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Unit 1: Physics and Measurement

Like all other sciences, physics is based on experimental observations and
quantitative measurements. The main objective of physics is to find the
limited number of fundamental laws that govern natural phenomena and to
use them to develop theories that can predict the results of future
experiments. The fundamental laws used in developing theories are
expressed in the language of mathematics, the tool that provides a bridge
between theory and experiment. When a discrepancy between theory and
experiment arises, new theories must be formulated to remove the
discrepancy. Many times a theory is satisfactory only under limited
conditions; a more general theory might be satisfactory without such
limitations. For example, the laws of motion discovered by Isaac Newton
(1642-1727) in the 17th century accurately describe the motion of objects
moving at normal speeds but do not apply to objects moving at speeds
comparable with the speed of light. In contrast, the special theory of
relativity developed by Albert Einstein (1879-1955) in the early 1900s
gives the same results as Newton’s laws at low speeds but also correctly
describes motion at speeds approaching the speed of light. Hence, Einstein’s
special theory of relativity is a more general theory of motion.

Classical physics includes the theories, concepts, laws, and experiments in
classical mechanics, thermodynamics, optics, and electromagnetism
developed before 1900. Important contributions to classical physics were
provided by Newton, who developed classical mechanics as a systematic
theory and was one of the originators of calculus as a mathematical tool.
Major developments in mechanics continued in the 18th century, but the
fields of thermodynamics and electricity and magnetism were not
developed until the latter part of the 19th century, principally because
before that time the apparatus for controlled experiments was either too
crude or unavailable.

A major revolution in physics, usually referred to as modern physics, began
near the end of the 19th century. Modern physics developed mainly because
of the discovery that many physical phenomena could not be explained by
classical physics. The two most important developments in this modern era
were the theories of relativity and quantum mechanics. Einstein’s theory of
relativity not only correctly described the motion of objects moving at
speeds comparable to the speed of light but also completely revolutionized
the traditional concepts of space, time, and energy. The theory of relativity
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also shows that the speed of light is the upper limit of the speed of an object
and that mass and energy are related. Quantum mechanics was formulated
by a number of distinguished scientists to provide descriptions of physical
phenomena at the atomic level.
Scientists continually work at improving our understanding of fundamental
laws, and new discoveries are made every day. In many research areas,
there is a great deal of overlap among physics, chemistry, and biology.
Evidence for this overlap is seen in the names of some subspecialties in
science—biophysics, biochemistry, chemical physics, biotechnology, and so
on. Numerous technological advances in recent times are the result of the
efforts of many scientists, engineers, and technicians. Some of the most
notable developments in the latter half of the 20th century were

(1) Unmanned planetary explorations and manned moon landings,

(2) Micro circuitry and high-speed computers,

(3) Sophisticated imaging techniques used in scientific research and
medicine, and 4

(4) Several remarkable results in genetic engineering. The impacts of such
developments and discoveries on our society have indeed been great, and it
is very likely that future discoveries and developments will be exciting,
challenging, and of great benefit to humanity.

1.1 Standards of Length, Mass, and Time

The laws of physics are expressed as mathematical relationships among
physical quantities that we will introduce and discuss throughout the book.
Most of these quantities are derived quantities, in that they can be expressed
as combinations of a small number of basic quantities. In mechanics, the
three basic quantities are length, mass, and time. All other quantities in
mechanics can be expressed in terms of these three. If we are to report the
results of a measurement to someone who wishes to reproduce this
measurement, a standard must be defined. It would be meaningless if a
visitor from another planet were to talk to us about a length of 8 “glitches” if
we do not know the meaning of the unit glitch. On the other hand, if someone
familiar with our system of measurement reports that a wall is 2 meters high
and our unit of length is defined to be 1 meter, we know that the height of
the wall is twice our basic length unit. Likewise, if we are told that a person
has a mass of 75 kilograms and our unit of mass is defined to be 1 kilogram,
then that person is 75 times as massive as our basic unit.1 Whatever is
chosen as a standard must be readily accessible and possess some property



that can be measured reliably. Measurements taken by different people in
different places must yield the same result.

In 1960, an international committee established a set of standards for the
fundamental quantities of science. It is called the SI (Systéme International), and
its units of length, mass, and time are the meter, kilogram, and second,
respectively. Other SI standards established by the committee are those for
temperature (the kelvin), electric current (the ampere), luminous intensity (the
candela), and the amount of substance (the mole).

Length

In A.D. 1120 the king of England decreed that the standard of length in his
countr would be named the yard and would be precisely equal to the
distance from the tip of his nose to the end of his outstretched arm.
Similarly, the original standard for the foot adopted by the French was
the length of the royal foot of King Louis XIV. This standard prevailed
until 1799, when the legal standard of length in France became the
meter, defined as one ten-millionth the distance from the equator to the
North Pole along one particular longitudinal line that passes through
Paris. Many other systems for measuring length have been developed
over the years, but the advantages of the French system have caused it
to prevail in almost all countries and in scientific circles everywhere.

As recently as 1960, the length of the meter was defined as the distance
between two lines on a specific platinum-iridium bar stored under
controlled conditions in France. This standard was abandoned for
several reasons, a principal one being that the limited accuracy with
which the separation between the lines on the bar can be determined
does not meet the current requirements of science and technology. In the
1960s and 1970s, the meter was defined as 1 650 763.73 wavelengths of
orange-red light emitted from a krypton-86 lamp.

However, in October 1983, the meter (m) was redefined as the distance
traveled by light in vacuum during a time of 1/299 792 458 second. In
effect, this latest definition establishes that the speed of light in vacuum
is precisely 299 792 458 meters per second. Table 1.1 lists approximate
values of some measured lengths. You should study this table as well as
the next two tables and begin to generate an intuition for what is meant
by a length of 20 centimeters, for example, or a mass of 100 kilograms or
a time interval of 3.2 x 107 seconds.



Mass

The SI unit of mass, the kilogram (kg), is defined as the mass of a specific
platinum-iridium alloy cylinder kept at the International Bureau of
Weights and Measures at Sevres, France. This mass standard was
established in 1887 and has not been changed since that time because
platinum-iridium is an unusually stable alloy. A duplicate of the Sevres
cylinder is kept at the National Institute of Standards and Technology
(NIST) in Gaithersburg, Maryland (Fig. 1.1a). Table 1.2 lists approximate
values of the masses of various objects.

Time

Before 1960, the standard of time was defined in terms of the mean solar
day for the year 1900. (A solar day is the time interval between successive
appearances of the Sun at the highest point it reaches in the sky each day.)
The second was defined as (1/60)( 1/60)

Table 1.1

Length (m)
Distance from the Earth to the most remote known quasar 1.4 X 10%
Distance from the Earth to the most remote normal galaxies 9 x 10%
Distance from the Earth to the nearest large galaxy 2 X 107
(M 31, the Andromeda galaxy)
Distance from the Sun to the nearest star (Proxima Centauri) 4 % 1016
One lightyear 9.46 X 10
Mean orbit radius of the Earth about the Sun 1.50 x 10'1
Mean distance from the Earth to the Moon 3.84 x 108
Distance from the equator to the North Pole 1.00 % 107
Mean radius of the Earth 6.37 x 10°
Typical altitude (above the surface) of a 2 X 10°

satellite orbiting the Earth

Length of a football field 9.1 X 10!
Length of a housefly 5% 107
Size of smallest dust particles ~10*
Size of cells of most living organisms ~1077
Diameter of a hydrogen atom ~10710
Diameter of an atomic nucleus ~1071
Diameter of a proton ~10715




(1/24) of a mean solar day. The rotation of the Earth is now known to vary
slightly with time, however, and therefore this motion is not a good one to
use for defining a time standard. In 1967, the second was redefined to take
advantage of the high precision attainable in a device known as an atomic
clock (Fig. 1.1b), which uses the characteristic frequency of the cesium-133
atom as the “reference clock.” The second (s) is now defined as 9 192 631

Table 1.2
Masses of Various Objects
(Approximate Values)
Mass (kg)
Observable ~ 10%%
LUIniverse
Milky Way ~ 1042
galaxy
Sun 1.99 x 1030
Earth 5.98 x 107
Moon 7.86 % 10%°
Shark ~ 103
Human — 102
Frog ~107!
Mosquito ~107°
Bacterium —1 x 10718
Hydrogen 1.67 x 10~27
atom
Electron 9.11 »x 1031




770 times the period of vibration of radiation from the cesium atom.
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Figure 1.1 (a) The National Standard Kilogram No. 20, an accurate copy of the
International Standard Kilogram kept at Sévres, France, is housed under a double
bell jar in a vault at the National Institute of Standards and Technology. (b) The
nation’s primary time standard is a cesium fountain atomic clock developed at the
National Institute of Standards and Technology laboratories in Boulder, Colorado.
The clock will neither gain nor lose a second in 20 million years.

To keep these atomic clocks—and therefore all common clocks and watches
that are set to them—synchronized, it has sometimes been necessary to add
leap seconds to our clocks. Since Einstein’s discovery of the linkage between
space and time, precise measurement of time intervals requires that we know
both the state of motion of the clock used to measure the interval and, in
some cases, the location of the clock as well. Otherwise, for example, global
positioning system satellites might be unable to pinpoint your location with
sufficient accuracy, should you need to be rescued. Approximate values of
time intervals are presented in Table 1.3.



Table 1.3

Approximate Values of Some Time Intervals

Time
Interval (s)

Age of the Universe 5 x 1017
Age of the Earth 1.3 x 1017
Average age of a college student 6.3 x 108
One year 3.2 X 107
One day (time interval for one revolution of the Earth about its axis) 8.6 x 101
One class period 3.0 x 103
Time interval between normal heartbeats 8% 107!
Period of audible sound waves ~1073
Period of typical radio waves ~10-6
Period of vibration of an atom in a solid ~ 10713
Period of visible light waves ~10715
Duration of a nuclear collision ~1072%2
Time interval for light to cross a proton ~10-2¢
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In addition to SI, another system of units, the U.S. customary system, is still used
in the United States despite acceptance of SI by the rest of the world. In this
system, the units of length, mass, and time are the foot (ft), slug, and second,
respectively. In this text we shall use SI units because they are almost
universally accepted in science and industry. We shall make some limited use of
U.S. customary units in the study of classical mechanics.
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In addition to the basic SI units of meter, kilogram, and second, we can also use
other units, such as millimeters and nanoseconds, where the prefixes milli- and
nano denote multipliers of the basic units based on various powers of ten.
Prefixes for the various powers of ten and their abbreviations are listed in
Table 1.4. For example, 10-3 m is equivalent to 1 millimeter (mm), and 103 m
corresponds to 1 kilometer (km). Likewise, 1 kilogram (kg) is 103 grams (g),

and 1 megavolt (MV) is 106 volts (V).

QUESTION 1: How many centimeters are there in one
kilometer? How many millimeters
in a kilometer?
QUESTION 2: How many microns are there in a
fermi?
QUESTION 3: How many microns are there in an
angstrom?

(A) 106 (B) 10% (C) 10-# (D) 10-6
There are 100 centimeters in a meter, and there are
1000 meters in a kilometer, so there are 100x1000
=105 centimeters in a kilometer. Similarly, with 103
millimeters in a meter, there are 103x103x10¢
millimeters in a kilometer
1.2 Matter and Model Building
If physicists cannot interact with some phenomenon
directly, they often imagine a model for a physical system
that is related to the phenomenon. In this context, a
model is a system of physical components, such as
electrons and protons in an atom. Once we have identified
the physical components, we make predictions about the
behavior of the system, based on the interactions among
the components of the system and/or the interaction
between the system and the environment
outside the system. As an example, consider
the behavior of matter.

A piece of
gold consists

of gold atoms.

At the center
of each atom
is a nucleus.

Inside the
nucleus are
protons
(orange) and
neutrons

(gray).

