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Chapter 1

Introduction to Di�erential

Equations

The following topics are to be covered from differential equation of first order and first degree. Topics
included here are from unit-3 of the syllabus according to choice base credit system effective from
June-2010. The course code of the M-101 and title of the paper is Geometry and calculus.
Differential Equations of First Order and First Degree: Definition and method of solving of homoge-
neous differential equations, Definition and method of solving of Linear differential equations of first
order and first degree, Definition and method of solving of Bernoulli’s differential equation and Def-
inition and methods of solving of Exact differential equation. Differential Equations of First order
and Higher Degree: Differential equations of first order and first degree solvable for x, solvable for y,
solvable for p. Clairaut’s form of differential equation and Lagrange’s form of differential equations.

Definition 1.1. Differential equation is an equation which involves differentials or differential coeffi-
cients. For example,

1. d y
d x = x2 +2y.

2. r 2 d 2θ
dr 2 = a. Where a is constant.

3. L d 2q
d t 2 +R d q

d t + 1
c q = E sinωt .

Definition 1.2. A differential equation is said to be linear in dependent variable if,

1. dependent variable and all its derivatives present are in first degree.

2. dependent variable and its derivatives are not multiplies together.

3. dependent variable and its derivatives are not multiplied with itself.

1



2 CHAPTER 1. INTRODUCTION TO DIFFERENTIAL EQUATIONS

4. no transcedental functions of dependent variable and/or its derivative occur.

Remark 1.3. A differential equation which is not linear is said to be Non-linear. It is nice exercise to
find out some examples of linear and non linear differential equation. You can check from examples
given in the exercises. (do it!)

Definition 1.4. An ordinary differential equation (O. D. E.) is a differential equation which involves
only ordinary derivatives.

Definition 1.5. A partial differential equation (P. D. E) is a differential equation which involves only
partial derivatives. For example,

1. ∂U
∂t = c

(
∂2U
∂x2 + ∂2U

∂y2

)
.

2. ∂U
∂t = c2 ∂2U

∂x2 .

Definition 1.6. The order of the differential equation is defined to as the order of the highest derivative
involved in the differential equation. Also, the degree of the differential equation is defined as the
degree of the highest derivative involved in the differential equation, where all derivatives occurring
therein are free from radicals and fraction.

Examples 1.7. (1) Decide the order and degree of the differential equation given by

x2 d 2 y

d x2 +x
d y

d x
+

∫
3d x = sin x.

Solution: The given differential equation is not free from integration sign. So, to decide order of a
differential equation we have to differentiate with respect to x on both sides and make it free from
integration.

=⇒ x2 d 3 y

d x3 +3x
d 2 y

d x2 + d y

d x
+3 = cos x.

Here, order of the highest derivative involved is three. Therefore, order of differential equation is 3, and
degree of highest derivative is 1. Thus, order is 3 and degree is 1.
(2) 4

√
(y ′′)5 =

√
7+3(y ′)2

Solution: To obtain degree of differential equation we have make differential equation free from radi-
cals.

∴ ( 4
√

(y ′′)5)4 = (
√

7+3(y ′)2)4.

(y ′′)5 = (7+3(y ′)2)2.(
d 2 y

d x2

)5

=
[

7+3

(
d y

d x

)]2

Which shows that order of the given differential equation is 2 and degree is 5.
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Definition 1.8. 1. A solution or integral or primitive of a differential equation is a relation
between the variables which does not involve any derivatives and also satisfies given differen-
tial equation. For example, y = c1 cos x + c2 sin x, where c1 and c2 are arbitrary constants, is a

solution of the differential equation given by d 2 y
d x2 + y = 0.

2. A solution of a differential equation in which the number of arbitrary constants is equal to the or-
der of the differential equation is called the general solution or complete integral or complete
primitive.

3. The solution obtained from the general solution by giving particular values to the arbitrary con-
stants is called particular solution. For example, y = x4 +2 is a particular solution of the differ-

ential equation d y
d x = 4x3, where c = 2.

4. A solution which can not be obtained from a general solution is called singular solution . For

example, y = x d y
d x −2

(
d y
d x

)2
. The general solution is given by y = cx +2c2, where c is an arbitrary

constant. Also, 8y = x2 is a singular solution which can not be obtained by putting any value of
c.

Examples 1.9. (1) Find the differential equation from y = ax −a2, where a is an arbitrary constant.

Solution: Differentiating y = ax −a2 with respect to x we get d y
d x = a. Substituting we get desired differ-

ential equation y =
(

d y
d x

)
x −

(
d y
d x

)2
.

(2)Form the differential equation from y = Ae2x +Be5x ; where A and B are arbitrary constants.
Solution: Here, two arbitrary constants A and B are present, therefore to eliminate them we have to
differentiate two times.

∴
d y

d x
= 2Ae2x +5Be5x . (1.1)

again by differentiating with respect to x we get,

∴
d 2 y

d x2 = 4Ae2x +25Be5x . (1.2)

Multiply equation y = Ae2x +Be5x by −2 and adding in (4.2) we get

d y

d x
−2y = 3Be5x =⇒ Be5x = 1

3

[
d y

d x
− 2

3
y

]
. (1.3)

Now multiply (4.1) by −5 and adding in (4.2) we get, Ae2x = 5
6

d y
d x − 1

6
d 2 y
d x2 . Thus by substituting values of

constants we get
d 2 y

d x2 −7
d y

d x
+10y = 0.

Which is required differential equation.

Exercise-I

Que-1. Find the differential equation from the following equations.



1. x y = cex +be−x +x2, where b and c are arbitrary constants.

2. ax2 +by2 = 1, where a and b are arbitrary constants.

3. y = ax +bx2, where a and b are arbitrary constants.

4. r 2 = a2cos2θ, where a is an arbitrary constant.

Que-2. Find out order and degree of the following differential equations.

1. x2 d 2 y
d x2 −x( d y

d x )3 + y = cosx.

2. y ′
y = d

d x [ y ′′
y ′ ].

3. ( d y
d x )2 =

√
1+ ( d y

d x )2.

4. d 2 y
d x2 = 3 d y

d x +∫
xd x.

Que-3. Show that y = e2x is a solution of a differential equation

3x2 d 2 y

d x2 +2(1−3x2)
d y

d x
−4y = 0.

Que-4. Prove that y = 2x +5e−x is a particular solution of a differential equation

(x +1)
d 2 y

d x2 +x
d y

d x
− y = 0.

Que-5. Which curve is represented by a differential equation

2a
d 2 y

d x2 = 1?

4
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Chapter 2

Di�erential Equations of First Order

and First Degree.

In order to solve the differential equation, we need to investigate, whether the solution exists. It is not

always possible to find a real analytic solution of a given differential equation. For example,
(

d y
d x

)2 =
−5 has no solution for any real value of y . In our case we shall discuss some of the special types
of differential equations for which analytic solution exists. Only those differential equations which
belong to or can be reduced to any one of the following type can be solved by standard procedure.
These types are,

1. Differential equation in which variables are separable.

2. Homogeneous differential equations.

3. Nonhomogeneous differential equations which can be reduced to homogeneous differential
equations.

4. Linear differential equations.

5. Bernoulli’s differential equations. These are nonlinear types of differential equations which
can be reduced to linear form.

6. Exact differential equations.
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2.1 Di�erential equations in which variables are sep-

arable.

The general form of this type of equation is

M(x)d x +N (y)d y = 0, (2.1)

which can be solved by direct integration as
∫

M(x)d x+∫
N (y)d y = c, where c is an arbitrary constant.

If the differential equation is given in the form

f1(x)g1(y)d x + f2(x)g2(y)d y = 0, (2.2)

then we can reduce it in the form of equation (2.1) by rewriting as

f1(x)

f2(x)
d x + g2(y)

g1(y)
d y = 0,

provided f2(x) 6= 0, g1(y) 6= 0. Also, if the given differential equation is in the form

d y

d x
= f (ax +by + c), (2.3)

then put ax +by + c = u, to convert it in general form. Let us see following examples to understand
this method well.

Examples 2.1. 1. d y
d x = e3x−2y +x2e−2y .

Solution: The given differential equation is not in its general form. In order to solve the given
differential equation first we will convert it into general form.

d y

d x
= e−2y (e3x +x2)

=⇒ e2y d y = (e3x +x2)d x

=⇒ (e3x +x2)d x −e2y d y = 0,

which is in the general form and hence the solution can be obtained by direct integration.

=⇒
∫

(e3x +x2)d x −
∫

e2y d y = c

=⇒ e3x

3
+ x3

3
− e2y

2
= c

or 3e2y = 2(e3x +x3)+ c ′.

Which is a general solution of the given differential equation and c ′ is an arbitrary constant.
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2. Obtain particular solution of d y
d x = (4x + y +1)2, where y(0) = 1

Solution: The given differential equation is not of the form of separable variable. Hence, to con-

vert it into separable variable form we put 4x + y +1 = t and d t
d x = 4+ d y

d x =⇒ d y
d x = d t

d x −4. Put
these values in equation we get

d t

d x
−4 = t 2

∴
d t

t 2 +4
= d x.∫

d t

t 2 +4
=

∫
d x + c, where c is an arbitrary constant.

∴
1

2
tan−1 t

2
= x + c

∴
1

2
tan−1 4x + y +1

2
= x + c

Put x = 0 and y = 1 we get tan(2c) = 1 =⇒ 2c = π
4 . Thus, particular solution is given by

4x + y +1 = 2tan
(
2x + π

4

)
.

2.2 Homogeneous di�erential equations

Definition 2.2. Let E ⊂ R2. A function f : E → R is said to be homogeneous of degree n if it can be
written in the form f (x, y) = xnφ( y

x ).

Definition 2.3. A differential equation is said to be homogeneous differential equation if it is of the
form

d y

d x
= f

( y

x

)
or

d y

d x
= P (x, y)

Q(x, y)
. (2.4)

Where P (x, y) and Q(x, y) are homogeneous functions of equal degree in variables x and y.

In order to solve homogeneous differential equations we need to follow mainly three following steps.

1. Put y = v x in the given differential equation and evaluate d y
d x .

2. Substitute the values of y and d y
d x in main equation and bring the equation in the form of sepa-

rable variable.

3. Solve by the method of separable variable.

Examples 2.4. 1. Solve: (x2 + y2)d x −2x yd y = 0
Solution:

d y

d x
= x2 + y2

2x y
= (1+ y

x )
2y
x

(2.5)
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Put y = v x we get d y
d x = v +x d v

d x . Substitute these values in equation (2.5) we get,

v +x
d v

d x
= 1+ v

2v

∴ x
d v

d x
= 1+ v2 −2v2

2v

∴ x
d v

d x
= 1− v2

2v

∴
2v

1− v2 d v = 1

x
d x

Which is now in the separable variable form. So, solution can be obtain by direct integration.
Integrating both side we get,

∴
∫

2v

1− v2 d v =
∫

1

x
d x

∴− log(1− v2) = log x + logc where c is an arbitrary constant.

∴ log x + log(1− v2) = logc ′,where c ′ = c−1

∴ log(x(1− v2)) = logc ′

by taking exponential on both sides we get,

x(1− v2) = c ′,

now substitute the value of v in above equation, we get

x2 − y2 = c ′x

which is the general solution of the given differential equation.

2.3 Nonhomogeneous di�erential equations which can

be reduced to homogeneous di�erential equations.

A differential equation of the form,
d y

d x
= ax +by + c

l x +my +n
(2.6)

is not homogeneous differential equation, but by making some change we can reduce it to the case of
homogeneous differential equation.
Case-I a

l 6= b
m . In order to solve differential equation having this case, let x = x ′+h and y = y ′+k,

where h and k are constants.Also, d x = d x ′ and d y = d y ′. Then equation (2.6) reduces to

d y ′

d x ′ =
ax ′+by ′+ah +bk + c

l x ′+my ′+ lh +mk +n
(2.7)
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In this equation we select h and k by solving ah +bk + c = 0 and l h +mk +n = 0 such that equation

(2.7) will turn out to homogeneous differential equation d y ′
d x ′ = ax ′+by ′

l x ′+my ′ , where al −bm 6= 0. Which is

homogeneous in the variables x ′ and y ′. So solve it by putting y ′ = v x ′.
Case-II a

l = b
m . In this case al −bm = 0,and hence h and k will be indetermined or infinity. Hence

put a
l = b

m = t , where t is constant in equation (2.6) we get

d y

d x
= (l x +my)t + c

(l x +my)+n
. (2.8)

Now by substitute l x +my = t in equation (2.8) we can solve the given differential equation. Let us
see the following examples to understand this method well.

