Is the equilibrium of this third
charge stable or unstable?

2.4) Each of two small spheres is
charged positively, the combined
charge being 5.0x10°C. If each
sphere is repelled from the other by
a force of 1.0N when the spheres
are 2.0m apart, how is the total
charge distributed between the
spheres?

2.5) A certain charge Q is to be
divided into two parts, q and Q-g.
What is the relationship of Q to q if
the two parts, placed a given
distance apart, are to have a
maximum Coulomb repulsion?

2.6) A 1.3uC charge is located on
the x-axis at x=-0.5m, 3.2uC charge
is located on the x-axis at x=1.5m,
and 2.5uC charge is located at the

origin. Find the net force on the
2.5uC charge.

2.7) A point charge gi= -4.3uC is
located on the y-axis at y=0.18m, a
charge 0>=1.6uC is located at the
origin, and a charge q3z=3.7uC is
located on the x-axis at x=-0.18m.
Find the resultant force on the
charge q;.

2.8) Three point charges of 2uC,
7uC, and —4uC are located at the
corners of an equilateral triangle as
shown in the figure 2.9. Calculate
the net electric force on 7uC
charge.

7w

0.5m

60°

24C e

Figure 2.9

2.9) Two free point charges +g and
+4q are a distance 1lcm apart. A
third charge is so placed that the
entire system is in equilibrium.
Find the location, magnitude and
sign of the third charge. Is the
equilibrium stable?



at the corners of a square of sides a
as shown in the figure 2.10. Find
the resultant force on the positive
charge +q.

-q _q

+q a _q

Figure 2.10

2.11) Three point charges lie along

the y-axis. A charge q;=-9uC is at
y=6.0m, and a charge g,=-8uC is at
y=-4.0m. Where must a third
positive charge, gz, be placed such
that the resultant force on it is zero?

2.12) A charge q; of +3.4uC is

located at x=+2m, y=+2m and a
second charge (@,=t2.7uC is
located at x=-4m, y=-4m. Where
must a third charge (qs>0) be
placed such that the resultant force
on g3z will be zero?

2.10) Four point charges are situated 2.13) Two similar conducting balls of

mass m are hung from silk threads
of length | and carry similar
charges g as shown in the figure
2.11. Assume that 6 is so small
that tan6 can be replaced by sin6.
Show that

( 9?1

13
%= )

k272'80mg )

where x is the separation between
the balls (b) If 1=120cm, m=10g
and x=5cm, what is q?

Figure 2.11
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Electric field

3.1 The Electric Field

3.2 Definition of the electric field

3.3 The direction of E

3.4 Calculating E due to a charged particle

3.5 Tofind E for a group of point charge

3.6 Electric field lines

3.7 Motion of charge particles in a uniform electric field
3.8 Solution of some selected problems

3.9 The electric dipole in electric field

3.10 Problems



Electric field
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3.1 The Electric Field

The gravitational field g at a point in space was defined to be equal to the

gravitational fForce F acting on a test mass m, divided by the test mass
r

m, (3.1)

In the same manner, an electric field at a point in space can be defined in
term of electric force acting on a test charge g, placed at that point.

3.2 Definition of the electric field

Trhe electric field vector E at a point in space is defined as the electric force

F acting on a positive test charge placed at that point divided by the
magnitude of the test charge g,

r f
E=__ (3.2)

d,
The electric field has a unit of N/C

5 LS Qo diadl) (e 180 Jlaa pads pasls S 8 B 0eS) sl o L s
aa gl dga g g 1A AL A die o eS Jlae @l ()5 85 3.1 JSal 8 s
Jladl lual Wiy g §18) 8 3k 4 e (o Al iy (SIy Qo Al smg

eale B yigall 43 56N 5 8l DA o 56

o F

Figure 3.1



3.3 The direction of E

If Q is +ve the electric field at point p in space is radially outward from Q as
shown in figure 3.2(a).

If Q is -ve the electric field at point p in space is radially inward toward Q
as shown in figure 3.2(b).

P E
®  — @ —
Figure 3.2 (a) Figure 3.2 (b)

JSEN 8 LS Akl Ga oAl oladl b dunge sl Lo dki die Jlaall oladl o5y
Al ) Akl e Jsdall sladl b Al A L dai die Jlaall oladl 555 ¢3.2(a)
3.2(b) JLall i LS

3.4 Calculating E due to a charged particle

Consider Fig. 3.2(a) above, the magnitude of force acting on q, is given by
Coulomb’s law

o 1
F“%
E =
oy

- Are,
Q (33)

r2

E



3.5 To find E for a group of point charge

To find the magnitude and direction of the electric field due to several
charged particles as shown in figure 3.3 use the following steps

e e Jlaall sl ol all clin & 28 i

q
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Figure 3.3
r
E, =E+E, +E; + B4 + v (3.4)
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Y 35X o
Y sl Gl jageaa o X saall LS e pani (5)
Ex = E1x + Eox + Eax +Eax

Ey = E1y + Eay + Eay +Esy

E = & P Akl vie o eS)) Jladll dad (555 (6)
JE+8

B s dadleladl K (7)
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Example 3.1
Find the electric field at point p in figure 3.4 due to the charges shown.

3 O8uc
50cm
+2“C E3 +12},|.C
50cm 50cm
O———4—0
1 E p F 2
Figure 3.4
Iy X
§ """ Solution
r

E, =E;+E, + E;

Ex=Ei-E; = -36x10°N/C
E, = E3 = 28.8x10°N/C

E, = V(36x10%)%+(28.8x10%? = 46.1N/C
0 = 141°

Figure 3.5 Shows the resultant electric field
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Example 3.2

Find the electric field due to electric dipole along x-axis at point p,
which is a distance r from the origin, then assume r>>a

The electric dipole is positive charge and negative charge of equal
magnitude placed a distance 2a apart as shown in figure 3.6

+q
'y

1

E;singd

E

E,cos6é E,cosd E
2 1

Figure 3.6

™

oo W By dlaall s g il e ) By cllaal) Alase g p kil sie JSH Jladl)
o Lﬁi O dad)

Solution

E, =E,+E,
Obsluiia HY sl \q\ Ol sldia Glianill g ¢ agall iy il e aas P Akadll of Cus
ADLl et Jlaal a5

1 g1

E: =
4ne, az+r?

=E,

Aadie Jlaall alagl o) el ddaiall g L) o Lo o Aleall) Zalesal o) Lia LY

oDef Uil 8 LS (458 5o ) Jlaall aniie Jlas
Ex = E; sind - E;, sind



Ey = E; cosO + E; cosO = 2E; cosO

Ep = 2E; cosO
_ 1 g
Er = I, war? coséd
from the Figure
cosf= 2
vat+r?
E 1 q a
P _472'80 a2+r? Jgr+r2

2al

E, = S (3.5)

) A, (r2 + &)

The direction of the electric field in the -ve y-axis.

The quantity 2aq is called the electric dipole momentum (P) and has a
direction from the -ve charge to the +ve charge

(b) when r>>a

LE=_2
dre,r

(3.6)

3saall e dadl g ddaws xie electric dipole e sl el Jlaadl o o Lae oy
4l s electric dipole momentum sladl (e & 4aaladl o & (&l Caaiall
1 5 dilid) Gl ae e iy Jlall olé electric dipole e samall ddaall

dah pan g At Alla 8 4ke 5T ()5S Adlisal) e Jlanall Gl




3.6 Electric field lines

The electric lines are a convenient way to visualize the electric filed
patterns. The relation between the electric field lines and the electric

field vector is this:

(1) The tangent to a line of force at any point gives the direction of E at

that point.

(2) The lines of force are drawn so that the number of lines per unit

cross-sectional area is proportional to the magnitude of E .

Some examples of electric line of force

Electric field lines due to +ve

N2
i

A A A A A A A A A
Y YY Y Y Y YYY

3 i i o e

gt +++++++]
|

Electric'field lines due

surfare charae

two

Figure 3.7 shows some examples of electric line of force




Notice that the rule of drawing the line of force:-

(1) The lines must begin on positive charges and terminates on negative
charges.

(2) The number of lines drawn is proportional to the magnitude of the
charge.

(3) No two electric field lines can cross.

3.7 Motion of charge particles in a uniform electric field

If we are given a field E, what forces will act on a charge placed in it?

