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Introduction

In theoretical physics and mathematical physics, analytical mechanics, or theoretical
mechanics is a collection of closely related alternative formulations of classical
mechanics. It was developed by many scientists and mathematicians during the 18th
century and onward, after Newtonian mechanics. Since Newtonian mechanics considers
vector quantities of motion, particularly accelerations, momenta, forces, of the
constituents of the system, an alternative name for the mechanics governed by Newton's
laws and Euler's laws is vectorial mechanics.

By contrast, analytical mechanics uses scalar properties of motion representing the
system as a whole—usually its total kinetic energy and potential energy—not Newton's
vectorial forces of individual particles. A scalar is a quantity, whereas a vector is
represented by quantity and direction. The equations of motion are derived from the
scalar quantity by some underlying principle about the scalar's variation.

Analytical mechanics takes advantage of a system's constraints to solve problems. The
constraints limit the degrees of freedom the system can have, and can be used to reduce
the number of coordinates needed to solve for the motion. The formalism is well suited

to arbitrary choices of coordinates, known in the context as generalized coordinates. The
Kinetic and potential energies of the system are expressed using these generalized
coordinates or momenta, and the equations of motion can be readily set up, thus
analytical mechanics allows numerous mechanical problems to be solved with greater
efficiency than fully vectorial methods. It does not always work for non-conservative
forces or dissipative forces like friction, in which case one may revert to Newtonian
mechanics.

Two dominant branches of analytical mechanics are Lagrangian mechanics (using
generalized coordinates and corresponding generalized velocities in configuration
space) and Hamiltonian mechanics (using coordinates and corresponding momenta in
phase space). Both formulations are equivalent by a Legendre transformation on the
generalized coordinates, velocities and momenta, therefore both contain the same
information for describing the dynamics of a system. There are other formulations such
as Hamilton—Jacobi theory, Routhian mechanics, and Appell's equation of motion. All
equations of motion for particles and fields, in any formalism, can be derived from the
widely applicable result called the principle of least action. One result is Noether's
theorem, a statement which connects conservation laws to their associated symmetries.




Analytical mechanics does not introduce new physics and is not more general than
Newtonian mechanics. Rather it is a collection of equivalent formalisms which have
broad application. In fact the same principles and formalisms can be used in relativistic
mechanics and general relativity, and with some modifications, quantum mechanics and
guantum field theory. Analytical mechanics is used widely, from fundamental physics to
applied mathematics, particularly chaos theory.

The methods of analytical mechanics apply to discrete particles, each with a finite
number of degrees of freedom. They can be modified to describe continuous fields or
fluids, which have infinite degrees of freedom. The definitions and equations have a
close analogy with those of mechanics.

Dynamical system

It is a system of particles moving under the influence of a set of forces and
these particles may be separate from each other or connected.

Generalized Coordinates

In two-dimensions the positions of a point can be specified either by its rectangular
coordinates (X, Y) or by its polar coordinates. There are other possibilities such as
confocal conical coordinates that might be less familiar. In three dimensions there are
the options of rectangular coordinates (X, Y, Z), or cylindrical coordinates (0, ¢, 2)

or spherical coordinates (I'; @, @) or again there may be others that may be of use for

specialized purposes (inclined coordinates in crystallography, for example, come to
mind). The state of a molecule might be described by a number of parameters, such as
the bond lengths and the angles between the bonds, and these may be varying
periodically with time as the molecule vibrates and twists, and these bonds lengths and
bond angles constitute a set of coordinates which describe the molecule. We are not
going to think about any particular sort of coordinate system or set of coordinates.
Rather, we are going to think about generalized coordinates, which may be lengths or
angles or various combinations of them. We shall call these coordinates (

0,y 95,05, y 0, ). If we are thinking of a single particle in three-dimensional
space, there will be three of them, which could be rectangular, or cylindrical, or
spherical. If there were N particles, we would need 3N coordinates to describe the
system — unless there were some constraints on the system.

With each generalized coordinate 0, is associated a generalized force IfI :
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A generalized force need not always be dimensionally equivalent to a force. For
example, if a generalized coordinate is an angle, the corresponding generalized force
will be a torque.

A set of parameters that describes the configuration of a system with respect to some
reference configuration and written symbolically as g, ,, 0.,

(q,, =123

Generalized Velocities

The first derivatives with respect to time of the generalized coordinates of a particle is

called generalized velocities and are written as q,,q,,9,,9,, (g, = aéit“).

It is noted that it is not required that the units of the general velocity be (length / time).

.n. n the number of coordinates.

Generalized Accelerations
The second derivatives with respect to time of the generalized coordinates of a particle

is called generalized Accelerations and are written as @, ,d, ,d, ,q, ,

Constraints

Motion of particle not always remains free but often is subjected to given conditions.
These conditions are called constraints.

Types of the Constraints
Holonomic Constrains: Expressible in terms of equation involving coordinates and time
(may or may not present), f(d;,d,,d5, dn,t)=0, where q, are the instantaneous

coordinates
- Differential (kinematical) Constrains

- Geometric Constrains

- Holonomic Constraint is a typical constraint condition that is involved if the position
vector of the particle is considered along the time-taken.

But for non-holonomic it means that the position vector of the particle is not considered
along the time taken.




Generalized forces
Suppose that we have a mechanical system that contains a number N of particles, and

select one of these particles, let it be a number I, which has a mass M, , its position is

Fi and it is affected by the force |f| , then it moves a displacement O T; .
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So, we can write the work in the form

5W:iﬁﬁﬁ
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Substituting from Eq. (2) into Eq. (1), we get
{ }
=1
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We will know the expression Z fi.ﬂ by generalized Forces and we will symbolize

i=1 o
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(denote) it with a symbol (we will denote it by a symbol) Q_, thatis Q, = Z F.— a
i1 q

n
So the work can be written in the formoW = Z Q,9q,
a=1

The Momentum

oL

The momentum defends as P = <7~ . It depends on the generalized coordinates of the

oq;,

system and the generalized velocities, and sometime maybe it depends explicitly on

timet,i.e. p, =p,(Q,, d,, t)

Total Kinetic Enerqy

The total kinetic energy T of a system of N particles is given by

N1 2 1d 2
=S “m (I m. (I
23Mm =g 2™

Degrees of freedom
Number of independent coordinates required to completely specify the dynamics of

particles (system of particles) is known as degree’s of freedom.

Important relations

(1) Proof that )
aq, 0dq;

Proof

We know that r =r(qg,,t) and derive with respect to time we have

_—Z or, dqa or dt Then i _ .. _ ariq;+%
t aq, dt "ot dt dt aq, ot

Deriving Eq. (1) with respect to q, (where ¥ =7(q)), we have
8




oF, . 8ﬁ} o {6ﬁ }
A, +—(=— A, (+—
aq, ot aq, aq,, aq,
of, oq, 0 {aﬁ} or,
+ —t =
aq, oq, oq, ot aq,

| . (or
J(H]
Proof
We known that

I =6(0,,t) =6 (0,0, 05, 0y, s, q,.t)
If we derive Eq. (1) with respect to time, we get

di _or dg  oF do,  OF d, | L% do,  oF dt
dt og, dt oq, dt oOg, dt oq, dt ot dt
_ 0% 0% e OF g 08

oq, ~ oq, o, g ot

Again, we derive the above relation with respectto g, .
1@_1 AL AL I LAl
og,\ dt) &g, |6, © g, © g q, = ot

°F . F . % . o’ . O°F
= q1 + 2 + q3 + + qn +
09,00, 09,09, 09,00, aq,,0q, aq,, ot

a(d()j_ °0 o, 90, 20 L0 .90

i 0, + s +

dt 09,09, ~  0q,00, 29,00, " g,

aqa - 6qmaql

While, if we derive Eq. (1) with respect to g, we have

of _ 06 (09,95, 4. 0s. Gy 1)
aq, aq,

Again, we derive the above relation with respect to t , we get




B L DO e (P PO Y P FeOege 10
dt{ 6g, ) dt aq,

_ 9°1(0, 9y, 95,9 G Ay,t) doy , O°F (0, Uy, 03 GG On,t) dg,
aq, oq, dt aq, aq,, dt

AL (PP Y PO PN L9 < L 0109105, Q, G vy 1) AT,
g, 6q, dt aq, o, dt

0T (G, Gz, s, Ua» Us» g,.t) dt
otoq, dt

2= 2= 2= 2= 2
or dg o dg, o'm dg 0% dg, O

=—— + +
0q,0q, dt og,0q9, dt o0q,0q, dt 0q,0q, dt otoq,

i(aﬁj_ 0 o, 00 . 80 (0 -, 00

= + + +
dt\ oq, )~ oq0q, " ag,eq, © ogyoq, oa,00, " atog

a

That we can be written as

= 2 2 2 2 2
d(an}ao c, 00 e, 00 e L 00 4, 20
aqa aqozaql aqaan aqaan aqozaqn aqaat

dt

Now, from Eq. (1) and Eq. (2) it can be said that i(w]— i(a_()j

aq, \ dt ) dtloq,

(3) Proof that T i,
aq

a

Proof

The kinetic energy isgivenas T = %m r , that can be written as T==mr".F* and

partial derivative it with respect toq, , we have

1 (o .. .. OF 1 .
—m| ——. "+ —— [==-m| [
2 \oq, od, 2

a




Proof

The kinetic energy isgivenas T= %m r , that can be written as T==mr".r* and

partial derivative it with respect toq; , we have

oT o (1 e_ej 1 (o .. .. of
= —mr.rL [(=—m N e ol =
0q;, 09\ 2 2\ oq; aq,

Conservative Force Fields (conservative dynamical system)

For a conservative dynamical system, the force can be written as the negative gradient
of a potential energy (V) in the form F =-VV .

The generalized force can be Written as

ov or oV
Q- SR TS S A AT

(24

I, e. the generalized force for conservative dynamical system can be in the form
oV




Chapter 2
Lagrange's Equations of Motion

The usual way of using newtonian mechanics to solve a problem in dynamics is first
of all to draw a large, clear diagram of the system, using a ruler and a compass. Then
mark in the forces on the various parts of the system with red arrows and the

accelerations of the various parts with green arrows. Then apply the equation F=ma
in two different directions if it is a two-dimensional problem or in three directions if it is
a three-dimensional problem, or 7= 16 if torques are involved. More correctly, if a

mass or a moment of inertia is not constant, the equations are F=p and z=L. Inany

case, we arrive at one or more equations of motion, which are differential equations
which we integrate with respect to space or time to find the desired solution. Most of us
will have done many, many problems of that sort.

Sometimes it is not all that easy to find the equations of motion as described above.
There is an alternative approach known as lagrangian mechanics which enables us to
find the equations of motion when the newtonian method is proving difficult. In
lagrangian mechanics we start, as usual, by drawing a large, clear diagram of the
system, using a ruler and a compass. But, rather than drawing the forces and
accelerations with red and green arrows, we draw the velocity vectors (including
angular velocities) with blue arrows, and, from these we write down the Kinetic energy
of the system. If the forces are conservative forces (gravity, springs and stretched
strings), we write down also the potential energy. That done, the next step is to write
down the lagrangian equations of motion for each coordinate. These equations involve
the kinetic and potential energies, and are a little bit more involved than F=ma,

though they do arrive at the same results.

| shall derive the lagrangian equations of motion, and while I am doing so, you will
think that the going is very heavy, and you will be discouraged. At the end of the
derivation you will see that the lagrangian equations of motion are indeed rather more

involved than F=ma  and you will begin to despair — but do not do so! In a very short

time after that you will be able to solve difficult problems in mechanics that you would
not be able to start using the familiar newtonian methods, and the speed at which you do
so will be limited solely by the speed at which you can write. Indeed, you scarcely have
to stop and think. You know straight away what you have to do. Draw the diagram.
Mark the velocity vectors. Write down expressions for the kinetic and potential
energies, and apply the lagrangian equations. It is automatic, fast, and enjoyable.
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Incidentally, when Lagrange first published his great work La méchanique
analytique (the modern French spelling would be mécanique), he pointed out with some
pride in his introduction that there were no drawings or diagrams in the book — because
all of mechanics could be done analytically — i.e. with algebra and calculus. Not all of
us, however, are as gifted as Lagrange, and we cannot omit the first and very important
step of drawing a large and clear diagram with ruler and compass and marking all the
velocity vectors.

