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Review 

 

 Introduction 
Technically a student coming into a Calculus class is supposed to know both Algebra and 
Trigonometry.  The reality is often much different however.  Most students enter a Calculus class 
woefully unprepared for both the algebra and the trig that is in a Calculus class.  This is very 
unfortunate since good algebra skills are absolutely vital to successfully completing any Calculus 
course and if your Calculus course includes trig (as this one does) good trig skills are also 
important in many sections. 
 
The intent of this chapter is to do a very cursory review of some algebra and trig skills that are 
absolutely vital to a calculus course.  This chapter is not inclusive in the algebra and trig skills 
that are needed to be successful in a Calculus course.  It only includes those topics that most 
students are particularly deficient in.  For instance factoring is also vital to completing a standard 
calculus class but is not included here.  For a more in depth review you should visit my 
Algebra/Trig review or my full set of Algebra notes at http://tutorial.math.lamar.edu. 
 
Note that even though these topics are very important to a Calculus class I rarely cover all of 
these in the actual class itself.  We simply don’t have the time to do that.  I do cover certain 
portions of this chapter in class, but for the most part I leave it to the students to read this chapter 
on their own. 
 
Here is a list of topics that are in this chapter.  I’ve also denoted the sections that I typically cover 
during the first couple of days of a Calculus class. 
 
Review : Functions – Here is a quick review of functions, function notation and a couple of 
fairly important ideas about functions. 
 
Review : Inverse Functions – A quick review of inverse functions and the notation for inverse 
functions. 
 
Review : Trig Functions – A review of trig functions, evaluation of trig functions and the unit 
circle.  This section usually gets a quick review in my class. 
 
Review : Solving Trig Equations – A reminder on how to solve trig equations.  This section is 
always covered in my class. 
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Review : Solving Trig Equations with Calculators, Part I – The previous section worked 
problem whose answers were always the “standard” angles.  In this section we work some 
problems whose answers are not “standard” and so a calculator is needed.  This section is always 
covered in my class as most trig equations in the remainder will need a calculator. 
 
Review : Solving Trig Equations with Calculators, Part II – Even more trig equations 
requiring a calculator to solve. 
 
Review : Exponential Functions – A review of exponential functions.  This section usually gets 
a quick review in my class. 
 
Review : Logarithm Functions – A review of logarithm functions and logarithm properties.  
This section usually gets a quick review in my class. 
 
Review : Exponential and Logarithm Equations – How to solve exponential and logarithm 
equations.  This section is always covered in my class. 
 
Review : Common Graphs – This section isn’t much.  It’s mostly a collection of graphs of many 
of the common functions that are liable to be seen in a Calculus class. 
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 Review : Functions 
In this section we’re going to make sure that you’re familiar with functions and function notation.  
Both will appear in almost every section in a Calculus class and so you will need to be able to 
deal with them. 
 
First, what exactly is a function?  An equation will be a function if for any x in the domain of the 
equation (the domain is all the x’s that can be plugged into the equation) the equation will yield 
exactly one value of y. 
 
This is usually easier to understand with an example. 
 
Example 1  Determine if each of the following are functions. 

(a) 2 1y x= +  
(b) 2 1y x= +  

Solution 
(a) This first one is a function.  Given an x there is only one way to square it and then add 1 to the 
result and so no matter what value of x you put into the equation there is only one possible value 
of y. 
 
(b)  The only difference between this equation and the first is that we moved the exponent off the 
x and onto the y.  This small change is all that is required, in this case, to change the equation 
from a function to something that isn’t a function.   
 
To see that this isn’t a function is fairly simple.  Choose a value of x, say x=3 and plug this into 
the equation. 
 2 3 1 4y = + =  
Now, there are two possible values of y that we could use here.  We could use 2y =  or 2y = − .  
Since there are two possible values of y that we get from a single x this equation isn’t a function. 
 
Note that this only needs to be the case for a single value of x to make an equation not be a 
function.  For instance we could have used x=-1 and in this case we would get a single y (y=0).  
However, because of what happens at x=3 this equation will not be a function. 
 
Next we need to take a quick look at function notation.  Function notation is nothing more than a 
fancy way of writing the y in a function that will allow us to simplify notation and some of our 
work a little. 
 
Let’s take a look at the following function. 
 22 5 3y x x= − +  
 
Using function notation we can write this as any of the following. 



Calculus I 

© 2007 Paul Dawkins 5 http://tutorial.math.lamar.edu/terms.aspx 
 

 

( ) ( )
( ) ( )
( ) ( )

2 2

2 2

2 2

2 5 3 2 5 3

2 5 3 2 5 3

2 5 3 2 5 3

f x x x g x x x

h x x x R x x x

w x x x y x x x

= − + = − +

= − + = − +

= − + = − +

#

 

 
Recall that this is NOT a letter times x, this is just a fancy way of writing y. 
 
So, why is this useful?  Well let’s take the function above and let’s get the value of the function at 
x=-3.  Using function notation we represent the value of the function at x=-3 as f(-3).  Function 
notation gives us a nice compact way of representing function values. 
 
Now, how do we actually evaluate the function?  That’s really simple.  Everywhere we see an x 
on the right side we will substitute whatever is in the parenthesis on the left side.  For our 
function this gives, 

 
( ) ( ) ( )

( )

23 2 3 5 3 3

2 9 15 3
36

f − = − − − +

= + +

=

 

 
Let’s take a look at some more function evaluation. 
 
Example 2  Given ( ) 2 6 11f x x x= − + −  find each of the following. 

(a) ( )2f    [Solution] 

(b) ( )10f −    [Solution] 

(c) ( )f t    [Solution] 

(d) ( )3f t −    [Solution] 

(e) ( )3f x −    [Solution] 

(f) ( )4 1f x −    [Solution] 
Solution 

(a) ( ) ( )22 2 6(2) 11 3f = − + − = −  

[Return to Problems] 

(b) ( ) ( ) ( )210 10 6 10 11 100 60 11 171f − = − − + − − = − − − = −  

 Be careful when squaring negative numbers! 
[Return to Problems] 

 
(c) ( ) 2 6 11f t t t= − + −  

Remember that we substitute for the x’s WHATEVER is in the parenthesis on the left.  Often this 
will be something other than a number.  So, in this case we put t’s in for all the x’s on the left.   

[Return to Problems] 
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(d) ( ) ( ) ( )2 23 3 6 3 11 12 38f t t t t t− = − − + − − = − + −  

Often instead of evaluating functions at numbers or single letters we will have some fairly 
complex evaluations so make sure that you can do these kinds of evaluations. 

[Return to Problems] 
 

(e) ( ) ( ) ( )2 23 3 6 3 11 12 38f x x x x x− = − − + − − = − + −  

The only difference between this one and the previous one is that I changed the t to an x.  Other 
than that there is absolutely no difference between the two!  Don’t get excited if an x appears 
inside the parenthesis on the left. 

[Return to Problems] 
 

(f) ( ) ( ) ( )2 24 1 4 1 6 4 1 11 16 32 18f x x x x x− = − − + − − = − + −  

This one is not much different from the previous part.  All we did was change the equation that 
we were plugging into function. 

[Return to Problems]
 
All throughout a calculus course we will be finding roots of functions.  A root of a function is 
nothing more than a number for which the function is zero.  In other words, finding the roots of a 
function, g(x), is equivalent to solving 
 ( ) 0g x =  
 
Example 3  Determine all the roots of ( ) 3 29 18 6f t t t t= − +  
 
Solution 
So we will need to solve, 
 3 29 18 6 0t t t− + =  
 
First, we should factor the equation as much as possible.  Doing this gives, 

 ( )23 3 6 2 0t t t− + =  
 
Next recall that if a product of two things are zero then one (or both) of them had to be zero.  This 
means that, 

 
2

3 0 OR,
3 6 2 0
t
t t

=

− + =
 

 
From the first it’s clear that one of the roots must then be t=0.  To get the remaining roots we will 
need to use the quadratic formula on the second equation.  Doing this gives, 
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( ) ( ) ( )( )
( )

( )( )

26 6 4 3 2
2 3

6 12
6

6 4 3
6

6 2 3
6

3 3
3
11 3
3
11
3

t
− − ± − −

=

±
=

±
=

±
=

±
=

= ±

= ±

 

 
In order to remind you how to simplify radicals we gave several forms of the answer. 
 
To complete the problem, here is a complete list of all the roots of this function. 

 3 3 3 30, ,
3 3

t t t+ −
= = =  

Note we didn’t use the final form for the roots from the quadratic.  This is usually where we’ll 
stop with the simplification for these kinds of roots.  Also note that, for the sake of the practice, 
we broke up the compact form for the two roots of the quadratic.  You will need to be able to do 
this so make sure that you can. 
 
This example had a couple of points other than finding roots of functions.   
 
The first was to remind you of the quadratic formula.  This won’t be the first time that you’ll need 
it in this class.   
 
The second was to get you used to seeing “messy” answers.  In fact, the answers in the above list 
are not that messy.  However, most students come out of an Algebra class very used to seeing 
only integers and the occasional “nice” fraction as answers. 
 
So, here is fair warning.  In this class I often will intentionally make the answers look “messy” 
just to get you out of the habit of always expecting “nice” answers.  In “real life” (whatever that 
is) the answer is rarely a simple integer such as two.  In most problems the answer will be a 
decimal that came about from a messy fraction and/or an answer that involved radicals. 
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The next topic that we need to discuss here is that of function composition.  The composition of 
f(x) and g(x) is 
 ( )( ) ( )( )f g x f g x=D  
In other words, compositions are evaluated by plugging the second function listed into the first 
function listed.  Note as well that order is important here.  Interchanging the order will usually 
result in a different answer. 
 
Example 4  Given ( ) 23 10f x x x= − +  and ( ) 1 20g x x= −  find each of the following. 

(a) ( )( )5f gD    [Solution] 

(b) ( )( )f g xD    [Solution] 

(c) ( )( )g f xD    [Solution] 

(d) ( )( )g g xD    [Solution] 
Solution 
(a) ( )( )5f gD  

In this case we’ve got a number instead of an x but it works in exactly the same way. 

 
( )( ) ( )( )

( )
5 5

99 29512

f g f g

f

=

= − =

D
 

[Return to Problems] 

(b) ( )( )f g xD  

 

( )( ) ( )( )
( )

( ) ( )
( )

2

2

2

1 20

3 1 20 1 20 10

3 1 40 400 1 20 10

1200 100 12

f g x f g x

f x

x x

x x x

x x

=

= −

= − − − +

= − + − + +

= − +

D

 

Compare this answer to the next part and notice that answers are NOT the same.  The order in 
which the functions are listed is important! 

[Return to Problems] 
 
(c) ( )( )g f xD  

 

( )( ) ( )( )
( )

( )

2

2

2

3 10

1 20 3 10

60 20 199

g f x g f x

g x x

x x

x x

=

= − +

= − − +

= − + −

D

 

And just to make the point.  This answer is different from the previous part.  Order is important in 
composition. 

[Return to Problems] 
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(d)  ( )( )g g xD  

In this case do not get excited about the fact that it’s the same function.  Composition still works 
the same way. 

 

( )( ) ( )( )
( )

( )
1 20

1 20 1 20
400 19

g g x g g x

g x

x
x

=

= −

= − −

= −

D

 

[Return to Problems]
 
Let’s work one more example that will lead us into the next section. 
 

Example 5  Given ( ) 3 2f x x= −  and ( ) 1 2
3 3

g x x= +  find each of the following. 

(a) ( )( )f g xD  

(b) ( )( )g f xD  
Solution 
(a) 

 

( )( ) ( )( )
1 2
3 3

1 23 2
3 3
2 2

f g x f g x

f x

x

x x

=

⎛ ⎞= +⎜ ⎟
⎝ ⎠

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

= + − =

D

 

(b) 

 

( )( ) ( )( )
( )

( )

3 2
1 23 2
3 3

2 2
3 3

g f x g f x

g x

x

x x

=

= −

= − +

= − + =

D

 

 
In this case the two compositions where the same and in fact the answer was very simple. 
 ( )( ) ( )( )f g x g f x x= =D D  
This will usually not happen.  However, when the two compositions are the same, or more 
specifically when the two compositions are both x there is a very nice relationship between the 
two functions.  We will take a look at that relationship in the next section. 
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 Review : Inverse Functions 

In the last example from the previous section we looked at the two functions ( ) 3 2f x x= −  and 

( ) 2
3 3
xg x = +  and saw that  

 ( )( ) ( )( )f g x g f x x= =D D  
and as noted in that section this means that there is a nice relationship between these two 
functions.  Let’s see just what that relationship is.  Consider the following evaluations. 
 

 

( ) ( ) ( )

( )

5 2 33 1 2
3 3 3

2 2 43 2 4 2
3

5 5

4 4

1 1

2 2
3 33 3

f g

g f

− −
= − − = ⇒ = + = =

⎛ ⎞ ⎛ ⎞= + = ⇒ = − = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝

− −−

⎠

−

 

 
In the first case we plugged 1x = −  into ( )f x  and got a value of -5.  We then turned around and 

plugged 5x = −  into ( )g x  and got a value of -1, the number that we started off with.   

 
In the second case we did something similar.  Here we plugged 2x =  into ( )g x  and got a value 

of
4
3

, we turned around and plugged this into ( )f x  and got a value of 2, which is again the 

number that we started with. 
 
Note that we really are doing some function composition here.  The first case is really, 

( )( ) ( ) [ ]1 1 5 1g f g f g− = − = − = −⎡ ⎤⎣ ⎦D  

and the second case is really, 

 ( )( ) ( ) 42 2 2
3

f g f g f ⎡ ⎤= = =⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦
D  

 
Note as well that these both agree with the formula for the compositions that we found in the 
previous section.  We get back out of the function evaluation the number that we originally 
plugged into the composition. 
 
So, just what is going on here?  In some way we can think of these two functions as undoing what 
the other did to a number.  In the first case we plugged 1x = −  into ( )f x  and then plugged the 

result from this function evaluation back into ( )g x  and in some way ( )g x  undid what ( )f x  

had done to 1x = −  and gave us back the original x that we started with. 
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Function pairs that exhibit this behavior are called inverse functions.  Before formally defining 
inverse functions and the notation that we’re going to use for them we need to get a definition out 
of the way.    
 
A function is called one-to-one if no two values of x produce the same y.  Mathematically this is 
the same as saying, 

( ) ( )1 2 1 2wheneverf x f x x x≠ ≠  

So, a function is one-to-one if whenever we plug different values into the function we get 
different function values. 
 
Sometimes it is easier to understand this definition if we see a function that isn’t one-to-one.  
Let’s take a look at a function that isn’t one-to-one.  The function ( ) 2f x x=  is not one-to-one 

because both ( )2 4f − =  and ( )2 4f = .  In other words there are two different values of x that 

produce the same value of y.  Note that we can turn ( ) 2f x x=  into a one-to-one function if we 

restrict ourselves to 0 x≤ < ∞ .  This can sometimes be done with functions. 
 
Showing that a function is one-to-one is often tedious and/or difficult.  For the most part we are 
going to assume that the functions that we’re going to be dealing with in this course are either 
one-to-one or we have restricted the domain of the function to get it to be a one-to-one function. 
 
Now, let’s formally define just what inverse functions are.  Given two one-to-one functions 

( )f x  and ( )g x  if 

 ( )( ) ( )( )ANDf g x x g f x x= =D D  

then we say that ( )f x  and ( )g x  are inverses of each other.  More specifically we will say that 

( )g x  is the inverse of ( )f x  and denote it by 

 ( ) ( )1g x f x−=  

Likewise we could also say that ( )f x  is the inverse of ( )g x  and denote it by 

 ( ) ( )1f x g x−=  
 
The notation that we use really depends upon the problem.  In most cases either is acceptable. 
 
For the two functions that we started off this section with we could write either of the following 
two sets of notation. 

 

( ) ( )

( ) ( )

1

1

23 2
3 3

2 3 2
3 3

xf x x f x

xg x g x x

−

−

= − = +

= + = −
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Now, be careful with the notation for inverses.  The “-1” is NOT an exponent despite the fact that 
is sure does look like one!  When dealing with inverse functions we’ve got to remember that  

 ( ) ( )
1 1f x

f x
− ≠  

This is one of the more common mistakes that students make when first studying inverse 
functions. 
 
The process for finding the inverse of a function is a fairly simple one although there are a couple 
of steps that can on occasion be somewhat messy.  Here is the process 
 
Finding the Inverse of a Function 
Given the function ( )f x  we want to find the inverse function, ( )1f x− . 

1. First, replace ( )f x  with y.  This is done to make the rest of the process easier. 
2. Replace every x with a y and replace every y with an x. 
3. Solve the equation from Step 2 for y.  This is the step where mistakes are most often 

made so be careful with this step. 
4. Replace y with ( )1f x− .  In other words, we’ve managed to find the inverse at this point! 

5. Verify your work by checking that ( )( )1f f x x− =D  and ( )( )1f f x x− =D  are both 

true.  This work can sometimes be messy making it easy to make mistakes so again be 
careful. 

 
That’s the process.  Most of the steps are not all that bad but as mentioned in the process there are 
a couple of steps that we really need to be careful with since it is easy to make mistakes in those 
steps. 
 

In the verification step we technically really do need to check that both ( )( )1f f x x− =D  and 

( )( )1f f x x− =D  are true.  For all the functions that we are going to be looking at in this course 

if one is true then the other will also be true.  However, there are functions (they are beyond the 
scope of this course however) for which it is possible for only one of these to be true.  This is 
brought up because in all the problems here we will be just checking one of them.  We just need 
to always remember that technically we should check both. 
 
Let’s work some examples. 
 
Example 1  Given ( ) 3 2f x x= −  find ( )1f x− . 
 
Solution 
Now, we already know what the inverse to this function is as we’ve already done some work with 
it.  However, it would be nice to actually start with this since we know what we should get.  This 
will work as a nice verification of the process. 
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So, let’s get started.  We’ll first replace ( )f x  with y. 

 3 2y x= −  
 
Next, replace all x’s with y and all y’s with x. 
 3 2x y= −  
 
Now, solve for y. 

 ( )

2 3
1 2
3

2
3 3

x y

x y

x y

+ =

+ =

+ =

 

 
Finally replace y with ( )1f x− . 

 ( )1 2
3 3
xf x− = +  

 
 
Now, we need to verify the results.  We already took care of this in the previous section, however, 
we really should follow the process so we’ll do that here.  It doesn’t matter which of the two that 

we check we just need to check one of them.  This time we’ll check that ( )( )1f f x x− =D  is 

true. 

 

( )( ) ( )1 1

2
3 3

23 2
3 3
2 2

f f x f f x

xf

x

x
x

− −⎡ ⎤= ⎣ ⎦
⎡ ⎤= +⎢ ⎥⎣ ⎦

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

= + −
=

D

 

 

Example 2  Given ( ) 3g x x= −  find ( )1g x− . 
 
Solution 
The fact that we’re using ( )g x  instead of ( )f x  doesn’t change how the process works.  Here 

are the first few steps. 

 
3

3

y x

x y

= −

= −
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Now, to solve for y we will need to first square both sides and then proceed as normal. 

 2

2

3

3
3

x y

x y
x y

= −

= −

+ =

 

 
This inverse is then, 

( )1 2 3g x x− = +  

 
Finally let’s verify and this time we’ll use the other one just so we can say that we’ve gotten both 
down somewhere in an example. 
 

 

( )( ) ( )

( )
( )

1 1

1

2

3

3 3

3 3

g g x g g x

g x

x

x
x

− −

−

= ⎡ ⎤⎣ ⎦

= −

= − +

= − +
=

D

 

 
So, we did the work correctly and we do indeed have the inverse. 
 
The next example can be a little messy so be careful with the work here. 
 

Example 3  Given ( ) 4
2 5
xh x
x
+

=
−

 find ( )1h x− . 

Solution 
The first couple of steps are pretty much the same as the previous examples so here they are, 

 

4
2 5

4
2 5

xy
x

yx
y

+
=

−
+

=
−

 

 
Now, be careful with the solution step.  With this kind of problem it is very easy to make a 
mistake here. 
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( )

( )

2 5 4
2 5 4
2 4 5

2 1 4 5
4 5
2 1

x y y
xy x y
xy y x

x y x
xy

x

− = +

− = +
− = +

− = +

+
=

−

 

 
So, if we’ve done all of our work correctly the inverse should be, 

 ( )1 4 5
2 1

xh x
x

− +
=

−
 

 
Finally we’ll need to do the verification.  This is also a fairly messy process and it doesn’t really 
matter which one we work with. 

 

( )( ) ( )1 1

4 5
2 1

4 5 4
2 1
4 52 5
2 1

h h x h h x

xh
x

x
x

x
x

− −⎡ ⎤= ⎣ ⎦
+⎡ ⎤= ⎢ ⎥−⎣ ⎦
+

+
−=

+⎛ ⎞ −⎜ ⎟−⎝ ⎠

D

 

 
Okay, this is a mess.  Let’s simplify things up a little bit by multiplying the numerator and 
denominator by 2 1x − . 

 

( )( )

( )

( )

( )
( ) ( )

1

4 5 42 1 2 1
4 52 1 2 5
2 1
4 52 1 4
2 1
4 52 1 2 5
2 1

4 5 4 2 1
2 4 5 5 2 1
4 5 8 4

8 10 10 5
13
13

x
x xh h x

xx
x

xx
x

xx
x

x x
x x

x x
x x

x x

−

+
+− −=

+− ⎛ ⎞ −⎜ ⎟−⎝ ⎠
+⎛ ⎞− +⎜ ⎟−⎝ ⎠=

⎛ + ⎞⎛ ⎞− −⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
+ + −

=
+ − −

+ + −
=

+ − +

= =

D

 

Wow.  That was a lot of work, but it all worked out in the end.  We did all of our work correctly 
and we do in fact have the inverse. 
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There is one final topic that we need to address quickly before we leave this section.  There is an 
interesting relationship between the graph of a function and the graph of its inverse. 
 
Here is the graph of the function and inverse from the first two examples.   
 

 
 
In both cases we can see that the graph of the inverse is a reflection of the actual function about 
the line y x= .  This will always be the case with the graphs of a function and its inverse. 
 



Calculus I 

© 2007 Paul Dawkins 76 http://tutorial.math.lamar.edu/terms.aspx 
 

 
 

Limits 

 

 Introduction 
The topic that we will be examining in this chapter is that of Limits.  This is the first of three 
major topics that we will be covering in this course.  While we will be spending the least amount 
of time on limits in comparison to the other two topics limits are very important in the study of 
Calculus.  We will be seeing limits in a variety of places once we move out of this chapter.  In 
particular we will see that limits are part of the formal definition of the other two major topics. 
 
Here is a quick listing of the material that will be covered in this chapter. 
 
Tangent Lines and Rates of Change – In this section we will take a look at two problems that 
we will see time and again in this course.  These problems will be used to introduce the topic of 
limits. 
 
The Limit – Here we will take a conceptual look at limits and try to get a grasp on just what they 
are and what they can tell us. 
 
One-Sided Limits – A brief introduction to one-sided limits. 
 
Limit Properties – Properties of limits that we’ll need to use in computing limits.  We will also 
compute some basic limits in this section 
 
Computing Limits – Many of the limits we’ll be asked to compute will not be “simple” limits.  
In other words, we won’t be able to just apply the properties and be done.  In this section we will 
look at several types of limits that require some work before we can use the limit properties to 
compute them.   
 
Infinite Limits – Here we will take a look at limits that have a value of infinity or negative 
infinity.  We’ll also take a brief look at vertical asymptotes. 
 
Limits At Infinity, Part I – In this section we’ll look at limits at infinity.  In other words, limits 
in which the variable gets very large in either the positive or negative sense.  We’ll also take a 
brief look at horizontal asymptotes in this section.  We’ll be concentrating on polynomials and 
rational expression involving polynomials in this section. 
 
Limits At Infinity, Part II – We’ll continue to look at limits at infinity in this section, but this 
time we’ll be looking at exponential, logarithms and inverse tangents. 
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 Limit Properties 
The time has almost come for us to actually compute some limits.  However, before we do that 
we will need some properties of limits that will make our life somewhat easier.  So, let’s take a 
look at those first.  The proof of some of these properties can be found in the Proof of Various 
Limit Properties section of the Extras chapter. 
 
Properties 
First we will assume that ( )lim

x a
f x

→
 and ( )lim

x a
g x

→
 exist and that c is any constant.  Then, 

1. ( ) ( )lim lim
x a x a

cf x c f x
→ →

=⎡ ⎤⎣ ⎦  

In other words we can “factor” a multiplicative constant out of a limit. 
 

