Chapter 1

Introduction

1.1 Preliminaries

Definition (Differential equation)
A differential equation (DE) is an equation involving a function and its deriva-

tives.

Differential equations are called partial differential equations (PDE) or or-
dinary differential equations (ODE) according to whether or not they contain
partial derivatives. The order of a differential equation is the highest order
derivative occurring. A solution (or particular solution) of a differential equa-
tion of order n consists of a function defined and n times differentiable on a
domain D having the property that the functional equation obtained by substi-
tuting the function and its n derivatives into the differential equation holds for

every point in D.

Example 1.1. An example of a differential equation of order 4, 2, and 1 is

given respectively by

3 4
(ZZ) + % +y = 2sin(z) + cos®(z),
P
0x2 = Oy? ’
yy = 1. *
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Example 1.2. The function y = sin(z) is a solution of

ay\* oy 3
(dx) + et +y = 2sin(x) + cos®(z)

on domain R; the function z = €” cos(y) is a solution of

0%z 0%z

922 "oy =0

on domain R?; the function y = 2./ is a solution of

/

yy =2
on domain (0, 00). *

Although it is possible for a DE to have a unique solution, e.g., y = 0 is the
solution to (y’)2 + 9% = 0, or no solution at all, e.g., (y’)2 + 4% = —1 has no

solution, most DE’s have infinitely many solutions.

Example 1.3. The function y = v/4x + C on domain (—C'/4,0) is a solution
of yy' = 2 for any constant C'. *

Note that different solutions can have different domains. The set of all

solutions to a DE is call its general solution.

1.2 Sample Application of Differential Equations

A typical application of differential equations proceeds along these lines:

Real World Situation

!

Mathematical Model

!

Solution of Mathematical Model

!

Interpretation of Solution
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Sometimes in attempting to solve a DE, we might perform an irreversible
step. This might introduce extra solutions. If we can get a short list which
contains all solutions, we can then test out each one and throw out the invalid
ones. The ultimate test is this: does it satisfy the equation?

Here is a sample application of differential equations.

Example 1.4. The half-life of radium is 1600 years, i.e., it takes 1600 years for
half of any quantity to decay. If a sample initially contains 50 g, how long will
it be until it contains 45 g? *

Solution. Let x(t) be the amount of radium present at time ¢ in years. The rate
at which the sample decays is proportional to the size of the sample at that
time. Therefore we know that dz/dt = kxz. This differential equation is our
mathematical model. Using techniques we will study in this course (see §3.2,
Chapter 3), we will discover that the general solution of this equation is given
by the equation z = Ae*?, for some constant A. We are told that 2 = 50 when
t = 0 and so substituting gives A = 50. Thus x = 50e**. Solving for ¢ gives
t = In(2/50) /k. With 2(1600) = 25, we have 25 = 50¢'%0°% Therefore,

1600k = ln<;> = —1In(2),

giving us k = —1In(2) /1600. When = = 45, we have

1 In(4 1 1 In(1
. n(z/50) _ n(45/50) 1600 n(8/10) 1600 n(10/8)
k —1In(2) /1600 In(2) In(2)
0.105
~ 1600 - 0693 1600 x 0.152 ~ 243.2.

Therefore, it will be approximately 243.2 years until the sample contains 45g

of radium. O

Additional conditions required of the solution (z(0) = 50 in the above ex-
ample) are called boundary conditions and a differential equation together with
boundary conditions is called a boundary-value problem (BVP). Boundary con-
ditions come in many forms. For example, y(6) = y(22); ¥'(7) = 3y(0); y(9) =5
are all examples of boundary conditions. Boundary-value problems, like the one
in the example, where the boundary condition consists of specifying the value

of the solution at some point are also called initial-value problems (IVP).

Example 1.5. An analogy from algebra is the equation

y=y+2 (1.1)
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To solve for y, we proceed as

y—2=./y,
(y—2)> =y, (irreversible step)
v —dy+4=y,
y? —by+4=0,
(y=1)(y—4) =0

Thus, the set y € {1,4} contains all the solutions. We quickly see that y = 4
satisfies Equation (1.1) because

4=V44+2=4=2+4+2=—4=14,
while y = 1 does not because
1=Vi+2=1=3.

So we accept y = 4 and reject y = 1. *



Chapter 2

First Order Ordinary

Differential Equations

The complexity of solving DE’s increases with the order. We begin with first

order DE’s.

2.1 Separable Equations

A first order ODE has the form F(z,y,3’) = 0. In theory, at least, the methods
of algebra can be used to write it in the form™ y' = G(z,y). If G(z,y) can
be factored to give G(z,y) = M (x) N(y),then the equation is called separable.
To solve the separable equation y' = M(x) N(y), we rewrite it in the form

f()y" = g(x). Integrating both sides gives

[t do= [ gta)da.

[rwas= [ 5%

Example 2.1. Solve 2zy + 6z + (;c2 - 4) y' = 0. »

*We use the notation dy/dxr = G(z,y) and dy = G(z,y) dz interchangeably.

5
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Solution. Rearranging, we have

(2* —4)y = —2zy — 6u,

= —2zy — 6z,
Y 2z

y+3 T Ty T +2
In(ly + 3|) = —hrl(’gc2 - 4’) +C,

In(|y +3|) + In(|2* — 4]) =

where C' is an arbitrary constant. Then

(y+3) (2 — 4)[ = 4,
(y+3)(:z: —4) =4,

y+3= Y
where A is a constant (equal to £e“) and z # +2. Also y = —3 is a solution
(corresponding to A = 0) and the domain for that solution is R. O
Example 2.2. Solve the 1vP sin(z) dx 4+ y dy = 0, where y(0) = 1. *

Solution. Note: sin(x) dx + ydy = 0 is an alternate notation meaning the same
as sin(z) + ydy/dx = 0.

We have
ydy = —sin(z) dz,

/ydy—/—sm

? = cos(z) + C1,

y = v/2cos(z) + Cs,
where C] is an arbitrary constant and Cy = 2C;. Considering y(0) = 1, we have
=240, = 1=24+(Cy = (Cy = —

Therefore, y = y/2 cos(z) — 1 on the domain (—/3, 7/3), since we need cos(z) >
1/2 and cos(£n/3) = 1/2.
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An alternate method to solving the problem is

ydy = —sin(x) dz,

T
ydy:/ —sin(z) dz,
0

‘@Nh\@

12
5 27 5 = cos(z) — cos(0),
1
% - g = cos(x) — 1,
1
% = cos(x) — 3
y=/2cos(z) — 1,
giving us the same result as with the first method. O
Example 2.3. Solve y*y' +¢' + 22 +1=0. *
Solution. We have
(' +1)y = —2® -1,
% +y= —%3 —z+C,

where C' is an arbitrary constant. This is an implicit solution which we cannot
easily solve explicitly for y in terms of z. O
2.2 Exact Differential Equations

Using algebra, any first order equation can be written in the form F(x,y) dx +
G(z,y) dy = 0 for some functions F(z,y), G(z,y).

Definition

An expression of the form F(z,y) dx + G(x,y) dy is called a (first-order) differ-
ential form. A differentical form F(z,y)dx + G(x,y)dy is called ezact if there
exists a function g(z,y) such that dg = F dz + G dy.

If w = Fdx+ G dy is an exact differential form, then w = 0 is called an exact
differential equation. Its solution is g = C, where w = dg.
Recall the following useful theorem from MATB42:
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Theorem 2.4
If F and G are functions that are continuously differentiable throughout a

simply connected region, then F dx + G dy is exact if and only if 0G/0x =
OF/0y.

Proof. Proof is given in MATB42. O

Example 2.5. Consider (3x2y2 + xz) dx + (2x3y + y2) dy = 0. Let

W= (3m2y2 + x2) dxr + (2x3y + y2) dy

F G
Then note that
oG 62 OF
— =6zy = .
ox Y oy

By THEOREM 2.4, w = dg for some g. To find g, we know that

6—g = 32%y% + 22, (2.1a)
dg 3 2

— =2 . 2.1b
oy =~ YTy (2.1b)

Integrating Equation (2.1a) with respect to = gives us

3
x
g =23y + 3 + h(y). (2.2)

So differentiating that with respect to y gives us

Eq. (2.1b)
p) dh
g 3
e — =
By oYy + dy’
dh
20%y +y° =220y + ——,
dy
th =9
y
y?)
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for some arbitrary constant C. Therefore, Equation (2.2) becomes
3 3
3,2, T Y
=’y + - +5 +C
g Y 3 3
Note that according to our differential equation, we have
3 3

dl 2342 @;3 yj _ PSR : 32, Y Y _ v
y+3+3+C —Owhlchlmpllesxy+3+3+C—C

for some arbitrary constant C’. Letting D = C’ — C, which is still an arbitrary
constant, the solution is

3 3
W+ L b
3

o z
vt

Example 2.6. Solve (322 + 2zy?) dz + (2z%y) dy = 0, where y(2) = —3. *
Solution. We have
/ (3:172 + 2:1:y2) de = 2* + 2%y + C

for some arbitrary constant C. Since C is arbitrary, we equivalently have 23 +

2?y? = C. With the initial condition in mind, we have
84+4-9=C= C =44.

Therefore, 22 + 22y? = 44 and it follows that

+v44 — 23

Y= D)

x

But with the restriction that y(2) = —3, the only solution is

V44 — 3
Yy=—-———"3
x

on the domain (—\3/@, \3/@) \ {0}. O

Let w = Fdx + Gdy. Let y = s(z) be the solution of the DE w = 0, i.e.,
F+ Gs'(z) = 0. Let yo = s(xo) and let v be the piece of the graph of y = s(z)
from (z9,yo) to (x,y). Figure 2.1 shows this idea. Since y = s(z) is a solution

to w = 0, we must have w = 0 along . Therefore, f,yw = 0. This can be seen
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(20) ” y=e)
q
(z,)
Y1 A o
L
(xo,yo)
T

Figure 2.1: The graph of y = s(z) with 7 connecting (zo, yo) to (z,y).

by parameterizing v by v(z) = (x, s(x)), thereby giving us

/wz/ Fdx—|—Gs’(x)da:=/ 0dx = 0.
¥ xo Zo

This much holds for any w.
Now suppose that w is exact. Then the integral is independent of the path.
Therefore

0:/w:/ Fdx+Gdy+/ Fdx+Gdy
Yy 71 2
Yy xr
~ [ Goydy+ [ Play)ds
Yo zo
We can now solve Example 2.6 with this new method.

Solution (Alternate solution to Example 2.6). We simply have

4 T

0:/ 2.22ydy+/ (32 + 22y°) da
-3 2

— 4y2 _ 4(_3)2 4 333 4 m2y2 _ 23 _ 22y2

= 4y? — 36 4 2® + 22y — 8 — 4%,
finally giving us =3 + 22y? = 44, which agrees with our previous answer. O

Remark. Separable equations are actually a special case of exact equations, that

is,

fWy' =9g(x) = —g(x)de+ f(y)dy = 0 = %f(y) =0= 5 (—g(x)).
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So the equation is exact. O

2.3 Integrating Factors

Consider the equation w = 0. Even if w is not exact, there may be a function
I(x,y) such that Iw is exact. So w = 0 can be solved by multiplying both sides
by I. The function I is called an integrating factor for the equation w = 0.

Example 2.7. Solve y/x? +1+y'/z = 0. *

Solution. We have .
(%—Fl)dﬂc—i-fdyzo.
T T

()24 - s ]

So the equation is not exact. Multiplying by z? gives us

We see that

(y+x2)dx+mdy20,

£E3
d —)=0
(an+ %) =0,

3
T
—=C

a:y+3

for some arbitrary constant C. Solving for y finally gives us

3" ¢

c 2
x

There is, in general, no algorithm for finding integrating factors. But the
following may suggest where to look. It is important to be able to recognize

common exact forms:

zdy +ydr = d(zy),

vdy —ydz _ ry
x? =d x)’
xdx +ydy 4 In(z? + y?)
$2+y2 - 2 ’
rdy —ddx

22 Yy (ay dx + bx dy) = d(m"’yb) .
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Example 2.8. Solve (x2y2 + y) dz + (2x3y - x) dy = 0. *
Solution. Expanding, we have
22y dx + 223y dy + ydx — x dy = 0.
Here, a = 1 and b = 2. Thus, we wish to use
d(xyz) = y? dx + 2y dy.

This suggests dividing the original equation by z? which gives

ydr —xdy

v dx + 2xy dy + 5 0.
x

Therefore,
xy2+£=C, x # 0,
x

where C' is an arbitrary constant. Additionally, ¥ = 0 on the domain R is a

solution to the original equation. %
Example 2.9. Solve ydx — xdy — (x2 + y2) dx = 0. *
Solution. We have
ydr —xdy
—— —dx =0,
x? 4+ y?

unless z = 0 and y = 0. Now, it follows that

— tan 1(%) —xz=0C,
tan~! (%) =—-C—u,
tan~! (%) =D-z, (D=-0C)
% =tan(D — z),
y = xtan(D — x),

where C' is an arbitrary constant and the domain is
D—x;«é(Qn—i—l)g, x#(?n—kl)%
for any integer m. Also, since the derivation of the solution is based on the

assumption that x # 0, it is unclear whether or not 0 should be in the domain,

i.e., does y = xtan(D — x) satisfy the equation when = = 0?7 We have y — xy’ —
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(22 +y?) =0. If 2 = 0 and y = ztan(D — z), then y = 0 and the equation is
satisfied. Thus, 0 is in the domain. O

Proposition 2.10
Let w = dg. Then for any function P : R — R, P(g) is exact.

Proof. Let Q = [ P(t)dy. Then d(Q(g)) = P(g)dg = P(g9)w. O

To make use of Proposition 2.10, we can group together some terms of w
to get an expression you recognize as having an integrating factor and multiply
the equation by that. The equation will now look like dg + h = 0. If we can
find an integrating factor for h, it will not necessarily help, since multiplying by
it might mess up the part that is already exact. But if we can find one of the
form P(g), then it will work.

Example 2.11. Solve (:E — y:cQ) dy +ydx = 0. *
Solution. Expanding, we have

ydx + xdy —yz? dy = 0.
—_—

d(zy)

Therefore, we can multiply teh equation by any function of zy without disturb-
ing the exactness of its first two terms. Making the last term into a function of
y alone will make it exact. So we multiply by (xy)fZ, giving us
dr+xd 1 1
Y Cdy=0= —— —In(}y) = C,
z?y? y Ty
where C' is an arbitrary constant. Note that y = 0 on the domain R is also a

solution. o
Given
Mdz + N dy =0, (%)
we want to find I such that IM dz + IN dy is exact. If so, then

) )
g IN) = 5 (T0).

N—_——
IeN+IN: 1, M41M,
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If we can find any particular solution I(z,y) of the PDE
I,N + IN, = I,M + IM,, (%)

then we can use it as an integrating factor to find the general solution of (x).
Unfortunately, (xx) is usually even harder to solve than (x), but as we shall see,

there are times when it is easier.

Example 2.12. We could look for an I having only z’s and no y’s? For exam-

ple, consider I, = 0. Then

M, — N,

Iy
I,N + IN, = IM, implies — =
+ y 1mplies 7 N

This works if (M, — N,) /N happens to be a function of « alone. Then

[= el Mt ar

Similarly, we can also reverse the role of « and y. If (N, — M,) /M happens to

be a function of y alone, then

Ng—M
ef L dy

works. *

2.4 Linear First Order Equations
A first order linear equation (n = 1) looks like
y + P(z)y = Q).
An integrating factor can always be found by the following method. Consider

dy + P(x)ydz = Q(z) dx,
(P(x)y — Q(x))dx+ dy =0.
—_— —~—
M(z,y) N(z,y)
We use the DE for the integrating factor I(z,y). The equation IM dx + IN dy

is exact if
I,N+IN, =I,M + IM,.
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In our case,
I + 0 =1, (P(z)y — Q(z)) + IP(). (%)

We need only one solution, so we look for one of the form I(z), i.e., with I,, = 0.

Then (*) becomes
dl

— =IP(x).
dz (z)
This is separable. So

dI

5 = P(z)dx,

In(|1]) z/P(x)dx—i—C,
|I|:efP(ac)dac7 L >0
IzefP(:L’)dz'

We conclude that e/ P(#) 4% is an integrating factor for 3’ + P(z)y = Q(x).

Example 2.13. Solve y' — (1/x)y = 2, where z > 0. *

Solution. Here P(z) = —1/x. Then

I = efP(a:)dx _ eff%dz :efln(|a:|)da: _ - _ =

where x > 0. Our differential equation is

rdy —ydx e
— .

Multiplying by the integrating factor 1/x gives us

rdy —ydx

> = 22 dz.
Then

3
Yy T
Z="4¢,
T 3+

3

T

=—+4+C

Y 3+ T

on the domain (0, 00), where C' is an arbitrary constant (x > 0 is given). O






MTRODUCTION TO PROBABILITY AND STATISTICS

ﬁ.h._.n.,\&_.‘\_m.._‘...m \f 1 Nﬂ@oﬁg To _u_}u___w mrm *"D mm_«
PV = RT = 62.36T

= P(5) = 62.36(100)
P = 1247.2 mm mercury

That is, our model leads us to expect the pressure 10 be 1247.2 mm mercury. A
model such as the Perfect Gas Law is said o be “deterministic.” It is deterministic
i the sense that it allows us to determine an exact value for the variable of interest
under specified experimental conditions. The Perfect Gas Law does describe some
real gases at moderate temperaltires and pressures. Unfortunately, many real gases
cannot be described by this or any other deterministic model, especially at extreme
temperatures and pressures! Under these circumstances we must find another way
to predict the behavior of the gas with some degree of certainty. This can be done
with the aid of statistical methods.

What do we mean by statistical methods? These are methods by which decisions
are made based on the analysis of data gathered in carefully designed experiments.
Since experiments cannot be designed to account for every conceivable contingency,
there is always some uncertainty in experimental science. Statistical methods are
designed to allow us to assess the degree of uncertainty present in our results. These
methods can be classed roughly into three categories: deseriptive statistics, inferential
statistics, and model building. By descriptive statistics we mean those techniques,
both analytic and graphical, that allow us o describe or picture a data set, Inferential
statistics concems methods by which conclusions can be drawn about a large group of
objects, based on observing only a portion of the objects in the larger group.

This idea leads to the following definition: .

Definition: The overall group of objects about which conclusions are to be
drawn is called the pepulation. A subset or portion of the population that is
actually obtained and that is used to draw conclusions about the population
is called a samiple.

Model building entails the development of prediction equations from experi-
mental data. These equations are called statistical models; they are models that al-
low us to predict the behavior of 2 complex system and to assess our probability of
error, These categories are not mutvally exclusive. That is, methods developed to
solve problems in one area often find application in another. We shall be concerned
with all three areas in his text.

A statistician or user of statistics is always working in two worlds. The ideal
world is at the population level and is thegretical in nature. It is the world that we
would like to see. The world of reality is the sample world. This is the fevel at which
we really operate. We hope that the characteristics of our sample reflect well the
characteristics of the population. That is, we treat our sample as a microcosm that
mirrors the population. This idea is illustrated in Fig. 1.1,

The mathematics on which statistical methods rest is called probability theory.
For this reason, we begin the stody of statistics by considering the basic concepts of

probability.

=
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Population

(ideal bat theoeetical and
unpbservable world whose
characteristics are to be
described)

-+ Sample
(real and hands-on world whose
characteristics can be observed)

FIGURE 1.1

The sample is viewed s a miniature i
: population. We hope that th i i
study over the sample gives an accurate picture of its _unmg.m_un Eﬂ”ﬂ“ﬂ%ﬁﬂ_m varisbie undes

1.1 INTERPRETING PROBABILITIES

¥ i i

m”ﬂ_wwmﬂnh.: mwmo u_._um_“_ﬁu gn...q anything about probability?" most people are quick to

g mwm:...h.ﬁﬁ_ mn ogwwcwnﬁm" is not the case at all. The ability to interpret probabilities

e ure. One _..mmH.,..w the phrases “the probability of rain today is
ere is a 0% chance of rain today.” It is assumed that the general public

can interpret these values correctly, The i i iliti
et utne ¥. 1he interpretation of probabilities is summa-

Interpretation of Probabilities :

1. H%Mwmm.ww MH Mwnﬁﬂwmm_wmﬁimma Oand 1, inclusive, that reftect the chances of
2. “MHWM_HHHM “HHM w __“.Muhnhﬂ that the event is extremely likely to occur. They
oo Dot that (he e ill eccur, only that the event is considered to be a
KX MMD___UM_“.M“MMM %..MMEH. MMMHMHMHWH m”EH the event is not very likely to oceur. They
Jonot will fail to oceur, only that the event is considered to

4. Probabilities near 142 indicate that the event is Just as likely to occur as not,

5. Si umber
Hﬁowwngawmmwmw P ot Becaseh o petoestages betwera and
» Protani en expressed as percentages. This i . )
mon in wiitings of a nontechnical Fﬂ:ﬁ.ﬁn Agr Thisis pioteslady corm:

.m._.,mmmw__uhwm mﬁ__ﬁ&nm arg ma_@m:mnm for interpreting probabilities once they are
ut they do net indicate how to assign probabilities to events. Three

B S
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methods are widely used: the personal approach, the relative ‘_mﬁzﬁ.ﬁ‘. approach,
and the classical approach. These methods are illustrated in the following examples.

Example 1.1.1. An oil spill hes occurred. An environmental scientist asks, “What is
the probability that this spill can be contained before it causes widespread Eﬂmmn o
nearby beaches?” Many factors come into play, among them the Lype of mv._r.:.ﬁ
ameunt of oil spilled, the wind and water conditions during the clean-up operation,
and the nearness of the beaches. These factors make this spill unique. The scientist is
called upon to make & value judgment, that is, to assign a probability to the event
based on informed personal cpinion.

The main advantage of the personal approach is that it is always applicable.
Anyone can have a personal opinion about anything. Its main disadvantage is, of
course, that its accuracy depends on the accuracy of the information available and

-the ability of the scientist to assess that information comrectly, -

Example 1.1.2. An electrical engineer is studying the peak demand at a power plant.
It is observed that on BO of the 100 days randomly seiected for study from past
records, the peak demand cccurred between 6 and 7 p.m. It is natural to assume that
the probability of this occurring on another day is at least approximately

This figere is not simply a personal opinion. It is a fipure based on repeated experi-
mentation and observation, It is a relative frequency.

The relative frequency approach can be used whenever the experiment can be

repeated many times and the results observed. In such cases, the probability of the -

aecurrence of event A, denoted by P{A), is approximated as follows:

Relative Frequency Approximation

PlA] = f _ number of times event A occurred
L #  number of times experiment was run

The disadvantage in this approach is that the experiment cannot be a one-shot situ-

ation: it must be repeatable. Remember that any probability obtained this way is an

approximation. It is a value based on n trials. Further testing might result in a dif-

ferent approximate value. However, as the number of trials increases, the changes

in the approximate values cbtained tend to become slight. Thus for a large number

of trials, the approximate probability obtained by using the relative frequency ap-
« proach is usually quite accurate.

Example 1.1.3. What is the probability that a child born o a couple heterozygous
for eye color (each with genes for both brown and blue eyes) will be brown-eyed?
To answer Lhis question, we note that since the child receives one gene from each par-
ent, the possibilities for the child are (brown, blue), {blue, brown), {blue, blue) and

=
=
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(brown, brown), where the first member of each pair represents the gene received
from the father, Since cach parent is just as likely to contribute a gene for brown eyes
as for blue eyes, all four possibilities are equally likely. Since the gene for brown eyes
is dominant, three of the four possibilities lead to a brown-eyed child. Hence the prob-
ability that the child will be brown-eyed is 3/4 = 75,

The above probability is not a personal opinion, nor is it based on repeated ex-
perimentation. In fact, we found this probability by the clessical method. This
method can be used orly when it is reasonable to assume that the possible outcomes
of the experiment are equally likely. In this case, the probability of the occurrence
of event A is given by the following classical formula:

Classical Formula
niA) _ number of ways A can occur
#{S) number of ways the experiment can proceed

P[A] =

One advantage to this method is that it does not require experimentation. Further-
more, if the outcomes are truly equally likely, then the probability assigned to event
A is not an approximation. It is an accurate description of the frequency with which
event A will occur,

1.2 SAMPLE SPACES AND EVENTS

To determine what is “probable” in an experiment, we first must determine what is
“possible.” That is, the first step in analyzing most experiments is to make a list of
possibilities for the experiment. Such a list is called a sample space. We define this
term as follows:

Definition 1.2.1 (Sample space and sample point). A sample space for an
experiment is a set § with the property that each physical outcome of the
experiment corresponds to exactly one element of 5. An element of § is
called 2 sample point.