The lagrange's equations

Suppose that we have a dynamical system of N particles, and select one of these
particles, let it be a number i , which has a mass M, , its position is I; and it is affected
by the force IfI , then it moves a displacement 6T, .

3

O O

vy
Ry
|
|
»

P
N

x
Writing the equation of motion for this particle, it will be according to Newton's second

law on the form F, =M. ™ and for the all dynamical system it can be written

or
Multiplying Eq. (1) dot product by E , We have




o,

o df. orF ) . (ar-j
r“—s=—|r. — |-7.| —
oq, dt od,, aq,,

Substituting from Eq. (3) into Eq. (2) we get

Also, we know that aqa

df . ar-) 4,(
=y m{—| . —|-T".
- o,

Now substituting into Eq. (4) we have

oT | oT
dt| a0, | o,

This the Lagrangian equations is in terms of generalized forces, where




lagrangian equation for conservative system

If the system is conservative so that particles move under the influence of a potential
which is dependent on coordinates only, then the forces are derived from the potential

oV

(V) givenby Q, :_8q

a

Since the potential energy (V) is dependent on coordinates only (q_), and not on the

velocities, * (0},),i.e. V =V(q,.t).
Then the Lagrange’s equations (Eq. (5)) may be written

LoV _djotr| _of
dt | oq, ] o,

[

d{aT} oT oV oV d{aT} oT
% e —_

. dt|aq,| e, eq, oq, dt|aq,| aq,
0_1 o(T -V) _6(I'—V)

dt oq,, aq,

We put L=T -V thatis called Lagrange function. So

dfacl_a g
dt| &g, | 94,

This is called the Lagrange equation or Euler-Lagrange equation.
Example 1: Determine the motion of harmonic oscillator in one dimension
by Lagrangian Equations?

Solution




We first consider a simple mass spring system. This is a one degree of freedom system,
with one X.

The Potential Energy

The force proportional (Inversely proportional) to displacement ( X) (directly
proportional)

F=-kx,but F=-VV=-kx

_V kxS dv = kxdx —>J'dV:J'kxdx

dx

Then V =%k x* (does not dependent on the generalized velocity)

Kinetic Energy

Lagrange Function

The Lagrange Function of simple harmonic oscillator in one dimension can be written

So the Lagrange Equation m
d[oL] oL_
dt OX

d { oL }— oL =0 becomes

8qa aqa




—mx |- —2kx
2 2

mx-+KkX=0. so X"=—%X

This is the same as the equation of motion of the simple harmonic oscillator resulted
from application of Newton's second law to a mass attached to spring of spring constant

¢ (Hook constant ) and displaced to a position X from equilibrium position.

Example: 2 Determine the motion of plane pendulum (simple pendulum) by Lagrangian
Equation ?

Solution

A plane pendulum consists of a bob of mass m suspended from a light inextensible
cord of length L and swinging in a plane.

measuring plane
) -

For the motion of plane pendulum, we have

V=(r, r@"), r=L=constant —» V=(0,L8) > V=L&
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Kinetic Enerqy

The Potential Enerqy

V =—mgLcosé

Lagrange Function

The Lagrange Function of simple harmonic oscillator in one dimension can be written
as

L=T-v= %LZ 0% +mgLcosé

So the Lagrange Equation 1 6L. _a =0 becomes
aqa aqf%

dt

00

< 8L}_8L_O

06

-

ﬁ[l L 9 +mchosé’} —i{ 129 +mchosH} =0
| 06" 2 06/ 2

a{ 126" }+[ mgLsing |=0

L°’6"* +mgLsind=0 — L& +mgsind=0 — 6":—m—fsin0

If @ is very small, then SIN@ = 6@

Then
r=-"90.

This the equation for simple pendulum with angular frequency
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Example: 3 Two masses M, and M, are hanging by a massless string from a
frictionless pulley. If M, is greater than M, determine the acceleration of the two
masses when released from rest by the Lagrangian method.

Solution

First, identify a direction as positive. Since you can easily observe that m, will

accelerate downward and M, will accelerate upward, since m, >m,, call the direction
of motion around the pulley and down toward m, the positive Y — direction. Then, you

can create free body diagrams for both object M, and M, , as shown below.

Measuring plane

1)

Solution

The vertical distance
from the measuring | Velocity
plane

Kinetic Potential Energy = -
Energy Work done

y ' ' —mgy

|-y ' ' -m,g (1-Y)

The total of Kinetic energy is given as




l l2
T=—(M+m)y”,
2
While the total of potential energy is given as

V=-mgy-m,g (I-y)=g(m,-m)y-mygl .

So, the lagrangian function is

1
L=T-V= E(ml“‘mz) ylz_g(mz_ml))”rngl

From lagrangian Equation 1 6L. _a =0, where we have one
dt| og,| 94,

coordinate (g, = y). So the Lagrangian Equation of our problem given as
dfaL) o
dtloy ) oy

i( (m1+m2) Y') +(m2 _ml)g =0

dt
(ml T mz) y” "‘(mz - ml)g =0

_ml_mz

Then: y"
m, + m,

g

: - : m
Example 4: A particle of mass M moving in a plane under the attractive force ﬂ—z
r

directed to the origin of polar coordinates (r, &). Determine the equation of motion by
Lagrange equations

Solution

We know that in polar coordinates V =(r", ré"), so we have

Kinetic Energy

E( 2 + r2 0.2)




The Potential Energy

adV:@dr —>_[dV: @dr. Then Vv =—#0
r r r

Lagrange Function

The Lagrange Function in polar coordinates (r, ) can be written as

L=T-v-= m( r2+r? 9'2)+ﬂ
2 r

So, the Lagrange Equation i 8L. _a =0 in polar coordinates (r, &) becomes
dt| oq . aq,,

d( oL oL
a(%)‘a—o (1)

E(i}ﬁ 0
at\ 06" )~ o6

From Eq. (1), we get

%(%[g( .2+r2(9.2)Jr m

%(m r)—[g( 2r 49'2)—‘:—27]

re-re?+2-o
r
Then  r—-ro-? :—rﬁ2

From Eq. (2), we get

dfo[mip2, 2g2) mM\_ [ M2, y2g2),4m]_
dt(ag_[z(r L r2g )D ag[z(r +1262) } 0

%( r2 0-)—0=0

mr2 @ =constant. Then r2 - =constant
21




Example: 5: Determine the equations of motion of Double Atwood machine which
consists of one of the pulleys replaced by an Atwood machine as shown below Figure.
Neglect the masses of pulleys.

img

Solution




Measuring plane

3mg

The vertical distance from
the measuring plane

Velocity

Kinetic Energy

Potential Energy = - Work done

X

2
mx

—Mmgx

y+1,—x

m(y —x")?

-2mg (y+1l,—Xx)

L+, —x-y

3m(-x" - y")*

-3mg (I, +1, - x-y)

Kinetic Energy

The total of Kinetic energy is given as

m
T=—
2

2 2
{ﬁx' +2x'y* +5y* }




The Potential Energy

The total of potential energy is given as

V=-mgx-2mg (y+1,—x)-3mg (I, +1, = x—y) =—mg (x + 2y + 2I, — 2x + 3, + 3I, —3x — 3y)
=-mg(—4x—-y+5l,+3l)

V =mg(4x+y)+C ,C=—-mg (5l +3l,)

Lagrange Function

The Lagrange Function can be written as
_ m

2

L=T-V

2 2
{GX' +2X'y" +5y" }—mg (4x+y)-C

So, the Lagrange Equation i al‘_ _ o =0 for the plane coordinates (x,y) can
dt| o9, | 09

be written as

d(oL) oL

E(QJ—&—O. 0
i[ij_%zo 2)
de\oy" ) oy

From Eq. (1), we get

d

s {%(12x'+ 2y')}+ mg(4) =0 — 6x" + y* =—4g

From Eq. (2), we get

d [m . .
— 1| 2x"+10y" =0 X" +5y" =—
dt{Z(X_'- y)}+mg — X" +5y g

From Eq. (3) and Eq. (4), we get
X" +5(—4g —6x"J =—g > -5x"=19g > x* :—%g 5)

From Eq. (5) into Eq. (4), we get

X" +5y" =—g > —Qg +5y" =—g > 5y~ :—g+gg — 5y~ :Eg -y :Eg
5 ) 5) 25




Example 6: A particle of mass M is projected with initial velocity V, atanangle &

to the horizontal in the uniform gravitational field of the earth. Use Lagrange’s equation
to describe the motion of the projectile. Ignore the air resistance?

Solution

(X, Y)

T ~~ _ Flight path

m
g AN
~

.
without air drag N

-

VGCC!S o
-

Fling to the top
Let a particle of massm be projected from the origin point with an initial velocity V,

making an angle ¢ with the horizontal line referred as X-axis. Let (X, y) be the
position of the particle at any instant t. Since X and Y are independent and hence the
generalized coordinates are (0, ,) =(X , Y)and the generalized velocities are

@ 42) =(X", y").

Kinetic Energy

The kinetic of the projectile is given by T :%m(x'z +y?),

The Potential Energy

The total of potential energy is given as

F=-mg - F=-mg=-VV — mg:(jj_v - V=mgy
y

Lagrange Function

The Lagrange Function can be written as

25




L=T-V =%m(x'2+y'2)—mgy

So, the Lagrange Equation i

dt{ oL } oL =0 for the plane coordinates (x,y) can

8qa 6qa
be written as

d(aL) oL, o

dtlox) ox
dfa) o _g
dt\ oy ) oy

From Eqg. (1), we get

d a 1 2 2 a 1 a2 W2
= 1= n ] _ _ = _ :0
dt(@x[Zm(X +y*) mgyD aX[Zm(x +y*) mgy}

%(mx')—(O): 0 (m x") =0

Then

x'=0 or x =Constant =c, 3)
From the initial conditionatt=0 — x‘t_O =V, C0Sa@ — C, =V,C0s. Then

X' =V, CoS (4)

Integration Eq. (4), we have Xx=v,t cosa +c,
From the initial conditionatt=0, x=0 — , then c,=0

X =Vytcosa

While, from Eq. (2), we get

dl 011 2 2y _21 2 2y —
a(5[Em(x +Y*) mgyD ay[Zm(x +Y*) mgy} 0

%(m y')+(mg) =0. Then
y"=— or y'=—gt+ Constant =c, —gt (6)

From the initial condition at t=0, y't_ozvosina — ¢, =V,sina. Then

26




y'=v,sina—gt
Integration Eq. (7), we have y=v,t Sina—%gtz +c,

From the initial conditionat t=0, y=0, — ¢,=0.Then

y:votsinoz—%gt2

Exercises

(i) Both the kinetic energy T and potential energy Vv for Mechanical system are given,

2
respectively, in the form T =%(x'2 + xzy'z), % =% x*. Find the equations of motion for

the system using lagrangian equations where o is constant?