Protons and
neutrons are
composed of
quarks. The
quark
composition
of a proton is
shown here.

Don Farrall /Photodi sof

Gatty Images

%

Figure 1.2 Levels of organization in matter

A 1-kg cube of solid gold, such as that at the left of Figure 1.2, has a length of 3.73 cm on
a side. Is this cube nothing but wall-to-wall gold, with no empty space? If the cube is
cut in half, the two pieces still retain their chemical identity as solid gold. But what if
the pieces are cut again and again, indefinitely? Will the smaller and smaller pieces
always be gold? Questions such as these can be traced back to early Greek
philosophers. Two of them—Leucippus and his student Democritus—could not accept
the idea that such cuttings could go on forever. They speculated that the process
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ultimately must end when it produces a particlethat can no longer be cut. In Greek,
atomos means “not sliceable.”

From this comes our English word atom. Let us review briefly a number of
historical models of the structure of matter. The Greek model of the structure of
matter was that all ordinary matter consists of atoms, as suggested to the lower
right of the cube in Figure 1.2. Beyond that, no additional structure was specified in
the model—atoms acted as small particles that interacted with each other, but
internal structure of the atom was not a part of the model. In 1897, ].]. Thomson
identified the electron as a charged particle and as a constituent of the atom.
This led to the first model of the atom that contained internal structure.
Following the discovery of the nucleus in 1911, a model was developed in
which each atom is made up of electrons surrounding a central nucleus. A
nucleus is shown in Figure 1.2. This model leads, however, to a new
question—does the nucleus have structure? That is, is the nucleus a single
particle or a collection of particles? The exact composition of the nucleus is
not known completely even today, but by the early 1930s a model evolved
that helped us understand how the nucleus behaves. Specifically, scientists
determined that occupying the nucleus is two basic entities, protons and
neutrons. The proton carries a positive electric charge, and a specific
chemical element is identified by the number of protons in its nucleus. This
number is called the atomic number of the element. For instance, the nucleus
of a hydrogen atom contains one proton (and so the atomic number of
hydrogen is 1), the nucleus of a helium atom contains two protons (atomic
number 2), and the nucleus of a uranium atom contains 92 protons (atomic
number 92). In addition to atomic number, there is a second number
characterizing atoms—mass number, defined as the number of protons plus
neutrons in a nucleus. The atomic number of an element never varies (i.e., the
number of protons does not vary) but the mass number can vary (i.e., the
number of neutrons varies). The existence of neutrons was verified
conclusively in 1932. A neutron has no charge and a mass that is about equal
to that of a proton. One of its primary purposes is to act as a “glue” that holds
the nucleus together. If neutrons were not present in the nucleus, the
repulsive force between the positively charged particles would cause the
nucleus to come apart. But is this where the process of breaking down stops?
Protons, neutrons, and a host of other exotic particles are now known to be
composed of six different varieties of particles called quarks, which have
been given the names of up, down, strange, charmed, bottom, and top. The up,
charmed, and top quarks have electric charges of + 3/2 that of the proton,
whereas the down, strange, and bottom quarks have charges of - 1/3 that of

11



the proton. The proton consists of two up quarks and one down quark, as
shown at the top in Figure 1.2. You can easily show that this structure
predicts the correct charge for the proton. Likewise, the neutron consists of
two down quarks and one up quark, giving a net charge of zero. This process
of building models is one that you should develop as you study physics. You
will be challenged with many mathematical problems to solve in this study.
One of the most important techniques is to build a model for the problem
identify a system of physical components for the problem, and make
predictions of the behavior of the system based on the interactions among
the components of the system and/or the interaction between the system
and its surrounding environment.

m The laser-ranging device shown in the chapter photo is capa-
ble of measuring the travel time of a light pulse to within better
than a billionth of a second. How far does light travel in one billionth of a second

(a nanosecond)?

SOLUTION: The distance light travels in a nanosecond is
[distance] = [speed] X [time]

= (2.997 924 58 x 10° ?) X (1.0 X 1072 5)

= (2,997 924 58 x 1.0) X (10% x 107%) x (% x g)
=~ 3.0 % (1071 % (m)

= 30 cm

or, in British units, almost one foot. The ruler drawn diagenally across this page
shows the distance light travels in 1 nanosecond.

1.3 Density and Atomic Mass

In Section 1.1, we explored three basic quantities in mechanics. Let us look now at
an

example of a derived quantity—density. The density p(Greek letter rho) of any
substance is defined as its mass per unit volume:

m

p= Ed (1.1)

For example, aluminum has a density of 2.70 g/cm3, and lead has a density of

11.3 g/cm3. Therefore, a piece of aluminum of volume 10.0 cm3 has a mass of 27.0
g, whereas an equivalent volume of lead has a mass of 113 g. A list of densities for
various substances is given in Table 1.5.

The numbers of protons and neutrons in the nucleus of an atom of an element are
related to the atomic mass of the element, which is defined as the mass of a single
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atom of the element measured in atomic mass units (u) where 1 u =1.660 538 7 x
10-27 kg.

QUiCk QUiZ 1.1 In a machine shop, two cams are produced, one of alu-
minum and one of iron. Both cams have the same mass. Which cam is larger? (a) the
aluminum cam (b) the iron cam (c) Both cams have the same size.

Table 1.5
Densities of Various Substances
Substance Density p (10° kg /m?)
Platinum 21.45
Gold 19.3
Uranium 18.7
Lead 11.9
Copper 8.92
Iron 7.86
Aluminum 2.70
Magnesium 1.75
Water 1.00
Alr at atmospheric pressure 0.0012
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Example 1.1 How Many Atoms in the Cube?

A solid cube of aluminum (density 2.70 g/ em®) has a vol-
ume of 0.200 ecm?. It is known that 27.0 g of aluminum con-
tains 6.02 X 10® atoms. How many aluminum atoms are
contained in the cube?

Solution Because density equals mass per unit volume, the
mass of the cube is

m=pV = (270 g/car’)(0.200 car) = 0540 g

To solve this problem, we will set up a ratio based on the fact
that the mass of a sample of material is proportional to the
number of atoms contained in the sample. This technique
of solving by ratios is very powerful and should be studied
and understood so that it can be applied in future problem
solving. Let us express our proportionality as m = kN, where
mis the mass of the sample, N'is the number of atoms in the
sample, and k is an unknown proportionality constant. We

Example 2

write this relationship twice, once for the actual sample of
aluminum in the problem and once for a QY.ULg sample, and
then we divide the first equation by the second:

Msample _ Nsamgle
Ma70 g NZT.EI g

Mgample = JIzI“"E::mlplta
myrog = kNorog
Notice that the unknown proportionality constant k cancels,

so we do not need to know its value. We now substitute the
values:

0.540 g _ Nsample
20g 602X 10 atoms

(0.540 g)(6.02 X 10™ atoms)
97.0 g

A's.amp]e =

= 1.90 X 10% atoms

How many atoms are there in a 5-cent coin? Assume that the coin is made of
nickel and has a mass of 5.2 10-3 kg, or 5.2 grams. Atomic masses is 58.69.

SOLUTION: We recall that the atomic mass is the mass of one atom expressed in u.
According to the periodic table of chemical elements in Appendix 8, the atomic mass
of nickel is 58.69.|T11us, the mass of one nickel atom is 58.69 u, or, 58.69 < 1.66 X
107% kg =9.74 X 107 kg. The number of atoms in our 5.2 X 1073 kg is then

52 % 10 ° ke

9?—1- bt 10_26 kgfaton'l

= 5.3 X 10* atoms
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1.4 Dimensional Analysis

The word dimension has a special meaning in physics. It denotes the physical
nature of a quantity. Whether a distance is measured in units of feet or meters or
fathoms, it is still a distance. We say its dimension is length.

The symbols we use in this book to specify the dimensions of length, mass, and
time are L, M, and T, respectively.3 We shall often use brackets [ ] to denote the
dimensions of a physical quantity. For example, the symbol we use for speed in
this book is v, and in our notation the dimensions of speed are written [v] =L/T.
As another example, the dimensions of area A are

[A] =L2. The dimensions and units of area, volume, speed, and acceleration are
listed in Table 1.6. The dimensions of other quantities, such as force and energy,
will be described as they are introduced in the text. In many situations, you may
have to derive or check a specific equation. A useful and powerful procedure
called dimensional analysis can be used to assist in the derivation or to check
your final expression. Dimensional analysis makes use of the fact that
Table 1.6

Units of Area, Volume, Velocity, Speed, and Acceleration

Area Yolume Speed Acceleration
System (LY (L3) (L/T) (L/T2)
SI m? m? m/s m/s?
.5, customary 2 i fr/s fr/s?

dimensions can be treated as algebraic quantities. For example, quantities can be
added or subtracted only if they have the same dimensions. Furthermore, the
terms on both sides of an equation must have the same dimensions. By following
these simple rules, you can use dimensional analysis to help determine whether
an expression has the correct form. The relationship can be correct only if the
dimensions on both sides of the equation are the same.

To illustrate this procedure, suppose you wish to derive an equation for the
position x of a car at a time t if the car starts from rest and moves with constant
acceleration. We shall find that the correct expression is X = at 2. Let us use
dimensional analysis to check the validity of this expression. The quantity x on
the left side has the dimension of length. For the equation to be dimensionally
correct, the quantity on the right side must also have the dimension of length. We
can performa dimensional check by substituting the dimensions for acceleration,
L/T?2 (Table 1.6), and time, T, into the equation. That is, the dimensional form of
the equation
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x=%cz£2is

L= =L

L
T2

The dimensions of time cancel as shown, leaving the dimension of length on the right
Hand side. A more general procedure using dimensional analysis is to set up an
expression of the form

[a"f"] =L = 1.170

The exponents of L and T must be the same on both sides of the equation. From
the exponents of L, we see immediately that n = 1. From the exponents of T, we
see that m - 2n = 0, which, once we substitute for n, gives us m = 2. Returning to
our original expression

. xa af" we conclude that x« af* This result differs by a factor of é from
the correct expression, which is x = % ntg.‘

Quick Qu 1Z 1.2 True or False: Dimensional analysis can give you the numeri-

cal value of constants of proportionality that may appear in an algebraic expression.
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1.3 UNITS OF MEASUREMENT

One of the most important rules to remember and apply when working in
any field of technology is to use the correct units when substituting num-
bers into an equation. Too often we are so infent on obtaining a numeri-
cal solution that we overlook checking the units associated with the
numbers being substituted into an equation. Results obtained, therefore,
are often meaningless. Consider, for example, the following very funda-
mental physics equation:

As indicated above. the solution is totally incorrect. If the result is de-
sired in miles per hour, the unit of measurement for distance must be miles,
and that for time, hours. In a moment, when the problem is analyzed prop-
erly, the extent of the error will demonstrate the importance of ensuring that

the numerical value substituted info an equation must have the unit
of measurement specified by the equation.

The next question is normally, How do [ convert the distance and time
to the proper unit of measurement? A method is presented in Section 1.9
of this chapter, but for now it is given that

I mi = 5280 ft
4000 ft = 0.76 mi

I min = 35 h =0.017h
Substituting into Eq. (1.1), we have

d 0.76 mi
v = ? = m = 44.71 ]l][]h

which is significantly different from the result obtained before.

As indicated above, the solution is totally incorrect. If the result is de-
sired in miles per hour, the unit of measurement for distance must be miles,
and that for time, Aouwrs. In a moment, when the problem is analyzed prop-
erly, the extent of the error will demonstrate the importance of ensuring that

the numerical value substituted info an equation must have the unit
af measurement specified by the equation.

The next question is normally, How do [ convert the distance and time
to the proper unit of measurement? A method is presented in Section 1.9
of this chapter, but for now it is given that

1 mi = 5280 ft
4000 ft = 0.76 mi

I min =3 h=0017h
Substituting into Eq. (1.1}, we have

d_076mi
t 0.017h

which is significantly different from the result obtained before.

