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Distribution of Velocities of Gas Molecules in One

Direction (Boltzmann Distribution)

According to the model on which the
Kinetic-molecular theory is based, the
molecules of a gas are moving with a
variety of speeds and directions, I.e.,

with various velocities.




Since gases behave similarly in all directions,

- We will investigate the distribution along a particular direction, say

the x direction.
We assume that we have a sample of a gas of:
N total number of molecules .

dN probable number of molecules of velocities in the x direction
between U ,and U, + dU,

dN/N fraction of molecules of velocities between U and U, + dU, or

the probability of finding molecules between the two planes.




This Is also the

. vy, + dv,
probability of
finding
molecules with
velocity - +__ vy
components

between two
planes




*The probability is expressed also as f(u,) du, component .
For each molecule ¢ = %2 mU,?

According to the Boltzmann distribution expression,

dN

" 2 dN
— ae (1/2)mu,/de”x g et

- —(l/2)muf ' kT
= Ae du, (1)

*This constant can be evaluated by recognizing that integration of the
right side of Eq. (1) over all possible values of u,, that is, from u, = <o to
u, = +o0, must account for all the velocity points. Thus we can write

+0 y 2w
Aj‘ e (1/2)mu; / kT dux — ] (2)

-0

k = 1.380649x10723 J/K.




= so that the proportionality constant A is given by

A= : di. (3)

J""'lT e—{l.-’ 2)ymuz kT .
—o

= The value of the integral is seen from the table of integrals
to be, Vo#T/m and we obtain

m (4)
2akT

The relation between the Boltzmann constant and the universal gas

constant is given by this equation: R = N,k where R is the ideal gas
constant (sometimes called the universal gas constant) and N, is the

Avogadro constant (k is the Boltzmann constant of course).




= Finally, the equation for the distribution over the velocities

along the x direction for a sample of N molecules can be written

AN/ N M )”2 M
B i —- — X — 2 5
J ) dU . (27[RT P ( 2RT) (3)

as

‘Note that f(u,) is a velocity probability density so that the
probability of finding a molecule with velocity components
between u, and u,+ du, is given by f(u,)du,.

*Graphs of this one-dimensional distribution function can be

obtained
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Probability density F(U,) for the velocity of N,
gas in x direction at two different temperatures




Example 1

Calculate the probability density for u, of N, molecules at 300 K.
u, = 300 ms

Using equation (5)

1/2 )
. M Mug
Huy) = [ 211:RTJ eXp[ ZR;}

. 0.028 -gmol” v exp| - (0.028)-gmol™)(300ms™)?
272(8.314JK mol ) (300K) 2(8.314JK "mol ™)(300K)

— -4 -1 Exercise
8.065 x 10 s m Calculate the probability density of

N2 at 0 and 600 K.
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A The speed u of a molecule is related its component velocities by

2 .2 2 .
u-=u +u +u,

 Therefore, F(u) du is the probability of finding a molecule with a speed

between u and u + du .

1 The one-dimensional distribution can be combined to give the fraction of
the molecules that have velocity components between u, and u, +du,, u,

and u ,+ du, and u, and u, + du,.
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‘ 4 It is given analytically ;

f(uy, uy, u;) du,du,,du, = 7

N
dN 3/2
So— = (m] exp —i(uj + 1’ +zf) du_du_du.
N 2akT 2kT S .

d The probability of finding a molecule with velocity

components between u and u+ du is given by

3/2 2
F (u)d11=4m/2( £ ) exp(_mu ]du

27T 2kT
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 The probability density F(u) is

m Pl mu2
F(u) = 4nu? (27:1([) e"p( 2KT J

 The probability density at a speed of 0 is zero.

d The probability density increases with the speed up to a

maximum and then declines.
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probability density (s/m)

Maxwell-Boltzmann Molecular

Speed
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‘ Example 2
A flask contains of N, molecules at 100 K. How many molecules have a

velocity in the range 500.0-500.1 ms-17?

