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Chapter (1) 

The Catenary 

 

Definition(The common Catenary): 

The catenary is the curve in which a uniform chain or string hangs 

when freely suspended from two points𝐴&𝐵 

    Denote the tension at the lowest point 

y 𝑇0 ,this will be horizontal. Let𝑠 

be the length of chain measured from  𝑃 

to any point 𝑄 .Let the tension at 𝑄𝑝 be 𝑇 

and let its inclination to the horizontal be 𝜓.
 

Let the weight per unit length of the chain be 𝜔. 

   The part of the chain 𝑃𝑄 will be in  

equilibrium under the action of three forces, its weight  𝜔𝑠 ,𝑇0,and 𝑇 

, the tensions at 𝑃 and 𝑄 . 

The intrinsic Equation of the catenary: 

   Resolving vertically and horizontally weget, 

𝑇 sin 𝜓 = 𝜔𝑠        ,       𝑇 cos 𝜓 = 𝑇0 
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   For convenience we introduce another constant 𝑐 ,which is such 

that   𝑇0=𝜔𝑐 . Then 

𝑇 sin 𝜓 = 𝜔𝑠        ,       𝑇 cos 𝜓 = 𝜔𝑐     

    Dividing  

𝑠 = 𝑐 tan 𝜓                            (𝑖) 

 This is the intrinsic equation of the curve, (𝑐 is called the parameter 

of the catenary). 

The cartesian Equation of the catenary: 

   To find the Cartesian equation of the curve we flow: 

 Since      tan 𝜓 =
𝑑𝑦

𝑑𝑥
  , then from (𝑖)

𝑑𝑦

𝑑𝑥
=

𝑠

𝑐
 

Consider a small element 𝛿𝑠 of a curve joining two points 𝑄 and 

𝑈 on the curve. Let the coordinates of  𝑄 and 𝑈  be (𝑥, 𝑦)&(𝑥 +

𝛿𝑥, 𝑦 + 𝛿𝑦)respectively. Then 

(𝛿𝑠)2 ≅ (𝛿𝑥)2 + (𝛿𝑦)2 

Dividing by  (𝛿𝑥)2 then (𝛿𝑦)2 

respectively we get: 

(
𝛿𝑠

𝛿𝑥
)

2

≅ 1 + (
𝛿𝑦

𝛿𝑥
)

2

 

 

 



Statics (II)                                                          Dr.Mohamed Abd El-Aziz 
_______________________________________________________ 

1. 3 
 

and 

(
𝛿𝑠

𝛿𝑦
)

2

≅ (
𝛿𝑥

𝛿𝑦
)

2

+ 1 

   When 𝛿𝑠, 𝛿𝑥, 𝛿𝑦 → 0 , the above equations becomes 

(
𝑑𝑠

𝑑𝑥
)

2

= 1 + (
𝑑𝑦

𝑑𝑥
)

2

    (𝑖𝑖) 

and 

(
𝑑𝑠

𝑑𝑦
)

2

= (
𝑑𝑥

𝑑𝑦
)

2

+ 1                           (𝑖𝑖𝑖) 

(𝑖𝑖) gives  

(
𝑑𝑠

𝑑𝑥
)

2

= 1 + (
𝑠

𝑐
)

2

 

∴     
𝑑𝑠

𝑑𝑥
=

√(𝑐2 + 𝑠2)

𝑐
 

∴   𝑑𝑥 =
𝑐 𝑑𝑠

√(𝑐2 + 𝑠2)
 

∴   𝑥 = 𝑐 𝑠𝑖𝑛ℎ−1 
𝑠

𝑐 
                        (𝑖𝑣) 

or               𝑠 = 𝑐 sinh
𝑥

𝑐  
                             (𝑣) 

provided 𝑥 = 0  when  𝑠 = 0 . 

(𝑖𝑖𝑖) gives  
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(
𝑑𝑠

𝑑𝑦
)

2

= 1 + (
𝑐

𝑠
)

2

 

∴     
𝑑𝑠

𝑑𝑦
=

√(𝑐2 + 𝑠2)

𝑠
 

∴   𝑑𝑦 =
𝑠 𝑑𝑠

√(𝑐2 + 𝑠2)
 

∴  𝑦 = √(𝑐2 + 𝑠2) 

 i.e.                               𝑦2 = 𝑠2 + 𝑐2                                (𝑣𝑖) 

provided 𝑦 = 𝑐  when  𝑠 = 0&𝑥 = 0 

 Substituting from (𝑣) in (𝑣𝑖) 

 .                               𝑦2 = 𝑐2 (1 + 𝑠𝑖𝑛ℎ2 𝑥

𝑐
) 

= 𝑐2𝑐𝑜𝑠ℎ2(
𝑥

𝑐
) 

∴    𝑦 = 𝑐 cosh (
𝑥

𝑐
)                         (𝑣𝑖𝑖𝑖) 

This is the Cartesian equation of the catenary. 

The tension at any point: 

  Since     

𝑇 sin 𝜓 = 𝜔𝑠        ,       𝑇 cos 𝜓 = 𝜔𝑐     

  then    𝑇2 = 𝜔2(𝑠2 + 𝑐2) 
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which from (𝑣𝑖) gives   

𝑇2 = 𝜔2𝑦2 

∴     𝑇 = 𝜔𝑦 

Thus,the tension at any point of the catenary is proportional to the 

height of the point above the  𝑥 −axis   which is usually called the 

(directric). 

The Lightning and telephone wires: 

  When 𝑐   is large, from equation (𝑣𝑖𝑖), 

∴    𝑦 = 𝑐 cosh (
𝑥

𝑐
) =

𝐶

2
(𝑒𝑥 𝑐⁄ + 𝑒−𝑥 𝑐⁄ ) 

= 𝑠 =
𝑐

2
{1 +

𝑥

𝑐
+

𝑥2

2𝑐2
+  + ⋯ + (1 −

𝑥

𝑐
+

𝑥2

2𝑐2
− ⋯ )} 

= 𝑐 +
𝑥2

2𝑐
+ ⋯ 

   i.e.            𝑦 − 𝑐 ≅
𝑥2

2𝑐
                 (𝑋)        provided 𝑐 is large. 

 In this case the curve is approximately a parabola of latus rectum 2𝑐 

Definition (the span): The span is distance 𝐴𝐵 ,ie. the 

distancebetween the two hangs points 𝐴&𝐵. 

If 𝑘is half the span, half the length of the chain is given by: 
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𝑠 =
𝑐

2
{1 +

𝑘

𝑐
+

𝑘2

2𝑐2
+

𝑘3

6𝑐3
 + ⋯ − (1 −

𝑘

𝑐
+

𝑘2

2𝑐2
−

𝑘3

6𝑐3
… )} 

=
𝑐

2
{

2𝑘

𝑐
+

𝑘3

3𝑐3
+ ⋯ } 

= 𝑘 +
𝑘3

6𝑐2        provided 𝑐 is large. 

∴      𝑠 − 𝑘 =
𝑘3

6𝑐2
                          (𝑋𝑖) 

Definition (the sag): The sag is the difference between the 

coordinates of 𝑦 at values of𝑥for the two point𝑃&𝐵.Or the normal 

distance from the lowest point 𝑃 to the span line 𝐴𝐵. 

The Relation between the span and sag: 

If ℎ is the sag, then for 𝑥 = 0  , 𝑦 = 𝑐 and 𝑥 = 𝑘 , 𝑦 ≅ 𝑐 +
𝑘2

2𝑐
 those 

come from (𝑋) .Her we can get: 

ℎ =
𝑘2

2𝑐 
            (∗) 

this leads to 1 𝑐2⁄ = 4ℎ2 𝑘4⁄  

then from (𝑋𝑖) we have: 

𝑠 − 𝑘 = 𝑘3 6𝑐2 = (𝑘3 6⁄ ). (1 𝑐2⁄ ) = (𝑘3 6⁄ ). (4ℎ2 𝑘4⁄ )⁄ = 4ℎ2 6𝑘⁄  

∴    2(𝑠 − 𝑘) = (8 3⁄ ) . (ℎ2 2𝑘⁄ ) 
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 this means that the difference between the length of the chain 2𝑠 

and 

the span 2𝑘 is equal to  2(𝑠 − 𝑘) = (8 3⁄ ) . ((𝑠𝑎𝑔)2 𝑠𝑝𝑎𝑛⁄ ).   (∗∗) 

The equations (*)&(**) clarify two relations between the span and 

sag for the catenary. 

Note: when 𝑐 is large as mentioned above the chain or wire 

represents 

the Lightning and telephone wires. In this case the length of the wire 

2𝑠 is little bigger than the span 𝐴𝐵 .So also the sagℎ will be small. 

 

Examples 

Many problems involving catenary cables can be solved using the 

following formulas: 

𝑠 = 𝑐 sinh (
𝑥

𝑐
)                   (𝑖)                    𝑥 = 𝑐 𝑠𝑖𝑛ℎ−1 (

𝑠

𝑐
)             (𝑖𝑖) 

𝑦2 − 𝑠2 = 𝑐2                     (𝑖𝑖𝑖)                 𝑦 = 𝑐 𝑐𝑜𝑠ℎ (
𝑥

𝑐
)               (𝑖𝑣) 

𝑇0 = 𝜔𝑐                              (𝑣  )                𝑇 = 𝜔𝑦                              (𝑣𝑖)                       

𝑊 = 𝜔𝑠                              (𝑣𝑖𝑖) 

All the parameters in the above equations have been defined before. 
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Example (1): 

  an electric power of line length 140 𝑚and mass per unit length of 

3 𝑘𝑔/𝑚 is to be suspended between two towers 120 𝑚 apart and of 

the same height. Determine the sag and maximum tension in the 

power line. 

The solution 

The sag, h, can be found from Eq(𝑖𝑖𝑖),provided that wecan 

determinethe distance, c 

𝑦𝐵
2 − 𝑠𝐵

2 = c2              ( Eq(𝑖𝑖𝑖)evaluated at point B) 

or      

(ℎ + 𝑐)2 − (70 𝑚)2 = 𝑐2               (1) 

The distance 𝑐 ,can be determined from Eq.(𝑖) : 

𝑠𝐵 = 𝑐 sinh(
𝑥𝐵

𝑐
) ( Eq(𝑖)evaluated at point B) 

or           70 𝑚 = 𝑐 sinh (
60 𝑚

𝑐
)          (2) 

This equation must be solved numerically for 𝑐. An initialestimate 

for 

c, whenthesolver on acalculator isto beused, could be 

𝑐 = 𝑠𝐵 = 70𝑚 

The solution to Eq.(2) is  
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𝑐 = 61.45 𝑚 

  Another possible solution is 𝑐 = −61.45 𝑚,but this has no physical 

meaning. You can get the same result directly by using a modern 

calculator like(𝑐𝑎𝑠𝑖𝑜  𝑓𝑥 − 991𝐸𝑆 𝑃𝐿𝑈𝑆). 

(ℎ + 61.45 𝑚)2 − (70 𝑚)2 = (61.45 𝑚)2 

Solving gives the sag: 

ℎ = 31.70 𝑚 

The other negative root has no physical meaning. 

The maximum tension, 𝑇𝑚𝑎𝑥, occurs where the cable has its steepest 

slope, point B (or point A). This can be calculated from Eq.(𝑣𝑖) : 

𝑇𝑚𝑎𝑥 = ωyB( Eq(𝑣𝑖)evaluated at point B) 

𝜔 is given, then: 

𝑇𝑚𝑎𝑥 = [(3kg m⁄ )(9.81 m s2⁄ )][31.70m + 61.45m] 

= 2740 𝑁 = 2.74 𝐾𝑁 

--------------------------------------------------------------------------------- 

Example (2): 

A cable is supported at two points 400 ft apart and at the same 

elevation.  If the sag is 40 ft and the weight per unit length of the 

cable is 4 lb/ft, determine the length of the cable and the tension at 

the low point, C. 
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The solution 

The length of cable, 𝑠𝐵, from the low point to point B can be 
found from Eq. (i) provided that we can determine the distance 
c: 

𝑠𝐵 = c sinh (𝑥𝐵/c)                (Eq. (i) evaluated at point B) 

= c sinh (200/c)                          (1) 

The distance c can be determined from Eq.(iv) 

 

𝑦𝐵 = 𝑐 cosh(𝑥𝐵 𝑐⁄ )(Eq. (iv) evaluated at point B) 

 

or, 

c + 40 ft = c cosh (200 ft/c)                         (2) 

This equation must be solved numerically for 𝑐. An initial estimate 

for c, when the solver on a calculator is to be used, could be 

 

𝑐 = 𝑠𝑎𝑔 = 40 𝑓𝑡 

The solution to Eq.(2) is  

𝑐 = 506.53 𝑓𝑡 

Using this value of c in Eq. (1) gives 

sB = c sinh(
xB

c
) (Eq. (1) repeated) 
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= (506.53 ft) sinh (200 ft/506.53 ft) 

 

= 205.237 ft 

Because the tension at the low point of the cable is horizontal, it can be 

found from Eq.(v): 

𝑇0 = 𝜔𝑐 

= (4 𝑙𝑏 𝑓𝑡⁄ )(506.53) 

= 2.025 𝑙𝑏. 

----------------------------------------------------------------------------------- 

Example (3) : 

A 20-m chain is suspended between two points at the same 

elevation and with a sag of 6 m as shown. If the total mass of the 

chain 45 kg, determine the distance between the supports.  Also 

determine the maximum tension. 

The solution 

The distance between the supports is2𝑥𝐵, and𝑥𝐵 can befound from  

Eq.(i), provided that we can determine the distance c; 

sB = c sinh(
xB

c
) ( Eq(𝑖)evaluated at point B) 

since    sB = 10m  ,      then: 

10m = c sinh(
xB

c
) 
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This equation can be solved explicitly for 𝑥𝐵 by rearranging it as 

sinh (
xB

c
) =

10m

c
 

 Which implies: 

𝑥𝐵

𝑐
= 𝑠𝑖𝑛ℎ−1 (

10 𝑚

𝑐
) 

So              𝑥𝐵 = 𝑐 𝑠𝑖𝑛ℎ−1 (
10 𝑚

𝑐
)                        (1) 

The distance c can be determined from Eq.(ii): 

𝑦𝐵
2 − 𝑠𝐵

2 = c2              ( Eq(𝑖𝑖𝑖)evaluated at point B) 

(6 𝑚 + 𝑐)2 − (10 𝑚)2 = (𝑐)2 

or 36 + 12𝑐 + 𝑐2 − 100 = 𝑐2 

The 𝑐2 terms cancel and resulting linear equation has the solution: 

𝑐 = 5.333 𝑚 

Substituting this value of  𝑐  into Eq.(1)gives: 

𝑥𝐵 = 5.333 𝑚 𝑠𝑖𝑛ℎ−1(10 𝑚 5.333 𝑚⁄ ) = 7,393 𝑚 

Thus, the distance between supports 2𝑥𝐵  can be found: 

2𝑥𝐵 = 2(70393 𝑚) = 14.786 𝑚. 

The maximum tension, 𝑇𝑚𝑎𝑥, occurs where the slope of the cable is a 
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maximum, at point B (or point A). This can be calculated from 

Eq.(𝑣𝑖): 

𝑇𝑚𝑎𝑥 = ωyB( Eq(𝑣𝑖)evaluated at point B) 

= (
𝑇𝑎𝑡𝑜𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑏𝑙𝑒

𝑇𝑎𝑡𝑜𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑏𝑙𝑒
) 𝑦𝐵 

=  (
(45.𝐾𝑔)(9,81 𝑚 𝑠2⁄ )

20 𝑚
) (6 𝑚5.333 𝑚) = 250 𝑁 . 

----------------------------------------------------------------------------------- 

Example (4): 

A certain cable will break if the maximum tension exceeds 500 N.  If 

 the cable is 50-mlong and has a mass of 50 kg, determine the greatest 

span possible. Also determine the sag. 

The solution 

The maximum tension has been specified (500 N) ,so a good place to 

 start our solution is to see how we can use the fact that Tmax = 500 N 

.Eq.(vii)relates  the tension,T ,to they , coordinate of a point on the 

curve: 

T = ωy (Eq. (vi) repeated) 

The maximum tension, 𝑇𝑚𝑎𝑥, occurs where the cable has its steepest 

slope, point B (or point A). This can be calculated from Eq.(𝑣𝑖) : 

𝑇𝑚𝑎𝑥 = ωyB( Eq(𝑣𝑖)evaluated at point B) 
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Thus, because we know the maximum tension, we can compute 𝑦𝐵 : 

𝑦𝐵 =
𝑇𝑚𝑎𝑥

𝜔
=

𝑇𝑚𝑎𝑥

(
𝑇𝑎𝑡𝑜𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 cable

𝑇𝑎𝑡𝑜𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑏𝑙𝑒
)
 

=
500 𝑁

(
(50 𝐾𝑔)(9,81 𝑚 𝑠2⁄ )

50 𝑚
)

= 50.97 𝑚 

The distance between supports is 2𝑥𝐵, so we need to use the value of 

𝑦𝐵 to determine 𝑥𝐵.this can be done by using Eq.(𝑣𝑖).provided that 

we can determine 𝑐 : 

𝑦𝐵 = 𝑐 cosh(𝑥𝐵 𝑐⁄ )(Eq. (iv) evaluated at point B) 

We can solve this equation explicitly for 𝑥𝐵 by rewriting it as: 

cosh(𝑥𝐵 𝑐⁄ ) = 𝑦𝐵 𝑐⁄  

So 

𝑥𝐵 = 𝑐 𝑐𝑜𝑠ℎ−1(𝑦𝐵 𝑐⁄ )                     (2) 

The distance 𝑐 , can be calculated from Eq.(𝑖𝑖𝑖) : 

𝑦𝐵
2 − 𝑠𝐵

2 = c2              ( Eq(𝑖𝑖𝑖)evaluated at point B) 

(50.97 𝑚)2 − (25 𝑚)2 = (𝑐)2 

 The solution is  

𝑐 = ±44.42 𝑚 

The negative root has no physical meaning. 
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Substituting the value of  𝑐 = 44.42 𝑚 and 𝑦𝐵 = 50.97  into 

Eq.(2)gives: 

𝑥𝐵 = 44,42 𝑚 𝑐𝑜𝑐ℎℎ−1(50.97 𝑚 44.42 𝑚⁄ ) = 23.836 𝑚 

So, the distance between supports 2𝑥𝐵isknown: 

2𝑥𝐵 = 2(23.836 𝑚) = 47.7 𝑚. 

Since 𝑐 and 𝑦𝐵 are known, the sag can be computed: 

ℎ = 𝑦𝐵 − 𝑐 

= (50.97𝑚) − (44.42 𝑚) = 6.55 𝑚 . 

 

Example (5): 

The cable is attached to a fixed support at A and a moveable support 

 at B.  If the cable is80-ft long, weighs 0.3 lb/ft, and spans 50 ft, 

determine the force F holding the moveable support in place.  Also 

determine the sag. 

The solution 

         The force 𝐹 acting on the moveable 

   support at𝐵 equals the horizontal 

component,𝑇0, of tension in the cable, 

 𝐹 = 𝑇0 . Eq.(𝑣) can be used to calculate 𝑇0 , provided that we can  

   determine the distance 𝑐 : 
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T0 = ωc (Eq. (v) repeated) 

= (0.3 𝑙𝑏 𝑓𝑡⁄ ) 𝑐 = 𝐹                              (1) 

The distance  𝑐 ,can be calculated from Eq.(𝑖) : 

sB = c sinh(
xB

c
) ( Eq(𝑖)evaluated at point B) 

since sB = 40 ft  ,      

then: 

40ft = c sinh(25 ft c⁄ )                         (2) 

This equation must be solved numerically for 𝑐. An initial estimate 

for c, when the solver on a calculator is to be used, could be 

𝑐 = 𝑥𝐵 = 25 𝑓𝑡 

The solution to Eq.(2) is  

𝑐 = ±14.229 𝑓𝑡 

The negative root has no physical meaning. 

Using 𝑐 = 14.229 𝑓𝑡 in Eq.(1)gives: 

T0 = ωc (Eq. (v) repeated) 

= (0.3 𝑙𝑏 𝑓𝑡⁄ )(14.229 𝑓𝑡) 

= 4.27 𝑓𝑡 

The sag,ℎ , can be calculated from Eq.(𝑖𝑣)and the known value of 𝑐 

: 
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ℎ = 𝑦𝐵 − 𝑐   = 𝑐 cosh(𝑥𝐵 𝑐⁄ ) − 𝑐 

= (14.229 𝑓𝑡) cosh(25. 𝑓𝑡 14.229𝑓𝑡⁄ ) − 14.229𝑓𝑡 

= 28.2 𝑓𝑡 . 

---------------------------------------------------------------------------------- 

Example (6): 

. The cable is attached to a fixed support at A and a moveable support 

 at B.  If the cable is 40 m long, and has mass of 0.4Kg/m. If the force 

 F holding the moveable support at the 𝐵   is equal to 50 𝑁  in the 

 horizontal direction, determine the span and the sag. 

The solution 

The span is2𝑥𝐵, and𝑥𝐵 can befound from  

Eq.(i), provided that we can determine 

 The distance c; 

sB = c sinh(
xB

c
) ( Eq(𝑖)evaluated at point B)                    

This equation can be solved explicitly for 𝑥𝐵 by rearranging it as 

sinh (
xB

c
) =

sB

c
 

 Which implies:
𝑥𝐵

𝑐
= 𝑠𝑖𝑛ℎ−1 (

sB

c
) 
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So         𝑥𝐵 = 𝑐 𝑠𝑖𝑛ℎ−1 (
sB

c
) 

Then      𝑥𝐵 = 𝑐 𝑠𝑖𝑛ℎ−1 (
20 m

c
)                          (1) 

Because the 50 𝑁 force acting on the moveable support equals the  

horizontal component, 𝑇0 , of the tension in the cable, Eq.(𝑣) with  

𝑇0 = 50 𝑁 can be used to solve for  𝑐 : 

T0 = ωc (Eq. (v) repeated) 

or                   50 𝑁 = [(0.4 𝐾𝑔 𝑚⁄ )(9.81𝑚 𝑠2⁄ )]𝑐 

solving gives: 

𝑐 = 12.742 𝑚 

Using this value of  𝑐 in Eq. (1)gives: 

𝑥𝐵 = 𝑐 𝑠𝑖𝑛ℎ−1(20 m 𝑐⁄ )(Eq. (1) repeated) 

= (12.742 𝑚)𝑠𝑖𝑛ℎ−1(20 m 12.742 𝑚⁄ ) = 15.708 𝑚 

so, the span is  

𝑠𝑝𝑎𝑛 = 2𝑥𝐵 = 2(15.708 𝑚) = 31.4 𝑚 

The sag,ℎ , can be calculated from Eq.(𝑖𝑣) and the known value of 𝑐 

:ℎ = 𝑦𝐵 − 𝑐 = 𝑐 cosh(𝑥𝐵 𝑐⁄ ) − 𝑐 

= (12.742 𝑚) cosh(15.708. 𝑓𝑡 12.742 𝑚⁄ ) − 12.742 𝑚 = 28.2𝑚 
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Example (7): 

A cable goes over a frictionless pulley at 𝐵and supports a block 

of mass M. The other end of the 

cable is pulled by a horizontal 

force P.   

If the cable has a mass per length 

of 0.3 kg/m, determine values of 

𝑃and 𝑀that will maintain the cable in the position shown. 

The solution 

The force P equals 𝑇0 ,the horizontal component of the cable tension 

givenT0 = ωc(Eq. (v) repeated) 

so, with        T0 = Pthen: 

P = ωc                                     (1) 

Here: 

𝜔 = (0.3 𝐾𝑔 𝑚⁄ )(9.81 𝑚 𝑠2⁄ ) 

= 2.943 𝑁 𝑚⁄                    (2) 

The value of  𝑐  in Eq.(1) can be found from Eq.(𝑖𝑣): 

𝑦𝐵 = 𝑐 cosh(𝑥𝐵 𝑐⁄ )(Eq. (iv) evaluated at point  

   or  

5 𝑚 + 𝑐 = 𝑐 cosh(10 𝑚 𝑐⁄ ) 
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   Solving numerically gives: 

𝑐 = 10.743 𝑚 

   Using this value of  𝑐  in Eq.(1)gives: 

P = ωc  

= (2.943 𝑁 𝑚⁄ )(10.743 𝑚) 

= 31.617 𝑁 

  The cable tension at 𝐵 must equals the weight,𝑚𝑔 : 

𝑇𝐵 = 𝑀𝑔 

thus, the mass is 

𝑀 = 𝑇𝐵 𝑔⁄  

By Eq.(𝑣𝑖) 

𝑀 = 𝜔𝑦𝐵 𝑔⁄  

   By Eq. (2) 

𝑀 = [(2.943 𝑁 𝑚⁄ )(5 𝑚 + 10.743 𝑚)] (9.81 𝑁 𝑚2⁄ )⁄  

= 4.72 𝐾𝑔 
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Example (8): 

 A chain makes angles of  

30° and 60° at its supports as 

shown.  

 Determine the location of the 

low point C  

of the chain relative to A.  Also determine  

the tension at support A, if the cable has 

 a mass per length of 0.6 kg/m. 

The solution 

The geometric data are shown in the figure.  To determine the location 

of the low point C relative to A, we need to determine the coordinates 

xA and yA.  We can get an equation 

 for xA by using the fact that the slope is known at A: 

− tan 30° = [
𝑑𝑦

𝑑𝑥
]

𝑎𝑡𝐴
= [

𝑑(𝑐 cosh(𝑥 𝑐⁄ ))

𝑑𝑥
]

𝑎𝑡𝐴
        by Eq.(𝑖𝑣) 

= sinh(𝑥𝐴 𝑐⁄ ) 

Solving for   𝑥𝐴    gives: 

𝑥𝐴 = 𝑐 sinh−1(− tan 30°)                       (1) 

Similarly at point B , we have  

𝑥𝐵 = 𝑐 sinh−1(tan 60°)                           (2) 
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The coordinates xA and xB are related to the 20-m span through the 

equation: 

xA − xB = 20 m 

By substituting from Eqs.(1)&(2)  we get: 

𝑐 sinh−1(− tan 30°)  −  𝑐 sinh−1(tan 60°) = 20     

Since this equation is linear in c, it is easily solved to give c = 10.717 

m.  Eq. (1) then gives 

𝑥𝐴 = 𝑐 sinh−1(− tan 30°)(Eq (1) repeated) 

= (10.717 𝑚) sinh−1(− tan 30°) 

= −5.887 𝑚 

The y coordinate of point A can now be calculated fromEq. (iv): 

𝑦𝐴 = 𝑐 cosh(𝑥𝐴 𝑐⁄ )            (Eq.(iv) evaluated at point A) 

= (10.717 𝑚) cosh(−5.887 𝑚 10.717𝑚⁄ ) 

= 12.375 𝑚                                           (3) 

The vertical distance between support A and the low point C is given 

by 

𝑑 = 𝑦𝐴 − 𝑐 

= 12.375 𝑚 − 10.717 𝑚 

= 1.658 𝑚                              (by Eq. (3)) 

The tension at A is given by Eq. (vi): 

TA = ωyA        (Eq.(vi) evaluated at point A) 
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= [(0.6 𝐾𝑔 𝑚⁄ )(9.81 𝑚 𝑠2⁄ )](12.375 𝑚) = 72.8 𝑁. 

Example (9): 

A wire weighting 0.2 lb/ft is attached to a moveable support at A and 

makes an angle of 55° at a fixed support at B.  Supports A and 

B are at different elevations.  Determine the location of the low 

point C of the wire relative to support B.  Also, determine the 

tension in the wire at C. 