Examples 2.5. (1) d y
d x = y+x−2

y−x−4 . Solution: The differential equation is given by

d y

d x
= y +x −2

y −x −4
(2.9)

is not homogeneous differential equation. By comparing with (2.6) we get a = 1,b = 1, l = −1,m = 1.
Here, a

l =−1 6= b
m = 1. Hence substitute x = x ′+h and y = y ′+k in equation (2.9) we get,

d y ′

d x ′ =
y ′+x ′+ (k +h −2)

y ′−x ′+ (k −h −4)
(2.10)

To convert equation (2.10) in homogeneous differential equation we take k+h−2 = 0 and k−h−4 = 0,
by solving we get h =−1,k = 3. Hence with these values of h and k equation (2.10) reduces to,

d y ′

d x ′ =
y ′+x ′

y ′−x ′ , which is homogeneous differential equation. (2.11)

In order to solve put y ′ = v x ′ and d y
d x = v +x ′ d v

d x ′ in equation (2.11) we obtain,

v +x ′ d v

d x ′ =
v x ′+x ′

v x ′−x ′ =
v +1

v −1

∴ x ′ d v

d x ′ =
v +1

v −1
− v − 1+2v − v2

v −1

∴
v −1

1+2v − v2 d v = d x ′

x ′ , which is separable variable form

By integrating term by term we get,∫
v −1

1+2v − v2 d v =
∫

d x ′

x ′ + c, where c is an arbitrary constant.

∴−1

2

∫
2−2v

1+2v − v2d v
= log x ′+ c

∴ log

(
1+2

y ′

x ′ −
y ′2

x ′2

)
+ log x ′2 =−2c
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∴ log(x ′2 +2x ′y ′− y ′2)− log x ′2 + log x ′2 =−2c

∴ x ′2 +2x ′y ′− y ′2 = e−2c = c ′

by substituting x ′ = x+1 and y ′ = y−3, we get x2+2x y−y2−4x+8y−14 = c ′, which is general equation
of given differential equation. (2)(x − y +2)d x + (2x −2y −4)d y = 0
Solution: The differential equation is given by,

d y

d x
=− x − y +2

2(x − y)−4
(2.12)

is not homogeneous differential equation. By comparing with (2.6) we get a = −1,b = l , l = 2,m = −2.

Here, a
l =−1

2 = b
m . Therefore h and k can not be determined. Put x − y = z and 1− d y

d x = d z
d x in equation

(2.12) we get,

1− d z

d x
+ z +2

z −4
= 0

∴
d z

d x
+ 3z −2

2z −4
= 0

∴
2z −4

3z −2
d z = d x, which is separable variable form.

In order to get solution integrate the terms separately we get∫
2z −4

3z −2
d z =

∫
d x + c, where c is an arbitrary constant

∴
∫

2

3

3z −2−4

3z −2
d z =

∫
d x + c

∴
2

3

∫ (
1− 4

3z −2

)
d z = x + c

∴
2

3

[
x − y − 4

3
log[3(x − y)−2]

]
= 3x + c ′, where c ′ = 3c

∴ x +2y + 8

3
log[3(x − y)−2]+ c ′, which is a general solution.

Exercise-II

Identify type of the following differential equations and solve them.

1. 2y d y
d x = x2 + sin3x. (Ans: 3y2 = x3 −cos3x + c.)

2. 3ex tan yd x + (1−ex )sec2 yd y = 0. (Ans: tan y = c(1−ex )3.)

3. y
x

d y
d x + 2(x2+y2)−1

x2+y2+1 = 0. (Ans: 2x2 + y2 +3log(x2 + y2 −2) = c.)

4. x4 d y
d x +x3 y + cosec(x y) = 0. (Ans: cos x y + 1

2x2 = c.)
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5. y −x d y
d x = a

(
y2 + d y

d x

)
. (Ans: (x +a)(1−ay) = c y .)

6. x d y
d x = y +cos2

( y
x

)
. (Ans: tan

( y
x

)= log |cx|

7. y2 +x2 d y
d x = x y d y

d x . ( Ans: y = x log y + cx).

8. y −x d y
d x =

√
y2 −x2. ( Ans: y +

√
y2 −x2 = c.)

9. x+y+1
x−y+1 . ( Ans: tan−1 y

x+1 = log
(
c
√

(x +1)2 + y2
)
).

10. d y
d x = x+2y−3

2x+y−3 . ( Ans: (x + y −2)(x − y)−3 = c).

11. (3y +2x +4)d x − (4x +6y +5)d y = 0. ( Ans: 21x −42y +9log(14x +21y +22) = c ′).

12. (2x +9y −20)d x = (6x +2y −10)d y. ( Ans: (y −2x)2 = c(x +2y −5)).

2.4 Linear di�erential equations.

Definition 2.6. A differential equation of the form d y
d x +P y = Q, where P and Q are either constants

or functions of x is said to be linear differential equation of first order. For example, d y
d x + (sec2 x)y =

sec2 x tan x is linear differential equation of first order.

In order to solve the linear differential equation we use the method of separable variable. Linear
differential equation of first order is given by

d y

d x
+P y =Q, where P and Q are either constants or functions of x. (2.13)

First we solve d y
d x +P y = 0 by using separable variable method. For∫

d y

y
=−

∫
Pd x + c. where c is an arbitrary constant.

log y =−
∫

Pd x + c ′.

∴ y = e−
∫

Pd x e−c ′
.

∴ y = e−
∫

Pd x c.

Now differentiate on both sides with respect to x we get,

e
∫

Pd x d y

d x
+ ye

∫
Pd x P = 0.

e
∫

Pd x
(

d y

d x
+P y

)
= 0.
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∴
d

d x

(
ye

∫
Pd x

)
= e

∫
Pd x

(
d y

d x
+P y

)
= 0. (2.14)

Since e
∫

Pd x 6= 0 we multiply equation (2.13) by e
∫

Pd x on both sides we get

e
∫

Pd x
(

d y

d x
+P y

)
=Qe

∫
Pd x .

∴
d

d x
(ye

∫
Pd x ) =Qe

∫
Pd x .

By integrating on both sides we have∫
d

d x
(ye

∫
Pd x )d x =

∫
Qe

∫
Pd x d x + c.

∴ ye
∫

Pd x d x =
∫

Qe
∫

Pd x d x+c, where c is an arbitrary constant. Which is the general solution of the given differential equation.

Remark 2.7. Here we can solve the equation by multiplying the given differential equation by e
∫

Pd x

and hence we call e
∫

Pd x an integrating factor denoted by I. F then here I .F = ∫
ePd x . Therefore the

general formula for finding the solution of linear differential equation is given by

y(I .F.) =
∫

Q(I .F.)d x + c.

Examples 2.8. (1) Solve: (x +1) d y
d x +2y = 1.

Solution: To convert the given differential equation in general form of the linear differential equation
we divide both side by (x +1).

∴
d y

d x
+ 2

x +1
y = 1

x +1
.

Compare this with equation (2.13) we get P = 2
x+1 and Q = 1

x+1 .

∴ e
∫

Pd x = e
∫ 2

x+1 d x = e2log(x+1) = (x +1)2.

Now we know the general formula for finding the solution of differential equation is

ye
∫

Pd x =
∫

Qe
∫

Pd x d x.

By substitutes values we get

y(x +1)2 =
∫

1

1+x
(1+x)2d x + c.

y(x +1)2 =
∫

(x +1)d x + c = x2

2
+x + c.

y(x +1)2 = x2

2
+x + c. Which is a general solution.

(2) Solve: (1+ y2)d x = (tan−1 y −x)d y.
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In the given differential equation the term containing x is 1 with degree 1. Therefore the equation can
be converted to a differential equation which is linear in x given by d x

d y +P x =Q.

∴
d x

d y
+ 1

1+ y2 x = tan−1 y

1+ y2

Comparing this equation with general form we get, P = 1
1+y2 and Q = tan−1 y

1+y2 .

∴ I .F = e
∫

Pd y = e
∫ 1

1+y2 d y = etan−1 y .

Now put this value in general formula given by xe
∫

Pd y = ∫
Qe

∫
Pd y d y we get

xetan−1 y =
∫

tan−1 y

1+ y2 etan−1 y d y + c

where c is an arbitrary constant. Now for right hand side integration we take tan−1 y = t , d y
1+y2 = d t we

get

∴ xetan−1 y =
∫

te t d t + c.

By integrating by parts we get

xetan−1 y = te t −
∫

1e t d t + c.

∴ xetan−1 y = (tan−1 y −1)etan−1 y + c

which is a general solution.

2.5 Bernoulli's di�erential equations.

Definition 2.9. A differential equation of the form d y
d x +P y = Q yn ,n ∈ R \ {0} is said to be Bernoulli’s

differential equation

In order to solve Bernoulli’s differential equation we will use the method of solving linear differential
equation. Bernoulli’s differential equation is given by

d y

d x
+P y =Q yn ,n ∈R\ {0}. (2.15)

Divide both sides by yn we get y−n d y
d x + y1−nP =Q. Now multiply by (1−n) both sides we get

(1−n)y−n d y

d x
+ (1−n)y1−nP = (1−n)Q. (2.16)

Now put v = y (1−n) and d v
d x = (1−n)y−n d y

d x in equation (2.16) we get

d v

d x
+ (1−n)P v = (1−n)Q (2.17)
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Which is linear in variable v and can be solved by method of linear differential equation. Hence
substitute

∴ I .F. = e
∫

Pd x = e
∫

(1−n)Pd x

in equation ve
∫

Pd x = ∫
Qe

∫
Pd x + c

∴ ve
∫

(1−n)Pd x =
∫

(1−n)Qe
∫

(1−n)Pd x d x + c

∴ y1−ne
∫

(1−n)Pd x =
∫

(1−n)Qe
∫

(1−n)Pd x d x + c.

where c is an arbitrary constant . Which is a general solution.

Examples 2.10. (1)Solve: x d y
d x + y = x3 y6

Solution: The given differential equation is not linear in x also not linear y. To convert it into Bernoulli’s
form we divide the equation by x y6 we get

y−6 d y

d x
+ y−5 1

x
= x2. (2.18)

∴ put y−5 = v and −5y−6 d y
d x = d v

d x in equation (2.18) we get d v
d x − 5

x v =−5x2 which is linear in v. Hence
comparing with general form of linear differential equation we get P =− 5

x and Q =−5x2. Now

I .F. = e
∫

Pd x = e
∫ −5

x d x = x−5.

Now formula for solution is given by

ve
∫

Pd x =
∫

Qe
∫

Pd x d x + c

where c is an arbitrary constant.

∴ y−5x−5 =
∫

−5x2x−5d x + c

∴ y−5x−5 = 5

2
x−2 + c,where c is an arbitrary constant. Which is a general solution.

(2) Solve: x d y
d x − y = y2 log x.

Solution: To convert this equation in form of Bernoulli’s differential equation we divide both sides by x
we get

d y

d x
− 1

x
y = log x

x
y2.

Now comparing with the general form of Bernoulli’s differential equation d y
d x +P y = Q yn , we get P =

− 1
x ;Q = log x

x with n = 2. Therefore the solution is given by

y1−ne
∫

(1−n)Pd x =
∫

(1−n)Qe
∫

(1−n)Pd x + c.
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∴ y−1x =
∫

−1
log x

x
xd x + c.

∴−
∫

log xd x + c =⇒ −[log xx −
∫

1

x
xd x]+ c.

∴ x = y(c +x −x log x). Which is a general solution of the given differential equation.

Remark 2.11. The general form of Bernoulli’s differential equation d y
d x +P y =Q yn ; n ∈ R \ {0} is given

by

f ′(y)
d y

d x
+ f (y)P =Q.

In order to solve this we put u = f (y) we get du
d x = f ′(y) d y

d x in general form we get du
d x +Pu =Q, which is

linear differential equation. Let us see the following examples to understand.

Examples 2.12. (1) Solve: sin y d y
d x +x cos y = x.