2. ( ) ( ) ( ) ( )lim lim lim
x a x a x a

f x g x f x g x
→ → →

± = ±⎡ ⎤⎣ ⎦  

So to take the limit of a sum or difference all we need to do is take the limit of the 
individual parts and then put them back together with the appropriate sign.  This is also 
not limited to two functions.  This fact will work no matter how many functions we’ve 
got separated by “+” or “-”. 
 

3. ( ) ( ) ( ) ( )lim lim lim
x a x a x a

f x g x f x g x
→ → →

=⎡ ⎤⎣ ⎦  

We take the limits of products in the same way that we can take the limit of sums or 
differences.  Just take the limit of the pieces and then put them back together.  Also, as 
with sums or differences, this fact is not limited to just two functions. 
 

4. 
( )
( )

( )
( ) ( )

lim
lim , provided  lim 0

lim
x a

x a x a
x a

f xf x
g x

g x g x
→

→ →
→

⎡ ⎤
= ≠⎢ ⎥

⎣ ⎦
 

As noted in the statement we only need to worry about the limit in the denominator being 
zero when we do the limit of a quotient.  If it were zero we would end up with a division 
by zero error and we need to avoid that. 
 

5. ( ) ( )lim lim , where  is any real number
nn

x a x a
f x f x n

→ →
⎡ ⎤=⎡ ⎤⎣ ⎦ ⎣ ⎦  

In this property n can be any real number (positive, negative, integer, fraction, irrational, 
zero, etc.).  In the case that n is an integer this rule can be thought of as an extended case 
of 3. 
 
For example consider the case of n = 2. 
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( ) ( ) ( )
( ) ( )

( )

2

2

lim lim

lim lim using property 3

lim

x a x a

x a x a

x a

f x f x f x

f x f x

f x

→ →

→ →

→

=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

=

⎡ ⎤= ⎣ ⎦

 

  
 The same can be done for any integer n. 

 

6. ( ) ( )lim limn n
x a x a

f x f x
→ →

⎡ ⎤ =⎣ ⎦  

This is just a special case of the previous example. 

 

( ) ( )

( )

( )

1

1

lim lim

lim

lim

n n
x a x a

n

x a

n
x a

f x f x

f x

f x

→ →

→

→

⎡ ⎤ = ⎡ ⎤⎣ ⎦⎣ ⎦

⎡ ⎤= ⎣ ⎦

=

 

 
7. lim ,  is any real number

x a
c c c

→
=  

In other words, the limit of a constant is just the constant.  You should be able to 
convince yourself of this by drawing the graph of ( )f x c= . 

 
8. lim

x a
x a

→
=  

As with the last one you should be able to convince yourself of this by drawing the graph 
of ( )f x x= . 

 
9. lim n n

x a
x a

→
=  

This is really just a special case of property 5 using ( )f x x= . 

 
Note that all these properties also hold for the two one-sided limits as well we just didn’t write 
them down with one sided limits to save on space. 
 
Let’s compute a limit or two using these properties.  The next couple of examples will lead us to 
some truly useful facts about limits that we will use on a continual basis. 
 
Example 1  Compute the value of the following limit. 

( )2

2
lim 3 5 9
x

x x
→−

+ −  

Solution 
This first time through we will use only the properties above to compute the limit.  
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First we will use property 2 to break up the limit into three separate limits.  We will then use 
property 1 to bring the constants out of the first two limits.  Doing this gives us, 

( )2 2

2 2 2 2

2

2 22

lim 3 5 9 lim 3 lim 5 lim 9

3 lim 5lim lim 9
x x x x

x xx

x x x x

x x
→− →− →− →−

→− →−→−

+ − = + −

= + −
 

 
We can now use properties 7 through 9 to actually compute the limit. 

( )
( ) ( )

2 2

2 2 22

2

lim 3 5 9 3 lim 5lim lim 9

3 2 5 2 9
7

x x xx
x x x x

→− →− →−→−
+ − = + −

= − + − −

= −

 

 
Now, let’s notice that if we had defined 

( ) 23 5 9p x x x= + −  
then the proceeding example would have been, 

( ) ( )
( ) ( )

( )

2

2 2

2

lim lim 3 5 9

3 2 5 2 9
7

2

x x
p x x x

p

→− →−
= + −

= − + − −

= −

= −

 

 
In other words, in this case we were the limit is the same value that we’d get by just evaluating 
the function at the point in question.  This seems to violate one of the main concepts about limits 
that we’ve seen to this point.  
 
In the previous two sections we made a big deal about the fact that limits do not care about what 
is happening at the point in question.  They only care about what is happening around the point.  
So how does the previous example fit into this since it appears to violate this main idea about 
limits? 
 
Despite appearances the limit still doesn’t care about what the function is doing at 2x = − .  In 
this case the function that we’ve got is simply “nice enough” so that what is happening around the 
point is exactly the same as what is happening at the point.  Eventually we will formalize up just 
what is meant by “nice enough”.  At this point let’s not worry too much about what “nice 
enough” is.  Let’s just take advantage of the fact that some functions will be “nice enough”, 
whatever that means. 
 
The function in the last example was a polynomial.  It turns out that all polynomials are “nice 
enough” so that what is happening around the point is exactly the same as what is happening at 
the point.  This leads to the following fact. 
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Fact 
If p(x) is a polynomial then, 
 ( ) ( )lim

x a
p x p a

→
=  

 
By the end of this section we will generalize this out considerably to most of the functions that 
we’ll be seeing throughout this course. 
 
Let’s take a look at another example. 
 
Example 2  Evaluate the following limit. 

2

4 31

6 3 10lim
2 7 1z

z z
z z→

− +
− + +

 

Solution 
First notice that we can use property 4) to write the limit as, 

22
1

4 3 4 31
1

lim 6 3 106 3 10lim
2 7 1 lim 2 7 1

z

z
z

z zz z
z z z z

→

→
→

− +− +
=

− + + − + +
 

 
Well, actually we should be a little careful.  We can do that provided the limit of the denominator 
isn’t zero.  As we will see however, it isn’t in this case so we’re okay. 
 
Now, both the numerator and denominator are polynomials so we can use the fact above to 
compute the limits of the numerator and the denominator and hence the limit itself. 

( ) ( )
( ) ( )

22

4 34 31

6 3 1 10 16 3 10lim
2 7 1 2 1 7 1 1

13
6

z

z z
z z→

− +− +
=

− + + − + +

=

 

 
Notice that the limit of the denominator wasn’t zero and so our use of property 4 was legitimate. 
 
Notice in this last example that again all we really did was evaluate the function at the point in 
question.  So it appears that there is a fairly large class of functions for which this can be done.  
Let’s generalize the fact from above a little. 
 
Fact 
Provided f(x) is “nice enough” we have, 
 
 ( ) ( ) ( ) ( ) ( ) ( )lim lim lim

x a x a x a
f x f a f x f a f x f a

− +→ → →
= = =  
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Again, we will formalize up just what we mean by “nice enough” eventually.  At this point all we 
want to do is worry about which functions are “nice enough”.  Some functions are “nice enough” 
for all x while others will only be “nice enough” for certain values of x.  It will all depend on the 
function. 
 
As noted in the statement, this fact also holds for the two one-sided limits as well as the normal 
limit. 
 
Here is a list of some of the more common functions that are “nice enough”. 
 

• Polynomials are nice enough for all x’s. 

• If ( ) ( )
( )

p x
f x

q x
=  then f(x) will be nice enough provided both p(x) and q(x) are nice 

enough and if we don’t get division by zero at the point we’re evaluating at.  
• ( ) ( )cos , sinx x  are nice enough for all x’s 

• ( ) ( )sec , tanx x  are nice enough provided 
5 3 3 5, , , , , ,
2 2 2 2 2

x π π π π π
≠ − −… …   In other 

words secant and tangent are nice enough everywhere cosine isn’t zero.  To see why 
recall that these are both really rational functions and that cosine is in the denominator of 
both then go back up and look at the second bullet above. 

• ( ) ( )csc , cotx x  are nice enough  provided , 3 , , 0, , 3 ,x π π π π≠ − −… …   In other 
words cosecant and cotangent are nice enough everywhere sine isn’t zero. 

• n x  is nice enough for all x if n is odd. 
• n x  is nice enough for 0x ≥   if n is even.  Here we require 0x ≥  to avoid having to 

deal with complex values. 
• ,x xa e  are nice enough for all x’s. 
• log , lnb x x  are nice enough for x>0.  Remember we can only plug positive numbers 

into logarithms and not zero or negative numbers. 
• Any sum, difference or product of the above functions will also be nice enough.  

Quotients will be nice enough provided we don’t get division by zero upon evaluating the 
limit. 

 
The last bullet is important.  This means that for any combination of these functions all we need 
to do is evaluate the function at the point in question, making sure that none of the restrictions are 
violated.  This means that we can now do a large number of limits. 
 
Example 3  Evaluate the following limit. 

( ) ( ) ( )5

3
lim sin cos

1 ln

x

x
x x x

x→

⎛ ⎞
− + +⎜ ⎟⎜ ⎟+⎝ ⎠

e  

Solution 
This is a combination of several of the functions listed above and none of the restrictions are 
violated so all we need to do is plug in 3x =  into the function to get the limit. 
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( ) ( ) ( ) ( ) ( ) ( )
3

5 5

3
lim sin cos 3 sin 3 cos 3

1 ln 1 ln 3

8.185427271

x

x
x x x

x→

⎛ ⎞
− + + = − + +⎜ ⎟⎜ ⎟+ +⎝ ⎠

=

e e
 

 
Not a very pretty answer, but we can now do the limit. 
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 Computing Limits 
In the previous section we saw that there is a large class of function that allows us to use 
 ( ) ( )lim

x a
f x f a

→
=  

to compute limits.  However, there are also many limits for which this won’t work easily.  The 
purpose of this section is to develop techniques for dealing with some of these limits that will not 
allow us to just use this fact. 
 
Let’s first got back and take a look at one of the first limits that we looked at and compute its 
exact value and verify our guess for the limit. 
 
Example 1  Evaluate the following limit. 

 
2

22

4 12lim
2x

x x
x x→

+ −
−

 

Solution 
First let’s notice that if we try to plug in 2x =  we get, 

 
2

22

4 12 0lim
2 0x

x x
x x→

+ −
=

−
 

 
So, we can’t just plug in 2x =  to evaluate the limit.  So, we’re going to have to do something 
else.   
 
The first thing that we should always do when evaluating limits is to simplify the function as 
much as possible.  In this case that means factoring both the numerator and denominator.  Doing 
this gives, 

 

( )( )
( )

2

22 2

2

2 64 12lim lim
2 2

6lim

x x

x

x xx x
x x x x

x
x

→ →

→

− ++ −
=

− −

+
=

 

 
So, upon factoring we saw that we could cancel an 2x −  from both the numerator and the 
denominator.  Upon doing this we now have a new rational expression that we can plug 2x =  
into because we lost the division by zero problem.  Therefore, the limit is, 

 
2

22 2

4 12 6 8lim lim 4
2 2x x

x x x
x x x→ →

+ − +
= = =

−
 

 
Note that this is in fact what we guessed the limit to be. 
 
On a side note, the 0/0 we initially got in the previous example is called an indeterminate form.  
This means that we don’t really know what it will be until we do some more work.  Typically 
zero in the denominator means it’s undefined.  However that will only be true if the numerator 
isn’t also zero.  Also, zero in the numerator usually means that the fraction is zero, unless the 
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denominator is also zero.  Likewise anything divided by itself is 1, unless we’re talking about 
zero. 
 
So, there are really three competing “rules” here and it’s not clear which one will win out.  It’s 
also possible that none of them will win out and we will get something totally different from 
undefined, zero, or one.  We might, for instance, get a value of 4 out of this, to pick a number 
completely at random. 
 
There are many more kinds of indeterminate forms and we will be discussing indeterminate forms 
at length in the next chapter. 
 
Let’s take a look at a couple of more examples. 
 
Example 2  Evaluate the following limit. 

 ( )2

0

2 3 18
lim
h

h
h→

− + −
 

Solution 
In this case we also get 0/0 and factoring is not really an option.  However, there is still some 
simplification that we can do. 

 

( ) ( )2 2

0 0

2

0

2

0

2 9 6 182 3 18
lim lim

18 12 2 18lim

12 2lim

h h

h

h

h hh
h h

h h
h

h h
h

→ →

→

→

− + −− + −
=

− + −
=

− +
=

 

 
So, upon multiplying out the first term we get a little cancellation and now notice that we can 
factor an h out of both terms in the numerator which will cancel against the h in the denominator 
and the division by zero problem goes away and we can then evaluate the limit. 

 

( )

( )

2 2

0 0

0

0

2 3 18 12 2lim lim

12 2
lim

lim 12 2 12

h h

h

h

h h h
h h

h h
h

h

→ →

→

→

− + − − +
=

− +
=

= − + = −

 

 
Example 3  Evaluate the following limit. 

 
4

3 4lim
4t

t t
t→

− +
−

 

Solution 
This limit is going to be a little more work than the previous two.  Once again however note that 
we get the indeterminate form 0/0 if we try to just evaluate the limit.  Also note that neither of the 
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two examples will be of any help here, at least initially.  We can’t factor and we can’t just 
multiply something out to get the function to simplify. 
 
When there is a square root in the numerator or denominator we can try to rationalize and see if 
that helps.  Recall that rationalizing makes use of the fact that 
 ( )( ) 2 2a b a b a b+ − = −  
So, if either the first and/or the second term have a square root in them the rationalizing will 
eliminate the root(s).  This might help in evaluating the limit. 
 
Let’s try rationalizing the numerator in this case.   

 
( )

( )
( )
( )4 4

3 4 3 43 4lim lim
4 4 3 4t t

t t t tt t
t t t t→ →

− + + +− +
=

− − + +
 

Remember that to rationalize we just take the numerator (since that’s what we’re rationalizing), 
change the sign on the second term and multiply the numerator and denominator by this new 
term. 
 
Next, we multiply the numerator out being careful to watch minus signs. 

 

( )
( )( )

( )( )

2

4 4

2

4

3 43 4lim lim
4 4 3 4

3 4lim
4 3 4

t t

t

t tt t
t t t t

t t
t t t

→ →

→

− +− +
=

− − + +

− −
=

− + +

 

 
Notice that we didn’t multiply the denominator out as well.  Most students come out of an 
Algebra class having it beaten into their heads to always multiply this stuff out.  However, in this 
case multiplying out will make the problem very difficult and in the end you’ll just end up 
factoring it back out anyway. 
 
At this stage we are almost done.  Notice that we can factor the numerator so let’s do that. 

 ( )( )
( )( )4 4

4 13 4lim lim
4 4 3 4t t

t tt t
t t t t→ →

− +− +
=

− − + +
 

 
Now all we need to do is notice that if we factor a “-1”out of the first term in the denominator we 
can do some canceling.  At that point the division by zero problem will go away and we can 
evaluate the limit. 
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( )( )
( )( )

( )

4 4

4

4 13 4lim lim
4 4 3 4

1lim
3 4

5
8

t t

t

t tt t
t t t t

t
t t

→ →

→

− +− +
=

− − − + +

+
=

− + +

= −

 

 
Note that if we had multiplied the denominator out we would not have been able to do this 
canceling and in all likelihood would not have even seen that some canceling could have been 
done. 
 
So, we’ve taken a look at a couple of limits in which evaluation gave the indeterminate form 0/0 
and we now have a couple of things to try in these cases. 
 
Let’s take a look at another kind of problem that can arise in computing some limits involving 
piecewise functions. 
 
Example 4  Given the function, 

 ( )
2 5 if 2

1 3 if 2
y y

g y
y y

⎧ + < −
= ⎨

− ≥ −⎩
 

Compute the following limits. 
(a) ( )

6
lim
y

g y
→

   [Solution] 

(b) ( )
2

lim
y

g y
→−

   [Solution] 

Solution 
(a)  ( )

6
lim
y

g y
→

 

In this case there really isn’t a whole lot to do.  In doing limits recall that we must always look at 
what’s happening on both sides of the point in question as we move in towards it.  In this case 

6y =  is completely inside the second interval for the function and so there are values of y on 
both sides of 6y =  that are also inside this interval.  This means that we can just use the fact to 
evaluate this limit. 

 
( )

6 6
lim lim1 3

17
y y

g y y
→ →

= −

= −
 

[Return to Problems] 
 
(b)  ( )

2
lim
y

g y
→−

 

This part is the real point to this problem.  In this case the point that we want to take the limit for 
is the cutoff point for the two intervals.  In other words we can’t just plug 2y = −  into the second 
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portion because this interval does not contain values of y to the left of 2y = −  and we need to 
know what is happening on both sides of the point. 
 
To do this part we are going to have to remember the fact from the section on one-sided limits 
that says that if the two one-sided limits exist and are the same then the normal limit will also 
exist and have the same value. 
 
Notice that both of the one sided limits can be done here since we are only going to be looking at 
one side of the point in question.  So let’s do the two one-sided limits and see what we get. 

 
( ) 2

2 2
lim lim 5 since 2  implies 2

9
y y

g y y y y
− −

−

→− →−
= + → < −

=
 

 

 
( )

2 2
lim lim 1 3 since 2  implies 2

7
y y

g y y y y
+ +

+

→− →−
= − → > −

=
 

 
So, in this case we can see that, 
 ( ) ( )

2 2
lim 9 7 lim

y y
g y g y

− +→− →−
= ≠ =  

and so since the two one sided limits aren’t the same  
 ( )

2
lim
y

g y
→−

 

doesn’t exist. 
[Return to Problems]

 
Note that a very simple change to the function will make the limit at 2y = −  exist so don’t get in 
into your head that limits at these cutoff points in piecewise function don’t ever exist. 
 
Example 5  Evaluate the following limit. 

 ( ) ( )
2

2

5 if 2
lim where,

3 3 if 2y

y y
g y g y

y y→−

⎧ + < −
= ⎨

− ≥ −⎩
 

Solution 
The two one-sided limits this time are, 

 
( ) 2

2 2
lim lim 5 since 2  implies 2

9
y y

g y y y y
− −

−

→− →−
= + → < −

=
 

 

 
( )

2 2
lim lim 3 3 since 2  implies 2

9
y y

g y y y y
+ −

+

→− →−
= − → > −

=
 

 
The one-sided limits are the same so we get, 
 ( )

2
lim 9
y

g y
→−

=  
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fact that the normal limit will exist only if the two one-sided limits exist and have the same value. 
 

x 
1
x

 x 
1
x

 

-0.1 -10 0.1 10 
-0.01 -100 0.01 100 
-0.001 -1000 0.001 1000
-0.0001 -10000 0.0001 1000

 

From this table we can see that as we make x smaller and smaller the function 
1
x

 gets larger and 

larger and will retain the same sign that x originally had.  It should make sense that this trend will 
continue for any smaller value of x that we chose to use.  The function is a constant (one in this 
case) divided by an increasingly small number.  The resulting fraction should be an increasingly 
large number and as noted above the fraction will retain the same sign as x. 
 
We can make the function as large and positive as we want for all x’s sufficiently close to zero 
while staying positive (i.e. on the right).  Likewise, we can make the function as large and 
negative as we want for all x’s sufficiently close to zero while staying negative (i.e. on the left).  
So, from our definition above it looks like we should have the following values for the two one 
sided limits. 

 
0 0

1 1lim lim
x xx x+ −→ →

= −∞ = ∞  

 
Another way to see the values of the two one sided limits here is to graph the function.  Again, in 
the previous section we mentioned that we won’t do this too often as most functions are not 
something we can just quickly sketch out as well as the problems with accuracy in reading values 
off the graph.  In this case however, it’s not too hard to sketch a graph of the function and, in this 
case as we’ll see accuracy is not really going to be an issue.  So, here is a quick sketch of the 
graph. 
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So, we can see from this graph that the function does behave much as we predicted that it would 
from our table values.  The closer x gets to zero from the right the larger (in the positive sense) 
the function gets, while the closer x gets to zero from the left the larger (in the negative sense) the 
function gets. 
 
Finally, the normal limit, in this case, will not exist since the two one-sided have different values. 
 
So, in summary here are the values of the three limits for this example. 

 
00 0

1 1 1lim lim lim   doesn't exist
xx xx x x+ − →→ →

= −∞ = ∞  

 
For most of the remaining examples in this section we’ll attempt to “talk our way through” each 
limit.  This means that we’ll see if we can analyze what should happen to the function as we get 
very close to the point in question without actually plugging in any values into the function.  For 
most of the following examples this kind of analysis shouldn’t be all that difficult to do.  We’ll 
also verify our analysis with a quick graph. 
 
So, let’s do a couple more examples. 
 
Example 2  Evaluate each of the following limits. 

 2 2 200 0

6 6 6lim lim lim
xx xx x x+ − →→ →

 

Solution 
As with the previous example let’s start off by looking at the two one-sided limits.  Once we have 
those we’ll be able to determine a value for the normal limit.  
 
So, let’s take a look at the right-hand limit first and as noted above let’s see if we can see if we 
can figure out what each limit will be doing without actually plugging in any values of x into the 
function.  As we take smaller and smaller values of x, while staying positive, squaring them will 
only make them smaller (recall squaring a number between zero and one will make it smaller) 
and of course it will stay positive.  So we have a positive constant divided by an increasingly 
small positive number.  The result should then be an increasingly large positive number.  It looks 
like we should have the following value for the right-hand limit in this case, 

 20

6lim
x x+→

= ∞  

 
Now, let’s take a look at the left hand limit.  In this case we’re going to take smaller and smaller 
values of x, while staying negative this time.  When we square them we’ll get smaller, but upon 
squaring the result is now positive.  So, we have a positive constant divided by an increasingly 
small positive number.  The result, as with the right hand limit, will be an increasingly large 
positive number and so the left-hand limit will be, 

 20

6lim
x x−→

= ∞  
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Now, in this example, unlike the first one, the normal limit will exist and be infinity since the two 
one-sided limits both exist and have the same value.  So, in summary here are all the limits for 
this example as well as a quick graph verifying the limits. 
 

 2 2 200 0

6 6 6lim lim lim
xx xx x x+ − →→ →

= ∞ = ∞ = ∞  

 

 
 
With this next example we’ll move away from just an x in the denominator, but as we’ll see in the 
next couple of examples they work pretty much the same way. 
 
Example 3  Evaluate each of the following limits. 

 
22 2

4 4 4lim lim lim
2 2 2xx xx x x+ − →−→− →−

− − −
+ + +

 

Solution 
Let’s again start with the right-hand limit.  With the right hand limit we know that we have, 
 2 2 0x x> − ⇒ + >  
 
Also, as x gets closer and closer to -2 then 2x + will be getting closer and closer to zero, while 
staying positive as noted above.  So, for the right-hand limit, we’ll have a negative constant 
divided by an increasingly small positive number.  The result will be an increasingly large and 
negative number.  So, it looks like the right-hand limit will be negative infinity. 
 
For the left hand limit we have, 
 2 2 0x x< − ⇒ + <  
and 2x +  will get closer and closer to zero (and be negative) as x gets closer and closer to -2.  In 
this case then we’ll have a negative constant divided by an increasingly small negative number.  
The result will then be an increasingly large positive number and so it looks like the left-hand 
limit will be positive infinity. 
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Finally, since two one sided limits are not the same the normal limit won’t exist. 
 
Here are the official answers for this example as well as a quick graph of the function for 
verification purposes. 
 

 
22 2

4 4 4lim lim lim doesn't exist
2 2 2xx xx x x+ − →−→− →−

− − −
= −∞ = ∞

+ + +
 

 

 
 
At this point we should briefly acknowledge the idea of vertical asymptotes.  Each of the three 
previous graphs have had one.  Recall from an Algebra class that a vertical asymptote is a vertical 
line (the dashed line at 2x = −  in the previous example) in which the graph will go towards 
infinity and/or minus infinity on one or both sides of the line.   
 
In an Algebra class they are a little difficult to define other than to say pretty much what we just 
said.  Now that we have infinite limits under our belt we can easily define a vertical asymptote as 
follows, 
 
Definition 
The function f(x) will have a vertical asymptote at x a=  if we have any of the following limits at 
x a= . 
 ( ) ( ) ( )lim lim lim

x ax a x a
f x f x f x

− + →→ →
= ± ∞ = ± ∞ = ± ∞  

 
Note that it only requires one of the above limits for a function to have a vertical asymptote at 
x a= . 
 
Using this definition we can see that the first two examples had vertical asymptotes at 0x =  
while the third example had a vertical asymptote at 2x = − . 
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We aren’t really going to do a lot with vertical asymptotes here, but wanted to mention them at 
this since we’d reached a good point to do that. 
 