When the number of possibilities is small, an appropriate sample space usu-
ally can be found without difficulty. For instance, we have seen that when a couple

heterozygous for eye color parents a child, the possible genotypes for the child are
given by

8§ = [(brown, blue), (blue, brown), (blue, blue), (brown, brown}}
As the number of possibilities becomes larger, it is helpful to have a system for de-

veloping a sample space. One such system is the tree diagram. The next example il-
lustrates the idea,

4~
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FIGURE 1.2
Constructing a tree diagram,

Example 1.2.1. During a space shot the primary computer system is backed up by
two secondary systems. They operate independently of one another in that the failure
of one has no effect on any of the others. We are interested in the readiness n_.m these
three systems at launch time. What is an appropriate sample space for .E.m experiment?

Since we are primarily concerned with whether each system is operable at
launch, we need anly find a sample space that gives that information. To generate the
sample space, we use a free. The primary system is either operable (yes) or not opera-
ble (no) at the time of launch. This is indicated in the tree diagram o:mw. 1.20a),
where yes = v and no = n. Likewise the first backup system either is or is not opera-
ble. This is shown in Fig, 1.2(k). Finally, the second backup system either is or is ot
operable. The tree is completed as shown in Fig, 1.2{(c). & sample space .w m.n;. the ex-
periment can be read from the tree by following each of the eight distinct paths
through the tres. Thus

5= [y, yen, Yy, ¥, Yy, 1w, BTy, m )

Once a suitable sample space has been found, elementary set theory can be

used to describe physical occurrences associated with the experiment. This is done

el L

by considering what are called events in the mathematical sense.

Definition 1.2.2 (Event). Any subset A of a sample space is called an event.
The empty set (@ is called the impossible event; the subset 5 is called the
certain event,

Example 1.2.2. Consider a space shot in which a primary computer system is backed

up by two secondary systems. The sample space for this experiment is

5= [yyy, yym, ymy, yre, nyy, wym, Ay, x:.__;

where, for example, yry denotes the fact that the primary mw.q_._nﬂ and second backup
are operable at faunch, whereas the first backup is inoperable (see Example 1.2.1). Let

5~
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L]

A: primary system is operable
B: first backup is operable
C: second backup is operable

The mathematical event corresponding to each of these physical events is found by
listing the sample points that represent the cecurrence of the event. Thus we write

A = {yyy, yym, vy, yrn)
B = {yyy, ypn, nyy, myn)
C = {yyy, yny, nyy, may)

Other events can be described using these events as building blocks. For example, the
event that “the primary system or the first backup is operable™ is given by the set A U &,
the union of set A with set B. Recall from elementary mathematics that the unicn of A
with B consists of all sample points that are in set A or set B or are in both. Thus

primary or first

A =
VB backup is operabie

= {yyw. yym, yny, yan, nyy, nyn|
Note that the word “or™ will denote set union. The event that *“the primary system and -
the first backup is operable™ is given by the set 4 M 8, the intersection of set A with
set B. The intersection of two sets consists of all sample points that are in both sets.
That is, it is the set of points that they have in common, Here

A M B = primary and first backup operable = [y, vyn}

Note that the word “and” will denote the set intersection. The event that “the primary
system or the first backup is operable but the second backup is inoperable” is given by
(A M By N C', where C" denotes the complement of set C. The complement of a set
consists of the sample points in the sample space that are not in the given ser. Thus

(AUB) A C _ primary or first backup operable

bur second backup inoperable byym, s, niyn)

MNote that the word “but™ is also translated as a set intersection; the word “not” trans-
lates as a set complement.

Let us pause briefly to consider a basic difference between the sample space

8§, = {(brown, blue), {blue, brown), (blue, blue), (brown, brown)

of Example 1.1.3 and

82 = {yyy. yyn, yny, yan, nyy, nyn, nny, nnn
of Example 1.2.1. Since each parent is just as likely to contribute a gene for brown
eyes as for blue eyes, the sample points of 5, are equally likely, This allows us to
use the classical method to find the probability that a child born to a couple het-

erozygous for eye color will be brown-eyed. If we denote this event by A, then we
can conclude that

P[A] = P[{(brown, blue), (blue, brown), (brown, brown) }]
_ni4) _3
n(§) 4

~ -
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FIGURE 1.3
Sampling a production line for defective parts.

However, it is not correct to assume that the sample points of 5, are equally likely.
This would be true if and only if each of the three computer systems is just as likely
o fail as to be operable at launch time, Our technology is much better than that! The

primary question to be answered is “WWhat is the probability that at least one system
will be operable at the time of the launch?” That is, what is ’

PUyvy. yyn, yny, ynn, nyy, nyn, nny}]?

As will be shown later, this question can be answered. However, since the sample
points are not equaliy Iikely, it cannot be answered using the classical method.

Not all trees are symmetric as is that pictured in Fig. 1.2. In some settings,
paths end at different stages of the game. Example 1.2.3 illustrates an experiment of

this sort.

Example 1.2.3. Consider a production process that is known to produce defective
parts at the rate of one per hundred. The process is monitored by testing randomly se-
lected parts during the production process. Seppose that as spon as a defective part is
found, the process will be stopped and all machine settings will be checked. We are in-
terested in studying the number of parts that are tested in order to obtain the first de-
fective part. In the tree of Fig. 1.3, ¢ represents that the sampling continues and s
represents that production is stopped. Notice that as soon 25 a defective item is found,
the process ends and the path also ends. For this reason, some paths are much shorer
than others. Notice also that theoretically this tree continues indefinitely. The sample
space generated by the tree is

8 = [5. s, ccs, €CCS, £OCES, - - .

Since defective parts occur with probability .01, it should be evident that the paths of
this tree are not equally likely. )

7-
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(1

Mutually Exclusive Events

ﬂnnm.m_o:_m_t‘ interest centers on two or more events that cannot occur at the same
time. That is, the occurrence of one event precludes the occurrence of the other.
Such events are said to be mutuwally exclusive. .

Example 1.2.4, Consider the sample space

5= [ ¥y, yym, yny, yan, nyy, oy, sy, nen)
of Example 1.2.1. The events
Aj: primary system operable = [yyw, yyn, yny, ynn}
Ay primary system inoperable = {nyy, nyn, nay, nnnj

are mutually exclusive. It is impossible for the primary u.._.mﬁﬂl-....__ be both aperable and

inoperable at the same time. Mathematically, A, and A, h ints i
s o = | v, Ay 1 have no sample points in com-

mﬂgﬁ—ﬂ ”_..M\ .L. w_.—m.mﬂMHm E—ﬁ _H-ﬂgﬂ_ﬂ-mﬂ.—ﬁm— n_..mﬂv iti 3
. v [1pENLe)
1 i ﬂvm. E._.m term H—..—HENU_ _u_- €X:

Definition H.m.u” (Mutually exclusive events). Two events A, and A, are
mutually exclusive if and only if 4, N A; = @ Events 4,, 4, Ag, .. .mmH_m
mutually exclusive if and only if A; U A, = @ for i # j. o

1.3 PERMUTATIONS AND COMBINATIONS

As indicated in Sec. m.._ » there are several ways to determine the probability of an
event. When the physical description of the experiment leads us to believe that the
possible outcomes are equally likely, then we can compute the probability of the oc-

currence of an event using the classical method i ili
o z od. In this case the probability of an

niA)

P[A] ME“.S

Thus to compute a probability using the classical approach, you must be able to
M_u_:m.; two things: aﬁ.ﬂ. :.a. number of ways in which event 4 can oceur, and n(S)
Bﬂgﬂmﬁvﬂ of Emu_a in which the experiment can proceed. As the mamnnnﬁ.._.vml.
s more compleX, lists and trees become cumbersome i
s gt e ; . Alternative methods for
Two types of counting problems are commo: i
n. The first invol /
and the second, combinations. These terms are defined as wozas__mw, s permuations

- 8-
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te)
)

What is the name given to an event such as D7
If at any given time each switch is just as likely to be on as off, what is the
probability that no switch is on?

Two items are randomly selected one at a time from an assembly line and
classed as to whether they are of superior quality (+), average quality (0), or
inferior quality {—).

(a)
(b
()

Construct a tree for this two-stage experiment.

List the elements of the sample space generated by the tree.
List the sample points that constitute the events

A: the first item selected is of inferior guality

B: the quality of each of the items is the same

. C: the guality of the first item exceeds that of the second

(d)
(e)

Are the events A and B mutually exclusive? Are the events A and C mutu-
ally exclusive? ‘

Give a brief verbal description of these events:

A'NB A'NE

ANB ANCNBEA

It is known that 90% of the items produced are of average quality, 1% are
of superior quality, and the rest are of inferior quality. It is argued that
since the classification experiment can proceed in nine ways with only one
of these resulting in two items of average quality, the probability of ob-
taining two such items is 149, Criticize this argument.

An experiment consists of selecting a digit from among the digits 0 to 9 in such
a way that each digit bas the same chance of being selected as any other. We
name the digit selected A. These lines of code are then executed:

[FA<2ZTHEN 8 = 12; ELSER = 1IT;
IFB=I12THENC=A - LELSEC=10;

(a)

B)
{c)
(d)
ie)
)
(g}

Construct 2 tree to illustrate the ways in which values can be assigned to
the variables 4, B, and C. '

Find the sample space generated by the tree.

Are the 10 possible outcomes for this experiment equally likely?

Find the probability that A is an even number.

Find the probability that C is negative.

Find the probability that C = Q.

Find the probability that C = 1.

Consider Exercise 16. If experimental runs are to be done in random order, how
many different sequences are possible? (Set up only!) In experiments of this
sort, runs are not usually done randomly. Rather, they are carefully designed so
that the researcher has control of the order of experimentation. Can you think
of some practical reasons for why this is necessary?

A e S TR

CHAPTER

SOME
PROBABILITY
LAWS

M: Chap. 1 we considered how to interpret probabilities. In this chapter we con-
sider some laws that govern their behavior. The laws that we shall present are
those that will have a direct application to problem solving. These laws will be
stated and illustrated numerically. Their derivations are not hard, and most of them
are left as exercises,

2.1 AXIOMS OF PROBABILITY

ﬂcﬂ have probably seen the development of a mathematical system in your study of
m.:m_m school geometry. In developing any mathematical systern, one begins by stat-
ing a few basic definitions and axioms that underlie the system. The definitions are
the technical terms of the system; axioms are statements that are assumed to be true
and therefore require no proof. Usually one starts with as few axioms as possible
and then uses these axioms and the technical definitions to develop whatever theo-
rems follow logically. Some technical terms such as sample space, sample point,
event, and mutnally exclusive events have already been introduced, One can de-
fm_.nm a useful system of theorems pertaining to probability with the aid of these de-
finitions and three axioms, called the axioms of probability.

Axioms of probability.
L. Let § denote a sample space for an experiment:

P51 =1

2, Pl[Al=0for every event A.
3 LetA;, Ay A,, ... bea finite or an infinite collection of mutually exclusive
events. Then P[A, U A; U A3 - - - 1= P[A] + P[A,] + P4,] + - -

~le -
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Axiom 1 states a fact that most people regard as obvious; namely, the proba-
bility assigned to the certain event § is 1. Axiom 2 ensures that probabilities can
never be negative. Axiom 3 guarantees that when one deals with mutually exclusive
events, the probability that at least one of the events will occur can be found by
adding the individual probabilities. An important consequence of this axiom is that
it gives us the ability to find the probability of an event when the sample points in
the same space for the experiment are not equally likely, Example 2.1.1 illustrates
this point.

Example 2.1,1. The distribution of blood types in the United States is roughly 41% type

A, 9% type B, 4% type AB, and 46% type O. An individual is brought into an emergency

room and is to be blood-typed. What is the probability that the type will be A, B, or AB?
The sample space for this experiment is

§=|A B, AB, Q]

The sample points are not equally likely, so the classical approach to probability is not
applicable. That is, we cannot say that since there are four biood types and three of
them are A, B, or AB the probability of obtaining one of these types is ¥i. Let A, Aa,
and A, denote the events that the paticnt has type A, B, and AB blood, respectively.
The events A,, A;, and A, are mutually exclusive because one cannot have two differ-
ent bloed types at the same time. We are looking for P4, U A, U A, By axiom 3,

PlA; U Ay U 5] = PIA] + PlAg] + PlAs]
=41+ 09 + .04
=54
An immediate consequence of these axioms is the fact that the probability

assigned to the impossible event is 0, as you should suspect. The derivation of this
result 1s outlined in Exercise 12.

Theorem 2.1.1. P[&} =

Another consequence of the axioms is that the probability that an event will
net occur is equal to 1 minus the ﬁacm_umm:_ that it will occur. For example, if the
probability of a successful space shuttle mission is .99, then the probability that it
will not be successful is 1 — .99 = .01, This idea is stated in Theorem 2.1.2. Tts deri-
vation is outlined in Exercise 12.

Theorem 2.1.2. P[A1=1— PlAL

The General Addition Rule

We have seen how to handle questions concerning the probability of one or another
event occurring if those events are mutually exclusive. We now develop a more
general rule that will allow us to find the probability that at least one of two events

SOME PROBABILITY LAWS

FIGURE 2.1
A THA, = 3

will oceur when the events are not necessarily mutually exclusive. This rule is sug-
.Wmm._ma by considering the-Venn diagram of Fig. 2.1. Assume that the shaded region
in the diagram, A, M A;. is not empty so that 4| and A, are not mutually exclusive.
If we claim that

PlA; U Ay = PlA|] + P[4;]

we have committed an obvious error. Since 4| M A, is contained in 4, and 4, M A,
is contained in A5, P[4, M As] has been included twice in our calculation. To correct
this error, we subtract P[A; 7 A;] from the right-hand side of the equation to obtain
the general addition rule:

General addition rule
PlA, U A;] = P[A,] + P[A4] — P[A, M 4]

This rule can be derived from the axioms of probability and the theorems that we
have already developed. Its proof is outlined in Exercise [2. The key word that sig-
nals its use is the word “or.”

Example 2.1.2. Components of a propulsion system can be arranged in secies. How-
ever, this armangement has a serious drawback; if one component fails, the system fails.
This is obviously a risky arrangement for space travel! Consider a system in which the
main engine has a backup. These engines are designed to operate independently in that
the sueceess or failure of one has no effect on the cther. The engine component is opera-
ble :.o:a or the other of these two engines is operable. Such a system is said to have the
engine component in parallel. Assume that each engine is 90% relizble. That is. each
functions correctly with probability .9. As we shall show later, it is then reasonable 1o as-
sume that both engines operate correctly with probability 81, Find the probability that
the engine component is operable. Let A the main engine is operable, and A, the
backup engine is operable. We are given that P{4,] = P[A;] = S and that P[4, N 4] =
81. We want to find P[4, U Aa]. By the addition rule i

Pl U A = PIA] + PIAL) — PlA, N A,
=9+ 49— 8l =99

The addition rule links the operations of union and intersection. If PlA; N A,
is known, the addition rule can be used to find P4, U A,] Similarly, if P[4, U A1)

-
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FIGURE 2.2

() PLA, M Aa] = .10; (5] P[4, NAL] = 225 {c) PlA§ N Az = 06; () PEA; N A3l = 62,

is known, we can use the rule to find P[4, N A,]. Venn diagrams are helpful when
using this rule.

Example 2.1.3. A chemist enalyzes seawater samples for two heavy metals: lead and
mercury. Past experience indicates that 38% of the samples taken from near the mouth
of a river on which numerons industrial plants are located contain toxic levels of lead
or mercury: 32% contain toxic levels of lead and 16% contain toxic levels of mercury.
“What is the probability that a randemly selected sample will contain toxic levels of
lead only? Let A, denote the event that the sample contains toxic levels of lead, and let
A, denote thar the sample contains toxic levels of mercury, We are pgiven that
PLA|]l = 32, P[4;] = .16, and P[4, U A;] = .38. By the addition rule

PlA; U A;] = PIA] + PlAL] — P4, N 4]
or 38 =32+ .16 — P[4, N4,

Solving this equation, we obtain P[4, M A;] = .10. This is indicated in Fig. 2.2{a).
Since P{A,] = .32 and A, M A; is contained in A, the probability associated with the
shaded region in Fig. 2.2(b) is .22, Similarly, since A, M A4; is contained in A,, a prob-
ability of .06 is associated with the shaded region of Fig. 2.2(c). Finally, since
P[] = 1, the probability assigned to the shaded area in Fig. 2.2(d) is .62. We are asked
to find the probability that the sample will contain only lead. That is, we want to find
P[A, M A5]. This probability, .22, can be read from Fig. 2.2(b).

Motice that if the percentages reported in problems such as these are based on

population data, then the probabilities calculated by use of the general addition rule
are exact. However, if the percentages reported are based on samples drawn from a

~ 1%
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|_— & {all pregnant women)

FIGURE 2.3
Partition of 5.

larger population, then the probabilities computed are relative frequency probabili-
ties. They are approximations to the true probability of the occurrence of the event
in question. Since most percentages reported in the literature are based on samples,
most of them are properly viewed as being relative frequency prababilities. We use
the word “probability" with the understanding that the probabilities given and com-
puted by using the theorems in this chapter are, in most cases, only approximations.

2.2 CONDITIONAL PROBABILITY

In this section we introduce the notion of conditional probability. The name itself is
indicative of what is to be done. We wish to determine the probability that some
event Ay will occur, “conditional on” the assumption that some other event A, has
occurred. The key words to look for in identifying a conditional question are “if™
and “given that.” We use the notation P[A, A, ] to denote the conditional probability
of event A, occurring given that event A| has occurred. A simple example will sug-
gest the way to define this probability,

Example 2.2.1. In trying to determine the sex of a child a pregnancy test called
“starch gel electrophoresis™ is used. This test may reveal the presence of a protein
zone called the pregnancy zone. This zone is present in 43% of all pregnant women.
Furthermore, it is known that 51% of all children bom are male. Seventeen percent of
all children born are fale and the pregnancy zone is present. The Venn diagram for
these data is shown in Fig. 2.3. Let 4, denote the event that the pregnancy zone is
present, and A, that the child is male. We know that, for a randomly selected pregnant
woman, P[A,] = .43, P[A,] = 51, P[A; N 4,1 = 17, If asked, “What is the probabil-
ity that the child is male?” the answer is .51. Suppose we are given the information
that the pregnancy zone is present and asked, “What is the probability that the child is
male?" We now have information that was not available originally, What effect, if any,
does this new information have on our belief that the child is maie? That is, what is
PlA;14,]17 Once we know that the pregnancy zone is present, our sample space no
longer includes all pregnant women; it consists only of the 43% with this characteris-
tic. Of these, .17/.43 = 395 have male children. Logic implies that

Plmalelzone present] = Pl4,14,] = 395

H&&E of the information that the pregnancy zone is present reduces from .51 to 395
the probability that the child is male.

~1¢-
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To formalize the reasoning used in the previous example, note that P[44l A,]
is found by forming a ratio whose denominator is P[A,], the probability that the
given event will occur. The numerator is P[A, M A4], the probability that both the
given event and the event in question will occur. That is, we define the conditional

probability as follows:

Definition 2.2.1 (Conditional probability). Let A, and A; be events such
that P[4,] # 0. The conditional probability of A, given A, denoted by
P[AslA,], is defined by
P{A; N A;]

Pla,]

PlA;l4,] =

Sometimes recaipt of the information that event A, has occurred has no effect
on the probability assigned to event Ay, That is,

PA;lA] = PlAq]

When this happens, 4, and A, have a special relationship to one another. The nature
of this relationship will be explored in the next section. In the meantime don't be
surprised if you find that a particular conditional probability does not differ from the
original probability assigned to the event!

2.3 INDEPENDENCE AND THE
MULTIPLICATION RULE

We have used the word “independent” informally in several previous examples.
Webster's dictionary defines independent objects as objects acting “irrespective of
each other.” Thus two events are independent if one may cccur irrespective of the
gther, That is, the occurrence Or NLONOCCUTTENCE of one does not alter the likelihood
of occurrence or nonoceurrence of the other. In some cases it is reasonable to as-
sume that two events are independent from the physical description of the events
themselves. For example, suppose that a couple heterozygous for eye color has two
children. Since the eye color of a child is affected only by the genetic makeup of the
parents and not by the eye color of the other child, it is reasonable to assurme that the
events 4,: the first child has brown eyes, and A,: the second child has brown eyes.
are independent. However, in most instances the issue is not clear-cut. In these cases
we need a mathematical definition of the term to determine without a doubt whether
two events are, in fact, independent.

To see how to characterize independence, let us consider a simple experiment
that consists of rolling a single fair die once and then tossing & fair coin once. Let
the first member of each ordered pair denote the number appearing on the die and
the second, the face showing on the coin (H = heads, T = tails). A sample space for

this experiment is

=B

= AV R s L B
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= (L H), (1, T2 H 2106 H),3,T),
(4. H), (4, 71 (5, H), (5, T), (6, #), (6, T}

Since the die and the coin are considered to be fair, these 2
likely. Consider these events: IRy
A: the die shows one or two
B: the coin shows heads
A M B: the die shows one or two and the coin shows heads
Since w:o&:w the .R.m:: of the die roll gives us no additional information on how
the 85._&.: land, it is reasonable to assume that the events A and B are indepen-
dent. Using classical probability, we easily see that
P[A] = PL{{1, H), (1, ), (2, H), (2, T}]] = 412 = 1)3
PLB] = PL{{L, H}, (2, H), (3, H) {4, H), (3, H}, (6. H)]]
=612=12
PlA N B] = PI{(1, H), (2, B)]] = 22 = 1/6
More importantly, it is easy to see that for these physically independent events
P[A N B] = P[A] - P[B]

Consider now an nxmmln_n:n that consists of drawing two coins in succession
from a box containing a nickel (M), a dime (D), and a quarter (). The first coin is
not replaced before the second is drawn. A sample space for this experiment is

§ = [(N, D}, (N, @), (D, N), (D 20, (2, M)L(Q, DY)
These outcomes are equally likely. Consider these events:
A: the first coin is a dime
B: the second coin is a dime

Since we do not replace the first coin before the second draw, it is evident that if
m.._nnr_.ﬂ occurs, _n:n:ﬁ.m. cannot occur. That is, knowledze that event A has occurred
_.“_nﬂ give us Enn_:.:m:n: on whether or not event B will occur! These events are not
independent. Using classical probability, we easily see that

P[A] = PL{(D, N), (D, H}] = 246

P[B] = P[{(N, D), (@, D)}] = 2/6

PIANB=PE =10

More importantly, it is easy to see that for these events that are not independent

PIA N B] # PIA}P(B]

: ..HM_M__WEM ._.E:n noticed that when A and B are clearly independent, P[A M B] =
; ._n.ﬁgmw_ mmhw.muﬂ?wwﬁnawﬁq dependent, P[A M B] # P[A]P[5]. This is not coin-

‘Licental. natural to use this mathematical characterizati i -

.. P — ization as our technical defi
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Definition 2.3.1 (Independent events). Events A; and A; are independent if
and only if
P[4, N Ayl = PIA]PIA;]

This definition is useful in two ways. If exact probabilities are available, then
it serves as a test for independence. However, since most probabilities encountered
in scientific studies are approximations, it is most useful as a way to find the prob-
ability that two events will oceur when the events are clearly independent. Example
2.3.1 illustrates its use as a test for independence.

mmmm:ﬂ_m 2.3.1. Consider the experiment of drawing a card from a well-shuffled deck
of 32 cards. Let

A,z a spade is drawn
As: an honor (10, 1, Q, K, A) is drawn

Classical probability is used to see that P[4} = 13/52 and P[A,] = 20/52. The proba-
bility that & spade and an honor, P[4, M A;], is drawn is 5/52. Notice that these prob-
abilities are exact. They are not approximations based on observations of card draws.
Are the events A; and A, independent? To decide, note that

PLAPIAL] = (13/52)(20V52) = 5/52

and P[4, N 4;] = 5152

Since P[4, M 4] = P{4,1P[4,], we can conclude that these evenis are independent.

