
Chapter 1

Introduction

1.1 Preliminaries

Definition (Differential equation)
A differential equation (de) is an equation involving a function and its deriva-
tives.

Differential equations are called partial differential equations (pde) or or-
dinary differential equations (ode) according to whether or not they contain
partial derivatives. The order of a differential equation is the highest order
derivative occurring. A solution (or particular solution) of a differential equa-
tion of order n consists of a function defined and n times differentiable on a
domain D having the property that the functional equation obtained by substi-
tuting the function and its n derivatives into the differential equation holds for
every point in D.

Example 1.1. An example of a differential equation of order 4, 2, and 1 is
given respectively by(

dy

dx

)3

+
d4y

dx4
+ y = 2 sin(x) + cos3(x),

∂2z

∂x2
+

∂2z

∂y2
= 0,

yy′ = 1. ∗

1
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Example 1.2. The function y = sin(x) is a solution of(
dy

dx

)3

+
d4y

dx4
+ y = 2 sin(x) + cos3(x)

on domain R; the function z = ex cos(y) is a solution of

∂2z

∂x2
+

∂2z

∂y2
= 0

on domain R2; the function y = 2
√

x is a solution of

yy′ = 2

on domain (0,∞). ∗

Although it is possible for a de to have a unique solution, e.g., y = 0 is the
solution to (y′)2 + y2 = 0, or no solution at all, e.g., (y′)2 + y2 = −1 has no
solution, most de’s have infinitely many solutions.

Example 1.3. The function y =
√

4x + C on domain (−C/4,∞) is a solution
of yy′ = 2 for any constant C. ∗

Note that different solutions can have different domains. The set of all
solutions to a de is call its general solution.

1.2 Sample Application of Differential Equations

A typical application of differential equations proceeds along these lines:

Real World Situation

↓

Mathematical Model

↓

Solution of Mathematical Model

↓

Interpretation of Solution
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Sometimes in attempting to solve a de, we might perform an irreversible
step. This might introduce extra solutions. If we can get a short list which
contains all solutions, we can then test out each one and throw out the invalid
ones. The ultimate test is this: does it satisfy the equation?

Here is a sample application of differential equations.

Example 1.4. The half-life of radium is 1600 years, i.e., it takes 1600 years for
half of any quantity to decay. If a sample initially contains 50 g, how long will
it be until it contains 45 g? ∗

Solution. Let x(t) be the amount of radium present at time t in years. The rate
at which the sample decays is proportional to the size of the sample at that
time. Therefore we know that dx/dt = kx. This differential equation is our
mathematical model. Using techniques we will study in this course (see §3.2,
Chapter 3), we will discover that the general solution of this equation is given
by the equation x = Aekt, for some constant A. We are told that x = 50 when
t = 0 and so substituting gives A = 50. Thus x = 50ekt. Solving for t gives
t = ln(x/50) /k. With x(1600) = 25, we have 25 = 50e1600k. Therefore,

1600k = ln
(

1
2

)
= − ln(2) ,

giving us k = − ln(2) /1600. When x = 45, we have

t =
ln(x/50)

k
=

ln(45/50)
− ln(2) /1600

= −1600 · ln(8/10)
ln(2)

= 1600 · ln(10/8)
ln(2)

≈ 1600 · 0.105
0.693

≈ 1600× 0.152 ≈ 243.2.

Therefore, it will be approximately 243.2 years until the sample contains 45 g
of radium. ♦

Additional conditions required of the solution (x(0) = 50 in the above ex-
ample) are called boundary conditions and a differential equation together with
boundary conditions is called a boundary-value problem (BVP). Boundary con-
ditions come in many forms. For example, y(6) = y(22); y′(7) = 3y(0); y(9) = 5
are all examples of boundary conditions. Boundary-value problems, like the one
in the example, where the boundary condition consists of specifying the value
of the solution at some point are also called initial-value problems (IVP).