W=

= 44.71 mph



To complicate the matter further, suppose the distance is given in kilo-
meters, as is now the case on many road signs. First, we must realize that
the prefix kile stands for a multiplier of 1000 (to be introduced in Section
1.5), and then we must find the conversion factor between kilometers and
miles. If this conversion factor is not readily available, we must be able
to make the conversion between units using the conversion factors be-
tween meters and feet or inches, as described in Section 1.9.

Before substituting numerical values into an equation, try to mentally
establish a reasonable range of solutions for comparison purposes. For
instance, if a car travels 4000 ft in 1 min, does it seem reasonable that the
speed would be 4000 mph? Obviously not! This self-checking procedure
is particularly important in this day of the hand-held calculator, when
ridiculous results may be accepted simply because they appear on the
digital display of the instrument.

Finally,

if a unit of measurement is applicable to a result or piece of data,
then it must be applied to the numerical value.

To state that v = 44.71 without including the unit of measurement mph
is meaningless.

Eq. (1.1) is not a difficult one. A simple algebraic manipulation will
result in the solution for any one of the three variables. However, in light
of the number of questions arising from this equation, the reader may
wonder if the difficulty associated with an equation will increase at the
same rate as the number of terms in the equation. In the broad sense, this
will not be the case. There is, of course, more room for a mathematical
error with a more complex egquation, but once the proper system of units
is chosen and each term properly found in that system, there should be
very little added difficulty associated with an equation requiring an in-
creased number of mathematical calculations.

" In review, before substituting numerical values into an equation, be

absolufely sure of the following:

1. Each quantity has the proper unit of measuremment as defined by
the equation.

2. The proper mapnitude of each guantity as determined by the
defining eguation is substituied.

3. Each quantity is i the sane system of units (or as defined by
the equation).

4. The wmagnitude of the resuit is of a reasonabie nature when
compared fo the level of the substituted guantitics.

5. The proper unit of mmeasurenent is applied to the resultt.
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In review, before substituting numerical values into an equation, be
absolutely sure of the following:

I. FEach guantity has the proper unit of measurcment as defined by
e equation.

2. The proper magnitude of each guantity as determined by the
defining equation is substituted.

3. Each quantity is in the same systemn of units (or as defined by
e equation).

4. The magnitude of the resull is of a reasonable nature when

compared (o the level of the substituted guantities.

The proper unif of measurement is applied fo the resulf.

Ly

1.4 SYSTEMS OF UNITS

In the past, the sysfems of units most commonly used were the English
and metric, as outlined in Table 1.1. Note that while the English system
is based on a single standard, the metric is subdivided into two interre-
lated standards: the MKS and the CGS. Fundamental quantities of these
systems are compared in Table 1.1 along with their abbreviations. The
MKS and CGS systems draw their names from the units of measure-
ment used with each system; the MKS system uses Meters, Kilograms,
and Seconds, while the CGS system uses Centimeters, Grams, and
Seconds.

Understandably, the use of more than one system of units in a world
that finds itself continually shrinking in size, due to advanced technical
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Comparison of the English and metric systems of unis.
ool |

English Metric
MKS CGS B |
Length: Meter (m) Centimeter (cm) Meter (m)
Yard (yd) (39.371n.) (254cm=1in)
(0.914 m) (100 cm)
Mass:
Slug Kilogram (kg) Gram (g) Kilogram (kg)
(146kg) (1000 g)
Force:
Pound (Ib) Newton (N) Dyne Newton (N)
(445N) (100,000 dynes)
Temperature:
Fahrenheit (°F) Celsius or Centigrade ("C) Kelvin (K)
(= %UC +32) Cemjigradc (°C) K=127315+°C
= q
(— 6( F— 32))
Enerpy:
Foot-pound (ft-1b) Newton-meter (Nsm) Dyne-centimeter or erg Joule (])
(1.356 joules) or joule (J) (1 joule = 10’ ergs)
(0.7376 ft-Ib)
Time:
Second (5) Second (5) Second (5) Second (s)
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developments in communications and transportation, would introduce
unnecessary complications to the basic understanding of any technical
data. The need for a standard set of units to be adopted by all nations
has become increasingly obvious. The International Bureau of Weights
and Measures located at Sevres, France, has been the host for the Gen-
eral Conference of Weights and Measures, attended by representatives
from all nations of the world. In 1960, the General Conference adopted
a system called Le Systéme International d’Unités (International Sys-
tem of Units)., which has the international abbreviation S1. Since then,
it has been adopted by the Institute of Electrical and Electronic Engi-
neers, Inc. (IEEE) in 1965 and by the United States of America Stan-
dards Institute in 1967 as a standard for all scientific and engineering
literature.

For comparison, the ST units of measurement and their abbreviations
appear in Table 1.1. These abbreviations are those usually applied to each
unit of measurement, and they were carefully chosen to be the most ef-
fective. Therefore, it is important that they be used whenever applicable
to ensure universal understanding. Note the similarities of the SI system
to the MKS system. This text uses, whenever possible and practical, all
of the major units and abbreviations of the SI system in an effort to sup-
port the need for a universal system. Those readers requiring additional
information on the S1 system should contact the information office of the
American Society for Engineering Education (ASEE).*

Figure 1.4 should help you develop some feeling for the relative
magnitudes of the units of measurement of each system of units. Note
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Length:

| yard (yd) = 0.914 meter (m) = 3 feet (ft) Im = 100em = 39.37in.
5 | 23¢em = lin
and MKS I m , )
English | | 1yd " lensths
) engths
s [ ]tem | fenets
English E 1t
Mass: Force:
I slug = 14.6 kilograms English
| pound (Ib)
R

I pound (Ib) = 4.43 newtons (N)

I kilogram = 1000 g I newton = 100,000 dynes (dyn)

I kg lg Sl and
@ 51 and -~ CG8 MKS
MKS - | newton (N)

D | dyne (CGS)
Temperature:
MKS
and
English CGCs 3l
(Bailing) ™=313F " TN [ 3RBASK Energy:
English
Iftlb  S]and
™1 MKS§ ft-Ib = 1.336 joules
ne) m———— ] —— — 1 joule (] 1 =10
(Freezing) m=t-s5es ie IS K joule ) 1joule = 10 ergs
== 0F

F=C+3 L erg (CCS)

L} - i L _ L] —

C= I;(F i

) K=1515+"C
(Absolue zero) [_|~439.TF__ |_[IBISC || 0K
Fahrenheit Celsius or Kelvin
Centigrade
FIG. 1.4

Comparison of units of the various systems of units.
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in the figure the relatively small magnitude of the units of measurement
for the CGS system.

A standard exists for each unit of measurement of each system. The
standards of some units are quite interesting.

The meter was originally defined in 1790 to be 1/10,000,000 the dis-
tance between the equator and either pole at sea level, a length preserved
on a platinum-iridium bar at the International Bureau of Weights and
Measures at Sévres, France.

The meter is now defined with reference fo the speed of light in a
vacuum, which is 299,792 455 m/s.

The kifogram is defined as a mass equal to 1000 times the mass of
one cubic centimeter of pure water at 4°C.

This standard is preserved in the form of a platinum-iridium cylinder in
Sévres.
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1.5 Conversion of Units

Sometimes it is necessary to convert units from one measurement system to another, or

Example 1.2 Analysis of an Equation

Show that the expression v= af is dimensionally correct, ~ The same table gives us L/T2 for the dimensions of accelera-
where v represents speed, a acceleration, and fan instant of  tion, and so the dimensions of atare
time.
L L
[af] = ?T = T
Solution For the speed term, we have from Table 1.6

Therefore, the expression is dimensionally correct. (If the

_ L expression were given as v = at? it would be dimensionally

[v] = P 8! Y
T incorvect. Try it and seel)

Example 1.3 Analysis of a Power Law

Suppose we are told that the acceleration a of a particle  This dimensional equation is balanced under the conditions
moving with uniform speed v in a circle of radius r is pro-
portional to some power of 7 say v, and some power of 4,
say ™. Determine the values of n and m and write the sim- ntm= 1 and  m= 2
plest form of an equation for the acceleration.
Therefore n = —1, and we can wrnte the acceleration ex-

Solution Let us take ato be pression as
a= k™"
a=hk = kﬁ
where k is a dimensionless constant of proportionality. T
Knowing the dimensions of 4, 5, and v, we see that the di-
mensional equation must be When we discuss uniform circular motion later, we shall see
L L\ prm that k=11ifa consistent set of units is usetli. The constant k
— = M= = would not equal 1 if, for example, vwere in km/h and you
m .
T T T wanted ain m/s%.

to convert within a system, for example, from kilometers to meters. Equalities between
SI'and U.S. customary units of length are as follows:

1 mile=1609m=1.609km1 ft=0.304 8 m=30.48 cm

1m=39.37in.=3.281 ft 1 in. = 0.025 4 m = 2.54 cm (exactly)

A more complete list of conversion factors can be found in Appendix A.

Units can be treated as algebraic quantities that can cancel each other. For example,
suppose we wish to convert 15.0 in. to centimeters. Because 1 in. is defined as exactly

2.54 cm, we find that ( 2 54 cm )

15.0in. = (15.0ia7) = 58.1 cm

where the ratio in parentheses is equal to 1. Notice that we choose to put the unit of an
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inch in the denominator and it cancels with the unit in the original quantity. The
remaining unit is the centimeter, which is our desired result.

Qu | Ck QU iZ 1 .3 The distance between two cities 1s 100 mi. The number of kilo-
meters between the two cities is (a) smaller than 100 (b) larger than 100 (c) equal to 100.

Example 1.4 Is He Speeding?
On an interstate highway in a rural region of Wyoming, a  Figure 1.3 shows the speedometer of an automobile, with
car is traveling at a speed of 38.0 m/s. Is this car exceeding  speeds in both mi/h and km/h. Can you check the conver-

the speed limit of 75.0 mi/h? sion we just performed using this photograph?

Solution We first convert meters to miles:

1
(38.0 ni/s) ( 1 mmg;{) = 9.36 X 10~2mi/s
Now we convert seconds to hours;
60 60 mim
(2.36 X 102 mi/) (—ig ) ( = ) = 85.0mi/h
1 mimi 1h

Thus, the car is exceeding the speed limit and should slow
down.

What If? What if the driver is from outside the U.S. and is
familiar with speeds measured in km/h? What is the speed

of the car in km/h?

Answer We can convert our final answer to the appropriate
units:

il Boorman/Gelly Images

Figure 1.3 The speedometer of a vehicle that
K 1.609 km _ shows speeds in both miles per hour and kilome-
(85.0 mi/h) =137km/h P P

1 i

ters per hour.
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For example, the d;ansity of water is 1.000 X 10° ke/ m>. To express this
in g/cm’, we substitute 1 kg = 1000 g and 1 m = 100 cm, and we find

3

1000 0
1.000 X 1n33; — 1.000 X 10° X —gj — 1,000 X 10° X 6—33
m (100 cm) 10" cm
— 1.000 is
Cin

Example
We can obtain a rough estimate of the size of a molecule by means of the
following simple experiment. Take a droplet of oil and let it spread out on a
smooth surface of water. When the oil slick attains its maximum area, it
consists of a monomolecular layer; that is, it consists of a single layer of oil
molecules which stand on the water surface side by side. Given that
an oil droplet of mass 8.4x10-7 kg and of density 920 kg/m? spreads out into an
oil slick of maximum area 0.55 m?, calculate the length of an oil molecule.

SOLUTION: The volume of the oil droplet is

[mass]
[density]
84X 1077 kg

920 kg/m”

[volume] =

=91 x 10 %m?