The solution 

To determine the location of the 

 low point,𝐶 , relative to the 

support at B, we need to determine  

the coordinates  𝑥𝐵  and  𝑦𝐵 . We can 

 get an equation for  𝑥𝐵  by using the  

fact that the slop is known at B. 

tan 55° = [
𝑑𝑦

𝑑𝑥
]

𝑎𝑡𝐵
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= [
𝑑(𝑐 cosh(𝑥 𝑐⁄ ))

𝑑𝑥
]

𝑎𝑡𝑩
                by Eq.(𝑖𝑣) 

= sinh(𝑥𝐵 𝑐⁄ ) 

Thus  

𝑥𝐵 = 𝑐 sinh−1(tan 55°)                       (1) 

The value of c occurring in Eq. (1) can be found by observing that 

the 8-lb force acting at support A equals  𝑇0  the horizontal 

component of tension at A, so Eq. (𝑣) gives  

T0 = ωc                (Eq. (v) repeated) 

∴ 8 𝐼𝑏 = (0.2 𝜔 𝐼𝑏 𝑓𝑡⁄ )𝑐 

Solving gives: 

C = 40 ft                                     (2)    

Using this result,𝐶 = 40 𝑓𝑡 in Eq.(1)gives: 

𝑥𝐵 = 𝑐 sinh−1(tan 55°)(Eq. (1) repeated) 

= (40 𝑓𝑡) sinh−1(tan 55°) 

= 46.169 𝑓𝑡 

The vertical distance between B and C is: 

𝑑 = 𝑦𝐵 − 𝑐 

= 𝑐 cosh(𝑥𝐵 𝑐⁄ ) − 𝑐 

= (40 𝑓𝑡) cosh(46,169 𝑓𝑡 40 𝑓𝑡⁄ ) − 40 𝑓𝑡 
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= 29.7 𝑓𝑡 

Since point C is the low point of the cable, the tension there is 

horizontal and so must equal the horizontal component of tension 

at A 

which is known to be 8 𝐼𝑏  that is: 

𝑇𝑐 = 8 𝐼𝑏 . 

-------------------------------------------------------------------------------- 

 

 

 

Worked examples 

Example (1): (The suspension bridge) 

  If a chain supports a continuous load, 

 uniformly distributed, the chain 

hangs in the form of a parabola. 

 O is the lowest point of the chain 

and P any point of the chain whose 

 coordinates referred to horizontal and 

vertical through O are (𝑥, 𝑦) The weight carried by the portion OP will 

be proportional to ON and acts through Q the midpoint of ON. We may 
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call it 𝜔𝑥  . 

  The other forces acting on the portion OP are 𝑇0 the horizontal tension 

At O and the tension𝑇 at P, three of them must therefore meet at Q and  

PNQ is a triangle of forces. 

∴   
𝜔𝑥

𝑃𝑁
=

𝑇0

𝑁𝑄
           ∴    𝑇0𝑦 =

1

2
𝜔𝑥2 

Hence, if we denote  𝑇0 by 𝜔𝑐 , then we can get      𝑦 =
𝑥2

2 𝑐
 

this means that the curve of the chain is a parabola. 

Now if the span of a suspension bridge is 96 𝑚 and the sag in the chain 

is  7 𝑚 .TheTwo branches of the chain support a load of 1000 𝑘𝑔per  

horizontal meter. Find the tension at the lowest and highest points. The 

load carried by OP is 24𝑔𝑘𝑁 .The triangle QPN is a triangle of forces. 

The solution 

 

 

 

𝑄𝑁 = 24 𝑚   ,   𝑃𝑁 = 7 𝑚            ∴ 𝑄𝑝 = 25 𝑚 

𝑇0

24
=

𝑇

25
=

24𝑔

7
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𝑇 = 840 𝑘𝑁       ,     𝑇0 ≅ 810 𝑘𝑁 . 

================================================= 

Example (2): 

A uniform chain of length 2𝑙 and weight 𝜔 per unit length is suspended 

between two points at the same level and has a maximum depth𝑑.Prove 

the tension at the lowest is 𝜔 (𝑙2 − 𝑑2) 2𝑑⁄ .If 𝑙 = 50 𝑚 and 𝑑 = 20 𝑚 

find the distance between the points of suspension. 

 

 

The solution 

For the catenary    𝑦2 = 𝑐2 + 𝑠2 , 

 

 

 

At 𝐵𝑦 = 𝑐 + 𝑑      ,   𝑠 = 𝑙 

∴   (𝑐 + 𝑑)2 = 𝑐2 + 𝑙2 

2𝑐𝑑 = 𝑙2 − 𝑑2 

∴    𝑐 = 𝑙2 − 𝑑2 2𝑑⁄  

∴    the tension at the lowest is = 𝜔𝑐 = 𝜔 (𝑙2 − 𝑑2) 2𝑑⁄  . 
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If 𝑙 = 50 𝑚 and 𝑑 = 20 𝑚 ,  then  𝑐 = 2500 − 400 40⁄ = 105 2⁄  

Now             𝑠 = 𝑐 sinh 𝑥 𝑐⁄  

Hence if     𝐴𝐵 = 2𝑥, 

∴         𝑥 =  (105 2⁄ ) sinh−1(20 21⁄ ) 

= (105 2⁄ )𝑙𝑖𝑛[(20 21⁄ ) + √{1 + (20 21⁄ )2}] 

= (105 2⁄ )𝑙𝑖𝑛(49 21⁄ ) 

∴    𝐴𝐵 = 105 × 2.303 𝑙𝑜𝑔10(49 21⁄ ) ≅ 89 𝑚 . 

================================================ 

EXERCISES: 

(1)A rope has an effective length of 20 𝑚and mass5 𝑘𝑔 per miter. 

One end of the rope is  4 𝑚  higher than the other. Find the 
maximum 

tension in the rope when the tangent at the lower end is horizontal. 

(2)A uniform chain of length 2𝑙 has its ends fixed at two points at 
the 

same level. The sag at the middle is ℎ .prove that the span is  

[(𝑙2 − ℎ) ℎ⁄ ]𝑙𝑖𝑛[(𝑙 + ℎ) (𝑙 − ℎ)⁄ ]. 

(3)A uniform wire hangs freely from tow points at the same level 

200 𝑚apart. The sag is 15 𝑚 . Show the greatest tension is  

approximately 348 𝜔 and the length of wire is approximately 203 𝑚 
. 

(4)Find approximately the greatest tension in a wire which has mass 

100 𝑔 per miter when it hangs with a sag of 25 𝑐𝑚 when stretched  
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between two points at the same level 40 𝑚apart. 

(5)A uniform heavy chain of length 31 𝑚 is suspended from tow 

points at the same level and30 𝑚apart. Show that the tension at the 

lowest point is about 1.08times the weight of the chain. 
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Chapter (2) 

Direct Stress and Strain 

------------------------------------ 

 

(1) Stress: 

The ability of a structural member to withstand load or transmit 

force, as in a machine, depends upon its dimensions. In particular, 

the cross-sectional area over which the load is distributed 

determines the intensity or average stress in the member. If the 

intensity of loading is uniform the direct stress, , 𝑓 is defined as 

the ratio of load, 𝑃 ,to cross-sectional area,𝐴 , normal to the load as 

shown in the Fig. Thus: 

stress =
load

area
 

or                                                   f =
P

A
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If the load is in pounds and the area in square inches the units of 

stress are pounds per square inch (𝐼𝑏 𝑖𝑛.2⁄ ).There are another unit: 

If,𝑃 , is expressed in Newton  (𝑁) , and  𝐴, original area, in square 

meters(𝑚2) ,the stress,𝑓 , will be expresses in  𝑁 𝑚2⁄  , this unit is 

called Pascal (𝑃𝑎) . 

As Pascal is a small quantity in practice, multiples of this unit is used. 

1 𝐾𝑃𝑎 =  103𝑃𝑎 = 103 𝑁 𝑚2⁄ (𝐾𝑃𝑎 = 𝐾𝑖𝑙𝑜 𝑃𝑎𝑠𝑐𝑎𝑙) 

1 𝑀𝑃𝑎 =  106𝑃𝑎 = 106 𝑁 𝑚2⁄  

= 1 𝑁 𝑚𝑚2⁄ (𝑀𝑃𝑎 = 𝑀𝑒𝑔𝑎 𝑃𝑎𝑠𝑐𝑎𝑙) 

1 𝐺𝑃𝑎 =  109𝑃𝑎 = 109 𝑁 𝑚2⁄ (𝐺𝑃𝑎 =  𝐺𝑖𝑔𝑎 𝑃𝑎𝑠𝑐𝑎𝑙) 

The direct stress may be tensile or compressive according as the 

load is a pull (tension), or push (compression). It is often 

convenient to consider tensile stresses and loads as positive and 

compressive stresses and loads as negative. 

(2) Strain: 

A member under any loading experiences a change in shape or size 

inthe case of a bar loading in tension the extension of the bar 

depends upon its total length. The bar is said to be strained and the 

strain is defined as the extension per unit of original length of the 

bar. Strain may produced in two ways: 
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1- By application of a load. 

2- By a change in temperature, unaccompanied by load or stress.  

If 𝑙 is the original length of the bar, 𝑥 the extension or contraction in 

 length under load or temperature change, and 𝑒the strain, then: 

strain =
change in length

original lenth
 

or                                𝑒 =
𝑥

𝑙
 

Strain is a ratio and has therefore no units. 

Strain due to an extension is considered positive, that associated with a  

contraction is negative. 

(3) Relation between Stress and Strain: 

If the extension or compression in a member due to a load disappears 

on removal of the load, then the material is said to be elastic. Most 

metals are elastic over a limited range of stress known as the elastic 

range. Elastic materials, with some exception, obey Hooke's, which 

states that: the strain is directly proportional to the applied stress 

Thus 

𝑠𝑡𝑟𝑒𝑠𝑠

𝑠𝑡𝑟𝑎𝑖𝑛
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝐸) 

i.e.
𝑓

𝑒
= 𝐸or      𝑒 =

𝑓

𝐸
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where 𝐸 is the constant of proportionality, known as the modulus of 

elasticity or Young's modulus? 

Since strain is a ratio, the units of 𝐸are those of stress, i.e. pounds 

per square inch.  

Examples 

Example (1): 

A rubber pad for a machine mounting is to carry a load of 1000 𝐼𝑏 

and to compress0.2𝑖𝑛. If the stress in the rubber is not exceed 

40 𝐼𝑏 𝑖𝑛.2⁄ , determine the diameter and thickness of a pad of 

circular cross-section. 

Take 𝐸 for rubber as 150 𝐼𝑏 𝑖𝑛.2⁄ . 

The solution 

stress =
load

area
 

 i.e                                   f =
P

A
 

40 =
1000

πd2 4⁄
 

hence              𝑑2 = 31.83 𝑖𝑛.2    and      𝑑 = 5.64 𝑖𝑛 

i.e.                        diameter of pad=5.64 in. 

The increase in area due to compression has been neglected. 
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Also           𝑠𝑡𝑟𝑒𝑠𝑠 =
𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ
 

then               
𝑓

𝐸
=

𝑥

𝑙
       this leads to

40

150
=

0.2

𝑙
 

therefore, thickness of pad is given by 

𝑙 = 0.75 𝑖𝑛. 

Example (2): 

The Fig shows a steel strut with tow grooves cut out along part of its  

length.  Calculate the total compression of the strut due to a load of 

24 𝑡𝑜𝑛𝑠. 𝐸 = 12500 𝑡𝑜𝑛 𝑖𝑛.2⁄  

 

 

 

 

 

 

The solution 

Suffices 1 𝑎𝑛𝑑 2 denote solid and grooved portions, respectively. the  

load at every section is the same,24 𝑡𝑜𝑛 . 

For the solid length of  18 𝑖𝑛. 
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                compression    𝑥1 = 𝑒1𝑙 = 𝑒1 × 18 

                               stress,𝑓1 =
𝑃

𝐴1
=

24

2×2
= 6 𝑡𝑜𝑛𝑠 𝑖𝑛.2⁄  

                              strain,𝑒1 =
𝑓1

𝐸
=

6

𝐸
 

For the grooved length 0f 12 𝑖𝑛. 

                compression    𝑥2 = 𝑒2𝑙 = 𝑒2 × 12 

                               stress,𝑓2 =
𝑃

𝐴2
=

24

(4−1)(1)
= 8 𝑡𝑜𝑛𝑠 𝑖𝑛.2⁄  

                              strain,𝑒2 =
𝑓2

𝐸
=

8

𝐸
 

The total compression of the strut is equal to the sum of the 

compressions of the solid and grooved portions. Therefore  

𝑥 = 𝑥1 + 𝑥2 

= (𝑒1 × 18) + (𝑒2 × 12) 

= (
6

𝐸
× 18) + (

8

𝐸
× 12) 

=
204

𝐸
 

=
204

12500
 

= 0.0163 𝑖𝑛.  

Note: It has been assumed here that the stress distribution is uniform 

over all sections, but at the change in cross-section the stress 
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distribution is actually very complex. The assumption produces little 

error in the calculated compression. 

Example (3): 

A rod  10 𝑚𝑚 × 10 𝑚𝑚 cross-section is carrying an axial tensile 

load 10 𝐾𝑁 . In this rod the tensile stress developed is given by: 

𝑓 =
𝑃

𝐴
=

10 𝐾𝑁

(10 𝑚𝑚 × 10 𝑚𝑚)
=

10 × 103 𝑁

100 𝑚𝑚2
= 100 𝑀𝑃𝑎 

Example (4): 

A rod 100 𝑚𝑚 in original length. When we apply an axial tensile 

loa 10 𝐾𝑁 .The final length of the rod after application the tensile is 

100.1 𝑚𝑚 .So in this rod tensile strain is developed and is given by;        

𝑒 =
𝑥

𝑙
=

100.1𝑚𝑚−100 𝑚𝑚

100 𝑚𝑚
=

0.1𝑚𝑚

100 𝑚𝑚
= 0.001(Dimenionless)Tensile. 

Example (5): 

A rod 100 𝑚𝑚 in original length. When we apply an  axial 

compressive load 10 𝐾𝑁. .The final length of the rod after 

application compressive is 99 𝑚𝑚 .So, in this rod compressive strain 

is developed and is given by; 

𝑒 =
𝑥

𝑙
=

99 𝑚𝑚−100 𝑚𝑚

100 𝑚𝑚
=

−0.1𝑚𝑚

100 𝑚𝑚
= −0.001(Dimenionless)Tensile. 

================================================= 
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Exercises 

(1) A bar of 1 𝑖𝑛. diameter is subjected to a tensile load of 

10000 𝐼𝑏.Calculate the extensionon a 1 𝑓𝑡. length. 𝐸 =

30 × 104 𝐼𝑏 𝑖𝑛.2⁄  . 

(2)A light alloy bar is observed to increase in length by 0.35 per 

centwhen subjected to a tensile stress of 18 𝑡𝑜𝑛 𝑖𝑛.2⁄  .Calculate 

Young' modulus for the material. 

(3)A duralumnin tie, 2 𝑓𝑡 long 1.5 𝑖𝑛. diameter, has a hole drilled 

out along its length .The hole is of 1 𝑖𝑛.diameter and  4 𝑖𝑛. 

long.Calculate the total extension of the tiedue to a load of  18 𝑡𝑜𝑛𝑠 

. 𝐸 = 12 × 104 𝐼𝑏 𝑖𝑛.2⁄  . 

(4) A steel strut of rectangular section is made up of two lengths. 

The first 6 𝑖𝑛. long, has breadth 2 𝑖𝑛.and depth 1.5 𝑖𝑛. ; the 

second,4 𝑖𝑛.long is 1 𝑖𝑛. square. If  𝐸 = 14000 𝑡𝑜𝑛𝑠 𝑖𝑛.2⁄  , 

calculate the compression of the strut under a load of  10 𝑡𝑜𝑛𝑠. 
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Chapter (3) 

Shear force and Bending Moment 

 

(1) Shear force (SF): 

The shear force in a beam at any section is the force transverse to 

the beam tending to cause it to shear across the section. Fig.(3.1) 

shows abeam under a transverse load  𝑊 at the end  𝐷 ; the other 

end 𝐴 is built in to the wall. Such a beam is called a cantilever and 

the load 𝑊 , which is assumed to act at a point, is called a 

concentrated or point load. 

 

 

 

 

 

 

 Consider the equilibrium of any portion of beam 𝐶𝐷 . At section 

𝐶 for balance of forces there must be an upward force 𝑄 equal and 

opposite to the load 𝑊 at 𝐷 . This force 𝑄  is provided by the 
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resistance of the beam to shear at the plane  𝐵 ; this plane being 

coincident with the plane section at 𝐶 . 𝑄 is the shear force at  𝐵  

and in this cace has the same magnitude for any section in  𝐴𝐷 . 

Consider now the equilibrium of the portion of beam  𝐴𝐵 . There 

is a downward force 𝑄 = 𝑊 , exerted on plane  𝐵 , so for balance 

there must be an upward force 𝑄 at 𝐴 . This latter force being 

exerted on the beam by the wall. 

Sign Convention 

  The shear force at any section is taken positive if the right-hand 

side tends to slide downwards relative to the lift-hand portion, 

fig.(3.2).A negative shear force tends to cause the right-hand 

portion to slide upward relative to the lift. (In some books flowed 

totally opposite sign convention). 

 

 

 

 

 

  If several loads act on the beam to the right-hand side of section 

𝐶  the shear force a 𝐶 is the resultant of these loads. Thus, the 

shear force at any section of a loaded beam is the algebraic sum of 

the loads to one side of the section. It does not matter which side 

of the section is considered provided all loads on that side are 
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taken into account-including the forces exerted by fixings and 

props. 

(2) Shear Force Diagram (SFD): 

The graph showing the variation of shear force along a beam is 

known as the shear force diagram. for the beam of Fig 3.1 the shear 

force was +𝑊, uniform along the beam. Fig (3.3) shows the shear 

force diagram for this beam, 0 − 0 being the axisof zero shear force. 

 

 

 

 

 

 

(3) Bending Moment (BM): 

The bending effect at any section 𝑋 of a concentrated load 𝑊 at 𝐷 , 

Fig.(3.4) , is measured by the applied moment 𝑊𝑥 , where 𝑥 is the 

perpendicular distance of the line of section of𝑊 from section 𝑋 . 

This moment is called the bending moment and is balanced by an 

equal and opposite moment 𝑀 exered by the material of the beam 

at𝑋, called the moment of resistance. 
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Sign Convention 

A bending moment is taken as positive if its effect is to tend to 

make the beam sag at the section considered, Fig.(3.5).If the 

moment tends make the beam bend upward or hog at the section it 

is negative. 

  When more than one load act on a beam the bending moment at 

any section is the algebraic sum of the moments due to all the 

loads on one side of the beam. It does not matter which side of the 

section is considered but all loads on that side must be taken into 

account, including any moments exerted by fixings. 
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(4) Bending Moment Diagram (BMD): 

The variation of bending moment along the beam is shown in a 

bending moment diagram. for the cantilever beam of Fig 3.1 the 

bending moment at any section 𝑋 is given by: 

 bending moment= −𝑊𝑥 (negative, since the beam hogs at 𝑋) 

 

 

 

 

 

 

  Since there is no other load on the beam this expression for the 

bending moment applies for the whole length of beam from 𝑥 = 0 

to 𝑥 = 𝑙 .The moment is proportional to𝑥 and hence the bending 

moment diagram is a straight line. Hence the diagram can be 

drawn by calculating the moment at two points and joining two 

corresponding points on the graph by a straight line. 

         At 𝐷,      𝑥 = 0  and bending moment = 0 

         At 𝐴,      𝑥 = 𝑙   and bending moment = −𝑊𝑙 

Since the bending moment is everywhere negative the graph 

plotted is below the line  0 − 0 of zero bending moment, 
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Fig.(3.6). At the fixed end 𝐴 the wall exerts a moment 𝑊𝑙 

anticlockwise onthe beam; this is calleda fixing moment. 

(5) Calculation of Beam Reactions: 

  When a beam is fixed at some point, or supported by props the 

fixings and props exert reaction forces on beam. To calculate these 

reactions the procedure is: 

       (a) equate the net vertical force to zero; 

       (b) equate the total moment about any convenient point to zero. 

Note (1): Distinguish carefully between "taking moments" and 

calculating a "bending moment": 

      (1) The Principle of Moments states that the algebraic sum of the 

moments of all the forces about any point is zero, i.e. when forces on 

both sides of a beam section are considered.  

      (2) The bending Moment is the algebraic sum of the moments of 

forces on one side of the section about that section.  

Note (2): What are the benefits of drawing shear force (SF) and 

bending 

Moment (BM)diagram? 

  The benefits of drawing a variation of (SF) and (BM)in a beam as a 

function of  ′𝑥′ measuredfrom one end of the beam is that it becomes 

easier to determine the maximum absolute value of (SF) and 

(BM).The (SF) and (BM) diagram gives a clear picture in our mind 
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about the variation of (SF) and (BM) throughout the entire section of 

the beam.    

Further, the determination of value of deflection of beam subjected 

to a given loading where we will use the formula  𝐸𝐿 
𝑑2𝑦

𝑑 𝑥2 = 𝑀𝑥 . 

Examples 

Example (1): 

Draw the (SF) & (BM) diagrams at any section for a light 

horizontal beam 𝐴𝐵 ,its length is 𝐿 .The end 𝐴 of the beam is fixed 

at a vertical wall, while the free end 𝐵is loaded by a weight 𝑊 . 

The Solution 

 

 

 

 

 

 

 

 

We take a section for the beam at 𝐶 , where: 

𝐴𝐶 = 𝑥        &       𝐶𝐵 = 𝐿 − 𝑥 



Statics (II)                                                          Dr.Mohamed Abd El-Aziz 
_______________________________________________________ 

3. 8 
 

We study the equilibrium of the part 𝐶𝐵 or the part 𝐴𝐶  . 

The study of the right part 𝐶𝐵 is easier than the lift part 𝐴𝐶 , 

because the existence of the reaction 𝑅  and the couple 𝑆 . 

The shear force (SF) is                                 𝑁 = 𝑊              (1)   

and the bending moment (BM) is                𝑀 = 𝑊(𝐿 − 𝑥)(2)  

From EQ.(1) the (SF) 𝑁 is constant at any section and so it is a 

straight line parallel to  𝑥 −axis As shown in the next Fig.. 

 

 

 

 

But from EQ.(2) the (BN)  𝑀 is depending on 𝑥 , and its diagram 

isshown in the next Fig. 

 

 

 

For the equilibrium of the beam  𝐴𝐵 we find that: 

𝑅 = 𝑊             ,         𝑆 = 𝑊𝐿. 
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Example (2): 

Draw the (SF) & (BM) diagrams   for a light horizontal beam 𝐴𝐵 

,its length is 𝐿 .The end 𝐴 of the beam is fixed at a vertical wall, 

while the free end 𝐵 is free. The beam is loaded uniformly by a 

weight𝜔 per unit length. 

The Solution 

 

 

 

 

 

 

 

 

 

 

We note that the weight of the part 𝐶𝐵 is 𝜔(𝐿 − 𝑥) and acts at its 

middle point. From the equilibrium of this part we find that: 

    The (SF) is              𝑁 = 𝜔(𝐿 − 𝑥)(1)  , 

and the (BM) is        𝑀 = 𝜔(𝐿 − 𝑥)
(𝐿−𝑥)

2
=

𝜔

2
(𝐿 − 𝑥)2(2)  . 
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Then the (SFD) &(BMD) will be shown in the following Figs. 

 

 

 

 

Example (3): 

Draw the (SF) & (BM) diagrams   for a heavy horizontal beam 𝐴𝐵 

,its length is 𝐿 , and 𝜔  is its weigh per length.  The beam is 

standing on two weidges in the same horizontal plane atits ends. 

The Solution 

 

 

 

 

From the symmetry we find that: 

𝑅1 = 𝑅2 = 𝜔𝐿 2⁄        Where  𝑅1 + 𝑅2 = 𝜔𝐿. 
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By considering the equilibrium of the part 𝐴𝐶 , we find that: 

𝑅1 = 𝜔𝑥 + 𝑁 

∴   
1

2
 𝜔𝐿 = 𝜔𝑥 + 𝑁 

∴   𝑁 =    𝜔 (
𝐿

2
− 𝑥) 

And by taking the moment about the point  𝐶 , we get: 

𝑀 + 𝜔𝑥 (
𝑥

2
) = 𝑅1𝑥 

∴  𝑀 =
𝜔

2
 𝐿𝑥 −

𝜔

2
𝑥2 = −

𝜔

2
(𝑥2 − 𝐿𝑥). 

The (SFD) &(BMD) will be shown in the following Figs. 
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Example (4): 

Draw the (SF) & (BM) diagrams   for a light horizontal beam 𝐴𝐵 

,its length is 11 𝑓𝑡 , and   stands on two weidges in the same plane 

at its ends. The beam carries 𝑝1 = 2000, 𝑝2 = 1500, 𝑝3 =

2500 𝑙𝑏 at the three pointes 𝑎, 𝑏, 𝑐 such that 𝐴𝑎 = 𝑎𝑏 =

2 𝑓𝑡 &𝑏𝑐 = 3 𝑓𝑡 . 

The Solution 

 

 

 

From the equilibrium of the beam we get: 

𝑅1+𝑅2 = 2000 + 1500 + 2500 = 6000 𝑙𝑏        (1) 

By taking the moment about the point 𝐵  we get: 

11 𝑅1 = 2000 × 9 + 1500 × 7 + 2500 × 4 

 ∴ 11 𝑅1 = 38500        →     𝑅1 = 3500 𝑙𝑏       (2) 

By substituting from  (1) in (2) we get: 

𝑅2 = 2500 𝑙𝑏                                           (3)( ) 

For determination the (SF) &(BM) at any point we consider the 

sections where: 
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(𝑖)0 < 𝑥 < 2 

𝑁1=𝑅1 = 3500 𝑙𝑏 

𝑀1=𝑅1 𝑥 = 3500𝑥 𝑙𝑏 

(𝑖𝑖)2 < 𝑥 < 4 

𝑁2 = 𝑅1 − 𝑝1 = 3500 − 2000 = 1500 𝑙𝑏 

𝑀2=𝑅1 𝑥 − 2000(𝑥 − 2) = 3500 𝑥 − 2000(𝑥 − 2) 𝑙𝑏 

 

 

 

 

(𝑖𝑖𝑖)4 < 𝑥 < 7 

𝑁3 = 𝑅1 − 𝑝1 − 𝑝2 

= 3500 − 2000 − 1500 = 0 𝑙𝑏 

𝑀3 = 𝑅1 𝑥 − 2000(𝑥 − 2) − 1500(𝑥 − 4) 

= 3500 𝑥 − 2000(𝑥 − 2) − 1500(𝑥 − 4) 𝑙𝑏 

(𝑣)7 < 𝑥 < 11 
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𝑁4 = 𝑅1 − 𝑝1 − 𝑝2 − 𝑝3 

      = 3500 − 2000 − 1500 − 2500 = −2500 𝑙𝑏 

𝑀4 = 𝑅1 𝑥 − 2000(𝑥 − 2) − 1500(𝑥 − 4) − 2500(𝑥 − 7) − 

= 3500 𝑥 − 2000(𝑥 − 2) − 1500(𝑥 − 4) −  𝑙𝑏2500(𝑥 − 7) 

 

 

 

 

Example (5): 

Find the (SF) and defined the maximum (BM) at a point 𝑑  for a 

light horizontal beam 𝐴𝐵 ,its length is 2𝐿 and stands on two 

weidges in the same plane at its ends. The beam carries a movable 

weight𝑎𝑏 = 2ℎ𝜔 where 2ℎ(ℎ < 𝐿)is its length. Then draw (SFD) 

&(BMD), and prove that 
𝑎𝑑

𝑎𝑏
=

𝐴𝑑

𝑑𝐵
 . 