Solution: Here u = cos y and du
d x = −sin y d y

d x . Substitute these values in given differential equation we
get

du

d x
−xu =−x.

Which is linear differential equation in variable v. Therefore solution is given by

u(I .F.) =
∫

Q(I .F.)d x + c.

ue
−x2

2 =
∫

(−x)e
−x2

2 d x + c.

cos y = 1

2
+ ce

x2

2 . Which is a general solution.

(2) Solve: d y
d x + y

x log y = y
x (log y)2.

Solution: Divide both sides by y we get

1

y

d y

d x
+ 1

x
log y = 1

x
(log y)2.

Now put u = log y, we get 1
y

d y
d x = du

d x . Substitute these values in above equation we get

du

d x
+ u

x
= u2

x
=⇒ 1

u2

du

d x
+ 1

x

1

u
= 1

x

. Which is in the form of Bernoulli’s differential equation. By putting 1
u = t and solving it we get

(log y)−1 = 1+ cx which is general solution of given differential equation.

Exercise-III

Identify type of the following differential equations and solve them.
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1. d y
d x + y cos x = sin x cos x (Ans: y = sin x + ce−sin x −1.)

2. d y
d x +2x y = 2x, also y = 3 when x = 0 obtain a particular solution. (Ans: y = 1+ ce−x2

and P.S.

isy = 1+2e−x2
.)

3. d y
d x + y tan x = sec x. (Ans: y = sin x + c cos x.)

4. cos2 x d y
d x + y = tan x. (Ans: y = tan x −1+ ce− tan x .)

5. (1+x2)d y = (tan−1 x − y)d x. (Ans: y = tan−1 x −1+ ce− tan−1 x .)

6. x d y
d x +2y = x2 log x. (Ans: y = x2

4 log x − x2

16 + cx−2.)

7. d y
d x + y cot x = 5ecos x . (Ans: y sin x =−5ecos x+c .)

8. d y
d x +2y tan x = sin x,also obtain particular solution with y = 0 when x = π

3 . (Ans: y sec2 x =
sec x + c; P.S = y sec2 x = sec x −2)

9. (x +2y3) d y
d x = y . (Ans: x = y3 + c y .)

10. x log x d y
d x + y = 2log x. (Ans: y log x = (log x)2 + c.)

11. d y
d x + y tan x = y3 sec x. (Ans: cos2 x = y2(c +2sin x))

12. x y(1+x y2) d y
d x = 1. (Ans: 1

x = (2− y2)+ ce
−y2

2 .)

13. d y
d x + y tan x = cos x

y . (Ans: y2 = cos2 x
[
c + logtan

( x
4 + x

2

)]
.)

14. sec2 y d y
d x +x tan y = x3. (Ans: tan y = x3 −3x2 +6x −6+ ce−x .)

15. (x3 y3 +x y)d x = d y . (Ans: y−1 = 2−x2 + ce
−x2

2 .)

16. d y
d x + y cos x = y3 sin2x. (Ans: y−2 = 2sin x +1+ ce2sin x .)

17. x d y
d x = y −p

y . (Ans: 4c2x = (y −1− c2x)2.)

18. x3 d y
d x −x2 y + y4 = 0. (Ans: y3(3x + c) = x3.)

19. d y
d x + y log y = x yex . (Ans: x log y = (x −1)ex + c.)
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2.6 Exact di�erential equations.

Definition 2.13. A differential equation M(x, y)d x +N (x, y)d y = 0 is said to be exact if there exists a
function f (x, y) such that d [ f (x, y)] = Md x +N d y. That is,

∂ f

∂x
d x + ∂ f

∂y
d y = Md x +N d y.

In other words if a differential equation can be obtain by direct differentiation of its solution, then we
call it an exact differential equation.

Necessary and Sufficient Condition for differential equation M(x, y)d x +N (x, y)d y = 0 to be exact:

Theorem 2.14. The necessary and sufficient condition for the differential equation M(x, y)d x+N (x, y)d y =
0 to be exact is

∂M

∂y
= ∂N

∂x
.

Where ∂M
∂y and ∂N

∂x denotes the partial derivatives of M and N with respect to y and x respectively.

In order to solve an differential equation of the type M(x, y)d x +N (x, y)d y = 0, first check the condi-
tion of exactness, ∂M

∂y = ∂N
∂x . If the condition satisfied, then the given differential equation is exact and

solution is given by ∫
y constant

Md x +
∫ (

Terms in N which are independent of x
)

d y = c.

Where c is an arbitrary constant.

Examples 2.15. (1)Solve: (x2 −ay)d x + (y2 −ax)d y = 0.
Solution: Here M(x, y) = x2 −ay and N (x, y) = y2 −ax

∴
∂M

∂y
=−a and

∂N

∂x
=−a.

Therefore the given differential equation is an exact differential equation. The solution is given by∫
y constant

Md x +
∫ (

Terms in N which are independent of x
)

d y = c.

∴
∫

y constant

(x2 −ay)d x +
∫

y2d y = c

∴
x3

3
−ay x + y3

3
= c.

x3 + y3 −3ax y = 3c. Which is a general solution.
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(2) Solve: d y
d x + y cos x+sin y+y

sin x+x cos y+x = 0.
Solution: We write this equation in the form M(x, y)d x +N (x, y)d y = 0, we get (y cos x +sin y + y)d x +
(sin x +x cos y +x)d y = 0. and also M(x, y) = y cos x + sin y + y, N (x, y) = sin x +x cos y +x.

∴
∂M

∂y
= cos x +cos y +1 = ∂N

∂x
.

Therefore the given differential equation is an exact differential equation. The solution is given by∫
y constant

Md x +
∫ (

Terms in N which are independent of x
)

d y = c.

∴
∫

y constant

(y cos x + sin y + y)d x +
∫

0d x = c.

∴ y sin x +x sin y + y x = c. Which is a general solution .

Remark 2.16. If condition ∂M
∂y 6= ∂N

∂x , then the given differential equation is not exact. In this case, if
there exist some function f (x, y) of two variables such that

f (x, y)[M(x, y)d x +N (x, y)d y = 0]

become exact, then f (x, y) is called an integrating factor denoted by I .F. For example, the differential

equation x d y
d x +2y +3x = 0 is not exact, but by multiplying with x we getx2 d y

d x +2y x +3x2 = 0 which is
an exact differential equation. Thus, here integrating factor is x.

Rules for Integrating factor for M(x, y)d x +N (x, y)d y = 0:

1. If M(x, y)d x + N (x, y)d y = 0 is homogeneous differential equation with M x + N y 6= 0, then
integrating factor will be 1

M x+N y .

2. If
∂M
∂y − ∂N

∂x

N is only function of x say f (x), then e
∫

f (x)d x will be an integrating factor.

3. If
∂M
∂y − ∂N

∂x

M is only function of y say g (y), then e
∫

g (y)d y will be an integrating factor.

4. If given differential equation is of the form f1(x, y)yd x+ f2(x, y)xd y = 0, then integrating factor
will be 1

M x−N y , where M x −N y 6= 0.

Examples 2.17. (1) Solve:(x2 + y2 +2x)d x +2yd y = 0.
Solution: Comparing the given differential equation with M(x, y)d x +N (x, y)d y = 0, we get M(x, y) =
x2 + y2 + 2x and N (x, y) = 2y. Here ∂M

∂y 6= ∂N
∂x , therefore the given differential equation is not exact.

Notice that,
∂M
∂y − ∂N

∂x

N = 1 which is only function of x say f (x). Hence I .F. = e
∫

f (x)d x = ex .

∴ I .F [(x2 + y2 +2x)d x +2yd y = 0] which is now reduced to an exact differential equation.
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Now, ex [(x2 + y2 +2x)d x +2yd y] = d((x2 + y2)ex ) = 0
Thus, the solution is

∫
ex [(x2 + y2 +2x)d x +2yd y] = ∫

d((x2 + y2)ex ) = c, where c is an arbitrary con-
stant. ∴ (x2 + y2)ex = c is a general solution.
(2) Solve: (x y sin(x y)+cos(x y))yd x + (x y sin(x y)−cos(x y))xd y = 0.
Solution: Comparing the given differential equation with M(x, y)d x +N (x, y)d y = 0, we get M(x, y) =
(x y sin(x y)+cos(x y))y and N (x, y) = (x y sin(x y)−cos(x y))x. Here ∂M

∂y = x2 y2 cos(x y)+ y x sin(x y)−
y x sin(x y)+cos(x y) 6= x2 y2 cos(x y)+3y x sin(x y)−cos(x y) = ∂N

∂x , therefore the given differential equa-
tion is not exact. Notice that, it is of the form f1(x, y)yd x + f2(x, y)xd y = 0, therefore integrating factor
will be 1

M x−N y = 1
2x y cos(x y) , where M x −N y 6= 0.

∴ I .F.[M(x, y)d x +N (x, y)d y] = 1

2x y cos(x y)
[(x y sin(x y)+cos(x y))yd x + (x y sin(x y)−cos(x y))xd y]

is now reduced to exact differential equation. Thus, solution is given by,∫
y constant

y

2
tan(x y)+ 1

2x
d x −

∫
1

2y
d y = logc,

where c is an arbitrary constant.

∴
y

2

logsec(x y)

y
+ 1

2
log x − 1

2
log y = logc.

∴ logsec(x y)+ log
x

y
= 2logc

x = c ′y cos(x y), which is a general solution.

(3)Solve: x2 yd x − (x3 + y3)d y = 0.
Solution: Comparing the given differential equation with M(x, y)d x +N (x, y)d y = 0, we get M(x, y) =
x2 y and N (x, y) = −(x3 + y3). Here ∂M

∂y = x2 6= −3x2 = ∂N
∂x , therefore the given differential equation is

not exact. Notice that given differential equation is homogeneous differential equation. Hence, I .F =
1

M x+N y = −1
y4 .

∴ I .F.[M(x, y)d x +N (x, y)d y] = −1

y4 [x2 yd x − (x3 + y3)d y]

is now reduced to exact differential equation. The solution is given by∫
y constant

−x2

y
d x +

∫
1

y
d y = logc,

where c is an arbitrary constant.

∴
−x3

3y3 + log y = logc.

∴ log y = logc + −x3

3y3

∴ y = ce
x3

3y3 , which is a general solution.



Exercise-IV

1. Check the exactness of the following differential equations and solve it.

1. (x4 −2x y2 + y4)d x − (2x2 y −4x y3 + sin y)d y . (Ans: x5 −5x2 y2 +5y4x +5cos y = c.)

2. (sin x cos y +ex )d x + (cos(x y)x2 +e y )d y = 0. (Ans: ex −cos x cos y + tan y = c.)

3. (x y cos(x y)+ sin(x y))d x + (cos x sin y + sec2 y)d y = 0. (Ans: x sin(x y)+e y = c.)

4. (2x y + y +− tan y)d x + (x2 −x tan2 y + sec2 y)d y = 0. (Ans: x2 y +x y −x tan y + tan y = c.)

5. (y2ex y2 +4x3)d x + (2x yex y2 −3y2)d y = 0. (Ans: ex y2 +x4 − y3 = c.)

6. (x2 + y2 −a2)xd x + (x2 − y2 −b2)yd y = 0. (Ans: x4 +2x2 y2 − y4 −2a2x2 −2b2 y2 = c.)

7. y sin2xd x = (1+ y2 +cos2 x)d y . (Ans: 3y cos2x +6y +2y3 = c.)

8. 2x
y3 d x + y2−3x2

y4 d y = 0. (Ans: x2 − y2 = c y3.)

9.
[

y
(
1+ 1

x

)+cos y
]

d x + (x + log x −x sin y)d y . (Ans: y(x + log x)+x cos y = c.)

10. (sin x sin y + sec2 x)d x + (tan2 y −cos x cos y)d y = 0. (Ans: tan x −cos x sin y + tan y − y = c.)

2. Solve the following differential equations using integrating factor.

1. (x y sin(x y)+cos(x y))yd x + (x y sin(x y)−cos(x y))xd y = 0. (Ans: x = c y cos x y .)

2. x2 yd x − (x3 + y3)d y = 0. (Ans: y = ce
x3

3y3 .)

3. (y + y2 − y3)d x − (x +x y2 − y)d y = 0. (Ans: x +x y + y log y −x y2 = c y .)

4. yd x + (y −x)d y = 0. (Ans: ye
x
y = c.)