Example 1.5. An analogy from algebra is the equation

y =
√

y + 2. (1.1)
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To solve for y, we proceed as

y − 2 =
√

y,

(y − 2)2 = y, (irreversible step)

y2 − 4y + 4 = y,

y2 − 5y + 4 = 0,

(y − 1) (y − 4) = 0.

Thus, the set y ∈ {1, 4} contains all the solutions. We quickly see that y = 4
satisfies Equation (1.1) because

4 =
√

4 + 2 =⇒ 4 = 2 + 2 =⇒ 4 = 4,

while y = 1 does not because

1 =
√

1 + 2 =⇒ 1 = 3.

So we accept y = 4 and reject y = 1. ∗



Chapter 2

First Order Ordinary

Differential Equations

The complexity of solving de’s increases with the order. We begin with first
order de’s.

2.1 Separable Equations

A first order ode has the form F (x, y, y′) = 0. In theory, at least, the methods
of algebra can be used to write it in the form∗ y′ = G(x, y). If G(x, y) can
be factored to give G(x, y) = M(x) N(y),then the equation is called separable.
To solve the separable equation y′ = M(x) N(y), we rewrite it in the form
f(y)y′ = g(x). Integrating both sides gives∫

f(y)y′ dx =
∫

g(x) dx,∫
f(y) dy =

∫
f(y)

dy

dx
dx.

Example 2.1. Solve 2xy + 6x +
(
x2 − 4

)
y′ = 0. ∗

∗We use the notation dy/dx = G(x, y) and dy = G(x, y) dx interchangeably.

5
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Solution. Rearranging, we have(
x2 − 4

)
y′ = −2xy − 6x,

= −2xy − 6x,

y′

y + 3
= − 2x

x2 − 4
, x 6= ±2

ln(|y + 3|) = − ln
(∣∣x2 − 4

∣∣)+ C,

ln(|y + 3|) + ln
(∣∣x2 − 4

∣∣) = C,

where C is an arbitrary constant. Then∣∣(y + 3)
(
x2 − 4

)∣∣ = A,

(y + 3)
(
x2 − 4

)
= A,

y + 3 =
A

x2 − 4
,

where A is a constant (equal to ±eC) and x 6= ±2. Also y = −3 is a solution
(corresponding to A = 0) and the domain for that solution is R. ♦

Example 2.2. Solve the ivp sin(x) dx + y dy = 0, where y(0) = 1. ∗

Solution. Note: sin(x) dx + y dy = 0 is an alternate notation meaning the same
as sin(x) + y dy/dx = 0.

We have

y dy = − sin(x) dx,∫
y dy =

∫
− sin(x) dx,

y2

2
= cos(x) + C1,

y =
√

2 cos(x) + C2,

where C1 is an arbitrary constant and C2 = 2C1. Considering y(0) = 1, we have

1 =
√

2 + C2 =⇒ 1 = 2 + C2 =⇒ C2 = −1.

Therefore, y =
√

2 cos(x)− 1 on the domain (−π/3, π/3), since we need cos(x) ≥
1/2 and cos(±π/3) = 1/2.
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An alternate method to solving the problem is

y dy = − sin(x) dx,∫ y

1

y dy =
∫ x

0

− sin(x) dx,

y2

2
− 12

2
= cos(x)− cos(0),

y2

2
− 1

2
= cos(x)− 1,

y2

2
= cos(x)− 1

2
,

y =
√

2 cos(x)− 1,

giving us the same result as with the first method. ♦

Example 2.3. Solve y4y′ + y′ + x2 + 1 = 0. ∗

Solution. We have (
y4 + 1

)
y′ = −x2 − 1,

y5

5
+ y = −x3

3
− x + C,

where C is an arbitrary constant. This is an implicit solution which we cannot
easily solve explicitly for y in terms of x. ♦

2.2 Exact Differential Equations

Using algebra, any first order equation can be written in the form F (x, y) dx +
G(x, y) dy = 0 for some functions F (x, y), G(x, y).

