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Introduction 

In theoretical physics and mathematical physics, analytical mechanics, or theoretical 

mechanics is a collection of closely related alternative formulations of classical 

mechanics. It was developed by many scientists and mathematicians during the 18th 

century and onward, after Newtonian mechanics. Since Newtonian mechanics considers 

vector quantities of motion, particularly accelerations, momenta, forces, of the 

constituents of the system, an alternative name for the mechanics governed by Newton's 

laws and Euler's laws is vectorial mechanics. 

 

By contrast, analytical mechanics uses scalar properties of motion representing the 

system as a whole—usually its total kinetic energy and potential energy—not Newton's 

vectorial forces of individual particles. A scalar is a quantity, whereas a vector is 

represented by quantity and direction. The equations of motion are derived from the 

scalar quantity by some underlying principle about the scalar's variation. 

 

Analytical mechanics takes advantage of a system's constraints to solve problems. The 

constraints limit the degrees of freedom the system can have, and can be used to reduce 

the number of coordinates needed to solve for the motion. The formalism is well suited 

to arbitrary choices of coordinates, known in the context as generalized coordinates. The 

kinetic and potential energies of the system are expressed using these generalized 

coordinates or momenta, and the equations of motion can be readily set up, thus 

analytical mechanics allows numerous mechanical problems to be solved with greater 

efficiency than fully vectorial methods. It does not always work for non-conservative 

forces or dissipative forces like friction, in which case one may revert to Newtonian 

mechanics. 

 

Two dominant branches of analytical mechanics are Lagrangian mechanics (using 

generalized coordinates and corresponding generalized velocities in configuration 

space) and Hamiltonian mechanics (using coordinates and corresponding momenta in 

phase space). Both formulations are equivalent by a Legendre transformation on the 

generalized coordinates, velocities and momenta, therefore both contain the same 

information for describing the dynamics of a system. There are other formulations such 

as Hamilton–Jacobi theory, Routhian mechanics, and Appell's equation of motion. All 

equations of motion for particles and fields, in any formalism, can be derived from the 

widely applicable result called the principle of least action. One result is Noether's 

theorem, a statement which connects conservation laws to their associated symmetries. 
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Analytical mechanics does not introduce new physics and is not more general than 

Newtonian mechanics. Rather it is a collection of equivalent formalisms which have 

broad application. In fact the same principles and formalisms can be used in relativistic 

mechanics and general relativity, and with some modifications, quantum mechanics and 

quantum field theory. Analytical mechanics is used widely, from fundamental physics to 

applied mathematics, particularly chaos theory. 

 

The methods of analytical mechanics apply to discrete particles, each with a finite 

number of degrees of freedom. They can be modified to describe continuous fields or 

fluids, which have infinite degrees of freedom. The definitions and equations have a 

close analogy with those of mechanics. 

 

Dynamical system 

It is a system of particles moving under the influence of a set of forces and 

these particles may be separate from each other or connected. 

Generalized Coordinates  

In two-dimensions the positions of a point can be specified either by its rectangular 

coordinates  ( , )x y  or by its polar coordinates. There are other possibilities such as 

confocal conical coordinates that might be less familiar. In three dimensions there are 

the options of rectangular coordinates  ( , , )x y z , or cylindrical coordinates ( , , )z   

or spherical coordinates ( , , )r    or again there may be others that may be of use for 

specialized purposes (inclined coordinates in crystallography, for example, come to 

mind). The state of a molecule might be described by a number of parameters, such as 

the bond lengths and the angles between the bonds, and these may be varying 

periodically with time as the molecule vibrates and twists, and these bonds lengths and 

bond angles constitute a set of coordinates which describe the molecule. We are not 

going to think about any particular sort of coordinate system or set of coordinates. 

Rather, we are going to think about generalized coordinates, which may be lengths or 

angles or various combinations of them. We shall call these coordinates ( 

1 2 3, , ,............, nq q q q  ). If we are thinking of a single particle in three-dimensional 

space, there will be three of them, which could be rectangular, or cylindrical, or 

spherical. If there were  N  particles, we would need  3N coordinates to describe the 

system – unless there were some constraints on the system. 

With each generalized coordinate q  is associated a generalized force 
iF . 
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A generalized force need not always be dimensionally equivalent to a force. For 

example, if a generalized coordinate is an angle, the corresponding generalized force 

will be a torque. 

A set of parameters that describes the configuration of a system with respect to some 

reference configuration and written symbolically as 1 2 3, , ,............, nq q q q  

( ,q 1,2,3..........., n = ). 

Generalized Velocities 

The first derivatives with respect to time of the generalized coordinates of a particle is 

called generalized velocities and are written as 1 2 3 4, , , ,..........,( )
q

q q q q q
t





=



     . 

It is noted that it is not required that the units of the general velocity be (length / time). 

1,2,3,4,.......................,n = . n  the number of coordinates. 

Generalized Accelerations                                                                                                     

The second derivatives with respect to time of the generalized coordinates of a particle 

is called generalized Accelerations and are written as 
2

1 2 3 4 2
, , , ,..........,( )

q
q q q q q

t





=



     . 

Constraints 

Motion of particle not always remains free but often is subjected to given conditions . 

These conditions are called constraints.   

 

Types of the Constraints   
Holonomic Constrains: Expressible in terms of equation involving coordinates and time 

(may or may not present), n1 2 3
(q ,q ,q ,.......,q ,t)=0f , where 

i
q  are the instantaneous 

coordinates  

- Differential (kinematical) Constrains 

- Geometric Constrains 

- Holonomic Constraint is a typical constraint condition that is involved if the position 

vector of the particle is considered along the time-taken. 

But for non-holonomic it means that the position vector of the particle is not considered 

along the time taken. 
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Generalized forces 
Suppose that we have a mechanical system that contains a number N  of particles, and 

select one of these particles, let it be a number i , which has a mass im , its position is 

ir  and it is affected by the force iF , then it moves a displacement ir . 

 

So, we can write the work in the form 

1

.
N

i i

i

W F r 
=

=                                                                                                        (1) 

But 








q
q

r
r

n
i

i 
= 


=

1



                                                                                                          (2) 

Substituting from Eq. (2) into Eq. (1), we get 

1 11 1

. .
N N

i i
i i

i i

n nr r
W F q F q

q q
 

  

  
= == =

    
= =   

    
     

We will know the expression 
1

.
N

i
i

i

r
f

q=




  by generalized Forces and we will symbolize  
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(denote) it with a symbol (we will denote it by a symbol) Q
, that is 

1

.
N

i
i

i

r
Q F

q


=


=


 . 

So the work can be written in the form
1

n

W Q q 



 
=

= . 

 

The Momentum 

The momentum defends as 
L

p
q.




=


. It depends on the generalized coordinates of the 

system and the generalized velocities, and sometime maybe it depends explicitly on 

time t , i. e. p p (q , q , t).
   =     

 

Total Kinetic Energy  

 
The total kinetic energy T  of a system of N  particles is given by 

1 1

2 21 1
( ) ( )

2 2

. .N N

i i i i

i i

d
T m m

dt
r r

= =

= =   

 

Degrees of freedom   
 Number of independent coordinates required to completely specify the dynamics of 

particles (system of particles) is known as degree’s of freedom . 
 

Important relations  
 

(1) Proof that  .
.

 q

r

q

r ii




=






?                       

Proof 
We know that ( , )i ir r q t=  and derive with respect to time we have  


= 











+




=

n
iii

dt

dt

t

r

dt

dq

q

r

dt

rd

1






. Then       

t

r
q

q

r
r

dt

rd ii
i

i




+




==




 ..




                               (1) 

Deriving Eq. (1) with respect to 
.

q (where ( )
.

i ir r q ), we have  
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(2) Proof that 
. .

.. . .. . ..
r d r r

r r r
q dt qq 

     
= −        

 ?          

Proof 
We known that  

1 2 3 4 5( , ) ( , , , , ,........... , )i i i nr r q t r q q q q q q t= =                                                                      (1) 

If we derive Eq. (1) with respect to time, we get  

t

r
q

q

r
q

q

r
q

q

r
q

q

r

dt

dt

t

r

dt

dq

q

r

dt

dq

q

r

dt

dq

q

r

dt
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dt
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Again, we derive the above relation with respect to q .  
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While, if we derive Eq. (1) with respect to q , we have   
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Now, from Eq. (1) and Eq. (2) it can be said that 
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                                   Proof 

The kinetic energy is given as  21

2

.T mr= , that can be written as 
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partial derivative it with respect to .q , we have  
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Conservative Force Fields (conservative dynamical system) 

For a conservative dynamical system, the force can be written as the negative gradient 

of a potential energy ( )V in the form F V= − . 

The generalized force can be written as  

1 1 1

( ). . .
N N N

i i i
i

i i i i

r r V r V
Q F V

q q r q q


   = = =

    
= = − = − =−

    
   , 

i, e. the generalized force for conservative dynamical system can be in the form 

V
Q

q





= −


. 
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Chapter 2 

Lagrange's Equations of Motion 

 
     The usual way of using newtonian mechanics to solve a problem in dynamics is first 

of all to draw a large, clear diagram of the system, using a ruler and a compass. Then 

mark in the forces on the various parts of the system with red arrows and the 

accelerations of the various parts with green arrows. Then apply the equation  F ma=   

in two different directions if it is a two-dimensional problem or in three directions if it is 

a three-dimensional problem, or I =   if torques are involved. More correctly, if a 

mass or a moment of inertia is not constant, the equations are F p=   and L = . In any 

case, we arrive at one or more equations of motion, which are differential equations 

which we integrate with respect to space or time to find the desired solution. Most of us 

will have done many, many problems of that sort. 

    Sometimes it is not all that easy to find the equations of motion as described above. 

There is an alternative approach known as lagrangian mechanics which enables us to 

find the equations of motion when the newtonian method is proving difficult. In 

lagrangian mechanics we start, as usual, by drawing a large, clear diagram of the 

system, using a ruler and a compass. But, rather than drawing the forces and 

accelerations with red and green arrows, we draw the velocity vectors (including 

angular velocities) with blue arrows, and, from these we write down the kinetic energy 

of the system. If the forces are conservative forces (gravity, springs and stretched 

strings), we write down also the potential energy. That done, the next step is to write 

down the lagrangian equations of motion for each coordinate. These equations involve 

the kinetic and potential energies, and are a little bit more involved than F ma= , 

though they do arrive at the same results. 

    I shall derive the lagrangian equations of motion, and while I am doing so, you will 

think that the going is very heavy, and you will be discouraged. At the end of the 

derivation you will see that the lagrangian equations of motion are indeed rather more 

involved than F ma= , and you will begin to despair – but do not do so! In a very short 

time after that you will be able to solve difficult problems in mechanics that you would 

not be able to start using the familiar newtonian methods, and the speed at which you do 

so will be limited solely by the speed at which you can write. Indeed, you scarcely have 

to stop and think. You know straight away what you have to do. Draw the diagram. 

Mark the velocity vectors. Write down expressions for the kinetic and potential 

energies, and apply the lagrangian equations. It is automatic, fast, and enjoyable. 
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      Incidentally, when Lagrange first published his great work La méchanique 

analytique (the modern French spelling would be mécanique), he pointed out with some 

pride in his introduction that there were no drawings or diagrams in the book – because 

all of mechanics could be done analytically – i.e. with algebra and calculus. Not all of 

us, however, are as gifted as Lagrange, and we cannot omit the first and very important 

step of drawing a large and clear diagram with ruler and compass and marking all the 

velocity vectors. 

The lagrange's equations        

Suppose that we have a dynamical system of N  particles, and select one of these 

particles, let it be a number i , which has a mass im , its position is ir  and it is affected 

by the force
iF , then it moves a displacement ir   . 

 

Writing the equation of motion for this particle, it will be according to Newton's second 

law on the form 
..

i iF m r=   and for the all dynamical system it can be written 

1 1

..
N N

i i

i i

F m r
= =

=                                                                                                         (1) 

Multiplying Eq. (1) dot product by 
r

q




, we have  
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1 1

... .
N N

i i

i i

r r
F m r

q q = =

 
=

 
                                                              (2)  

But   
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=














+




=














+




=















 q

r
r

q

r
r

dt

rd

q
r

q

r
r

q

r

dt

d
r

q

r
r

q

r
r

dt

d .
.......... ....... )(






















 

Then 

.
.. . .. . .

r d r r
r r r

q dt q q  

=
     

−   
     

 

Also, we know that 

.
.

r r

q q 

 
=

 
 

. .
.. . .. . ..

r d r r
r r r

q dt qq 

     
= −        

                                                             (3) 

Substituting from Eq. (3) into Eq. (2) we get 

1 1 1 1

(4)
. . . .

.. . . . .. . . . . .. .
N N N N

i i i i i

i i i i

r r d r r d r r
F m r m r r m r m r

q q dt q dt qq q    = = = =

               
= = − = −                        

   

, ,
. .

. .. . .. .i i i

r T r T r
Q F m r m r

q q qq q


   

    
= = =

   
 

Then 
1 1

.
N N

i i

d T T
Q

dt qq


= =

    
= −       

   

Now substituting into Eq. (4) we have  

.
d T T

Q
dt qq





   
= − 

  
                                                                           (5) 

This the Lagrangian equations is in terms of generalized forces, where 
1,2,3,4,.....................,n =  
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lagrangian equation for conservative system 

If the system is conservative so that particles move under the influence of a potential 

which is dependent on coordinates only, then the forces are derived from the potential 

( )V given by  
V

Q
q






= −


. 

Since the potential energy ( )V  is dependent on coordinates only ( )q
, and not on the 

velocities, ˙ ( ).q , i. e. ( , )V V q t= . 

Then the Lagrange’s equations (Eq. (5)) may be written    

.
V d T T

Q
q dt qq



 

    
= − = − 

   
 

. . .
V d T T V V d T T

dt q dtq q qq q q     

            
− = − → − = −   
           

 

( ) ( )
0 .

d T V T V

dt qq 

  −  − 
= − 

  
 

We put L T V= −  that is called Lagrange function. So  

0.
d L L

qdt q 

  
 
  

 
=


−  

This is called the Lagrange equation or Euler-Lagrange equation.  

Example 1: Determine the motion of harmonic oscillator in one dimension 

by Lagrangian Equations? 

Solution 
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We first consider a simple mass spring system. This is a one degree of freedom system, 

with one x . 

The Potential Energy 

The force proportional (Inversely proportional) to displacement ( x ) (directly 

proportional) 

F k x= − , but      F V k x= − = −  

dV
k x dV k x dx dV k x dx

dx
− = − → = → =   

Then    21

2
V k x=  (does not dependent on the generalized velocity)  

Kinetic Energy 

2 21 1

2 2

.T m m xv= =  

Lagrange Function  

The Lagrange Function of simple harmonic oscillator in one dimension can be written 

as 

2 21 1

2 2

. xL T V m kx= − = −                                                                      

So the Lagrange Equation  0.
d L L

qdt q 

  
 
  

 
=


−   becomes                                 

0.
L Ld

xdt x

  
 
  

 
− =
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2 2 2 21 1 1 1
0

2 2 2 2
.