In Chap. 15 a test for independence will be developed that can be used when
working with real data rather than with classical probabilities. Its derivation is based

on the definition of independent events just discussed. .
Example 2.3.2 illustrates the use of Definition 2.3.1 in finding the/probability
that two events will occur simultaneously when the events are clearly independent.

Exampte 2.3.2. In Example 1.1.3. we found that the probability that a couple het-
erozygous for eye color will parent 2 brown-eyed child is 3/4 for each child. Genetic
studies indicate that the eye color of one child is independent of that of the other. Thus.
if the couple has two children, then the probability that both will be brown-eyed is

| |-l

second
brown

first
brown

first second

nd
brown £ brown

"
R

gl *1v

Definition 2.3.1 defines independence for any events A, and A,. If at least. 2
one of the events A, or A, occurs with nongero probability, then an appealing
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characterization of independence can be obtained. To see how this is d
en . one, assume
that P{A,] # 0. By Definition 2.3.1, A4, and A, are independent if and only if

PIA; M A5] = PIA|]P[A;]
Dividing by P[A,], we can conclude that A, and A4, are independent if and only if

PIA A _ o1
PrA . = PLAIA] =PlAy)
A similar argument holds if P[4,] # 0. We have thus derived the result given in

Theorem 2.3.1.

Y

t
4

”H.___me_qm:. 2.3.1. Let A, and A, be events such that at least one of P[A] or P[4,]
is nonzero. A, and A, are independent if and only if

PlA;1A] = P[4,
Flal4;] = Pi4]

iFPIA =0  and

ifPfAy] =0

.m,mn_nn most events _“.um real interest do occur with nonzero probability, Theorem
2.3.1 is used as a test for independence, To understand the logic behind the theorem
let us reconsider the data of Example 2.3.1. ,

Example 23,3, Consider the events 4,, a spade is drawn, and 4., an honor is drawn.
We know that P[A,] = 13/52, P[4;] = 20/52, and P[4, N 4,] = 5/52. Suppose we are
mmw_um. “What is the probability that a randomly selected card is an honor?" Cur answer
is mEmm...mEuEmn we are now told that the card is a spade and are asked, “What is the
probability that the card is an honor?” That is, “What is PLAIA T ITA, .mn_.._ A, are in-
_.mmwm-ﬁnﬂ_ the new information is irrelevant and our znswer should not num_bm.n. That
is, _u_hu_h.u = P[A,]. Otherwise our answer should change, and PlAa1A ] # P[A,) In
this setting, is P{Aal4;] = P[4,]? To answer this question, note that )

MT__.— .huu 3/52
PlA A ] =200 "Rl _
_” u_ _.m pﬁ_n.._#_”_ _.m..___..mm /13

and PLA,] = 20/52 = 5/13

m.E_".H these probabilities are the same, we conclude via Theorem 2.3.1 that 4, and A,
are independent, _ )

) ﬁ_nﬁm.ﬂ.onm:w we must deal with more than two events. Again, the question

i ﬂmnm. u_.___a,_na are E&n events considered independent?” Definition 2.3.2 answers
s question by extending our previous definition to include more than two events.

Definition 2.3.2. Let C = [Agi=1,2,...,n}] be a finite collection of
@E.M. These events are independent if and only if, given any subcollection
L) gy, -

-« Ay of elements of C,
Ay AN -+ N Al = PIAGIPIA ] - » - Pldgy]

- 15—
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Although this definition can be used to test a collection of events for indepen-
dence, its main purpese is to provide a way o find the probability that a series of
events that are assumed to be independent will occur. To illustrate, we reconsider a
problem encountered in Chap. 1 (Example 1.2.7}.

Example 2.3.4. During a space shot, the primary computer system is backed up by
two secondary systems. They operate independently of one another, and each is 90%
reliable, What is the probability that all three systems will be operable al the time of
the launch? Let

A, the main system is operable

A,: the first backup is operable

A,: the second backup is operable
We are given that P[4,] = Pld,] = Pld4] = 8 We want P[4, M A 0 A;l. Since these
events are assumed 1o be independent,

P4, 014, N Ay = PIAIPIA] P14

LOIIN2)
129

I

Definition 2.3.2 must be used with care. In particular, one must be certain that
it is reasonable to assume that events are independent before it is applied to compute
the probability that a series of events will occur. The danger of erroneously assumed
independence is iliustrated in Example 2.3.5.

Example 2.3.5. An Atomic Energy Commission Study, WASH 1400, reported the
probability of a nuclear accident such as that which occurred at Three Mile Island in
March 1978 to be one in 10 million. Yet the accident did occur. According to Mark
Stephens, “The methodology of WASH 1400 made use of event trees—sequences of ac-
tions that would be necessary for accidents to take place. These event trees did not as-
sume any interrelation between events—that they might be caused by the same error in
judgment or as part of the same mistaken action, The statisticians who assigned proba-
bilities in the writing of WASH 1400 said, for example, that there was a one-in-a-
thousand risk of one of the auxiliary feed-water contral valves—the twelves—being
closed. And if there is a one-in-a-thousand chance of one valve being closed, the chances
of both valves being closed is ane-thousandth of that, or a million 1o one. But both of the
twelves were closed by the same man on March 26—and one had never been closed
without the ather.” The eveats A,: the first valve is closed, and Ay the second valve is
closed were not independent. However, they were treated as such when calculating the

probability of an accident. This, among other things, led to an underestimate of the ac-

cident potential {from Three Mile Island by Mark Stephens, Random Houose, 1980,

The Multiplication Rule

There is one further point to be made before we conclude this section. We can find

PLA; N A,] if the events are assumed to be independent. Furthermore, if the proper

information is given, the general addition rule can be used to find this probability. -

~19 -
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Is there WE_ other way to find the probability of the simultaneous cccurrence of two

events if the events are not independent? The answer is yes, and the method i

to derive. We know that = B

PLA, N A,
Pl

Rmmw.m_nmm of whether the events are independent. Multiplying each side of this

equation by P[4,], we obtain the following formula, called the mulriplication rule:

PLAIA ] = PlAT#0

Multiplication rule ‘ |
PlA N A;] = PAIAIPIAY

The use of this rule is illustrated in Example 2.3.6.

Example 2.3.6. Recent research indicates that approximately 495 of all infections in-
Ju?.m m:..whEEn bacteria. Furthermore, 70% of all anzecobic infections are polymicro-
.c:...“ E._E ...q._ they involve more than one anaercbe, What is the probability Em—m_ Fiven
._A.,mnm:a: .__._...E_.ﬁm anaerobic bacteria and is polymicrobic? Let 4, denote the n-..m_m that
the infection is anaerobic, and A, that it is polymicrobic. We are given that P[A4,] = 49
and that P{Asl4,] = 70, We want to find P{4, N A;]. By the multiplication E_Hm.

FiAy 1 Az] = PLAIA JP[A]
= {.70){.49)
= 343

24 BAYES'THEOREM

The topic of this section is the theorem formulated by the Reverend Thomas Bayes
{1761). It deals with conditional probability. Bayes® theorem is used to find P[418]
when the available information is not immediately compatible with that required to
apply the definition of conditional probability directly.

s Example 2.4.1 is a typical problem calling for the use of Bayes' theorem. You
will find applying Bayes' rule quite natural without having seen a formal statement
of the theorem!

m_xu:_ﬂHm 2.4.1.  Assume that 40% of all interstate highway accidents involve exces-

sive speed on the part of at least one of the drivers (event £) and that 305 involve al-

n_.M_o_ use _u,u._ at least one driver (event A). If alcohol is involved there is a 805 chance

“mawnamnwm_w.m speed is also involved; otherwise, this probability is enly 10%. An ac-
dent involves speeding. What is the probability that aleohal is involved? ¥

given these probabilities: . ’ i« amvolved? We ar

FPIE]= 40 PlA]l= 30 PlEIA] = .60
PIE']= 60 P[A"1=.0 P[EIA']=.10

H_”___.,.“nmmn being Ewﬂn_ to find _u._h_._ﬂ. Since this is a conditional question, it is natral 1o
to the definition of conditional probability for a solution. In this case,

I.NG_.I.




INTRODUCTION TO PROBABILITY AND STATISTICS

P[ENA]

PLAIE] = PLE]

Unfortunately, neither of the probabilities needed for the solution is immediately avail-
able. However, each can be obtained easily. By the multiplication rule,

PIE N A] = PLEIAJP[A]
Nate that if excessive speed was invalved, alcohol use either was or was not also
involved. Hence event E can be subdivided into two mutually exclusive events as
follows:

E={ENAYUEMNA
Thus PIEl=PIENA]+ PIENAT]

An expression has already been found for the first probability on the right; the multi-
plication rule can be applied to the second probability to see that

PIENA"] = PIEIA"TPIA’]

Substitution now yields
PLENA] _
PLE]
_ FIEIATPIA]
PIEIAIPIAL + P[EIA"IP[A']
Mote the pattern in this solution. In the aumerator the conditional expression is the re-
verse of that in the original question; in the denominator, the conditional expressions
run through all of the alternatives to the event in question, in this case A and 4°. The
numerical solution can now be oblained by substitution as follows:
PIEIATPLA]
PIEIA]P[A] + PLEIAT]P[AY]
_ (.60) (.30)
{60)(.30) + (.10) (.70}
=72

1F excessive speed was inyolved in an accident, there is a 72% chance that alcohol was
also involved.

P[AIE] =

PIAIE] =

In the previous example, there were two mutually exclusive events, A and A,
whose union is 5. Bayes’ thearem can also be applied when § is subdivided into more
than two mutually exclusive events. We state the theorem in this more general setting.

Theorem 2.4.1 (Baves’ theorem). Let Ay, 4, 4y, . . . . A, be a collection of
mutually exclusive events whose union is 5. Let B be an event such that
P[B] # 0. Then for any of the events A, j = 1,2, 3, ..., m,

pla5] = PLBAIPIA]
’ 3 PIBIAIP[A]

G
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(3

) To see that Bayes® theorem could have been used directly to answer the ques-
tion posed in Example 2.4.1, note that events 4 and A’ are mutually exclusive
events whose union is § and that event £ occurs with nonzero probability. Hence we
can make the following identifications:

A=A A=A B=E
By applying Bayes’ theorem directly we obtain
PLA/IB] = PLBIA|IP[A)]
P[BIAP[A,] + P[B1A,]P[Al]
- PIAIE] = P[EIAIP[A]

PIEIA]IP[A] + P[EIAIP[AY]

A guick comparison will show that this is the same as the solution derived in Ex-
ample 2.4.1 using the multiplication rule.

The next example illustrates the use of Bayes’ theorem in a setting in which
the sample space is subdivided into four mutually exclusive events rather than two.

Example 2.4.2. The blood type distribution in the United States is type &, 41%; type
.m. 0%, G_H_n.}m, 4%; and type O, 465, It is estimated that during World Wer 11, 4% of
indectees with type O blood were typed as having type A; 88% of those with type &
were correctly typed; 45 with type B blood were typed as A; and 10% with type AB
were typed as A. A soldier was wounded and brought to surgery. He was typed as hav-
ing type A blood. What is the probability that this is his true blood type? Let

Ay he has type A blaod

Ay he has type B blood

Ay he has type AB blood

Ay he has type O blood

B: he is {yped as type A

zn_ﬁ.___m.n mﬁ events 4, Ay, A, A, are mutually exclusive, and their union is § because
u.nnw individual can have oaly ooe blood type and all possible hlond types have been
listed. We are being asked to find P[A,B]. We are given that

Pl4,] = 41 P[BIA,) = .88
PlA;] =09 PBIA,] = 04
PlA;] = 04 P[BIA;] = .10
P[A] = 46 P[BIA,] = .04

Substitution into the expression given by Bayes' theorem yields

(BB} (41)
(-88)(41) + (.04)(.09) + (10)(.04) + (.04) (.46)
=493

P[AB] =

If a person was typed i i
: ped as having type A blood, there was approximately a 93% cha
theat his true type was in fact type A. i ! e
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Chapler 3 : Discrele Dts tribulion
of polyethylene glycol, a fusion-promoting ageat. It is known that the probability that
‘such a cell will fuse is 1/2. Let ¥ denote the number of cells exposed to obtain the first

fusion. The variable ¥ is random; & priori it can assume any value in the set [1, 2, 3,
...}. Recall from your study of calculus that & set such as this that consists of an infi-

nite collection of isolated points is called a countably infinite set.

Example3.1.3. In Example 1.1.2 we considered the variable T, the time at which the
peak demand for electricity oceurs per day. This variable is random, since its value is
affected by such chance factors as time of the year, humidity, and temperature. [t can
conceivably assume any value in the 24-hour time span from 12 midnight one day to

12 midnight the next day.

It is easy to distinguish a discrete random variable from one that is not dis-
crete. Just ask the question, “What are the possible values for the variable?” If the
answer is a finite set or a countably infinite set, then the random variable is discrete;
atherwise it is not. This idea leads to the following definition:

Definition 3.1.1 (Discrete random variable). A random variable is discrete
if it can assume at most a finite or a countably infinite number of possible

valies.

The random variable X, the number of brown-eyed children in a two-child
family, is discrete. Its set of possible values is the finite set {0, 1, 2}. The set {1, 2,
3,...) of possible values for ¥, the number of cells exposed to obtain the first fu-
sion of Example 3.1.2, is countably infinite. Thus ¥ is also a discrete random vari-
able. The random variable T; the time of the peak demand for electricity at a power
plant, is different from the others. Time is measured continuously, and T can con-
ceivably assume any value in the interval [0, 24}, where 0 denotes 12 midnight one
day and 24 denotes 12 midnight the next. This set of real numbers is neither finite
nor countably infinite. Any time that you ask yourself the question, “What are the
possible values for the random variable?" and are forced to admit that the set of pos-

sibilities includes some interval or continuous span of real numbers, then the ran-
dom variable being studied is not discrete.

3.2 DISCRETE PROBABILITY DENSITIES

When dealing with a random variable, it is not enough just to determine what values
are possible. We also need to determine what is probable. We must be able to predict
in some sense the values that the variable is likely to assume at any time. Since the
behavior of a random variable is governed by chance, these predictions must be
made in the face of a great deal of uncertainty. The best that can be done is to de-
scribe the behavior of the random variable in terms of probabilities. Two functions
are used to accomplish this, We shall refer to these as the density function and the cu-

wmulative distribution function. The former is known by a variety of names in the dis-
crete case. some uf the most commonly encountered ones being the probability

B3
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m.“_nn:o:, the probability mass function, and the probability density function, In the
discrete case, the density is denoted by either p(x) or f{x); in the continuous case it is
almost always denoted by f(x). For consistency we shall use f{x) for the density in
both cases. We begin by defining the density function for discrete random variables.

Definition 3.2.1 (Discrete density). LetXbea discrete random variable.
The function f given by

fix) =PX =i -
for x real is called the density function for X.

There are several facts to note concerning the density in the discrete case.
First, fis defined on the entire real line, and for any given real number x, f{x) is the
probability that the random variable X assumes the value x. For example, f{2) is the
probability that the random variable X assumes the numerical value of 2. Second,
since f{x) is a probability, f(x) = 0 regardless of the value of x. Third, if we sum f
over all values of X that occur with nonzero probability, the sum must be 1. The fol-
lowing two conditions are necessary and sufficient conditions for a function fto be
a discrete density. That is, if a function satisfies both of these conditions then it can
be viewed as representing the density for some discrete random variable; if it fails
to satisfy both then it cannot be the density for any discrete random variable:

Necessary and Sufficient Conditions
for a Function to be a Discrete Density

1 f(x) =0
2. 3 fin=1

allx

.. - The next example illustrates these ideas.

+ Example 3.2.1. Consider the random variable ¥, the number of cells exposed to
antigen-carrying lymphocytes in the presence of polyethylene glycol 1o obtain the first
mﬁ_an (see Example 3.1.2), We know that under these conditions the probability that
agiven cell will fuse is 1/2. Thus the probability that it will not fuse is also 1/2. Tt is

v reasonable to assume that the cells behave independently. The possible values for ¥ are

{1,2,3,...}. The probability that the fiest cell will fuse is 1£2. That is,
PY=11=f1) =12

ammﬂwﬁﬂ_i that the first cell will not fuse but the second one will, yielding a value

PI¥ = 2] = f(2) = P(first cell does not fuse] P(second cell does fuse]
=12-12=1/M
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Similarly,
PI¥=3]=f(3)=12-12-122= 18

We can summarize the entire probability structure for ¥ in a density table (see
Table 3.1). This is a table giving the possible values for the random variable in the first
row and their corresponding probabilities in the second row. Mote that there is an ob-
vious pattern to the entries in row 2. When this occurs, we can find a closed-form ex-
pression for the density, In this case

{12y

_ y=1,273...
h:rT

elsewhere

Is this really a density? This function is obviously nonnegative, but does it sum to 17
Tor see this, note that

-

2 fly) =

ally yeE
is a peometric series with first tlerm a = 142 and common ratio r = 1/2. The properties
of geometric series are well known. In particular, recall from elementary calculus that
such a series can converge or diverge. The following fact will be useful in the mater-
ial that follows:

(L2
|

Convergence of geometric series

= .
Let > ar®~! be a geometric series.
k=1

- a .
The series converges to — ~ provided |r < 1.

1

If we apply this result here, we see that

a_ _ 1/2 o
1—r 1-1/2

1

b=

(12} =

¥
and the function fis a density,

Even though a discrete density is defined on the entire real line, it is only nec-
essary to specify the density for those values y for which f(y) 0. For instance, in
the previous example we can write

=02y y=L23.

It is understood that f{y) = O for all other real numbers.
Once it is known that 2 function is a density, it can be used to answer ques-
tions concerning the behavior of ¥

TABLE 3.1

¥ | 1 2 3 4--
B2-12 0 W22 M2 M2-M2 212

Pi¥=yl=fy) | 12

r....“.._..___-_..,,_,....-.,. R
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1

Example 3.2.2. What is the probability that we will need to expose four or more
cells to antigen-carrying lymphocytes in the presence of polyethylene glycol to obtain
the first fusion? That is, what is P[¥ = 4]7 The density for ¥is
Sy =12y
Although the desired probability can be found directly, it is easier to use subtraction:
PlY=4]=1- P¥<4] .
1 -P¥F=13]
I1={P[¥=1]1+PF=2]+ P[¥= m
L= {fih +£2) +A(3))
1= (L2 + (10207 + (112
1= {12 + 144 + 1/B)
I -8 =18

y=1,23,...

I

Il

I

Cumulative Distribution

The second function used to compute probabilities is the cumulative distribution
function F. Most of the statistical tables used in the material that follows are tables
of the cumulative distribution function for some pertinent random variable,

The word “cumulative” suggests the role of this function. It sums or accumu-
lates the probabilities found by means of the density. This function is defined as
follows:

Definition 3.2.2 (Cumulative distribution—discrete). Let X be a discrete
random variable with density f. The cumulative distribution function for X,
denoted by F is defined by

Fix) = PIX = x] for x real

Consider a specific real number x,;. To find PIX = xy] = Flxp), we sum the
density fover all values of X that occur with nonzero probability tha. are less than
or equal to x;,. That is, computationally,

Flxg} = 3 fix)

55

This idea is illustrated in Example 3.2.3.

Example 3.2.3.  Centain genes produce such a tremendous deviation from normal
that the organism is unable to survive, Such genes are called fethal genes. An example
is the gene that produces a vellow coat in mice, ¥, This gene is dominant over that for
gray, y. Normal genetic theory predicts that when two yellow mice heterozygous for
this trait {¥y) male, 1/4 of the offspring will be gray and 3/4 will be yellow. Biologists
have observed that these predicted proportions do not, in fact, ooccur, but that the actual

s ol
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TABLE 3.2
x 0 1 2 3
P =} = flx) 1127 ey {227 #8127
TABLE 3.3

X 0 1 2 3
PIX = x] = Fix) L7 27 1927 2727
TABLE 3.4

¥ 1 2 3 4.
PL¥ =y = Fly) 816 1216 14016 15/16 .-

percentages produced are 1/3 gray and 2/3 yellow. It has been established that this
shift is cansed by the fact that 1/4 of the embryos, those homozygous for yellow (¥T),
do not develop. This leaves only two genotypes, ¥y and yy, accurring in a ratio of 2 to
1, with the former producing a mouse with a yellow coat. For this reason, the gene ¥
is said (o be lethal.

The density for X, the number of yellow mice in a litter of size 3, is shown in
Tahble 3.2, and its cumulative distribution is given in Table 3.3, Notice that

Fil)=PIX=<0]=PX=0]= 1127
Fll=PX=<1]1=PIX =01 + P[X = 1] = I/27 + &/27
Fhy=PX=2=PX=0+PIX=1]+PX=1]
V2T + 627 + 12027

Fly=Px=13]=1

For discrete random variables that can assume only a finite number of possible values,
the last entry in the bottom row of the cumulative table will always be 1.

Although cumulative probabilities are often given in table form as in the pre-
ceding example, it is sometimes possible to find express F in equation form. Exam-
ple 3.2.4 illustrates this idea.

Example 3.2.4. Consider the random variable ¥ of Exampie 3.2.1 with density

flyy=0/2p y=L23..

A partial cumulative table for ¥ is shown in Table 3.4. It is formed by summing the
probabilities given in the density table, Table 3.1. It is helpful to have a closed-form
expression for F. In this case it is easy to obtain such an expression. By definition,

Fiy) = X1y

=N
If we let [y,] denate the greatest integer less than or equal to yy, then in this case Flyy)
can be expressed as
g

HL]

e s
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Lxal

Fu) = 3, (1/2)*
el

=% (1/2)(1/2)!
¥=1

Recall from elementary calculus that the sum of the first s terms of 2 geometric
series is given by

Sum of first n terms: Geometric series

Wmil_nnilﬁlﬁ r#1
= =&

where a is the first term of the series and r is the common ratio.

Apply this result with a = 1/2 and r = 142, 1o obtain

= Il
Fly) = (L1 — (172300

[—1/2
=1— {12}kl
The probability that at most seven cells must be exposed to obtain the first fusion is
given by
127
PI¥=Tl=Fyi=1—-{1/2)V=-=—
[ I =Fiy) (27 =1o0

3.3 EXPECTATION AND DISTRIBUTION
PARAMETERS

The density function of a random variable completely describes the behavior of the
variable. However, associated with any random variable are constants, or “parame-
ters,” that are descriptive. Knowledge of the numerical values of these parameters
gives the researcher quick insight into the nature of the variables. We consider three
such parameters: the mean g, the variance o2, and the standard deviation o, If the
exact density of the random variable is known, then the numerical value of each pa-
rameter can be found from mathematical considerations. That is the topic of this
section. If the only thing available to the researcher is a set of observations on the
random variable (a data set), then the values of these parameters cannot be found
exactly. They must be approximated by using statistical techniques. That is the topic
of much of the remainder of this text.