We start with special case of a point charge in uniform electric field E .
The electric field will exert a force on a charged particle is given by

F=qE
The force will produce acceleration
a=F/m
where m is the mass of the particle. Then we can write
F=qE=ma
The acceleration of the particle is therefore given by

a=gE/m 3.7

If the charge is positive, the acceleration will be in the direction of the
electric field. If the charge is negative, the acceleration will be in the
direction opposite the electric field.

One of the practical applications of this subject is a device called the
(Oscilloscope) See appendix A (Cathode Ray Oscilloscope) for further
information.




3.8 Solution of some selected problems




3.8 Solution of some selected problems

|||||

A positive point charge q of mass m is
releasel;d from rest in a uniform electric

field E directed along the x-axis as shown
in figure 3.8, describe its motion.

|||||

Solution
The acceleration is given by

a=0gE/m

Since the motion of the particle in one dimension, then we can apply the

equations of kinematics in one dimension
X-Xo= Vot+ ¥2 at V=V, +at
Taking x,=0and vp =0
X =Y at® = (qE/2m) t°
v=at=(qE/m) t

vZ =2ax = (2qE/m)x

|+

< X >

Figure 3.8

VZ=Vy? + 2a(X-Xo)

(3.7)




Example 3.4

In the above example suppose that a negative charged particle is
projected horizontally into the uniform field with an initial velocity v,
as shown in figure 3.9.

I
V,
S) 00| _
A A A A\M\A\ : > X
Xx.Y) \\@
E
++++++++\V
Figure 3.9
A
¥ """ Solution

Since the direction of electric field E in the y direction, and the charge is
negative, then the acceleration of charge is in the direction of -y.

a=-qE/m

The motion of the charge is in two dimension with constant acceleration,
With Vo = Vo & Vyo = 0
The components of velocity after time t are given by
Vy =V, =constant
vy =at=-(qE/m) t
The coordinate of the charge after time t are given by
X = Vot
y =% at? = - 1/2 (qE/m) ¢
Eliminating t we get
y = qE «2
2mv? (3.8

we see that y is proportional to x°>. Hence, the trajectory is parabola.
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Example 3.5

Find the electric field due to electric dipole shown in figure 3.10 along
x-axis at point p which is a distance r from the origin. then assume
r>>a

|||||

Solution
r +( 1
E, =E,+E,
2a
Ei= K_q_2 A
(x+a)
-q
(x —ay’
e 4 g X
B =K oy (x +a)”
E,
dax ;
E,=KQ———
p q(xz—az)2 By {p/
When x>>a then Figure 3.10
L. E = Zaq
dre, X3 3.9)

e Lo Jlaall Cuusliy Cus 28 Ailad) o 1588 58T X (585 Laxie 4l Alay) JaaY
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Example 3.6

What is the electric field in the lower left corner of the square as shown
in figure 3.11? Assume that q = 1x10”C and a = 5cm.

m
§ Solution

First we assign number to the charges (1, 2, 3, 4) and then determine the
direction of the electric field at the point p due to the charges.

- 1 d
! 47&90 aT
_ 1 q

2_47i€0 2a2
2q

E3 = e~ o

o

Evaluate the value of Ey, E,, & E;

Figure 3.11

E; = 3.6x10° N/C,

E,=1.8 x 10° N/C,
E;=7.2 x10° N/C

Since the resultant electric field is the vector additions of all the fields i.e.

r
E, =E,+E, + E;

We find the vector E; need analysis to two components
Eox = Bz c0s45 Epy = E; sind5

E, = E3 - E,c0845 = 7.2x10° - 1.8 x 10° cos45 = 6 x 10° N/C



Ey = -E; - E;5ind5 = -3.6x10° - 1.8 x 10° sin45 = - 4.8 x 10° N/C

E = =7.7 x 10° N/C
JE: +F,
ezt -1 y o
e =-386
& """ Example 3.7

In figure 3.12 shown, locate the point at which the electric field is zero?
Assume a = 50cm

,,,,,,

|
‘

L‘i a 4* d ﬂ
Figure 3.12

To locate the points at which the electric field is zero (E=0), we shall try all
the possibilities, assume the points S, V, P and find the direction of E; and
E, at each point due to the charges q; and q.

The resultant electric field is zero only when E; and E, are equal in
magnitude and opposite in direction.

At the point S E; in the same direction of E, therefore E cannot be zero in
between the two charges.



At the point V the direction of E; is opposite to the direction of E;, but the
magnitude could not be equal (can you find the reason?)

At the point P the direction of E; and E; are in opposite to each other and
the magnitude can be equal

Ei=E

1 2q _ 1 509
Aze, (05+d?  4m, @ )
d =30cm

O 058 daall baie aaeiy ) Akid) G Gglindl Gaad) Al & ad L BaY
Slo s oiinal gaa) 2 A 08 Lgala s LAY b Gnaline Glisal) cal€ 1Y) W el
o ey ndl) e ol s Legin Jual 51 Jadl)
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¥ Example 3.8

A charged cord ball of mass 1g is suspended §9
on a light string in the presence of a uniform :
electric field as in figure 3.13. When

E=(3i+5j) x10°N/C, the ball is in equilibrium

at 0=37°. Find (a) the charge on the ball and

(b) the tension in the string.

||||||

Solution

el Bl olb dua e Aindy Badie 380 ) Gam

RTA Figure 3.13

e S Jlaall sl 8 &5 gaiall 3 SU) Jle 5 fisal) 56

sl Alane 8 o3 Al B Dsaddl 5 Q) of LS
G st O Gkl . e s S e sl
Y X U'—iL\S)A &Js: ZF:ma

Ex = 3x10°N/C E, = 5jx10°N/C
2F=T+qE+F¢=0

YF«=QEx—Tsin37=0 1)
2Fy=0Ey + T cos 37 -mg=0 2

Substitute T from equation (1) into equation (2)

= mg _((1x105°)(9:8) . —1.09x10¢ C
| E + X "o+ 10
y I
L tan37) | tan 37

To find the tension we substitute for g in equation (1)
T gEX
" sin37 = 5.44x10° N

mg




3.9 The electric dipole in electric field

If an electric dipole placed in an external electric field E as shown in figure
3.14, then a torque will act to align it with the direction of the field.

v

O— (E
P
E
-qE<_O >
Figure 3.14
r
7 =PxE (3.10)
T =P Esin® (3.11)

where P is the electric dipole momentum, 6 the angle between P and E

138y siall Llua )53 W) 0 5< Lexie equilibrium o) 33 s 6 dadll Sld o S
(0=0, m) 058 Laxie Goaty

> >
> >

D—0 O—0

E ,

Figure 3.15 (ii) Figure 3.15 (i)

O3 s G dipole 3V ) Ji; 0 0= Laie 3.15(i) JSEl) & e sall puasll
Laiys ¢ 0 0= g ol ) oo yans 4365y Byl 30 51 13) Y stable equilibrium i
Dlise 3 o) F) gy & dipole 3V o) J& 3.15(1) JSA) (A masall sl
e s dipole 39 s o e Jaxd s als praa dal ) Y unstable equilibrium

0=7 ads 00= pa gl )



3.10 Problems

3.1) The electric force on a point
charge of 4.0uC at some point is
6.9x10"N in the positive x
direction. What is the value of the
electric field at that point?

3.2) What are the magnitude and
direction of the electric field that
will balance the weight of (a) an
electron and (b) a proton?
(Use the data in Table 1.)

3.3) A point charge of -5.2uC is
located at the origin. Find the
electric field (a) on the x-axis at
x=3 m, (b) on the y-axis at y=-4m,

(c) at the point with coordinates x=2m,
y=2m.

3.4) What is the magnitude of a
point charge chosen so that the
electric field 50cm away has the

magnitude 2.0N/C?
3.5) Two point charges of
magnitude  +2.0x10°C  and

+8.5x10'C are 12cm apart. (a)
What electric field does each
produce at the site of the other? (b)
What force acts on each?

3.6) An electron and a proton are
each placed at rest in an external
electric field of 520N/C. Calculate
the speed of each particle after
48nanoseconds.

3.7) The electrons in a particle beam
each have a Kinetic energy of
1.6x10J. What are the magnitude
and direction of the electric field
that will stop these electrons in a
distance of 10cm?

