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Lectures on Real Analysis

This is a rigorous introduction to real analysis for undergraduate students, starting
from the axioms for a complete ordered field and a little set theory. The book avoids
any preconceptions about the real numbers and takes them to be nothing but the
elements of a complete ordered field. All of the standard topics are included, as well as
a proper treatment of the trigonometric functions, which many authors take for
granted. The final chapters of the book provide a gentle, example-based introduction to
metric spaces with an application to differential equations on the real line.

The author’s exposition is concise and to the point, helping students focus on the
essentials. Over 200 exercises of varying difficulty are included, many of them adding
to the theory in the text. The book is ideal for second-year undergraduates and for
more advanced students who need a foundation in real analysis.
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Preface

This book is a rigorous introduction to real analysis, suitable for a one-
semester course at the second-year undergraduate level, based on my expe-
rience of teaching this material many times in Australia and Canada. My
aim is to give a treatment that is brisk and concise, but also reasonably
complete and as rigorous as is practicable, starting from the axioms for a
complete ordered field and a little set theory.

Along with epsilons and deltas, I emphasise the alternative language
of neighbourhoods, which is geometric and intuitive and provides an in-
troduction to topological ideas. I have included a proper treatment of the
trigonometric functions. They are sophisticated objects, not to be taken for
granted. This topic is an instructive application of the theory of power series
and other earlier parts of the book. Also, it involves the concept of a group,
which most students won’t have seen in the context of analysis before.

There may be some novelty in the gentle, example-based introduction
to metric spaces at the end of the book, emphasising how straightforward
the generalisation of many fundamental notions from the real line to metric
spaces really is. The goal is to develop just enough metric space theory
to be able to prove Picard’s theorem, showing how a detour through some
abstract territory can contribute back to analysis on the real line.

Needless to say, I claim no originality whatsoever for the material in this
book. My contribution, such as it is, lies in the selection and presentation
of the material. I thank the American Mathematical Society for allowing
the book to be formatted with one of their class files.

Finnur Lárusson
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To the student

The purpose of this course is twofold. First, to give a careful treatment of
calculus from first principles. In first-year calculus we learn methods for
solving specific problems. We focus on how to use these methods more than
why they work. To pave the way for further studies in pure and applied
mathematics we need to deepen our understanding of why, as opposed to
how, calculus works. This won’t be a simple rehashing of first-year calculus
at all. Calculus done this way is called real analysis.

In particular, we will consider what it is about the real numbers that
makes calculus work. Why can’t we make do with the rationals? We will
identify the key property of the real numbers, called completeness, that
distinguishes them from the rationals and permeates all of mathematical
analysis. Completeness will be our main theme through the whole course.

The second goal of the course is to practise reading and writing math-
ematical proofs. The course is proof-oriented throughout, not to encourage
pedantry, but because proof is the only way that mathematical truth can
be known with certainty. Mathematical knowledge is accumulated through
long chains of reasoning. We can’t rely on this knowledge unless we’re sure
that every link in the chain is sound. In many future endeavours, you will
find that being able to construct and communicate solid arguments is a very
useful skill.

With the emphasis on rigorous arguments comes the need to make our
fundamental assumptions, from which our reasoning begins, clear and ex-
plicit. We shall list ten axioms that describe the real numbers and that can
in fact be shown to characterise the real numbers. Our development of real
analysis will be based on these axioms, along with a bit of set theory.

ix



x To the student

Towards the end of the course we extend some of the concepts we will
have developed in the context of the real numbers to the much more general
setting of metric spaces. To demonstrate the power of abstraction, the
course ends with the proof, using metric space theory, of an existence and
uniqueness theorem for solutions of differential equations.



Chapter 1

Numbers, sets, and

functions

1.1. The natural numbers, integers, and rational numbers

We assume that you are familiar with the set of natural numbers

N = {1, 2, 3, . . . },

the set of integers
Z = {. . . ,−2,−1, 0, 1, 2, . . . },

and the set of rational numbers

Q = {p/q : p, q ∈ Z, q �= 0}.

We also assume that you are familiar with the important method of proof
known as the principle of induction. It says that if we have a property P (n)
that each natural number n may or may not have, such that:

(a) P (1) is true, and
(b) if k ∈ N and P (k) is true, it follows that P (k + 1) is true,

then P (n) is true for all n ∈ N. There is another way to state the principle of
induction that shows it to be a fundamental property of the natural numbers.

1.1. Theorem. The following are equivalent.

(1) The principle of induction.
(2) Every nonempty subset of N has a smallest element.

Property (2) is called the well-ordering property of N. We say that N is
well ordered.

1



2 1. Numbers, sets, and functions

Proof. To show that the two statements are equivalent, we must prove that
each implies the other.

(1) ⇒ (2): Let S be a subset of N with no smallest element. Let P (n)
be the property that k /∈ S for all k ≤ n. Since S has no smallest element,
1 /∈ S, so P (1) is true. Also, if P (n) is true, P (n + 1) must be true as well,
for otherwise n + 1 would be the smallest element of S. Thus P (n) satisfies
(a) and (b), so by assumption, P (n) holds for all n ∈ N and S is empty.

(2) ⇒ (1): Let P (n) be a property of natural numbers satisfying (a)
and (b). Define S to be the set of those n ∈ N for which P (n) is false.
Then (a) says that 1 /∈ S, and (b) (or rather its contrapositive) says that
if k ∈ S, k > 1, then k − 1 ∈ S. Therefore S has no smallest element,
so by assumption S must be empty, which means that P (n) is true for all
n ∈ N. �
1.2. Remark. The contrapositive of an implication P ⇒ Q is the implica-
tion not-Q⇒ not-P . These two implications are logically equivalent. Thus,
if we want to prove that P implies Q, then we can instead prove that not-Q
implies not-P . This is sometimes convenient. Do not confuse the contra-
positive with the converse of P ⇒ Q, which is the implication Q ⇒ P . An
implication and its converse are in general not equivalent.

We can think of Z as an extension of N that allows us to do subtraction
without any restrictions, and of Q as an extension of Z that allows us to do
division with the sole restriction that division by zero cannot be reasonably
defined. The set Q with addition and multiplication and all the familiar
rules satisfied by these operations is a mathematical structure called a field.

1.3. Definition. A field is a set F with two operations, addition, denoted
+, and multiplication, denoted ·, such that the following axioms are satisfied.

A1 Associativity: a + (b + c) = (a + b) + c, a · (b · c) = (a · b) · c for all
a, b, c ∈ F .

A2 Commutativity: a + b = b + a, a · b = b · a for all a, b ∈ F .
A3 Distributivity: a · (b + c) = a · b + a · c for all a, b, c ∈ F .
A4 Additive identity. There is an element called 0 in F such that

a + 0 = a for all a ∈ F .
Multiplicative identity. There is an element called 1 in F such that
1 �= 0 and a · 1 = a for all a ∈ F .

A5 Additive inverses. For every a ∈ F , there is an element called −a
in F such that a + (−a) = 0.
Multiplicative inverses. For every a ∈ F , a �= 0, there is an element
called a−1 in F such that a · a−1 = 1.

We usually write a · b as ab, a + (−b) as a− b, a−1 as 1/a, and ab−1 as a/b.
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From the field axioms we can derive many familiar properties of fields.
It is a good exercise to work out careful proofs of some of these properties
based only on the axioms. Here are a few examples. If you prefer, you can
simply take F = Q.

1.4. Example. From A2 and A4 we see that 0 + a = a and 1 · a = a for all
a ∈ F .

1.5. Example. The additive identity 0 is unique. Namely, assume 0� is
another additive identity. By A4, a + 0 = a for all a ∈ F . In particular,
taking a = 0�, we see that 0� + 0 = 0�, so by A2, 0 + 0� = 0�. On the other
hand, by assumption, a + 0� = a for all a ∈ F , so taking a = 0, we see that
0 + 0� = 0. We conclude that 0� = 0 + 0� = 0. Similarly, the multiplicative
identity is unique.

Exercise 1.1. Using only the axioms A1–A5, show that the additive inverse
of x ∈ F is unique, that is, if x+y = 0 and x+z = 0, then y = z (so talking
about the additive inverse of x is justified). Show also that the multiplicative
inverse of x ∈ F , x �= 0, is unique.

1.6. Example. From A2 and A5 we see that for x ∈ F , (−x) + x = 0. By
Exercise 1.1, we conclude that the additive inverse of −x must be x, that is,
−(−x) = x. Similarly, for x �= 0, (x−1)−1 = x.

1.7. Example. For every x ∈ F ,

0 · x A4= (0 + 0) · x A2, A3= 0 · x + 0 · x.

Adding the additive inverse −(0 · x) of 0 · x to both sides, we get 0 = 0 · x.
By A2, x · 0 = 0 as well.

Exercise 1.2. In A5, −x was introduced as a symbol for the additive inverse
of x ∈ F . Using Example 1.7, show that −x is in fact the product of x and
the additive inverse −1 of the multiplicative identity 1. In particular,

(−1)(−1) = −(−1) = 1.

If x ∈ F and n ∈ N, n ≥ 2, we write xn for the product of n factors of
x. By A1, it does not matter how we bracket the product. For example,
x3 = (x ·x) ·x = x · (x ·x). We set x0 = 1 and x1 = x. If x �= 0, we write x−n

for (x−1)n, which equals (xn)−1. Then xm+n = xmxn and (xm)n = xmn for
all m, n ∈ Z.

There is more to the rationals than addition and multiplication. The
rationals are also ordered in a way that interacts well with addition and
multiplication. This structure is called an ordered field.

1.8. Definition. An ordered field is a field F with a relation < (read ‘less
than’) such that the following axioms are satisfied.
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A6 For every a, b ∈ F , precisely one of the following holds: a < b,
b < a, or a = b.

A7 If a < b and b < c, then a < c (the order relation is transitive).
A8 If a < b, then a + c < b + c for all c ∈ F .
A9 If a < b and 0 < c, then ac < bc.

We take a ≤ b to mean that a < b or a = b; a > b to mean that b < a; and
a ≥ b to mean that b ≤ a. We say that a is positive if a > 0, and negative if
a < 0.

Again, the axioms imply many further properties.

1.9. Example. We claim that 1 is positive. Note that if 1 < 0, then adding
−1 to both sides gives 0 < −1 by A8, so multiplying both sides by −1 gives
0 = 0(−1) < (−1)(−1) = 1 by A9, Example 1.7, and Exercise 1.2, but
having both 1 < 0 and 0 < 1 contradicts A6.

Having derived a contradiction from the assumption that 1 < 0, we
must reject the assumption as false. Since 0 �= 1 by A4, the one remaining
possibility by A6 is 0 < 1.

Exercise 1.3. (a) Show that if x > 0, then −x < 0. Likewise, if x < 0,
then −x > 0. In particular, by Example 1.9, −1 < 0.

(b) Show that if x > 0, then x−1 > 0. Show that if x > 1, then x−1 < 1.

1.10. Definition. An interval in an ordered field F is a subset of F of one
of the following types, where a, b ∈ F .

(a, b) = {x : a < x < b}
[a, b] = {x : a ≤ x ≤ b}
(a, b] = {x : a < x ≤ b}
[a, b) = {x : a ≤ x < b}

(a,∞) = {x : x > a}
(−∞, a) = {x : x < a}

[a,∞) = {x : x ≥ a}
(−∞, a] = {x : x ≤ a}

(−∞,∞) = F

The intervals (a, b), (a,∞), (−∞, a), and F itself are said to be open. The
intervals [a, b], [a,∞), (−∞, a], and F itself are said to be closed. Taking
a > b, we see that the empty set is an interval which is both open and closed.
One-point sets [a, a] and the empty set are called degenerate intervals. Thus
an interval is nondegenerate if it contains at least two points.
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Exercise 1.4. Show that a nondegenerate interval contains infinitely many
points.

1.11. Remark. By A7, if I is an interval, x < y < z, and x, z ∈ I, then
y ∈ I. In other words, along with any two of its points, an interval contains
all the points in between. Conversely, when F is the field of real numbers,
a set satisfying this property is an interval (Exercise 2.12).

1.12. Definition. If a and b are elements of an ordered field and a ≤ b,
then we write min{a, b} = a for the minimum of a and b, and max{a, b} = b
for the maximum.

1.13. Definition. The absolute value of an element a in an ordered field is
the nonnegative element

|a| = max{a,−a} =
�

a if a ≥ 0,
−a if a < 0.

1.14. Theorem (triangle inequality). For all elements a and b in an ordered
field,

|a + b| ≤ |a| + |b|.
For all elements x, y, z in an ordered field,

|x− z| ≤ |x− y| + |y − z|.

Proof. Three cases need to be considered: a, b ≥ 0; a ≥ 0 and b < 0 (the
case when a < 0 and b ≥ 0 is analogous and does not need to be written out
in detail); and a, b < 0. Let us treat the second case and leave the others as
an exercise.

Since a ≥ 0, we have −a ≤ 0 ≤ a, so, adding −b, we get −(a + b) ≤
a − b = |a| + |b|. Since b < 0, we have b < 0 < −b, so, adding a, we get
a + b < a− b = |a| + |b|. These two inequalities together give

|a + b| = max{a + b,−(a + b)} ≤ |a| + |b|.

To get the second inequality, take a = x− y and b = y − z. �

Although the rational numbers have a rich structure, they suffer from
limitations that call for a larger number system. The following result is
attributed to Pythagoras and his associates some 2500 years ago.

1.15. Theorem. There is no rational number with square 2.

Proof. Suppose there are p, q ∈ N with (p/q)2 = 2. Choose q to be as small
as possible. Now q < p < 2q, so 0 < p − q < q and 2q − p > 0. It is easily

computed that
�

2q − p

p− q

�2

= 2, contradicting the minimality of q. �
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1.16. Remark. Theorem 1.15 has many different proofs. Here is another
one. Suppose there was r ∈ Q with r2 = 2. We can write r = p/q, where p
and q are integers with no common factors. We will derive a contradiction
from this assumption.

Now 2 = r2 = p2/q2, so p2 = 2q2 and p2 is even. Hence p is even, say
p = 2k, where k is an integer. Then 2q2 = p2 = (2k)2 = 4k2, so q2 = 2k2

and q2 is even. Hence q is even, so p and q are both divisible by 2, contrary
to our assumption.

Exercise 1.5. Show that there is no rational number with square 3 by
modifying the proof of Theorem 1.15 given in Remark 1.16. Where does the
proof fail if you try to carry it out for 4? For which n ∈ N can you show by
the same method that there is no rational number with square n?

This deficiency of Q leads us to a larger and more sophisticated number
system. The real number system has a crucial property called completeness

which implies, among many other consequences, that every positive real
number has a real square root.

A small amount of set theory is essential for real analysis, so before
turning to the real numbers we will review some basic concepts to do with
sets and functions.

1.2. Sets

The notion of a set is a (many would say the) fundamental concept of modern
mathematics. It cannot be defined in terms of anything more fundamental.
Rather, the notion of a set is circumscribed by axioms (usually the so-
called Zermelo-Fraenkel axioms along with the axiom of choice) from which
virtually all of mathematics can be derived, at least in principle.

Our approach will be informal. We think of a set as any collection of
objects. The objects are called the elements of the set. If x is an element of
a set A, we write x ∈ A. A set is determined by its elements, that is, two
sets are the same if and only if they have the same elements. Thus the most
common way to show that sets A and B are equal is to prove, first, that if
x ∈ A, then x ∈ B, and second, that if x ∈ B, then x ∈ A.

1.17. Definition. Let A and B be sets. We say that A is a subset of B and
write A ⊂ B (some write A ⊆ B) if every element of A is also an element of
B. We say that A is a proper subset of B if A ⊂ B and A �= B. The union

of A and B is the set

A ∪B = {x : x ∈ A or x ∈ B}.
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The intersection of A and B is the set

A ∩B = {x : x ∈ A and x ∈ B}.

We say that A and B are disjoint if they have no elements in common. The
complement of A in B is the set

B \ A = {x ∈ B : x /∈ A}.

Sometimes B \ A is written as B −A, or as Ac if B is understood.

1.18. Remark. In mathematics, the conjunction or (as in the definition of
the union A∪B) is always understood in the inclusive sense: ‘p or q’ always
means ‘p or q or both’. If we want the exclusive or, then we must say so
explicitly by adding the phrase ‘but not both’.

1.19. Remark. The operations on sets in Definition 1.17 satisfy various
identities reminiscent of the laws of arithmetic. There are the associative
laws

A ∪ (B ∪ C) = (A ∪B) ∪ C, A ∩ (B ∩ C) = (A ∩B) ∩ C,

the commutative laws

A ∪B = B ∪A, A ∩B = B ∩A,

the distributive laws

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C), A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),

and De Morgan’s laws

A \ (B ∪ C) = (A \ B) ∩ (A \ C), A \ (B ∩ C) = (A \ B) ∪ (A \ C).

Let us prove the second De Morgan’s law. There are two implications to be
proved: first, the implication that if x ∈ A\(B∩C), then x ∈ (A\B)∪(A\C),
and second, the converse implication. So suppose that x ∈ A\(B∩C). This
means that x ∈ A but x /∈ B ∩ C. Now x /∈ B ∩ C means that x /∈ B or

x /∈ C, so we conclude that either x ∈ A and x /∈ B, or x ∈ A and x /∈ C
(either . . . or is still the inclusive or). Hence x ∈ A \ B or x ∈ A \ C, that
is, x ∈ (A \ B) ∪ (A \ C). We leave the converse implication to you.

Note that this proof required three things:

• knowing how to prove that two sets are equal,
• unravelling the definitions of the sets A\(B∩C) and (A\B)∪(A\C),
• being able to negate the statement x ∈ B∩C, that is, realising that

x /∈ B ∩ C means that x /∈ B or x /∈ C.

1.20. Definition. The empty set is the set with no elements, denoted ∅.
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1.21. Remark. To say that A is a subset of B is to say that if x ∈ A, then
x ∈ B. Hence, to say that A is not a subset of B is to say that there is
x ∈ A with x /∈ B. It follows that the empty set ∅ is a subset of every set
B. Otherwise, there would be an element x ∈ ∅ with x /∈ B, but ∅ has no
elements at all.

Exercise 1.6. Prove that if A ⊂ B, then A \ B = ∅.

We can take unions and intersections not just of two sets, but of arbitrary
collections of sets.

1.22. Definition. Let (Ai)i∈I be a family of sets, that is, we have a set I
(called an index set), and associated to every i ∈ I, we have a set called Ai.
The union of the family is the set

�

i∈I

Ai = {x : x ∈ Ai for some i ∈ I}.

The intersection of the family is the set
�

i∈I

Ai = {x : x ∈ Ai for all i ∈ I}.

1.23. Example. Define a family (An)n∈N of sets by setting A1 = N, A2 =
{2, 3, 4, . . . }, A3 = {3, 4, 5, . . . }, and so on, that is, An = {n, n+1, n+2, . . . }
for each n ∈ N. Then A1 ⊃ A2 ⊃ A3 ⊃ · · · , so we have

�

n∈N
An = A1 ∪A2 ∪A3 ∪ · · · = A1 = N.

Also, �

n∈N
An = A1 ∩A2 ∩A3 ∩ · · · = ∅,

because there is no natural number that belongs to An for all n ∈ N. Indeed,
if k ∈ A1 = N, then k /∈ Ak+1.

1.24. Definition. The product of sets A and B, denoted A× B, is the set
of all ordered pairs (a, b) with a ∈ A and b ∈ B.

What is an ordered pair, you may ask. All you need to know is that
(a1, b1) = (a2, b2) if and only if a1 = a2 and b1 = b2. But you may be
interested to also know that we do not need to take an ordered pair as a
new fundamental notion. If we define (a, b) to be the set {{a}, {a, b}}, then
we can prove that (a1, b1) = (a2, b2) if and only if a1 = a2 and b1 = b2.

It is unfortunate that the same notation is used for an ordered pair and
an open interval, but the intended meaning should always be clear from the
context.
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1.3. Functions

1.25. Definition. A function (or a map or a mapping—these are synonyms)
f consists of three things:

• a set A called the source or domain of f ,
• a set B called the target or codomain of f ,
• a rule that assigns to each element x of A a unique element of B.

This element is called the image of x by f or the value of f at x,
and denoted f(x).

We write f : A → B to indicate that f is a function with source A and
target B, that is, a function from A to B.

1.26. Remark. Note that the source and the target of the function must
be specified for the function to be well defined. Also, the rule does not have
to be a formula. Any unambiguous description will do.

1.27. Definition. The identity function of a set A is the function idA : A→
A with idA(x) = x for all x ∈ A.

1.28. Definition. Let f : A → B� and g : B → C be functions such that
B� ⊂ B. The composition of f and g is the function g ◦ f : A → C with
(g ◦ f)(x) = g(f(x)) for all x ∈ A (‘first apply f , then g’).

1.29. Definition. Let f : A→ B be a function. The image by f of a subset
C ⊂ A is the subset

f(C) = {f(x) : x ∈ C}
of B. The image or range of f is the set f(A). The preimage or inverse

image by f of a subset D ⊂ B is the subset

f−1(D) = {x ∈ A : f(x) ∈ D}
of A, that is, the set of elements of A that f maps into D. If D consists
of only one element, say D = {y} for some y ∈ B, then, for simplicity, we
write f−1(y) for f−1({y}), and call f−1(y) the fibre of f over y.

1.30. Example. Assuming for the purposes of this example that we know
about the real numbers, consider the function f : R → R defined by the
formula f(x) = x2. Instead of f(x) = x2, we can write f : x �→ x2 (the
arrow �→ is read ‘maps to’). The range of f consists of all the nonnegative
real numbers, that is, f(R) = [0,∞). We have

f−1(0) = {0}, f−1(1) = {1,−1}, f−1({1, 4}) = {1,−1, 2,−2}.
The function g : R → [0,∞), x �→ x2, is not the same function as f because
its target is different. And the function h : [0,∞) → [0,∞), x �→ x2, is
different still, because its source is different. All three functions are defined
by the same formula and have the same range [0,∞).
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Images and preimages interact with unions, intersections, and comple-
ments to a certain extent. Note that preimages are better behaved than
images.

1.31. Theorem. Let f : A → B be a function. For subsets K, L ⊂ A and
M,N ⊂ B, the following hold.

(1) f(K ∪ L) = f(K) ∪ f(L).
(2) f−1(M ∪N) = f−1(M) ∪ f−1(N).
(3) f−1(M ∩N) = f−1(M) ∩ f−1(N).
(4) f−1(M \ N) = f−1(M) \ f−1(N).

Proof. We shall prove (4) and leave the other parts as an exercise. Normally
we prove the equality of two sets as two separate implications, but here
things are simple enough that we can prove both implications at the same
time. Namely, we have x ∈ f−1(M \ N) if and only if f(x) ∈ M \ N if and
only if f(x) ∈ M and f(x) /∈ N if and only if x ∈ f−1(M) and x /∈ f−1(N)
if and only if x ∈ f−1(M) \ f−1(N). �

Exercise 1.7. Finish the proof of Theorem 1.31.

1.32. Remark. It is not true in general that f(K ∩ L) = f(K) ∩ f(L) or
f(K \L) = f(K) \ f(L). For example, take f as in Example 1.30, K = {1},
and L = {−1}. Then f(K∩L) = f(∅) = ∅, but f(K)∩f(L) = {1}∩{1} =
{1}. Also, f(K \ L) = f({1}) = {1}, but f(K) \ f(L) = {1} \ {1} = ∅.

1.33. Definition. A function f : A→ B is called:

• injective (or one-to-one) if it takes distinct elements to distinct
elements, that is, if x, y ∈ A and f(x) = f(y), then x = y;

• surjective (or onto) if f(A) = B, that is, every element of B is the
image by f of some element of A;

• bijective if f is both injective and surjective.

An injective function is also called an injection, a surjective function is called
a surjection, and a bijective function is called a bijection.

1.34. Remark. Note that a function f : A→ B is:

• injective if and only if the fibre f−1(y) contains at most one element
for every y ∈ B,

• surjective if and only if the fibre f−1(y) contains at least one element
for every y ∈ B,

• bijective if and only if the fibre f−1(y) contains precisely one ele-
ment for every y ∈ B.
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Exercise 1.8. Of the functions f , g, and h in Example 1.30, show that only
h is injective and only g and h are surjective.

Exercise 1.9. Returning to Theorem 1.31 and Remark 1.32, show that a
function f : A → B is injective if and only if f(K ∩ L) = f(K) ∩ f(L) for
all subsets K, L ⊂ A. Does a similar result hold for complements?

1.35. Definition. Let f : A → B be a bijection. The inverse function of
f is the function f−1 : B → A defined by letting f−1(y) for y ∈ B be the
unique element x of A for which f(x) = y. Thus, for x ∈ A and y ∈ B,

f−1(y) = x if and only if f(x) = y.

In other words,
f−1 ◦ f = idA, f ◦ f−1 = idB.

1.36. Remark. Sometimes we speak of the inverse of a function f : A→ B
that is merely injective. By this we mean the inverse of the bijection obtained
from f by replacing its target B by its image f(A). In other words, the
inverse of the injection f : A → B is the function f−1 : f(A) → A defined
by letting f−1(y) for y ∈ f(A) be the unique x ∈ A for which f(x) = y.
Thus, for x ∈ A and y ∈ f(A), f−1(y) = x if and only if f(x) = y.

1.37. Example. The function h in Example 1.30 is bijective, so it has an
inverse function h−1 : [0,∞)→ [0,∞). For x ∈ [0,∞), h−1(x) is the unique
nonnegative square root of x.

1.38. Definition. The graph of a function f : A → B is the subset
{(a, f(a)) : a ∈ A} of A×B.

1.39. Remark. The graph G of a function f : A → B has the property
that for every a ∈ A, there is a unique b ∈ B such that (a, b) ∈ G (namely
b = f(a)). We can rigorously define a rule as in Definition 1.25 to be a
subset of A×B with this property.

More exercises

1.10. Prove that the product of a nonzero rational number and an irrational
number is irrational.

1.11. Let x1 = 1, and for each n ∈ N, let xn+1 = 2

3
xn + 1. Prove by

induction that xn < 3 for all n ∈ N.

1.12. Prove by induction that for every n ∈ N,
n�

k=1

k2 = 1

6
n(n + 1)(2n + 1).
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1.13. Using only the field axioms A1–A5, give a careful proof of the following
two cancellation laws.

(a) If a + c = b + c, then a = b.
(b) If ac = bc and c �= 0, then a = b.

1.14. (a) In how many ways can a sum of four terms a+b+c+d be bracketed?
Use the associative law A1 to show that the different bracketings all give
the same sum.

(b) More generally, the associative law implies that the different ways
to bracket a sum of three or more terms give the same result, so it is un-
ambiguous to write a1 + a2 + · · · + an without brackets, and similarly for
products. The commutative law A2 implies that changing the order of the
terms of a sum or the factors in a product does not affect the result. Prove
these statements.

1.15. Use the triangle inequality |x + y| ≤ |x| + |y| to prove that

||x|− |y|| ≤ |x− y|
for all elements x and y of an ordered field, say x, y ∈ Q.

1.16. (a) Prove that every nonempty finite subset A of an ordered field has
a smallest element. Hint. Let a1 ∈ A. If a1 is not the smallest element of
A, then there is a2 ∈ A with a2 < a1. If a2 is not the smallest element of A,
then . . . .

(b) Deduce that every nonempty finite subset of an ordered field has a
largest element.

1.17. For this exercise you need to know what the complex numbers are.
The complex numbers form a field C satisfying the field axioms A1–A5.
Show that there is no way to turn C into an ordered field, that is, there is
no order relation on C that makes axioms A6–A9 true. Hint. Assume that
A6–A9 hold and try to derive a contradiction.

1.18. Prove the following statement, or disprove it by a counterexample. If
A, B, and C are sets, then A ∩ (B ∪ C) = (A ∩B) ∪ C.

1.19. (a) Suppose we have a set An for each n ∈ N. Fill in the blanks with
two words so as to get a true statement. Justify your answer.

x ∈
∞�

k=1

∞�

n=k

An if and only if x ∈ An for n ∈ N

(b) Fill in the blanks with four words so as to get a true statement.

x ∈
∞�

k=1

∞�

n=k

An if and only if x ∈ An for n ∈ N
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1.20. Consider the function f : R → R, f(x) = x2 − 2. What is the image
f([−2, 3])? Justify your answer and express it in interval notation.

1.21. Let A be a set and f, g, h : A → A be functions such that f ◦ g =
h ◦ f = idA. Show that g = h.

1.22. Let t : N → N, n �→ n + 1. How many surjections g : N → N with
g ◦ t = t ◦ g are there?

1.23. Prove the following cancellation laws for functions.
(a) Let f : A → B and g, g� : B → C be functions. Show that if

g ◦ f = g� ◦ f and f is surjective, then g = g�.
(b) Let g, g� : B → C and h : C → D be functions. Show that if

h ◦ g = h ◦ g� and h is injective, then g = g�.
(c) What if f is not surjective? What if h is not injective?

1.24. Let X and Y be sets and f : X → Y be a function.
(a) Prove that if A ⊂ X, then A ⊂ f−1(f(A)). Give an example for

which f−1(f(A)) �= A.
(b) Prove that if B ⊂ Y , then f(f−1(B)) ⊂ B. Give an example for

which f(f−1(B)) �= B.





Chapter 2

The real numbers

2.1. The complete ordered field of real numbers

The real numbers form an ordered field R containing the rationals with an
additional property called completeness that the rationals do not satisfy.
We need some preliminary definitions to be able to say what completeness
means.

2.1. Definition. An upper bound for a subset A ⊂ R is an element b ∈ R
such that a ≤ b for all a ∈ A. If A has an upper bound, then A is said to
be bounded above.

A lower bound for a subset A ⊂ R is an element b ∈ R such that b ≤ a
for all a ∈ A. If A has a lower bound, then A is said to be bounded below.

If A is bounded above and bounded below, then A is said to be bounded.

2.2. Example. Consider the interval [0, 1] = {x ∈ R : 0 ≤ x ≤ 1}. It is
bounded above, for example by the upper bound 1. The upper bounds for
[0, 1] are precisely the numbers b with b ≥ 1. Thus 1 is the smallest upper
bound for [0, 1], and it is of course also the largest element of [0, 1].

