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Unit 1: Physics and Measurement 
 

Like all other sciences, physics is based on experimental observations and 
quantitative measurements. The main objective of physics is to find the  
limited number of fundamental laws that govern natural phenomena and to 
use them to develop theories that can predict the results of future 
experiments. The fundamental laws used in developing theories are 
expressed in the language of mathematics, the tool that provides a bridge 
between theory and experiment. When a discrepancy between theory and 
experiment arises, new theories must be formulated to remove the 
discrepancy. Many times a theory is satisfactory only under limited 
conditions; a more general theory might be satisfactory without such 
limitations. For example, the laws of motion discovered by Isaac Newton 
(1642–1727) in the 17th century accurately describe the motion of objects 
moving at normal speeds but do not apply to objects moving at speeds 
comparable with the speed of light. In contrast,  the special theory of 
relativity developed by Albert Einstein (1879–1955) in the early 1900s 
gives the same results as Newton’s laws at low speeds but also correctly 
describes motion at speeds approaching the speed of light. Hence, Einstein’s 
special theory of relativity is a more general theory of motion. 
Classical physics includes the theories, concepts, laws, and experiments in 
classical mechanics, thermodynamics, optics, and electromagnetism 
developed before 1900. Important contributions to classical physics were 
provided by Newton, who developed classical mechanics as a systematic 
theory and was one of the originators of calculus as a mathematical tool. 
Major developments in mechanics continued in the 18th century, but the 
fields of thermodynamics and electricity and magnetism were not 
developed until the latter part of the 19th century, principally because 
before that time the apparatus for controlled experiments was either too 
crude or unavailable.  
A major revolution in physics, usually referred to as modern physics, began 
near the end of the 19th century. Modern physics developed mainly because 
of the discovery that many physical phenomena could not be explained by 
classical physics. The two most important developments in this modern era 
were the theories of relativity and quantum mechanics. Einstein’s theory of 
relativity not only correctly described the motion of objects moving at 
speeds comparable to the speed of light but also completely revolutionized 
the traditional concepts of space, time, and energy. The theory of relativity 
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also shows that the speed of light is the upper limit of the speed of an object 
and that mass and energy are related. Quantum mechanics was formulated 
by a number of distinguished scientists to provide descriptions of physical 
phenomena at the atomic level. 
Scientists continually work at improving our understanding of fundamental 
laws, and new discoveries are made every day. In many research areas, 
there is a great deal of overlap among physics, chemistry, and biology. 
Evidence for this overlap is seen in the names of some subspecialties in 
science—biophysics, biochemistry, chemical physics, biotechnology, and so 
on. Numerous technological advances in recent times are the result of the 
efforts of many scientists, engineers, and technicians. Some of the most 
notable developments in the latter half of the 20th century were 
 (1) Unmanned planetary explorations and manned moon landings,  
 (2) Micro circuitry and high-speed computers, 
 (3) Sophisticated imaging techniques used in scientific research and 
medicine, and 4 

 (4) Several remarkable results in genetic engineering. The impacts of such 
developments and discoveries on our society have indeed been great, and it 
is very likely that future  discoveries and developments will be exciting, 
challenging, and of great benefit to humanity. 
 
1.1 Standards of Length, Mass, and Time 
The laws of physics are expressed as mathematical relationships among 
physical quantities  that we will introduce and discuss throughout the book. 
Most of these quantities are derived quantities, in that they can be expressed 
as combinations of a small number of basic quantities. In mechanics, the 
three basic quantities are length, mass, and time. All other quantities in 
mechanics can be expressed in terms of these three. If we are to report the 
results of a measurement to someone who wishes to reproduce this 
measurement, a standard must be defined. It would be meaningless if a 
visitor from another planet were to talk to us about a length of 8 “glitches” if 
we do not know the meaning of the unit glitch. On the other hand, if someone 
familiar with our system of measurement reports that a wall is 2 meters high 
and our unit of length is defined to be 1 meter, we know that the height of 
the wall is twice our basic length unit. Likewise, if we are told that a person 
has a mass of 75 kilograms and our unit of mass is defined to be 1 kilogram, 
then that person is 75 times as massive as our basic unit.1 Whatever is 
chosen as a standard must be readily accessible and possess some property 
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that can be measured reliably. Measurements taken by different people in 
different places must yield the same result. 
In 1960, an international committee established a set of standards for the 
fundamental quantities of science. It is called the SI (Système International), and 
its units of length, mass, and time are the meter, kilogram, and second, 
respectively. Other SI standards  established by the committee are those for 
temperature (the kelvin), electric current (the ampere), luminous intensity (the 
candela), and the amount of substance (the mole). 
 

Length 
In A.D. 1120 the king of England decreed that the standard of length in his 
countr would be named the yard and would be precisely equal to the 
distance from the tip of his nose to the end of his outstretched arm. 
Similarly, the original standard for the foot adopted by the French was 
the length of the royal foot of King Louis XIV. This standard prevailed 
until 1799, when the legal standard of length in France became the 
meter, defined as one ten-millionth the distance from the equator to the 
North Pole along one particular longitudinal line that passes through 
Paris. Many other systems for measuring length have been developed 
over the years, but the advantages of the French  system have caused it 
to prevail in almost all countries and in scientific circles everywhere. 

 As recently as 1960, the length of the meter was defined as the distance 
between two lines  on a specific platinum–iridium bar stored under 
controlled conditions in France. This  standard was abandoned for 
several reasons, a principal one being that the limited accuracy  with 
which the separation between the lines on the bar can be determined 
does not meet the current requirements of science and technology. In the 
1960s and 1970s, the meter was  defined as 1 650 763.73 wavelengths of 
orange-red light emitted from a krypton-86 lamp.  

However, in October 1983, the meter (m) was redefined as the distance 
traveled by light in vacuum during a time of 1/299 792 458 second. In 
effect, this latest definition establishes that the speed of light in vacuum 
is precisely 299 792 458 meters per second. Table 1.1 lists approximate 
values of some measured lengths. You should study this table as well as 
the next two tables and begin to generate an intuition for what is meant 
by a length of 20 centimeters, for example, or a mass of 100 kilograms or 
a time interval of 3.2 x 107 seconds. 
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Mass 
The SI unit of mass, the kilogram (kg), is defined as the mass of a specific 
platinum–iridium  alloy cylinder kept at the International Bureau of 
Weights and Measures at Sèvres, France.  This mass standard was 
established in 1887 and has not been changed since that time  because 
platinum–iridium is an unusually stable alloy. A duplicate of the Sèvres 
cylinder is  kept at the National Institute of Standards and Technology 
(NIST) in Gaithersburg, Maryland  (Fig. 1.1a). Table 1.2 lists approximate 
values of the masses of various objects. 
 