To understand the reasoning behind most statistical methods, it is necessary to
become familiar with one general concept, namely, the idea of mathematical expec-
tation or expected value. This concept is used in defining meany statistical parameters

BT =
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and provides the logical basis for most of the methods of statistical inference pre-
sented later in this text,

A simple example will illustrate the basic idea of expectation. Consider the
roll of a single fair die, and let X denote the number that is obtained. The possible
values for X are 1, 2, 3, 4, 5, 6, and since the die is fair, the probability associated
with each value is 1/6. The density for X is given by

fixy=1/6 x=1,23475506

When we ask for the expected value of X, we are asking for the long-riun theoreri-
cal average value of X. If we imagine rolling the die over and over and recording
the value of X for each roll, then we are asking for the theoretical averape value of
the rolls as the number of rolls approaches infinity. Since the density for X is sym-
metric and known, this average can be found intuitively. Notice that since P[X = 1]
= P[X = 6] = 1/6, in the long run we expect to roll as many 1's as 6's. These values
should counterbalance one another, and their average value is (6 -+ 1)/2 = 3.5. We
also expect to roll as many 2's as 4's; these numbers also average to 3.5. Likewise,
the numbers 3 and 4 are expected to counterbalance one another; they average 3.5.
Logic dictates that, in the long run the average or expected value of X is 3.5, We
write this as E[X] = 3.5. Motice that this value can be calculated from the density
for X as follows:

EX]l=1-16+2 - 1/6+3-16+4-16+5-1/6+6-1/6=35

ar

E[X] = % (value of x)(probability)
all x

Of course, the characteristic that makes finding this expectation easy is the symme-
try of the density. Can we develop a definition of expectation that will work for non-
symmetric densities and that will apply not only to X, but also to random variables
thiat are functions of X? The answer is “yes,” and the desired definition is given in
Definition 3.3.1. Let us point cut that in most problems interest centers first on
E[X]. However, expectations for functions of X such as X2, (X — ¢}®, wherecisa
constant and ¥ are especially useful in statistical theory. For this reason, the defi-
nition of expected value is given in general terms. We now define what we mean by
the expected value of some function of X which we denote by H(X).

Definition 3.3.1 (Expected value). Let X be a discrete random variable
with density f. Let H(X) be a random variable. The expected value of F(X),
denoted by E[H{X)], is given by

E[H(X)] = ¥ H(x)f(x)
aflx

provided M"__LEHV_M?H_ is finite. Summation is over all values of X that
occur with nonzero probability.
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Note that in the special case in which H(X) =X, we obtain the expected value of X
from this definition. Thus we see that

Expected Value of X
E[X] = 3 xf(x)
akl x

One other thing to note concerning this definition is the fact the restriction that
Zal hn_E”.H”__ fl) exists is not particularly restrictive in practice. If the set of possible
values for X is finite, it will be satisfied, if the set of possible values for X is count-
ably infinite, it will wseally be satisfied. However, it is possible to concoct a density
fand a function H{X} for which the series 2, JH(x)| fx) does not converge. (See
Exercise 22.) In this case we say that the expected value of the random variable
H{X) does not exist, An example will illustrate the use of Definition 3.3.1. Please re-

- alize that the density has been greatly oversimplified for purposes of illustration!

Example 3.3.1. A drug is used to maintzin a steady heart rate in patients who have
suffered a mild heart attack. Let X denote the number of heartheats per minute ob-
tained per patient. Consider the hypothetical density given in Table 3.5. What is the
average heart rate obtained by all patients receiving this drug? That is, what is E[X]?

By Definition 3.3.1,
E[X] = 3 Hix)fix}
allx
= > xflx)
allx
=40(,01) + 60(.04) +6GE(.05) + -+ + 100(.01)
=170

Since the number of possible values for X is finite, £, || f{x) exists, Thus we can say
that the average heart rate obtained by patients using this drug is 70 heartbeats per
minute. Intuitively, we should have expected this result. Notice the symmetry of the
density. In the long run we would expect as many patients with heart rates of 100 as
with heart rates of 40; as many with a rate of 60 as with a rate of 80. Similarly, the
rates of 68 and 72 occur with the same frequency, Each of these pairs averages to 70,
the value obtained by the remaining 30% of the patients, Common sense points to 70
a5 the expected value for X,

When used in a statistical context, the expecied value of a random variable X
is referred to as its mean and is denoted by p or . That is, the terms expected

TABLE3S -
x H 40
fm | o
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value and mean are interchangeable, as are the symbols E[X] and p. The mean can
be thought of as a measure of the “center of location” in the sense that it indicates
where the “center” of the density lies. For this reason, the mean is often referred
to as a “location” parameter. To emphasize these points, let us summarize the pre-
ceding discussicn.

Notes on the Expected Value of a Random Variable X

1. The expected value of a random variable is its theoretical average value. It is
denoted by E[X] and can be calculated from knowledge of the density for X

2. In a statistical setting, the average value of X is called its mean value. Hence the
terms average value, mean value, and expected value are interchangeable.

3. The mean value of X is denoted by the Greek symbol g (mu). Hence the sym-
bols p and E[X] are interchangeabie.

4. The mean or expected value of X is one measure of the location of the center of
the X values. For this reason, w is called a “location” parameter.

There are three rules for handling expected values that are useful in justifying

statistical procedures in Iater chapters. These rules hold for both continuous and dis-

- crete random variables. The rules are stated and illustrated here. We outline the proofs
of the first two as exercises; the proof of rule 3 must be deferred until Chap. 5.

Theorem 3.3.1 (Rules for expectation). Let X and ¥ be random variables and
let ¢ be any real number.
1. E[e] = ¢ (The expected value of any constant is that constant.)
2. E[eX] = cE[X] (Constants can be factored from expectations.)
3. E[X + ¥] = E[X] + E[Y] (The expected value of a sum is equal to the sum
of the expected values.)

Example 3.3.2. Let X and ¥ be random variables with E[X] = 7 and E[¥] = —5. Then
E[4X — 2Y+ 6] = E[4X] + E[—2¥] + E[6] Rule 3
= 4E[X] + (—2)E[Y] + E[6] Rule2
= 4F[X] — 2E[¥] + 6 Rule 1
=4T —2-51+6
=44

Variance and Standard Deviation
Knowledge of the mean of a random variable is important, but this knowledge alone
can be misleading. The next example should show you the problem.

Example 3.3.3. Suppose that we wish to compare a new drug to that of Example
3.3.1. Let X denote the number of heartbeats per minute obtained using the old drug
and ¥ the number per minute obtained with the new drug. The hypathetical density of

~g1~
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TABLE 3.6

x 40 GO 8 0 T2 80 100
fix) .M 4 08 B0 05 M 0l
¥ 40 G0 68 70 72 B0 100
S A DS 04 R ™ 05 A

each of these variables is given in Table 3.6. Since cach of the densities is symmetric,
inspection shows that gy = py = 70. Each drug produces on the average the same
number of heartbeats per minute. However, there is obviously a drastic difference be-
tween the two drugs that is not being detected by the mean, The old drug produces
fairly consistent reactions in patients, with 90% differing from the mean by at most Z;
wvery few (29%) have an extreme reaction to the drug, However, the new drug produces
highly diverse responses. Only 10% of the patients have heari rates within 2 units of
the mean, whereas 80% show an extreme reaction. If we examined only the mean, we
would conclude that the two drugs had identical effects—but nothing could be further
from the truth!

It is obvious from Example 3.3.3 that something is not being measured by the
mean, That something is variability. We must find a parameter that reflects consis-
tency or the lack of it. We want the measure to assume a large positive value if the
random variable fluctuates in the sense that it often assumes values far from its
mean; the measure should assume a small positive value if the values of X tend to
cluster closely about the mean. There are several ways to define such a measure.
The most widely used is the variance.

Definition 3.3.2 (Variance). Let X be a random variable with mean . The
variance of X, denoted by Var X, or o, is given by

Var X = o = E[(X — p)]

Note that the variance measures variability by considering X — p, the differ-
ence between the variable and its mean. The difference is squared so that negative
values will not cancel positive ones in the process of finding the expected value.
When expressed in the form E[(X — w)®), it is easy to see that o? has the properties
that we want. When the variable X often assumes values far from u, o will be a
large positive number; when the values of X tend to fall close to p, o® will assume
a small positive value. Figure 3.1 illustrates the idea.

Usually, the definition of o? is not used to compute the variance. Rather, we
use an alternative form which is given in the following theorem.

Theorem 3.3.2 {Computational formula for o)
o? = Yar X = E[X?] — (E[X]P

.
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FIGURE 3.1 o

() A distribution with a small variance, Most of the data peints, denoted by @ﬁ._ :n.ﬁ.E:___..n_nmn 1o the
average vaiug, w. Hence most of the differences, x — g, will be smatl; (&) a distribution with 2 large
variance. Many of the data points Jie far from the avesage value, .

Progf. By definition
Var X = E[(X — i)
= BIX* — 2uX + ]
Using the rules of expectation, Theorem 3.3.1, we obtain
Var X = E[X?] — 2uE[X] + p?
Since the symbols u and E[X] are interchangeable,

Var X = E[X?] — 2(E[X])* + (E[X])*
= E[X?) — (EIX)F

We illustrate the theorem by computing the variance of each of the random
wvariables of Example 3.3.3.

Example 3.3.4. To find o} and o} for the variables of Example 3.3.3, we first use
Table 3.6 to find E{X *] and E[¥'?]. We know that E[X] = E[¥] = T70.

E[X*] = ¥ x*f(x)
altx
= (407 (.01} + (B0F) (047 + - -+ (10071 (.01)
= 40%6.4
E[Y?* = 3 ¥y
=
= ?wu:hmu + (60T} (.05) + - -+ (10023 (.40)
= 5630.32
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By Theorem 3.3.2,

FraRLL

Var X = E[X*] — (E[X]p | &
= 49264 — 70 = 26,4
War ¥ = E[¥?] — (E[¥])?
= 5630.32 — 70 = 730,32
As expected, Var ¥ > Var X. Even though the drugs _u.a&unn the same mean number

of heartbeals per minute, they do not behave in the same way. The new drug is not as
consistent in its effect as the old.

Note that the variance of a random variable reported alone is not very infor-
mative. Is a variance of 26.4 large or small? Only when this value is compared to
the variance of a similar variable does it take on meaning. Hence variances are used
often for comparative purposes to choose between two variables that otherwise ap-
pear to be identical. Also, note that the variance of a random variable is essentially
a pure number whose associated units are often physically meaningless. When this
occurs, the unit can be omitted. For example, the unit associated with the variance
of Example 3.3.4 is a “squared heartbeat.™ This makes little sense, so in this case
variance can be reported with no unit attached. To overcome this problem, a second
measure of variability is employed. This measure is the nonnegative square root.of
the variance, and it is called the standard deviation. It has the advantage of having
associated with it the same units as the original data.

Definition 3.3.3 (Standard deviation). Let X be a random variable with
variance o2, The standard deviation of X, denoted by o, is given by

o=VVarX=yog?

Example 3.3.5. The standard deviations of variables X and ¥ of Example 3.3.4 are,
respectively,

oy = % Var X = \V26.4 = 5.14 heartbeats per minute

oy =V War ¥'= /730,32 = 27.02 heartbeats per minute

To emphasize these points we present a brief summary of the important aspects of
the standard deviation of a random variable X,

Properties of standard deviation
1. The standard deviation of X is defined as the nonnegative square root of its
variance.
2. The standard deviation is denoted by o, and the variance of X is dencted by o2

3. A large standard deviation implies that the random variable X is rather incon-
sistent and somewhat hard to predict; a small standard deviation is an indication
of consistency and stability.

o
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4, Standard deviation is always reported in physical measurement units that match
the original data. Variance is often unitless.

Just as there are three rules for expectation that help in simplifying complex
expressions, so are there three rules for variance. These rules parallel those for ex-
pectation. Rules 1 and 2 can be proved by using the rules for expectation (see Exer-
cise 20). The proof of rule. 3 must be deferred until the notion of “independent
random variables™” has been formalized.

Theorem 3.3.3 (Rules for variance). Let X and ¥ be random variables and ¢
any real number. Then

1. Varc=0

2 VareX = VarX

3. IfXand ¥ are independent, then Var(X + ¥} = Var X + Var ¥
(Two variables are independent if knowledge of the value assumed by one gives
no clue to the value assumed by the other.}

Example 3.3.6. Let X and ¥ be independent with o = % and o = 3. Then

Var[d4X — 2¥+ 6] = Var[d4X] + Var{-—-2¥] + Var 6 Rule 3
=16 VarX + 4 Var ¥ + Var 6 Rule 2
= |6 Var X + 4 Var ¥ +0 Rule !

16(9) + 4(3) = 156

In this section we discussed three theoretical parameters associated with a
random variable X. We showed not only how to determine their numerical values
from knowledge of the density, but also how 1o interpret them physically. Keep
these things in mind, for they play a major role in the study of statistical methods for
analyzing experimental data. ’

34 GEOMETRIC DISTRIBUTION AND
THE MOMENT GENERATING FUNCTION

In this section we consider two important topics. We intreduce the first family of
discrete random variables to be discussed in this text, Random variables are mem-
bers of a family in the sense that each member of the family is characterized by a
density function of the same mathematical form, differing only with respect to the
numerical value of some pftinent parameter or parameters. This first family, called
geometric, is used exiensively in the areas of games of chance and in statistical
quality control. It is named geometric because, as you will see, its theoretical prop-

erties are derived by applying the mathematical properties of the geometric series’

that you encountered in elementary calculus. The second topic is a discussion of the
moment generating function. This is a function, derived from the density, that
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allows one to calculate ordinary moments of a distribution easily, This in turn makes
it possible to calculate the mean and variance of a random variable without having
to use the definitions of these terms to do so. In many cases, this approach is much
simpler than a direct calculation from the definition. The function also provides a
fingerprint or a unigue identifier for each distribution. This idea will be illustrated
later in this section.

Geometric Distribution

We begin by considering the family of geometric random variables. As you shall
see, you have already encountered some random variables of this type even though.
the name “geometric random variable™ was not mentioned at the time.

Geometric random variables arise in practice in experiments characterized by
the following properties:

Geometric properties

1. The experiment consists of a series of trials. The outcome of each tral can be
classed as being either a “success” (5) or a “failure” (). A trial with this prop-
erty i5 called a Bernoulli trial.

2. The trials are identical and independent in the sense that the outcome of one
trial has no effect on the outcome of any other. The probability of success, p, re-
mains the same from trial to trial.

3. The random variable X denotes the number of trials needed to obtain the first
SUCCESS,

The sample space for an experiment such as that just described is

§ = {s fs ffs fif5 ..}

Since the random variable X denotes the number of trials needed to obtain the first
success, X assumes the values 1,2, 3,4, ... . To find the density for X, we look for
a pattern. Note that

P[X = 1] = P[success on first trial] Hw
P{X = 2] = P[fail on first trial and succeed on second trial]

Since the trials are independent, the latter probability can be found by multiplying.
That is,

P[X = 2] = P [fail on first trial and succeed on second trial]
= P[fail on first trial] P[succeed on second trial]

= (1 —pip
Similarly,
P[X = 3] = P[fail on first trial and fail on second trial and succeed on third trial]
= ([-p)1-p}p) = (1-p)'p

-
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TABLE 3.7
+ |1 2 3 4 5
f | p G-pp U-pPo (-pPp (1-p¥p

You should be able to see that the density for X is given by Table 3.7, where the
probabilitics given in row 2 of the table exhibit a definite pattern. This pattern can
be expressed in closed form as

fiX={0-py'p x=123,...

We now define a geometric random variable as being any random variable with a
density of this form.

Definition 3.4.1 (Geometric distribution). A random variable X is said to
have a geometric distribution with parameter p if its density fis given by
fy=0-prp 0<p<i
x=1,273...

cagrnilbizsi st

The function f'given in this definition is a density. It is obviously nonnegative. .

Furthermore,

o

> (l—py'p

x=]
is a geomeiric series with first term a = p and common ratio r = (1 — p). Thus the
series sums to

- I £ =1
1.—F 1=i{l=—p)
as desired. From this argument the reason for the name “geometric™ distribution
should be apparent.

In Exercise 26 you are asked to verify that the general expression for the cu-
mulative distributions function for a geometric random variable is

Fx)=1-¢"

where g is the probability of failure and [x] is the greatest integer less than or equal
to x.

Example 3.4.1. Random digits are integers selected from among [0, 1,2, 3, 4, 5, 6,
T, 8, 9] one at 2 time in such a way that at each stage in the selection process the inte-
ger chosen is just as likely to be one digit as any other. In simulation experiments it is
often necessary to generate a series of random digits, This can be done in a number of
ways, the most common being by means of a computerized random number generator.

37
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In generating such a series, let X denote the number of trials needed to obtain the first
zero. This experiment consists of a series of independent, identical trials with “suc-
cess” being the generation of a zero. The probability of suceess is p = 1/10. Since X
denotes the number of trials needed to obiain the first success, X is a geometric ran-
dom variable. Tis density is found by substituting the value 1/10 for p in the expression
for f given in Definition 3.4, 1. That is,

fy={1-prp x=12,3,...
or

Sy = (W10 x=1,2,3,...
The cumulative distribution function for X is given by

Fix) =1 {9y

m.ﬁ_m:m_._.ﬁHﬂ:cmmmganﬂnﬁ:no_dﬂimznwEEEmmmmaﬁcE.mEnﬁ._
Consider the next example. .

Example 3.4.2.  Let us find the mean of the random variable X, the number of trials
needed to obtain a zero when generating a series of random digits. By Definition 3.3.1,

=

o E[X] =3 xfix)
a=j

= ¥ x(9/10)* 11710

x=1

That is,
ETX] = 110 + 18/100 + 243/1000 + 2916/10,000 < -
This series is not geometric, ncummn._nn the series (9/100E£[X].
(HLEX] = 97100 + 1621000 + 2187/10,000 + 26,244/100,000 + - - »
Subtracting the Eﬁ.- from the former, we obtain
(LI0ELX] = 1/10 + 97100 + B1/1000 + 72/10,000 + - - -
This series is geometric with first term 1/10 and common ratio %10, Thus

(1/10)E[X) u_lk,%ﬂu |

E[X] Hq_Hmu 10

Moment Generating Function

As we have seen, the two expectations E[X] and E[X?] are very useful, as they allow
us to find Ew mean and variance of the random variable. These, and other expectations

!Wm_i
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of the form E[X*] for & a positive integer, are examples of what are called ondinary
moments. This term is defined as follows:

Definition 3.4.2 (Ordinary moments). Let X be a random variable. The &
ordinary moment for X is defined as E[X"].

Thus E[X] = g is the first ordinary moment for X; E[X?] is its second ordinary mo-
ment. The preceding example shows that finding ordinary moments, even the first
moment, from the definition of expectation is not always easy. Fortunately, it is of-
ten possible to obtain a function, called the moment generating function, which will
enable us o find these moments with less effort.

Definition 3.4.3 (Moment generating function}. Let X be a random
variable with density . The moment generating function for X (m.g.f.) is
denoted by my{t) and is given by

my(t) = E[e']
provided this expectation is finite for all real numbers ¢ in some open interval
(—h, k).

Since each geometric random variable has a density of the same general form,
it is possible to find a general expression for the moment generating function for
such a variable. This expression is given in Theorem 3.4.1.

Theorem 3.4.1 (Geometric moment generating function). Let X bea
geometric random variable with parameter p. The moment generating function
for X is given by

T L T T ey T T P Y W T e e L R el Al S g '*Fi*:-i'ﬂlﬂ'rﬁflﬂ'ﬂlﬂ

my(t) = 7 wﬂm t<-ing
whereg =1-p.
Progf. The density for X is given by
fxi=g"'p =123
By definition
my = E[&¥]
=T e"f{x)
allx
= Wm:a_'_w

x=|

"._m__m.l_ M. _“...Q..wq”__._.
a=l

i
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The series on the right is a geometric series with first term ge' and common ratio ge'.
Thus

SHELERE m_ Ha,v
o B

I —ge'

_uaa,__._n_ﬁm_w_ = __u__w‘_ = 1. Since the exponential function is nonnegative and 0 < g < 1,
this restriction implies that g¢' < 1. The inequality is solved for ¢ as follows:

ge' <1
&< g

Ine <In lfg
t<lnl—Ing
1<-Ing

The next theorem shows how the moment generating function can be used to
generate a_m_:.u_..____ moments for a random variable X. Its proof is based on the
Maclaurin series expansion for % Recall that this series is as follows:

.

Maclaurin Series Expansion for e:
ef=1+g+ W2+ 23 + 74+ .-

Theorem 3.4.2. Let my(f) be the moment generating function for a random
_variable X. Then

dfmy (1)
dr =

anmmk.“_

Proof. To prove this theorem, let z = tX. The Maclaurin series expansion for e™ is
e =1 4 X (X2 + (XY + (XY + -
By taking the expected value of each side of this equation, we obtain
mylt} = E{e™] = E[l + X + 2X%2! + £2X330 + (%441 + < - - ]
= 1 + tE[X] + f421E[X?] + H3EXT] + CHEX 4 -
Differentiating this series term by term with respect 1o f, we see that

drmy ()
dt

= E[X] +E[X?] + 1Y 2UE[X%) + /3EX] + -

~fdo -~
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When this derivative is evaluated at ¢ = 0, every termexcept the first becomes 0. Hence
dmyir)

dt =g ELX]
Taking the second derivative of my(r}, we obtain
2
2 ,Hw: = E[X?] + 1E[X?] + t/21E[X*] + - - -
Evaiuating this derivative atf = 0 yields
dhmy (1) | 2
| =£x?
a2 l=p [X*1
This procedure can be continued to show that
iy (1)
= E[X*
: Atk r=0 [x%

for any positive integer k as desired.

Let us use the moment generating function to find a general expression for the
mean and variance of a geometric distribution with parameter p.

Theorem 3.4.3. Let X be a geometric random variable with parameter p. Then

EX]=1lp and VarX=glp?

Proaf. For a geometric random variable with parameter

__pe
mylt) = T—gE
dmy(ty _ (1 — ge"ipe’+ pe'ge’
dt (1 —ge?
.qu
{1 —ge)?
Evaluating this derivative at t = [, we obtain
_ dmy(7) - F
EXF =" s (1—g)
= pip*
=1/p

Taking the second derivative of #.(f), we obtain
dimy(1) _'(1 = ge'Yipe' + 2pef(1 — qetige’

dt? (1—gey*
_pe'l —ge) [ — ge') + 2ge']
== (1 |ﬂmmuh
_pe'(l +ge')
T (L-ge)?
G-
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Evaluating this derivative at r = 0, we see that

dmy(t) plltg) _ (1+gq)
By 00 = =
E[X?] ar o (1—g)° P
MNow )
Var¥ = E[X?] — (E[X])?
- 1 +%IP
PR
=4
h_w A

We ilfustrate the use of these theorems by finding the moment generating
function, mean, and variance for the random variable of Example 3.4.1,

Example 3.4.3, Consider the random variable X, the number of irials needed to ob-
tain the first zero when generating a series of random digits. Since this random
variable is geometric with parameter p = 1/10,
et (11
Ml =T e T 1 (9710)¢
w=E[X]=1/p=10

9/10
(1/10)%

Note that this value for w agrees with that obtained in Example 3.4.2:

ot =Var X =g/pl= =90

The importance of the moment generating function for a random variable is
not completely evident at this time. It does give us a way to find general expressions
for the mean and variance as well as for the ordinary moments of an entire family
of random variables. As we shall see later, the moment generating function, when it
exists, serves as a fingerprint that completely identifies the random variable under
study. That is, if a distribution has a moment generating function then it is unique.
Thus, to identify a distribution from its moment generating function we need only
look for and recognize a pattern and then the distribution is evident. For example, if
an‘unknown random variable has moment generating function

A
my (1) T— 6a .
then we know that the random variable follows a geometric distribution with p = .4,
because the moment generating function assumes the general form

pe'
I —ge

which is the geometric fingerprint.