Let’s now take a look at a couple more examples of infinite limits that can cause some problems 
on occasion.  
 
Example 4  Evaluate each of the following limits. 

 
( ) ( ) ( )3 3 344 4

3 3 3lim lim lim
4 4 4xx xx x x+ − →→ →− − −

 

 
Solution 
Let’s start with the right-hand limit.  For this limit we have, 

 ( )34 4 0 4 0x x x> ⇒ − < ⇒ − <  

also, 4 0x− →  as 4x → .  So, we have a positive constant divided by an increasingly small 
negative number.  The results will be an increasingly large negative number and so it looks like 
the right-hand limit will be negative infinity. 
 
For the left-handed limit we have, 

 ( )34 4 0 4 0x x x< ⇒ − > ⇒ − >  

and we still have, 4 0x− →  as 4x → .  In this case we have a positive constant divided by an 
increasingly small positive number.  The results will be an increasingly large positive number and 
so it looks like the right-hand limit will be positive infinity. 
 
The normal limit will not exist since the two one-sided limits are not the same.  The official 
answers to this example are then, 

 
( ) ( ) ( )3 3 344 4

3 3 3lim lim lim doesn't exist
4 4 4xx xx x x+ − →→ →

= −∞ = ∞
− − −

 

 
Here is a quick sketch to verify our limits. 
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All the examples to this point have had a constant in the numerator and we should probably take a 
quick look at an example that doesn’t have a constant in the numerator. 
 
Example 5  Evaluate each of the following limits. 

 
33 3

2 2 2lim lim lim
3 3 3xx x

x x x
x x x+ − →→ →− − −

 

Solution 
Let’s take a look at the right-handed limit first.  For this limit we’ll have, 
 3 3 0x x> ⇒ − >  
 
The main difference here with this example is the behavior of the numerator as we let x get closer 
and closer to 3.  In this case we have the following behavior for both the numerator and 
denominator. 
 3 0 and   2 6 as   3x x x− → → →  
 
So, as we let x get closer and closer to 3 (always staying on the right of course) the numerator, 
while not a constant, is getting closer and closer to a positive constant while the denominator is 
getting closer and closer to zero, and will be positive since we are on the right side.   
 
This means that we’ll have a numerator that is getting closer and closer to a non-zero and positive 
constant divided by an increasingly smaller positive number and so the result should be an 
increasingly larger positive number.  The right-hand limit should then be positive infinity. 
 
For the left-hand limit we’ll have, 
 3 3 0x x< ⇒ − <  
 
As with the right-hand limit we’ll have the following behaviors for the numerator and the 
denominator, 

3 0 and   2 6 as   3x x x− → → →  
 
The main difference in this case is that the denominator will now be negative.  So, we’ll have a 
numerator that is approaching a positive, non-zero constant divided by an increasingly small 
negative number.  The result will be an increasingly large and negative number. 
 
The formal answers for this example are then, 

 
33 3

2 2 2lim lim lim   doesn't exist
3 3 3xx x

x x x
x x x+ − →→ →

= ∞ = −∞
− − −

 

 
As with most of the examples in this section the normal limit does not exist since the two one-
sided limits are not the same. 
 
Here’s a quick graph to verify our limits. 
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Derivatives 

 

 Introduction 
In this chapter we will start looking at the next major topic in a calculus class.  We will be 
looking at derivatives in this chapter (as well as the next chapter).  This chapter is devoted almost 
exclusively to finding derivatives.  We will be looking at one application of them in this chapter.  
We will be leaving most of the applications of derivatives to the next chapter. 
 
Here is a listing of the topics covered in this chapter. 
 
The Definition of the Derivative – In this section we will be looking at the definition of the 
derivative.   
 
Interpretation of the Derivative – Here we will take a quick look at some interpretations of the 
derivative. 
 
Differentiation Formulas – Here we will start introducing some of the differentiation formulas 
used in a calculus course. 
 
Product and Quotient Rule – In this section we will took at differentiating products and 
quotients of functions. 
 
Derivatives of Trig Functions – We’ll give the derivatives of the trig functions in this section. 
 
Derivatives of Exponential and Logarithm Functions – In this section we will get the 
derivatives of the exponential and logarithm functions. 
 
Derivatives of Inverse Trig Functions – Here we will look at the derivatives of inverse trig 
functions. 
 
Derivatives of Hyperbolic Functions – Here we will look at the derivatives of hyperbolic 
functions. 
 
Chain Rule – The Chain Rule is one of the more important differentiation rules and will allow us 
to differentiate a wider variety of functions.  In this section we will take a look at it. 
 
Implicit Differentiation – In this section we will be looking at implicit differentiation.  Without 
this we won’t be able to work some of the applications of derivatives. 
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Related Rates – In this section we will look at the lone application to derivatives in this chapter.  
This topic is here rather than the next chapter because it will help to cement in our minds one of 
the more important concepts about derivatives and because it requires implicit differentiation. 
 
Higher Order Derivatives – Here we will introduce the idea of higher order derivatives.  
 
Logarithmic Differentiation – The topic of logarithmic differentiation is not always presented in 
a standard calculus course.  It is presented here for those how are interested in seeing how it is 
done and the types of functions on which it can be used. 
 
 



Calculus I 

© 2007 Paul Dawkins 168 http://tutorial.math.lamar.edu/terms.aspx 
 

 The Definition of the Derivative 
In the first section of the last chapter we saw that the computation of the slope of a tangent line, 
the instantaneous rate of change of a function, and the instantaneous velocity of an object at 
x a=  all required us to compute the following limit. 

 ( ) ( )lim
x a

f x f a
x a→

−
−

 

 
We also saw that with a small change of notation this limit could also be written as, 

 ( ) ( )
0

lim
h

f a h f a
h→

+ −
 (3) 

 
This is such an important limit and it arises in so many places that we give it a name.  We call it a 
derivative.  Here is the official definition of the derivative. 
 
Definition 
The derivative of ( )f x  with respect to x is the function ( )f x′  and is defined as, 

 ( ) ( ) ( )
0

lim
h

f x h f x
f x

h→

+ −
′ =  (4)

 
Note that we replaced all the a’s in (1) with x’s to acknowledge the fact that the derivative is 
really a function as well.  We often “read” ( )f x′  as “f prime of x”. 

 
Let’s compute a couple of derivatives using the definition. 
 
Example 1  Find the derivative of the following function using the definition of the derivative. 
 ( ) 22 16 35f x x x= − +  
Solution 
So, all we really need to do is to plug this function into the definition of the derivative, (1), and do 
some algebra.  While, admittedly, the algebra will get somewhat unpleasant at times, but it’s just 
algebra so don’t get excited about the fact that we’re now computing derivatives. 
 
First plug the function into the definition of the derivative. 

 
( ) ( ) ( )

( ) ( ) ( )
0

2 2

0

lim

2 16 35 2 16 35
lim

h

h

f x h f x
f x

h
x h x h x x

h

→

→

+ −
′ =

+ − + + − − +
=

 

 
Be careful and make sure that you properly deal with parenthesis when doing the subtracting.   
 
Now, we know from the previous chapter that we can’t just plug in 0h =  since this will give us a 
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division by zero error.  So we are going to have to do some work.  In this case that means 
multiplying everything out and distributing the minus sign through on the second term.  Doing 
this gives, 

 
( )

2 2 2

0

2

0

2 4 2 16 16 35 2 16 35lim

4 2 16lim

h

h

x xh h x h x xf x
h

xh h h
h

→

→

+ + − − + − + −′ =

+ −
=

 

 
Notice that every term in the numerator that didn’t have an h in it canceled out and we can now 
factor an h out of the numerator which will cancel against the h in the denominator.  After that we 
can compute the limit. 

 

( ) ( )
0

0

4 2 16
lim

lim 4 2 16

4 16

h

h

h x h
f x

h
x h

x

→

→

+ −
′ =

= + −

= −

 

 
So, the derivative is, 
 ( ) 4 16f x x′ = −  
 
Example 2  Find the derivative of the following function using the definition of the derivative. 

 ( )
1

tg t
t

=
+

 

Solution 
This one is going to be a little messier as far as the algebra goes.  However, outside of that it will 
work in exactly the same manner as the previous examples.  First, we plug the function into the 
definition of the derivative, 

 
( ) ( ) ( )

0

0

lim

1lim
1 1

h

h

g t h g t
g t

h
t h t

h t h t

→

→

+ −
′ =

+⎛ ⎞= −⎜ ⎟+ + +⎝ ⎠

 

 
Note that we changed all the letters in the definition to match up with the given function.  Also 
note that we wrote the fraction a much more compact manner to help us with the work. 
 
As with the first problem we can’t just plug in 0h = .  So we will need to simplify things a little.  
In this case we will need to combine the two terms in the numerator into a single rational 
expression as follows. 
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( ) ( )( ) ( )
( )( )

( )
( )( )

( )( )

0

2 2

0

0

1 11lim
1 1

1lim
1 1

1lim
1 1

h

h

h

t h t t t h
g t

h t h t

t t th h t th t
h t h t

h
h t h t

→

→

→

⎛ ⎞+ + − + +
′ = ⎜ ⎟⎜ ⎟+ + +⎝ ⎠

⎛ ⎞+ + + − + +
⎜ ⎟=
⎜ ⎟+ + +⎝ ⎠
⎛ ⎞

= ⎜ ⎟⎜ ⎟+ + +⎝ ⎠

 

 
Before finishing this let’s note a couple of things.  First, we didn’t multiply out the denominator.  
Multiplying out the denominator will just overly complicate things so let’s keep it simple.  Next, 
as with the first example, after the simplification we only have terms with h’s in them left in the 
numerator and so we can now cancel an h out. 
 
So, upon canceling the h we can evaluate the limit and get the derivative.  

 

( ) ( )( )

( )( )

( )

0

2

1lim
1 1

1
1 1

1
1

h
g t

t h t

t t

t

→
′ =

+ + +

=
+ +

=
+

 

 
The derivative is then, 

 ( )
( )2

1
1

g t
t

′ =
+

 

 
Example 3  Find the derivative of the following function using the derivative. 
 ( ) 5 8R z z= −  
Solution 
First plug into the definition of the derivative as we’ve done with the previous two examples. 

 
( ) ( ) ( )

( )
0

0

lim

5 8 5 8
lim

h

h

R z h R z
R z

h
z h z

h

→

→

+ −
′ =

+ − − −
=

 

 
In this problem we’re going to have to rationalize the numerator.  You do remember 
rationalization from an Algebra class right?  In an Algebra class you probably only rationalized 
the denominator, but you can also rationalize numerators.   Remember that in rationalizing the 
numerator (in this case) we multiply both the numerator and denominator by the numerator 
except we change the sign between the two terms.  Here’s the rationalizing work for this problem, 
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( )
( )( ) ( )( )

( )( )
( )

( )( )

( )( )

0

0

0

5 8 5 8 5 8 5 8
lim

5 8 5 8

5 5 8 5 8
lim

5 8 5 8

5lim
5 8 5 8

h

h

h

z h z z h z
R z

h z h z

z h z

h z h z

h

h z h z

→

→

→

+ − − − + − + −
′ =

+ − + −

+ − − −
=

+ − + −

=
+ − + −

 

 
Again, after the simplification we have only h’s left in the numerator.  So, cancel the h and 
evaluate the limit. 

 

( )
( )0

5lim
5 8 5 8

5
5 8 5 8

5
2 5 8

h
R z

z h z

z z

z

→
′ =

+ − + −

=
− + −

=
−

 

 
And so we get a derivative of, 

 ( ) 5
2 5 8

R z
z

′ =
−

 

 
Let’s work one more example.  This one will be a little different, but it’s got a point that needs to 
be made. 
 
Example 4  Determine ( )0f ′  for ( )f x x=  
 
Solution 
Since this problem is asking for the derivative at a specific point we’ll go ahead and use that in 
our work.  It will make our life easier and that’s always a good thing. 
 
So, plug into the definition and simplify. 

 

( ) ( ) ( )
0

0

0

0 0
0 lim

0 0
lim

lim

h

h

h

f h f
f

h
h
h

h
h

→

→

→

+ −
′ =

+ −
=

=
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We saw a situation like this back when we were looking at limits at infinity.  As in that section 
we can’t just cancel the h’s.  We will have to look at the two one sided limits and recall that  

 
if 0
if 0

h h
h

h h
≥⎧

= ⎨− <⎩
 

 

 ( )
0 0

0

lim lim because 0 in a left-hand limit.

lim 1

1

h h

h

h h h
h h− −

−

→ →

→

−
= <

= −

= −

 

 
0 0

0

lim lim because 0 in a right-hand limit.

lim 1

1

h h

h

h h h
h h+ +

+

→ →

→

= >

=

=

 

 
The two one-sided limits are different and so 

 
0

lim
h

h
h→

 

doesn’t exist.  However, this is the limit that gives us the derivative that we’re after. 
 
If the limit doesn’t exist then the derivative doesn’t exist either. 
 
In this example we have finally seen a function for which the derivative doesn’t exist at a point.  
This is a fact of life that we’ve got to be aware of.  Derivatives will not always exist.  Note as 
well that this doesn’t say anything about whether or not the derivative exists anywhere else.  In 
fact, the derivative of the absolute value function exists at every point except the one we just 
looked at, 0x = . 
 
The preceding discussion leads to the following definition. 
 
Definition 
A function ( )f x  is called differentiable at x a=  if ( )f x′  exists and ( )f x  is called 

differentiable on an interval if the derivative exists for each point in that interval. 
 
The next theorem shows us a very nice relationship between functions that are continuous and 
those that are differentiable.  
 
Theorem 
If ( )f x  is differentiable at x a=  then ( )f x  is continuous at x a= . 
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See the Proof of Various Derivative Formulas section of the Extras chapter to see the proof of this 
theorem.   
 
Note that this theorem does not work in reverse.  Consider ( )f x x=  and take a look at, 

 
 ( ) ( )

0 0
lim lim 0 0
x x

f x x f
→ →

= = =  

So, ( )f x x=  is continuous at 0x =  but we’ve just shown above in Example 4 that  

( )f x x=  is not differentiable at 0x = . 

 
Alternate Notation 
 Next we need to discuss some alternate notation for the derivative.  The typical derivative 
notation is the “prime” notation.  However, there is another notation that is used on occasion so 
let’s cover that. 
 
Given a function ( )y f x=  all of the following are equivalent and represent the derivative of 

( )f x  with respect to x. 

 ( ) ( )( ) ( )df dy d df x y f x y
dx dx dx dx

′ ′= = = = =  

 
Because we also need to evaluate derivatives on occasion we also need a notation for evaluating 
derivatives when using the fractional notation.  So if we want to evaluate the derivative at x=a all 
of the following are equivalent. 

 ( ) x a
x a x a

df dyf a y
dx dx=

= =

′ ′= = =  

 
Note as well that on occasion we will drop the (x) part on the function to simplify the notation 
somewhat.  In these cases the following are equivalent. 
 ( )f x f′ ′=  
 
As a final note in this section we’ll acknowledge that computing most derivatives directly from 
the definition is a fairly complex (and sometimes painful) process filled with opportunities to 
make mistakes.  In a couple of section we’ll start developing formulas and/or properties that will 
help us to take the derivative of many of the common functions so we won’t need to resort to the 
definition of the derivative too often. 
 
This does not mean however that it isn’t important to know the definition of the derivative!  It is 
an important definition that we should always know and keep in the back of our minds.  It is just 
something that we’re not going to be working with all that much.  
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 Differentiation Formulas 
In the first section of this chapter we saw the definition of the derivative and we computed a 
couple of derivatives using the definition.  As we saw in those examples there was a fair amount 
of work involved in computing the limits and the functions that we worked with were not terribly 
complicated. 
 
For more complex functions using the definition of the derivative would be an almost impossible 
task.  Luckily for us we won’t have to use the definition terribly often.  We will have to use it on 
occasion, however we have a large collection of formulas and properties that we can use to 
simplify our life considerably and will allow us to avoid using the definition whenever possible. 
 
We will introduce most of these formulas over the course of the next several sections.  We will 
start in this section with some of the basic properties and formulas.  We will give the properties 
and formulas in this section in both “prime” notation and “fraction” notation. 
 
Properties 

1) ( ) ( )( ) ( ) ( )f x g x f x g x′ ′ ′± = ±  OR     ( ) ( )( )d df dgf x g x
dx dx dx

± = ±  

In other words, to differentiate a sum or difference all we need to do is differentiate the 
individual terms and then put them back together with the appropriate signs.  Note as well 
that this property is not limited to two functions. 
 
See the Proof of Various Derivative Formulas section of the Extras chapter to see the 
proof of this property.  It’s a very simple proof using the definition of the derivative. 
 

2) ( )( ) ( )cf x cf x′ ′=  OR    ( )( )d dfcf x c
dx dx

= ,    c is any number 

In other words, we can “factor” a multiplicative constant out of a derivative if we need to.  
See the Proof of Various Derivative Formulas section of the Extras chapter to see the 
proof of this property. 

 
Note that we have not included formulas for the derivative of products or quotients of two 
functions here.  The derivative of a product or quotient of two functions is not the product or 
quotient of the derivatives of the individual pieces.  We will take a look at these in the next 
section. 
 
Next, let’s take a quick look at a couple of basic “computation” formulas that will allow us to 
actually compute some derivatives. 
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Formulas 

1) If ( )f x c=  then ( ) 0f x′ =  OR ( ) 0d c
dx

=  

The derivative of a constant is zero.  See the Proof of Various Derivative Formulas 
section of the Extras chapter to see the proof of this formula. 
 

2) If ( ) nf x x=  then ( ) 1nf x nx −′ =  OR ( ) 1n nd x nx
dx

−= , n is any number. 

This formula is sometimes called the power rule.  All we are doing here is bringing the 
original exponent down in front and multiplying and then subtracting one from the 
original exponent. 
 
Note as well that in order to use this formula n must be a number, it can’t be a variable.  
Also note that the base, the x, must be a variable, it can’t be a number.  It will be tempting 
in some later sections to misuse the Power Rule when we run in some functions where 
the exponent isn’t a number and/or the base isn’t a variable. 
 
See the Proof of Various Derivative Formulas section of the Extras chapter to see the 
proof of this formula.  There are actually three different proofs in this section.  The first 
two restrict the formula to n being an integer because at this point that is all that we can 
do at this point.  The third proof is for the general rule, but does suppose that you’ve read 
most of this chapter. 

 
These are the only properties and formulas that we’ll give in this section.  Let’s do compute some 
derivatives using these properties. 
 
Example 1  Differentiate each of the following functions. 

(a) ( ) 100 1215 3 5 46f x x x x= − + −    [Solution] 

(b) ( ) 6 62 7g t t t−= +    [Solution] 

(c) 3
5

18 23
3

y z z
z

= − + −    [Solution] 

(d) ( ) 3 7

5 2

29T x x x
x

= + −    [Solution] 

(e) ( ) 2h x x xπ= −    [Solution] 
Solution 
(a) ( ) 100 1215 3 5 46f x x x x= − + −  

In this case we have the sum and difference of four terms and so we will differentiate each of the 
terms using the first property from above and then put them back together with the proper sign.  
Also, for each term with a multiplicative constant remember that all we need to do is “factor” the 
constant out (using the second property) and then do the derivative.  
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 ( ) ( ) ( ) ( )99 11 0

99 11

15 100 3 12 5 1 0

1500 36 5

f x x x x

x x

′ = − + −

= − +
 

 
Notice that in the third term the exponent was a one and so upon subtracting 1 from the original 
exponent we get a new exponent of zero. Now recall that 0 1x = .  Don’t forget to do any basic 
arithmetic that needs to be done such as any multiplication and/or division in the coefficients. 

[Return to Problems] 
 
(b) ( ) 6 62 7g t t t−= +  

The point of this problem is to make sure that you deal with negative exponents correctly.  Here 
is the derivative. 

 ( ) ( ) ( )5 7

5 7

2 6 7 6

12 42

g t t t

t t

−

−

′ = + −

= −
 

 
Make sure that you correctly deal with the exponents in these cases, especially the negative 
exponents.  It is an easy mistake to “go the other way” when subtracting one off from a negative 
exponent and get 56t−−  instead of the correct 76t−− .  

[Return to Problems] 
 

(c) 3
5

18 23
3

y z z
z

= − + −  

Now in this function the second term is not correctly set up for us to use the power rule.  The 
power rule requires that the term be a variable to a power only and the term must be in the 
numerator.  So, prior to differentiating we first need to rewrite the second term into a form that 
we can deal with. 

 3 518 23
3

y z z z−= − + −  

Note that we left the 3 in the denominator and only moved the variable up to the numerator.  
Remember that the only thing that gets an exponent is the term that is immediately to the left of 
the exponent.  If we’d wanted the three to come up as well we’d have written, 

 
( )5

1
3z

 

so be careful with this!  It’s a very common mistake to bring the 3 up into the numerator as well 
at this stage. 
 
Now that we’ve gotten the function rewritten into a proper form that allows us to use the Power 
Rule we can differentiate the function.  Here is the derivative for this part. 

 2 6524 1
3

y z z−′ = + +  

[Return to Problems] 
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(d) ( ) 3 7

5 2

29T x x x
x

= + −  

All of the terms in this function have roots in them.  In order to use the power rule we need to 
first convert all the roots to fractional exponents.  Again, remember that the Power Rule requires 
us to have a variable to a number and that it must be in the numerator of the term.  Here is the 
function written in “proper” form. 

 

( ) ( )
( )

1 1
72 3

1
2 5

71
32

2
5

7 21
3 52

29

29

9 2

T x x x
x

x x
x

x x x
−

= + −

= + −

= + −

 

 
In the last two terms we combined the exponents.  You should always do this with this kind of 
term.  In a later section we will learn of a technique that would allow us to differentiate this term 
without combining exponents, however it will take significantly more work to do.  Also don’t 
forget to move the term in the denominator of the third term up to the numerator.  We can now 
differentiate the function. 

 
( )

4 71
3 52

4 71
3 52

1 7 29 2
2 3 5
1 63 4
2 3 5

T x x x x

x x x

−−

−−

⎛ ⎞ ⎛ ⎞′ = + − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= + +

 

 
Make sure that you can deal with fractional exponents.  You will see a lot of them in this class. 

[Return to Problems] 
 

(e) ( ) 2h x x xπ= −  

In all of the previous examples the exponents have been nice integers or fractions.  That is usually 
what we’ll see in this class.  However, the exponent only needs to be a number so don’t get 
excited about problems like this one.  They work exactly the same. 

 ( ) 1 2 12h x x xππ − −′ = −  
 
The answer is a little messy and we won’t reduce the exponents down to decimals.  However, this 
problem is not terribly difficult it just looks that way initially. 

[Return to Problems]
 
There is a general rule about derivatives in this class that you will need to get into the habit of 
using.  When you see radicals you should always first convert the radical to a fractional exponent 
and then simplify exponents as much as possible.  Following this rule will save you a lot of grief 
in the future. 
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Back when we first put down the properties we noted that we hadn’t included a property for 
products and quotients.  That doesn’t mean that we can’t differentiate any product or quotient at 
this point.  There are some that we can do. 
 
Example 2  Differentiate each of the following functions. 

(a) ( )3 2 22y x x x= −    [Solution] 

(b) ( )
5 2

2

2 5t th t
t

+ −
=    [Solution] 

Solution 

(a)  ( )3 2 22y x x x= −  

In this function we can’t just differentiate the first term, differentiate the second term and then 
multiply the two back together.  That just won’t work.  We will discuss this in detail in the next 
section so if you’re not sure you believe that hold on for a bit and we’ll be looking at that soon as 
well as showing you an example of what it won’t work. 
 
It is still possible to do this derivative however.  All that we need to do is convert the radical to 
fractional exponents (as we should anyway) and then multiply this through the parenthesis. 

 ( )
2 5 8

23 3 32 2y x x x x x= − = −  
 
Now we can differentiate the function. 

 
2 5
3 310 8

3 3
y x x′ = −  

[Return to Problems] 
 

(b) ( )
5 2

2

2 5t th t
t

+ −
=  

As with the first part we can’t just differentiate the numerator and the denominator and the put it 
back together as a fraction.  Again, if you’re not sure you believe this hold on until the next 
section and we’ll take a more detailed look at this. 
 
We can simplify this rational expression however as follows. 

 ( )
5 2

3 2
2 2 2

2 5 2 1 5t th t t t
t t t

−= + − = + −  

This is a function that we can differentiate. 
 ( ) 2 36 10h t t t−′ = +  

[Return to Problems]
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So, as we saw in this example there are a few products and quotients that we can differentiate.  If 
we can first do some simplification the functions will sometimes simplify into a form that can be 
differentiated using the properties and formulas in this section. 
 