The Solution 
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By taking a position for the beam 𝐴𝐵as shown in the figure such 

that 𝐴𝑎 = 𝑐, and by finding the value of 𝑐 , which makes the (BM) 

at 𝑑 is maximum. 

In case, the equilibrium of 𝐴𝐵 , we get: 

𝑅1 + 𝑅2 = 2𝜔ℎ 

By taking the moment about the point 𝐵  we get: 

𝑅1 × 2𝐿 = 2𝜔ℎ(2𝐿 − 𝑐 − ℎ) 

∴  𝑅1 =
𝜔ℎ

𝐿
(2𝐿 − 𝑐 − ℎ) 

By taking a section at  𝑝where,𝐴𝑃 = 𝑥    &  𝑥 < 𝑐 ,  we get: 

𝑁 =  𝑅1 =
𝜔ℎ

𝐿
(2𝐿 − 𝑐 − ℎ) 

𝑀 =  𝑅1𝑥 =
𝜔ℎ

𝐿
(2𝐿 − 𝑐 − ℎ)𝑥 

 

 

 

And, by taking a section at  𝑑  where ,𝐴𝑑 = 𝑥    &  𝑥 > 𝑐 ,  we get:  

𝑁 =  𝑅1 − 𝜔(𝑥 − 𝑐) 

=
𝜔ℎ

𝐿
(2𝐿 − 𝑐 − ℎ) − 𝜔(𝑥 − 𝑐) 
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𝑀 =  
𝜔ℎ

𝐿
(2𝐿 − 𝑐 − ℎ)𝑥 −

1

2
𝜔(𝑥 − 𝑐) 

 

 

 

The maximum value of 𝑀 will be when  

𝑑𝑀

𝑑𝑐
= 0, i.e.−

𝑥𝜔ℎ

𝐿
+ 𝜔(𝑥 − 𝑐) = 0 

∴    𝑐 = (1 −
𝑏

𝐿
) 𝑥 

By substituting in 𝑀 , we have: 

𝑀𝑚𝑎𝑥 =  
𝜔ℎ

𝐿
(2𝐿 − ℎ − 𝑥 (1 −

ℎ

𝐿
)) 𝑥 −

1

2
𝜔 (𝑥 − 𝑥 (1 −

ℎ

𝐿
)) 𝑥 

In this case, we find that : 

𝑎𝑑

𝑑𝑏
=

𝑥−𝑐

2ℎ−(𝑥−𝑐)
=

ℎ

𝐿
𝑥

2ℎ−
ℎ

𝐿
𝑥

=
ℎ𝐿(𝑥)

ℎ

𝐿
(2𝐿−𝑥)

=
𝑥

2𝐿−𝑥
=

𝐴𝑑

𝑑𝐵
 . 

Example (6): 

𝐴𝐵 is a beam, its length is 𝐿 , and the end 𝐵is fixed at a vertical 

wall. The beam is loaded by a weight 𝑊distributedlinearly, by 

uniformly increasing, starting from zero at the free end 𝐴.Find the 

(SF) & (BM) then draw its diagrams. 
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The Solution 

The density of loading is 𝜔 = 𝜔(𝑥) at the section 𝐶 ,where 𝐴𝐶 =

𝑥 , 

Then  𝜔 = 𝛾𝑥 (linearly distribution) 

𝑊 = ∫ 𝜔 𝑑𝑥 = ∫ 𝛾𝑥 𝑑𝑥
𝐿

0

𝐿

0
 

∴ 𝑊 = 𝛾𝐿2 2⁄ ∴  𝛾 = 2𝑊 𝐿2⁄  

∴  𝜔 = 𝛾𝑥 = (2𝑊 𝐿2⁄ )𝑥 

For the section 𝐴𝐶 , we get 

𝑁 = 𝑃 = ∫ 𝜔 𝑑𝑥 = ∫(2𝑊𝑥 𝐿2⁄ ) 𝑑𝑥

𝑥

0

𝑥

0

 

∴ 𝑁 = (𝑊𝑥2 𝐿2⁄ ) 

We note that the weight 𝑃 dived 𝐴𝐶 by the ratio 

𝐴𝐸 = 2𝐸𝐶 = 2𝑥 3⁄  
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By taking the moment about 𝐶 we find that 

𝑀 = 𝑃(𝑥 3⁄ ) = (𝑊𝑥2 𝐿2⁄ )(𝑥 3⁄ ) = (𝑊𝑥3 3𝐿3⁄ ) 

We note that      𝑅 = 𝑊     , 𝑆 = 𝑊𝐿 3⁄    and 

𝐴𝐹 = 2𝐹𝐵 = (2 3⁄ )𝐿 . 

 

 

 

 

----------------------------------------------------------------------- 
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Exercises 

(1)Draw the (SF) & (BM) diagrams at any section for a light 

horizontal beam 𝐴𝐵 ,its length is 𝐿 .The end 𝐴 of the beam is fixed 

at a vertical, while the free end 𝐵 is loaded by a weight 𝜔𝐿 . 

(2)Draw the (SF) & (BM) diagrams   for a light horizontal beam 

𝐴𝐵 ,its length is 𝐿 , and   stands on two weidges in the same plane 

at its ends. The beam carries   two equal weights𝑝1 = 𝑝2 = 𝜔 at 

the two points 𝐶&𝐷 such that 𝐴𝐶 = 𝐷𝐵 = 𝑎, (𝑎 < 𝐿 2⁄ ) . 

(3)Find and draw the (SF)&(BM) for a light horizontal beam 𝐴𝐵 

,its length is10 𝑓𝑡and stands on two weidges in the same plane at 

its ends. The beam is loaded by a uniformally distributed weight, 

where 𝜔 = 10 𝑙𝑏 per unit length. 



Chapter 62 

Partial Derivatives 

WNCTIONS OF SEVERAL VARIABLES. If a real number z is assigned to each point (x, y )  of a 
part (region) of the x y  plane, then z is said to be given as a function, z = f ( x ,  y ) ,  of the 
independent variables x and y .  The locus of all points ( x ,  y ,  z )  satisfying z = f ( x ,  y )  is a surface 
in ordinary space. In a similar manner, functions w = f ( x ,  y ,  z, . . .) of several independent 
variables may be defined, but no geometric picture is available. 

There are a number of differences between the calculus of one and of two variables. 
Fortunately, the calculus of functions of three or more variables differs only slightly from that 
of functions of two variables. The study here will be limited largely to functions of two 
variables. 

LIMITS AND CONTINUITY. We say that a function f ( x ,  y) has a limit A as x + x ,  and y + y , ,  
and we write lim f ( x ,  y )  = A ,  if, for any E > 0, however small, there exists a S > 0 such that, 

x-x, 
Y'TO 

for all (x, y )  satisfying 
0 < V(x - xJ2 + ( y  - y , J 2  < S (62.1 ) 

we have I f ( x ,  y )  - AI < E. Here, (62.1 ) defines a deleted neighborhood of (x,, y o ) ,  namely, all 
points except (x,, y , )  lying within a circle of radius 6 and center (x,, y , ) .  

A function f ( x ,  y )  is said to be continuous at (xo, y , )  provided f ( x o ,  y , )  is defined and 
lim f ( x ,  y )  = f ( x , ,  y , ) .  (See Problems 1 and 2.) 

x-xo 
Y-*Yo 

PARTIAL DERIVATIVES. Let z = f ( x ,  y )  be a function of the independent variables x and y .  Since 
x and y are independent, we may (1) allow x to vary while y is held fixed, (2) allow y to vary 
while x is held fixed, or (3) permit x and y to vary simultaneously. In the first two cases, z is in 
effect a function of a single variable and can be differentiated in accordance with the usual 
rules. 

If x varies while y is held fixed, then z is a function of x; its derivative with respect to x, 

is called the (first) partial derivative of  z = f ( x ,  y )  with respect to x. 
If y varies while x is held fixed, z is a function of y ;  its derivative with respect to y ,  

d z  f(x7 Y + AY) - f ( x ,  Y )  f y ( x ,  y )  = - = lim 
d y  AY-, AY 

is called the (first) partial derivative of  z = f ( x ,  y )  with respect to y .  (See Problems 3 to 8.) 
If z is defined implicitly as a function of x and y by the relation F ( x ,  y ,  z) = 0, the partial 

derivatives d z l d x  and d r l d y  may be found using the implicit differentiation rule of Chapter 11. 
(See Problems 9 to 12.) 

The partial derivatives defined above have simple geometric interpretations. Consider the 
surface z = f ( x ,  y )  in Fig. 62-1. Let APB and CPD be sections of the surface cut by planes 
through P, parallel to xOz and y O z ,  respectively. As x varies while y is held fixed, P moves 
along the curve APB and the value of d z l d x  at P is the slope of the curve APB at P. 

Similarly, as y varies while x is held fixed, P moves along the curve CPD and the value of 
dzldy at P is the slope of the curve CPD at P. (See Problem 13.) 

380 
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PARTIAL DERIVATIVES OF HIGHER ORDERS. The partial derivative d z l d x  of z = f ( x ,  y )  may 
in turn be differentiated partially with respect to x and y ,  yielding the second partial derivatives 

d 2z d d z  d 2z 
d X 2  dx dx d y  dx  
- =f,,(x, y )  = - (-) and - 

Similarly, from d z l d y  we may obtain 

d 2z d d z  d 2z d d z  

dY dY dY 
= f y ( x ,  Y > =  (,) and 2 = f y y ( x ,  y ) =  - (-) dx a y  

If z = f ( x ,  y )  and its partial derivatives are continuous, the order of differentiation turns out to 

(See Problems 14 and 15.) be immaterial; that is, - - - 
d 2z - d 2z 

d x d y  a y d i  

Solved Problems 

1. Investigate z = x2 + y 2  for continuity. 

a' + b2. Hence, the function is continuous everywhere. 
For any set of finite values ( x ,  y )  = ( a ,  b) ,  we have z = a2 + b2. As x-- ,  a and y -  b,  x 2  + y 2 -  

2. The following functions are continuous everywhere except at the origin (0, 0), where they are 
defined. Can they be made continuous there? 

sin ( x  + y )  

X + Y  
z =  

sin ( x  + y )  sin (1 + m)x - 1. The function - - Let ( x ,  y)-+ (0,O) over the line y = m x ;  then z = 
X + Y  ( 1  + m)x 

sin ( x  + y )  

X + Y  
may be made continuous everywhere by redefining it as z = for ( x ,  y )  f (0.0); z = 1 for 

( x ,  y )  = (0,O). 

z = -  XY 

x2 + y 2  
m 

the particular line chosen. Thus, the function cannot be made continuous at (0,O). 

Let ( x ,  y)-+ (0,O) over the line y = m x ;  the limiting value of z = X Y  = - depends on 
x + y  1 + m 2  

In Problems 3 to 7, find the first partial derivatives. 
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3. 

4. 

5. 

6. 

z = 2 x 2  - 3xy + 4y2 
d z  
d x  
d z  

Treating y as a constant and differentiating with respect to x yield - = 4 x  - 3 y .  

Treating x as a constant and differentiating with respect to y yield - = -3x + 8 y .  
dY 

x 2  y z  z = - + -  
Y X  

Treating y as a constant and differentiating with respect to x yield - = - - T.  

Treating x as a constant and differentiating with respect to y yield - = - 7 + -. 

d z  2 x  y' 
d x  y x 
d z  x2 2 y  

dY y' x 

z = sin ( 2 x  + 3 y )  
dZ d z  
- = 2 cos ( 2 x  + 3 y )  
dX dY 

and - = 3 cos ( 2 x  + 3 y )  

z = arctan x2y + arctan xy2 
7 c72=2x1'+-- Y' d z  - X- 2XY and ---+- 

dx 1 + x4y' 1 + x 2 y 4  d y  1 + x4y2  1 + x 2 y 4  

r ' + x y  7. z = e' 
d z  ' d z  ' 
- = e r - ' " " ( 2 x  + y )  = z ( 2 x  + y )  and - = exL""(x) = x z  
d X  dY 

8. The area of a triangle is given by K = i a b  sin C ,  If a = 20,  b = 30,  and C = 30", find: 
( a )  The rate of change of K with respect to a ,  when b and C are constant. 
( 6 )  The rate of change of K with respect to C ,  when a and b are constant. 
(c )  The rate of change of b with respect to a ,  when K and C' are constant. 

d K  1 1 15 
(a )  - = - b sin C = - (30)(sin 30") = - da 2 2 2 

d K  1 1 
d C  

( b )  - = 5 ab COS C = 5 (20)(30)(~0~ 30") = 1 5 O G  

In Problems 9 to 11, find the first partial derivatives of z with respect to the independent variables x 
and y .  

9. x 2  + y' + z 2  = 25 

Solution I : Solve for z to obtain z = k v w .  Then 

X Y -Y d z  - _ _  - and - - - _ - -  - X  d z  - - _  
dx  + v m j  z d y  *v-- z 

Solution 2 :  Differentiate implicitly with respect to x ,  treating y as a constant, to obtain 

d z  x 2 x + 2 z - - = o  d z  or - = - -  
dX a x  z 

Then differentiate implicitly with respect to y ,  treating x as a constant: 

2 y + 2 z - - = o  dZ or - = - -  d z  Y 
dY dY z 
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10. 

11. 

12. 

13. 

The procedure of Solution 1 of Problem 9 would be inconvenient here. Instead, differentiating 
implicitly with respect to x yields 

d z  dZ dZ dZ 
dX dX d X  dX 

2x(2y + 32) + 3x2 - + 3y2 - 4y2 - + 2z(x - 2y)  - + z2  = yz + xy - 

dz - 
dx 

4xy + 6xz + 3y2 + Z ?  - Y Z  - - -  so that 
3x2 - 4y2 + 2xz - 4yz - xy 

Differentiating implicitly with respect to y yields 

so that dz - 
ay 

2x2 + 6xy - 8yz - 2z2 - xz - - -  
3x2 - 4y2 + 2xz - 4yz - xy 

xy + yz + zx = 1 
dz dz dz  y + z  

Differentiating with respect to x yields y + y - + x - + z = 0 and - = - - 
dx  d x  dx x + y '  

dZ dZ dz x + z  
Differentiating with respect to y yields x + y - + z + x - = 0 and - = - - 

dY dY ay x + y '  

d r  d r  d 0  d 0  
Considering x and y as independent variables, find - - - - when x = e2' cos 0, 

y = e3r sin 8. 
dx ' ay ' d d  dy 

First differentiate the given relations with respect to x :  

d r  88 d r  d8 
0 = 3e3'sin 8 - + e" COS 8 - 

dX dX ax d X  
1 = 2e2' cos 8 - - e2' sin 8 - and 

dr  cos 8 de 3 sin 8 
dx e2'(2 + sin2 8 )  d x  e2'(2 + sin2 8 )  ' 

Then solve simultaneously to obtain - = and - = - 

Now differentiate the given relations with respect to y :  

d r  d8 d r  d8 
1 = 3e3' sin 8 - + e3' cos 8 - 0 = 2e2' cos 8 - - e2' sin 8 - and 

dY dY dY JY 
dr  sin 8 d8 2 cos 8 

dy e3'(2 + sin2 8 )  dy e3'(2 + sin2 8 )  * 
Then solve simultaneously to obtain - = and - = 

Find the slopes of the curves cut from the surface z = 3x2 + 4y2 - 6 by planes through the 
point (1,1,1) and parallel to the coordinate planes XOZ and yOz.  

The plane x = 1, parallel to the plane yOz ,  intersects the surface in the curve z = 4y2 - 3, x = 1. 
Then dz /dy  = 8y  = 8 X 1 = 8 is the required slope. 

The plane y = 1, parallel to the plane xOz ,  intersects the surface in the curve z = 3x2 - 2 ,  y = 1. 
Then d z / d x  = 6x = 6 is the required slope. 

In Problems 14 and 15, find all second partial derivatives of 2. 

14. z = x2 + 3xy + y 2  

- = 2 x + 3 y  dZ - = -  d 2 z  (qZ2 d 2 z  - - - ( - ) = 3  d dz  

-- dZ - 3 x + 2 y  -=-(+ d2z  a d z  -- d 2 z  - - ( - ) = 3  d dz  

dX2 dx  dx  d y d x  dy dx  

dY dY2 dY dY d x d y  dx dy 

dX 
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15. z = x COS y - y COS x 

16. 

d z  - d z  
- = cos y + y sin x 
dX dY 

- - - x  sin y - cos x 

- = - ( - ) = - s i n y + s i n x = -  d’z  d d z  a 2z -- d 2z - a ( a r ) = - x c o s y  
d y d x  dy dx  dx dy ay2 dY dY 

Supplementary Problems 

Investigate each of the following to determine whether or not it can be made continuous at (0,O): 

(4 m7 Y 2  ( b )  - + * (4 - 7  (4 m. + Y  
x - y  x 3 + y 3  

~ n s .  ( a )  no; ( b )  no; ( c )  yes; ( d )  no 

17. For each of the following functions, find d z l d x  and dz ldy .  

d z  d z  
- = 2~ + 3 y ;  - = 3~ + 2y 
dX dY 

(a )  z = x2 + 3xy + y’ Am. 

d z  - y ’ + x z , - = - - - -  1 2 y .  d z  2x 1 
Ans. - - - X Y  ( b )  z =  - - - 

y 2  x’ dX dy y 3  x’ 

d z  d z  
- = 3 cos 3x cos 4 y ;  - = - 4  sin 3x sin 4y 
dX dY 

(c) z = sin 3x cos 4y 

( d )  z = arctan - 

( e )  x’ - 4y’ + 92’ = 36 

Ans. 

Y Am. - = - Y e - = -  d z  d z  X 
X dx x’ +y”  dy x’ + y ’  

- _ -  Ans, - - - - X .  - 4y 
dx 92’  dy 9z 

2y(x - 2). d z  - x(x - 22) 
d x  2’ + 2 x y  * dy z’ +2xy  

d z  y + z . Z =  X + Z  

d z  - - _  (f) z3  - 3x2y + ~ X Y Z  = 0 Am. - -  

( g )  y z + x z + x y = o  Ans. - = -- 

( a )  If z = v m ,  show that x z + y - = z .  

( b )  If z = In l/m, show that x z + y - = 1. 

dx x + y ’ d y  x + y  

az 
18. 

dY 
d z  d z  

dY 
d z  d z  
dx + Y  dy =o .  X Y (c) If z = ex‘.” sin - + e”” cos -, show that x - 

Y X 

d z  d z  
(d) If z = (ax + by)’ + eox+by + sin (ax + by ) ,  show that b - = a - 

d x  dy 

19. Find the equation of the line tangent to 
(a )  The parabola z = 2x’ - 3y’, y = 1 at the point ( - 2 , 1 , 5 )  

(c) The hyperbola z = 2x2 - 3y2, z = 5 at the point ( - 2 , 1 , 5 )  
Show that these three lines lie in the plane 8x + 6y + z + 5 = 0. 

Am. 

Ans. 

8x + z + 11 = 0, y = 1 

4x + 3y + 5 = 0, z = 5 
( b )  The parabola z = 2x2 - 3y’, x = - 2  at the point ( -2 ,  1 , 5 )  Am. 6 ~ + ~ - 1 1 = 0 , ~ = - 2  

20. 
d ’z  d’z d’z d 2z 

For each of the following functions, find - ~ - and - 
dX2 ’ dx ay ’ dy dx  ’ dy2 ‘ 
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d 2z 
- 5 ;  7 = 2  

d ’z d’z d 2 z  

dx’ d x d y  d y d x  dY 
( U )  z = 2 x 2 - 5 x y + y 2  Am. -=4;-=-= 

d ’Z d ’2 d 2 2  d 2 z  

d X 2  a x a y  d y d x  dY 
- - 12 cos 3x sin 4 y ;  7 = - 162 (c) z = sin 3x cos 4y Am. - = -9z; - = - - 

d‘z d’z a’z J’Z - y 2 - x 2  Am. - = - - -  2xy .-=-- Y ( d )  z = arctan - 
X dx2 dy’ - (x’ + y’)2 ’ d x  dy dy d x  (x’ + y2)2 

d ’Z 
x - y ’  d X 2  

21. (a)  If z = - xy show that x’ - + 2xy - 

d’z d2z  

d X 2  dy’ 
( b )  If z = eUx cos b y  and = +a, show that - + - = 0. 

d’z d’z d z  

d X 2  ay2 d t ‘  
( c )  If z = e-‘(sin x + cos y ) ,  show that - + - = - 

( d )  If z = sin M sin by sin k t m ,  show that = k2(  5 + ”). 
d t  dY2 

22. For the gas formula ( p  + :)(U - 6 )  = ct, where a ,  b ,  and c are constants, show that 

cu _ -  - dp = ~ U ( U  - 6 )  - ( p  + a / u 2 ) u 3  d u  
dU U’(U - b )  d t  ( p  + a /u2)u3  - 2a(u - 6 )  

[For the last result, see Problem 1 1  of Chapter 64.1 



Chapter 63 

Total Differentials and 
Total Derivatives 

TOTAL DIFFERENTIALS. The differentials dx and dy for the function y = f ( x )  of a single 
independent variable x were defined in Chapter 28 as 

dY dx = A x  and dy = f ' ( x )  dx = - dx 
dx 

Consider the function z = f ( x ,  y )  of the two independent variables x and y ,  and define 
dx = Ax and dy = Ay.  When x varies while y is held fixed, z is a function of x only and the 
partial differential of z with respect to x is defined as d,z = f x ( x ,  y )  dx = - dx. Similarly, the 
partial differential of z with respect to y is defined as d,z = f y ( x ,  y )  dy = - dy. The total 

differential dz  is defined as the sum of the partial differentials, 

d z  

dx d z  

JY 

d Z  dZ 
d z  = - dx + - dy 

d X  dY 

For a function w = F ( x ,  y ,  z ,  . . . , t ) ,  the total differential dw is defined as 

d W  d W  d W  d W  
dw = - dx + - dy + - dz  + * - .  + - dt 

d X  dY d z  dt 

(63.1) 

(63.2) 

(See Problems 1 and 2.) 
As in the case of a function of a single variable, the total differential of a function of several 

variables gives a good approximation of the total increment of the function when the 
increments of the several independent variables are small. 

dZ dZ 
EXAMPLE 1: 

Ax = dx and A y  = d y ,  the increment Az taken on by z is 

When z = x y ,  dz = - dx + - d y  = y dx + x d y ;  and when x and y are given increments 
d X  dY 

A Z  = (X + A x ) ( y  + A y )  - XY = X  A y  + y AX + AX A y  
= x d y  + y dx + dx d y  

A geometric interpretation is given in Fig. 63-1: dz and Az differ by the rectangle of area Ax A y  = dx d y .  

(See Problems 3 to 9.) 

I r 
Fig. 63-1 

THE CHAIN RULE FOR COMPOSITE FUNCTIONS. If z = f ( x ,  y )  is a continuous function of the 
variables x and y with continuous partial derivatives d z l d x  and d z l d y ,  and if x and y are 

386 
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differentiable functions x = g( t )  and y = h( t )  of a variable t ,  then z is a function of t and dz ld t ,  
called the total derivative of z with respect to t ,  is given by 

(63 .3)  
dz az dx d z  dy - = - - + - -  
dt ax dt  ay dt 

Similarly, if w = f ( x ,  y, z ,  . . .) is a continuous function of the variables x ,  y ,  z ,  . . . with 
continuous partial derivatives, and if x ,  y ,  z ,  . . . are differentiable functions of a variable t ,  the 
total derivative of w with respect to t is given by 

dw dw dx aw dy dw dz 
dt  dx dt  ay dt az dt 

- + - - + - - + . . .  (63.4) - = -  

(See Problems 10 to 16.) 
If z = f ( x ,  y )  is a continuous function of the variables x and y with continuous partial 

derivatives d z l d x  and dz ldy ,  and if x and y are continuous functions x = g ( r ,  s )  and y = h(r ,  s )  
of the independent variables r and s, then z is a function of r and s with 

dt az dx d z  ay az az ax d z  ay 
d r  dx d r  dy ar  as ax d s  dy ds 

(63.5) 

Similarly, if w = f (x ,  y ,  z ,  . . .) is a continuous function of the variables x ,  y ,  z ,  . . . with 
continuous partial derivatives d w l d x ,  d w l d y ,  dw ldz ,  . . . , and if x ,  y ,  z ,  . . . are continuous 
functions of the independent variables r ,  s,  t ,  . . . , then 

- - + - -  and - - - + - -  - - - - -  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
(See Problems 17 to 19.) 

Solved Problems 

In Problems 1 and 2,  find the total differential. 

1. z = x3y + x2y2 + xy3 

We have 

Then 

d z  d t  
- = 3x2y + 2xy2 + y’ 
dx dY 

and - = x 3  + 2x2y + 3xy2 

dZ d z  
dz = - dx + - dy = (3x2y + 2xy2 + y ’ )  dx + (x’ + 2x2y + 3 x y 2 )  dy 

dx dY 

2. z = x sin y - y sin x 

d Z  d Z  
- = sin y - y cos x 
d X  dY 

We have and - = x cos y - sin x 

Then 
d z  d Z  

dz = - dx + - dy = (sin y - y cos x )  dx + ( x  cos y - sin x )  dy 
dx dY 

(63.6) 

3. Compare dz and Az, given z = x2  + 2xy - 3y2. 
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d Z  d Z  - = 2x + 2y 
d X  dY 

and - = 2 x  - 6 y  . So d z  = 2 ( x  + y )  dx + 2(x - 3 y )  dy 

Also, A Z  = [(x + dr)’ + 2(x  + dx)( y + d y )  - 3( y + dy)’] - (x’ + 2 ~ y  - 3 ~ ’ )  
= 2 ( ~  + y )  dx + 2 ( ~  - 3 y )  dy + ( d ~ ) ~  + 2 dx dy - 3(dy)’ 

Thus d z  and A z  differ by (~5)’ + 2 dx dy - 3(dy)’. 

4. Approximate the area of a rectangle of dimensions 35.02 by 24.97 units. 

d A  d A  

d X  dY 
For dimensions x by y ,  the area is A = x y  so that d A  = - dx + - dy = y dx + x dy. With x = 35, 

dx = 0.02, y = 25, and dy = -0.03, we have A = 35(25) = 875 and d A  = 25(0.02) + 35(-0.03) = -0.55. 
The area is approximately A + d A  = 874.45 square units. 

5. Approximate the change in the hypotenuse of a right triangle of legs 6 and 8 inches when the 
shorter leg is lengthened by f inch and the longer leg is shortened by Q inch. 

Let x, y ,  and z be the shorter leg, the longer leg, and the hypotenuse of the triangle. Then 

d Z  d z  x d x + y d y  
Y d z = - d x + - d y =  

z=q= d z  X d Z  

ax = VW. dy = v m  d X  dY v m  
6( ‘) + ’(- ’) - -  - 

v m  20 
inch. Thus the hypotenuse is When x = 6 ,  y = 8 ,  d x =  a ,  and d y = - Q ,  then d z =  

lengthened by approximately & inch. 

6. The power consumed in an electrical resistor is given by P = E 2 / R  (in watts). If E = 200 volts 
and R = 8 ohms, by how much does the power change if E is decreased by 5 volts and R is 
decreased by 0.2 ohm? 