Now consider the interval (0, 1) = {x ∈ R : 0 < x < 1}, also bounded
above, for example by 1. It has the same upper bounds as [0, 1]. Namely,
if b ≥ 1 and x ∈ (0, 1), then x < 1 ≤ b, so b is an upper bound for (0, 1).
Conversely, if b is an upper bound for (0, 1), so in particular b ≥ 1

2
∈ (0, 1),

then we must have b ≥ 1, for if b < 1, then x = 1

2
(b + 1) ∈ (0, 1) and b < x,

so b would not be an upper bound for (0, 1). Thus 1 is also the smallest
upper bound for (0, 1). Note that (0, 1) has no largest element.

Similarly, both [0, 1] and (0, 1) are bounded below and the largest lower
bound of both is 0.

15
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2.3. Definition. If A ⊂ R is bounded above and A has an upper bound
s that is smaller than every other upper bound for A, then s is called the
supremum (plural: suprema) or the least upper bound of A, denoted supA.

If A ⊂ R is bounded below and A has a lower bound t that is larger than
every other lower bound for A, then t is called the infimum (plural: infima)
or the greatest lower bound of A, denoted inf A.

2.4. Example. By Example 2.2, sup[0, 1] = sup(0, 1) = 1 and inf[0, 1] =
inf(0, 1) = 0.

2.5. Remark. Note that if A ⊂ R has a largest element (maximum), then
the maximum is the supremum of A. By Example 2.2, (0, 1) has a supremum
without having a maximum. When there is no maximum, we can think of
the supremum as the next-best thing.

Similarly, if A ⊂ R has a smallest element (minimum), then the min-
imum is the infimum of A, but A can have an infimum without having a
minimum.

The following lemma provides a handy criterion for an upper bound to
be the supremum.

2.6. Lemma. Let s be an upper bound for a subset A of R. Then s = supA
if and only if for every � > 0, there is a ∈ A with s− � < a.

Proof. The lemma says precisely that s = supA if and only if no smaller
number is an upper bound for A. �

2.7. Example. Consider the bounded set A = { 1

n : n ∈ N} = {1, 1

2
, 1

3
, . . . }.

Clearly, 1 is the largest element of A, so supA = 1, but A has no smallest
element. It looks like the infimum of A should be 0. By the analogue
of Lemma 2.6 for infima (which you can formulate for yourself), we have
inf A = 0 if and only if for every � > 0, there is n ∈ N with 1

n < �.
This is the so-called Archimedean property of R, which we shall prove as a
consequence of the completeness of R (Theorem 2.8).

We now come to the axiom that, in addition to the axioms A1–A9 for
an ordered field, is satisfied by the real numbers.

Axiom of completeness. Every nonempty set of real numbers that is
bounded above has a least upper bound.

We will soon see that the rational numbers do not satisfy the axiom of
completeness (Remark 2.10).

The following exercise shows that the existence of suprema for nonempty
sets that are bounded above implies the existence of infima for nonempty
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sets that are bounded below. Thus the latter does not have to be taken as
a separate axiom.

Exercise 2.1. (a) For A ⊂ R, let −A = {−x : x ∈ A}. Show that if A is
bounded below, then −A is bounded above.

(b) Use (a) and the axiom of completeness to show that if A ⊂ R
is nonempty and bounded below, then A has an infimum and inf A =
− sup(−A).

Here is where our course really begins. We take as our starting point
a complete ordered field denoted R. We call its elements real numbers.
We now proceed to a careful development of the various topics of calculus,
assuming only the ten axioms that describe the structure of R. We will try
not to rely on any preconceptions about the real numbers. For us, a real
number is nothing but an element of a complete ordered field.

We do not need the following facts, and to explain them is beyond the
scope of the course, but it is certainly of interest to know that:

• R ‘exists’ in the sense that it can be constructed from the rationals.
We do not need to assume any new fundamental notions to produce
from the rationals a complete ordered field containing them. There
are several ways to do this. The two most popular methods use
so-called Dedekind cuts and Cauchy sequences.

• R is unique, in the sense that if F is another complete ordered
field, then there is a bijection φ : R → F that is an isomorphism of

ordered fields in the sense that:
– φ preserves addition: φ(x + y) = φ(x) + φ(y) for all x, y ∈ R,
– φ preserves multiplication: φ(xy) = φ(x)φ(y) for all x, y ∈ R,
– φ preserves the identity elements: φ(0) = 0, φ(1) = 1,
– and φ preserves order: if x < y in R, then φ(x) < φ(y) in F .

In other words, any two complete ordered fields are ‘the same’ as
ordered fields.

2.2. Consequences of completeness

The axiom of completeness has massive consequences, some of which we
explore in the remainder of this chapter. First come three versions of the
Archimedean property mentioned already in Example 2.7.

2.8. Theorem (Archimedean property). (1) N is not bounded above.
(2) For every y ∈ R, y > 0, there is n ∈ N such that 1

n < y.
(3) If x, y ∈ R, y > 0, then there is n ∈ N such that ny > x.
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Proof. We prove (1) and leave (2) and (3) as exercises. Suppose N was
bounded above. Then N would have a supremum s by the axiom of com-
pleteness. If n ∈ N, then also n + 1 ∈ N, so n + 1 ≤ s, so n ≤ s − 1. Thus
s− 1 is an upper bound for N, contradicting s being the smallest one. �

Exercise 2.2. Finish the proof of Theorem 2.8.

2.9. Theorem. There is s ∈ R with s2 = 2.

Proof. We shall obtain s as the supremum of a suitable set, namely the set
A = {x ∈ R : x2 < 2}. Since 1 ∈ A, A �= ∅. Also, A is bounded above, for
example by 2, because if x > 2, then x2 > 4 > 2, so x /∈ A. Hence A has a
supremum s by the axiom of completeness. We need to show that s2 = 2.

Suppose s2 > 2. Choose � ∈ (0, s) with � <
s2 − 2

2s
. Then

(s− �)2 = s2 − 2s� + �2 > s2 − 2s� > 2.

We claim that s − � is an upper bound for A. If not, there is x ∈ A with
0 < s− � < x, but then (s− �)2 < x2 < 2. Thus s2 > 2 contradicts s being
the least upper bound of A.

Finally, suppose s2 < 2. Choose � ∈ (0, 1) with � <
2− s2

2s + 1
. Then

(s + �)2 = s2 + 2s� + �2 < s2 + (2s + 1)� < 2,

so s + � ∈ A, contradicting s being an upper bound for A. �

2.10. Remark. The only property of R, in addition to the axioms for an
ordered field, that was used to prove Theorem 2.9 was completeness. By
Theorem 1.15, Theorem 2.9 fails for Q. We conclude that Q does not satisfy
the axiom of completeness. It also follows that the number s in Theorem
2.9 is irrational. In particular, irrational numbers exist.

2.11. Remark. The proof of Theorem 2.9 can be generalised to show that
if x ∈ R, x > 0, and n ∈ N, then x has a positive nth root, denoted n

√
x

or x1/n, which is unique because the function (0,∞) → (0,∞), x �→ xn,
is strictly increasing and hence injective. Later, we will be able to prove
the existence of nth roots much more easily using the intermediate value
theorem (Exercise 5.17).

2.12. Definition. A subset D of R is dense in R if every nonempty open
interval intersects D. In other words, for every a, b ∈ R with a < b, there is
x ∈ D with a < x < b.

2.13. Theorem. Q is dense in R.
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Proof. Suppose for convenience that 0 ≤ a < b (can you reduce the general
case to this special case?). By the Archimedean property there is n ∈ N with
b − a > 1

n . Consider the set {k ∈ N : k > na}. Again by the Archimedean
property, this set is nonempty, so it has a smallest element m by the well-
ordering property of N (see Exercise 2.17). Then m − 1 ≤ na < m, so
m ≤ na + 1 < nb by the choice of n. Hence a < m

n < b. �
Exercise 2.3. We have just learned that every nonempty open interval
I ⊂ R contains a rational number. Prove that in fact I contains infinitely
many rational numbers.

Exercise 2.4. Prove that the set R \ Q of irrationals is dense in R. Hint.

Since Q is dense, if a < b in R, then the interval (a−
√

2, b−
√

2) contains
a rational.

Finally, this consequence of completeness looks technical, but turns out
to be useful.

2.14. Theorem (nested interval property). Let I1 ⊃ I2 ⊃ I3 ⊃ · · · be a
decreasing sequence of closed, bounded, and nonempty intervals. Then

∞�

n=1

In �= ∅.

Proof. Say In = [an, bn] with an ≤ bn. Then a1 ≤ a2 ≤ · · · ≤ b2 ≤ b1. Let
A = {a1, a2, . . . }. Then A is nonempty and bounded above, for example by
each bn. By the axiom of completeness, A has a supremum c. Since c is an
upper bound for A, an ≤ c for all n ∈ N. Also, for each n ∈ N, since bn is
an upper bound for A, c ≤ bn. This shows that c ∈ In for all n ∈ N, so the
intersection is not empty. �
2.15. Remark. The nested interval property fails for open intervals. For

example,
∞�

n=1

(0, 1

n) = ∅ (this is nothing but the Archimedean property). It

also fails for unbounded intervals. For example,
∞�

n=1

[n,∞) = ∅ (this is also

nothing but the Archimedean property).

2.3. Countable and uncountable sets

We can establish that two finite sets have the same size, without knowing
anything about numbers or counting, by setting up a bijective correspon-
dence between their elements. This simple idea can be applied to infinite
sets too.

2.16. Definition. Sets A and B are equinumerous, or have the same car-

dinality, denoted A ∼ B, if there is a bijection A→ B.
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Exercise 2.5. Let A, B, and C be sets.
(a) Show that A ∼ A. (We say that the relation ∼ is reflexive.)
(b) Show that if A ∼ B, then B ∼ A (∼ is symmetric).
(c) Show that if A ∼ B and B ∼ C, then A ∼ C (∼ is transitive).

2.17. Example. (a) The set S = {1, 4, 9, . . . } of squares is equinumerous to
N. An example of a bijection N → S is the function n �→ n2. So an infinite
set can be equinumerous to a proper subset of itself. This observation was
made by Galileo Galilei in the early seventeenth century. Richard Dedekind
turned it into an elegant definition of an infinite set: a set is infinite if and
only if it is equinumerous to some proper subset of itself.

(b) Similarly, Z is equinumerous to N. We can set up a bijection N → Z,
for example by mapping 1, 2, 3, 4, 5, . . . to 0, 1,−1, 2,−2, . . . . (Recall that a
function does not have to be defined by a formula: we only need to describe
it unambiguously.)

2.18. Definition. A set A is countably infinite if A ∼ N. A set is countable

if it is finite or countably infinite. A set that is not countable is called
uncountable.

By Example 2.17, the squares and the integers are countable.

2.19. Theorem. (1) The set Q of all rational numbers is countable.
(2) The set R of all real numbers is uncountable.

Georg Cantor, the founder of set theory, discovered the uncountability
of the reals in December 1873. He concluded that, since Q and R are not
equinumerous, there must be irrational numbers. This is a pure existence
proof. It does not exhibit a single irrational or tell us how to find one.
Objections were raised to such arguments at the time, but their validity is
now firmly accepted.

Proof. (1) First list the integers: 0, 1,−1, 2,−2, . . . . Divide the integers by
2, discarding those quotients that are integers: 1

2
,−1

2
, 3

2
,−3

2
, 5

2
, . . . . Divide

the integers by 3, discarding those quotients that have already appeared:
1

3
,−1

3
, 2

3
,−2

3
, 4

3
, . . . . Continuing, we obtain a list of lists such that each

rational number appears precisely once on precisely one of the lists. Denote
the nth number on the mth list by amn. Now we simply arrange this two-
dimensional array into a sequence in which every rational number appears
precisely once, for example like this: a11, a12, a21, a13, a22, a31, a14, . . . .

(2) Let A be a countably infinite subset of R. We will show that A �= R.
Let f : N → A be a bijection. Find an interval I1 = [a1, b1] with a1 < b1 such
that f(1) /∈ I1 (we could for instance take a1 = f(1) + 1 and b1 = f(1) + 2).
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Next find an interval I2 = [a2, b2] with a2 < b2 such that I2 ⊂ I1 and
f(2) /∈ I2.

Continuing, we obtain a decreasing sequence I1 ⊃ I2 ⊃ I3 ⊃ · · · of
closed, bounded, and nonempty intervals such that f(n) /∈ In for each n ∈ N.

By the nested interval property (Theorem 2.14), the intersection
∞�

n=1

In is

not empty, say c ∈
∞�

n=1

In. Then, for each n ∈ N, c ∈ In, so c �= f(n). Thus

c ∈ R \ A. This shows that A �= R, so R is not countable. �

You may have seen a proof of the uncountability of R using decimal
expansions. The proof we have just given is much more elementary. It
shows how uncountability follows quite directly from completeness, via the
nested interval property.

More exercises

2.6. Find the suprema and infima of the following sets. You do not have to
give formal proofs of your answers, but do give a brief explanation, perhaps
including a picture.

(a) {n/(n + 1) : n ∈ N}
(b) {x/(x + 1) : x ∈ R, x > 0}
(c) {1/(3n2 + 5) : n ∈ N}
(d) {n/m : m, n ∈ N, m + n ≤ 10}
(e) {2x− x2 : 0 < x < 2}

2.7. Let A ⊂ R be nonempty and bounded above. Let c ∈ R. Show that
B = {x + c : x ∈ A} is bounded above and that sup B = supA + c.

2.8. Suppose A, B ⊂ R are nonempty and bounded above, with B ⊂ A.
Show that supB ≤ supA.

2.9. (a) Let A, B ⊂ R. If supA < supB, prove that B contains an upper
bound for A.

(b) If supA ≤ supB, is it true that B contains an upper bound for A?

2.10. Let A and B be nonempty subsets of R, bounded above, such that
for every a ∈ A there is b ∈ B with a ≤ b. Show that supA ≤ supB.

2.11. Let A ⊂ R be nonempty and bounded below. Let B be the set of
lower bounds of A. Show that B is bounded above. What is supB?

2.12. (a) Let I ⊂ R have the property that if x, z ∈ I, y ∈ R, and x < y < z,
then y ∈ I. Prove that I is an interval in R (see Definition 1.10 and Remark
1.11).
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(b) Show that (a) fails if R is replaced by Q.

2.13. Prove that the bounded interval (0, 1) and the unbounded interval
(1,∞) are equinumerous.

2.14. Show that R and R \ {0} are equinumerous.

2.15. (a) Prove that the set of all functions N → {0, 1} is uncountable.
Hint. Let f1, f2, f3, . . . be functions N → {0, 1}. Define g : N → {0, 1} by
g(n) = 1− fn(n).

(b) Is the set of all functions {0, 1}→ N countable or uncountable?

2.16. A real number x is said to be algebraic if there are integers a0, . . . , an,
not all zero, such that anxn + an−1xn−1 + · · · + a0 = 0. We say that x is
transcendental if x is not algebraic.

(a) Show that every rational number,
√

2, and
√

2 +
√

3 are algebraic.
(b) Show that the set of all algebraic numbers is countable. You may

use the fact that a polynomial of degree n has at most n roots.
It follows that transcendental numbers exist. It is quite difficult, and

beyond the scope of this course, to prove that any particular number is
transcendental.

2.17. This exercise shows how we can introduce the natural numbers and
prove the well-ordering property (stated in Theorem 1.1) from the axioms
for an ordered field. (We have already used the well-ordering property in the
proof of Theorem 2.13.) The natural numbers are the multiplicative identity
1 provided by axiom A4; the number 2, defined as 1+1; the number 3, defined
as 2 + 1; and so on. Since 0 < 1 (Example 1.9), we have 1 < 2 < 3 < · · · by
axiom A8.

If you wonder what the phrase ‘and so on’ really means, you will ap-
preciate the following rigorous definition. We say that a subset A ⊂ R is
inductive if 1 ∈ A and, for every x ∈ A, x + 1 ∈ A. Examples of induc-
tive sets are R itself, [1,∞), and [2,∞) ∪ {1}. Note that the intersection of
any collection of inductive sets is an inductive set. We define the set N of
natural numbers to be the smallest inductive set, that is, the intersection of
all inductive subsets of R. Since [1,∞) is inductive, N ⊂ [1,∞), so 1 is the
smallest natural number. Since [2,∞) ∪ {1} is inductive, N ⊂ [2,∞) ∪ {1},
so there is no natural number strictly between 1 and 2.

(a) Prove that for every n ∈ N, (n − 1, n + 1) ∩ N = {n}. Hint. Show
that the set of such n is inductive, so it must be all of N.

(b) Prove that for every m ∈ N, the set {n ∈ N : n ≤ m} is finite.
(c) Prove that every nonempty subset S of N has a smallest element.

Hint. Take m ∈ S. By (b), the set {n ∈ S : n ≤ m} is finite. Use Exercise
1.16.



Chapter 3

Sequences

3.1. Convergent sequences

3.1. Definition. A sequence in a set A is a function a : N → A. We usually
write an for a(n), and write (an)n∈N or simply (an) for a. We call an the
nth

term of the sequence a.

Until we reach Chapter 8, we will only consider sequences of real num-
bers, so by a sequence we shall always mean a sequence in R.

3.2. Definition. A sequence (an) in R converges to b ∈ R if for every � > 0,
there is N ∈ N such that |an − b| < � for all n ≥ N . We call b the limit of
(an) and write b = lim

n→∞
an or an → b.

A sequence that does not converge is called divergent.

Exercise 3.1. Show that an → b if and only if |an − b|→ 0.

3.3. Proposition. The limit of a convergent sequence is unique, that is, if
(an) is a sequence such that an → b and an → c, then b = c.

Proof. Let � > 0. There is N1 ∈ N such that |an − b| < �/2 for all n ≥ N1.
Also, there is N2 ∈ N such that |an − c| < �/2 for all n ≥ N2. Hence, for
n ≥ max{N1, N2},

|b− c| ≤ |an − b| + |an − c| < �.

We have shown that |b−c| < � for every � > 0. We conclude that |b−c| = 0,
that is, b = c. �

An equivalent but more geometric definition of a convergent sequence is
obtained via the concept of a neighbourhood.

23
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3.4. Definition. For � > 0, the �-neighbourhood of b ∈ R is the open interval
(b − �, b + �). A neighbourhood of b is any subset of R that contains the �-
neighbourhood of b for some � > 0.

3.5. Remark. Note that |an − b| < � means that an ∈ (b− �, b + �). Thus
Definition 3.2 can be reformulated as follows. A sequence (an) in R converges
to b ∈ R if for every neighbourhood V of b, there is N ∈ N such that an ∈ V
for all n ≥ N . In other words, each neighbourhood of b contains an for all
but finitely many n ∈ N.

Let us prove the uniqueness of the limit of a convergent sequence using
neighbourhoods. We need the fundamental fact that distinct points in R
have disjoint neighbourhoods. Namely, take b, c ∈ R, b �= c. Let � =
1

2
|b− c| > 0. Then (b− �, b + �) and (c− �, c + �) are disjoint.

Let (an) be a sequence such that an → b and an → c. Let U be a
neighbourhood of b and V be a neighbourhood of c. Since an → b, U
contains an for all but finitely many n ∈ N. Similarly, V contains an for all
but finitely many n. Hence U ∩ V contains an for all but finitely many n.
In particular, U ∩ V is not empty.

We have shown that every neighbourhood of b intersects every neigh-
bourhood of c. This implies that b = c.

3.6. Example. (a) Let us prove that lim
n→∞

1

n = 0. Take � > 0. We need

to show that there is N ∈ N such that 1

n = | 1n − 0| < � for all n ≥ N
or, equivalently, 1

N < �. This is nothing but the Archimedean property
(Theorem 2.8).

(b) Prove that lim
n→∞

6n + 5
3n + 2

= 2. Let � > 0. Note that for n ∈ N,
����
6n + 5
3n + 2

− 2
���� =

1
3n + 2

< �

if and only if 3n + 2 > 1

� , that is, n > 1

3
(1

� − 2). By the Archimedean
property, there is N ∈ N with N > 1

3
(1

� − 2). Then, if n ≥ N , we have

n > 1

3
(1

� − 2), so by the calculation above,
����
6n + 5
3n + 2

− 2
���� < �. This shows

that lim
n→∞

6n + 5
3n + 2

= 2.

(c) The sequence 0, 1, 0, 1, 0, 1, . . . diverges. Namely, it does not have
limit 0 because infinitely many of its terms lie outside the neighbourhood
(−1, 1) of 0. It does not have limit 1 because infinitely many of its terms lie
outside the neighbourhood (0, 2) of 1. And, for b �= 0, 1, the sequence does
not converge to b because all of of its terms lie outside the neighbourhood
(b− �, b + �) of b, where � = min{|b|, |b− 1|} > 0.
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Exercise 3.2. (a) Deduce from the Archimedean property (Theorem 2.8)
that the set {2n : n ∈ N} is unbounded above, and conclude that 2−n =
1/2n → 0 as n→∞. Hint. Prove that n < 2n for all n ∈ N.

(b) Prove along the lines of the proof of the Archimedean property that
if a ∈ R, a > 1, then a−n = 1/an → 0 as n→∞.

3.7. Definition. A sequence (an) is bounded if the set {an : n ∈ N} of its
terms is bounded (Definition 2.1). Equivalently, there is M > 0 such that
|an| ≤M for all n ∈ N. We say that (an) is bounded above if {an : n ∈ N} is
bounded above, and that (an) is bounded below if {an : n ∈ N} is bounded
below.

3.8. Theorem. A convergent sequence is bounded. In other words, an
unbounded sequence diverges.

Proof. Say an → b. Find N ∈ N such that |an − b| < 1, so |an| < 1 + |b|,
for all n ≥ N . Then

|an| ≤ max{|a1|, . . . , |aN−1|, 1 + |b|}

for all n ∈ N. �

3.9. Remark. The converse of Theorem 3.8 fails: a bounded sequence need
not converge, and a divergent sequence need not be unbounded (Example
3.6 (c)).

3.2. New limits from old

3.10. Theorem (squeeze theorem). If an → s, cn → s, and an ≤ bn ≤ cn

for all but finitely many n ∈ N, then bn → s.

Proof. Let � > 0 and I = (s − �, s + �). By assumption, for n sufficiently
large, an ∈ I. Also, for n sufficiently large, cn ∈ I. Hence, since I is an
interval and bn lies between an and cn for n sufficiently large, we have bn ∈ I
for n sufficiently large. This shows that bn → s. �

3.11. Theorem (algebraic limit theorem). If an → a and bn → b, then:

(1) can → ca for all c ∈ R.
(2) an + bn → a + b.
(3) anbn → ab.
(4) an/bn → a/b if bn �= 0 for all n ∈ N and b �= 0.
(5) |an|→ |a|.



26 3. Sequences

Proof. We prove (2), (4), and (5), and leave (1) and (3) as exercises.
(2) Let � > 0. Find N1 such that |an − a| < �/2 for n ≥ N1. Find N2

such that |bn − b| < �/2 for n ≥ N2. Then, for n ≥ max{N1, N2},
|(an + bn)− (a + b)| ≤ |an − a| + |bn − b| < �/2 + �/2 = �.

(4) We have
����
an

bn
− a

b

���� =
|anb− abn|

|bn||b|
=

|anb− ab + ab− abn|
|bn||b|

≤ |b||an − a| + |a||bn − b|
|bn||b|

.

Find N such that |bn− b| < 1

2
|b| for n ≥ N . Then, for n ≥ N , |bn| > 1

2
|b|, so

����
an

bn
− a

b

���� ≤
2
|b|2

�
|b||an − a| + |a||bn − b|

�
.

By assumption, using (1) and (2), the right-hand side goes to 0 as n →∞,
so by the squeeze theorem, the left-hand side does as well.

(5) By Exercise 1.15, ||an| − |a|| ≤ |an − a| → 0, so ||an| − |a|| → 0 by
the squeeze theorem. �
Exercise 3.3. Finish the proof of Theorem 3.11.

3.12. Proposition. If an → a, where an ≥ 0 for all n ∈ N, then
√

an →
√

a.

Proof. We consider the case of a > 0. Then

|
√

an −
√

a| =
|an − a|
√

an +
√

a
≤ 1√

a
|an − a|,

and
1√
a
|an−a|→ 0 by Theorem 3.11 (1), so |√an−

√
a|→ 0 by the squeeze

theorem. �
Exercise 3.4. Prove Proposition 3.12 for a = 0.

3.13. Theorem (order limit theorem). If an → a, bn → b, and an ≤ bn for
infinitely many n ∈ N, then a ≤ b.

Proof. We prove the contrapositive. Suppose b < a. Let � = 1

2
(a− b) > 0.

Find N1 such that |an − a| < � for n ≥ N1. Find N2 such that |bn − b| < �
for n ≥ N2. Then, for n ≥ max{N1, N2},

bn < b + � = 1

2
(a + b) = a− � < an,

so it is not the case that an ≤ bn for infinitely many n ∈ N. �
3.14. Remark. The following is a special case of Theorem 3.13. If bn → b
and bn ≥ 0 for infinitely many n ∈ N, then b ≥ 0. Even if bn > 0 for
all n ∈ N, we can still only conclude that b ≥ 0: consider for example
bn = 1

n → 0.
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3.3. Monotone sequences

3.15. Definition. A sequence (an) is:

• increasing if an ≤ an+1 for all n ∈ N,
• strictly increasing if an < an+1 for all n ∈ N,
• decreasing if an ≥ an+1 for all n ∈ N,
• strictly decreasing if an > an+1 for all n ∈ N,
• monotone if it is increasing or decreasing,
• strictly monotone if it is strictly increasing or strictly decreasing.

Monotone sequences have the advantage that for them, boundedness is
not only a necessary but also a sufficient condition for convergence. Notice
how completeness is used in the proof of the following theorem.

3.16. Theorem (monotone convergence theorem). A bounded monotone
sequence converges.

Proof. Let (an) be bounded and monotone, say increasing (the decreasing
case is analogous). Then the set A = {an : n ∈ N} is nonempty and
bounded. Let s = supA. We claim that s = lim an. Let � > 0. Then s − �
is not an upper bound for A, so there is N ∈ N with s− � < aN . But then,
if n ≥ N , s− � < aN ≤ an ≤ s, so |an − s| < �. �

3.17. Example. The sequence 1, 2, 3, . . . is monotone, not bounded, and
not convergent. The sequence 0, 1, 0, 1, 0, 1, . . . is bounded, not monotone,
and not convergent.

Sequences of the following important kind tend to be monotone.

3.18. Definition. A recursively or inductively defined sequence is a sequence
(xn) defined by specifying x1 and giving a recursion formula

xn+1 = f(xn),

where f is a function, that allows us to compute x2 from x1, x3 from x2,
and so on.

Often we can use the monotone convergence theorem to show that such
a sequence converges, even though we do not have an explicit formula for
xn in terms of n. We illustrate this by an example.

3.19. Example. Let x1 = 1 and xn+1 = 3 − 1/xn. Then x2 = 2 and
x3 = 21

2
, so it looks like (xn) may be increasing. Let us verify this guess.

We want to prove by induction that 0 < xn < xn+1 for all n ∈ N. This is
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clear for n = 1. Suppose 0 < xn < xn+1. Then 1/xn > 1/xn+1, so

xn+1 = 3− 1
xn

< 3− 1
xn+1

= xn+2.

To be able to apply the monotone convergence theorem, we also need to
show that (xn) is bounded above (boundedness below is obvious because
(xn) is increasing). We need to guess a suitable upper bound M and prove
by induction that it works. Let us try M = 3. We need to prove that xn ≤ 3
for all n. This is clear for n = 1. Suppose xn ≤ 3. Then 1/xn ≥ 1/3 (recall
that xn > 0), so xn+1 = 3− 1/xn ≤ 3− 1/3 < 3.

The monotone convergence theorem now implies that (xn) converges,
but it does not tell us what the limit is. Here the recursion formula can
help. Let us call the limit a. Then

a = lim xn = lim xn+1 = lim
�

3− 1
xn

�
= 3− 1

lim xn
= 3− 1

a

(for the second equality, see Exercise 3.12), so a2 − 3a + 1 = 0 and a =
1

2
(3 ±

√
5). Finally, since a > x1 = 1, we have xn → 1

2
(3 +

√
5).

Exercise 3.5. Show that the sequence
√

2,
�

2
√

2,
�

2
�

2
√

2, . . . converges
and find its limit.

3.4. Series

3.20. Definition. Let (an)n∈N be a sequence of real numbers. The series

associated to (an) is the sequence (sn) of partial sums sn = a1 + · · · + an,

n ∈ N. We write
∞�

n=1

an or simply
�

an for (sn). We say that the series

�
an converges with sum s if lim

n→∞
sn = s. We then also use

∞�
n=1

an or
�

an

as a symbol for s. A series that does not converge is said to diverge.

The following is an immediate consequence of the algebraic limit theorem
for sequences (Theorem 3.11).

3.21. Proposition. If
�

an converges with sum s, and
�

bn converges with
sum t, then:

(1)
�

(an + bn) converges with sum s + t.
(2)

�
(can) converges with sum cs for every c ∈ R.

3.22. Remark. If an ≥ 0 for all n ∈ N, then the sequence (sn) of partial
sums is increasing, so by the monotone convergence theorem (Theorem 3.16),�

an converges if and only if (sn) is bounded above.
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3.23. Example. (a) Consider the harmonic series
�

1/n. Since the sub-
sequence of partial sums

1 +
1
2

+
1
3

+ · · · + 1
2k

= 1 +
1
2

+
�

1
3

+
1
4

�
+ · · · +

�
1

2k−1 + 1
+ · · · + 1

2k

�

≥ 1 +
1
2

+ 2 · 1
4

+ · · · + 2k−1
1
2k

= 1 +
k

2
is unbounded, the harmonic series diverges.

(b) For n ≥ 2, the nth partial sum of the series
�

1/n2 is

1 +
1
22

+ · · · + 1
n2

< 1 +
1

2 · 1 +
1

3 · 2 + · · · + 1
n(n− 1)

= 1 +
�

1− 1
2

�
+

�
1
2
− 1

3

�
+ · · · +

�
1

n− 1
− 1

n

�

= 2− 1
n

< 2.

Hence
�

1/n2 converges with sum at most 2.

3.24. Proposition. If
�

an converges, then an → 0. The converse fails in
general: even if an → 0,

�
an may diverge.