3.8) A particle having a charge of -
2.0x10°C is acted on by a
downward electric force of 3.0x10°
®N in a uniform electric field. (a)
What is the strength of the electric
field? (b) What is the magnitude
and direction of the electric force
exerted on a proton placed in this
field? (c) What is the gravitational
force on the proton? (d) What is the
ratio of the electric to the
gravitational forces in this case?

3.9) Find the total electric field
along the line of the two charges
shown in figure 3.16 at the point
midway between them.

—4.7uC +9uC
© . ®

3 m

Figure 3.16

3.10) What is the magnitude and
direction of an electric field that
will balance the weight of (a) an
electron and (b) a proton?



3.11) Three charges are arranged in +q a -2q

an equilateral triangle as shown in o ~®
figure 3.17. What is the direction
of the force on +q? a . a
+q N
.q.< a >.+2q
a a
Figure 3.19
+Q a Q 3.14) Two point charges are a
_ distance d apart (Figure 3.20). Plot
Figure 3.17 E(x), assuming x=0 at the left-hand

charge. Consider both positive and

3.12) In figure 3.18 locate the point at negative values of x. Plot E as
which the electric field is zero and positive if E points to the right and
also the point at which the electric negative if E points to the left.

potential is zero. Take g=1uC and Assume q.=+1.0x10°°C,
a=50cm. 9,=+3.0x10°°C, and d=10cm.
54 +2q _"4 .......... d - i b
® 9, 7,
o R ]
Figure 3.20
Figure 3.18 3.15) Calculate E (direction and
magnitude) at point P in Figure
3.21.

3.13) What is E in magnitude and
direction at the center of the square
shown in figure 3.19? Assume that
g=1uC and a=5cm.

Figure 3.21



3.16) Charges +q and -2q are fixed a
distance d apart as shown in figure
3.22.  Find the electric field at
points A, B, and C.

|< d ...,|<1,|41,|<...d....,|

X ® x @ X

A M g A0 c
Figure 3.22

3.17) A uniform electric field exists
in a region between two oppositely
charged plates. An electron is

released from rest at the surface of
the negatively charged plate and
strikes the surface of the opposite
plate, 2.0cm away, in a time
1.5x10%s. (a) What is the speed of
the electron as it strikes the second
plate? (b) What is the magnitude of
the electric field E?
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Electric Flux

4.1 The Electric Flux due to an Electric Field
4.2 The Electric Flux due to a point charge
4.3 Gaussian surface

4.4 Gauss’s Law
4.5 Gauss’s law and Coulomb’s law
4.6 Conductors in electrostatic equilibrium

4.7 Applications of Gauss’s law
4.8 Solution of some selected problems

4.9 Problems



Electric Flux
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4.1 The Electric Flux due to an Electric Field

We have already shown how electric field can be described by lines of
force. A line of force is an imaginary line drawn in such a way that its
direction at any point is the same as the direction of the field at that point.
Field lines never intersect, since only one line can pass through a single
point.

The Electric flux (@) is a measure of the number of electric field lines
penetrating some surface of area A.

Case one:

The electric flux for a plan surface perpendicular to a uniform electric
field (figure 4.1)

To calculate the electric flux we recall
that the number of lines per unit area is

Area = A

-

proportional to the magnitude of the N
electric field. Therefore, the number of !
lines penetrating the surface of area A is ==
proportional to the product EA. The >,
product of the electric filed E and the >
surface area A perpendicular to the field =
is called the electric flux ®.

Figure 4.1

®=EA (4.1)

The electric flux @ has a unit of N.m?/C.



Case Two
The electric flux for a plan surface make an angle £#to a uniform electric
field (figure 4.2)

Note that the number of lines
that cross-area is equal to the

number that cross the projected %
area A’, which is perpendicular

to the field. From the figure we
see that the two area are related =

by A'=Acosé. The flux is given g

by:

~ |

®=E.A"=E AcosO A =Acos

(]

®=EA Figure 4.2

Where 0 is the angle between
the electric field E and the

normal to the surface A.

15 0585 0= 0 sf Jladd) e Lasee ol ()58 Lavie alic dad 13 Gmdll (35S 1)

A asidl of s 1Y .0 = 90 Lexic (sf Jlaall L3l se ol )5 Laic (5 jium ad
.Z\ALMX\J\AEAQ;)HAJ}L}RAM\Q;M\Aga}m}z}hm.d\«;h}m

Case Three

In general the electric field is nonuniform over the surface (figure 4.3)
The flux is calculated by integrating the normal
component of the field over the surface in
question.

= [EA (4.2)

dA
D E

The net flux through the surface is proportional
to the net number of lines penetrating the
surface

Figure 4.3



Ll clS 1)) mdasd) (e 3 Al b ghadldl sae T net number of lines - 2 saaiall
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Example 4.1
What is electric flux @ for closed cylinder of radius R immersed in a
uniform electric field as shown in figure 4.4?

dA

Figure 4.4

’’’’’

Solution

®:£E.dA :f

1)

odef JSall 8 Ao sall DA mhaul) o asla o 5l Gl
E.dA+ }E.dmiE.dA
2) )
- ?E E cos180dA + éE cos90dA + ég E cos 0dA
( (
Since E is constant then

d=-EA+0+EA=2zero

Exercise

Calculate the total flux for a cube immersed in uniform electric field E




4.2 The Electric Flux due to a point charge
To calculate the electric flux due to a point
charge we consider an imaginary closed E
spherical surface with the point charge in the
center figure 4.5, this surface is called gaussian
surface. Then the flux is given by 4

A

® = [EdA = EfdAcoss  (0=0)
® = J_J.dA — J_4ﬂ_r2

47150r2 dre,r
Figure 4.5
o= (4.3) J

o

Note that the net flux through a spherical gaussian surface is proportional to
the charge q inside the surface.

4.3 Gaussian surface

Consider several closed surfaces as shown in
figure 4.6 surrounding a charge Q as in the
figure below. The flux that passes through
surfaces Si, S; and Sz all has a value g/ «,.
Therefore we conclude that the net flux through
any closed surface is independent of the shape of Figure 4.6
the surface.

Consider a point charge located outside a closed
surface as shown in figure 4.7. We can see that
the number of electric field lines entering the
surface equal the number leaving the surface.
Therefore the net electric flux in this case is
zero, because the surface surrounds no electric
charge. Figure 4.7
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Example 4.2

In figure 4.8 two equal and opposite charges of
20Q and -2Q what is the flux ® for the surfaces
S1, S, S3 and Sa.

,,,,,,

Solution
For S; the flux ® = zero

For S, the flux ® = zero
For S3 the flux @ = +2Q/ ¢,
For S4 the flux @ =-2Q/ ¢,

Figure 4.8

4.4 Gauss’s Law

Gauss law is a very powerful theorem, which
relates any charge distribution to the resulting
electric field at any point in the vicinity of the
charge. As we saw the electric field lines
means that each charge g must have g/g, flux
lines coming from it. This is the basis for an
important equation referred to as Gauss’s
law. Note the following facts:

1. If there are charges qs, 02, Js, Qs inside
a closed (gaussian) surface, the total
number of flux lines coming from these
charges will be

@Q+Qe+0s+....... +Qn)/€o

dA

Figure 4.9

(4.4)



2. Trhe'number of flux lines coming out of a closed surface is the integral of
E.dA over the surface, jSE.dA

We can equate both equations to get Gauss law which state that the net
electric flux through a closed gaussian surface is equal to the net charge
inside the surface divided by &,
S qin
fE.dA _— Gauss’s law (4.5)
&

o

where qin is the total charge inside the gaussian surface.

Gauss’s law states that the net electric flux through any closed gaussian
surface is equal to the net electric charge inside the surface divided by
the permittivity.

4.5 Gauss’s law and Coulomb’s law

We can deduce Coulomb’s law from Gauss’s E
law by assuming a point charge g, to find the

electric field at point or points a distance r DdA
from the charge we imagine a spherical i

gaussian surface of radius r and the charge q at
its center as shown in figure 4.10.

rr qin
f EdA=——

o

E cos0dA = G )
§ = Because E is

o

constant for all points on the sphere, it can be factored from the inside of the
integral sign, then

qin . .
E§dA: = EA:qm — E(47Zf2)=q'_n
€o & &



L=+ @ (4.6)
4dre, r?

Now put a second point charge q, at the point, which E is calculated. The
magnitude of the electric force that acts on it F = Eq,

_ 1 @

Ans, 12

4.6 Conductors in electrostatic equilibrium

A good electrical conductor, such as copper, contains charges (electrons)
that are free to move within the material. When there is no net motion of
charges within the conductor, the conductor is in electrostatic equilibrium.