3.5 BINOMIAL DISTRIBUTION

The next distribution to be studied is the binomial distribution. Once again, you
have already seen some binomial random variables even though they were not

~4 2~
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labeled as such at the time. The theoretical basis for working with this distribution
is the binomial theorem presented in most beginning algebra courses. The statement
of this theorem is as follows:

Binomial theorem
For any two real numbers a and & and any positive integer n,

(a+b)"= M._ ﬁuaf;

o n!
where mﬂu is given by _nl_ma||__~”__

T3
) ;

To recognize a situation that involves a binomial random variable, you must be fa-
miliar with the assumptions that underlie this distribution, which are as follows:

Binomial properties
1. The experiment consists of a fixed number, n, of Bernoulli trials, trials that re-
sult in either a “success” {5} or a “failure” (f).
2. The trials are identical and independent, and therefore the probability of suc-
cess, p, remains the same from trial to trial.
3. The random variable X denotes the number of successes obtained in the r trials,

Once we realize that the binomial model is appropriate from the physical de-
., « scription of the experiment, we shall want to describe the behavior of the binomial
random variable involved. To do so, we need to consider the density for the random
variable. To get an idea of the general form for the binomial density, let us consider
the case in which n = 3. The sample space for such an experiment is
§= [fff. off. £ ffs. ssf, sfs, fss, 555}
Since the frials are independent, the probability assigned to each sample point is
found by multiplying. For example, the probabilities assigned to the sample points
fifand gff are (1 — p)(1 — p)(1 — p) = (1 — p)* and p(1 — p)(1 — p} = p(l — p}¥*,
respectively, The random variable X assumes the value 0 only if the experiment re-
sults in the cutcome fif. That is,
PIX =0]=(1 - p)’

However, X assumes the value 1 if the experiment results in any one of the out-
comes sff; f5f, or fifs. Thus

PIX =11=3"p(1 —pF
Similarly,

PIX=21=3-p%1-p)
and

5=
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PX=3]=p
1t is evident that forx =0, 1, 2, 3
PIX = x] = ox)p™(1 —p)*~—=

where cfx) denotes the number of sample points that correspond to x successes.
Such a sample point is expressed as a permutation of three letters, with_x of these
being 5's and the rest, 3 — x, of these being f's. Using the formula for the number |
of permutations of indistinguishable objects studied in Chap. 1, we see that

W)= 3)
Thus the density for this binomial random variable is given by
S = (e - py=
To generalize this idea to n trials, we replace 3 by n to obtain the expression
fixy=(Fpr1 ~pr=
This suggests the formal definition of the binomial distribution.-

x=0,1273

x=0,1,2,....n

Definition 3.5.1 (Binomial distribution). A random variable X has a
binomial distribution with parameters n and p if its density is given'by

fy=(F)pr=py=  x=0,1,2,....n
0<p<l-

where n is a positive integer.

To see that the function given in this definition is a density, note that it is non-
negative. Furthermore, by applying the binomial theorem with & = x, @ = p, and
b= 1 — p it can be seen that

> ﬁv_:_: —p)i=[p+ (1 -p)n=1

x=0

as desired.

Example 3.5.1. Recent studies of German air traffic controllers have shown that it
is difficult to maintain aceuracy when working for long pericds of time on data display
screens. A surprising aspect of the study is that the ability to detect spots on a radar
screen decreases as their appearance becomes too rare. The probability of correctly
identifying a signal is approximately .9 when 100 signals arrive per 30-minute period.
This probability drops to .5 when only 10 signals arrive at random over a 30-minute
period. The hypothesis is that unstimulated minds tend to wander. Let X denote the
number of signals correctly identified in a 30-minute time span in which 10 signals .

4 4
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arrive. This experiment consists of a series of m = 10 independent and identical
Bernoulli trials with “success” being the correct identification of a signal. The proba-
bility of success is p = 1/2. Since X denotes the number of successes in a fixed num-
ber of trials, X is binomial. Its density is found by letting n = [0 and p = 1/2 in the
expression for f given in Definition 3.5.1. That is,

fix)y = h W;_Jai x=0,1,2,.

or

__q_,..n_uﬁm__f:mu_u:hu_f x=0,1,2,...,10

The next theorem summarizes other theoretical properties of the binomial dis-
tribution. Its proof is left as an exercise (Exercise 43).

Theorem 3.5,1. Let X be a binomial randor variable with parameters n and P
1. The moment generating function for X is given by
mel(e) = (g +pe)".  g=1-p

I EXl=p=np
3. VarX = ot =npg

Example 3.5.2. The random variable X, the number of radar signals properly iden-

tified in a 30-minute period, is a binomial random wariable with parameters n = 10
and p = 1/2. The moment generating function for this random viriable is

my(t) = (1/2+ 1/2e")®

S, and its variance is o= = npg = E_”___H__”H___.\_U_ 10V,

Its mean is p = ap = 10(1/2) =

In statistical studies we shall usually be interested in ﬁaﬂﬁ:n__w.ﬁsm probability
that the random variable assumes certain values. This probability can be computed

from the density function, f, or from the comulative distribution function, F. Since the
binomial distribution comes into play in such a wide variety of physical applications,

tables of the cumulative distribution function for selected values of r and p have been

compiled. Table I of App. A is one such table. That is, Table I gives the values of
I1 ’ .

Fity = M Muhh_: — pyr-s
x={

for selected values of n and p, where [f] represents the greatest integer less than or

equal to t. Iis use is illustrated in the following example.

m.,uuu.._u_m 3.5.3 Let X denote the number of radar signals properly identified ina |
30-minete time period in which 10 signals are received. Assuming that X is hinomial

—

I
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DISCRETE DISTRIBUTIONS
(a) - - +
o I 2 3 4 5 & 7 8 g 1
k) - - +
0 i 2 3 4 5 6 7 8 g 1o
PIX < T} = 5453
{el
0 i 1 3 4 5 & 7 8 9 i
—_—
PLx< 1] =.0107
() _ -
o ) 3 4 5 6 7 8 g 10
P[2 < X €7] = 9453 — 0107 = 9346
FIGURE 3.2

(a} The probability | that X fies Between 2 and 7 inclusive is the ﬂqa_uuwm_&.. associated with the starred
points; (5) PIX = 7] = 5453 includes the probability associated with 0 and 1; (c} the probebility
associated with the unwanted points 0 -and 1 is .0107; (d) the desired probability is found by
subtraction.

with i = 10 and p = 1/2, find the probability that at most seven signals will be iden-
tified correctly. This m_me&___#_ can be found by summing the density from x = 0 to
x = 7. That is,

:. u
Ekm.:uM_ﬁﬁ:xrhﬁﬁvsx
x=0 .

Evaluating this probability directly cntails a large amount of arithmetic. However, its
valué can be read from Table I of App.A. We first look at the group of values labeled
n = 10. The desired probability of 9453 is found in the column Jabéled .5 and the row

labeled 7, That is,

P[X =7] =F(7) = 9453

Other probabilities can be found. For example, find P[2 =< X = 7). Figure 3.2 suggests
how this is done. Motice that in Fig. 3.2 we want the probability associated with points
that are starred. To determine the desired peobability, we first find the number 7 in
Table 1of App. A. Since the table is cumulative, the probability given, 9433, is the

g
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We begin by considering the mathematical properties of this important family of

random variables.

sson distribution). A random variable X is said to

Definition 3.8.1 (Poi
have a Poisson distribution with parameter k if its density fis given by
TR x=0,1,2,...
D=0~ k>0

The function f given in this definition is nonnegative. To see that if sums to 1,

note that

H Nlmﬁm . .
¥ = um-w:+w+$m_+ma_+...L
=0 *

¢ on the right is the Maclaurin series for % Thus

£ ] ml.m.__nﬁ )
e gkt =e"=1
P

The serie

as desired.
The moment generating function for this distribution is easy L0 obtain, as is its

mean and variance. The following theorem gives these results. Tts proof is outlined
as an exercise. (Exercise 69.)

Theorem 3.8.1. Let X be a Poisson random variable with paTRmeter k.

1. The moment generating function for X is given by
q.__uh_.aha.f = NM_HA_.IE

2. EiX]=k
3. VarX=k

in connection with what are called

Poisson random variables usually arise
observing discrete events in a contin-

Poisson processes, Poisson processes involve
wous “interval” of ime,

the general Poisson
an interval in the usual mathematical sense. For example,

number of white blood cells in a drop of blood. The discrete e
abservation of a white cell,
blood. We might observe the number of times radioactt
nuclear power plant during 2 3-month period. The" discrete event of concem
the emission of radicactive gase
3 months. The variable of interest

rences of the event in an interval
bit tricky, it can be shown using differential equations that X is a Poisson ranc

in a Poisson process is X, the number of oL

_47-

length, or space. We use the word “interval” in desceibing

process with the understanding that we may not be dealing with
we might observe the

vent of interest is the -
whereas the continuous “interval” involved is a dropof
ive gases are emitied from @
s. The continuous interval consists of a period of

of length 5 units. Although the derivation is &

DISCRETE DISTRIBUTIONS

1

variable wi = i
le with parameter & = As, where A is a positive number that characterizes the

underlying Poisson process. To underst i
; and the ph igni ! .
A, note that by Definition 3.8.1 the density H,cn.ww Mm.m“...”w”_ﬂ.mnmnom of the constant

X: h"_U_H.M__mv...

By Theorem 3.8.1 the expected value of X is As. That is, the av
- - : 5 b -
MMNMH&MH,MM M,wﬂ.““”ﬂ n.h. ___.,H_.mﬁ-.nm. in an Ewnﬂ.& of 5 units is As. _Hm,”:_umwﬂwa m_._.___MMMMm
e e ﬁ_._u_m event in 1 unit _u.m.mﬂn. lengih, area, or space is Asfy =
. That &_,_. y m_. parameter Aofa ».unﬁmnﬁ process represents the avera
occurrences of the event in question per measurement unit #
The following steps are used in the solution of an applied muwmmﬁ problem:

Steps in Solving a Poisson Problem

1. Determine the basic unit of measurement being used
2. Determine the average numbe .

iy g r of occurrences of the event per unit. This num-
3. Determine the length or si i i i

b gth or size of the observation period. This number is denoted
4: The random variable X, the numb

. 3 er of occu i i
of size s follows a Poisson distribution E.é.ﬂnm.ﬁﬁm Mﬁﬂmﬁ ntin the nerval

“These steps are illustrated in Example 3.8.1.

Wm_._w”wu_n m.m.rn _H.%n s__._mﬁ_n blood cell count of a healthy individual can average as
i E@G@:ﬁﬂqmc ic E__E:,m.ﬁq of blood. To detect a white-cell deficiency, a 001
Sty L el HW MH.__“MM“M_M Ewnr_“_a_.” the number of white cells X is "._na-_”n H..r__i..
. ina indivi e
there m”.,__wﬂ.nm of a white cell deficiency? TR ML e R
is experiment can be viewed as involvi i
SRk GF HtErest Tih G : ing a TE.mm_Eu process. The discrete
b cumrence of a white cell; the continuous interval is a drop of
Let i e milli

i _.En_m.nam_rwwﬁmﬁn:ﬁa" unit be a cubic millimeter; then s = 001 and A, the aver-
kil with annE.mﬂ_nnowm of the event per unit, is 6000, Thus X is a —uommmc.__..ﬂnanuu
& healthy individual swsﬁnﬂmﬁﬁ:h 6. By Theorem 3.8.1, E[X] = As.= 6.In
o : . on the average, to see six whi !

s it .5 see at most two? That is, what is P[X = 2]7 From Ummaﬁﬁr%wm MWHE. How rare

E I —SEx
PlX=2]= M.miuMm 56
=0 =0 x!
i eT860  gEgl  p—fg2
[ + 1 =+ 2 (==

.wg L) .

5 thWE_MEM of expression directly does entail some arithmetic

] _m_m..__.n._"w_ﬁmﬂqw mnm—mmn &.. the wide appeal of the Poisson model, __-n values of the
b ibﬁﬁnﬁ unction for selected values of the parameter k = As are tabu-
) Pp. A is one such table. The desired probability of (062 is found by

Y8~
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TABLE 3.8
Discrete distributions: A summary
Moment
penerating
Mame Drensity function  Mean  Variance
; i =18 B pe! 1 g

o L=rr~e D<p<l 1—ge' P p?

; 1 T KLk e Ty Znof -AMH. EA
Uniform " 1 a positive imeger " n "

x=0,1,2...,n
Binomial _”._u pHL=—pI™ d<p<l fg+per mp  npll—p)
N a pasitive integer

Bernoulli =01

orpaint  pA(1 = p)'~* d<p<] q + pe' P pll=p)

binoenial 7.

N —r
Hypergeo- \rj\r—x max [0, n— (N —r r r = —n
(£)=5) (01— W=} WL arfr=c\(s
metric _HHU_ = r<=minin r) N Ny W AN =1
n

Megative A=Wy e, IRl 0L, (pE) r A_M_F__

binomial TIL_: PP nepei (1=gqe p 3
Poisson L 5 =042 .. =1 " k

x! k>0

3.9

looking under the column labeled & = 6 in the row labeled 2. Is there evidence of a
white-cell deficiency? There are no rules that say at what point probabilities are con-
sidered to be small. To answer this question, a value judgment must be made. If you
consider .062 to be small, then the natural conclusion is that the individual does have
a white-cell deficiency.

SIMULATING A DISCRETE

DISTRIBUTION

In designing operating systems of various types, one often needs to simulate the
system before it is built. Simulation is usually done with the aid of a computer.
However, the idea behind simulation can be illustrated by using a random digit
table, A portion of such a table is given in Table III of App. A. Its use is illustrated
in the following example.

Example 3.9.1. Table 3.9 presents a portion of the random digit table in the appen-
dix. Let us read a sequence of random tivo-digit numbers from this table. To do so, we
must get a random start. This can be done by writing the integers 1 through 14 on slips
of paper, placing the slips in a bowl, stirring, and drawing one slip at random from the
bowl. The number selected identifies the column in which our starting number is lo-
cated. In a similar way, we can select the row in which the starting number is located.

T e
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TABLE 3.9
Column Randemn digits
Row i 121 (7]
i 10480 15001 01536
) 22368 46573 25595
3 24130 48360 22577
4 42167 93093 06243
5 7570 39073 E1837
5 77921 055907 FI0O8
7 29562 72905 56420
8 06301 91977 (15463
g 89579 14342 63641
10 B5485 36857 43342

Suppose that this process results in the selection of column 2 and row 5. This identi-
fies the random starting point as 39575,

Since we want two-digit numbers, we need only read the first two digits of this
number. Thus our first random number is 3%, Since a random digit table is constructed
in such a way that the digit appearing at each position in the table is just as likely 1o be
one digit as any other, the table can be read in any way. Let us agree o read down the
second column 5o that the next four two-digit numbers are 06, 72, 91, and 14.

The next example illustrates the use of a random digit table in a simple simu-
lation experiment.

Example 3.9.2. Suppose that at a particular airport planes arrive at an average rate
of one per minute and depart at the same everage rate, We are interested in simulating
the behavior of the random variable Z, the number of planes on the ground at a given
time. We will simulate Z for five consecutive one-minute periods. MNote that for cach
of these periods the random variables X, the number of arrivals, and ¥, the number of
departures, are both Poisson variables with parameter & = 1. The density for X and ¥
is obtained from Table 11 of App. A and is shown below:

PIX=10]=P[F=10] = .368

PIX=1]=P¥=1]= 368
PIX=1]=pP{¥=23] =184
PIX =3]=P[F=13] = 061

PlX =4} = Pl¥Y =4] = 015
PX=3]=P[¥=35]=.003
P[X =6]=P[¥=06] =.001
PIX>681=PIY>6]=0
There are 1000 possible three-digit numbers. We divide them into Seven calegories to
reflect the above probabilities. This division is shown in Table 3.10. To perform the

simulation, we read a total of 10 random three=digit numbers vsing the procedure
demonstrated in Example 3.9.1. Assume that at the beginning of the simulation there

l...W...U\




CHAPTER

CONTINUOUS
DISTRIBUTIONS

M: Chap. 3 we leamed to distinguish a discrete random variable from one that is
not discrete. In this chapter we consider a large class of nondiscrete random vari-
ables. In particular, we consider random variables that are called continuous. We
first study the general properties of variables of the continuous type and then pre-
sent some important families of continuous random variables.

4.1 CONTINUOUS DENSITIES

In Chap. 3 we considered the random variable T, the time of the peak demand for
electricity at a particular power plant. We agreed that this random variable is not dis-
crete since, "a prieri”"—before the fact—we cannot limit the set of possible values for
T to some finite or countably infinite collection of times, Time is measured continu-
ously, and T can conceivably assume any value in the time interval [0, 24), where 0
denotes 12 midnight one day and 24 denotes 12 midnight the next day. Furthermore,
if we ask before the day begins, What is the probability that the peak demand will oc-
cur exactly 12.013 278 650 931 2717 the answer is (. It is virtually impossible for
the peak load to occur at this split second in time, not the slightest bit earlier or later.
These two properties, possible values occurring as intervals and the a priori proba-
bility of assuming any specific value being 0, are the characteristics that identify a
random variable as being continuous. This leads us o our next definition.

Definition 4.1.1 (Continuous random variable). A random variable is
continuous if it can assume any value in some interval or intervals of real
numbers and the probability that it assumes any specific value is 0.

S
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CONTINUQUS DISTRIBUTIONS

Mote that the statement that the probability that a continuous random variable
assumes any specific value is 0 is essential to the definition. Discrete variables have
no such restriction, For this reason, we calculate probabilities in the continuous case
differently than we do in the discrete case. In the discrete case we defined a function
f called the density, which enabled us to compute probabilities associated with the
random variable X. This function is given by

" f)=PIX =2

This definition cannot be used in the continuous case because PLX = x| is always 0.
However, we do need a function that will enable us to compute probabilities asso-
ciated with a continuous random variable. Such a function is also called a density.

x real

Definition 4.1.2 (Continuous density),
variable. A function fsuch that

1L flx)=0
2. ﬁht&.u 1

Let X be a continuous random

for x real

b
L Pla=X=h]= —L_nna“_ha for a and b real

is called a density for X.

Although this definition may look arbitrary at first glance, it is not. Note that,
as in the discrete case, f'is defined over the entire real line and is nonnegative. Re-
call from elementary calculus that integration is the natural extension of summation
in the sense that the integral is the limit of a sequence of Riemann sums. In the dis-
crete case we require that 2, . f(x) = 1. The natural extension of this requirement
to the continuous case is that the density integrate to 1, Therefore the necessary and

sufficient conditions for a function to be a density for a continuous random variable
are as follows:

Necessary and Sufficient Conditions
for a Function to be a Continuous Density

1L f(x)=0
2. luhi&n_

In the Emnaﬁ case we find the probability that X assumes a value in some set A by
summing f{x) over all values of x in A. That is,

P[XeAl= ¥ flx).

NEA
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Thus j satisfies properties | and 2 of Definition 4.1.2. Property 3 allows us to use f'lo
find the desired probability. In particular,

3
Pl2=X=3]= hhl&

- —u:muhl 1.25)dx
3

& i D
[
o :
e 2 ]
% _ _E| _.E_a_ _ _E- Ei
; L RS 2 2
2N, =.1875
FIGURE 4.1 um i There are several important points to be made concerning the density in the
Graph of k- ~ continuous case. First, we shall follow the convention of defining fonly over inter-
125r—125 l=x=<3 ; ~ vals for which f(x} may be nonzero. For values of x not explicitly mentioned, f(x) is
- P
=1 =1p elsewhere assumed 1o be 0. In Example 4.1.1 we could have wrilten f as

flx)y=12.5x — 1.25 d=sx=3

‘| with the understanding that f(x) = 0 elsewhere. Second, since the integral of a non-
~ negative function can be thought of as an area, properties 2 and 3 of Definition 4.1.2
can be expressed in terms of areas. In particular, property 2 requires that the total
area under the graph of f be 1. Property 3 implics that the probability that the vari-
able assumes & value between two points a and & is the area under the graph of f be-

is evi “density” i i is ic S . = x = b. These ideas as they apply to Example 4.1.1 are demonstrated

t dent that the term “density” in the continuous case 15 just an extension of the: fween X a and : i ) |

wn_umumﬂ_.nmwamn in the discrete nmu___wn, with summation being replaced by integration. | §* 10 Figs. 4.2{a) and (&), respectively. Third, since P[X = a] = P[X = &] = 0in the
~comtinuous case, v

This is an important notion, as it will allow us to define the concept of expected
g = H.u_”aum_k.mw..m"u«.u_”hm..MA&_”_"mﬂAHM%ﬁ”WmBA;ﬂAwu_v

value in the continuous casesguite naturally. ,

In Example 4.1.1 the probability that the lead concentration in a liter of gasoline lies
.wmnimg 2and 3 gram inclusive, P[.2 = X = 3], is the same as P{.2 < X < 3], the
probability that it lies strictly between .2 and .3 gram. See Fig. 4.2(c}. Fourth, prop-
ertics 1 and 2 of Definitiond.1.2 are necessary and sufficient conditions for a func-

In the continuous case we shall be interested in finding the H..BH._UEJ__ that X assumes
values in some interval [a, b]. Replacing A by [a, b] and m___umnE_.u_.pm integration wo—.
mE.ah_mmonF:.ﬁm_.mio:mnxvﬂmmmonmammnwﬁﬂaﬁmﬂmu of Definition 4.1.2. That is,

Pla<X=bh]= ﬁhi&

Example 4.1.1. .d.rm lead nounnuw..m:o= in gasoline nﬁnnnE_,. ranges from _M—Bmm.”mm
grams per lites. What is the probability that the lead concentralion in & mEno. y ot
Tected liter of gascline will lie between .2 and .3 grams inclusive? To answer this ques-  §
tion, we need a density, f for the random variable X, the number of grams of lead per

liter of gasaline. Consider the function =3 tion to be a density for a continuous random variable X. However, the density
v T — =¥ n&bﬁ: for X nu:.uo. be just any ?:nnam..mﬂmm@?m these conditions. It should be a

flx) = T - mﬁﬁwﬂn = nciion that assigns reasonable probabilities to events via property 3 of Definition

+.1.2, Whether or not the function f given in Example 4.1.1 satisfies this criteria is

.m@mszn. It was chosen for illustrative purposes oitly. Finding an appropriate den-
-Sity 1s not always easy. Some methods for helping in the selection of a density are
discussed in Chap. 6.

The graph of f is shown in Fig. 4.1. The function is nonnegative. Furthermore,

ﬁﬁi& = —nﬂ. 1250 — 1.25)ds

_ Tmum 3 H.ﬁaﬁ | Cumulative Distribution
2 5 & e
. i E — ] e idea of a cumulative distribution function in the continuous case is useful. It is
£ TII. (5) _.mm_”.mL I,M,lm.1| _.m:.—u_ S defined exactly as in the discrete case although found by using integration rather
2 - § - than summation

= 9375 - ( — . 0623) =1

e ~§ =
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The cumulative distribution function for X is

5 5
4 ] £
PlX=x]=F{x) = H At
o B o ;
= 2 - =2 For x < .1 this integral has valve (f since for these values of x, f{r) is itself 0. For .1 =
i} 1 r=.5
0 ﬁ x UL x x s
0 02 03 04 DS Fix)= ‘— fidt = E (12.5¢ — 1.25)dr
Ler) ol ] A u
- r
5 = Tsmmm = H.mu;
A
A = 6.25x — 1.25x + 0625
P
= 3 For x > .5 the integral has value 1 since for these values of x we have integrated the

I
| density over its entire set of possible values, Summarizing, F is given by
1
|
L

X g. 11875
o L L L x 0 x<.l
04 2050 2 Flx) ={6250* - 125x+.0625 .1=x=<3
{el & 1 x>5

FIGURE 4.2 .

(e} [ = fix)dx =1 implies that the total area under the graph of fis 1, (B) P2 =X = 3] = .
[3112.5x — 1.25)dx = 1875 implies that the area under the graph of fhetweenx = 2andx = 3 is
815 (@ PL2< X< 3] =P[2=X=.13]=_1875

What is the probability that the lead concentration in a randomly selected liter of gaso-
line will lie between .2 and .3 gram per liter? To answer this question, we rewrite it in
terms of the cumulative distribution
Pl2=X=3]=PX=3]-PX<2)
=PX=3]-PX=.2] (X is continugus)

Definition 4.1.3 (Cumulative distribution—continuous). .—Lﬂk be = F(.3) - F[.2)
continuous with density £ The cumulative distribution function for X, By s,
denoted by F, is defined by
- Al Fi.3) = 625037 — 1.25(.3) + 0625 = 2500
fooZrix=sq e F(.2) = 6.25(.2)* — 1.25(.2) + 0625 = 0625
) .-.:.H_m

To find F(x) for a specific real number x, we integrate the density over all real |
numbers that are less than or equal to x. F3) - F2)

= .2500 — .0625 = 1875

Pl2=X= 3]

Computing F Continuous Case Note that this agrees with the result obtained in Example 4.1.1 using dircct integration,

Nate also that F(.3) gives the area to the left of .3 shown in Fig. 4.3(a); F(.2) gives the
area to the left of .2 shown in Fig. 4.3(k). When we form the difference F{.3) — F(.2),

PIX=x]=F(x)=| fldr  xreal
we naturally obtain the area between .2 and .3 given in Fig. 4.3(c).