Proof. If
�

an converges with sum s, then an = sn − sn−1 → s − s = 0.
The harmonic series

�
1/n diverges although 1/n→ 0 (Example 3.23). �

3.25. Example. The most important series of all is the geometric series
∞�

n=0

rn, where r is a fixed real number (note that we start the summation

with n = 0 here). If |r| ≥ 1, then rn �→ 0, so
�

rn diverges by Proposition
3.24. If |r| < 1, then

1 + r + · · · + rn =
1− rn+1

1− r
→ 1

1− r

as n → ∞, so
�

rn converges with sum
1

1− r
(for the fact that rn+1 → 0,

see Exercise 3.2).

The following simple result is one of the most useful in the theory of
series.

3.26. Proposition (comparison test). Let (an) and (bn) be sequences with
0 ≤ an ≤ bn for all n ∈ N. If

�
bn converges, then

�
an converges. Equiva-

lently, if
�

an diverges, then
�

bn diverges.

Proof. Let sn = a1 + · · · + an and tn = b1 + · · · + bn. Then 0 ≤ sn ≤ tn
for all n ∈ N, so if (tn) is bounded above, so is (sn). Now apply Remark
3.22. �
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Exercise 3.6. Show that the comparison test is still valid with the weaker
hypothesis that there is m ∈ N such that 0 ≤ an ≤ bn for all n ≥ m.

Exercise 3.7 (limit comparison test). Let (an) and (bn) be sequences of
positive terms such that (an/bn) converges. Prove that if

�
bn converges,

then
�

an converges. Hint. If an/bn → c, then an ≤ (c + 1)bn for n large
enough.

3.27. Definition. A series
�

an is absolutely convergent if
�

|an| is con-
vergent. A series that is convergent but not absolutely convergent is called
conditionally convergent.

This terminology is justified by the following result.

3.28. Proposition. An absolutely convergent series converges.

Proof. Say
�

an is absolutely convergent. Now, for every n ∈ N, 0 ≤ an +
|an| ≤ 2|an|, so

�
(an + |an|) converges by the comparison test (Proposition

3.26). Hence
�

an =
�

((an + |an|)− |an|) converges. �

Next we present three commonly used convergence tests. One more test,
the integral test, appears later, in Exercise 7.19.

3.29. Theorem (ratio test). Let (an) be a sequence of positive terms. Sup-
pose

an+1

an
→ c as n→∞.

(1) If c < 1, then
�

an converges.
(2) If c > 1, then

�
an diverges.

(3) If c = 1, then
�

an may or may not converge.

Proof. (1) Choose r with c < r < 1. There is N ∈ N such that an+1/an < r
for all n ≥ N . Then, for n > N ,

an < ran−1 < · · · < rn−NaN = (aN/rN )rn.

By comparison with the geometric series
�

rn, which converges, we see that�
an converges.
(2) There is N ∈ N such that an+1/an > 1, that is, an < an+1, for all

n ≥ N . Thus an �→ 0, so
�

an diverges.
(3) The series in Example 3.23 both have c = 1, but one converges and

the other diverges. �
3.30. Corollary. Let (an) be a sequence with an �= 0 for all n ∈ N such

that
|an+1|
|an|

→ c as n→∞. If c < 1, then
�

an converges absolutely.

The proof of the next test is very similar to the proof of the ratio test.
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3.31. Theorem (root test). Let (an) be a sequence of nonnegative terms.
Suppose a1/n

n → c as n→∞.

(1) If c < 1, then
�

an converges.
(2) If c > 1, then

�
an diverges.

(3) If c = 1, then
�

an may or may not converge.

Proof. (1) Choose r with c < r < 1. There is N ∈ N such that a1/n
n < r

and thus an < rn for all n ≥ N . By comparison with the geometric series�
rn, which converges, we see that

�
an converges.

(2) There is N ∈ N such that a1/n
n > 1 and thus an > 1 for all n ≥ N .

Hence an �→ 0, so
�

an diverges.
(3) By Exercise 3.17, the series in Example 3.23 both have c = 1. �

3.32. Theorem (alternating series test). Let (an) be a decreasing sequence
of positive terms with an → 0. Then

�
(−1)n+1an converges.

Proof. Let sn = a1 − a2 + a3 − · · · + (−1)n+1an. Note that

s2 ≤ s4 ≤ s6 ≤ · · · ≤ s5 ≤ s3 ≤ s1.

By the monotone convergence theorem (Theorem 3.16), (s2n−1) and (s2n)
converge to, say, s and t, respectively. Since s2n = s2n−1−a2n and a2n → 0,
we have s = t. By the following exercise, sn → s, so

�
(−1)n+1an converges

with sum s. �

Exercise 3.8. Let (sn) be a sequence such that the sequences (s2n−1) and
(s2n) converge to the same limit b. Show that sn → b.

Exercise 3.9. Show that the sum s of the alternating series above satisfies
|s− sn| ≤ an+1 for every n ∈ N. Thus, if we approximate the true sum s by
the partial sum sn, the error is at most an+1.

3.33. Example. By the alternating series test, the alternating harmonic

series 1− 1

2
+ 1

3
− 1

4
+ · · · converges. Since the harmonic series diverges (Ex-

ample 3.23), the alternating harmonic series converges conditionally. Call
the sum s. From the error estimate in Exercise 3.9 we see, for example, that
|s− (1− 1

2
+ 1

3
)| ≤ 1

4
, that is, 7

12
≤ s ≤ 13

12
.

We conclude this section by touching on the topic of rearrangements.
The terms of a finite sum can be added up in any order: the result is always
the same. This is not so straightforward for infinite sums.

3.34. Definition. A rearrangement of a series
�

an is a series of the form�
aσ(n), where σ : N → N is a bijection.
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3.35. Theorem. If
�

an is absolutely convergent, then every rearrange-
ment

�
aσ(n) is also absolutely convergent and has the same sum.

Proof. Let sn = a1 + · · ·+ an and tn = aσ(1) + · · ·+ aσ(n). Let � > 0. Since�
an is absolutely convergent, there is p ∈ N with

�
n>p

|an| < �. There are

exactly p values of n with σ(n) ≤ p. Let q be the largest of them, so that
n ≤ q if σ(n) ≤ p. Then σ(n) > p if n > q, so

�
n>q

|aσ(n)| ≤
�
n>p

|an| < �. This

shows that
�

aσ(n) converges absolutely.
Finally, if n ≥ p and n ≥ q, then, in the difference sn − tn, the terms

a1, . . . , ap cancel, so |sn− tn| ≤ 2
�
n>p

|an| < 2�. Hence (sn) and (tn) converge

to the same limit. �

3.36. Example. The case of conditionally convergent series is very different.
Consider the alternating harmonic series 1− 1

2
+ 1

3
− 1

4
+ · · · (Example 3.33).

Note that the series
�

1

2n−1
of positive terms and the series −

�
1

2n of
negative terms both diverge. We will rearrange the alternating harmonic
series in such a way that the positive terms appear in their original order,
and the negative terms as well, but the negative terms are spread more thinly
among the positive ones. Start by taking positive terms that add up to at
least 2. Then take one negative term. Again take positive terms adding up
to at least 2, followed by one negative term, and so on. The resulting series
diverges.

In fact, every conditionally convergent series can be rearranged so as to
converge to any sum whatsoever or to diverge (Exercise 3.24).

3.5. Subsequences and Cauchy sequences

3.37. Definition. Let (an)n∈N be a sequence. Let (nk)k∈N be a strictly
increasing sequence of natural numbers. Then the sequence (ank)k∈N, that
is, an1 , an2 , an3 , . . . , is called a subsequence of (an).

3.38. Remark. In the language of functions, a sequence a in R is a function
a : N → R. A subsequence of a is then a sequence of the form a ◦ f , where
f : N → N is a strictly increasing function.

3.39. Proposition. A subsequence of a convergent sequence converges to
the same limit.

Proof. Say (ank) is a subsequence of (an), and an → b. Let U be a neigh-
bourhood of b. Then an /∈ U for at most finitely many n, so ank /∈ U for at
most finitely many k. This shows that ank → b. �
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The next result is yet another manifestation of the completeness of the
real numbers. Be sure to note the two places in the proof where completeness
is invoked.

3.40. Theorem (Bolzano-Weierstrass theorem). A bounded sequence has
a convergent subsequence.

Proof. This is the most complicated proof we have had so far. For clarity,
we shall break it up into three steps. Let (an) be a bounded sequence. Take
M > 0 with |an| ≤M for all n.

Step 1. One half of [−M,M ], either [−M, 0] or [0, M ], call it I1, contains
an for infinitely many n (if both halves do, then it does not matter which
one we pick). One half of I1, call it I2, contains an for infinitely many n.
Continuing, we obtain a sequence I1 ⊃ I2 ⊃ I3 ⊃ · · · of closed bounded
intervals such that each Ik contains an for infinitely many n.

Step 2. Choose n1 ∈ N with an1 ∈ I1. Choose n2 > n1 with an2 ∈ I2.
This is possible because an ∈ I2 for infinitely many n: these n cannot all be
less than or equal to n1. Continue and obtain a subsequence (ank) of (an)
with ank ∈ Ik for all k. We want to prove that this subsequence converges.

Step 3. There is b ∈
∞�

k=1

Ik by the nested interval property (Theorem

2.14). We claim that ank → b. Let � > 0. By the Archimedean property
(Exercise 3.2), there is N ∈ N such that the length of IN , which is M/2N ,
is smaller than �. Thus, for k ≥ N , |ank − b| < � since ank and b both lie in
Ik ⊂ IN . �

We will develop the theory of the trigonometric functions in Section 8.4.
Until then, when required in examples and exercises, let us take for granted
what we know about them from first year and high school.

3.41. Example. The sequence (sin n)n∈N is bounded, so it has a convergent
subsequence. However, an explicit example of such a subsequence is not easy
to find. Would you like to try?

3.42. Definition. A sequence (an) is a Cauchy sequence if for every � > 0,
there is N ∈ N such that if m, n ≥ N , then |am − an| < �.

3.43. Theorem (Cauchy criterion). A sequence is Cauchy if and only if it
converges.

Note that the Cauchy criterion characterises convergence without any
mention of a limit.

Sketch of proof. ⇐ is the easy direction. If an → a, just use the triangle
inequality |am − an| ≤ |am − a| + |an − a|.
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⇒ First show that a Cauchy sequence is bounded. Second, invoke the
Bolzano-Weierstrass theorem to obtain a convergent subsequence. Third,
show that a Cauchy sequence with a convergent subsequence is itself con-
vergent (to the same limit). �

3.44. Remark. For a sequence to be convergent, it is not enough to assume
that successive terms get arbitrarily close. For example, take an = 1 + 1

2
+

· · ·+ 1

n . Then |an+1−an| = 1

n+1
→ 0 as n→∞, but (an) is unbounded and

thus divergent.

The final theorem of the chapter is the culmination of the work we have
done so far. It gives five different characterisations, all important, of the
fundamental property of completeness.

3.45. Theorem. For an ordered field, the following are equivalent.

(1) The axiom of completeness.
(2) The nested interval property and the Archimedean property.
(3) The monotone convergence theorem.
(4) The Bolzano-Weierstrass theorem.
(5) The Cauchy criterion and the Archimedean property.

Proof. We know that (1) ⇒ (2) ⇒ (4), and (1) ⇒ (3). We have sketched
a proof that (4) implies the Cauchy criterion.

The Archimedean property follows from (4). Namely, if N was bounded
above, then the Bolzano-Weierstrass theorem would provide a limit for a
subsequence of 1, 2, 3, . . . . This limit would then be a supremum for N,
leading to a contradiction as in our proof of Theorem 2.8. Thus (4) ⇒ (5).

Next, (3)⇒ (4). Namely, assume (3) and let (an) be a bounded sequence.
By Exercise 3.10, (an) has a monotone subsequence, which is also bounded,
and hence convergent by (3).

To complete the circuit of implications, we need to show that (5) ⇒ (1).
Assume (5) and let A be a subset of the ordered field, nonempty and bounded
above. Let a ∈ A and let b > a be an upper bound for A. Let I = [a, b].
For each n ∈ N, divide I into 2n intervals Ik = [a + (k − 1) b−a

2n , a + k b−a
2n ],

k = 1, . . . , 2n, of equal length b−a
2n . Choose an ∈ A ∩ Ik for the largest k for

which A ∩ Ik �= ∅, and let bn ≥ an be the right end point a + k b−a
2n of Ik.

Then bn is an upper bound for A, and bn − an ≤ b−a
2n . The sequence (bn) is

decreasing. For n ≤ m, an ≤ bm ≤ bn, so bn − bm ≤ b−a
2n .

By the Archimedean property (Exercise 3.2), b−a
2n → 0 as n→∞. Hence

(bn) is a Cauchy sequence and therefore convergent with limit c by the
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Cauchy criterion. Since each bn is an upper bound for A, so is c. Further-
more, for each n ∈ N, an ≤ c ≤ bn, so c − an ≤ b−a

2n , that is, applying the
Archimedean property again, there are elements of A arbitrarily close to c.
Hence c is the least upper bound of A. �

Exercise 3.10. Show that every sequence has a monotone subsequence.
Hint. This is surprisingly tricky to prove. Proceed as follows.

Step 1. Show that a sequence with no largest term has an increasing
subsequence. Therefore, if (an) is a sequence, and for some N ∈ N, the ‘tail’
aN , aN+1, aN+2, . . . has no largest term, then that tail, and hence (an) itself,
has an increasing subsequence.

Step 2. Show that if every tail of (an) has a largest term, then (an) has
a decreasing subsequence.

More exercises

3.11. Using only the definition of the limit, show that lim
n→∞

3n− 1
n + 2

= 3.

3.12. Let (an) be a sequence. Define a sequence (bn) by the formula bn =
an+1 for each n ∈ N. In other words, (bn) is (an) with the first term removed.
Prove that an → c if and only if bn → c.

3.13. Prove the following statement or disprove it by a counterexample. If
(an) and (bn) are sequences such that (an) and (anbn) converge, then (bn)
converges.

3.14. Prove the following statement or disprove it by a counterexample. If
(an) and (bn) are sequences of positive numbers such that (an) and (an/bn)
converge, then (bn) converges.

3.15. Let (an) be a bounded (not necessarily convergent) sequence and (bn)
be a sequence such that bn → 0. Show that anbn → 0.

3.16. (a) Let a ≥ 0 and n ∈ N. Show that (1 + a)n ≥ na.
(b) Let c > 0. Show that c1/n → 1 as n → ∞. Hint. For c > 1, let

a = c1/n − 1.

3.17. (a) Let a ≥ 0 and n ∈ N, n ≥ 2. Show that (1 + a)n ≥ 1

2
n(n− 1)a2.

(b) Show that n1/n → 1 as n→∞.

3.18. Consider the recursively defined sequence (an) with a1 = 3 and an+1 =
an/2 + 3/an. Show that (an) converges and find its limit. Hint. Induction
may not be the best way to show that (an) is bounded and monotone.
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3.19. Determine whether the following series converge:
� 1√

n
,

� 2
3n2 + n + 5

,
� (−1)nn

n + 1
,

� n2

2n
.

3.20. Let (an) be a sequence such that the series
�

|an+1 − an| converges.
Show that (an) converges.

3.21. Here are two applications of the useful inequality xy ≤ 1

2
(x2 + y2).

(a) Show that if
�

a2
n and

�
b2
n converge, then

�
anbn converges abso-

lutely.
(b) Let

�
an be a convergent series of nonnegative terms. Show that�√

an/n converges.

3.22. (a) Find a convergent series
�

an such that
�

a2
n diverges.

(b) Show that if
�

an converges absolutely, then
�

a2
n converges.

3.23. Let
�

an be a series. Set a+
n = max{0, an} and a−n = min{0, an}.

Consider the series
�

a+
n and

�
a−n . In

�
a+

n the negative terms in
�

an

have been changed to 0. In
�

a−n the positive terms in
�

an have been
changed to 0.

(a) Prove that
�

an is absolutely convergent if and only if
�

a+
n and�

a−n both converge. Then
�

an =
�

a+
n +

�
a−n .

(b) Prove that if
�

an is conditionally convergent, then
�

a+
n and

�
a−n

both diverge.

3.24. Let
�

an be a conditionally convergent series. Prove that for every
s ∈ R, there is a rearrangement of

�
an converging to s. Prove also that

there is a divergent rearrangement of
�

an. Hint. Use Exercise 3.23.

3.25. Give an example of each of the following or show that it does not
exist.

(a) A sequence not containing 0 or 1 as a term but containing subse-
quences converging to each of these values.

(b) A monotone sequence that diverges but has a convergent subse-
quence.

(c) An unbounded sequence with a convergent subsequence.
(d) A sequence with a bounded subsequence but without a convergent

subsequence.

3.26. Show that there is a strictly increasing sequence (nk)k∈N of natural
numbers such that the sequences (cos nk)k∈N and (sinnk)k∈N both converge.

3.27. Let (an) be a sequence and c be a number such that every subsequence
of (an) has a subsequence converging to c. Show that (an) itself converges
to c.
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3.28. Show that a bounded sequence is divergent if and only if it has two
subsequences with different limits.

3.29. Let (an) be a sequence with an → 0. Show that there is a subsequence

(ank) such that the series
∞�

k=1

ank is absolutely convergent.

3.30. Show that there is a sequence (an) such that for every real number x,
there is a subsequence of (an) converging to x. Hint. Start with a bijection
a : N → Q.

3.31. Prove directly from the definition of a Cauchy sequence that a Cauchy
sequence is bounded. Do not use the result that a Cauchy sequence con-
verges: the first step in the proof of that result is to show that a Cauchy
sequence is bounded.

3.32. Show directly from the definition of a Cauchy sequence that a sum of
Cauchy sequences is Cauchy. Do not use the Cauchy criterion.

3.33. (a) Fix a natural number b ≥ 2. Let (an) be a sequence of integers

with 0 ≤ an < b. Show that the series
∞�

n=1

an

bn
converges with sum in [0, 1].

(b) Conversely, let x ∈ [0, 1]. Prove that there is a sequence (an) of

integers with 0 ≤ an < b such that
∞�

n=1

an

bn
= x. The expression 0.a1a2a3 . . .

is called the expansion of x to base b (although for some x it is not quite
unique: see (c)). If b = 2, it is also called the binary expansion of x, and if
b = 10, it is also called the decimal expansion of x.

Hint. Let a1 be the largest number in {0, . . . , b − 1} with a1/b ≤ x.
Having chosen a1, . . . , an, let an+1 be the largest number in {0, . . . , b − 1}

with
n+1�
k=1

ak

bk
≤ x.

(c) Suppose (an) and (cn) are distinct sequences in {0, . . . , b − 1} with
∞�

n=1

an

bn
=

∞�
n=1

cn

bn
. Prove that, after possibly interchanging (an) and (cn),

there is m ∈ N such that an = cn for n < m, am = cm + 1, and an = 0 and
cn = b− 1 for n > m.

3.34. (a) Let (xn) be a bounded sequence. For each k ∈ N, let

yk = sup
n≥k

xn = sup{xk, xk+1, xk+2, . . . }.

Show that the sequence (yk) is decreasing and bounded below. Conclude
that (yk) converges. The limit of (yk) is called the limit superior of the
original sequence (xn). In other words,

lim sup
n→∞

xn = lim
k→∞

sup
n≥k

xn.
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(b) Show that if (xn) is convergent, then lim supxn = lim xn.
(c) Show that (xn) has a subsequence converging to lim supxn.
(d) Show that no convergent subsequence of (xn) has a limit larger than

lim supxn.
Thus lim sup xn is the largest limit that a convergent subsequence of

(xn) can have.
(e) Formulate a definition of the limit inferior of (xn). State and prove

the analogues for lim inf of the above properties of lim sup.



Chapter 4

Open, closed, and

compact sets

The three concepts introduced in this chapter belong to the subject of topo-
logy. Of the major branches of mathematics, topology is the youngest.
It emerged as a subject in its own right in the early twentieth century.
Topology is heavily used in modern analysis.

4.1. Open and closed sets

4.1. Definition. A subset U of R is open if it is a neighbourhood of each of
its points. That is, for every a ∈ U , there is � > 0 such that (a−�, a+�) ⊂ U .

4.2. Proposition. (1) R and ∅ are open. An open interval is open.
(2) The union of an arbitrary collection of open sets is open.
(3) The intersection of finitely many open sets is open.

Proof. (1) It should be clear that every nonempty open interval, including
R itself, is open. It may not be quite so obvious why ∅ is open. What would
it mean for ∅ not to be open? It would mean not being a neighbourhood of
one of its elements. But ∅ has no elements at all, in particular, no elements
that could refute ∅ being open. Hence ∅ is open.

(2) Let (Ui)i∈I be a family of open subsets of R. We want to show that�
i∈I

Ui is open. Let a ∈
�
i∈I

Ui. This means that there is j ∈ I such that

a ∈ Uj . Since Uj is open, there is � > 0 such that (a− �, a + �) ⊂ Uj . Since
Uj ⊂

�
i∈I

Ui, we conclude that (a− �, a + �) ⊂
�
i∈I

Ui. Hence
�
i∈I

Ui is open.

39
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(3) Let U1, . . . , Un be open subsets of R. Let a ∈ U1 ∩ · · ·∩Un. For each
i = 1, . . . , n, since Ui is open, there is �i > 0 such that (a− �i, a + �i) ⊂ Ui.
Let � = min{�1, . . . , �n} > 0. Then (a − �, a + �) ⊂ (a − �i, a + �i) ⊂ Ui

for every i = 1, . . . , n, so (a − �, a + �) ⊂ U1 ∩ · · · ∩ Un. This shows that
U1 ∩ · · · ∩ Un is open. �

4.3. Definition. A subset A of R is closed if its complement R \A is open.

The following proposition is dual to Proposition 4.2.

4.4. Proposition. (1) R and ∅ are closed. A closed interval is closed.
(2) The intersection of an arbitrary collection of closed sets is closed.
(3) The union of finitely many closed sets is closed.

Proof. We prove (2) and leave (1) and (3) as exercises. The proof is an
application of one of De Morgan’s laws (Remark 1.19) to Proposition 4.2.
Namely, if Ai is a closed subset of R for each i ∈ I, then R \ Ai is open, so
by Proposition 4.2 and De Morgan,

�

i∈i

R \ Ai = R \
�

i∈I

Ai

is open. This shows that
�
i∈I

Ai is closed. �

Exercise 4.1. Finish the proof of Proposition 4.4.

4.5. Example. (a) Note that the sets R and ∅ are both open and closed.
(b) An example of a set that is neither open nor closed is the interval

I = [0, 1). It is not open because 0 ∈ I but I is not a neighbourhood of 0.
It is not closed, that is, R \ I is not open, because 1 ∈ R \ I, but R \ I is not
a neighbourhood of 1.

(c) An arbitrary intersection of open sets need not be open. For example,
∞�

n=1

(− 1

n , 1

n) = {0}.

Exercise 4.2. Show by an example that an arbitrary union of closed sets
need not be closed.

Exercise 4.3. Show that the only subsets of R that are both open and
closed are R itself and ∅.

Closed sets can be characterised in terms of convergent sequences.

4.6. Theorem. A subset A of R is closed if and only if whenever an ∈ A
for all n ∈ N, and an → c, we also have c ∈ A.
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Proof. ⇒ Say an ∈ A, n ∈ N, and an → c. If c /∈ A, then, since R \ A is
open, R \ A is a neighbourhood of c, so an ∈ R \ A for all but finitely many
n, which is absurd.

⇐ We prove the contrapositive. Suppose A is not closed, that is, R \ A
is not open. This means that there is c ∈ R \ A such that R \ A is not
a neighbourhood of c. Thus, for each n ∈ N, R \ A does not contain the
1

n -neighbourhood of c, so there is an ∈ A in this neighbourhood, that is,
|an − c| < 1

n . Then an → c. �
4.7. Remark. It may be shown that every open subset of R is the union of
countably many mutually disjoint open intervals. There is no equally simple
description of what a closed subset looks like. The structure of a closed set
can be very complicated (for an example, see Exercise 4.12).

4.2. Compact sets

4.8. Definition. A subset K of R is compact if every sequence in K has a
subsequence that converges to a limit that is also in K.

It is not meant to be obvious that this is a useful definition. The impor-
tance of the notion of compactness will emerge when we get to Theorems
5.17 and 5.20.

The following result gives a supply of compact sets.

4.9. Proposition. A closed and bounded interval is compact.

Proof. The empty set is clearly compact, because it contains no sequences
at all. Let (xn) be a sequence in a nonempty, closed, and bounded inter-
val [a, b]. By the Bolzano-Weierstrass theorem (Theorem 3.40), (xn) has a
convergent subsequence (xnk). Call its limit c. Since a ≤ xnk ≤ b for all k,
we have a ≤ c ≤ b, that is, c ∈ [a, b], by the order limit theorem (Theorem
3.13). �

The next theorem strengthens Proposition 4.9 and gives a useful char-
acterisation of compactness that works for arbitrary sets.

4.10. Theorem (Heine-Borel theorem). A subset of R is compact if and
only if it is closed and bounded.

Proof. ⇐ We argue as in the proof of Proposition 4.9, except we use Theo-
rem 4.6 and the assumption that our set is closed to conclude that it contains
the limit of the subsequence.

⇒We prove the contrapositive, namely, that if A ⊂ R is either not closed
or not bounded, then A is not compact. Suppose A is not closed. Then, by
Theorem 4.6, there is a sequence (an) in A with an → c /∈ A. Then (an)
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cannot have a subsequence with a limit in A, because every subsequence of
(an) converges to c.

Finally, suppose A is not bounded, say not bounded above. This means
that A contains an increasing sequence that is not bounded above. Such a
sequence has no bounded subsequence, let alone a convergent one with limit
in A. �

4.11. Corollary. The union of finitely many compact sets is compact.

Proof. This follows from Theorem 4.10 because a finite union of closed sets
(meaning the union of a finite number of closed sets) is closed, and a finite
union of bounded sets is bounded. �

4.12. Example. (a) Every finite set is compact: it is a finite union of
one-point sets, and a one-point set is clearly both closed and bounded.

(b) The set A = {1, 1

2
, 1

3
, . . . } is bounded but not closed and thus not

compact. Indeed, the sequence 1, 1

2
, 1

3
, . . . in A converges to 0 /∈ A, so it has

no subsequence that converges to a limit in A.
(c) The set B = [0,∞) is closed but not bounded and thus not compact.

Indeed, the sequence 1, 2, 3, . . . in B has no convergent subsequence at all,
let alone one with a limit in B.

Finally, we prove a generalisation of the nested interval property (The-
orem 2.14).

4.13. Theorem. Let K1 ⊃ K2 ⊃ K3 ⊃ · · · be nonempty compact subsets

of R. Then the intersection
∞�

n=1

Kn is not empty.

Proof. For each n ∈ N, choose an ∈ Kn. Then (an) is a sequence in
K1. Since K1 is compact, (an) has a convergent subsequence (ank) with
limit c ∈ K1. For each m ≥ 2 and k ≥ m, we have nk ≥ k ≥ m, so
ank ∈ Knk ⊂ Km. Thus the sequence anm , anm+1 , . . . lies in Km, and it

converges to c. Since Km is closed, c ∈ Km. This shows that c ∈
∞�

n=1

Kn. �

More exercises

4.4. Let A ⊂ R. The closure of A, denoted Ā, is the intersection of all
closed sets containing A.

(a) Show that Ā is closed.
(b) Show that Ā is the smallest closed set containing A, that is, if E is

closed and A ⊂ E, then Ā ⊂ E.
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(c) Show that x ∈ Ā if and only if there is a sequence in A converging
to x.

(d) Show that A is dense in R if and only if Ā = R.
(e) Is A ∪B = Ā ∪ B̄ for all A, B ⊂ R? How about A ∩B = Ā ∩ B̄?

4.5. (a) Let A ⊂ R. The interior of A, denoted A◦, is the union of all open
sets contained in A. Show that A◦ is open. Show that A◦ is the largest open
set contained in A, that is, if U is open and U ⊂ A, then U ⊂ A◦.

(b) Show that R \ A = R \ A◦ and (R \ A)◦ = R \ Ā.
(c) Is (A ∪ B)◦ = A◦ ∪ B◦ for all A, B ⊂ R? How about (A ∩ B)◦ =

A◦ ∩B◦?

4.6. Let A ⊂ R. The boundary of A, denoted ∂A, is Ā \ A◦.
(a) Show that ∂A is closed.
(b) Use Exercise 4.5 to show that ∂A = Ā ∩ R \ A.
(c) Show that x ∈ ∂A if and only if every neighbourhood of x intersects

both A and R \ A.

4.7. Find the closure, interior, and boundary of each of the following sets.
(a) [0, 1].
(b) (0, 1).
(c) Z.
(d) Q.

4.8. Prove directly from the definition of compactness (that is, not using
the Heine-Borel theorem) that a finite subset of R is compact.

4.9. Prove that the set {0, 1, 1

2
, 1

3
, 1

4
, . . . } is compact. Hint. To show that

the set is closed, express its complement as a union of open intervals.

4.10. Show that a nonempty compact set has both a largest element and a
smallest element.

4.11. Prove that if K is compact and F is closed, then K ∩ F is compact.

4.12. Remove the open middle third (1

3
, 2

3
) from [0, 1], so C1 = [0, 1

3
]∪ [2

3
, 1]

remains. Remove the open middle thirds (1

9
, 2

9
) and (7

9
, 8

9
) from the two

intervals in C1, so C2 = [0, 1

9
] ∪ [2

9
, 1

3
] ∪ [2

3
, 7

9
] ∪ [8

9
, 1] remains. Continuing

in this way, we obtain closed sets C1 ⊃ C2 ⊃ C3 ⊃ · · · , such that Cn is the

union of 2n closed intervals of length 3−n. The intersection C =
∞�

n=1

Cn is

called the Cantor set.
(a) Show that C is compact and not empty.
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(b) The complement [0, 1]\C is the union of the open middle thirds that
were removed from [0, 1] in the construction of C. Show that the sum of the
lengths of these intervals is 1.

(c) Show that x ∈ [0, 1] belongs to C if and only if x has an expansion to
base 3 without the digit 1 (Exercise 3.33), that is, there is a sequence (an)

in {0, 2} with x =
∞�

n=1

an

3n
.