(if) Both the kinetic energy T and potential energy Vv for Mechanical system are given,
respectively, in the form T =%m(r'2 + r29'2), V =-mgrcosé . Find the equations of

motion for the system using lagrangian equations?

(iif) Both the kinetic energy T and potential energy v for Mechanical system are given,
respectively, in the form T :%(0'2 +¢'2 sin?g),  V=—2y2cosé. Find the equations of

motion for the system using lagrangian equations?

(iv) Both the kinetic energy T and potential energy Vv for Mechanical system are given,

respectively, in the form T :%(x'2 + y'2 + 2'2), V =V (x,Y,z). Find the equations of
motion for the system using lagrangian equations?




Chapter 3

Hamiltonian function and Hamilton's equations of motion

In this chapter we consider a radically different formulation of the dynamical
problem. We define the Hamiltonian and derive Hamilton’s “canonical” equations.

These are derived in two different ways, first by using a Legendre transformation

on the Lagrangian and secondly by using the stationary property of the action integral.
Hamilton’s approach gives us a whole new way of looking at mechanics problems.
Although Hamilton’s approach is often not as convenient as Lagrange’s method for
solving practical problems, it is, nevertheless, a far superior tool for theoretical studies.
Some of the methods developed in Hamiltonian mechanics carry over directly into
guantum mechanics, statistical mechanics, and other fields of physics.

Remarks

It is well-known that, the Generalized momentum is

Py=2ml} 1)

The Generalized kinetic Generalized is

Il @)

(2

%=§ mr: 3)

From Eq. (1) and Eqg. (3) generally speaking we find that

oT
oq. = pa (4)

We know that the Lagrange functionis L=T -V andif v =v(q)
L :T(qa’q;) _V(qa) (5)

From Eq. (4) and Eq. (5), we find that

oL oT
8q-_aq-_pa' (6)

a a




The Lagrange equation

dfoL] oL _,

dt| oq. | oq,

Substituting from Eq. (6) and Eq. (7), we get

i a_IT _a_LZO_)i pa _%:O _)d&_ﬂzo
dt| oq,| q, dt oq dt g,

o

So, for conservative dynamical system, we have

ot AL . oL

pa—ﬁ, pa—ﬁ, P, —E (8)

Hamilton function (Hamiltonian)

Derive the Hamilton function of a mechanical system. (Dynamical system)?

. L . .
We want to find a function H =H(q,, p,, t), where p, =§7Whlch we want to think of as

a

depending only on g, and p, but not on ¢, . This would mean

We apply the Legendre transformation to the Lagrangian, where the Lagrangian
function is givenas L=T-V =L(q,, q, )

Then

dL=>" oL dqg, + oL dqg’ Ol
a=1 aqa éq; 5’[

But

p'—a_L —a_L
“og, Y oy

From Eq. (1) and Eq. (2), we have

0 [ .l oL
dL=Z{padqa+padqa}+Edt

a=1

Add and delete the term ¢ dp, to Eqg. (3), we have

n oL n oL
dL= *dg, +p,dqg. +q'dp, —q-dp, + + —dt = "dg +d *y—q-dp, + + —dt
azl{pa qa M 913% qa pa} ot Z{pa qa (pa qa) qa pa} ot

243 243 a=l
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Then

< n < n | ] aL
> d(p, qa)—dL=—Z{pa da,, —qadpa}—gdt
a=1

a=1

n n aL
d {Z p. O —L}=Z{q;dpa -p, dqa}—gdt
a=1

a=1

dH =Z{q;dpa - P, dqa}—%dt

a=1

Now we define the function

H=>p,q.-L

a=1

That is called the Hamiltonian function

Where p, :aa—l_', so we can find g, =07, (p,)-
o

Then we can write the Hamiltonian function as
H :H(qa' pa’ t)

Hamilton’s equations

It is well-known that, the Lagrange function is
L=T-V=L(q,q.,t)

While Hamiltonian function is

H=>p,q.-L

a=1

Or
H :H(qa' pa’ t)

L] oL oL oL
dL=) i—dq, +—dq;, s +—dt
;{aqa qa aq; qa} 8’[

1 |OH oH OoH
dH=Y" dg, + <" dp, ++ <1 dt
{aq % op p”} ot

a=1 a a




dH =Z{qa dp, + p, dag }—dL
a=1

Also, we know that
BN
“ g, Y ogy

Substituting from Eq. (7) into Eq. (4), we have

dL = Z{p dg, +q, dqa}+aa—dt (8)

Substituting from Eq. (8) into Eqg. (6), we have

oL
dH = d d d d ——dt— " dp, — prdg, L -Zdt
Z{q b, +D, qa} Z{p q, + P, qa} Z{qa P, — P, qa} p

2+4=0 = 2+4=0 a=l

dH = i{q; dp, - p; dqa}—%dt 9)

a=1 8t
So, comparing equation (9) with equation (5), we get
_OH . _0H oL oH

o T a T a

These equations are called Hamilton's equations
These are Hamilton’s equations.

Note that in Lagrange’s technique, we have N second order differential equations,
while in Hamilton’s we have 2N first order differential equations. In principle, both
are equally easy to solve, and both need 2N boundary conditions. In practice,
Hamilton’s equations are sometimes easier to solve, partly because they naturally
embody conservation laws.

Note: If Hamiltonian does not depend on time explicitly, show that Hamiltonian must be
constant of motion?

H=> H(q,.p,)

oH da, , oH dp, oH . oH
= = +
dt Z(aq dt 6pa dt ] ;(aqa Qe op p“j

o
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Example 1: Determine the motion of harmonic oscillator in one dimension by
Hamilton's equations?

COO00CCO0O0DOC000OO00oy

We first consider a simple mass spring system. This is a one degree of freedom system,
with one X.

The Potential Energy

The force proportional (Inversely proportional) to displacement ( X)
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Fax > F=-kx, but F=-VV=-kx

Y kxS dV —kxdx —>IdV:Ikxdx

dx

(2)

Lagrange Function

The Lagrange Function of simple harmonic oscillator in one dimension can be written
as

L=T-V=mx2-1k (3)
2 2

Using the Hamilton's equations
. _OH

oL

Po 2@ (5)

From lagrangian function, it clear that the motion in one dimension (i. e. y), SO we can
write the Hamilton's function

Lo LB B ©

. oL .
From the relation p,, = That can be written for our problem as p, z% , that
X

o
becomes as

| lp
=mx'"—> X' = 7
Py m ()

From Eq. (7) into Eq. (6), we have




p M2 +-K2 IDX-l"’x+1k 2 1IDx+1k 2
m 2m 2m

2m

. . H
From Hamilton equation p;, :—ST, and Eq. (8), we have
a

p; =—ﬁ:—kx - pr=—kx
OX

While from Hamilton equation g, :sTH and Eq. (8), we have
o

._OH _p .
opy M

From Eq. (10) into Eq. (9), we have
pr=mX"*=—kx—> mX"*=-kx

Then X' :—E X

m

This is the same as the equation of motion of the simple harmonic oscillator resulted
from application of Newton's second law to a mass attached to spring of spring
constant K (Hook constant) and displaced to a position X from equilibrium position.

Example: 2 Determine the motion of plane pendulum (simple pendulum) by Hamilton's
equations?

Solution

A plane pendulum consists of a bob of mass M suspended from a light inextensible
cord of length L and swinging in a plane.

For the motion of plane pendulum, we have

V=(r,ré), r=L=constant - V=(0,L68") —» V=L&




measuring plane
] -

Kinetic Energy

T :lVZ :lfz 9.2
2 2

The Potential Enerqy
V =—mg/( cosd (2)

Lagrange Function

The Lagrange Function of simple harmonic oscillator in one dimension can be written
as

L=T-V =%€2 0> +mg{ cosd (3)

Using the Hamilton's equations

A @

oL

o, (5)

Pe

From lagrangian function, it clear that the motion in one dimension (i. e. y), SO we can
write the Hamilton's function




H =pgq;—L=p9<9'—L=pge'—%fze'z—mgﬁ cos @ (6)

9

. oL i
From the relation p, :E' That can be written for our problem as p =% , that

becomes as

(7)

From Eq. (7) into Eq. (6), we have
2
1 1
H=p, 9'—%2 62 —mgl cos6 = pgg—g —Efz @)—g] —mg/ cos@

2

H :;fpg —mg/{ cos@

. . H
From Hamilton equation p;:—sT, and Eq. (8), we have
a

p; :—aa—l_gl:—mgﬁ sing - p; =—mgl sing

While from Hamilton equation q, =% and Eq. (8), we have

a

._OH Py _ )2 pe
0 o, 12 — py=(°6
From Eg. (10) into Eq. (9), we have

p; =(% 6 =-mglsine

o :—msine
V4

If O is very small, then SINO =6
Then

PP}
14

This the equation for simple pendulum with angular frequency
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Example: 3 Two masses m1 and m2, are hanging by a massless string from a
frictionless pulley. If m2 IS greater than ml determine the acceleration of the two
masses when released from rest by the Hamilton's equations?

Solution

First, identify a direction as positive. Since you can easily observe that m, will
accelerate downward and M, will accelerate upward, since M, >m, , call the direction
of motion around the pulley and down toward M, the positive y — direction. Then,
you can create free body diagrams for both object M, and M, , as shown below.

Measuring plane
i

mg

The vertical distance from
the measuring plane

y ' ' —-mgy

Velocity | Kinetic Energy Potential Energy = - Work done

l-y ' | —m, g ({-y)




The total of Kinetic energy is given as

1 l2
T=_(M+m)y",
2
While the total of potential energy is given as

V =-mgy-m,g (f_y): g(mZ_ml)y_m29€ .

So, the lagrangian function is

1
L=T-V-= E(m1+m2) y'z—g(mz—ml)y+ng€

Using the Hamilton's equations

oH . oH

PL=-o =
o, Py

where

oL

o, (5)

H :2paq('z -L, Po

From lagrangian function, it clear that the motion in one dimension (i. €. y), SO we can
write the Hamilton's function

1
H=p,g;—L=p,y" ~L=p,y" =2 (M +m,) y” +g(m, -m)y-m,g/ (6)

. oL . oL
From the relation p, = That can be written for our problem as p, :y , that
a

becomes as

Py
=(m+m,)y" >y" = 7
p, =(M+m,)y* -y —— (7)

From Eq. (7) into Eq. (6), we have
1 b1 Py
H=p, y' —=(m+m)y?+g(m,-m)y-mgl=—>——=(m +m,)—>—+g(m,-m)y-myg(
P,y 2( B+ 2)y +9( , —M)y-Mm,g m, +m, ( h + 2)(ml+m2 2+g( , —M)y-Myg
2

1 p
H :Eml+ym2+g(m2—ml)y—ngf (8)




From Hamilton equation p;,=—%, and Eq. (8), we have
a

oH
Py Ty g(m,-m) — p;=-g(m,—m,)

While from Hamilton equation q, =% and Eq. (8), we have
a

B p, =(m+m,)y"
apy m, +m, y e
From Eq. (10) into Eq. (9), we have

p;/:(ml+m2) y*=-(m,-m)g— (m+m,)y"=(m-m,)g

m, —m,
m, +m,

Then Yy =

4m
2

directed to the origin of polar coordinates (I, #). Using the Hamilton's equations,
determine the equation of motion.