. .d
m x k x m x k x

dt xx

 
 
 
 
 


=


−

   
− −   

   
 

0
2 2

2 2

.d
dt

m x k x− =
   

−   
   

 

0..xm k x+ = .   So ..x
m
k

x= −  

This is the same as the equation of motion of the simple harmonic oscillator resulted 

from application of Newton's second law to a mass attached to spring of spring constant 

k  (Hook constant ) and displaced to a position x  from equilibrium position. 

 

Example: 2 Determine the motion of plane pendulum (simple pendulum) by Lagrangian 

Equation ? 

Solution 

A plane pendulum consists of a bob of mass m   suspended from a light inextensible 

cord of length L  and swinging in a plane. 

 

For the motion of plane pendulum, we have  

( , ), r constant (0, ). . . .r r L L Lv v v  = = = → = → =  
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Kinetic Energy 

2 2 21 1

2 2

.T v L = =   

The Potential Energy 

cosV mgL =−  

Lagrange Function  

The Lagrange Function of simple harmonic oscillator in one dimension can be written 

as 

2 21
cos

2

.V L mgLL T  − = +=  

So the Lagrange Equation  0.
d L L

qdt q 

  
 
  

 
=


−   becomes 

0.
d L L

dt 

   
− = 
  

 

2 2 2 21 1
cos cos 0

2 2

. ..
d

L mgL L mgL
dt

   


      
+ − + =          

 

2 sin 0.d
L mgL

dt
 

 
 + =   

 
 

2 sin 0 sin 0 sin.. .. .. mg
L mg L L mg

L
    + = → + = → = −   

If    is very small, then sin =  

 Then 

 .. mg
L

 =− . 

This the equation for simple pendulum with angular frequency 

 



   19 

 

Example: 3  Two masses 
1

m  and 
2

m , are hanging by a massless string from a 

frictionless pulley. If 
2

m  is greater than 
1

m , determine the acceleration of the two 

masses when released from rest by the Lagrangian method. 

Solution 

First, identify a direction as positive. Since you can easily observe that 2m  will 

accelerate downward and 1m  will accelerate upward, since 2 1m m , call the direction 

of motion around the pulley and down toward 
2m  the positive y −  direction. Then, you 

can create free body diagrams for both object 2m and 1m , as shown below. 

 

Solution 

Potential Energy = - 

Work done 

Kinetic 

Energy 
Velocity 

The vertical distance 

from the measuring 

plane 

Mass 

ym g1−  

2

1

.
2

1
ym  

.y  y  
1m  

)(2 ym lg −−  
2

2

.
2

1
ym  

.y−  yl −  2m  

  

The total of Kinetic energy is given as 
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2

1 2 )(
1

2

.
T m m y+= . 

While the total of potential energy is given as   

lgyglgyg mmmymmV 21221 )( () −−=−−−=  . 

So, the lagrangian function is  

2

1 2 2 1 2)
1

( ) (
2

.
g y g lL T V m m y m m m− += − = + −   

From lagrangian Equation 0.
d L L

qdt q 

  
 
  

 
=


− , where we have one 

coordinate 1(q )y= . So the Lagrangian Equation of our problem given as   

0. =



−













y

L

y

L

dt

d
  

( )1 2 2 1( ) ( ) 0.d
m m y m m g

dt
+ + − =  

1 2 2 1( ) ( ) 0..m m y m m g+ + − =  

Then:        1 2

1 2

.. m m
y g

m m

−
=

+
   

Example 4: A particle of mass m moving in a plane under the attractive force 
2

m

r


 

directed to the origin of polar coordinates (r, ) . Determine the equation of motion by 

Lagrange equations 

Solution 

We know that in polar coordinates ( , ). .r rv = , so we have  

Kinetic Energy 

( )2 2 2 21

2 2

. .m
rT v r += =   
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The Potential Energy 

2

m
F

r


= − , but      

2

m
F V

r


= − = −  

2 2 2

dV m m m
dV dr dV dr

dr r r r

  
= → = → =  .      Then      

m
V

r


=−  

Lagrange Function  

The Lagrange Function in polar coordinates ( ),r   can be written as 

( )2 2 2

2

. .m m
V r

r
rL T


− = ++=  

So, the Lagrange Equation  0.
d L L

qdt q 

  
 
  

 
=


−   in polar coordinates ( ),r   becomes 

0.
d L L

dt r r

  
− = 

  
                                                                              (1) 

0.
d L L

dt  

  
− = 

  
                                                                             (2) 

From Eq. (1), we get  

( ) ( )2 2 2 2 2 2 0
2 2.

. . . .d m m m m

dt r r r r
r rr r

 
 

      
+ − + =         

+ +  

( ) ( ) 2

2 0
2

2. .d m m

dt r
mr r


 

− − = 
 

 

2

2 0.. .
r

r r


− + =                                         

Then       
2

2.. .
r

r r


− =−  

From Eq. (2), we get 

( ) ( )2 2 2 2 2 2 0
2 2.

. . . .d m m m m

dt r r
r rr r

 
 

 

      
+ − + =         

+ +  

( )2 0 0.d
m

dt
r  − =  

2 constant.mr  = .    Then              2 constant.r  =  
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Example: 5:  Determine the equations of motion of Double Atwood machine which 

consists of one of the pulleys replaced by an Atwood machine as shown below Figure. 

Neglect the masses of pulleys. 

 

 

Solution 
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Potential Energy = - Work done Kinetic Energy Velocity 
The vertical distance from 

the measuring plane Mass 

xgm−  2.xm  .x  x  m  

)(2 1 xlymg −+−  2)( .. xym −  .. xy −  xly −+ 1  m2  

)3 21( yxllmg −−+−  2)(3 .. yxm −−  
.. yx −−  yxll −−+ 21  m3  

  

Kinetic Energy 

The total of Kinetic energy is given as 









++=
22 .... 526

2
yyxx

m
T   
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The Potential Energy 

The total of potential energy is given as 

)354(

)3333222()3)(2

11

211211 (

llyxm

yxllxlyxmyxllmxlymmV

g

gggxg

++−−−=

−−++−++−=−−+−−+−−=
 

CyxmV g ++= )4(  , )35( 11 llmC g +−=   

Lagrange Function  

The Lagrange Function can be written as   

Cyxmyyxx
m

VTL g −+−








++=−= )4(526
2

22 ....
  

So, the Lagrange Equation 0.
d L L

qdt q 

  
 
  

 
=


−  for the plane coordinates ),( yx   can 

be written as  

0.
d L L

dt x x

  
− = 

  
.                                                             (1) 

0.
d L L

dt y y

  
− = 

  
                                                              (2) 

From Eq. (1), we get   

gyxmyx
m

dt

d
g 460)4(212

2

...... −=+→=+














 +             (3) 

From Eq. (2), we get 

gyxmyx
m

dt

d
g −=+→=+















 +

...... 50102
2

                    (4) 

From Eq. (3) and Eq. (4), we get 

gxgxgxgx
5

19
195645

........ −=→=−→−=












−−+         (5) 

From Eq. (5) into Eq. (4), we get 

gygyggygyggyx
25

14

5

14
5

5

19
55

5

19
5

............ =→=→+−=→−=+−→−=+       (6) 
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Example 6: A particle of mass m  is projected with initial velocity 
0

v  at an angle   

to the horizontal in the uniform gravitational field of the earth. Use Lagrange’s equation 

to describe the motion of the projectile. Ignore the air resistance? 

Solution 

 

Let a particle of mass m be projected from the origin point with an initial velocity
0

v   

making an angle   with the horizontal line referred as x -axis. Let ( , )x y be the 

position of the particle at any instant t . Since x  and y  are independent and hence the 

generalized coordinates are 1 2( , ) ( , )q q x y= and the generalized velocities are 

1 2( , ) ( , ). . . .q q x y= .  

Kinetic Energy 

The kinetic of the projectile is given by 2 21
( ),

2

. .T m x y= +    

The Potential Energy 

The total of potential energy is given as 

d V
F mg F mg V mg V mg y

dy
= − → = − = − → = → =                                                            

Lagrange Function  

The Lagrange Function can be written as   
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2 21
( )

2

. .
gL T V m x y m y= − = + −   

So, the Lagrange Equation 0.
d L L

qdt q 

  
 
  

 
=


−  for the plane coordinates ),( yx   can 

be written as  

0.
d L L

dt x x

  
− = 

  
.                                                                                         (1) 

0.
d L L

dt y y

  
− = 

  
                                                                                          (2) 

From Eq. (1), we get 

2 2 2 21 1
( ) ( ) 0

2 2

. . . .
. g g

d
m x y m y m x y m y

dt x x

      
+ − − + − =         

  

( ) ( ) ( ) 000
... =→=− xmmx

dt

d
   

Then 

1
cConstant === ... 0 xorx                                                                        (3) 

From the initial condition at 0
0

0 cos
.

t
t x 

=
= → = →v cos01 v=c . Then  

0 cos.x = v                                                                                                  (4) 

Integration Eq. (4), we have 20 cos ctx += v                                                                              

From the initial condition at 0,0 == xt → , then      02 =c   

  cos0 tx v=                                                                                            (5)                             

While, from Eq. (2), we get 

2 2 2 21 1
( ) ( ) 0

2 2

. . . .
. g g

d
m x y m y m x y m y

dt y y

     
+ − − + − =         

 

( ) 0)(. =+ mgym
dt

d
.      Then  

3

.. .y g or y gt gt=− =− + = −Constant c                                                      (6) 

From the initial condition at 0
0

0, sin
.

t
t y 

=
= = v → sin02 v=c . Then 
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0 sin.y gt= −v                                                                                          (7)        

Integration Eq. (7), we have        4

2

0
2

1
sin ctgty +−= v     

From the initial condition at 0,0 == yt , →  04 =c . Then                           

2

0
2

1
sin tgty −= v                                                                                      (8) 

Exercises 

 

(i) Both the kinetic energy T and potential energy V for Mechanical system are given, 

respectively, in the form  
2

2 22 21
( ),

2 2

. .T x x y V x


= + = . Find the equations of motion for 

the system using lagrangian equations where   is constant? 

 

 

(ii) Both the kinetic energy T and potential energy V for Mechanical system are given, 

respectively, in the form  22 21
( ), cos

2

. .T m r r V m g r = + =− . Find the equations of 

motion for the system using lagrangian equations? 

 

 

(iii) Both the kinetic energy T and potential energy V for Mechanical system are given, 

respectively, in the form  22 21
( sin ), 2 2 cos

2

. .T V   = + =− . Find the equations of 

motion for the system using lagrangian equations? 

 

 

(iv) Both the kinetic energy T and potential energy V for Mechanical system are given, 

respectively, in the form  
2 2 21

( ), ( , , )
2

. . .T x y z V V x y z+= + = . Find the equations of 

motion for the system using lagrangian equations? 
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Chapter 3 

Hamiltonian function and Hamilton's equations of motion 

 

     In this chapter we consider a radically different formulation of the dynamical 

problem. We define the Hamiltonian and derive Hamilton’s “canonical” equations. 

These are derived in two different ways, first by using a Legendre transformation 

on the Lagrangian and secondly by using the stationary property of the action integral. 

Hamilton’s approach gives us a whole new way of looking at mechanics problems. 

Although Hamilton’s approach is often not as convenient as Lagrange’s method for 

solving practical problems, it is, nevertheless, a far superior tool for theoretical studies. 

Some of the methods developed in Hamiltonian mechanics carry over directly into 

quantum mechanics, statistical mechanics, and other fields of physics. 

 

Remarks 

It is well-known that, the Generalized momentum is 

.
imrp



 =                                                             (1) 

The Generalized kinetic Generalized is  

21

2

.
iT mr


=                                                          (2) 

.. i
i

T mr
r 


=


                                                         (3) 

 From Eq. (1) and Eq. (3) generally speaking we find that   

.
T

q
p






=


                                                               (4) 

We know that the Lagrange function is L T V= −   and if  ( )V V q=  

)(),( .
 qVqqTL −=                                                  (5) 

From Eq. (4) and Eq. (5), we find that 





p
q

T

q

L
=




=




.. .                                                        (6) 
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The Lagrange equation  

0.
d L L

dt q q 

  
− = 

  
                                                 (7)   

Substituting from Eq. (6) and Eq. (7), we get  

0 0 0.
.dpd L L d L L L

p p
dt q dt q dt q qq


 

   

        
− = → − = → − = → =   
       

 

So, for conservative dynamical system, we have 

, ,. .
.T L L

p p p
q q q

  

  

  
= = =
  

                        (8) 

Hamilton function (Hamiltonian) 

Derive the Hamilton function of a mechanical system. (Dynamical system)? 

We want to find a function ( , , )H H q p t = , where .
L

p
q






=


which we want to think of as 

depending only on q  and p  but not on 
.q . This would mean 

 We apply the Legendre transformation to the Lagrangian, where the Lagrangian 

function is given as ( , , ).L T V L q q t = − =  

Then 

1
.

.n L L L
dL dq dq dt

q q t
 

  =

   
= + + 

   
                                                                                      (1) 

But  

, .. .
L L

p p
q q

 
 

 
= =
 

                                                                                                        (2) 

From Eq. (1) and Eq. (2), we have   

1

. .n L
dL p dq p dq dt

t
   

=

 
= + + 

 
                                                                                        (3) 

Add and delete the term dpq. to Eq. (3), we have  

dt
t

L
dpqqpddqpdt

t

L
dpqdpqdqpdqpdL

nn




+









−+=



+














−++= 

==
++

11
3232

....... )(
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Then   

1 1

( ). . .n n L
d p q dL p dq q dp dt

t
     

 = =

 
− = − − − 

 
                                                                        

1 1

. . .n n L
d p q L q dp p dq dt

t
     

 = =

  
− = − −   

   
   

1

. .n L
dH q dp p dq dt

t
   

=

 
= − − 

 
  

Now we define the function  

1

.n

H p q L 

=

= −                                                                                         (4) 

That is called the Hamiltonian function 

Where ,.
L

p
q





=


so we can find ( ). .q q p  = .  