(d) Show that C contains no nondegenerate intervals. Conclude that
the interior of C (Exercise 4.5) is empty.

(e) Show that for all x ∈ C and � > 0, there is y ∈ C with 0 < |x−y| < �.
In the language of Definition 5.8, this says that C has no isolated points.

(f) Show that C is uncountable. Hint. Use Exercise 2.15.
(g) Let C + C = {x + y : x, y ∈ C}. Show that C + C = [0, 2]. Hint.

Let D be the set of all numbers in [0, 1] that have an expansion to base 3
without the digit 2. Start by showing that [0, 1] ⊂ D + D.



Chapter 5

Continuity

5.1. Limits of functions

5.1. Definition. Let A ⊂ R, let f : A → R be a function, and let c be
a limit point of A, that is, there is a sequence (xn) in A such that xn �= c
for all n ∈ N and xn → c. We say that the limit of f at c is L ∈ R if for
every � > 0, there is δ > 0 such that if x ∈ A and 0 < |x − c| < δ, then
|f(x)− L| < �. Then we write lim

x→c
f(x) = L or f(x)→ L as x→ c.

5.2. Remark. The limit is unique if it exists. In terms of neighbourhoods,
we have lim

x→c
f(x) = L if and only if for every neighbourhood V of L, there

is a neighbourhood U of c such that f(U ∩A \ {c}) ⊂ V .

5.3. Example. (1) The limit points of the open interval (a, b), a < b, are
precisely the points of the closed interval [a, b]. If I is a nondegenerate
interval and c ∈ I, then c is a limit point of I and (equivalently) of I \ {c}.

(2) Let us show that lim
x→1

(2x + 3) = 5. First note that |(2x + 3) − 5| =
2|x − 1|. Hence, if � > 0 and |x − 1| < �/2, then |(2x + 3) − 5| < �. Thus
δ = �/2 satisfies the definition of the limit.

(3) Showing that lim
x→1

1
x

= 1 is a bit more complicated. Given �, a

corresponding δ is determined in two steps. Note that
����
1
x
− 1

���� =
1
|x| |x− 1|.

We need a bound on the factor
1
|x| on a neighbourhood of 1, say for |x−1| <

1

2
. If |x − 1| < 1

2
, so 1

2
< x < 3

2
, then

1
|x| < 2, so

����
1
x
− 1

���� ≤ 2|x − 1|.

Therefore, if � > 0 is given and we set δ = min{ �
2
, 1

2
}, 0 < |x−1| < δ implies

45



46 5. Continuity

����
1
x
− 1

���� ≤ 2|x − 1| < 2δ ≤ �. Here, the first inequality follows from δ ≤ 1

2
,

and the third from δ ≤ �
2
.

Exercise 5.1. Let f : A→ R be a function and c be a limit point of A such
that lim

x→c
f(x) exists and is not zero. Show that there is a neighbourhood U

of c such that f(x) �= 0 for all x ∈ U ∩A \ {c}.

It is useful to be able to characterise the limit of a function in terms of
sequences.

5.4. Theorem. For a function f : A → R and a limit point c of A, the
following are equivalent.

(i) lim
x→c

f(x) = L.

(ii) For every sequence (xn) in A\{c} with xn → c, we have f(xn)→ L.

Proof. (i) ⇒ (ii): Let (xn) be a sequence in A \ {c} with xn → c. We need
to show that f(xn)→ L. Let � > 0. By (i), there is δ > 0 such that if x ∈ A
and 0 < |x− c| < δ, then |f(x)−L| < �. Since xn → c, there is N ∈ N such
that for all n ≥ N we have |xn − c| < δ and therefore |f(xn)− L| < �. This
proves (ii).

(ii) ⇒ (i): We prove the contrapositive. Suppose (i) fails. This means
that there is � > 0 such that for every δ > 0, there is x ∈ A with 0 <
|x − c| < δ but |f(x) − L| ≥ �. Taking δ = 1

n for each n ∈ N, we obtain a
sequence (xn) in A \ {c} with |xn − c| < 1

n for every n ∈ N, so xn → c, but
|f(xn)− L| ≥ � for every n ∈ N, so f(xn) �→ L. Hence (ii) fails. �
5.5. Example. Define g : R → R by the formula

g(x) =
�

1 if x ∈ Q,
0 if x /∈ Q.

We claim that lim
x→c

g(x) does not exist for any c ∈ R. Recall that both the
rationals and the irrationals are dense in R (Theorem 2.13 and Exercise 2.4).
Hence there is a sequence (rn) of rationals with c �= rn → c, and a sequence
(zn) of irrationals with c �= zn → c. Then g(rn) = 1→ 1 and g(zn) = 0→ 0,
so condition (ii) in Theorem 5.4 fails for every L ∈ R and lim

x→c
g(x) does not

exist.

By Theorem 5.4, the following two results are immediate consequences
of the corresponding results for sequences (Theorems 3.10 and 3.11).

5.6. Theorem (squeeze theorem). Let f, g, h : A → R be functions such
that f ≤ g ≤ h on A, and let c be a limit point of A. If f(x) → s and
h(x)→ s as x→ c, then g(x)→ s as x→ c.
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5.7. Theorem (algebraic limit theorem). Let f, g : A → R be functions
and c be a limit point of A. If f(x) → s and g(x) → t as x → c, then, as
x→ c:

(1) kf(x)→ ks for all k ∈ R.
(2) f(x) + g(x)→ s + t.
(3) f(x)g(x)→ st.
(4) f(x)/g(x)→ s/t if t �= 0.
(5) |f(x)|→ |s|.

Note that if t �= 0, by Exercise 5.1, there is a neighbourhood U of c such
that g(x) �= 0 and f(x)/g(x) is defined for all x ∈ U ∩A \ {c}.

Proof. We prove (3), just to show how straightforward is the reduction to
the algebraic limit theorem for sequences. Let (xn) be a sequence in A \ {c}
with xn → c. By assumption, f(xn) → s and g(xn) → t. Hence, by the
algebraic limit theorem for sequences, f(xn)g(xn) → st. By Theorem 5.4,
this shows that f(x)g(x)→ st as x→ c. �
Exercise 5.2. Adapt the order limit theorem for limits of sequences (The-
orem 3.13) to limits of functions.

Finally, we extend in a trivial way the definition of the limit of a function
to a point of the domain that is not a limit point.

5.8. Definition. Let f : A → R be a function and let c ∈ A be an isolated

point of A, that is, there is � > 0 such that A∩ (c− �, c + �) = {c}. Then we
define lim

x→c
f(x) to equal f(c).

5.2. Continuous functions

5.9. Definition. A function f : A → R is continuous at c ∈ A if the
following equivalent conditions hold.

(i) lim
x→c

f(x) = f(c).

(ii) For every � > 0, there is δ > 0 such that if x ∈ A and |x − c| < δ,
then |f(x)− f(c)| < �.

(iii) For every neighbourhood V of f(c), there is a neighbourhood U of
c such that f(U ∩A) ⊂ V .

(iv) If (xn) is a sequence in A and xn → c, then f(xn)→ f(c).

We say that f is continuous if f is continuous at each point of A.

Exercise 5.3. Let A ⊂ R and b ∈ R. Prove that the identity function
A→ R, x �→ x, and the constant function A→ R, x �→ b, are continuous.
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5.10. Example. The function g : R → R in Example 5.5 is discontinuous
at every point of R.

The algebraic limit theorem (Theorem 5.7) immediately yields the fol-
lowing result.

5.11. Theorem. If f, g : A→ R are continuous at c ∈ A, then:

(1) kf is continuous at c for all k ∈ R.
(2) f + g is continuous at c.
(3) fg is continuous at c.
(4) f/g is continuous at c, provided g(c) �= 0.
(5) |f | is continuous at c.

5.12. Definition. A polynomial function is a function P : R → R of the
form x �→ anxn + · · · + a1x + a0, where the coefficients a0, . . . , an are real
numbers. If an �= 0, we say that P has degree n.

A rational function is a function R\Z → R of the form x �→ P (x)/Q(x),
where P and Q are polynomial functions and Q is not identically zero, so
Z = {x ∈ R : Q(x) = 0} is a finite set (Exercise 6.13).

5.13. Corollary. Rational functions are continuous. In particular, polyno-
mial functions are continuous.

Proof. A rational function is constructed from the identity function and
constant functions using the operations of addition, multiplication, and di-
vision. Thus the result follows from Exercise 5.3 and Theorem 5.11. �

Exercise 5.4. Use Proposition 3.12 and Exercise 3.4 to show that the square
root function [0,∞)→ [0,∞), x �→

√
x, is continuous.

In fact, for every n ∈ N, the nth root function [0,∞)→ [0,∞), x �→ n
√

x,
is continuous. Prove this using Theorem 5.26.

The composition of two continuous functions, when defined, is also con-
tinuous.

5.14. Theorem. Let f : A → R and g : B → R be functions such that
f(A) ⊂ B, so the composition g ◦ f : A → R is defined. If f is continuous
at c ∈ A, and g is continuous at f(c), then g ◦ f is continuous at c.

Proof. Let us prove this using version (iv) of Definition 5.9 (exercise: give
alternative proofs based on (ii) and (iii)). The proof is very quick. Let
xn → c in A. Since f is continuous at c, f(xn)→ f(c). Since g is continuous
at f(c), (g ◦ f)(xn) = g(f(xn))→ g(f(c)) = (g ◦ f)(c). �
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5.15. Example. The function g : R → R, g(x) =
�

x sin 1

x if x �= 0,
0 if x = 0, is

continuous at 0. Namely, for every x ∈ R, we have 0 ≤ |g(x)| ≤ |x|, so the
squeeze theorem (Theorem 5.6) implies that g(x)→ 0 = g(0) as x→ 0.

5.3. Continuous functions on compact sets and intervals

There is a close relationship between continuity and compactness.

5.16. Theorem. Let f : A→ R be continuous. If K ⊂ A is compact, then
the image f(K) is compact.

Proof. Let (yn) be a sequence in f(K). Say yn = f(xn) with xn ∈ K. Since
K is compact, there is a convergent subsequence (xnk) with limit x in K.
Then, since f is continuous, ynk = f(xnk)→ f(x) ∈ f(K). �

The first main theorem of this section is the following.

5.17. Theorem (extreme value theorem). A continuous function f : K → R
on a nonempty compact subset K of R has a maximum and a minimum
value.

Proof. By Theorem 5.16, f(K) is compact, so f(K) has a largest and a
smallest element by Exercise 4.10. �

The extreme value theorem shows that the problem of maximising or
minimising a continuous function on a compact set always has a solution.
Finding the maximum and minimum values and identifying some or all of the
points at which they are taken is another matter, which normally requires
differentiation and will be studied in Chapter 6.

5.18. Definition. A function f : A → R is uniformly continuous on A if
for every � > 0, there is δ > 0 such that if x, y ∈ A and |x − y| < δ, then
|f(x)− f(y)| < �.

5.19. Example. (a) The function f : R → R, f(x) = 3x + 2, is uniformly
continuous. Namely, since |f(x)− f(y)| = 3|x− y|, given � > 0, we can take
δ = �/3.

(b) The continuous function g : R → R, g(x) = x2, is not uniformly
continuous. To see this, we first need to negate the definition of uniform
continuity. A function f : A → R fails to be uniformly continuous on A if
there is � > 0 such that for all δ > 0 there are x, y ∈ A with |x− y| < δ and
|f(x) − f(y)| ≥ �. In other words, there is � > 0 and and sequences (xn),
(yn) in A such that |xn − yn|→ 0 and |f(xn)− f(yn)| ≥ � for all n ∈ N.
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For the function g, perhaps after some experimentation, we come up
with xn = n, yn = n + 1

n . Then |xn − yn| = 1

n → 0 and |g(xn) − g(yn)| =
y2

n − x2
n = 2 + 1

n2 ≥ 2 for all n.

Uniform continuity is stronger than continuity in that, given � > 0, it
requires the existence of a corresponding δ > 0 that works at every point of
the domain. However, if the domain is compact, it turns out that the two
properties are equivalent.

5.20. Theorem. If f : K → R is a continuous function on a compact set
K, then f is uniformly continuous on K.

This result will be used later to show that a continuous function on a
closed and bounded interval is integrable (Theorem 7.7).

Proof. We argue by contradiction. Suppose f is not uniformly continuous.
As we saw in Example 5.19, this means that there is � > 0 and sequences
(xn), (yn) in K with |xn − yn| → 0 and |f(xn) − f(yn)| ≥ � for all n ∈ N.
Since K is compact, there is a convergent subsequence xnk → a ∈ K. Then
ynk = xnk − (xnk − ynk)→ a− 0 = a, so f(xnk)→ f(a) and f(ynk)→ f(a),
but |f(xnk)− f(ynk)| ≥ � for all k ∈ N, which is absurd. �

We now come to the second main theorem of this section.

5.21. Theorem (intermediate value theorem). If f : [a, b] → R is contin-
uous and s is a real number between f(a) and f(b), then there is c ∈ [a, b]
with f(c) = s.

Proof. Say f(a) < s < f(b). Let A = {x ∈ [a, b] : f(x) ≤ s}. Then A is
nonempty (since a ∈ A) and bounded above (by b), so c = supA exists and
c ∈ [a, b]. We claim that f(c) = s. First, there are xn ∈ A with xn → c.
Since f(xn) ≤ s for all n, and f(xn) → f(c), we have f(c) ≤ s. Second,
there is a sequence (yn) in [a, b] with yn → c and yn /∈ A, that is, f(yn) > s:
otherwise, A would be a neighbourhood of c, so there would be numbers in
A larger than c. Hence f(c) = lim f(yn) ≥ s. �
5.22. Example. (a) The intermediate value theorem can be used to approx-
imately locate roots of polynomials. Consider for example the polynomial
P (x) = x7−3x2 +1. Since P (0) = 1 and P (1) = −1, the intermediate value
theorem applied to P as a continuous function [0, 1]→ R shows that P has
a root in (0, 1). Since P (1

2
) > 0, there is even a root in (1

2
, 1). Continuing

in this manner, we can locate the roots of P as accurately as we wish.
(b) Another application of the intermediate value theorem is the follow-

ing fixed point theorem. Let f : [0, 1] → [0, 1] be continuous. Then f has a
fixed point, that is, there is p ∈ [0, 1] such that f(p) = p.
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Namely, consider the continuous function g : [0, 1]→ R, g(x) = f(x)−x.
Then g(0) = f(0) ≥ 0 and g(1) = f(1) − 1 ≤ 0, so g has a zero by the
intermediate value theorem. A zero of g is nothing but a fixed point of f .

The intermediate value theorem can be rephrased as follows.

5.23. Corollary. If f : A→ R is continuous and I ⊂ A is an interval, then
f(I) is an interval.

Proof. Suppose r < s < t with r, t ∈ f(I). We need to show that s ∈ f(I)
(recall Remark 1.11). There are a, b ∈ I with f(a) = r, f(b) = t. Say
a < b. Theorem 5.21 applied to f restricted to [a, b] shows that there is
c ∈ [a, b] ⊂ I with f(c) = s, so s ∈ f(I). �

The extreme value theorem says that a continuous function maps a com-
pact set onto a compact set. The intermediate value theorem says that a
continuous function maps an interval onto an interval. Together they imply
the final result of the section.

5.24. Corollary. A continuous function maps a compact interval onto a
compact interval.

Exercise 5.5. Does a continuous function always map an open interval
onto an open interval? What about closed intervals? What about bounded
intervals?

5.4. Monotone functions

5.25. Definition. A function f : A→ R is:

• increasing if f(x) ≤ f(y) whenever x < y in A,
• strictly increasing if f(x) < f(y) whenever x < y in A,
• decreasing if f(x) ≥ f(y) whenever x < y in A,
• strictly decreasing if f(x) > f(y) whenever x < y in A,
• monotone if it is increasing or decreasing,
• strictly monotone if it is strictly increasing or strictly decreasing.

The next result is an application of the intermediate value theorem.
The first part illustrates the fact that proving the obvious can be hard.
The second part will be used later to prove the inverse function theorem
(Theorem 6.7).

5.26. Theorem. Let I be an interval and f : I → R be a continuous
injection. Then:

(1) f is strictly monotone.
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(2) The inverse function f−1 : f(I)→ I is continuous.

Exercise 5.6. Show that both parts of the theorem can fail if the domain
of the function is not an interval.

Exercise 5.7. Show that the inverse of a strictly increasing function is
strictly increasing, and the inverse of a strictly decreasing function is strictly
decreasing.

Proof of Theorem 5.26. (1) If a < b < c are points in I and f(a) <
f(b) > f(c), take a number t such that f(a) ≤ t < f(b) > t ≥ f(c), for
example t = max{f(a), f(c)}, and apply the intermediate value theorem
to f on [a, b] and on [b, c] to conclude that t is a value of f on both of
these intervals, contradicting injectivity of f . Similarly, we cannot have
f(a) > f(b) < f(c).

This shows that if x ∈ I and u < x < v, then either f(u) < f(x) < f(v)
or f(u) > f(x) > f(v). If there is u1 < x with f(u1) < f(x), and u2 < x
with f(u2) > f(x), then either u1 < u2 < x and f(u1) < f(u2) > f(x), or
u2 < u1 < x and f(u2) > f(u1) < f(x), which we have just shown to be
impossible.

We conclude that if x ∈ I, then either (A) f(u) < f(x) < f(v) for all
u < x < v in I, or (B) f(u) > f(x) > f(v) for all u < x < v in I. We need
to prove that the same of these two alternatives holds for all x. Suppose
this was not the case. Then there would be x1 for which (A) holds and x2

for which (B) holds. Say x1 < x2; the case x2 < x1 is analogous. Then
f(x1) < f(x2) since x1 satisfies (A), and f(x1) > f(x2) since x2 satisfies
(B), which is absurd.

In conclusion, we have shown that either (A) holds for all x ∈ I, in which
case f is strictly increasing, or (B) holds for all x ∈ I, in which case f is
strictly decreasing.

(2) Say f is strictly increasing. Let c ∈ I and � > 0. To show that f−1

is continuous at f(c), we need δ > 0 such that if y ∈ f(I) and |y−f(c)| < δ,
then |f−1(y)−c| < �, that is (writing y = f(x)), if x ∈ I and |f(x)−f(c)| <
δ, then |x− c| < �.

Suppose c is not the right end point of I (if I has one), that is, f(c)
is not the right end point of the image f(I), which is an interval by the
intermediate value theorem. After replacing � by a smaller positive number
if necessary, we have [c, c+�] ⊂ I. Let δ = f(c+�)−f(c) > 0. Let x ∈ I with
0 < f(x) − f(c) < δ. Then f(x) ∈ (f(c), f(c + �)). The intermediate value
theorem applied to f restricted to [c, c + �] shows that there is t ∈ (c, c + �)
with f(t) = f(x). Since f is injective, x = t, so x ∈ (c, c + �). If c is the left
end point of I, this shows that f−1 is continuous at f(c).
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If c is not the left end point of I, we similarly get δ > 0 such that if x ∈ I
has 0 < f(c) − f(x) < δ, then x ∈ (c − �, c). This alone proves continuity
of f−1 at f(c) if c is the right end point of I. If c is not an end point of I,
then the two arguments together show that f−1 is continuous at f(c). �

More exercises

5.8. Using the �-δ-definition of the limit of a function, show that:
(a) lim

x→1

(2x− 1) = 1.

(b) lim
x→1

(x2 − 1) = 0.

5.9. Let f : R → R be a continuous function. Show that the set f−1(0) =
{x ∈ R : f(x) = 0} is closed.

5.10. Let D be a dense subset of R. If f, g : R → R are continuous functions
and f = g on D, prove that f = g on R.

5.11. (a) Fix a ∈ R and define f : R → R, f(x) = |x− a|. Prove that f is
continuous at every c ∈ R.

(b) Let K be a nonempty compact subset of R and let a ∈ R. Prove
that K has a closest point to a, that is, prove that there is p ∈ K with
|p− a| ≤ |q − a| for all q ∈ K.

5.12. A function f : A → R is said to be bounded, bounded above, or
bounded below if its image f(A) is bounded, bounded above, or bounded
below, respectively, as a subset of R.

(a) Show that if f is continuous at c ∈ A ⊂ R, then there is a neigh-
bourhood U of c such that f is bounded on U ∩A.

(b) Show that if A is compact and f is continuous, then f is bounded.

5.13. Show that the function g : (0, 1) → R, x �→ sin 1

x , is not uniformly
continuous.

5.14. Let f, g : R → R be uniformly continuous functions. Prove that the
composition g ◦ f : R → R is uniformly continuous.

5.15. Let f : A → R, A ⊂ R, be a uniformly continuous function. Show
that if (xn) is a Cauchy sequence in A, then the image sequence (f(xn)) is
also Cauchy. What if f is merely continuous?

5.16. Let g : [0, 1]→ [0, 1] be continuous. Show that there is a ∈ [0, 1] such
that g(a) + 2a5 = 3a7.

5.17. (a) Let n ∈ N. Use the intermediate value theorem to show that
the function (0,∞) → (0,∞), x �→ xn, is surjective. Conclude that every
positive real number has a unique positive nth root (see Remark 2.11).
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(b) Let n ∈ N be odd. Show that the function R → R, x �→ xn, is
bijective. Thus every real number has a unique nth root.

5.18. Let g : R → R be a continuous function such that g(0) > g(1) < g(2).
Show that g is not injective.

5.19. What can you say about a continuous function R → R that takes only
rational values?

5.20. Show that the function f : [0, 1] → R, f(x) =
�

0 if x = 0,
sin 1

x if x > 0,
satisfies the intermediate value theorem even though it is not continuous.

5.21. Let f : [0, 1] → [0, 1] be continuous. We have seen how to use the
intermediate value theorem to prove that f has a fixed point (Example 5.22
(b)). Here is a method for finding a fixed point (or approximating one as
closely as we wish) that sometimes works. Let c be any point in [0, 1].
Recursively define a sequence (xn) in [0, 1] by the equations

x1 = c, xn+1 = f(xn).

Show that if (xn) converges to a limit p, then f(p) = p.

5.22. In this exercise we introduce three variants of Definition 5.1.
(a) Let f : (a,∞)→ R be a function. Say that f(x)→ L ∈ R as x→∞

if for every � > 0, there is s > a such that if x > s, then |f(x) − L| < �.
Prove that 1/x→ 0 as x→∞.

(b) Let f : (a,∞) → R be a function. Say that f(x) →∞ as x →∞ if
for every t ∈ R, there is s > a such that if x > s, then f(x) > t. Prove that√

x→∞ as x→∞.
(c) Let f : (a, b) \ {c} → R be a function, where a < c < b. Say that

f(x) →∞ as x → c if for every t ∈ R, there is δ > 0 such that if x ∈ (a, b)
and 0 < |x− c| < δ, then f(x) > t. Prove that 1/x2 →∞ as x→ 0.

5.23. Let g : A → R be a function on A ⊂ R (not necessarily continuous).
We say that g is locally bounded if every a ∈ A has a neighbourhood U
such that g is bounded on U ∩A. Clearly, if g is bounded, then g is locally
bounded. Prove that if K ⊂ R is compact, then every locally bounded
function K → R is bounded.

5.24. Let I be an interval. Prove that a monotone function f : I → R has
only countably many discontinuities, that is, the set of all c ∈ I such that f
is not continuous at c is countable. Hint. First show that a discontinuity of
f is a ‘jump’.

5.25. Let C ⊂ [0, 1] be the Cantor set (Exercise 4.12) and consider the

function h : [0, 1] → R, h(x) =
�

1 if x ∈ C,
0 if x /∈ C. Show that h is continuous

at x ∈ [0, 1] if and only if x /∈ C.



Chapter 6

Differentiation

6.1. Differentiable functions

6.1. Definition. Let f : I → R be a function defined on a nondegenerate
interval I. (More generally, we could take I to be any nonempty subset of
R without isolated points.) We say that f is differentiable at a ∈ I if the
limit

f �(a) = lim
x→a

f(x)− f(a)
x− a

exists. We call f �(a) the derivative of f at a. We say that f is differentiable

if f is differentiable at every point of I. Then the derivative of f is the
function f � : I → R that maps each a ∈ I to f �(a). If f � is continuous, then
we say that f is continuously differentiable.

6.2. Example. (a) A constant function is differentiable at every point, with
derivative zero.

(b) Let n ∈ N. For the monomial function f : R → R, f(x) = xn, we
have

f(x)− f(a)
x− a

= xn−1 + axn−2 + · · · + an−2x + an−1 → nan−1

as x→ a, so f is differentiable with f �(x) = nxn−1 for all x ∈ R.
(c) The absolute value function g : R → R, g(x) = |x|, is not dif-

ferentiable at 0. Namely, if xn → 0 and xn > 0 for all n ∈ N, then
g(xn)/xn = 1 → 1, whereas if xn → 0 and xn < 0 for all n ∈ N, then
g(xn)/xn = −1→ −1. Thus g(x)/x does not have a limit as x→ 0.
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(d) This example shows that the derivative of a differentiable function
need not be continuous. The function h : R → R,

h(x) =
�

x2 cos 1

x if x �= 0,
0 if x = 0,

is differentiable on R. Namely, for x �= 0, h(x)/x = x cos 1

x → 0 as x→ 0 by
the squeeze theorem, so

h�(x) =
�

2x cos 1

x + sin 1

x if x �= 0,
0 if x = 0,

Note that h� is not continuous at 0: lim
x→0

h�(x) does not exist.

6.3. Proposition. If f : I → R is differentiable at a ∈ I, then f is contin-
uous at a.

Proof. We have

f(x)− f(a) =
f(x)− f(a)

x− a
(x− a)→ f �(a) · 0 = 0

as x→ a. �

The next three theorems are the primary tools that allow us to calculate
new derivatives from old.

6.4. Theorem. Let f, g : I → R be differentiable at a ∈ I. Then:

(1) f + g is differentiable at a, and (f + g)�(a) = f �(a) + g�(a).
(2) kf is differentiable at a for every k ∈ R, and (kf)�(a) = kf �(a).
(3) Product rule: fg is differentiable at a, and

(fg)�(a) = f �(a)g(a) + f(a)g�(a).

(4) Quotient rule: f/g is differentiable at a if g(a) �= 0, and

(f/g)�(a) =
f �(a)g(a)− f(a)g�(a)

g(a)2
.

Note that since g is differentiable and hence continuous at a, if g(a) �= 0,
there is a neighbourhood U of a such that g(x) �= 0 and f(x)/g(x) is defined
for all x ∈ U ∩ I.

Proof. We prove (3) and leave the other parts as an exercise. We have
f(x)g(x)− f(a)g(a)

x− a
=

f(x)− f(a)
x− a

g(x) +
g(x)− g(a)

x− a
f(a)

→ f �(a)g(a) + f(a)g�(a)

as x→ a, using continuity of g at a. �
Exercise 6.1. Finish the proof of Theorem 6.4.
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The next result is analogous to Corollary 5.13.

6.5. Corollary. Rational functions are differentiable. In particular, poly-
nomial functions are differentiable.

6.6. Theorem (chain rule). Let I and J be intervals and f : I → R and
g : J → R be functions such that f(I) ⊂ J , so the composition g ◦f : I → R
is defined. If f is differentiable at a ∈ I and g is differentiable at f(a) ∈ J ,
then g ◦ f is differentiable at a and

(g ◦ f)�(a) = g�(f(a))f �(a).

Proof. For x ∈ I, x �= a, let u(x) =
f(x)− f(a)

x− a
− f �(a). Then u(x) → 0

as x→ a. Define u(a) = 0. Then

f(x)− f(a) = (x− a)(f �(a) + u(x))

for all x ∈ I. For y ∈ J , y �= f(a), let v(y) =
g(y)− g(f(a))

y − f(a)
− g�(f(a)).

Then v(y)→ 0 as y → f(a). Define v(f(a)) = 0. Then

g(y)− g(f(a)) = (y − f(a))(g�(f(a)) + v(y))

for all y ∈ J . Hence, for all x ∈ I,

(g ◦ f)(x)− (g ◦ f)(a) = (f(x)− f(a))
�
g�(f(a)) + v(f(x))

�

= (x− a)(f �(a) + u(x))
�
g�(f(a)) + v(f(x))

�
,

so for x �= a,
(g ◦ f)(x)− (g ◦ f)(a)

x− a
= (f �(a) + u(x))

�
g�(f(a)) + v(f(x))

�
.

As x → a, f(x) → f(a) by Proposition 6.3, so v(f(x)) → 0, and the right-
hand side goes to f �(a)g�(f(a)). �

6.7. Theorem (inverse function theorem). Let I ⊂ R be an interval and
f : I → R be a continuous injection with inverse f−1 : f(I) → I. If
f is differentiable at a ∈ I with f �(a) �= 0, then f−1 is differentiable at
f(a) ∈ f(I) with

(f−1)�(f(a)) =
1

f �(a)
.

Proof. Let (yn) be a sequence in f(I) \ {f(a)} with yn → f(a). Let xn =
f−1(yn) ∈ I. By Theorem 5.26, f−1 is continuous, so xn → a. Then

f−1(yn)− f−1(f(a))
yn − f(a)

=
xn − a

f(xn)− f(a)
→ 1

f �(a)
as n→∞. �
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Exercise 6.2. In Theorem 6.7, could f−1 be differentiable at f(a) if f �(a)
was 0?

6.8. Example. Let n ∈ N and I = (0,∞). By Example 6.2, the function
f : I → I, f(x) = xn, is differentiable with f �(x) = nxn−1 �= 0 for all x ∈ I.
Also, f is bijective by Exercise 5.17. Hence, by the inverse function theorem,
the nth root function f−1 : I → I, x �→ x1/n, is differentiable with

(f−1)�(x) =
1

f �(f−1(x))
=

1
n(x1/n)n−1

= 1

nx
1
n−1

for all x > 0.

The relevance of the derivative to optimisation problems is expressed by
the following result.

6.9. Theorem. Suppose a function f : (a, b) → R has a maximum or a
minimum at a point c ∈ (a, b). If f is differentiable at c, then f �(c) = 0.

Why is it important that the domain of the function be an open interval?