5. (x2 y −2x y2)d x + (3x2 y −x3)d y = 0. (Ans: x −2y log x +3y log y = c y .)

20
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Index 3

Di�erential Equation of First order

and Higher degree.

The general form of differential equation of first order and higher degree is

(
d y

d x

)n

+P1

(
d y

d x

)n−1

+P2

(
d y

d x

)n−2

+ . . .+Pn−1
d y

d x
+Pn = 0.

Where each Pi is a function of x and y . If d y
d x = p, then the general form reduces to

pn +P1pn−1 +P2pn−2 + . . .+Pn−1p +Pn = 0.

Hence it also can be written as F (x, y, p) = 0. In this chapter we study following methods of solving
differential equation of first order and higher degree.
Method of solving differential equation of the form F (x, y, p) = 0.

1. Differential equations which are solvable for p.

2. Differential equations which are solvable for x.

3. Differential equations which are solvable for y .

4. Clairaut’s differential equations.

5. Lagrange’s differential equations.
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3.1 Di�erential equations which are solvable for p.

Suppose we can write the differential equation F (x, y, p) = 0 of degree n in the form

(p − f1(x, y))(p − f2(x, y))(p − f3(x, y)) · · · (p − fn(x, y)) = 0. (3.1)

Now comparing each factor with zero we get p− fi (x, y) = 0, where i = 1,2, . . . ,n. Which is linear differ-
ential equation. Suppose solution of p − fi (x, y) = 0 is given by Fi (x, y,ci ) = 0. Where ci is an arbitrary
constant. Instead of taking different ci ’s in the general solution of p − fi (x, y) = 0 if we take only one c
in all, then it makes no difference in general solution. Therefore general solution p− fi (x, y) = 0 will be
Fi (x, y,c) = 0. Then general solution of equation (3.1) is given by F1(x, y,c)F2(x, y,c) · · ·Fn(x, y,c) = 0.
Thus, differential equation of n degree and first order having linear factor p − fi (x, y) = 0 are known
as solvable for p.

Examples 3.1. (1)Solve: x y p3 + (x2 −2y2)p2 −2x y p = 0
Solution: The given differential equation is of degree 3 and therefore it has three linear factor.

p[x y p2 + (x2 −2y2)p −2x y] = 0.

∴ p[x y p2 +x2p −2y2p −2x y] = 0.

∴ p(xp −2y)(y p +x) = 0.

Comparing these three linear factor with zero we get

1. p = 0 =⇒ y − c = 0.

2. xp −2y = 0 =⇒ d y
y = 2 d x

x =⇒ y = cx2.

3. y p +x = 0 =⇒ yd y +xd x = 0 =⇒ x2 + y2 −2c = 0.

Therefore, the general solution is given by multiplying these three solutions of linear factors of given
equation. ∴ (y − c)(y − cx2)(x2 + y2 −2c) = 0. Which is a general solution.

(2)Solve: d y
d x − d x

d y = x
y − y

x .

Solution: put p = d y
d x we get p − 1

p = x
y − y

x .

∴ p2 +p

(
y

x
− x

y

)
−1 = 0.

∴
(
p + y

x

)(
p − x

y

)
= 0.

Now comparing the linear factors with zero we get

1. d y
d x + y

x = 0 =⇒ xd y + yd x = 0. =⇒ d(x y) = 0 =⇒ x y = c

2. d y
d x − y

x = 0 =⇒ xd y − yd x = 0. =⇒ x2 − y2 = c
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Thus, the general solution can be obtained by multiplying the general solutions of the linear factors of
given differential equation.

(x y − c)(x2 − y2 − c) = 0.

Which is a general solution.

Exercise-V

Solve the following differential equations.

1. p2 − (x +3y)p +2y(x + y) = 0. (Ans. (y − ce−2x )(x + y −1− cex ) = 0.)

2. p2 −7p +10. (Ans. (y −5x − c)(y −2x − c) = 0.)

3. p(p + y) = x(x + y). (Ans. (2y −x2 + c)(y +x + ce−x −1) = 0.)

4. y p2 + (x − y)p −x. (Ans. (x − y + c)(x2 + y2 + c) = 0.)

5. p3 +2xp2 − y2p2 −2x y2p = 0. (Ans. (y − c)(y +x2 − c)(x y + c y +1) = 0.)

6. p2 +2py cot x − y2 = 0. (Ans. y(1±cos x) = c.)

7. x2p2 +x y p −6y2 = 0. (Ans. (y − cx2)(x3 y − c) = 0.)

8. y2p2 −x2 = 0. (Ans. (x2 + y2 + c)(x2 − y2 + c) = 0.)

9. p2 +2p cos2x − sin2 x = 0. (Ans. (2y +2x + sin2x + c) = 0.)

3.2 Di�erential equations which are solvable for y.

If the differential equation of the form F (x, y, p) = 0 can be written as y = f (x, p) = 0, then it is said to
be solvable for y . In order to solve these types of differential equation we differentiate with respect to
x we get

d y

d x
= p = ∂ f

∂x
+ ∂ f

∂p

d p

d x
= F

(
x, p,

d p

d x

)
. (3.2)

Which is in variable p and x. Hence its solution is given by g (x, p,c) = 0. By eliminate p from equation
(3.2) and g (x, p,c) we get function φ(x, y,c) which will be the general solution of the given differential
equation. If it is not possible to eliminate p, then general solution can be obtained by taking x =
F1(p,c) and y = F2(p,c). Where c is an arbitrary constant. Let us see following examples to understand
this method.

Examples 3.2. (1).Solve: xp2 −2y p +ax = 0
Solution: Here, y = 1

2 xp + 1
2

ax
p ; by differentiating with respect to x we get

d y

d x
= 1

2
p + 1

2
x

d p

d x
+ a

2p
− ax

2p2

d p

d x
.
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∴ p = 1

2
p +

(
1

2
x − ax

p2

)
d p

d x
+ 1

2

a

p
.

p =
(

x − ax

p2

)
d p

d x
+ a

p
=⇒ p3 −p2x

d p

d x
+ax

d p

d x
−ap = 0.

∴ (p3 −a)

(
p −x

d p

d x

)
= 0.

∴ p −x
d p

d x
= 0 or p3 −a = 0.

∴
d p

p
= d x

x
=⇒ log p = log x + logc.

∴ p = cx.

Now, substitute p = cx in y = 1
2 xp + 1

2
ax
p we get, y = 1

2 cx2 + 1
2

a
c . Which is a general solution.

(2) xp − y +x
3
2 = 0.

Solution:The given equation can be express in the form y = f (x, p). Therefore it is solvable for y. y =
xp +x

3
2 . Differentiate with respect to x we get,

d y

d x
= p +x

d p

d x
+ 3

2
x

1
2 .

∴ p = p +x
d p

d x
+ 3

2
x

1
2 =⇒ d p

d x
+ 3p

x
= 0.

∴
∫

d p + 3

2

∫
d xp

x
= c =⇒ p +3

p
x = c.

∴ p = c −3
p

x.

Now to eliminate p, substitute its value in equation y = xp +x
3
2 we get,

y = cx −2x
3
2 . Which is general solution.

(3) Solve: x +2(xp − y)+p2 = 0.
Solution: The given equation can be express in the form y = f (x, p). Therefore it is solvable for y.
y = 1

2 x +xp + 1
2 p2. Differentiate with respect to x we get,

d y

d x
= p = 1

2
+p +x

d p

d x
+p

d p

d x
.

∴ (x +p)
d p

d x
+ 1

2
= 0.

Now put x +p = u we get 1+ d p
d x = du

d x .

∴ u

(
du

d x
−1

)
+ 1

2
= 0.
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∴
du

d x
= 2u −1

2u
=⇒ 2u

2u −1
du = d x.

∴
∫ (

1+ 1

2u −1

)
+

∫
d x + c.

∴ u + 1

2
log(2u −1) = x + c.

∴ x +p + 1

2
log(2x +2p −1) = x + c.

∴ 2p + 1

2
log(2x +2p −1) = c.

∴ 2x +2p −1 = e2p−c .

∴ x = 1

2
e2p−c +1−p.

Here we can not eliminate p from above equation. Hence, the general solution can be obtained from
y = 1

2 x +xp + 1
2 p2 and x = 1

2 e2p−c +1−p.

3.3 Di�erential equations which are solvable for x.

If the differential equation of the form F (x, y, p) = 0 can be written as x = f (y, p) = 0, then it is said to
be solvable for x . In order to solve these types of differential equation we differentiate with respect to
y we get

d x

d y
= p = ∂ f

∂y
+ ∂ f

∂p

d p

d y
= F

(
x, p,

d p

d y

)
. (3.3)

Which is in variable p and y . Hence its solution is given by g (y, p,c) = 0. By eliminate p from equation
(3.3) and g (y, p,c) we get function φ(x, y,c) which will be the general solution of the given differential
equation. If it is not possible to eliminate p, then general solution can be obtained by taking x =
F1(p,c) and y = F2(p,c). Where c is an arbitrary constant. Let us see following examples to understand
this method.

Examples 3.3. (1)Solve: y2p2 −3xp + y = 0.

Solution: The given differential equation is of the form x = f (y, p), where f (y, p) = 1
3

(
y
p + y2p

)
. Now

differentiate with respect to y we get

∴ 3
d x

d y
= 3

1

p
= 1

p
− y

p2

d p

d y
+2y p + y2 d p

d y
.

∴ 2y p − 2

p
+

(
y2 − y

p2

)
d p

d y
= 0.

∴ 2p(y p2 −1)+ y(y p2 −1)
d p

d y
= 0.

∴ (y p2 −1)

(
2p + y

d p

d y

)
= 0.
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We ignore y p2 −1 = 0 we get and consider 2p + y d p
d y = 0.

∴
d p

p
+2

d y

y
= 0.

∴ log p +2log y = logc.

∴ py2 = c =⇒ p = c

y2 .

Hence, substitute value of p we get y3 − 2cx + c2 = 0. Which is a general solution. (2)Solve:x = p + 1
p .

Solution: It is easy too see that this differential equation is solvable for x. By differentiating with respect
to y we get

∴
d x

d y
= 1

p
= d p

d y
− 1

p2

d p

d y
.

∴
1

p
=

(
1− 1

p2

)
d p

d y
=⇒

(
p2 −1

p

)
d p = d y.

∴
∫ (

p − 1

p

)
d p =

∫
d y + c.

∴ y = p2

2
− log p + c.

Where c is an arbitrary constant. Here, it is difficult to eliminate p. Therefore, general solution can be

obtained by taking x = p + 1
p ; y = p2

2 − log p + c.

Exercise-VI

1. y = (1+p)x +p2. (Ans:x =−2p +2+ ce−p ; y = 2−p2 + c(1+p)e−p .)

2. xp − y +p
x. (Ans:y = cx +2

p
x.)

3. y = 2p +3p2. (Ans:x = 2p +3p2; y = 2log p +3p + c.)

4. y +px = p2x4. (Ans:x y = c2x − c.)

5. y2p2 −3xp + y = 0. (Ans:y3 −3cx + c2 = 0.)

6. y = 2px −p2. (Ans:x = 2
3 p + cp−2; y = 1

3 p2 + 2c
p .)

7. y2 +p2 = 0. (Ans:y =±sin(x + c).)

8. p2 y +2px = y . (Ans:y2 = 2cx + c2.)

9. y −2px = tan−1 p. (Ans:2
p

cx + tan−1 c.)

10. xp2 − y p − y = 0. (Ans:c(1+p)ep ; y = cp2cp .)

11. y = x +a tan−1 p. (Ans:x + c = a
2

[
log(p −1)− 1

2 log(1+p2)− tan−1 p
]

; y = x +a tan−1 p.)
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12. x2 = a2(1+p2). (Ans:x = a
√

1+p2; y = a
2

[
p

√
1+p2 − log(p +

√
p +

√
p2 +1)

]
+ c.)

13. p2 = (p −1)y . (Ans:x = log(p −1)+ 1
p−1 + c; y = p2

p−1 .)

14. x = p
1+p2 + tan−1 p. (Ans:x = x = p

1+p2 + tan−1 p; y = c − 1
1+p .)

15. p2 −4x y p +8p2 = 0. (Ans:c(c −4x)2 = 64y .)