Then we can write the Hamiltonian function as  

( , , )H H q p t =                                                                                        (5) 

Hamilton’s equations 

It is well-known that, the Lagrange function is  

 ( , , ).L T V L q q t = − =                                                                               (1) 

While Hamiltonian function is  

1

.n

H p q L 

=

= −                                                                                         (2) 

Or  

( , , )H H q p t =                                                                                         (3) 

1

.
.n L L L

dL dq dq dt
q tq



  


=

    
= + + 

   
                                                            (4) 

dt
t

H
dp

p

H
dq

q

H
dH

n




+












+




=

=1









                                                         (5) 
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1

. .n

dH q dp p dq dL 



 
=

 
= + − 

 
                                                                  (6) 

Also, we know that  

, .. .
L L

p p
q q

 
 

 
= =
 

                                                                              (7) 

Substituting from Eq. (7) into Eq. (4), we have  

1

. .n L
dL p dq q dq dt

t
  




=

 
= + + 

 
                                                               (8) 

Substituting from Eq. (8) into Eq. (6), we have  

1 1 1
2 4 0 2 4 0

. . . . . .n n nL L
dH q dp p dq p dq p dq dt q dp p dq dt

t t
        

  
  

= = =
+ = + =

         
= + − + − = − −     

        
    

1

. .n L
dH q dp p dq dt

t
   

=

 
= − − 

 
                                                               (9) 

So, comparing equation (9) with equation (5), we get 

H
, ,. .H L H

q p
p q t t

 

 

   
= = − = −
   

                                                         (10) 

These equations are called Hamilton's equations  

These are Hamilton’s equations. 

      Note that in Lagrange’s technique, we have N  second order differential equations, 

while in Hamilton’s we have 2N  first order differential equations. In principle, both 

are equally easy to solve, and both need 2N  boundary conditions. In practice, 

Hamilton’s equations are sometimes easier to solve, partly because they naturally 

embody conservation laws. 

Note: If Hamiltonian does not depend on time explicitly, show that Hamiltonian must be 

constant of motion? 

( , )H H q p 



=  

. .dq dpdH H H H H
q p

dt q dt p dt q p

 
 

    

      
= + = +   

      
   

 



   32 

 

But 
H

,. .H
q p

p q
 

 

 
= = −
 

 

( ) 0. . . .dH
p q q p

dt
   



= − + =     

 0
dH

dt
= .      Then     constantH =  

 

Example 1: Determine the motion of harmonic oscillator in one dimension by 

Hamilton's equations? 

 

 

 

We first consider a simple mass spring system. This is a one degree of freedom system, 

with one x . 

The Potential Energy 

The force proportional (Inversely proportional) to displacement ( x )  
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F x → F k x= − , but      F V k x= − = −  

dV
k x dV k x dx dV k x dx

dx
− = − → = → =   

Then     

21

2
V k x=                                                                                                (1)  

Kinetic Energy 

2 21 1

2 2

.T m m xv= =                                                                               (2) 

Lagrange Function  

The Lagrange Function of simple harmonic oscillator in one dimension can be written 

as 

2 21 1

2 2

. xxL T V m k= − = −                                                            (3)                                                          

Using the Hamilton's equations 

, ,. .H H
p q

q p
 

 

 
=− =

 
                                                                           (4) 

 where 

,. .
L

H p q L p
q

  



=  − =


                                                                (5) 

From lagrangian function, it clear that the motion in one dimension (i. e. y ), so we can 

write the Hamilton's function   

2 21 1

2 2

.. . .
x x x xH p q L p x L p x xxm k= − = − = − +                                       (6) 

From the relation ..



q

L
p




=  That can be written for our problem as .x

L
p

x


=


 , that 

becomes as 

. . x
x

p
p m x x

m
= → =                                                                                (7) 

From Eq. (7) into Eq. (6), we have  
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2 2 2
2 2 2 21 1 1 1 1 1

2 2 2 2 2 2

.. x x x
x

p p p
H p x x x x

m m m
xm k k k= − = − =+ + +  

2
21 1

2 2

xp
H x

m
k= +                                                                                              (8)  

From Hamilton equation ,. H
p

q





=−


 and Eq. (8), we have  

. . .
x x x

x

H H
p p k x p k x

q x

 
=− → =− = − → =−

 
                                                  (9) 

While from Hamilton equation 
. H

q
p





=


 and Eq. (8), we have  

. .x
x

x

pH
x p m x

p m


= = → =


                                                                            (10) 

From Eq. (10) into Eq. (9), we have          

.. ...
xp m k x m k xx x= = − → =−  

Then   .. k

m
x x= −  

This is the same as the equation of motion of the simple harmonic oscillator resulted 

from application of Newton's second law to a mass attached to spring of spring 

constant k (Hook constant) and displaced to a position x  from equilibrium position. 

 

Example: 2 Determine the motion of plane pendulum (simple pendulum) by Hamilton's 

equations? 

Solution 

A plane pendulum consists of a bob of mass m   suspended from a light inextensible 

cord of length L  and swinging in a plane. 

For the motion of plane pendulum, we have  

( , ), r constant (0, ). . . .r r L L Lv v v  = = = → = → =  
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Kinetic Energy 

22 21 1

2 2

.T v = =                                                                                 (1) 

The Potential Energy 

cosV mg =−                                                                                      (2) 

Lagrange Function  

The Lagrange Function of simple harmonic oscillator in one dimension can be written 

as 

221
cos

2

. mgL T V  = += −                                                       (3) 

Using the Hamilton's equations 

, ,. .H H
p q

q p
 

 

 
=− =

 
                                                                            (4) 

 where 

,. .
L

H p q L p
q

  



=  − =


                                                              (5) 

From lagrangian function, it clear that the motion in one dimension (i. e. y ), so we can 

write the Hamilton's function   
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221
cos

2

.. . .H p q L p L p mg      = − = − = − −                                          (6) 

From the relation ..



q

L
p




=  That can be written for our problem as .

L
p




=


, that 

becomes as 

2
2

. . p
p 
  = → =                                                                                   (7) 

From Eq. (7) into Eq. (6), we have  

2

22 2
2 2

1 1
cos cos

2 2

.. p p
H p mg p mg 

    
 

= − − = − − 
 

 

2

2

1
cos

2

p
H mg = −                                                                                     (8)  

From Hamilton equation ,. H
p

q





=−


 and Eq. (8), we have  

sin sin. . .H H
p p mg p mg

q
  



 


 
=− → =− = − → =−

 
                         (9) 

While from Hamilton equation 
. H

q
p





=


 and Eq. (8), we have  

2
2

. .pH
p

p






 


= = → =


                                                                      (10) 

From Eq. (10) into Eq. (9), we have          

2 sin...p mg  = = −  

sin.. mg
 = −   

If    is very small, then sin =  

 Then 

 
.. mg

 =− . 

This the equation for simple pendulum with angular frequency 
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Example: 3 Two masses 1
m  and 2

m , are hanging by a massless string from a 

frictionless pulley. If 2
m  is greater than 1

m , determine the acceleration of the two 

masses when released from rest by the Hamilton's equations? 

Solution 

First, identify a direction as positive. Since you can easily observe that 2m  will 

accelerate downward and 1m  will accelerate upward, since 2 1m m , call the direction 

of motion around the pulley and down toward 2m  the positive y −  direction. Then, 

you can create free body diagrams for both object 2m and 1m , as shown below. 

 

Potential Energy = - Work done Kinetic Energy Velocity 
The vertical distance from 

the measuring plane 
Mass 

ym g1−  

2

1

.
2

1
ym  

.y  y  1m  

2 ( )gm y−−  
2

2

.
2

1
ym  

.y−  y−  2m  
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The total of Kinetic energy is given as 

 
2

1 2 )(
1

2

.
T m m y+= .                                                                                (1) 

While the total of potential energy is given as   

1 2 2 1 2( )) (g y g g y gV m m y m m m− −= − − − =  .                     (2) 

So, the lagrangian function is  

2

1 2 2 1 2)
1

( ) (
2

.
g y gL T V m m y m m m− += − = + −                              (3) 

Using the Hamilton's equations 

, ,. .H H
p q

q p
 

 

 
=− =

 
                                                                              (4) 

 where 

,. .
L

H p q L p
q

  



=  − =


                                                                   (5) 

From lagrangian function, it clear that the motion in one dimension (i. e. y ), so we can 

write the Hamilton's function   

2

1 2 2 1 2)
1

( ) (
2

.. . .
y y y y g y gH p q L p y L p y m m y m m m− −= − = − = − + +                     (6) 

From the relation ..



q

L
p




=  That can be written for our problem as .y

L
py




=  , that 

becomes as 

1 2

1 2

( ) . . y

y

p
p m m y y

m m
= + → =

+
                                                                      (7) 

From Eq. (7) into Eq. (6), we have  

( )

2 2

2

1 2 2 1 2 1 2 2 1 22

1 2 1 2

) )
1 1

( ) ( ( ) (
2 2

.. y y

y g y g g y g
p p

H p y m m y m m m m m m m m
m m m m

− − − −= − + + = − + +
+ +

2

2 1 2

1 2

)
1

(
2

y
g y g

p
H m m m

m m
−= + −

+
                                                                    (8)  
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From Hamilton equation ,. H
p

q





=−


 and Eq. (8), we have  

2 1 2 1) )( (. . .
y y y

y

g g
H H

p p m m p m m
q y

 
=− → =− = − − → =− −

 
                           (9) 

While from Hamilton equation 
. H

q
p





=


 and Eq. (8), we have  

( )1 2

1 2

. .y

y

y

pH
y p m m y

p m m


= = → = +
 +

                                                             (10) 

From Eq. (10) into Eq. (9), we have          

1 2 2 1 1 2 1 2( ) ( ) ( ) ( ).. ...
yp m m y m m g m m y m m g= + = − − → + = −  

Then           g
mm

mm
y

21

21..
+

−
=                                                                                                   

Example 4: A particle of mass m moving in a plane under the attractive force 
2

m

r


 

directed to the origin of polar coordinates (r, ) . Using the Hamilton's equations, 

determine the equation of motion. 

Solution 

We know that in polar coordinates ( , ). .r rv = , so we have  

Kinetic Energy 

( )2 2 2 21

2 2

. .m
rT v r += =                                                                             (1) 

The Potential Energy 

2

m
F

r


= − , but      

2

m
F V

r


= − = −  

2 2 2

dV m m m
dV dr dV dr

dr r r r

  
= → = → =   

Then      

 
m

V
r


=−                                                                                                       (2) 
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The Lagrange Function in polar coordinates ( ),r   can be written as 

( )2 2 21

2

. . m
m r

r
L T V r


 += − = +                                                        (3) 

Using the Hamilton's equations 

, ,. .H H
p q

q p
 

 

 
=− =

 
                                                                                    (4) 

 where 

,. .
L

H p q L p
q

  



=  − =


                                                                        (5) 

From lagrangian function, it clear that the motion in one dimension (i. e. ),( r ), so we 

can write the Hamilton's function   

( )2 2 21

2

. .. . . . . .
r r r r

m
H p q p q L p r p L p r p m

r
r r   


   

= + − = + − = + − + 
 

+       (6) 

But, ..



q

L
p




=  that, for our problem they can be written as  

.. ,






=




=

L
p

r

L
pr

 and from lagrangian function they can be written as   

. . r
r

p
p mr r

m
→ ==                                                                                         (7) 

2
2

. . p
p mr

mr


  → ==                                                                                    (8) 

From Eq. (7) and Eq. (8) into Eq. (6), Hamilton's function becomes 

22

2

2 2

1

2

r r
r

p pp p g
H p p m r

m m r m m r r

 


        
= + − + −       

        

 

2222
2

2 2

1

2

r r
p pp p g

H m r
m m r m m r r

 
    

= + − + −   
     

                        

r

g

r

p
p

m
H r −









+=
2

2
2

2

1                                                                                         (9) 

From Hamilton's function (Eq. (9)), Hamilton's equations become  
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From 
. H

p
q






=− →

 





−=




−=

H
p

r

H
pr

.. ,    

From ,.
r

H
p

r


=−


 we get          

2

3 2

21

2

.
r

p g
p

m r r


  

=− − −  
  

                                  (10) 

From 






−=

H
p. , we get         0.p =                                                                (11)           

From , .. . .
r

H H H
q

p p p
r

 


  

= → = =
  

 

From 
.

r

H

p
r


=


, we get            
. .r

r

r

pH
p m

p m
r r


= = → =


                               (12) 

From . H

p




=


, we get           
2

2

. .p
p m r

m r


 = → =                              (13) 

Substituting from Eq. (12) inti Eq. (10), we get   

2

2

3 2 3 2 2

2

2
2

21 1

2 2

.
...

m r
p g g g

m r m r
m r r m r r r






  
      

= − − − = − − − = −   
   

 
 

                                       

Therefore  

2

2... g
m r r

r
 =

  
− − 

  
                                                                                (14) 

While, if substituting from Eq. (11) intio Eq. (13), we get   

2( ) 0
.. H d

p mr
dt







=− → =


 

Therefore 

2 Constant
.
r =                                                                                    (15) 
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Exercises 

(i) Both the kinetic energy T and potential energy V for particle are given as 

( )2 2 2 ,
1

cos
2

. .rT m V mg rr  = + =− , respectively, where m is the mass particle 

and g  is gravitation. Find the equations of motion for the system using Hamilton's 

equations? 

 

 

(ii) Both the kinetic energy T and potential energy V for particle are given as 

( )2 2 2 ,
1
2

. .r
g

T m V
r

r = + =− , respectively, where m is the mass particle and g  is 

gravitation  . Find the equations of motion for the system using Hamilton's equations? 
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Routh's Equation 

Cyclic Coordinates and the Routhian procedure 

 

Routh's procedure or Routhian mechanics is a hybrid formulation of Lagrangian 

mechanics and Hamiltonian mechanics developed by Edward John Routh. 

Correspondingly, the Routhian is the function which replaces both the Lagrangian and 

Hamiltonian functions. As with the rest of analytical mechanics, Routhian mechanics is 

completely equivalent to Newtonian mechanics, all other formulations of classical 

mechanics, and introduces no new physics. It offers an alternative way to solve 

mechanical problems.  

 

Definitions 

     The Routhian, like the Hamiltonian, can be obtained from a Legendre transform of 

the Lagrangian, and has a similar mathematical form to the Hamiltonian, but is not 

exactly the same. The difference between the Lagrangian, Hamiltonian, and Routhian 

functions are their variables. For a given set of generalized coordinates representing the 

degrees of freedom in the system, the Lagrangian is a function of the coordinates and 

velocities, while the Hamiltonian is a function of the coordinates and momenta. 

 

      The Routhian differs from these functions in that some coordinates are chosen to 

have corresponding generalized velocities, the rest to have corresponding generalized 

momenta. This choice is arbitrary, and can be done to simplify the problem. It also has 

the consequence that the Routhian equations are exactly the Hamiltonian equations for 

some coordinates and corresponding momenta, and the Lagrangian equations for the 

rest of the coordinates and their velocities. In each case the Lagrangian and Hamiltonian 

functions are replaced by a single function, the Routhian. The full set thus has the 

advantages of both sets of equations, with the convenience of splitting one set of 

coordinates to the Hamilton equations, and the rest to the Lagrangian equations. 