Definition
An expression of the form F (x, y) dx + G(x, y) dy is called a (first-order) differ-
ential form. A differentical form F (x, y) dx + G(x, y) dy is called exact if there
exists a function g(x, y) such that dg = F dx + G dy.

If ω = F dx+G dy is an exact differential form, then ω = 0 is called an exact
differential equation. Its solution is g = C, where ω = dg.

Recall the following useful theorem from MATB42:
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Theorem 2.4
If F and G are functions that are continuously differentiable throughout a
simply connected region, then F dx + G dy is exact if and only if ∂G/∂x =
∂F/∂y.

Proof. Proof is given in MATB42. �

Example 2.5. Consider
(
3x2y2 + x2

)
dx +

(
2x3y + y2

)
dy = 0. Let

ω =
(
3x2y2 + x2

)︸ ︷︷ ︸
F

dx +
(
2x3y + y2

)︸ ︷︷ ︸
G

dy

Then note that
∂G

∂x
= 6x2y =

∂F

∂y
.

By Theorem 2.4, ω = dg for some g. To find g, we know that

∂g

∂x
= 3x2y2 + x2, (2.1a)

∂g

∂y
= 2x3y + y2. (2.1b)

Integrating Equation (2.1a) with respect to x gives us

g = x3y2 +
x3

3
+ h(y). (2.2)

So differentiating that with respect to y gives us

Eq. (2.1b)︷︸︸︷
∂g

∂y
= 2x3y +

dh

dy
,

2x3y + y2 = 2x3y +
dh

dy
,

dh

dy
= y2,

h(y) =
y3

3
+ C
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for some arbitrary constant C. Therefore, Equation (2.2) becomes

g = x3y2 +
x3

3
+

y3

3
+ C.

Note that according to our differential equation, we have

d

(
x3y2 +

x3

3
+

y3

3
+ C

)
= 0 which implies x3y2 +

x3

3
+

y3

3
+ C = C ′

for some arbitrary constant C ′. Letting D = C ′ −C, which is still an arbitrary
constant, the solution is

x3y2 +
x3

3
+

y3

3
= D. ∗

Example 2.6. Solve
(
3x2 + 2xy2

)
dx +

(
2x2y

)
dy = 0, where y(2) = −3. ∗

Solution. We have ∫ (
3x2 + 2xy2

)
dx = x3 + x2y2 + C

for some arbitrary constant C. Since C is arbitrary, we equivalently have x3 +
x2y2 = C. With the initial condition in mind, we have

8 + 4 · 9 = C =⇒ C = 44.

Therefore, x3 + x2y2 = 44 and it follows that

y =
±
√

44− x3

x2
.

But with the restriction that y(2) = −3, the only solution is

y = −
√

44− x3

x2

on the domain
(
− 3
√

44, 3
√

44
)
\ {0}. ♦

Let ω = F dx + G dy. Let y = s(x) be the solution of the de ω = 0, i.e.,
F + Gs′(x) = 0. Let y0 = s(x0) and let γ be the piece of the graph of y = s(x)
from (x0, y0) to (x, y). Figure 2.1 shows this idea. Since y = s(x) is a solution
to ω = 0, we must have ω = 0 along γ. Therefore,

∫
γ

ω = 0. This can be seen
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(x0,y)

γ1

(x0,y0)

(x,y)

γ2

γ

y =s(x)
y

x

Figure 2.1: The graph of y = s(x) with γ connecting (x0, y0) to (x, y).

by parameterizing γ by γ(x) = (x, s(x)), thereby giving us∫
γ

ω =
∫ x

x0

F dx + Gs′(x) dx =
∫ x

x0

0 dx = 0.

This much holds for any ω.
Now suppose that ω is exact. Then the integral is independent of the path.