Suppose that we have a sample of 1 mol of N,

s i o mol.waf N,
anN _ 4,.,,,2( m ] N exp( _mu’ ]d,, Avogadrwmber
) 27kT 24T 28 T
m=_-%52 =4
6.02X1 03

(4.65x107kg)(T / kgm’s™) Jl "‘2

= 47(500ms™)? .
s )[277(1.381x10'"3JK")(100K)

S .10-26 7 T3 5 o |5 5
Erp(_(4.63.\10 kg)(500ms ™) (J / kem’s

— - - (0.1ms™)
272(1.38x1077)(JK 7 )(100 K)

dNIN,

du

=5.79x10"*sm™
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The number of molecules have velocities in the range 500.0-500.1 ms!

4 23 19
dN = (5.79x10. )(6.022x10 )(0.1) =3x10° molecules

and the percent of them is given as follows:

19
N 100=—219__ 1100=4.98x10"%

N 6.02x10

16
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The speed of the gas molecules is of three types:

* Most Probable Speed (u; )

 Mean (average) Speed (0)

* Root mean-square Speed (U,,)-




‘ Speeds of Gas Molecules

Most probable speed u,, :

It is the speed at the maximum of F(u). By Differentiating

and setting dF/du equal to zero, we find

m 3/2 I‘I'lllz
F(u) = 4nu? [m&] eXp[ 2kTJ

3/2
dF (i) _ ( m ) oM 12T 8m€+4mrz[—ﬂJ —0
du 27T kT

| (ZkT)UE (ZRT}UZ
..sz E— - —
m M




Mean speed ():

It is calculated as the average of (u) using the probability distribution F(u):

- 4]

u = .[HF (u ) du
Substituting 0

m ) ° mu -
F(u) = 4nu [anT] EXP{ 2KT J

and performing the integral we find

3/ 2 2
u= 42:{ Z J Iexp L du
2nkT kT

0

| ;_(SkTTH_{SRTTH
; m M




Root-mean square speed (U, me):

Which is defined as the square root of u?

o =1/2

o

i =@y = J'MZF (u)du

Substituting

( m )3/2ex mu-
F(u) = 4nu? | 3T Pl 2kT

and using tables again, we find

o (3kT j"z B (3RT )"2
'ms m M




From these three calculations,

()

H}J = =

2RT
5

om M
;_ SkT 1/2 B SRT 1/2
Tm aM

o (3” ]“2 B (3RT ]“2
Fimms | m | M

\_

We can see that at any temperature

/

>U.>U_p

AY




2
3

Fraction of Molecules
moving at speed v

>z
2
£

.;? = Most Probable Speed

: ::,;,,_, = Average Sp:-:ﬂ

i Ty s= Root-Mean Sognonre Spaed.._

¥ ¥ ¥ = U

vpa 2l

Velocity

L T f% EH.E: Yrrns -Jm




v Each of these speeds is proportional to (T/M)V2 .

v Each increases with temperature

v' Each decreases with molar mass. Lighter molecules therefore
move faster than heavier molecules on average, as shown In

the following table.




Various types of average speeds of gas molecules

(u?)2/m s-1 (u)/m s-1 u,/m s




Example 1

Calculate the The different types of speeds of hydrogen molecules at
0°C.

1/2 1/2

A [ 2RT J T (2)(8.314 Jk Ttmol THY(273 k) | = 150 x 103 m s-!
Pl M N (2.016 x10 kg mol 1) '

1/2

_ 1/2 - -1 -1 - '
—_ (SRT ) _ (8)(8.314 Jk ““mol ) 273 k) =169 x 103 m s-'
TM (3.146 )(2.016 x10 kg mol

10



u —(ﬂju {3(8.3 14Tk mol) 273150

ms 2 =1.84 103 S:l
M 2.06x10” kg mol’ } e
The root-mean square speed of a hydrogen molecule at 0°C
is 6620 kmh-!, but at ordinary pressures it travels only an

exceedingly short distance before colliding with another
molecule and changing direction.