We have 
E’ d P  2 E  d P  E’ 

d E  R d R  R’ R R2 
d P =  d E  - - d R  - = -  - = - -  

When E = 200, R = 8,  d E  = - 5 ,  and d R  = -0.2, then 

d P =  - 2(200) ( - 5 )  - (?)’(-0.2) = -250 + 125 = - 125 
8 

The power is reduced by approximately 125 watts. 

7. The dimensions of a rectangular block of wood were found to be 10, 12, and 20 inches, with a 
possible error of 0.05 in in each of the measurements. Find (approximately) the greatest error 
in the surface area of the block and the percentage error in the area caused by the errors in 
the individual measurements. 

The surface area is S = 2(xy + y z  + z x ) ;  then 

d S  d S  
d X  d y  d z  

dS = - dx + - dy + ds d z  = 2 ( y  + z )  dx  + 2(x  + z )  dy + 2 ( y  + x )  d z  

The greatest error in S occurs when the errors in the lengths are of the same sign, say positive. Then 

dS = 2( 12 + 20)(0.05) + 2( 10 + 20)(0.05) + 2( 12 + 10)(0.05) = 8.4 in2 

The percentage error is (error/area)(100) = (8.4/1120)( 100) = 0.75%. 

8. For the formula R = E / C ,  find the maximum error and the percentage error if C = 20 with a 
possible error of 0.1 and E = 120 with a possible error of 0.05. 
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9. 

10. 

11. 

12. 

13. 

14. 

Here 
dR dR 1 E 

dR = - dE + - d C =  - dE - 7 dC 
d E  d C  C C 

0.05 120 
20 400 

The maximum error will occur when dE = 0.05 and dC = -0.1; then dR = - - - (-0.1) = 0.0325 

0.0325 (100) = 0.40625 = is the approximate maximum error. The percentage error is - (100) = - 
0.41%. 

dR 
R 8 

Two sides of a triangle were measured as 150 and 200 ft ,  and the included angle as 60". If the 
possible errors are 0.2 ft in measuring the sides and 1" in the angle, what is the greatest 
possible error in the computed area? 

d A  1 
- -  - - XY COS e 2 ~ s i n 8  

d A  1 dA 1 - - y s i n ( j  - = -  1 
2 dx 2 2 

Here A = - xysin 8 - - 
dY 

1 1 1 
2 2 

d A  = 2 y sin 8 dr + - x sin 8 dy + - xy cos 8 d8 and 

When x = 150, y = 200, 8 = 60", dx = 0.2, dy = 0.2, and d8 = 1" = ~/l80, then 

d A  = $(200)(sin 60")(0.2) + ;(150)(sin 60")(0.2) + $ (  150)(2OO)(cos 6 0 " ) ( ~ / 1 8 0 )  = 161.21 ft' 

Find dz ld t ,  given z = x2 + 3xy + 5 y 2 ;  x = sin t, y = cos t. 

Since 

we have 

d z  d z  dx dY - = 2 ~ + 3 y  - = 3 x + l O y  - = c o s t  - = - s i n t  
dX dY dt dt 

dz d z  dx d z  dy 
dt dx dt dy dt 

- + - - = (2x + 3y) cos t - (3x + 1Oy) sin t - = -  

Find dz ld t ,  given z = In (x' + y 2 ) ;  x = e-', y = er. 

Since 

we have 

dY el dx - = - e - '  - =  dz 2y -=- d z  2x 
dx x 2 + y 2  dy x 2 + y 2  dt dt 
-=- 

ye' - xe ' - - + - - = -  ( -ee l )  + 7 2Y e' = 2 
dz d z  dx d z  dy 2x _ -  - 
dt dx dt dy  dt x2 + y x + y 2  x2 + y2 

Let z = f ( x ,  y )  be a continuous function of x and y with continuous partial derivatives d z l d x  
and d z l d y ,  and let y be a differentiable function of x. Then z is a differentiable function of x. 
Find a formula for d z l d x .  

BY (63.3 1, 
dz - df dx df dy df df dy _ _ - -  + - - = - + - -  
dr dx dr dy dx d x  dy dx 

The shift in notation from z to f is made here to avoid possible confusion arising from the use of 
dzldx and azldx in the same expression. 

Find dzldx, given z = f ( x ,  y )  = x2 + 2xy + 4y2, y = eUx. 

dz - = df + af d y  = (2x + 2y) + (2x + 8y)ae"" = 2(x + y )  + 2a(x + 4y)e"" dx dx dy dx 

Find (a)  d z l d x  and ( b )  d z l d y ,  given z = f ( x ,  y )  = xy2  + x2y ,  y = In x. 

(a)  Here x is the independent variable: 

dz = 3 + 9 d y  = (y2 + 2xy) + (2xy + x2) - 1 = y' + 2xy + 2y + x 
dx dx dy dr X 
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(b )  Here y is the independent variable: * - df dx + - df = (y’ + 2xy)x + (2xy + x ’ )  = xy2 + 2x2y + 2xy + x 2  
dy d x  dy dy 

15. The altitude of a right circular cone is 15 inches and is increasing at 0.2 in/min. The radius of 
the base is 10 inches and is decreasing at 0.3 inlmin. How fast is the volume changing? 

Let x be the radius, and y the altitude of the cone (Fig. 63-2). From V =  ~ x ’ y ,  considering x and y 
as functions of time t ,  we have 

- + - - = - “ (  dt 
d V  d V  dx d V  dy 
dt dx  dt dy dt 3 2xy [2(10)(15)(-0.3) + 102(0.2)] = - 7 0 ~ / 3  in3/min - 

X 2  
16. A point P is moving along the curve of intersection of the paraboloid - - - y 2  = z and the 

cylinder x2 + y 2  = 5 ,  with x ,  y ,  and z expressed in inches. If x is increasing at 0.2 in/min, how 
fast is z changing when x = 2? 

16 9 

x 2  y2 dz d z  dx d z  dy x dx 2y dy 
16 9 dt d x  dt dy  dt 8 dt 9 dt 

From z = - - - ,  we obtain - = -  - + -  - = -  - - -  -. Since x 2 + y 2 = 5 ,  y = k l  

dx dy 
dt dt 

when x = 2 ;  also, differentiation yields x - + y - = 0. 

dy x dx 2 dz 2 2 5 
When y = 1, - = - - - = - - (0.2) = -0.4 and - = - (0.2) - - (-0 4 )  = - in/min. 

dt y dt 1 dt 8 9 ’ 36 

When y = - 1,  - = - - - = 0.4 and - = - (0.2) - - (-1)(0.4) = - in/min. 
dy x dx dz 2 2 5 
dt y dt dt 8 9 36 

17. Find d z l d r  and dz lds ,  given z = x2 + x y  + y 2 ;  x = 2r + s ,  y = r - 2s. 

Then 

and 

d z  d z  dx  d z  dy - - - - + - - = (2x + y)(2) + ( x  + 2 y ) ( l )  = 5x + 4y - 
d r  dx d r  dy d r  

d z  d z  dx d z  dy 
ds dx ds dy ds  

+ - - = (2x + y ) ( l )  + (x  + 2y)( -2)  = -3y - - - -- 

du d u  d U  

d o  
and - given U = x2 + 2y2 + 2 z 2 ;  x = p sin p cos 0, y = p sin p sin 0, 18. Find -, - 

dP d o ’  
z = p c o s p .  . 

du d u  dx d u  dy d u  d z  

dp dx dp dy dp d z  dp 
- + - - + - - = 2x sin p cos 8 + 4y sin p sin 8 + 42 cos p - 
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a u -  au d x  du dy du d z  
d p  d x  d p  dy dp  dz ap - + - - + - - = 2x p cos p cos 8 + 4y p cos p sin 8 - 42 p sin p 

d u -  du d x  du dy du d z  
d o  d x  de dy de d z  de 

- + - - + - - = -2xpsin p sin8 + 4 y  psin p cos8 

19. Find duldx, given U = f ( x ,  y ,  z )  = xy  + y z  + z x ;  y = 1 l x ,  z = x2.  

From (63.6), 

x + z  
X’ 

df dy df d z  @ = af + - - + - - = ( y  + 2 )  + ( x  + 2 )  + ( y  + x ) 2 x  = y  + z + 2 x ( x  + y )  - - dx d x  dy dx d z  dx 

20. If z = f ( x ,  y )  is a continuous function of x and y possessing continuous first partial derivatives 
d z l d x  and d z l d y ,  derive the basic formula 

d Z  d Z  
A Z  = - AX + - Ay + E ,  AX + E~ Ay 

d X  dY 

where E ,  and e2 + 0 as Ax and Ay + 0. 

When x and y are given increments Ax and Ay respectively, the increment given to z is 

A.2 = f(x + A x ,  y + Ay)  - f(x, y )  

= [f(x + Y + AY) - f(x, Y + AY)] + [ f k  Y + AY) - f(x,  Y ) l  ( 2  1 
In the first bracketed expression, only x changes; in the second, only y changes. Thus, the law of the 
mean (26.5) may be applied to each: 

where 0 < 8, < 1 and 0 < 8, < 1, Note that here the derivatives involved are partial derivatives. 
Since dz ldx  = f , ( x ,  y )  and dz ldy  = f , ( x ,  y )  are, by hypothesis, continuous functions of x and y ,  

lim f , ( x  + 8, A x ,  y + A y )  = f x ( x ,  y )  and lim f,,(x, y + 0, A y )  = f, ( x ,  y )  
Ax-0  AX-0 
A y - 0  AV-0 

Then f,(x + 8, A X ,  Y + A Y )  = f (x ,  Y )  + E ,  and f, ( x ,  Y + 8, AY)  = f, ( x ,  Y )  + e2 

where c1 + 0 and e2+O as Ax and Ay+ 0. 
After making these replacements in ( 3 )  and ( 4 )  and then substituting in ( I  ), we have, as required, 

A z  = [fxix, y )  + €11 Ax + [f,(x, Y )  + € 2 1  Ay =fxk Y )  Ax  +f, . (x,  Y )  AY + € 1  Ax + € 2  AY 

Note that the total derivative d z  is a fairly good approximation of the total increment A z  when IAxI and 
[ A y [  are small. 

Supplementary Problems 

21. Find the total differential, given: 
(a )  = x3y + 2xy3 Am. 

(6) 8 = arctan ( y / x )  Ans. d8 = 

dz = (3x2 + 2y2)y  dx + (x’ + 6 y 2 ) x  dy 

x d y - y d r  
x’ + y’ 

Ans. dz = 2z(x  dx - y dy)  

Y ( Y  d X  - x dY) 
(x’ + y2)3’2 

( d )  z = x ( x 2  + Y’)”’~ Ans. dz = 
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22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

The fundamental frequency of vibration of a string or wire of circular section under tension T is 

n = - where 1 is the length, r the radius, and d the density of the string. Find ( a )  the 
approximate effect of changing 1 by a small amount dl, ( 6 )  the effect of changing T by a small amount 
dT, and ( c )  the effect of changing 1 and T simultaneously. 

Ans. 

1 
2rl. n d 7  

( a )  - ( n / l )  dl;  ( 6 )  ( n / 2 T )  dT;  ( c )  n ( - d l / l +  d T / 2 T )  

Use differentials to compute ( a )  the volume of a box with square base of side 8.005 and height 9.996 ft; 
( 6 )  the diagonal of a rectangular box of dimensions 3.03 by 5.98 by 6.01 ft. 

Ans. (a) 640.544 ft3; ( b )  9.003 ft  

Approximate the maximum possible error and the percentage of error when z is computed by the given 
formula: 
( a )  z = T r 2 h ;  r = 5 2 0.05, h = 12 2 0.1 
( 6 )  l / z =  l / f +  l / g ; f = 4 + 0 . 0 1 ,  g = 8 + 0 . 0 2  Ans. 0.0067; 0.25% 
(c )  z = y / x ;  x = 1 . 8 + 0 . 1 , y = 2 . 4 + 0 . 1  Am. 0.13; 10% 

Ans. 8.57~; 2.8% 

Find the3approximate maximum percentage of error in: 
( a )  o =m if there is a possible 1% error in measuring g and a possible $% error in measuring b .  

dw 1 dg db dg db Hint: In o = f(ln g - In 6 ) ;  - = - (- - 7);  17 1 = 0.01; I 7 1 = 0.005) Am. 0.005 " 3 g  
( b )  g = 2s / tZ  if there is a possible 1% error in measuring s and % error in measuring t .  

Ans. 0.015 

Find duldt, given: 
( a )  = x 2 y 3 ;  = 2t3, = 3t2  Am.  6xy2t(2yt + 3x)  
( b )  U = x cos y + y sin x; x = sin 2t ,  y = cos 2t 

( c )  U = x y  + y z  + zx; x = e', y = e-' ,  z = e ' +  e-' 
Ans.  C COS y + y cos x) cos 2t - 2(-x  sin y + sin x) sin 2t 

Ans. (x + 2y + z)e' - (2x + y + z ) e  ' 

At a certain instant the radius of a right circular cylinder is 6 inches and is increasing at the rate 
0.2 in/sec, while the altitude is 8 inches and is decreasing at the rate 0.4 in/s. Find the time rate of 
change ( a )  of the volume and ( b )  of the surface at that instant. 

Ans. (a) 4 .87  in3/sec; ( b )  3 . 2 ~  in2/sec 

A particle moves in a plane so that at any time t its abscissa and ordinate are given by x = 2 + 3t ,  
y = t 2  + 4 with x and y in feet and t in minutes. How is the distance of the particle from the origin 
changing when t = l? Am. 5 / f i  ft/min 

A point is moving along the curve of intersection of x2 + 3xy + 3y2 = z2  and the plane x - 2 y  + 4 = 0. 
When x = 2 and is increasing at 3 units/sec, find ( a )  how y is changing, ( b )  how z is changing, and (c) 
the speed of the point. 

Ans. ( a )  increasing 312 units/sec; ( b )  increasing 75 /14  units/sec at ( 2 , 3 , 7 )  and decreasing 751 
14 units/sec at ( 2 , 3 ,  - 7 ) ;  (c) 6.3 unitslsec 

Find d z l d s  and d z l d t ,  given: 
( a )  z = x 2  - 2 y 2 ;  x = 3s + 2t, y = 3s - 2 t  
( 6 )  z = x' + 3xy + y 2 ;  x = sin s + cos t ,  y = sin s - cos t 
( c )  z = x 2  + 2y';  x = es - er, y = es + e' 

( e )  z = e";  x = s' + 2st, y = 2st + t 2  

Ans. 6(x - 2y) ;  4(x + 2y)  
Am. 5 ( x  + y )  cos s; ( x  - y )  sin t 

Ans. 2(x + 2y)e"; 2(2y - x)e' 
( d )  z = sin (4x + 5y) ;  x = s + t ,  y = s - t Am. 9 COS ( 4 ~  + 5 ~ ) ;  -COS ( 4 ~  + 5 y )  

Ans. 2e"[tx + ( s  + t ) y ] ;  2eXy[(s + t ) x  + sy] 
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31. 

32. 

33. 

34. 

35. 

( a )  If U = f ( x ,  y )  and x = r cos 8, y = r sin 8, show that 

( + ( $ ) 2  = ( $ ) 2  + 7 1 (z) au 

( 6 )  If U = f ( x ,  y )  and x = r cosh s ,  y = r sinh s, show that 

d u  du 

d 2 z  1 d 2 z  
(a )  If z = f ( x  + a y )  + g(x - a y ) ,  show that 7 = - - (Hint: Write z = f (u )  + g ( v ) ,  U = x + a y ,  

dx  a 2  d y 2 '  

( 6 )  If z = x"f( y l x ) ,  show that x dz ldx  + y dz ldy  = n z .  
(c )  If z = f ( x ,  y )  and x = g(t) ,  y = h( t ) ,  show that, subject to continuity conditions 

U = x - a y . )  

d 2z 
- = f x X ( g ' I 2  +2fXyg 'h '  +fy , . (h')2 + f x g " + f , h "  dt2 

(d) If z = f ( x ,  y ) ;  x = g(r ,  s) ,  y = h(r,  s),  show that, subject to continuity conditions 

d 2Z 
- d r 2  = f x x ( g r ) 2  + 2Lygrhr + fyy(hr12 + L g r r  + fyhrr 

d 2Z 

d r  d s  

I3 2z 

-= 
f x x g r g s  + f x y  (grhs + g5hr) + fyyhrhs + f x g r s  + fyhrs 

2 = f x x ( g J 2  + 2Lygshs + f Y Y ( h J 2  + fxg5 ,  + fyhss  

A function f ( x ,  y )  is called homogeneous of order n if f(tx, ty) = t"f(x,  y) .  (For example, f ( x ,  y )  = 
X' + 2xy + 3y2 is homogeneous of order 2;  f ( x ,  y )  = x sin ( y / x )  + y cos ( y / x )  is homogeneous of order 
1.) Differentiate f ( t x ,  ty )  = t"f(x, y )  with respect to t and replace t by 1 to show that xf, + yfy = nf. Verify 
this formula using the two given examples. See also Problem 32(6) .  

du J U  au av 
dx a y  dy d x  

If z = +(U, U), where U = f ( x ,  y )  and U = g ( x ,  y), and if - = - and - = - -, show that 

d2u d 2 U  d 2 v  d 2 v  d2+ d2+ 
d x  dy d x 2  dy2 dX2 dy 

(a )  ~ + ~ = - + - = o  ( 6 )  - + 7 = 

Use (1) of Problem 20 to derive the chain rules (63.3) and (63.5). (Hint: For (63.3), divide by At.) 



Chapter 64 

Implicit Functions 

THE DIFFERENTIATION of a function of one variable, defined implicitly by a relation f ( x ,  y) = 0, 
was treated intuitively in Chapter 11. For this case, we state without proof: 

Theorem 64.1: If f ( x ,  y )  is continuous in a region including a point (x , ,  y , )  for which f (x , ,  y , )  = 0 ,  if 
dfldx and dfldy are continuous throughout the region, and if dfldy Z O  at (x , ,  y , ) ,  then there is a 
neighborhood of (x , ,  y , )  in which f ( x ,  y )  = 0 can be solved for y as a continuous differentiable function of 

dy dfldx 
x ,  y = 4 ( x ) ,  with y ,  = 4 ( x , )  and - = - - dx d f l d y '  

(See Problems 1 to 3.) 

Theorem 64.2: If F ( x ,  y ,  z )  is continuous in a region including a point (x , ,  y o ,  z o )  for which 

d F  d F  and - are continuous throughout the region, and if d F l d z  # 0 at 
(x , ,  y , ,  z , ) ,  then there is a neighborhood of (x , ,  y,, z,) in which F ( x ,  y ,  z) = 0 can be solved for z as a 

d z  d F l d x  
continuous differentiable function of x and y ,  z = 4 ( x ,  y ) ,  with z,, = +(x, , ,  y , ) )  and - = - ~ 

d z  - dF1dy d x  d F l d z '  

dy d F l d z '  

(See Problems 4 and 5.) 

Theorem 64.3: If f ( x ,  y ,  U ,  U) and g(x, y ,  U ,  U) are continuous in a region including the point (x , ,  y , ,  
U,, U*) for which f (x , ,  y,, U,, U,) = 0 and g(x,, y , ,  U,, U,) = 0, if the first partial derivatives off  and 

Extending this theorem, we have the following: 

d F  
d z  F ( X , ) ,  yo, 2,) = 0, if - - dx.  ' dy ' 

- - -- 

of g are continuous throughout the region, and if at ( x o ,  y,, U,, U,) the determinant I ( - - )  f 4  ~ 

U ,  U 1 :;: ;E: 1 # O ,  then there is a neighborhood of (x , ,  y o ,  U,, U,) in which f ( x ,  y ,  U ,  U) = O  and 

g ( i ,  y ,  U,;) = 0 can be solved simultaneously for U and U as continuous differentiable functions of x and 

y ,  U = + ( x ,  y )  and U = $ ( x ,  y ) .  If at (x , ,  y , ,  U,, U,) the determinant J - ZO, then there is a 

neighborhood of (x , ,  y , ,  U,, U,) in which f ( x ,  y ,  U, U) = 0 and g(x,  y ,  U ,  U) = 0 can be solved for x and y as 
continuous differentiable functions of U and U, x = h(u,  U) and y = k(u,  U). 

(See Problems 6 and 7.) 

(:,;I 

Solved Problems 

1. Use Theorem 64.1 to show that x2 + y 2  - 13 = 0 defines y as a continuous differentiable 
function of x in any neighborhood of the point (2,3) that does not include a point of the x 
axis. Find the derivative at the point. 

Set f ( x ,  y )  = x 2  + y 2  - 13.  Then f ( 2 , 3 )  = 0, while in any neighborhood of ( 2 , 3 )  in which the 
function is defined, its partial derivatives dfldx = 2 x  and dfldy = 2y are continuous, and dfldy # 0. Then 

2. Find dy/dx, given f ( x ,  y) = y 3  + xy - 12 = 0. 

394 
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3. 

4. 

5. 

6.  

7. 

Find dy ldx ,  given ex sin y + e y  sin x = 1. 

dy dfldx ex sin y + e’ cos x 
dr @/ay ex cos y + e” sin x * 

Put f ( x ,  y )  = ex sin y + e y  sin x - 1. Then - = - - = - 

Find dz ldx  and dz ldy ,  given F(x,  y ,  z )  = x 2  + 3xy - 2y2 + 3xz + z2 = 0. 

to x and again with respect to y ,  we have 
Treating z as a function of x and y defined by the relation and differentiating partially with respect 

and 
d F  d F  dz  dZ 
- + - - = ( 3 x - 4 y ) + ( 3 x + 2 2 )  - = o  
dy d z  dy dY 

d z  dF ldx  2x + 3 y  + 3 z  d z  dF ldy  - 3x - 4 y  
3x + 22 

. From (Z), - = - - - - - 
dx d F l d z  dy d F l d z  3 x + 2 2 ’  

- From ( I ) ,  - = -- - - 

Find dz ldx  and dz ldy ,  given sin xy + sin yz + sin zx = 1. 

Set F(x ,  y ,  z )  = sin xy + sin yz + sin zx - 1 ;  then 

d F  d F  d F  
- = y cos xy + z cos zx 
dX dY dZ 

- = x cos xy + 2 cos yz - = y cos yz + x cos zx 

d z  dF ldx  y cos xy + z cos zx dz  dF ldy  x cos xy + z cos yz 
dx d F l d z  y cos yz + x cos zx dy d F l d z  y cos yz + x cos zx 

-=---  - -  - - - _ - - _ -  and 

If U and U are defined as functions of x and y by the equations 

f ( x ,  y ,  U ,  U) = x + y 2  + 2uv = 0 g(x, y ,  U ,  U) = x 2  - xy + y2  + u2 + v 2  = 0 

find ( a )  du ldx ,  d v l d x  and ( 6 )  du ldy ,  dv ldy .  

(a) Differentiating f and g partially with respect to x ,  we obtain 

1 + 2 v  - dU + 2 u  - dV = O  and 2 x - y + 2 u  - dU + 2 v  - dV = O  
dX dX dX dX 

Solving these relations simultaneously for d u l d x  and d v l d x ,  we find 

du  - U + u ( y  - 2 x )  
‘dX 2(u2 - U’) d x  2(UZ - V Z )  

dv - v(2x - y )  - U 
and - - - _  

(6) Differentiating f and g partially with respect to y ,  we obtain 

2 ~ + 2 ~ - + 2 u - = O  dU dV and - x + 2 y + 2 ~ - + 2 v - = O  dU dV 

dY dY dY dY 

du - u(x - 2y )  + 2vy 
dy 2 (u2 -  U’) dy 2(UZ - v 2 )  

dv - v(2y - x )  - 2uy 
and - - Then - _  

du dv au J V  d x  dy 
Given u2 - v 2  + 2 x  + 3y = 0 and uv + x - y = 0, find (a)  - - - - and ( b )  - - 
d x  dy d x ’  d x ’  a y ’  dy du ’  d u ’  - -  
d v ’  d v ’  
(a) Here x and y are to be considered as independent variables. Differentiate the given equations 

partially with respect to x ,  obtaining 

du dv 
dx dx 

2 ~ - - 2 u - + 2 = 0  dU dV and U - + U - + l = O  
dX dX 
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d U  u + v  du  U - U  
Solve these relations simultaneously to obtain - = -- and - = - 

Differentiate the given equations partially with respect to y ,  obtaining 
d x  U’ + u2 d x  U’+ U’‘ 

d U  dV du dv 
2 ~ - - 2 v - + 3 = 0  and U - + U - - l = O  

dY dY dY dY 
d u  2~ - 3 ~  d u  2 u + 3 u  

Solve simultaneously to obtain - = and - = 

d x  dy d x  d y  d x  

ay 2 ( u 2 +  U’) d y  2 ( u 2 +  u 2 ) ‘  
(6) Here U and U are to be considered as independent variables. Differentiate the given equations 

= 0 and U + - - - = 0. Then - = partially with respect to U ,  obtaining 2u + 2 - + 3 
d U  du  d u  dU 214 + 3U d y  2(V - U )  

and - = ~ 

-____ 

5 dU 5 .  d x  dy 
d x  dy d x  2u - 3 u  dy 2 u ( u +  U )  du  dv 

Differentiate the given equations partially with respect to U ,  obtaining - 2 v  + 2 - + 3 - = 0 

and U + - - - = 0. Then - = ____ and - = . 
du  dv dU 5 dV 

Supplementary Problems 

8. Find d y l d x ,  given 
(a )  x3 - x 2 y  + xy’ - y3 = 1 

3x2 - 2xy + y’ . 

( b )  xy - ex sin y = 0 ( c )  In (x’ + y ’ )  - arctan y l x  = o 
e” sin y - y 2x + y 

Ans. (4 x 2  - 2xy + 3y2 7 (6) - cos ; (4 y-+ 

9. Find d z l d x  and d z l d y ,  given 

( a )  3 ~ ‘  + 4 y z  - 5 z 2  = 60 Ans. d z l d x  = 3x152; d z l d y  = 4y15z 

d z = -  x + y + 4 z  d z  x + y + 2 z  
Ans. - 

d x  
. - - _  - ( 6 )  x’ + y 2  + z’ + 2xy + 4yz + 8zx = 20 

4 x  + 2y + 2 ’ dy  4x + 2y + z 

( c )  x + 3y + 22 = In z 

( d )  z = e,‘ cos ( y  + z )  

32 -- 2 Ans. - d z  - - -* - 
d x  1 - 2 2 ’ 5  1 - 2 2  

* d z -  - e x  sin ( y + z )  
1 + er sin ( y  + z) 

- Z d z  - Ans. - - 
d x  1 + ex sin ( y  + z )  ’ dy  

(e) sin ( x  + y )  +sin ( y  + 2) +sin (z + x )  = 1 

(32 - 
d x  

cos (x + y )  + cos (2 + x) . d z  - - COS (x + y )  + COS ( y  + z )  - -  Ans. - - - 
cos ( y + z )  + cos (2 + x )  ’ dy cos ( y + 2) + cos (2 + x) 

10. Find all the first and second partial derivatives of z ,  given x’ + 2yz + 2 z x  = 1 .  

Ans. - - -- - - --- __ - .- -  ______.___--  - 2 2  2 d 2 z  x - y + 2 2  d 2 z  x + 2 2  d’z - d z -  x + z . d z -  
d x  x + y ’ dy x + y ’ dx’ (x + y)’ ’ d x  ay ( x  + y)’ ’ dy’ (x + y)’ 

d x  d y  d z  
dy  d z  d x  

11. If F(x ,  y ,  Z) = 0 show that - - - = - 1 .  

dz d x  dy  dy  d x  1 

dg - 
12. If z = f(x, y )  and g(x, y )  = 0 ,  show that - = 

dx 
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Chapter3
Analytical Solid Geometry

3.1 INTRODUCTION

In 1637, Rene Descartes* represented geometrical
figures (configurations) by equations and vice versa.
Analytical Geometry involves algebraic or analytic
methods in geometry. Analytical geometry in three
dimensions also known as Analytical solid** geom-
etry or solid analytical geometry, studies geometrical
objects in space involving three dimensions, which
is an extension of coordinate geometry in plane (two
dimensions).