Before moving on to the next section let’s work a couple of examples to remind us once again of 
some of the interpretations of the derivative. 
 

Example 3  Is ( ) 3
3

3002 4f x x
x

= + +  increasing, decreasing or not changing at 2x = − ? 

Solution 
We know that the rate of change of a function is given by the functions derivative so all we need 
to do is it rewrite the function (to deal with the second term) and then take the derivative. 

 ( ) ( )3 3 2 4 2
4

9002 300 4 6 900 6f x x x f x x x x
x

− −′= + + ⇒ = − = −  

 
Note that we rewrote the last term in the derivative back as a fraction.  This is not something 
we’ve done to this point and is only being done here to help with the evaluation in the next step.  
It’s often easier to do the evaluation with positive exponents.   
 
So, upon evaluating the derivative we get  

 ( ) ( ) 900 1292 6 4 32.25
32 4

f ′ − = − = − = −  

 
So, at 2x = −  the derivative is negative and so the function is decreasing at 2x = − . 
 

Example 4  Find the equation of the tangent line to ( ) 4 8f x x x= −  at 16x = . 
 
Solution 
We know that the equation of a tangent line is given by, 
 ( ) ( )( )y f a f a x a′= + −  
 
So, we will need the derivative of the function (don’t forget to get rid of the radical). 

 ( ) ( )
1 1
2 2

1
2

44 8 4 4 4f x x x f x x
x

−
′= − ⇒ = − = −  

Again, notice that we eliminated the negative exponent in the derivative solely for the sake of the 
evaluation.  All we need to do then is evaluate the function and the derivative at the point in 
question, 16x = . 

 ( ) ( ) ( ) 416 64 8 4 32 4 3
4

f f x′= − = = − =  

The tangent line is then, 
 ( )32 3 16 3 16y x x= + − = −  
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Example 5  The position of an object at any time t (in hours) is given by, 
 ( ) 3 22 21 60 10s t t t t= − + −  
Determine when the object is moving to the right and when the object is moving to the left. 
 
Solution 
The only way that we’ll know for sure which direction the object is moving is to have the velocity 
in hand.  Recall that if the velocity is positive the object is moving off to the right and if the 
velocity is negative then the object is moving to the left. 
 
So, we need the derivative since the derivative is the velocity of the object.  The derivative is, 

 ( ) ( ) ( )( )2 26 42 60 6 7 10 6 2 5s t t t t t t t′ = − + = − + = − −  
The reason for factoring the derivative will be apparent shortly. 
 
Now, we need to determine where the derivative is positive and where the derivative is negative.  
There are several ways to do this.  The method that I tend to prefer is the following. 
 
Since polynomials are continuous we know from the Intermediate Value Theorem that if the 
polynomial ever changes sign then it must have first gone through zero.  So, if we knew where 
the derivative was zero we would know the only points where the derivative might change sign. 
 
We can see from the factored form of the derivative that the derivative will be zero at 2t =  and 

5t = .  Let’s graph these points on a number line. 
 

 
 
Now, we can see that these two points divide the number line into three distinct regions.  In reach 
of these regions we know that the derivative will be the same sign.  Recall the derivative can only 
change sign at the two points that are used to divide the number line up into the regions. 
 
Therefore, all that we need to do is to check the derivative at a test point in each region and the 
derivative in that region will have the same sign as the test point.  Here is the number line with 
the test points and results shown. 
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Here are the intervals in which the derivative is positive and negative. 

 
positive : 2 & 5
negative : 2 5

t t
t

−∞ < < < < ∞
< <

 

 
We included negative t’s here because we could even though they may not make much sense for 
this problem.  Once we know this we also can answer the question.  The object is moving to the 
right and left in the following intervals. 

 
moving to the right : 2 & 5
moving to the left : 2 5

t t
t

−∞ < < < < ∞
< <

 

 
Make sure that you can do the kind of work that we just did in this example.  You will be asked 
numerous times over the course of the next two chapters to determine where functions are 
positive and/or negative.  If you need some review or want to practice these kinds of problems 
you should check out the Solving Inequalities section of my Algebra/Trig Review. 
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 Product and Quotient Rule 
In the previous section we noted that we had to be careful when differentiating products or 
quotients.  It’s now time to look at products and quotients and see why. 
 
First let’s take a look at why we have to be careful with products and quotients.  Suppose that we 
have the two functions ( ) 3f x x=  and ( ) 6g x x= .  Let’s start by computing the derivative of 

the product of these two functions.  This is easy enough to do directly. 

 ( ) ( ) ( )3 6 9 89f g x x x x′ ′′ = = =  
 
Remember that on occasion we will drop the (x) part on the functions to simplify notation 
somewhat.  We’ve done that in the work above. 
 
Now, let’s try the following. 

( ) ( ) ( )( )2 5 73 6 18f x g x x x x′ ′ = =  

 
So, we can very quickly see that. 

 ( )f g f g′ ′ ′≠  
In other words, the derivative of a product is not the product of the derivatives. 
 
Using the same functions we can do the same thing for quotients. 

 ( )
3

3 4
6 3 4

1 33f x x x
g x x x

− −
′′ ′⎛ ⎞⎛ ⎞ ⎛ ⎞ ′= = = = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 ( )
( )

2

5 3

3 1
6 2

f x x
g x x x

′
= =

′
 

So, again we can see that, 

f f
g g

′ ′⎛ ⎞
≠⎜ ⎟ ′⎝ ⎠

 

 
To differentiate products and quotients we have the Product Rule and the Quotient Rule. 
 
Product Rule 
If the two functions f(x) and g(x) are differentiable (i.e. the derivative exist) then the product is 
differentiable and, 

 ( )f g f g f g′ ′ ′= +  
 
The proof of the Product Rule is shown in the Proof of Various Derivative Formulas section of 
the Extras chapter. 



Calculus I 

© 2007 Paul Dawkins 188 http://tutorial.math.lamar.edu/terms.aspx 
 

 
Quotient Rule 
If the two functions  f(x) and g(x) are differentiable (i.e. the derivative exist) then the quotient is 
differentiable and, 

 2

f f g f g
g g

′ ′ ′⎛ ⎞ −
=⎜ ⎟

⎝ ⎠
 

 
Note that the numerator of the quotient rule is very similar to the product rule so be careful to not 
mix the two up! 
 
The proof of the Product Rule is shown in the Proof of Various Derivative Formulas section of 
the Extras chapter. 
 
Let’s do a couple of examples of the product rule. 
 
Example 1  Differentiate each of the following functions. 

(a) ( )3 2 22y x x x= −    [Solution] 

(b) ( ) ( )( )36 10 20f x x x x= − −    [Solution] 

 
Solution 
At this point there really aren’t a lot of reasons to use the product rule.  As we noted in the 
previous section all we would need to do for either of these is to just multiply out the product and 
then differentiate.   
 
With that said we will use the product rule on these so we can see an example or two.  As we add 
more functions to our repertoire and as the functions become more complicated the product rule 
will become more useful and in many cases required. 
 

(a) ( )3 2 22y x x x= −  

Note that we took the derivative of this function in the previous section and didn’t use the product 
rule at that point.  We should however get the same result here as we did then. 
 
Now let’s do the problem here.  There’s not really a lot to do here other than use the product rule.  
However, before doing that we should convert the radical to a fractional exponent as always. 

 ( )
2

23 2y x x x= −  
Now let’s take the derivative.  So we take the derivative of the first function times the second 
then add on to that the first function times the derivative of the second function. 

 ( ) ( )
1 2

23 32 2 2 2
3

y x x x x x
−

′ = − + −  
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This is NOT what we got in the previous section for this derivative.  However, with some 
simplification we can arrive at the same answer. 

 
2 5 2 5 2 5
3 3 3 3 3 34 2 10 82 2

3 3 3 3
y x x x x x x′ = − + − = −  

 
This is what we got for an answer in the previous section so that is a good check of the product 
rule. 

[Return to Problems] 
 

(b)  ( ) ( )( )36 10 20f x x x x= − −  

This one is actually easier than the previous one.  Let’s just run it through the product rule. 

 ( ) ( )( ) ( )( )2 3

3 2

18 1 10 20 6 20

480 180 40 10

f x x x x x

x x x

′ = − − + − −

= − + + −
 

 
Since it was easy to do we went ahead and simplified the results a little. 

[Return to Problems]
 
Let’s now work an example or two with the quotient rule.  In this case, unlike the product rule 
examples, a couple of these functions will require the quotient rule in order to get the derivative.  
The last two however, we can avoid the quotient rule if we’d like to as we’ll see. 
 
Example 2  Differentiate each of the following functions. 

(a) ( ) 3 9
2
zW z

z
+

=
−

   [Solution] 

(b) ( ) 2

4
2

xh x
x

=
−

   [Solution] 

(c) ( ) 6

4f x
x

=    [Solution] 

(d) 
6

5
wy =    [Solution] 

Solution 

 (a) ( ) 3 9
2
zW z

z
+

=
−

 

There isn’t a lot to do here other than to use the quotient rule.  Here is the work for this function. 

 
( ) ( ) ( )( )

( )

( )

2

2

3 2 3 9 1
2

15
2

z z
W z

z

z

− − + −
′ =

−

=
−

 

[Return to Problems] 
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(b) ( ) 2

4
2

xh x
x

=
−

 

Again, not much to do here other than use the quotient rule.  Don’t forget to convert the square 
root into a fractional exponent. 

 

( )
( ) ( ) ( )

( )

( )

( )

1 1
21 2 2

2
22

3 1 3
2 2 2

22

3 1
2 2

22

4 2 4 2

2

2 4 8

2

6 4

2

x x x x
h x

x

x x x

x

x x

x

−

−

−

− −
′ =

−

− −
=

−

− −
=

−

 

[Return to Problems] 
 

(c) ( ) 6

4f x
x

=  

It seems strange to have this one here rather than being the first part of this example given that it 
definitely appears to be easier than any of the previous two.  In fact, it is easier.  There is a point 
to doing it here rather than first.  In this case there are two ways to do compute this derivative.  
There is an easy way and a hard way and in this case the hard way is the quotient rule.  That’s the 
point of this example. 
 
Let’s do the quotient rule and see what we get. 

 ( )
( )( ) ( )

( )

6 5 5

2 12 76

0 4 6 24 24x x xf x
x xx

− −′ = = = −  

 
Now, that was the “hard” way.  So, what was so hard about it?  Well actually it wasn’t that hard, 
there is just an easier way to do it that’s all.  However, having said that, a common mistake here 
is to do the derivative of the numerator (a constant) incorrectly.  For some reason many people 
will give the derivative of the numerator in these kinds of problems as a 1 instead of 0!  Also, 
there is some simplification that needs to be done in these kinds of problems if you do the 
quotient rule. 
 
The easy way is to do what we did in the previous section. 

 ( ) 6 7
7

244 24f x x x
x

− −′ = = − = −  

 
Either way will work, but I’d rather take the easier route if I had the choice. 

[Return to Problems] 
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(d) 
6

5
wy =  

This problem also seems a little out of place.  However, it is here again to make a point.  Do not 
confuse this with a quotient rule problem.  While you can do the quotient rule on this function 
there is no reason to use the quotient rule on this.  Simply rewrite the function as 

 61
5

y w=  

and differentiate as always. 

56
5

y w′ =  

[Return to Problems]
 
Finally, let’s not forget about our applications of derivatives. 
 
Example 3  Suppose that the amount of air in a balloon at any time t is given by 

 ( )
36

4 1
tV t

t
=

+
 

Determine if the balloon is being filled with air or being drained of air at 8t = . 
 
Solution 
If the balloon is being filled with air then the volume is increasing and if it’s being drained of air 
then the volume will be decreasing.  In other words, we need to get the derivative so that we can 
determine the rate of change of the volume at 8t = . 
 
This will require the quotient rule. 

 

( ) ( ) ( )
( )

( )

( )

2 1
3 3

2

1 2
3 3

2

1
3

2
3

2

2 4 1 6 4
4 1

16 2
4 1

216

4 1

t t t
V t

t

t t
t

t
t

t

−

−

+ −
′ =

+

− +
=

+

− +

=
+

 

 
Note that we simplified the numerator more than usual here.  This was only done to make the 
derivative easier to evaluate. 
 
The rate of change of the volume at 8t =  is then, 
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( )

( )

( )
( ) ( ) ( ) ( )

21 2 1 2
3 3 3

2

216 2
48 8 2 8 8 2 4

33
63

2178

V
− + ⎛ ⎞′ = = = = =⎜ ⎟

⎝ ⎠

= −

 

 
So, the rate of change of the volume at 8t =  is negative and so the volume must be decreasing.  
Therefore air is being drained out of the balloon at 8t = . 
 
As a final topic let’s note that the product rule can be extended to more than two functions, for 
instance. 

 
( )

( )

f g h f g h f g h f g h

f g h w f g h w f g h w f g h w f g h w

′ ′ ′ ′= + +

′ ′ ′ ′ ′= + + +
 

 
With this section and the previous section we are now able to differentiate powers of x as well as 
sums, differences, products and quotients of these kinds of functions.  However, there are many 
more functions out there in the world that are not in this form.  The next few sections give many 
of these functions as well as give their derivatives. 
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 Derivatives of Trig Functions 
With this section we’re going to start looking at the derivatives of functions other than 
polynomials or roots of polynomials.  We’ll start this process off by taking a look at the 
derivatives of the six trig functions.  Two of the derivatives will be derived.  The remaining four 
are left to the reader and will follow similar proofs for the two given here. 
 
Before we actually get into the derivatives of the trig functions we need to give a couple of limits 
that will show up in the derivation of two of the derivatives. 
 
Fact 

 
0 0

sin cos 1lim 1 lim 0
θ θ

θ θ
θ θ→ →

−
= =  

 
See the Proof of Trig Limits section of the Extras chapter to see the proof of these two limits. 
 
Before we start differentiating trig functions let’s work a quick set of limit problems that this fact 
now allows us to do. 
 
Example 1  Evaluate each of the following limits. 

(a) 
0

sinlim
6θ

θ
θ→

   [Solution] 

(b) 
( )

0

sin 6
lim
x

x
x→

   [Solution] 

(c) 
( )0

lim
sin 7x

x
x→

   [Solution] 

(d) 
( )
( )0

sin 3
lim

sin 8t

t
t→

   [Solution] 

(e) 
( )

4

sin 4
lim

4x

x
x→

−
−

   [Solution] 

(f) 
( )

0

cos 2 1
lim
z

z
z→

−
   [Solution] 

Solution 

(a) 
0

sinlim
6θ

θ
θ→

 

There really isn’t a whole lot to this limit.  In fact, it’s only here to contrast with the next example 
so you can see the difference in how these work.  In this case since there is only a 6 in the 
denominator we’ll just factor this out and then use the fact. 

 ( )
0 0

sin 1 sin 1lim lim 1
6 6 6θ θ

θ θ
θ θ→ →

= = = 1 

[Return to Problems] 
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(b) 
( )

0

sin 6
lim
x

x
x→

 

Now, in this case we can’t factor the 6 out of the sine so we’re stuck with it there and we’ll need 
to figure out a way to deal with it.  To do this problem we need to notice that in the fact the 
argument of the sine is the same as the denominator (i.e. both θ ’s).  So we need to get both of the 
argument of the sine and the denominator to be the same.  We can do this by multiplying the 
numerator and the denominator by 6 as follows. 

 
( ) ( ) ( )

0 0 0

sin 6 6sin 6 sin 6
lim lim 6lim

6 6x x x

x x x
x x x→ → →

= =  

 
Note that we factored the 6 in the numerator out of the limit.  At this point, while it may not look 
like it, we can use the fact above to finish the limit.   
 
To see that we can use the fact on this limit let’s do a change of variables.  A change of variables 
is really just a renaming of portions of the problem to make something look more like something 
we know how to deal with.  They can’t always be done, but sometimes, such as this case, they 
can simplify the problem.  The change of variables here is to let 6xθ =  and then notice that as 

0x →  we also have 0θ → .  When doing a change of variables in a limit we need to change all 
the x’s into θ ’s and that includes the one in the limit. 
 
Doing the change of variables on this limit gives, 

 

( ) ( )

( )

( )

0 0

0

sin 6 sin 6
lim 6lim let 6

6
sin

6lim

6 1
6

x x

x x
x

x x

θ

θ

θ
θ

→ →

→

= =

=

=

=

 

 
And there we are.  Note that we didn’t really need to do a change of variables here.  All we really 
need to notice is that the argument of the sine is the same as the denominator and then we can use 
the fact.  A change of variables, in this case, is really only needed to make it clear that the fact 
does work. 

 [Return to Problems] 
 

(c) 
( )0

lim
sin 7x

x
x→

 

In this case we appear to have a small problem in that the function we’re taking the limit of here 
is upside down compared to that in the fact.  This is not the problem it appears to be once we 
notice that, 
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( ) ( )

1
sin 7sin 7

x
xx

x

=  

and then all we need to do is recall a nice property of limits that allows us to do , 

 

( ) ( )

( )

( )

0 0

0

0

0

1lim lim
sin 7sin 7

lim1

sin 7
lim

1
sin 7

lim

x x

x

x

x

x
xx

x

x
x

x
x

→ →

→

→

→

=

=

=

 

 
With a little rewriting we can see that we do in fact end up needing to do a limit like the one we 
did in the previous part.  So, let’s do the limit here and this time we won’t bother with a change of 
variable to help us out.  All we need to do is multiply the numerator and denominator of the 
fraction in the denominator by 7 to get things set up to use the fact.  Here is the work for this 
limit. 

 

( ) ( )

( )

( )( )

0

0

0

1lim
7sin 7sin 7 lim

7
1

sin 7
7 lim

7
1

7 1
1
7

x

x

x

x
xx

x

x
x

→

→

→

=

=

=

=

 

[Return to Problems] 
 

(d) 
( )
( )0

sin 3
lim

sin 8t

t
t→

 

This limit looks nothing like the limit in the fact, however it can be thought of as a combination 
of the previous two parts by doing a little rewriting.  First, we’ll split the fraction up as follows, 

 
( )
( )

( )
( )0 0

sin 3 sin 3 1lim lim
sin 8 1 sin 8t t

t t
t t→ →

=  

 
Now, the fact wants a t in the denominator of the first and in the numerator of the second.  This is 
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easy enough to do if we multiply the whole thing by t
t  (which is just one after all and so won’t 

change the problem) and then do a little rearranging as follows, 
 

 

( )
( )

( )
( )

( )
( )

( )
( )

0 0

0

0 0

sin 3 sin 3 1lim lim
sin 8 1 sin 8

sin 3
lim

sin 8

sin 3
lim lim

sin 8

t t

t

t t

t t t
t t t

t t
t t

t t
t t

→ →

→

→ →

=

=

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

 
At this point we can see that this really is two limits that we’ve seen before.  Here is the work for 
each of these and notice on the second limit that we’re going to work it a little differently than we 
did in the previous part.  This time we’re going to notice that it doesn’t really matter whether the 
sine is in the numerator or the denominator as long as the argument of the sine is the same as 
what’s in the numerator the limit is still one. 
 
Here is the work for this limit. 

 

( )
( )

( )
( )

( )
( )

( )

0 0 0

0 0

sin 3 3sin 3 8lim lim lim
sin 8 3 8sin 8

sin 3 1 83lim lim
3 8 sin 8

13
8

3
8

t t t

t t

t t t
t t t

t t
t t

→ → →

→ →

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞= ⎜ ⎟
⎝ ⎠

=

 

 [Return to Problems] 

(e) 
( )

4

sin 4
lim

4x

x
x→

−
−

 

This limit almost looks the same as that in the fact in the sense that the argument of the sine is the 
same as what is in the denominator.  However, notice that, in the limit, x is going to 4 and not 0 as 
the fact requires.  However, with a change of variables we can see that this limit is in fact set to 
use the fact above regardless. 
 
So, let xθ = − 4  and then notice that as 4x →  we have 0θ → .  Therefore, after doing the 
change of variable the limit becomes, 

 
( )

4 0

sin 4 sinlim lim 1
4x

x
x θ

θ
θ→ →

−
= =

−
 

[Return to Problems] 
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(f)  
( )

0

cos 2 1
lim
z

z
z→

−
 

The previous parts of this example all used the sine portion of the fact.  However, we could just 
have easily used the cosine portion so here is a quick example using the cosine portion to 
illustrate this.  We’ll not put in much explanation here as this really does work in the same 
manner as the sine portion. 
  

 

( ) ( )( )

( )

( )

0 0

0

2 cos 2 1cos 2 1
lim lim

2
cos 2 1

2lim
2

2 0
0

z z

z

zz
z z

z
z

→ →

→

−−
=

−
=

=

 

 
All that is required to use the fact is that the argument of the cosine is the same as the 
denominator. 

[Return to Problems]
 
Okay, now that we’ve gotten this set of limit examples out of the way let’s get back to the main 
point of this section, differentiating trig functions. 
 
We’ll start with finding the derivative of the sine function.  To do this we will need to use the 
definition of the derivative.  It’s been a while since we’ve had to use this, but sometimes there 
just isn’t anything we can do about it.  Here is the definition of the derivative for the sine 
function. 
 

 ( )( ) ( ) ( )
0

sin sin
sin lim

h

x h xd x
dx h→

+ −
=  

 
Since we can’t just  plug in 0h = to evaluate the limit we will need to use the following trig 
formula on the first sine in the numerator.   
 ( ) ( ) ( ) ( ) ( )sin sin cos cos sinx h x h x h+ = +  
 
Doing this gives us, 

 

( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

0 0

sin cos cos sin sin
sin lim

sin cos 1 cos sin
lim

cos 1 sin
limsin lim cos

h

h

h h

x h x h xd x
dx h

x h x h
h

h h
x x

h h

→

→

→ →

+ −
=

− +
=

−
= +
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As you can see upon using the trig formula we can combine the first and third term and then 
factor a sine out of that.  We can then break up the fraction into two pieces, both of which can be 
dealt with separately. 
 
Now, both of the limits here are limits as h approaches zero.  In the first limit we have a sin(x) 
and in the second limit we have a cos(x).  Both of these are only functions of x only and as h 
moves in towards zero this has no affect on the value of x.  Therefore, as far as the limits are 
concerned, these two functions are constants and can be factored out of their respective limits.  
Doing this gives, 

 ( )( ) ( ) ( ) ( ) ( )
0 0

cos 1 sin
sin sin lim cos lim

h h

h hd x x x
dx h h→ →

−
= +  

 
At this point all we need to do is use the limits in the fact above to finish out this problem. 

 ( )( ) ( )( ) ( )( ) ( )sin sin 0 cos 1 cosd x x x x
dx

= + =  

 
Differentiating cosine is done in a similar fashion.  It will require a different trig formula, but 
other than that is an almost identical proof.  The details will be left to you.  When done with the 
proof you should get, 

 ( )( ) ( )cos sind x x
dx

= −  

 
With these two out of the way the remaining four are fairly simple to get.  All the remaining four 
trig functions can be defined in terms of sine and cosine and these definitions, along with 
appropriate derivative rules, can be used to get their derivatives. 
 
Let’s take a look at tangent.  Tangent is defined as, 

 ( ) ( )
( )

sin
tan

cos
x

x
x

=  

 
Now that we have the derivatives of sine and cosine all that we need to do is use the quotient rule 
on this.  Let’s do that. 
 

 

( )( ) ( )
( )

( ) ( ) ( ) ( )( )
( )( )

( ) ( )
( )

2

2 2

2

sin
tan

cos

cos cos sin sin

cos

cos sin
cos

xd dx
dx dx x

x x x x

x

x x
x

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
− −

=

+
=
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Now, recall that ( ) ( )2 2cos sin 1x x+ =  and if we also recall the definition of secant in terms of 

cosine we arrive at, 

( )( ) ( ) ( )
( )

( )
( )

2 2

2

2

2

cos sin
tan

cos
1

cos

sec

x xd x
dx x

x

x

+
=

=

=

 

 
The remaining three trig functions are also quotients involving sine and/or cosine and so can be 
differentiated in a similar manner.  We’ll leave the details to you.  Here are the derivatives of all 
six of the trig functions. 
 
Derivatives of the six trig functions 

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( )( ) ( ) ( )

2 2

sin cos cos sin

tan sec cot csc

sec sec tan csc csc cot

d dx x x x
dx dx
d dx x x x
dx dx
d dx x x x x x
dx dx

= = −

= = −

= = −

 

 
At this point we should work some examples. 
 
Example 2  Differentiate each of the following functions. 