Graphically, this probahbility corresponds to the area under the graph of the density
to the left of and including the point x.

Recall that in the discrete case, the cumulative distribution, £ was obtained
~ from the density by addition; if F was available, fcould be obtained by subtraction,
the operation that reverses addition. The same sort of thing happens in the continu-
0Us case, We obtain the cumulative distribution from the density by integrating f; if
m. is available, we can retrieve f by reversing the integration operation via differen-
Hation. That is, in the continuous case,

Example 4.1.2. The density for the random variable X, the lead content in a liter 0
gasoline, is

fix)=125x— 1.25 d=x=5

55 -5 6~
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1
X al A L 1 1 x
61 02 03 04 05
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FIGURE 43
(a) FI.3) = PIX = 3], ¢b) F(.2) = PX = A RN - FL2)=PL2=Xk= A

Obtaining f from F in the Continuous Case
fix) = F'(x)

Example 4.1.3. In Example 4.1.2, we derived the cumulative distribution
Fix) = 6.25x* — 1.25x + 0625

dA=x=235

Maote that

Flix)=125c— 1.25 d=x=.5

This is, as expected, the expression for the density for X that was given in Example’

4,12,

Uniform Distribution

Perhaps the simplest continuous distribution with which to work is the uniform dis-
tribution. This distribution parallels the discrete uniferm distribution presented in
Exercise 34 of Chap. 3 in that, in a sense, eVents oCcur with equal or uniform prob-

ability, Since it is easy and instructive to develop the properties of this family of ran-
dom variables direcly from the definition, we leave the derivations to you.
Important properties and applications are given in Exercises 3, 6,

~57-

10,11, 18, and 19.
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42 EXPECTATION AND DISTRIBUTION
PARAMETERS

In this section we define the term expected value for continuous random variables,
We also discuss how to use the definition to find the moment generating function,
ihe mean, and the variance of a variable of the continuous type. As you will see, the
definition parallels that given in the discrete case, with the summation operation be-

ing replaced by integration.

_uma:m:.:._ 4.2.1 (Expected value). Let X be a continuous random variable
with density f Let H(X) be a random variable. The expected value of H{X),

denoted by E[H(X)], is given by

E[H(X)] = ﬁmri:&
provided e

is finite.

PEE_ flx)ds

As in the discrete case, the mean or expected value of X is a special case of the

‘above definition.

Expected Value of X

E[X] = ﬁﬂb&

We H.H_,F_.,:.mﬁ the use of this definition by finding the mean and variance of the
random variable X of Examplead.1.1. Recall that, by Theorem 3.3.2, the variance for

X can be found via the computational shorteut

o = Var (X) = E[X?] — (E[X])

Example 4.2.1.  The density for X, the lead concentration in gasoline in grams per

liter, is given by
flx)=125r-125 1=x=35
The mean or expecied value of X is
= E[X] uﬁ.cﬁ_”i&
5
= —_ #(12.5x — 1.25)dx
nﬁ_m.umlu.mmm 3
3 2 |,
nT_m.uu_ﬂ.utl_.muﬁ.uﬂ _ 12513 125(.1)*
3 2 2 2
= 3667 g/liter
-5 8-
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Since integration is over an interval of finite length
ﬁ ] flc)edx

exists. We can conclude that, on the average, a liter of gasoline contains mﬂ_uqcx.u.amﬁ_w
3667 g of lead. How much variability is there from liter to liter? To answer this ques-
tion, we find E[X?] and apply Theorem 3.3.2 to find the variance of X:

E[XY] = ﬁum fl)dx
- ._..map_:muh| 1.25dx
I

=,1433

_[125xt 125 ; 5
4 3

By Theorem 3.3.2,
Var ¥ = E[X?] — (E[X]P = .1433 — (3667)° = .00883

The standard deviation of X is

o = \/Var X = 1/ 00883 = 09396 g/liter

As in the discrete case, the moment generating function for 2 nnﬁm::w:m ran-
dom variable X is defined as E[e'*] provided this expectation exists for ¢ in some
open interval about 0. Its use is illustrated in the following example,

Example 4.2.2. The spontaneous flipping of a bit stored in a computer memory p.m
called a “soft fail." Let X dencte the time in millions of hours before the first soft fail

is observed. Suppose that the density for X is given by
flxy=e"* x>0

The mean and variance for X can be found directiy using the method n_m. Example a.u.. 1.
However, o find E[X] and E[X?], integration by pans is required. This method of in-
tegration, although not difficult, is time-consuming, Let us find the moment generat-

ing function for X and use it to compute the mean and variance. By definition,

myle) = E[e™] = _Mm,nmh“_hu

In this case,

mylt) = ﬁpmr.md_ﬁu

w
= Lh_ gt gy

1
- = m.:s:s_
t—1 o

ml

—

Y
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Assume that || < 1. This guarantees that the exponent (t — 1) x < 0, allowing us to
gvaluate the above integral, In particular,

I
hylr) =1 [t} <1

Since e > 0, [¢"| = ¢ Thus the above argument has shown that
F n_.m:._‘_w_nh‘.__ﬂﬂ

exists, as required in Definition 4.2.1. To use miy (1) to find E[X] and E[X?], we apply
Theorem 3.4.2. Note that

dmyglt) _di -0

dt & - u-n7
%H 2(1-n"?
E[X] uaaMHE =1
1
By =20]

VarX = E[X?] — (E[X])*=2—-1*=

The average or mean lime that one must wait o observe the first soft Fail is | million
hours. The variance in waiting time'is 1, and the standard deviation iz 1 million hours,

To find the distribution parameters p, o2, and o, we can use either Definition
42.1 or the moment generating function technique. In practice, use whichever
method is easier.

It should be pointed out that there is a nice geometric interpretation of the

- mean in the case of a continuous random variable, Imagine cutting out of a piece of

thin rigid metal the region bounded by the graph of fand the x axis, and attempling
to balance this region on a knife-edge held parallel to the vertical axis. The point at

- which the region would balance, if such a point exists, is the mean of X. Thus, w, is
~ a “location” parameter in that it indicates the position of the center of the density
-~ along the x axis. The variance can also be interpreted pictorially. In the continuous
‘case variance is a “shape” parameter in the sense that a random variable with small
~ varance will have a compact density; one with a large variance will have a density

that is rather spread out or flat, '

43 GAMMA, EXPONENTIAL, AND
CHI-SQUARED DISTRIBUTIONS

: ~ In this section we consider the gamma distribution. This distribution is especially

important in that it allows us to define two families of random variables, the expo-

- nential and chi-squared, that are used extensively in applied statistics. The theoreti-

cal basis for the gamma distribution is the gamma function, a mathematical function

 defined in terms of an integral.

— So-—
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Definition 4.3.1 (Gamma function). The function I" defined by
Tia)= %um;u_mnﬁm a >0
b

is called the gamma function.

Theorem 4.3.1 presents two numerical properties of the gamma function that 2
are useful in evaluating the function for various values of e, Tts proof is outlined in

Exercise 26.

Theorem 4.3.1 {Properties of the gamma [unction)

1. Tih=1.
2. Fore> I, D) = (@— 1)a — 1)

The use of Theorem 4.3.1 is illustrared in the next example.

Example 4.3.1

{a) Evaluate _m 23e~t dz. To evaluate this integral vsing the methods of elementary cal-

culus requires repeated applications of integration by parts. To evaluate the inte-
gral quickly, rewrite it as

= -
_ Peidr= _‘ ity
il 0

The integral on the right is T{4). By applying Theorem 4.3.1 repeatedly, it can be
seen that

[[2edz=ray=3-T3)

=3-2.T(2)
=3:2.1.T(1}

=3.2-1=6 2

(b} Evaluate [3 (1/54)x2e~=? dx. To evaluate this integral, we make a change of vari-
able, a technique that is used extensively in deriving the properties of the gamma

distribution. In particula, let z = /3 or 3z = x. Then 3 dz = dx and the problem

becomes
? /58 ) x5z = ﬁ:miun}."u&
1] 1]

= 27/54 ra%n-n&

~4l-
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Howrever,
ﬁnwumdu_m = ‘—umu- lemidz =T(3)
1
=2-F{2)
=2.1-T(1}
=7 1=2
Thus

._, (1754 %™ 3dy = 27454 - 2 =]
"

Modte that since the nonnegative function
Flx) = (1/54)x %"

has been shown to integrate to 1, it can be thought of as being a density for a con-
tinuous random variable X,

It is now possible to define the gamma distribution.

Gamma Distribution

Definition 4.3.2 (Gamma distribution}. A random variable X with density

.H_ul_mlh_..m HVQ
>0
B>0

_ |
0 = Tap

is said to have a gamma distribution with parameters « and .

Although the mean and variance of a gamma random variable can be found
easily from the definitions of these parameters (see Exercise 31), we shall use the
moment generating function technique. As you will see later, it is very helpful to
know the form of the moment generating function for a random variable.

Theorem 4.3.2. Let & be a gamma random variable with parameters o and
. Then

1. The moment generating function for X is given by
mdt) =(l— g~ < g

2. E[X)=cf
3 VarX = ¢f?

-_— ==
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The proof of this theorem is found in Appendix C. .
Figure 4.4 shows the graphs of some gamma densities for a few .._mm:_wm of &
and . Note that e and 8 both play a role in determining the mean and the variance

of the random variable, Note also that the curves are not symmetric and are E.nmﬁ.ﬁ_ !
entirely to the right of the vertical axis. It can be shown that for a > 1, the maxi-

mum value of the density occurs at the point x = {a — 1)3. (See Exercise 32.)

Exponential Distribution

As mentioned earlier, the gamma distribution gives rise to a family of random var- =
ables known as the exponential family. These variables are each gamma random

variables with @ = 1. The density for an exponential random variable therefore as-
sumes the form

Exponential density

.ﬂnkvﬂw_mlhﬁ x>0
Bg=0

~61-
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" The graph of a typical mmﬁuunﬂﬁ density is shown in Fig. 4.4{a). This disiribution
 arises often in practice in conjunction with the study of Poisson processes, which
. were discussed in Sec. 3.8. Recall that in a Poisson process discrete events are be-
- ing observed over a continuous time interval. If we let W denote the time of the oc-
~currence of the first event, then W is a continuous random variable, Theorem 4.3.3
" ghows that W has an exponential distribution.

; _Iﬂ\_wm._.m_s 4.3.3. Consider a Poisson process with parameter A. Let W denote the
time of the occurrence of the first event. W has an exponential distribution with

8= 11,

Proef. The distribution function F for W is given by
Fiw) =P[W=w]=1~-P[W>w]

The first occurrence of the event will take place afier time w only if no occurrences of the
event are recorded in the time interval [0, w]. Let ¥ denote the number of neeurrences of
the event in this time interval. X is a Poisson random variable with parameter Aw. Thus

— R [e]
PIW>wl=P[X=0] u%n gt
- By substitution we obtain
8 Fiw)=1-P[W>w]=1—¢gn
Since in the continuous case the derivative of the cumulative distribution function is

the density
F'{w) = fiw)} = he~=
This is the density for an exponential random variable with 8= 1A

The next example illustrates the use of this theorem,

Example 4.3.2. Some strains of paramecia produce and secrete “killer” particles that

* will cause the death of a sensitive individual if contact is made, All paramecia unable
to produce killer particles are sensitive, The mean number of killer particles emitted
by a killer paramecium is | every 5 hours. In observing such a paramecium, what is
the probability that we must wait at most 4 hours before the first particle is emitted?
Dasmﬂnna.m the measurement unit to be one hour, we are observing a Poisson process
with A = 1/5. By Theorem 4.3.3, W, the time at which the first killer particle is emit-
ted, has an exponential distribution with 8 = 1fA = 5. The density for Wis

Fiw) = (145075 w>p
The desired probability is given by
PIW=4] = ﬁ:a:-&%
[
Hlmuxa_“

=1—e = 5507

~64-

|

T

T e S M

IR

¥

;:'...- L C
L e e

A

i

e



INTRODUCTION TO PROBABILITY AND STATISTICS

Since an expenential random variable is also a gamma random variable, the average 3
time that we must wait until the first killer particle is emitted is

E[W]=af=1-5=35hours

Chi-Squared Distribution

The gamma distribution gives rise to another important family of random variables,
namely, the chi-squared family. This distribution is used extensively in applied sta-
tistics, Among other things, it provides the basis for making inferences about the
variance of a population based on a sample. At this time we consider only the theo-
retical properties of the chi-squared distribution. You will see many examples of its
use in later chapters. :

Definition 4.3.3 (Chi-squared distribution). Let X be 2 gamma random
variable with 8 = 2 and e = /2 for v a positive integer. X is said to have a
chi-squared distribution with y degrees of freedom. We denote this variable
by X3,

Note that a chi-squared random variable is completely specified by stating its
degrees of freedom. By applyingTheorem 4.3.2, we see that the mean of a chi-
squared random variable is v, its degrees of freedom; its variance is 2v, twice its de-
grees of freedom. Figure 4.4(c) gives the graph of the density of a chi-squared
random variable with 4 degrees of freedom., :

Since the chi-squared distribution arises so often in practice, extensive tables
of its cumulative distribution function have been derived. One such table is Table IV
of App. A. In the table, degrees bf freedom appear as row headings, probabilities ap-
pear as column headings, and points associated with those probabilities are listed '
the body of the table. Notationally, we shall use y? to denote that point associated
with a chi-squared random variable such that

IRy =r

That is, %2 is the point such that the area to its right is r. Technically speaking, En.w...
should write 2, since the value of the point does depend on both the probability ]
desired and the number of degrees of freedom associated with the random variable.

However, in applications the value of  will be obvious. Therefore to simplify no- ' §

tation, we use only a single subscript. The use of this notation is illustrated in the

=

following example. =

Example 4.3.3. Consider a chi-squared random variable with 10 degrees of free-
dom. Find the value of y3%.. This point is shown in Fig, 4.5, By definition the area 1o
the right of this point is .05; the area to its left is .95. The column probabilities in Tabie
IV give the area to the left of the point listed. Thus to find x §s, we look in row 10 and

column 95 and see that x5 = 18.3. -
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FIGURE 4.5
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dd NORMAL DISTRIBUTION

~ The normal distribution is a distribution that underlies many of the statistical meth-

ods used in data analysis. It was first described in 1733 by De Moivre as being the

.H _H.E&:w H.a_n.: of the binomial density as the number of trials becomes infinite. This
3 discovery did not get much attention, and the distribution was “discovered” again

: by both Laplace and szmm a half-century later. Both men dealt with problems of as-
tronomy, and each Ln::nn the normal distribution as a distribution that seemingly
described the behavior of errors in astronomical measurements. The distribution is
often referred to as the “gaussian” distribution,

.

Definition 4.4.1 (Normal distribution). A random variable X with density

flx) = E_laq

e D—pdeP g

=00 < L <<
o>
18 said to have a normal distribution with parameters w and o.

One implication of this definition is that

Lﬁs 1 g - gy = |
=Vwo

. To verify this requires a transformation to polar coordinates. Thisg technique is be-
=3 WSH_ the EmBn.Emmnuu level assumed here. A detailed proof can be found in [49]
% hn.ﬁ that .UnwEE_ns 4.4.1 states only that s is a real number and that & is ﬁSEﬂm.

§ You might suspect from the notation used, the parameters that appear in Em

.
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equation for the density for 2 normal random variable are, in fact, its mean and its
standard deviation. This can be verified once we know the moment generating func-
tion for X, Olrnext theorem gives us the form for this important function.

v

Theorem $.4.1. Let X be normally distributed with parameters p and o The
moment generating function for.X is given by

ak._n__.”_ = m.:].qu-..._u

For the proof of this theorem, see Appendix C.
It is now easy to show that the parameters that appear in the definition of the —
normal density are actually the mean and the standard deviation of the variable. 3 et

~ FIGURE 4.6
Graph of the density for a normal random variable with mean | and standard deviation .35

Theorem 4.4.2. Let X be a normal random variable with parameters p and o
Then p is the mean of X and o is its standard deviation.

EEEEn. for an automobile to emit a negative amount of hydrocarbons. When we
say that X is -Eﬂsuhw.&mi_uﬁ—mm. we mean that over the range of physically reason-
able am__.nnm of X, the given normal curve yields acceptable probabilities, With this un-
derstanding, we can m-.“mmmn approximate, for example, the probability that a randomly
selected automobile will emit between % and 1.54 grams of hydrocarbons by munmmw
the area under the graph of £ between these two points. h ¢

Proof. The moment generating function for X is
._.__S.TH_ = mE+nL_L__w

and

diny (1)

& T T

By Theorem 3.4.2 the mean of X is given by ‘Standard Normal Distribution

~There are infinitely many normal random variables each of which is uni

wﬂn:.q“mn by the two parameters & and o To calculate probabilities EMNMWEMMWT
..mmw_m.n_.mn normal curve requires that one integrate the normal density over a partic-
= ,__=_E. interval. However, the normal density is not integrable in closed form. To find
~ areas under the normal curve requires the use of numerical integration ﬁnrzmanmm.

driiy ()
dar =

as claimed. The proof of the remainder of the theorem is left as an exercise.

E[X] = S TR (p et 0 =p

bell- wm.mhﬁ_w Emmwamn.ﬁnmmomsmmﬁu is employed to overcome this problem. By means
w.‘nwmn_w”_mﬂmnﬂmﬂamuma. called the standardization procedure, any question about any
g HE__“_n.H H.Hmw“a can be transformed to an m.p_:_n_munam guestion concerning a
!&:...__H.En - variable with mean 0 and .MEE_E..“_ deviation 1. This particular nor-
nal random variable is denoted by Z and is called the standard nermal variable.

The graph of the density of a normal random variable is a symmetric
shaped curve centered at its mean. The points of inflection occur at u * o

Example 4.4.1. One of the major contributors to air pollution is hydrocarbons emitted
from the exhaust system of automobiles. Let X denote the number of grams of hydro-
carbons emitted by an automobile per mile. Assume that X is normally distributed with.-
a mean of | gram and a standard deviation of .25 gram. The density for X is given by

Theorem 4.4.3 (Standardization theorem
4.3 ). Let X be normal with me
standard deviation o. The variable (X — el is standard normal. Mpa

= 1 Pt 1 25)?

flx) I|f_ﬂ_“.mm|“_

The graph of this density is a symmetric, betl-shaped curve centered at g = | within- =
flection points at u *+ o, or 1 = 25, A sketch of the density is given in Fig. 4.6.

Omne point must be made. Theoretically speaking, a normal random variable
rust be able to assume any value whatsoever. This is clearly unrealistic here. Ttis:

. You have already verified that the transfi ion yi

e : ed nsiormation yields a randoem variable
gﬂﬂ: 0 ,__Mw.m_mw__“awmaﬁ_ an..,_mnou. 1 _ﬁ._”_mn Chap. 3, Exercise 21). To prove that the
= 15 I re i i

* nigues _.EG.H_S ety Fua&n_.ﬁﬁ. nw.:_.nm e use of moment generating function tech-

~Eif e
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The cumulative distribution function for the standard normal random variable
is given in Table V of App. A. The use of the standardization theorem and this table -
is illustrated in the following example. ;

Example 4.4.2. Let X denote the number of grams of hydrocarbons emitted by an
automobile per mile. Assuming that X is normal with ¢ = 1 gram and o = .25 gram,
find the probability that a randomly selected automobile will emit between .9 and 1.54 -
grams of hydrocarbons per mile. The desired probability is shown in Fig. 4.7. To find
P19 = X = 1.54], we first standardize by subtracting the mean of 1 and dividing 3.
the standard deviation of .25 across the inequality. That is,

PlO=X=154]=P[(9~- L}25=(X— IM23 = (154 — 1)}.23]
The random variable {¥ — 1)/.25 is now Z Therefore the problem is o find P[—4 =

Z = 2.16] from Table V. We first express the desired probability in terms of the n:-:ﬁ.

lative distribution as follows:
Pl[-4=Z=2168]=P[Z=216] - P[Z<—4]
=PZ=216] — P[Z= —4] (Z is contineous)
= F(2.16) — F(—.4)

F(2.16) is found by locating the first two digits {2.1) in the column headed z; since the - =

third digit is 6, the desired probability of .9846 is found in the row labeled 2.1 and the

column labeled .06. Similarly, F{—.4) or .3446 is found in the row labeled —0.4 and 4
the column labeled .00. We now see that the probability that a randomly selected au-

tomobile will emit between 9 and 1,54 grams of hydrocarbons per mile is
PO=X=154] =P[-4=Z=<1216]

= F(Z.16) - F(~4)
= 9846 — 3446 = 64

Interpreting this probability as a percentage, we can say that 64% of the automobiles
in operation emit between .9 and 1.54 grams of hydrocarbons per mile driven.

~69 -
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We shall bave occasion to read Table V in reverse. That is, given a particular
probability r we shall need to find the point with r of the area to its right. This point
is denoted by z,. Thus, notationally, z, denotes that point associated with a standard
normal random variable such that

PlZz=gl=r

To see how this need arises, consider Example 4.4.3.

Example 4.4.3. Let X denote the amount of radiation that can be absorbed by an in-
dividuel before death ensues. Assume that X is normal with 2 mean of 500 roentgens
and a standard deviation of 150 roentgens. Above what dosage level will only 5% of
those exposed survive? Here we are asked to find the point x, shown in Fig. 4.8. In
terms of probabilities, we want to find the point x; such that

PIX=x) =05
Standardizing gives
X —500 — 500
P[X= =
[X=x] M S =10 _
= S %= 500 _
1Tl 750 05

Thus (xg — 5000150 is the point on the standard normal curve with 5% of the area un-
der the curve to its right and 95% 1o its left. That is, (x; — 500150 is the point 2.

From Table V the numerical value of this point is approximately 1,645 {we have in-
terpolated). Equating these, we get

X — 500
150

= 1.645

.
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Solving this equation for x, gives the desired dosage level:
= 150(1.645) + 500 = T46.75 roentgens

4.5 NORMAL PROBABILITY RULE .#AU_
CHEBYSHEV’S INEQUALITY

It is sometimes useful to have a quick way of determining which values of a random
variable are commen and which are considered to be rare. In the case of a normally,
distributed random variable, a rale of thumb, called the normal probability rule, can
be developed easily. This rule is given in Theorem 4.5.1.

Theorem 4.5.1 (Normal probability rule). Let X be normally distributed with
parameters . and o, Then
Pl—o<X-—
P[-2e<X—p<le]=
Pl-3oc<X-p<3ic]=99

p<r]=.68

Proaf. Note that division by o yields

P[-o<X—p<a] nil AamnA H_

By Thearem 4.4.3, (X — u)ir follows the standard normal distribution, From Table V.
of App. A,

P[-1<Z<]]=.8413 — 1587 = 6820

This probability can be rounded to .68. The other results given in the theorem are
proved similarly.

.ﬂ.ﬁ normal Hu_d_um,u__uq rule can be expressed in terms of percentages. In ﬁﬁ,
ticular, it implies that in repeated sampling from a normal distribution mm___u_.oﬁf
mately 68% of the observed values of X should lie within 1 standard deviation of its”
mean, 95% should lie within two standard deviations, and 99.7% within 3 mﬁunmaw.
deviations of the mean. Thus an observed value that falls farther than 3 standard de-
viations from p is indeed rare, since such valves occur with probability .003. This
rule will be used later to obtain a quick estimate of the standard deviation of a nor-
mally distributed raridom variable.

Figure 4.9 illustrates the normal probability rule as it applies to the standard
normal distribution. Recall that for this distribption ¢ = 1, 2o = 2, and 3 = 3.

Chebyshev’s Inequality

A second rule of thumb that can be used to gauge the rarity of observed values of
a random variable is Chebyshev’s inequality. This inequality was derived by the.
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FIGURE 4.9
(a) The probability that a normally distributed random varizble will lie within one standard deviation
of its mean is approximately .68 or 68%.
(b) The probability that a normally distribited random variable will lie within two standard deviztions
of its mean is approximately .25 or 95%.
{c} The probebility that & normally distributed random variable will lie within three standard
deviations of its mean is approximately .957 or 99.7%.
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Russian probabilist P. L. Chebyshev {Tchebysheff, 1821-1894). The inequality dif-
fers from the normal probability rule in that it does nor require that the random vari-
able involved be normally distributed. Although we shall prove the theoram in the
continuous setting, continuity is not required. The inequality holds for any random
variable.