Proof. Say f has a maximum at c, that is, f(c) ≥ f(x) for all x ∈ (a, b) (the
case of a minimum is analogous). Take a sequence (xn) in (a, b) with xn → c
such that xn > c for all n ∈ N. Then xn − c > 0 and f(xn) − f(c) ≤ 0, so
f(xn)− f(c)

xn − c
≤ 0 for all n ∈ N, and

f �(c) = lim
n→∞

f(xn)− f(c)
xn − c

≤ 0.

If we choose (xn) such that xn < c for all n ∈ N, then we conclude in a
similar way that f �(c) ≥ 0. Therefore f �(c) = 0. �
6.10. Definition. A critical point of a function f is a point c with f �(c) = 0.

6.11. Remark. Let f : [a, b] → R be differentiable. Since f is continuous
and [a, b] is compact, the extreme value theorem (Theorem 5.17) says that f
has a maximum and a minimum on [a, b]. Theorem 6.9 drastically narrows
the search for the extreme points of f , that is, the points at which f assumes
its maximum or its minimum. The theorem says that the extreme points lie
among the critical points of f and the end points a and b.

We end this section by using Theorem 6.9 to show that although deriva-
tives need not be continuous (Example 6.2 (d)), they satisfy the intermediate
value theorem (Theorem 5.21).

6.12. Theorem (Darboux’s theorem). If f : [a, b]→ R is differentiable and
s is a real number between f �(a) and f �(b), then there is c ∈ [a, b] with
f �(c) = s.
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Proof. Say f �(a) < s < f �(b). Define g : [a, b]→ R, g(x) = sx−f(x). Then
g is differentiable and g�(x) = s− f �(x). We need a zero of g� in [a, b]. Since
g is continuous, g has a maximum on [a, b] (Theorem 5.17). It cannot be at
a since g�(a) > 0 (see the proof of Theorem 6.9) and it cannot be at b since
g�(b) < 0. Thus g has a maximum at a point c ∈ (a, b), and then g�(c) = 0
by Theorem 6.9. �

6.2. The mean value theorem

6.13. Theorem (Rolle’s theorem). Let f : [a, b] → R be continuous on
[a, b] and differentiable on (a, b). If f(a) = f(b), then there is c ∈ (a, b) with
f �(c) = 0.

Proof. By the extreme value theorem, f has a maximum and a minimum
on [a, b]. If both occur at the end points, then f is constant and c can be any
point in (a, b). Otherwise, a maximum or a minimum occurs at an interior
point c ∈ (a, b). Then f �(c) = 0 by Theorem 6.9. �

The following result is sometimes called the fundamental theorem of
differential calculus. It is, at this point, easy to prove, but it has many
important applications.

6.14. Theorem (mean value theorem). Let f : [a, b]→ R be continuous on
[a, b] and differentiable on (a, b). Then there is c ∈ (a, b) with

f �(c) =
f(b)− f(a)

b− a
.

Proof. Apply Rolle’s theorem to the function

x �→ f(x)− f(b)− f(a)
b− a

(x− a). �

6.15. Corollary. Let I be an interval and f : I → R be differentiable.

(1) f is increasing on I if and only if f �(x) ≥ 0 for all x ∈ I.
(2) f is decreasing on I if and only if f �(x) ≤ 0 for all x ∈ I.
(3) f is constant on I if and only if f �(x) = 0 for all x ∈ I.

Proof. We prove (1). The proof of (2) is analogous, and (3) is obtained by
combining (1) and (2).

⇒ The proof is similar to the proof of Theorem 6.9.
⇐ Suppose f �(x) ≥ 0 for all x ∈ I. Let a, b ∈ I, a < b. By the

mean value theorem applied to f restricted to [a, b], there is c ∈ (a, b) with
f(b) − f(a) = f �(c)(b − a). By assumption, f �(c) ≥ 0, so f(b) − f(a) ≥ 0.
This shows that f is increasing. �
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Exercise 6.3. Show that if I is an interval and f : I → R is differentiable
with f �(x) > 0 for all x ∈ I, then f is strictly increasing. Show that the
converse may fail.

6.16. Corollary. If f, g are differentiable functions on an interval I, and
f � = g� on I, then f and g differ by a constant.

Proof. Apply Corollary 6.15 (3) to f − g. �
6.17. Corollary (generalised mean value theorem). If f, g : [a, b] → R are
continuous on [a, b] and differentiable on (a, b), then there is c ∈ (a, b) such
that

(f(b)− f(a))g�(c) = (g(b)− g(a))f �(c).

Proof. Apply the mean value theorem to the function

x �→ (f(b)− f(a))g(x)− (g(b)− g(a))f(x). �

As an application of the generalised mean value theorem, we prove one
version of L’Hôpital’s rule.

6.18. Theorem (L’Hôpital’s rule). If f and g are continuous on an interval
I and differentiable on I \ {a} for some a ∈ I, and f(a) = g(a) = 0, then

lim
x→a

f �(x)
g�(x)

= L implies lim
x→a

f(x)
g(x)

= L.

Proof. It is implicit in the statement of the theorem that g�(x) �= 0 for all
x ∈ J ∩ I \ {a} for some open interval J containing a. It follows by Rolle’s
theorem that g(x) �= g(a) = 0 for all x ∈ J ∩ I \ {a}.

Let (xn) be a sequence in J ∩ I \ {a} with xn → a. For each n ∈ N,
we apply Corollary 6.17 to f and g restricted to the interval between a and
xn (note that xn may be smaller or larger than a). We obtain tn strictly
between a and xn with (f(xn)− f(a))g�(tn) = (g(xn)− g(a))f �(tn), that is,

f(xn)
g(xn)

=
f �(tn)
g�(tn)

for each n ∈ N (note that the denominators are not 0). If n → ∞, then
xn → a, so tn → a, and by assumption, f(xn)/g(xn)→ L. �

More exercises

6.4. Prove directly from the definition of the derivative that the derivative
of the function x �→ 1/x2 at c �= 0 is −2/c3.

6.5. Let g : R → R be a function. Suppose g is differentiable at 0 with
g�(0) > 0. Show that there is δ > 0 such that if 0 < x < δ, then g(x) > g(0).



More exercises 61

6.6. Let a ∈ R and define f : R → R, f(x) =
�

a if x < 0,
x if x ≥ 0.

For which

values of a is there a differentiable function g : R → R with g� = f?

6.7. Let A ⊂ R be symmetric about 0, that is, x ∈ A if and only if −x ∈ A.
A function f : A → R is called even if f(−x) = f(x) for all x ∈ A, and odd

if f(−x) = −f(x) for all x ∈ A.
Suppose A is an interval and f is differentiable. Prove that if f is even,

then f � is odd. Prove that if f is odd, then f � is even.

6.8. (a) Consider the function f : R → R, f(x) = x3 + x + 1. Prove that f
is injective.

(b) Explain why the inverse function f−1 : f(R) → R is differentiable.
Calculate (f−1)�(3).

6.9. Let f : R → R be a differentiable function whose derivative is bounded,
that is, there is M > 0 such that |f �(x)| ≤ M for all x ∈ R. Show that f is
uniformly continuous.

6.10. Show that the polynomial x7 + x5 + x3 + x + 1000 has exactly one
root.

6.11. Let f : R → R be differentiable with f �(x) ≥ 0 for all x ∈ R. Show
that if f is not constant on any nonempty open interval, then f is strictly
increasing.

6.12. Let I be an interval and f : I → R be differentiable. Show that if f
has two distinct fixed points on I, then there is c ∈ I with f �(c) = 1.

6.13. Use Rolle’s theorem and induction to show that a polynomial of degree
n has at most n roots.

6.14. Define a function g : R → R by the formula

g(x) =

� x

2
+ x2 sin

1
x

if x �= 0,

0 if x = 0.

Show that g is differentiable on R, g�(0) > 0, but g is not increasing on any
open interval containing 0.

6.15. Prove that if f : [0,∞)→ R is differentiable, f(0) = 0, and f �(x) ≥ 1
for every x > 0, then f(x) ≥ x for every x > 0.

6.16. A real-valued function f on an open interval I is said to be convex if
for all x, y ∈ I and t ∈ (0, 1),

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y).

This means that the line segment joining any two points on the graph of f
lies on or above the graph. We say that f is concave if −f is convex.
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(a) Suppose f is differentiable. Prove that f is convex if and only if f �

is increasing.
(b) Suppose f is twice differentiable. Prove that f is convex if and only

if f ��(x) ≥ 0 for all x ∈ I.
(c) Let u : R → R be convex, increasing, and twice differentiable. Show

that if f is convex and twice differentiable, then u ◦ f is convex.



Chapter 7

Integration

7.1. The Riemann integral

7.1. Definition. A partition P of a compact interval [a, b], where a < b, is
a finite subset of [a, b] including the end points, with elements

a = x0 < x1 < · · · < xn = b.

A partition Q of [a, b] is a refinement of P if P ⊂ Q.
Let f : [a, b] → R be a bounded function. For a partition P of [a, b] as

above, let

mk = inf{f(x) : x ∈ [xk−1, xk]},
Mk = sup{f(x) : x ∈ [xk−1, xk]}

for k = 1, . . . , n. The lower sum of f with respect to P is

L(f, P ) =
n�

k=1

mk(xk − xk−1).

The upper sum of f with respect to P is

U(f, P ) =
n�

k=1

Mk(xk − xk−1).

7.2. Lemma. Let f : [a, b]→ R be a bounded function.

(1) For every partition P of [a, b], L(f, P ) ≤ U(f, P ).
(2) If Q is a refinement of P , then L(f, P ) ≤ L(f, Q) and U(f, P ) ≥

U(f, Q).
(3) If P1 and P2 are partitions of [a, b], then L(f, P1) ≤ U(f, P2).

63
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Proof. (1) follows immediately from mk ≤Mk.
(2) Transform P to Q by adding one point at a time. If a new point

is added to P , say y between xk−1 and xk, then the term mk(xk − xk−1)
in L(f, P ) is replaced by m�(y − xk−1) + m��(xk − y), where m� = inf

[xk−1,y]

f

and m�� = inf
[y,xk]

f . Note that m�, m�� ≥ mk (the infimum of a smaller set is

larger). Argue similarly for upper sums.
(3) follows from (1) and (2) using the common refinement P1 ∪P2 of P1

and P2. �

7.3. Definition. A bounded function f : [a, b] → R is integrable (or Rie-

mann integrable) if its lower integral

L(f) = sup{L(f, P ) : P is a partition of [a, b]}

equals its upper integral

U(f) = inf{U(f, P ) : P is a partition of [a, b]}.

The common value of U(f) and L(f) is then called the integral of f over

[a, b], and denoted
� b
a f or

� b
a f(x)dx.

Roughly speaking, integrability of f means that there is no gap between
the lower sums of f and the upper sums of f . The unique number that
separates all the lower sums from all the upper sums is the integral of f . In
view of Lemma 7.2, the following characterisation is immediate.

7.4. Lemma. A bounded function f : [a, b]→ R is integrable if and only if
for every � > 0, there is a partition P of [a, b] such that U(f, P )−L(f, P ) < �.

7.5. Example. (a) Let f : [a, b] → R be a constant function, say f(x) = c
for all x ∈ [a, b]. For every partition P of [a, b], mk = Mk = c, so L(f, P ) =
U(f, P ) = c(b− a). Hence f is integrable with

� b
a f =

� b
a c dx = c(b− a).

(b) Consider the function f : [0, 1]→ R, f(x) = x2. For n ∈ N, take the
partition Pn = {0, 1

n , 2

n , . . . , 1} of [0, 1]. Then Mk = (k/n)2, so

U(f, Pn) =
n�

k=1

�
k

n

�2 1
n

=
1
n3

n�

k=1

k2 =
1
n3

1
6
n(n + 1)(2n + 1)→ 1

3

as n → ∞. A similar computation shows that L(f, Pn) → 1

3
as n → ∞.

This shows that f is integrable with
�

1

0
f =

�
1

0
x2 dx = 1

3
.

The next two theorems provide a big supply of integrable functions.

7.6. Theorem. A monotone function f : [a, b]→ R is integrable.
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Proof. First note that since f is monotone, it is bounded: all its values lie
between f(a) and f(b). Say f is increasing. Let � > 0 and choose δ > 0
such that δ(f(b)− f(a)) < �. Let P be a partition of [a, b] fine enough that
xk − xk−1 < δ for k = 1, . . . , n. Then

U(f, P )− L(f, P ) =
n�

k=1

(f(xk)− f(xk−1))(xk − xk−1)

≤ δ
n�

k=1

(f(xk)− f(xk−1)) = δ(f(b)− f(a)) < �.

By Lemma 7.4, f is integrable. �

7.7. Theorem. A continuous function f : [a, b]→ R is integrable.

Proof. By the extreme value theorem (Theorem 5.17), since [a, b] is compact
and f is continuous, f is bounded. Let � > 0. Since f is uniformly continuous
(Theorem 5.20), there is δ > 0 such that if |x− y| < δ, then |f(x)− f(y)| <

�

b− a
. Let P be a partition of [a, b] fine enough that xk − xk−1 < δ for

k = 1, . . . , n. Again by the extreme value theorem, f has a maximum and
a minimum on [xk−1, xk], say Mk = f(yk), mk = f(zk) for some yk, zk ∈
[xk−1, xk]. Then |yk − zk| < δ, so Mk −mk <

�

b− a
. Thus

U(f, P )− L(f, P ) =
n�

k=1

(Mk −mk)(xk − xk−1) <
�

b− a
(b− a) = �.

By Lemma 7.4, f is integrable. �

7.8. Example. This example shows that a discontinuous function may or
may not be integrable.

(a) Let f : [−1, 1] → R equal 1 at 0 and equal 0 elsewhere. For n ∈ N,
consider the partition Pn = {−1,− 1

2n , 1

2n , 1} of [−1, 1]. Then L(f, Pn) = 0
and U(f, Pn) = 1

n → 0 as n→∞. Thus f is integrable with
�

1

−1
f = 0, even

though f is discontinuous.
(b) Let f : [0, 1] → R equal 1 on the rationals in [0, 1] and 0 on the

irrationals. By density of Q and R \ Q in R, for every partition P of [0, 1],
we have mk = 0 and Mk = 1 for all k, so L(f, P ) = 0 and U(f, P ) = 1.
Thus f is not integrable.

7.9. Theorem. Let f : [a, b] → R be bounded and c ∈ (a, b). Then f is
integrable on [a, b] if and only if f is integrable on [a, c] and on [c, b], and
then � b

a
f =

� c

a
f +

� b

c
f.
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Exercise 7.1. Prove Theorem 7.9.

7.10. Remark. If f is integrable on [a, b], we define
� a

b
f = −

� b

a
f.

Also, for c ∈ [a, b], we define
� c
c f = 0.

Then, if I is a compact interval and f : I → R is integrable,
� b

a
f +

� c

b
f =

� c

a
f

for any three points a, b, c ∈ I. We leave the verification as an exercise.

7.11. Theorem. Suppose f and g are integrable on [a, b]. Then:

(1) f + g is integrable on [a, b] with
� b
a (f + g) =

� b
a f +

� b
a g.

(2) For every k ∈ R, kf is integrable on [a, b] with
� b
a (kf) = k

� b
a f .

(3) If f ≤ g on [a, b], then
� b
a f ≤

� b
a g.

(4) |f | is integrable on [a, b] and |
� b
a f | ≤

� b
a |f |.

Proof. The tricky parts are (1) and (4). We leave (2) and (3) as exercises.
(1) The proof hinges on the fact that for any A ⊂ [a, b],

inf
A

f + inf
A

g ≤ inf
A

(f + g), sup
A

(f + g) ≤ sup
A

f + sup
A

g.

Thus, for any partition P of [a, b],

L(f, P ) + L(g, P ) ≤ L(f + g, P ), U(f + g, P ) ≤ U(f, P ) + U(g, P ).

Take � > 0. By definition of the upper integral, there are partitions P1 and
P2 of [a, b] such that

U(f, P1) ≤ U(f) + �/2, U(g, P2) ≤ U(g) + �/2,

so

U(f + g) ≤ U(f + g, P1 ∪ P2) ≤ U(f, P1 ∪ P2) + U(g, P1 ∪ P2)
≤ U(f, P1) + U(g, P2) ≤ U(f) + U(g) + �.

Similarly,
L(f + g) ≥ L(f) + L(g)− �,

so
L(f) + L(g)− � ≤ L(f + g) ≤ U(f + g) ≤ U(f) + U(g) + �.

Since this holds for every � > 0,

L(f) + L(g) ≤ L(f + g) ≤ U(f + g) ≤ U(f) + U(g).
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Finally, integrability of f and g (which we have not used so far) implies that
the smallest and the largest of these four numbers are equal, so all four are
equal, and equal to

� b
a f +

� b
a g.

(4) Let A ⊂ [a, b]. For x, y ∈ A, by the triangle inequality,

|f(x)|− |f(y)| ≤ |f(x)− f(y)|
= f(x)− f(y) or f(y)− f(x) ≤ sup

A
f − inf

A
f.

Hence, for each y ∈ A,

|f(x)| ≤ sup
A

f − inf
A

f + |f(y)| for all x ∈ A,

so, taking the supremum over x ∈ A,

sup
A

|f | ≤ sup
A

f − inf
A

f + |f(y)|,

and
sup
A

f − inf
A

f ≥ sup
A

|f |− |f(y)| ≥ sup
A

|f |− inf
A
|f |.

This shows that if P is a partition of [a, b], then

U(|f |, P )− L(|f |, P ) ≤ U(f, P )− L(f, P ).

By the assumption that f is integrable, for every � > 0, there is P with
U(f, P )− L(f, P ) < �, so U(|f |, P )− L(|f |, P ) < �. Hence |f | is integrable.

Now −|f | ≤ f ≤ |f |, so −
� b
a |f | ≤

� b
a f ≤

� b
a |f | by (3), which gives

|
� b
a f | ≤

� b
a |f |. �

Exercise 7.2. Finish the proof of Theorem 7.11.

7.2. The fundamental theorem of calculus

This central theorem says that the operations of differentiation and integra-
tion are, in a sense, inverse to each other.

7.12. Theorem (fundamental theorem of calculus).

(1) If f : [a, b] → R is integrable and F : [a, b] → R is differentiable
with F �(x) = f(x) for all x ∈ [a, b], then

� b

a
f = F (b)− F (a).

(2) Let g : [a, b]→ R be integrable and define

G(x) =
� x

a
g, x ∈ [a, b].

Then G is continuous on [a, b]. If g is continuous at c ∈ [a, b], then
G is differentiable at c and G�(c) = g(c).
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7.13. Definition. In (1) above, F is called an antiderivative of f . In (2),
G is called an indefinite integral of g.

7.14. Remark. We know that not every derivative is continuous (Example
6.2 (d)). Theorem 7.12 says that every continuous function is a derivative.

Proof. (1) Let P be a partition of [a, b]. The mean value theorem applied
to F on [xk−1, xk] yields tk ∈ (xk−1, xk) with

F (xk)− F (xk−1) = F �(tk)(xk − xk−1) = f(tk)(xk − xk−1).

Since mk ≤ f(tk) ≤Mk, we have

L(f, P ) ≤
�

f(tk)(xk − xk−1) ≤ U(f, P ).

The sum is a telescoping sum, equal to F (b)−F (a), so
� b
a f = F (b)−F (a).

(2) Say |g| ≤M on [a, b]. Then, for x, y ∈ [a, b],

|G(x)−G(y)| =
����
� x

a
g −

� y

a
g

���� =
����
� y

x
g

���� ≤
����
� y

x
|g|

���� ≤M |x− y|.

(The outer vertical bars in |
� y
x |g|| are needed in case x > y.) This shows

that G is uniformly continuous on [a, b] (given � > 0, take δ = �/M).
Now suppose g is continuous at c ∈ [a, b]. For x �= c,

g(c) =
1

x− c

� x

c
g(c) dt

and
G(x)−G(c)

x− c
=

1
x− c

� x

c
g(t) dt.

Let � > 0 and find δ > 0 such that |g(t) − g(c)| < � if |t − c| < δ. Then, if
0 < |x− c| < δ,

����
G(x)−G(c)

x− c
− g(c)

���� =
����

1
x− c

� x

c

�
g(t)− g(c)

�
dt

����

≤ 1
x− c

� x

c
|g(t)− g(c)| dt ≤ �.

This shows that G�(c) = g(c). �
7.15. Remark. Calculating integrals directly from the definition of the
integral is almost never possible in practice. The benefit of being able to
compute integrals using antiderivatives cannot be overestimated.

7.16. Corollary (mean value theorem for integrals). If g : [a, b] → R is
continuous, then there is c ∈ (a, b) such that

� b

a
g = (b− a)g(c).
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Proof. Apply the mean value theorem to the function x �→
� x
a g on [a, b],

which, by the fundamental theorem of calculus, is an antiderivative for g. �

7.3. The natural logarithm and the exponential function

The fundamental theorem of calculus allows us to conveniently and rigor-
ously define some important functions as indefinite integrals. In this section,
we introduce the natural logarithm and its inverse, the exponential function.

7.17. Definition. The natural logarithm (or simply logarithm) is the func-
tion

log : (0,∞)→ R, log x =
� x

1

dt

t
.

By the fundamental theorem of calculus, log is differentiable with log�(x)
= 1/x for all x > 0. In fact, log is the unique antiderivative of the reciprocal
function on (0,∞) that satisfies log 1 = 0. Since log�(x) > 0 for all x > 0, log
is strictly increasing (Exercise 6.3) and hence injective. For n ∈ N, n ≥ 2,

log n =
� n

1

dt

t
=

n�

k=2

� k

k−1

dt

t
≥ 1

2
+

1
3

+ · · · + 1
n

.

Since the harmonic series diverges (Example 3.23), log is unbounded above.
Similarly, for k ∈ N,

� 1
k−1

1
k

dt

t
≥ (k − 1)

�
1

k − 1
− 1

k

�
=

1
k
,

so for n ∈ N, n ≥ 2,

log
1
n
≤ −1

2
− 1

3
− · · ·− 1

n
.

Hence, log is unbounded below as well. Thus, by the intermediate value
theorem, the range of log is R, so log is a bijection (0,∞)→ R.

7.18. Definition. The number e is the unique number with log e = 1.

In the language of group theory, the following result says that the loga-
rithm is a group isomorphism from the multiplicative group of positive real
numbers to the additive group of all real numbers.

7.19. Theorem. For all x, y > 0, log(xy) = log x + log y.

Proof. Fix y > 0 and define f : (0,∞) → R, f(x) = log(xy). Then f is
differentiable with

f �(x) = y log�(xy) = y
1
xy

=
1
x

= log�(x)
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for all x > 0, so by Corollary 6.16, there is c ∈ R with f = log +c. Evaluating
at 1 gives log y = f(1) = log 1 + c = c. �

7.20. Definition. The exponential function exp : R → (0,∞) is the inverse
of log.

Since log is strictly increasing, so is exp (Exercise 5.7). Theorem 7.19
immediately yields

exp(x + y) = (expx)(exp y)

for all x, y ∈ R. This, along with the definition of the number e = exp 1,
gives expn = en for all n ∈ Z. This identity easily extends to rational
exponents and can then be taken as the definition of ex for irrational x.
Subsequently, for a > 0 and x irrational, ax can be defined to be ex log a.

Exercise 7.3. Let c ∈ R and f : (0,∞) → R, f(x) = xc = ec log x. Show
that f �(x) = cxc−1 for all x > 0.

By the inverse function theorem (Theorem 6.7), exp is differentiable on
R with

exp�(x) =
1

log�(expx)
= expx

for all x ∈ R.

7.21. Theorem. The exponential function is the unique differentiable func-
tion f : R → R with f � = f and f(0) = 1.

Proof. Let f be another such function. Then

(f/ exp)� = (f � exp−f exp�)/ exp2 = 0,

so f/ exp is constant. Evaluating at 0 shows that the constant is 1. �

Finally, let us derive an explicit expression for the number e, which
allows us to approximate it as closely as we wish. As n→∞,

log(1 + 1

n)n = n log(1 + 1

n) =
log(1 + 1

n)− log 1
1

n

→ log�(1) = 1

(the first equality follows from Theorem 7.19), so since exp is continuous,

(1 + 1

n)n = exp log(1 + 1

n)n → exp 1 = e.

Thus
e = lim

n→∞
(1 + 1

n)n.
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More exercises

7.4. Prove directly from the definition of the Riemann integral that the
function f : [0, 1]→ R, f(x) = 2x + 1, is integrable with

�
1

0
f = 2.

7.5. Let f(x) = 0 for x ≤ 0 and f(x) = 1 for x > 0. Define F (x) =
� x
0

f ,
x ∈ R. Find a formula for F (x). Where is F continuous? Where is F
differentiable? Where is F �(x) = f(x)?

7.6. Prove each of the following statements about a function f : [a, b] → R
or disprove it by a counterexample.

(a) If |f | is integrable on [a, b], then so is f .

(b) If
� b
a f > 0, then there is an interval [c, d] ⊂ [a, b], c < d, and δ > 0

such that f > δ on [c, d].

(c) If f ≥ 0 on [a, b] and f(c) > 0 for some c ∈ [a, b], then
� b
a f > 0.

(d) If f is continuous, f ≥ 0 on [a, b], and f(c) > 0 for some c ∈ [a, b],
then

� b
a f > 0.

7.7. Let a < c < d < b. Prove that if f : [a, b] → R is integrable, then f is
integrable on [c, d].

7.8. Let f : [a, b] → R be an integrable function and g : R → R be a
continuously differentiable function. Prove that the composition g ◦ f :
[a, b] → R is integrable. Hint. Use the mean value theorem (Theorem 6.14)
to compare U(g ◦ f, P )− L(g ◦ f, P ) and U(f, P )− L(f, P ).

7.9. Let f, g : [a, b]→ R be functions, not necessarily continuous, such that
g is integrable,

� b
a g = 0, and 0 ≤ f(x) ≤ g(x) for all x ∈ [a, b]. Prove that

f is integrable with
� b
a f = 0.

7.10. Let f : [a, b)→ R be a bounded function which is Riemann integrable
on [a, c] whenever a < c < b. Define the function F : [a, b) → R by the
formula F (x) =

� x
a f . Prove that F has a limit at b. The integral (or

improper integral ) of f over [a, b) can be defined to equal this limit. Hint.

Start by showing that if (xn) is a sequence in [a, b) with xn → b, then� � xn

a f
�

is a Cauchy sequence.

7.11. Let f : [0, 1]→ R be continuous and suppose that
� x
0

f =
�

1

x f for all
x ∈ [0, 1]. Show that f(x) = 0 for all x ∈ [0, 1].

7.12. Let f : R → R be a differentiable function such that f �(x) > 0 for all
x ∈ R and f(0) = 0. Show that for all x ∈ R,

� f(x)

0

dt

f �(f−1(t))
= x.
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7.13. Let f, g : [a, b] → R be differentiable functions such that the func-
tions f �g and fg� are integrable (this holds in particular if f � and g� are
continuous). Prove the formula for integration by parts:

� b

a
f �g = f(b)g(b)− f(a)g(a)−

� b

a
fg�.

7.14. Prove the following version of the formula for a change of variables,
also known as substitution. Let f : [c, d]→ R be continuous. Let φ : [a, b]→
[c, d] be continuously differentiable. Then

� φ(b)

φ(a)

f =
� b

a
(f ◦ φ)φ�.

7.15. We have defined log x =
� x
1

dt/t for x > 0. Use substitution to prove
directly from this definition that log(xy) = log x+log y for all x, y > 0. (We
gave a different proof of this important identity in Section 7.3.)

7.16. For each n ∈ N, define γn = 1 + 1

2
+ · · · + 1

n − log n. Prove that
the sequence (γn) converges. Hint. Use the monotone convergence theorem
(Theorem 3.16). The limit γ = lim γn = 0.5772156649 . . . is called Euler’s

constant.

7.17. Let λ : (0,∞) → R be a differentiable function such that λ�(1) = 1
and λ(xy) = λ(x) + λ(y) for all x, y > 0. Show that λ = log.

7.18. (a) Let n ∈ N. Prove that xn/ex → 0 as x → ∞ (see Exercise 5.22).
Hint. Start by observing that if x ≥ m ≥ 1, then log x = log m +

� x
m dt/t ≤

log m + x/m− 1, so log x− x/m is bounded above on [m,∞). Hence xm/ex

is bounded above on [m,∞).
(b) Deduce that for every n ∈ N, (log x)n/x → 0 as x → ∞ and

x(log x)n → 0 as x→ 0.

7.19. (a) Let f : [1,∞) → [0,∞) be decreasing and integrable on [1, n] for
every n ∈ N. Prove that the sequence (

� n
1

f) converges if and only if the

series
∞�

n=1

f(n) converges. This result is known as the integral test. Hint.

Observe that for each n ∈ N, f(n+1) ≤
� n+1

n f ≤ f(n). Use the comparison
test (Proposition 3.26).

(b) Use the integral test to show that
�

1/n diverges and
�

1/n2 con-
verges.

(c) Determine whether the series
∞�

n=2

1
n log n

and
∞�

n=2

1
n(log n)2

converge.

7.20. Show that the function h : [0, 1] → R in Exercise 5.25 is integrable
even though it has uncountably many discontinuities. What is

�
1

0
h?



Chapter 8

Sequences and series of

functions

8.1. Pointwise and uniform convergence

We will consider two notions of convergence for sequences and series of
functions.

8.1. Definition. Suppose that for each n ∈ N we have a function fn : A→
R. The functions are all defined on the same domain A ⊂ R. We say that
the sequence (fn)n∈N converges pointwise on A to a function f : A → R if,
for every x ∈ A, the sequence (fn(x)) of real numbers converges to f(x).

8.2. Example. (a) Let fn : [0, 1]→ R, fn(x) = xn. For each x ∈ [0, 1],

fn(x)→ f(x) =
�

0 if x < 1,
1 if x = 1

as n → ∞. The pointwise limit function f is not continuous, even though
all the functions fn are.

(b) Let gn : R → R, gn(x) = x1+
1

2n−1 = x 2n−1
√

x. For all x ∈ R,

gn(x)→ g(x) =






x · 1 = x if x > 0
0 if x = 0

x · (−1) = −x if x < 0




 = |x|

as n→∞. The pointwise limit function g is not differentiable, even though
all the functions gn are.