Conductor in electrostatic equilibrium has the following properties:

1. Any excess charge on an isolated conductor must reside entirely on its
surface. (Explain why?) The answer is when an excess charge is placed
on a conductor, it will set-up electric field inside the conductor. These
fields act on the charge carriers of the conductor (electrons) and cause
them to move i.e. current flow inside the conductor. These currents
redistribute the excess charge on the surface in such away that the
internal electric fields reduced to become zero and the currents stop, and
the electrostatic conditions restore.

2. The electric field is zero everywhere inside the conductor. (Explain
why?) Same reason as above

In figure 4.11 it shows a conducting slab
in an external electric field E. The
charges induced on the surface of the slab
produce an electric field, which opposes
the external field, giving a resultant field
of zero in the conductor.

W
W

|
~ +H+++++++

-

Figure 4.11



Steps which should be followed in solving problems

1. The gaussian surface should be chosen to have the same
symmetry as the charge distribution.

2. The dimensions of the surface must be such that the surface
includes the point where the electric field is to be calculated.

3. From the symmetry of the charge distribution, determine the
direction of the electric field and the surface area vector dA, over
the region of the gaussian surface.

4. Write E.dA as E dA cosO and divide the surface into separate
regions if necessary.




4.7 Applications of Gauss’s law

u\ Ln\@)}.ﬂ\ \M}cw\wdmu@)}.ﬂulsd.\huu}\;uybuhmhh_)sjus
.M\.@J\ Lalay) W}mu@&uuhﬂ\

LS (i el (e Ailue 205 Adas die o 5eS)) dlaall Claa Bl 1) JE Qs e
s o) s e 5 Alaie 4k de jse Al Alall o2 A La (412 O 3
salie L) Gl s A5 38 Jia Jals A(C/M) a5l DS any s alitie diadl

(p) st wie (L 8U AE Jlaad) Gauni g X Lo S J5ha 3 0

dE
0
;
O =SS oois FFFFETT T —®
X
Figure 4.12
dqg Adx
dE =K =K
r?+x? ré+x?
b A Al I A el olat) 8 5 5S5 Alanal) 5 5 AEY) LSl G aas lall g

Yy ol

dE, = dE cosf Ey= [dE, = [cosodE



E=2 lcostE

0
ol LS OX sl s X sl (e i sl (S (gl IS
dx =y sec’0 do

X =Yy tano =

e= 4

T e lcos&de G
E= A

27e,r

A Ainall Jomial) w5l Ala b alsS sl alasinly Jall G gae calia el dlay
O lle a5 VAl oda Jia b € Jall om0 Gosle 56 oy

dx
jcos@ s

Jel&ill 2gaa ) 4l

Gauss’s law can be used to calculate the electric field if the symmetry of
the charge distribution is high. Here we concentrate in three different

ways of charge distribution

1 2 3
Charge distribution | Linear | Surface | Volume
Charge density A c p
Unit C/m C/m? Cc/m®




A linear charge distribution
In figure 4.13 calculate the electric field at a distance r from a uniform
positive line charge of infinite length whose charge per unit length is

A=constant.
E

TI T I T T L FF

| L |
Figure 4.13

The electric field E is perpendicular to the line of charge and directed
outward. Therefore for symmetry we select a cylindrical gaussian surface
of radius r and length L.

The electric field is constant in magnitude and perpendicular to the surface.

The flux through the end of the gaussian cylinder is zero since E is parallel
to the surface.

The total charge inside the gaussian surface is AL.
Applying pagss Iq‘l_w we get

fE.dA:—
60
E§dA:A
&
EZML:A
&
A
SLE=7"" 4.7
27E,r 4.7
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A surface charge distribution
In figure 4.4 calculate the electric field due to non-conducting, infinite plane
with uniform charge per unit area c.

T AR
e T

Sy
oy
+ &
&
<\;
4\>

Figure 4.14

The electric field E is constant in magnitude and perpendicular to the plane
charge and directed outward for both surfaces of the plane. Therefore for
symmetry we select a cylindrical gaussian surface with its axis is
perpendicular to the plane, each end of the gaussian surface has area A and
are equidistance from the plane.

The flux through the end of the gaussian cylinder is EA since E is
perpendicular to the surface.

The total electric flux from both ends of the gaussian surface will be 2EA.
Applying Gauss law we get
rr qin
fEdA="—
&

o

2EA:U_A

~EB=7" (4.8)




An insulated conductor.
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A volume charge distribution

In figure 4.16 shows an insulating sphere of radius a has a uniform charge
density p and a total charge Q.

1) Find the electric field at point outside the sphere (r>a)

2) Find the electric field at point inside the sphere (r<a)

For r>a

Figure 4.16

We select a spherical gaussian surface of radius r, concentric with the
charge sphere where r>a. The electric field E is perpendicular to the
gaussian surface as shown in figure 4.16. Applying Gauss law we get

rr qin
fE.dA= —
E§A: E(4ar?) _Q
&o
E= —ZQ (for r>a) (4.10)
4dre,r ’

Note that the result is identical to appoint charge.



For r<a

Figure 4.17

We select a spherical gaussian surface of radius r, concentric with the
charge sphere where r<a. The electric field E is perpendicular to the
gaussian sgrfgce as shown in figure 4.17. Applying Gauss law we get

fE.dA:g—

o

It is important at this point to see that the charge inside the gaussian surface
of volume V' is less than the total charge Q. To calculate the charge qn, we
use gin=pV", where V'=4/3rr®. Therefore,

Qin =pV"=p(4/37r3) (4.11)

E§A: E4ar?)=

s &0
o 27 _ P (4.12)
Aze,r?  Aze,r? 3,
since ¥~
4’
E=- % (forr<a) (4.13)
4, '

12

Note that the electric field when
r<a is proportional to r, and when
r>a the electric field is proportional

2
to 1/r". 1.0 2.0 3.0
r10%m

0.8

E 10"°N/C

0.4




4.8 Solution of some selected problems
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4.8 Solution of some selected problems

\\\\\\

Example 4.3

If the net flux through a gaussian surface is zero, which of the following
statements are true?

1) There are no charges inside the surface.

2) The net charge inside the surface is zero.

3) The electric field is zero everywhere on the surface.

4) The number of electric field lines entering the surface equals the
number leaving the surface.

......

Solution

Statements (b) and (d) are true. Statement (a) is not necessarily true since
Gauss' Law says that the net flux through the closed surface equals the net
charge inside the surface divided by &,. For example, you could have an
electric dipole inside the surface. Although the net flux may be zero, we
cannot conclude that the electric field is zero in that region.

W%

A spherical gaussian surface surrounds a point charge g. Describe what
happens to the: flux through the surface if

1) The charge is tripled,

2) The volume of the sphere is doubled,

3) The shape of the surface is changed to that of a cube,

4) The charge is moved to another position inside the surface;

A

E """ Solution

1) If the charge is tripled, the flux through the surface is tripled, since the
net flux is proportional to the charge inside the surface

2) The flux remains unchanged when the volume changes, since it still

surrounds the same amount of charge.

3) The flux does not change when the shape of the closed surface changes.



4) The flux through the closed surface remains unchanged as the charge
inside the surface is moved to another position. All of these conclusions
are arrived at through an understanding of Gauss' Law.

§ """ Example 4.5

A solid conducting sphere of

radius a has a net charge +2Q. A

conducting spherical shell of

inner radius b and outer radius c

is concentric with the solid sphere i
and has a net charge —Q as shown

in figure 4.18. Using Gauss’s law ‘
find the electric field in the

regions labeled 1, 2, 3, 4 and find

the charge distribution on the

spherical shell. _
Figure 4.18

;;;;;;

\ Solution
Ghalia die 1 56S) Jlaal) Guetd SN (g5 < B e G S e Ll a5 of Jaadls

oF o ykad iy AN (55 S w;‘éciwoi i s dalia

Reqgion (1) r<a

To find the E inside the solid sphere of radius a we construct a gaussian
surface of radius r < a

E = 0 since no charge inside the gaussian surface.

Region (2)a<r<b
we constryct p spa_erical gaussian surface of radius r
in

fE.dA:g—

o
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E 4nr? = E
&o
~LE= ! @ a<r<b
dre, r?