The volume of the oil slick must be exactly the same. This latter volume can be
expressed in terms of the thickness and the area of the oil slick:

[volume] = [thickness] » [area]
Consequently,

1
[thickness] = M

[area]

9.1 X 1071 m?
— 2 —17x10%m (1.12)
. ITY

Since we are told that the oil slick consists of a single layer of molecules stand-
ing side by side, the length of a molecule is the same as the calculated thick-
ness, 1.7 X 107 m.
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1.6 Estimates and Order-of-Magnitude Calculations

[t is often useful to compute an approximate answer to a given physical problem even
when little information is available. This answer can then be used to determine
whether or not a more precise calculation is necessary. Such an approximation is
usually based on certain assumptions, which must be modified if greater precision is
needed. We will sometimes refer to an order of magnitude of a certain quantity as the
power of ten of the number that describes that quantity. Usually, when an order-of
magnitude calculation is made, the results are reliable to within about a factor of 10. If
a quantity increases in value by three orders of magnitude, this means that its value
increases by a factor of about 103 =1 000. We use the symbol ~ for “is on the
order of.” Thus, 0.008 6 ~10-2 0.0021~ 103720 ~ 103

The spirit of order-of-magnitude calculations, sometimes referred to as
“guesstimates” or “ball-park figures,” is given in the following quotation: “Make
an estimate before every calculation, try a simple physical argument. .. before
every derivation, guess the answer to

every puzzle.”4 Inaccuracies caused by guessing too low for one number are
often canceled out by other guesses that are too high. You will find that with
practice your guesstimates become better and better. Estimation problems can
be fun to work as you freely drop digits, venture reasonable approximations for
unknown numbers, make simplifying assumptions, and turn the question around
into something you can answer in your head or with minimal mathematical
manipulation on paper. Because of the simplicity of these types of calculations,
they can be performed on a small piece of paper, so these estimates are often
called “back-of-the envelope calculations.”

Example 1.5 Breaths In a Lifetime

Estimate the number of breaths taken during an average life

span.

in a year and the number of hours in a day are close
enough for our purposes. Thus, in 70 years there will be
(70 yr)(6 X 10° min/yr) = 4 X 10" min. At a rate of 10
Solution We start by guessing that the typical life span is
about 70 years. The ?nl?othergcsijmale weﬂust make ?n this breaths/min, an individual would take 4 X 10% breaths
example is the average number of breaths that a person
takes in 1 min. This number varies, depending on whether
the person is exercising, sleeping, angry, serene, and so
forth. To the nearest order of magnitude, we shall choose 10
breaths per minute as our estimate of the average. (This is

in a lifetime, or on the order of 10 breaths.

What H? What if the average life span were estimated as
80 years instead of 707 Would this change our final estimate?

certainly closer to the true value than 1 breath per minute or
100 breaths per minute.) The number of minutes in a year is
approximately

1 400 days \ { 25h \ { 60 min 6 x 10 mi
M yT 1 day 1h /| i

Notice how much simpler it is in the expression above to
multiply 400 X 25 than it is to work with the more accurate
365 X 24, These approximate values for the number of days

Answer We could claim that (80 yr)(6 x 10° min/yr) =
5 % 107 min, so that our final estimate should be 5 X 10%
breaths. This is still on the order of 10° breaths, so an order
of-magnitude estimate would be unchanged. Furthermore,
80 vears is 14% larger than 70 years, but we have overesti-
mated the total time interval by using 400 days in a year in-
stead of 365 and 25 hours in a day instead of 24. These two
numbers together result in an overestimate of 14%, which
cancels the effect of the increased life span!
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Example 1.7 How Much Gas Do We Use?

Fstimate the number of gﬂllcms of gasoline used each year
by all the cars in the United States.

Solufion Because there are about 280 million people in
the United States, an estimate of the number of cars in the
country is 100 million (guessing that there are between two
and three people per car). We also estimate that the average

Example 1.6 It's a Long Way to San Jose

Estimate the number of steps a person would take walking
from New York to Los Angeles.

Solution Without looking up the distance between these
two cities, you might remember from a geogmph].' class that
they are about 3 000 mi apart. The next approximation we
must make is the length of one step. Of course, this length

depends on the person doing the walking, but we can esti-

mate that each step covers about 2 ft. With our estimated

step size, we can determine the number of steps in 1 mi. Be-

cause this is a rough calculation, we round 5 280 ft/mi to
5000 ft/mi. (What percentage error does this introduce?)
This conversion factor gives us

5000 ft/mi

—=2500 i
It 2 200 steps/mi

distance each car travels per year is 10 000 mi. If we assume
a gasoline consumption of 20 mi/gal or 0.05 gal/mi, then
each car uses about 500 gal /yr. Multiplying this by the total
number of cars in the United States gives an estimated total

consumption of 5 X 101 gl ~ 10! gal.

Now we switch to scientific notation so that we can do the
calculation mentally:

(3 % 10° ) (2.5 X 10° steps/mi)
= 75% 10 steps ~ 107 steps

So il we intend to walk across the United States, it will take
us on the order of ten million steps. This estimate is almost
certﬂinl}' too small because we have not accounted for cun-
ing roads and going up and down hills and mountains,
Nonetheless, it is probably within an order of magnitude of
the correct answer,
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2-Vectors

2.1 Coordinate Systems ¥

Many aspects of physics involve a description of a or alx9)

location in space. The mathematical description of an

object’s motion requires a method for describing the 2er P

object’s position at various times. In two dimensions, (=3, 4) 25, %)

this description is accomplished with the use of the 5 . T

Cartesian coordinate system, in which perpendicular =]
. . - - . Figure Designation of points
axes intersect at a point defined as the origin O (Fig. in a Cartesian coordinate system,

2.1). Cartesian coordinates are also called rectangular  Every point is labeled with coordi-
nates (x, yh.

coordinates.

2.2 Vector and Scalar Quantities

A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction
associated with it.
Magnitude - A numerical value with units. Others, such as temperature, can have

either positive or negative values.
A VECTOR
for is ANY quantity in physics that has BOTH MAGNITUDE and DIRECTION.

Vectors are typically illustrated by drawing an ARROW above the symbol. The
arrow is used to convey direction and magnitude.. The magnitude of a vector is
always a positive number.

Acceleration is an example the vector quantities.

Quick Quiz 3.1 Which of the following are vector quantities and which are
scalar quantities?

(a) your age (b) acceleration (c) velocity (d) speed (e) mass.
Note Please be informed about the difference between the distance and the
displacement
The displacement vector tells us only where the final position (P2) is in relation
to the initial position (P1); it does not tell us what path the ship followed
between the two positions.
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* Tim covered a distanceof (3m + 4qm) =5m

and a displacement of 5 m, NE m

am

N
\

2.3 Some Properties of Vectors

Equal Vectors : have the same length and direction, and /‘ /‘

must represent the same quantity (such as force or velocity).

Inverse Vectors have the same length, but opposite direction.

V/'
— — — — -V

Adding Vectors: If A & B are vectors ;then A + B =B + A
(known as the commutative law of addition). Adding vectors can be done by

4 different methods:

P Parallelogram Method - For a quick assessment. Good for concurrent forces.
P Tip-to-Tail Method - Drawing vectors to scale on paper to find an answer.
Good for displacements.
» Mathematical Method - Determining an answer using trigonometry. The vectors
need to be at right angles to one another.
P Geometric construction - for summing more than two vectors.
The following examples are helpful for understanding the pre- mentioned methods.
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1-Parallelogram Method

Drraw ﬁ,
then add A. =

Drraw K,
then add E.

Figure ET]:L{S comstruction
shows that A + ﬁ = + A or, in

other words, that vecror addition is
Comomutative.

2-Tip-to-Tail Method
» Draw vectors, tip to tail
P Using your scale, measure length of R

.astail of A
on head of B.
R B
9m/s C
>
A
16 mls Thil of B on head
of A gives same
. resultant...

Figure 3.6 Whinvector Bis 3-Mathemat|ca|
added to vector A, the resultant R is
the vector that runs from the tail of M eth Od

Ktu:rtheﬁpnf‘ .
When 2 vectors are perpendicular, you must use the next example:
-A man walks 95 km, East then 55 km, north. Calculate his RESULTANT

DISPLACEMENT.

The hypotenuse in Physics
is called the RESULTANT.

ct=a*+ b s>c=~a®+bh*
...... 55 km, N
Vertical ¢ =Resultant = +/95% + 552

Pt Companent

------- \ ¢ =+/12050 =109.8 kon
Horizontal Component
ié 95 km,E \

The LEGS of the triangle are called the COMPONENTS
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4- Geometric construction
We can add 3 or more vectors by placing them tip to tail in any order, so long as
they are of the same type (force, velocity, displacement, etc.).

_—
Figure 3.7 Geometric construc-
tion for summing four vectors. The

resultant vector R is by definition
the one that completes the polygon.

kK

blue + green + blac

SubtractingVectors:
In order to subtract vectors, we define the negative of a vector, which has the same
magnitude but points in the opposite direction. Then we add the negative vector:

\Y A v -V L. N
/ — 1 i —_ 2/ + 1 - Vz_Vl vz

Multiplication of a Vector by a Scalar Number
A vector V can be multiplied by a scalar c; the result is a vector cV that has the same
direction but a magnitude cV. If c is negative, the resultant vector points in the
opposite direction.
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Dot Product

The dot product (also called the scalar product) of two vectors A and B is denoted

by A.B. This quantity is simply the product of the magnitudes of
the two vectors and the cosine of the angle between them

A-B=ABcos ¢

Thus, the dot product of two vectors simply gives a number, that is, a scalar rather
than a vector.

Cross Product

In contrast to the dot product of two vectors, which is a scalar, the cross product (also
called the vector product) of two vectors is a vector. The cross product of two vectors
A and B is denoted by A _B. The magnitude of this vector is equal to the product of
the magnitudes of the two vectors and the sine of the angle between them. Thus if we
write the vector resulting from the cross productas C = A xB

then the magnitude of this vectoris €= 4Bsin ¢

-

Direction of C=AX B |
is perpendicular to
plane of A and B.

=

Angle between two ]
vectors means vertex /
angle & when vectors

are tail to tail.

C

The direction of the vector C is defined to be along the perpendicular to the plane
formed by A and B (Fig.). The direction of C along this perpendicular is given by the
right-hand rule: put the fingers of your right hand along BxaA=-AxB A (Fig.), and
curl them toward B in the direction of the smaller angle from A to B (Fig.); the thumb
then points along C. Note that the fingers must be curled from the first vector in the
product toward the second. Thus, Ax B is not the same as B x A. For the latter
product, the fingers must be curled from B toward A (rather than vice versa); hence,
the direction of the vector B x A is opposite to that of A x B:

33



Unit 3 : Properties of Matter

3.1.Elasticity

3.1.1 Elastic Properties of Solids
Except for our discussion about springs in earlier chapters, we have assumed
objects remain rigid when external forces act on them. In Section 9.8, we
explored deformable systems. In reality, all objects are deformable to some
extent. That is, it is possible to change the shape or the size (or both) of an
object by applying external forces. As these changes take place, however,
internal forces in the object resist the deformation.
We shall discuss the deformation of solids in terms of the concepts of stress
and strain. Stress is a quantity that is proportional to the force causing a
deformation; more specifically, stress is the external force acting on an object
per unit cross-sectional area. The result of a stress is strain, which is a
measure of the degree of deformation. Itis found that, for sufficiently small
stresses, stress is proportional to strain; the constant of proportionality
depends on the material being deformed and on the nature of the
deformation.
We call this proportionality constant the elastic modulus. The elastic modulus
is therefore defined as the ratio of the stress to the resulting strain:

Elastic modulus = stress /strain
The elastic modulus in general relates what is done to a solid object (a force is
applied) to how that object responds (it deforms to some extent). It is similar
to the spring constant k in Hooke’s law that relates a force applied to a spring
and the resultant deformation of the spring, measured by its extension or
compression.
We consider three types of deformation and define an elastic modulus for
each:
1. Young’'s modulus measures the resistance of a solid to a change in its length.
2. Shear modulus measures the resistance to motion of the planes within a
solid parallel to each other.
3. Bulk modulus measures the resistance of solids or liquids to changes in
their volume.
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3.1.2 Young's Modulus: Elasticity in Length
Consider a long bar of cross-sectional area A and initial length Li that is
clamped at one end as in Figure 2.1. When an external force is applied
perpendicular to the cross section, internal molecular forces in the bar
resist distortion (“stretching”), but the bar reaches an equilibrium situation
in which its final length Lf is greater than Li and in which the external force
is exactly balanced by the internal forces.
In such a situation, the bar is said to be stressed. We define the tensile stress
as the ratio of the magnitude of the external force F to the cross-sectional
area A, where the cross section is perpendicular to the force vector. The
tensile strain in this case is defined as the ratio of the change in length DL to
the original length Li. We define Young’s modulus by a combination of these
two ratios:

Y = tensile stress/tensile strain = (F/A) /( AL/Li )
Young’s modulus is typically used to characterize a rod or wire stressed
under either tension or compression. Because strain is a dimensionless
quantity, Y has units of force per unit area. For relatively small stresses, the
bar returns to its initial length when the force is removed. The elastic limit
of a substance is defined as the maximum stress that canbe applied to the
substance before it becomes permanently deformed and does not return to
its initial length. It is possible to exceed the elastic limit of a substance by
applying a sufficiently large stress as seen in Figure 2. 2. Initially, a stress-
versus strain curve is a straight line. As the stress increases, however, the
curve is no longer a straight line. When the stress exceeds the elastic limit,
the object is permanently distorted and does not return to its original shape
after the stress is removed. As the stress is increased even further,
the material ultimately breaks.