Solution
We know that in polar coordinates V = (r*, r*), so we have

Kinetic Energy

%Vz _%( 2y r20'2)

The Potential Enerqy

F=-vv=-£1"
;

5 dV = r—dr —>jdv j A Gy




The Lagrange Function in polar coordinates (r, 6?) can be written as

L=T-V=2m(r?+r2g?)+40
2 r

Using the Hamilton's equations

oL

Po :@

()

From lagrangian function, it clear that the motion in one dimension (i. e. (r,6)), SO we
can write the Hamilton's function

H=poq +p,a,—-L=p, r"+p,0"—L=p, r'+ pge'—(%m( r'2+l‘2 9.2)+@j (6)

oL .
But, p, :E' that, for our problem they can be written as

a

oL oL
—_— p —_

= P= and from lagrangian function they can be written as
rl L]

Pr

_mype . e P
pr=mr— r=—

e, P
p, =mr?¢-— 0 :m—?z

From Eq. (7) and Eq. (8) into Eq. (6), Hamilton's function becomes

o))}

From Hamilton's function (Eq. (9)), Hamilton's equations become
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. ¢oH
From Pi==o 7

[04

From p;:_@, we get

or

From p;:—%, we get

From q;,:a—H S5 =M

0Py, “opy

From I* =6—H, we get
opy

From 9'=§—H, we get

Po

Substituting from Eq. (12) inti Eq. (10), we get

yyan
p,=mr’d
er 9

I A G e
2m r3

Therefore

m {r" —re'z} _ —%

While, if substituting from Eq. (11) intio Eqg. (13), we get
d o o\
— pn (@ mr?) =0
Therefore

@ r? =Constant




Exercises

(i) Both the Kkinetic energy T and potential energy V for particle are given as

T :%m( r2 42 9-2), V =—mgrcosé, respectively, where Mis the mass particle

and g is gravitation. Find the equations of motion for the system using Hamilton's
equations?

(if) Both the kinetic energy T and potential energy V for particle are given as

T :%m( r24r? 49-2), V :_%, respectively, where Mis the mass particle and g is

gravitation . Find the equations of motion for the system using Hamilton's equations?




Routh's Equation

Cyclic Coordinates and the Routhian procedure

Routh's procedure or Routhian mechanics is a hybrid formulation of Lagrangian
mechanics and Hamiltonian mechanics developed by Edward John Routh.
Correspondingly, the Routhian is the function which replaces both the Lagrangian and
Hamiltonian functions. As with the rest of analytical mechanics, Routhian mechanics is
completely equivalent to Newtonian mechanics, all other formulations of classical
mechanics, and introduces no new physics. It offers an alternative way to solve
mechanical problems.

Definitions

The Routhian, like the Hamiltonian, can be obtained from a Legendre transform of
the Lagrangian, and has a similar mathematical form to the Hamiltonian, but is not
exactly the same. The difference between the Lagrangian, Hamiltonian, and Routhian
functions are their variables. For a given set of generalized coordinates representing the
degrees of freedom in the system, the Lagrangian is a function of the coordinates and
velocities, while the Hamiltonian is a function of the coordinates and momenta.

The Routhian differs from these functions in that some coordinates are chosen to
have corresponding generalized velocities, the rest to have corresponding generalized
momenta. This choice is arbitrary, and can be done to simplify the problem. It also has
the consequence that the Routhian equations are exactly the Hamiltonian equations for
some coordinates and corresponding momenta, and the Lagrangian equations for the
rest of the coordinates and their velocities. In each case the Lagrangian and Hamiltonian
functions are replaced by a single function, the Routhian. The full set thus has the
advantages of both sets of equations, with the convenience of splitting one set of
coordinates to the Hamilton equations, and the rest to the Lagrangian equations.

Routh's procedure does not guarantee the equations of motion will be simple, however it
will lead to fewer equations.

Cyclic coordinates

Often the Routhian approach may offer no advantage, but one notable case where this
Is useful is when a system has cyclic coordinates (also called "ignorable coordinates"),
by definition those coordinates which do not appear in the original Lagrangian. The
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Lagrangian equations are powerful results, used frequently in theory and practice, since
the equations of motion in the coordinates are easy to set up. However, if cyclic
coordinates occur there will still be equations to solve for all the coordinates, including
the cyclic coordinates despite their absence in the Lagrangian. The Hamiltonian
equations are useful theoretical results, but less useful in practice because coordinates
and momenta are related together in the solutions - after solving the equations the
coordinates and momenta must be eliminated from each other. Nevertheless, the
Hamiltonian equations are perfectly suited to cyclic coordinates because the equations
in the cyclic coordinates trivially vanish, leaving only the equations in the non-cyclic
coordinates.

The Routhian approach has the best of both approaches, because cyclic coordinates can
be split off to the Hamiltonian equations and eliminated, leaving behind the non-cyclic
coordinates to be solved from the Lagrangian equations. Overall fewer equations need
to be solved compared to the Lagrangian approach.

Routhian Function of mechanical system

Consider a mechanical system with n generalized coordinates, some of these
coordinates are cyclic (ignorable) in Lagrange function and the others are non-cyclic.
If we consider the cyclic coordinates are s,,s,,s.s,
while the non-cyclic coordinates are q.,.,,0,,.,, Y.z Gpss
this case the new Lagrange function will be written in the form L=L(q,, g, s;), and the
new Lagrange equations will be written as

Lagrange equations for the noncyclic coordinates:
dfo|_a _,

dt\ oq; ) oaq,

Lagrange equations for the cyclic coordinates:

dfa —izo, that can be written as
dt{ os; ) 0s

dfo —%:Oag a =0—> a :constant—>£:,8i
dt\ os; ) 0, dt\ os; 0s; 0s;

From the new L=L(q,, q., s;), we have

]
o !




dL:Z%ds;Jr Z {sqL dqa+§q|j dq;}

i1 OS5 a=m+l o o

Subsisting from Eq. (1) into Eq. (2)

dL = Z,B ds+ Y {SL ng dq;}

a=m+1 a a

Adding and subtracting the term s'd 4., then the previous equation becomes in the form

dL=i{ﬂid5;+Si‘dﬁi_si‘dﬂi}+ > {gq e +§qL }

i=1 a=m+1 o a

dL = { (Bs))- s;dﬂi}+ Zn: {sql_ dqa+§q% dq;}

i=1 a=m+1 a a

dL-3d(gs)=-Dsdf+ Y {GL dg, + O- dq;}
i1 i1 oq oq;

a=m+1 o o

ofL-Sas)-Ssan 3 | e

i=1 a=m+1 8% qa
Let R= L—zm: B s, that is called the Routhian Function
i=1

Then

d R:—Zs;dﬂi+ Z {aL dg, + 6% dq;}
i-1 0 oq

a=m+1 a a

Routh's equations of motion for a mechanical system

It well-known that Routhian Function is given from

dR:—is;dﬂi+ 3 {qu g, + L dg; } M

a=m+1 aq

a a

Where R:L_iﬁi Si R:R(qa’ . Si.1ﬂi)l and %:ﬂi . Then R=R(q,, a;.5)

ape 3 {2 20 @)

; aﬂ a=m+l

By Comparing the coefficients between Eqg. (1) and Eq. (2), we get
45
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6R . OR_0L  OR oL

o6 " o, o, o o
o oL
Taking into account, o B,

If the time appears explicitly as a Routhian Function, which becomes in the form,
R=R(q,, q.,4.t), then Routh's equations (3) take the form

0R_ . OR_dL OR oL oR oL
B, a9, oq oq, oq.’ ot ot

a a

3 . (4)

o [24

Taking into account, % =4

Example 1: Both the kinetic energy T and potential energy Vv for mechanical system are
given, respectively, in the form T :%m(r'z + rze'z), Y :—% . Find the equations of

motion for the system using Routh's equations?

Solution

Where T :%m(r'z + r20'2), Y, =—%. Then the Lagrange function becomes
L:T—V:%m(r'2+r29'2)+% (1)

From Lagrange Function, it clears that ¢ the is cyclic coordinate (coordinate number 2),
while r is the non-cyclic coordinate

Now, from Routh's equations

dt | oa, | a op, os;

We can write Routhian's Function R=L-%4; s as

R=L-X4 ;:L_ﬂzszzL_ﬂ26'=%m(r2+ r292)+%_ﬂ29'

oL _ : 0 J1 2 2.2y 9| _
From > = f3,, we find that 69_{2m(r +r°0" )+ Ir}_ﬂz.Then
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mr?g =p, Or 0 = '822
mr

From Eq. (3) into Eq. (2), we have

B 1 . B g
2o =mrt -2+ = 4
mr: 2 2mr? r (4)

R :lm(r'2 +r? (%)ZJ-Fg—ﬂz
2 mr r

Now, Routh's equation 1{6—?}—& —o, R_ —si. maybe written as
dt aqa 8qoz aﬂi

2
R g By Llne L9 Then Lo
op; op, op, | 2 2mrs r mr

0 r?= %:Constant (5)
For the non-cyclic coordinate (1), Routh's equation takes the form

d | oR OR d [OR| ©OR
dt | oq;, dt (or ) or

3 r2

(r‘nr—e')_g}_o’ then

mr

(6)

Example 2: A particle of mass M is projected with initial velocity V, atanangle &

to the horizontal in the uniform gravitational field of the earth. Use Routh’s equation to
describe the motion of the projectile. Ignore the air resistance?

Solution

Let a particle of massm be projected from the origin point with an initial velocity V,

making an angle & with the horizontal line referred as X-axis. Let (X, y) be the
position of the particle at any instant t. Since X and Y are independent and hence the
generalized coordinates are (0, ,) =(X , Y)and the generalized velocities are

@ &) =(X", y").




oy

T ~~ _ Flight path

m
g S
N

Y

without air drag N

Fling to the top

Kinetic Energy

The kinetic of the projectile is given by T :%m(x'z +y2),

The Potential Energy

The total of potential energy is given as

F=-mg -» F=-mg=-VV — mg:c:j—v - V=mgy
y

Lagrange Function

The Lagrange Function can be written as

L:T—V:%m(x'2+y'2)—mgy (1)

From Lagrange Function, it clear that, Xis cyclic coordinate (the coordinate number 1),
while y is non-cyclic coordinate.

Now, from Routh's equations

AR R _o R_o ol spe
dt |oq, | oq, op,

We can write R=L-X4 s as
J— .__ . -_1 2 2 .
R_L_zﬁi i_L_ﬂlsl_L_ﬂlx —Em(x Ty )_mg y_ﬂlx
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But from i = S, , we find that S—L = f3,, that can be written as
|

o |1
&{Em(x'z +y?)-mg Y} =B

mx =4 Or X':%

From Eq. (4) into Eq. (3), we can write Routhian's Function as

B B

1
— R:—my ———-mgy
2m

R%m((ﬁ)%y' j mgy -4
m

For the non-cyclic coordinate (1), Routh's equation is

dfR| R _\ R
dt aq(.x aqa ’ 8ﬂl

Where

0 |1 A
~ 8 _mgyp=—x
aﬂl{ ™Y om ™ y}

L —=Constant=c¢ (6)

For the non-cyclic coordinate (r), Routh's equation i{ﬁ}—ﬁ—o takes the form
dt |oq; | 0q,




Exercises

(i) Both the kinetic energy T and potential energy Vv for Mechanical system are given,
respectively, in the form T :%m( r2+4r2 0'2), V =—mgrcosé. Find the equations
of motion for the system using Routh's equations?

(if) Both the kinetic energy T and potential energy v for Mechanical system are given,

2
respectively, in the form T =%(x'2 + xzy'z), % =“’7 x*. Find the equations of motion for

the system using Routh's equations?

(iii) A particle of mass IM moving in a plane under the attractive force #m directed to
2
.

the origin of polar coordinates (r, 8). Using the Routh's equations, determine the
equation of motion?