Region () r>c

we construct a spherical gaussian surface of radius r > c, the total net charge
inside the gaussian surface is q = 2Q + (-Q) = +Q Therefore Gauss’s law
giVES rr G,

fE.dA:—

E 4nr® = S

ce= B Q

_ r>c
4re, r?

Reqgion (3)b>r<c
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Example 4.6

A long straight wire is surrounded by a hollow cylinder whose axis
coincides with that wire as shown in figure 4.19. The solid wire has a
charge per unit length of +A, and the hollow cylinder has a net charge

per unit length of

+2)\. Use Gauss law to find (a) the charge per unit

length on the inner and outer surfaces of the hollow cylinder and (b) the
electric field outside the hollow cylinder, a distance r from the axis.

Solution

(@) Use a cylindrical Gaussian surface S; within
the conducting cylinder where E=0

rr )
Thus | =
oE.dA
&

o

and the charge per unit length on the inner surface

must be equal to

+A

=0

P B
R e

2%
Ainner = -A *
Also Ainner T Aouter = 24
thus Aouter = 3M
(b) For a gaussian surface S, outside the
conducting cylinder \—/
rr qin
{EdA= . Figure 4.19
1 o
E@nrL)= — (A-A+3A0L
&o
S E= 34

27T, X




& """ Example 4.7

Consder a long cylindrical charge distribution of radius R with a
uniform charge density p. Find the electric field at distance r from the
axis where r<R.

& """ Solution
If we choose a cilindrical gaussian surface of length L and radius r, Its

volume is 7rL, and it enclses a charge prr’L. By applying Gauss’s law we
get,

rr q. par?l
§ EdA=_"" pecomes E§dA -
& &,

ar?L

QfdA = 2mrL therefore EQ2arL) = /%_

Thus
E= *Z'O—r radially outward from the cylinder axis
€o

Notice that the electric field will increase as p increases, and also the
electric field is proportional to r for r<R. For thr region outside the cylinder
(r>R), the electric field will decrese as r increases.
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Example 4.8
Two large non-conducting sheets of +ve charge face each other as
shown in figure 4.20. What is E at points (i) to the left of the sheets (ii)
between them and (iii) to the right of

+C +G
the sheets? 0 0
™A H—
[RAY ar K
§ Solution 2 E, -+ EL " E, S
We know previously that for each sheet, i o
the magnitude of the field at any point | < +
s E, M E B E
o + +
E= 2¢, o i
5 s
(@) At point to the left of the two [ 9
parallel sheets -
E=-E; +(-E,) =-2E Figure 4.20
LE=-2
€o

(b) At point between the two sheets
E=E; + (-E2) = zero

(c) At point to the right of the two parallel sheets
E=E; +E,=2E

o
~E=7
o



4.9 Problems

4.1) An electric field of intensity
3.5x103N/C is applied the x-axis.
Calculate the electric flux through a
rectangular plane 0.35m wide and
0.70m long if (a) the plane is
parallel to the yz plane, (b) the
plane is parallel to the xy plane,
and (c) the plane contains the y axis
and its normal makes an angle of
40° with the x axis.

4.2) A point charge of +5uC is
located at the center of a sphere
with a radius of 12cm. What is the
electric flux through the surface of
this sphere?

4.3) (a) Two charges of 8uC and -
5uC are inside a cube of sides
0.45m. What is the total electric
flux through the cube? (b) Repeat

(a) if the same two charges are inside a

spherical shell of radius 0. 45 m.

4.4) The electric field everywhere
on the surface of a hollow sphere
of radius 0.75m is measured to be
equal to 8.90x10°N/C and points
radially toward the center of the
sphere. (a) What is the net charge
within the surface? (b) What can
you conclude about charge inside
the nature and distribution of the
charge inside the sphere?

4.5) Four

closed surfaces, S,
through S4, together with the
charges -2Q, +Q, and -Q are
sketched in figure 4.21. Find the
electric flux through each surface.

Figure 4.21

4.6) A conducting spherical shell of

radius 15cm carries a net charge of

-6.4uC uniformly distributed on its
surface. Find the electric field at
points (a) just outside the shell and
(b) inside the shell.

4.7) A long, straight metal rod has a

radius of 5¢cm and a charge per unit
length of 30nC/m. Find the electric
field at the following distances
from the axis of the rod: (a) 3cm,
(b) 10cm, (c) 100cm.



4.8) A square plate of copper of
sides 50cm is placed in an extended
electric field of 8x10*N/C directed
perpendicular to the plate. Find (a)
the charge density of each face of
the plate and (b) the total charge on
each face.

4.9) A solid copper sphere 15cm in
radius has a total charge of 40nC.
Find the electric field at the
following distances measured from
the center of the sphere: (a) 12cm,
(b) 17cm, (c) 75cm. (d) How would
your answers change if the sphere
were hollow?

4.10) A solid conducting sphere of
radius 2cm has a positive charge of
+8uC. A conducting spherical
shell d inner radius 4cm and outer
radius 5cm is concentric with the
solid sphere and has a net charge of
-4uC. (a) Find the electric field at
the following distances from the
center of this charge configuration:
(@) r=1cm, (b) r=3cm, (c) r=4.5cm,
and (d) r=7cm.

4.11) A non-conducting sphere of
radius a is placed at the center of a
spherical conducting shell of inner
radius b and outer radius c, A
charge +Q is distributed uniformly
through the inner sphere (charge
density pC/m?) as shown in figure
4.22. The outer shell carries -Q.
Find E(r) (i) within the sphere
(r<a) (ii) between the sphere and
the shell (a<r<b) (iii) inside the
shell (b<r<c) and (iv) out side the

4.14) A

shell and (v) What is the charge
appear on the inner and outer
surfaces of the shell?

Figure 4.22

4.12) A solid sphere of radius 40cm

has a total positive charge of 26uC
uniformly distributed throughout its
volume. Calculate the electric field
intensity at the following distances
from the center of the sphere: (a) 0
cm, (b) 10cm, (c) 40cm, (d) 60 cm.

4.13) An insulating sphere is 8cm in

diameter, and carries a +5.7uC
charge  uniformly  distributed
throughout its interior volume.
Calculate the charge enclosed by a
concentric spherical surface with
the following radii: (a) r=2cm and
(b) r=6cm.

long conducting cylinder
(length 1) carry a total charge +q is
surrounded by a conducting
cylindrical shell of total charge -2q
as shown in figure 4.23. Use



Gauss’s law to find (i) the electric
field at points outside the
conducting shell and inside the
conducting  shell, (i)  the
distribution of the charge on the
conducting shell, and (iii) the
electric field in the region between
the cylinder and the cylindrical
shell?

Figure 4.23

4.15) Consider a thin spherical shell

of radius 14cm with a total charge
of 32uC distributed uniformly on
its surface. Find the electric field
for the following distances from the
center of the charge distribution:
(@) r=10cm and (b) r =20cm.

4.16) A large plane sheet of charge

has a charge per unit area of
9.0uC/m? Find the electric field
intensity just above the surface of
the sheet, measured from the sheet's
midpoint.

4.17) Two large metal plates face

each other and carry charges with
surface density +c and -o
respectively, on their inner surfaces
as shown in figure 4.24. What is E
at points (i) to the left of the sheets
between them and (iii) to the right
of the sheets?

A 1A
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Figure 4.24




Multiple Choice Questions

Part 1
Principles of Electrostatic

Coulomb’s Law
Electric Field
Gauss’s Law

Electric Potential Difference

Attempt the following question after the
completion of part 1



[1]

[2]

[3]

[4]

Two small beads having positive charges 3 and 1 are fixed on the opposite
ends of a horizontal insulating rod, extending from the origin to the point
x=d. As in Figure 1, a third small, charged bead is free to slide on the rod.
At what position is the third bead in equilibrium?

+3q +q

)
[ o ®
H i

‘& »
<« L]

Figure 1
a. x = 0.366d
b. x=0.634d
C. x =0.900d
d x=237d

Two identical conducting small spheres are placed with their centers 0.300m
apart. One is given a charge of 12.0nC and the other one a charge of 18.0nC.
(a) Find the electrostatic force exerted on one sphere by the other.

(b) The spheres are connected by a conducting wire. After equilibrium has
occurred, find the electrostatic force between the two.