3.4 Clairaut's di�erential equations.

Definition 3.4. A differential equation of the form y = px + f (p) is known as Clairaut’s differential
equation.

It is easy to see that Clairaut’s differential equation y = px + f (p) is solvable for y . Hence, in order to
solve we differentiate with respect to x on both sides we get,

d y

d x
= p = p +x

d p

d x
+ f ′(p)

d p

d x
.

=⇒ ( f ′(p)+x)
d p

d x
= 0.

=⇒ d p

d x
= 0 or x + f ′(p) = 0.

By taking the case d p
d x = 0 we get p = d y

d x = c. Where c is an arbitrary constant. Thus, by eliminating
p from Clairaut’s equation we have the family of straight lines given by y = cx + f (c), as the general
solution of Clairaut’s differential equation. The later case x + f ′(p) = 0 defines only one solution y(x)
, so-called singular solution, whose graph is the envelope of the graphs of the general solutions. The
singular solution is usually represented using parametric notation, as (x(p), y(p)), where p represents
d y
d x .

Examples 3.5. (1) Solve: x2(y −px) = y p2.
Solution: The given differential equation is not Clairaut’s differential equation, but by taking x2 = u
and y2 = v we can convert it into the Clairaut’s form. x2 = u =⇒ 2xd x = du, and y2 = v =⇒ 2yd y =
d v. ∴ y

x
d y
d x = d v

du =⇒ p = x
y

d v
du . Now given equation reduces to

x2
(

y − x2

y

d v

du

)
= y

x2

y2

(
d v

du

)2

.

y2 −x2 d v

du
=

(
d v

du

)2

.

v = u
d v

du
+

(
d v

du

)2

.
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Which is Clairaut’s differential equation. Hence, the general solution can be obtained by taking d v
du = c.

Hence v = cu + c2 and y2 = cx2 + c2 is the general solution.
(2) Solve: sin px cos y = cos px sin y +p.
Solution: The given differential equation is not of the Clairaut’s form. Notice that,

sin px cos y −cos px sin y = p =⇒ sin(px − y) = p

.
px − y = sin−1 p.

y = px + sin−1 p,which is in Clairaut’s form.

p = c =⇒ y = cx + sin−1 c, which is a general solution.

(3)Solve: e4x (p −1)+e2y p2 = 0.
Solution: The given differential equation is not of the Clairaut’s form, but by taking e2x = u and e2y = v
we can convert it into Clairaut’s form.

v = u
d v

du
+

(
d v

du

)2

. Which is in Clairaut’s form.

d v

du
= c =⇒ v = uc + c2 =⇒ e2y = ce2x + c2. Which is a general solution.

3.5 Lagrange's di�erential equation.

Definition 3.6. A differential equation of the form y = x f (p)+F (p) is known as Lagrange’s differential
equation.

It is easy to see that Lagrange’s differential equation is solvable for y . Hence, in order to solve this
differential equation we differentiate with respect to x on both sides we get

d y

d x
= p = f (p)+x f ′(p)

d p

d x
+F ′(p)

d p

d x
.

∴ p − f (p) = [x f ′(p)+F ′(p)]
d p

d x
.

∴
d x

d p
= x f ′(p)+F ′(p)

p − f (p)
.

∴
d x

d p
= f ′(p)

p − f (p)
x + F ′(p)

p − f (p)
.

Which is linear in x and p. So it can be solved by method of linear differential equation d y
d x +P y =Q,

where P and Q are functions of x only.

Remark 3.7. 1. An equation of the form x = y f (q)+F (q), where q = d x
d y is also known as Lagrange’s

differential equation and also can be solved by using method to solve differential equation which
are solvable for x.
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2. By taking f (p) = p in Lagrange’s differential equation we get Clairaut’s differential equation.
Thus, Clairaut’s differential equation is a particular case of Lagrange’s differential equation.

Examples 3.8. (1)Solve: y = 2px − 1
3 p2.

Solution: The given differential equation is solvable for y. In order to solve we differentiate with respect
to x on both sides we get,

d y

d x
= p = 2p +2x

d p

d x
− 2

3
p

d p

d x
.

∴−p = 2

(
x − 1

3
p

)
d p

d x
=⇒ p

d x

d p
+2

(
x − 1

3
p

)
= 0.

∴
d x

d p
+ 2

p
x = 2

3
.

Which is linear in variables x and p. Thus, solution can be obtained by,

x(I .F.) =
∫

Q(I .F.)d x + c

Where I .F. = e
∫ 2

p d p = e2log p = p2 and Q = 2
3 .

∴ xp2 =
∫

2

3
p2d p + c = 2

3

p3

3
+ c. Where c is an arbitrary constant.

∴ x = 2

9
p + c

p2 .

Substitute this value of x in given equation we get y = 1
9 p2 + 2c

p . Hence, x = 2
9 p + c

p2 and y = 1
9 p2 + 2c

p is
a general solution.

Exercise:VII

Solve the following differential equation.

1. y = px +p −p2. (Ans:y = cx + c − c2.)

2. y = px + m
p .(Ans:y = cx + m

c .)

3. y = xp −p2 + log p.(Ans:y = cx − c2 + logc.)

4. (x −a)p2 + (x − y)p − y = 0.(Ans:y = cx −a c2

c+1 .)

5. y2p3 −2xp + y = 0.(Ans:y2 = cx − 1
8 c3.)

6. x + y p = a +bp.(Ans:x2 + y2 = 2(ax +by + c).)

7. p2 −6px +3y = 0. (Ans:x = 2p
9 + 3c

p2 ; y = p2

9 + 6c
p .)

8. x + y =
(

1+p
1−p

)2
. (Ans:x = 2

(1−p)2 +k; y = p2+2p−1
(1−p)2 −k.)



9. p2 = (p −1)y(Ans:x = log(p −1)+ 1
p−1 + c; y = p2

p−1 .)

10. e3x (p −1)+p3e2y = 0.(Ans:e y = cex + c3.)

11. (px − y)(x −py) = 2p.(Hint: x2 = u, y2 = v). (Ans:c2x2 − c(x2 + y2 −2)+ y2 = 0.)

12. p3 −xp − y = 0.(Ans:x = 3
5 p2 + kp

p and y = 2
5 p3 −k

p
p.)

13. p2(x −5)+ (2x − y)p −2y = 0.(Ans:y = cx − 5c2

c+4 .)

14. p2 +2p cos2x − sin2 2x = 0.(Ans:(2y +2x + sin2x + c)(2y −2x + sin2x + c) = 0.)

15. y2 = x y p + y3p3

x3 .(Hint: x2 = u, y2 = v).(Ans:y2 = cx2 + c3.)

16. y2(y −xp) = x4p2. (Hint: x = 1
u , y = 1

v ).(Ans: 1
y = c

x + c2.)

Index 4

Higher Order Linear Di�erential

Equation

Definition 4.1. If P1,P2, . . . ,Pn , X are functions of x or constants, then

d n y

d xn +P1
d n−1 y

d xn−1 +P2
d n−2 y

d xn−2 +·· ·+Pn y = X (4.1)

is called nth order linear differential equation.

In equation (4.1) if X = 0, then equation is called homogeneous linear differential equation, otherwise
it said to be non-homogeneous differential equation.

30
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Solution of linear equation (4.1) can be separated into two parts.
(a) P1,P2, . . . ,Pn are constants.
(b) P1,P2, . . . ,Pn are functions of x.

In this chapter we discuss the different methods to solve linear differential equation of type (a).

Theorem 4.2. If y1 and y2 are solutions of equation

d n y

d xn +P1
d n−1 y

d xn−1 +P2
d n−2 y

d xn−2 +·· ·+Pn y = 0 (4.2)

then c1 y1 + c2 y2 (= u) is also its solution, where c1 and c2 are arbitrary constants.

Proof. Since y = y1 and y = y2 are solution of (4.2),

d n y1

d xn +P1
d n−1 y1

d xn−1 +·· ·Pn y1 = 0 (4.3)

d n y2

d xn +P1
d n−1 y2

d xn−1 +·· ·Pn y2 = 0 (4.4)

Then d n(c1 y1 + c2 y2)

d xn +P1
d n−1(c1 y1 + c2 y2)

d xn−1 +·· ·Pn(c1 y1 + c2 y2)

= c1

(
d n y1

d xn +P1
d n−1 y1

d xn−1 +·· ·Pn y1

)
+ c2

(
d n y2

d xn +P1
d n−1 y2

d xn−1 +·· ·Pn y2

)
= c1(0)+ c2(0) = 0 [by (4.3) and (4.4)]

i .e
d nu

d xn +P1
d n−1u

d xn−1 +·· ·Pnu = 0 (4.5)

This proves the theorem.

Since the general solution of nth order differential equation contains n arbitrary constants, it follows,
from the above, that if y1, y2, ..., yn are n solution of (4.2), then c1 y1+c2 y2+·· ·+cn yn (= u) is a solution
of (4.2). This solution is called the Complementary function (C.F.) of equation (4.2).
If we denote the complementary
Suppose that y = v be any particular solution of

d n y

d xn +k1
d n−1 y

d xn−1 +·· ·kn y = X (4.6)

where k1,k2, ...kn are arbitrary constants.

Then
d n v

d xn +k1
d n−1v

d xn−1 +·· ·kn v = X (4.7)

Adding (4.5) and (4.7), we have
d n(u + v)

d xn +k1
d n−1(u + v)

d xn−1 +·· ·kn(u + v) = X

This shows that y = u + v us the complete solution of (4.6). Here y = v is called the Particular solu-
tion(P.I.) of (4.6).

∴ The general solution (G.S.) of (4.6) is y = C.F.+P.I.
Thus in order to solve the equation (4.6), we have to first find the C. F. , and then the P. I. . For a
homogeneous differential equation the C. F. and G. S. will be same.
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4.1 Operator ‘D `

To find the solution of linear differential equation, operator ‘D ‘ play very important role.
‘D ’ is defined as follow

D = d

d x
, D2 = d 2

d x2 , ..., Dn = d n

d xn

∴
d y

d x
= D y ;

d 2 y

d x2 = D2 y, ...,
d n y

d xn = Dn y

With this notation the equation (4.1) can be written as

(Dn +P1Dn−1 +·· ·+Pn)y = X i .e. f (D)y = X

where f (D) = Dn +P1Dn−1 +·· ·+Pn , i .e. a polynomial in D .

Thus the symbol D stands for the operation of differentiation and can be treated much the
same as an algebraic quantity i.e. f (D) can be factorized by ordinary rules of algebra and the factors
may be taken in any order.

4.2 Rule to �nd the Complementary function:

Consider the equation
d n y

d xn +k1
d n−1 y

d xn−1 +·· ·kn y = 0 (4.8)

where k1,k2, ...kn are arbitrary constants.
Then this equation in symbolic form is (Dn + k1Dn−1 + ·· · + kn)y = X . Its symbolic co-efficient
equated to zero i.e.

Dn +k1Dn−1 +·· ·+kn = 0

is called the Auxiliary Equation (A.E.).
Since it is an nth order polynomial equation in terms of D , it has n roots say m1,m2, ...,mn .

Case : I If all the roots be real and different, then the G. S. of (4.8) is given by

y = c1em1x + c2em2x +·· ·+cnemn x

Case : II If two roots are equal (i .e. m1 = m2), then the G. S. of (4.8) is given by

y = (c1 + c2x)em1x +·· ·+cnemn x

If, however, the A.E . has three equal roots (i .e. m1 = m2 = m3), then the G. S. of (4.8) is given by

y = (c1 + c2x + c3x2)em1x +·· ·+cnemn x

Case : III If one pair of roots be imaginary, i .e. m1 = α+ iβ, m2 = α− iβ, then the G. S. of (4.8) is
given by

y = eαx (c1 cos(βx)+ c2 sin(βx))+ c3em3x +·· ·+cnemn x
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Case : IV If two pairs of imaginary roots be equal i .e. m1 = m2 =α+ iβ, m3 = m4 =α− iβ, then the
G. S. of (4.8) is given by

y = eαx (
(c1 + c2x)cos(βx)+ (c3 + c4x)sin(βx)

)+ c5em5x +·· ·+cnemn x

Example 4.3. Solve
d 2 y

d x2 + d y

d x
−2y = 0.

Sol. Let D = d
d x . Then given equation reduces to (D2 +D −2)y = 0.