Time 
Before 1960, the standard of time was defined in terms of the mean solar 
day for the  year 1900. (A solar day is the time interval between successive 
appearances of the Sun at the  highest point it reaches in the sky each day.) 
The second was defined as ( 1/60)( 1/60) 
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( 1/24) of a mean solar day. The rotation of the Earth is now known to vary 
slightly with  time, however, and therefore this motion is not a good one to 
use for defining a time  standard. In 1967, the second was redefined to take 
advantage of the high precision attainable in a device known as an atomic 

clock (Fig. 1.1b), which uses the characteristic frequency of the cesium-133 
atom as the “reference clock.” The second (s) is now defined as 9 192 631 



8 
 

770 times the period of vibration of radiation from the cesium atom.

 
 
 
Figure 1.1 (a) The National Standard Kilogram No. 20, an accurate copy of the 
International Standard Kilogram kept at Sèvres, France, is housed under a double 
bell jar in a vault at the National Institute of Standards and Technology. (b) The 
nation’s primary time standard is a cesium fountain atomic clock developed at the 
National Institute of Standards and Technology laboratories in Boulder, Colorado. 
The clock will neither gain nor lose a second in 20 million years. 
 

To keep these atomic clocks—and therefore all common clocks and watches 
that are set to them—synchronized, it has sometimes been necessary to add 
leap seconds to our clocks. Since Einstein’s discovery of the linkage between 
space and time, precise measurement of time intervals requires that we know 
both the state of motion of the clock used to measure the interval and, in 
some cases, the location of the clock as well. Otherwise, for example, global 
positioning system satellites might be unable to pinpoint your location with 
sufficient accuracy, should you need to be rescued. Approximate values of 
time intervals are presented in Table 1.3. 
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In addition to SI, another system of units, the U.S. customary system, is still used 
in the United States despite acceptance of SI by the rest of the world. In this 
system, the units of length, mass, and time are the foot (ft), slug, and second, 
respectively. In this text we shall use SI units because they are almost 
universally accepted in science and industry. We shall make some limited use of 
U.S. customary units in the study of classical mechanics. 
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In addition to the basic SI units of meter, kilogram, and second, we can also use 
other units, such as millimeters and nanoseconds, where the prefixes milli- and 
nano denote multipliers of the basic units based on various powers of ten. 
Prefixes for the various powers of ten and their abbreviations are listed in 
Table 1.4. For example, 10-3 m is equivalent to 1 millimeter (mm), and 103 m 
corresponds to 1 kilometer (km). Likewise, 1 kilogram (kg) is 103 grams (g), 
and 1 megavolt (MV) is 106 volts (V).  
 

QUESTION 1: How many centimeters are there in one 
kilometer? How many millimeters 
in a kilometer? 
QUESTION 2: How many microns are there in a 
fermi? 
QUESTION 3: How many microns are there in an 
angstrom? 

                           (A) 106 (B) 104 (C) 10-4 (D) 10-6 

There are 100 centimeters in a meter, and there are 
1000 meters in a kilometer, so there are 100x1000 
=105 centimeters in a kilometer. Similarly, with 103 
millimeters in a meter, there are 103x103x106 
millimeters in a kilometer 
 1.2 Matter and Model Building 
If physicists cannot interact with some phenomenon 
directly,  they often imagine a model for a physical system 
that is related  to the phenomenon. In this context, a 
model is a system of  physical components, such as 
electrons and protons in an atom. Once we have identified 
the physical components, we make predictions about the  
behavior of the system, based on the interactions among 
the components of the system and/or the  interaction 
between the system and the environment  
outside the system. As an example, consider 
 the behavior of matter.                                                Figure 1.2 Levels of   organization in matter 
A 1-kg cube of solid gold, such as that at the left of Figure 1.2, has a length of 3.73 cm on 
a side. Is this cube nothing but wall-to-wall  gold, with no empty  space? If the cube is 
cut in half, the two  pieces still retain their chemical identity as solid gold. But what  if 
the pieces are cut again and again, indefinitely? Will the  smaller and smaller pieces 
always be gold? Questions such as  these can be traced back to early Greek 
philosophers. Two of  them—Leucippus and his student Democritus—could not  accept 
the idea that such cuttings could go on forever. They speculated that the process                  
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ultimately must end when it produces a particlethat can no  longer be cut. In Greek, 
atomos means “not   sliceable.”  
From this comes our English word atom.  Let us review briefly a number of 
historical models of the structure of matter. The Greek model of the structure of 
matter was that all ordinary matter consists of atoms, as suggested to the lower 
right of the cube in Figure 1.2. Beyond that, no additional structure was specified in 
the model—atoms acted as small particles that interacted with each other, but 
internal structure of the atom was not a part of the model. In 1897, J. J. Thomson 
identified the electron as a charged particle and as a constituent of the atom.  
This led to the  first model of the atom that contained internal structure.  
Following the discovery of the nucleus in 1911, a model was developed in 
which each atom is made up of electrons surrounding a  central nucleus.   A 
nucleus is  shown in Figure 1.2. This model leads, however, to a new  
question—does the nucleus have structure? That is, is the nucleus a single 
particle  or a collection of particles? The exact composition of the nucleus is 
not known completely  even today,  but by the early 1930s a  model evolved 
that helped us understand how the  nucleus behaves. Specifically, scientists 
determined that occupying the nucleus is two  basic entities, protons and 
neutrons. The proton carries a positive electric charge, and a  specific 
chemical element is identified by  the number of protons in its nucleus. This 
number is called the atomic number of the element. For instance, the nucleus 
of a hydrogen atom contains one proton (and so the atomic number of 
hydrogen is 1), the nucleus of a helium atom contains two protons (atomic 
number 2), and  the nucleus of a uranium atom contains  92 protons (atomic 
number 92). In addition to atomic number, there is a second number 
characterizing atoms—mass number, defined as the number  of protons plus 
neutrons in a nucleus. The atomic number of an element never varies (i.e., the 
number of protons does not  vary) but the mass number can vary (i.e., the 
number of neutrons varies). The existence of neutrons was verified 
conclusively in 1932. A neutron has  no charge and a  mass that is about equal 
to that  of a proton. One of its primary purposes is to act as a “glue” that holds 
the nucleus together. If neutrons were not present in the nucleus, the 
repulsive force between the positively charged particles would cause the 
nucleus to come apart. But is this where the process of breaking down stops? 
Protons, neutrons, and a host of other exotic particles are now known to be 
composed of six different varieties of particles called quarks, which have 
been given the names of up, down, strange, charmed, bottom, and top. The up, 
charmed, and top quarks have electric charges of + 3/2 that of the proton, 
whereas the down, strange, and bottom quarks have charges of – 1/3 that of 
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the proton. The proton consists of two up quarks and one down quark, as 
shown at the top in Figure 1.2. You can easily show that this structure 
predicts the correct charge for the proton. Likewise, the neutron consists of 
two down quarks and one up quark, giving a net charge of zero. This process 
of building models is one that you should develop as you study physics. You 
will be challenged with many mathematical problems to solve in this study. 
One of the most important techniques is to build a model for the problem 
identify a system of physical components for the problem, and make 
predictions of the behavior of the system based on  the interactions among 
the components of the system and/or the interaction between the  system 
and its surrounding environment. 
 