Routh's procedure does not guarantee the equations of motion will be simple, however it 

will lead to fewer equations. 

Cyclic coordinates 

    Often the Routhian approach may offer no advantage, but one notable case where this 

is useful is when a system has cyclic coordinates (also called "ignorable coordinates"), 

by definition those coordinates which do not appear in the original Lagrangian. The 
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Lagrangian equations are powerful results, used frequently in theory and practice, since 

the equations of motion in the coordinates are easy to set up. However, if cyclic 

coordinates occur there will still be equations to solve for all the coordinates, including 

the cyclic coordinates despite their absence in the Lagrangian. The Hamiltonian 

equations are useful theoretical results, but less useful in practice because coordinates 

and momenta are related together in the solutions - after solving the equations the 

coordinates and momenta must be eliminated from each other. Nevertheless, the 

Hamiltonian equations are perfectly suited to cyclic coordinates because the equations 

in the cyclic coordinates trivially vanish, leaving only the equations in the non-cyclic 

coordinates. 

   

The Routhian approach has the best of both approaches, because cyclic coordinates can 

be split off to the Hamiltonian equations and eliminated, leaving behind the non-cyclic 

coordinates to be solved from the Lagrangian equations. Overall fewer equations need 

to be solved compared to the Lagrangian approach. 

 

Routhian Function of mechanical system  

     Consider a mechanical system with n  generalized coordinates, some of these 

coordinates are cyclic (ignorable) in Lagrange function and the others are non-cyclic. 

If we consider the cyclic coordinates are 1 2 3 4, , .............. ( 1, 2, 3,...............,m)m is s s s s s i= = , 

while the non-cyclic coordinates are 1 2 3 4, , , ,..... ( 1, 2,......, )m m m m nq q q q q q m m n + + + + = = + + . In 

this case the new Lagrange function will be written in the form ),,( ..
isqqLL = , and the 

new Lagrange equations will be written as  

Lagrange equations for the noncyclic coordinates: 

0.
d L L

dt q q 

  
− = 

  
        

Lagrange equations for the cyclic coordinates: 

0.
i i

d L L

dt s s

  
− = 

  
, that can be written as 

0 0. . . . i

i i i i i

d L L d L L L

dt s s dt s s s


         
− = → = → = → =     

         
constant                           (1) 

From the new ),,( ..
isqqLL = , we have  
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1 1

. .
. .

m n

i

i mi

L L L
dL ds dq dq

s q q
 

  = = +

   
= + + 

   
                                                            (2) 

Subsisting from Eq. (1) into Eq. (2)   


+== 











+




+=

n

m

m

i

ii dq
q

L
dq

q

L
dsdL

11

.
.

.










  

Adding and subtracting the term 
.
i is d , then the previous equation becomes in the form 

1 1

. . . .
.

m n

i i i i i i

i m

L L
dL ds s d s d dq dq

q q
 

  

  
= = +

   
= + − + +   

    
   

( )
1 1

. . .
.

m n

i i i i

i m

L L
dL d s s d dq dq

q q
 

  

 
= = +

   
= − + +   

    
   

( )
1 1 1

. .
.

.m m n

i i i i

i i m

L L
dL d s s d dq dq

q q
 

  

 
= = = +

  
− = − + + 

  
    

( )
1 1 1

. .
.

.m m n

i i i i

i i m

L L
d L s s d dq dq

q q
 

  

 
= = = +

   
− = − + +   

    
    

Let 
1

.m

i i

i

R L s
=

= − , that is called the Routhian Function 

Then 


+== 











+




+−=

n

m

m

i

ii dq
q

L
dq

q

L
dsRd

11

.
.

.










  

 

Routh's equations of motion for a mechanical system 

It well-known that Routhian Function is given from 

1 1

. .
.

m n

i i

i m

L L
dR s d dq dq

q q
 

  


= = +

  
= − + + 

  
                                                             (1)  

Where 
=

−=
m

i

ii sLR
1

.  , ),,,( ..
iisqqRR = , and i

is

L
=




.  . Then ),,( .

iqqRR =   

 
+== 











+




+




=

n

m

m

i

i

i

dq
q

R
dq

q

R
d

R
dR

11

.
.














                                                           (2) 

By Comparing the coefficients between Eq. (1) and Eq. (2), we get 
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, ,.
. .i

i

R R L R L
s

q q q q   

    
= − = =

    
                                                                 (3) 

Taking into account, i

is

L
=




.                        

If the time appears explicitly as a Routhian Function, which becomes in the form,  

),,,( . tqqRR i= , then Routh's equations (3) take the form 

t

L

t

R

q

L

q

R

q

L

q

R
s

R
i

i 


=








=








=




−=




,,, ..

.


                                              (4) 

Taking into account, i

is

L
=




.                   

 

Example 1: Both the kinetic energy T and potential energy V for mechanical system are 

given, respectively, in the form 22 21
( ),

2

. . g
T m r r V

r
= + =− . Find the equations of 

motion for the system using Routh's equations? 

 

Solution 

Where 22 21
( ),

2

. . g
T m r r V

r
= + =− . Then the Lagrange function becomes   

22 21
( )

2

. . g
L T V m r r

r
= − = + +                                                                 (1) 

From Lagrange Function, it clears that   the is cyclic coordinate (coordinate number 2), 

while r  is the non-cyclic coordinate 

Now, from Routh's equations 

0, , ,. .. i i i
i

d R R R
s R L s

dt q q 




   
− = = − = − 

   
 with .. i

i

L

s



=


 

We can write Routhian's Function .
ii sLR −=  as 

..
2

222

222 )(
2

1..  −++=−=−=−=
r

g
rrmLsLsLR ii
                      (2) 

From 2.
L





=


, we find that 2

2

2 21
( )

2.
. . g

m r r
r

 


  
+ + = 

  
. Then   
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2 2
2 2

. .m r Or
m r


  = =                                                 (3) 

From Eq. (3) into Eq. (2), we have 

r

g

rm
rm

rmr

g

rm
rrmR +−=−+








+=

2

2

22

2

2
2

2

2

222

22

1
)(

2

1 .. 



                       (4) 

Now, Routh's equation .,0 .. i
i

s
R

q

R

q

R

dt

d
−=




=




−















 maybe written as  

2
2 2

2

2 2

1

2 2

. . ..
i

i

R R g
s m r

m r r


 

  

   
= − → = − → − + = − 

    
. Then 2

2

.
m r


− = −  

2 2. r
m


 = =Constant                                                                               (5)  

For the non-cyclic coordinate ( r ), Routh's equation takes the form  

0 0..
d R R d R R

dt q q dt r r 

     
− = → − =   

     

( )
2

22

2

3 2 3 2
0 0

.
. .. m rd g g

m r mr
dt r m r r m r r


 

    
− − = → − − =     
      

, then 

2

2... g
m r r

r
 =

  
− − 

  
                                                                                (6) 

 

Example 2: A particle of mass m  is projected with initial velocity 
0

v  at an angle   

to the horizontal in the uniform gravitational field of the earth. Use Routh’s equation to 

describe the motion of the projectile. Ignore the air resistance? 

Solution 

Let a particle of mass m be projected from the origin point with an initial velocity
0

v   

making an angle   with the horizontal line referred as x -axis. Let ( , )x y be the 

position of the particle at any instant t . Since x  and y  are independent and hence the 

generalized coordinates are 1 2( , ) ( , )q q x y= and the generalized velocities are 

1 2( , ) ( , ). . . .q q x y= .  
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Kinetic Energy 

The kinetic of the projectile is given by 2 21
( ),

2

. .T m x y= +    

The Potential Energy 

The total of potential energy is given as 

d V
F mg F mg V mg V mg y

dy
= − → = − = − → = → =                                                            

Lagrange Function  

The Lagrange Function can be written as   

2 21
( )

2

. .
gL T V m x y m y−= − = +                                                                               (1) 

From Lagrange Function, it clear that, x is cyclic coordinate (the coordinate number 1), 

while y  is non-cyclic coordinate. 

Now, from Routh's equations 

0, , , .. .
. .i i i i

i i

d R R R L
s R L s

dt q q s 

 


    
− = = − = − = 

    
     (2) 

We can write .
ii sLR −=  as  

2 2

1 1 1 1

1. . . .( )
2

. .
i iR L s L s L x m x y mg y x   == − = − = − + − −                     (3) 
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But from ,. i

i

L

s



=


 we find that 

1.
L

x



=


, that can be written as  

2 2

1

1
( ). 2

. .m x y mg y
x


  

+ − = 
  

 

1
1

. .m x Or x
m


= =                                                                                    (4) 

From Eq. (4) into Eq. (3), we can write Routhian's Function as 

2
2 2 21 1 1

1

1 1. .( )
2 2 2

R m y mg y R m y mg y
m m m

  
= =

 
+ − − → − − 

 
             (5) 

For the non-cyclic coordinate ( r ), Routh's equation is  

0, ... i

i

d R R R
s

dt q q  

   
− = = − 

   
 

Where  

2
2 1

11

1 . .

2 2

.R
x m y mg y x

m



 

  
= − → − − = − 

   
 

1
1

.x c
m


= == =Constant                                                                                             (6) 

For the non-cyclic coordinate ( r ), Routh's equation 0. =



−













 q

R

q

R

dt

d
 takes the form  

0.
d R R

dt y y

  
− = 

    

2 2
2 21 11 1. . 0. 2 2 2 2

d
m y mg y m y mg y

dt y m y m

           
− − − − − =      

          
 

. 0
d

m y mg
dt

 
+ = 

 
 

..y g= −  
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Exercises 

(i) Both the kinetic energy T and potential energy V for Mechanical system are given, 

respectively, in the form  ( )2 2 2 ,
1

cos
2

. .rT m V mg rr  = + =− . Find the equations 

of motion for the system using Routh's equations? 

 

(ii) Both the kinetic energy T and potential energy V for Mechanical system are given, 

respectively, in the form  
2

2 22 21
( ),

2 2

. .T x x y V x


= + = . Find the equations of motion for 

the system using Routh's equations? 

 

(iii) A particle of mass m moving in a plane under the attractive force 
2

m

r


 directed to 

the origin of polar coordinates (r, ) . Using the Routh's equations, determine the 

equation of motion? 

 

 

 

 

 

 

 

 

 

 

 

 



   51 

 

Chapter: 5 

 Poisson Brackets (Poisson’s Equation) 

In this chapter we discuss an important relation usually called “Poisson’s equation.” 

Poisson’s name has been given to several equations in mechanics and the study of 

electricity and magnetism, so we sometimes call the resulting equation “Poisson’s 

equation of motion,” to distinguish it from other equations with the name Poisson. We 

consider a function ( )tpqff ,, =  and a Hamiltonian ( ),H q p  , where ,p q   

coordinates and momentum. Using the chain rule, we now give an expression for the 

implicit time derivative of ( ), ,f f q p t = . 

1

n dq dpdf f f f dt

dt q dt p dt t dt

 

  =

   
= + + 

   
  

1

. .ndf f f f dt
q p

dt q p t dt  
 

=

   
= + + 

   
                                                                    (1) 

Using Hamilton's equations  

,. .H H
p q

q p 
 

 
= − =

 
                                                                                (2)                      

We can be written Eq. (1) as (substituting from Eq. (2) into Eq. (1))  


= 


+
















−








=

n

t

f

q

H

p

f

p

H

q

f

dt

df

1 

                                                                    (3) 

This equation is called the Poisson equation, while the expression  
















−









 q

H

p

f

p

H

q

f
 is called Poisson bracket, that defines as  
















−








=









 q

H

p

f

p

H

q

f
Hf ,  .                                                                    (4) 

In fact, the Poisson bracket can be defined for any two functions ( ),f g  defined in phase 

 
1

,
n f g f g

f g
q p p q   =

     
= −   

      
                                                          (5)              

n..,..........,.........4,3,2,1=  
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Properties of Poisson's brackets  

For any three physical quantities hgf ,, , which are function of generalized coordinates 

( )q and generalized momentum ( )p , and assuming c is a constant magnitude. Poisson's 

brackets have the following properties : 

(1) , 0, (2) , 0,

(3) , , , (4) , , , ,

(5) , , , , (6) , , , ,

(7) , , ,

f f f c

f g g f f g h f h g h

f g
f g h f g h g f h f g g f

t t t

f
q f f q

p
 



   
= =   

   

         
= − + = +         

         

              
= + = +           

              

   
=   
  

, (8) , , ,

(9) , 0, (10) , 0,
k k

f f f
p f f p

p q q

q q p p

 

  

        
= − = − =      

         

   
= =   

   

 

,

1,

(11)

0,
k

q p

k

k


  
  
  



=

=



 

Proof 

From the definition of Poisson brackets 

( ) ( ), , , , ,
f g f g

f q p t g q p t
q p p q

   

   

       
= −   

       
.  

We will try to prove the previous properties  

0,)1( =















−








=
















−








=









 p

f

q

f

p

f

q

f

q

f

p

f

p

f

q

f
ff  

0)0()0(,)2( =











−




=
















−








=









 p

f

q

f

q

c

p

f

p

c

q

f
cf  









−=















−








−=
















−








−=
















−








=









fg
q

f

p

g

p

f

q

g

p

g

q

f

q

g

p

f

q

g

p

f

p

g

q

f
gf ,,)3(



 

,f g
 
 
 

 and ,g f
 
 
 

are antisymmetric 
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( ) ( ) ( ) ( ) ( ) ( )
(4) ,

f g f g f g f gh h h h
f g h

q p p q q q p p p q         

  +  +               
+ = − = + − +        

                  
 

f h g h f h g h f h f h g h g h

q p q p p q p q q p p q q p p q               

                            
= + − + = − + −          

                            

, ,
f h f h g h g h

f h g h
q p p q q p p q       

              
= − + − = +       

              
 

 

( ) ( )
(5) ,

f g f gh h f g h f g h
f g h g f g f

q p p q q q p p p q         

                 
= − = + − +        

                  
 

g h g h f h f h
f g

q p p q q p p q       

            
= − + −    

            
 

, , ,
g h g h f h f h

f g h f g f g h g f h
q p p q q p p q       

               
= − + − = +         

               
 Product rule. 