Sress
The amount by (MPa)
which the length
of the bar changes 40 - "nl
due to the applied Flastic )
Force {5 AT, a00 - it Breaking
point
200 -
| g A Elastic
“"‘“H_{i 7 oo _/behm"mr
\--| | S~ l 1 l l Strain
ﬁ;‘“ 0 0002 0004 0006 0008 0.01

Figure 2.1 A force F is applied to the free end Figure 2. 2 Stress-versus-strain curve for
elastic of a bar clamped at the other end. solid
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The lifting cable of a tower crane is made of steel, with a diam-
FEAMAE eter of 5.0 cm. The length of this cable, from the ground to the
horizontal arm, across the horizontal arm, and down to the load, is 160 m (Fig.

14.28). By how much does this cable stretch in excess of 1ts initial length when
carrying a load of 60 tons?

oy
e e e b L L T LT e

=

| Total cable [-:rLgthJ

is 160 m.

FIGURE * = _» Elongstion
ofa tower crane cable

SOLUTIOMN: The cross-sectional area of the cable is
A=arl =7 % (0025 m) =20 x 10 m’
and the force per unit area is

FooO(60000 ke > 9.81 mfs’
E_L ke — ) _ 29 x 10° Nim?
A 20107 m

Since we are dealing with an elongation, the relevant elastic modulus is the Young's
modulus. According to Table 14.1, the Youngs modulus of steel is 22 % 10" Nfm?
Hence Eq. (14.18) yields

AL 1F 1 B e 3
—_— == 2.9 x 10° N'm
L Yd 22%10"N/m

=13 3 1077

The change of length is therefore

AL =13x 10 % L=13x 10" % 160 m
=021 m
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3.1.3 Shear Modulus: Elasticity of Shape

Another type of deformation occurs when an object is subjected to a force

parallel to one of its faces while the opposite face is held fixed by another
force (Fig.2. 3a). The stress in this case is called a shear stress. If the
object is originally a rectangular block, a shear stress results in a shape

whose cross section is a parallelogram. A book pushed sideways as shown
in Figure 2. 3b is an example of an object subjected to a shear stress. To a

first approximation (for small distortions), no change in volume occurs
with this deformation. We define the shear stress as F/A, the ratio of the

tangential force to the area A of the face being sheared. The shear strain is

defined as the ratio Ax/h, where Ax is the horizontal distance that the
sheared face moves and h is the height of the object. In terms of these

quantities, the shear modulus is :

S = shear stress/shear strain = (F/A) /( Ax/h)
Like Young’'s modulus, the unit of shear modulus is the ratio of that

for force to that for area.

The shear
SITess Causes
the top face
of the block
{0 move to
the right
relative to
the bottom.

(2.7)

The shear
SITess Causes
the front
cover of the
book to move
to the right
relative to the
back cover.

Figure 2. 3 (a) A shear deformation in which a rectangular block is
distorted by two forces of equal magnitude but opposite directions

applied to two parallel faces.

(b) A book is under shear stress when a hand placed on the cover
applies a horizontal force away from the spine.
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2.4 Bulk Modulus: Volume Elasticity

Bulk modulus characterizes the response of an object to changes in a force
of uniform magnitude applied perpendicularly over the entire surface of the
object as shown in Figure 2. 4. (We assume here the object is made of a
single substance.) such a uniform distribution of forces occurs when an
object is immersed in a fluid. An object subject to this type of deformation
undergoes a change in volume but no change in shape. The volume stress is
defined as the ratio
of the magnitude of the total force F exerted on a surface to the area A of the
surface.
The quantity P = F/A is called pressure . If the pressure on an object
changes by an amount AP = AF/A, the object experiences a volume change
AV. The volume strain is equal to the change in volume AV divided by the
initial volume Vi. Therefore, from Equation 2.5, we can characterize
a volume (“bulk”) compression in terms of the bulk modulus, which is
defined as

B = volume stress/volume strain AF/A AV/Vi = APAV/Vi (2.8)
A negative sign is inserted in this defining equation so that B is a positive
number.
This maneuver is necessary Because an increase in pressure (positive AP)
causes a decrease in volume (negative AV) and vice versa. The reciprocal of
the bulk modulus is called the compressibility of the material.

P l" 1
| 1
_Pz]-eft | : 1
L 1 =a——
| 1 1 _Pt he
| L e
1 Fa
i 1 "“-{\
Fon?=" | _ LT TV Ay
I
Fbol:t-:m: l'I

The cube undergoes a change in
volume bur no change in shape.

Figure 2. 4 A cube is under uniform pressure and is therefore compressed
on all sides by forces normal to its six faces. The arrowheads of force
vectors on the sides of the cube that are not visible are hidden by the cube.
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Quick Quiz 2.1 For the three parts of this Quick Quiz, choose

from the following choices the correct answer for the elastic modulus that
describes the relationship between stress and strain for the system of interest,
which is in italics:

(a) Young’s modulus

(b) shear modulus

(c) bulk modulus

(d) none of those

choices (i) A block of iron is sliding across a horizontal floor. The friction force
between the sliding block and the floor causes the block to deform. (ii) A trapeze
artist swings through a circular arc. At the bottom of the swing, the wires
supporting the trapeze are longer than when the trapeze artist simply hangs
from the trapeze due to the increased tension in them. (iii) A spacecraft carries a
steel sphere to a planet on which atmospheric pressure is much higher than on
the Earth. The higher pressure causes the radius of the sphere to decrease.

Example 1.2 Stage Design

We analyzed a cable used to support an actor as he swings onto the stage. Now
suppose the tension in the cable is 940 N as the actor reaches the lowest point.
What diameter should a 10-m-long steel cable have if we do not want it to stretch
more than 0.50 cm under these conditions?

Conceptualize Look back at Example 8.2 to recall what is happening in this
situation. We ignored any stretching of the cable there, but we wish to address
this phenomenon in this example.

Categorize We perform a simple calculation, so we categorize this example as a
substitution problem.
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H;
Salve Equation 12,6 for the cross-sectional A=—

area of the cable: VAL

A / fL,
Assuming the cross section is circular, find the ~ d=2r= 2\/: =U|—
T V7YAL

diameter of the cable from d = 2rand A = r®

(40N)(10m)

=35% 107 m =35 mm
90 % 10° N/m) 0,005 0m) :

Substitute numerical values; = \f [
T

To provide a large margin of safety, you would probably use a flexible cable made up of many smaller wires having a
total cross-sectional area substantially greater than our calculated value.
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Example 2.2 Squeezing a Brass Sphere

A solid brass sphere is initially surrounded by air, and the air pressure exerted on itis 1.0 X 10° N/m? (normal atmo-
spheric pressure). The sphere is lowered into the ocean to a depth where the pressure is 2.0 X 10" N/m?, The volume of
the sphere in air is 0.50 m®. By how much does this volume change once the sphere is submerged?

SOLUTION

Coneeptualize Think about movies or television shows you have seen in which divers go to great depths in the water
in submersible vessels. These vessels must be very strong to withstand the large pressure under water, This pressure
squeezes the vessel and reduces its volume.

Categorize We perform a simple calculation involving Equation 12.8, so we categorize this example as a substitution

problem.

VAP
Solve Equation 12.8 for the volume change of the sphere: AV= - '—E

(0.50m*)(2.0 X 10"N/m* - 1.0 X 10° N/m?)
6.1 X 10 N/m®

= -16 X104 m?

Substitute numerical values: AV=

The negative sign indicates that the volume of the sphere decreases.
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EXAMPLE 9 What pressure must you exert on a sample of water if you want
to compress its volume by 0.10%7
SOLUTION: For volume compression, the relevant elastic modulus is the bulk

modulus 5. By Eq. (14.20), the pressure, or the force per unit area, is

F AV
. —_pZ2~
A ¥

For 0.10% compression, we want to achieve a fractional change of volume of
AV/V = —0.0010. Since the bulk modulus of water is 0.22 % 10® N/m?, the
required pressure is

F
i 0.22 x 10 N/m* x 0.0010 = 2.2 x 10° N/m*

QUESTION 1: When a tension of 70 N is applied to a piano wire of length 1.8 m, it
stretches by 2.0 mm. If the same tension is applied to a similar piano wire of length
3.6 m, by how much will it stretch?

QUESTION 2: Is it conceivable that a long cable hanging vertically might snap under
its own weight? If so, does the critical length of the cable depend on its diameter?

QUESTION 3: The bulk modulus of copper is about twice that of aluminum. Suppose
that a copper and an aluminum sphere have exactly equal volumes at normal atmo-
spheric pressure. Suppose that when subjected to a high pressure, the volume of the alu-
minum sphere shrinks by 0.01%. By what percentage will the copper sphere shrink at
the same pressure?

QUESTION 4: While lifting a load, the steel cable of a crane stretches by 1 cm. If you
want the cable to stretch by only 0.5 cm, by what factor must you increase its diameter?
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3.2 elastic potential energy

Elastic potential energy is energy stored as a result of applying a force to deform
an elastic object. The energy is stored until the force is removed and the object
springs back to its original shape, doing work in the process. The deformation
could involve compressing, stretching or twisting the object. Many objects are
designed specifically to store elastic potential energy, for example:

The coil spring of a wind-up clock

An archer's stretched bow

A bent diving board, just before a divers jump

The twisted rubber band which powers a toy airplane

A bouncy ball, compressed at the moment it bounces off a brick wall.

An object designed to store elastic potential energy will typically have a high
elastic limit, however all elastic objects have a limit to the load they can sustain.
When deformed beyond the elastic limit, the object will no longer return to its
original shape. In earlier generations, wind-up mechanical watches powered by
coil springs were popular accessories. Nowadays, we don't tend to use wind-up
smartphones because no materials exist with high enough elastic limit to store
elastic potential energy with high enough energy density.

[Explain].

3.2.1 How can we calculate elastic potential energy for an ideal spring?

Our article on Hooke's law and elasticity discusses how the magnitude of the
force F due to an ideal spring depends linearly on the length it has been
compressed or expanded Ax,

F = k-AX
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where k is some positive number known as the spring constant. The
spring force is a conservative force and conservative forces have
potential energies associated with them.