 
1.3 Density and Atomic Mass 
In Section 1.1, we explored three basic quantities in mechanics. Let us look now at 
an 
example of a derived quantity—density. The density ρ(Greek letter rho) of any 
substance  is defined as its mass per unit volume: 

                                                                                                                                                 
(1.1) 

 
 
For example, aluminum has a density of 2.70 g/cm3, and lead has a density of 
11.3 g/cm3. Therefore, a piece of aluminum of volume 10.0 cm3 has a mass of 27.0 
g, whereas an equivalent volume of lead has a mass of 113 g. A list of densities for 
various substances is given in Table 1.5. 
The numbers of protons and neutrons in the nucleus of an atom of an element are 
related to the atomic mass of the element, which is defined as the mass of a single 
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atom of the element measured in atomic mass units (u) where 1 u = 1.660 538 7 x 
10-27 kg. 
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Example 2 
 

How many atoms are there in a 5-cent coin? Assume that the coin is made of 
nickel and has  a mass of 5.2 10-3 kg, or 5.2 grams. Atomic masses is 58.69. 
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1.4 Dimensional Analysis 
The word dimension has a special meaning in physics. It denotes the physical 
nature of a quantity. Whether a distance is measured in units of feet or meters or 
fathoms, it is still a distance. We say its dimension is length. 
The symbols we use in this book to specify the dimensions of length, mass, and 
time are L, M, and T, respectively.3 We shall often use brackets [ ] to denote the 
dimensions of a physical quantity. For example, the symbol we use for speed in 
this book is v, and in our notation the dimensions of speed are written [v]  = L/T. 
As another example, the dimensions of area A are 
 [A]  =L2. The dimensions and units of area, volume, speed, and acceleration are 
listed in  Table 1.6. The dimensions of other quantities, such as force and energy, 
will be described as  they are introduced in the text. In many situations, you may 
have to derive or check a specific equation. A useful and powerful procedure 
called dimensional analysis can be used to assist in the derivation or to check 
your final expression. Dimensional analysis makes use of the fact that 
 
 
 
 
 
 
 
 

dimensions can be treated as algebraic quantities. For example, quantities can be 
added or subtracted only if they have the same dimensions. Furthermore, the 
terms on both sides of an equation must have the same dimensions. By following 
these simple rules, you can use dimensional analysis to help determine whether 
an expression has  the correct form. The relationship can be correct only if the 
dimensions on both sides of the equation are the same. 
To illustrate this procedure, suppose you wish to derive an equation for the 
position x of a car at a time t if the car starts from rest and moves with constant 
acceleration. We shall find that the correct expression is x = at 2. Let us use 
dimensional analysis  to check the validity of this expression. The quantity x on 
the left side has the dimension  of length. For the equation to be dimensionally 
correct, the quantity on the right side must also have the dimension of length. We 
can performa dimensional check by substituting the  dimensions for acceleration, 
L/T2  (Table 1.6), and time, T, into the equation. That is, the dimensional form of 
the equation 
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The dimensions of time cancel as shown, leaving the dimension of length on the right  
Hand side. A more general procedure using dimensional analysis is to set up an 
expression of the form  
 
 
 
 
The exponents of L and T must be the same on both sides of the equation. From 
the exponents of L, we see immediately that n = 1. From the exponents of T, we 
see that m - 2n = 0, which, once we substitute for n, gives us m = 2. Returning to 
our original expression  
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1.5 Conversion of Units 
 
Sometimes it is necessary to convert units from one measurement system to another, or 

to convert within a system, for example, from kilometers to meters. Equalities between 
SI and U.S. customary units of length are as follows: 
1 mile = 1 609 m = 1.609 km 1 ft = 0.304 8 m = 30.48 cm 
1 m = 39.37 in. = 3.281 ft 1 in. = 0.025 4 m = 2.54 cm (exactly) 
A more complete list of conversion factors can be found in Appendix A. 
Units can be treated as algebraic quantities that can cancel each other. For example, 
suppose we wish to convert 15.0 in. to centimeters. Because 1 in. is defined as exactly 
2.54 cm, we find that 
 
 
where the ratio in parentheses is equal to 1. Notice that we choose to put the unit of an 



25 
 

inch in the denominator and it cancels with the unit in the original quantity. The 
remaining  unit is the centimeter, which is our desired result. 
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Example 
We can obtain a rough estimate of the size of a molecule by means of the 
following simple experiment. Take a droplet of oil and let it spread out on a 
smooth surface of water. When the oil slick attains its maximum area, it 
consists of a monomolecular layer; that is, it consists of a single layer of oil 
molecules which stand on the water surface side by side. Given that 

spreads out into an  3kg and of density 920 kg/m 7-droplet of mass 8.4x10   an oil
.oil molecule, calculate the length of an 2oil slick of maximum area 0.55 m 

 
 
 
 