 

(6) ,
f g f g f g f g f g f g

f g
t t q p p q t q p q t p t p q p t q           

                              
= − = + − −            

                              

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
f g f g f f g g

g f g f g g f ft t t t t t t t

q p q p p q p q q p p q q p p q               

          
                        = + − − = − + −   
                  

   

 

( ) ( ) ( ) ( )

, , ,

f f g g

g g f f f gt t t tf g g f
t q p p q q p p q t t       

      
                      = − + − = +         

                    
   

 

, , ,
f g

f g g f
t t t

        
= +     

        

 










p

f

q

f

p

f

q

f

p

q

p

f

q

q
fq




=












−




=
















−








=









)0()1(,)7(  










q

f

q

f

p

f

q

f

p

p

p

f

q

p
fp




−=












−




=
















−








=









)1()0(,)8(  
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1

(9) , ( )(0) (0)( ) 0
n

k k k
k

q q qq q q
q q

q p p q q q      =

            
= − = − =     

             
  

1

(10) , (0) ( ) ( )(0) 0,
n

k k k
k

p p pp p p
p p

q p p q p p      =

            
= − = − =     

             
  

1 1 1

1,
(11) , ( )0

0,

n n n
k k k k

k

p p p pq q q q q k
q p

q p p q q p p q p k          = = =

           =     
= − = − = =      

                 
    

Then 
1,

,
0,

k

k
q p

k

= 
  

  
=  

Remarks  

1 1 1 2 2 3 3 4 4 4 4

............
n

k k k k k k
p p p p p pq q q q q q

q p q p q p q p q p q p  =

          
= + + + + +

           
  

If k= . Then  

1 2 3 4k k k k= = = = = = = =or or or or...........  

Therefore  

.....11111
5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1 =







=








=








=








=









p

p

q

q

p

p

q

q

p

p

q

q

p

p

q

q

p

p

q

q
orororor  

While 0
1

2

1

1 =








p

p

q

q
. 

Generally, we can put
1,

,
0,k

l k
q p

l k

= 
  

  
=    

Example: Consider a dynamical system (point particle) with position vector 

kzjyixr


++= , momentum  vector is
x y z

p p i p j p k= + + , and prM


=  (angular 

momentum). 

Evaluate the Poisson brackets:  

(i) , , (ii) , , (iii) ,r r p p r p
     
     
     

. 

(iv) , , (v) , , (vi) , .r M p M M M
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Answer 

The position vector is ( ), ,r x y z= , the momentum vector is ( ), ,
x y z

p p p p=  

From the definition of Poisson brackets 

,f g
f g f g

q p p q
 

   

 
 
 

   
= −
   

 

(i) From 0, =














k
q

l
q , we get , 0r r

 
 
 

=  

(i i) From , 0
l k

p p
 
 
 

=   , we get , 0p p
 
 
 

= . 

(iii) To find ,r p
 
 
 

, we use the formula  

1,

,

0,
k

l k

q p
l

l k


  
  
  



=

=



 

We get  

.1,,0,,0,

,0,,1,,0,

,0,,0,,1,

===

===

===































































































































zyx

zyx

zyx

pzpzpz

pypypy

pxpxpx

   

Therefore, we can configure the following table 

 

zp  yp  xp  Function 

0  0  1 x  

0  1 0  y  

1 0  0  z  
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(iv) M r p=  , we find   

z y z x y x

x y z

y p z p i x p z p j x p y p k

i j k

M r p x y z

p p p

     
− − − + −     

     
= = =  

z y x z y x x y zy p z p i z p x p j x p y p k M i M j M kM r p
     

− + − + − = + +     
     

= =  

To find the relation ,r M
 
 
 

, we use the relation



p

f
fq




=









, . Therefore, we get  

.,,,,,

,,,0,,,

,,,,,0,

y
p

M
Mzx

p

M
Myy

p

M
Mx

x
p

M
Mz

p

M
Myz

p

M
Mx

y
p

M
Mzz

p

M
My

p

M
Mx

z

z
z

y

z
z

x

z
z

z

y

y

y

y

y

x

y

y

z

x
x

y

x
x

x

x
x

−=



=









=



=









−=



=









−=



=













=



=













=



=













=



=









−=



=









=



=









 

Therefore, we can configure the following table 

 

zM  yM  xM  Function 

y−  
z  0  x  

x  0  z−  y  

0  x−  y  
z  

 

(v) To find ,p M
 
 
 

, we use the relation ,
f

p f
q





 
= − 

 
. Therefore  

yy
z

x

z
zx

zz

y

x

y

yx

x

x

x
xx

pp
x

M

q

M
Mp

pp
x

M

q

M
Mp

x

M

q

M
Mp

−=−=



=




−=









=−−=



−=




−=













=−=



−=




−=









)(,

)(,

,0)0(
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.)(,

,0)0(,

,)(,

xz
z

y

z
zy

y

y

y

yy

zz
x

y

x
xy

pp
y

M

q

M
Mp

y

M

q

M
Mp

pp
y

M

q

M
Mp

=−−=



−=




−=









=−=



−=




−=













−=−=



−=




−=









 

 

.0)0(,

,)(,

,)(,

=−=



−=




−=









−=−=



−=




−=













=−−=



−=




−=









z

M

q

M
Mp

pp
z

M

q

M
Mp

pp
z

M

q

M
Mp

z

z

z
zz

xx

y

z

y

yz

yy
x

z

x
xz

 

 

Therefore, we can configure the following table 

 

 

zM  yM  xM  Function 

yp−  zp  0  xp  

xp  0  zp−  yp  

0  xp−  yp  zp  

 

(v) To find ,M M
 
 
 

, we use the definition ,
f g f g

f g
q p p q   

     
= −   

      
. 

Where we will try to find the brackets   

, , , , , ,x x x y x zM M M M M M
     
     
     

, , , , , ,y y y y y zM M M M M M
     
     
     

, , , , , .z x z y z zM M M M M M
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In our problem 3,2,1= , the Poisson brackets ,
f g f g

f g
q p p q   

     
= −   

      
 be written as  

 

3

1 1 1 1 1 2 2 2 2 3 3 3 3

,
f g f g f g f g f g f g f g f g

f g
q p p q q p p q q p p q q p p q    =

                      
= − = − + − + −         

                       


,
x x x x y y y y z z z z

f g f g f g f g f g f g
f g

q p p q q p p q q p p q

                  
= − + − + −       

                   

  

 
















−








+




















−








+
















−








=









z

g

p

f

p

g

z

f

y

g

p

f

p

g

y

f

x

g

p

f

p

g

x

f
gf

zzyyxx

,  

 

(a) from the Property 0, =















−








=
















−








=









 p

f

q

f

p

f

q

f

q

f

p

f

p

f

q

f
ff , we find that 

0,,, =








=








=








zzyyxx MMMMMM  

 

(b) ,
y y y y y yx x x x x x

x y

x x y y z z

M M M M M MM M M M M M
M M

x p p x y p p y z p p z

                   
= − + − + −       

                   

 

     , (0) ( ) (0) ( ) ( ) (0) ( ) (0) ( ) ( ) ( ) ( )x y z z y xM M z p p z p x y p

 
 

= − − + − − + − − − 
  

 

zxyyx MpyxpMM =−=












 ,  

, x x x x x xz z z z z z
x z

x x y y z z

M M M M M MM M M M M M
M M

x p p x y p p y z p p z

                 
= − + − + −       

                   

, (0) ( ) (0) ( ) ( ) ( ) ( ) ( ) ( ) (0) ( ) (0)x z y z x yM M y p p x z p p y
 

= − − + − − − + − − 
 

 

yxzzx MpzxpMM −=−=








 ,  
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,
y y y y y yz z z z z z

y z

x x y y z z

M M M M M MM M M M M M
M M

x p p x y p p y z p p z

                 
= − + − + −       

                   
 

 

, ( ) ( ) ( ) ( ) (0) ( ) (0) ( ) ( ) (0) ( ) (0)y z z y x xM M p y z p x p p x
 

= − − − + − − + − 
 

 

xyzzy MpzpyMM =−=








 ,  

Therefore, we can configure the following table 

 

zM  yM  xM  Function 

yM−  zM  0  xM  

xM  0  
zM−

 yM  

0  xM−  yM  zM  

 

Example:  Calculate the formula of Poisson's brackets for ,
k

f f
 
 
 

, where , 1, 2,3, 4k =  

and 

( ) ( )2 2 2 2

1 2

1 1
, ,

4 2
x y x yx p y p x y p pf f= + − − = +

( ) ( )2 2 2 2

3 4

1
, .

2
y x x yx p yp x y p pf f= − = + + +  

Answer  

From the Poisson’s brackets  

,
f g f g

f g
q p p q    

     
= −   

      
  ,  

and where   is the number of generalized coordinates ( ,x y = ) 

So, the Poisson’s brackets will be written as  
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,
x x x x y y y y

f g f g f g f g
f g

q p p q q p p q

            
= − + −     

             

 

,
x x y y

f g f g f g f g
f g

x p p x y p p y

            
= − + −     

             

 

At , 1, 2,3, 4k = , the Poisson’s brackets will be written as   

4

, 1

, k k k k
k

x x y yk

f f f ff f f f
f f

x p p x y p p y=

             
= − + −     

              
  

 

1 1 1 2 1 3 1 4
1 , , , , , , ,f f f f f f f f

       
= →        

       
 

2 1 2 2 2 3 2 4
2 , , , , , , ,f f f f f f f f

       
= →        

       
 

3 1 3 2 3 3 3 4
3 , , , , , , ,f f f f f f f f

       
= →        

       
 

4 1 4 2 4 3 4 4
4 , , , , , , ,f f f f f f f f

       
= →        

       
 

 

1= :    1 1 1 1
1

1

, k k k k
k

x x y y

f f f ff f f f
f f

x p p x y p p y=

             
= − + −     

              
  

1 1 1 1 1 1 1 1
1 1
, 0

x x y y

f f f f f f f f
f f

x p p x y p p y

            
= − + − =     

             

 

Likewise, be 

2 2 3 3 4 4
, , , 0f f f f f f

     
= = =     

     
 

Also, according to the rule , 0f f
 

= 
 

, we can calculate these bracket  

Therefore  

1 1 2 2 3 3 4 4
, , , , 0f f f f f f f f

       
= = = =       
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1 2 1 2 1 2 1 2
1 2

1

,
x x y y

f f f f f f f f
f f

x p p x y p p y=

            
= − + −     

             
  

1 2
1

1 1 1 1 1 1 1 1
, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2 2 2 2
y x x yf f x p p y y p p x

=

     
= − + − − −     
    

  

1 2
1

1
,

2
y xf f x p y p

=

    
= −   

    
  

3 3 3 31 1 1 1
1 3

1

,
x x y y

f f f ff f f f
f f

x p p x y p p y=

             
= − + −     

              
  

1 3
1

1 1 1 1 1 1 1 1
, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2 2 2 2
x y y xf f x y p p y x p p

=

     
= − − + − − − −     
    

  

1 3
1

1
,

2
x yf f xy p p

=

   
= − +   

   
  

41 4 1 4 1 4 1
1 4

1

,
x x y y

f f f f f f f f
f f

x p p x y p p y=

            
= − + −     

             
  

1 4
1

1 1 1 1
, ( ) (2 ) ( ) (2 ) ( ) (2 ) ( ) (2 )

2 2 2 2
x x y yf f x p p x y p p y

=

     
= − + − − −     
    

  

1 4
1

, 0f f
=

 
= 

 
  

 

 

2= :      2 22 2
2

2

, k k k k
k

x x y y

f f f ff ff f
f f

x p p x y p p y=

            
= − + −     

              
  

1 1 1 12 2 2 2
2 1 1 2

2

, ,
x x y y

f f f ff f f f
f f f f

x p p x y p p y=

            
= − + − = −       

              
  

2 1
2

1
,

2
x yf f y p x p

=

   
= −   

   
  

3
3 3 3 32 2 2 2

2
2

,
x x y y

f f f ff f f f
f f

x p p x y p p y=

             
= − + −     
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32
2

1 1 1 1 1 1 1 1
, ( y) ( ) ( )( ) ( )( ) ( ) ( )

2 2 2 2 2 2 2 2
y y x xf f y p p x x p p

=

     
= − − + − −     
    

  

2 2

3

2 2

2
2

1
,

4
x yf f x y p p

=

    
= − + −   

    
  

2 4 2 4 2 4 2 4
2 4

2

,
x x y y

f f f f f f f f
f f

x p p x y p p y=

            
= − + −     

             
  

2 4
2

1 1 1 1
, ( y) (2 ) ( )(2 ) ( ) (2 ) ( ) (2 )

2 2 2 2
x y y xf f p p x x p p y

=

     
= − + −     
    

  

2 4
2

, y y 0x y y xf f p x p x p p
=

 
= − + − = 

 
  

2 4
2

, 0f f
=

 
= 

 
  

 

 

3= :      3 3 3 3
3

3

, k k k k
k

x x y y

f f f ff f f f
f f

x p p x y p p y=

             
= − + −     

              
  

13 3 3 31 1 1
3 1 1 3

3 3

, ,
x x y y

f f f ff f ff
f f f f

x p p x y p p y= =

             
= − + − = −       

               
   

3 1
3

1
,

2
x yf f xy p p

=

   
= +   

   
  

23 3 3 32 2 2
3 2 2 3

3 3

, ,
x x y y

f f f ff f ff
f f f f

x p p x y p p y= =

              
= − + − = −       

               
   

2 2 2 2

3 2
3

1
,

4
x yf f x y p p

=

    
= − − + −   

    
  

43 3 3 34 4 4
3 4

3

,
x x y y

f f f ff f ff
f f

x p p x y p p y=

            
= − + −     

              
  

3 4
3

1 1 1 1
, ( ) (2 ) ( ) (2 ) ( ) (2 ) ( )(2 )

2 2 2 2
y x x yf f p p y x p p x y

=

     
= − − + − −     
    

  



   63 

 

3 4
3

, 0y x y xf f p p xy p p xy
=

 
= + − − = 

 
  

3 4
3

, 0f f
=

 
= 

 
  

 

4= :        4 4 4 4
4

4

, k k k k
k

x x y y

f f f ff f f f
f f

x p p x y p p y=

             
= − + −     

              
  

14 1 4 4 1 4 1
4 1 1 4

4 4

, ,
x x y y

f f f f f f ff
f f f f

x p p x y p p y= =

            
= − + − = −       

              
   

4 1
4

, 0f f
=

 
= 

 
  

4 2 4 2 4 2 4 2
4 2 2 4

4 4

, ,
x x y y

f f f f f f f f
f f f f

x p p x y p p y= =

             
= − + − = −       

              
   

4 2
4

, 0f f
=

 
= 

 
  

33 3 34 4 4 4
4 3 3 4

4 4

, ,
x x y y

f f ff f f ff
f f f f

x p p x y p p y= =

              
= − + − = −       

               
   

4 3
4

, 0f f
=

 
= 
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Chapter 6 

Canonical transformations and Generating function for 

canonical transformation 

 

It is straightforward to transfer coordinate systems using the Lagrangian formulation as 

minimization of the action can be done in any coordinate system. However, in the 

Hamiltonian formulation, only some coordinate transformations preserve Hamilton’s 

equations. Canonical transformations, defined here as those that preserve the Poisson 

brackets or equivalently the symplectic 2-form, also preserve Hamilton’s equations. A 

search for conserved quantities and symmetries is equivalent to a search for a nice 

coordinate system that preserves Hamilton’s equations 

 

In classical mechanics, there is no unique prescription for one to choose the generalized 

coordinates for a problem. As long as the coordinates and the corresponding momenta 

span the entire phase space, it becomes an acceptable set. However, it turns out in 

practice that some choices are better than some others as they make a given problem 

simpler while still preserving the form of Hamilton’s equations. Going over from one 

set of chosen coordinates and momenta to another set which satisfy Hamilton’s 

equations is done by canonical transformation. 