(a) ( ) ( ) ( )3sec 10cotg x x x= −    [Solution] 

(b) ( ) ( )4 23 tanh w w w w−= −    [Solution] 

(c) ( ) ( ) ( )5sin cos 4cscy x x x= +    [Solution] 

(d) ( ) ( )
( )

sin
3 2cos

t
P t

t
=

−
   [Solution] 

Solution 
(a) ( ) ( ) ( )3sec 10cotg x x x= −  

There really isn’t a whole lot to this problem.  We’ll just differentiate each term using the 
formulas from above. 

 
( ) ( ) ( ) ( )( )

( ) ( ) ( )

2

2

3sec tan 10 csc

3sec tan 10csc

g x x x x

x x x

′ = − −

= +
 

[Return to Problems] 

(b) ( ) ( )4 23 tanh w w w w−= −  

In this part we will need to use the product rule on the second term and note that we really will 
need the product rule here.  There is no other way to do this derivative unlike what we saw when 



Calculus I 

© 2007 Paul Dawkins 200 http://tutorial.math.lamar.edu/terms.aspx 
 

we first looked at the product rule.  When we first looked at the product rule the only functions 
we knew how to differentiate were polynomials and in those cases all we really needed to do was 
multiply them out and we could take the derivative without the product rule.  We are now getting 
into the point where we will be forced to do the product rule at times regardless of whether or not 
we want to. 
 
We will also need to be careful with the minus sign in front of the second term and make sure that 
it gets dealt with properly.  There are two ways to deal with this.  One way it to make sure that 
you use a set of parenthesis as follows, 

 
( ) ( ) ( )( )

( ) ( )

5 2 2

5 2 2

12 2 tan sec

12 2 tan sec

h w w w w w w

w w w w w

−

−

′ = − − +

= − − −
 

 
Because the second term is being subtracted off of the first term then the whole derivative of the 
second term must also be subtracted off of the derivative of the first term.  The parenthesis make 
this idea clear. 
 
A potentially easier way to do this is to think of the minus sign as part of the first function in the 
product.  Or, in other words the two functions in the product, using this idea, are 2w−  and 

( )tan w .  Doing this gives, 

 ( ) ( ) ( )5 2 212 2 tan sech w w w w w w−′ = − − −  
 
So, regardless of how you approach this problem you will get the same derivative. 

[Return to Problems] 
 
(c) ( ) ( ) ( )5sin cos 4cscy x x x= +  

As with the previous part we’ll need to use the product rule on the first term.  We will also think 
of the 5 as part of the first function in the product to make sure we deal with it correctly.  
Alternatively, you could make use of a set of parenthesis to make sure the 5 gets dealt with 
properly.  Either way will work, but we’ll stick with thinking of the 5 as part of the first term in 
the product.  Here’s the derivative of this function. 

 
( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )2 2

5cos cos 5sin sin 4csc cot

5cos 5sin 4csc cot

y x x x x x x

x x x x

′ = + − −

= − −
 

 [Return to Problems] 
 

(d)  ( ) ( )
( )

sin
3 2cos

t
P t

t
=

−
 

In this part we’ll need to use the quotient rule to take the derivative. 
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( ) ( ) ( )( ) ( ) ( )( )
( )( )

( ) ( ) ( )
( )( )

2

2 2

2

cos 3 2cos sin 2sin

3 2cos

3cos 2cos 2sin

3 2cos

t t t t
P t

t

t t t

t

− −
′ =

−

− −
=

−

 

Be careful with the signs when differentiating the denominator.  The negative sign we get from 
differentiating the cosine will cancel against the negative sign that is already there. 
 
This appears to be done, but there is actually a fair amount of simplification that can yet be done.  
To do this we need to factor out a “-2” from the last two terms in the numerator and the make use 
of the fact that ( ) ( )2 2cos sin 1θ θ+ = . 

 

( )
( ) ( ) ( )( )

( )( )
( )

( )( )

2 2

2

2

3cos 2 cos sin

3 2cos

3cos 2

3 2cos

t t t
P t

t

t

t

− +
′ =

−

−
=

−

 

[Return to Problems]
 
As a final problem here let’s not forget that we still have our standard interpretations to 
derivatives. 
 
Example 3  Suppose that the amount of money in a bank account is given by  
 ( ) ( ) ( )500 100cos 150sinP t t t= + −  
where t is in years.  During the first 10 years in which the account is open when is the amount of 
money in the account increasing? 
 
Solution 
To determine when the amount of money is increasing we need to determine when the rate of 
change is positive.  Since we know that the rate of change is given by the derivative that is the 
first thing that we need to find. 
 
 ( ) ( ) ( )100sin 150cosP t t t′ = − −  
 
Now, we need to determine where in the first 10 years this will be positive.  This is equivalent to 
asking where in the interval [0, 10] is the derivative positive.  Recall that both sine and cosine are 
continuous functions and so the derivative is also a continuous function.  The Intermediate Value 
Theorem then tells us that the derivative can only change sign if it first goes through zero.   
 
So, we need to solve the following equation. 
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( ) ( )
( ) ( )
( )
( )
( )

100sin 150cos 0

100sin 150cos

sin
1.5

cos

tan 1.5

t t

t t

t
t

t

− − =

= −

= −

= −

 

 
The solution to this equation is, 

 
2.1588 2 , 0, 1, 2,
5.3004 2 , 0, 1, 2,

t n n
t n n

π
π

= + = ± ±
= + = ± ±

…
…

 

 
If you don’t recall how to solve trig equations go back and take a look at the sections on solving 
trig equations in the Review chapter. 
 
We are only interested in those solutions that fall in the range [0, 10].  Plugging in values of n 
into the solutions above we see that the values we need are, 

 
2.1588 2.1588 2 8.4420
5.3004

t t
t

π= = + =
=

 

 
So, much like solving polynomial inequalities all that we need to do is sketch in a number line 
and add in these points.  These points will divide the number line into regions in which the 
derivative must always be the same sign.  All that we need to do then is choose a test point from 
each region to determine the sign of the derivative in that region. 
 
Here is the number line with all the information on it. 

 
 

So, it looks like the amount of money in the bank account will be increasing during the following 
intervals. 
 2.1588 5.3004 8.4420 10t t< < < <  
 
Note that we can’t say anything about what is happening after 10t =  since we haven’t done any 
work for t’s after that point. 
 
In this section we saw how to differentiate trig functions.  We also saw in the last example that 
our interpretations of the derivative are still valid so we can’t forget those. 
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Also, it is important that we be able to solve trig equations as this is something that will arise off 
and on in this course.  It is also important that we can do the kinds of number lines that we used 
in the last example to determine where a function is positive and where a function is negative.  
This is something that we will be doing on occasion in both this chapter and the next. 
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 Derivatives of Exponential and Logarithm Functions 
The next set of functions that we want to take a look at are exponential and logarithm functions.  
The most common exponential and logarithm functions in a calculus course are the natural 
exponential function, xe , and the natural logarithm function, ( )ln x .  We will take a more 

general approach however and look at the general exponential and logarithm function. 
 
Exponential Functions 
We’ll start off by looking at the exponential function, 

( ) xf x a=  

 
We want to differentiate this.  The power rule that we looked at a couple of sections ago won’t 
work as that required the exponent to be a fixed number and the base to be a variable.  That is 
exactly the opposite from what we’ve got with this function.  So, we’re going to have to start with 
the definition of the derivative. 

 

( ) ( ) ( )

( )

0

0

0

0

lim

lim

lim

1
lim

h

x h x

h

x h x

h

x h

h

f x h f x
f x

h
a a

h
a a a

h
a a

h

→

+

→

→

→

+ −
′ =

−
=

−
=

−
=

 

 
Now, the xa is not affected by the limit since it doesn’t have any h’s in it and so is a constant as 
far as the limit is concerned.  We can therefore factor this out of the limit.  This gives, 

 ( )
0

1lim
h

x

h

af x a
h→

−′ =  

 
Now let’s notice that the limit we’ve got above is exactly the definition of the derivative at of 

( ) xf x a=  at 0x = , i.e. ( )0f ′ .  Therefore, the derivative becomes, 

 ( ) ( )0 xf x f a′ ′=  
 
So, we are kind of stuck we need to know the derivative in order to get the derivative!   
 
There is one value of a that we can deal with at this point.  Back in the Exponential Functions 
section of the Review chapter we stated that 2.71828182845905=e …   What we didn’t do 
however do actually define where e comes from.  There are in fact a variety of ways to define e.  
Here are a three of them. 
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Some Definitions of e. 

1. 
1lim 1

n

n n→∞

⎛ ⎞= +⎜ ⎟
⎝ ⎠

e  

2. e is the unique positive number for which 
0

1lim 1
h

h

h→

−
=

e
 

3. 
0

1
!n n

∞

=

= ∑e  

 
The second one is the important one for us because that limit is exactly the limit that we’re 
working with above.  So, this definition leads to the following fact, 
 
Fact 1 

For the natural exponential function, ( ) xf x = e  we have ( )
0

10 lim 1
h

h
f

h→

−′ = =
e

. 

 
So, provided we are using the natural exponential function we get the following. 
 
 ( ) ( )x xf x f x′= ⇒ =e e  
 
At this point we’re missing some knowledge that will allow us to easily get the derivative for a 
general function.  Eventually we will be able to show that for a general exponential function we 
have, 
 
 ( ) ( ) ( )lnx xf x a f x a a′= ⇒ =  
 
Logarithm Functions 
Let’s now briefly get the derivatives for logarithms.  In this case we will need to start with the 
following fact about functions that are inverses of each other. 
 
Fact 2 
If f(x) and g(x) are inverses of each other then, 

 ( ) ( )( )
1g x

f g x
′ =

′
 

 
So, how is this fact useful to us?  Well recall that the natural exponential function and the natural 
logarithm function are inverses of each other and we know what the derivative of the natural 
exponential function is! 
 
So, if we have ( ) xf x = e  and ( ) lng x x=  then, 
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 ( ) ( )( ) ( ) ln

1 1 1 1
xg xg x

xf g x
′ = = = =

′ ee
 

 
The last step just uses the fact that the two functions are inverses of each other. 
 
Putting this all together gives, 

 ( ) 1ln 0d x x
dx x

= >  

 
Note that we need to require that 0x >  since this is required for the logarithm and so must also 
be required for its derivative.  In can also be shown that, 

 ( ) 1ln 0d x x
dx x

= ≠  

Using this all we need to avoid is 0x = . 
 
In this case, unlike the exponential function case, we can actually find the derivative of the 
general logarithm function.  All that we need is the derivative of the natural logarithm, which we 
just found, and the change of base formula.  Using the change of base formula we can write a 
general logarithm as, 

 lnlog
lna

xx
a

=  

 
Differentiation is then fairly simple. 

 

( )

( )

lnlog
ln

1 ln
ln

1
ln

a
d d xx
dx dx a

d x
a dx

x a

⎛ ⎞= ⎜ ⎟
⎝ ⎠

=

=

 

 
We took advantage of the fact that a was a constant and so ln a  is also a constant and can be 
factored out of the derivative.  Putting all this together gives, 
 

 ( ) 1log
lna

d x
dx x a

=  

 
Here is a summary of the derivatives in this section. 

( ) ( )

( ) ( )

ln

1 1ln log
ln

x x x x

a

d d a a a
dx dx
d dx x
dx x dx x a

= =

= =

e e
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Okay, now that we have the derivations of the formulas out of the way let’s compute a couple of 
derivatives. 
 
Example 1  Differentiate each of the following functions. 

(a) ( ) 94 5logwR w w= −  

(b) ( ) 33 10 lnxf x x x= +e  

(c) 5
3 1

x

xy =
+

e
e

 

Solution 
(a) This will be the only example that doesn’t involve the natural exponential and natural 
logarithm functions. 

 ( ) 54 ln 4
ln 9

wR w
w

′ = −  

(b) Not much to this one.  Just remember to use the product rule on the second term. 

 ( ) 2 3

2 2

13 30 ln 10

3 30 ln 10

x

x

f x x x x
x

x x x

⎛ ⎞′ = + + ⎜ ⎟
⎝ ⎠

= + +

e

e

 

 
(c) We’ll need to use the quotient rule on this one. 

 

( ) ( )( )
( )

( )

( )

2

2 2

2

2

5 3 1 5 3

3 1

15 5 15

3 1

5

3 1

x x x x

x

x x x

x

x

x

y
+ −

=
+

+ −
=

+

=
+

e e e e

e

e e e

e

e

e

 

 
There’s really not a lot to differentiating natural logarithms and natural exponential functions at 
this point as long as you remember the formulas.  In later sections as we get more formulas under 
our belt they will become more complicated. 
 
Next, we need to do our obligatory application/interpretation problem so we don’t forget about 
them. 
 
Example 2  Suppose that the position of an object is given by 
 ( ) ts t t= e  
Does the object ever stop moving? 
 
Solution 
First we will need the derivative.  We need this to determine if the object ever stops moving since 
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at that point (provided there is one) the velocity will be zero and recall that the derivative of the 
position function is the velocity of the object. 
 
The derivative is, 
 ( ) ( )1t t ts t t t′ = + = +e e e  
 
So, we need to determine if the derivative is ever zero.  To do this we will need to solve, 
 ( )1 0tt+ =e  
 
Now, we know that exponential functions are never zero and so this will only be zero at 1t = − .  
So, if we are going to allow negative values of t then the object will stop moving once at 1t = − .  
If we aren’t going to allow negative values of t then the object will never stop moving. 
 
Before moving on to the next section we need to go back over a couple of derivatives to make 
sure that we don’t confuse the two.  The two derivatives are, 
 

 
( )

( )

1 Power Rule

ln Derivative of an exponential function

n n

x x

d x nx
dx
d a a a
dx

−=

=
 

 
It is important to note that with the Power rule the exponent MUST be a constant and the base 
MUST be a variable while we need exactly the opposite for the derivative of an exponential 
function.  For an exponential function the exponent MUST be a variable and the base MUST be a 
constant. 
 
It is easy to get locked into one of these formulas and just use it for both of these.  We also 
haven’t even talked about what to do if both the exponent and the base involve variables.  We’ll 
see this situation in a later section. 
 
 



Lt f(x +ox) - f(x)
Thus if (x) is a function of x, then ox ~ a ox (if it exists) is called the

derivative of f(x) with respect to x and is denoted by f(x)

ox ox
When ox ~ a
Lt Sy Lt f(x +ox) - f(x)
ox ox = On ~ a ox

- - (2)
When x changes to x+Sx, y changes to y+Sy
:. y+oy = f(x+ox)
Subtracting (1) from (2) we get,

y+Sy-y = f(x+ox) - f(x)
or Sy = f(x+ox) -f(x)
Dividing both sides of ox,

Sy f(x +ox) - f(x)
-=

(1)

dy dy Lt oy
efficient of y with respect to x and is donated by dx i.e. dx = ox ~ a ox
Differentiation from first Principles

Let y = f(x)

So far we have studied about the limits of a given function. We use limits for
finding the instantaneous rate of change of one quantity w.r.t. another. The process
involved in it is called Differentiation. Differentiation has important applications in
Engineering. For example, in finding the rate of change of surface area of a circular
plate or rectangular plate while heating it, current flowing through a conductor can be
determined by the rate of change flowing through it, velocity of a moving body can be
obtained by finding the derivative of displacement w.r.t time etc.

H y is a function of x, and Sy is the small increment in y corresponding to small

increment ox in x, then ox~ a :~ (if it exists) is called the derivative or differential co-

DERIVATIVE OF FUNCTIONS

Chapter 2
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Lt oy
= ox~Oox

Then PR = x + ox -x = Sx
QR = Y + Sy - Y = Sy

QR Sy f(x +ox)- f(x)tan a = - = - = ----'-----'---'---'-
PR ox ox

As Q ~ P, ox ~ 0 and secant PQ becomes the tangent TPT' at P. Also angle
a ~ angle e.

Slope of tangent at P = tan e
Lt

= tan a
a~O

········p············1R· .· .· .! !
i :· .· .· .· .· .· .· .· .: :a. .

Let P(x,y) be any point on a curve
on a curve and Qtx+Sx, y+oy) be another
point in the neighbourhood of P.

Let us consider the graph of a
curve y=f(x).

yGeometrical Interpretation of the
Derivative T

T 0 S L M X
Draw the secant PQ making an angle a with the positive direction of x-axis,

From P and Q draw PL, QM perpendicular to x-axis and PR1QM.

Lt f(x +ox)- f(x)
Hence f '(x) = ox ~ 0 ox

Hence from the above it is clear that following steps may be followed to find the
differential co-efficient of a function of x.

(i) Let the given function y = f(x)
(ii) Given increments i.e. change x to (x+Sx) and y to (y+Sy)
(iii) Subtract (i) from (ii) to find Sy and simplify.

(iv) Divide both sides by ox to find incremental ratio :~

(v) Proceed to find the limit as ox -~ 0
The above process of finding the derivative or differential coefficient of a function

is called Differentiation from first principles or Differentiation ab-initio or Differentiation
by o-method. Q (x+Sx, y+Sy)
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[using Binomial theorem for (1+x)"]

Lt xn[j (h) n(n-1):: n(n-1)(n-2):: 11
h

- 1+ n - + + +.... -1= ~O h x 2! 3!

=
Lt (X)n[(l+~r -1]

h~O h

(
h)n n

Lt xn 1+-; -(x)

h~O h
=

= Lt [X(1+~)r_(x)n
b -eO ' h

rex)

To find the derivative of x", where n is any real number
Let f(x) = x"
f(x+h) = (x+h)"

Lt f(x +h) - f(x)
= h~O h

Example 1.
Solution:

Lt f(x+ox)-f(x)
= Sx-eO• Ox

= :~ (Bydefinition)

dy
= The value of dx at P

Thus, the derivative of any function at any given point represents the slope of
the tangent to the curve at that point.
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7.

6.
d 1
- (logx) = -, x>Odx x
d du dv
-[u+v] = -+dx dx dx
where u and v are functions of x.
d du dv

8. dx (u-v) = dx - dx' where u,v are functions of x.

5.

4.

3.

2.

Derivatives of some standard functions and some standard Rules
d
dx (constant) = 0

d d
- (xn)= nx=": In particular - (x) =1dx dx '
d
dx (a") = aXloga, a>Oand a:t:1

d
- (eX) = eXdx
d 1
- (log x) = -log edx a X a

1.

Thus for y = x''

d
Derivative of f(x) is also denoted by dx (f(x)) .

If Y = f(x), then derivative of f(x)w.r.t x will be denoted by ~~

dy- = nx"?
dx

= xn(:)=nxn-1

F'(x) = nxx-1

Lt n[n n(n-1) h n(n-1)(n-2)h3 1
= h~Ox;+ 2! X2+ 3! X3+ ....

= Lt ~[n(h)+n(n-1).h2 +n(n-1)(n-2).~+ ....l
h ~ 0 h x 2! X2 3! X3
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d 1
dx (sec+x) =lxl~x2-1' [x ] > 122.

21.

d 1
-- (tarr+x) = --?
dx 1 +x-
d -1
dx (cor+x) = 1 + x2-

20.

19.

d 1
dx (sin!x) = ~1- x2 ; Ix I < 1

d -1
- (cos+x) = ~; Ix I < 1dx '\Il-x2

18.

d
dx (cosec x) = -cosec x cot x17.

16.

15.

14.

13.

12.

d d
dx [cf(x)] = c dx (f(x)); where c is any real number

d
dx (sin x) = cos x

d
dx (cos x) = -sin x

d
-- (tan x) = sec- x
dx
d
dx (cot x) = -cosec? x

d
dx (sec x) = sec x tan x

11.

d dv du
9. dx (u.v) = u dx + v dx ,where u,v are functions of x.

This rule is known as Product Rule .

. du dv
10. :x (~) = v~ -2U~ ,v(x) :F- 0, where u,v are functions of x.

v
This rule is known as Quotient Rule.
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w.r.t x.
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1JX- JX(ii)

Solution (i) Y

Example 5 Find the derivatives of

1
2(x) 2

1

1 !-1= _(X)2
2

1 _1
= -(x) 2

2

dy
dx

Example 4. Find the derivative of JX w.r.t x.

Solution Let y = JX
y = (x)'i2

3 __5_

= --(x) 2
2

3 -~-1= ':"'-(x) 2
2

dy
dx

Solution

Find the derivative of x-~ w.r.t x.Example 3.

= 3X3-1
dy
dx

Find the derivative of x3 w.r.t x.
Let y = x3

Example 2.
Solution

25.

d x
dx(lxl)= R'x *- 0

d
- (ax+b)" = naiax+bj>!
dx

24.

~ -1 -1__
dx (cosec x) - Ixl.Jx2-1' [x ] > 123.
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[-: :x (cons tan t) =0]
Example 7

(i)
(ii)

Solution (i)

= 3(3x3-1)+5(2x2-1)+O

= 9x2+10x
Find the Derivative of
(3x+5f
(2x-3)8

Let y = (3x+5f

Let y = 3x3+5x2+7

dy = _E_(3x3) +_E_(5x2) +_E_(7)
dx dx dx dx

d 3 d 2 d= 3 dx (x ) + 5 dx (x ) + dx (7)

Example 6 Find the derivative of 3x3+5x2+7 w.r.t x.
Solution

1 _.1 1 _J
= 2(X) 2 +2(X) 2

1 1---+--
- 2£ 2x£

1( )';'-1 ( 1)( )-'1>-1= - X + _- X
2 2

1()-1/2 1( )_~= - X -- X
2 2

1 1
= 2£ - 2x£

1
= £-£
= (X)'/2 - (X(h

d ()'I> d ( )-',1,= - X -- X
dx dx

= ~(X)'I2-1- ( -i}XrV2-1

dy
dx

d ()'h d ( )-'12= - X +- X
dx dx

(ii) Y

dy
dx

dy..
dx

dy
dx
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[using Quotient Rule]
(x - 5)_d (2x3+ 3)- (2x3 +3)_d (x - 5)= ~d=x~ ~ d=x~ _

(x - 5)2

ySolution:
(2x3 +3)

= (x -5)

_ ~[(2X3 +3)]
- dx (x-5)

dy
dx

= (X+5)3(7)(x-3V-1+(x-3V(3)(x+5)3-1
= 7(x+5)3(X-3)6+3(x+5)2(X-3V
= (x+5)2(x-3)6[7(x+5)+3(x-3)]
= (x+5)2(x-3)6[7x+35+3x-9]
= (x+5)2(x-3)6(10x+26)
= (x+5)2(x-3)6(2)(5x+13)
= 2(x+5)2(x-3)6(5x+13)

(2x3 + 3). dy
For y = (x-5) fmd dxExample 9

[

u sing Product Rule 1
d dv du·:-(u.v)=u-+v.
dx dx dx

3d 7 7d 3= (x+5) -(x-3) +(x-3) -(x+5) ,
dx dx

Remark - Derivative of a function is also known as Differential co-efficient of
a function.
Example 8 Find the Differential Co-efficient of y = (X+5)3(X-3Vw.r.t x
Solution y = (X+5)3(X-3V

dy d
dx = dx [(X+5)3(X-3f]

= 16 (2x-3V

[.: :x (ax+bt = na(ax +bt-1]

dy = 7(3)(3x+5V-1dx

= 21(3x+5)6

(ii) y = (2x-3)8
dy = 8(2)(2x-3)8-1
dx
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d
[- (ax+b)n = na(ax + b)n-1]
dx

= -J2x - 3
= (2x-3)1/2

d
= - (2x-3)1/2

dx

= !(2)(2x - 3)'/2-1
2

= (2x_3)-1/2

1
= (2x-3)V2

1dy
dx

dy
dx

ySolution:

f'(2)

£'(x)
d? d d x

=4dx(X-)+4dx(x)- dx(e)

= 4(2x) +7(1) -eX
= 8x +7 _eX
= 8(2) +7-e2
= 16 +7 _e2
= 23 _e2

Example 11. For function y = -J2x - 3 ; find :~ and hence find :~ at x=6

4x3 - 30x2 - 3
(x - 5)2

Example 10. If f(x) = 4x2+7x +x _eX
Find f'(x) and hence f(2)

Solution: f(x) = 4x2+7x -eX

6x3 -30X2 -2x3 -3
(x-5f=

(x - 5)[2(3x2) + 0] - (2X2+ 3)(1- 0)
(x - 5)2

(X- 5)(6x2) - (2X2+ 3)(1)
(x - 5)2
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[using Quotient Rule]

/171/

(logx)"

_ (10gx)(2cosx) - (2SinX{~)

(log xr'

log x _c!_ (2sin x) - (2sin x)_E-(log x)
dx dx=

2sinx " dy
= (log x) fmd dx

2sinx
= --

logx

d d
= x dx (sin x) + sin x dx (x)

= x cos x +sin x (1)
= x cos x +sin x

=xsinx

Solution y

Example 14 If Y

Y
dy
dx

Solution

Example 13 If Y = x sinx, find :~,

= 2cos x - 3sinx - sec-x.

d d d
= dx [2sin x] + dx [3 cos xl - dx (tan x)

d d d
= 2 dx (Sinx) +3 dx (cos x) - dx (tan x)

= 2 cos x +3(-sin x ) - sec-x

= 2 sin x +3 cos x - tan x

dy
dx

Y
dy
dx

Solution

Example 12 If Y = 2 sin x +3 cos x - tan x find :~,

= .J12- 3
1
3

Now (:~)X=6= ~2(;)-3

1
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Example 17 If Y = sin x2, then find ~~ by Chain Rule.