27 
 

1.6 Estimates and Order-of-Magnitude Calculations 
It is often useful to compute an approximate answer to a given physical problem even 
when little information is available. This answer can then be used to determine 

whether or not a more precise calculation is necessary. Such an approximation is 
usually based on certain assumptions, which must be modified if greater precision is 

needed. We will sometimes refer  to an order of magnitude of a certain quantity as the 

power of ten of the number that  describes that quantity. Usually, when an order-of 
magnitude calculation is made, the results are reliable to within about a factor of 10. If 
a quantity increases in value by three orders of magnitude, this means that its value 
increases by a factor of about 103 = 1 000. We use the symbol ~ for “is on the 
order of.” Thus,  0.008 6 ~ 10-2  0.002 1 ~ 10-3 720 ~ 103 
The spirit of order-of-magnitude calculations, sometimes referred to as 
“guesstimates” or “ball-park figures,” is given in the following quotation: “Make 
an estimate before every calculation, try a simple physical argument . . . before 
every derivation, guess the answer to 
every puzzle.”4 Inaccuracies caused by guessing too low for one number are 
often canceled out by other guesses that are too high. You will find that with 
practice your guesstimates become better and better. Estimation problems can 
be fun to work as you freely drop digits, venture reasonable approximations for 
unknown numbers, make simplifying assumptions, and turn the question around 
into something you can answer in your head or with minimal mathematical 
manipulation on paper. Because of the simplicity of these types of calculations, 
they can be performed on a small piece of paper, so these estimates are often 
called “back-of-the envelope calculations.” 
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2-Vectors 
2.1 Coordinate Systems 

Many aspects of physics involve a description of a 
location in space. The mathematical description of an 
object’s motion requires a method for describing the 
object’s position at various times. In two dimensions, 
this description is accomplished with the use of the 
Cartesian coordinate  system, in which perpendicular 
axes intersect at a point defined as the origin O (Fig. 
2.1). Cartesian coordinates are also called rectangular 

coordinates. 
2.2 Vector and Scalar Quantities 

A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction 
associated with it. 
Magnitude – A numerical value with units. Others, such as temperature, can have 
either positive or negative values. 
A VECTOR  
for is ANY quantity in physics that has BOTH MAGNITUDE and DIRECTION. 
Vectors are typically illustrated by drawing an ARROW above the symbol. The 
arrow is used to convey direction and magnitude.. The magnitude of a vector is 
always a positive number. 
Acceleration is an example the vector quantities. 
 
Quick Quiz 3.1 Which of the following are vector quantities and which are 
scalar quantities? 
 
                    (a) your age (b) acceleration (c) velocity (d) speed (e) mass. 

Note  Please be informed about the difference between the distance and the 
displacement 
The displacement vector tells us only where the final position (P2) is in relation 
to the initial position (P1); it does not tell us what path the ship followed 
between the two positions. 
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2.3 Some Properties of Vectors 

 

Equal Vectors : have the same length and direction, and          

 must represent the same quantity (such as force or velocity). 
 

Inverse Vectors  have the same length, but opposite direction. 
 

 

 

Adding Vectors: If A & B are vectors ;then   

(known as the commutative law of addition). Adding vectors can be done by 

4 different methods: 

 

 Parallelogram Method - For a quick assessment.  Good for concurrent forces. 

 Tip-to-Tail Method -  Drawing vectors to scale on paper to find an answer.   

  Good for displacements. 

 Mathematical Method -  Determining an answer using trigonometry.  The vectors 

need to be at right angles to one another. 

 Geometric construction - for summing more than two vectors. 

The following examples are helpful for understanding the pre- mentioned methods. 
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1-Parallelogram Method       

 

 

2-Tip-to-Tail Method 

 Draw vectors, tip to tail 

 Using your scale, measure length of R 

 

 

3-Mathematical 

Method 

When 2 vectors are perpendicular, you must use the next example: 
-A man walks 95 km, East then 55 km, north. Calculate his RESULTANT 
DISPLACEMENT. 
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4- Geometric construction 

We can add 3 or more vectors by placing them tip to tail in any order, so long as 

they are of the same type (force, velocity, displacement, etc.). 

 

             

 

 

 

 

 

 

 

SubtractingVectors: 

In order to subtract vectors, we define the negative of a vector, which has the same 

magnitude but points in the opposite direction.Then we add the negative vector: 

 

 
 

 

 

 Multiplication of a Vector by a Scalar Number 

A vector V can be multiplied by a scalar c; the result is a vector cV that has the same 

direction but a magnitude cV. If c is negative, the resultant vector points in the 

opposite direction. 
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Dot Product 

The dot product (also called the scalar product) of two vectors A and B is denoted 

by A.B. This quantity is simply the product of the magnitudes of 

the two vectors and the cosine of the angle between them  
 

Thus, the dot product of two vectors simply gives a number, that is, a scalar rather 

than a vector. 

Cross Product 

In contrast to the dot product of two vectors, which is a scalar, the cross product (also 

called the vector product) of two vectors is a vector. The cross product of two vectors  

A and B is denoted by A_B. The magnitude of this vector is equal to the product of 

the magnitudes of the two vectors and the sine of the angle between them. Thus if we 

write the vector resulting from the cross product as  C = A xB  

then the magnitude of this vector is  

 

 

 

 

 
The direction of the vector C is defined to be along the perpendicular to the plane 

formed by A and B (Fig.). The direction of C along this perpendicular is given by the 

right-hand rule: put the fingers of your right hand along A (Fig.), and 

curl them toward B in the direction of the smaller angle from A to B (Fig.); the thumb 

then points along C. Note that the fingers must be curled from the first vector in the 

product toward the second. Thus, Ax B is not the same as B x A. For the latter 

product, the fingers must be curled from B toward A (rather than vice versa); hence, 

the direction of the vector B x A is opposite to that of A x B: 
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Unit 3 : Properties of Matter 