[What about the direction of the force?]

From the definition of work we know that the area under a force vs displacement
graph gives the work done by the force. Figure 1 shows a plot of force vs
displacement for a spring. Because the area under the curve is a triangle and no
energy is lost in an ideal spring, the elastic potential energy U can be found from
the work done

U =1/2 (AX)-k(AX)=1/2K(AX)?

Force

Extenzion

Figure 1: The work done by a force on an ideal spring.
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Exercise 1: A truck spring has a spring constant of 5 x 10*N/m, When
unloaded, the truck sits 0.8 m above the road. When loaded with goods,
it lowers to 0.7 m above the ground. How much potential energy is stored
in the four springs?

[Solution]

The difference in the height of the truck is 0.1 m, (0.8 m — 0.7 m). This tells us
the compression of the springs Ax. Substituting into the equation for the

potential energy in a spring:

U = 1/2 k(Ax)? =1/2 x5x10* N/m-(0.1 m)? =250 J/spring=1000 J

Exercise 2: A trained archer has the ability to draw a longbow with a force of up
to 300 N, extending the string back by 0.6 m. Assuming the bow behaves like an
ideal spring, what spring constant would allow the archer to make use of his full
strength?

Draw force Arrow mass
=300 N \ -30g

Figure 2: A drawn bow, as used in exercise 2.
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If the spring is not strong enough, the archer will not be able to apply the full
300 N. Using Hooke's law we can find the spring constant required,

k= F/Ax= 300 N /0.6 m =500 N/m

Exercise 2b: What potential energy is stored in the bow when it is drawn?

[Solution]
Using the equation for elastic potential energy of an ideal spring,
U = Lraz)
2
= %(50{) N/m) - (0.6 m)?
=901J

Exercise 2c: Assuming the arrow has a mass of 30 g, approximately, what speed
will it be fired at?

[Solution]

We know that the only source of kinetic energy of the arrow is the elastic
potential energy of the bow. Immediately after the arrow has left the bow there
has not been enough time for the force of drag to have done any work on the
arrow. So we can proceed using conservation of energy to find the velocity
from the kinetic energy.

oy -
imv? = U

(20U

= f —
T

~ [2-9073
V003 ke

~ 77.5m/s
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Exercise 2d: Suppose that measurements from a high speed camera show the
arrow to be moving at a somewhat slower speed than predicted by conservation
of energy. Is there any work being done that we have not accounted for?

[Solution]

At the moment the arrow leaves the bow, the part of the bow string
which is in contact with the arrow is necessarily also moving at the
speed of the arrow. Ideally the string would be very light compared to
the arrow, however the string (and possibly parts of the bow) have some
Kinetic energy as the arrow leaves the bow which has not been taken
Into account.

The bow might not be an ideal spring. Some of work done by the archer
may have been dissipated as heat in the bow.

3.2.2 What about real elastic materials?

In our article on Hooke's law and elasticity we discuss how real springs
only obey Hooke's law over some particular range of applied force. Some
elastic materials such as rubber bands and flexible plastics can function as
springs but often have hysteresis; this means the force vs extension curve
follows a different path when the material is being deformed compared to
when it is relaxing back to its equilibrium position.

Fortunately, the basic technique of applying the definition of work that we
employed for an ideal spring also works for elastic materials in general.
The elastic potential energy can always be found from the area under the
force vs extension curve, regardless of the shape of the curve.

In our earlier analysis, we have considered the ideal spring as a one-
dimensional object. In reality, elastic materials are three dimensional. It
turns out that the same procedure still applies. The equivalent to the force
Vs extension curve is the stress vs strain curve.
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[What are stress and strain?]

« Where a three-dimensional elastic material obeys Hooke's law,
Energy/volume = %{Stress - Strain) [What is going on with the units here?]

[What is going on with the units here?]

. Exercise 3: Figure 3 shows a stress vs strain plot for a rubber band. As it
Is stretched (loaded), the curve takes the upper path. Because the rubber
band is not ideal, it delivers less force for a given extension when relaxing
back (unloaded). The purple shaded area represents the elastic potential
energy at maximum extension. The difference in area between the loaded
and unloaded case is shown in yellow. This represents the energy which is
lost to heat as the band is cycled between stretched and relaxed.

« If the rubber band has length 2100 mm m, width 10 mm and

thickness 1 mm
how much heat is generated in the band as it is stretched and

released?
[Solution]
0.6
<
% Elastic
= potential
D _ -
0 Strain 0.6
Figure 3: Force vs extension curve for a rubber band. YWertical and
horizontal gridlines at Q.05 units.
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The area shaded yellow in the curve represents the energy lost to heat. We can
find the energy per grid-square:

One vertical division is 0.05 N/mm? which in Sl units is 5 - 10* N/m?2.
One horizontal division is 0.05, so one square represents 2500 J/m?®.

The yellow area is approximately 24 squares, so represents
24 - 2500 J/m? = 6 - 10* J/m®.

The volume of rubberis (0.1 -0.01-0.001) =1 -10 % m?

So finally, the heat energy is (6 - 10%) - (1-10 %) = 0.06 J

3.2.3 (Energy Stored in Strained Bodies)

Strain energy is defined as the energy stored in a body due to deformation. The
strain energy per unit volume is known as strain energy density and the area under
the stress-strain curve towards the point of deformation. When the applied force is
released, the whole system returns to its original shape.

Strain energy is a particular form of potential energy which is stored within
materials which have been subjected to strain, i.e. to some change in dimension

Energy stored per unit volume in a stretched wire

Whenever we apply a force to an object of a deformable material, it will change its
shape. Sometimes, it is a big change, like when we stretch out a rubber band. Also,
it's hard to see, like when a load is applied to a steel support beam. As we apply
more and more force, the object will continue to stretch. Stress will be the amount of
force applied divided by the cross-sectional area of the object.

|:
v — Stres _ o 2 _
X
L

Strain
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This work is stored into the wire as its elastic potential energy.

AY

1 £
=S| AY -
20 L)

1 . . .
=3 = (maximum stretching farce){extension)

U %[*f {]E{AL}

U= %x Stress = Strain =Volume

Ufénlume =Energy density = % « Stress = Strain
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Energy stored per unit volume in a Shear Strain

Shear Strain: When the deforming force produces a change in shape of the object
without changing its volume, the strain produced in that object is known as Shear
Strain.

Shear strain is caused by shear stress, and is given by the formula N = A Il . Shear
strain is also related to the shear modulus of a material by the formulaN=1G.
While shear stress and the shear modulus are measured in units of pressure, shear
strain does not have any associated units.

Suppose you apply two tangent forces on the opposite faces of a cubic or rectangular

element. If that occurs, one of the faces will displace a distance Al relative to the other.
The shear strain is no more than the angle AW (shown in the image) caused by the

displacement Al In practice, displacement AW is much smaller than £h, and AW is a small
angle.

Work done Is 4 Fd?.

\\Y% :_ff.df :(f)to(o)from
f

5 L
s fa I N =2 where
Ve
] ~F=ANy
L " Y4
j/ ] LY e
| V4
D c F=NL2.E=N.L.€ - Then

=FOX=F.OV =NA. YOV : Work
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W = jj N.L..d¢

- Nl_fe.dz =%.N.L.£2

N oS
1 f 1

—  L/P==FJ/

SW=—,
2 L4 2

tangential force x displacement

N |-

1
>

Energy stored per unit volume in a Volume Strain

Volumetric strain is defined as the ratio of change in volume of a body to its original
volume due to the application of some external deforming forces. Therefore, the
equation for volumetric strain will be Ev=AV/V.

So the amount of total work done to bring about the total change in volume from (zero)
to (V)

W =j‘p.dv —

F)
“=av
V
p-Kav
V
W = Pdv
LSNVEY
V
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1 \VARAY/
= E(K ><\7)(\7)(V)

=15 x Stress x Strain x Volume
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Examples
Example 1

A compressed spring has the potential energy of 20 J and its spring constant is 200 N/m. Calculate the
displacement of the spring.

Solution:

Given:

Potential energy P.E =40 J,
Spring Constant k = 200 N/m,

The Potential energy formula is given by

1
PE = Ekzz

the displacement is given by
X=V2PE /K
= 1/2x40 / 200

=0632m
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Example 2

The vertical spring is linked to a load of mass 5 kg which is compressed by 10m. Determine the force constant of
the spring.

Solution:

Given: Mass m = 5kg
Distance x=10m

Force formula is given by
F=ma

=5kg x 9.8 mis?

=49N

Force in the stretched spring is
F=kx

Force Constant k is given by
=F/x

=49/10

=49N/m
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Solved problems

Formulae:

Longitudinal stress = Applied force

Arca of cross-section
_ F m
Longitudinal stress = — = -_%-
T
Change in length

Longitudinal strain & ———————= i
Onginal length L

Longitudinal stress
Longitudinal strain

y=IL
Al
mgL

Y = -
wrl
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Fxample — 1:

A wire 2 m long and 2 mm in diameter, when stretched by weight
of 8 kg has its length increased by (.24 mm. Find the stress,
strain and Young's modulas of the material of the wire. g = 9.8
m,/ 52

Given: Imutial length of wire = L = 2 m Dihiameter of wire = 2 mrumy
Radius of wire 2/2 = 1l mm =1 x 107 m, Weight attached = m = 2 kg,
Increase in length =1 = 024 mm = 024 = 1073 m, =98 m/s%

To Find: Stress =¢ Strain =2 Young’s modulus of material =% =7
Solutiorn:

Stress = F / A = mg fn1°
=~ Stress = (8 x 9.8) /(3.142 »=(1 = 107
s Stress = {8 = 9.8) /(3.142 x 1 = 107%)
s Stress = 2.5 107 N/m?=
Strain =1/L = 024 x 1072 /2
o Strain =0.12 = 1072 =12 =« 10™*

Now: Young's modulus of elasticitv= Y = Stress / Strain

=Y = (2.5x 107 /(1.2 = 1079

~ Y =208 x 10" N/m?
Ans.: Stress = 2.5x 107 N/ m®, Strain =1.2 = 1074
of elasticity= 2.08 = 10! N /m?2

3

Yong's modulis
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Example — 2:

A wire of length 2 m and cross-sectional area 10~* m? is stretched
bv a load 102 kg The wire is stretched by 0.1 cm. Calculate
longitudinal stress, longitudinal strain and Young’s modulus of

the material of wire.

Given: Trutial length of wire = L = 2 m_ Cross-sectional area = A = 107
+my Stretching weight = 102 kg wt = 102 < 9.8 N, Increase in length =
1=01em=01x102m=1x10%m, g = 9.8 m/s%

To Find: Stress =¢ Strain = 7, Younge’s modulus of material =% = 2
Solution:

Stress = F / A —=me /A
= Stress = {102 x 9.8) /107
o Stress = 1 2 107 N/ m=
Strain =1/L = 1x 102 /2
o Strain = 05 x 102 = 5 x 107*
Now, Young's modulus of elasticity= Y = Stress / Strain = (1 x 107) /
(5> 107
Y =2 > 107 N/m?
Ans.: Stress = 1 ® 107 N/m?, Strain = 5 = 10 . Young's modulus of
elasticity= Y = 2 x 101% N /m?
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Example-7:

A wire of length 1.5 m and of radius 0.4 mm is stretched by 1.2
mum on loading, If the Young's modulus of its material is 12.5 >
10" N/m?=. , find the stretching force.

Given: Imitial length of wire = L = 1.5 m. Radius of wire = 0.4 mum =
04X 10°m=4%10"m Extension=1=12mm=12x10%m, g
= 9.8 m/s*, Youngs modulus =% = 125 X 1019 27 /m=.