Exercise

How many molecules
have a velocity exactly
equal to 500 ms1?
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collision properties
of gas molecules




I ]
{ Two gases Z,,, } [ One gas Z1{1} ]

h

{ Two gasesZ,, 1 { One gas Z,, 1




‘ Molecular Collision

Collision Frequency:

d The collision frequency is the humber of collisions of
molecules per unit time, where

» Z,g) for the collision between the molecules of two different
gases A and B.

» L for collision between identical molecules.

dlet us consider a cylinder of length | (m) containing N, and Ng
molecules of gas A and gas B, respectively. These molecules
have;

» Diameters d, and dg (m) and collision diamete

d,g = (d, + dg)/2 o
»Atomic masses m, and mg (kg), molecular masses M, and Mg
(kg) and reduced mass .




Reduced mass u
] 1 _ N, N,
u —_ + —_ 4+ —_ NA
m, m, M, M, MAMB

M, +M,

d Densities p, and pg (M), number of molecules per unit

volume or p = N/V

A Velocities u, and ug (ms-') and mean relative velocity

H— ) SRT ]IIZ
45 ﬂ@ 7 Whyf)




The distribution of relative velocities between two molecules depends
on the velocity of each one and the angle of approach:




If the velocities of A equals that of B:

a) The two molecules move towards each other

UAB :UA +U :I[
b) The two molecules move together in the same way
UAB :UA _lJ :O

c) The two molecules move with an angle of 900 (most probable
case). 5 5 , 1%
Une =+ U +Us) =[Un) +Us)]
U :UB
UAB :\/_E




Upe = U +Us) =[U.)2 +(Us)1?
0=
Upe =1 ORT ]%

70.Hng




=)
o
S

= —_
Volume = d as U as

- hard spherical molecules collide with each other if their
centers come within a distance
d,g = 2 (da+dg), the collision diameter.




d Molecules of type B are stationary.

d A molecule of type A will collide in unit time with all

molecules of type B that have their centers in a cylinder of

Volume = 7d 4 u
d A molecule of type A would undergo a
number of collisions = 7 451t 405

per unit time.

10



O Molecules of type B are actually not stationary and so the
relative speed u,g should be used in calculating the rate

of collisions z, g, of a molecule of type A with molecules of

type B. Thus,
Zpg) = 7 fw” 4B Pp (1)
1/2
or S8RT
ZA(B) = 770123(_) Pp
Tl

*  Where 2,4, Is the collision frequency of molecules of
type A with molecules of type B .

11



* The collision diameter d,g has the unit m,
« The relative mean speed (u,g) has the unitm s,

» The collision frequency has the unit s-.

12



“++ Now a molecule of type A is moving through molecules of
type A, rather than molecules of type B, Eq. (])

becomes

_ 2.
Ly = uap,

SR1T
Or Z iy =7 ( ] £, (2)
i

13



Example 1
What is the mean relative speed of H, molecules with respect

to O,molecules (or oxygen molecules with respect to hydrogen

molecules) at 298 ?

The molecular masses are:

5 -3 -1
mj = 2016 x10 .fg lel = 3.348x10 "?" kg
6.022 x10-" mol -

32.00x10 3k ] -1
- 5314x10 kg
6.022 x10~° mol ~

11 mamy . 56.448x10 0
Hoe= e = —602X.C 177 Ox (1)’ ~1.9x1.0°

1/2

- ; 381 x10 2 Ukt ¢

ulg:(mT _ 8(1.381x10 J?_”)(298!) 1824 m s
T 7(3.150 x107" kg)

mj> =

14



Note that the mean relative speed is closer to the mean speed
of molecular hydrogen (1920 ms-1) than to that of molecular

oxygen (482 ms™) .