3.1.Elasticity 
3.1.1 Elastic Properties of Solids 

Except for our discussion about springs in earlier chapters, we have assumed 
objects remain rigid when external forces act on them. In Section 9.8, we 
explored deformable systems. In reality, all objects are deformable to some 
extent. That is, it is possible to change the shape or the size (or both) of an 
object by applying external forces. As these changes take place, however, 
internal forces in the object resist the deformation. 
We shall discuss the deformation of solids in terms of the concepts of stress 
and strain. Stress is a quantity that is proportional to the force causing a 
deformation; more specifically, stress is the external force acting on an object 
per unit cross-sectional area. The result of a stress is strain, which is a 
measure of the degree of deformation. It is  found that, for sufficiently small 
stresses, stress is proportional to strain; the constant of proportionality 
depends on the material being deformed and on the nature of the 
deformation. 
 We call this proportionality constant the elastic modulus. The elastic modulus 
is therefore  defined as the ratio of the stress to the resulting strain: 
                                                              Elastic modulus  = stress /strain                                                                                     
The elastic modulus in general relates what is done to a solid object (a force is 
applied) to how that object responds (it deforms to some extent). It is similar 
to the spring constant k in Hooke’s law that relates a force applied to a spring 
and the resultant deformation of the spring, measured by its extension or 
compression. 
We consider three types of deformation and define an elastic modulus for 
each: 
1. Young’s modulus measures the resistance of a solid to a change in its length. 
2. Shear modulus measures the resistance to motion of the planes within a 
solid parallel to each other. 
3. Bulk modulus measures the resistance of solids or liquids to changes in 
their volume. 
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3.1.2 Young’s Modulus: Elasticity in Length 
Consider a long bar of cross-sectional area A and initial length Li that is 
clamped at one end as in Figure 2.1. When an external force is applied 
perpendicular to the cross section, internal molecular forces in the bar 
resist distortion (“stretching”), but the bar reaches an equilibrium situation 
in which its final length Lf is greater than Li and in which the external force 
is exactly balanced by the internal forces. 
In such a situation, the bar is said to be stressed. We define the tensile stress 
as the ratio of the magnitude of the external force F to the cross-sectional 
area A, where the cross section is perpendicular to the force vector. The 
tensile strain in this case is defined as the ratio of the change in length DL to 
the original length Li. We define Young’s modulus by a combination of these 
two ratios: 
                Y = tensile stress/tensile strain = (F/A) /( ΔL/Li  )                                                     
Young’s modulus is typically used to characterize a rod or wire stressed 
under either tension or compression. Because strain is a dimensionless 
quantity, Y has units of force per unit area. For relatively small stresses, the 
bar returns to its initial length when the force is removed. The elastic limit 
of a substance is defined as the maximum stress that canbe applied to the 
substance before it becomes permanently deformed and does not return to 
its initial length. It is possible to exceed the elastic limit of a substance by 
applying a sufficiently large stress as seen in Figure 2. 2. Initially, a stress-
versus strain curve is a straight line. As the stress increases, however, the 
curve is no longer a straight line. When the stress exceeds the elastic limit, 
the object is permanently distorted and does not return to its original shape 
after the stress is removed. As the stress is increased even further,  
the material ultimately breaks.  

                    
Figure 2.1 A force F is applied to the free end    Figure 2. 2 Stress-versus-strain curve for 
elastic of a bar clamped at the other end.                                                solid     
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3.1.3 Shear Modulus: Elasticity of Shape 
Another type of deformation occurs when an object is subjected to a force 
parallel to one of its faces while the opposite face is held fixed by another 
force (Fig.2. 3a). The stress  in this case is called a shear stress. If the 
object is originally a rectangular block, a shear stress results in a shape 
whose cross section is a parallelogram. A book pushed sideways as shown 
in Figure 2. 3b is an example of an object subjected to a shear stress. To a 
first approximation (for small distortions), no change in volume occurs 
with this deformation. We define the shear stress as F/A, the ratio of the 
tangential force to the area A of the face being sheared. The shear strain is 
defined as the ratio Δx/h, where Δx is the horizontal distance that the 
sheared face moves and h is the height of the object. In terms of these 
quantities, the shear modulus is :  
S =  shear stress/shear strain = (F/A) /( Δx/h)                                          (2.7) 
 Like Young’s modulus, the unit of shear modulus is the ratio of that 
for force to that for area. 

 
 

 
 

Figure 2. 3 (a) A shear deformation in which a rectangular block is 
distorted by two forces of equal magnitude but opposite directions 
applied to two parallel faces.  
             (b) A book is under shear stress when a hand placed on the cover 
 applies a horizontal force away from the spine. 
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2.4 Bulk Modulus: Volume Elasticity 
 
Bulk modulus characterizes the response of an object to changes in a force 
of uniform magnitude applied perpendicularly over the entire surface of the 
object as shown in Figure 2. 4. (We assume here the object is made of a 
single substance.) such a uniform distribution of forces occurs when an 
object is immersed in a fluid. An object subject to this type of deformation 
undergoes a change in volume but no change in shape. The volume stress is 
defined as the ratio 
of the magnitude of the total force F exerted on a surface to the area A of the 
surface. 
The quantity P = F/A is called pressure . If the pressure on an object 
changes by an amount ΔP = ΔF/A, the object experiences a volume change 
ΔV. The volume strain is equal to the change in volume ΔV divided by the 
initial volume Vi. Therefore, from Equation 2.5, we can characterize 
a volume (“bulk”) compression in terms of the bulk modulus, which is 
defined as 
           B = volume stress/volume strain ΔF/A ΔV/Vi  = ΔPΔV/Vi        (2.8) 
A negative sign is inserted in this defining equation so that B is a positive 
number.  
This maneuver is necessary Because  an increase in pressure (positive ΔP) 
causes a decrease in volume (negative ΔV) and vice versa. The reciprocal of 
the  bulk modulus is called the compressibility of the material. 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 2. 4 A cube is under uniform pressure and is therefore compressed 
on all sides by forces normal to its six faces.  The arrowheads  of force 
vectors on the sides of the cube  that are not visible are hidden by the cube.  
 



39 
 

 

Quick Quiz 2.1 For the three parts of this Quick Quiz, choose  
from the following choices the correct answer for the elastic modulus that 
describes the relationship between stress and strain for the system of interest, 
which is in italics: 
 (a) Young’s modulus 
 (b) shear modulus 
 (c) bulk modulus  
 (d) none of those 
choices (i) A block of iron is sliding across a horizontal floor. The friction force 
between the sliding block and the floor causes the block to deform. (ii) A trapeze 
artist swings through a circular arc. At the bottom of the swing, the wires  
supporting the trapeze are longer than when the trapeze artist simply hangs 
from the trapeze due to the increased tension in them. (iii) A spacecraft carries a 
steel sphere to a planet on which atmospheric pressure is much higher than on 
the Earth. The higher pressure causes the radius of the sphere to decrease. 
 