Its A.E. is D2 +D −2 = 0, i .e. (D +2)(D −1) = 0 whence D =−2,1.
Hence the G. S. is y = c1e−2x + c2e1x .

Example 4.4. Solve
d 2 y

d x2 +6
d y

d x
+9y = 0.

Sol. Let D = d
d x . Then given equation reduces to (D2 +6D +9)y = 0.

Its A.E. is D2 +6D +9 = 0, i .e. (D +3)2 = 0 whence D =−3,−3.
Hence the G. S. is y = (c1 + c2x)e−3x .

Example 4.5. Solve (D3 +D2 +4D +4)y = 0.

Sol. Here the A.E . is D3 +D2 +4D +4 = 0 i .e.(D2 +4)(D +1) = 0 ∴ D =−1,±2i .
Hence the G. S. is y = c1e−x +e0x [c2 cos(2x)+ c3 sin(2x)] = c1e−x + c2 cos(2x)+ c3 sin(2x)

Example 4.6. Solve
d 4x

d t 4 +4x = 0.

Sol. Let D = d
d t . Then given equation reduces to (D4 +4)x = 0.

Its A.E. is D4 +4 = 0.

∴ D4 +4D2 +4−4D2 = 0

∴ (D2 +2)2 − (2D)2 = 0

∴ (D2 +2+2D)(D2 +2−2D) = 0

∴ D2 +2+2D = 0 or D2 +2−2D = 0

∴ D = −2±p−4

2
or

2±p−4

2
∴ D =−1± i or D = 1± i

Thus the G. S. is y = e−t [c1 cos(t )+ c2 sin(t )]+e t [c3 cos(t )+ c4 sin(t )].

Exercise-I

Que :1 Solve the following differential equation.
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1. y ′′−2y ′+10y = 0 Ans. y = ex [c1 cos(3x)+ c2 sin(3x)]

2. 4y ′′′+4y ′′+4y ′ = 0 Ans. y = c1 + (c2 + c3x)e
−x
2

3.
d 3 y

d x3 + y = 0 Ans. y = c1e−x +e
x
2

(
c2 cos

(p
3

2

)
+ c3 sin

(p
3

2

))
4.

d 3 y

d x3 −3
d 2 y

d x2 +3
d y

d x
− y = 0 Ans. y = (c1 + c2x + c3x2)ex

5.
d 4 y

d x4 +8
d 2 y

d x2 +16y = 0 Ans. y = (c1 + c2x)cos(2x)+ (c3 + c4x)sin(2x)

6.
d 4 y

d x4 +a4 y = 0 Ans y = e
ap
2

x
(
c1 cos

(
ap
2

)
+ c2 sin

(
ap
2

))
+e−

ap
2

x
(
c3 cos

(
ap
2

)
+ c4 sin

(
ap
2

))
.

Que : 2 If
d 4x

d t 4 = m4 y , show that x = c1 cos(mt )+ c2 sin(mt )+ c3 cosh(mt )+ c4 sinh(mt ).(
Hint: Use sinh x = ex−e−x

2 and cosh x = ex+e−x

2

)

4.3 Inverse Operator:

1. Definition:
1

f (D)
X is that function of x, not containing arbitrary constants which when oper-

ated upon by f (D) gives X .

i .e. f (D)

{
1

f (D)
X

}
= X

Thus y = 1

f (D)
X satisfies the equation f (D)y = X and is, therefore, its particular integral.

2.
1

D
X = ∫

X dx.

Let
1

D
X = y .

Operating by D , D
1

D
X = D y . i .e. X = d y

d x .

Integrating both the sides w.r.t. x, we get y = ∫
X d x.

Thus
1

D
X = ∫

X d x.

3.
1

D−a
X = eax

∫
Xe−ax dx.

Let
1

D −a
X = y .

Operating by D −a, (D −a)
1

D −a
X = (D −a)y . ⇒ X = d y

d x −ay .

i.e.
d y

d x
−ay = X , which is a linear equation in first order.

So solution is ye−ax = ∫
X e−ax d x ⇒ y = eax

∫
X e−ax d x.
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Thus
1

D −a
X = y = eax

∫
X e−ax d x.

Example 4.7. Find
1

D2 +2D −15
e2x .

Sol. 1

D2 +2D −15
e2x = 1

(D +5)(D −3)
e2x

= 1

(D +5)

1

(D −3)
e2x

= 1

(D +5)
e3x

∫
e−3x e2x d x

(
∵

1

D −a
X = eax

∫
X e−ax d x.

)
=− 1

(D +5)
e2x

=−e−5x
∫

e5x e2x d x

=−1

7
e2x

4.4 Rules for �nding the Particular Integral

Consider the equation
d n y

d xn +k1
d n−1 y

d xn−1 +·· ·kn y = X ,

which in symbolic form is (Dn +k1Dn−1 +·· ·+kn)y = f (D)y = X .

∴ P. I. = 1

Dn +k1Dn−1 +·· ·+kn
X = 1

f (D)
X

Case : I When X = eax.

If f (a) 6= 0, then
1

f (D)
eax = 1

f (a)
eax .

If f (a) = 0, then
1

f (D)
eax = x

1

f ′(a)
eax , provided f ′(a) 6= 0.

If f (a) = 0 and f ′(a) = 0, then
1

f (D)
eax = x2 1

f ′′(a)
eax , provided f ′′(a) 6= 0, and so on.

Case : II When X = sin (ax+b) or cos (ax+b).

If f (−a2) 6= 0, then
1

f (D2)
sin(ax +b) = 1

f (−a2)
sin(ax +b).

If f (−a2) = 0, then
1

f (D2)
sin(ax +b) = x

1

f ′(−a2)
sin(ax +b), provided f ′(−a2) 6= 0.

If f (a) = 0 and f ′(a) = 0, then
1

f (D2)
sin(ax +b) = x2 1

f ′′(−a2)
sin(ax +b), provided f ′′(−a2) 6= 0,

and so on.

Similarly if f (−a2) 6= 0, then
1

f (D2)
cos(ax +b) = 1

f (−a2)
cos(ax +b).

If f (−a2) = 0, then
1

f (D2)
cos(ax +b) = x

1

f ′(−a2)
cos(ax +b), provided f ′(−a2) 6= 0.
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If f (a) = 0 and f ′(a) = 0, then
1

f (D2)
cos(ax +b) = x2 1

f ′′(−a2)
cos(ax +b), provided f ′′(−a2) 6= 0,

and so on.

Example 4.8. Solve
d 2 y

d x2 −5
d y

d x
+6y = e4x

Sol. Here given differential equation is non-homogeneous. So general solution is y = C. F. +P. I.

To find C. F. consider the equation
d 2 y

d x2 −5
d y

d x
+6y = 0.

Let D = d

d x
. Then this equation reduces to (D2 −5D +6)y = 0.

And A.E. is D2 −5D +6 = 0. ⇒ (D −3)(D −2) = 0. ⇒ D = 3, 2.
Thus C. F. = c1e3x + c2e2x .
And P. I. = 1

D2 −5D +6
e4x

= 1

16−20+6
e4x

(
∵

1

f (D)
eax = 1

f (a)
eax

)
= 1

2
e4x

Now G. S. =C. F. +P. I. .

⇒ y = c1e3x + c2e2x + 1

2
e4x

Example 4.9. Solve 6
d 2 y

d x2 +17
d y

d x
−14 = sin(3x).

Sol. Here given differential equation is non-homogeneous. So general solution is y = C. F. +P. I.

To find C. F. consider the equation 6
d 2 y

d x2 +25
d y

d x
+14 = 0.

Let D = d

d x
. Then this equation reduces to (6D2 +25D +14)y = 0.

And A.E. is 6D2 +25D +14 = 0. ⇒ (3D +2)(2D +7) = 0. ⇒ D = − 2
3 , − 7

2 .

Thus C. F. = c1e−
2
3 x + c2e−

7
2 x .

And P. I. = 1

6D2 +25D +14
sin(3x)

= 1

6(−9)+25D +14
sin(3x)

(
∵

1

f (D2)
sin(ax +b) = 1

f (−a2)
sin(ax +b)

)

= 1

5
· 1

(5D −6)
· (5D +6)

(5D +6)
sin(3x)

= 1

5
· (5D +6)

(−45+6)
sin(3x)

=− 1
405 [5D sin(3x)+6sin(3x)]

=− 1
405 [15cos(3x)+6sin(3x)]
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Now G. S. =C. F. +P. I. .

⇒ y = c1e−
2
3 x + c2e−

7
2 x − 1

405 [15cos(3x)+6sin(3x)]

Exercise-II

Que : 1 Find the value of (i )
1

D2 +2D −15
e2x . (i i )

1

D2 +6D −9
e−3x . (i i i )

1

D3 +D2 −D −1
cos(2x).(

Ans. : (i )− 1
7 e2x (i i ) 1

2 x2e−3x (i i i )− 1
25 (2sin(2x)+cos(2x))

)
Que : 2 Solve the following differential equation.

1. (D3 −6D2 +11d −6)y = e−2x e−3x Ans. y = c1ex + c2e2x + c3e3x − 1
120 (2e−2x +e−3x )

2.
d 2 y

d x2 +4
d y

d x
+5y =−2cosh(x) Ans. y = e−2x [c1 cos(x)+ c2 sin(x)]− ex

10 − e−x

2

3. (D +1)(D −3)2 y = e3x +e5x Ans. y = (c1 + c2x)e3x + c3e−x + 1
8 x2e3x + 1

24 e5x

4.
d 2x

d t 2 +2
d x

d t
+3x = sin(t ) Ans. y = e−t

[
c1 cos

(p
2t

)
c2 sin

(p
2t

)]+ 1
4 [sin(t )−cos(t )]

5.
d 2 y

d x2 −4
d y

d x
+3y = cos(5x +3) Ans. y = c1ex + c2e3x − 1

442 [10sin(5x +3)+11cos(5x +3)]

6. (D2 +3D +2)y = sin(3x)cos(2x) Ans. y = c1e−x + c2e−2x + 1
884 [10cos(5x)−11sin(5x)]

+ 1
20 [sin(x)+2cos(x)]

7.
d 3 y

d x3 +2
d 2 y

d x2 + d y

d x
= e−x + sin(2x) Ans. y = c1 + (c2 + c3x)e−x − x2

2 e−x + 3
50 cos(2x)− 2

25 sin(2x)

Case : III When X = xm.

Here P. I. = 1

f (D)
xm = [ f (D)]−1xm .

Expand [ f (D)]−1 in ascending power of D as far as the term in Dm and operate on xm by term.
Since the (m +1)th and higher derivatives of xm are zero, we need not consider terms beyond Dm .
Note: Use the following formulae to expand [ f (D)]−1.

(1) (1−D)−1 = 1+D +D2 +D3 +·· ·
(2) (1−D)−2 = 1+2D +3D2 +4D3 +·· ·+ (1+m)Dm +·· ·
(3) (1−D)−3 = 1+3D +6D2 +10D3 +·· ·+∑

mDm +·· ·
(4) (1+D)−1 = 1−D +D2 −D3 +D4 −D5 +·· ·

Case : IV When X = eaxV, where V is a function of x.

1

f (D)
eaxV = eax 1

f (D +a)
V

Case : V When X is any other function of x.

Here P. I. = 1

f (D)
X .
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If f (D) = (D −m1)(D −m2)...(D −mn), resolving into partial fractions,

1

f (D)
= A1

D −m1
+ A2

D −m2
+·· ·+ An

D −mn
.

∴ P. I. = 1

f (D)
X .

=
[

A1

D −m1
+ A2

D −m2
+·· ·+ An

D −mn

]
X .

= A1
1

D −m1
X + A2

1

D −m2
X +·· ·+ An

1

D −mn
X .

= A1em1x
∫

X e−m1x d x + A2em2x
∫

X e−m2x d x +·· ·+ Anemn x
∫

X e−mn x d x.(
∵

1

D −a
X = eax

∫
X e−ax d x.

)
This method is a general on and therefor can be applicable to obtain a particular integral in any given
case.

Example 4.10. Solve
d 2 y

d x2 + d y

d x
= x2 +2x +4

Sol. Here given differential equation is non-homogeneous. So general solution is y = C. F. +P. I.