Fig. 3.1

* Rene Descartes (1596–1650) French philosopher and mathe-
matician, latinized name for Renatus Cartesius.

** Not used in the sense of “non-hollowness”. By a sphere or
cylinder we mean a hollow sphere or cylinder.

Rectangular Cartesian Coordinates

The position (location) of a point in space can be
determined in terms of its perpendicular distances
(known as rectangular cartesian coordinates or sim-
ply rectangular coordinates) from three mutually
perpendicular planes (known as coordinate planes).
The lines of intersection of these three coordinate
planes are known as coordinate axes and their point
of intersection the origin.

The three axes called x-axis, y-axis and z-axis are
marked positive on one side of the origin. The pos-
itive sides of axes OX, OY, OZ form a right handed
system. The coordinate planes divide entire space
into eight parts called octants. Thus a point P with
coordinates x, y, z is denoted as P (x, y, z). Here
x, y, z are respectively the perpendicular distances
of P from the YZ, ZX and XY planes. Note that a line
perpendicular to a plane is perpendicular to every
line in the plane.

Distance between two points P1(x1, y1, z1) and
P2(x2, y2, z2) is

√
(x2−x1)2+(y2−y1)2+(z2−z1)2.

Distance from origin O(0, 0, 0) is
√
x2

2 + y2
2 + z2

2.
Divisions of the line joining two points P1, P2:
The coordinates of Q(x, y, z), the point on P1P2

dividing the line segment P1P2 in the ratio
m : n are

(
nx1+mx2

m+n
,

ny1+my2
m+n

,
nz1+mz2

m+n

)
or putting

k for m
n
,
(

x1+kx2
1+k

,
y1+ky2

1+k
,

z1+kz2
1+k

)
; k �= −1. Coordi-

nates of mid point are
(
x1+x2

2 ,
y1+y2

2 ,
z1+z2

2

)
.

3.1
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Direction of a line: A line in space is said to be
directed if it is taken in a definite sense from one
extreme (end) to the other (end).

Angle between Two Lines

Two straight lines in space may or may not intersect.
If they intersect, they form a plane and are said to
be coplanar. If they do not intersect, they are called
skew lines.

Angle between two intersecting (coplanar) lines is
the angle between their positive directions.

Angle between two non-intersecting (non-
coplanar or skew) lines is the angle between two in-
tersecting lines whose directions are same as those
of given two lines.

3.2 DIRECTION COSINES AND
DIRECTION RATIOS

Direction Cosines of a Line

Let L be a directed line OP from the originO(0, 0, 0)
to a point P (x, y, z) and of length r (Fig. 1.2). Sup-
pose OP makes angles α, β, γ with the positive di-
rections of the coordinate axes. Then α, β, γ are
known as the direction angles of L. The cosines of
these angles cosα, cosβ, cos γ are known as the di-
rection cosines of the line L(OP ) and are in general
denoted by l, m, n respectively.

Thus

l = cosα = x

r
, m = cosβ = y

r
, n = cos γ = z

r
.

where r =
√
x2 + y2 + z2.

Fig. 3.2

Corollary 1: Lagrange’s identity: l2+m2+n2 = 1
i.e., sum of the squares of the direction cosines of
any line is one, since l2 + m2 + n2 = cos2 α +
cos2 β + cos2 γ = x2

r2 + y2

r2 + z2

r2 = 1.

Corollary 2: Direction cosines of the coordinate
axes OX, OY, OZ are (1, 0, 0), (0, 1, 0), (0, 0, 1)
respectively.

Corollary 3: The coordinates of P are (lr, mr, nr)
where l, m, n are the direction cosines of OP and r
is the length of OP.

Note: Direction cosines is abbreviated as DC’s.

Direction Ratios

(abbreviated as DR’s:) of a line L are any set
of three numbers a, b, c which are proportional
to l, m, n the DC’s of the line L. DR’s are also
known as direction numbers of L. Thus l

a
= m

b
=

n
c

= k (proportionality constant) or l = ak, m = bk,
n = ck. Since l2 + m2 + n2 = 1 or (ak)2 + (bk)2 +
(ck)2 = 1 or k = ±1√

a2+b2+c2
. Then the actual di-

rection cosines are cosα = l = ak = ± a√
a2+b2+c2

,

cosβ=m = bk = ± b√
a2+b2+c2

, cos γ = m = ck =
± c√

a2+b2+c2
with a2 + b2 + c2 �= 0. Here +ve sign

corresponds to positive direction and −ve sign to
negative direction.

Note 1: Sum of the squares of DR’s need not be
one.

Note 2: Direction of line is [a, b, c] where a, b, c

are DR’s.

Direction cosines of the line joining two points
P1(x1, y1, z1) and P2(x2, y2, z2):

l = cosα = PQ

r
= LM

r
= OM − OL

r
= x2 − x1

r
.

Similarly, m = cosβ = y2−y1
r

and n = cos γ =
z2−z1

r
. Then the DR’s of P1P2 are x2 − x1, y2 − y1,

z2 − z1
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Fig. 3.3

Projections

Projection of a point P on line L is Q, the foot of the
perpendicular from P to L.

Fig. 3.4

Projection of line segment

P1P2 on a line L is the line segment MN where M
and N are the feet of the perpendiculars from P and
Q on to L. If θ is the angle between P1P2 and line
L, then projection of P1P2 on L = MN = PR =
P1P2 cos θ . Projection of line segment P1P2 on line
L with (whose) DC’s l, m, n is

l(x2 − x1) + m(y2 − y1) + n(z2 − z1)

Fig. 3.5

Angle between Two Lines

Let θ be the angle between the two lines OP1 and
OP2. Let OP1 = r1,OP2 = r2. Let l1,m1, n1 be
DC’s of OP1 and l2,m2, n2 are DC’s of OP2. Then
the coordinates of P1 are l1r1,m1r1, n1r1 and of P2

and l2r2,m2r2, n2r2.

Fig. 3.6

From �OP1P2, we have

P1P
2
2 = OP 2

1 + OP 2
2 − 2OP1 · OP2 · cos θ

(l2r2 − l1r1)2 + (m2r2 − m1r1)2 + (n2r2 − n1r1)2

=
[
(l1r1)2 + (m1r1)2 + (n1r1)2

]
+

[
(l2r2)2 + (m2r2)2 + (n2r2)2

]
− 2 · r1r2 cos θ.

Using l21 + m2
1 + n2

1 = 1 and l22 + m2
2 + n2

2 = 1,

r2
1 + r2

2 − 2r1r2(l1l2 + m1m2 + n1n2)

= r2
1 + r2

2 − 2r1r2 cos θ.

Then cos θ = l1l2 + m1m2 + n1n2

Corollary 1:

sin2 θ = 1 − cos2 θ = 1 − (l1l2 + m1m2 + n1n2)2

= (l21 + m2
1 + n2

1)(l22 + m2
2 + n2

2)

−(l1l2 + m1m2 + n1n2)2

= (l1m2 − m1l2)2 + (m1n2 − n1m2)2

+(n1l2 − n2l1)2

using the Lagrange’s identity. Then

(l21+m2
1+n2

1)(l22+m2
2+n2

2)−(l1l2+m1m2+n1n2)2)

= (l1m2−l2m1)2+(m1n2−m2n1)2+(n1l2−n2l1)2.
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Thus sin θ = √∑
(l1m2 − m1l2)2

Corollary 2: tan θ = sin θ
cos θ =

√∑
(l1m2−m1l2)2

l1l2+m1m2+n1n2
.

Corollary 3: If a1, b1, c1 and a2, b2, c2 are DR’s
of OP1 and OP2

Then l1 = a1√
a2

1+b2
1+c2

1

, m1 = b1√
a2

1+b2
1+c2

1

, n1 =
c1√

a2
1+b2

1+c2
1

etc.

Then cos θ = a1a2+b1b2+c1c2√
a2

1+b2
1+c2

1

√
a2

2+b2
2+c2

2

,

sin θ=
√

(a1b2−a2b1)2+(b1c2−b2c1)2 + (c1a2−c2a1)2√
a2

1+b2
1+c2

1

√
a2

2+b2
2+c2

2

.

Corollary: Condition for perpendicularity:
The two lines are perpendicular if θ = 90◦. Then

cos θ = cos 90 = 0

Thus l1l2 + m1m2 + n1n2 = 0

or a1a2 + b1b2 + c1c2 = 0

Corollary: Condition for parallelism:
If the two lines are parallel then θ = 0. So sin θ=0.

(l1m2 − m1l2)2 + (m1n2 − m2n1)2 + (n1l2 − n2l1)2 = 0

or
l1

l2
= m1

m2
= n1

n2
=

√
l21 + m2

1 + n2
1√

l22 + m2
2 + n2

2

= 1

1
.

Thus l1 = l2, m1 = m2, n1 = n2

or
a1

a2
= b1

b2
= c1

c2
.

WORKED OUT EXAMPLES

Example1: Find the angle between the linesA(−3,
2, 4), B(2, 5,−2) and C(1,−2, 2), D(4, 2, 3).

Solution: DR’s of AB: 2 − (−3), 5 − 2, −2 − 4
= 5, 3, −6
DR’s of CD: 3, 4, 1. Then DC’s of AB are l1 =
cosα1 = 5√

52+32+62
= 5√

25+9+36
= 5√

70
and m1 =

cosβ1 = 3
70 , n1 = cos γ1 = −6√

70
. Similarly, l2 =

cosα2 = 3√
32+42+12

= 3√
9+16+1

= 3√
26

, and m2 =
cosβ2 = 4√

26
, n2 = cos γ2 = 1√

26
. Now

cos θ = cosα1 · cosα2 + cosβ1 · cosβ2 + cos γ1 · cos γ2

= l1l2 + m1m2 + n1n2

cos θ = 5√
70

· 3√
26

+ 3√
70

· 4√
26

− 6√
70

· 1√
26

= 0.49225

... θ = cos−1(0.49225) = 60◦30.7′

Example 2: Find the DC’s of the line that is ⊥r to
each of the two lines whose directions are [2,−1, 2]
and [3, 0, 1].

Solution: Let [a, b, c] be the direction of the line.
Since this line is ⊥r to the line with direction
[2,−1, 2], by orthogonality

2a − b + 2c = 0

Similarly, direction [a, b, c] is ⊥r to direction
[3, 0, 1]. So

3a + 0 + c = 0.

Solving c = −3a, b = −4a or
direction [a, b, c] = [a,−4a,−3a] = [1,−4,−3].
... DC’s of the line: 1√

12+42+32
= 1√

26
, −4√

26
, −3√

26
.

Example 3: Show that the points A(1, 0,−2),
B(3,−1, 1) and C(7,−3, 7) are collinear.

Solution: DR’s of AB: [2,−1, 3], DR’s of AC:
[6,−3, 9], DR’s of BC: [4,−2, 6]. Thus DR’s of
AB,AC,BC are same. HenceA,B,C are collinear.

Example 4: Find the coordinates of the foot of
the perpendicular from A(1, 1, 1) on the line joining
B(1, 4, 6) and C(5, 4, 4).

Solution: Suppose D divides BC in the ratio k : 1.
Then the coordinates of D are

(
5k+1
k+1 , 4k+4

k+1 , 4k+6
k+1

)
.

DR’s ofAD: 4k
k+1 , 3, 3K+5

k+1 , DR’s of BC: 4, 0,−2AD

is ⊥r BC: 16k − 6k − 10 = 0, or k = 1.
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Coordinates of the foot of perpendicular are (3, 4, 5).

Example 5: Show that the points A(1, 0, 2),
B(3,−1, 3), C(2, 2, 2), D(0, 3, 1) are the vertices of
a parallelogram.

Fig. 3.7

Solution: DR’s of AB are [3 − 1,−1 − 0, 3 − 2] =
[2,−1, 1]. Similarly, DR’s of BC are [−1, 3,−1], of
CD[−2, 1,−1] of DA[−1, 3,−1]. Since DR’s of
AB and CD are same, they are parallel. Similarly BC
and DA are parallel since DR’s are same. Further AB
is not ⊥r to AD because

2(+1) + (−1)(−3) + 1(+1) = 6 �= 0

Similarly, AD is not ⊥r to BC because

2(−1) + (−1)3 + 1(−1) = −6 �= 0.

Hence ABCD is a parallelogram.

EXERCISE

1. Show that the points A(7, 0, 10), B(6,−1, 6),
C(9,−4, 6) form an isoscales right angled
triangle.

Hint: AB2 = BC2 = 18, CA2 = 36,
AB2 + BC2 = CA2

2. Prove that the points A(3,−1, 1), B(5,−4, 2),
C(11,−13, 5) are collinear.

Hint 1: AB2 = 14, BC2 = 126, CA2 = 224,
AB + BC = 4

√
14 = CA

Hint 2:DR’s ofAB = 2,−3, 1;BC: 6,−9, 3;
AB‖l to BC

3. Determine the internal angles of the tri-
angle ABC where A(2, 3, 5), B(−1, 3, 2),
C(3, 5,−2).

Hint:AB2 = 18,BC2 = 36,AC2 = 54. DC’s
AB: − 1√

2
, 0,− 1√

2
; BC: 2

3 ,
1
3 ,

−2
3 ; AC: 1

3
√

6
,

2
3
√

6
, −7

3
√

6
.

Ans. cosA= 1√
3
, cosB=0 i.e., B=90◦, cosC=

√
6

3 .

4. Show that the foot of the perpendicular from
A(0, 9, 6) on the line joining B(1, 2, 3) and
C(7,−2, 5) is D(−2, 4, 2).

Hint: D divides BC in k : 1, D
(

7k+1
k+1 , −2k+2

k+1 ,

5k+3
k+1

)
. DR’s AD: (7k + 1,−11k − 7,−k−3),

DR’s BC: 6,−4, 2. AD ⊥r BC: k = − 1
3 .

5. Find the condition that three lines with DC’s
l1, m1, n1; l2, m2, n2; l3, m3, n3 are concurrent.

Hint: Line with DC’s l, m, n through point of
concurrency will be ⊥r to all three lines, lli +
mmi + nni = 0, i = 1, 2, 3.

Ans.
∣∣∣∣∣∣∣
l1 m1 n1

l2 m2 n2

l3 m3 n3

∣∣∣∣∣∣∣ = 0

6. Show that cos2 α + cos2 β + cos2 γ + cos2 δ

= 4
3 where α, β, γ, δ are the angles which a

line makes with the four diagonals of a cube.

Hint: DC’s of four diagonals are (k, k, k),
(−k, k, k), (k,−k, k), (k, k,−k) where k =

1√
3
; l, m, n are DC’s of line. cosα = l.k.

+mk +nk, cosβ = (−l + m + n)k, cos γ =
(l − m + n)k, cos δ = (l + m − n)k.

7. Show that the points A(−1, 1, 3), B(1,−2, 4),
C(4,−1, 1) are vertices of a right triangle.

Hint: DR’s AB : [2,−3, 1], BC : [3, 1,−3],
CA : [5,−2,−2]. AB is ⊥r BC.
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8. Prove that A(3, 1,−2), B(3, 0, 1), C(5, 3, 2),
D(5, 4,−1) form a rectangle.

Hint: DR’s: AB: [0,−1, 3]; AC: [2, 2, 4],
CD[0, 1,−3]; AD[2, 3, 1]; BC[2, 3, 1];
AB‖CD, AD‖BC, AD ⊥ AB: 0 − 3 + 3=0,
BC ⊥ DC: 0 + 3 − 3 = 0.

9. Find the interior angles of the triangle

A(3,−1, 4), B(1, 2,−4), C(−3, 2, 1).

Hint: DC’s of AB: (−2, 3,−8)k1,
BC: (−4, 0, 5)k2, AC: (−6, 3,−3)k3 where
k1 = 1√

77
, k2 = 1√

41
, k3 = 1√

54
.

Ans. cosA = 15√
462

, cosB = 32√
3157

, cosC = 3√
246

.

10. Determine the DC’s of a line ⊥r to a triangle
formed by A(2, 3, 1), B(6,−3, 2), C(4, 0, 3).

Ans. (3, 2, 0)k where k = 1√
13

.

Hint: DR: AB: [4,−6, 1], BC: [−2, 3, 1],
CA: [2,−3, 2]. [a, b, c] of ⊥r line: 4a − 6b +
c = 0, −2a + 3b + c = 0, 2a − 3b + 2c = 0.

3.3 THE PLANE

Surface is the locus of a point moving in space sat-
isfying a single condition.

Example: Surface of a sphere is the locus of a point
that moves at a constant distance from a fixed point.

Surfaces are either plane or curved. Equation of
the locus of a point is the analytical expression
of the given condition(s) in terms of the coordinates
of the point.

Exceptional cases: Equations may have locus
other than a surface. Examples: (i) x2 + y2 = 0 is z-
axis (ii) x2 + y2 + z2 = 0 is origin (iii) y2 + 4 = 0
has no locus.

Plane is a surface such that the straight line PQ,
joining any two points P and Q on the plane, lies
completely on the plane.

General equation of first degree in x, y, z is of the
form

Ax + By + Cz + D = 0

Here A,B,C,D are given real numbers and
A,B,C are not all zero (i.e., A2 + B2 + C2 �= 0)

BookWork: Show that every equation of the first
degree in x, y, z represents a plane.

Proof: Let

Ax + By + Cz + D = 0 (1)

be the equation of first degree in x, y, z with the con-
dition that not all A,B,C are zero (i.e., A2 + B2 +
C2 �= 0). Let P (x1, y1, z1) and Q(x2, y2, z2) be any
two points on the surface represented by (1). Then

Ax1 + By1 + Cz1 + D1 = 0 (2)

Ax2 + By2 + Cz2 + D2 = 0 (3)

Multiplying (3) by k and adding to (2), we get

A(x1 + kx2) + B(y1 + ky2) + C(z1 + kz2) + D(1 + k)

= 0 (4)

Assuming that 1 + k �= 0, divide (4) by (1 + k).

A

(
x1 + kx2

1 + k

)
+ B

(
y1 + ky2

1 + k

)
+ C

(
z1 + kz2

1 + k

)
+ D

= 0

i.e., the point R
(

x1+kx2
1+k

,
y1+ky2

1+k
,

z1+kz2
1+k

)
which is

point dividing the line PQ in the ratio k : 1, also
lies on the surface (1). Thus any point on the line
joining P and Q lies on the surface i.e., line PQ

completely lies on the surface. Therefore the surface
by definition must be a plane.

General form of the equation of a plane is

Ax + By + Cz + D = 0

Special cases:

(i) Equation of plane passing through origin is

Ax + By + Cz = 0 (5)
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(ii) Equations of the coordinate planesXOY ,YOZ

and ZOX are respectively z = 0, x = 0 and
y=0

(iii) Ax + By + D = 0 plane ⊥r to xy-plane

Ax + Cz + D = 0 plane ⊥r to xz-plane

Ay + Cz + D = 0 plane ⊥r to yz-plane.

Similarly, Ax + D = 0 is ‖l to yz-plane, By +
D = 0 is ‖l to zx-plane, cz + D = 0 is ‖l to
xy-plane.

One point form

Equation of a plane through a fixed point
P1(x1, y1, z1) and whose normal CD has DC’s
proportional to (A,B,C): For any point
P (x, y, z) on the given plane, the DR’s of the
line P1P are (x − x1, y − y1, z − z1). Since a line
perpendicular to a plane is perpendicular to every
line in the plane, so ML is perpendicular to P1, P .
Thus

A(x − x1) + B(y − y1) + C(z − z1) = 0 (6)

Fig. 3.8

Note 1: Rewriting (6), we get the general form of
plane

Ax + By + Cz + D = 0 (1)

where D = −ax1 − by1 − cz1

Note 2: The real numbers A,B,C which are the
coefficients of x, y, z respectively in (1) are propor-
tional to DC’s of the normal ot the plane (1).

Note 3: Equation of a plane parallel to plane (1) is

Ax + By + Cz + D∗ = 0 (7)

x-intercept of a plane is the point where the plane
cuts the x-axis. This is obtained by putting y = 0,

z = 0. Similarly, y-, z-intercepts. Traces of a plane
are the lines of intersection of plane with coordinate
axis.

Example: xy-trace is obtained by putting z = 0 in
equation of plane.

Intercept form

Suppose P (a, 0, 0),Q(0, b, 0), R(0, 0, c) are the
x-, y-, z-intercepts of the plane. Then P,Q,R lies
on the plane. From (1)

Aa + 0 + 0 + D = 0

or A = −D

a
.

Fig. 3.9

similarly, 0 + bB + 0 + D = 0 or B = −D
b

and
C = −D

c
.

Eliminating A,B,C the equation of the plane in
the intercept form is

−D

a
x − D

b
− D

c
z + D = 0

or
x

a
+ y

b
+ z

c
= 1 (8)

Normal form

Let P (x, y, z) be any point on the plane. Let ON be
the perpendicular from origin O to the given plane.
Let ON = p. (i.e., length of the perpendicular ON

is p). Suppose l, m, n are the DC’s of ON . Now ON

is perpendicular to PN . Projection of OP on ON is
ON itself i.e., p.



chap-03 B.V.Ramana August 30, 2006 10:22

3.8 ENGINEERING MATHEMATICS

Fig. 3.10

Also the projection OP joining origin (0, 0, 0) to
P (x, y, z) on the line ON with DC’s l, m, n is

l(x − 0) + m(y − 0) + n(z − 0)

or lx + my + nz (9)

Equating the two projection values from (8) & (9)

lx + my + nz = p (10)

Note 1: p is always positive, since p is the perpen-
dicular distance from origin to the plane.

Note 2: Reduction from general form.

Transpose constant term to R.H.S. and make it
positive (if necessary by multiplying throughout by
−1). Then divide throughout by ±√

A2 + B2 + C2.
Thus the general form Ax + By + Cz + D = 0
takes the following normal form

Ax

±
√
A2+B2+C2

+ By

±
√
A2+B2+C2

+ Cz

±
√
A2+B2+C2

= −D

±
√
A2 + B2 + C2

(11)

The sign before the radical is so chosen to make the
R.H.S. in (11) positive.

Three point form

Equation of a plane passing through three given
points P1(x1, y1, z1), P2(x2, y2, z2), P3(x3, y3, z3):

Since the three points P1, P2, P3 lie on the plane

Ax + By + Cz + D = 0 (1)

we have Ax1 + By1 + Cz1 + D = 0 (12)

Ax2 + By2 + Cz2 + D = 0 (13)

Ax3 + By3 + Cz3 + D = 0 (14)

Eliminating A,B,C,D from (1), (12), (13), (14)
(i.e., a non trivial solution A,B,C,D for the ho-
mogeneous system of 4 equations exist if the deter-
minant coefficient is zero)

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

= 0 (15)

Equation (15) is the required equation of the plane
through the 3 points P1, P2, P3.

Corollary 1: Coplanarity of four given points:
The four points P1(x1, y1, z1), P2(x2, y2, z2), P3(x3,
y3, z3), P4(x4, y4, z4) are coplanar (lie in a plane) if

x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

= 0 (16)

Angle between Two Given Planes

The angle between two planes

A1x + B1y + C1z + D1 = 0 (17)

A2x + B2y + C2z + D2 = 0 (18)

is the angle θ between their normals. HereA1, B1, C1
and A2, B2, C2 are the DR’s of the normals respec-
tively to the planes (17) and (18). Then

cos θ = A1A2 + B1B2 + C1C2√
A2

1 + B2
1 + C2

1

√
A2

2 + B2
2 + C2

2

Condition for perpendicularity

If θ = 0 then the two planes are ⊥r to each other.
Then

A1A2 + B1B2 + C1C2 = 0 (19)

Condition for parallelism

If θ = 0, the two planes are ‖l to each other. Then

A1

A2
= B1

B2
= C1

C2
(20)

Note: Thus parallel planes differ by a constant.

Although there are four constants A,B,C,D in
the equation of plane, essentially three conditions are
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required to determine the three ratios of A,B,C,D,

for example plane passing through:

a. three non-collinear points

b. two given points and ⊥r to a given plane

c. a given point and ⊥r to two given planes etc.

Coordinate of the Foot of the Perpendicular
from a Point to a Given Plane

Let Ax + By + Cz + D = 0 be the given plane and
P (x1, y1, z1) be a given point. Let PN be the per-
pendicular from P to the plane. Let the coordinates
of the foot of the perpendicular PN be N (α, β, γ ).
Then DR’s of PN (x1 − α, y1 − β, z1 − γ ) are pro-
portional to the coefficients A,B,C i.e.,

x1 − α = kA, y1 − B = kB, z1 − γ = kC

or α = x1 − kA, y1 = β − kB, z1 = γ − kC

Fig. 3.11

Since N lies in the plane
Aα + Bβ + Cγ + D = 0

Substituting α, β, γ ,

A(x1 − kA) + b(y1 − kB) + c(z1 − kC) + D = 0

Solving k = Ax1 + By1 + CZ1 + D

A2 + B2 + C2

Thus the coordinates of N (α, β, γ ) the foot of the
perpendicular from P (x1, y1, z1) to the plane are

α = x1 − A(Ax1 + By1 + Cz1 + D)

A2 + B2 + C2
,

β = y1 − B(Ax1 + By1 + Cz1 + D)

A2 + B2 + C2
,

γ = z1 − C(Ax1 + By1 + Cz1 + D)

A2 + B2 + C2
(21)

Corollary 1: Length of the perpendicular from a
given point to a given plane:

PN2 = (x1 − α)2 + (y1 − β)2 + (z1 − γ )2

= (kA)2 + (kB)2 + (kC)2

= k2(A2 + B2 + C2)

=
[
Ax1 + By1 + Cz1 + D

A2 + B2 + C2

]2

(A2 + B2 + C2)

= (Ax1 + By1 + Cz1 + D)2

A2 + B2 + C2

or PN = Ax1 + By1 + Cz1 + D

±
√
A2 + B2 + C2

.

The sign before the radical is chosen as positive or
negative according as D is positive or negative. Thus
the numerical values of the length of the perpendic-
ular PN is

PN =
∣∣∣∣∣Ax1 + By1 + Cz1 + D√

A2 + B2 + C2

∣∣∣∣∣ (22)

Note: PN is obtained by substituting the coordi-
nates (x1, y1, z1) in the L.H.S. of the Equation (1)
and dividing it by

√
A2 + B2 + C2.

Equation of a plane passing through the line of
intersection of two given planes u ≡ A1x + B1y +
C1z + D1 = 0 and v ≡ A2x + B2y + C2z + D2 =
0 is u + kv = 0 where k is any constant.

Equations of the two planes bisecting the angles
between two planes are

A1x + B1y + C1z + D1√
A2

1 + B2
1 + C2

1

= ±A2x + B2y + C2z + D2√
A2

2 + B2
2 + C2

2

.

WORKED OUT EXAMPLES

Example 1: Find the equation of the plane which
passes through the point (2, 1, 4) and is

a. Parallel to plane 2x + 3y + 5z + 6 = 0

b. Perpendicular to the line joining (3, 2, 5) and
(1, 6, 4)

c. Perpendicular to the two planes 7x + y + 2z = 6
and 3x + 5y − 6z = 8

d. Find intercept points and traces of the plane in
case c.