Example 1.2 Stage Design 
We analyzed a cable used to support an actor as he swings onto the stage. Now 
suppose the tension in  the cable is 940 N as the actor reaches the lowest point. 
What diameter should a 10-m-long steel cable have if we do not want it to stretch 
more than 0.50 cm under these conditions? 
Conceptualize Look back at Example 8.2 to recall what is happening in this 
situation. We ignored any stretching of the cable there, but we wish to address 
this phenomenon in this example. 
Categorize We perform a simple calculation, so we categorize this example as a 
substitution problem. 
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Example 2.2 Squeezing a Brass Sphere 
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3.2 elastic potential energy 

Elastic potential energy is energy stored as a result of applying a force to deform 

an elastic object. The energy is stored until the force is removed and the object 

springs back to its original shape, doing work in the process. The deformation 

could involve compressing, stretching or twisting the object. Many objects are 

designed specifically to store elastic potential energy, for example: 

 The coil spring of a wind-up clock 

 An archer's stretched bow 

 A bent diving board, just before a divers jump 

 The twisted rubber band which powers a toy airplane 

 A bouncy ball, compressed at the moment it bounces off a brick wall. 

An object designed to store elastic potential energy will typically have a high 

elastic limit, however all elastic objects have a limit to the load they can sustain. 

When deformed beyond the elastic limit, the object will no longer return to its 

original shape. In earlier generations, wind-up mechanical watches powered by 

coil springs were popular accessories. Nowadays, we don't tend to use wind-up 

smartphones because no materials exist with high enough elastic limit to store 

elastic potential energy with high enough energy density.  
[Explain]. 

3.2.1 How can we calculate elastic potential energy for an ideal spring? 

Our article on Hooke's law and elasticity discusses how the magnitude of the 

force F due to an ideal spring depends linearly on the length it has been 

compressed or expanded Δx, 

                                           F = k⋅Δx 

 

https://www.khanacademy.org/science/physics/forces-newtons-laws/newtons-laws-of-motion/a/what-is-newtons-first-law
https://www.khanacademy.org/science/physics/work-and-energy/work-and-energy-tutorial/a/what-is-work
https://www.khanacademy.org/science/physics/work-and-energy/hookes-law/a/what-is-hookes-law
https://en.wikipedia.org/wiki/Energy_density
javascript:void(0)
https://www.khanacademy.org/science/physics/work-and-energy/hookes-law/a/what-is-hookes-law
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where k is some positive number known as the spring constant. The 
spring force is a conservative force and conservative forces have 
potential energies associated with them.  
[What about the direction of the force?] 

From the definition of work we know that the area under a force vs displacement 

graph gives the work done by the force. Figure 1 shows a plot of force vs 

displacement for a spring. Because the area under the curve is a triangle and no 

energy is lost in an ideal spring, the elastic potential energy U can be found from 

the work done 

U =1/2 (Δx)⋅k(Δx)=1/2k(Δx)2 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

javascript:void(0)
https://www.khanacademy.org/science/physics/work-and-energy/work-and-energy-tutorial/v/work-as-area-under-curve
https://www.khanacademy.org/science/physics/work-and-energy/work-and-energy-tutorial/v/work-as-area-under-curve
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Exercise 1: A truck spring has a spring constant of 5 x 104N/m, When 
unloaded, the truck sits 0.8 m above the road. When loaded with goods, 
it lowers to 0.7 m above the ground. How much potential energy is stored 
in the four springs?  

[Solution] 

The difference in the height of the truck is 0.1 m, (0.8 m – 0.7 m). This tells us 

the compression of the springs Δx. Substituting into the equation for the 

potential energy in a spring: 

U = 1/2 k(Δx)2 =1/2 x5x104 N/m⋅(0.1 m)2 =250 J/spring=1000 J 

 

Exercise 2: A trained archer has the ability to draw a longbow with a force of up 

to 300 N, extending the string back by 0.6 m. Assuming the bow behaves like an 

ideal spring, what spring constant would allow the archer to make use of his full 

strength? 
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If the spring is not strong enough, the archer will not be able to apply the full 

300 N. Using Hooke's law we can find the spring constant required, 

k= F/Δx= 300 N /0.6 m  =500 N/m 

 

Exercise 2b: What potential energy is stored in the bow when it is drawn?  

 

[Solution] 

Using the equation for elastic potential energy of an ideal spring, 

 

Exercise 2c: Assuming the arrow has a mass of 30 g, approximately, what speed 

will it be fired at? 

  

[Solution] 

We know that the only source of kinetic energy of the arrow is the elastic 
potential energy of the bow. Immediately after the arrow has left the bow there 
has not been enough time for the force of drag to have done any work on the 
arrow. So we can proceed using conservation of energy to find the velocity 
from the kinetic energy. 

 

javascript:void(0)
javascript:void(0)
https://www.khanacademy.org/science/physics/work-and-energy/work-and-energy-tutorial/a/what-is-conservation-of-energy
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Exercise 2d: Suppose that measurements from a high speed camera show the 

arrow to be moving at a somewhat slower speed than predicted by conservation 

of energy. Is there any work being done that we have not accounted for?  

 

[Solution] 

 At the moment the arrow leaves the bow, the part of the bow string 

which is in contact with the arrow is necessarily also moving at the 

speed of the arrow. Ideally the string would be very light compared to 

the arrow, however the string (and possibly parts of the bow) have some 

kinetic energy as the arrow leaves the bow which has not been taken 

into account. 

 The bow might not be an ideal spring. Some of work done by the archer 

may have been dissipated as heat in the bow. 

3.2.2 What about real elastic materials? 

 In our article on Hooke's law and elasticity we discuss how real springs 

only obey Hooke's law over some particular range of applied force. Some 

elastic materials such as rubber bands and flexible plastics can function as 

springs but often have hysteresis; this means the force vs extension curve 

follows a different path when the material is being deformed compared to 

when it is relaxing back to its equilibrium position. 

 Fortunately, the basic technique of applying the definition of work that we 

employed for an ideal spring also works for elastic materials in general. 

The elastic potential energy can always be found from the area under the 

force vs extension curve, regardless of the shape of the curve. 