15
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‘ Collision Density

It is the number of collisions per unit tim per unit volume.
For two gases:
To calculate the number of collisions of molecules of type 1

with molecules of type 2 per unit time per unit volume of gas

Li,=LiXA
21> = .0 705 2




For only one gas:

The number of collisions of molecules of type 1 with other

molecules of type 1 per unit time per unit volume of gas will be
reduced to

1 —
le =§p2.72'.d2.ull

The factor of 1/2 has been introduced to avoid double counting of the
collisions. (so one A molecule colliding with another A molecule is
counted as one collision regardless of their actual identities). For

collisions of A and B molecules present at number densities PA and Pg
the collision density is

Z,,=md*U,0.0

The collision density is expressed in mol m=3 st




The collision density is on interest because it sets an upper limit
on the rate with which two gas molecules can react. Actual
chemical reaction rates are usually much smaller than the

collision rates, indicating that not every collision leads to

reaction.




Collision frequencies z1(1) and collision densities z11 for four
gases are given In next Table at 25 °C. The collision densities
are expressed in mol 1. s because it is easier to think about

chemical reactions in these units.
1Pa=1N/m2=10"° bar = 7.5x102 Torr = 0.987 atm

z,,/mol L-1s Zyyfs™
Gas 10 bar 1bar |[10%bar |1 bar
- 2.85x104 | 2.8x10° |14.13x10° | 14.13x10°
o, 1.26x104 1.26x10% 6.24x10° | 6.24x10?
co, 1.58x104 1.58x10% 8.81x10° | 8.81x10°
CH, 2.08x10¢ | 2.08x108 11.60x10° | 11.69x10°




Example 1

Calculate the collision frequency and collision density in ammonia, r=190pm, at
25°C and 100kPa. (Myy3 = 17.03 g/mol)

Note that he did not mention to ammonia concentration or volume ( there is no n
or V variables)

The collision frequency is
Z =78k Unm A
12 12

O~ on*m) ~4m)

N _nN, PN, P
ATV TV TRT KT

ﬁn—g :ﬁ(erl—g)z :472“%—5
kT)”z P

Zory =7 UnyAun, =477 4 —

KT




1/2

T
Zap =16X(100x1RR)X(1908E MY {(17.03x]6&1027)2x(1.381x12®)x29

:1u=1.66x10 kg; u:atomimassinit

ZA(A) :94%G S_l

r

The collision density Z,

Lan=Lanhn ZQZA(A)' KT
Z,,=11540°s*moln

1 P_1

2

101G pa

x949&(?3‘><(

1.38%1077. K- x(298

.




Mean Free Path

- The mean free path A is the average distance traveled

between collisions.

* |t can be computed by dividing the average distance traveled

per unit time by the collision frequency.

* For a molecule moving through like molecules.

1

k_
prtd?

_21/2




Assuming that the collision diameter d is independent to
temperature,
the temperature and pressure dependence of the mean free

path may be obtained by substituting the ideal gas law in the

form p = P/KT: P 1 KT
J2 Prd?

Thus, at constant temperature, the mean free path is inversely
proportional to the pressure.




Example 2

For oxygen at 25 °C the collision diameter is 0.361 nm.
What is the mean free path at 1.0 bar pressure, and (b) 0.1

Pa pressure?

1

=2.43x10 *m ~°

i 13 3 -3
p - N/V =PN , /RT = (1 bar)(6.022 x10 1 ) ll}_le )
) (0.083145 L bar K ~mol (298 K )

2].-'an dE

) =[(1.414)(2.43x10” m > )n(3.61x10 %m)? 1! =7.11x10®m

Why he did not use Boltzmann constant k instead of gas constant?

10



(b)

At pressure so low that the mean free path becomes
comparable with the dimensions of the containing vessel,
the flow properties of the gas become markedly different

from those at higher pressures.