Solution:

a. Any plane parallel to the plane

2x + 3y + 5z + 6 = 0
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is given by 2x + 3y + 5z + k = 0 (1) (differs by
a constant). Since the point (2, 1, 4) lies on the
plane (1), 2(2) + 3(1) + 5(4) + k = 0, k = −27.
Required equation of plane is 2x + 3y + 5z −
27 = 0.

b. Any plane through the point (2, 1, 4) is (one point
form)

A(x − 2) + B(y − 1) + C(z − 4) = 0 (2)

DC’s of the line joining M(3, 2, 5) and
N (1, 6, 4) are proportional to 2,−4, 1. Since
MN is perpendicular to (2), A,B,C are propor-
tional to 2,−4, 1. Then 2(x − 2) − 4(y − 1) +
1(z − 4) = 0. The required equation of plane is
2x − 4y + z − 4 = 0.

c. The plane through (2, 1, 4) is

A(x − 2) + B(y − 1) + C(z − 4) = 0. (2)

This plane (2) is perpendicular to the two planes
7x + y + 2z = 6 and 3x + 5y − 6z = 8.
Using A1A2 + B1B2 + C1C2 = 0, we have

7a + b + 2c = 0

3a + 5b − 6c = 0

Solving a
−6−10= −b

−42−8= c
35−3 or a

1 = b
−3= c

−2 .

Required equation of plane is

1(x − 4) − 3(y − 1) − 2(z − 4) = 0

or x − 3y − 2z + 7 = 0

d. x-intercept: Put y = z = 0, ... x = −7 or (−7,
0, 0) is the x-intercept. Similarly, y-intercept is
(0, 7

3 , 0) and z-intercept is
(
0, 0, 7

2

)
. xy-trace is

obtained by putting z = 0. It is x − 3y + 7 =
0. Similarly, yz-trace is 3y + 2z − 7 = 0 and zx-
trace is x − 2z + 7 = 0.

Example 2: Find the equation of the plane con-
taining the points P (3,−1,−4), Q(−2, 2, 1), R(0,
4, −1).

Solution: Equation of plane through the point
P (3,−1,−4) is

A(x + 3) + B(y + 1) + C(z + 4) = 0. (1)

DR’s ofPQ: − 5, 3, 5; DR’s ofPR: − 3, 5, 3. Since
line PQ and PR completely lies in the plane (1),
normal to (1) is perpendicular to PQ and PR. Then

−5A + 3B + 5C = 0

−3A + 5B + 3C = 0

Solving A = C = 1, B = 0

(x − 3) + 0 + (z + 4) = 0

Equation of the plane is

x + z + 1 = 0

Aliter: Equation of the plane by 3-point form is

x y z 1
3 −1 −4 1

−2 2 1 1
0 4 −1 1

= 0

Expanding D1x − D2y + D3z − 1.D4 = 0 where

D1 =
−1 −4 1

2 1 1
4 −1 1

= −16, D2 =
3 −4 1

−2 1 1
0 −1 1

0 = 0

D3 =
3 −1 1

−2 2 1
0 4 1

= −16, D4 =
3 −1 −4

−2 2 1
0 4 −1

= 16

or required equation is x + z + 1 = 0.

Example 3: Find the perpendicular distance be-
tween (a) The Point (3, 2,−1) and the plane 7x −
6y + 6z + 8 = 0 (b) between the parallel planes
x − 2y + 2z − 8 = 0 andx − 2y + 2z + 19 = 0 (c)
find the foot of the perpendicular in case (a).

Solution:

Perpendicular distance =
(

Ax1+By1+Cz1+D√
A2+B2+C2

)

a. Point (3, 2,−1), plane is 7x − 6y + 6z + 8 =
0. So perpendicular distance from (3, 2,−1) to
plane is

= 7(3) − 6(2) + 6(−1) + 8√
72 + 62 + 62

= 11

−11
= | − 1| = 1

b. x-intercept point of plane x − 2y + 2z − 8 = 0
is (8, 0, 0) (obtained by putting y = 0, z = 0 in
the equation). Then perpendicular distance from
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the point (8, 0, 0) to the second plane x − 2y +
2z + 19 = 0 is 1.8−2.0+2.0+19√

12+22+22
= 27

3 = 9

c. Let N (α, β, γ ) be the foot of the perpen-
dicular from P (3, 2,−1). DR’s of PN: 3 −
α, 2 − β,−1 − γ . DR’s of normal to plane are
7,−6, 6. These are proportional. 3−α

7 = 2−β

−6 =
−1−γ

6 orα = 3 − 7k, β = 2 + 6k, γ = −1 − 6k.
Now (α, β, γ ) lies on the plane. 7(3 − 7k) −
6(2 + 6k) + 6(−1 − 6k) + 8 = 0 or k = 1

11 .
... the coordinates of the foot of perpendicular are(

26
11 ,

28
11 ,

−17
11

)
.

Example 4: Are the points (2, 3,−5) and (3, 4, 7)
on the same side of the plane x + 2y − 2z = 9?

Solution: Perpendicular distance of the point
(2, 3,−5) from the plane x + 2y − 2z − 9 = 0 or
−x − 2y + 2z + 9 = 0 is −1.2−2(3)−2(−5)+9√

12+22+22
= − 9

3 =
−3.

⊥r distance of (3, 4, 7) is −1.3−2.4+2.7+9√
12+22+22

= 12
3 = 6

⊥r distance from origin (0, 0, 0) is 0+0+0+9
3 = 3

So points (2, 3,−5) and (3, 4, 7) are on opposite
sides of the given plane.

Example 5: Find the angle between the planes
4x − y + 8z = 9 and x + 3y + z = 4.

Solution: DR’s of the planes are [4,−1, 8] and
[1, 3, 1]. Now

cos θ = A1A2 + B1B2 + C1C2√
A2

1 + B2
1 + C2

1

√
A2

2 + B2
2 + C2

2

= 4.1 + 3 · (−1) + 1.8√
16 + 1 + 64

√
1 + 9 + 1

= 9√
81

√
11

= 1√
11

or θ = cos−1 1√
11

.

Example 6: Find the equation of a plane passing
through the line of intersection of the planes.

a. 3x + y − 5z + 7 = 0 and x − 2y + 4z − 3 = 0
and passing through the point (−3, 2,−4)

b. 2x − 5y + z = 3 and x + y + 4z = 5 and paral-
lel to the plane x + 3y + 6z = 1.

Solution:

a. Equation of plane is u + kv = 0 i.e.,

(3x + y − 5z + 7) + k(x − 2y + 4z − 3) = 0.

Since point (−3, 2,−4) lies on the intersection
plane

[3(−3) + 1.(2) − 5(−4) + 7]

+k[1(−3) − 2(2) + 4(−4) − 3] = 0.

So k = 10
13 . Then the required plane is

49x − 7y − 25z + 61 = 0.

b. Equation of plane is u + kv = 0 i.e.,

(2x − 5y + z − 3) + k(x + y + 4z − 5) = 0

or (2+k)x+(−5+k)y+(1+4k)z+(−3−5k) = 0.

Since this intersection plane is parallel to x +
3y + 6z − 1 = 0

So
2 + k

1
= −5 + k

3
= 1 + 4k

6
or k = −11

2
.

Required equation of plane is 7x + 21y + 42z −
49 = 0.

Example 7: Find the planes bisecting the angles
between the planes x + 2y + 2z = 9 and 4x − 3y +
12z + 13 = 0. Specify the angle θ between them.

Solution: Equations of the bisecting planes are

x + 2y + 2z − 9√
1 + 22 + 22

= ±4x − 3y + 12z + 13√
42 + 32 + 122

x + 2y + 2z − 9

3
= ±4x − 3y + 12z + 13

13

or 25x + 17y + 62z − 78 = 0 and

x + 35y − 10z − 156 = 0.

cos θ = 25 · 1 + 17 · 35 − 62 × 10√
252 + 172 + 622

√
1 + 352 + 102

= 0

... θ = π

2

i.e, angle between the bisecting planes is π
2 .
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Example 8: Show that the planes

7x + 4y − 4z + 30 = 0 (1)

36x − 51y + 12z + 17 = 0 (2)

14x + 8y − 8z − 12 = 0 (3)

12x − 17y + 4z − 3 = 0 (4)

form four faces of a rectangular parallelopiped.

Solution: (1) and (3) are parallel since 7
14 = 4

8 =
−4
−8 = 1

2 . (2) and (4) are parallel since 36
12 = −51

−17 =
12
4 = 3. Further (1) and (2) are ⊥r since

7 · 36 + 4(−51) − 4(12) = 252 − 204 − 48 = 0.

EXERCISE

1. Find the equation of the plane through
P (4, 3, 6) and perpendicular to the line join-
ing P (4, 3, 6) to the point Q(2, 3, 1).

Hint: DR’s PQ: [2, 0, 5], DR of plane
through (4, 3, 6) : x − 4, y − 3, z − 6; ⊥r :
2(x − 4) + 0(y − 3) + 5(z − 6) = 0

Ans. 2x + 5z − 38 = 0

2. Find the equation of the plane through the
point P (1, 2,−1) and parallel to the plane
2x − 3y + 4z + 6 = 0.

Hint: Eq. 2x − 3y + 4z + k = 0, (1, 2,−1)
lies, k = 8.

Ans. 2x − 3y + 4z + 8 = 0

3. Find the equation of the plane that con-
tains the three points P (1,−2, 4), Q(4, 1, 7),
R(−1, 5, 1).

Hint: A(x − 1) + B(y + 2) + C(z − 4) = 0,
DR: PQ: [3, 3, 3], PR: [−2, 7,−3]. ⊥r 3A +
3B + 3C = 0, −2A + 7B − 3C = 0, A =
−10B, C = 9B.

Aliter:

x y z 1
1 −2 4 1
4 1 7 1

−1 5 1 1

= 0,

D1x − D2y + D3z − D4 = 0

where D1 =
−2 4 1

1 7 1
5 1 1

etc.

Ans. 10x − y − 9z + 24 = 0

4. Find the equation of the plane
a. passing through (1,−1, 2) and ⊥r to each of

the planes 2x + 3y − 2z = 5 and x + 2y −
3z = 8

b. passing through (−1, 3,−5) and parallel to
the plane 6x − 3y − 2z + 9 = 0

c. passing through (2, 0, 1) and (−1, 2, 0) and
⊥r to the plane 2x − 4y − z = 7.

Ans. a. 5x − 4y − z = 7
b. 6x − 3y − 2z + 5 = 0
c. 6x + 5y − 8z = 4

5. Find the perpendicular distance between
a. the point (−2, 8,−3) and plane 9x − y −

4z = 0
b. the two planes x − 2y + 2z = 6, 3x −

6y + 6z = 2
c. the point (1,−2, 3) and plane 2x − 3y +

2z − 14 = 0.

Ans. (a)
√

2 (b) −16
9 (c) 0 i.e., lies on the plane.

6. Find the angle between the two planes
a. x + 4y − z = 5, y + z = 2
b. x − 2y + 3z + 4 = 0, 2x + y − 3z + 7=0

Ans. (a) cos θ = 1
2 , θ = 60◦ (b) cos θ = −9

14 .

7. Prove that the planes 5x − 3y + 4z = 1, 8x +
3y + 5z = 4, 18x − 3y + 13z = 6 contain a
common line.

Hint: u + kv = 0 substitute in w = 0, k = 1
2

8. Find the coordinates of N , the foot of the per-
pendicular from the point P (−3, 0, 1) on the
plane 4x − 3y + 2z = 19. Find the length of
this perpendicular. Find also the image of P in
the plane.

Hint: PN = NQ i.e., N is the mid point.

Ans. N (1,−3, 3),
√

29, image of P is Q(5,−6, 5)

9. Find the equation of the plane through the
line of intersection of the two planes x − 3y +
5z − 7 = 0 and 2x + y − 4z + 1 = 0 and ⊥r

to the plane x + y − 2z + 4 = 0.
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Ans. 3x − 2y + z − 6 = 0

10. A variable plane passes through the fixed
point (a, b, c) and meets the coordinate axes
in P,Q,R. Prove that the locus of the point
common to the planes through P,Q,R par-
allel to the coordinate plane is a

x
+ b

y
+ c

z= 1.

Hint: OP = x1, OQ = y1, OR = z1, x
x1

+
y

y1
+ z

z1
= 1, (a, b, c) lies, a

x1
+ b

y1
+ c

z1
= 1.

3.4 THE STRAIGHT LINE

Two surfaces will in general intersect in a curve. In
particular two planes, which are not parallel, intersect
in a straight line.

Example: The coordinate planes ZOX and XOY ,
whose equations are y = 0 and z = 0 respectively,
intersect in a line the x-axis.

Straight line

The locus of two simultaneous equations of first
degree in x, y, z

A1x + B1y + C1z + D1 = 0

A2x + B2y + C2z + D2 = 0
(1)

is a straight line, provided A1 : B1 : C1 �= A2 : B2 :
C2 (i.e., not parallel). Equation (1) is known as the
general form of the equation of a straight line. Thus
the equation of a straight line or simply line is the
pair of equations taken together i.e., equations of
two planes together represent the equation of a line.
However this representation is not unique, because
many planes can pass through a given line. Thus a
given line can be represented by different pairs of
first degree equations.

Projecting planes

Of the many planes passing through a given line,
those that are perpendicular to the coordinate planes
are known as projecting planes and their traces
give the projections of the line on the coordinate
planes.

Symmetrical Form

The equation of line passing through a given point
P1(x1, y1, z1) and having direction cosines l, m, n is
given by

x − x1

l
= y − y1

m
= z − z1

n
(2)

since for any point P (x, y, z) on the line, the DR’s
of PP1: x − x1, y − y1, z − z1 be proportional to
l, m, n. Equation (2) represent two independent
linear equations and are called the symmetrical (or
symmetric) form of the equation of a line.

Corollary: Any point P on the line (2) is given by

x = x1 + lr, y = y1 + mr, z = z1 + nr (3)

for different values of r , where r = PP1.

Corollary: Lines perpendicular to one of the co-
ordinate axes:

a. x = x1,
y−y1
m

= z−z1
n

, (⊥r to x-axis i.e., ‖l to
yz-plane)

b. y = y1,
x−x1

l
= z−z1

n
, (⊥r to y-axis i.e., ‖l to

xz-plane)

c. z = z1,
x−x1

l
= y−y1

m
, (⊥r to z-axis i.e., ‖l to

xy-plane)

Corollary: Lines perpendicular to two axes

a. x = x1, y = y1 (⊥r to x- & y-axis i.e., ‖l to
z-axis):

b. x = x1, z = z1 (⊥r to x- & z-axis i.e., ‖l to
y-axis)

c. y = y1, z = z1 (⊥r to y- & z-axis i.e., ‖l to
x-axis)

Corollary: Projecting planes: (containing the
given line)

(a) x−x1
l

= y−y1
m

(b) x−x1
l

= z−z1
n

(c) y−y1
m

= z−z1
n

.

Note: When any of the constants l, m, n are zero,
the Equation (2) are equivalent to equations

l

x − x1
= m

y − y1
= n

z − z1
.
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Example: x
0 = y

2 = z
0 means 0

x
= 2

y
= 0

z
.

Corollary: If a, b, c are the DR’s of the line, then
(2) takes the form x−x1

a
= y−y1

b
= z−z1

c
.

Corollary: Two point form of a line pass-
ing through two given points P1(x1, y1, z1) and
P2(x2, y2, z2) is

x − x1

x2 − x1
= y − y1

y2 − y1
= z − z1

z2 − z1
(4)

since the DR’s of P1P2 are x2 −x1, y2 −y1, z2 −z1.

Transformation of General Form to
Symmetrical Form

The general form also known as unsymmetrical form
of the equation of a line can be transformed to sym-
metrical form by determining

(a) one point on the line, by putting say z = 0 and
solving the simultaneous equations in x and y.

(b) the DC’s of the line from the fact that this line is
⊥r to both normals of the given planes.

For example,

(a) by putting z = 0 in the general form

A1x + B1y + C1z + D1 = 0
A2x + B2y + C2z + D2 = 0

(2)

and solving the resulting equations

A1x + B1y + D1 = 0

A2x + B2y + D2 = 0,

we get a point on the line as(
B1D2 − B2D1

A1B2 − A2B1
,
A2D1 − A1D2

A1B2 − A2B1
, 0

)
(5)

(b) Using the orthogonality of the line with the two
normals of the two planes, we get

lA1 + mB1 + nC1 = 0

lA2 + mB2 + nC2 = 0

where (l, m, n), (A1, B1, C1) and (A2, B2, C2)
are DR’s of the line, normal to first plane, normal
to second plane respectively. Solving, we get the

DR’s l, m, n of the line as

l

B1C2 − B2C1
= m

C1A2 − C2A1
= n

A1B2 − A2B1

(6)

Using (5) and (6), thus the given general form
(2) of the line reduces to the symmetrical form

x − (B2D1−B1D2)
A1B2−A2B1

B1C2 − B2C1
=

y − (A2D1−A1D2)
A1B2−A2B1

C1A2 − C2A1
=

= z − 0

A1B2 − A2B1
(7)

Note 1: In finding a point on the line, one can
put x = 0 or y = 0 instead of z = 0 and get simi-
lar results.

Note 2: General form (2) can also be reduced to the
two point form (4) (special case of symmetric form)
by determining two points on the line.

Angle between a Line and a Plane

Let π be the plane whose equation is

Ax + By + Cz + D = 0 (8)

Fig. 3.12

and L be the straight line whose symmetrical form
is

x − x1

l
= y − y1

m
= z − z1

n
(2)

Let θ be the angle between the lineL and the plane
π . Let ψ be the angle between L and the normal to
the plane π . Then

cosψ = lA + mB + nC√
l2 + m2 + n2

√
A2 + B2 + C2

= cos(90 − θ ) = sin θ (9)

since ψ = 90 − θ . The angle between a line L and
plane π is the complement of the angle between the



chap-03 B.V.Ramana August 30, 2006 10:22

ANALYTICAL SOLID GEOMETRY 3.15

line L and the normal to the plane). Thus θ is deter-
mined from (9).

Corollary: Line is ‖l to the plane if θ = 0 then
sin θ = 0 i.e.,

lA + mB + nC = 0 (10)

Corollary: Line is ⊥r to the plane if θ = π
2 , then

sin θ = 1 i.e.,

l

A
= m

B
= n

C
(11)

(i.e., DR’s of normal and the line are same).

Conditions for a Line L to Lie in a Plane π

If every point of line L is a point of plane π , then
line L lies in plane π . Substituting any point of the
line L : (x1 + lr, y1 + mr, z1 + nr) in the equation
of the plane (8), we get

A(x1 + lr) + B(y1 + mr) + C(z1 + nr) + D = 0

or (Al + Bm + Cn)r + (Ax1 + By1 + Cz1 + D) = 0

(12)

This Equation (12) is satisfied for all values of r
if the coefficient of r and constant term in (12) are
both zero i.e.,

Al + Bm + Cn = 0 and

Ax1 + By1 + Cz1 + D = 0
(13)

Thus the two conditions for a line L to lie in a
plane π are given by (13) which geometrically mean
that (i) line L is ⊥r to the nomal ot the plne and (ii)
a (any one) point of line L lies on the plane.

Corollary: General equation of a plane containing
line L (2) is

A(x − x1) + B(y − y1) + C(z − z1) = 0 (14)

subject to

Al + Bm + Cn = 0

Corollary: Equation of any plane through the line
of intersection of the two planes

u ≡ A1x + B1y + C1z + D1 = 0 and

v ≡ A2x + B2y + C2z + D2 = 0

is u + kv = 0 or (A1x + B1y + C1z + D1) +
k(A2x + B2y + C2z + D2) = 0 where k is a
constant.

Coplanar Lines

Consider two given straight lines L1

x − x1

l1
= y − y1

m1
= z − z1

n1
(15)

and line L2

x − x2

l2
= y − y2

m2
= z − z2

n2
(16)

From (14), equation of any plane containing line
L1 is

A(x − x1) + B(y − y1) + C(z − z1) = 0 (17)

subject to

Al1 + Bm1 + Cn1 = 0 (18)

If the plane (17) contains line L2 also, then the
point (x2, y2, z2) of L2 should also lie in the plane
(17). Then

A(x2 − x1) + B(y2 − y1) + C(z2 − z1) = 0 (19)

But the line L2 is ⊥r to the normal to the plane
(17). Thus

Al2 + Bm2 + Cn2 = 0 (20)

Therefore the two linesL1 andL2 will lie in the same
plane if (17), (18), (20) are simultaneously satisfied.
EliminatingA,B,C from (19), (18), (20)(i.e., homo-
geneous system consistent if coefficient determinant
is zero), we have

x2 − x1 y2 − y1 z2 − z1
l1 m1 n1
l2 m2 n2

= 0 (21)

Thus (21) is the condition for coplanarity of the two
lines L1 and L2. Now the equation of the plane con-
taining lines L1 and L2 is

x − x1 y − y1 z − z1
l1 m1 n1
l2 m2 n2

= 0 (22)

which is obtained by eliminating A,B,C from (17),
(18), (20).
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Corollary: Condition for the two lines L1

u1 ≡ A1x + B1y + C1z + D1 = 0,

u2 ≡ A2x + B2y + C2z + D2 = 0

and Line L2 u3 ≡ A3x + B3y + C3z + D3 = 0,

u4 ≡ A4x + B4y + C4z + D4 = 0

(23)

to be coplanar is

A1 B1 C1 D1
A2 B2 C2 D2
A3 B3 C3 D3
A4 B4 C4 D4

= 0 (24)

If P (α, β, γ ) is the point of intersection of the two
lies, then P should satisfy the four Equations (23):
ui | at (α, β, γ ) = 0 for i = 1, 2, 3, 4. Elimination of
(α, β, γ ) from these four equations leads to (24).

Corollary: The general form of equations of a line
L3 intersecting the lines L1 and L2 given by (23) are

u1 + k1u2 = 0 and u3 + k2u4 = 0 (25)

where k1 and k2 are any two numbers.
Foot and length of the perpendicular from a

point P1(α, β, γ ) to a given line L: x−x1
l

= y−y1
m

=
z−z1
n

Fig. 3.13

Any point on the line L be (x1 + lr, y1 + mr, z1 +
nr). The DR’s of PN are x1 + lr − α, y1 + mr −
β, z1 + nr − γ . Since PN is ⊥r to line L, then

l(x1 + lr −α)+m(y1 +mr −β)+n(z1 +nr −γ ) = 0.

Solving

r = l(α − x1) + m(β − y1) + n(γ − z1)

l2 + m2 + n2
(26)

The coordinates of N , the foot of the perpendicu-
lar PN is (x1 + lr − α, y1 + mr − β, z1 + nr − γ )
where r is given by (26).

The length of the perpendicularPN is obtained by
distance formula between P (given) and N (found).

Line of greatest slope in a plane

Let ML be the line of intersection of a horizontal
plane I with slant plane II. Let P be any point on
plane II. Draw PN ⊥r to the line ML. Then the line
of greatest slope in plane II is the line PN , because
no other line in plane II through P is inclined to the
horizontal plane I more steeply than PN .

Fig. 3.14

WORKED OUT EXAMPLES

Example 1: Find the points where the line x −
y + 2z = 2, 2x − 3y + 4z = 0 pierces the coordi-
nate planes.

Solution: Put z = 0 to find the point at which the
line pierces the xy-plane: x − y = 2 and 2x − 3y =
0 or x = 6, y = 4. ... (6, 4, 0).
Put x = 0, −y + 2z = 2, −3y + 4z = 0 or y = 4,
z = 3 ... (0, 4, 3) is piercing point.
Put y = 0, x + 2z = 2, 2x + 4z = 0 no unique
solution.
Note that DR’s of the line are [2, 0,−1]. So this line
is ⊥r to y-axis whose DR’s are [0, 1, 0] (i.e., 2 · 0 +
0 · 1 + (−1) · 0 = 0). Hence the given line does not
pierce the xz-plane.
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Example 2: Transfer the general (unsymmetrical)
form x + 2y + 3z = 1 and x + y + 2z = 0 to the
symmetrical form.

Solution: Put x = 0, 2y + 3z = 1, y + 2z = 0.
Solving z = −1, y = 2. So (0, 2,−1) is a point on
the line. Let l, m, n be the DR’s of the line. Since this
line is ⊥r to both normals of the given two planes,
we have

1 · l + 2 · m + 3 · n = 0

1 · l + 1 · m + 2 · n = 0

Solving
l

4 − 3
= − m

2 − 3
= n

1 − 2
or

l

1
= m

1
= −n

1

Equation of the line passing through the point
(0, 2,−1) and having DR’s 1, 1,−1 is

x − 0

1
= y − 2

2
= z + 1

−1

Aliter: Two point form.

Put y = 0, x + 3z = 1, x + 27 = 0. Solving z =
1, x = −2 or (−2, 0, 1) is another point on the
line. Now DR’s of the line joining the two points
(0, 2,−1) and (−2, 0, 1) are −2,−2, 2. Hence the
equation of the line in the two point form is

x − 0

−2
= y − 2

−2
= z + 1

2
or

x

1
= y − 2

1
= z + 1

−1
.

Example 3: Find the acute angle between the lines
x
2 = y

2 = z
1 and x

5 = y

4 = z
−3 .

Solution: DR’s are [2, 2, 1] and [5, 4,−3]. If θ is
the angle between the two lines, then

cos θ = l1l2 + m1m2 + n1n2√
l21 + m2

1 + n2
1

√
l22 + m2

2 + n2
2

= 2 · 5 + 2 · 4 + 1 · (−3)√
4 + 4 + 1

√
25 + 16 + 9

= 15

3
√

50
= 1√

2

... θ = 45◦

Example 4: Find the equation of the plane con-
taining the line x = y = z and passing through the
point (1, 2, 3).

Solution: General form of the given line is

x − y = 0 and x − z = 0.

Equation of a plane containing this line is

(x − y) + k(x − z) = 0

Since point (1, 2, 3) lies on this line, it also lies on
the above plane. Then

(1 − 2) + k(1 − 3) = 0 or k = −1

2

Equation of required plane is

(x − y) − 1

2
(x − z) = 0

or x − 2y + z = 0.

Example 5: Show that the lines x
1 = y+3

2 = z+1
3

and x−3
2 = y

1 = z−1
−1 intersect. Find the point of in-

tersection.

Solution: Rewriting the equation in general form,
we have

2x − y = 3, 3x − z = 1

and x − 2y = 3, x + 2z = 5

If these four equations have a common solution,
then the given two lines intersect. Solving, y = −1,
then x = 1, z = 2. So the point of intersection is
(1,−1, 2).

Example 6: Find the acute angle between the lines
x
3 = y

1 = z
0 and the plane x + 2y − 7 = 0.

Solution: DR’s of the line: [3, 1, 0]. DR’s of normal
to the plane is [1, 2, 0]. If ψ is the angle between the
line and the normal, then

cosψ = 3 · 1 + 1 · 2 + 0 · 0√
32 + 12 + 02

√
12 + 22 + 02

= 5√
10

√
5

= 1√
2

so ψ = 45◦.

Angle θ between the line and the plane is the comple-
ment of the angle ψ i.e., θ =90−ψ=90−45=45◦.

Example 7: Show that the lines x + y − 3z =
0, 2x + 3y − 8z = 1 and 3x − y − z = 3, x + y −
3z = 5 are parallel.