 In our earlier analysis, we have considered the ideal spring as a one-

dimensional object. In reality, elastic materials are three dimensional. It 

turns out that the same procedure still applies. The equivalent to the force 

vs extension curve is the stress vs strain curve.  

javascript:void(0)
https://www.khanacademy.org/science/physics/work-and-energy/hookes-law/a/what-is-hookes-law
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[What are stress and strain?] 

 Where a three-dimensional elastic material obeys Hooke's law, 

 

[What is going on with the units here?] 

 

 Exercise 3: Figure 3 shows a stress vs strain plot for a rubber band. As it 

is stretched (loaded), the curve takes the upper path. Because the rubber 

band is not ideal, it delivers less force for a given extension when relaxing 

back (unloaded). The purple shaded area represents the elastic potential 

energy at maximum extension. The difference in area between the loaded 

and unloaded case is shown in yellow. This represents the energy which is 

lost to heat as the band is cycled between stretched and relaxed. 

 If the rubber band has length 100 mm m, width 10 mm  and 

thickness 1 mm 

how much heat is generated in the band as it is stretched and 

released? 

[Solution] 
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The area shaded yellow in the curve represents the energy lost to heat. We can 

find the energy per grid-square: 

3.2.3 (Energy Stored in Strained Bodies) 

in a body due to deformation. The is defined as the energy stored  Strain energy
and the area under  strain energy density strain energy per unit volume is known as

strain curve towards the point of deformation. When the applied force is -the stress
e.released, the whole system returns to its original shap 

Strain energy is a particular form of potential energy which is stored within 
materials which have been subjected to strain, i.e. to some change in dimension 

Energy stored per unit volume in a stretched wire  
apply a force to an object of a deformable material, it will change its Whenever we 

shape. Sometimes, it is a big change, like when we stretch out a rubber band. Also, 
it’s hard to see, like when a load is applied to a steel support beam. As we apply 

ce, the object will continue to stretch. Stress will be the amount of more and more for
sectional area of the object.-force applied divided by the cross  
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Energy stored per unit volume in a Shear Strain  
 

When the deforming force produces a change in shape of the object  Shear Strain:

without changing its volume, the strain produced in that object is known as Shear 

.Strain 

. Shear  = Δ l l N Shear strain is caused by shear stress, and is given by the formula

= τ G .  Nstrain is also related to the shear modulus of a material by the formula 

While shear stress and the shear modulus are measured in units of pressure, shear 

.strain does not have any associated units 

Suppose you apply two tangent forces on the opposite faces of a cubic or rectangular 

element. If that occurs, one of the faces will displace a distance Δ  relative to the other. 

 The shear strain is no more than the angle ΔΨ  (shown in the image) caused by the 

displacement Δ  In practice, displacement ΔΨ  is much smaller than ℎh, and ΔΨ  is a small 

angle. 
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Energy stored per unit volume in a Volume Strain 
Volumetric strain is defined as the ratio of change in volume of a body to its original 
volume due to the application of some external deforming forces. Therefore, the 
equation for volumetric strain will be EV=ΔV/V. 
So the amount of total work done to bring about the total change in volume from (zero) 
to (V) 
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Examples 
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Solved problems 
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Unit 4 : Fluid Mechanics 
Matter is normally classified as being in one of three states: solid, liquid, 
or gas. From everyday experience we know that a solid has a definite 
volume and shape, a liquid has a definite volume but no definite shape, and 
an unconfined gas has neither a definite volume nor a definite shape. These 
descriptions help us picture the states of matter, but they are 
somewhat artificial. For example, asphalt and plastics are normally 
considered solids, but over long time intervals they tend to flow like liquids. 
Likewise, most substances can be a solid, a liquid, or a gas (or a combination 
of any of these three), depending on the temperature 
and pressure. In general, the time interval required for a particular 
substance to change its shape in response to an external force determines 
whether we treat the substance as a solid, a liquid, or a gas. 



63 
 

 
 

A fluid is a collection of molecules that are randomly arranged and held 
together by weak cohesive forces and by forces exerted by the walls of a 
container. Both liquids and gases are fluids. 
In our treatment of the mechanics of fluids, we’ll be applying principles and 
analysis models that we have already discussed. First, we consider the 
mechanics of a fluid at rest, that is, fluid statics, and then study fluids in 

motion, that is, fluid dynamics. 14.1 3 
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.4.1 Pressure 
Fluids do not sustain shearing stresses or tensile 
stresses such as those  
discussed  therefore, the only stress that can be exerted 
on an object submerged in a static fluid is one that tends 
to compress the object from all sides. In other words, 
the force exerted by a static fluid on an object is always 
perpendicular to the surfaces of the object as shown in 
Figure 3.1. 

The pressure in a fluid can be measured with the device 
pictured in Figure 3.2.The device consists of an 
evacuated cylinder that encloses a light piston 
connected to a spring. As the device is submerged in a 
fluid, the fluid presses on the top of the piston and compresses the spring until 
the inward force exerted by the fluid is balanced by the outward force exerted by 
the spring. The fluid pressure can be measured directly if the spring is calibrated  
in advance. If F is the magnitude of the force exerted on the piston and A 
is the surface area of the piston, the pressure P of the fluid at the level to 
which the device has been submerged is defined as the ratio of the force 
to the area: P =F /A  

                              Figure 4.2 The forces exerted 

                                            by a fluid on the surfaces of a 

                                          submerged object.       
 

 

 

 

Figure 4.3 A simple device for measuring the pressure exerted by a fluid.  scalar quantity  
because it is proportional to the magnitude of the force on the piston.  
 

If the pressure varies over an area, the infinitesimal force dF on  an 
infinitesimal surface element of area dA is          dF = P dA  
where P is the pressure at the location of the area dA. To calculate  the total 
force exerted on a surface of a container, we must integrate  Equation over 
the surface.The units of pressure are newtons per  square meter (N/m2) in 
the SI system. Another name for the SI unit of pressure  
is the pascal (Pa): 1 Pa ; 1 N/m2 
 
For a tactile demonstration of the definition of pressure, hold a tack 
between your thumb and forefinger, with the point of the tack on your 
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thumb and the head of the tack on your forefinger. Now gently press your 
thumb and forefinger together. Your thumb will begin  to feel pain 
immediately while your forefinger will not. The tack is exerting the same 
force  on both your thumb and forefinger, but the pressure on your thumb 
is much larger because  of the small area over which the force is applied. 
 