Theorem 4.5.2 (Chebyshev's inequality). Let X be a random variable with
mezn p and standard deviation «. Then for any positive number &,

PlIX— | < kol =15

See Appendix C for the proof of this theorem.
Some examples will clarify the difference between Theorems 4.5.1 and 4.5.2.

Example 4.5.1. The viscosity of a fluid can be measured roughly by n__wmﬂ_.ﬁm a

small ball inta a calibrated wbe containing the fluid and observing X, the time that it

takes for the bell to drop 2 measured distance. Assume that this random variable is nor-
mally distributed with 2 mean of 20 s and a standard deviation of .5 5. By the normal
probability rule, approximately 95% of the observed values of X will lie within 1 s
(2 standard deviations) of the mean. That is, X will fall between 19 and 21 s with prob-
ability 95, Since Chebyshev's inequality applies o any random variable, it is appro-
priate here. This inequality guarantees that X will fall between 19 and 21 s (within
k = 2 standard deviations of its mean) with probability at least 1 — 1/#&* = 75. Note
that when the random varizble in guestion is normally distributed, the normal proba-
bility rule yields a stronger statement than does Chebyshev’s inequality.

Example 4.5.2. . The safety record of ar industrial plant is measured in terms of M,
the total staffing-hours wogked without a serious accident. Past experience indicates
that & has & mean of 2 million with a standard deviation of .1 million. A serious acci-
dent has just occurred. Would it be unusual for the next serious accident to occur
within the next 1.6 million staffing-hours? To answer this question, we must assess
P[M = 1.6). Since we have no reason to assume that M is normally distributed, the
normal probability rule is inappropriate here, However, we know from Chebyshev's
ineguality with & = 4 that

Plle<M<24]=1 —(1/16) = 9375
This implies that
PIM = 1.6] + P[M = 2.4] = .0625
Since it is possible for M to exceed 2.4, we can safely say that
PlM = 1.6] < 0625

Mo stronger statement can be made without some knowledge of the shape of the den-
sity of M. However, if it is known that the density is symmetric, then we can go one
step further and state that

PIM = 1.6] = .0625/2 = 03123
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4.6 NORMALAPPROXIMATION TO THE
BINOMIAL DISTRIBUTION

The binomial tables given in this text or in any other text are necessanly limited in
scope due to the fact that n can vary from 1 to infinity and p can assume any value
between 0 and 1. It is impossible to table every combination of r and p. Due to the
advances in computer and calculator technology, it is now possible to find exact bi-
nomial probabilities for any combination of n and p. Prior tothis time, the normal
curve was used to give good approximations of binomial probabilities. The technigue
introduced in this section is still useful in sitwations in which the needed technology
tools are not readily available. To see how such approximations were suggested, we
consider four binomial random variables each with probability of success .4 but with
differing values for n. The densities for these variables, obtained from Table I of App.
A, together with a sketch for each, are given in Fig. 4.10(z) to {ef).

The point to note from these diagrams is made in Fig. 4.10(d). Namely, it is
not hard to imagine a smooth bell curve that closely fits the block diagram shown.
This suggests that binomial probabilities represented by one or more blocks in the

 diagram can be approximated reasonably well by a carefully selected area under an

appropriately chosen normal curve. Which of the infinitely many normal curves is
appropriate? Common sense indicates that the normal variable selected should have
the same mean and variance as the binomial variable that it approximates. Theorem
4.6.1 summarizes these ideas.

Theorem 4.6.1 (Normal approximation to the binomial distribution). Let X
be binomial with parameters n and p. For large n, X is approximately normal
with mean np and variance np(l — p).

The proof of this theorem isbased on the Central Limit Theorem, which will be
considered in Chap. 7. Admittedly, Theorem 4.6.1 is a bit vague in the sense that the
word “large” is not well defined. In the sirictest mathematical sense, “large” means as
n approaches infinity. For most practical purposes the approximation is acceptable for
values of n and p such that either p = Sandnp > Sorp > Sand n{l — p) > 5.

Example 4.6.1. A study is performed to investigate the connection between mater-
nal smoking during pregnancy and birth defects in children. Of the mothers studied,
40% smoke and 60% do not. When the babies were born, 20 were found to have some
sort of birth defect. Let X denote the number of children whose mother smoked while
pregnant. If there is no relationship between matermal smoking and birth defects, then
X is binomial with = = 20 and p = 4. What is the probability that 12 or more of the
affected children had mothers who smoked?

To answer this question, we need to find P[X = 12] under the assumption that
X is binomial with n = 20 and p = 4. This probability, 0563, can be found from Table
Iof App. A. Note that since p = .4 = .5 and np = 20(.4) = § > 5, the normal approx-
imation should give a result guite close to 05635, We shall approximate probabilities
associated with X using a normal random variable ¥ with mean np = 20{.4) = 8 and

standard deviation Vnp(1 — p) = V20(.4)(.6) = V/4.E.

7




INTRODUCTION TO PROBABILITY AND STATISTICS CONTINUQUS DISTRIBUTIONS

1

x| T (=)
S 2l
X fix) e
) TR a -
P :
T | 34s6 ;9 Ir
=a 3 2304 _ :
4 0768
5 oloz ﬁ
- X = »
LEE __:muhm_mqmfa:_aaz_ma:;m_un
x fixy
] oosx S (] 115
1 04D 2t [ :
2 1209 9  FIGURE 4.11
S . w mr,mmm Ik PR 17] = area of shaded blocks = area under curve beyond 11.5.
e S 2007
e w hﬂ = i The number .5 is called the kalf-urit correction for continuity. It is subtracted
B D106 MEZ345678500 from 12 in the approximation because otherwise half the area of the block centered at
2 Hilo 12 will be inadvertently ignored, leading to an unnecessary error in the calculation.
10°] oo From this point on the calculation is routine:
i L N L fx) PIX=12] = P[¥=115]
[i] 0005 B 8L 2
L 047 9 D612 o Tlmvz.mli
w. 2 | ome | .05 WVas 4
2= 3 | g | u.| oo 1 8 V48
o 4 1258 _ 12 1T =PlZ= 159}
5 1859 13 003 o =
§ 2066 | 14 -0 x =1 - .044] = 0559
T | = o 0123456780910 12 14 . ) _ )
! ER O Note that even with n as small as 20, the approximated value of .055% compares quite
favorably with the exact value of .0565. In practice, of course, one would not approx-
T Jix) x fix) i imate a probability ___mm could be found directly from a binomial table. This was done
0 -0 1] o710 2 here oaly for comparative purposes.
1 0005 12 0355
2 0031 13 RITEN 2
3 o4 4 0049 1
g ¢ | o0 [ a5 | oo i 47 WEIBULL DISTRIBUTION
nu 5 746 6 | 0003
= g 244 - -0 ; EH_ RELIABILITY
N = - RLEFES BTN (2 i In 1951 W. Weibull introduced a distribution that has been found to be useful in a
3 1397 0 -0 variety of physical applications. It arises quite naturally in the w.Eﬁ_.u_._ of reliability as
) e ~ we shall show. The most general form for the Weibull density is given by
FIGURE 4.10 : fx) = aBix — im:.mn&?i x>y
Density for X binomial: (@) n =5, p = 4 (fn=10p=4icdn=15p=4 (dn=20p= 4 a >
>0

The implication of this definition of the density is that there is some minimum or

“threshold” value v below which the random variable X cannot fall. In most physi-

m cal applications this value is 0. For this reason, we shall define the Weibull density

with this fact in mind. Be careful when reading scientific literature to note the form
the Weibull density being used.

The exact probability of 0565 is given by the sum of the areas of the blocks cen-
tered at 12, 13, 14, 15, 16, 17, 18, 19, and 20, as shown in Fig. 4.11. The approxiniate
probability is given by the area under the normal curve shown above 11.5. That is,

PlXE=12]=P[F=113]
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Definition 4.7.1 {Weibull distribution). A random variable X is said to
have a Weibull distribution with parameters o and 8 if its density is given by

fix) = aefxPlgmos? x>0
>
B>0

It is easy to verify that the function given in Definition 4.7.1 is a density. (See
Exercise 61.) We shall find the mean of this distribution directly rather than by
means of the moment generating function.

Theorem 4.7.1. Let X be a Weibull random variable with parameters o and 8.
The mean 2nd variance of X are given by

w=a YD1 + UB)

and
P MO 4 2B —

Proof. By Definition 4.2.1,

m::u ﬁhnma?_m-a_&
1

H % Qmaamlﬁ__n_h
a

Let z = e, This implies that
x={zla)® and dr = [ Loz la)B1 dz

By substitution, it is seen that

E[X]= runm_”ﬁ.n“_m-“_”:nmxtpu_:?im

= %u (z/a) " Pe—2dz
o

H _nl_h..n% n_.ﬂmlum..u..
0

The integral on the right is, by definition, [(1 + 148). {(See Definition 4.3.1.) Thus we
have shown that the mean of the Weibull distribution is

p=E[X] =« "*T(1 + L)
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as claimed. The remainder of the proof is outlined as an exercise. (See Exercises 62
and 63.)

The graph of the Weibull density varies depending on the values of o and 3.
The general shape resembles that of the gamma density with the curve becoming
more symmetric as the value of 3 increases.

Example £.7.1.  Let X be a Weibull random variable with 8 = 1. The density for X is
: fi)=ae™™ x>0
a>0
Mote that this is the density for an exponential random variable. That is, the exponentizl
distribution is a special case of the Weibull distribution with & = 1, By Theorem 4.7.1
w=e B 4 8 = (W) T(2) = e 1! = He
ot = oW1 + 2/g) — pt
= N T(3) — (1/a)?
= 2/o? — lig®* = |/a?

Mote that these results are consistent with those obtained by viewing this random vari-
able as being exponential. (See Exercise 33.)

Reliability

As we have said, the Weibull distribution frequently arises in the study of reliabil-
ity. Reliability studies are concerned with assessing whether or not a system func-
tions adequately under the conditions for which it was designed. Interest centers on
describing the behavior of the random variable X, the time to failure of a system
that cannot be repaired once it fails to operate. Three functions come into play
when assessing reliability. These are the failure density f; the reliability function R,
and p, the failure or hazard rate of the distribution. To understand how these func-
tions are defined, consider some system being put into operation at time ¢ = 0. We
observe the system until it eventually fails. Let X denote the time of the failure,
This random variable is continuous and a priori can assume any value in the inter-
val {0, o). The density f; for X, is called the failure density for the component. The
reliability function, R, is defined to be the probability that the component will not
fail before time 1. Thus

R(t) =1 — P[component will fail before time 1]

nTTE&
=1-F(1)

where F is the cumulative distribution function for X, To define p, the hazard rate
function, consider a time interval [f, ¢ + Af] of length Ar. We define the force of
mortality or hazard rate function over this interval by

}Nm\
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Continuous distributions
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FIGURE 14,17

EXERCISES

Section 4.1
1. Consider the function

flx) =kx 2=x=4

{a) Find the value of & that makes this a density for a continuous random

variable.
() Find P[25 =X = 13].
{c) Find P[X = 2.51.
(d) Find P[25 <X =13].

=G

CONTINUQUS DISTRIBUTIONS

]

it i

2. Consider the areas shown in Fig. 4.17. In each case, state what ﬂwo,nm_u_::__ is
being depicted. What is the R_mmc:m_:_u between the areas depicted in Figs.
4.17(e) and (£)7 Between those in Figs. 4.17(d) and ()?

|h 3. Let X denote the length in minutes of a long-distance telephone conversation.

~ Assume that the density for X is given by

Slx) = (1/10}e—=!10 x>0

(@) Verify that fis a density for a continuous random variable.

() Assuming that fadequately describes the behavior of the random variable
X, find the probability that a randomly selected call will last at most

7 minutes; at least 7 minutes; exactly 7 minutes.

-+ {g) Would it be unusual for a cail to last between | and 2 minutes? Explain,

- based on the probability of this occurring.

(d) Sketch the graph of f and indicate in the sketch the area corresponding to
each of the probabilities found in part (&),

- 4. Some plastics in scrapped cars can be stripped out and broken down to recover

" the chemical components. The greatest success has been in processing the flex-

ible polyurethane cushioning found in these cars. Let X denote the amount of

this material, in pounds, found per car. Assume that the density for X is given by

11

fixy = nZx W=x=30

(@) Verify that fis a density for a continuous random variable.
(k) Use fto find the probability that a randomly selected auto will contain be-
tween 30 and 40 pounds of polyurethane cushioning.
{c) Sketch the graph of f and indicate in the sketch the area corresponding to
the probability found in part (&),
s (Continwous uniform distribution, ) A random variable X is said to be uni-
formly distributed over an interval (g, b} if its density is given by

fix) =

a<x<b

{a} Show that this is a density for a continuous random variable.

(B} Sketch the graph of the uniform density.

. (c) Shade the area in the graph of part (b) that represents PLX = (a + 5)/2].

- (d) Find the probability pictured in part ().

(e) Let(c d)and (e, Jf) be subintervals of {a, &) of equal length. What is the re-
lationship between Ple < X < d] and Ple < X =< f]? Generalize the idea
suggested by this example, thus justifying the name “uniform’" distribution.

m If a pair of coils were placed around a homing pigeon and a magnetic field

.. was applied that reverses the earth’s field, it is Eo_..m:n that the bird would be-

come disoriented. Under these circumstances it is just as likely to fly in one

direction as in any other. Let @ denote the direction in radians of the bird’s ini-

tial flight. See Fig. 4.18. @ is uniformly distributed over the interval [0, 2],

(g} Find the density for 8.

= DAl
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\.. Home (0}

" Pidgeon

FIGURE 4.18
# = direction of the initial ight of a homing pigeon measured in radians.

(&) Sketch the graph of the density. The uniform distribution is sometimes
called the “rectangular” distribution. Do you see why?

(c) Shade the area corresponding to the probability that a bird will orient

within /4 radians of home, and find this area using plane geometry.
{d) Find the probability that a bird will orient within o/4 radians of home by

integrating the density over the appropridte region(s), and compare your

answer to that obtained in part {c).

(€} If 10 birds are released independently and at least seven orient within /4 )
radians of home, would you suspect that perhaps the coils are not disori-
enting the birds to the extent expected? Explain, based on the probability -

of this cccurring.
7. WUse Definiion 4.1.2 to show that for a continuous random variable &,

P[X = a] = 0 for every real number a. Hint: Write PIX = glasPla=X=<a].

8. Express each of the probabilities depicted in Fig. 4.16 in terms of the cumula-
tive distribution function F
9. Consider the random vaniable of Exercise 1.
{a) Find the cumulative distribution function F.
(¥} Use Ftofind P[2,5 = X = 3], and compare your answer to that obtained
previously.
(c) Find F'(x), and verify that your result is the density given in Exercise 1.
10. (Uniform distribution. ) Find the general expression for the cumulative distri-

bution function for a random variable X that is uniformly distributed over the

interval (a, b). See Exercise 5.
11. (Uniform distribution.) Consider the random variable of Exercise 6.
{(g) Use Exercise 10 to find the cumulative distribution function F
{b) Find F'{x), and verify that your result is, as expected, the uniform density
over the interval [0, 24].

12, Find the comulative distribution function for the random ﬁmum_u_n of Exercise
3. Use Fto find P[1 = X < 2}, and compare your answer to-that obtained
previously,

13. Find the cumulative distribution fonction for the random variable of Exercise

4. Use F to find P[30 < X = 40], and compare your answer to that obtained

previously.
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14. In parts (a) and (&) proposed cumulative distributions are given. In each case,
find the “density” that would be associated with each, and decide whether it
really does define a valid continuous density. If it does not, explain what
propertty fails.

(g} Consider the function F defined by

i ] x<-—1

Fix)=1ix+1 -1l=x=10

‘ 1 x>0

{b) Consider the function defined by
] x=0

X D<x=1/2
Flx)= _:E.H 1/2<x=1

1 x>1

3 , Section 4.2

15. Consider the random variable X with density
fixy=(1/6)x 2=x=4

() Find E[X].
(&) Find .mﬂmum
{c) Eind g?and o.
16. Let X denote the amount in pounds of _u.o_u._.nqnmﬁn_w cushioning found in a car.
(See Exercisé 4.) The density for X is given by
1
Lq...a.._l_nmm B[=x=50
. Find the mean, variance, E_m standard deviation for X.
17. Let X denote the Wum-.r in minutes of a long-distance telephone conversation.
The density for X is given by

flxy = (/101" x>0

(a) Find the moment generating function, my(1).
(&) Use my (1) to find the average length of such a call.
{c) Find the variance and standard deviation for X,
18. (Uniform distribution.) The ﬁ_n__m:u_q for a random variable X n_uﬁa_._—nn umni-
formly over (g, b) is

fix)y= a<x<éb
Use Definition 4.2.1 to show that
e _ath _(b—a)*
E[X]= 2 and | dﬁw.llﬁ
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JOINT

DISTRIBUTIONS

_‘Hm.r.. hus far interest has centered on a single random variable of either the discrete

or the continuous type. Such randorm variables are called univariare. Problems

do arise in which two random variables are to be studied simultaneously. For ex-

ample, we might wish to study the yield of a chemical reaction in conjunction with
the temperature at which the reaction is run. Typical questions to ask are: “Is the

yield independent of the temperature™ or, “What is the average yield if the temper-

ature is 40° C?" To answer questions of this type, we need to study what are called

mwo-dimensional or bivariate random variables of both the discrete and continuons

type. In this chapter we present a brief introduction to the basic theoretical concepts

underlying these variables. These concepts form the basis for the study of regression

analysis and correlation, topics of extreme importance in applied statistics, (See

Chaps. 11 and 12.)

5.1 JOINT DENSITIES AND
INDEPENDENCE

We begin by considering two-dimensional random variables and their density fonc-

tions. The definitions presented here are natural extensions of those presented fora

single random variable in Chaps. 3 and 4. (See Definition 3.2.1 and 4.1.2.)

Definition 5.1.1 (Discrete joint density)., Let X and ¥ be discrete random
variables. The ordered pair (X, ¥) is called a two-dimensional discrete
random variable. A function fyy such that

Sl y)=PlX=xand Y= y]
is called the joint density for (X, ¥).

!
o
\J"{
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Again, let us point out that in the discrete case some statisticians prefer to use
the term “probability function” or “probability mass function” rather than the term
“density.” We shall use the term “density™ and the notation Siy in both the discrete
. and the continuous cases for consistency of notation and terminology.

Note that the purpose of the density here is the same as in the past—ito allow
us to compute the probability that the random variahle (X, ¥) will assume specific
values. As in the one-dimensional case, fy; is nonnegative since it represents a prob-
ability. Furthermare, if the density is summed over all possible values of X and ¥ it
must sum to 1. That is, the necessary and sufficient conditions for a function tobea
joint density for a two-dimensional discrete random variable are as follows:

Necessary and Sufficient Conditions
for a Function to Be a Discrete Joint Density

L fiplx =0
2 33 fuxy)=1

allx ally

The joint density in the discrete case is sometimes expressed in closed form.
‘However, it is more common to present the density in table form,

Example 5.1.1.  In an automobile plant two tasks are performed by robots. The first
entails welding two joints; the second, tightening three bolts. Let X denote the number
of defective welds and ¥ the number of improperly tightened belts produced per car.
Since X and Y are each discrete, (X, ¥) is a two-dimensional discrete random variable.
Past data indicates that the joint density for (X, ¥} is as shown in Table 5.1. Note that

each entry in the tablé is a nymber between @ and 1 and therefore can e interpreted as
& probability. Funhermore,

z 3
2 D holn y) = 840+ 030+ 020+ - -+ 001 =1
x=0 y=0

as required. The E.o_umm::v_ that there will be no errors made by the robots is given by
PIX=0and ¥ = 0] = f;,,(0,0) = 840
The probability that there will be exactly one error made is

TABLE 5.1
] 1 2 3
B840 030 020 10
D60 010 008 002
0o 005 £04 001

_gE
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.n..u.._..mﬂ_ D.u_ +H.H1...D- Hw
= 060 + .030
= .09

PIX=1land ¥=0] + P[X=0and ¥ = 1]

il i1 B i ightened bolts is P[¥ = 0]. Note that &
The probability that there will be no improperly :m__e.um .
this MBEE_E___ which concems only the random variable ¥, can be obtained by sun
ming fip{x, ) over all values of X, That is,

PIY=01= 3 finlx 0)
a={

=PE=0and¥=0]+P[X=1and¥=10]
+ PX=2and ¥ =0]

= R40 + 060 + .010 = 51

Marginal Distributions: Discrete

Given the joint density for a two-dimensional discrete Enn_oﬂ._..mumﬁm __un... ﬁ; it
easy io derive the individual densities for X and ¥ The manner in A_._.__:n: this is do
is sugzested by the method used to answer the last question posed in Example 5.1,

the density for X alone, we sum over ¥. When the joint density is given in tab)

the joint density table. For this reason, the nmnmEmm. for X and ¥ alone dre called.
marginal densities. This idea is formalized in Definition 5.1.2.

Definition 5.1.2 (Discrete marginal densities). Let .ﬁh ¥Fibea E.__o..
dimensional discrete random variable with joint density fy. The marginal
density for X, denoted by fy, is given by

fulx) = M”%E.__”h ¥

ally
The marginal density for ¥, denoted by f3, is given by

Hry) = M'__wq__”.ﬂh ¥}

alkx

5 i joint densi iable (¥, 1) o
Example 5.1.2. Table 5.2 gives the joint _“_mum_a,.moa the random vari b
mum:..mmm, 5.1.1. It also displays the marginal densities for X, the number of _n_nmmm_‘_m.. 7
welds, and ¥, the number of improperly tightened bolts per car. Note that the Hmmw.svsm
density for X is obtained by summing across the rows of the table; that for ¥'is ob:
tained by summing down the columns. <

Joint and Marginal Distributions: Continuous

The idea of a two-dimensional continuous Hmnmn.ﬁ..._unmv_n and n§m=ao=m..w_m._ﬁm
density can be developed by extending Definition 4.1.1 to more than one variane

—97
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v

1 2 3 L__.__._.H.f
030 020 010 500
Mo 008 00z 080
A0S 004 0o 20
045 .32 013 1.000

3 _|‘cmm=u.=n= 5.1.3 (Continugus joint density). Let X and ¥ be continuous
| random variables. The ordered pair (X, ¥) is called a two-dimensional
continuous random variable. A function f, such that

L fyr(z»=0

e S ]
—m <o

p_ﬁﬁ?ﬁa&&nH
APa<X=bandc=¥=dl = ﬁﬁm&_ ¥) dy d

| fora, b, ¢, dreal is called the joint density for (X, ¥),

Even though the joint density is defined for all real values x and ¥ we shall
follow the convention of specifying its equation onl ¥ over those regions for which
it may be nonzero. Recall that in the case of a sin gle continuous random variable,
 probabilities correspond to areas. In the case of a two-dimensional continuous ran-
dom variable, probabilities correspond to volumes. These ideas are illustrated in

| Examples.13.

Example 5.1.3. In a healthy individual age 20 w0 29 years, the calcium level in the
blood, X, is usually between 8.5 and 10,5 milligrams per deciliter (mg/dl) and the cho-
lesterol level, ¥, is usually between 120 and 240 mgfdl. Assume that for a healthy in-
dividual in this age group the random variable (X, ¥)is uniformly distributed over the
rectangle whose corners are (8.5, 1200, (8.5, 240), (1025, 120, (10.5, 240). That is, as-
sume that the joint density for (X, ¥ is

faxy)=c 8isx=I05

120 = v = 240

-

Tobe a density, ¢ must be chosen so that

RS 240
% cdydr=1
s S

That is, ¢ must be chosen so that the volume of the rectangular solid shown in Fig,

~ o 3la)is 1. To find ¢, we can use geometry or complete the indicated integration as
. shown befow.