Chapter: 5
Poisson Brackets (Poisson’s Equation)

In this chapter we discuss an important relation usually called “Poisson’s equation.”
Poisson’s name has been given to several equations in mechanics and the study of

electricity and magnetism, so we sometimes call the resulting equation “Poisson’s
equation of motion,” to distinguish it from other equations with the name Poisson. We
consider a function f = f(d,, p,,t) and a Hamiltonian H (q,, p,), Where p_, q,

coordinates and momentum. Using the chain rule, we now give an expression for the
implicit time derivative of f =f(q,, p,.t).

dt %|oq, dt  op, dt [ otadt

a

of . of .| of dt
q. + +——
- agp, e ot dt

o

df Z{af dq, of dp} of dt

Using Hamilton's equations

. __H L _oH
P, e T,
We can be written Eqg. (1) as (substituting from Eq. (2) into Eq. (1))

_Z”: of oH +@
dt ~l\oqa, 8p apa aq, ot

This equation is called the Poisson equation, while the expression

of oH of oH
aq, op, p, Aq,

} is called Poisson bracket, that defines as

{f’H}:{Gf oH o 8H}. @)
aq, op, op, Aq,

In fact, the Poisson bracket can be defined for any two functions ( f,g) defined in phase

N [of ag of og }
fg }: { . (5)
{ aZ::l oq, op, op, aq,

o=1,234...cccccoviriiinn sy n




Properties of Poisson's brackets

For any three physical quantities f,g, h, which are function of generalized coordinates
(a,)and generalized momentum (p,), and assuming Cis a constant magnitude. Poisson's
brackets have the following properties:

(2) { f,c } =0,

ofran]-finffon}
ofuol-(Tolir 2}
1o el -2

(10){%, pk }ZO,

Proof

From the definition of Poisson brackets

{f(qa, .. 1), 9(a,, pa,t)}={af % _a ag}.

oq, op, op, 0q,

We will try to prove the previous properties

(foZafaf_afaf:afaf_afaf:O
’ oq, op, op, oq, aq, op, aq, op,
fola of ac_af oc _ af(o)_af(o) _0

aq, op, op, aq, aq, op,

@ 1f.gl= of og of ag|_ Jof oag of ag|_ Jog of ag of :—gf}
’ oq, op, op, oq, op, 69, &aq, op, oq, op, op, aaq, ’

{f,g } and {g, f }are antisymmetric




)oh 0 f+g
on,

of oh ag oh of ag oh of oh ag oh dg oh
8q ap ~ op, 0, ﬁqa ap, p, A,

SOIEREURLD

ap, | op,

aq,, op, aqa on, | | o, 6q 8p adq,,

of oh of oh 6g 6h &g oh
— _ + — =< f,h 4+ g,h
oq, op, Op, 0q, aq, op, Ip, Aq,

op, op, 0q,

o

6 fan - o(fg)en o(fg)eh|_ o gp0g|on jot L pog o
0 "  a,]op, [, b, A,

_J¢|29 oh og oh i of oh o on
aq, op, ap, aq, aq, op, op, aq,

Lg ot oh ot ol g,h t+g4 f,h { Product rule.
aq, op, P, A,

fgh bzt og oh og oh
0q, op, op, 0q,

(G)Qfg of og afag_garag+afgag_gaf ~
ot at|oq, ép, op,aoq,| |et\eq, Jop, g, ét\op, ) ot\ap, )oq,

9] of 0
0D ) ag o WD 0D &g ) o
", », op, x, a, o,

of
)% a9
o9, op, o9, op, op, oq, Op, aq,

a9 a9
of Ay o 0y
oq, op, Op, oq,




n 1 oq 6qk aqf aqk aqﬁ aqk
) {q . q }= X _ ={(=5)(0)-(0)(—X) |=
£k Zl éq, &, op, 9, | | o, aq,
n | op apk apg apk pk
(10){p,p }= £ k_ =10 ) ( )(0)
0k Z’; oq, o, dp, 0,
n [ oq, op, 0q, Op a9, op, 0q oq, op, (4,
(11){%}’ Dy }:Z 6fak_af K Z ¢ Tk —( E) Z_f_k:
a=1 qa pa pa aqa a=1 aq ap a a=1 aqa apa 07

1, =k
Then {qg, <y }:{0 o

Remarks

Zn:aqg apk B aqﬂ apk +aqﬂ 6pk +aq€ ka +aq€ 6pk +aq€ apk N
2209, op, o4 Op, 04, op, Od; Op;, od, Op, Od, Op,

If ¢=k. Then
{=k=1or (=k=2o0r (=k=3o0or (=k=4 or
Therefore

%%—1 or o9, apz—1 or 0 6p3_1 or %%—1 or 05 OPs _

0t Ip, 0d, op, 005 9P 0d, op, 005 9P

aq, op,
= 0_
While 20 .

1

Generally, we can put{qg, Py }z{o’ Lok

Example: Consider a dynamical system (point particle) With position vector
F=xXi+Yyj+zk, momentum vector is p = pXT+ py j+ P, k,andM =Fx p (angular
momentum).

Evaluate the Poisson brackets:

0 {r,r}, (ii){rn, ﬁ}, (m){f ﬁ}
(iv){r, M } (v){f), M } (vu){M M }
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Answer

The position vector is I'=(X, Y, z), the momentum vector is :( P Py pz)

From the definition of Poisson brackets

{f g}:(af og of og
o e oq_op  dp oq.

(1) From {q| 4, }=0, we get {r,r}:o

(ii)From{pl,pk }:o ,Weget{r),r)}zo.

iii) To find {r, P } we use the formula {ql’ P, }=
We get

X, py X, pz

y1 py y’ pZ

Z,p, }:0, {z, py }:O, Z, p, }zl.

Therefore, we can configure the following table

Function

X
y

z




={y|oz—2|oy }T—{xpz—z P, }j+
><f>={ypz—zpy }h{z P, —XP, }T+{xpy—ypx }l? M, i+

To find the relation {f, M },We use the relation {qa, f}=i Therefore, we get
{X,Mx}zamxzo, {y,MX}zasz—z,
P, op,

oM, oM,
X,My = =Z' y,My = :0,
apx apy
{XM } M, __, {y,MZ}:aMZZX,
6px apy

Therefore, we can configure the following table

Function

X
y

z

(V) To find {p, M } we use the relation {pa, f }:—%. Therefore

__oM, oM, —_(0)=0,
od, OX

oM, oM
e S SR
oM, oM

oq,  ox =) ==




oM
* z_(pz)z_pU

- (0)=0,

: _(_pz): Py-

- —aMX——(—p )=p
aq, oz e

M, M,

__aqz - oz =_(px)=_px’

_ oM, oM,

=—(0)=0.
aq, oz ©)

Therefore, we can configure the following table

Function

Py

D, 0

pz - pX

(v) To find {M,M },We use the definition {f, g }:{ o g o }
aq, op, P, A,

Where we will try to find the brackets

v} o, o o, o0, |
(oo, o




of og of og
oq, op, Op, 0q,

In our problem « =1,2,3, the Poisson brackets {f, g }:{ } be written as

flg _iafag_afag B
’ =09, op, op, oq, aq, op,

of og

(a) from the Property {f, f}:{af o _o o }z{éf o _of o }:o,wefindthat
aq, op, P, Aq, aq, op, a4, op,

o, =, f=tua, m,f =0

(b){anMy}{aMx y_aMX y}+{aMx y—aMX y}+{aMX y_aMx y}

ox op, Op, OX

X

oy op, Jp, oy oz op, Op, oz

z

©@-0(-p) + (PIO-(-2() + (=p)=x)=(y)(p)

s {Mx’ I\/Iy }:Xpy_y px = Mz

MM L_JOM OM, oM, oM, | oM, oM, oM, oM, | [oM, oM, am, oM,
U ex op, ap, ox o o, p, o oz op, op, oz
{MX,MZ}= OE-0)(p,) + (PIO-C2)(=p,) + (=p,)(0)-(y) (0)

{MX, M, }: Xp, =z p, =—M,
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— aMy aMz_aMyaMz + GMyaMz_aMyaMz + aMya'\/lz_al\/lyalvlz
oXx op, op, OX ay op, op, o oz op, Op, oz

{My,'\/‘z}z CEr)EN-@ ) + OM-0)(=p) + (PIO)-(x) (0)

{My, M, }: yp,—zp, =M,

Therefore, we can configure the following table

Function

Example: Calculate the formula of Poisson's brackets for{ f, fi } , Where ¢, k=1, 2,3, 4

and

f, =%(Xy+pxpy)'

f, =(x*+y*+p}+p;).

Answer

From the Poisson’s brackets

sl slae ag)

a a |99, op, Op, dq,

and where « is the number of generalized coordinates ( ¢ =x,y)

So, the Poisson’s brackets will be written as




:{af ag of 8g}+ o ag of o9
ddy Opx  Opx Ay dqy Opy  Opy Ady

At ¢, k=1, 2,3, 4, the Poisson’s brackets will be written as

of, 6fk}+ ﬂ@fk _afg ofy
dpy OX oy Opy Gpy Oy

}Jr o o o Ky
dpy OX oy dpy Opy oy

oy oo

Likewise, be

oo

Also, according to the rule {f, f }:o , we can calculate these bracket

Therefore

o o)
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+
OX Opx  Opx OX | | Oy Opy  Opy Oy

1

~{G0@p0-G PO+ 50 @Ry -5 PN}
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0 =[G -GG e f+{GNGH-G R -3 e
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{f31 fy }z Py Px +Xy — Py Px —Xy=0

--%,

(=4

=S, f
dy dpy py %{24}




Chapter 6

Canonical transformations and Generating function for
canonical transformation

It is straightforward to transfer coordinate systems using the Lagrangian formulation as
minimization of the action can be done in any coordinate system. However, in the
Hamiltonian formulation, only some coordinate transformations preserve Hamilton’s
equations. Canonical transformations, defined here as those that preserve the Poisson
brackets or equivalently the symplectic 2-form, also preserve Hamilton’s equations. A
search for conserved quantities and symmetries is equivalent to a search for a nice
coordinate system that preserves Hamilton’s equations

In classical mechanics, there is no unique prescription for one to choose the generalized
coordinates for a problem. As long as the coordinates and the corresponding momenta
span the entire phase space, it becomes an acceptable set. However, it turns out in
practice that some choices are better than some others as they make a given problem
simpler while still preserving the form of Hamilton’s equations. Going over from one
set of chosen coordinates and momenta to another set which satisfy Hamilton’s
equations is done by canonical transformation.

Point Transformations

It’s clear that Lagrange’s equations are correct for any reasonable choice of parameters
labeling the system configuration. Let’s call our first choice
q=(0, 0y, 05 ,0,). Now transform to a new set, maybe even time dependent,

Q, =Q,(0, t). The derivation of Lagrange’s equations by minimizing the action still
works, so Hamilton’s equations must still also be OK too. This is called a point
transformation: we’ve just moved to a different coordinate system; we’re relabeling the
points in configuration space (but possibly in a time-dependent way).




General and Canonical Transformations

The ease with which mechanical problems can be solved depends on the choice of

the generalized coordinates used. Therefore, it is interesting to examine the
transformations of a system of coordinates and moments to another system.

If we call P, and 0, on one hand and P, and Q, on the other hand respectively

old and new moments and coordinates, the transformation is P, =P, (p,.d,. t) and
Q,=Q,(P,,d,, t). One considers only the transformations, called canonical

transformations or contact transformations, for which there is a function H, called

oH oH

o T,

Hamiltonian in the new coordinates such as P’ =- >
[04

where P,and Q, are the canonical moments and coordinates.