11



Kinetic Molecular Theory
Part 5




TRANSPORT PHENOMENA IN GASES

Transport
Properties

Thermal
Conduction




If a gas 1s not uniform with respect to
« Composition
- temperature, and
- velocity,
transport processes occur until the gas becomes uniform.
Examples:
(1) Open a bottle of perfume at the front of a classroom:
Good smell moves from front row to rear ( Diffusion).
(2) Metal bar, one end hot and one end cold:
Heat flows from hot to cold end until temperature
becomes (Thermal Conduction)







In each case,

» Rate of flow co Rate of change of some property with

distance, a so-called gradient
» All have same mathematical form:

Flow of (per unit area, unittime) = (___x gradient__ )




(matter)  (diffusion coefficient) (concentration)

deg
Jiz -D dz

The flux of component i in the z direction due to diffusion is
proportional to the concentration gradient dci/dz, according to
Fick's law:

L]

Jiz — _D
dz




Diffusion: Fick’s Law

J;, Is the flux and

*Expressed in terms of quantity per unit area per unit time.
* J;, has the units mol m2 s,

* dc/dz has the units of mol m-

* D has units of m2 s,

* The negative sign comes from the fact that if C; increases in
the positive z direction dCi /dz is positive, but the flux is in the
negative z direction because the flow is in the direction of

lower concentrations




Determination of D for the diffusion of one gas into

another

« The sliding partition is withdrawn for a

definite interval of time.

* From the average composition of one
chamber or the other, After a time

interval, D may be calculated.

Sliding

Light
gas

partition .

Heavy




Thermal Conduction: Fourier's Law

Transport of heat is due to a gradient in temperature.

(heat) ( thermal conductivity) ( temperature)

dT
dz

a, =K,

» K is the thermal conductivity.

» g, has the units of J m-2 s and

» d+/d, has the units of K m-1,

» K; has the units of J m1s-1 K-1.

» The negative sign indicates that if d{/d, is positive, the flow
of heat is in the negative z direction, which is the direction
toward lower temperature.




Viscosity: is a measure of the resistance that a fluid offers to

an applied shearing force.

« Consider what happens to the fluid between parallel

planes

* when the top plane is moved in the y direction at a
constant speed relative to the bottom plane while
maintaining a constant distance between the planes

(coordinate z)

« The planes are considered to be very large, so that edge

effects may be ignored.

10



» The layer of fluid immediately adjacent to the moving plane

moves with the velocity of this plane.

« The layer next to the stationary plane is stationary; in

between the velocity usually changes linearly with distance,.

The velocity gradient

Rate of change of velocity with
respect to distance measured

perpendicular to the direction of flow

Is represented by
du,/ dz

The viscosity n is defined by the

equation
du

F=- dz

(6.3)

Moving plane

SoA, LA, LI
Stationary plane

-

11



* F is the force per unit area required to move one plane
relative to the other.

« The negative sigh comes from the fact that if F is in the +y

direction, the velocity u, decreases in successive layers away

from the moving plane and du,/dz is negative.

*The thermal conductivity is determined

by the hot wire method

 Determination of the rate of flow
through a tube, the torque on a disk that
Is rotated in the fluid, or other

experimental arrangement.

» The outer cylinder is rotated at a

constant velocity by an electric motor.

12



« Since IN=1kgms?, 1Pas=1kgm?s Afluid has a
viscosity of 1 Pa s if a force of 1 N is required to move a
plane of 1 m?2 at a velocity of 1 m s-1 with respect to a plane
surface a meter away and parallel with it.

« The cgs unit of viscosity is the poise, that is, 1 gs-'cm
0.1 PaS =1 poise.

13
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Calculation of Transport Coefficients

To calculate the transport coefficients
D, K;, and n

even for hard-sphere molecules, needs to consider how
the Maxwell-Boltzmann distribution is disturbed by a

gradient of concentration, temperature or velocity.




IDiffusion Coefficient

Planes constructed at
distance £ (the mean free
path) from the origin. The
concentration gradient is in
the z direction.

A S A . |

Where p, is the number density of particles in the plane at z = 0.

The density of particles at z = +A is given by the term in brackets




* Consider the diffusion of molecules in a concentration
gradient in the z direction and we are at z= 0.

* |Imagine that we construct planes parallel to the xy
plane at X = +A, where A is the mean free path.

 We choose planes at the mean free path because
molecules form more distant points will, on average,
have suffered collisions before reaching z = 0.