Therefore

0 =
∫

γ

ω =
∫

γ1

F dx + G dy +
∫

γ2

F dx + G dy

=
∫ y

y0

G(x0, y) dy +
∫ x

x0

F (x, y) dx.

We can now solve Example 2.6 with this new method.

Solution (Alternate solution to Example 2.6). We simply have

0 =
∫ 4

−3

2 · 22y dy +
∫ x

2

(
3x2 + 2xy2

)
dx

= 4y2 − 4 (−3)2 + x3 + x2y2 − 23 − 22y2

= 4y2 − 36 + x3 + x2y2 − 8− 4y2,

finally giving us x3 + x2y2 = 44, which agrees with our previous answer. ♦

Remark. Separable equations are actually a special case of exact equations, that
is,

f(y)y′ = g(x) =⇒ −g(x) dx + f(y) dy = 0 =⇒ ∂

∂x
f(y) = 0 =

∂

∂y
(−g(x)) .
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So the equation is exact. ♦

2.3 Integrating Factors

Consider the equation ω = 0. Even if ω is not exact, there may be a function
I(x, y) such that Iω is exact. So ω = 0 can be solved by multiplying both sides
by I. The function I is called an integrating factor for the equation ω = 0.

Example 2.7. Solve y/x2 + 1 + y′/x = 0. ∗

Solution. We have ( y

x2
+ 1
)

dx +
1
x

dy = 0.

We see that [
∂

∂x

(
1
x

)
= − 1

x2

]
6=
[

1
x2

=
∂

∂y

( y

x2
+ 1
)]

.

So the equation is not exact. Multiplying by x2 gives us(
y + x2

)
dx + x dy = 0,

d

(
xy +

x3

3

)
= 0,

xy +
x3

3
= C

for some arbitrary constant C. Solving for y finally gives us

y =
C

x
− x3

3
. ♦

There is, in general, no algorithm for finding integrating factors. But the
following may suggest where to look. It is important to be able to recognize
common exact forms:

x dy + y dx = d(xy) ,

x dy − y dx

x2
= d
(y

x

)
,

x dx + y dy

x2 + y2
= d

(
ln
(
x2 + y2

)
2

)
,

x dy − d dx

x2 + y2
= d
(
tan−1

(y

x

))
,

xa−1yb−1 (ay dx + bx dy) = d
(
xayb

)
.
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Example 2.8. Solve
(
x2y2 + y

)
dx +

(
2x3y − x

)
dy = 0. ∗

Solution. Expanding, we have

x2y2 dx + 2x3y dy + y dx− x dy = 0.

Here, a = 1 and b = 2. Thus, we wish to use

d
(
xy2
)

= y2 dx + 2xy dy.

This suggests dividing the original equation by x2 which gives

y2 dx + 2xy dy +
y dx− x dy

x2
= 0.

Therefore,
xy2 +

y

x
= C, x 6= 0,

where C is an arbitrary constant. Additionally, y = 0 on the domain R is a
solution to the original equation. ♦

Example 2.9. Solve y dx− x dy −
(
x2 + y2

)
dx = 0. ∗

Solution. We have
y dx− x dy

x2 + y2
− dx = 0,

unless x = 0 and y = 0. Now, it follows that

− tan−1
(y

x

)
− x = C,

tan−1
(y

x

)
= −C − x,

tan−1
(y

x

)
= D − x, (D = −C)

y

x
= tan(D − x) ,

y = x tan(D − x) ,

where C is an arbitrary constant and the domain is

D − x 6= (2n + 1)
π

2
, x 6= (2n + 1)

π

2

for any integer n. Also, since the derivation of the solution is based on the
assumption that x 6= 0, it is unclear whether or not 0 should be in the domain,
i.e., does y = x tan(D − x) satisfy the equation when x = 0? We have y−xy′−
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(
x2 + y2

)
= 0. If x = 0 and y = x tan(D − x), then y = 0 and the equation is

satisfied. Thus, 0 is in the domain. ♦

Proposition 2.10
Let ω = dg. Then for any function P : R → R, P (g) is exact.