() 2.16 x 10™ N attraction; (b) 0 N repulsion

(a) 6.47 x 10°® N repulsion; (b) 2.70 x 10”" N attraction
() 2.16 x 10™ N attraction; (b) 8.99 x 107 N repulsion
(a) 6.47 x 10° N attraction; (b) 2.25 x 10” N repulsion

oo o

An electron is projected at an angle of 40.0° above the horizontal at a speed
of 5.20 x 10° m/s in a region where the electric field is E = 3 50 j N/C.
Neglect gravity and find (a) the time it takes the electron to return to its
maximum height, (h) the maximum height it reaches and (c) its horizontal
displacement when it reaches its maximum height.

() 1.09 x 10 s; (b) 0.909 mm; (c) 2.17 m
(a) 1.69 x 10%s; (b) 2.20 mm; (c) 4.40 m
() 1.09 x 10 s; (b) 4.34 mm:; (c) 0.909 m
(a) 1.30 x 10%s; (b) 1.29 mm; () 2.17 m

o0 o

Two identical metal blocks resting on a frictionless horizontal surface are
connected by a light metal spring for which the spring constant is k 175 N/m
and the unscratched length is 0.350 m as in Figure 2a.



[5]

[6]

Figure 2

A charge Q is slowly placed on the system causing the spring to stretch to an
equilibrium length of 0.460 m as in Figure 2b. Determine the value of Q,
assuming that all the charge resides in the blocks and that the blocks can be
treated as point charges.

a.64.8 uC

b.32.4 uC

c.85.1 uC

d. 42.6 uC

A small plastic ball 1.00 g in mass is suspended by a 24.0 cm long string in a

uniform electric field as shown in Figure P23.52.
y

E=1.5x10% N/C

Figure 3

If the ball is in equilibrium when the string makes a 23.0° angle with the
vertical, what is the net charge on the ball?

a. 36.1 uC
b. 15.4 uC
C.6.53pC
d.2.77 uC

An object having a net charge of 24.0 uC is placed in a uniform electric field
of 6 10 N/C directed vertically. What is the mass of the object if it "floats" in
the field?



a.0.386 g
b. 0.669 g
c.259¢
d.149¢

[7] Four identical point charges (q = +14.0 uC) are located on the corners of a
rectangle as shown in Figure 4.
q q

Figure 4

The dimensions of the rectangle are L = 55.0 cm and W= 13.0 cm.
Calculate the magnitude and direction of the net electric force exerted on the
charge at the lower left corner by the other three charges. (Call the lower left
corner of the rectangle the origin.)

106 mN @ 264°
758 mN @ 13.3°
7.58 mN @ 84.0°
106 mN @ 193°

coow

[8] An electron and proton are each placed at rest in an electric field of 720 N/C.
Calculate the speed of each particle 44.0 ns after being released.

a.  Ve=127x10°m/S, v,=6.90x10°m/s
b. Vve=556x10°m/S, v,= 3.04 x 10°

C.  Ve.=127x10"m/S, v,=6.90x 10" m/s
d  ve=3.04x10°m/S, v,=5.56x10°m/s

[9] Three point charges are arranged as shown in Figure 5.



3nC 0.250m 4 nC

0.175m
-2nC

Figure 5

@ Find the vector electric field that the 4.00 nC and -2.00 nC charges
together create at the origin. (b) Find the vector force on the 3.00 nC charge.

a. (a) (0.144i - 0.103 j) KN/C; (b) (0.432i - 0.308]) uN
b. (a) (-0.575i - 0.587] ) kN/C; (b) (-1.73i- 1.76j) uN

c. (a) (-0.144i - 0.103j) KN/C; (b) (-0.432i - 0.308j) uN
d. (a) (-0.575i + 0.587j) kN/C; (b) (-1.73i + 1.76j) uN

[10]Two 1.00 uC point charges are located on the x axis. One is at x = 0.60 m,
and the other is at x = -0.60 m. (a) Determine the electric field on the y axis

at x = 0.90 m. (b) Calculate the electric force on a -5.00 uC charge placed on
the y axis at y = 0.90 m.

a. () (8.52 x 10% +1.28 x 10%)N/C; (b) (-4.62 x 102 — 6.39 x 10%))N

b. (a) 8.52 x 10% N/C; (b) -4.26 x 10%j N
c. (a) 1.28 x 10% N/C; (b) -6.39 x 103j N
d. () -7.68 x 10°N/C; (b) 3.84 x 103 N

[11]A 14.0uC charge located at the origin of a cartesian coordinate system is
surrounded by a nonconducting hollow sphere of radius 6.00 cm. A drill
with a radius of 0.800 mm is aligned along the z-axis, and a hole is drilled
in the sphere. Calculate the electric flux through the hole.

a. 176 Nm?%C
b.4.22 Nm?/C
c. 0 Nm?%C

d. 70.3 Nm?/C

[12]An electric field of intensity 2.50 kKN/C is applied along the x-axis.
Calculate the electric flux through a rectangular plane 0.450 m wide and



0.800 m long if (a) the plane is parallel to the yz plane; (b) the plane is
parallel to the xy plane; (c) the.plane contains the y-axis and its normal
makes an angle of 30.0° with the x-axis.

(2) 900 Nm?/C; (b) 0 Nm?/C; (c) 779 Nm%C
(a) 0 Nm?%/C; (b) 900 Nm?/C; (c) 779 Nm?C
(a) 0 Nm?%/C; (b) 900 Nm?/C; (c) 450 Nm?/C
(a) 900 Nm?/C; (b) 0 Nm?/C; (c) 450 Nm*C

o0 o

[13] A conducting spherical shell of radius 13.0 cm carries a net charge of -
7.40 uC uniformly distributed on its surface. Find the electric field at
points (a) just outside the shell and (b) inside the shell.

(@) (-7.88 mN/C)r;  (b) (-7.88 mN/C)r
(@) (7.88 mN/C)r; (b) (0 mN/C)r
@) (-3.94 mN/C)r;  (b) (0 mN/C)r
(@) (3.94 mN/C)r; (b) (3.94 mN/C)r

o0 o

[14]A point charge of 0.0562 pC is inside a pyramid. Determine the total
electric flux through the surface of the pyramid.

a.1.27 x 10° Nm?/C?
b.6.35 x 10° Nm?/C?
c. 0 Nm?/C?

d. 3.18 x 10* Nm%C?

[15]A large flat sheet of charge has a charge per unit area of 7.00 uC/m?. Find
the electric field intensity just above the surface of the sheet, measured from

its midpoint.

a.  7.91x10° N/C up
b.  1.98 x 10° N/C up
c.  3.95x10° N/C up
d.  1.58 x 10° N/C up

[16] The electric field on the surface of an irregularly shaped conductor
varies from 60.0 KN/C to 24.0 KN/C. Calculate the local surface charge



density at the point on the surface where the radius of curvature of the
surface is (a) greatest and (b) smallest.

0.531 uC/m?  (b) 0.212, pC/m?
.06, uC/m*  (b) 0.425 pC/m?
0.425, uC/m?: (b) 1.06pC/m?

0.212 uC/m?  (b) 0.531 uC/m?

o0 o

[17]A square plate of copper with 50.0 cm sides has no net charge and is placed
in a region of uniform electric field of 80.0 kN/C directed perpendicular to
the plate. Find (a) the charge density of each face of the plate and (b) the
total charge on each face.

a. (@) o =+0.708 uC/m%  (b) Q =+ 0.0885 pC
b.(@) o =+1.42 uC/m%  (b) Q =+0.354 uC
c.(@) o=+0.708 uC/m* (b)) Q=+0.177 uC
d. () o =+142uC/m% (b)) Q =+0.177 uC

[18]The following charges are located inside a submarine: 5.00uC, -9.00uC,
27.0uC and -84.0uC. (a) Calculate the net electric flux through the
submarine. (b) Is the number of electric field lines leaving the submarine
greater than, equal to, or less than the number entering it?

() 1.41 x 10 Nm?C; (b) greater than
(a) -6.89 x 10° Nm?%/C; (b) less than
(a) -6.89 x 10° Nm%C; (b) equal to
() 1.41 x 10 Nm%/C; (b) equal to

o0 o

[19]A solid sphere of radius 40.0 cm has a total positive charge of 26.0uC
uniformly distributed throughout its volume. Calculate the magnitude of the
electric field at 90.0 cm.

a. (2.89 x 10° N/C)r
b. (3.29 x 10° N/C)r
c.0N/C

d. (1.46 x 10° N/C)r




[20]A charge of 190 uC is at the center of a cube of side 85.0 cm long. (a) Find
the total flux through each face of the cube. (b) Find the flux through the
whole surface of the cube.