» Calculate the flux of particles across z = 0 due to
the molecules above (z>0) and below (z<0). The flux

across z = 0 from above is

+ pO_I_ﬁ'(d_ﬂ-J

dz

-
1
4:.|x|




Similarly, the flux across z = 0 due to the molecules below z =

Ois -
|, dp|u
7 _{pa &( dz H 4

The net flux of particles across the plane z =0 is then

= ——(u)

dv
This equation can be compared with Eq. 5.1 to obtain
kT} 1
prl”

_D:—WM (

701




* where the subscript 'a’ indicates approximate value.

» The exact theoretical expression for the diffusion coefficient

of hard spheres is:

1/2 1/2

3 (kT 1 3(RI 1

D 2 2
8 \ tm ord” 8\ M od




Example 1

Predict D, n2) of an equimolar mixture of O, and N, gases

at 1.00 atm and 09C using dy, = 0.353 nm and dy, = 0.373
nm.

N auN., NP 101.325 Pa)(6.022x 10Z mol ! e
p=N MV, N, - p= LU PYO02X 107 mol ) 591425,
vV V RT (8.314 m"PaK “mol " )(273K)

d(oz.Nz) =(0.353 nm + 0.373 nm)/2 = 0.363 nm

~3/(0.314 JK “mol 7')(273 K) N
(02.N2) — ¢ 7(32.00 x10 > kg mol )

1
X —10 2 —3 |
(3.63x10" " m)"(2.64x10" kg mol")

=1.59x107 m*s™




A similar simplified model for thermal conductivity of hard

spheres yield the approximate value

- - 1/2
KT :L Cl_l }\,(U)p = 2C11 [kT ) ?_“];12

T 3N a 3N A \mm

The exact expression for hard sphere is:

s (kT )Py
32 | un N Ad?

KT




Example 2

Calculate the thermal conductivity coefficient for water vapor at 25°C

assuming d = 0.50 nm and

C, = 25.26 JK-' mol-.

Substituting data into Eq. (4.11) gives

Kt

1/2
25 (1.381x107*TK1)(298 K)
32| n(18.02x10 kg mol™)/6.022x10%° mol™)

2526JK 'morI™
X e Y =0.027Tw K
(6.022x107"mol(5.0x10" " "m)

10



Finally, the approximate model for the viscosity of hard spheres
yields:

1
Mo = p(Wmh == —

B 3 3L mm

2(1{,1_,]]:’2 m

whereas the exact expression for hard spheres is

T

3 (kT V7 m
Ty «/2_[ ) da?
Note that this does not imply that real molecules are hard
spheres; Iin fact, we are forcing a model on the
experiment. Nevertheless, the results in Table 6.1 show
that a consistent set of molecular diameters result from

this analysis of the data.

11



Example 3

Calculate the viscosity of molecular oxygen at 273.2K and 1
bar. The molecular diameter is 0.360 nm.

Using the exact equation for hard spheres, we find:

~32.00x10 > kg mol !
6.022 x10 > mol ~!

m

= 5.314 x10 ~%% kg

_5_ﬂ[k_T]”2 m
776 tm nd?

12



16 n(5.314x10%%kg)

=1.926 x 10-5 kg m' s

5.314x107*%kg

23 11— /71 1/2
511{(1.380:{10 JK1(273.2K)

1(0.360x10~"m)?

13
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Activation Energy




Activated Complex

It I1s a state where the collided
molecules has a sufficient energy yy

to convert to products

The activated complex is a . |-ctivation
intermediate state formed during Eﬁ energy, E,

the conversion of reactants into &

products. The activated complex 2 N
is the compound with chemical £ [Reactants

composition present in the highest 5

point in the energy curve E

« Activation energy Is the difference
between the energy of the Products
activated complex and the energy
of the reactants.