Solution Let x2= u
. . y = sin u and u = x2
Thus Y is a function of u and u is a function of x. Therefore by Chain Rule

dy dz du-x-x-
dz du dx

dy
then, dx =

Differentiation of function of a function (Chain Rule)

dy dy du
If Y = f(u) and u = g(x), then -- = - x--'dx du dx
similarly, If y = f(z), z= g(u) and u = h(x).

x2sin x
= log x. sin x 2x + + x210gx cos x

x
= 2x log x . sin x + x sin x + x210gx cos x.

[
d d d d].:--(uvw)= (vw)-(u)(wu)+ -(vu) + -(w)
dx dx dx dx

dx

Find the derivative of x210g x sin x w.r.t. x.
Let y = x2log x sin x

d d d
= (log x)(sin x) dx (X2)+ x2 sin x dx (log x) + x210g x dx (sin x)

Example 16
Solution

[
d d d 1]':-(ar =axloga, _(eX)=ex -(logax)=-logae
dx dx' dx x

y = x5 -(3)X+e" +log, x

dy 1
dx = 5(X)4_(3)Xlog 3 +eX+ x log5e

Slution

dy
Example 15 If Y= x5-(3)X+e" +log, x find dx '

2xcosxlogx -2sinx
x(10gx)2=

2x(10gx)(cosx) -2sinx
= x(10gx)2
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1 1_1= _(z)2 x (sec-u) x (2x-O)
2

dy dz du
=-x-x-

dz du dx

d !_ d d
= -d;(z)2 x d~ (tan u) x dx (x2-5)

dy
dx

d
Remark: From above example it is concluded that dx [f(ax+b)) = af'{ax + b).

dy
Example 19 If y = ~tan(x2 - 5) ,find dx

Solution Let x2-5 = u, and
tanu =z

Thus, y = fz, z= tanu and u = x2-5

Example 18 If y = sin (2x + 7), then find ~~ by chain Rule.

Solution: Let (2x +7) = u
.. y = sin u and u = 2x +7

dy dy du
By Chain Rule, - = - x-

dx du dx

d d
= du (sin u) x dx (2x +7)

= (cos u) [2 :)x) + :)7)]

= (cos u ) (2(1) + 0)
= 2 cos u
= 2cos (2x +7)

dy du
=-x-

du dx

d d= - (sin u ) x - (X)2du dx
= cos u (2x)
= (cos x2) (2x)
= 2x cosx?
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2x2+5xy +5y2 = 1
Differentiating both sides w.r.t. x, we get

dy dy
2(2x) +5[x. dx +y.(l)] +5 (2y) dx = 0

dy dy
4x +5x. dx +5y +10y. dx = 0

dy
(5x +10y) dx = -(4x +5y)

Solution

dy
Example 24 If 2X2+5xy +5y2=1, then find dx '

Implicit Differentiation
So far we were dealing with explicit functions in which y was given to be the

function of x i.e. y= f(x) and the corresponding differentiation is called Explicit
Differentiation.

The function in which y is not expressed as the function of x, instead, the relation
between x and y is expressed as f(x,y) = C, then; y is called implicit function of x, and
the differentiation for this type of function is called Implicit differentiation.

dy
(2y -1)- = 1dxor

Squaring both sides,
y2 = x+y

Differentiating both sides w.r.t. x

dy dy
2y. - = 1+-

dx dx

dy dy
2y --- =1

dx dxor

y = ~x+~x+.Jx+ .... .:...w

y = ~x+ y

Solution

Example 23 If y = ~x + ~x + .Jx+ w

Show that (2y -1) dy = 1
dx

= e5x [ ~x + 5log(3x2 - 5)]
3x -5
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dy = cosx
dx (2y-l)

or

I . ~Example 26 If Y= 'Jsinx + ~sinx + ,Jsin x+ 00 , then find dx '

Solution: y = ~sinx+~sinx+,JSinx+ oo

Y = ~sinx+y

Squaring both sides, we get y2 = sin x + y
Differentiating both sides, w.r.t. x, we get

dy dy
2y. - = cos x + -

dx dx

dy
(2y-l) dx = cos x

dy 3ay - 3x2
= 3y2 - 3axdx

dy ay-x2
= y2 -axdx

or

X3+y3= 3axy
Differentiating both sides w.r.t.x, we get

dy dy
3x2+ 3y2 dx = 3a [x. dx +y, (1)]

dy dy
3x2 + 3y2- = 3ax - + 3ay

dx dx

dy
(3y2 -3ax) dx = 3ay -3x2

Solution

dy
Example 25 If x3 +y3 = 3axy; find dx '

(4x + 5y)
(5x + lOy)

dy
Hence - =, dx
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= 2a

= 2at

Solution: x = af
dx- = a (2t).. dt

and y = 2at

dy
= 2a (1)..

dt

dy
Examples 28 If x= at 2, y = 2at, find dx '

5-3t2

(
dY) 2(1)+5 7
d-~ t=l = 5 - 3(1)2 -"2 = 3.5

2t+5

dy /dt
= dx / dt

dy
dx

=: 5(1) - 3.2

= 5 -3t2
dt

and x

dx

= 2t +5

= 5t- r

dy
dt

Solution:

Differentiation of Parametric Functions -
Let y .= f(x) be any function,
If two variable x and yare separately expressed in terms of a third variable t,

then, the function is said to be expressed in parametric form. The third variable t is
called a parameter.

The Differentiation of such functions is called Differentiation of Parametric
functions, or simply Parametric Differentiation.

So, if x = f(t) and y = g(t)

dy dy / dt
Then dx = dx/ dt

Example 27 If Y= t2 + 5t and X= 5t -r, find :: and hence, find (-~~) at t = 1
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x sec'' x2= ----=--
tan x.sec/ x

2xsec2 x2
2tan x.sec2 x=

dy dy / dx
Hence dz = dz / dx

dz
, dx = 2tan x sec-xz

dy dy /dx
.. dz - dz / dx
Now Y = tan x2

dy = (sec2x2) (2x).. dx
= 2x sec2x2

Differentiate tan x2 w.r.t. tan- x.
Let y = tanx- and z = tan-x

Example 30
Solution:

6(2x + 1)2
(6x -1)

dy dy / dx
Hence, dz - dz / dx =

= 6x-l= 3(2x) - (1) +0
dz
dx

zand

d
= 3(2x+lf dx (2x+l)

= 3(2x + 1)2 (2)
= 6(2x +1)2
= (3x2 - X + 8)

dy
dx

Example 29 Differentiate (2x +1)3w.r.t. 3x2-x + 8.
Solution: Let y = (2x +1)3

and z = (3x2 - x+8)

dy dy / dx
To find dz - dz / dx

Now, Y = (2x + 1)3
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xsinx
Solution Let y = eXlog x

xsinx
Example 33 Differentiate eXlog x w.r.t x

= y[ sin x +Xl:gx(cosx) ]

= xSinx[sin x + X(~gX)cosx]

dy
dx

Example 32 Differentiates xSinxw.r.t. x
Solution: Let y = xSinX

.. log Y = log xSinX
log y = sin x log x

Differentiating both sides w.r.t. x, we get

..!.. dy 1
Y dx = sin x . ~ + log x (cos x)

= Y (1+ log x) = xX(l+log x).
dy
dx

..!.. dy 1
Y dx = x. ~ +(logx) . (1)

=1+log x

[.,' log m" = n logm ]

Let y = XX
log Y = log XX
logy = x log x

Differentiating both sides' w.r.t. x,

Solution:
Example 31 Differentiate XXw.r.t x.

xsinxeX x~
xx, (Sin xyosx, I '( 2 3)t etc.ogx x + anx

Logarithmic differentiation - When a given function is the product of two or
more other functions, or is the product and division of two or more functions or a
function raised to the power of another function, then first we take its logarithm and
simplify and then differentiate. This process is called Logarithmic differentiation.

e.g. the differentiation of functions

/179/

40



=u+v.. y

Example 35 Differentiae (x)smX+ (sin x)" w.r.t x
Solution y = (x) sinx+ (sin x)X

Let u = (x)smx
and v = (sin x)x

- [1- ylog sin x]
dy
dx

( ..!..-IOgSinX) dy = y cot x
Y dx

I

Let y = . sinx'''U-~srnx
y = (sin x)Y

taking log on both sides, we get
log y = log (sin x)Y
log y = Y log sin x

Differentiating w.r.t. x, we have

1 dy 1 dy
-·-d = y.-.- .cos x + (log sin x)-dy x srnx x

Differentiate sin xsinx"nx00

xsinx [1 1 1- -+cotx- -1
- eXlogx x xlogx

= y [!+ cot x -1- 1 1
x xlogx

1 1 (l)eX 1 1= -+--.cosx------x-
x sinx eX logx x

Example 34

Solution

dy
dxor

dy
dx

!dy
Y dx

log Y = log x + log sin x - log eX- log (log x)
Differentiating w.r.t. x, we have

[

.: logmn = log m-t log n 1
& log(:) = log m -log n

Taking log on both sides
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Successive differentiation - The process of finding out the derivative of a given
function, again and again is called successive differentiation.

If y is a given function of x, then :~ is called first order derivative of y. On

differentiating :: ' we get ~ called second order derivative or second order differential

co -efficient, and is read as d-two -y by d-x square.

d2
On differentiating dx; we get third order derivative or differential co efficient

d3y
of third order dx3 (read as d - three -y by d-x-cube)

Similarly derivatives of higher order can be defined. The derivative of n th order

dn
is written as dx~ (read as -d-n-y by d-x-n).

We have following types of notations for derivatives:-

dy . [Sinx ]- = xsm x _- + cos x log x + (sin x)" [x cot x +log sin x]
dx x

dy [SinX ]- =u --+cosxlogx +v[xcotx+logsinx]
dx x

du dv
Putting the value of dx and dx in eq. (1) we get,

= v[x cot x +log sin x]
dv
dx

= (sin x)"
= x log sin x

1= x.-.--. cos x +log(sin x)smx

v
logv
1dv
v dx

- - - - -(1)
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[
SinX ]= u -x-+(cosx)logx

= xsinx
= sin x log x

1= sin x. - +(1ogx) cos xx

du dv
=-+-

dx dx

du
dx

dy
dx

Nowu
logu
1du
u dx

42



d
Y3 = -2cosec x. dx ( cosec x)

Remark- In the example 36, all the derivatives of y of order greater than or
equal to 6 are zeros. From this we can conclude that for a polynomial of degree n, all
the derivatives of order ~ (n+l) are zeros.
Example 37 If Y = log (sin x), find Y3
Solution y = log (sin x)

1
y1 = -.- . cos x = cot xsmx
Y2 = -cosec2x

Solution y = 6xs -4x3 +2x2-7

dy
= 30x4-12x2+4x.. dx

d2y
= 120x3-24x+4

dx2

d3y
= 360x2 -24

dx3

d4y = 720xdx4
d5y

= 720
dx5

d6y
=0

dx6

v: v". v": yn

Yl' Y2'Y3' ---- Yn
f ' (x), f" (x), f'" (x), - - - - F'(x)
Dy, D2y, D3y, __ - - D'ty

dr
Where, Dr = dxr

Example 36 If Y= 6xs- 4x3 + 2X2-7

. dy d2y d3y d4y d5y d6y
Fmd -dx' dx2' dx3' dX4' dx5' dx6
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e= - cot -2

= :x[~~]

-asinS
= a(l- cos G) =

= a [l-cos 9]

= a[-sin 9] = -a sin 9

= a [9 D sin 9]

dy
dx

and x
dx
dS

dy
d9

y = a (1+ cos 9)

dy Ide
= dxl de

dy
dx

Solution:

d2
and y = a (1 + cos 9), find J.
The given equation is in parametric form, and the parameter is 9.

d2y
dx2 = cos (tan x) .2 sec x. [sec x. tan x] +sec-x, [-sin(tan x) j.sec-x

= 2 sec-x tan x. cos (tan x) -sec" x. sin (tan x)

Example 39 If x= a(9 -sin 9)

d
= cos (tan x) . dx (tan x)

= cos (tan x) . sec'x

y = sin (tan x)

dy
dx

Solution

E I 38 If . ( ) fi d d2yxamp e y = SIn tan x, In dx2'

= -2 cosec x[-cosec x cot x]
= 2 cosec'x cot x.
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XX
= -+XX (l+log X)2

x
= xx-1 + xX(l+log X)2

y= x +(1+log x).y(l +log x)

Again Diff. w.r.t x,

d2 [1] dy____y = Y - + (1+ logx).-
dx2 X dx

= y(l +log x)

1= x.-+(logx)(l)
x

= l+log x

dy
dx

1.dy
Y dx

Differentiating both sides w.r.t. x,
or

Find the second order derivative of x",
y = XX

logy = log XX
logy = x log x

1 4 e= -cosec -
4a 2

I

2ecosec --= ....::2=--
2a(1- cos O)

= -_!_[-cosec2~Jx 1
2 2 a(l- cosO)

= ~[-cot~] x de
de 2 dx

Example 40
Solution
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(d) None ofthese
Q.5 If f(x) = 4x3 -2x2 +x +1; then F'(x) = ?

(a) 12x2-4x +2 (b) 12x2-4x +1 (c) 12x3 -4x +1

(d) None of these(c) 1

Ify=

(a) 0

1 1
(c) 2JX + 2xJX (d) None ofthese

1 dy
If Y= JX - JX ; then dx =?

1 1 1 ,1
(a) JX + 2JX (b) 2JX - 2x

dy
c (constant); then dx =?

(b) c

1
(c) 2JX (d) 2JX

1
(b) -JX

1
(a) -JX

2

(d) 2x(c) 3x

dy
If Y= x3; then dx =?

(a) 2x3 (b) 3x2

dy
If Y= JX; then dx =?

MULTIPLECHOICE QUESTIONS

QA

Q.3

Q.2

Q.1

Example 42 If Y = a cos x + b sin x
then show that y2 + m2y = 0

Solution y = a cos mx + b sin mx
Yl = -m sin mx + mb cos mx
Yl = -ma sin mx + mb cos mx
Y2 = -m2a cos mx - m2b sin mx

Hence Y2 = -m-[a cos x + b sin x]
Y2 = -m-y

or Y2+ m2y = 0

= ane'" _ bne?"
Y2 = an(n)enX - bn(-n)e-nX

= n2a.enx + n2be-nx
= n2[aenx+be-nx]

Y2 = n2y

If Y = a.e'" +be-nx I find Y2

Y = a.e'" + be-nx
Example 41
Solution
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(d) None of these

(d) 3e3x+7

(d) 0

(d) cot x

(d) tan x

13 20
(d) --x 7

7

(d) sin x

(d) x
1

(d) 2-.{b+3

(c) -7e-7~

(c) 1

(c) 1

(c) tan x

(c) - tan x

(c) 13x:o
7

1
(c) sinx

2
(c) ..l2x +3

(b) e-7x

dy
If Y = e(3x+7);then a:; = ?

(a) e3x-+7 (b) e-(3x~7)

dy
If Y = e-7x; then dx =?

(b) e-X(a) e

dy
If Y= e; then d; = ?

(b) -tan x
1

(a) ---
cosx

dy
If Y = log cos x; then ci; = ?

(a) sec x

Q.14

Q.13

Q.12

Q.ll

dy
Q.l0 If Y = log sec x; then a:; = ?

1
(b) -----

secx

20
(b) 13x 7

7
13 ~

(a) ---x 7
7

13 dy
If Y= x --7, then d~= ?

(b) tan x(a) cot x

dy
If Y = log sin x; then ci; = ?

(a) x

dy
If Y = log x; x>O; then dx =?

1
(b) x2-

1
(b) J2~+"3

Q.9

Q.8

Q.7
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Q.6 If y = .j2x +-3; then ~. = ?
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(b) ~X3/2 + 3X3/2-1
2

(d) 12(3x-S)3(c) 3(3x-S)3

"
.'(b) axa+axlog a+e=-a-
(d) axa-l+ax+ex+aa

3sinx
(c) 3sinxcos x log3 (d) -1 3og

(d) xax-1
aX

(c) loga

(d) None of these(c) 3x2

(d) cot x logeS(c) cot x

(d) Norie of these
1

(c) -loge a, x

,"
/187/

dy
Q.21 For y = (3X-S)4;then dx =?

(a) 4(3x-S)3 (b) (3X-S)3

x3 +2x2 -x dy
Q.22 If y = JX ;then dx =?

S 1
(a) _X5/2 + 3X3/2--JX

2 2

dy
For y = xa+ax+ex+aa; then dx =?

(a) ax=l+a-log a+e"
(c) ax+a" +e"

Q.20

(b) 3sinxlog 3(a) 3sinx

. dy
Fog Y = 3smx;then dx =?Q.19

(a) aX

dy
For y = aX;then dx =?Q.18

(b) x3
1

(a) ~

dy
Q.17 For y = logeX3;then dx =?

dy
Q.16 If Y = logs sin x; then dx =?

1
(b) sinx

1
(a) -x

dy
Q.1S If y = logx: then dx- = ?
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(d) XX (1+log x)

1
(d) F'{x)

(c) x +log x

1
(c) f(x)

1 1
(c) --tan(logx) (d) --cot(logx)

x x

(d) 'l.J2x - 3
2

(d) x+e"

1
(d) 1+-;-sm x

1
(d) 1+-x

(c) .J2x - 3

(c) x +log sin x

1
(c) x +x

(c) x cos x +sin x (d) x sin x +cos x

~X3/2 + 3JX __ 1_
(d) 2 2JX

(a) XX (x+logx)

Q.30 Derivative of XX w.r.t x will be

f(x)
(b) fl (x)

Derivation of log (cos (log x)) w.r.t x is
1 1

(a) cos(logx) (b) xcos (log x)

d
dx log[f(x)] = ?

f' (x)
(a) f(x)'

(b) 2.J2x - 3(a) 3.J2x - 3

Q.29.

Q.28.

dy
Q.27 If Y = (2x-3).J2x-3; dx =?

3

(b) 2x(a) x2

dy
Q.26 If Y= x 10geX, then dx =?

1
(b) X+-.sm x(a) x cot x +log sin x

dy
Q. 25 For y = x log sin x, then dx =?

(b) 1 +log x(a) x +log x

dy
Q.24 For y = x log x; then dx =?

(b) x cos x +1(a) sin x +x

dy
For y ,= x sin x; then dx =?

5 1(c) __X3/2 _3X3/2 --JX
2 2

Q.23
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(d) sin x(c) cos x

(d) None of these

(c) cos x - sin x (d) 2cos 2x

x
(d) cot 2"1 +cos

(c) 1- cos

(d) tan x(c) 1

(d) 0(c) as

{1+COS2x dy
Q.39 Ify = V~; find dx

. dy
If Y = .Jl- cos 2x ; fmd dx '

(a) .fi sin x (b) .fi cot x

Q.38

dy
Q.36 Ify = .Jl+sin2x; dx =?

(a) sin x + cos x (b) sin x - cos x

dy
Q.37 For y = .Jl- sinx ; d~ = ?

1+ tan dy
Q 35 If Y = ,. then - = ?. I-tan dx

(b) sec x(a) cosec x

1- cos dy
Q.34 If Y = log 1 + cos ; then dx =?

Q.32
dy

If Y = as; then dx =?

(a) a4 (b) 5a4

1-cos2x dy
Q.33 If Y = 1 2; then -d =?+cos x x

(a) tan-x (b) sec-x

dy
Q.31 If Y= tan(-5x+2), then dx = ?

(a) sec2(-5x+2) (b) -5sec2(-5x+2) (c) -sec2(-5x+2) (d) -5cosec2(-5x+2)
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dy
Q.47 If y = tan2x3, then dx =?

(a) 2tan x3 (b) 2tan x3 sec? x3 (c) 2tan x2

Q.48 Derivation of sin XO w.r.t. x. will be

1
(d) xlogx

(b) sex x (sec x +tan x)
(d) sec x - tan x

(d) cos x

1 +log x
(b) 2x

l-logx
(a) 2x

Q.46

Q.45

I dy
Q.44 If Y = Vsin+ ~sinx + .Jsin +...... 00 then (2y-l) dx = ?

1
(a) sin x (b) ~sinx + Y (c) sinx

1 dy
If Y = secx _ tan x then dx .
(a) sec x(sec x-tan x)
(c) sec x + tan x

logx dy
If Y = --; x > 0, then -d ?x x

Q.43 If Y = ~logx+~logx+~logx ....... co ; then (2y-l) :: =?

1
(a) x (b) log x+y (c) - (d) ~logx +Yx

4(2ax + b) 4
(c) (ax2+ bx +c) (d) (ax? + bx +c)

(d) 3sin(3x+7)(c) sin(3x+7)

(d) -cos x(c) cos x

1

(a) (ax2+ bx +c) 4 (b) 4(ax2+bx+c)2

dy
Q.42 For y = log (x+ ""x2- a2); dx = ?

1

Q.40

(a) sin x (b) -sin x
dy

If Y= log(cosec (3x+7)), then dx =?

(a) -3cot(3x+7) (b) 3cot(3x+7)
dy

Q.41 Y= Iogtax-+bx+cj': then dx =?

/190/

51



dy
Q.55 If ..Jx +.JY = 5, then the value of dx at (4,9) will be

2 3 3
(a) -3" (b) - (c) - 2 (d) --2 2

dy
if>

Q.56 If 3xz,,2xy+3y2+8 = 0 then dx =?

3x+y
(b)

-(3x + y)
(c) x+y (d)

x+y
(a) x + 3y (x +3y) x+ Sy

x2x

2

Derivative of ~ w.r.t x2will be
l+x

Q.54

(d) None of these
Q.53 Derivative of (2x+3)5 w.r.t (x2+3x+5) is

(a) 5(2x+3)4 (b) 5(2x+3)3 (c) 10(2x+3)3

Q.51
dy

If x = atz, y = 2at, then dx = ?

2 1
(a) t (b) t2 (c) (d) -t t

Q.52
dy

If x = 5t +t3, y = t2+8t, then dx = ?

2t + 8 (b) 5 + 3t2 5 - 3t2
(a) 5 + 3t2 (c)

2t + 8
(d) None of these

2t + 8

Q.49 Derivative of sin.Jb2 + x2 w.r.t. x will be

xcos.Jb2 + x2 cos.Jb2 + x2
(a) 2xcos .Jb2 + x2 (b) (c) (d) cos.Jb2 + x2.Jb2 + x2 .Jb2 + x2

dy
For y = .JSiru(' - = ?smx, dx .

1 cosx
(a) ,Jcos x (b) 2,Jcosx (c) 2,Jsinx (d) None of these

Q.50

10<
(d) cos-

180
1l(c) -COSXO
180(b) 0(a) cos XO
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dy
Q.63 If Y= ~1 + x2 , then y dx -x = ?

(d) None of these(c) 9
1

(b) -
3

x
If f(x) = -1' then £'(2) = ?x+

1
(a) -

9

Q.62

Q.60 Derivative of sin2x w.r. t. sin x2will be
sinxcosx sin x sin x sinxcosx

(a) (b) --- (c) (d)cos x" x cosx ' ,,2 cosx" xcos x"

dy
Q.61 For y = '{j;3, then dx =?

1 _! 3 _! 4 1 3 1

(a) -x 4 (b) --x 4 (c) -x 4 (d) -x 4
4 4 3 4

(d) None of these(c) (x + 1)log[log(x + 1)]log(x + 1)

(a) log(log(x + 1»

1

(b) log(log( x + 1))(log( x + 1)
1

dy
Q.59 For y = log(log(log(x+1))), then dx =?

1

(d) None of these

1
(b) log x +cosec x " xlogx

(
X2sinxeX) d

Q.58 For y = log logx ,then d~ =?