Condition for a Transformation to be Canonical

We can be proving the transformation Qa :Qa(qa, P, 1), Pa = Pa (q,,p,,t) is canonical
by in three ways:

(1) The method of the Liouville differential form

This is somewhat less practical, but | include it for completeness. The transformation is
canonical if and only if the differential form Z{Pa dQ, - p, dqa} Is closed (is an exact
differential). '

(2) The method of Poisson brackets

The transformation is canonical if and only if the fundamental Poisson brackets are
preserved Poisson's brackets {Pf, P }: 0, {Qf, Q, }: 0, {Qf, P }: Sy

Where O kronecker delta,

=k

{#k

(3) 2{5 P,dQ, —dP, 5@} = 2{5 p, da, —dp, 5%}
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Example: 1 Determine whether the next transformations are canonical or
non- canonical?

sinp

(1) P =qcotp, QZLH(T),

) Pz\/ﬁk;sin P, Qz\/ﬁk_; cos p, where k is constant.
3) P=Jqsin(2p), Q=./qcos(2p),

(@) P=—t (p*+0?q?), Q=cot(-P-), where o is constant.
2w @q

5) P=-q, Q=p.
Answer

(1) P=q cotp, Q:Ln(s'i%)

_Q P aQ oP

= . we find that
aqa apa 8pa aqa

Using Poisson's brackets {Q , P }

(24 (24

{Qa, P }: Ln sinp-Ing, gcotp }:a(L” Slar;p—an) a(OI(;:I:tp)_@(Ln SIar;p-IHQ) 5(Q§(;)tp)

} 1 (—qcosec®p) — C‘?S P cotp = cosec’p-cot’p=1
q sSIinp

Therefore, the transformation is canonical.

L 1
(2) P=\2qk?sinp, Q=4/29k 2cosp
We will try to calculate the expression 2{5% dQ, —dP, 5Qa}
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1 1 1 1
SP,dQ, —dP, 5Q, = 5(\/ﬁk2 sin pjd [\/ﬁkz cos pJ—d (\/ﬁkz sin pj&(\/ﬁkz cos p)

25 3 2 ! ) 1 )
_(Zﬁk sin p(59) ++/2q k2 cos p(ﬂ’)j(—zﬁk cos p(dg) —+/2q k 2sin p(dp)]
—Z_iési : 2} =t
(ka sin p (dg) +/2q k2 cos p(dp)J(zﬁk cos p(59) —+/2q k Zsin p(é‘p)J

1
2

=k 2k

1
2 Zisin pcos p (5qdq)—sin® p(sqdp) +cos® p(Spdq) —2qsin pcos p(spdp) b —
q

4+8=0

1+5=0

%sin pcos p (dgaq) —sin® p(dg s p) +cos® p(dp 8q) —2gsin pcos p(dp S p)

4+8=0

1+5=0

—sin® p(sqdp) +cos® p(s pdq) +sin® p(dg S p) —cos? p(dpéq)}

1+4 2+3 1+4

= —[ sin’ p +cos® pj(&qdp){ sin’ p + cos® pj(ﬁpdq) =spdg-5qdp
) =1 =1

Then 6P, dQ, —dP, 6Q, =dp,dq, —dp, 59,

This proves that the transformation is canonical.

3) P=Jgsin(2p), Q=\qcos(2p)
We will try to calculate the expression 2{5% dqQ, —dP, 5Qa}

oP,dQ_ —dP, 6Q, = §(ﬁsin 2p)d (\/ECOSZD)—d (\/asin 2p)5(\/ac052p)
:(%sin 2p(50) +24/q cos p(5p)J[%cosz p(dq) —24/qsin2 p(dp)j—

1

[%sin 2p(dg) +24/q cos p(dp)J(mCOSZ p(59) —2[gsin2 p(5p)J




%sin 2pcos2p(oqdg) —sin®(2p)(sqdp) +cos*(2p)(spdg) —sin2p cos2p(spdp) ; —

4+8=0

1+5=0

4+8=0

l:psian cos2p (dgsq) —sin®(2p) (dg o p) +cos?(2 p) (dp 5q) —2qsin pcos p(dp 5 p)

1+5=0

{ —sin’(2p) (5qdp) +cos®(2p) (5 pdq) +sin(2p) (dg 5 p) —cos*(2p) (dp 6q)}

2+3 1+4

= —[ sin2(2p)+cosz(2p)j(5qdp)+£ sin2(2p)+cosz(2p)j(5pdq) =opdg-a5qdp

=1 =1

Then 6P, dQ,-dP,6Q, =dp,dg, —dp, dq, . Hence, the transformation is canonical.

4) P=2L (p?+0’q®), Q=cot(-2
2w w q

_0Q oP 0Q 0P
8qa 8pa apa 8qa

Using Poisson's brackets {Qa, P }

[

cot™ (P o( L (p2+0%e?)
@ q 20 _
oq op
cot™ (P a( L (p2+we?)
o q 2w

aq

{Qa, P }={cot‘1(i>, Zi(pzmzqz)}:

o q 0]

o

herefore, the transformation is canonical.




(5) P=—q, Q=p
_Q P aQ op
oq op op oq. '

(i) Using Poisson's brackets{Qa, Pa }

We have {p,—q }:@a(—q)_a_pa(—q) =0)-@®(-D=1. Then {p,—q }=1
oq op op oq

Therefore, the transformation is canonical.

(if) We calculate the differential form Z{Pa dQ, - p, dqa}
PdQ-pdg=(-q)(dp)-pdg= —qdp — pdq

M N
Then a—=—1, N

M _N_
aq op

_1 - — —
aq  dp
It means that, the differential form Z{Pa dQ, - p, dqa} IS an exact differential

Therefore, the transformation is canonical.

(ii1) We will try to calculate expression Z{5Pa dQ, —dP, §Qa}

oP,dQ, -dP, 6Q, = 6(-q)dp-d(-q)op=dqdp-oqdp==opdg-dpsq=5p,dq, -dp, 59

a

Then 6P, dQ, -dP,6Q, =dp, dg, —dp, 60, . This proves that the transformation is
canonical (which is indeed an exact differential and the transformation is canonical)

Example 2: Is the transformation P=Exp(q), Q=Exp(p) canonical or non-
canonical?

Solution

Using Z{Pa dQ, - p, dqa}i




PdQ - pdq =Exp(q) Exp(p)- pdq=Exp(p+q)—pdq

which is not an exact differential and the transformation is not canonical.

Exercises:

1 1,
pz—ﬁ(p—q), Ql—ﬁq :

- Check whether the next transformations are canonical or non- canonical?
QandQ,, pandp,, Qandp, Qandp, Qandp,, Qandp,.

2

. 1 1
(I) If pl_ﬁp’ Qz_ﬁ(p"'q)-

(if) Using Poisson bracket show that the transformation defined by

p:%(qZerZ), Q:tan‘l(g) (g=+2PsinQ, pP=+2PcosQ) is canonical.?
p




Generating function for canonical transformation

By Hamilton’s Variational Principle, the canonical transformations P, =P, (p,.q,. t)

and Q, =Q, (p,.q,, t) must be such that the integrals jttz Ldt and j'tzz Ldt are both

extremal, i.e. that one needs to have simultaneously 5[& Ldt =0and 5[&2 Ldt=0, which is
satisfied if there is a generating function F such that
aF _
dt
Then

L-L. (1)

—dt=0

t, dF
Itl dt

5jtt2(|_—|i)dt=5
1

5jt:2dF=5{F(tl)—F(t1) }:o (2)

Where F is called generating function for the canonical transformation, that will be as
F(p,. 9,.P,.Q,. t). Depending on the form of the generating functions (which pair of

canonical variables being considered as the independent variables for the Generating
Function), we can classify canonical transformations into four basic types. The four

possible types of generating functions of the first kind, are %, (q,.Q,. t), F,(q,.P,, t),
F(p,. Q,.t)andF,(p,. P,.t). These four generating functions lead to relatively simple
canonical transformations, can be found as shown below.

(3)

> L=Yp.q-H

a=1

- L[=3RQ-H

a=1

From Eqgs. (4) and (5) into Eq. (3), we get

%—F{Zl . —H}—{;PO,Q; —H}




EPLLELIRURE
S|Pt R, 0 |
= | dt
Therefore Eg. (6) can be written as
:{Zn: P, dqa—Paan}+{l-_l—H }dt (7)
a=1

Fl(qoﬂ Qa’t)’ FZ(qa’ Pa’t)’ Fg(poﬂ Qa’t)’ F4(pa7 Pa’t)1 (8)
Type 1: F(q,,Q, t):
We consider the exact differential of F =F (q,,Q,.t), we get

OF, OF OF
dF=dF1(qa,Qa,t)=;{aq dg, + 6QidQ“}+Eldt

If we compare Eq. (8) with Eqg. (9), we get

oF, oF, OF,

P =50, P T, ot

Type 2: F,(Q,. P,.t):

dF =dF,(,. Q.. t):{i 0. dq —P. an}+{|4 _H }dt
a=1

}

_A-H

“T{;“ﬂ%-%ﬂ%+QM%—QA%}{H_

H ldt
dFy =3 p, dq, +Q, dF, +(-P, dQ, -Q, dr,) +{I-_I—H }dt

dF]_: ai_l pa dqa +Qa dpa _(d (Qapa))}"‘{H_ - H }dt

[ —

dF, +d(Q, ){i dqa+QadPa}+{l-_l—H}dt

a:

d (Fl+i P Qansz ={z 0. dg, +Q. dPa}+{H _H }dt
a=1 a=1
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We consider the exact differential of F =F,(q,, P, t), we get

dF =dF,(q,. Po,,t)zz{aq2 da, + P % 4p } P2

If we compare Eqg. (11) with Eq. (12), we get

OF, ~ OF, OF,

pa=@1 Qa_ﬁ’ WZH—H

Type 3: F,(p,. Q,.t)

dF =dF, (. Q, )= {z 0. dg, - P, an} {H H}dt

{Z P, da, -PF, dQ, +q, dp, - qadpa} { —-H }dt

{Zn: P, A9, +9, dp, - F, dQ, - qadpa} { ~H }dt
=

d(paqa)_Pa an_qa dpa}‘F{l:l -H }dt

):{Zn;—Pa do, -q, dpa}+{H_ —H }dt
a=1
={i—Pa do, -q, dpa}+{H_ —H }dt
a=1

We consider the exact differential of F=FK(p,. Q,.t), we get

OF.
dF =dF;(p,, Q,.t)= Z{ P, + 20 an} kel

If we compare Eq. (14) with Eq. (15), we get

__OR __ORy OFy 5
“ o, T, a

Type 4: F,(p,, P,.t)

dF =dF, (¢, Q. t):{i 0. dqa—Paan}+{H_ _H }dt
a=1
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pa dqa _P(Z an +Qa dPa _Qa dPa 0y dpa — 0y dpa}+{H_ -H }dt

pa dqa +qa dpa +Qa dPa _qa dpa_Pa an _Qa dPaj}‘i‘{I:l _H }dt

d ( pa qa)+QadPa — Uy dpa_d (Pa Qa)}"'{l:l —H }dt

n

dF1+Zn::ld(PaQa)—z d(p, qa)z{Qa dP, -q, dp, }+{|—‘| —H }dt

a=1

d(Fl—i_Zn_:l{PaQa_paqa }J:{Qadpa_qadpa }+{H__H }dt

d (Fﬁznl {PaQa = Pe Ao }J=dF4 ={QadPa -q, dp, }+{I—_I —H }dt
a=1
We consider the exact differential of F =F,(p,, P,,t), we get

OF OF OF
dF =dF, (P, P,. t):;{api P+ ot dPa}+E4dt

If we compare Eq. (17) with Eq. (18), we get

_OF, OF, 5
R

Properties of the Four basic canonical transformations

Generating Derivatives of Trivial Transformation
function generating function | special cases

Fy(q;, Q1) p; = ?__ P, = —% Fy = q;0Q; pi = Q.
I ot

P; = —q;

F2(qi, Py, t) P =%’ Q; =g_i:,- F> = qiP; Pi =P
Qi = qi

F3(pi, Qi t) gi= -2 p =-25 F3 = piQ; q; = —Q;

ap;’

P; = —p;
Fy(p;, P;, ©) 7. 0. =" , F, = p;P; q; = —P;
| Qi = pi




Example 1: Show that the transformation P=—q, Q=p is canonical, and determine
the generating functions F ?