If we have areversible reaction

A+B—Y —/—>C+D

:Ey "

Y Activated state

Rez;taﬁcs1 - AE — Eaf o Ear

| Products AE:/Z_ y _%_'_ EZ

|
Reaction Coordinate _
AE — EZ - EX

A/



AE — EZ - EX
Discussion
1- what Is AE

It Is the difference between the energy of the products and
the energy of the reactants and it Is the change in reaction
energy at constant pressure AH

2- what Is the meaning of the negative sign of AH

==

Exothermic reaction
3- what i1s the meaning of the negative sign of AH

E)E,

Endothermic reaction




Energy levels in an exothermic reaction

activation
BMErgYy

EMNErgy
level

reactants

energy released in
the reaction

products

progress of reaction




Energy levels in an endothermic reaction

EME gy
lewvel

activation
ENErgy

products

energy ganed Iin
thereackion

progress of reaction




Dependence of the rate of the reaction on temperature

Maxwell and Boltzmann distribution and activation energy

nurmber of
particles

¥

Most parides
have moderate
ENErgies.

/

some partides
have very high
EnErgies.

\

N\

A few partices have
VEry low energies.

Energy

Murber of molecules

Molecules with
enough energy
to react

Energy per molecule




I

Greater fraction
with enough
energy to react

Fraction of collisions, f

To> T4

Collision energy




Relation between reaction rate and temperature

Catalytic

Hydrogenation ’
‘ ‘ reactions , Enzym
reactio
@ Arrhenius | 8 @
IS plot o . IS
— Explosion —
(most
common)
Temp Temp Temp
(<B) Raeaction of Nitrogen
[<b) +—J : :
E Carbon E oxide with oxygen
b Oxidation

Temp Tem%



In 1878 Hood presented the first
experimental law between the rate constant

k and temperatureB log k
logk=A—=
F=A77
A =contant
B=constant 1/T x103
. _ dinK AU
For any reversible reaction, In 1884 Van’t Hoff = ‘
. Do dT RT
proposed a relation between the equilibrium K -equilibrincontar
constant and temperature for any reversible '_q _
reaction s AU:Changmenergy

R:gasconstant
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For the following reversible reaction

A:B<@ C+D

r

Ral‘eZkr[C] [D] Rate =k [4][B]

K IS the reaction rate constant for the forward reaction
k, is the reaction rate constant of the reverse reaction

At equilibrium the rate of the forward reaction equals the rate of
the reverse one

k4] [B]=k.[C][D]

ke _|C]|D

k ~[AlB

=K Equilibrium constant




Equation 2 can be written as follows
dinK AU
d RT

K
d'"(kr) _ AU

dT RT

dink, dink AU
dT dT RT?

AU :Eaf _Ear




From equations 3 and 4

dink, dink, E, E,
dT ~ dT RP RT

Arrhenius proposed the separation of equation 5 into two equations

dink dink, _ E,

The constant | is found to be equals zero experimentally

dik _ E,
dT RT

Arrhenius equation
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dink=~ E, 2 dT
jdlnk—j Ea dT

£, +Constal

RT

__E,
n k= RT+/nA

Ink=——-2

j dink=Ink

[ %dT= [ T‘ZdT—T_f L : —%



The last equation can be written as follows

__E,
n k= WHHA

E.
e/n k — e—R—a7_+/fA

E,
é/nk=e_/?—7' w\
k=A eXPQEa/R_D ‘ Arrhenius equation

eXpK) =€"
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Equation 7 can be written as follows

__L
Ink=—2+In AGY

E,
log k \imx . 2.3030gk=—7%+2303/0gA

1/T

Slope=-E_/2.303R
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If the reaction Is carried out at two different tepmeratures

___ & ___ &
log k; = 2.303?‘[”09%'09 K, = 2.303?1;”%

By subtraction of equation 10 from 11

_ EE 1 ., E 1
logk, —l0g¢ =5 0RrT " 230R T

ogkec_ B 1, E 1
Kk, ~ 230RT, 230RT
k, E ,1 1
109 L =530R T T)
k, E ,TL—
99, =230R\ T )
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N,O; Decomposed thermally between 237K and 338K

ZNQ(9) >4NQ(9)+Oy(9)

The slope of the relation between log k and 1/T was -5400, what is
the value of activation energy

Slope = - E_/2.303R

/5400 = /E,/2.303R
E, =5400(2303(B319

E, =1033957 J mot =10339k J mo
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