To find C. F. consider the equation
d 2 y

d x2 + d y

d x
= 0. Then A.E. D2 +D = 0. ∴ D(D +1) = 0 ⇒ D =

0,−1.
∴ C .F. = c1 + c2e−x

And P. I. = 1

D(D +1)
(x2 +2x +4)

= 1

D
(D +1)−1(x2 +2x +4)

= 1

D

(
1−D +D2 −D3 +D4 −·· ·) (x2 +2x +4)

=
(

1

D
−1+D −D2 +D3 −·· ·

)
(x2 +2x +4)

= 1

D
(x2 +2x +4)− (x2 +2x +4)+D(x2 +2x +4)−D2(x2 +2x +4)+D3(x2 +2x +4)+·· ·

=
∫

(x2 +2x +4)d x − (x2 +2x +4)+ (2x +2+0)− (2+0+0)+0

= x3

3
+x2 +4x −x2 −2x −4+2x +2−2

= x3

3
+4x −4

Thus G. S. = C. F. +P. I. ⇒ y = c1 + c2e−x + x3

3
+4x −4
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Example 4.11. Find P. I. of (D2 −4D +3)y = e4x sin(2x)

Sol.

P. I. = 1

D2 −4D +3
e4x sin(2x)

= e4x 1

(D +4)2 −4(D +4)+3
e4x sin(2x)

= e4x 1

D2 +4D +3
sin(2x)

= e4x 1

(−4)+4D +3
sin(2x)

= e4x 1

4D −1
sin(2x)

= e4x 4D +1

16D2 −1
sin(2x)

= e4x 4D +1

−65
sin(2x)

=−e4x

65
[4D sin(2x)+ sin(2x)]

=−e4x

65
[8cos(2x)+ sin(2x)]

Example 4.12. Solve (D2 +16)y = tan(4x)

Sol. Here given differential equation is non-homogeneous. So general solution is y = C. F. +P. I.
To find C. F. consider the equation (D2 +16)y = 0. Then A.E. D2 +16 = 0 ∴ D =± 4i
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∴ C. F. = c1 cos(4x)+ c2 sin(4x)

And P. I. = 1

D2 +16
tan(4x)

= 1

8i

[
1

D −4i
− 1

D +4i

]
tan(4x)

= 1

8i

[
1

D −4i
tan(4x)− 1

D +4i
tan(4x)

]
= 1

8i

[
e4i x

∫
e−4i x tan(4x)d x −e−4i x

∫
e4i x tan(4x)d x

] (
∵

1

D −a
X = eax

∫
X e−ax d x.

)
= 1

8i

[
e4i x

∫
[cos(4x)− i sin(4x)] tan(4x)d x −e−4i x

∫
[cos(4x)+ i sin(4x)] tan(4x)d x

]
= 1

8i

[
e4i x

∫
[cos(4x) tan(4x)− i sin(4x) tan(4x)]d x

−e−4i x
∫

[cos(4x) tan(4x)+ i sin(4x) tan(4x)]d x

]
= 1

8i

[
e4i x

∫
[sin(4x)− i sin2 (4x)cos(4x)]d x

−e−4i x
∫

[sin(4x)+ i sin2 (4x)cos(4x)]d x

]
= 1

8i

[
e4i x

(∫
sin(4x)d x − i

∫
sin2 (4x)cos(4x)d x

)
−e−4i x

(∫
sin(4x)d x + i

∫
sin2 (4x)cos(4x)d x

)]
= 1

8i

[
e4i x

(
−cos(4x)

4
+ i

sin3 (4x)

12

)
−e−4i x

(
−cos(4x)

4
− i

sin3 (4x)

12

)] (
∵

∫
f n(x) f ′(x)d x = f n+1(x)

n +1

)
= 1

8i

[
sin3 (4x)

12

(
e4i x +e−4i x

)
− cos(4x)

4

(
e4i x −e4i x

)]
T husG. S. =C. F. +P. I. ⇒ y = c1 cos(4x)+ c2 sin(4x)+ 1

8i

[
sin3 (4x)

12

(
e4i x +e−4i x

)
− cos(4x)

4

(
e4i x −e4i x

)]

Exercise-III

Que : 1 Find (i )
1

D −2
x3 and (i i )

1

D2 −2D +1
x2e3x

(
Ans.(i ) − 1

2

(
x3 + 3x2

2 + 3x
2 + 3

4

)
(i i ) e3x

4

(
x2 −2x + 3

2

))
Que : 2 Solve the following differential equation.
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1.
d 2 y

d x2 +2
d y

d x
+ y = 2x +x2 Ans. y = (c1 + c2x)e−x +x2 −2x +2

2. (D2 −6D +9)y = e3x (1+x) Ans. y = (c1 + c2x)e3x +e3x
(

x2

2 + x3

6

)
3.

d 2 y

d x2 − y = x2 −1 Ans. y = c1ex + c2e−x −1−x2

4. (6D2 −D −2)y = xe−x Ans. y = c1e
2x
3 + c2e−

x
2

5. (D2 −2D +3)y = cos(x)+x2 Ans. y = ex
[
c1 cos

(p
2x

)+ c2 sin
(p

2x
)]

+ 1
12

[
2cos(x)−3sin(x)+4x2 + 16x

3 + 8
9

]
6. (D3 −D)y = 2x +1+4cos(x)+2ex Ans. y = c1 + c2ex + c3e−x +xex − (x2 +x)−2sin(x)

7. (D4 −1)y = ex cos(x) Ans. y = c1ex + c2e−x + c3 cos(x)+ c4 sin(x)− ex

5
cos(x)

8.
d 2 y

d x2 −3
d y

d x
+2y = xe3x + sin(2x) Ans. y = c1ex + c2e2x + e3x

4
(2x −3)+ 3

20 cos(2x)− 1
20 sin(2x)

9.
d 2 y

d x2 +2y = x2e3x +ex cos(2x) Ans. y = c1 cos
(p

2x
)+ c2 sin

(p
2x

)+ e3x

11

(
x2 − 12x

11 + 50
121

)
+ex

17
(4sin(x)−cos(x))

10. (D3 +2D2 +D)y = x2e2x + sin2 (x) Ans. y = c1 + (c2 + c3x)e−x + e2x

18

(
x2 − 7x

8 + 11
6

)
+ 1

100 (3sin(2x)+4cos(2x))

11. (D2 −1)y = x sin(x)+ (1+x2)ex Ans. y = c1ex + c2e−x + xex

12

(
2x2 −3x +9

)− 1
2 (x sin(x)+cos(x))

Now we shall study two such forms of linear differential equation with variable co-efficient which can
be reduced to linear differential equations with constat co-efficient by suitable substitutions.

4.5 Cauchy's homogenous linear equation

An equation of the form

xn d n y

d xn +k1xn−1 d n−1 y

d xn−1 +·· ·+kn−1x
d y

d x
+kn y = X (4.9)

where k ′s are constants and X is a function of x, is called Cauchy’s1 homogeneous linear equation.
Such equation can be reduced to linear differential equation with constant coefficients, by putting

x = e t or t = log x. Then if D = d

d t

d y

d x
= d y

d t
· d t

d x
= d y

d t
· 1

x
i .e. x

d y

d x
= D y.

1A French mathematician Augustin-Louis Cauchy (1789-1857) who is considered as the father of modern
analysis and creator of complex analysis. He published nearly 800 reserch paper of basic importance. Cauchy
is also well known for his contribution to differential equation, in finite series, optics and elasticity.
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d 2 y

d x2 = d

d x

(
1

x

d y

d t

)
=− 1

x2

d y

d t
+ 1

x

d

d t

(
d y

d t

)
d t

d x
=− 1

x2

d y

d t
+ 1

x

d 2 y

d t 2

d t

d x
= 1

x2

(
d 2 y

d t 2 − d y

d t

)
.

i .e. x2 d 2 y

d x2 = D(D −1)y. Similarly, x3 d 3 y

d x3 = D(D −1)(D −2)y and so on.

After making these substitution in (4.9), that results a linear equation with constat coefficients, which
can be solved as before.

Example 4.13. Solve x2 d 2 y

d x2 −x
d y

d x
+ y = log x

Sol. This is a Cauchy’s homogeneous linear equation.

Put x = e t , i.e. t = log x, so that x
d y

d x
= D y, x2 d 2 y

d x2 = D(D −1)y , where D = d

d t
Then given equation becomes

[D(D −1)−D +1]y = t or (D −1)2 y = t (4.10)

which is a linear equation with constant coefficients.
Its A.E. is (D −1)2 = 0 whence D = 1,1.

∴C. F. = (c1 + c2t )e t .

And P. I. = 1

(D −1)2 t = (1−D)−2t = (1+2D +3D2 +·· · )t = t +2.

Hence the solution of (4.10) is y = (c1 + c2t )e t + t +2.
Put t = log x or e t = x, we get

y = (c1 + c2 log x)x + log x +2 as the required solution of given equation.

Example 4.14. Solve x2 d 2 y

d x2 +4x
d y

d x
+2y = ex

Sol. This is a Cauchy’s homogeneous linear equation.

Put x = e t , i.e. t = log x, so that x
d y

d x
= D y, x2 d 2 y

d x2 = D(D −1)y , where D = d

d t
Then given equation becomes

[D(D −1)+4D +2]y = ee t
or (D2 +3D +2)y = ee t

(4.11)

which is a linear equation with constant coefficients.
Its A.E. is D2 +3D +2 = 0 whence D =−1,−2.

∴C. F. = c1e−t + c2e−2t = c1x−1 + c2x−2.

And P. I. = 1

(D2 +3D +2)
ee t = 1

(D +1)(D +2)
ee t =

[
1

(D +1)
− 1

(D +2)

]
ee t

=
[

1

(D +1)
ee t − 1

(D +2)
ee t

]
=

[
e−t

∫
e t ee t

d t −e−2t
∫

e2t ee t
d t

] (
∵

1

D −a
X = eax

∫
X e−ax d x.

)
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= x−1
∫

ex d x −x−2
∫

ex xd x
(
∵ e t = x

)
= x−1ex −x−2(xex −ex )

= x−2ex

Hence the required solution of y = c1x−1 + c2x−2 +x−2ex .

4.6 Legendre's linear equation

An equation of the form

(ax +b)n d n y

d xn +k1(ax +b)n−1 d n−1 y

d xn−1 +·· ·+kn−1(ax +b)
d y

d x
+kn y = X (4.12)

where k ′s are constants and X is a function of x, is called Legendre’s 2 homogeneous linear equation.
Such equation can be reduced to linear differential equation with constant coefficients, by putting

ax +b = e t or t = log(ax +b).

Then if D = d

d t
,

d y

d x
= d y

d t
· d t

d x
= d y

d t
· a

ax +b
i .e. (ax+b)

d y

d x
= aD y.

d 2 y

d x2 = d

d x

(
a

ax +b

d y

d t

)
= −a2

(ax +b)2

d y

d t
+ a

(ax +b)

d

d t

(
d y

d t

)
d t

d x
= a2

(ax +b)2

(
d 2 y

d t 2 − d y

d t

)
.

i .e. (ax+b)2 d 2 y

d x2 = a2D(D−1)y. Similarly, (ax+b)3 d 3 y

d x3 = a3D(D−1)(D−2)y and so on.

After making these substitution in (4.12), that results a linear equation with constat coefficients.

Example 4.15. Solve (1+x)2 d 2 y

d x2 + (1+x)
d y

d x
+ y = 2sin(log(1+x))

Sol. This is a Legendre’s homogeneous linear equation.
Put 1+x = e t i.e. t = log(1+x),

so that (1+x)
d y

d x
= D y and (1+x)2 d 2 y

d x2 = D(D −1)y , where D = d

d t
.

Then given equation becomes

D(D −1)y +D y + y = 2sin(t ). ⇒ (D2 +1)y = 2sin(t ) (4.13)

which is linear equation with constant coefficients.
Its A.E. is D2 +1 = 0 whence D =±i . ∴C. F. = c1 cos(t )+ c2 sin(t ).

And P. I. = 2
1

D2 +1
sin(t ) = 2t

1

2D
sin(t ) = t

∫
sin(t )d t =−t cos(t ).

2An French mathematician Adrien Marie Legender (1752-1833) who made important contribution to num-
ber theory, special functions and calculus of variation.
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Hence the solution of (4.13) is y = c1 cos(t )+ c2 sin(t )− t cos(t ).
Put t = log(1+x), we get

y = c1 cos
(
log(1+x)

)+ c2 sin
(
log(1+x)

)− log(1+x)cos(log(1+x)) as the required solution of
given equation.