Solution: DR’s of the first line are

l1 m1 n1
1 1 −3
2 3 −8

or
l1

1
= m1

2
= n1

1
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Similarly, DR’s of the second line are

l2 m2 n2
3 −1 −1
1 1 −3

or
l2

4
=m2

8
=n2

4
i.e.,

l2

1
=m2

2
=n2

1

Since the DR’s of the two lines are same, they are
parallel.

Example 8: Find the acute angle between the
lines 2x − y + 3z − 4 = 0, 3x + 2y − z + 7 = 0
and x + y − 2z + 3 = 0, 4x − y + 3z + 7 = 0.

Solution: The line represented by the two planes is
perpendicular to both the normals of the two planes.
If l1,m1, n1 are the DR’s of this line, then

l1 m1 n1
2 −1 3
3 2 −1

or
l1

−5
= m1

11
= n1

7

Similarly, DR’s of the 2nd line are

l2 m2 n2
1 +1 −2
4 −1 −3

or
l2

−1
= m2

11
= n2

5

If θ is the angle between the lines, then

cos θ = l1l2 + m1m2 + n1n2√
l21 + m2

1 + n2
1

√
l22 + m2

2 + n2
2

= 5 + 121 + 35√
195

√
147

= 23

3
√

65

... So θ = 180◦1.4′

Example 9: Prove that the line x−4
2 = y−2

3 = z−3
6

lies in the plane 3x − 4y + z = 7.

Solution: The point of the line (4, 2, 3) should also
lie in the plane. So 3 · 4 − 4 · 2 + 1 · 3 = 7 satisfied.
The line and normal to the plane are perpendicular.
So 2 · 3 + 3 · (−4) + 6 · 1 = 6 − 12 + 6 = 0. Thus
the given line completely lies in the given plane.

Example 10: Show that the lines x−2
2 = y−3

−1 =
z+4

3 and x−3
1 = y+1

3 = z−1
−2 are coplanar. Find their

common point and determine the equation of the
plane containing the two given lines.

Solution: Here first line passes through (2, 3,−4)
and has DR’s l1,m1, n1 : 2,−1, 3. The second line

passes through (3,−1, 1) and has DR’s l2,m2, n2 :
1, 3,−2. Condition for coplanarity:∣∣∣∣∣∣

x2−x1 y2−y1 z2−z1
l1 m1 n1
l2 m2 n2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
3−2 −1−3 1+4

2 −1 3
1 3 2

∣∣∣∣∣∣
= 7+28−35 = 0

satisfied.

Point of intersection: Any point on the first line is
(2 + 2r1, 3 − r1 − 4 + 3r1) and any point on the sec-
ond line is (3 + r2,−1 + 3r2, 1 − 2r2). When the
two lines intersect in a common point then co-
ordinates on line (1) and line (2) must be equal,
i.e., 2 + 2r1 = 3 + r2, 3 − r1 = −1 + 3r2 and −4 +
3r1 = 1 − 2r2. Solving r1 = r2 = 1. Therefore the
point of intersection is (2 + 2 · 1, 3 − 1,−4 + 3 · 1)
= (4, 2,−1).
Equation of plane containing the two lines:

∣∣∣∣∣∣
x−x1 y−y1, z−z1
l1 m1 n1
l2 m2 n2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
x−2 y−3 z+4

2 −1 3
1 3 −2

∣∣∣∣∣∣ = 0

Expanding −7(x−2) − (−7)(y−3) + 7(z+4) = 0
or x − y − z + 3 = 0.

Example 11: Find the coordinates of the foot of
the perpendicular from P (1, 0, 2) to the line x+1

3 =
y−2
−2 = z+1

−1 . Find the length of the perpendicular and
its equation.

Solution: Any point N on the given line is (3r −
1, 2 − 2r,−1 − r). DR’s of PN are (3r − 2, 2 −
2r,−3 − r). Now PN is normal to line if 3(3r − 2) +
(−2)(2 − 2r) + (−1)(−3 − r) = 0 or r = 1

2 . So the
coordinates of N the foot of the perpendicular from
P to the line are

(
3 · 1

2 − 1, 2 − 2 · 1
2 ,−1 − 1

2

)
or(

1
2 , 1,− 3

2

)
.
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Length of the perpendicular

PN =
√(

1

2
− 1

)2

+ (1 − 0)2 +
(

−3

2
− 2

)2

=
√

1

4
+ 1 + 49

4
=

√
54

4
= 3

2

√
6.

DR’s of PM with r = 1
2 are [3 · 1

2 − 2, 2 − 2 · 1
2 ,

−3 − 1
2 ] i.e., DR’s of PM are 1

2 ,−1, 7
2 . And PM

passes through P (1, 0, 2). Therefore the equation of
the perpendicular PM

x − 1
1
2

= y − 0

−1
= z − 2

7
2

or x − 1 = y

−2
= z − 2

7
.

Example 12: Find the equation of the line of the
greatest slope through the point (2, 1, 1) in the slant
plane 2x + y − 5z = 0 to the horizontal plane 4x −
3y + 7z = 0.

Solution: Let l1,m1, n1 be the DR’s of the line of
intersection ML of the two given planes. Since ML
is ⊥r to both normals,

2l1 + m1 − 5n1 = 0, 4l1 − 3m1 + 7n1 = 0.

Solving l1
4 = m1

17 = n1
5 . Let PN be the line of greatest

slope and let l2,m2, n2 be its DR’s. Since PN and ML
are perpendicular

4l2 + 17m2 + 5n2 = 0

Also PN is perpendicular to normal of the slant plane
2x + y − 5z = 0. So

2l2 + m2 − 5n2 = 0

Solving l2
3 = m2

−1 = n2
1 .

Therefore the equation of the line of greatest slope
PN having DR’s 3,−1, 1 and passing through
P (2, 1, 1) is

x − 2

3
= y − 1

−1
= z − 1

1
.

EXERCISE

1. Find the points where the line x + y + 4z =
6, 2x − 3y − 2z = 2 pierce the coordinate
planes.

Ans. (0,−2, 2), (4, 2, 0), (2, 0, 1)

2. Transform the general form 3x + y − 2z = 7,
6x − 5y − 4z = 7 to symmetrical form and
two point form.

Hint: (0, 1,−3), (2, 1, 0) are two points on the
line.

Ans. x−2
2 = y−1

0 = z−0
3

3. Show that the lines x = y = z + 2 and x−1
1 =

y

0 = z
2 intersect and find the point of intersec-

tion.

Hint: Solve x − y = 0, y − z = 2, y = 0,
2x − z = 2 simultaneously.

Ans. (0, 0,−2)

4. Find the equation plane containing the line x =
y = z and

a. Passing through the line x + 1 = y + 1 = z

b. Parallel to the line x+1
3 = y

2 = z
−1 .

Ans. (a) x − y = 0; (b) 3x − 4y + z = 0

5. Show that the line x+1
1 = y

−1 = z−2
2 is in the

plane 2x + 4y + z = 0.

Hint: 2(1) + 4(−1) + 1(2) = 0,
2(−1) + 4(0) + 2 = 0

6. Find the equation of the plane containing line
x−1

3 = y−1
4 = z−2

2 and parallel to the line x −
2y + 3z = 4, 2x − 3y + 4z = 5.

Hint: Eq. of 2nd line x−0
1
2

= y−1
1 = z−2

1
2

, con-

tains 1st line: 3A + 4B + 2C = 0. Parallel
to 2nd line A + 2B + C = 0, A = 0, B =
− 1

2C,D = − 3
2C.

Ans. y − 2z + 3 = 0

7. Show that the lines x + 2y − z = 3, 3x − y +
2z = 1 and 2x − 2y + 3z = 2, x − y + z +
1 = 0 are coplanar. Find the equation of the
plane containing the two lines.

Hint: x−0
3 = y− 7

3
−5 = z− 5

3
−7 , x−0

1 = y−5
+1 = z−4

0 .

∣∣∣∣∣∣∣
x − 0 y − 5 z − 4

3 −5 −7

1 1 0

∣∣∣∣∣∣∣ = 0, Expand.
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Ans. 7x − 7y + 8z + 3 = 0

8. Prove that the equation of the plane through the
origin containing the line x−1

5 = y−2
4 = z−3

5 is
x − 5y + 3z = 0.

Hint: A(x − 1) + B(y − 2) + C(z − 3) = 0,
5A + 2B + 3C = 0, A + 2B + 3C = 0,

Expand

∣∣∣∣∣∣
x − 1 y − 2 z − 3

5 4 5
1 2 3

∣∣∣∣∣∣ = 0

9. Find the image of the point P (1, 3, 4) in the
plane 2x − y + z + 3 = 0.

Hint: Line through P and ⊥r to plane: x−1
2 =

y−3
−1 = z−4

1 . Image Q: (2r + 1,−r + 3, r+4).
Mid point L of PQ is (r + 1,− 1

2 r + 3, 1
2 r +

4). L lies on plane, r = −2.

Ans. (−3, 5, 2)

10. Determine the point of intersection of the lines

x − 4

1
= y + 3

−4
= z + 1

7
,
x − 1

2
= y + 1

−3
= z + 10

8

Hint: General points: (r1 + 4, − 4r1 − 3, 7r1

− 1), (2r2 + 1, − 3r2 − 1, 8r2 − 10), Equat-
ing r1 + 4 = 2r2 + 1, −4r1 − 3 = −3r2 − 1,
solving r1 = 1, r2 = 2.

Ans. (5,−7, 6)

11. Show that the lines x+3
2 = y+5

3 = z−7
−3 , x+1

4 =
y+1

5 = z+1
−1 are coplanar. Find the equation of

the plane containing them.

Ans. 6x − 5y − z = 0

12. Find the equation of the line which passes
through the point (2,−1, 1) and intersect the
lines 2x + y = 4, y + 2z = 0, and x + 3z =
4, 2x + 5z = 8.

Ans. x + y + z = 2, x + 2z = 4

13. Find the coordinates of the foot of the per-
pendicular from P (5, 9, 3) to the line x−1

2 =
y−2

3 = z−3
4 . Find the length of the perpendicu-

lar and its equations.

Ans. (3, 5, 7), Length: 6, Equation x−5
−2 = y−9

−4 =
z−3

4 .

14. Find the equation of the line of greatest slope in
the slant plane 2x + y − 5z = 12 and passing
through the point (2, 3,−1) given that the line
x
4 = y

−3 = z
7 is vertical.

Ans.

15. Find the angle between the line x+1
2 = y

3 =
z−3

6 and the plane 3x + y + z = 7.

Hint: DR’s of line: 2, 3, 6; DR’s of normal to
plane 3, 1, 1

cos(90 − θ ) = sin θ = 2 · 3 + 3 · 1 + 6 · 1√
4 + 9 + 36

√
9 + 1 + 1

.

Ans. sin θ = 15
7
√

11

16. Find the angle between the line x + y − z = 1,
2x − 3y + z = 2 and the plane 3x + y − z +
5 = 0.

Hint: DR’s of line 2, 3, 5, DR’s of normal:
3, 1,−1

cos(90 − θ ) = sin θ = 2 · 3 + 3 · 1 + 5 · (−1)√
4 + 9 + 25

√
9 + 1 + 1

.

Ans. sin θ = 4√
38

√
11

3.5 SHORTEST DISTANCE BETWEEN
SKEW LINES

Skew lines: Any two straight lines which do not lie
in the same plane are known as skew lines (or non-
planar lines). Such lines neither intersect nor are
parallel.Shortest distance between two skew lines:

Fig. 3.15

Let L1 and L2 be two skew lines; L1 passing
through a given point A and L2 through a given point
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B. Shortest distance between the two skew lines L1

and L2 is the length of the line segment CD which
is perpendicular to both L1 and L2. The equation
of the shortest distance line CD can be uniquely de-
termined since it intersects both lines L1 and L2 at
right angles. Now CD = projection of AB on CD =
AB cosθ where θ is the angle between AB and CD.
Since cos θ < 1, CD < AB, thus CD is the shortest
distance between the lines L1 and L2.
Magnitude (length) and the equations of the

line of shortest distance between two linesL1 and
L2:

Suppose the equation of given line L1 be

x − x1

l1
= y − y1

m1
= z − z1

n1
(1)

and of line L2 be

x − x2

l2
= y − y2

m2
= z − z2

n2
(2)

Assume the equation of shortest distance line CD as

x − α

l
= y − β

m
= z − γ

n
(3)

where (α, β, γ ) and (l, m, n) are to be determined.
Since CD is perpendicular to both L1 and L2,

ll1 + mm1 + nn1 = 0

ll2 + mm2 + nn2 = 0

Solving

l

m1n2 − m2n1
= m

n1l2 − n2l1
= n

l1m2 − l2m1

=
√
l2+m2+n2√

(m1n2−m2n1)2+(n1l2−n2l1)2+(l1m2−l2m1)2

= 1√∑
(m1n2 − m2n1)2

= 1

k

where k =
√∑

(m1n2 − m2n1)2

or l = m1n2 − m2n1

k
, m = n1l2 − n2l1

k
,

n = l1m2 − l2m1

k
(4)

Thus the DC’s l, m, n of the shortest distance line
CD are determined by (4).

Magnitude of shortest distance CD = projection
of AB on CD where A(x1, y1, z1) is a point on L1 and
B(x2, y2, z2) is a point on L2.
... shortest distance CD =

= l(x2 − x1) + m(y2 − y1) + n(z2 − z1) (5)

In the determinant form,

Shortest distance CD = 1

k

∣∣∣∣∣∣
x2 − x1 y2 − y1 z2 − z1

l1 m1 n1
l2 m2 n2

∣∣∣∣∣∣
(5′)

Note: If shortest distance is zero, then the two lines
L1 and L2 are coplanar.

Equation of the line of shortest distance CD:
Observe that CD is coplanar with both L1 and L2.
Let P1 be the plane containing L1 and CD. Equation
of plane P1 containing coplanar lines L1 and CD is∣∣∣∣∣∣

x − x1 y − y1 z − z1
l1 m1 n1
l m n

∣∣∣∣∣∣ = 0 (6)

Fig. 3.16

Similarly, equation of plane P2 containing L2 and
CD is ∣∣∣∣∣∣

x − x2 y − y2 z − z2
l2 m2 n2
l m n

∣∣∣∣∣∣ = 0 (7)
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Equations (6) and (7) together give the equation of
the line of shortest distance.
Points of intersection C and D with L1 and L2:

Any general point C∗ on L1 is

(x1 + l1r1, y1 + m1r1, z1 + n1r1)

and any general point D∗ on L2 is

(x2 + l2r2, y2 + m2r2, z2 + n2r2)

DR’s of C∗D∗: (x2 − x1 + l2r2 − l1r1, y2 − y1

+m2r2 − m1r1, z2 − z1 + n2r2 − n1r1)

If C∗D∗ is ⊥r to both L1 and L2, we get two equa-
tions for the two unknowns r1 and r2. Solving and
knowing r1 and r2, the coordinates of C and D are
determined. Then the magnitude of CD is obtained
by length formula, and equation of CD by two point
formula.
Parallel planes: Shortest distance CD = perpen-
dicular distance from any point on L1 to the plane
parallel to L1 and containing L2.

WORKED OUT EXAMPLES

Example 1: Find the magnitude and equation of
the line of shortest distance between the lines

x − 1

2
= y − 2

3
= z − 3

4
,

x − 2

3
= y − 4

4
= z − 5

5
.

Solution: Point A(x1, y1, z1) on first line is (1, 2, 3)
and B(x2, y2, z2) on second line is (2, 4, 5). Also
(l1,m1, n1) are (2, 3, 4) and (l2,m2, n2) = (3, 4, 5).
Then

k2 = (m1n2 − m2n1)2 + (n1l2 − n2l1)2 + (l1m2 − l2m1)2

= (15 − 16)2 + (12 − 10)2 + (8 − 9)2

= 1 + 4 + 1 = 6 or k =
√

6.

So DR’s is of line of shortest of distance:
− 1√

6
, 2√

6
,− 1√

6
.

Shortest distance = 1

k

∣∣∣∣∣∣
x2 − x1 y2 − y1 z2 − z1

l1 m1 n1
l2 m2 n2

∣∣∣∣∣∣

=
∣∣∣∣∣∣
1 2 2
2 3 4
3 4 5

∣∣∣∣∣∣
1√
6

= (15 − 16) − 2(10 − 12) + 2(8 − 9)√
6

= −1 + 4 − 2√
6

= 1√
6
.

Equation of shortest distance line:∣∣∣∣∣∣∣
x − 1 y − 2 z − 3

2 3 4
− 1√

6
2√
6

− 1√
6

∣∣∣∣∣∣∣ = 0 or 11x + 2y − 7z + 6 = 0

and∣∣∣∣∣∣∣
x − 1 y − 4 z − 5

2 3 4
− 1√

6
2√
6

− 1√
6

∣∣∣∣∣∣∣ = 0 or 7x + y − 5z + 7 = 0.

Example 2: Determine the points of intersection
of the line of shortest distance with the two lines

x − 3

3
= y − 8

−1
= z − 3

1
;
x + 3

−3
= y + 7

2
= z − 6

4
.

Also find the magnitude and equation of shortest
distance.

Solution: Any general point C∗ on first line is (3 +
3r1, 8 − r1, 3 + r1) and any general point D∗ on the
second line is (−3 − 3r2,−7 + 2r2, 6 − 4r2). DR’s
of C∗D∗ are (6 + 3r1 + 3r2, 15 − r1 − 2r2,−3 +
r1 − 4r2). If C∗D∗ is ⊥r to both the given lines, then

3(6+3r1+3r2)−1(15−r1−2r2)+1(−3+r1−4r2) = 0

−3(6+3r1+3r2)+2(15−r1−2r2)+4(−3+r1−4r2) = 0

Solving for r1 and r2, 11r1 − 7r2 = 0,+7r1 +
29r2 = 0 so r1 = r2 = 0. Then the points of inter-
section of shortest distance line CD with the given
two lines are C(3, 8, 3),D(−3,−7, 6).

Length of CD =
√

(−6)2 + (−15)2 + (3)2

=
√

270 = 3
√

30

Equation CD:
x − 3

−3 − 3
= y − 8

−7 − 8
= z − 3

6 − 3

i.e.,
x − 3

−6
= y − 8

−15
= z − 3

3
.

Example 3: Calculate the length and equation of
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line of shortest distance between the lines

5x − y − z = 0, x − 2y + z + 3 = 0 (1)

7x − 4y − 2z = 0, x − y + z − 3 = 0 (2)

Solution: Any plane containing the second line (2)
is

(7x − 4y − 2z) + µ(x − y + z − 3) = 0

or (7 + µ)x + (−4 − µ)y + (−2 + µ)z − 3µ = 0 (3)

DR’s of first line (1) are (l, m, n) = (−3,−6,−9)
obtained from:

l m n

5 −1 −1
l −2 1

The plane (3) will be parallel to the line (1) with
l = −3,m = −6, n = −9 if

−3(7 + µ) + 6(4 + µ) + 9(2 − µ) = 0 or µ = 7

2

Substituting µ in (3), we get the equation of a plane
containing line (2) and parallel to line (1) as

7x − 5y + z − 7 = 0 (4)

To find an arbitrary point on line (1), put x = 0. Then
−y − z = 0 or y = −z and −2y + z + 3 = 0, z =
−1, y = 1. ... (0, 1,−1) is a point on line (1). Now
the length of the shortest distance = perpendicular
distance of (0, 1,−1) to plane (4)

= 0 − 5(1) + (−1) − 7√
49 + 25 + 1

=
∣∣∣∣−13√

75

∣∣∣∣ = 13√
75

(5)

Equation of any plane through line (1) is

5x − y − z + λ(x − 2y + z + 3) = 0

or (5 + λ)x + (−y − 2λ)y + (−1 + λ)z + 3λ = 0 (6)

DR’s of line (2) are (l, m, n) = (2, 3, 1) obtained
from

l m n

7 −4 −2

1 −1 1

plane (6) will be parallel to line (2) if

2(5 + λ) + 3(−y − 2λ) + 1(−1 + λ) = 0 or λ = 2.

Thus the equation of plane containing line (1) and
parallel to line (2) is

7x − 5y + z + 6 = 0 (7)

Hence equation of the line of shortest distance is
given by (6) and (7) together.
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Aliter: A point on line (2) is (0,−1, 2) obtained
by putting x = 0 and solving (2). Then the length
of shortest distance = perpendicular distance of
(0,−1, 2) to the plane (7) = 0+5+2+6√

75
= 13√

75

Note: By reducing (1) and (2) to symmetric forms

x − 1
3

1
= y − 5

3

2
= z

3
x + 4

1
= y + 7

3
2

= z

1
2

The problem can be solved as in above worked
Example 1.

Example 4: Show that the lines
x−1

2 = y−2
3 = z−3

4 ; x−2
3 = y−3

4 = z−4
5 are coplanar.

Solution: Shortest distance between the two lines
is∣∣∣∣∣∣
2 − 1 3 − 2 4 − 3

2 3 4
3 4 5

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 1 1
2 3 4
3 4 5

∣∣∣∣∣∣
= (−1) − (−2) + (−1)
=0

... Lines are coplanar.

Example 5: If a, b, c are the lengths of the edges of
a rectangular parallelopiped, show that the shortest
distance between a diagonal and an edge not meeting

the diagonal is bc√
b2+c2

(
or ca√

c2+a2
or ab√

a2+b2

)
.

Solution: Choose coterminus edges OA, OB,
OC along the X, Y,Z axes. Then the coordinates
are A(a, 0, 0), B(0, b, 0), C(0, 0, c), E(a, b, 0),
D(0, b, c), G(a, 0, c)F (a, b, c) etc. so that OA =
a,OB = b,OC = c.
To find the shortest distance between a diagonal OF
and an edge GC. Here GC does not interest OF

Equation of the line OF:
x − 0

a − 0
= y − 0

b − 0
= z − 0

c − 0

or
x

a
= y

b
= z

c
(1)

Equation of the line GC:
x − 0

a − 0
= y − 0

b − 0
= z − c

c − c

or
x

1
= y

0
= z − c

0
(2)

Fig. 3.17

Equation of a plane containing line (1) and parallel
to (2) is∣∣∣∣∣∣

x y z

a b c

1 0 0

∣∣∣∣∣∣ = 0 or cy − bz = 0 (3)

Shortest distance = Length of perpendicular drawn from

a point say C(0, 0, c) to the plane (3)

= c · 0 − b · c√
02 + c2 + b2

= bc√
c2 + b2

.

In a similar manner, it can be proved that the short-
est distance between the diagonal OF and non-
intersecting edges AN and AM are respectively

ca√
c2+a2

, ab√
a2+b2

.

EXERCISE

1. Determine the magnitude and equation of the
line of shortest distance between the lines. Find
the points of intersection of the shortest dis-
tance line, with the given lines
x−8

3 = y+9
−16 = z−10

7 , x−15
3 = y−29

8 = z−5
−5 .

Ans. 14, 117x + 4y − 41z− 490 = 0, 9x − 4y − z=
14, points of intersection (5, 7, 3), (9, 13, 15).

2. Calculate the length, points of intersection, the
equations of the line of shortest distance be-
tween the two lines
x+1

2 = y+1
3 = z+1

4 , x+1
3 = y

4 = z
5 .
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Ans. 1√
6
,

x− 5
3

1
6

= y−3
− 1

2
= z− 15

2
1
6

,
(

5
3 , 3, 13

3

)
,(

3
2 ,

10
3 , 25

6

)
.

3. Find the magnitude and equations of shortest
distance between the two lines
x−1

2 = y−2
3 = z−3

4 , x−2
3 = y−4

4 = z−5
5 .

Ans. 1√
6
, 11x + 2y − 7z + 6 = 0, 7x + y − 5z +

7 = 0.

4. Show that the shortest distance between the
lines x

2 = y

−3 = z
1 and x−2

3 = y−1
−5 = z+2

2 is 1√
3

and its equations are 4x + y − 5z = 0, 7x +
y − 8z = 31.

5. Determine the points on the lines x−6
3 = y−7

−1 =
z−4

1 , x
−3 = y+9

2 = z−2
4 which are nearest to

each other. Hence find the shortest distance be-
tween the lines and find its equations.

Ans. (3, 8, 3), (−3,−7, 6), 3
√

30, x−3
2 = y−8

5 =
z−3
−1 .

6. Prove that the shortest distance between
the two lines x−1

3 = y−4
2 = z−4

−2 , x+1
2 = y−1

−4 =
z+2

1 is 120√
341

Hint: Equation of a plane passing through
the first lines nad parallel to the second line
is 6x + 7y + 16z = 98. A point on second
line is (−1, 1,−2). Perpendicular distance =
6(−1)+7(1)+16(−2)√

62+72+162
.

7. Find the length and equations of shortest dis-
tance between the lines x − y + z = 0, 2x −
3y + 4z = 0; and x + y + 2z − 3 = 0, 2x +
3y + 3z − 4 = 0.

Hint: Equations of two lines in symmetric
form are x

1 = y

2 = z
1 ,

x−5
−3 = y+2

1 = z
1 .

Ans. 13√
66
, 3x − y − z = 0, x + 2y + z − 1 = 0.

8. Determine the magnitude and equations of
the line of shortest distance between the lines
x−3

2 = y+15
−7 = z−9

5 and x+1
2 = y−1

1 = z−9
−3 .

Ans. 4
√

3, −4x + y + 3z = 0, 4x − 5y + z = 0
(or x = y = z).

9. Obtain the coordinates of the points where
the line of shortest distance between the lines
x−23
−6 = y−19

−4 = z−25
3 and x−12

−9 = y−1
4 = z−5

2
meets them. Hence find the shortest distance
between the two lines.

Ans. (11, 11, 31), (3, 5, 7), 26

10. Find the shortest distance between any two op-
posite edges of a tetrahedron formed by the
planes x + y = 0, y + z = 0, z + x = 0, x +
y + z = a. Also find the point of intersection
of three lines of shortest distances.

Hint: Vertices are (0, 0, 0), (a,−a, a),
(−a, a, a), (a, a,−a).

Ans. 2a√
6
, (−a,−a,−a).

11. Find the shortest distance between the lines
PQ and RS where P (2, 1, 3),Q(1, 2, 1),
R(−1,−2,−2), S(−1, 4, 0).

Ans. 3
√

2

3.6 THE RIGHT CIRCULAR CONE

Cone

A cone is a surface generated by a straight line
(known as generating line or generator) passing
through a fixed point (known as vertex) and satisfy-
ing a condition, for example, it may intersect a given
curve (known as guiding curve) or touches a given
surface (say a sphere). Thus cone is a set of points on
its generators. Only cones with second degree equa-
tions known as quadratic cones are considered here.
In particular, quadratic cones with vertex at origin
are homogeneous equations of second degree.