 
Quiz 3.1 Suppose you are standing directly behind someone who steps back 
and  accidentally stomps on your foot with the heel of one shoe. Would you 
be better off if that person were 
 (a) a large, male professional basketball player wearing sneakers or  
 (b) a petite woman wearing spike-heeled shoes? 
 

Example 3.1.1 The Water Bed 

The mattress of a water bed is 2.00 m long by 2.00 m wide and 30.0 cm 
deep. 
 

(A) Find the weight of the water in the mattress. 
(B) Find the pressure exerted by the water bed on the floor when the bed 
rests in its normal position. Assume the  entire lower surface of the bed 
makes contact with the floor. 

 

 

 

 

 

 

 

 

 

 

 
3.2  
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Variation of Pressure with Depth 

 
As divers well know, water pressure increases with depth. Likewise, 
atmospheric pressure decreases with increasing altitude; for this reason, 
aircraft flying at high altitudes must have pressurized cabins for the 
comfort of the passengers. We now show how the pressure in  a liquid 
increases with depth. As Equation  describes, the density of a substance is 
defined as its mass per unit volume. See a  lists the densities of various 
substances. These values vary slightly with temperature because the 
volume of a substance is dependent on temperature. 

atmospheric pressure), theC and at oUnder standard conditions (at 0  
 densities of gases are  about 1/1000 the densities of solids and liquids. 
This difference in densities implies that the average molecular spacing 
in a gas under these conditions is about ten times greater than that in a 
solid or liquid. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3 A parcel of  

fluid in a larger volume  

of fluid is singled out. 
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Figure 4.4 (a) Diagram of a hydraulic press.  

(b) A vehicle under going repair is supported by a hydraulic lift in a                

garage. 
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Quiz 14.2 The pressure at the bottom of a filled glass of water (ρ = 1 000 
kg/m3) is P.  
The water is poured out, and the glass is filled with ethyl alcohol 
(ρ = 806 kg/m3). What is the pressure at the bottom of the glass?  
(a) smallerthan P  
(b) equal to P  
(c) larger than P  
(d) indeterminate 
 
 
 

Example 4.2 The Car Lift 
In a car lift used in a service station, compressed air exerts a force on a small piston 

that has a circular cross section of radius 5.00 cm. This pressure is transmitted by a 

liquid to a piston that has a radius of 15.0 cm. 

(A) What force must the compressed air exert to lift a car weighing 13 300 N? 
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(B) What air pressure produces this force? 

 
Example 4.3 A Pain in Your Ear 

Estimate the force exerted on your eardrum due to the water when you are 

swimming at the bottom of a pool that is 5.0 m deep. 
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INCOMPRESSIBLE STEADY FLOW; STREAMLINES 

 

We will deal with steady flow, for which the velocity at any given point of 

space remains  

constant in time. Thus, in steady flow, each small parcel of fluid that starts at 

any given point  follows exactly the same path as a small parcel that passes 

through the same point at an earlier (or later) time. For example, Fig. 3.5 

shows velocity vectors       

 for the steady flow of water around a cylindrical obstacle, 

say, the flow of the water of a broad river around a  

cylindrical piling placed in themiddle. The water enters  

the picture in a broad stream from the left, and disappears 

in a similar broad stream toward the right.For the steady  

flow of an incompressible fluid, such as water, the picture 

 of velocity vectors can be replaced by an alternative graphical  

representation. Suppose we focus our attention on a small  

volume of water, say, 1 mm3 of water, and we observe  

the pathof this 1 mm3 from the source to the sink.  

The path traced out by the small volume of 

fluid is called a streamline. Neighboring small volumes  

will trace out neighboring 

streamlines. In Fig. 18.6 we show the pattern of streamlines  

for the same steady flow of water that we already represented in Fig. 3.5 by 

means of velocity vectors. The streamlines on the far left (and far right) of Fig. 

18.6 are evenly spaced to indicate the uniform and parallel flow in this region. 

The steady flow of an incompressible fluid is often called streamline flow. 

Note 
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that streamlines never cross. A crossing of two streamlines would imply that a 

small parcel of water moving along one of these streamlines has to penetrate 

through a small parcel of water moving along the other streamline. This is 

impossible—it would lead to disruption of both the small parcels and to 

destruction of the steadiness of flow. 

Because the streamlines for steady incompressible flow never cross, such flow 

is also called laminar flow, which refers to the layered arrangement of the 

streamlines. 

If we know the velocity of flow throughout the fluid, we can trace out the motion 

of small parcels of fluid and therefore construct the streamlines. But the converse is 

also true—if we know the streamlines, we can reconstruct the velocity of flow. 

 

We can  do this by means of the following rule: 

The direction of the velocity at any one point is tangent to the streamline, and the 

magnitude of the velocity is proportional to the density of streamlines. 
The first part of this rule is self-evident, since the  

direction of  motion of a small parcel of fluid is  

tangent to the streamline.  

To establish the second part, consider a bundle of  

Streamlines  forming a pipelike region, called a  

stream tube. Any fluid inside the stream tube will  

have to move along the tube; it  cannot cross  

the surface of the tube because streamlines never cross.  

The tube 

 therefore plays the same role as a pipe made of some  

impermeable  material—it serves as a conduit for the  

fluid. If we consider a tube that is very narrow, so its 

 cross-sectional area is very small, the velocity of flow  

will vary only along the length of the tube,  

and we can assume it will be the same at all points on a given cross-

sectional area. For instance, on the area A1 (see Fig.)  the velocity is v1, 

and on the area A2 the velocity is v2. In a time dt, Eq. impliesthat the fluid 

volume that enters across the area A1 is dV1 = v1A1 dt and the fluid 

volume that leaves across the area A2 is dV2 = v2 A2  dt. The amount of 

fluid that enters must match the amount that leaves, since, under steady 

conditions, fluid cannot accumulate in the segment of tube between A1 and 

A2.  
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Hence dV1 = dV2, and or, canceling the factor dt on both sides of the 

equation, This relation is called the continuity equation. It shows that along 

any stream tube the speed of flow is inversely proportional to the cross-

sectional area of the stream tube. 
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