73
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(c) Let hn : [0, 1]→ R,

hn(x) =






4n2x if 0 ≤ x ≤ 1

2n ,
−4n2x + 4n if 1

2n ≤ x ≤ 1

n ,
0 if x ≥ 1

n

(draw the graph!). Then hn is integrable and
�

1

0
hn = 1 for each n ∈ N.

For each x ∈ [0, 1], hn(x) → 0 as n → ∞, so hn → 0 pointwise. Thus
lim

n→∞

�
1

0
hn �=

�
1

0
lim

n→∞
hn.

As these examples illustrate, pointwise convergence is too weak to inter-
act well with continuity, differentiability, and integration. The following
stronger notion of convergence has better properties.

8.3. Definition. Let A ⊂ R and fn : A→ R for each n ∈ N. The sequence
(fn) converges uniformly on A to f : A → R if for every � > 0, there is
N ∈ N such that |fn(x)− f(x)| < � for all x ∈ A and all n ≥ N .

Equivalently, for every � > 0, there is N ∈ N such that sup
A

|fn − f | < �

for all n ≥ N , that is, sup
A

|fn − f | → 0 as n → ∞. Or, in geometric terms,

for every � > 0, there is N ∈ N such that the graph of fn lies within the
strip of radius � about the graph of f for all n ≥ N .

Uniform convergence requires N to depend only on �, whereas pointwise
convergence allows N to also depend on the point x ∈ A.

8.4. Example. Consider the sequence of functions fn : [0, 1]→ R, fn(x) =

xn, from Example 8.2 with pointwise limit f : x �→
�

0 if x < 1,
1 if x = 1. The

graph of fn does not lie in the 1

2
-strip about the graph of f for any n, so the

convergence of fn to f is not uniform on [0, 1]. However, for every c ∈ (0, 1),
the convergence is uniform on [0, c] because sup

[0,c]
|fn−f | = cn → 0 as n→∞.

Exercise 8.1. Prove that if fn → f uniformly on A, and each fn is bounded
on A, then f is bounded on A. Show that this may fail if fn → f pointwise.

8.5. Theorem. If fn → f uniformly on A, and each fn is continuous at
c ∈ A, then f is continuous at c.

Proof. Let � > 0. By uniform convergence, there is N ∈ N such that
|fN − f | < �/3 on A. Since fN is continuous at c, there is δ > 0 such that
|fN (x)− fN (c)| < �/3 if x ∈ A and |x− c| < δ, but then

|f(x)− f(c)| ≤ |f(x)− fN (x)| + |fN (x)− fN (c)| + |fN (c)− f(c)|
< �/3 + �/3 + �/3 = �. �
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8.6. Example. (a) Let fn : [0, 1] → R, fn(x) =
nx

1 + nx2
. Then fn is

continuous, and

fn(x)→ f(x) =
�

0 if x = 0,
1/x if 0 < x ≤ 1

as n → ∞, so the pointwise limit function f is not continuous. Hence (fn)
does not converge uniformly on [0, 1].

(b) Let us modify the preceding example and consider gn : [0, 1] → R,
gn(x) =

nx

1 + n2x2
≥ 0. Then gn is continuous and gn → 0 pointwise on

[0, 1]. The pointwise limit function is continuous, so further investigation
is needed to determine whether gn → 0 uniformly. It is easy to find the
maximum of gn on [0, 1]. A simple calculation shows that the only zero of
the derivative g�n on [0, 1] is 1/n, and gn(1/n) = 1/2. The end point values
are gn(0) = 0 and gn(1) = n/(1 + n2). The maximum of gn on [0, 1] is the
largest of these three values, that is, 1/2. Thus sup

[0,1]

|gn| �→ 0, so (gn) does

not converge uniformly.

8.7. Theorem. If fn → f uniformly on [a, b], and each fn is integrable on
[a, b], then f is integrable on [a, b] and

lim
n→∞

� b

a
fn =

� b

a
f.

Proof. Each fn is bounded on [a, b] by assumption (boundedness is part of
the definition of integrability), so f is bounded by Exercise 8.1. Let � > 0.
There is N ∈ N such that |fn−f | <

�

b− a
on [a, b] for all n ≥ N . Since fN is

integrable, there is a partition P of [a, b] such that U(fN , P )−L(fN , P ) < �.
For every x ∈ [a, b],

fN (x)− �

b− a
< f(x) < fN (x) +

�

b− a
,

so
L(fN , P )− � ≤ L(f, P ) ≤ U(f, P ) ≤ U(fN , P ) + �

and
U(f, P )− L(f, P ) ≤ U(fN , P )− L(fN , P ) + 2� < 3�.

By Lemma 7.4, this implies that f is integrable. Finally, for n ≥ N ,
����
� b

a
fn −

� b

a
f

���� ≤
� b

a
|fn − f | ≤

� b

a

�

b− a
= �.

This shows that
� b
a fn →

� b
a f . �
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Theorems 8.5 and 8.7 show that uniform convergence preserves continu-
ity and integrability. Differentiability is more subtle. It will be considered
in Proposition 8.16.

The notions of pointwise and uniform convergence are easily adapted to
series of functions. If fn, n ∈ N, and f are functions on A ⊂ R, we say that
the series

�
fn converges pointwise or uniformly to f on A if the sequence of

partial sums sn = f1 + · · ·+ fn does. Then we write
�

fn = f and we must
be careful to indicate which type of convergence we mean. By Theorem 8.5,
if

�
fn = f uniformly on A, and each fn is continuous on A, then the sum

f is continuous on A.
We conclude this section with a useful test for the uniform convergence

of a series of functions.

8.8. Theorem (Weierstrass M-test). Let A ⊂ R and, for each n ∈ N, let
fn : A→ R be a bounded function, say |fn| ≤Mn on A. If

�
Mn converges,

then
�

fn converges uniformly on A.

Proof. Write sn = f1 + · · · + fn. Let � > 0. Find N ∈ N with
∞�

j=N
Mj < �.

Then, for x ∈ A and m, n ≥ N , say m < n,

|sn(x)− sm(x)| = |fm+1(x) + · · · + fn(x)| ≤Mm+1 + · · · + Mn < �.

This shows that (sn(x)) is a Cauchy sequence, so it converges to a real
number f(x) (Theorem 3.43). Thus we have obtained a pointwise limit
function f for (sn) on A. Finally, to see that sn → f uniformly on A, note
that for every x ∈ A and n ≥ N ,

|sn(x)− f(x)| =
����

∞�

j=n+1

fj(x)
���� ≤

∞�

j=N

Mj < �. �

8.9. Example. Let fn(x) = xn/n! for n ≥ 0 and x ∈ R (recall the con-
vention that 0! = 1). Let c > 0. On [−c, c], |fn| ≤ cn/n!, and

�
cn/n!

converges by the ratio test (Theorem 3.29), so by Theorem 8.8,
�

fn con-
verges uniformly on [−c, c]. Since fn is continuous for each n, we thus obtain

a continuous function R → R, x �→
∞�

n=0

xn

n!
. We shall soon see that this func-

tion is nothing but the exponential function.

8.2. Power series

We like polynomials because they are so easy to work with. However, most
functions are not polynomials. Power series, that is, ‘polynomials with in-
finitely many terms’, form a much bigger class that encompasses most (al-
though not all) commonly used functions. Allowing infinitely many terms
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raises convergence issues that must be addressed. That is the topic of this
section. With a bit of theory under our belts we can work with power series
almost as if they were polynomials.

8.10. Definition. A power series is a series of the form
∞�

n=0

anxn = a0 + a1x + a2x
2 + · · · ,

with coefficients a0, a1, a2, . . . in R.

More generally, one can consider power series of the form
∞�

n=0

an(x−c)n.

The number c is called the centre of the series. To keep the notation simple,
we will restrict ourselves to the case c = 0. Our results can be easily adapted
to the general case.

We will address two fundamental questions about power series.

• For which values of x (besides x = 0) does the power series con-
verge? Can we describe the set of such x?

• On the set of points x at which the series converges, what can we
say about the sum function? It is continuous or even differentiable?

The key to the first question is the following result.

8.11. Theorem. Suppose the power series
�

anxn converges at x0 �= 0.
Then it converges absolutely at every x with |x| < |x0|, and it converges
uniformly on [−c, c] for every c with 0 < c < |x0|.

Proof. Since
�

anxn
0

converges, anxn
0
→ 0 (Proposition 3.24); in particular,

(anxn
0
) is bounded (Theorem 3.8). Find M > 0 such that |anxn

0
| ≤ M for

all n ∈ N. If |x| < |x0|, then

|anxn| = |anxn
0 |

����
x

x0

����
n

≤M

����
x

x0

����
n

.

Since
�

|x/x0|n converges, being a geometric series with |x/x0| < 1, so does�
|anxn| by the comparison test (Proposition 3.26). Also, if 0 < c < |x0|,

then

|anxn| ≤ |an|cn = |anxn
0 |

����
c

x0

����
n

≤M

����
c

x0

����
n

for all x ∈ [−c, c]. Since
�

|c/x0|n converges,
�

anxn converges uniformly
on [−c, c] by the Weierstrass M-test (Theorem 8.8). �

The following consequence is immediate.

8.12. Corollary. For a power series
�

anxn, precisely one of the following
holds.
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(i) The series converges for x = 0 only.
(ii) The series converges absolutely for all x ∈ R.
(iii) There is a real number R > 0, namely

R = sup
�
x ∈ R :

�
anxn converges

�
,

such that
�

anxn converges absolutely for |x| < R and diverges for
|x| > R.

We set R = 0 in case (i) and R = ∞ in case (ii) and call R the radius of

convergence of the power series.
Furthermore, in cases (ii) and (iii), the power series converges uniformly

to a continuous sum function on every compact subset of (−R,R).

8.13. Remark. It follows from Corollary 8.12 that the set of x ∈ R for which
a power series

�
anxn converges is an interval. It is called the interval of

convergence of the power series. In case (i), it is {0}, and in case (ii) R. In
case (iii), it is (−R,R), [−R,R), (−R,R], or [−R,R]. We call (−R,R) the
open interval of convergence.

We have now answered the first fundamental question: the set of points
at which a power series converges is an interval. As for the second question,
we have seen that the sum function is continuous at least on the open interval
of convergence. We now turn to differentiability.

8.14. Theorem. Let the power series
∞�

n=0

anxn have radius of convergence

R ≥ 0. The termwise differentiated series
∞�

n=1

nanxn−1 has the same radius

of convergence. If R > 0, then the sum of
�

anxn is a differentiable function
on (−R,R) and its derivative is the sum of

�
nanxn−1.

Before proving the theorem we record a corollary.

8.15. Corollary. (1) On the open interval of convergence, the sum of a
power series is an infinitely differentiable function.

(2) Let the power series
∞�

n=0

anxn have radius of convergence R > 0. The

termwise integrated series
∞�

n=0

an

n + 1
xn+1 has the same radius of convergence,

and its sum on (−R,R) is an antiderivative for the sum of
�

anxn.

Proof of Theorem 8.14. To show that the series
�

anxn and
�

nanxn−1

have the same radius of convergence, it suffices to prove that if one of them
converges absolutely for |x| < r, then so does the other one. First, suppose
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�
nanxn−1 converges absolutely. Since |anxn| ≤ |x||nanxn−1| for n ≥ 1,�
anxn also converges absolutely by comparison.
Conversely, suppose

�
anxn converges absolutely for |x| < r. Take x

with |x| < r. Choose w ∈ (|x|, r). Since
�

anwn converges, there is M ≥ 0
with |anwn| ≤M for all n ∈ N, so

|nanxn−1| =
����anwn n

w

�
x

w

�n−1
���� ≤

Mn

w

�
|x|
w

�n−1

.

Now
�

n(|x|/w)n−1 converges by the ratio test, so
�

nanxn−1 converges
absolutely by comparison.

Suppose R > 0. Let f be the sum of
∞�

n=0

anxn and g be the sum of
∞�

n=1

nanxn−1 on (−R,R). We need to show that f is differentiable and

f � = g. Let sm(x) =
m�

n=0

anxn and tm(x) =
m�

n=1

nanxn−1. Clearly, s�m = tm

for all m ∈ N. Let 0 < c < R and let I = [−c, c]. By Theorem 8.11, sm → f
and tm → g uniformly on I. The following result completes the proof. �

8.16. Proposition. Let I ⊂ R be an interval and sn : I → R be a dif-
ferentiable function for each n ∈ N such that s�n : I → R is continuous.
Suppose (sn) converges pointwise on I to a limit function f , and (s�n) con-
verges uniformly on I to a limit function g. Then f is differentiable on I
and f � = g.

Proof. Fix a ∈ I. By the fundamental theorem of calculus (Theorem 7.12),
part (1), for every n ∈ N and x ∈ I,

� x
a s�n = sn(x)− sn(a). Letting n→∞,

this yields
� x
a g = f(x) − f(a) by Theorem 8.7. Since g is continuous by

Theorem 8.5, f is differentiable and f � = g by the fundamental theorem of
calculus, part (2). �

8.17. Example. We know that the power series
�

xn/n! sums to a continu-
ous function f on all of R (Example 8.9). By Theorem 8.14, f is differentiable
and its derivative is the sum of the power series obtained by differentiating

∞�

n=0

xn

n!
= 1 + x +

x2

2
+

x3

6
+

x4

24
+ · · ·

term by term. The termwise derivative is nothing but the series itself! Thus
f � = f . Moreover, f(0) = 1, so by Theorem 7.21, f = exp, that is,

ex =
∞�

n=0

xn

n!
for all x ∈ R.
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In particular,

e = lim
n→∞

(1 + 1

n)n =
∞�

n=0

1
n!

.

8.18. Example. Consider the function f : (−1, 1)→ R, f(x) = log(1− x).

It is differentiable with f �(x) = − 1
1− x

. We know that
∞�

n=0

xn =
1

1− x
for

|x| < 1 (Example 3.25). By Corollary 8.15, the termwise antiderivative of

the series −
∞�

n=0

xn converges on (−1, 1) and its sum is an antiderivative for

f �, so the sum differs from f by a constant. Hence

log(1− x) = −
∞�

n=0

xn+1

n + 1
= −

∞�

n=1

xn

n
for all x ∈ (−1, 1).

In particular (just to show you a pretty formula),

log 2 = − log(1− 1

2
) =

∞�

n=1

1
n 2n

.

8.3. Taylor series

We have discussed the properties of the sum function of a given power series.
Now we turn the problem around and ask: Given a function, is it the sum
of a power series? We start by observing that a power series with a positive
radius of convergence is determined by its sum.

8.19. Proposition. Suppose the power series
∞�

n=0

anxn has radius of con-

vergence R > 0. Let f be the sum function on (−R,R). Then, for every
n ≥ 0,

an =
f (n)(0)

n!
.

Here, f (n) denotes the nth derivative of f . By convention, f (0) = f .

Proof. Differentiate repeatedly using Theorem 8.14 and set x = 0. �

Suppose we have an infinitely differentiable function f : (−R,R) → R,
R > 0. We ask: Is there a power series centred at 0 with sum f? In other
words, is

f(x) =
∞�

n=0

f (n)(0)
n!

xn

for all x ∈ (−R,R)? By Proposition 8.19, this is the only power series
centred at 0 that can possibly have sum f .
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8.20. Definition. This series is called the Taylor series of f centred at 0
or the Maclaurin series of f .

8.21. Example. (a) We know that the exponential function on R and the
function x �→ log(1−x) on (−1, 1) equal the sums of their respective Taylor
series centred at 0 (Examples 8.17 and 8.18). The same holds for many
other important functions, such as the sine and the cosine (Section 8.4).

(b) Define g : R → R by the formula

g(x) =
�

exp(−1/x) if x > 0,
0 if x ≤ 0.

Using Exercise 7.18, you can show that g is infinitely differentiable with
g(n)(0) = 0 for all n ≥ 0. Hence the Taylor series of g centred at 0 is
identically zero, but g itself is not.

(c) Since
∞�

n=0

xn =
1

1− x
for |x| < 1, we also have

1
1 + x2

=
∞�

n=0

(−x2)n =
∞�

n=0

(−1)nx2n = 1− x2 + x4 − x6 + · · ·

for |x| < 1. The function x �→ 1
1 + x2

is infinitely differentiable on all of R,
but by Proposition 8.19, its one and only power series expansion centred at 0
is the one we have just written down, and it converges only on (−1, 1). Why
cannot this seemingly well-behaved function have a power series expansion
on a larger set? The answer comes from complex analysis. It is the zeros of
the denominator 1 + x2 at the complex numbers ± i that prevent the power
series expansion from extending farther than distance 1 from 0.

8.22. Definition. Let f be an infinitely differentiable function on (−R,R),
R > 0. For each n ≥ 0, the nth

remainder or error function of f is the
function

En(x) = f(x)−
n�

k=0

f (k)(0)
k!

xk, x ∈ (−R,R).

Clearly, f(x) equals the sum of the Maclaurin series of f at x if and only
if En(x) → 0 as n → ∞. The following theorem gives us a handle on the
remainder.

8.23. Theorem (Lagrange’s remainder theorem). Let f be an n + 1 times
differentiable function on (−R,R), R > 0. For every x ∈ (−R,R), x �= 0,
there is a number c strictly between 0 and x such that

En(x) =
f (n+1)(c)
(n + 1)!

xn+1.
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This result can be viewed as a generalisation of the mean value theorem:
write down what it says for n = 0.

Proof. Fix x ∈ (−R,R), x �= 0. Define

F (t) = f(t) +
n�

k=1

f (k)(t)
k!

(x− t)k + A(x− t)n+1, t ∈ (−R,R),

where the constant A is chosen so that F (0) = f(x). Clearly, F (x) = f(x).
By Rolle’s theorem (Theorem 6.13) applied to F on the interval between 0
and x, there is c strictly between 0 and x such that (do the computation!)

0 = F �(c) =
f (n+1)(c)

n!
(x− c)n − (n + 1)A(x− c)n.

Thus

A =
f (n+1)(c)
(n + 1)!

.

Finally,

f(x) = F (0) =
n�

k=0

f (k)(0)
k!

xk + Axn+1,

so En(x) = Axn+1. �
8.24. Corollary. Suppose f : (−R,R) → R, R > 0, is an infinitely differ-
entiable function with M ≥ 0 such that |f (n)(x)| ≤ M for all n ≥ 0 and
x ∈ (−R,R). Then

f(x) =
∞�

n=0

f (n)(0)
n!

xn for all x ∈ (−R,R).

Proof. Let x ∈ (−R,R). By Theorem 8.23, for every n ≥ 0, there is cn

between 0 and x such that

|En(x)| =
����
f (n+1)(cn)
(n + 1)!

xn+1

���� ≤
M

(n + 1)!
|x|n+1,

so En(x) → 0 as n → ∞ (for every a ∈ R, an/n! → 0 because the series�
an/n! converges). �

8.25. Example. Suppose we have two bounded infinitely differentiable
functions s, c : R → R such that s� = c, c� = −s, s(0) = 0, and c(0) = 1.
Then s and c satisfy the hypotheses of Corollary 8.24, so each equals the
sum of its Maclaurin series on all of R, that is,

s(x) =
∞�

n=0

(−1)n

(2n + 1)!
x2n+1, c(x) =

∞�

n=0

(−1)n

(2n)!
x2n for all x ∈ R.

In particular, s and c are uniquely determined by the above properties.
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Conversely, the results of this chapter show that these two power series
converge on all of R, and that their sum functions are infinitely differentiable
and satisfy s� = c, c� = −s, s(0) = 0, and c(0) = 1. Hence (s2 + c2)� = 0, so
s2 + c2 is a constant function, equal to s(0)2 + c(0)2 = 1. Consequently, s
and c take their values in [−1, 1]. This is a starting point for the theory of
the trigonometric functions. The final section of the chapter is devoted to a
rigorous development of this theory.

8.4. The trigonometric functions

The purpose of this section is to place the basic theory of the trigonometric
functions on a firm footing.

8.26. Theorem. (1) The power series
∞�

n=0

(−1)n

(2n + 1)!
x2n+1 and

∞�
n=0

(−1)n

(2n)!
x2n

have infinite radius of convergence.
(2) The sum functions s, c : R → R,

s(x) =
∞�

n=0

(−1)n

(2n + 1)!
x2n+1, c(x) =

∞�

n=0

(−1)n

(2n)!
x2n,

are infinitely differentiable.
(3) They satisfy the differential equations

s� = c, c� = −s.

(4) s is an odd function, that is, s(−x) = −s(x) for all x ∈ R, and c is
an even function, that is, c(−x) = c(x) for all x ∈ R.

(5) s2 + c2 = 1.
(6) s and c are bounded and take their values in [−1, 1].
(7) For all x, y ∈ R,

s(x + y) = s(x)c(y) + c(x)s(y).

(8) s and c are the unique differentiable functions on R such that

s� = c, c� = −s, s(0) = 0, c(0) = 1.

Proof. (1) Apply the ratio test (Theorem 3.29).
(2) Invoke Corollary 8.15 (1).
(3) Differentiate term by term and use Theorem 8.14.
(4) Note that the power series for s only has terms of odd degree and

the power series for c only has terms of even degree.
(5) Since (s2 + c2)� = 2sc + 2c(−s) = 0, the function s2 + c2 is constant,

equal to s(0)2 + c(0)2 = 1.
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(6) This follows directly from (5).
(7) Fix y ∈ R and define f : R → R by the formula

f(x) = s(x + y)− s(x)c(y)− c(x)s(y).

Differentiating twice using (3) gives f �� = −f , so (f2+(f �)2)� = 2f �(f+f ��) =
0. Also, f(0) = f �(0) = 0. Thus f2 + (f �)2 is constant and equal to 0, so
f(x) = 0 for all x ∈ R.

(8) Let s̃, c̃ be another such pair. Then
�
(s− s̃)2 + (c− c̃)2

�� = 2(s− s̃)(c− c̃) + 2(c− c̃)(−s + s̃) = 0,

so (s − s̃)2 + (c − c̃)2 is a constant function and equal to 0 at 0, so it is
identically zero. This shows that s̃ = s and c̃ = c. �
8.27. Definition. The function s is called the sine function, denoted sin.
The function c is called the cosine function, denoted cos.

Exercise 8.2. Using (3), (4), and (7) in Theorem 8.26, derive the addition
formulas for sin(x− y), cos(x + y), and cos(x− y). Also derive the double-
angle formulas for sin 2x and cos 2x.

The proof of Theorem 8.26 was short and easy, given the tools already
at our disposal. To establish the periodicity of sine and cosine requires more
work and some new ideas. It is by no means obvious from the power series
expansions of sine and cosine, or from the differential equations sin� = cos
and cos� = − sin, that these functions are periodic.

The addition formula for the sine points us in the right direction. If
y �= 0 is a real number with cos y = 1 and sin y = 0, then

sin(x + y) = sinx cos y + cos x sin y = sinx

for all x ∈ R, so the sine is periodic with period y. We do not know if
such a number actually exists, but this observation suggests that we should
investigate the zero set

A = sin−1(0) = {x ∈ R : sinx = 0}
of the sine. What can we say about A? Let us list some easy facts.

(a) 0 ∈ A because sin 0 = 0.
(b) A �= R because sin is not identically zero.
(c) The addition formula shows that if x, y ∈ A, then x + y ∈ A.
(d) Since sin is an odd function, if x ∈ A, then −x ∈ A.
(e) A is a closed subset of R since sin is continuous (Exercise 5.9).

Here is a definition from group theory that conveniently encapsulates
properties (a), (c), and (d) of A.
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8.28. Definition. A subset G of R is called a subgroup of R if:

• 0 ∈ G.
• If x, y ∈ G, then x + y ∈ G.
• If x ∈ G, then −x ∈ G.

There are many subgroups of R, for example R itself, {0}, Z, the set of
even integers, Q, and {m + n

√
2 : m, n ∈ Z}. Subgroups of R can have a

complicated structure and they are hard to understand in general. However,
closed subgroups of R, such as A, can be very simply described.

8.29. Theorem. If G is a closed subgroup of R, G �= {0}, and G �= R, then
there is a unique real number a > 0 such that G = {an : n ∈ Z}.

We denote the set {an : n ∈ Z} of all integral multiples of a ∈ R by aZ.

Proof. Let P = {x ∈ G : x > 0}. Then P �= ∅, because G has an element
x �= 0, and then x ∈ P or −x ∈ P . First we claim that no sequence in P
converges to 0. Otherwise, for every � > 0, there is x ∈ G with 0 < x < �.
Then xZ ⊂ G, so every interval of length at least � intersects G. Since � > 0
was arbitrary, it follows that G is dense in R, so G = R since G is closed,
contrary to assumption.

Now let a = inf P ≥ 0. Then a > 0, for otherwise P contains a sequence
converging to 0. Also, a ∈ P , for otherwise there is a strictly decreasing
sequence (xn) in P with xn → a, but then (xn − xn+1) is a sequence in P
converging to a− a = 0. Therefore aZ ⊂ G.

If x ∈ G, let m be the largest integer with m ≤ x/a. Then 0 ≤ x−am < a
and x − am ∈ G, so x − am = 0 by the definition of a, and x = am ∈ aZ.
This shows that G = aZ.

As for uniqueness, if a, b > 0 and aZ = bZ, then a and b are integral
multiples of each other, so a = b. �

It remains to show that 0 is not the only zero of the sine.

8.30. Proposition. The sine function has a positive zero.

Proof. Suppose sin has no positive zeros. By the double-angle formula
sin 2x = 2 sinx cos x, cos has no positive zeros either. Since cos is continuous
and cos 0 = 1, it follows that sin� = cos > 0 on [0,∞), so sin is strictly
increasing there. In particular, sin 1 > sin 0 = 0. Then, for all x ≥ 1,

(x− 1) sin 1 ≤
� x

1

sin = cos 1− cos x ≤ 2,

which is absurd. �
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From Theorem 8.29 and Proposition 8.30 we obtain the following result,
which serves as a definition of the number π.

8.31. Corollary. There is a unique real number π > 0 such that

sin−1(0) = πZ.

8.32. Lemma. cos π = −1.

Proof. Now cos2 π = 1 − sin2 π = 1, so cos π = ±1. On (0, π), sin has no
zeros, so sin does not change sign there. Since sin� 0 = cos 0 = 1 > 0, sin is
positive on (0, π), so cos is strictly decreasing there. Thus cos π = −1. �
Exercise 8.3. A real number p is called a period of a function f : R → R if
f(x+p) = f(x) for all x ∈ R. If f has a nonzero period, then f is said to be
periodic. Let P be the set of all periods of f . Show that P is a subgroup of
R. It is called the period group of f . Show that if f is continuous, then P is
closed. Conclude by Theorem 8.29 that a nonconstant continuous periodic
function has a smallest positive period a, and that its period group is aZ.

8.33. Theorem. The sine and cosine functions are periodic with smallest
positive period 2π.

Proof. Note that if p is a period for sin, then sin p = sin 0 = 0, so p ∈ πZ.
Also, sinπ = sin 2π = 0, and cos π = −1 by Lemma 8.32. By the double-
angle formula cos 2x = cos2 x − sin2 x, cos 2π = 1. Thus, by the addition
formula for sin,

sin(x + π) = − sin x, sin(x + 2π) = sinx,

for all x ∈ R. This shows that 2π is a period for sin, but π is not. It follows
that the period group of sin is 2πZ.

Finally, by differentiating sin(x + p) = sinx with respect to x, we see
that a period for sin is also a period for cos. Similarly, a period for cos is
also a period for sin, so sin and cos have the same periods. �
Exercise 8.4. Show that sin π

2
= 1 and cos π

2
= 0, and deduce that

sin(x + π
2
) = cos x, cos(x + π

2
) = − sin x

for all x ∈ R. Conclude that

cos−1(0) =
π

2
+ πZ.

We can now define each of the other four trigonometric functions

tan =
sin
cos

, cot =
cos
sin

, sec =
1

cos
, csc =

1
sin

on the complement of the zero set of its denominator.
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We can also introduce the inverse trigonometric functions. We end this
section by briefly considering the inverse sine. On (−π

2
, π

2
), sin� = cos > 0,

so sin is strictly increasing. Also, sin(−π
2
) = −1 and sin π

2
= 1. By Theorem

5.26, the bijection [−π
2
, π

2
] → [−1, 1], x �→ sin x, has a continuous inverse

[−1, 1] → [−π
2
, π

2
], called the arcsine or inverse sine and denoted arcsin or

sin−1. By Theorem 6.7, arcsin is differentiable on (−1, 1) with

arcsin� x =
1

sin�(arcsinx)
=

1
cos arcsinx

for all x ∈ (−1, 1). Since arcsinx ∈ (−π
2
, π

2
), cos arcsinx > 0, so

cos arcsinx =
�

1− sin2 arcsinx =
�

1− x2

and

arcsin� x =
1√

1− x2
.

More exercises

8.5. For each n ∈ N, let fn : [0,∞) → R, fn(x) =
x

x + n
. Prove that for

every b > 0, the sequence (fn) converges uniformly on [0, b].

8.6. Let fn(x) =
x

1 + xn
, x ∈ [0,∞), n ∈ N. Find the pointwise limit of

(fn) on [0,∞). Show that the convergence is not uniform on [0,∞). Find a
smaller set on which the convergence is uniform.

8.7. Let fn(x) =
x

1 + nx2
, x ∈ R, n ∈ N. Find the pointwise limit of (fn)

on R. Is the limit uniform? (Hint. Find the maximum and minimum values
of fn.) For which values of x is (lim fn)�(x) = lim f �n(x)?

8.8. Let fn, n ∈ N, and f be functions on A ⊂ R. Complete the following
sentence. To say that (fn) does not converge uniformly to f means that
there is � > 0 such that for every . . . .

8.9. Let A = A1 ∪A2 ⊂ R. Let fn, n ∈ N, and f be functions on A. Prove
that if fn → f uniformly on A1, and fn → f uniformly on A2, then fn → f
uniformly on A.

8.10. (a) Let fn, n ∈ N, and f be functions on A ⊂ R such that fn → f
uniformly and f is continuous. Show that if xn → a in A, then fn(xn) →
f(a).

(b) What if fn → f only pointwise?
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8.11. Monotonicity is a powerful tool. For sequences of numbers, it turns
boundedness into a sufficient condition for convergence (Theorem 3.16). It
can also turn pointwise convergence into uniform convergence.