Exercise-IV

Que :1 Solve the following differential equation.

1. x2 d 2 y

d x2 −2x
d y

d x
+2y = x3 Ans . c1x + c2x2 +0.5x3

2. x3 d 3 y

d x3 +2x2 d 2 y

d x2 +2y = 10(x +x−1) Ans . y = c1x−1 +x(c2 cos(log x)+ c3 sin(log x))

+5x +2x−1 log x

3. x2 d 2 y

d x2 −2x
d y

d x
−4y = x4 Ans . y = c1x4 + c2x−1 + (0.2)x4 log x

4. x2 d 2 y

d x2 −3x
d y

d x
+4y = (1+x)2 Ans . y = (c1 + c2 log x)x2 + 1

4 +2x + 1
2 x2(log x)2

5. x
d 2 y

d x2 −2x−1 y = x +x−2 Ans . y = c1x2 + c2x−1 + 1
3

(
x2 − 1

x

)
log x

6.
d 2 y

d x2 x−1 d y

d x
= 12x−2 log x Ans . y = c1 log x + c2 +2(log x)3

7. (5+2x)2 d 2 y

d x2 −6(5+2x)
d y

d x
+8y = 2(2x +5)2 Ans . y = (5+2x)2

[
c1(5+2x)

p
2 + c2(5+2x)

p
2
]

−(5+2x)2

8. (2x +3)2 d 2 y

d x2 − (2x +3)
d y

d x
−12y = 6x Ans . y = c1(2x +3)a + c2(2x +3)b − 3

14 (2x +3)

where a,b = 3±p57
4

9. (1+x)2 d 2 y

d x2 + (1+x)
d +y

d x+ 4 = 4cos(log(1+x)) Ans . y = c1 cos(t )+ c2 sin(t )+2t sin(t )

where t = log(1+x)

10. (3x +2)2 d 2 y

d x2 +3(3x +2)
d y

d x
−36y = 3x2 +4x +1 Ans . y = c1(3x +2)2 + c2(3x +2)−2

+ 1
108 [(3x +2)2 log(3x +2)]

Definition 4.16. Polar Co-ordinates: Angle θ in polar co-ordinate system is directed angle, meaning
angle can be positive or negative. Anticlockwise means positive, clockwise means negative.
In polar co-ordinate system, if r is constant then a circle can be drawn and if θ is constant then a ray is
obtained.

P (r,θ) = P (−r, (2k +1)πθ)

= P (r, (2kπ)θ)

Advantage: Lesser things are required compared to cartesian co-ordinate system.
Disadvantage: In this system, same point has many co-ordinates.
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Definition 4.17. Polar Co-ordinates in R2

Let O be a fixed point in the plane, let
−−→
OX be a fixed ray in the plane. Then, for every point P in the

plane,

i one can find r ≥ 0 such that OP = r and

ii one can find θ ∈ [0,2n] such that m∠POX = θ.

Here the ordered pair (r,θ) is called the polar co-ordinate of the point P. O and
−−→
OX are called the pole

and the initial line respectively.
If (r,θ) is a polar co-ordinate of the point P, then (r,2kπ+θ), (−r,π+θ), (−r, (2k +1)πθ) are also polar
co-ordinates of the same point P for ∀k ∈ Z .
r is called the radius vector and θ is called the angular co-ordinates of P.

4.7 Relation between Cartesian and Polar Co-ordinates

Let P (x, y) be a point in the cartesian co-ordinate plane. Take O as the pole and
−−→
OX as the initial line.

Let P (r,θ) be the polar co-ordinate of P .

OP = |r |
=⇒ OP 2 = r 2

=⇒ (x −O)2 + (y −O)2 = r 2

=⇒ x2 + y2 = r 2 (4.14)

Also, from the figure,

m∠POM = θ
=⇒ cosθ = x

r and sinθ = y
r

=⇒ x = r cosθ and y = r sinθ (4.15)

Example 4.18. Find the cartesian co-ordinates of the following polar points. Also plot the points

1 (
p

2, π4 )

2 (2, π6 )

3 (2, −π3 )

4 (−2, −π4 )

Sol.
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1 Here A(
p

2, π4 )
∴ r =p

2, θ = π
4

Now x = r cosθ, y = r sinθ
∴ x =p

2cos π4 =p
2( 1p

2
) and y =p

2sin π
4 =p

2( 1p
2

).

∴ (x, y) = (1,1)

2 Here A(2, π6 )
∴ r = 2, θ = π

6
Now x = r cosθ, y = r sinθ

∴ x = 2cos π6 = 2(
p

3
2 ) and y = 2sin π

6 = 2( 1
2 ).

∴ (x, y) = (
p

3,1).

3 Here A(2, −π3 )
∴ r = 2, θ = −π

3
Now x = r cosθ, y = r sinθ

∴ x = 2cos −π
3 = 2( 1

2 ) and y = 2sin −π
3 = 2(−

p
3

2 ).
∴ (x, y) = (1,−p3).

4 Here A(−2, −π4 )
∴ r =−2, θ = −π

4
Now x = r cosθ, y = r sinθ
∴ x =−2cos −π

4 =−2( 1p
2

) and y =−2sin −π
4 =−2(− 1p

2
).

∴ (x, y) = (−p2,
p

2).

Example 4.19. Find polar co-ordinates of following cartesian points.

1 (1,1)

2 (
p

3,1)

3 (−p3,−1)

4 (−2,−2)

Sol.

1 Here (x, y) = (1,1) =⇒ x = 1, y = 1. Now x2 + y2 = r 2 =⇒ r 2 = 1+1 =⇒ r =p
2.

Now cosθ = x
r and sinθ = y

r .
∴ cosθ = 1p

2
and sinθ = 1p

2
. Hence θ = π

4 .

∴ (r,θ) = (
p

2, π4 ).

2 Here (x, y) = (
p

3,1) =⇒ x =p
3, y = 1. Now x2 + y2 = r 2 =⇒ r 2 = 3+1 =⇒ r = 2.

Now cosθ = x
r and sinθ = y

r .

∴ cosθ =
p

3
2 and sinθ = 1

2 . Hence θ = π
6 .

∴ (r,θ) = (2, π6 ).
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3 Here (x, y) = (−p3,−1) =⇒ x =−p3, y =−1. Now x2 + y2 = r 2 =⇒ r 2 = 3+1 =⇒ r = 2.
Now cosθ = x

r and sinθ = y
r .

∴ cosθ =−
p

3
2 and sinθ =−1

2 . Hence θ = 7π
6 .

∴ (r,θ) = (2, 7π
6 ).

4 Here (x, y) = (−2,−2) =⇒ x =−2, y =−2. Now x2 + y2 = r 2 =⇒ r 2 = 4+4 =⇒ r = 2
p

2.
Now cosθ = x

r and sinθ = y
r .

∴ cosθ =− 2
2
p

2
and sinθ =− 2

2
p

2
. ∴ cosθ =− 1p

2
and ∴ sinθ =− 1p

2
. Hence θ = 5π

4 .

∴ (r,θ) = (2
p

2, 5π
4 ).

Theorem 4.20. Find distance formula in polar co-ordinate system in R2.

Proof. Let A(r1,θ1) and (r2,θ2) are two points in polar co-ordinate systems.
The cartesian co-ordinates of A and B are A(r1 cosθ1,r1 sinθ1), B(r2 cosθ2,r2 sinθ2). Now

AB =
√

(r1 cosθ1 − r2 cosθ2)2 + (r1 sinθ1 − r2 sinθ2)2

=
√

r 2
1 cos2θ1 −2r1r2 cosθ1 cosθ2 + r 2

2 cos2θ2 + r 2
1 sin2θ1 + r 2

2 sin2θ2 −2r1r2 sinθ1 sinθ2

=
√

r 2
1 + r 2

2 −2r1r2(cosθ1 cosθ2 + sinθ1 sinθ2)

AB =
√

r 2
1 + r 2

2 −2r1r2 cos(θ1 −θ2)

Theorem 4.21. Obtain the formula for the area of 4ABC in polar co-ordinate system.

Proof. Let A(r1,θ1),B(r2,θ2) and C (r3,θ3) be the vertices of the 4ABC . Hence the cartesian co-
ordinate A,B and C are A(r1 cosθ1,r1 sinθ1), B(r2 cosθ2,r2 sinθ2) and C (r3 cosθ3,r3 sinθ3).

4ABC = 1
2

∣∣∣∣∣∣
r1 cosθ1 r1 sinθ1 1
r2 cosθ2 r2 sinθ2 1
r3 cosθ3 r3 sinθ3 1

∣∣∣∣∣∣

Theorem 4.22. Obtain the equation of line passing through A(r /−1,θ1) and B(r2,θ2).

Proof. The cartesian co-ordinates of A and B are A(r1 cosθ1,r1 sinθ1), B(r2 cosθ2,r2 sinθ2). The carte-
sian equation of

←→
AB is ∣∣∣∣∣∣

x y 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣= 0
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In polar co-ordinates, the equation of
←→
AB is,∣∣∣∣∣∣

r cosθ r sinθ 1
r1 cosθ1 r1 sinθ1 1
r2 cosθ2 r2 sinθ2 1

∣∣∣∣∣∣= 0

=⇒ (r1 cosθ1r2 sinθ2 − r1r2 cosθ2 sinθ1)− (r cosθr2 sinθ2 − r r2 cosθ2 sinθ)+ (r r1 cosθ sinθ1 − r r1 cosθ1 sinθ) = 0

=⇒ r1r2 sin(θ2 −θ1)− r r2 sin(θ2 −θ)+ r r1 sin(θ1 −θ) = 0

=⇒ sin(θ2 −θ1)

r
= sin(θ2 −θ)

r1
− sin(θ1 −θ)

r2

=⇒ sin(θ1 −θ2)

r
= sin(θ−θ2)

r1
− sin(θ−θ1)

r2

is the polar equation of a line passing through A(r1,θ1) and B(r2,θ2).

Theorem 4.23. Obtain the polar equation of a line in p −α form.

Proof. Let p be the perpendicular distance from the pole to a line L in the polar plane. Draw OM ⊥
L, M ∈ L. Let m∠MOX =α. The polar co-ordinates of M is M(p,α).
Let P (r1θ) be a point on the line L other than M .
∴OP distance is r and m∠POX = θ.
∴m∠POM = θ−α or α−θ =±θ−α= |θ−α|. From the right-angled 4POM ,

cos(∠POM) = OM

OP
=⇒ OM =OP cos(±θ−α)

=⇒ p = r cos(θ−α) (∵ cosθ = cos(−θ))

which is the required equation.

4.8 Deductions:

1 If O ∈ L, then P = O. Hence r cos(θ−α) = 0. That is if pole is on line L, then r cos(θ−α) = 0 is
the equation of line passing through pole.

2 If L ⊥←→
OX , then α= 0. Hence p = r cos(θ−0).

∴ p = r cosθ.

3 If L ∥←→OX , then α= π
2 . Hence p = r cos(θ− π

2 ) = r sinθ. Equation of line will be p = r sinθ.

4 If L =←→
OX , then p = 0 and α= π

2 . Hence the equation of line will be r sinθ = 0.

Example 4.24. Prove that the points (6,0), (3, pi
2 ) and (−3, 7π

3 ) are non-collinear.
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Sol. The polar equation of a line passing through (6,0), (3, π3 ) and (−3, 7π
3 ) is,

∣∣∣∣∣∣
r cosθ r sinθ 1

r1 cosθ1 r1 sinθ1 1
r2 cosθ2 r2 sinθ2 1

∣∣∣∣∣∣=
∣∣∣∣∣∣∣

6(1) 6(0) 1

3( 1
2 ) 3(

p
3

2 ) 1

−3( 1
2 ) −3(

p
3

2 ) 1

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
6 0 1
3
2 3

p
3

2 1

−3
2 −3

p
3

2 1

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
6 0 1
3
2 3

p
3

2 1
0 0 2

∣∣∣∣∣∣∣
= 2(18

p
3

2 )

= 18
p

3

6= 0

∴ the given points are non-collinear

Example 4.25. Obtain the polar co-ordinates of the foot of