 

Point Transformations 

It’s clear that Lagrange’s equations are correct for any reasonable choice of parameters 

labeling the system configuration. Let’s call our first choice 

1 2 3( , , ....................., )nq qq q q= . Now transform to a new set, maybe even time dependent, 

( , )tQ Q q = . The derivation of Lagrange’s equations by minimizing the action still 

works, so Hamilton’s equations must still also be OK too.  This is called a point 

transformation:  we’ve just moved to a different coordinate system; we’re relabeling the 

points in configuration space (but possibly in a time-dependent way). 
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General and Canonical Transformations 

The ease with which mechanical problems can be solved depends on the choice of 

the generalized coordinates used. Therefore, it is interesting to examine the 

transformations of a system of coordinates and moments to another system. 

If we call p  and q  on one hand and P  and Q  on the other hand respectively 

old and new moments and coordinates, the transformation is ( , , )P P tp q   = and 

( , , )tQ Q p q   = . One considers only the transformations, called canonical 

transformations or contact transformations, for which there is a function H , called 

Hamiltonian in the new coordinates such as  , ,. .H H
P Q

Q P
 

 

 
=− =

 
 

where P and Q  are the canonical moments and coordinates. 

Condition for a Transformation to be Canonical 

We can be proving the transformation , , , ,( ), ( )q p t q p tQ Q P P      
= =  is canonical 

by in three ways:  

(1) The method of the Liouville differential form 

This is somewhat less practical, but I include it for completeness. The transformation is 

canonical if and only if the differential form P dQ p dq   



 
− 

 
 is closed (is an exact 

differential). 

(2) The method of Poisson brackets 

The transformation is canonical if and only if the fundamental Poisson brackets are 

preserved Poisson's brackets , 0 , ,, 0,
k k k k

Q PP P Q Q 
     

=     
     

= =   

Where 
k

  kronecker delta, 

1,

0,
k

k

k









=

=



 

 (3) P dQ dP Q p dq dp q       

 

   
   

− = −   
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Example: 1 Determine whether the next transformations are canonical or 

non- canonical? 

 

(1) P = =
sinp

q cotp, Q Ln( )
q

, 

(2) 
1 1

2 22 sin , 2 cosq k p Q q k pP
−

= = , where k  is constant. 

 

(3) sin(2 ), cos(2 )q p Q q pP = = , 

 

(4) 2 2 2 11
( ), cot ( )

2

p
p q Q

q
P 

 
−= + = , where   is constant. 

 

(5) , .q Q pP=− =  

Answer 

(1) ,= =
sinp

P q cotp Q Ln( )
q

 

Using Poisson's brackets , Q P Q P
Q P

q p p q 
   

 
 
 

   
= −
   

, we find that 

  ( ) ( ) ( ) ( ), ,Q P
q p p q 

 
 
 

  
= = −

   

Ln sinp-lnq Ln sinp-lnqqcotp qcotp
Ln sinp-lnq qcotp  

1 cos
( ), p

Q P
q 

 
= = 

 

−
= − −2 2 2q cosec p cotp cosec p -cot p 1

sinp
 

Therefore, the transformation is canonical. 

 

(2) 
1 1

2 22 sin , 2 cosP q k p Q q k p
−

= =  

We will try to calculate the expression P dQ dP Q   



 
 

− 
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1 1 1 1

2 2 2 22 sin 2 cos 2 sin 2 cosP dQ dP Q q k p d q k p d q k p q k p      
− −       

− = −       
       

 

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

2 2
sin ( ) 2 cos ( ) cos ( ) 2 sin ( )

2 2 2 2

2 2
sin ( ) 2 cos ( ) cos ( ) 2 sin ( )

2 2 2 2

k p q q k p p k p dq q k p dp
q q

k p dq q k p dp k p q q k p p
q q

 

 

− −

− −

  
= + − −    
  

  
+ −    

  

 

1 1

2 22 2

4 8 0

1 5 0

2 2

4 8 0

1 5 0

1
sin cos ( ) sin ( ) cos ( ) 2 sin cos ( )

2

1
sin cos ( ) sin ( ) cos ( ) 2 sin cos ( )

2

k k p p q dq p q dp p p dq q p p p dp
q

p p dq q p dq p p dp q q p p dp p
q

   

   

−

+ =

+ =

+ =

+ =

 
  

= − + − − 
 
  




− + −







 
 

 

2 2 2 2

1 4 2 3 1 4

sin ( ) cos ( ) sin ( ) cos ( )p q dp p p dq p dq p p dp q   

+ + +

  
= − + + − 
  

 

2 2 2 2

1 1

sin cos ( ) sin cos ( )p p q dp p p p dq p dq q dp   

= =

 
    

= − + + + = −    
    

 

 

Then   P dQ dP Q p dq dp q          − = −  

This proves that the transformation is canonical. 

 

(3) sin(2 ), cos(2 )q p Q q pP = =                                                                                         

We will try to calculate the expression P dQ dP Q   



 
 

− 
 

  

( ) ( ) ( ) ( )sin 2 cos 2 sin 2 cos 2P dQ dP Q q p d q p d q p q p      − = −

1 1
sin 2 ( ) 2 cos ( ) cos 2 ( ) 2 sin 2 ( )

2 2

1 1
sin 2 ( ) 2 cos ( ) cos 2 ( ) 2 sin 2 ( )

2 2

p q q p p p dq q p dp
q q

p dq q p dp p q q p p
q q

 

 

  
= + − −    
  

  
+ −    
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2 2

4 8 0

1 5 0

2 2

4 8 0

1 5 0

1
sin 2 cos 2 ( ) sin (2 )( ) cos (2 )( ) sin 2 cos 2 ( )

4

1
sin 2 cos 2 ( ) sin (2 ) ( ) cos (2 ) ( ) 2 sin cos ( )

4

p p q dq p q dp p p dq p p p dp
p

p p dq q p dq p p dp q q p p dp p
p

   

   

+ =

+ =

+ =

+ =

 
  

= − + − − 
 
  

− + −

 
  
 
 
  

 

2 2 2 2

1 4 2 3 1 4

sin (2 ) ( ) cos (2 ) ( ) sin (2 ) ( ) cos (2 ) ( )p q dp p p dq p dq p p dp q   

+ + +

  
= − + + − 
  

 

2 2 2 2

1 1

sin (2 ) cos (2 ) ( ) sin (2 ) cos (2 ) ( )p p q dp p p p dq p dq q dp   

= =

 
    

= − + + + = −    
    

 

 

Then P dQ dP Q p dq dp q          − = − . Hence, the transformation is canonical. 

 

(4) 2 2 2 11
( ) cot ( )

2
,

p
p q Q

q
P 

 

−+ ==  

Using Poisson's brackets , Q P Q P
Q P

q p p q 
   

 
 
 

   
= −
   

 

1 2 2 2

1 2 2 2

1 2 2 2

1
cot ( ) ( )

1 2
cot ( ) ( )

2

1
cot ( ) ( ))

2

( ) )

, ,

( )

p
p q

p q
p q

q

p
p q

q

Q P
q p

p q

 


 


 


 

−

−

−

+
    

+   
    

+

 

= = −
 

 

 

(

(

 

2

2 22 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2

1

1
1

1 1 1 1

,

pp

qq qp q p q q p

q p q p q pp p p p

q q q q

Q P
 

    

    

   

    −
− −     

     +     
− = + = + = =    

+ + +           
+ + + +       
       

=
T

herefore, the transformation is canonical. 
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(5) ,q Q pP=− =   

(i) Using Poisson's brackets ,
Q P Q P

Q P
q p p q 
   

 
 
 

   
= −
   

. 

We have (0) (1) ( 1) 1
( ) ( )

,
p q p q

p q
q p p q

 
= − − = 

 

  −   −
− = −

   
.   Then 1,p q

 
 
 

− =  

Therefore, the transformation is canonical. 

 

(ii) We calculate the differential form   P dQ p dq   



 
− 

 
  

( )( )
NM

PdQ pdq q dp pdq qdp pdq− = − − = − −                         

Then  11,1 −=



=




→−=




−=





p

N

q

M

p

N

q

M
 

It means that, the differential form P dQ p dq   



 
− 

 
  is an exact differential 

Therefore, the transformation is canonical. 

 

(iii) We will try to calculate expression P dQ dP Q   



 
 

− 
 

  

( ) ( )P dQ dP Q q dp d q p dq p q dp p dq dp q p dq dp q                − = − − − = − == − = −  

Then P dQ dP Q p dq dp q          − = − . This proves that the transformation is 

canonical (which is indeed an exact differential and the transformation is canonical) 

 

Example 2: Is the transformation ( ) ( ),Exp q Q Exp pP= =  canonical or non- 

canonical? 

Solution 

Using P dQ p dq   



 
− 

 
 : 
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( ) ( ) ( )PdQ pdq Exp q Exp p pdq Exp p q pdq− = − = + −  

which is not an exact differential and the transformation is not canonical. 

 

Exercises: 

(i) If  2 2

1 2 1 2

1 1 1 1
, ( ) , , ( )

2 2 2 2
p p p p q Q q Q p q= = − = = + . 

- Check whether the next transformations are canonical or non- canonical? 

1 2 1 1 1 2 2 1 2 21 2
and , and , and , and , and , and .p p Q p Q p Q p Q pQ Q  

 

(ii) Using Poisson bracket show that the transformation defined by 

2 2 11
( ), tan ( )

2

q
q p Q

p
P −+= =      ( 2 sinQ 2 cosQ,P Pq p= = )  is canonical.? 
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Generating function for canonical transformation 
By Hamilton’s Variational Principle, the canonical transformations ( ), ,P P p q t   =  

and ( ), ,Q Q p q t   =  must be such that the integrals  
2

1

t

t
L dt  and 

2

1

t

t
L dt  are both 

extremal, i.e. that one needs to have simultaneously 
2

1

0
t

t
L dt = and 

2

1

0
t

t
L dt = , which is 

satisfied if there is a generating function F  such that 

 
d F

L L
d t

= − .                                                                      (1) 

  Then  

( )
2 2

1 1

0
t t

t t

dF
L L dt dt

dt
 − = =   

2

1
1 1( ) ( ) 0

t

t
dF F t F t 

 
= − = 

 
                                                   (2) 

Where F  is called generating function for the canonical transformation, that will be as 

( ), , , ,F p q P Q t    . Depending on the form of the generating functions (which pair of 

canonical variables being considered as the independent variables for the Generating 

Function), we can classify canonical transformations into four basic types. The four 

possible types of generating functions of the first kind, are ( )1 , ,F q Q t  , ( )2 , ,F q P t  , 

( )3 , ,F p Q t  and ( )4 , ,F p P t  . These four generating functions lead to relatively simple 

canonical transformations, can be found as shown below . 

d F
L L

d t
= −                                                                                      (3) 

But 

1 1

. .n n

H p q L L p q H   
 = =

= − = −→                                (4) 

1 1

. .n n

H P Q L L P Q H   
 = =

= − = −→                                 (5) 

From Eqs. (4) and (5) into Eq. (3), we get 

1 1

. .n ndF
p q H P Q H

dt    
 = =

   
− − −   

   
=    
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1

. .ndF
p q P Q H H

dt    
=

  
− +   

   
= −  

1

n dq dQ

dt dt

dF
p P H H

dt
 

 
=

  
− +   

   
= −                                           (6) 

Therefore Eq. (6) can be written as  

1

n

Q dtdF p dq P d H H   
=

  
− +   

   
= −                                          (7) 

1 2 3 4( , , ), ( , , ), ( , , ), ( , , ),t t t tF q Q F q P F p Q F p P                (8)          

Type 1: 1( , , )tF q Q  :  

We consider the exact differential of ( )1
, ,F F q Q t = , we get 

( ) 1 1 1
1

, ,
F F F

Q
Q

dF dF q Q t dq d dt
q t   

  

  
= + + 

  

  
=

                           (9) 

If we compare Eq. (8) with Eq. (9), we get 

1 ,
F

q
p




=


             1F

Q
P




= −


,                1

F
H H

t
=


−


                         (10) 

Type 2: 2 ( , , )tF q P  : 

( )
1

1
, ,

n

Q dtdF dF q Q t p dq P d H H   


 
=

  
− +   

   
= = −  

1
1

n

Q dtdF p dq P d Q dP Q dP H H       
=

    
− + − +   

   

= −  

( )
1

1

n

P Q P dtdF p dq Q d P d Q d H H       
=

 
  

+ + − − +   
   

= −  

( )( )
1

1

n

P Q dtdF p dq Q d d P H H     
=

 
  

+ − +   
   

= −  

( )
1

1
,

n

Q dtdF d P p dq Q dP H H     
=

  
+ +   

   
+ = −  

1 1
1 2

n n

Q dtd F P dF p dq Q dP H H     
 = =

    
+ +    

     
+ = = −                 (11) 
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We consider the exact differential of ( )2
, ,F F q P t = , we get 

( ) 2 2 2
2

, ,
F F F

dF dF q P t dq dP dt
q P t   

  

  
= + + 

  

  
=

                          (12) 

If we compare Eq. (11) with Eq. (12), we get 

2
F

p
q


=



,              2

F
Q

P


=



,                2

F
H H

t
=


−


                     (13) 

Type 3: 3( , , )tF p Q   

( )
1

1
, ,

n

Q dtdF dF q Q t p dq P d H H   


 
=

  
− +   

   
= = −  

1
1

n

Q dtdF p dq P d q dp q dp H H       
=

    
− + − +   

   

= −  

1
1

n

Q dtdF p dq q dp P d q dp H H       
=

    
+ − − +   

   

= −  

( )
1

1

n

Q dtdF d p q P d q dp H H     
=

    
− − +   

   

= −  

( )
1 1

1

n n

Q dtdF d p q P d q dp H H     
 = =

  
− − +   

   
− = −   

1 1
1 3

n n

Q dtd F p q dF P d q dp H H     
 = =

    
− − +    

     
− = = −                 (14) 

We consider the exact differential of 3( , , )tF F p Q = , we get 

3
3 3 3( , , )

F F F
tdF dF p Q dp dQ dt

p Q t   
  

  
= + + 

  

  
=

                              (15) 

If we compare Eq. (14) with Eq. (15), we get 

3 3 3, ,
F F F

q P H H
p Q t 
 

=
  

=− =− −
  

                                (16) 

Type 4: 
4( , , )tF p P   

( )
1

1
, ,

n

Q dtdF dF q Q t p dq P d H H   


 
=

  
= − +   
   

= −  
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1
1

n

Q Q Q q q dtdF p dq P d dP dP dp dp H H           
=

    
− + − + − +   

   

= −  

1
1

n

q Q q Q Q dtdF p dq dp dP dp P d dP H H           
=

    
+ + − − − +   

   

= −  

( ) ( )
1

1

n

Q q Q dtdF d p q dP dp d P H H       
=

 
  

+ − − +   
   

= −  

( ) ( )
1 1

1

n n

Q Q q dtdF d P d p q dP dp H H       
 = =

   
− − +   

  
+ = −   

1
1

n

Q Q q dtd F P p q dP dp H H       
=

      
− − +       

     
+ = −  

1
1 4

n

Q Q q dtd F P p q dF dP dp H H       
=

      
− = − +       

     
+ = −                 (17) 

We consider the exact differential of 4 ( , , )tF F p P = , we get 

( ) 4 4 4
4

, ,
F F F

dF dF p P t dp dP dt
p P t   

  

  
= + + 

  

  
=

                                           (18) 

If we compare Eq. (17) with Eq. (18), we get 

4 4 4, ,
F F F

q Q H H
p P t 
 

= − = =
  

−
  

                                                (19) 
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Example 1: Show that the transformation ,q Q pP=− =  is canonical, and determine 

the generating functions 1F ? 