~G
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]

140
14240 dy dx

0
P@=X<I0and 125 <V =< 140] = _.‘ E
125

[i]
= 1240 ‘_ (140 — 125)dx
9

= 15240

| 120 240

y define “marginal” densities in the continuous case, we replace summation
gration. This yields the following definition.

0.5 -
_ itiom 5.1.4 (Continuous marginal densities). Let (X, ¥) be a two-
nsional continuous random variable with joint density fyy. The marginal
ty for X, denoted by fy, is given by

5 = [ fat nay

[
£
(=]

I

I

|

|

|

| 123 {140

B B y

[

ey} = hﬂsblﬁ ¥ldx

We illustrate the idea of marginal densities in Examples 5.1.4 and 5.1.5,
= f
o - Example 5.1.4. Let X denote an individual's blood calcium level and ¥ his or her
~ blood cholesterol level. The joint density for (X, ¥) is

FIGURE 5.1 Sl ) = 1240 Bi=x=105
() Walume of the solid whose base is a rectangle with corners (8.5, 120, (8.5, 2400, (10.5, 1200, and 120 =y =240
(10.5, 240} and height c is 1; (5) P[9 = X = 10 and [25 = ¥ = 140} = volume of solid whose base . -
a rectangle with corners (9, 125), (9, 140), (10, 125), (10, 140) and height ¢ = 1/240. The marginal densities for X and ¥ are
240
Flx) = — 11240 dy = 172 8.5 <x=10.5
i20

h_ahﬁ_ﬂc cdy =1

s
frly)= ﬁ 1240 de = 2/240 120 < y = 240
5 S

3.5

105 To find th bability that indivi
" — (240 — 120) dx = 1 e pro| ty a healthy individual has a cholesterol level between 150

% and 200, we can use either the joint density or the marginal density for ¥. That is,
120c(105 - 8.5) =1 E 105 [ 200
_ : JHME_MH_.MMQH_H_\ _ 11240 dy dr = 100240
240c =1 2 55 leso
£ =-1/240 = e .
Let us now use the joint density to find the probability that an individual's calcium — f . o TP _
level will lie between 9 and 10 mg/dl, whereas the cholesterol level is between 125 F PRt ST =200 h.ﬂ_ 2240 dy = 100240
and 140 mg/dl. This probability corresponds to the volume of the solid shown in Fig. * f~
4 " Note that both X and ¥ are uniformly distributed.

5.1(b). This probability is 85

b .\ -
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= Case I
4 ¥ T '
W re F a0 28
JHMu.cmhn:\Mmm_".r th,___w&.r..— ﬁ‘hnh.&._.nh
27 g 127
- nb
y=zx
. X =< 30and ¥ =28 i
= =
(28,28) - FiE = I ‘5 _.* shady
o il Rl R ]  Sine case 11 requires less effort, we find PX = 30 and ¥ = 28] as follows:
i 8 30
u.* L ; ; M - , | .uﬁmm__“.miw.muﬂua % cix dx dy
0 ] 33 i 27 30 33 * u.__h
() [t} =c %J [In 30 — In ¥dy
FIGURE 5.2 : S e [
{a) The joint density flx, y) = el is defined over the triangular region bounded by y = 27, y = 1, = clyIn30f; - .—a In y dy
andx = 33, : e
@ =qin30 -Gy - »f2]
:xmmasn;.mm&uE %&&+: lxity e
A . =¢[ln30—28In28 + 2727 + 1]
uP r.&& alr J, eteayas = ¢(.09) = 1.72(.09) = .15
or

- Itisleft as an exercise to show that the same result is obtained via case T, {Sec Exer-
- cise )

n

PIX =30 and ¥ =< 28] = h hgnw&&.

7 J)

There is one other point to be made in this section. Recall that two events are inde-
- pendent if knowledge of the fact that one has occurred gives us no clue as to the
- likelihood that the other will occur. Suppose that X and ¥ are discrete random vari-
ables such that knowledge of the value assumed by one gives us no clue as to the
ue assumed by the other. We would like to think of these random variables as be-
~ [ g “independent” and would like a mathematical characterization of this property.
B The characterization is suggested by the following argument. Let X and ¥ be dis-

= crete. Let A, denote the event that X = x, and let 4, denote the event that ¥ = y If
" X and ¥ are independent in the intuitive sense, then A, and A; are independent
vents, By Definition 2.3.1

Example 5.1.5.  In studying the behavior of air suppott roofs, the random {EHW
A&, the inside barometric pressure (in inches of mercury), and ¥, the outside pres
are considered. Assume that the joint density for (X, ¥ is given by

Sz v =eix M=y=x=33
c=1/6—27n3327) = 1.72

The region in the plane over which this joint density is defined is shown in Fig. 5.2
The marginal densities for ¥ and ¥ are given by

= [ cixdy=(ctly| =cll —27) W =x=33
= [ ctedy = @[ = et 210 x PIA, N Aj] = PIA,TPIA,)

) SR .
felyi = — elrdx = efln33 — Iny) T=sy=33 bstituting, we see that
¥

Let us find the probability that the inside pressure is at most 30 and the outside pres i H M =3y = P ==
sure is at most 28, That is, let us find P{X < 30 and ¥ < 28). The region over which.
the joint density is to be integrated is shown in Fig. 5.2(8), Integration can be done: |
with respect to v and then x or vice versa, In the former case the problem must be sp
into two pieces, since the boundaries for y change at the point (28, 28). In the la
case integration can be accomplished more easily. The integrals required in the b
Cases are .

v ¥} = felx)fe ()

H_munam that, at least in the discrete case, independence implies that the joint den-
ity can be expressed as the product of the marginal densities. This idea provides the

)Q_....
E

= T
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basis for the definition of the term “independent random variables” in both the 3
_crete and continuous cases.

Definition 5.1.5 ﬁ.imw.m__nmiqnznci variables). Let X and ¥ be mm_acH
variables with joint density fy, and marginal densities f;, and f;, _.nmﬁm.nn..iw
X and Y are independent if and only if L8

S (e ) = falx)fe ()
for all x and y.

Example 5.1.6

(2} The random variables X, the nuember of defective welds, and ¥, the ===__um;m5
properly tightened bolts per car of Examples 5.1.1 and 5.1.2, are not Emnuﬂ&ﬂ.
To verify this, note that from Table 5.2 2

Jar(0,0) = B4 5 9(91) = 819 = f(0) f,(0)

{b) The random variables X, an individual's blood calcjum level, and ¥ his of wm
blood cholesterol level as described in Examples 5.1.3 and 5.1.4, are :ﬁ%ﬂunﬁ.
To verify this, note that =

Jarlx 3) = 1240 = 12 - 24240 = fi(x) fi-(y)

An important poin should be made here. The assumption that (X, ¥) is ==_mm=_m_
distributed leads to the conclusion that X and ¥ are independent. If this n__usn"ﬁﬁ ”
is medically unsound, then another more realistic density should be sought tods-f
scribe the bekavior of the two-dimensional random variable (X, ¥). B

(c) The random variables X and ¥, the inside and outside pressure, respectively, on s w.
‘air support roof of Example 5.1.5 are not independent. This is seen by noting th f-

Sl ¥) = elx # o1 — 2TMx)e(in 33 — In y) = fy(x) fi (¥}

The assemption of nonindependence here is realistic from a physical H_....,__d_.__"_n
view,

The exercises for Sec. 5.1 provide some practice in dealing with these they
retical ideas. You will see their relationship to data analysis in chapters to come. -

5.2 EXPECTATION AND COVARIANCE

In this section we introduce the idea of expectation in the case of a two-dimensiond}
random variable. We also study a specific expectation, called the covariance, Ea._n =
useful in describing the behavior of one variable relative to another. 5

We begin by extending Definitions 3.3.1 and 4.2.1 to the waaﬁHEnanaE_
case.:

i o
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pefinition 5.2.1 (Expected value). Let (X, ¥) be a two-dimensional random
variable with joint density fy- Let H(X, ¥) be a random variable. The
expected value of H(X, ¥), denoted by E[H(X, ¥)] is given by

1. EHX. =3 ¥ Hx ¥ folxy)

allx aliy

provided > % |H(x, ¥)l fiw (% ) exists for (X, ¥) discrete;
dix ally

2. BN = [ [ Hes ) frrtx )y de

£

provided *. E mm.q_”.ﬁ ‘,.,_u__.‘wla. ¥hdy dx exists for (X, ¥) continuous.

As in the case of one-dimensional random varigbles, some functions of X and
Y are of more interest than others. In particular, if the joint density for (X, ¥) is

~ known, then the average value of X and of ¥ can be found easily. These are deter-
~ mined as follows:

Univariate Averages Found Via the Joint Density

EX]= 3 ¥ xforlxny) for (X, ¥) discrete

Az ally
E[¥1=3 ¥ “__..‘mlh ¥}
allx ally
E[X] = ‘u Lﬁ X fyp(x vydedy  for (X, ¥) continuous

20 = [ [ yfutnparay

=

Examples 5.2.1 and 5.2.2 illustrate the use of this definition,

Example 5.2.1. The jaint density for the random .._E.EEn (X, ¥) of Example 5.1.1 is
given in Table 3.3. X denotes the number of defective welds and ¥ the number of im-
properly tightened bolts produced per car by assembly line robots. Let us use Defini-
tion 5.2.1 to find E[X], E[¥], E[X + ¥], and E[XY].

.m_”N.“_ = M M. H‘gﬂﬁ.ﬂ_ u._w

=0 y=0
= 0(.840) + I.030) + O.020) + 0C.010) + 1(.060) + -
=.12

=+ 200010

94
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TABLE 5.3
T 1 2 3 __ Syt
0 B0 030 00 g |
] 060010 008 oo ..w%
2 010 005 004 o 020
A 8100 045 g3 o _ 1.000
2 3
E[¥] = M: Mn Yorlz ¥)
x=ly=
= 0C840) + 1(.030) + 2(.020) + 3(010) + 0(.060) + - . . + 3001
= .148 .
2 3
BXHT]= 5 3 6+ e 3)
Crashy=
= 0+ 0)(.840) + (0 + 1)(030) + (0 + 2020} + - - . + (2 + 3).001)
_ .Mmm . ;

2. 3
E[X¥] = HMH, Mg iy (x, ¥)

= (0 0)(.840) + (0 - 100300 + (0 200200 + -+ - + (2 - 3).001)
= .064 .

There are two points to be made Firs

i nt : t, both E[X] and were fi
density and U.._E.Ecan 5.2.1, These expectations could _m..ﬂ wnM...nﬁ% i
from the marginal densities and Definition 3.3.1, (See Exercise 18,)

E[X + ¥ = E[X] + E[¥]. Thi i i i
- ] L¥]. This result is consistent with the rules of

und just as easily
Second, note that

Example 5.2.2, The joint density for the random variable (X, I}, where X denotes |

the calcium level and ¥ denotes the i
S, cholesteral level in the blood of a healthy individ-

farlny) =240  85=x=<1p5

120 =y =240
‘or these variables,

B0 = [ [ syt yhay e

__ (105 rz4
A {1240 ey dx
0.5 108
= (12} dy = HE_ = 0.5 mg/dl
BS

~9 5

d via the joint

=

expectation given ; M This term is defined as follows:

JOINT DISTRIBUTIONS

E[¥] —M—M Wer(x ¥) dy dx

—_a ﬁs (11240) dy dx

ES5 20

S
1240 | yi2
2.5

240
dx
120

s 105
- ____mac h ufmﬂ_ub__.nu—mcﬂm___&
x

.5

EXy) = ﬁ — " Wi y) dy di

105 r2sd
- 5 (1240 dy d
BS [}
40

20
s
= 1/240 ﬁﬁ_ dv
120

1.5
21,600y dx
s

= 710
85

= 17240
3.5

= (21, 6002400 x%2)

Covariance

Occasionally the expected value of a function of X and Y is of interest in its own
right. For instance, in Example 5.2.1, E[X + Y] gives the theoretical average num-
ber of errors made by the robots overall. However, we shall be concerned primarily
- with those expectations that are needed to compute the covariance between X and ¥,

Definition 5.2.2 (Covariance). Let X and ¥ be random variables with )
means p and gy respectively. The covariance between X and ¥, denoted by

Cov{X, ¥} or oyyis given by )
CoviX, ¥) = E[(X — (¥ — pp)]

‘ Note that if small values of X tend to be associated with small values of ¥ and
large values of X with large values of ¥, then X — uy and ¥ — g, will usually have
the same algebraic signs. This implies that (X — u,)(¥ — w, ) will be positive, yield-
ing a positive covariance. If the reverse is true and small values of X tend to be asso-
ciated with large values of ¥ and vice versa, then X — iy and ¥ — gy will usually
have opposite algebraic signs. This results in a negative value for (¥ — p (¥ — ey},
vielding a negative covariance. In this sense covariance is an indication of how X and
¥ vary relative to one another.

-0 4 -
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Covariance is seldom computed from Definition 5.2,.2, Rather, we
the following computational formula whose derivation is left as an exercise ¢
Exercise 24.)

Theorem 5.2.1 (Computational formula for covariance)

: . Cov(X, ¥} = E[XY] — E[X]ETY]

We illustrate the use of Theorem 5.2.1 by finding the covariance for the:
dom variables of Examples 5.2.1 and 5.2.2. ;

Example 5.2.3

(a} The covariance between X, the number of defective welds, and ¥, the numbey
improperly tightened bolts of Example 5.2.1, is given by

Cov(X, ¥) = E[XY] — E[X]ELY]
=.064 — ((12).148) =
Since Cov(X, ¥) > 0, there is a tendency for large values of X to be associ
with large values of ¥ and vice versa. That is, a car with an above average n

of defective welds tends also to have an above average number of .H—Ham.&
ﬂm_:nn_um bolts and vice versa, g

blood cholestero] level, has covariance given by

Cov(X, ¥) = E[XY] — E[X]E[Y]
=-1710 — (9.5)(180) =

A covariance of 0 implies that knowledge that X assumes a value above its
gives us no indication as the value of ¥ relative to its mean.

The fact that the covariance between X and ¥is 0 in Example 5.2.2 is not a oo~
incidence. It is, of course, due to the fact that E[XY] = E[X]E[¥]. It can be shows
that this property will hold whenever the random variables X and ¥ are independent,
as they are in Example 5.2.2. This important result is ?—.:Ennu in the w@:ﬂc_:ﬂ.
theorem:

Theorem 5.2.2. Let (X, ¥) be a two-dimensional random variable ____:E Jjoint
%:EQ.__.».T i X and ¥ are independent then

E[XY] = E[X]ETY]

J..a_&_. We shall prove this theorem ip the contineous case, The proof in the &mﬂnﬁ i =
case is similar, Assume that (X, ¥) has joint density fyy and that X and ¥ are indeper §
dent. Let fy and fy denote the marginal densities for X and ¥, respectively. By UamE.
tion 5.2,1,

R

97~
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[ ]

-1 - 1 Silx)

12
172

14 1

174 0
14

1] 1’4
1/4 Q 0

L4 Lig

£xr) = [ [ furC 0y d

% .ﬁ el felyddy de (X and ¥ are independent)

[ sntor [ sty ds

_. 3 (RETY)dx

= &1Y1 [ shix)ds = EIVIELX)

An immediate consequence of this theorem is the result that we have already

' noted and observed relative to Example 5.2.2. In particular, if X and ¥ are indepen-

dent, then Covi(X, ¥) = 0. Unfortunately, the converse of this statement is not true.
That is, we canno! conclude that a zero covariance implies independence. The next

‘example verifies this nﬁannzoﬂ.

Example 5.2.4. The joint density for (X, ¥} is given in Table 3.4, from which we see
that E[X] = /2, E[¥] = 0, and E[JXY] = {, yielding a covariance of (. It is also easy to
see that X and ¥ are nor independent. The value assumed by ¥ does have an effect on that
assumed by X. In fact, X = ¥ The value of ¥ completely determines the value of X!

.nﬂ.mum__ow gives us only 2 very rough idea of the relationship between X and
¥. We are concerned only with its algebraic sign and not with its magnitude, How-

 ever, covariance is used to define another measure of the relationship between X and

¥ which is easier to interpret. This measure, called the correlation, is discussed in
the next section.

53 CORRELATION

Recall that the covaniance between X and ¥ gives only a rough indication of any as-
sociation that may exist between X and ¥. No attempt is made to describe the type
or strength of the association. Often it is of interest to know whether or not two ran-

‘dom variables are finearly related. One measure used to determine this is the Pear-

son coefficient of correlation, p. In this section we define this theoretical measure of
linearity; in Chap. 11 we shall discuss how to estimate its value from a data set.

~ G —
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Definition 5.3.1 {Pearson coelficient of correlation). Let X and ¥Ybe
X

random variables with means px and jty and variances oz and ¥,
respectively. The comelation, Pxy between X and ¥ is given by

Cov(X, ¥)

Par =\ (Var X) (Var V) P=fo+ BiX

un"b_u.v.‘w_kv

Since we already know how to calculate each of the terms appearing in the
above definition, calculating pxy (or p) from the joint density for (X, ¥)iseasy. The —
question is, “How do we interpret p ONCe we know its numerical value?" To inter-
pret p, we must know its range of possible values. The next theorem shows that, un- » i

Tike the covariance which can assume any real value, the correlation coefficient i aa =3 ¥
.uoE__nnP i

Theorem 3.31. The correlation coefficient fxy for any two random variables X
and ¥ lies betwesn —1 and 1 inclusive. E

i

The proof of this theorem is found in Appendix C. .

The next theorem indicates how p measures linearity. The point of the theo-
rem is twafold. First, if there is a linear relationship between ¥ and ¥, then this fact
is reflected in a correlation coefficient of 1 or — L. Second, ifp=1lor—
linear relationship exists between X and ¥ The formal statement of this

given in Theorem 5.3.2.

(d}

Theorem 5.3.2. Let X and ¥'be random variables with Snﬂm#g.onnﬁnmma
.qn_rﬂwnprqﬁ_uH._nmnnaps__mwu.ma#m_mmﬂmaaﬁuﬁ_aﬁﬂaﬂmmn {
_mF #0 2 - 2

2

See Appendix C for the proof of this theorei.
if p = 1, then we 52y that X and Y have perfect positive correlation. F'e
positive correlation implies that v=p8+B% where 8, > 0. This in turm |
that small values of X arc associated with small values of ¥, and large values
with large values of . Perfect negative correlation implies that W= p
G where B, < 0. Practically speaking, this means that small values of X are?
y with large values of ¥ and vice versa. Unfortunately, random variables seldo
cume the easily interpretable values of 1 or — 1. However, r
do occur and indicate & linear trend. That is, they indicate that, even
gle straight line passes through the points of positive probability, there is.
line passing through the graph with the property that most of the probal
sociated with points lying on or neat this straight line. It is equa i use Table 5.3 to compute ELX?
alize what Theorem 5.3.2 is mot saying. If p = 0, we say i E[X?] = o2 1 and ETY?], For these variables
uncorrelated, but we are Rof saying that they are unrelated. We aré saying ! e i (90) + 13(.08) + 2%.02) = .16
relationship exists, then it is not linear e ideas are iltustrated in FIg. 22T S8 o e Y2 = 0%(910) + 1%(045) .

{e}

1 positive correlation: p = .

" p=18>0 — :

gative correlation: p = + 81 > 0, all points ffe on a straight 1

: b rp=-1 ; straight line wi iz

H___w exhibit a linear :.n_&_ _WLUMH all ﬂ.:ﬁ lie uz‘pmhmw.ﬁnm_““ﬂ._mwg:cn slope;

" but the relationship s o | uncorrelated: p = sttt negative slope;
celionshi s ok it (2 MO o O o e AP o

=1, uu_um_._nm are Hm_.—m_u—._.-__..‘.

«.n....,... ﬂmﬁ 531, To fin
1 =k d the orrelati
the number of j C tion between X, th
improperly tightened bolts m_annnmm ““a_ﬁ”nwwmhmnnn_..,n o
embly line ro-

. . + 24.032) + 37
- 1ple 5.2.1, we 3¥.013) = 29
<= found that E[X] = .12 and E[¥] = .148. Thercfore

~99 -
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Var X = E[X2] — (E[X] = .16 — (.12 = .146
Var ¥ = E[¥?] — (E[Y])® = .29 — (.148)* = 268
Tn Example 5.2.3 we found that Cov(X, ¥) = .046. By Definition 5.3.1,
_ Cov(XL¥) D46
P = X Var ¥ V/(.146)(268)

Since this value does not appear to lie close to 1, we wouald not expect the observed
ﬁ.__amm of X and ¥ o exhibit a strong linear trend. .

=23

Exercise 36 points out the relationship between correlation and independence..
5.4 @DZEH,EQZPF DENSITIES AND

REGRESSION

In this section we consider two topics that are closely related. These are conditional —
densities and regression. To see what is to be done, let us reconsider Example 5.1.5. -

Example 5.4.1. In Example 5.1.5 we considered the random variable (X, ¥) iw_.ﬂn & i
| The use of this definition is illustrated in Example 5.4.2.

X is the inside and ¥ the outside barometric pressure on an air support roof. Suppose
we are interested in studying the inside pressure when the outside pressure is fixed at
y = 30. There are three impartant points to understand:

1. The ingide pressure will vary even though the outside pressure is constant. There-
fore it makes sense to talk about “the random variable X given that y = 30." We
shall denote this new random variable by X|y = 30.

2. Since X|y = 30 is a random variable in its own right, it has a probability, distrib-
ution, Therefore it makes sense to ask, “What is the density for X]y = 307" We .
shall cali this density the “conditional density for X given that y = 30" and shall
denote it by fyj, = 50 '

3. Since the inside pressure varies even though the outside pressure is constant, it
makes sense to ask, “What is the mean or average pressure on the inside of the roof
when the outside pressure is 307" That is, we can ask, “What is the mean value

for the random variable X|y = 307" This mean value is denoted by E[X|y = 30] -
O fhyjy =30 : -
In general, the conditional density for X given ¥ = y, denoted by f,, is a :
function that allows us to find the probability that X assumes specific values based
on knowledge of the value assumed by the random variable ¥. To see how to define
Sy let us assume that (X, 1) is discrete with joint density fy and marginal densities-
¥

fy and fy. Let A, denote the event that X = x and A, denote the event that ¥ =
From Definition 2.2.1,

; P4, NA
wﬁ_rmulﬂmw
Substituting, we see that
e PIX=xamd¥=y] _fulxy)
PIEnr=yl= PIY=y] £
~lol~

.| 2 The conditional density for ¥ given X = x, denoted by fy., isgiven by
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the discrete case the conditional density for X given Y =y is the ratio of the joint
density for (X, ¥) to the marginal density for ¥. This observation provides the mo-
ation for the definition of the term “‘conditional density” in both the discrete
d continuous cases. In the formal definition, note that the roles of X and ¥ can be

versed.

“Definition 5.4.1 (Conditional density). Let (X, ¥) be a two-dimensional _
- random variable with joint density fiy and marginal densities fy and fy. Then

H The 8-..&5:& density for X given ¥ = y denoted by fy, is given by _

"‘unH.._.‘n.ﬂ. V_U_ !
B =" 10

fely) >0 _

o .H.W.v.ﬁh..q uud.w

.ﬂ.u._....ﬁu._u. .l felx)

Je(x) >0

ey - Example 54.2. The joint deasity for the random variable (¥, V), where X is the in-

4ide and ¥ is the outside pressure on an air support roef, is given by
Sz ¥) = olx =y=x=33

3 ¢ =16 — 27 In 33/27)

‘From Example 5.1.5 the marginal densities for X and ¥ are

T R =c(l-2Mx) 2T=x=33

- and

Frl¥ =c(in33 — Iny) 2T=y=33

e The conditional density for X given ¥ = y is

_folx )
Fr(y)
_ gz _ 1
T efin33—Iny) x{n33-—lIny)

To find the probability that the inside pressure exceeds 32 given that the outside pres-
sure is 30, we let y = 30 in the above expression. We then integrate the conditional
- density over values of X that exceed 32, That is, -

Felx)

y=x=133

3 1
PLx>32]y =30] ua dx

32 x(In 33 — In 30)
__ Imx ¥
T In33-1n30|n
_In33—In32

“Wm33—mn -2

~Jel -
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