1
(a) 2 log x +cot x+T" xlogx

1
(c) 2log x +tan x+I xlogx

(d) None of these

r sin x + cos. log x]
(b) L x

(a) xSinx[ sin x + C:SXIogx]

(c) xSinx[ sin x + X~OSXIogx]

. dy
For y = xsm X, then dx =?Q.57
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Fig. 3.2
x

Q N

o

y

(using slope - point form of st. line)

NORMAL - Let P(xjYt.)be any point on
the Curve y = f(x). Then Normal to the curve at
point P(xtYJ is the line perpendicular to the tangent
to curve at the pont of contact P(xtYt)'

In the figure 3.2 the line PQ represent
Normal to the cure y= f(x) at the point P(xtYt)on
the curve.

EQUATION OF TANGENT
Equation of tangent to the curve y = f(x) at point p (xtYt)is given by

From our previous knowledge of differentation, we know that the derivative of
a function at a point P(xtYt)is the slope of tangent to the curve y = f(x) at point P(xtYt)

:. slope of tangent to y = f(x) at point p (xtYj)= tan9 = (:~)
(Xj,y,)

Fig. 3.1
x

N

y=f(x)yTangent - Let Y= f(x) be a curve and let P
(x.y.) be any point on the curve at which the
function is derivable. Then the tangent to the curve
Y= f(x) at point P(xtYt)is the line touching the curve
at point 9(xtyJIn the figure 3.1, the line MN is the
tangent to the curve y= f(x) at point P.

Slope of tangent - The tangent of the angle
subtended by the tangent to a curve y = f(x) at a
point P with the positive direction of x - axis is
called slope of tangent to the curve y = f(x) at point
P. o~~'-~----------~

In the figure 3.1, slope of tangnt MN to the
curve y = (x) at point P (xtYt)is tan9

i.e. slope of tangent MN to curve y = f(x) at P(xtYt)= tan9

TANGENTS AND NORMALS
Chapter 3
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Remarks: 1) The point P(X1Yl) at which the tangent to the curve touches the Curve
Y = f(x), is called point of contact.

2) If the tangent is parallel to X - axis (Lr to Y-axis), e = 0° . .',slope of tangent

dy
to the Curve of Y = f(x) will be ---- = tanO° = 0

dx

-1

_ (dY)
dx (X"y,)

(2) Slope of Normal at P(XJY1)

(1) Slope of tangent at P(XJY1) = (ddY)
X (X"y,)

-1

CONCl,USIONS:- (dY)
dx (X"y,)

-1

EQUATION OF NORMAL - Equation of normal to the curve Y = f(x) at the
point P(X1Yl) on the curve Y = f(x) is given by

Y- Yl = (X-Xl) [By slope - point form of the line]

Slope of Normal at P(X1Yl) = (dX)
dx (X"Yl)

-1

Thus slope of Normal at P = Slope of tangent at P
-1

stOPE OF NORMAL - From the knowledge of straight line we know that two
straight lines are perpendicular to each other if the product of their slopes is -lor their
slopes are -ve reciprocal of each other.

/196/

55



dx
- = 2t-ldt
Y = 3t + 4

dy
=3dt

and

1
.. Slole of tangent to the given curve is 5

Example 3 Find the slope of tangent to the curve having parametric equations
x = t2 -t +1, Y = 3t + 4 at the point t = 5.

Solution: x = t2-t +1

slope of tangent to given curve at point ( 1, 3) will be

(
dy) 3-2(1) __!
dx (1,3) = 2(3) - 1 - 5

_ (y -2x)
- (2y -x)

dy
dx

= 48- 8 = 40

Find the slpoe of tangent to the curve x2- xy + y2 -7 = 0 at the point (1,3).
Equation of curve is
x2- xy + y2 -7 = 0

Diff. w.r.t. x,

dy dy2x - x ---- - y. (1) + 2y -- - = 0
dx dx

dy
(2y - x) ~- = y-2x

dx

Example 2
Solution:

. . Slope of tangent at point x = 2

= (:p') = 12(2)1 -4(2)x x=2

= 12x2 - 4x?y
dx

Find the slope of tangent to the curve y = 4x3 - 2X2+ 3 at the point x = 2
Y = 4x3 - 2X2+ 3

Example 1
Solution:

/197/
3) If the tangent is perpendicular to the X-axis (Lr to Y-axis) then e = 90°, thus

dy
slope of tangent to the cure y= f(x) will be, dx = tan 90° = 00
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Ans.3= (-3/.J7) =
-1

( dY) 3
dx (3,F7) = - .J7

Slope of normal to the curve at point (3,.J7 )
-1

y=
xdy

dx

dy
2x + 2y - = 0~ dx

(ii) Given curve is x2+ y2 =16 ; at (3,.J7).
Diff. w.r.t. x

-4
1
4

-1

= 3(-2)2 + 8(-2)
-1

slope of normal at x = -2

-1

= 3x2 + 8x
dy
dx

6(iii) x = a (8 + cos 8); y = 2a sin8 at 8

Solution: (i) Given curve is y = x3 + 4x2 -5

7t

Find the slope of normal to the curves at the given points
y = x3 + 4x2 - 5 at x = -2
x2 + y2 = 16 at (3, .J7)

Example 4
(i)
(ii)

1
3

3= 9(
dY) 3
dx t=5 = 2(5)-1

slope of tangent to the given curve at the point t = 5 will be

3
2t-1

=
dy /dt

- dx j' dt
dy
dx
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1t
, , slope of tangent at x ="8 will be

[,,'2 sinS cosS = sin 2S]

dy du
=-x-

du dx
= 2u x 2 cos 2x
= 2 sin2x (2 cos2x)
= 2[2 sin2x cos 2x]
= 2 sin 4x

du
; dx = 2cos 2x= 2u

dy
du

dy
dx

Solution:

Example 5: Find the slope of tangent and slope of normal to the curve y = u2 + 1 ;
1t

U = sin 2x at x = -
} 8

Y = u' +1 u = sin 2x

1
2

=
{~)

= 1
1--

2

dx- = a [1- sin S]dS

dy = 2a cosSand dS

dy dy IdS 2acosS
= dx I dS =, ,

dx a(1-sinS)

2cosS
= (1- sin O)

1t
(iii) Given curve is x = a (S+ cos S) ; Y= 2a sin S at S == "6'

/199/
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1t
(iv) x = a (8 - sin8 ); y = a ( 1-cos 8) at 8 = 2"

(
1 43)The required point is 2"'4 .

Find the equation of tangent to the curves at the given points -
y = x2 - 4x + 3 at (4,3).
x2_ y2 = 9 at (5,4)
x = at 2 , Y= 2at at t = 1

Example 7
(i)
(ii)
(iii)

4 4
--- =44-1 431

=11--
4

1
= 10 + 1- -

4y

1
putting x = 2" in the given equation,

.. or 2 -2x =1
or -2x = -1

1
or x - 2

dy
Beacuse slope is unity, therefore Put dx = 1

= 2-2x
dy
dx

Find the point at which the curve y = 10+ 2x - x2 has its slope unity.
Given curve is y = 10 + 2x - x2

Example 6
Solution:

_ (dY)
\.dx x=7t/8

1
2

-1

1t
and alope of Normal at x = "'8

1t= 2 sin-
2

= 2(1) = 2
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1
== 1 =1

or 4y - 16 = 5x -25
or 5x - 4y -9 = 0

(iii) Given curve is X = atz and y = 2at

dx dy
dt = a (2t); dt = 2a (1)

~y dy / dt = 2a =.!
dx dx / dt 2at t

dx y

Now, (::) = :
(5,4)

.. e.q. of tangent at (5,4) will be
5

(y - 4) = "4 (x-5)

dy X
-=

or

(ii) Given curve is x2- y2= 9 at (5,4)

dy
2x - 2y- = 0

dx

( ddY) = 2(4) -4 = 4x (4,3)

Eq. of tangent at (4,3) will be

(y - YI_) = (::)( ) (X-Xl)
Xt,Yt

(y -3) = 4(x-4)
Y- 3 = 4x -16
-4x + Y -3 + 16 = 0
-4x + Y + 13 = 0
4x - Y -13 = 0or

= 2x - 4
dy
dx

Solution: (i) Given curve is y = X2 -4x +3
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= 4x3 -lax
dy
dx

:. (~~ )X=-l = 4(-1)3 -10 (-1) = -4 +10 6

Given curve is y = X4 -5x2+ 7

Example 8
(i)
(ii)

Solution
(i)

a1t
y-a = x - 2- + a

2x -2y -a1t + 4a = a

Find the equation of Normal to the curve at the indicated points:
y = x4-5x2 + 7 at x = -1
y2 = 12x at (3,6)

or

1t (1t. 1t) ( 1t) (1t) AGiven point at 8=2 isa 2-sm·i ,a l-cos2 ora 2-1 ,a

Equation of tangent to the curve at given point is

=1
1= (1-0)

a sin G
a(1-cos8)

sine------= (1-cos8)

dYL~.8= dx/d8

dx~---
de

dy
..

dx

(iv) Given curve is x = a (e [J sine) and y = a(l - cosll)

dy= a [1 - cosu] and de = a[-(-sine)] = a sine

Now, (at", 2at)t_1
.~(a, 2a)

eq. of tangent at (a, 2a) will be
(y -2a) = l(x-a)
y -2a = x-a

or x- y + a = a
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-1
(y - 6) = 1 (x-3)

Y- 6 = -x +3
or x + y -6 -3 = 0

x + Y -9 = 0

( d) (x-3)
(y - 6) = _r

dx (3,6)

Eq. of Normal to the curve at (3,6)will be

-1

= 16
6

6
= Y

dy
dx

1
(y -3) = -6"(x - (-1))

6(y -3) = -x-1
x+6y -17 = 0

(ii) Given curve is y2 = 12X

dy
2y-- = 12

dx

(y-3)= (dY) (x-(-l))

dx (-1,3)

Equation of Normal to the curve at (-1,3) will be

-1

= -1
= (-1)4-5(-1)2 + 7
=1-5+7 =3

Now, Xl

.. YI
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(a) (~~) =0 (b) (~~) =00 (c) (1y)() ==<X (d) none of these
(XI,YI) (XI,yJ) (XI,YI)

Q8. ]l: the riormal ill the cave y = f(x) atP (xl'Yl) is I I to X - axis ( or .Lr to Y- axis)

then (~~) is equal to
(XI'Yl)

(a) a: (b) 0 (c) 1 (d) -1
Q9. If the normal to the curve of Y == f(x) at P (XIYI)is .Lr to x- axis (or I I to Y-axis)

then (~~) is equal to
(XI-vi)

Q5. If the tanget at apoint on a curve Y == f(x) is perpendicular to Y -axis, then, its
slope will be
(a) 1 (b) 0 (c) -1 (d) J3

Q6. If the tangent to be curve of Y == f(x) at P(XI' YI) is I I to Y-axis then,

(a) (~~) = 00 (b) (-~) == -1 (c) (~~) == 0 (d) none of these
(Xl'Yl) (X1,yJ) (X1,yJ)

(e) Both (a) and (c)
Q7. If the tangent to the curve of Y == f(x) at P(XI' Yl) is perpendicular r to X - axis,

then

(d) J3(c) -1(b) 0(a) 1

Q3. If ml and m2 are respectively the slopes of tangent and Normal to the curve Y =
f(x), then
(a) ml= m2 (b) mI' m2 == 1 (c) ml"m2 =-1 (d) None of these

Q4. If the tangent at a point on a curve Y= f(x) is parallel to X-axis, then its slope will
be

-1

MULTIPLE CHOICE QUESTIONS
Q1. For a function Y = f(x), the slope of tangent at a point P (XIYI)is given by

-1

(a) -(:~L, (b) (~; t, (c) (:~L, (d) (~:L,
Q2 For a function Y = f(x), the slope of Normal at apoint P(XIYI)is given by
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Q17. If (~~) at a point P on the curve of a function y = f(x) is -1, then, the angle
p

subtended by tangent at point P on the curve with +ve direction of x-axis is
(a) 45° (b) 60° (c) 135° (d) 30°

Q18. The slope of tangent to the Curve y = x2 + x-7 at x= 2 is
(a) -1 (b)5 (c) 3 (d) -3

(c) -J3
1

(b) .J3(a) J3

Q16. If the slope of tangent to a curve y = f(x) at a point P(X1'Yl) is ~, yhen (~~) at

(X1'Yl) is

(d) 60°
with the direction of x-axis is
(a) 90° (b) 30°

Q14. The angle between the tangent and normal at a point P on the curve of any
function f (x) is
(a) 60° (b) 0° (c) 90° (d) 180°

Q15. If the slope of a tangent to a curve is J3 then the angle that the tangent subtends

1
(d) - J3(c) J3(b) 1(a) -1

Q13. If the normal at a point P on the curve of y= f(x) makes an angle of 135°with the
+ve direction of X-axis, then the slope of normal will be

1
(d) .J3(c) J3(b) -1 .(a) 1

If the tangent to a curve y= f(x) at a point P makes an angle of 45° with the + ve
direction of X - axis, then the slope of tangent will be

Q12.

(d) -2
1

(c) 2(b) 2

If the slope of normal at a point P on the curve y = f(x) is 2, then the slope of
tangent to the curve at point P will be

1
(a) --2

Q11.

(d) -J3
1

(c) - .J3(a) J3

If the slope of tangent at a point P on a curve is J3, then the slope of normal to
the curve at point P will be

1
(b) J3

Q10.
(d) -1(c) 0(b) 1(a) 00
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Q30.

Q29. The point at which the tangent to the curve y = x3 -2x2 + 4 makes an angle of
1350 with the +ve direction of x -axis is
(a) (1,3) (b) (2,3) (c) (0,3) (d) None of these
The points at which the tangents to the curve x2+ y2 = 4 are .Lr to x - axis (II to
y-axis) are
(a) (0, ± 2) (b) (± 2 , 0) (c) (± 3, 0) (d) (± 3 ,4)

Q 31. The points at which the tangents to the curve x2+ y2 = yare II to X - axis are
(a) (0, ± 2) (b) (± 2,0) (c) (± 3,0) (d) (± 3,4)

(b) (0,2); (:,4)(! 4)(a) (0,4); 3 '

The point at which the tangent to the curve y = x3 -2x2 + 4 is I I to x-axis are

(
4 76)(c) (0,4); 3'27 (d) None of these

The equation of Normal to the curve x = t2 + 1 and y = t + 4 at point t= 2 is
(a) 4x + y -26 = 0 (b) x + Y -26 =0
(c) x + 4y -6 = 0 (d) x + Y + 9 = 0
The equation of tangent to the curve y = 2u and u = eXat point x = 1 is
(a) 2ex + y = 0 (b) 2ex - y = 0 (c) ex -2y = 0 (d) x - ey = 0

1t
The equation of normal to the curve y = sin z; z = x2+"2 at x = 0 is

(a) x = 0 (y -axis) (b) Y = 0 (x - axis) (c) x+ y = 7t (d) x - Y = 1

(b) 3x -4y -14 =0
(d) 3x + Y -14 = 0

Q28.

Q27.

Q26.

Q25.

Q24.

Q23.

Q22.

Q21. The equation of normal to the curve y = 3x2 -2x + 8 at the point (1,9) is
(a) x + 4y -37 = 0 (b) x + Y + 3 = 0
(c) x - y + 3 = 0 (d) 2x + Y + 7 = 0

The equation of tangent to the curve .JX +.JY = 7 at the point (9, 16) is
(a) 4x + 3y -14 = 0 (b) 3x + 4y -14 = 0
(c) 4x - 3y +84 = 0 (d) 4x + 3y -84 = 0
The equation of normal to the curve x2+ y2 = 13 at point (2,3) is
(a) 2x - 3y = 0 (b) 2x + 3y = 0 (c) 3x -2y = 0 (d) x-y = 0
The equation of tangent to the curve x = t2 + 2t + 3 and y == t2 + t -1 at the point
t =1is
(a) 3x+ 4y -14 = 0
(c) x - Y +7 = 0
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Q19. The slope of Normal to the curve y = 3x2 -2x + 8 at x = 1 is
1

(a) -4 (b) -- (c) 2 (d) 1
4

Q20. The equation of tangent to the curve y = x2+ x -7 at (2, -1) is
(a) x+ y -11 =0 (b) 5x + Y -11 = 0
(c) 5x - Y -11 = 0 (d) x+ Y+ 7= 0
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(Time rate of change of y = :~ (Time rate of change of x))

Rate of Change of Some Important Physical Quantities
(1) Velocity - Velocity of a body is defined as the time rate of change of

displacement.

dy dx= ._--
dx dtdtor

(2) If :~ is -ve, then y decreases with increase in x.

(3) If x and yare functions of t(time) i.e. x=f(t) and y=g(t),

then _5ly _dyx d!.
dx dt dx

dy

R k (1) If dy . then v i .h . .emar : dx IS +ve, en y Increases wit Increase In x.

Thus :~ or f'(x) defines the rate of increment in y w.r.t increment in x.

Rate of change of y w.r.t. x, when ox~O

Lt Sy+oy)-y
= ox~O ox

Lt oy
= ox ~Oox =

Lt f(x +Sx) - f(x)
= 8x-40--8~--

dy
dx

To find the rate of change of one variable with respect to another variable, we
take help of differentiation.

Suppose y(x) is a function of variable x, then we know by the definition of
derivative of y w.r.t. x,

RATE OF CHANGE OF QUANTITIES

Chapter 4
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dx
dt Rate of 'Change of x w.r.t time t.

[Generally x denotes sides for rectangle and square and radius for circle]

Lt Sq dq
I = ot ~ 08t =dt

(4) Rate of change of Area - During expansion or contraction, the surface area
of a body changes with time, so, Rate of change of area can be evaluated by
Differentiating Area w.r.t time.

dA dA dxNow -=-x-
, dt dx dt

dA
Thus we can find dt if we know, the relation between A and x i.e. A = f(x) and

dv d2x dvHence Acceleration = - = -- == v-
dt dt2 dx

(3) Current - Current through a conductor is defined as the rate of charge flowing
per unit time through the conductor. It is denoted by I, the time must be very small i.e.
ot~O

= (Time interval during the change)

Lt Sv dv dv dx
= -=-=-x-
ot~Oot dt dx dt

dv dv dv= -=-xv=v-
dt dx dxAlso Acceleration

Change in velocity
Acceleration

Lt ox dx
Velocity = ot ~ 08t =dt
(2) Acceleration - Acceleration of a moving body is defined as the time rate of

change of velocity.

dx
.. Velocity = dt; where x denotes displacement and t denotes time.
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= 5 kmjhr= 12-12+5

Acceleration
d2s=a = _"= 6t- 6
dt2

Velocity at the end of 2 hrs = (:: }=2 = 3(2)2_6(2)+5

ds= - = 3t2-6t+ 5dt=vVelocity

Example 1 The displacement of a particle at any time t is given by 5= r-3t2+5t+7,
Find its velocity and acceleration at the end of 2 hrs, where 5is in kilometers
and t is in hrs.

Solution : 5 = r-3t2+5t+7

ox ox
is called Relative error in x and - .100 is called percentage error in x.x x

dySy = -.ox
dx

dySy = -.ox
•• U dx

50, if ox denotes the small error in x then, the corresponding error in y will be

Sy dy
Hence ox~O means ox is very small, so for small values of ox, ox = dx

dy = Lt oy
dx ox~OoxNow

If V = f(x); where V depends on x

dV dV dx
Then - = -.-

dt dx dt
(6) Calculation of Errors and Percentage errors - Let y = f(x) be a function of x.

dti.e.

(5) Rate of change of Volume - When ever, there is an increase in the volume of
a body due to one or another reason, such as increase in the volume of a balloon when
air is pumped in it, or increasing volume of a heap of sand when falling from a cylindrical
pipe etc. we can evaluate it by differentiating V(volume) w.r.t time t.

dV
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= 30xO.31tcm2/sec.
= 91tcm2/sec.
= 9x3.14 cm2/sec.
= 28.26 cm2/sec.

dr
= 1t(2r)dt

dr= 21tr
dt

= 21tr(0.3)

( dA) = 21t(1S)(0.3)
dt r=15cm

1Scm.
Let A

dA.. dt

= 3t2+6t+9
(I)t=2 = 3(2)2+6(2)+9

= 12+12+9
= 33 coulombs / Second
= 33 Ampere

Example 3 A circular plate of metal is being expanded by heating. The radius of
plate increases at the rate of 0.3 cm per second. Find the rate of increase
of Area when its radius become 1Scm.

Solution: We know that Area of a circular plate is given by A = 1tr2,where r is the
dr dA

radius of plate and we are given dt = 0.3 cm/ sec. to find dt at r =

dQ
dtCurrent (I)Solution

Example 2 The charge flowing in a conductor is given by expression Q = @+3t2+9t+2
Then find the current flowing in the conductor after 2 seconds, when Q
is measured in coulombs and t in seconds.

= 12-6
= 6km/hr2
= Skm/hr
= 6km/hr2

Hence, velocity
and Acceleration

(
d2S)

= de = 6(2)-6
t=Z

Acceleration at the end of 2hrs
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Now,V
4 3= --7tf'
3

dV 4 ( 2 dr)
dt = 37t 3r dt
dV 2 dr= 41fr -
dt dt

2( dr)0.2 = 47tr -cit

dv (dr)We are given -d = 0.2 cm3/sec. and we have to find dtt r=10

4 1-7tf'
3V =

Example 5 The volume of a sphere is increasing at the rate of 0.2 em" per second.
Find the rate of increase of radius when the radius is 10 cm.

Solution: Volume of sphere is given by

A .J32=-a
4

dA = _.J3 (2a)da.. dt 4 dt

= .J3 a(2)
2

.. (~~l.. = .J3(S)

= s.J3 cm2/sec.

da (dA)We are given, -d = 2cm/sec. and to find dt
t a=5cm

Example 4 The sides of an equilateral triangle is increasing at the rate of 2cm/ sec.
Find the rate at which the area increases, when the side is Scm.

Solution: Area of an equilateral triangle having side' a' em is given by A = ~ a2
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Example 7 IfY= x3-5 and x changes from 3 to 2.99, what is the approximate change
in y.

= 0.8%
4
5

1= -x100
125

1tr2

= 125 x 100
1tr2

2

oA=~
125

and %age error in Area

oA= -x100
A

81tr2
1000=

0.81tr2
100

, using (1)oA = (21tr)[0.4r]
100

dANow oA=-.or
dr

Now area of circular plate i.e. A = 1tr2
dA-=21tr
dr

------ (1)or = O.4r
100

Find the error and %age error in calculating the Area of a circular plate
when an error of 0.4% has been committed while measuring the radius
of that circle.
%age error in radius = 0.4%

Or
-" 100= 0.4
r

Solution:

Example 6

1
= 20001t cm/ sec.

0.2
4001t=

(
dr) 0.2
dt r=10 = 41t(10)2

dr 0.2
dt = 41tr2
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(28)1/3- (27)1/3
1

= 3" (x)1/3-1. [(x +8x)-x]

1
= 3" (X)-Z/3 . [28-27]

1= 3 (x)-z/3(1)

1= - (X)-2/3
3

1 1-x-----::-,.-= 3 (27)z/3

1 1

= 3 [(27)1/3r

1 1
= 3-(3)2

1
(28)1/3_ (27)1/3 - 27

dy
= dx .SxNow Sy

Now, approximate change in y can be calculated as

dy
8y = dx .Sx

= 3x2[2.99-3]...... [ .,'8x = 2.99-3]
= 3x2(-0.01)
= 3(3)2(-0.01) = -0.27 (approx.)