(a) Let fn, n ∈ N, and f be continuous functions [a, b] → R such that
fn → f pointwise and f1(x) ≤ f2(x) ≤ · · · for every x ∈ [a, b]. Show that
fn → f uniformly. This result is known as Dini’s theorem.

Hint. Fix � > 0 and let Un = {x ∈ [a, b] : f(x) < fn(x) + �}, so
U1 ⊂ U2 ⊂ · · · . We want Un = [a, b] for n large enough. If not, Kn =
[a, b] \ Un �= ∅ for all n. Apply Theorem 4.13.

(b) What if [a, b] is replaced by (a, b)?

8.12. Use the Weierstrass M-test to prove that the formula g(x) =
∞�

n=1

xn

n2

defines a continuous function g on the interval [−1, 1].

8.13. Let (an) be a bounded sequence such that the series
�

an diverges.
Prove that the radius of convergence of the power series

�
anxn is 1.

8.14. Find the interval of convergence of each of the following power series.

(a)
∞�

n=1

(log n)nxn.

(b)
∞�

n=0

n2

n!
xn.

(c)
∞�

n=1

(−1)n

n3n
xn.

(d)
∞�

n=0

P (n)xn, where P is a nonconstant polynomial.

8.15. Find the radius of convergence of the power series
∞�

n=0

n!
nn

xn.

8.16. (a) Find a power series (centred at 0) that converges conditionally
at −1 and converges absolutely at 1, or explain why such a series does not
exist.

(b) Prove that a power series can converge conditionally at no more than
two points.

8.17. Let
�

anxn and
�

bnxn be power series with radius of convergence r
and s, respectively. If r �= s, what is the radius of convergence of the power
series

�
(an + bn)xn? What if r = s?

8.18. Find a power series such that
∞�

n=0

anxn = 3
√

x for all x ∈ (−1, 1) or

explain why such a series does not exist.
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8.19. By the formula for the sum of the geometric series,
∞�

n=0

xn =
1

1− x
for all x ∈ (−1, 1). Use this to calculate the infinite sum

1
2

+
2
4

+
3
8

+
4
16

+
5
32

+ · · · .

Hint. Use the theorem about termwise differentiation of a power series.

8.20. Let sn =
n�

k=0

1
k!

, so sn → e as n→∞. Show that 0 < e− sn <
1

n!n
.

8.21. Prove that e is irrational. Hint. Suppose e = m/n with m, n ∈ N.
Then n!(e− sn) is an integer, but 0 < n!(e− sn) < 1/n by Exercise 8.20.

8.22. Is there an infinitely differentiable function f : R → R such that
f (n)(0) = n3 − 5n + 2 for all n ≥ 0?

8.23. Let f : R\{1}→ R, f(x) =
1

1− x
. Then f is infinitely differentiable.

Let c ∈ R\{1} and r = |c−1|. Show that there is a power series
�

an(x−c)n

with radius of convergence r, such that f(x) =
�

an(x − c)n for all x ∈
(c− r, c + r). Hint. Start by writing

1
1− x

=
1

1− c

1

1− x− c

1− c

.

8.24. (a) Compute the Maclaurin series of the function f : [−1,∞) → R,
f(x) =

√
1 + x.

(b) Show that the radius of convergence of the series is 1.
(c) Let x ∈ (0, 1). Use Lagrange’s remainder theorem (Theorem 8.23)

to show that the sum of the Maclaurin series of f at x equals f(x).
(d) Can you do the same for x ∈ (−1, 0)?
(e) Let s : (−1, 1) → R be the sum function of the Maclaurin series

of f . We know that s is infinitely differentiable. Show that s satisfies the
differential equation 2(1+x)s�(x) = s(x). Conclude that s(x) = f(x) for all
x ∈ (−1, 1).

8.25. Let I be an open interval and f : I → R be twice differentiable. We
say that c ∈ I is an inflection point of f if f �� changes sign at c, that is, for
some � > 0, we have f ��(x) < 0 if c−� < x < c and f ��(x) > 0 if c < x < c+�
or the other way around.

Use Lagrange’s remainder theorem (Theorem 8.23) to show that a twice-
differentiable function cannot have a maximum or a minimum at an inflec-
tion point.





Chapter 9

Metric spaces

9.1. Examples of metric spaces

Much of the theory developed in Chapters 3, 4, and 5 can be extended to the
vastly more general setting of metric spaces. Even if we were only interested
in analysis on the real line, this would still be worthwhile. In the following
chapter, we will use the abstract theory of this chapter to prove an existence
and uniqueness theorem for solutions of differential equations.

9.1. Definition. A metric space is a set X with a function d : X × X →
[0,∞), such that:

• d(x, y) = 0 if and only if x = y.
• d(x, y) = d(y, x) for all x, y ∈ X.
• d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X (triangle inequality).

We call d a metric or a distance function on X. We sometimes write (X, d)
for the set X with the metric d.

It turns out that all we need in order to develop such notions as con-
vergence, completeness, and continuity is the three simple properties that
define a metric. Of the three, the triangle inequality is of course the most
substantial.

Examples of metric spaces abound throughout mathematics. In the
remainder of this section we will explore a few of them. Be sure to verify
the three defining properties of a metric if some of the details have been left
out.

9.2. Example. The prototypical example of a metric space is the set R of
real numbers with the metric d(x, y) = |x− y|.

91



92 9. Metric spaces

9.3. Example. Every set can be made into a metric space by defining the
distance between two distinct points to be 1. More explicitly,

d(x, y) =
�

1 if x �= y,
0 if x = y.

A set with this metric is called a discrete space.

9.4. Example. Euclidean space Rn, for n ≥ 2, has several different metrics
that are commonly used in analysis and geometry. The best known is the
Euclidean metric

d2(x, y) =

����
n�

i=1

(xi − yi)2,

where x = (x1, . . . , xn) and y = (y1, . . . , yn) are points in Rn. It is not
obvious that d2 satisfies the triangle inequality. It is a consequence of the
following inequality.

9.5. Theorem (Cauchy-Schwarz inequality). If a1, . . . , an, b1, . . . , bn ∈ R,
then � n�

i=1

aibi

�2

≤
� n�

i=1

a2

i

�� n�

i=1

b2

i

�
.

In other words, for a, b ∈ Rn,

|a · b| ≤ �a� �b�.

Here, a · b denotes the inner product a1b1 + · · · + anbn, and �a� denotes
the Euclidean norm (a2

1
+ · · · + a2

n)1/2.

Proof. This is clear if a1, . . . , an = 0. Otherwise consider the quadratic
polynomial

p(x) =
n�

i=1

(aix + bi)2 = Ax2 + 2Bx + C,

where

A =
n�

i=1

a2

i > 0, B =
n�

i=1

aibi, C =
n�

i=1

b2

i .

Completing the square gives

p(x) =
1
A

(Ax + B)2 +
D

A
, where D = AC −B2.

Clearly, D/A is the smallest value of p(x). Since p(x) is a sum of squares,
p(x) ≥ 0 for all x ∈ R. Hence D ≥ 0, that is, B2 ≤ AC. �
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Now, for a, b ∈ Rn,

�a + b�2 = (a + b) · (a + b) = a · a + 2a · b + b · b
≤ �a�2 + 2�a��b�+ �b�2 = (�a�+ �b�)2,

so
�a + b� ≤ �a�+ �b�.

Taking a = x−y and b = y−z gives the triangle inequality for the Euclidean
metric d2.

Among other metrics on Rn are the L1
metric

d1(x, y) =
n�

i=1

|xi − yi|,

and the L∞ metric or maximum metric

d∞(x, y) = max
i=1,...,n

|xi − yi|

(the Euclidean metric d2 is sometimes called the L2
metric). The three

defining properties of a metric are easy to verify for d1 and d∞. When
n = 1, d1 = d2 = d∞. Finally, note that

d∞ ≤ d2 ≤ d1 ≤ nd∞.

We express this by saying that the three metrics are mutually equivalent.

Exercise 9.1. For a completely different example of a metric space, let X
be the set of all finite strings—call them words—of letters of the alphabet.
For distinct words w and w�, let d(w, w�) = 2−n, where n is the first place
in which w and w� differ (and let d(w, w) = 0 of course). For example,
d(car, cat) = 2−3 and d(car, card) = 2−4. As usual, the first two defining
properties of a metric are obvious. Prove the triangle inequality. Show that
d actually satisfies the stronger inequality

d(w1, w3) ≤ max{d(w1, w2), d(w2, w3)}.

Such a metric is called an ultrametric. Show that if d(w1, w2) �= d(w2, w3),
we even have

d(w1, w3) = max{d(w1, w2), d(w2, w3)}.

Exercise 9.2. Here is a more substantial example of an ultrametric space
that is important in number theory. Fix a prime number p. If x �= 0 is
a rational number, write x = pna/b where n, a, b ∈ Z and neither a nor
b is divisible by p, and set |x|p = p−n. Let |0|p = 0. Show that setting
dp(x, y) = |x − y|p defines an ultrametric dp on Q. It is called the p-adic
metric on Q.
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9.6. Example. Let �∞ be the set of all bounded sequences of real numbers.
Note that �∞ is a vector space with the usual addition and scalar multi-
plication of sequences. Namely, if (an) and (bn) are bounded sequences of
reals, then the sum (an) + (bn) = (an + bn) is also bounded, and so is the
scalar multiple c(an) = (can) for every c ∈ R. As a vector space, �∞ is
infinite-dimensional: it has no finite basis.

For a, b ∈ �∞, let
d(a, b) = sup

n∈N
|an − bn|.

Note that since the set {|an− bn| : n ∈ N} is bounded, the supremum exists
as a nonnegative real number. We claim that d is a metric on �∞. It is
called the supremum metric. First, d(a, b) = 0 if and only if |an − bn| = 0
for all n ∈ N, that is, a = b. Second, it is clear that d(a, b) = d(b, a). Third,
let a, b, c ∈ �∞. By the triangle inequality for real numbers, for every n ∈ N,

|an − cn| ≤ |an − bn| + |bn − cn| ≤ d(a, b) + d(b, c),

so d(a, b) + d(b, c) is an upper bound for the set {|an − cn| : n ∈ N}. Hence
d(a, b) + d(b, c) is no smaller than the least upper bound d(a, c) of this set.
Thus d satisfies the triangle inequality.

9.7. Example. Consider a compact interval I = [a, b] ⊂ R, a ≤ b. Let C (I)
denote the set of all continuous functions I → R. It is a vector space, which
is infinite-dimensional if a < b (can you prove it?).

Let f, g ∈ C (I). Then |f − g| is a continuous function on I, so it has
a maximum by the extreme value theorem (Theorem 5.17). We define the
distance between f and g to be this maximum, that is, we set

d(f, g) = max
x∈I

|f(x)− g(x)|.

We claim that d is a metric on C (I). It is called the supremum metric or
the uniform metric. The first two defining properties of a metric are clear.
As for the triangle inequality, let f, g, h ∈ C (I). For every x ∈ I,

|f(x)− h(x)| ≤ |f(x)− g(x)| + |g(x)− h(x)| ≤ d(f, g) + d(g, h),

so d(f, g) + d(g, h) is an upper bound for the set {|f(x) − h(x)| : x ∈ I}.
Hence d(f, g) + d(g, h) is no smaller than the maximum d(f, h) of this set.
Thus d satisfies the triangle inequality.

For example, on I = [0, 1], let f(x) = x, g(x) = x2, and h(x) = 1 − x.
Then d(f, g) = max

0≤x≤1

|x − x2| = 1

4
, d(f, h) = max

0≤x≤1

|x − (1 − x)| = 1, and

d(g, h) = max
0≤x≤1

|x2−(1−x)| = 1, so indeed d(f, h) = 1 ≤ 5

4
= d(f, g)+d(g, h).

Finally, here is a very simple way to obtain new metric spaces from old.
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9.8. Definition. Let (X, dX) be a metric space. A subspace (Y, dY ) of
(X, dX) is a subset Y ⊂ X with the metric dY obtained by restricting dX

to Y ×Y , that is, dY (y, y�) = dX(y, y�) for y, y� ∈ Y . We call dY the induced

metric, or more precisely, the metric induced on Y from (X, dX).

Thus we can always consider a subset of a metric space as a metric space
in its own right.

9.2. Convergence and completeness in metric spaces

Many of the definitions, theorems, and proofs in Chapters 3, 4, and 5 can be
extended from R to an arbitrary metric space simply by replacing expressions
of the form |x − y| by d(x, y). The fundamental definition is the following
generalisation of Definition 3.2.

9.9. Definition. Let (X, d) be a metric space. A sequence (an) in X con-

verges to b ∈ X if for every � > 0, there is N ∈ N such that d(an, b) < � for
all n ≥ N . We call b the limit of (an) and write b = lim

n→∞
an or an → b.

As before, we can show that an → b if and only if d(an, b) → 0 as
a sequence of real numbers. Also, the limit of a convergent sequence is
unique. And we can extend the notion of a neighbourhood to a metric space
and reformulate Definition 9.9 as in Remark 3.5.

9.10. Definition. Let (X, d) be a metric space. The open ball in X of
radius r > 0 centred at a ∈ X is the set

B(a, r) = {x ∈ X : d(x, a) < r}.
A neighbourhood of a in X is any subset of X that contains the open ball
B(a, r) for some r > 0.

9.11. Remark. A sequence (an) in a metric space (X, d) converges to b ∈ X
if and only if each neighbourhood of b contains an for all but finitely many
n ∈ N.

Let us now investigate what convergence means in the examples of the
previous section.

9.12. Example. Let (X, d) be a discrete space (Example 9.3). Say an → b
in X. Taking � = 1 in Definition 9.9, we see that there is N ∈ N with
d(an, b) < 1 for all n ≥ N . But d(an, b) < 1 implies an = b. So (an) is
eventually constant: there is b ∈ X and N ∈ N such that an = b for all
n ≥ N .

In every metric space, an eventually-constant sequence converges. A
discrete space has no other convergent sequences.
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9.13. Example. Let (ak)k∈N be a sequence in Rn with ak = (ak1, . . . , akn).
We have ak → b as k →∞ with respect to the maximum metric d∞ if and
only if

max
i=1,...,n

|aki − bi|→ 0 as k →∞,

that is, |aki − bi| → 0 as k → ∞ for each i = 1, . . . , n. In other words,
convergence in (Rn, d∞) is convergence in each coordinate.

Convergence with respect to d1 and d2 is exactly the same. As noted
in Example 9.4, d∞ ≤ d2 ≤ d1 ≤ nd∞, so d1(ak, b) → 0 if and only if
d2(ak, b)→ 0 if and only if d∞(ak, b)→ 0.

9.14. Example. We have ak → b in �∞ if and only if

d(ak, b) = sup
n∈N

|akn − bn|→ 0 as k →∞.

This implies coordinatewise convergence, that is, for each n ∈ N,

|akn − bn| ≤ d(ak, b)→ 0 as k →∞,

but it is stronger. For example, let a1 = (1, 0, 0, . . . ), a2 = (0, 1, 0, . . . ),
a3 = (0, 0, 1, . . . ), . . . . Then, for each n ∈ N, the sequence of nth coordinates
(akn)k∈N goes to 0 (one term of this sequence is 1 and the others are all 0),
but d(ak, 0) = 1 for all k ∈ N, so ak �→ 0 (where we also denote by 0 the
zero vector (0, 0, 0, . . . ) in �∞).

9.15. Example. Let I ⊂ R be a compact interval. Let (fn) be a sequence
in C (I) and g ∈ C (I). We have fn → g with respect to the supremum
metric d on C (I) (Example 9.7) if and only if

d(fn, g) = max
x∈I

|fn(x)− g(x)|→ 0 as n→∞.

In other words, for every � > 0, there is N ∈ N such that |fn(x)− g(x)| < �
for all x ∈ I and all n ≥ N . This means precisely that fn → g uniformly
(Definition 8.3).

Exercise 9.3. What does it mean for a sequence of words to converge with
respect to the metric defined in Exercise 9.1?

The theory of metric spaces encompasses convergence of sequences of
real numbers, convergence in higher-dimensional Euclidean spaces, uniform
convergence of continuous functions on a compact interval, and much more.
Any result about convergence in a general metric space will apply to all
these different kinds of convergence.

We will now extend our central concept, completeness, to metric spaces.
The axiom of completeness invokes the order structure of R and thus cannot
be applied to an arbitrary metric space. The Cauchy criterion, on the other
hand, generalises directly to metric spaces. (Recall that, for an ordered
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field, the Cauchy criterion is a consequence of the axiom of completeness
and, conversely, implies the axiom of completeness with the help of the
Archimedean property: see Theorem 3.45.) Metric spaces satisfying the
Cauchy criterion turn out to be particularly useful in mathematics and they
are said to be complete.

9.16. Definition. A sequence (an) in a metric space (X, d) is a Cauchy

sequence if for every � > 0, there is N ∈ N such that if m, n ≥ N , then
d(am, an) < �.

As before, we can show that a convergent sequence is Cauchy (this was
the easy half of Theorem 3.43).

9.17. Proposition. A convergent sequence in a metric space is a Cauchy
sequence.

Proof. Suppose an → b in a metric space (X, d). Let � > 0. There is N ∈ N
such that d(an, b) < �/2 for all n ≥ N . Then, if m, n ≥ N ,

d(am, an) ≤ d(am, b) + d(an, b) < �/2 + �/2 = �.

This shows that (an) is Cauchy. �

We now turn the Cauchy criterion into the definition of what it means
for a metric space to be complete.

9.18. Definition. A metric space X is complete if every Cauchy sequence
in X converges in X.

9.19. Example. By Theorem 3.43, R is complete as a metric space with
the usual metric. The subspace (0, 1) of R is not complete because there are
Cauchy sequences in (0, 1) with no limit in (0, 1), for example the sequence
1

2
, 1

3
, 1

4
, . . . . The subspace [0, 1] of R, on the other hand, is complete. Namely,

if (an) is a Cauchy sequence in [0, 1], then (an) is a Cauchy sequence in R,
so (an) converges to a limit, say b, in R. Since 0 ≤ an ≤ 1 for all n ∈ N, we
also have 0 ≤ b ≤ 1 by Theorem 3.13, so (an) converges in [0, 1]. In fact, by
Theorem 9.28, a subspace of R is complete if and only if it is closed.

9.20. Example. Let (X, d) be a discrete space (Example 9.3). Say (an) is
Cauchy in X. Taking � = 1 in Definition 9.16, we see that there is N ∈ N
with d(am, an) < 1 for all m, n ≥ N . But d(am, an) < 1 implies am = an.
Thus (an) is eventually constant and hence convergent. This shows that
every discrete space is complete.

9.21. Example. Let (ak)k∈N be a Cauchy sequence in Rn with the maxi-
mum metric d∞. For each i = 1, . . . , n,

|aji − aki| ≤ max
i=1,...,n

|aj − ak|,
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so the sequence of ith coordinates (aki)k∈N is Cauchy in R, and hence con-
vergent with limit bi ∈ R by the completeness of R. Then ak → b coordi-
natewise and hence with respect to d1, d2, and d∞ (Example 9.13). Thus
Rn is complete with respect to each of the three metrics.

9.22. Example. Let I ⊂ R be a compact interval. Let (fn) be a Cauchy
sequence in C (I). For each x ∈ I,

|fm(x)− fn(x)| ≤ max
I

|fm − fn| = d(fm, fn),

so the sequence (fn(x)) is Cauchy in R, and hence convergent with a limit
that we shall call f(x). This defines a function f : I → R such that fn → f
pointwise. We want to show that f ∈ C (I) and that fn → f uniformly.

Let � > 0 and find N ∈ N such that d(fm, fn) < � for all m, n ≥ N .
Then, for each x ∈ I and m, n ≥ N ,

|fm(x)− fn(x)| ≤ d(fm, fn) < �.

Letting m → ∞ gives |fn(x) − f(x)| ≤ � for all x ∈ I and n ≥ N . Hence
fn → f uniformly on I. Therefore f is continuous (Theorem 8.5), so f ∈
C (I) and fn → f in C (I).

This shows that C (I) is complete with respect to the supremum metric.

Exercise 9.4. Show that �∞ with the supremum metric is complete. Hint.

Follow the approach of Example 9.22.

Exercise 9.5. Is the ultrametric space in Exercise 9.1 complete?

We conclude this section by determining when a subspace of a complete
metric space is itself complete. For this, we need to generalise Section 4.1.

9.23. Definition. A subset U of a metric space (X, d) is open if it is a
neighbourhood of each of its points. That is, for every a ∈ U , there is � > 0
such that B(a, �) ⊂ U .

The following proposition generalises Proposition 4.2. We leave the proof
as an exercise.

9.24. Proposition. (1) X and ∅ are open. An open ball is open.
(2) The union of an arbitrary collection of open sets is open.
(3) The intersection of finitely many open sets is open.

Exercise 9.6. (a) Show that for every a ∈ Rn and r > 0,

B∞(a, r/n) ⊂ B1(a, r) ⊂ B2(a, r) ⊂ B∞(a, r),

where the subscripts refer to one of the metrics d1, d2, d∞.
(b) Show that the three metrics define the same notion of a subset of

Rn being open.
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9.25. Definition. A subset A of a metric space (X, d) is closed if its com-
plement X \ A is open.

The next proposition is dual to Proposition 9.24.

9.26. Proposition. (1) X and ∅ are closed.
(2) The intersection of an arbitrary collection of closed sets is closed.
(3) The union of finitely many closed sets is closed.

The following result generalises Theorem 4.6.

9.27. Theorem. A subset A of a metric space (X, d) is closed if and only
if whenever an ∈ A for all n ∈ N, and an → c in X, we have c ∈ A.

The proof is virtually identical to the proof of Theorem 4.6.

Proof. ⇒ Say an ∈ A, n ∈ N, and an → c in X. If c /∈ A, then, since X \A
is open, X \ A is a neighbourhood of c, so an ∈ X \ A for all but finitely
many n, which is absurd.

⇐ We prove the contrapositive. Suppose A is not closed, that is, X \A
is not open. This means that there is c ∈ X \ A such that X \ A is not a
neighbourhood of c. Thus, for each n ∈ N, X \A does not contain the open
ball B(c, 1

n), so there is an ∈ A with d(an, c) < 1

n . Then an → c. �
9.28. Theorem. A subset of a complete metric space is complete (as a
metric space with the induced metric) if and only if it is closed.

Proof. Let (X, dX) be a complete metric space. Endow Y ⊂ X with the
induced metric dY . Recall that dY (y, y�) = dX(y, y�) for all y, y� ∈ Y .

Suppose (Y, dY ) is complete. Let an ∈ Y , n ∈ N, such that an → b
in (X, dX). Since (an) converges in (X, dX), (an) is Cauchy in (X, dX)
(Proposition 9.17) and hence in (Y, dY ). Since (Y, dY ) is complete, (an)
converges to a limit c in (Y, dY ). Then also an → c in (X, dX). Finally, by
the uniqueness of limits, b = c ∈ Y . This shows that Y is closed in X.

Conversely, suppose Y is closed and let (an) be Cauchy in (Y, dY ). Then
(an) is Cauchy in (X, dX), so since (X, dX) is complete, (an) converges in
(X, dX) to a limit b ∈ X. Since Y is closed, b ∈ Y , so an → b in (Y, dY ).
This shows that (Y, dY ) is complete. �

More exercises

9.7. Let (X, d) be a metric space. Let a ∈ X and r > 0. Show that the
open ball B(a, r) is an open subset of X. Hint. You need to show that for
each y ∈ B(a, r), there is s > 0 such that B(y, s) ⊂ B(a, r).
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9.8. Let (X, d) be a metric space. Let a ∈ X and r ≥ 0. Show that the
‘closed ball’ B = {x ∈ X : d(x, a) ≤ r} with centre a and radius r is indeed
a closed subset of X. Hint. You need to show that the complement X \ B
is open, that is, for every y ∈ X \ B there is � > 0 such that the open ball
B(y, �) is contained in X \ B. Draw a picture!

9.9. Determine whether the following subsets of C ([0, 1]) are open or closed
with respect to the uniform metric.

(a) {f : f(1

2
) = 3}.

(b) {f : f(1

2
) �= 3}.

(c) {f : f(x) > 0 for all x ∈ [0, 1]}.
(d) {f : |f(x)| ≤ 2 for all x ∈ [0, 1]}.
(e) {f : f is a polynomial function}.
(f) {f : f is increasing}.
(g) {f : f is differentiable}.

9.10. Prove that a sequence (an) in a metric space X has a subsequence
with limit b ∈ X if and only if every neighbourhood of b contains an for
infinitely many n.

9.11. (a) Let I = [a, b], a < b. Show that the function d1 on C (I)× C (I),
defined by the formula d1(f, g) =

� b
a |f − g|, is a metric on C (I).

(b) Show that the metric space (C (I), d1) is not complete.

9.12. In this exercise, we compare the supremum metric d on C (I), where
I = [a, b], a < b, and the metric d1 defined in Exercise 9.11.

(a) Show that if a subset of C (I) is open with respect to d1, then it is
also open with respect to d.

(b) Find a subset of C (I) that is open with respect to d, but not with
respect to d1.

9.13. (a) Find an incomplete metric on R.
(b) Does every set have a complete metric on it? Does every set have

an incomplete metric on it?

9.14. Let p be a prime number. Show that the sequence 1, 1+p, 1+p+p2, . . .

converges to
1

1− p
in (Q, dp) (see Exercise 9.2). Conclude that Z is not closed

in Q with respect to the p-adic metric dp if p ≥ 3.

9.15. Let (X, d) be a metric space. Let E be a subset of X. Prove that the
following are equivalent.

(1) There are a ∈ X and r > 0 such that E ⊂ B(a, r).
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(2) For every a ∈ X, there is r > 0 such that E ⊂ B(a, r).
(3) There is R > 0 such that d(x, y) < R for all x, y ∈ E.

If these conditions hold, then we say that E is bounded.

9.16. (a) Show that if a function f : R → R is continuous, then its graph
{(x, f(x)) : x ∈ R} is a closed subset of R2.

(b) Show that the converse fails in general, but holds if f is bounded.

9.17. Compactness for metric spaces is defined in exactly the same way as
for subsets of R (Definition 4.8). A metric space X is said to be compact if
every sequence in X has a subsequence that converges in X.

A subset K of a metric space X is said to be compact if it is compact
when viewed as a metric space in its own right with the induced metric.
This means that every sequence in K has a subsequence that converges, as
a sequence in X, to a limit in K.

(a) Prove that a compact subset of a metric space is closed and bounded.
(This is one half of the Heine-Borel theorem.)

(b) Prove that the union of finitely many compact subsets of a metric
space is compact. Hint. You need to prove this directly from the definition
of compactness. You cannot follow the proof of Corollary 4.11, because you
do not have the other half of the Heine-Borel theorem (see Exercise 9.20).

9.18. (a) Prove that the three metrics d1, d2, d∞ on Rn define the same
notion of a subset of Rn being compact. Hint. Use Example 9.13.

(b) Prove that a subset of Rn of the form

{x ∈ Rn : ai ≤ xi ≤ bi for i = 1, . . . , n},
where ai ≤ bi for i = 1, . . . , n, is compact.

9.19. Prove that a compact metric space is complete.

9.20. Let E = {f ∈ C ([0, 1]) : 0 ≤ f(x) ≤ 1 for all x ∈ [0, 1]}. Show that E
is closed and bounded but not compact with respect to the uniform metric.

This shows that the characterisation of compact sets in R given by the
Heine-Borel theorem (Theorem 4.10) fails for metric spaces in general.

9.21. An open cover of a metric space X is a collection of open subsets of
X whose union is X. A subcollection whose union is X is called a subcover.

Suppose the metric space X is not compact. Prove that there is an open
cover of X with no finite subcover. Hint. Use Exercise 9.10.

This shows that if a metric space X has the property that every open
cover of X has a finite subcover, then X is compact. In fact, this property is
equivalent to compactness, but the missing implication is not easy to prove.





Chapter 10

The contraction

principle

10.1. The contraction principle

The definitions of continuity from Chapter 5 (Definition 5.9) readily extend
to the setting of metric spaces and they are still equivalent.

10.1. Definition. Let (X, dX) and (Y, dY ) be metric spaces. A map f :
X → Y is continuous at c ∈ X if the following equivalent conditions hold.

(i) For every � > 0, there is δ > 0 such that if x ∈ X and dX(x, c) < δ,
then dY (f(x), f(c)) < �.

(ii) For every neighbourhood V of f(c) in Y , there is a neighbourhood
U of c in X such that f(U) ⊂ V .

(iii) If (xn) is a sequence with xn → c in X, then f(xn)→ f(c) in Y .

We say that f is continuous if f is continuous at each point of X.

Exercise 10.1. Show that definitions (i), (ii), and (iii) are equivalent.

We are particularly interested in continuous maps of a special kind.

10.2. Definition. Let (X, dX) and (Y, dY ) be metric spaces. A map f :
X → Y is called a contraction if there is α ∈ [0, 1) such that

dY (f(x), f(x�)) ≤ α dX(x, x�) for all x, x� ∈ X.

A contraction is evidently continuous: given � > 0, just choose δ > 0 so
that αδ < �.

103
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Now we state and prove the main theorem of this chapter, the contrac-
tion principle. It is also known as the Banach fixed point theorem.

10.3. Theorem (contraction principle). Let (X, d) be a nonempty complete
metric space and f : X → X be a contraction. Then f has a unique fixed
point, that is, there is a unique point p ∈ X such that f(p) = p.

Proof. By assumption, there is α ∈ [0, 1) such that d(f(x), f(y)) ≤ α d(x, y)
for all x, y ∈ X. Note first that f has at most one fixed point. Namely, if p
and q are fixed points of f , then

d(p, q) = d(f(p), f(q)) ≤ α d(p, q),

so d(p, q) = 0 since α < 1, and p = q.
Now choose any x1 ∈ X and recursively define a sequence (xn) in X by

the formula xn+1 = f(xn) for all n ∈ N. Then, for every n ∈ N,

d(xn+1, xn) ≤ α d(xn, xn−1) ≤ · · · ≤ αn−1d(x2, x1),

so for n > m ≥ 1,

d(xn, xm) ≤ d(xn, xn−1) + d(xn−1, xn−2) + · · · + d(xm+1, xm)

≤ (αn−2 + αn−3 + · · · + αm−1)d(x2, x1)

= αm−1(1 + α + · · · + αn−m−1)d(x2, x1)

≤ αm−1

� ∞�

k=0

αk

�
d(x2, x1) =

αm−1

1− α
d(x2, x1).