Solution

Using Poisson's brackets{Q , P }: Q P _Q op :
o aqa apa apa aqa

opo(-q) opao(-q)
We h P — AN U 0)=(1) (-1) =1
e have {Q } {p q } 0)-O (D)

{Qa, Pa } = { p,—q } =1, hence the transformation is canonical.

For the generating functions F, = F(q,, Q,,t)

oF, p __ R

pa = aqa o aQa .

ok _% B
pa _aqa - Q_ aq - F]__J.qu

oF, _gq=_%H _oR -
Pa——aQa - —Q= 0 q 0~ F jqu

From the transformation P=—q, Q=p, we have
From Eqg. (1), we get F =Iqu =0qQ
Also, from Eq. (2), we get F.=[qdQ=0Q

Hence, the generating functions F, given by F(q,, Q,,t)=0Q.

Example 2: Show that the following transformation is canonical,

P =q cotp, Q=Log(smpJ?
q

Find the generating functions F, =F,(p,, Q,.t) 2
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Solution

(i) Using Poisson's brackets{Q , P }: Q P _Q op :
a @ an apa apa aqa

We have

{Qa’ # } {J_ cos p, J_kzsm p} 0(y2q k2 cos p) &(y[2q k?sin p)

oq op

1 1
d(y/2q k? cos p) O([2q k? sin p)

op aq

1 1 g 1
:—k 2 cos p+/2q k2 cos p—+/2q k 2(-sin p). ——k?2sin p
} 2\/2q V2

{Qa, P }:(cos p)° +(sin p)* =1. Therefore, the transformation is canonical.

(ii) For the generating functions F, =F,(p,, P,.t)

q, = - oOF, Q, - OF, .
P, oP,

Therefore

R, P oF, R g

%, cotp op o @

cotp

oF, sinp| OF, sinp
Qa, = apa —> Log(—qj = aP —> F4 :I Log(—qjdp (2)
From the transformation P =qcotp, Q= Log( 'gpj we have

From Eq. (1),
F,-P j';i;‘g dp =P log(cos p)+C(P)

F, = P log(cos p)+C(P)




C(P)=PLog(P)-P . Then

F,=p {Log(cospj 1 }

Also, from Eq. (2), we get

F4 =I Log Slnp dP - F ILOQ[TCOtpde — F J-L (Slgpcscl)rslg]dp

cotp

F, =[ Log %jdp — F,=[(Logcosp- Log(P))dP

F, =P Log(cosp)—(PLog(P)- P)

F,=P {Log(cosp)—Log(p)_1 }

F,=pP {Log(cospj—l }

[Log(P)dP=PLog(P j (P)dP =P Log(P)-[dP =P Log(P)-P

Example 3: Show that the following transformation is canonical,
P=2(1+./q cosp),/q sinp, Q=log(+./q cos p)?
Find the generating functions F,=F,(p,, Q,.t) ?

Solution

0Q OP B 0Q OP
8qa apa 8pa aqa

.We have

Using Poisson's brackets{Qa, P }:

d(log(L+./q cos p)) ©(2(4+d cos p)/a sin p)
oq op
o(log(L+./q cos p)) 5(2(1+\/a cos p)/q sin p)
op aq

{Iog(1+ﬁ cos p), 2(1+./q cos p)y/q sin p }




d(log(1+./q cos p)) a(2(5in p-++/q cos psin p)\/g )_
aq op

d(log(L+./q cos p)) (2(/a +a cosp)sinp)
8p 8(]
; 1.
5(|Og(1+\/a cos p)) 8(2(sm p+\/a Esm2p)\/a )_

o(log(L+/q cos p)) 6(2(\/a+q cos p) sin p)
op oq

{Iog(1+\/a cos p), 2(L++/q cos p)/q sin p } 2\/_(1i0jap008 p)(z(cos p+4/q cos2p)yfq )_

{Iog(1+\/a cos p), 2(1+./q cos p)y/q sin p }:

{Iog(1+\/a cos p), 2(1++/q cos p)\/q sin p }:

~Jgsinp

2( + cos p)sinp
(1++/a cos p) ( 2q J
(cos p+4/q cos2 p)cos P+

(+./q cos p) Ja (2(%+ cos p) sin p]sin p

1 COS® P++/Q COS pcos2p +
(+./q cos p) |sin? p+2./qcos p sin® p

log(1++/q cos p), 2(1+./q cos p)y/q sin p }
log(1++/q cos p), 2(1+.+/q cos p)\/q sin p }:

log(1+./q cos p), 2(1+./q cos p)./q Sin } _
9(L+a cosp). 2(L+a cos p)a sin p (1+./g cos p) |+sin® p+2,/q cos p sin® p

1 {cos p+\/acosp cos’ p—sin p}

log(1++/q cos p), 2(1+./q cos p)/q sin p } 1 {COS P+/q cos poes” p—yq cos psin’ p+

(1++/q cos p) |sin? p+./qcos p sin? p+./q cos p sin? p

1 cos’ p+./q cos pcos® p +
(1++/q cos p) |sin? p+./q cos p sin? p

log(L++/q cos p), 2(1+.[q cos p)\/q sin p

(cos® p+sin® p) +
(1+\/a cos p) \/a cos p(cos? p+sin? p)

~1
(1+JE cos p) q.c05p }

=1, hence the transformation is canonical.

{
{
&
{
flog+ 2 cosp). 21+ cos pIasinp |-
{
{
{

log(1+./q cos p), 2(1+./q cos p)\/q sin p }

log(1+./q cos p), 2(1+./q cos p)/q sin p




(ii) For the generating functions F; = F,(p,, Q,.t)

ok, ok,
— , P,=-
0Py 0Q,

Q=log(l+[q cosp) > e=1+.qcosp — e°—1=./qcosp —

a

e? -1

-

cos p

(-
q= . Therefore

cos’ p
(- R,
cos’p  Op

P, :_(jgs > 2(1+./q cos p)|/q sin p:-g—g - Fy=—[2(1+/q cos p),q sin pdQ (2)

From the transformation P =2(1+./q cosp),/g sinp, Q=Ilog(l+./q cos p), we have
From Eq. (1),

F, =—(eQ —1)2_[sec2 pdp - F =—(6Q —1)2 tan p

Also, from Eq. (2), we get

: e?-1 e?-1 .
Fy = [2(+Jd cos p)fa sin pdQ=- [+~ S cosp) - sinpdQ

F,=—2tanp j(eQ —1+(eQ —1)2 )dQ ——2tanp j(eQ —1+(e2Q —2eR +1) )dQ

F,=-2tanp j(ezQ _e® )dQ = —2tan p I(eQ -1 )eQdQ = —2tan p I(eQ -1 )d(eQ)

F,= —Zé(eQ—l )Ztanp - k= —(eQ—l )ztanp




Chapter 7
Hamiltonian-Jacobi mechanics
Hamilton-Jacobi Equations

Introduction

Hamiltonian mechanics is an especially elegant and powerful way to derive the
equations of motion for complicated systems. Unfortunately, integrating the equations
of motion to derive a solution can be a challenge. Hamilton recognized this difficulty, so
he proposed using generating functions to make canonical transformations which
transform the equations into a known soluble form. Jacobi, a contemporary
mathematician, recognized the importance of Hamilton’s pioneering developments in
Hamiltonian mechanics, and therefore he developed a sophisticated mathematical
framework for exploiting the generating function formalism in order to make the
canonical transformations required to solve Hamilton’s equations of motion.

In the Lagrange formulation, transforming coordinates (q,,d;) to cyclic generalized

coordinates (Q,,Q:) , simplifies finding the Euler-Lagrange equations of motion. For

the Hamiltonian formulation, the concept of coordinate transformations is extended to
include simultaneous canonical transformation of both the spatial coordinates g, and the

conjugate momenta p, from (q,, p,)to (Q,,P,), where both of the canonical variables

are treated equally in the transformation. Compared to Lagrangian mechanics,
Hamiltonian mechanics has twice as many variables which is an asset, rather than a
liability, since it widens the realm of possible canonical transformations.

Hamiltonian mechanics has the advantage that generating functions can be exploited to
make canonical transformations to find solutions, which avoids having to use direct
integration. Canonical transformations are the foundation of Hamiltonian mechanics;
they underlie Hamilton-Jacobi theory and action-angle variable theory, both of which
are powerful means for exploiting Hamiltonian mechanics to solve problems in physics
and engineering. The concept underlying canonical transformations is that, if the
equations of motion are simplified by using a new set of generalized variables (Q,P) ,

compared to using the original set of variables (g, p), then an advantage has been
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gained. The solution, expressed in terms of the generalized variables (Q,P) , can be
transformed back to express the solution in terms of the original coordinates, (q, p) .

Only a specialized subset of transformations will be considered, namely canonical
transformations that preserve the canonical form of Hamilton’s equations of motion.
That is, given that the original set of variables (q,, p,) satisfy Hamilton’s equations.

If we consider a canonical transformation. where P, and (, is the old moments, while

P, and Q, are new moments and coordinates, such that P, =P, (p,.d,.t) and

Q(Z :Qa(pa’qa’ t) '
It is note that, the old system (Hamiltonian system) is given as

. _oH OH

P

While, new system (Hamiltonian system), is given by

_oH
a GQa !

Now, If we can be found a canonical transformation in which the new Hamiltonian

function is equal to zero( H =0),
Then, we can say that

Q; =P=0

Therefore

Q, =P,=constant=4.




Let us, we consider the generating function F =F,(q,,P,, t) which produces the

canonical transformation according to the formulas, in this case
OF
Qa = 2 ]
oP,
Now, if we put H =0

%+H(pa,qa,t):0.

OF, OF, B
P +H(aqa,qa,'[]—0. (6)

This equation is called Hamilton-Jacobi equation (Hamilton-Jacobi equations), which

can be written on the form

8_S+H[5_S qa,tjzo, (7)

ot aq,

oS
o, = Py (8)

While,

Equation (7) (Hamilton-Jacobi equation) is a partial differential equation of the first

order and is in the variables (g, d,,ds, ,t). Which their number is (n+1)

and therefore the general solution to this equation will contain (n +1) the constants. By
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deleting one of these optional constants, we will have (n) of the constants, that are

(B., Bo: Bs
S =5(q,,0,.0;,

Using relations (8), (9) we can define (g, ) as a function of (3,,7, , t)and thus we

have fully defined the mechanical system.

Special case of Hamilton-Jacobi equation

When the old Hamiltonian function does not depend on time, that is H =H(p,.q,).
Therefore, the Hamilton-Jacobi equation can be written in the form

o5(PPt) (05 )
& *H[ah'%J—o- (1)

Then we assume that the solution to the Hamilton-Jacobi equation is in the form
S=5,(a),+5,(ad,)+S;(d3) e+ 5, (A )+ Sy (1) (2)
Thus, Eq (1) becomes in the form

The right side of Eq. (3) depends on time only, while the left side depends on
0, 0,,0s, , 0, only. Therefore, each of the two sides is equal to a constant (E) where

(E) represents the total energy of the mechanical group, i.e.