Proof. Let Q =
∫

P (t) dy. Then d(Q(g)) = P (g) dg = P (g)ω. �

To make use of Proposition 2.10, we can group together some terms of ω

to get an expression you recognize as having an integrating factor and multiply
the equation by that. The equation will now look like dg + h = 0. If we can
find an integrating factor for h, it will not necessarily help, since multiplying by
it might mess up the part that is already exact. But if we can find one of the
form P (g), then it will work.

Example 2.11. Solve
(
x− yx2

)
dy + y dx = 0. ∗

Solution. Expanding, we have

y dx + x dy︸ ︷︷ ︸
d(xy)

−yx2 dy = 0.

Therefore, we can multiply teh equation by any function of xy without disturb-
ing the exactness of its first two terms. Making the last term into a function of
y alone will make it exact. So we multiply by (xy)−2, giving us

y dx + x dy

x2y2
− 1

y
dy = 0 =⇒ − 1

xy
− ln(|y|) = C,

where C is an arbitrary constant. Note that y = 0 on the domain R is also a
solution. ♦

Given
M dx + N dy = 0, (∗)

we want to find I such that IM dx + IN dy is exact. If so, then

∂

∂x
(IN)︸ ︷︷ ︸

IxN+INx

=
∂

∂y
(IM)︸ ︷︷ ︸

IyM+IMy

.
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If we can find any particular solution I(x, y) of the pde

IxN + INx = IyM + IMy, (∗∗)

then we can use it as an integrating factor to find the general solution of (∗).
Unfortunately, (∗∗) is usually even harder to solve than (∗), but as we shall see,
there are times when it is easier.

Example 2.12. We could look for an I having only x’s and no y’s? For exam-
ple, consider Iy = 0. Then

IxN + INx = IMy implies
Ix

I
=

My −Nx

N
.

This works if (My −Nx) /N happens to be a function of x alone. Then

I = e
R My−Nx

N dx.

Similarly, we can also reverse the role of x and y. If (Nx −My) /M happens to
be a function of y alone, then

e
R Nx−My

M dy

works. ∗

2.4 Linear First Order Equations

A first order linear equation (n = 1) looks like

y′ + P (x)y = Q(x).

An integrating factor can always be found by the following method. Consider

dy + P (x)y dx = Q(x) dx,

(P (x)y −Q(x))︸ ︷︷ ︸
M(x,y)

dx + dy︸︷︷︸
N(x,y)

= 0.

We use the de for the integrating factor I(x, y). The equation IM dx + IN dy

is exact if
IxN + INx = IyM + IMy.
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In our case,
Ix + 0 = Iy (P (x)y −Q(x)) + IP (x). (∗)

We need only one solution, so we look for one of the form I(x), i.e., with Iy = 0.
Then (∗) becomes

dI

dx
= IP (x).

This is separable. So

dI

I
= P (x) dx,

ln(|I|) =
∫

P (x) dx + C,

|I| = e
R

P (x) dx, ex > 0

I = e
R

P (x) dx.

We conclude that e
R

P (x) dx is an integrating factor for y′ + P (x)y = Q(x).

Example 2.13. Solve y′ − (1/x) y = x3, where x > 0. ∗

Solution. Here P (x) = −1/x. Then

I = e
R

P (x) dx = e−
R 1

x dx = e− ln(|x|)dx =
1
|x|

=
1
x

,

where x > 0. Our differential equation is

x dy − y dx

x
= x3 dx.

Multiplying by the integrating factor 1/x gives us

x dy − y dx

x2
= x2 dx.

Then

y

x
=

x3

3
+ C,

y =
x3

3
+ Cx

on the domain (0,∞), where C is an arbitrary constant (x > 0 is given). ♦
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