Equation of cone with vertex at (α, β, γ ) and
the conic ax2 + 2hxy + by2 + 2gx + 2fy + c =
0, z = 0 as the guiding curve:

The equation of any line through vertex (α, β, γ ) is
x − α

l
= y − β

m
= z − γ

n
(1)

(1) will be generator of the cone if (1) intersects the
given conic

ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, z = 0 (2)

Since (1) meets z = 0, put z = 0 in (1), then the point
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α − lγ

n
, β − mγ

n
, 0

)
will lie on the conic (2), if

a

(
α− lγ

n

)2

+2h

(
α− lγ

n

)(
β−mγ

n

)
+b

(
β−mγ

n

)2 +

+2g

(
α − lγ

n

)
+ 2f

(
β − mγ

n

)
+ c = 0 (3)

From (1)

l

n
= x − α

z − γ
,

m

n
= y − β

z − γ
(4)

Eliminate l, m, n from (3) using (4),

a

(
α − x − α

z − γ
· γ

)2

+

+ 2h

(
α − x − α

z − γ
· γ

)(
β − y − β

z − γ
· γ

)
+

+ b

(
β − y − β

z − γ
· γ

)2

+ 2g

(
α − x − α

z − γ
· γ

)
+

+ 2f

(
β − γ − β

z − γ
· γ

)
+ c = 0

or

a(αz − xγ )2 + 2h(αz − xγ )(βz − yγ ) +
+b(βz − yγ )2 + 2g(αz − xγ )(z − γ ) +
+2f (βz − yγ )(z − γ ) + c(z − γ )2 = 0

or

a(x − α)2 + b(y − β)2 + c(z − γ )2 +
+2f (z − γ )(y − β) + 2g(x − α)(z − γ ) +
+2h(x − α)(y − β) = 0 (5)

Thus (5) is the equation of the quadratic cone with
vertex at (α, β, γ ) and guiding curve as the conic (2).
Special case:Vertex at origin (0, 0, 0). Putα = β =
γ = 0 in (5). Then (5) reduces to

ax2 + by2 + cz2 + 2f zy + 2gxz + 2hxy = 0 (6)

Equation (6) which is a homogeneous and second
degree in x, y, z is the equation of cone with vertex
at origin.

Right circular cone

A right circular cone is a surface generated by a line
(generator) through a fixed point (vertex) making a

constant angle θ (semi-vertical angle) with the fixed
line (axis) through the fixed point (vertex). Here the
guiding curve is a circle with centre at c. Thus every
section of a right circular cone by a plane perpendic-
ular to its axis is a circle.

Fig. 3.18

Equation of a right circular cone: with vertex at
(α, β, γ ), semi vertical angle θ and equation of axis

x − α

l
= y − β

m
= z − γ

n
(1)

Let P (x, y, z) be any point on the generating line
VB. Then the DC’s of VB are proportional to
(x − α, y − β, z − γ ). Then

cos θ = l(x−α)+m(y−β)+n(z−γ )√
(l2+m2+n2)

√
(x−α)2+(y−β)2+(z−γ )2

Rewriting, the required equation of cone is[
l(x − α) + m(y − β) + n(z − γ )

]2

=

= (l2+m2+n2)

[
(x−α)2+(y−β)2+(z−γ )2

]
cos2 θ (2)

Case 1: If vertex is origin (0, 0, 0) then (2) reduces

(lx+my+nz)2=(l2+m2+n2)(x2+y2+z2) cos2 θ (3)

Case 2: If vertex is origin and axis of cone is z-axis
(with l = 0,m = 0, n = 1) then (2) becomes

z2 = (x2+y2+z2) cos2 θ or z2sec2θ = x2+y2+z2

z2(1 + tan2 θ ) = x2 + y2 + z2

i.e., x2 + y2 = z2 tan2 θ (4)

Similarly, with y-axis as the axis of cone
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x2 + z2 = y2 tan2 θ

with x-axis as the axis of cone

y2 + z2 = x2 tan2 θ.

If the right circular cone admits sets of three mutu-
ally perpendicular generators then the semi-vertical
angle θ = tan−1

√
2 (since the sum of the coefficients

of x2, y2, z2 in the equation of such a cone must be
zero i.e., 1 + 1 − tan2 θ = 0 or tan θ = √

2).

WORKED OUT EXAMPLES

Example 1: Find the equation of cone with base

curve x2

a2 + y2

b2 = 1, z = 0 and vertex (α, β, γ ). De-

duce the case when base curve is x2

16 + y2

9 = 1, z = 0
and vertex at (1, 1, 1).

Solution: The equation of any generating line
through the vertex (α, β, γ ) is

x − α

l
= y − β

m
= z − γ

n
(1)

This generator (1) meets z = 0 in the point(
x = α − lγ

n
, y = β − mγ

n
, z = 0

)
(2)

Point (2) lies on the generating curve

x2

a2
+ y2

b2
= 1 (3)

Substituting (2) in (3)
(
α − lγ

n

)2

a2
+

(
β − mγ

n

)2

b2
= 1 (4)

Eliminating l, m, n from (4) using (1),
[
α −

(
x−α
z−γ

)
γ
]2

a2
+

[
β −

(
y−β
z−γ

)
γ
]2

b2
= 1

b2
[
α(z − γ ) − γ (x − α)

]2

+a2
[
β(z − γ ) − γ (y − β)

]2

= a2b2(z − γ )2

Deduction: When a=4, b=3, α=1, β=1, γ =1,

9

[
(z − 1) − (x − 1)

]2

+ 16

[
(z − 1) − (y − 1)

]2

= 144(z − 1)2

9x2 + 16y2 − 119z2 − 18xz − 32yz + 288z − 144 = 0.

Example 2: Find the equation of the cone with
vertex at (1, 0, 2) and passing through the circle x2 +
y2 + z2 = 4, x + y − z = 1.

Solution: Equation of generator is

x − 1

l
= y − 0

m
= z − 2

n
(1)

Any general point on the line (1) is

(1 + lr, mr, 2 + nr). (2)

Since generator (1) meets the plane

x + y − z = 1 (3)

substitute (2) in (3)

(1 + lr) + (mr) − (2 + nr) = 1

or r = 2

l + m − n
. (4)

Since generator (1) meets the sphere

x2 + y2 + z2 = 4 (5)

substitute (2) in (5)

(1 + lr)2 + (mr)2 + (2 + nr)2 = 4

or r2(l2 + m2 + n2) + 2r(l + 2n) + 1 = 0 (6)

Eliminate r from (6) using (4), then

4

(l+m−n)2
(l2+m2+n2)+2

2

(l+m−n)
(l+2n)+1 = 0

9l2 + 5m2 − 3n2 + 6lm + 2ln + 6nm = 0 (7)

Eliminate l, m, n from (7) using (1), then

9

(
x−1

r

)2

+5
(y

r

)2 −3

(
z−2

r

)2

+6

(
x−1

r

) (y

r

)
+

+2

(
x − 1

r

) (
z − 2

r

)
+ 6

(
z − 2

r

) (y

r

)
= 0

or 9(x − 1)2 + 5y2 − 3(z − 2)2 + 6y(x − 1) +
+2(x − 1)(x − 2) + 6(z − 2)y = 0
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Vertex (0, 0, 0):

Example 3: Determine the equation of a cone with
vertex at origin and base curve given by

a. ax2 + by2 = 2z, lx + my + nz = p

b. ax2 + by2 + cz2 = 1, lx + my + nz = p

c. x2 + y2 + z2 = 25, x + 2y + 2z = 9

Solution: We know that the equation of a quadratic
cone with vertex at origin is a homogeneous equation
of second degree in x, y, z. By eliminating the non-
homogeneous terms in the base curve, we get the
required equation of the cone.

a. 2z is the term of degree one and is non homoge-
neous. Solving

lx + my + nz

p
= 1

rewrite the equation

ax2 + by2 = 2 · z(1) = 2z

(
lx + my + nz

p

)

apx2 + bpy2 − 2nz2 − 2lxz − 2myz = 0

which is the equation of cone.

b. Except the R.H.S. term 1, all other terms are of
degree 2 (and homogeneous). Rewriting, the re-
quired equation of cone as

ax2 + by2 + cz2 = (1)2 =
(
lx + my + nz

p

)2

(ap2 − l2)x2 + (bp2 − m2)y2 + (cp2 − n2)z2 −
−2lmxy − 2mnyz − 2lnxz = 0

c. On similar lines

x2 + y2 + z2 = 25 = 25(1)2 = 25

(
x + 2y + 2z

9

)2

56x2 −19y2 −19z2 −100xy−200yz−100xz = 0

Right circular cone:

Example 4: Find the equation of a right circular
cone with vertex at (2, 0, 0), semi-vertical angle θ =
30◦ and axis is the line x−2

3 = y

4 = z
6 .

Solution: Here α = 2, β = 0, γ = 0, l = 3,m =
4, n = 6
√

3

2
= cos 30 = cos θ

= l(x − α) + m(y − β) + n(z − γ )√
(l2 + m2 + n2)[(x − α)2 + (y − β)2 + (z − γ )2]

√
3

2
= 3(x − 2) + 4y + 6z√

9 + 16 + 36
√

(x − 2)2 + y2 + z2

183[(x − 2)2 + y2 + z2] = 4[3(x − 2) + 4y + 6z]2

147x2 + 119y2 + 39z2 − 192yz − 144zx − 96xy −
−588x + 192y + 288z + 588 = 0

Vertex (0, 0, 0):

Example 5: Find the equation of the right circular
cone which passes through the line 2x = 3y = −5z
and has x = y = z as its axis.

Solution: DC’s of the generator 2x = 3y = −5z
are 1

2 ,
1
3 ,− 1

5 . DC’s of axis are 1√
3
, 1√

3
, 1√

3
. Point of

intersection of the generator and axis is (0, 0, 0). Now

cos θ =
1
2 · 1√

3
+ 1

3 · 1√
3
− 1

5 · 1√
3√

1
3+ 1

3+ 1
3

√
1
4+ 1

9+ 1
25

=
19
30√
361
900

· 1√
3

= 1√
3

Equation of cone with vertex at origin

1√
3

= cos θ =
1√
3
(x + y + z)

1
√
x2 + y2 + z2

x2 + y2 + z2 = (x + y + z)2

xy + yz + zx = 0.

Example 6: Determine the equation of a right
circular cone with vertex at origin and the
guiding curve circle passing through the points
(1, 2, 2), (1,−2, 2)(2,−1,−2).

Solution: Let l, m, n be the DC’s of OL the axis
of the cone. Let θ be the semi- vertical angle. Let
A(1, 2, 2), B(1,−2, 2), C(2,−1,−2) be the three
points on the guiding circle. Then the lines OA,
OB, OC make the same angle θ with the axis
OL. The DC’s of OA, OB, OC are proportional to
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(1, 2, 2)(1,−2, 2)(2,−1,−2) respectively. Then

cos θ = l(1) + m(2) + n(2)√
1 · √

1 + 4 + 4
= l + 2m + 2n

3
(1)

Fig. 3.19

Similarly,

cos θ = l(1) + m(−2) + n(2)√
1
√

1 + 4 + 4
= l − 2m + 2n

3
(2)

cos θ = 2l − m − 2n

3
(3)

From (1) and (2), 4m = 0 or m = 0.
From (2) and (3), l + m − 4n = 0, l − 4n = 0 or
l = 4n.

DC’s
l

4
= m

0
= n

1
or

l

4√
17

= m

0
= n

1√
17

.

From (1) cos θ =
4√
17

+ 2 · 0 + 2 1√
17

3
= 2√

17
.

Equation of right circular cone is

(l2+m2+n2)(x2+y2+z2) cos2 θ = (lx+my+nz)2(
16

17
+0+ 1

17

)
(x2+y2+z2)

4

17
=

(
4√
17

x+0+ 1√
17

z

)2

4(x2 + y2 + z2) = (4x + z)2

12x2 − 4y2 − 3z2 + 8xz = 0

is the required equation of the cone.

EXERCISE

1. Find the equation of the cone whose vertex
is (3, 1, 2) and base circle is 2x2 + 3y2 = 1,
z = 1.

Ans. 2x2 + 3y2 + 20z2 − 6yz − 12xz + 12x + 6y
−38z + 17 = 0

2. Find the equation of the cone whose vertex

is origin and guiding curve is x2

4 + y2

9 + z2

1 =
1, x + y + z = 1.

Ans. 27x2 + 32y2 + 72(xy + yz + zx) = 0.

3. Determine the equation of the cone with ver-
tex at origin and guiding curve x2 + y2 + z2 −
x − 1 = 0, x2 + y2 + z2 + y − z = 0.

Hint:Guiding curve is circle in plane x + y =
1. Rewrite x2 + y2 + z2 − x(x + y) − (x +
y)2 = 0.

Ans. x2 + 3xy − z2 = 0

4. Show that the equation of cone with vertex at
origin and base circle x = a, y2 + z2 = b2 is
a2(y2 + z2) = b2x2. Further prove that the sec-
tion of the cone by a plane parallel to the XY -
plane is a hyperbola.

Ans. b2x2 − a2y2 = a2c2, z = c (put z = c in equa-
tion of cone)

5. Find the equation of a cone with vertex at
origin and guiding curve is the circle pass-
ing through the X, Y,Z intercepts of the plane
x
a

+ y

b
+ z

c
= 1.

Ans. a(b2 + c2)yz + b(c2 + a2)zx + c(a2 + b2)xy
= 0

6. Write the equation of the cone whose vertex is
(1, 1, 0) and base is y2 + z2 = 9, x = 0.

Hint: Substitute
(
0, 1 − m

l
,− n

l

)
in base curve

and eliminate m
l

= y−1
x−1 ,

n
l

= z
z−1 .

Ans. x2 + y2 + z2 − 2xy = 0
Right circular cone (R.C.C.)

7. Find the equation of R.C.C. with vertex at (2,
3, 1), axis parallel to the line −x = y

2 = z and
one of its generators having DC’s proportional
to (1,−1, 1).

Hint: cos θ = −1−2+1√
6
√

3
, l = −1,m = 2, n =

1, α = 2, β = 3, γ = 1.

Ans. x2 − 8y2 + z2 + 12xy − 12yz + 6zx − 46x +
+ 36y + 22z − 19 = 0

8. Determine the equation of R.C.C. with vertex
at origin and passes through the point (1, 1, 2)
and axis line x

2 = −y

4 = z
3 .
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Hint: cos θ = 2−4+6√
6
√

29
, DC’s of generator: 1, 1,

2, axis: 2, −4, 3

Ans. 4x2 +40y2 +19z2 −48xy−72yz+36xz=0

9. Find the equation of R.C.C. whose vertex is
origin and whose axis is the line x

1 = y

2 = z
3

and which has semi- vertical angle of 30◦

Hint: cos 30 =
√

3
2 = x(1)+y(2)+z(3)√

(x2+y2+z2)
√

1+4+9

Ans. 19x2 +13y2 +3z2 −8xy−24yz−12zx = 0

10. Obtain the equation of R.C.C. generated when
the straight line 2y + 3z = 6, x = 0 revolves
about z-axis.

Hint: Vertex (0, 0, 2), generator x
0 = y

3 =
z−2
−2 , cos θ = − 2√

13
.

Ans. 4x2 + 4y2 − 9z2 + 36z − 36 = 0

11. Lines are drawn from the origin with DC’s pro-
portional to (1, 2, 2), (2, 3, 6), (3, 4, 12). Find
the equation of R.C.C.

Hint: cosα= l+2m+2n
3 = 2l+3m+6n

7 = 3l+4m+12n
13

l
−1 = m

1 = n
1 , cosα = 1√

3
, DC’s of axis:

−1, 1, 1.

Ans. xy − yz + zx = 0

12. Determine the equation of the R.C.C. gen-
erated by straight lines drawn from the ori-
gin to cut the circle through the three points
(1, 2, 2), (2, 1,−2), and (2,−2, 1).

Hint: cosα= l+2m+2n
3 = 2l+m−2n

3 = 2l−2m+n
3

l
5 =

m
1 = n

1 , cosα = 5+2+2
3
√

27
= 1√

3
.

Ans. 8x2 − 4y2 − 4z2 + 5xy + 5zx + yz = 0

3.7 THE RIGHT CIRCULAR CYLINDER

A cylinder is the surface generated by a straight line
(known as generator) which is parallel to a fixed
straight line (known as axis) and satisfies a condition;
for example, it may intersect a fixed curve (known
as the guiding curve) or touch a given surface. A
right circular cylinder is a cylinder whose surface
is generated by revolving the generator at a fixed
distance (known as the radius) from the axis; i.e.,
the guiding curve in this case is a circle. In fact, the

intersection of the right circular cylinder with any
plane perpendicular to axis of the cylinder is a circle.
Equation of a cylinderwith generators parallel to

the line x
l

= y

m
= z

n
and guiding curve conic ax2 +

by2 + 2hxy + 2gx + 2fy + c = 0, z = 0.
Let P (x1, y1, z1) be any point on the cylinder.

The equation of the generator through P (x1, y1, z1)
which is parallel to the given line

x

l
= y

m
= z

n
(1)

is
x − x1

l
= y − y1

m
= z − z1

n
(2)

Since (2) meets the plane z = 0,

...
x − x1

l
= y − y1

m
= 0 − z1

n

or x = x1 − l

n
z1, y = y1 − m

n
z1 (3)

Since this point (3) lies on the conic

ax2 + by2 + 2hxy + 2gx + 2fy + c = 0 (4)

substitute (3) in (4). Then

a

(
x1 − l

n
z1

)2

+ b
(
y1 − m

n
z1

)2 +

+2h

(
x1 − l

n
z1

)(
y1 − m

n
z1

)
+ 2g

(
x1 − l

n
z1

)
+

+2f
(
y1 − m

n
z1

)
+ c = 0.

The required equation of the cylinder is

a(nx − lz)2 + b(ny − mz)2 + 2h(nx − lz)(ny − mz) +
+2ng(nx − lz) + 2nf (ny − mz) + cn2 = 0 (5)

where the subscript 1 is droped because (x1, y1, z1)
is any general point on the cylinder.

Corollary 1: The equation of a cylinder with axis
parallel to z-axis is obtained from (5) by putting l =
0,m = 0, n = 1 which are the DC’s of z-axis: i.e.,

ax2 + by2 + 2hxy + 2gx + 2fy + c = 0

which is free from z.
Thus the equation of a cylinder whose axis is

paralle to x-axis (y-axis or z-axis) is obtained by
eliminating the variable x(y or z) from the equation
of the conic.
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Equation of a right circular cylinder:

a. Standard form:with z-axis as axis and of radius
a. Let P (x, y, z) be any point on the cylinder.
Then M the foot of the perpendicular PM has
(0, 0, z) and PM = a (given). Then

a = PM =
√

(x − 0)2 + (y − 0)2 + (z − z)2

x2 + y2 = a2

Fig. 3.20

Corollary 2: Similarly, equation of right circular
cylinder with y-axis is x2 + z2 = a2, with x-axis is
y2 + z2 = a2.

b. General formwith the line x−α
l

= y−β

m
= z−γ

n
as

axis and of radius a.

Axis AB passes through the point (α, β, γ ) and
has DR’s l, m, n. Its DC’s are l

k
, m

k
, n

k
where k =√

l2 + m2 + n2.

Fig. 3.21

From the right angled triangle APM

AP 2 = PM2 + AM2

(x − α)2 + (y − β)2 + (z − γ )2

= a2 +
[
l(x − α) + m(y − β) + n(z − γ )

]2

which is the required equation of the cylinder (Here
AM is the projection of AP on the line AB is equal to
l(x − α) + m(y − β) + n(z − γ )).
Enveloping cylinder of a sphere is the locus of

the tangent lines to the sphere which are parallel to
a given line. Suppose

x2 + y2 + z2 = a2 (1)

is the sphere and suppose that the generators are par-
allel to the given line

x

l
= y

m
= z

n
(2)

Then for any point P (x1, y1, z1) on the cylinder, the
equation of the generating line is

x − x1

l
= y − y1

m
= z − z1

n
(3)

Any general point on (3) is

(x1 + lr, y1 + mr, z1 + nr) (4)

By substituting (4) in (1), we get the points of inter-
section of the sphere (1) and the generating line (3)
i.e.,

(x1 + lr)2 + (y1 + mr)2 + (z1 + nr)2 = a2

Rewriting as a quadratic in r , we have

(l2 + m2 + n2)r2 + 2(lx1 + my1 + nz1)r +
+(x2

1 + y2
1 + z2

1 − a2) = 0 (5)

If the roots of (5) are equal, then the generating line
(3) meets (touches) the sphere in a single point i.e.,
when the discriminant of the quadratic in r is zero.

or 4(lx1 + my1 + nz1)2 − 4(l2 + m2 + n2) ×
×(x2

1 + y2
1 + z2

1 − a2) = 0

Thus the required equation of the enveloping cylinder
is

(lx + my + nz)2 = (l2 + m2 + n2)(x2 + y2 + z2 − a2)

where the subscript 1 is droped to indicate that
(x, y, z) is a general point on the cylinder.

WORKED OUT EXAMPLES

Example 1: Find the equation of the quadratic
cylinder whose generators intersect the curve ax2 +



chap-03 B.V.Ramana August 30, 2006 10:22

3.32 ENGINEERING MATHEMATICS

by2 + cz2 = k, lx + my + nz = p and parallel to
the y-axis. Deduce the case for x2 + y2 + z2 = 1 and
x + y + z = 1 and parallel to y-axis

Solution: Eliminate y between

ax2 + by2 + cz2 = k (1)

and lx + my + nz = p (2)

Solving (2) for y, we get

y = p − lx − nz

m
(3)

Substitute (3) in (1), we have

ax2 + b

(
p − lx − nz

m

)2

+ cz2 = k.

The required equation of the cylinder is

(am2 + l2)x2 + (bn2 + m2c)z2 − 2pblx

− 2npbz + 2blnxz + (bp2 − m2k) = 0.

Deduction: Put a = 1, b = 1, c = 1, k = 1, l =
m = n = p = 1

2x2 + 2z2 − 2x − 2z + 2xz = 0

or x2 + z2 + xz − x − z = 0.

Example 2: If l, m, n are the DC’s of the genera-
tors and the circle x2 + y2 = a2 in the XY -plane is
the guiding curve, find the equation of the cylinder.
Deduce the case when a = 4, l = 1,m = 2, n = 3.

Solution: For any point P (x1, y1, z1) on the cylin-
der, the equation of the generating line through P is

x − x1

l
= y − y1

m
= z − z1

n
(1)

Since the line (1) meets the guiding curve
x2 + y2 = a2, z = 0,

x − x1

l
= y − y1

m
= 0 − z1

n

or x = x1 − lz1

n
, y = y1 − mz1

n
(2)

This point (2) lies on the circle x2 + y2 = a2 also.
Substituting (2) in the equation of circle, we have(

x1 − lz1

n

)2

+
(
y1 − mz1

n

)2 = a2

or (nx − lz)2 + (ny − mz)2 = n2a2

is the equation of the cylinder.

Deduction: Equation of cylinder whose genera-
tors are parallel to the line x

1 = y

2 = z
3 and pass

through the curve x2 + y2 = 16, z = 0. With a =
4, l = 1,m = 2, n = 3, the required equation of the
cylinder is

(3x − z)2 + (3y − 2z)2 = 9(16) = 144

or 9x2 + 9y2 + 5z2 − 6zx − 12yz − 144 = 0.

Example 3: Find the equation of the right circular
cylinder of radius 3 and the line x−1

2 = y−3
2 = z−5

−1
as axis.

Solution: Let A(1, 3, 5) be the point on the axis and
DR’s of AB are 2, 2,−1 or DC’s of AB are 2

3 ,
2
3 ,− 1

3 .
Radius PM = 3 given. Since AM is the projection
of AP on AB, we have

AM = 2

3
(x − 1) + 2

3
(y − 3) − 1

3
(z − 5)

Fig. 3.22

From the right angled triangle APM

AP 2 = AM2 + MP 2

(x − 1)2 + (y − 3)2 + (z − 5)2

=
[
2

(x − 1)

3
+ 2

y − 3

3
− 1

(z − 5)

3

]
+ 9

9[x2 + 1 − 2x + y2 + 9 − 6y + z2 + 25 − 10z]

= [2x + 2y − z − 3]2 + 81

9[x2 + y2 + z2 − 2x − 6y − 10z + 35]

= [4x2 + 4y2 + z2 + 9 + 8xy − 4xz − 12x

−4yz − 12y + 6z] + 81

is the required equation of the cylinder.

Example 4: Find the equation of the envelop-
ing cylinder of the sphere x2 + y2 + z2 − 2y − 4z −
11 = 0 having its generators parallel to the line
x = −2y = 2z.

Solution: Let P (x1, y1, z1) be any point on the
cylinder. Then the equation of the generating line
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through P and parallel to the line x = −2y = 2z or
x
1 = y

− 1
2

= z
1
2

is

x − x1

1
= y − y1

− 1
2

= z − z1
1
2

(1)

Any general point on (1) is(
x1 + r, y1 − 1

2
r, z1 + 1

2
r

)
(2)

The points of intersection of the line (1) and the
sphere

x2 + y2 + z2 − 2y − 4z − 11 = 0 (3)

are obtained by substituting (2) in (3).

(x1 + r)2 +
(
y1 − 1

2
r

)2

+
(
z1 + 1

2
r2

)2

− 2

(
y1 − 1

2
r

)

− 4

(
z1 + 1

2
r

)
− 11 = 0

Rewriting this as a quadratic in r

3

2
r2 + (2x1 − y1 + z1 − 1)r

+ (x2
1 + y2

1 + z2
1 − 2y1 − 4z1 − 11) = 0 (4)

The generator touches the sphere (3 if (4) has equal
roots i.e., discriminant is zero or

(2x1 − y1 + z1 − 1)2

= 4 · 3

2
· (x2

1 + y2
1 + z2

1 − 2y1 − 4z1 − 11).

The required equation of the cylinder is

2x2 + 5y2 + 5z2 + 4xy − 4xz + 2yz

+ 4x − 14y − 22z − 67 = 0.

EXERCISE

1. Find the equation of the quadratic cylinder
whose generators intersect the curve
a. ax2 + by2 = 2z, lx + my + nz = p and

are parallel to z-axis.
b. ax2 + by2 + cz2 = 1, lx + my + nz = p

and are parallel to x-axis.

Hint: Eliminate z

Ans. a. n(ax2 + by2) + 2lx + 2my − 2p = 0

Hint: Eliminate x.

Ans. b. (bl2 + am2)y2 + (cl2 + an2)z2 + 2amnyz

−2ampy − 2anpz + (ap2 − l2) = 0

2. If l, m, n are the DC’s of the generating line and
the circle x2 + z2 = a2 in the zx-plane is the
guiding curve, find the equation of the sphere.

Ans. (mx − ly)2 + (mz − ny)2 = a2m2

Find the equation of a right circular cylinder (4 to 9)

4. Whose axis is the line x−1
2 = y+3

−1 = z−2
5 and

radius is 2 units.

Ans. 26x2 + 29y2 + 5z2 + 4xy + 10yz − 20zx +
150y + 30z + 75 = 0

5. Having for its base the circle x2 + y2 + z2 =
9, x − y + z = 3.

Ans. x2 + y2 + z2 + xy + yz − zx − 9 = 0

6. Whose axis passes through the point (1, 2, 3)
and has DC’s proportional to (2,−3, 6) and of
radius 2.

Ans. 45x2 + 40y2 + 13z2 + 36yz − 24zx + 12xy
− 42x − 280y − 126z + 294 = 0.
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7. Whose axis is the line x−1
2 = y−2

1 = z−3
2 and

radius 2 units.

Ans. 5x2 + 8y2 + 5z2 − 4yz − 8zx − 4xy + 22x
− 16y − 14z − 10 = 0

8. The guiding curve is the circle through the three
points (1, 0, 0), (0, 1, 0)(0, 0, 1).

Ans. x2 + y2 + z2 − xy − yz − zx = 1

9. The directing curve is x2 + z2 − 4x − 2z +
4 = 0, y = 0 and whose axis contains the point
(0, 3, 0). Also find the area of the section of the
cylinder by a plane parallel to xz-plane.

Hint: Centre of circle (2, 0, 1) radius: 1

Ans. 9x2 + 5y2 + 9z2 + 12xy + 6yz − 36x − 30y
− 18z + 36 = 0, π

10. Find the equation of the enveloping cylinder of
the sphere x2 + y2 + z2 − 2x + 4y = 1, hav-
ing its generators parallel to the linex = y = z.

Ans. x2 + y2 + z2 − xy − yz − zx − 2x + 7y +
z − 2 = 0.