() 3.58 x 10° Nm%C; (b) 2.15 x 10" Nm*C
(a) 4.10 x 10’ Nm?/C; (b) 4.10 x 10" Nm?/C
() 1.29 x 108 Nm%C; (b) 2.15 x 10’ Nm?/C
() 6.83 x 10° Nm?/C; (b) 4.10 x 10" Nm*C

o0 ow

[21]A 30.0 cm diameter loop is rotated in a uniform electric field until the
position of maximum electric flux is found. The flux in this position is
found to be 3.20 x 105 Nm2/C. What is the electric field strength?

3.40 x 10° N/C
4.53 x 10° N/C
1.13 x 10°N/C
1.70 x 10° N/C

o0 o

[22]Consider a thin spherical shell of radius 22.0 cm with a total charge of
34.0uC distributed uniformly on its surface. Find the magnitude of the
electric field (a) 15.0 cm and (b) 30.0 cm from the center of the charge
distribution.

a.  (a)6.32x10°N/C;  (b)3.40 x 10° N/C
b. (a)0N/C; (b) 6.32 x 10° N/C
c. (a)1.36x10"N/C;  (b)3.40 x 10° N/C
d. (@) 0N/C; (b) 3.40 x 10° N/C

[23]A long, straight metal rod has a radius of 5.00 cm and a charge per unit
length of 30.0 nC/m. Find the electric field 100.0 cm from the axis of the
rod, where distances area measured perpendicular to the rod.

(1.08 x 10* N/C)r
(2.70 x 10 N/C)r
(5.39 x 10> N/C)r
(O N/C)r

oo ow




[24]A solid conducting sphere of radius 2.00 cm has a charge of 8.00 uC. A
conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm
is concentric with the solid sphere and has a charge of -4.00 uC. Find the
electric field at r = 7.00 cm from the center of this charge configuration.

(2.20 x 10" N/C)r
(4.32 x 10" N/C)r
(7.34 x 10° N/C)r
(1.44 x 10" N/C)r

o0 o

[25] The electric field everywhere on the surface of a thin spherical shell of radius
0.650 m is measured to be equal to 790 N/C and points radially toward the
center of the sphere. (a) What is the net charge within the sphere's surface?
(b) What can you conclude about the nature and distribution of the charge
inside the spherical shell?

(a) 3.71x10C; (b) The charge is negative, its distribution is
spherically symmetric.

(a) 3.71 x 10°® C; (b) The charge is positive, its distribution is
uncertain.

() 1.93x10™ C; (b) The charge is positive, its distribution is
spherically symmetric.

(a) 1.93x10™ C; (b) The charge is negative, its distribution is
uncertain.

[26]Four identical point charges (q = +16.0 uC) are located on the corners of a
rectangle, as shown in Figure 6.

q q

L

Figure 6

q

The dimensions of the rectangle are L 70.0 cm and W= 30.0 cm. Calculate
the electric potential energy of the charge at the lower left corner due to the
other three charges.

a.14.9]



b.7.94]
c.14.0J
d.34.2)

[27] The three charges in Figure 7 are at the vertices of an isosceles triangle.

4 cm

- -q
Figure 7

Calculate the electric potential at the midpoint of the base, taking g=7.00 uC.
a.-14.2 mV
b.11.0 mV
c.14.2 mV
d.-11.0mV

[28]An insulating rod having a linear charge density = 40.0 uC/m and linear
mass density 0.100 kg/m is released from rest in a uniform electric field
E=100 V/m directed perpendicular to the rod (Fig. 8).



———=> -———=>
———=> -———=>
- -——=> -———=> E
-———=> -——=>
-——=> -——=>
Figure 8

(@) Determine the speed of the rod after it has traveled 2.00 m. (b)
How does your answer to part (a) change if the electric field is not
perpendicular to the rod?

(a) 0.200 m/s; (b) decreases
(a) 0.400 m/s; (b) the same
(a) 0.400 m/s; (b) decreases
(a) 0.200 m/s; (b) increases

oo o

[29]A spherical conductor has a radius of 14.0 cm and a charge of 26.0uC.
Calculate the electric field and the electric potential at r = 50.0 cm from the
center.

9.35 x 10° N/C, 1.67 mV
1.19 x 10" N/C, 0.468 mV
9.35 x 10° N/C, 0.468 mV
1.19 x 10" N/C, 1.67 mV

o0 o

[30]How many electrons should be removed from an initially unchanged
spherical conductor of radius 0.200 m to produce a potential of 6.50 kV at
the surface?

a.  1.81x10%
b. 2.38x 107
c.  9.04x10%
d.  1.06 x 10°

[31]An ion accelerated through a potential difference of 125 V experiences an
increase in kinetic energy of 9.37 x 10" J. Calculate the charge on the ion.



1.33x 10 C

a.

b. 7.50x10%°C
c. 1.17x10%cC
d. 1.60x10%°C

[32]How much work is done (by a battery, generator, or some other source of
electrical energy) in moving Avagadro's number of electrons from an initial
point where the electric potential is 9.00 V to a point where the potential is -
5.00 V? (The potential in each case is measured relative to a common
reference point.)

a. 0.482 MJ
b. 0.385 MJ
c.1.35 MJ

d. 0.867 MJ

[33]At a certain distance from a point charge, the magnitude of the electric field
is 600 V/m and the electric potential is -4.00 kV. (a) What is the distance to
the charge? (b) What is the magnitude of the charge?

(@ 0.150 m;  (b) 0.445 uC
(@ 0.150m;  (b)-1.50 uC
(@) 6.67 m; (b) 2.97 uC

(@) 6.67 m; (b) -2.97 uC

o0 o

[34] An electron moving parallel to the x-axis has an initial speed of 3.70 x
10° m/s at the origin. Its speed is reduced to 1.40 x 10° m/s at the point x =
2.00 cm. Calculate the potential difference between the origin and that
point. Which point is at the higher potential?

a.  -38.9V, the origin
b. 195V, x

c. 389V,x

d.

-19.5V, the origin




Solution of the multiple choice questions

(O\\[o} Answer Q. No. Answer
1 b 18 b
2 c 19 a
3 a 20 a
4 d 21 b
5 d 22 d
6 d 23 c
7 a 24 c
8 b 25 a
9 b 26 c
10 c 27 d
11 d 28 b
12 a 29 c
13 c 30 c
14 b 31 b
15 c 32 c
16 d 33 d
17 c 34 a
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Chapter 1

Nature of light



Answer: Yes! As we'll see below, there is experimental evidence for both interpretations, although
they seem contradictory.
1.1.1  What is a wave?

More familiar types of waves are sound, or waves on a surface of water. In both cases, there is a
perturbation with a periodic spatial pattern which propagates, or travels in space. In the case
of sound waves in air for example, the perturbed quantity is the pressure, which oscillates about
the mean atmospheric pressure. In the case of waves on a water surface, the perturbed quantity
1s simply the height of the surface, which oscillates about its stationary level. Figure 1.1 shows
an example of a wave, captured at a certain instant in time. It is simpler to visualize a wave by
drawing the “wave fronts”, which are usually taken to be the crests of the wave. In the case of
Figure 1.1 the wave fronts are circular, as shown below the wave plot.
1.1.2 Evidence for wave properties of light

There are certain things that only waves can do, for example interfere. Ripples in a pond caused
by two pebbles dropped at the same time exhibit this nicely: Where two crests overlap, the waves
reinforce each other, but where a crest and a trough coincide, the two waves actually cancel. This
is illustrated in Figure 1.2. If light is a wave, two sources emitting waves in a synchronized fashion’
should produce a pattern of alternating bright and dark bands on a screen. Thomas Young tried
the experiment in the early 1800’s, and found the expected pattern.