Sn+1(t) =—Et,

oS
H| =— =E
(aqa | an
Examplel: Using Hamiltonian-Jacobi system study the motion of harmonic oscillator in
one dimension (1— D) and prove that the particle's distance from the equilibrium

position is given by c, sinc,(t+c,), where ¢,,c,,c,are constants?

Answer

83




It is well-known that the Hamilton-Jacobi system for solving a mechanical system can
be written in the form

S S _
oq, B,

05(a, 5.1)
ot

+H(q,,p,.t)=0, Yar 1)

For the harmonic oscillator in one dimension, the kinetic energy and potential energy
are given, respectively, as

T :%m X, V :%k x*, where m is mass of particle.

Therefore, the total energy is givenas E =T +V :%m X2 + %k X°

The Lagrange's function is givenas L=T -V :% mx —%k X’ (2)

Since time does not appear explicitly in the Lagrange's function, the Hamiltonian
function is given in the form

H=T+V =%mx'2+ %kx2+E

From the relation p, :g—l_', we find that p, _ot

ox

[21

From Eq. (4) into Eq. (3), we get

2
H:T+V:1m(&)2+£kx2=£m&+1kx2 5)
2 m 2 2 m 2

Therefore, the Hamilton-Jacobi equation —as(qa,tﬂ Y

+H(q,, py,t) =0 is taken the form




2
GICIVZ) BN RN O (6)
ot 2m 2

Then, the solution of Eq. (6), maybe written in the form (We have one coordinate)
s =5,(X) +5,(t) (7)

: : 0S : :
From the Hamilton-Jacobi system —— = p, and where our problem in X —coordinate,
o

S . :
we have 6— =p — @ = p,, that can be written from Eq. (7) in the form

0q, OX

oS,

&:px

From Eq. (7) and (8), we can write Eq. (6) as

ai+ (6slj Zkx*=0
ot 2m\ ox 2

But every term in this equation is independent each other. Then

0s, 1 83
+-kx*=——2%
Zm(axJ 2 =P

Therefore,
83
ot

1(os, ) 1, ,
—L |+Z2kx’ =
ox ) 2 P

ﬁz_) S, :_ﬂ2t+cl( O) — 5 :_ﬂz
0S, 1.

== —=kx

OX % 2

=2 ﬂz__kx

s,=2m | /ﬁz—%kxzdx+c2(=0)

Now, from Eq. (10) and Eq. (11), the solution of Eq. (5) becomes in the form




s:sl+32:\/ﬁj1/ﬂ2—%kx2dx—ﬂ2t (12)

Again, from the Hamilton-Jacobi system ;%: 7o - Then %z y, and from Eq. (12), we

o 2

get

0 / 1,
6—182{\/%]. ,Bz—Ekx dx—ﬁzt}=y2

] R S
2 ﬂz—Ek X2

Jom | - dx—t=7,
szl—ZIﬂkxz

\/ZmI L - dx—t=y,

A

msin‘{ /ij
2JB, k 2/, —t=y, a\/gsin‘{ /ZLﬁZJX—h}/Z —>sin‘1[ /ZLﬂZ)XZ\/%(}/Z +t)
{25

N%JM‘”JE(% 1) x=\/2T7zsin\/%7(n+t)

Therefore

x=c,sinc,(c, +1)

Where,

[2 k
G = %’ sz\/;’ CG=7,

Example 2: A particle of mass M is projected with initial velocity V, atanangle &

to the horizontal in the uniform gravitational field of the earth. Use Hamiltonian-Jacobi

system to describe the motion of the projectile. Ignore the air resistance?
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Solution

It is well-known that the Hamilton-Jacobi system for solving a mechanical system can
be written in the form

05(q, B.1)
ot

oS

%—7(1’ (1)

+H(,,p,.t)=0,

. Flight path
Y

Y
Y
b

without air drag N

Fling to the top
Let a particle of massm be projected from the origin point with an initial velocity V,
making an angle ¢ with the horizontal line referred as X-axis. Let (X, y) be the

position of the particle at any instant t. Since X and Y are independent and hence the

generalized coordinates are (q;, 4,) =(X , Y)and the generalized velocities are
(0. ;) =(X", y).

Kinetic Energy

The kinetic of the projectile is given by T :%m(x'z +y2),

The Potential Energy

The total of potential energy is given as
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F=-mg - F=—mg=-VV — mg:(jj—v — V=mgy
y

Lagrange Function

The Lagrange Function can be written as

L:T—V:%m(x'2+y'2)—mgy (2)

1
H=pa;+pQ,-L=pxX+p,y—L=p X +p, y'—Em(X'2+y'2)+mg y (3)

p :ﬁ. Then

a 8q;{

_ot

px _g’ py ay-

From Eq. (4) into Eq. (1), we have
p, =mx' =>Xx =—
p, =my" —>y' =

From Eq. (5) and Eq. (6), then Hamilton Function (Eq. 3) becomes

2 P 2
&j + (—VJ }+mgy
m m

1
H =%{p§+p§ }+mgy




From Hamiltonian-Jacobi system (1) and Eq. (7), then Hamilton-Jacobi equation

% +H(q,, p,,t) =0 becomes

S50 1 (5] may-o

Then, the solution of Eq. (8), maybe written in the form (We have two coordinates)

§=8,(X) +5,(y) +8;(t) 9

From the Hamilton-Jacobi system 88_8 = p,, and where our problem has two
e

coordinates Xxand y, then

&S s,
- = pl - — =
0q, OX

Py

0S 0S,
~— =P =2 ==
aq, oy

Now, from Eq. (9), (10) and (11), we can write Eq. (8) in the from

at +2m{ax) +£ayJ }+mgy_0 (12)

This equation has two parts, one of these parts depends on time and the other on the

Py

coordinates, so each of them can be placed on a fixed form in the form
1 |(es,¥ (os,)

a3

2m [\ oX oy ot

That can be written as

_Eszﬂs > §=—ft+¢(=0) > s;=—fit
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Also, from Eq. (13), we have

0s, i _
(5]} mos-s

2 eral (2]
From Eqg. (15), we have
oS
(25
From (16), we get
ds,=4dx — s =4X+C,(=0) > s =4X
Then

Slzﬂlx

From Eq. (16) into Eq. (15), we have

(%] +2m{mg y—ﬂs} o
S, :.[{\/_ Zm{mg y_ﬂa}_ﬁf }dy+C3(= 0)
S =I{\/— Zm{mg y—ﬂg}—ﬂf }dy

Now, from Eq. (14), Eq. (17) and Eq. (19), we can write Eq. (9) in the form

S=5+S,+5, =—ﬂ3t+ﬂlx+j{\/2m{ﬁ3—mg y}—ﬂf }dy
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Again, from the Hamilton-Jacobi system (;% =Yy

o

& & s
op " s 7 ap

oS
From Eq. (20) and — = y,, we get
d. (20) o5 71, We g

1

aiﬂl{ﬂst‘h@x"'j{\/zm{ﬂsmg Y}_ﬂlz }dY}_%_) X+_[ A Zdy:7’1
\/2m{ﬂ3 —-mgy _ﬂl

x+ [ ﬂl){zm{ﬁs ~mg Y}‘ﬂffdy n x4 - ﬂl){zm e y}_ﬂf}

=N
(-2m*q)

ﬂ1 |:2m{183 —mg y} _1812 :|2

X+ ng :}/l

131|:2m{:83 —mg y}_ﬁ12:|2 :ng (7/1_)()

Second time from Eg. (20) and 867? = 7,5, We get
3

i{_ﬂ3t+ﬂ1X+I{\/2m{ﬂ3_mg y}—ﬂf }dy}ws

dy=y,




1

_t+mj{2m{ﬂ3_mg y}_ﬂ12j| 2 dy =y,

1

m{Zm{ﬂs —mg Y} -B T

1 2
—(-2m
2( g)

=73

- {2m{ﬂ3 —mg Y}—ﬁf T =m°g’ {73 +t} (23)

Now from Egs. (22) and (23), we have for constants f,, A, 7,, 7,. therefore we need

for four condition to find these constants.

Squared both two Egs. (22) and (23), we get

1812 |:2m{:83 —mg y}_ﬂf} :m492 (7/1 _X)2

2
Zm{ﬂs —mg y}_ﬂlz =m’g’ {7/3 +t}
Derivative with respect to both two Egs. (24) and (25), we get

_zngﬂf y :_2m4g2 (7/1 —X)X'

—2m*gy = 2ngz{;f3 +t}




From the initial condition and at t =0 , we have x =y =0 and substituting in Egs. (24)

and (25), we get
/812 |:2mﬁ3 _ﬂlz}:m4g2]/12 (28)

2mp,—pl =m’g’ y; (29)

Again, From the initial condition and at t =0 , we have X" =V, cose, y" =V, Sina

and substituting in Egs. (26) and (27), we get

—2m’g B’ v, sina =—2m*g? (, —0)v, cosa

2 H 2
ﬁ SINx ﬂ
1 =L tana

2 ar 2
Bsina=m°gy,cosa — y, =— >
m“g cosa m°g

-2m?gv,sina = 2ngz{73 +O}

Vo -
7s=—-2sina
9

Substituting (30) into (28), we get

,Bf{Zm,B3 —ﬂf} :m“gz(m’g—;gtana ]

{Zmﬂg —ﬁf} =B (tana )2 —2mpB, =f (1+(tan a)2 )

2mp, - = (tana )’




2mp, = (1+(tana)’ )

Substituting from (31) into (29), we get

2
2m B, - 7 = m*g? (—%‘)sin aj

2m g, — 2 = m? (vysina)’
From Eq. (33) into Eqg. (32), we get

2 H 2 2 . 2
m?(v,sine)’ =2 (tana )' > f2= il (VOSInozt) — Bl = il (vosmaz) =m? (v, cosa)’
(tane ) (sina )

CoSso

B,=Etmyv,cosa
Substituting (34) into (33), we get

(mv, cosa)’
m*g

V= tan o

2
V
7, =-2sinacosa
g

Substituting (34) into (33), we get
2m g, - B2 = m? (vpsina)’ —>2m g, —(mv, cosa)’ =m? (v, sina)” — 2m g, =m*¢ (sina + cosa )’

mv;

Ps=— (36)

Subtracting Eq. (25) from Eq. (24), we get




4,20 )2 2
GG i)
1

m’ (7/1_)()2 = 1812 {73 +t}

m(y, —x)= ﬁl{% +t}
Substituting by y,, 7, B, in Eq. (36), we get

2
m(y, —Xx) = /3’1{;/3 +t} —>m (V—Osinacow— X)=(xmyv, COSa){—V—OSina +t}
g g

2 2
Vo Vo
—2sinacosa —x=-2sinacosa —V,tcosa
g 9
\_ﬁr——J

1+3=0 1+3=0

X=V,tcosa

Substituting by y,, B, £, in Eq. (25), we get

2
Zm{ﬂs—mg y}—ﬂf = ngz{n +t} - Zm{ﬂs —-mg y}—ﬂf = ngz{%ﬁ +27, t+t2}

, 2
Zm{mzv0 —mg Y}—(mv0 COSa)2 = ngz{[—vgosin aj +2(—VE°sin a}t+t2}

V2 -2gy—(Vocosa) = (~v,sina) —2gv,tsina + g*t?
Vo (1—cos’ @) —2g y = (—V,sin a)2 —-2gVv,tsina+g*t’

visin®a—2gy= visin®a—-2gv,tsina +g*t’
%/_J

14+3=0 1+3=0




2gy=-gt*+2gy,tsina

y=—%gt2+v0tsina

Then
y =v0tsino:—%gt2

The two equations (38), (39) represent the required dimensions