Example 8 Use differential to find the approximate value of cube root of 28.
Solution: Let y = (x)1/3

. . y+8y = (X+8X)1/3
" 8y = (X+8X)1/3_ (X)1/3
put x+Sx = 28, where x=27 and 8x=1
. . 8y = (28)1/3- (27)1/3
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y
dy
dx

Solution:
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Let this tangent cuts x-axis at point x=x2
.. O-f(Xl) = f'(Xl)(X2-Xl) [.: f(X2)=0]

__ f(xl) or x = x _ f(Xl)
_ F'{x.) 2 1 f'(xl)

x

Iy

- - - - (1)

x

y

This is the first approximation.
If f(Xl)=Othen x=xl will be the root

of equation f(x) = 0, otherwise,
Let a tangent to the curve be

drawn at point Q(xl, f(Xl)) on the curve.
Then, the equation of this tangent 0

will be f(x)-(fxl) = f'(xl)(x-Xl).

f(xo)=x _--
o f'(xo)or

Newton Raphson's Method -
Newton Raphson method is used

for finding the solution of a given
equation f(x)=O. In this method first of all
we find two values of x (Say' a' and 'b'),
for which f(x) has opposite sign. [Say f(a)
> 0 and f(b) < 0]

Now from' a' and 'b' we selectthat
value which makes f(x) most nearest to
O.Let it be (a). Then we denote this value
by xo' thus Xo= a. 0

The equation of tangent at (xO'f(xo)'will be
y-f(xo) = f'(xo)(x-xo)
Let this tangent intersects x-axis at x = Xl

o - f(xo) = f'(xo)(xcxo) , [.: f(Xl) = 0]

__ f(xo)
_ f'(xo)

= 3.037
1+81 82= =27 27

1= -+3
27

= _!_ + (27)1/3
27

. . (28)1/3
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-4
= (0.25)2-4(0.25)+1
= 0.0625-1+1
= 0.0625 "# 0

Now f(0.25)

= 0.25
-1

[(0)2 -4(0) + 1]
= 0 - =--------=-

[2(0) - 4]

Now,

- - - - - (1)

Now, by Newton Raphson formula,
f'(x.,)

xn+l = xn- f' (xn)

f(x) = 2x-4
for n = 0,

f(O)of(l )

-1-2

. . One of the two roots of equation, lies between 0 and 1.
Since, f(O)= 1, is most nearest to 0 as compared to f(l) = -2, therefore, let us
take Xo = 0

Example 1 Find a root of equation x2-4x+l=0 by Newton Raphson's method.
Solution: The given equation is x2-4x+l=0

Hence f(x) = x2-4x+l
For x = 0, f(O) = (0)2-4(0)+1 = 1>0
For x = 1, f(l) = (1)2-4(1)+1 = -2<0

This is our second approximation. If f(x2)=0, then x=x2will be the root of equation
f(x) = 0, otherwise we take third approximation and so on till we get the exact root of eq.
f(x) = 0 or the value of x to the desired level of accuracy i.e. the value of x for rhicp f(x)
~ o. ,

The iterative formula for (n+l)th approximation is

"
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and f(x) = 4x3-11
For n = 0,

f(xo)
Xl X -= 0 f'(xo)

= xo-
[xo4-11xo+5]

Xl [4Xo3-11]

Example 2 By using Newton Raphson's method find a root of equation x4-11x+5=0
near to 2 upto second approximation.

Solution: Hence, f(x) = x4-11x+5
Let Xo =2

" By Newton Raphson's method
f(xn)

xx+l = xn - f'(xn) - - - -(1)

Now, f(0.267)
= 0.26786 = 0.267 , [Taking three places of decimals]
= (0.267)2-4(0.267)+1
= 0.07129 - 1.068 + 1
= 1.07129 - 1.068
= 0.00329, which is very nearest to O.

Thus x = 0.267 is the approximate value of root of equation x2-4x+1 = 0

= 0.25 + 0.01786

= 0.25 _ [(0.25)2 - 4(0.25) + 1]
[2(0.25) - 4]

= 0.25 _ [0.0625 -1 + 1]
[0.50-4]

= 0.25 _ [0.0625]
[-3.50]

0.0625
= 0.25 + 3.50

= 0.26786

Let us take second approximation,
Pu t n = 1 in (1)

f(Xl)
'S =xl-f'(xl)
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[ .. x =x -~]. n+1 n f'(xn)

[(Xl)4 -11(Xl)+5]- x - -'-'-""-!__-:;--'--'-'----"-
- 1 [4(Xl)3-11]

_ 2.04 _ [-0.12109]
- [2(2.04)3 -11]

= 2.04 + 0.12109
(33.95864 -11)

= 2.04+0.00527 = 2.04527
= 2.045 (Taking three places of decimals)

f(2.045) = (2.045)4-11(2.045)+5
= 17.48938-22.495+5
= -0.00562

Which is nearest to zero
.. x = 2.045 is the approximate root of given equation.

Example 3 If x = 2.94 is the first approximated value of the root of equation x3_
9x+1=O, by Newton's Raphson's method. Then the value of root of the
equation x3-9x+ 1=0, by second approximation will be

(a) 2.9435 (b) 2.9427
(c) 2.9428 (d) 2.9423

Solution: f(x) = x3-9x+1
According to Question, Xl = 2.94
We are to find x2 = ?
By Newton Raphson's method,

f(xl)x --x2 = 1 f'(xl)

---- (1)

f(2.04) = (2.04)4-11(2.04)+5
= 17.31891-22.44+5
= 22.31891-22.44 = -0.12109

for second approximation, Put n = 1 in
f(x 1)

X ----'--"--'-
x2 = 1 f' (xd

= 2.04
43
21

1
= 2+--

21

_ 2 _ [(2)4 - 11(2) + 5]
- [4(2)3 -11]

[-1]=2--
21
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Q.5 A body is moving with displacement 5 given by 5=t3+3t2-21t+9, (5 in km, and t
in hrs). After how much time, the velocity will be equal to acceleration in
magnitude.
(a) 2hrs. (b) 1hr. (c) 3hrs. (d)4hrs.

Q.6 A particle is moving with uniform retardation and with displacement given by 5
= 2t3-9t2-60t+5, After how much time, it will come to rest? (time is in seconds)
(a) 3 sec. (b) 5 sec. (c) 2 sec. (d) 1 sec.

Q.7 A square plate is being expanded by heating. If its side is increasing at the rate of
0.2 cm per second, then at what rate, the area is increasing when the side is
20cm?
(a) 10cm2/sec. (b) 8 cm2/sec. (c) 2 cm2/sec. (d)5 cm2/sec.

Q.8 A circular plate of metal expands by heating so that its radius is increasing at the
rate of 0.02 cm/ sec. Find the rate at which the area is increasing when the radius
is 7 cm.
(a) 8.8 cm2/scc. (b)4.8 cm2/sec. (c) 4.9 cm2/sec. (d)1.4 cm2/sec.

(d) 45°

MULTIPLE CHOICE QUESTIONS
Q.1 The displacement travelled by a train is given by the equation 5=t3+4t2+2t-6.

Find the velocity after 2 hr. (5 in km.)
(a) 32 km/hr. (b) 30 km/hr. (c) 35 km/ hr. (d) None of these

Q.2 The displacement travelled by a train is given by 5 = 3t3-4t2+3t+10, find its
acceleration after 3hrs (5 in kms.)
(a) 46 kmy hr? (b) 40 km Zhr. (c) 54 km/hr (d) 64 km/hr

Q.3 The angle x which changes half times as fast as its tangent is
(a) 60° (b) 75° (c) 30° (d) 45°

Q.4 The angle x which changes twice as fast as its sine is
(a) 60° (b) 75° (c) 30°

.. x2 = 2.9428 is the second approximate value of root.

.. (c) is the correct option.

= 2.9428216.9308
49.824362(2.94)3-1

= 3(2.94)2=-9

=

= 2.94_1(2.9i)~=~~.2_~ +1]
[3(2.94)2- 9]

3(2.94f - 9(2.94)- (2.94)3+ 9(2.94)-1
[3(2.94)2- 9]
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Q.14 The displacement of a particle at the time t is given by S=e2tcos2t, then its velocity
at t=Owill be
(a) 1 unit/sec. (b) 0 (c) 2 units/sec. (d) None of these

Q.15 A man 2 meters high walks at a uniform speed 'u' meters/minutes away from a
lamp post of 6m high. His shadow is increasing at the rate of 2m/minutes then,
the value of u will be
(a) 3 m Zminutes (b) 2 m Zminutes (c) 4 m/minutes (d) None of these

Q .16 The time of oscilla lion of a simple pendulum oflength ' f' is given byT = 2ng r

if the relative change in length of pendulum is 4 then what will be the relative
change in T?
(a) 2 (b) 4 (c) 8 (d)l

Q.17 The time of oscillation of a simple pendulum of length' e ' is given by T = 21tH,
if the %age error in ' r' is 5%, then the %age error in T will be
(a) 10% (b) 2.5% (c) 5% (d)l %

(d) sin x(c) cos x

Q.9 A metal plate in the form of an equilateral triangle is being heated and its Area is
increasing at the rate of 0.9 em/sec. At what rate the side is increasing when it is
"./3em in length?
(a) 0.3 em/sec. (b) 0.5 em/sec. (c) 0.6 em/sec. (d) None of these

Q.10 A man 2 meters high walks at a uniform speed of 8m/minute from a lamp post
6 meters high. The rate at which the length of his shadow increases is
(a) 3 m Zminute (b) 4 m Zminute (c) 2 m Zminute (d)5 m Zminute

Q.11 A spider is rising towards ceiling at the rate of 2 m/ minute, then with what rate
the distance between the spider and the ceiling is decreasing?
(a) 1 m Zminute (b}4 m Zminute (c) 4.2 m Zminute (d)2 m Zminute

Q.12 A varying force is applied on a body of unit mass and if the force increases at the
rate of 2 Newton per second, then the acceleration in the body is changing at the
rate of
(a) 2 cm/sec2 (b) 2 m/sec2 (c) 1 m/sec2 (d) None of these.

Q.13 The velocity of a particle moving in a st. line is given by the relation v =
~2(cosx+xsinx), where 'x' is the distance of the particle from a fixed point,
then its acceleration will be.
(a) x cos x (b) x sin x
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Fig. 5.2
xx,

Fig. 5.1
xx,x,o

fix,)

Y

Strictly increasing function - A Y
function y=f(x) is said to be strictly
increasing if X2>Xl=> f(x2)> f(xl)·

The figure 5.2 shows the graph
of a strictly increasing function:

Clearly,

X2>Xl=> f(x2)> f(Xl);Xl' x2 E Df·

Increasing and Decreasing Functions

Increasing Function - Let y =
f(x) be a function of variable x. Then
y=f(x) is said to be increasing function
of x, if y increases or remains same as x
increases or in other words, if X2>Xlthen
f(x2)~ f(Xl)where Xl' x2 E D, .

The figure 5.1 shows the graph
of an increasing function.

The differentiation of various functions render a great services in solving the
problems concerned with finding out the maximum and minimum values of quantities.

In the various fields of engineering and technology, we have to find the maximum
or minimum values of one quantity w.r.t another quantity. For example in finding the
radius and height of a cylinder that is to be manufactured with the metal sheet of given
surface area, so that the capacity of cylinder is maximum. Sometimes it is necessary to
find the least cost for the transmission of given horse power. We can find the dimensions
of a plot of given perimeter, so that its area is maximum and so on. In this chapter we
are going to solve problems concerned with maximum and minimum values of various
quantities.

MAXIMA AND MINIMA
Chapter 5
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dy .
dx > 0 i.e. +ve

Y
dy

:. f'(x) = dx = tane

Since the graph is increasing, e
will be acute i.e. in }St quadrant, for
which tane is non-negative.

Conditions for a function y = f(x) to be increasing or decreasing.
Let y = f(x) be an increasing function in the open interval (a,b).
Let XE (a.b), From the knowledge of differentiation we know that the derivative

of a function at any point P on the curve y=f(x) gives the slope of tangent to the curve at
that point P.

Fig. 5.4
xX2x,

Fig. 5.3
Y
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Strictly Decreasing function -
A function y = f(x) is said to be a strictly
decreasing function, if X2>Xl => f(x2) <
f(xl); xl' x2 E Df •

The figure 5.4 shows the graph
of a strictly decreasing function

Clearly,

X2>Xl=> f(x2) < f(xl); Xl' x2 E Df. 0

In other words,

X2>Xl=> f(x2) s f(xl); Xl' x2 E n.
The figure 5.3 shows the graph

of a decreasing function.

Clearly X2>Xl=> f(x2) s f(xl)

Decreasing Function - A Y
function y = f(x) is said to be a decreasing
function if y decreases or remains same
as x increases.
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Absolute minimum value
of f(x) = f(a)
Absolute maximum value
of f(x) = f(x2)

X,o x,=ax,=b X

f(x,)=f(b)

x

p

Q

xX

Absolute minimum value
of f(x) = f(xl)
Absolute maximum value
of f(x) = f(x2)=f(b)

X,o a

dy
f(x) = - < 0

dx

o a ~ ~ b X
In the interval [a,b], f(x) has maximum value at the turning point Q(x=x2), where

as f(x) has minimum value at the turning point P(X=XI)'The points x=xI and x=x2 are
called point of absolute minima and point of absolute maxima respectively and the
corresponding values of functions i.e. f(xl) and f(x2)are called absolute maximum and
absolute minimum values of the function y=f(x) on the interval [a,b]

It is not necessary that the absolute maximum and minimum values of function
occur at turning points, as is clear from the graph given below :-
y y

o
Maximum and Minimum Values of a Function -

Consider a function y = f(x), Y
having the graph as shown below-

and for strictly decreasing function

i.e -ve

Similarly, for a decreasing function y = f(x), e is obtuse, and hence, tan e :s; o.
y

. f{x) - dy < a.. x - dx - .
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X, x

E

c

A

y

x
The turning points A,C,E and G are the highest points among all the points on

the curve in their small neighbourhood. The values of x corresponding to these points
i.e. x=xl' x3' Xsand x7are called points of Local Maxima and the corresponding values
of function i.e. f(xl), f(x3), f(xs) and f(x7)are called Local Maximum values of function.

The turning points B,D and F are the lowest points among the points on the
graph in their small neighborhoods. The values of x corresponding to these points i.e.
x=x2' x4 and X6are called points of Local Minima and the corresponding values of
function i.e. f(x2),f(x4) and f(x6)are called Local Minimum values of function.

Remarks: (1) If a function y=f(x) is defined on R, the set of real number, and we
are to find its maximum and minimum values, then we find its local maximum and
local minimum values, if they exist.

(2) If we are to find the maximum and minimum values of a function y=f(x) on
[a.b], then, we find both Absolute as well as Local maximum and Local minimum values.

To find maximum/minimum values of a function y = f(x) on R [LocalMaximum
and Local Minimum Values]

Let y=f(x) be a function having its graph as shown in figure below-

c

A

y

From above discussion, it is clear, that a function may attain its maximum or
minimum value at turning points or at the end points of the closed interval [a,b].

Local Maximum and Local Minimum Values of a Function - Let y = f(x) be a
function having its graph as shown below in the figure

/227/
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The point A,B,e,D,E,F,G, are the turning points of the graph. These points
are also called stationary points. On these points, the tangents to the graph are parallel
to x-axis and hence, their slope will be zero i.e. at these points dy / dx = O.

So to find these stationary points (also called critical points) we put ~~ = 0 and

find the roots of this equation, (say) xl'X2,X3'X4, Now we are to separate the
points of local maxima and local minima from these stationery points, X1,X2,X3'X4, .

For this we have two methods (Tests)
(i) First derivative test
(ii) Second derivative test
Here we will study only second derivative test.
Second derivative Test (Working Rule) - After finding the critical points of

function f(x) by putting :~ = 0, say xl'x2,x-3,- - - we separate points of maximal

minima, by using, second derivatives as follows:
Let xkbe the critical point to be tested for maxima/minima. We find f"(x) and

find the value of f"(x_k).
(i) If f"(x_k) is -ve, then xk is the point of maxima and f(x_k)will be the maximum

value of f(x) at that point.
(ii) If f"(x_k) is +ve, then xk is the point of minima and f(x_k)will be the minimum

value of f(x) at that point.
(iii) If f"(x_k)=Othen we find f'''(x_k)' If f"'(X_k):t:- 0, then, xk is the point of inflexion

and if f'''(x_k) = 0, then second derivative test fails.

Example 1 Find the maximum and minimum values of the function f(x)=x3-3x2-24x+5
Solution: f(x) = x3-3x2-24x+5

f'(x) = 3x2-6x-24
For critical points, put f{x) = 0

3x2-6x-24 = 0
3(X2_2x-8) = 0
x2-2x-8 = 0
(x-4)(x+2) = 0
x = 4 and x = -2 are two critical points.
f"(x) = 6x-6

Now f"(x)x~4= 6(4)-6 = 18 > 0
. . x = 4 is the point of minima. And minimum value of the function is

f(u) = (4)3_3(4)2_24(4)+5
= 64-48-96+5
= -75
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1t
= "4 is the point of minima and the minimum value of f(x) isx

= -4 COS1t

= (-4)(-1) = 4 = +ve

4x
1t

1t 1t
= "4- is the only critical point in 0 < x <2
= 4(sin x cos x) (sin x + cos x)(sin x - cos x)
= 2(2sin x cos x)(sin2x - cos'x)
= 2(sin2x)( -cos2x) [ .."cosix - sin-x = cos2x]
= -2sin2x cos2x
= -sin4x
= -4cos4x

x

O<x< 2
1t

Put

f(x)
f"(x)

f' (x)

But

1t
Solution: f(x) = sirr'x + cos'x, O<x<"2

f '(x) = 4sin:\ cos x + 4cos3x (-sin x)
= 4 sin x cos xjsin-x - cos'x]
= 4 sin x cos x (sin + cos x)(sin x - cos x)

for critical points, put f(x) = 0
=> 4 sin x cos x (sin x + cos x)(sin x - cos x) = 0
=> sin x = 0, cos x = 0, tan x = -1, tan x =1

x = 0 2: ~ -31t
, 2' 4' 4 '

f(x)

at x = -2, (f"(x))x=_2= 6(-2)66 = -18<0
x = -2 is the point of maxima. and maximum value of the function is
f(-2) = (-2)3_3(-2)2_24(-2)+5

= 18-12+48+5 = 33
Example 2 Find the points of maxima or minima (if it exists) and also the maximum

and minimum values of the function:
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-x - 2x +2xlogx
=

_ (X2{0-~)-(1-logX)(2X)

(X2)2
Now, f"(x)

Example 3
log x
-- has a maximum value at
x

(a) e
(b) e2
(c) e-2
(d) e3

Solution f(x)
= logx

x

1
f '(x]

x.---Iogx.(l)
x

?x-

l-logx
= x2

Put f'(x) =0

l-logx
=0=> x2

l-log x = 0
log x =1 l. loge =1]

=> log x = log e
=> x=e

n 1
. . x = "4 is the point of minima and the minimum value of function is "2.

1 1 1
= -+- = -

4 4 2

f (:) = sin" (:) + cos"( : )

=(1r+(1r
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1
.. x = -2" is the point of maxima and the maximum vale of function at

= 48-18 = 30>0= 24(2)-18and

= -12-18 = -30<0

1
. . x = -2"' 2 are the critical points,

d2
Now, d3 = 24x -18

Example 4 Find the points of maxima and minima for the function 4x3-9x2-12x+4
and also find the maximum and minimum values of the function.

Solution: f(x) = 4x3-9x2-12x+4
f(x) = 12x2-18x-12

= 6[2x2-3x-2]
= 6[2x2_4x+x-2]
= 6[2x(x-2)+1(x-2)]
= 6(2x+1)(x-2)

For critical points, f(x) = 0
~ 6(2x+1)(x-2) = 0

1
either x = --or x = 22

-_!_ < 0
e3

function has maximum value at x = e.
x = e is the point of maxima.

x[2logx - 3]
x-l

2loge- 3 2--3
f'(e) =

e3
=

e3
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dy
= 2(;)=;.. dx

dy 2.. dx - =1= 0 for any real value of xx

Example 6

(3)(2)
= log x2
= 2 log x

Show that none of the following functions has a maximum or minimum
value.
Iogx?
y

(1)
Solution :(1)

( d2y)dx2 x;2 = 2>0

Yhas minimum value at x=2 and the minimum value of f(x) will be
f(2) = (2)2_4(2)+7 = 4-8+7 = 3
(b) will be the correct option.

= 4( -~)- : +6+4

1 9 10
= ----+-

2 4 1
-2-9+ 10

= 4
and the minimum value of function will be at x=2 and will be =
f(2) = 4(2)3-9(2)2-12(2)+4

= 32-36-24+4 = -24
Example 5 The minimum value of function x2-4x+7 will be

~) 2 ~) 3
(c) 4 (d) 7

Solution Let y = x2-4x+7

dy
= 2x-4dx

dy
Put dx = 0

i.e. 2x - 4 =0
or x = 2
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d2P
Now - = 0-2(1) = -2, dx2

dP
put - =0

dx
~ 18-2x ==0
or x=9

For maximum or minimum values of P,

x

-1 ± ~(1)2 - 4(1)(2)== _ ____:__:__:._ ____.:.-,-,--,-
2(1)

-1±..J-7
2 which is not real

f(x) has neither maximum nor minimum values.

Find two positive numbers whose sum is 18 and their product is maximum.
Let the positive number be x and y
By given condition, x+y =18 - - - (1)
Let P denotes the product of x and y
P=xy
P = x(18-x) - - - [from(1)]
P = 18x-x2
dP
dx = 18-2x

x

6x2+6x+12 == 0
x2 +x + 2 == 0

~
or

dy
= 6x2+6x+12dx

Put
dy

=0dx

¢ 0 for any real value of x
y == eXhas neither maximum nor minimum values.
y = 2x3+3x2+12x+5(3)

dy
dx

y = log x2has neither maximum nor minimum values.
y = eX(2)
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4A

But x, being the' side of rectangle can never be negative .
.. x =.JA.

= 0-2A[-:n

dP
Put dx = 0

2A=> -2- = 2
x
A = x2
x2 = A
x = ±.JA.

P = 2X+2[~]

P = 2x+2A(xtl
dP
dx

= 2+2A(-1)x-2

- - - (1)
Let A (constant) be the area of all given rectangles.
xy = A
Now, Perimeter of rectangle is given by,
P = 2(x+y)
P = 2x+2y

Hence the two required numbers are 9 and 9.
Example 8 Show that among all the rectangles of given area, square has the least

perimeter.
Solution: Let x and y be the length and breadth of any of the rectangles of given

area.

x = 9, Y = 9
=9

P will be maximum for x = 9
and y = 18-x

= 18-9

( ~:~) = -2<0
x=9
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(::; L-5 = 12(-5)+6 = -60+6 = -54 < 0

x = 4 is the point of minima.
P will be maximum for x = -5
and the maximum profit will be

= P(-5) = 2(-5)3+3(-5)2-120(-5)+100
= 2(-125)+75+600+100
= -250 + 75 +600 + 100
= 525

dP
For maximum profit, Put dx = 0

~ 6x2+6x-120 = 0
6[X2+X-20]= 0
x2+x-20 = 0
(x+5)(x-4) = 0

~ x = -5 or x = 4

d2P
Now, -2 = 12x + 6

dx

= 6x2+6x-120
dx

Example 9 The profit function of a company is given by P(x) = 2x3+3x2-120x+100
Find the maximum profit.

Solution: P(x) = 2x3+3x2-120x+100

dP

A A
Hence, P will be minimum for x = ..fA and y = ~ = ,Ji\ = .fA

i.e. the sides of rectangle are equal (=.fA)
i.e. the rectangle will be a square.

4A 4A
= (.fA)3 = A3/2

4
= .fA >0
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Q.13 The point on the curve y = -2x3+6x2+8x-1, at which the slope is maximum is
(a) x = -1 (b) x = 2 (c) x = 1 (d) x = 0

(d)O(c) e2(b) e
1

(a) -
e

Q.12 The only stationary point of the function f(x) = log x for x > 0, is
x

Q.10 If f(x) = x3-3x2+6x+3, then the stationary points of f(x) are
(a) (2,3) (b) (0,3) (c) (1,2) (d) Does not exist

Q.ll The only critical point of the function f(x) = XXis
1

(a) - (b) e (c) e2 (d) 0e

1t 1t

(d) "3' 6
1t

(c) 0, "31t
(b) 0, 6

Q.9. If f(x) = log sec x + 2cos x, then the critical points of f(x) in the interval [0, ;] are

1t
(d) -

4
1t

(c) -
6

1t
(b) -3

1t
(a) -2

Q.8 If f(x) = cos x + sin x, then the only stationary point of f(x) will be

1t
(d) -

4
1t

(c) -
6

1t
(b) -

3
1t

(a) -2

MUL TIPLE CHOICE QUESTIONS
Q.1 If f(x) is an increasing function, in the neighborhood of x, then f(xo) is equal to

(a) 0 (b) >0 (c) <0 (d)~ 0
Q.2 If f(x) is a decreasing function, in the neighborhood of x, then f(xo) is equal to

(a) 0 (b) >0 (c) ~O (d)~O
Q.3 If f(x) has maximum or minimum value at a point x, then, Xois called a

(a) point of inflextion (b) absolute point
(c) constant point (d) stationary point

Q.4 If Xois the point of maxima or minima of function f(x), then f(xo) = ?
(a) +ve (b) 0 (c) -ve (d) None of these

Q.5 A point x, for which f(xo) = 0, but Xois neither a point of maxima nor minima,
then Xois called
(a) constant point (b) point of inflexion (c) stationery point (d) absolute point

Q.6 If f(x) = x3-7x2+8x-5, then its stationary (critical) point will be
(a) (2,4) (b) (3,4) (c) 2/3,4) (d) (4,3)

Q.7 If f(x) = 5-x-2cos , then the only critical (stationary) point of f(x) will be
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