The wave model of light has one serious drawback, though: Unlike other wave phenomena such as
sound, or surface waves, it wasn’t clear what the medium was that supported light waves. Giving
it a name — the “luminiferous aether” — didn’t help. James Clerk Maxwell’s (1831 - 1879) theory of
electromagnetism, however, showed that light was a wave in combined electric and magnetic fields,
which, being force fields, didn’t need a material medium.
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1.1.3 Evidence for light as a stream of particles

One of the earliest proponents of the idea that light was a stream of particles was Isaac Newton
himself. Although Young’s findings and others seemed to disprove that theory entirely, surprisingly
other experimental evidence appeared at the turn of the 20th. century which could only be explained
by the particle model of light! The photoelectric effect, where light striking a metal dislodges
electrons from the metal atoms which can then flow as a current earned Einstein the Nobel prize
for his explanation in terms of photons.

We are forced to accept that both interpretations of the phenomenon of light are true, although
they appear to be contradictory. One interpretation or the other will serve better in a particular
context. For our purposes, in understanding how optical instruments work, the wave theory of light is
entirely adequate.

1.2 Features of a wave

We'll consider the simple case of a sine wave in 1 dimension, as shown in Figure 1.3. The distance
between successive wave fronts is the wavelength.

As the wave propagates, let us assume in the positive x direction, any point on the wave pattern
is displaced by dx in a time dt (see Figure 1.4). We can speak of the propagation speed of the
wave
v _ & L.
dt
As the wave propagates, so do the wavefronts. A stationary observer in the path of the wave
would see the perturbation oscillate in time, periodically in “cycles”. The duration of each cycle is
the period of the wave, and the number of cycles measured by the observer each second is the
frequencyz. There is a simple relation between the wavelength A, frequency f, and propagation
speed v of a wave:
v=fA (1.2)
Electromagnetic waves in vacuum always propagate with speed ¢=3.0 108 m/s. In principle,
electromagnetic waves may have any wavelength, from zero to arbitrarily léng. Only a very narrow
range of wavelengths, approximately 400 - 700 nm, are visible to the human eye. We perceive
wavelength as colour; the longest visible wavelengths are red, and the shortest are violet. Longer

2The SI unit of frequency is the Hertz (Hz), equivalent to s L.
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than visible wavelengths are infrared, microwave, and radio. Shorter than visible wavelengths are
ultraviolet, X rays, and gamma rays.



Figure 1.1 A wave
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Figure 1.3: A sine wave
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Figure 1.4: Wave propagation



Chapter 2

Propagation of light

2.1  Huygens’ Principle

In the 1670’s Christian Huygens proposed a mechanism for the propagation of light, nowadays
known as Huygens’ Principle:

All points on a wavefront act as sources of new waves, and the envelope of these sec- ondary
waves constitutes the new wavefront.

Huygens’ Principle states a very fundamental property of waves, which will be a useful tool to
explain certain wave phenomena, like refraction below.

2.2 Refraction

When light propagates in a transparent material medium, its speed is in general less than the
speed in vacuum c. An interesting consequence of this is that a light ray will change direction when
passing from one medium to another. Since the light ray appears to be “broken”, the phenomenon
is known as refraction.

Huygens’ Principle explains this nicely. See Figure 2.1. A plane wavefront (dashed line) approaches
the interface between two media. At one end, a new wavefront propagates outwards reaching the
interface in a time t according to Huygens’ principle, so its radius is vit. At the other end a new
wavefront is propagating into medium 2 more slowly, so that in the same time t it has reached a
radius v,t. Now consider the angle of incidence 6; and the angle of refraction 6, between the
incident wavefront and the interface, and between the refracted wavefront and the interface. From
the figure we see that . vt . ‘
sinf=— and sin@ _ pt sin6 _ U 2.1)

. = =
t X X$n 6, iy
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This result is usually written in terms of the index of refraction of each medium, which is defined

as

n= (2.2)

<o

so that
n; sin 6; = ny sin 6, (2.3)

a result which is known as Snell’s law.

Refractive indices are greater than 1 (only vacuum has an index of 1). Water has an index of
refraction of 1.33; diamond’s index of refraction is high, about 1.5. It is tempting to think that the



2.2. REFRACTION

medium 1 (e.g. air)

medium 2 (e.g. glass)

Figure 2.1: Refraction



index of refraction might be associated with the density of the material, but that is not the case.
The idea lingers in the term optical density, a property of a material that the index of refraction
measures.

2.3 Total internal reflection

One important consequence of Snell’s law of refraction is the phenomenon of total internal reflection. If
light is propagating from a more dense to a less dense medium (in the optical sense), i.e. ny > ny,
then sin 6, > sin 6;. Since sin 6 1<, the largest angle of incidence for which refraction is still possible
is given by -

) n
sin ;< (2.4)
n

For larger angles of incidence, the incident ray does not cross the interface, but is reflected back
instead. This is what makes optical fibres possible. Light propagates inside the fibre, which is
made of glass which has a higher refractive index than the air outside. Since the fibre is very
thin, the light beam inside strikes the interface at a large angle of incidence, large enough that it
1s reflected back into the glass and is not lost outside. Thus fibres can guide light beams in any
desired direction with relatively low losses of radiant energy.



Chapter 3

Images

3.1 Images

An optical system creates an image from an object. For example, a slide projector shows an
image of a slide on a screen. There are two types of images, real and virtual.

Since an extended object may be treated as a collection of point sources of light, we are specially
interested in the images of point objects.

3.1.1  Real images

The formation of a real image is shown schematically in Figure 3.1. A point object emits light rays

A
‘ ( screen

object ]
" Al
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projector

Figure 3.1: Formation of a real image

in all directions. Some are redirected by the optical elements in the projector so that they converge to
a point image. If a screen is placed there, the image may be seen as the light concentrated there is
scattered by the screen.



3.2. CURVED MIRRORS 15
3.1.2 Virtual images

The reflection from a plane mirror is a good example of a virtual image. See Figure 3.2. The rays
reflected by the mirror seem to come from a point behind the mirror. When those rays enter the
mirror

v

object R r

Figure 3.2: Virtual image formed by a plane mirror

eye of an observer or the objective of a camera, they will be seen as coming from a point. In that
sense, we see the image of the object, but there is of course nothing actually there. If we placed a
screen behind the mirror, nothing would be projected on it.

3.2 Curved mirrors

Curved mirrors are a key element of telescopes. They are usually parabolic in cross-section, for
reasons to be discussed below. A spherical mirror is a good approximation if the curvature is low.
A key property which is satisfied exactly by a parabolic mirror and approximately by a spherical
one is the ability to focus a beam of light parallel to the optical axis — the axis of symmetry of
the mirror — to a point, known as the mirror’s focal point (see Figure 3.3).

3.3 Ray tracing with mirrors

To locate an image formed by a curved mirror, particular auxiliary rays from the object may be
constructed. Consider the situation shown in Figure 3.4. Ray (1) from the object is parallel to the
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optical axis

Figure 3.3: Focal point of a curved mirror

optical axis, and therefore passes through the focal point F after reflection. Ray (2) passes through
F, and therefore is reflected parallel to the axis, according to the principle of reversibility of light.
Ray (3) is reflected at the vertex of the mirror, so the reflected ray is symmetrical to the incoming
ray with respect to the axis of the mirror. The image is formed at the intersection of the three
rays. In fact, to locate the image we only need to construct two of the three possible auxiliary rays:
Where they intersect is where the image is formed.

If we are dealing with an extended object, the whole image may be constructed this way. In the
present example we can characterize the image as real, inverted (as opposed to upright), and
enlarged (as opposed to reduced).

3.4 The mirror equation

The location of the image may be calculated from the position of the object and of the mirror’s
focal point by means of the mirror equation, which we shall derive shortly. These positions are
measured by the following coordinates, illustrated in Figure 3.4: the object distance p measured
along the axis from the vertex of the mirror, where the axis intersects the mirror; the image
distance i, and the focal length f, measured in the same way. By convention, we draw the
diagram so that the light is incident from the left, and all three lengths are counted as positive
towards the left as indicated in the figure.
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3.4. THE MIRROR EQUATION 17
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Figure 3.4: Image formation by a curved mirror

Our mirror equation presupposes that the curvature of the mirror is very small, which is true if
the object is relatively small and close to the optical axis. In that case, we can draw the mirror as
approximately flat. The situation is depicted in Figure 3.5. The triangleﬁ OPF and4 FQI are
similar (check this). This means that the following ratios are equal:

p=tf - L @)
i-f
After some manipulation, this expression reduces to
1,1 1
+ = .
p - 1 fB2

Exercise 3.4.1 Derive equation (3.2) from equation (3.1
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mirror

Figure 3.5: Derivation of the mirror equation