 

Solution 

Using Poisson's brackets ,
Q P Q P

Q P
q p p q 
   

 
 
 

   
= −
   

. 

We have (0) (1) ( 1) 1
( ) ( )

, ,
p q p q

Q P p q
q p p q 

   
= − − =   

   

  −   −
= − = −

   
 

1, ,Q P p q
 

   
   
   

= − = , hence the transformation is canonical. 

For the generating functions 1 1( , ),F F q Q t =  

1F

q
p




=


             1F

Q
P




= −


. 

1 1

1

F F
Q

q q
p F Qdq



 
= → = → =
                                                 (1) 

1 1 1

1

F F F

Q Q Q
P q q F qdQ



  
= − → = − → = → =

  
−                     (2) 

From the transformation ,q Q pP=− = , we have 

From Eq. (1), we get                                     
1F Qdq qQ= =  

Also, from Eq. (2), we get                         
1F qdQ qQ= =  

Hence, the generating functions 1F  given by 1( , ),F q Q t qQ  = . 

 

Example 2: Show that the following transformation is canonical, 

P
 

= =  
 

sinp
q cotp, Q Log

q
? 

Find the generating functions 
4 4

, ,( )F F p Q t = ? 
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Solution 

(i) Using Poisson's brackets ,
Q P Q P

Q P
q p p q 
   

 
 
 

   
= −
   

. 

We have 

1 1
1 1 2 2
2 2

1 1
2 2

2 cos 2 sin
2 cos 2 sin

2 cos 2 sin )

( ) )
, ,

( )

q k p q k p
q k p q k p

q k p q k p

Q P
q p

p q

 

    
   

    

 
= = −

 

 

 

(

(

 

1 1 1 1

2 2 2 2
2 2

cos 2 cos 2 ( sin ). sin
22 2

, k p q k p q k p k p
qq

Q P
 

− − 
− − 

 
=  

( ) ( )
2 2

cos sin 1, p pQ P
 

 
+ = 

 
= .   Therefore, the transformation is canonical. 

 

(ii) For the generating functions 
4 4( , ),F F p P t =  

4F
q

p





= −


             4F

Q
P





=


. 

Therefore 

4 4

4

F
q

p

FP P
F dp

p



= − → − = → =−





 cotp cotp
                   (1) 

2 4

4

F F
Q F dP

P P


   
= → = → =   

   

 
  

sinp sinp
Log Log

q q
            (2) 

From the transformation P
 

= =  
 

sinp
q cotp, Q Log

q
, we have 

From Eq. (1), 

4 log(cos ) C( )F P dp P p P= = +
-sinp

cosp
   

4 log(cos ) C( )F P p P= +  
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( )C( ) P P PP −= Log  . Then 

4 1P
P

F
  

= −  
  

cosp
Log                                    

Also, from Eq. (2), we get                          

4 4 4F dP F dP F dP
P P P

 
     
 = → = → =   
     
 
 

  
sinp sinp sinp cosp

Log Log cotp Log
sinp

cotp

 

( )( )4 4F dP F P dP
P

 
= → = − 

 
 

cosp
Log Logcosp Log  

( ) ( )( )4 P P P PF = − −Log cosp Log  

( ) ( )4 1P PF
 

= − − 
 
Log cosp Log  

4 1P
P

F
  

= −  
  

cosp
Log  

( ) ( ) ( ) ( )
1

( )Log P dP P Log P P dP P Log P dP P Log P P
P

= − = − = −    

 

Example 3: Show that the following transformation is canonical, 

2 cos cos(1 ) sin , log(1 )p pq q p Q qP = + = + ? 

Find the generating functions 3 3( , , )F F p Q t = ? 

Solution 

Using Poisson's brackets ,
Q P Q P

Q P
q p p q 
   

 
 
 

   
= −
   

. We have  

( )

( )

2(1 cos ) sin

2(1 cos ) sin

(log(1 cos ))
log(1 cos ), 2(1 cos ) sin

(log(1 cos ))

q p q pq
q q q

q p q pq

p
p p p

q p

p

p q

+ 
− 

 

+

 +
+ + =

 

 +
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( )

( )

2(sin cos sin )

2( cos ) sin

(log(1 cos ))
log(1 cos ), 2(1 cos ) sin

(log(1 cos ))

p q p p qq
q q q

q q p pq

p
p p p

q p

p

p q

+ 
− 

 

+

 +
+ + =

 

 +

 

( )

1
2(sin sin 2 )

2

2( cos ) sin

(log(1 cos ))
log(1 cos ), 2(1 cos ) sin

(log(1 cos ))

p q p q
q

q q q

q q p pq

p
p p p

q p

p

p q

 
+     − 

 

+


 +

+ + =
 

 +

 

 

( )2(cos cos 2 )

1
2( cos ) sin

2

cos
log(1 cos ), 2(1 cos ) sin

2 (1 cos )

sin

(1 cos )

q q q p q p q
q q

q
p p

qq

p
p p p

p

p

p

 
+ − 

 

 −
+  

 

+ + =
+

+

 

( )cos cos 2 cos

1
2( cos ) sin sin

2

1
log(1 cos ), 2(1 cos ) sin

(1 cos )

p q p p

q q q
q q p p p

q

p p p
p

 + +
    

    
+     

   

+ + =
+

2

2 2

cos cos cos 2

sin 2 cos sin

1
log(1 cos ), 2(1 cos ) sin

(1 cos )

p q p p
q q q

q p q p p
p p p

p

 + +   
   

+    

+ + =
+

 

( )2 2 2

2 2

cos cos cos sin

sin 2 cos sin

1
log(1 cos ), 2(1 cos ) sin

(1 cos )

p q p p p
q q q

q p q p p
p p p

p

 + −   
   

+ +    

+ + =
+

 

2 2 2

2 2 2

cos cos cos cos sin

sin cos sin cos sin

1
log(1 cos ), 2(1 cos ) sin

(1 cos )

p q p p q p p
q q q

q p q p p q p p
p p p

p

 + − +   
   

+ +    

+ + =
+

 

2 2

2 2

cos cos cos

sin cos sin

1
log(1 cos ), 2(1 cos ) sin

(1 cos )

p q p p
q q q

q p q p p
p p p

p

 + +   
   

+    

+ + =
+

 

2 2

2 2

(cos sin )

cos (cos sin )

1
log(1 cos ), 2(1 cos ) sin

(1 cos )

p p
q q q

q p p pq
p p p

p

 + +   
   

+    

+ + =
+

 

1 cos 1
1

log(1 cos ), 2(1 cos ) sin
(1 cos )

q q q q p
q

p p p
p

   
+ =   

  
+ + =

+
 

1log(1 cos ), 2(1 cos ) sinq q qp p p
 

= 
 

+ +  , hence the transformation is canonical. 
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(ii) For the generating functions 3 3( , ),F F p Q t =  

3 3,
F F

q P
p Q

 
 

 
= − = −

 

cos cos cos
cos

1
log(1 ) 1 1

Q
Q Q

p p p
p

e
Q q e q e q q

−
= + → = + → − = → =  

( )
2

2cos

1Q

q
p

e
=

−
.    Therefore 

( ) ( )
2 2

3 3

2 23cos cos

1 1Q Q
F

q
p p p

e eF
F dp

p



= − → − = → =−



− −

                          (1) 

3 3

32 cos 2 cos(1 ) sin (1 ) sin
F

p p
Q

q q p q q p
F

P F dQ
Q




= − → = − → =−


+ +



   (2) 

From the transformation 2 cos cos(1 ) sin , log(1 )p pq q p Q qP = + = + , we have 

From Eq. (1), 

( ) ( )
2 2

2

3 3sec tan1 1Q Q
pe eF pdp F=− → =−− −    

( )
2

3 tan1Q
peF =− −  

Also, from Eq. (2), we get                    

3 2 cos 2 cos
cos cos

1 1
(1 ) sin (1 ) sin

Q Q

p p
p p

e e
q q p pF dQ dQ=− =−

− −
+ +   

( )( ) ( )( )
2

2
3 2 tan 2 tan1 1 1 2 1Q Q Q Q Q

p pe e e e eF dQ dQ+=− =−− + − − + −   

( ) ( ) ( )2
3 2 tan 2 tan 1 2 tan 1 ( )Q Q Q Q Q Q

p p pe e e e e eF dQ dQ d− − −= − = − = −    

( ) ( )
2 2

3 3

1
2 1 tan 1 tan

2

Q Q
p pe eF F− −= − → = −  
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Chapter 7 

Hamiltonian-Jacobi mechanics 

Hamilton-Jacobi Equations 

 

Introduction  

Hamiltonian mechanics is an especially elegant and powerful way to derive the 

equations of motion for complicated systems. Unfortunately, integrating the equations 

of motion to derive a solution can be a challenge. Hamilton recognized this difficulty, so 

he proposed using generating functions to make canonical transformations which 

transform the equations into a known soluble form. Jacobi, a contemporary 

mathematician, recognized the importance of Hamilton’s pioneering developments in 

Hamiltonian mechanics, and therefore he developed a sophisticated mathematical 

framework for exploiting the generating function formalism in order to make the 

canonical transformations required to solve Hamilton’s equations of motion. 

 

In the Lagrange formulation, transforming coordinates ( , ).q q    to cyclic generalized 

coordinates ( , ).Q Q   , simplifies finding the Euler-Lagrange equations of motion. For 

the Hamiltonian formulation, the concept of coordinate transformations is extended to 

include simultaneous canonical transformation of both the spatial coordinates q and the 

conjugate momenta p from ( , )q p  to ( , )Q P  , where both of the canonical variables 

are treated equally in the transformation. Compared to Lagrangian mechanics, 

Hamiltonian mechanics has twice as many variables which is an asset, rather than a 

liability, since it widens the realm of possible canonical transformations. 

 

Hamiltonian mechanics has the advantage that generating functions can be exploited to 

make canonical transformations to find solutions, which avoids having to use direct 

integration. Canonical transformations are the foundation of Hamiltonian mechanics; 

they underlie Hamilton-Jacobi theory and action-angle variable theory, both of which 

are powerful means for exploiting Hamiltonian mechanics to solve problems in physics 

and engineering. The concept underlying canonical transformations is that, if the 

equations of motion are simplified by using a new set of generalized variables ( , )Q P  , 

compared to using the original set of variables ( , )q p , then an advantage has been 
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gained. The solution, expressed in terms of the generalized variables ( , )Q P  , can be 

transformed back to express the solution in terms of the original coordinates, ( , )q p  . 

 

Only a specialized subset of transformations will be considered, namely canonical 

transformations that preserve the canonical form of Hamilton’s equations of motion. 

That is, given that the original set of variables  ( , )q p   satisfy Hamilton’s equations . 

 

If we consider a canonical transformation. where p  and q  is the old moments, while 

P  and Q  are new moments and coordinates, such that ( , , )P P tp q   =  and 

( , , )tQ Q p q   = . 

It is note that, the old system (Hamiltonian system) is given as    

,. .H H
q p

p q
 

 

 
= = −
 

                                                                                                (1) 

While, new system (Hamiltonian system), is given by  

 ,. .H H
Q P

P Q
 

 

 
= = −
 

,                                                                                             (2) 

Now, If we can be found a canonical transformation in which the new Hamiltonian 

function is equal to zero( )0H = ,  

Then, we can say that  

=0. .Q P =                                                                                                                      (3) 

Therefore 

=constant =Q P  = .                                                                                                  (4) 
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 Let us, we consider the generating function ( )2
, ,F F q P t =  which produces the 

canonical transformation according to the formulas, in this case 

2 2 2, , .
F F F

p Q H H
q P t 
 

= = =
  

−
  

                                                                (5) 

Now, if we put 0H =  

( )2 , , 0.
F

H p q t
t  +


=


 

2 2 , , 0.
F F

H q t
t q 



 
+   

 

 
=

 
                                                                                         (6) 

This equation is called Hamilton-Jacobi equation (Hamilton-Jacobi equations), which 

can be written on the form 

, , 0,
S S

H q t
t q 



 
+  

 

 
=

 
                                                                                             (7) 

S
p

q 


=



                                                                                                                    (8) 

While,  

S S

P 
 




= =
 
 

                                                                                                          (9) 

Where 

P =  and 1,2,3,.................,n = . 

Equation (7) (Hamilton-Jacobi equation) is a partial differential equation of the first 

order and is in the variables ( )1 2 3, , ,..................., tq q q . Which their number is ( )1n +  

and therefore the general solution to this equation will contain ( )1n +  the constants. By 
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deleting one of these optional constants, we will have ( )n  of the constants, that are 

( )1 2 3, , ,..................., n    . In this case the solution will be in the form 

( )1 2 3 1 2 3, , ,..................., , , , ,..................., ,n nq qS S q q t   =  

Using relations (8), (9) we can define ( )q  as a function of ( ), , t   and thus we 

have fully defined the mechanical system. 

Special case of Hamilton-Jacobi equation 

When the old Hamiltonian function does not depend on time, that is ( ),HH p q = . 

Therefore, the Hamilton-Jacobi equation can be written in the form 

( ), ,
, 0.

S t Sp P
H q

t q
 




 
+  

 

 
=

 
                                                                                 (1) 

Then we assume that the solution to the Hamilton-Jacobi equation is in the form 

( ) ( ) ( ) ( ) ( )1 1 2 2 3 3 1, ,....... ,n n nq q q q tS s s s s s += + + + +                                              (2) 

Thus, Eq (1) becomes in the form 

( )
,

S tS
H q

q t


 
 
 


= −

 
                                                                                               (3) 

The right side of Eq. (3) depends on time only, while the left side depends on 

1 2 3, , ,......., nq qq q  only. Therefore, each of the two sides is equal to a constant (E) where 

(E) represents the total energy of the mechanical group, i.e. 