To Find: Stretching force = F =¢
Solution:

Y =FL /Al
- F=AY1/L
~- F=xr%¥1/L
oW F={3142 % 4 x 10742 %123 x 10¥ x 1.2 x 107 /1.5
- F={3142x 16 x 10 x 125 x 109 % 12 x 10% /1.5

~ F=3027 XN —

Amns.: Stretching force required = 30027 IN
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Example — 11:

A wire is stretched by the application of a force of 50 kg wt/sq.
cm. What is the percentage increase in the length of the wirer? Y
=7 »x 101? MN/m?*, g =98 m/s*

Given: Stress = 50 ks wi/sq. cm = 30X 98N /10 m?* = 30 X 9.8 :
10+ N /m*, Young’s modulus of elasticity =¥ =7 x 1019 N/m? g =

2.8 m/s*

To Find: % elongation = % 1/L =2

Solution:
Now, ¥ = Stress [/ Strain
Strain = Stress / Y = (50 X 9.8 X 10%/ (7 % 1019
Strain = 7 % 107
%e elongation = Strain = 100 = 7 X 10°F = 100

Yo elongation = Strain X 100 = 0.007
Ans.: Elongation is 0.007 percent

60



Example — 14:

Find the change in length of a wire 5m long and 1 mm?® in cross-
section when the stretching force is 10 kg-wt. Y = 4.9 X 10t
N/m?, and g=9.8 m/s°.

* Solution:

* Given: Imitial length of wire = L = 5 m, Area of cross-section = 1
mm? =1 X 10-° m? Load attached = F = 10 Erwt=10X98N.Y
=49 x 10" N/m?, and g=9.8 m/s

* To Find: Change in length =1=?

Y =FL /Al
~1=FL/AY
21=(10%X 9.8 %5) /(1 x 10°% x 49 x 101h
2 1=1x10%m=1mm

Ans.: Change in length of wire 15 1 mm
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Unit 4 ; Fluid Mechanics

Matter is normally classified as being in one of three states: solid, liquid,
or gas. From everyday experience we know that a solid has a definite
volume and shape, a liquid has a definite volume but no definite shape, and
an unconfined gas has neither a definite volume nor a definite shape. These
descriptions help us picture the states of matter, but they are

somewhat artificial. For example, asphalt and plastics are normally
considered solids, but over long time intervals they tend to flow like liquids.
Likewise, most substances can be a solid, a liquid, or a gas (or a combination
of any of these three), depending on the temperature

and pressure. In general, the time interval required for a particular
substance to change its shape in response to an external force determines
whether we treat the substance as a solid, a liquid, or a gas.
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gas in
larger bottle

liquid in
larger beaker

liquid in
beaker

(a) ()

Molecules are tightly packed Molecules are loosely packed and Molecules are widely dispersed,
together and locked into a have some freedom to wander about, have freedom to move, and spread
rigid array. although they frequently collide. out over all available volume.

FIGURE Molecules in (a) a solid, (b) a liquid, and (c) a gas.

A fluid is a collection of molecules that are randomly arranged and held
together by weak cohesive forces and by forces exerted by the walls of a
container. Both liquids and gases are fluids.

In our treatment of the mechanics of fluids, we’ll be applying principles and
analysis models that we have already discussed. First, we consider the
mechanics of a fluid at rest, that is, fluid statics, and then study fluids in

motion, that is, fluid dynamics.
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4.1 Pressure
. . . . At any point on the surface of
Fluids do not sustain shearing stresses or tensile the object, the force exerted by

stresses such as those the fluid is perpendicular to the
discussed therefore, the only stress that can be exerted  srface of the object.

on an object submerged in a static fluid is one that tends

to compress the object from all sides. In other words,

the force exerted by a static fluid on an object is always

perpendicular to the surfaces of the object as shown in l'
Figure 3.1. - .
The pressure in a fluid can be measured with the device o=
pictured in Figure 3.2.The device consists of an I

evacuated cylinder that encloses a light piston
connected to a spring. As the device is submerged in a
fluid, the fluid presses on the top of the piston and compresses the spring until
the inward force exerted by the fluid is balanced by the outward force exerted by
the spring. The fluid pressure can be measured directly if the spring is calibrated
in advance. If F is the magnitude of the force exerted on the piston and A
is the surface area of the piston, the pressure P of the fluid at the level to
which the device has been submerged is defined as the ratio of the force
to the area: P =F /A
4 Figure 4.2 The forces exerted
Vacuum p! /5 by a fluid on the surfaces of a
Y 4 submerged object.

Figure 4.3 A simple device for measuring the pressure exerted by a fluid. scalar quantity
because it is proportional to the magnitude of the force on the piston.

If the pressure varies over an area, the infinitesimal force dF on an
infinitesimal surface element of area dA is dF =P dA

where P is the pressure at the location of the area dA. To calculate the total
force exerted on a surface of a container, we must integrate Equation over
the surface.The units of pressure are newtons per square meter (N/m?) in
the SI system. Another name for the SI unit of pressure

is the pascal (Pa): 1 Pa; 1 N/m?

For a tactile demonstration of the definition of pressure, hold a tack
between your thumb and forefinger, with the point of the tack on your
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thumb and the head of the tack on your forefinger. Now gently press your
thumb and forefinger together. Your thumb will begin to feel pain
immediately while your forefinger will not. The tack is exerting the same
force on both your thumb and forefinger, but the pressure on your thumb
is much larger because of the small area over which the force is applied.

Quiz 3.1 Suppose you are standing directly behind someone who steps back
and accidentally stomps on your foot with the heel of one shoe. Would you
be better off if that person were

(a) a large, male professional basketball player wearing sneakers or

(b) a petite woman wearing spike-heeled shoes?

Example 3.1.1 The Water Bed
The mattress of a water bed is 2.00 m long by 2.00 m wide and 30.0 cm
deep.

(A) Find the weight of the water in the mattress.

(B)  Find the pressure exerted by the water bed on the floor when the bed
rests in its normal position. Assume the entire lower surface of the bed
makes contact with the floor.

_LIEX 10N

When the water bed is in its normal position, the areain ~ P=
contact with the floor is .00 m? Use Equation 14.1 to
find the pressure;

T 2.94 X 10°Pa
LA

ULEHIES What if the water bed is replaced by a 300-Ib regular bed that is supported by four legs? Each leg hasa
circular cross section of radius 2.00 cm, What pressure does this bed exert on the floor?

Answer The weight of the regular bed is distributed over four circular cross sections at the bottom of the legs. There-
fore, the pressure is

Fm 3001h IN
P =-_— = ] = : ( )
A 4gr)  47(0.0200m) \0.225Th 2
= 2,66 X 10*Pa

This result is almost 100 times larger than the pressure due to the water bed! The weight of the regular bed, even
though it is much less than the weight of the water bed, is applied over the very small area of the four legs. The high
pressure on the floor at the feet of a regular bed could cause dents in wood floors or permanently crush carpet pile.
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Variation of Pressure with Depth

As divers well know, water pressure increases with depth. Likewise,
atmospheric pressure decreases with increasing altitude; for this reason,
aircraft flying at high altitudes must have pressurized cabins for the
comfort of the passengers. We now show how the pressure in aliquid
increases with depth. As Equation describes, the density of a substance is
defined as its mass per unit volume. See a lists the densities of various
substances. These values vary slightly with temperature because the
volume of a substance is dependent on temperature.
Under standard conditions (at 0°C and at atmospheric pressure), the
densities of gases are about 1/1000 the densities of solids and liquids.
This difference in densities implies that the average molecular spacing
in a gas under these conditions is about ten times greater than that in a

solid or liquid.

The parcel of fluid is in
equilibrium, 5o the net
force on it is zero.

g‘:\" II| _';;E'Aj |'.{::
d+h

— M ‘Pﬁj

N ——

Figure 4.3 A parcel of
fluid in a larger volume
of fluid is singled out.

Now consider a liquid of density p at rest as shown in Figure . .3, We assume p
is uniform throughout the liquid, which means the liquid is incompressible. Let us
select a parcel of the liquid contained within an imaginary block of cross-sectional
area A extending from depth d to depth d + k. The liquid external to our parcel
exerts forces at all points on the surface of the parcel, perpendicular to the surface.
The pressure exerted by the liquid on the bottom face of the parcel is P, and the pres-
sure on the top face is P, Therefore, the upward force exerted by the outside fluid on
the bottom of the parcel has a magnitude PA, and the downward force exerted on the
top has a magnitude P, A. The mass of liquid in the parcelis M= pV'= pAl; therefore,
the weight of the liquid in the parcel is Mg = pAhg Because the parcel is at rest and
remains at rest, it can be modeled as a particle in equilibrium, so that the net force
acting on it must be zero. Choosing upward to be the positive y direction, we see that

ST = PAj - BAJ - Mgf =0
ar

PA- PA— pAhg=0

P=Py+ pgh

That s, the pressure Pat a depth i belowa pointin the liquid atwhich the pressure
is P, is greater by an amount pgh. If the liquid is open to the atmosphere and P, is
the pressure at the surface of the liquid, then P, is atmospheric pressure. In our
calculations and working of end-of-chapter problems, we usually take atmospheric
pressure to be

P, =100am = 1.013 X 10°Pa



Equation 14.4 implies that the pressure is the same at all points having the same
depth, independent of the shape of the container.

Because the pressure in a fluid depends on depth and on the value of P,, any
increase in pressure at the surface must be transmitted to every other point in the
fluid. This concept was first recognized by French scientist Blaise Pascal (1623-
1662) and is called Pascal’s law: a change in the pressure applied to a fluid is trans-
mitted undiminished to every point of the fluid and to the walls of the container.

An important application of Pascal’s law is the hydraulic press illustrated
in Figure 14.4a. A force of magnitude F, is applied to a small piston of surface
area A;. The pressure is transmitted through an incompressible liquid to a larger
piston of surface area A,. Because the pressure must be the same on both sides,
P=F /A = F,/A,. Therefore, the force F, is greater than the force F, bya factor of

A,/A;. By designing a hydraulic press with appropriate areas A) and A,, a large out-

Because the increase in
pressure is the same on
the two sides, a small

force E at the left
produces a much greater _
force F; at the right. a
“-"A E
. |
a
Ax Z
_Ll Ax; £
[==)
3
B
T, :
E
a
) b

Figure 4.4 (@) Diagram of a hydraulic press.
(b) A vehicle under going repair is supported by a hydraulic lift in a
garage.
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put force can be applied by means of a small input force. Hydraulic brakes, car lifts,
hydraulic jacks, and forklifts all make use of this principle (Fig. .

Because liquid is neither added to nor removed from the system, the volume of lig-
uid pushed down on the left in Figure 14.4a as the piston moves downward througha
displacement Ax; equals the volume of liquid pushed up on the right as the right pis-
ton moves upward through a displacement Ax,. That is, 4; Ax; = A; Axy; therefore,
Ay/A, = Ax /Ax,. We have already shown that A,/A, = F,/F,. Therefore, F,/F, =
Ax, /Ax,, 50 Fy Axy = F; Ax,. Each side of this equation is the work done by the force
on its respective piston. Therefore, the work done by F, on the input piston equals
the work done by F; on the output piston, as it must to conserve energy. (The process
can be modeled as a special case of the nonisolated system model: the nonisolated
system in steady state. There is energy transfer into and out of the system, but these
energy transfers balance, so that there s no net change in the energy of the system.)

Quiz 14.2 The pressure at the bottom of a filled glass of water (p =1 000
kg/m?3) is P.
The water is poured out, and the glass is filled with ethyl alcohol

(p =806 kg/m3). What is the pressure at the bottom of the glass?
(a) smallerthan P

(b) equal to P

(c) larger than P

(d) indeterminate

Example 4.2 The Car Lift

In a car lift used in a service station, compressed air exerts a force on a small piston
that has a circular cross section of radius 5.00 cm. This pressure is transmitted by a
liquid to a piston that has a radius of 15.0 cm.

(A)  What force must the compressed air exert to lift a car weighing 13 300 N?
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Conceptualize Review the material just discussed about Pascal's law to understand the operation of a car lift.