( )1n
S t E t

+
=−  , 

,
S

H q E
q 


 
 
 


=


 

Example1: Using Hamiltonian-Jacobi system study the motion of harmonic oscillator in 

one dimension (1 )D− and prove that the particle's distance from the equilibrium 

position is given by 1 2 3sin ( )c c t c+ , where 1 2 3, ,c c c are constants? 

 

Answer  
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It is well-known that the Hamilton-Jacobi system for solving a mechanical system can 

be written in the form 

 

( , , )
( , , ) 0, , ,

S q t S S
H q p t p

t q
   

 






  
+ = = =

  
                        (1) 

 

For the harmonic oscillator in one dimension, the kinetic energy and potential energy 

are given, respectively, as   

 

2 21 1
,

2 2

.T m x V k x= = , where m  is mass of particle. 

Therefore, the total energy is given as 
2 21 1

2 2

.E T V m x k x= + = +  

The Lagrange's function is given as 
2 21 1

2 2

.L T V m x k x= − = −                             (2) 

Since time does not appear explicitly in the Lagrange's function, the Hamiltonian 

function is given in the form 

2 21 1

2 2

.H T V m x k x E= + = + +                                                                             (3) 

From the relation .
L

p
q





=


, we find that .x

L
p

x


=


   

m

p
xxmp x

x =→= ..                                                                                                       (4) 

From Eq. (4) into Eq. (3), we get                          

2
2

22

2

1

2

1

2

1
)(

2

1
xk

m

p
mxk

m

p
mVTH xx +=+=+=                                                                 (5) 

Therefore, the Hamilton-Jacobi equation 0),,(
),,(

=+



tpqH

t

tqS



 is taken the form 
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0
2

1

2

1),,( 2
2

=++



xk

m

p

t

tqS x
                                                                                         (6)  

Then, the solution of Eq. (6), maybe written in the form (We have one coordinate) 

)()( 21 tsxss +=                                                                                                                (7)                               

From the Hamilton-Jacobi system 
S

p
q





=


 and where our problem in x−coordinate, 

we have 1

1

x

S s
p p

q x

 
= → =

 
, that can be written from Eq. (7) in the form  

1
x

s
p

x


=


                                                                                                                     (8) 

From Eq. (7) and (8), we can write Eq. (6) as  

0
2

1

2

1 2

2

12 =+











+




xk

x

s

mt

s
 

But every term in this equation is independent each other. Then    

2
22

2

1

2

1

2

1
=




−=+













t

s
xk

x

s

m
                                                                                       (9) 

Therefore, 

tscts
t

s
221222

2 )0(  −=→=+−=→=



−                                                                        (10) 

21
2

1 1

2 2

s
k x

m x


 
+ = 

 
 

21
2

1 1

2 2

s
k x

m x


 
= − 

 
 

21
2

1
2

2

s
m k x

x



= −


  

 =+−= )0(
2

1
2 2

2

21 cdxxkms                                                                                 (11) 

Now, from Eq. (10) and Eq. (11), the solution of Eq. (5) becomes in the form 
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tdxxkmsss 2

2

221
2

1
2  −−=+=                                                                                    (12) 

Again, from the Hamilton-Jacobi system 





=


s
 . Then 2

2




=


s
 and from Eq. (12), we 

get 

2
2

2

2

2

2

2

2

2

2

2

22

2

2

2

2

1
12

1
2

2

1
12

1
2

2

1
2

1
2

2

1
2


















=−














−

=−

−

=−

−

=








−−












tdx

xk

m

tdx

xk

m

tdx

xk

m

tdxxkm

  

( )t
m

k
x

k
tx

k

k

m
t

k

x
km

+=













→=−














→=−















−−

−

2

2

1

2

2

1

2

2

2

1

2

2
sin

2
sin

2

2
sin

2

2












 

( ) ( )t
m

k

k
xt

m

k
x

k
+=→+=














2

2
2

2

sin
2

sin
2







 

 

Therefore 

 

 ( )tcccx += 321 sin  

Where, 

232
2

1 ,,
2




=== c
m

k
c

k
c  

Example 2: A particle of mass m  is projected with initial velocity 
0

v  at an angle   

to the horizontal in the uniform gravitational field of the earth. Use Hamiltonian-Jacobi 

system to describe the motion of the projectile. Ignore the air resistance? 
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Solution 

It is well-known that the Hamilton-Jacobi system for solving a mechanical system can 

be written in the form 

( , , )
( , , ) 0, , ,

S q t S S
H q p t p

t q
   

 






  
+ = = =

  
                        (1) 

 

Let a particle of mass m be projected from the origin point with an initial velocity
0

v   

making an angle   with the horizontal line referred as x -axis. Let ( , )x y be the 

position of the particle at any instant t . Since x  and y  are independent and hence the 

generalized coordinates are 1 2( , ) ( , )q q x y= and the generalized velocities are 

1 2( , ) ( , ). . . .q q x y= .  

Kinetic Energy 

The kinetic of the projectile is given by 2 21
( ),

2

. .T m x y= +    

The Potential Energy 

The total of potential energy is given as 
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d V
F mg F mg V mg V mg y

dy
= − → = − = − → = → =                                                            

Lagrange Function  

The Lagrange Function can be written as   

2 21
( )

2

. .L T V m x y mg y= − = + −                                                                            (2) 

2 21
( )

2

. .. . . . . .
x x y y x y x yH p q p q L p x p y L p x p y m x y mg y= + − = + − = + − + + (3) 

..
L

p
q





=


 Then  

,. .x y

L L
p p

x y

 
= =
 

                                                                                                 (4) 

From Eq. (4) into Eq. (1), we have 

. . x
x

p
p m x x

m
= → =                                                                                                (5) 

. . y

y

p
p m y y

m
= → =                                                                                                (6) 

From Eq. (5) and Eq. (6), then Hamilton Function (Eq. 3) becomes    

22
1

2

y yx x
x y

p pp p
H p p m mg y

m m m m

        
= + − + +       

        
222 2

2

1

2

yx x x
pp p p

H m mg y
m m r m m

    
= + − + +   

     

 

2 21

2
x yH p p mg y

m

 
= + + 

 
                                                                                     (7) 
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From Hamiltonian-Jacobi system (1) and Eq. (7), then Hamilton-Jacobi equation 

( , , )
( , , ) 0

S q t
H q p t

t
 


+ =


 becomes 

2 2( , , ) 1
0

2
x y

S q t
p p mg y

t m

  
+ + + = 

  
                                                                      (8) 

Then, the solution of Eq. (8), maybe written in the form (We have two coordinates) 

1 2 3( ) ( ) ( )s s x s y s t= + +                                                                                                   (9) 

From the Hamilton-Jacobi system 
S

p
q





=


 and where our problem has two 

coordinates  xand y , then 

1
1

1

x

sS
p p

q x


= → =

 
                                                                                                 (10) 

2
2

2

y

sS
p p

q y


= → =

 
                                                                                          (11) 

Now, from Eq. (9), (10) and (11), we can write Eq. (8) in the from 

0
2

1
2

2

2

13 =+
























+












+




ymg

y

s

x

s

mt

s
                                                                           (12)   

This equation has two parts, one of these parts depends on time and the other on the 

coordinates, so each of them can be placed on a fixed form in the form 

3
3

2

2

2

1

2

1
=




−=+

























+













t

s
ymg

y

s

x

s

m
                                                                     (13) 

That can be written as   

tscts
t

s
331333

3 )0(  −=→=+−=→=



−                                                             (14) 
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Also, from Eq. (13), we have  

3

2

2

2

1

2

1
=+

























+












ymg

y

s

x

s

m
 

2

1
3

2

2 2 











−=









−+












x

s
ymgm

y

s
                                                                                       (15) 

From Eq. (15), we have 

1
1

s

x


 
= 

 
                                                                                                                   (16) 

From (16), we get 

1 1 1 1 2 1 1( 0)ds dx s x c s x  = → = + = → =  

Then    

1 1s x=                                                                                                                         (17) 

From Eq. (16) into Eq. (15), we have 

2

13

2

2 2  −=








−+











ymgm

y

s
                                                                                           (18) 

 =+












−








−−= )0(2 3

2

132 cdyymgms   














−








−−= dyymgms 2

132 2                                                                                      (19) 

Now, from Eq. (14), Eq. (17) and Eq. (19), we can write Eq. (9) in the form 














−








−++−=++= dyymgmxtssss 2

1313321 2                                                      (20) 
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Again, from the Hamilton-Jacobi system 





=


s
 , we get  

1 2 3

1 2 3

, ,
s s s

  
  

  
= = =

  
                                                                          (21) 

From Eq. (20) and 1

1

s





=


, we get 

( )
( )

1
2

2

1

2

131

1

2

1

2

131

1

2

13

1
1

2

1313

1

)2(
2

1

2

2

2

2
















=

−









−









−−

+→=







−









−−+

=

−








−

−
+→=



























−








−++−








−

gm

ymgm

xdyymgmx

dy

ymgm

xdyymgmxt

 

1

2
2

1 3 1

12

2m mg y

x
m g

  



  
− −  

  + =   

1

2
2 2

1 3 1 12 ( )m mg y m g x   
  

− − = −  
  

                                                                (22) 

Second time from Eq. (20) and 3

3

s





=


, we get 

2

3 1 3 1 3

3

2t x m mg y dy    


       
− + + − − =     

      
  

3

2

3 1

2

2 2

m
t dy

m mg y



 

− + =
 

− − 
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1

2
2

3 1 32t m m mg y dy  

−

  
− + − − =  

  
  

1

2
2

3 1

3
2

2

1
( 2 )

2

m m mg y

t

m g

 



  
− −  

  
− + =

−

 

1

2
2

3 1

3

2m mg y

t
mg

 



  
− −  

  − − =  

1

2
2 2 2

3 1 32m mg y m g t  
    

− − − = +    
    

                                                          (23) 

Now from Eqs. (22) and (23), we have for constants 1 3 1 3, , ,    , therefore we need 

for four condition to find these constants.  

Squared both two Eqs. (22) and (23), we get 

2 2 4 2 2

1 3 1 12 ( )m mg y m g x   
  

− − = −  
  

                                                              (24) 

2

2 2 2

3 1 32m mg y m g t  
   

− − = +   
   

                                                                    (25) 

Derivative with respect to both two Eqs. (24) and (25), we get 

2 2 4 2

1 12 2 ( ). .m g y m g x x − =− −                                                                               (26) 

2 2 2

32 2.m g y m g t
 

− = + 
 

                                                                                       (27) 
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From the initial condition and at 0t =  , we have 0x y= =  and substituting in Eqs. (24) 

and (25), we get 

2 2 4 2 2

1 3 1 12m m g   
 

− = 
 

                                                                                         (28) 

2 2 2 2

3 1 32m m g  − =                                                                                                (29) 

Again, From the initial condition and at 0t =  , we have 
0 0cos , sin. .x v y v = =   

and substituting in Eqs. (26) and (27), we get 

2 2 4 2

1 0 1 02 sin 2 ( 0) cosm g v m g v   − =− −      

2 2
2 2 1 1

1 1 1 2 2

sin
sin cos tan

cos
m g

m g m g

 
     


= → = =  

2

1
1 2

tan
m g


 =                                                                                                        (30) 

2 2 2

0 32 sin 2 0m g v m g 
 

− = + 
 

      

0
3 sin

v

g
 =−                                                                                                          (31) 

Substituting (30) into (28), we get 

2
2

2 2 4 2 1
1 3 1 2

2 tanm m g
m g


   

  
− =   

   
 

( ) ( )( )2 22 2 2

3 1 1 3 12 tan 2 1 tanm m      
 

− = → = + 
 

  

( )
22 2

3 1 12 tanm   − =            
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( )( )22

3 12 1 tanm  = +                                                                                            (32) 

Substituting from (31) into (29), we get 

2

2 2 2 0
3 12 sin

v
m m g

g
  

 
− = − 

 
 

( )
22 2

3 1 02 sinm m v  − =                                                                                       (33) 

From Eq. (33) into Eq. (32), we get 

( ) ( )
( )

( )

( )
( )

2 22 2
2 22 0 02 2 2 2 2

0 1 1 1 02 2

sin sin
sin tan cos

tan sin

cos

m v m v
m v m v

 
     

 



= → = → = =
 
 
 

 

1 0 cosmv =                                                                                                             (34) 

Substituting (34) into (33), we get 

( )
2

0

1 2

cos
tan

mv

m g


 =                                    

 

2

0
1 sin cos

v

g
  =                                                                                                      (35) 

Substituting (34) into (33), we get 

( ) ( ) ( ) ( )
2 2 2 22 2 2 2 2

3 1 0 3 0 0 3 02 sin 2 cos sin 2 sin cosm m v m mv m v m m v        − = → − = → = +  

2

0
3

2

mv
 =                                                                                                                       (36) 

Subtracting Eq. (25) from Eq. (24), we get 
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24 2 2
2 21

32

1

( )m g x
m g t






−  
= + 

 
 

2

2 2 2

1 1 3( )m x t  
 

− = + 
 

 

1 1 3( )m x t  
 

− = + 
 

                                                                                              (37) 

Substituting by  1 3 1, ,    in Eq. (36), we get 





coscossincossin

sin)cos()cossin()(

0

031

2

0

031

2

0

0
0

2

0
311

tv
g

v
x

g

v

t
g

v
vmx

g

v
mtxm

−=−









+−=−→








+=−

=+=+



 

cos0 tvx =                                                                                                                    (38) 

Substituting by  3 1 3, ,    in Eq. (25), we get 









++=−








−→








+=−








− 2

3

2

3

222

13

2

3

222

13 222 ttgmymgmtgmymgm   

( )
22

2 2 2 20 0 0
02 cos sin 2 sin

2

mv v v
m mg y mv m g t t

g g
  

       
− − = − + − +      

       

 

( ) ( )

( )

2 22 2 2

0 0 0 0

22 2 2 2

0 0 0

2 2 2 2 2 2

0 0 0

1 3 0 1 3 0

2 cos sin 2 sin

(1 cos ) 2 sin 2 sin

sin 2 sin 2 sin

v g y v v g v t g t

v g y v g v t g t

v g y v g v t g t

  

  

  

+ = + =

− − = − − +

− − = − − +

− = − +
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sin
2

1

sin22

0

2

0

22

tvgty

tvgtgyg

+−=

+−=

 

Then 

2

0
2

1
sin gttvy −=                                                                                                    (39) 

The two equations (38), (39) represent the required dimensions 

 