Categorize This example is a substitution problem.

A\ a(600X 10%m)?
Solve Fy/A, = /Ay for R F= (i)ﬁg = m (183 % 10N)

= 148X 1°N

(B) What air pressure produces this force?

SOLUTION

Use Equation 14.1 to find the air pressure that produces P
this force:

_F _ 1#8XI0°N
A w(5.00 X 107 m)?

= 1.88 X 10°Pa

This pressure is approximately twice atmospheric pressure.

Example 4.3 A Pain in Your Ear

Estimate the force exerted on your eardrum due to the water when you are
swimming at the bottom of a pool that is 5.0 m deep.

Conceptualize As you descend in the water, the pressure increases. You may have noticed this increased pressure in

your ears while diving in a swimming pool, a lake, or the ocean, We can find the pressure difference exerted on the
eardrum from the depth given in the problem; then, after estimating the ear drum’s surface area, we can determine
the net force the water exerts on it.

Categorize This example is a substitution problem.
The air inside the middle ear is normally at atmospheric pressure £, Therefore, to find the net force on the eardrum,
we must consider the difference between the total pressure at the bottom of the pool and atmospheric pressure. Let's

estimate the surface area of the eardrum to be approximately 1 cm® = 1 X 107 m?

Use Equation 14.4 to find this pressure P,— F,=pm

difference: .
= (100 % 10°kg/m*)(9.80 m/s*)(5.0 m) = 49 X 10* Pa

Use Equation 14.1 to find the magnitude of the ~ F= (Fy,, = Fy)d = (49 X 104 Pa)(1 X 1074 m?) = 5N
net force on the ear:

Because a force of this magnitude on the eardrum is extremely uncomfortable, swimmers often “pop their ears” while
under water, an action that pushes air from the lungs into the middle ear. Using this technique equalizes the pressure
on the two sides of the eardrum and relieves the discomfort,



The difference in the pressures in each part of Figure 14.6 (that is, P - P,) is
equal to pgh. The pressure Pis called the absolute pressure, and the difference
P - P, is called the gauge pressure. For example, the pressure you measure in your
bicycle tire is gauge pressure.

-~ QUiz Several common barometers are built, with a variety of fluids,
For which of the following fluids will the column of fluid in the barometer be
the highest? (a) mercury (b) water (c) ethyl alcohol (d) benzene

INCOMPRESSIBLE STEADY FLOW; STREAMLINES

We will deal with steady flow, for which the velocity at any given point of
space remains

constant in time. Thus, in steady flow, each small parcel of fluid that starts at
any given point follows exactly the same path as a small parcel that passes
through the same point at an earlier (or later) time. For example, Fig. 3.5
shows velocity vectors

for the steady flow of water around a cylindrical obstacle,

say, the flow of the water of a broad river around a e EE el
cylindrical piling placed in themiddle. The water enters

'_[he pl_ctqre in a broad stream from the_left, and disappears ﬁﬁ
in a similar broad stream toward the right.For the steady ﬂ
flow of an incompressible fluid, such as water, the picture A
of velocity vectors can be replaced by an alternative graphica

representation. Suppose we focus our attention on a small v
volume of water, say, 1 mm3 of water, and we observe %
the pathof this 1 mm3 from the source to the sink. ——— —
The path traced out by the small volume of FIGURE  Streamlines for water flow-
fluid is called a streamline. Neighboring small volumes ifijﬁ;";jjﬁﬂfg;‘:‘;ﬁ;‘ﬁ;ﬁ:ﬂhc
will trace out neighboring cylinder

streamlines. In Fig. 18.6 we show the pattern of streamlines

for the same steady flow of water that we already represented in Fig. 3.5 by
means of velocity vectors. The streamlines on the far left (and far right) of Fig.
18.6 are evenly spaced to indicate the uniform and parallel flow in this region.
The steady flow of an incompressible fluid is often called streamline flow.
Note
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that streamlines never cross. A crossing of two streamlines would imply that a
small parcel of water moving along one of these streamlines has to penetrate
through a small parcel of water moving along the other streamline. This is
impossible—it would lead to disruption of both the small parcels and to
destruction of the steadiness of flow.

Because the streamlines for steady incompressible flow never cross, such flow

Is also called laminar flow, which refers to the layered arrangement of the
streamlines.

If we know the velocity of flow throughout the fluid, we can trace out the motion
of small parcels of fluid and therefore construct the streamlines. But the converse is
also true—if we know the streamlines, we can reconstruct the velocity of flow.

We can do this by means of the following rule:
The direction of the velocity at any one point is tangent to the streamline, and the

magnitude of the velocity is proportional to the density of streamlines.
The first part of this rule is self-evident, since the

direction of motion of a small parcel of fluid is Exmongsm]

. tube can vary.
tangent to the streamline. e
To establish the second part, consider a bundle of N4,
Streamlines forming a pipelike region, called a

stream tube. Any fluid inside the stream tube will

have to move along the tube; it cannot cross

the surface of the tube because streamlines never cross.
The tube
therefore plays the same role as a pipe made of some e
impermeable material—it serves as a conduit for the
fluid. If we consider a tube that is very narrow, so its FIGURE
cross-sectional area is very small, the velocity of flow

will vary only along the length of the tube,

and we can assume it will be the same at all points on a given cross-
sectional area. For instance, on the area Al (see Fig.) the velocity is v1,
and on the area A2 the velocity is v2. In a time dt, Eq. impliesthat the fluid
volume that enters across the area Al is dV1 = v1ALl dt and the fluid
volume that leaves across the area A2 is dV2 = v2 A2 dt. The amount of
fluid that enters must match the amount that leaves, since, under steady
conditions, fluid cannot accumulate in the ¢, ‘911 = w,.4, veen Aland
A2.

To conserve volume, ends
of stream tube segment
must move different
distances in time d7.

A stream tube.
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Hence dV; = dV3, and or, canceling the factor dt on both sides of the
equation, This relation is called the continuity equation. It shows that along
any stream tube the speed of flow is inversely proportional to the cross-
sectional area of the stream tube.

Fluid Dynamics

Thus far, our study of fluids has been restricted to fluids at rest. We now turn our
attention to fluids in motion, When fluid is in motion, its flow can be characterized
as being one of two main types. The flow is said to be steady, or laminar, if each
particle of the fluid follows a smooth path such that the paths of different particles ‘
- . . Figure 14.13 Laminar flow

never cross each other as shown in Figure 14.13. In steady flow, every fluid particle ~_ ° 0o " e
arriving at a given point in space has the same velocity. wind tunnel.

Above a certain critical speed, fluid flow becomes turbulent. Turbulent flow is
irregularflow characterized by small whirlpool-like regions as shown in Figure 14.14.

The term viscosity is commonly used in the description of fluid flow to charac-
terize the degree of internal friction in the fluid. This internal friction, or viscous
foree, 1s associated with the resistance that two adjacent layers of fluid have to mov-
Ing relative to each other. Viscosity causes part of the fluid’s kinetic energy to be
transformed to internal energy. This mechanism is similar to the one by which the
kinetic energy of an object sliding over a rough, horizontal surface decreases as
discussed in Sections 8.3 and 8.4,

Because the motion of real fluids is very complex and not fully understood, we

Andy SacksfStonef Getty Images

make some simplifying assumptions in our approach. In our simplification model
of ideal fluid flow, we make the following four assumptions:

1. The fluid is nonviscous. In a nonviscous fluid, internal friction is neglected.
An object moving through the fluid experiences no viscous force.

2. The flowis steady. In steady (laminar) flow, all particles passing through a
point have the same velocity.

3. The fluid is incompressible, The density of an incompressible fluid is
constant.

4, The flowisirrotational. In irrotational flow, the fluid has no angular

@ Cengage Learning /Chadez 0. Winterz

Figure 14.14 Hot gases froma
cigarette made visible by smoke

. ) particles, The smoke first moves
momentum about any point. If a small paddle wheel placed anywhereinthe  iq laminar flowat the bottom and

fluid does not rotate about the wheel's center of mass, the flow s irrotational.  then in turbulent Flow above.
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At f = 0, fluid in the blue
portion is moving past
point 1 at velodity ¥;.

Al -
"1
Axy Point 2
a]
Point 1 A
ax,
After a time interval Af,
the fluid in the blue
portion is muvinggzs!
point 2 at velocity ¥,.
b}
Figure 14.16 A fluid moving
with steady flow through a pipe

of varying cross-sectional area.
{a) At t = (), the small blue-
colored portion of the fluid at the
left is moving through area A;.

{b) After a time interval Af, the
bhie-colored portion shown

here is that fluid that has moved

through area As.

Figure 14.15 A particle
in laminar Flow follows a
streamline.

At each point along its path,
the particle’s velocity is
tangent to the streamline.

The path taken by a fluid particle under steady flow is called a streamline. The
velocity of the particle is always tangent to the streamline as shown in Figure 14.15.
A set of streamlines like the ones shown in Figure 14.15 form a tube of flow. Fluid
particles cannot flow into or out of the sides of this tube; if they could, the stream-
lines would cross one another.

Consider ideal fluid flow through a pipe of nonuniform size as illustrated in Fig-
ure 14.16. Let’s focus our attention on a segment of fluid in the pipe. Figure 14.16a
shows the segment at time ¢ = 0 consisting of the gray portion between point 1and
point 2 and the short blue portion to the left of point 1. At this time, the fluid in the
short blue portion is flowing through a cross section of area A, at speed v,. During
the time interval At, the small length Ax, of fluid in the blue portion moves past
peint 1. During the same time interval, fluid at the right end of the segment moves
past point 2 in the pipe. Figure 14.16b shows the situation at the end of the time
interval At. The blue portion at the right end represents the fluid that has moved
past point 2 through an area 4; at a speed .

The mass of fluid contained in the blue portion in Figure 14.16a is given by m; =
pd; Ax; = pAv, At, where pis the (unchanging) density of the ideal fluid. Similarly,
the fluid in the blue portion in Figure 14.16b has a mass my; = pdy; Ax; = pAsws At
Because the fluid is incompressible and the flow is steady, however, the mass of fluid

that passes point 1 in a time interval A¢ must equal the mass that passes point 2 in
the same time interval. That is, m; = my or g v At = pAs;vs At, which means that

A, = A;v, = constant (14.7]

This expression is called the equation of continuity for fluids. It states that the
product of the area and the fluid speed at all points along a pipe is constant for an
incompressible fluid. Equation 14.7 shows that the speed is high where the wbe
is constricted {small A} and low where the tube is wide (large A). The product Aw,
which has the dimensions of volume per unit time, is called either the volume flux or
the flow rate. The condition Av = constant is equivalent to the statement that the vol-
ume of fluid that enters one end of a tube in a given time interval equals the volume
leaving the other end of the tube in the same time interval if no leaks are present.
You demonstrate the equation of continuity each time you water your garden
with your thumb over the end of a garden hose as in Figure 14.17. By partially block

Figure 14.17 The speed of water spraying from
the end of a garden hose increases as the size of
the opening is decreased with the thumb.
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Other Applications of Fluid Dynamics

Consider the streamlines that flow around an airplane wing as shown in Figure
14.21 on page 434. Let's assume the airstream approaches the wing horizontally
from the right with a velocity ¥,. The tilt of the wing causes the airstream to be
deflected downward with a velocity ¥,. Because the airstream is deflected by the
wing, the wing must exert a force on the airstream. According to Newton's third
law, the airstream exerts a force F on the wing that is equal in magnitude and

Fiqure 14.22 Because of the
deflection of air, a spinning golf

ball experiences a lifting force that Figure 14.23 Astream of air pass-
allows it to travel much farther than ing over a tube dipped into a liquid
it would if it were not spinning. causes the liquid to rise in the tube.

Beot of Luck
Prof.Dr.Gamal
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