Since α ∈ [0, 1),
αm−1

1− α
d(x2, x1) can be made arbitrarily small by taking m

large enough. Hence (xn) is Cauchy, so since X is complete, (xn) converges
to a limit p ∈ X. Finally, since xn → p and f is continuous, xn+1 = f(xn)→
f(p), so by the uniqueness of limits, f(p) = p. �

Note that the proof of the contraction principle is quite constructive. It
shows that for any choice of a point c ∈ X, the sequence

c, f(c), f(f(c)), f(f(f(c))), . . .

converges to the fixed point of f . In many cases, we can compute as many
of these values as we please, and thus approximate the fixed point.

The contraction principle is a powerful tool for solving a wide variety
of equations. Any equation g(x) = h(x) whatsoever can be formulated as a
fixed point problem: just write it as f(x) = x with f(x) = g(x)− h(x) + x.
If x can be interpreted as a point in a complete metric space and f as
a contraction of that space, then the contraction principle shows that the
equation has a unique solution. We shall now consider several examples that
illustrate the contraction principle.
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10.4. Example. As a first, very simple example, let I = [−a, a] with a ∈
(0, 1

2
) and consider the map f : I → I, f(x) = x2. Since I is a closed subset

of the complete metric space R, I is complete with the induced metric. Also,
for x, y ∈ I, |f(x)− f(y)| = |x + y||x− y| ≤ 2a|x− y|, so f is a contraction
since 2a < 1. Indeed, f has a unique fixed point, namely 0, and for every
c ∈ I, the sequence c, f(c) = c2, f(f(c)) = c4, . . . converges to 0.

By simply removing 0 from I, we get an incomplete metric space X =
I \ {0} and a contraction f : X → X without a fixed point.

10.5. Example. Note that if 1 ≤ x ≤ 5, then 1 <
√

5 ≤
√

3x + 2 ≤
√

17 <
5, so we have a map f : [1, 5] → [1, 5], f(x) =

√
3x + 2. We claim that

f is a contraction of the metric space [1, 5], which is complete as a closed
subspace of the complete space R. Namely, f is differentiable with f �(x) =
3

2
(3x + 2)−1/2 ≥ 0, and the maximum of f �(x) is α = f �(1) = 3

2
√

5
< 1.

Hence, if x, y ∈ [1, 5], by the mean value theorem, there is c between x and
y such that

|f(x)− f(y)| = |f �(c)||x− y| ≤ α |x− y|.
Therefore, by the contraction principle, f has a unique fixed point p ∈ [1, 5].
Choosing 3 as an initial point and applying f a few times, we obtain the
following sequence:

3
3.3166. . .
3.4568. . .
3.5171. . .
3.5428. . .
3.5536. . .
3.5582. . .
3.5601. . .

The function f in this example is simple enough that we can use the qua-
dratic formula to solve the equation f(p) = p. We get p = 1

2
(3 +

√
17) =

3.5615 . . . (the other solution, 1

2
(3−

√
17), lies outside [1, 5]).

Exercise 10.2. Define a map g : �∞ → �∞ by the formula

(x1, x2, x3, . . . ) �→ (1 + 1

2
x1 + 1

3
x2, 1 + 1

2
x2 + 1

3
x3, 1 + 1

2
x3 + 1

3
x4, . . . ).

Show that d(g(x), g(y)) ≤ 5

6
d(x, y) for all x, y ∈ �∞, so g is a contraction.

Assuming that �∞ is complete (Exercise 9.4), conclude that g has a unique
fixed point. Find the fixed point.

Let S be the set of all sequences of real numbers, bounded and un-
bounded. Then g extends to a map G : S → S defined by the same formula.
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Show that G has infinitely many fixed points. Conclude that G is not a
contraction with respect to any complete metric on S.

10.6. Example. Let A = (aij) be an n × n matrix with real entries. Let
b ∈ Rn. We want to solve the system of linear equations Ax = b using
the contraction principle, under a suitable condition on A. First, we turn
Ax = b into a fixed point equation, writing it as Bx+b = x with B = (bij) =
I − A, where I = (δij) is the n × n identity matrix. Define f : Rn → Rn,
f(x) = Bx + b. If f is a contraction with respect to any of the metrics d1,
d2, or d∞, then the contraction principle implies that Ax = b has a unique
solution that can be found as the limit of the sequence c, f(c), f(f(c)), . . .
for any c ∈ Rn. Let us use d∞. For all x, y ∈ Rn,

d∞(f(x), f(y)) = d∞(Bx + b, By + b) = max
i=1,...,n

����
n�

j=1

bij(xj − yj)
����

≤ max
i=1,...,n

n�

j=1

|bij | |xj − yj | ≤ max
i=1,...,n

n�

j=1

|bij | d∞(x, y).

Thus f is a contraction with respect to d∞ if
n�

j=1

|bij | =
n�

j=1

|aij − δij | < 1 for i = 1, . . . , n.

This sufficient condition for f to be a contraction (saying, roughly speaking,
that A is close to I) is an explicit condition on the matrix A that is very
easy to check if the entries of A are known.

10.7. Example. Let h ∈ (0, 1) and I = [−h, h]. Let C (I) be the metric
space of all continuous functions I → R with the uniform metric d (Example
9.7). Define a map f : C (I) → C (I) by letting f(φ) for φ ∈ C (I) be the
function x �→ 1 +

� x
0

φ. Then f is well defined: f(φ) is not only continuous
on I, so f(φ) ∈ C (I), but in fact differentiable with f(φ)� = φ by the
fundamental theorem of calculus. We claim that f is a contraction. Namely,
for φ, ψ ∈ C (I),

d(f(φ), f(ψ)) = max
x∈[−h,h]

|f(φ)(x)− f(ψ)(x)| = max
x∈[−h,h]

����
� x

0

φ−
� x

0

ψ

����

≤ max
x∈[−h,h]

����
� x

0

|φ− ψ|
���� ≤ max

x∈[−h,h]

����
� x

0

d(φ, ψ)
���� = hd(φ, ψ).

Since C (I) is complete (Example 9.22), f has a unique fixed point. In
other words, there is a unique continuous function φ : [−h, h] → R such
that φ(x) = 1 +

� x
0

φ for all x ∈ [−h, h]. We can find φ as the limit of the
sequence φ1, f(φ1), f(f(φ1)), . . . for any φ1 ∈ C (I). As a simple choice, take
φ1 = 1. We get:
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φ1 = 1,
φ2 = f(φ1) = 1 +

� x
0

1 = 1 + x,
φ3 = f(φ2) = 1 +

� x
0

(1 + t)dt = 1 + x + 1

2
x2,

φ4 = f(φ3) = 1 +
� x
0

(1 + t + 1

2
t2)dt = 1 + x + 1

2
x2 + 1

6
x3, . . . .

It is quite clear what φ is, isn’t it?

10.2. Picard’s theorem

Our final goal is to prove a fundamental theorem on the existence and
uniqueness of solutions to differential equations of a very general kind. Our
strategy is to express the differential equation as a fixed point problem in
the space C (I) of continuous functions on a compact interval I, and then
apply completeness of C (I) and the contraction principle to conclude that
the fixed point problem has a unique solution.

Here is the set-up. Let D be an open subset of R2 and f : D → R be a
continuous function. We want to solve the initial value problem

(1)
dy

dx
= f(x, y), y(x0) = y0,

where (x0, y0) is a given point in D. This means finding a continuously
differentiable function φ on some interval I containing x0, such that:

• the graph of φ lies in D,
• φ�(x) = f(x, φ(x)) for all x ∈ I,
• φ(x0) = y0.

Key observation. If φ is a solution of (1), then, by the fundamental
theorem of calculus,

φ(x) = φ(x0) +
� x

x0

φ�(t) dt = y0 +
� x

x0

f(t, φ(t)) dt

for all x ∈ I. Conversely, if φ : I → R is a continuous function on an interval
I containing x0, such that the graph of φ lies in D and

(2) φ(x) = y0 +
� x

x0

f(t, φ(t)) dt for all x ∈ I,

then φ is a solution of (1), again by the fundamental theorem of calculus
(see Exercise 10.5). Thus solving the initial value problem (1) is equivalent
to finding a continuous solution φ of the integral equation (2).

Note that (2) is a fixed point problem: it says that the function φ is a
fixed point of the map that takes φ to the function x �→ y0 +

� x
x0

f(t, φ(t)) dt.
Thus the initial value problem (1) has been reformulated as a fixed point
problem in the space of continuous functions on I.
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We need to impose a mild additional condition on f , a so-called Lipschitz

condition (see Remark 10.11). We assume that there is a rectangle

R = {(x, y) ∈ R2 : |x− x0| ≤ a, |y − y0| ≤ b} ⊂ D

with a, b > 0, such that there is a constant K > 0 with

|f(x, y)− f(x, y�)| ≤ K|y − y�|
for all (x, y), (x, y�) ∈ R.

If the partial derivative ∂f/∂y exists and is continuous on D, then the
Lipschitz condition is satisfied for every rectangle R ⊂ D. Namely, since
R is compact (Exercise 9.18), ∂f/∂y is bounded on R (Exercises 10.8 and
10.9), so there is K > 0 with |∂f/∂y| ≤ K on R. The Lipschitz condition
then follows from the mean value theorem (Theorem 6.14) applied to f(x, y)
as a function of y with x fixed.

Since f is continuous and R is compact, f is bounded on R, so there is
a constant M > 0 with |f | ≤M on R. Let h be any positive number with

h ≤ a, h ≤ b/M, h < 1/K.

We will show that (1) has a unique solution on I = [x0 − h, x0 + h].
Let A be the set of those φ ∈ C (I) whose graph lies in R, that is, for

which |φ− y0| ≤ b on I.

Exercise 10.3. Show that if φn ∈ A, n ∈ N, and φn → φ uniformly on I,
then φ ∈ A. Hence A is closed in C (I) (Theorem 9.27), so A is complete
with respect to the uniform metric d (Theorem 9.28).

We note that if φ is a solution of (1), then φ ∈ A. Otherwise, there is
x ∈ I, say x > x0, with |φ(x)− y0| > b. Let w ∈ (x0, x0 +h) be the infimum
of such x. Then |φ(w) − y0| = b. By the mean value theorem applied to
φ on [x0, w], there is c ∈ (x0, w) with φ(w) − φ(x0) = φ�(c)(w − x0). Then
(c, φ(c)) ∈ R and

b = |φ(w)− y0| = |f(c, φ(c))| (w − x0) < Mh ≤ b,

which is absurd.
Now define F : A→ A to be the map that takes φ ∈ A to the function

F (φ) : I → R, x �→ y0 +
� x

x0

f(t, φ(t)) dt.

Since the graph of φ lies in R ⊂ D, the integrand t �→ f(t, φ(t)) is well
defined and continuous on I (Exercise 10.5), so by the fundamental theorem
of calculus, F (φ) is not only continuous but even differentiable. Moreover,
F (φ) ∈ A, because for x ∈ I,

|F (φ)(x)− y0| =
����
� x

x0

f(t, φ(t)) dt

���� ≤
����
� x

x0

M dt

���� ≤Mh ≤ b.
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We claim that F is a contraction. Namely, for φ, ψ ∈ A and x ∈ I,

|F (φ)(x)− F (ψ)(x)| =
����
� x

x0

�
f(t, φ(t))− f(t, ψ(t))

�
dt

����

≤
����
� x

x0

��f(t, φ(t))− f(t, ψ(t))
��dt

����

≤ K

����
� x

x0

|φ(t)− ψ(t)| dt

����

≤ K|x− x0|max
t∈I

|φ(t)− ψ(t)|

≤ Khd(φ, ψ),

so
d(F (φ), F (ψ)) ≤ Khd(φ, ψ).

Since Kh < 1, F is a contraction. As A is complete, we conclude that F
has a unique fixed point. In other words, there is a unique continuously
differentiable function φ on I, whose graph lies in D, and which solves the
equivalent problems (1) and (2).

Let us summarise what we have proved.

10.8. Theorem (Picard’s theorem). Let D be an open subset of R2 and
f : D → R be a continuous function. Let (x0, y0) ∈ D and

R = {(x, y) ∈ R2 : |x− x0| ≤ a, |y − y0| ≤ b} ⊂ D

with a, b > 0, such that there is a constant K > 0 with

|f(x, y)− f(x, y�)| ≤ K|y − y�|
for all (x, y), (x, y�) ∈ R. Take M > 0 with |f | ≤ M on R. Let h be any
positive number with

h ≤ a, h ≤ b/M, h < 1/K.

Then there is a unique continuously differentiable function φ on the interval
I = [x0 − h, x0 + h], such that the graph of φ lies in D and φ solves the
initial value problem

φ�(x) = f(x, φ(x)) for all x ∈ I, φ(x0) = y0.

In fact, the graph of φ lies in R.

10.9. Example. As a first example, let (x0, y0) = (0, 1) ∈ D = R2 and
f(x, y) = y, so we can let K = 1. With R as in Theorem 10.8, we can
take M = maxR|f | = b + 1, so to get a unique solution to the initial value
problem y� = y, y(0) = 1, on [−h, h], the number h > 0 must satisfy h ≤ a,
h ≤ b/M = b/(b + 1), and h < 1/K = 1. Every h < 1 satisfies these
inequalities if b is chosen large enough and, say, a = 1. Thus, for every
h ∈ (0, 1), the initial value problem has a unique solution on [−h, h]. The
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solution is the limit of the sequence φ1, F (φ1), F (F (φ1)), . . . , where F takes
φ to x �→ 1 +

� x
0

φ, and φ1 is any function in C ([−h, h]). With φ1 = 1, this
iteration was carried out in Example 10.7. The solution, of course, is the
exponential function.

10.10. Example. There is � > 0 and a continuously differentiable function

g : (−�, �)→ R such that g�(x) =
x5 log(3 + g(x)4)

2eg(x) − cos(x3g(x)) + 1
for all x ∈ (−�, �)

and g(0) = −7. This follows from Picard’s theorem simply because the con-

tinuous function f : R2 → R, f(x, y) =
x5 log(3 + y4)

2ey − cos(x3y) + 1
, is differentiable

with respect to y, and ∂f/∂y is continuous on R2.

10.11. Remark. If we omit the Lipschitz condition in Picard’s theorem, the
uniqueness of the solution may fail. For example, the initial value problem
y� = y1/3, y(0) = 0, has as a solution not only the function that is identically
zero, but also the continuously differentiable function φ with φ(x) = 0 for
x ≤ 0 and φ(x) = (2

3
x)3/2 for x ≥ 0.

A solution still exists on a small enough interval without the Lipschitz
condition (that is, with f merely continuous), but a different and more
difficult method of proof is required.

The following example illustrates the importance of the uniqueness part
of Picard’s theorem. Uniqueness can help us extend solutions to larger
intervals, and it may provide additional information about solutions.

10.12. Example. Let us determine the largest interval on which Picard’s
theorem guarantees a solution to the initial value problem

y� = 1 + y2, y(0) = 0.

Here, f : R2 → R, f(x, y) = 1 + y2. Let R = {(x, y) ∈ R2 : |x| ≤ a, |y| ≤ b},
with a, b > 0. If we set

h(a, b) = min
�

a,
b

max
R

|f | ,
1

max
R

|∂f/∂y|

�
,

then by Picard’s theorem, there is a unique solution on [−r, r] for every
r < h(a, b). By uniqueness, if r < s < h(a, b), the solutions on [−r, r] and
[−s, s] must agree on [−r, r]. Hence there is in fact a unique solution on
(−h(a, b), h(a, b)). We need to maximise h(a, b).

Now maxR|f | = 1 + b2. Also, ∂f/∂y = 2y, so maxR|∂f/∂y| = 2b. It is
an easy exercise to show that the maximum of b

1+b2 for b > 0 is 1

2
, taken at

b = 1. There, 1

2b also equals 1

2
, so the largest h can be is 1

2
. Thus the largest

interval on which Picard’s theorem guarantees a solution is I = (−1

2
, 1

2
).
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Let φ be the unique solution on I. Let ψ : I → R, ψ(x) = −φ(−x).
Then ψ�(x) = φ�(−x) = 1+φ(−x)2 = 1+ψ(x)2 and ψ(0) = 0, so ψ is also a
solution on I. By uniqueness, ψ = φ, that is, φ(−x) = −φ(x) for all x ∈ I.
Thus uniqueness implies that φ is an odd function.

There is in fact a solution on a larger interval, namely the tangent on
(−π

2
, π

2
). Picard’s theorem applies to a very large class of equations, and

yet its proof is relatively easy. The trade-off is that the theorem cannot be
expected to produce the largest interval on which a solution exists.

More exercises

10.4. Let f : X → Y and g : Y → Z be maps of metric spaces. Show
that if f and g are continuous, then the composition g ◦ f : X → Z is also
continuous.

10.5. Let D be an open subset of R2 and f : D → R be continuous. Let
I ⊂ R be an interval and φ : I → R be continuous. Suppose the graph of
φ lies in D, so that the composition g : I → R, g(t) = f(t, φ(t)), is defined.
Prove that g is continuous. Hint. Use sequences and recall Example 9.13.

10.6. Let (X, dX) and (Y, dY ) be metric spaces and f : X → Y be a map.
Show that the following are equivalent.

(i) f is continuous, meaning that for every a ∈ X and � > 0, there is
δ > 0 such that if dX(x, a) < δ, then dY (f(x), f(a)) < �.

(ii) For every open subset V of Y , the preimage f−1(V ) is open in X.

10.7. Let X = C ([a, b]) be the set of continuous functions [a, b] → R with
the uniform metric. Let f ∈ X. Show that the map F : X → X with
F (g) = fg (meaning f times g) is continuous.

10.8. Prove the following generalisation of Theorem 5.16. If X and Y are
metric spaces, f : X → Y is a continuous map, and K ⊂ X is compact,
then the image f(K) is compact.

10.9. Prove the following generalisation of the extreme value theorem (The-
orem 5.17). A continuous real-valued function on a nonempty compact met-
ric space has a maximum and a minimum value.

10.10. Let X be a nonempty discrete metric space. Explicitly describe the
contractions X → X. Does every contraction X → X have a unique fixed
point?

10.11. Show that a differentiable function f : R → R with |f �(x)| ≤ 1

2
for

all x ∈ R has a unique fixed point.

10.12. Show that the map f : [0, 2] → [0, 2], f(x) = 3
√

2x + 1, is a contrac-
tion. Hint. Use the method of Example 10.5.
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10.13. Use the contraction principle to show that there is a unique real
number a ≤ −1 such that ea + a = −1.

10.14. Use the contraction principle to show that there is a unique real
number a ≥ 2 such that log a = a− 2.

10.15. Let X = C ([3, 5]) be the set of continuous functions [3, 5]→ R with
the supremum metric. Let the map f : X → X take φ ∈ X to the function
f(φ) with

f(φ)(x) = 2
� x

4

φ(t)
t

dt + 4.

This is a well-defined map because by the fundamental theorem of calculus,
f(φ) is not only continuous, so f(φ) ∈ X, but even differentiable on [3, 5].

(a) Show that f is a contraction on X.
(b) Find the unique fixed point of f . You may use any method you can

think of, as long as you verify that the function you come up with is indeed
a fixed point for f .

10.16. Define a map f : C ([0, 1])→ C ([0, 1]) by setting

f(φ)(x) = x +
� x

0

tφ(t) dt.

Show that f is a contraction with respect to the uniform metric on C ([0, 1]).
Show that its fixed point is a solution of the differential equation y� = xy+1.
(You do not have to find the solution.)

10.17. Use Picard’s theorem to show that the initial value problem y� = y2,
y(0) = 1, has a unique solution on (−1

4
, 1

4
). Solve the equation by separation

of variables and find the largest interval to which the solution extends.

10.18. Use Picard’s theorem to show that the initial value problem y� =
x2 + y2, y(0) = 0, has a unique solution on (−

√
2/2,

√
2/2). Show that the

solution is an odd function.
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absolutely convergent series, 30

addition, 2

additive

identity, 2
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algebraic number, 22

alternating harmonic series, 31

alternating series test, 31

antiderivative, 68

Archimedean property, 17

arcsine, 87

associativity, 2

axiom of completeness, 16

ball

closed, 100

open, 95

Banach fixed point theorem, 104

bijection, 10

bijective function, 10

binary expansion, 37

Bolzano-Weierstrass theorem, 33

bound

greatest lower, 16

least upper, 16

lower, 15

upper, 15

boundary, 43

bounded

function, 53

sequence, 25

set, 15, 101

cancellation law, 12

for functions, 13

Cantor set, 43

cardinality, 19

Cauchy criterion, 33

Cauchy sequence, 33, 97

Cauchy-Schwarz inequality, 92

centre, 77

chain rule, 57

change of variables, 72

closed

ball, 100

interval, 4

set, 40, 99

closure, 42

codomain, 9

coefficient, 77

commutativity, 2

compact

metric space, 101

set, 41, 101

comparison test, 29

complement, 7

complete metric space, 97

completeness, axiom of, 16

composition, 9

concave function, 61

conditionally convergent series, 30

continuous function, 47, 103

at a point, 47, 103

continuously differentiable function, 55

contraction, 103

contraction principle, 104

contrapositive, 2

convergent

sequence, 23, 95

series, 28, 76
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converse, 2

convex function, 61

cosine, 84

countable set, 20

countably infinite set, 20

cover, open, 101

critical point, 58

Darboux’s theorem, 58

De Morgan’s laws, 7

decimal expansion, 37

decreasing

function, 51

sequence, 27

degenerate interval, 4

degree, 48

dense set, 18

derivative, 55

differentiable function, 55

at a point, 55

Dini’s theorem, 88

discrete space, 92

disjoint sets, 7

distance function, 91

distributivity, 2

divergent

sequence, 23

series, 28

domain, 9

e, 69, 70, 80

element, 6

empty set ∅, 7

equinumerous sets, 19

equivalent metrics, 93

error function, 81

Euclidean metric, 92

Euclidean norm, 92

Euler’s constant γ, 72

even function, 61

eventually constant sequence, 95

expansion

binary, 37

decimal, 37

to a base, 37

exponential function, 70

extreme point, 58

extreme value theorem, 49

family of sets, 8

fibre, 9

field, 2

ordered, 3

function, 9

bijective, 10

bounded, 53

above, 53

below, 53

locally, 54

concave, 61

continuous, 47, 103

at a point, 47, 103

uniformly, 49

convex, 61

decreasing, 51

strictly, 51

differentiable, 55

at a point, 55

continuously, 55

even, 61

exponential, 70

identity, 9

increasing, 51

strictly, 51

injective, 10

integrable, 64

inverse, 11

monotone, 51

strictly, 51

odd, 61

one-to-one, 10

onto, 10

periodic, 86

polynomial, 48

rational, 48

Riemann integrable, 64

surjective, 10

trigonometric, 33, 83–87

fundamental theorem of calculus, 67

geometric series, 29

graph, 11

greatest lower bound, 16

harmonic series, 29

Heine-Borel theorem, 41

identity

additive, 2

multiplicative, 2

identity function, 9

image

inverse, 9

of a function, 9

of a subset, 9

of an element, 9

improper integral, 71

increasing

function, 51

sequence, 27

indefinite integral, 68

index set, 8

induced metric, 95

induction, 1
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inductive set, 22

inductively defined sequence, 27

inequality

Cauchy-Schwarz, 92

triangle, 5, 91

infimum, 16

inflection point, 89

initial value problem, 107

injection, 10

injective function, 10

inner product, 92

integer, 1

integrable function, 64

integral, 64

improper, 71

indefinite, 68

lower, 64

upper, 64

integral test, 72

integration by parts, 72

interior, 43

intermediate value theorem, 50

intersection, 7, 8

interval, 4

closed, 4

degenerate, 4

nondegenerate, 4

of convergence, 78

open, 78

open, 4

inverse

additive, 2

multiplicative, 2

inverse function, 11

inverse function theorem, 57

inverse image, 9

inverse sine, 87

isolated point, 47

L1
metric, 93

L2
metric, 93

L∞ metric, 93

Lagrange’s remainder theorem, 81

least upper bound, 16

L’Hôpital’s rule, 60

limit

inferior, 38

of a function, 45, 54

of a sequence, 23, 95

superior, 37

limit comparison test, 30

limit point, 45

Lipschitz condition, 108

locally bounded function, 54

logarithm (natural), 69

lower

bound, 15

integral, 64

sum, 63

Maclaurin series, 81

map, mapping, 9, see also function

maximum, 5, 16

maximum metric, 93

mean value theorem, 59

for integrals, 68

generalised, 60

metric, 91

equivalent, 93

Euclidean, 92

induced, 95

L1
, 93

L2
, 93

L∞, 93

maximum, 93

p-adic, 93

supremum, 94

uniform, 94

metric space, 91

compact, 101

complete, 97

discrete, 92

ultrametric, 93

minimum, 5, 16

monotone

function, 51

sequence, 27

monotone convergence theorem, 27

multiplication, 2

multiplicative

identity, 2

inverse, 2

natural logarithm, 69

natural number, 1, 22

negative number, 4

neighbourhood, 24, 95

nested interval property, 19

nondegenerate interval, 4

norm, Euclidean, 92

number

algebraic, 22

integer, 1

natural, 1, 22

negative, 4

positive, 4

rational, 1

transcendental, 22

odd function, 61

one-to-one function, 10

onto function, 10

open

ball, 95
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cover, 101

interval, 4

set, 39, 98

or (conjunction), 7

order limit theorem, 26

ordered field, 3

ordered pair, 8

p-adic metric, 93

pair, ordered, 8

partial sum, 28

partition, 63

period, 86

period group, 86

periodic function, 86

π, 86

Picard’s theorem, 109

pointwise convergent

sequence, 73

series, 76

polynomial function, 48

positive number, 4

power series, 77

preimage, 9

product of sets, 8

product rule, 56

proper subset, 6

quotient rule, 56

radius of convergence, 78

range, 9

ratio test, 30

rational function, 48

rational number, 1

rearrangement, 31

recursion formula, 27

recursively defined sequence, 27

refinement, 63

reflexive relation, 20

remainder, 81

Riemann integrable function, 64

Rolle’s theorem, 59

root, 18, 48, 53, 58

root test, 31

rule, 9, 11

sequence, 23

bounded, 25

above, 25

below, 25

Cauchy, 33, 97

convergent, 23, 95

pointwise, 73

uniformly, 74

decreasing, 27

strictly, 27

divergent, 23

eventually constant, 95

increasing, 27

strictly, 27

inductively defined, 27

monotone, 27

strictly, 27

recursively defined, 27

series, 28

alternating harmonic, 31

convergent, 28, 76

absolutely, 30

conditionally, 30

pointwise, 76

uniformly, 76

divergent, 28

geometric, 29

harmonic, 29

Maclaurin, 81

power, 77

Taylor, 81

set, 6

bounded, 15, 101

above, 15

below, 15

closed, 40, 99

compact, 41, 101

countable, 20

countably infinite, 20

dense, 18

inductive, 22

open, 39, 98

symmetric, 61

uncountable, 20

sine, 84

inverse, 87

source, 9

squeeze theorem, 25, 46

strictly decreasing

function, 51

sequence, 27

strictly increasing

function, 51

sequence, 27

strictly monotone

function, 51

sequence, 27

subcover, 101

subgroup, 85

subsequence, 32

subset, 6

proper, 6

subspace, 95

substitution, 72

sum

lower, 63

of a series, 28
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upper, 63

supremum, 16

supremum metric, 94

surjection, 10

surjective function, 10

symmetric relation, 20

symmetric set, 61

target, 9

Taylor series, 81

term, 23

test

alternating series, 31

comparison, 29

integral, 72

limit comparison, 30

ratio, 30

root, 31

Weierstrass M-, 76

theorem

algebraic limit, 25, 47

Banach fixed point, 104

Bolzano-Weierstrass, 33

Darboux’s, 58

Dini’s, 88

extreme value, 49

fundamental, of calculus, 67

Heine-Borel, 41

intermediate value, 50

inverse function, 57

Lagrange’s remainder, 81

mean value, 59

for integrals, 68

generalised, 60

monotone convergence, 27

order limit, 26

Picard’s, 109

Rolle’s, 59

squeeze, 25, 46

transcendental number, 22

transitive relation, 4, 20

triangle inequality, 5, 91

trigonometric function, 33, 83–87

ultrametric, 93

uncountable set, 20

uniform metric, 94

uniformly continuous function, 49

uniformly convergent

sequence, 74

series, 76

union, 6, 8

upper

bound, 15

integral, 64

sum, 63

value, 9

Weierstrass M-test, 76

well-ordering property, 1, 22
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CHAPTER (1) 

ERRORS 

1. Introduction 

In numerical analysis solving a problem is only a part of the pro-

cess.  Another part is to know how far the  results are accurate. 

This is a very important part and is often more difficult than 

achieving the results themselves. In this part, we take in considera-

tion  the errors that arise whether from rounding errors in arithme-

tic operations or from some other source. Throughout this book, as 

we look at the numerical solution of various problems, we will 

simultaneously consider the errors involved in whatever computa-

tional procedure is being used. 

2. Absolute error and relative error 

The error in a computed quantity is defined as 

Error = true value - approximate value  

The relative error is a measure of the error in relation to the size of 

the true value: 

 error 
 Relative error 

 true value 
  

To simplify the notation when working with these numbers, we 

will usually denote the true and approximate values of a number x  

by  Tx  and Ax , respectively. Then we write 

 

 

Error

Rel

A T A

T A
A

T

x x x

x x
x

x

 




 

As an illustration, consider the well-known approximation 

22

7
   

Here 3.14159265Tx    and 22 / 7 3.1428571Ax   ,  
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22 22
Error 0.00126

7 7

22 (22 / 7)
Rel 0.000402

7







 
    

 

 
   

 

 

An idea related to relative error is that of significant digits. For a 

number Ax , the number of its leading digits that are correct relative 

to the corresponding digits in the true value Tx  is called the num-

ber of significant digits in Ax . For a more  precise definition, as-

suming the numbers are written in decimal, calculate the magni-

tude of the error T Ax x . If this error is less than or equal to five 

units in the ( 1)m  st digit of Tx , counting rightward from the first 

nonzero digit, then we say Ax has, at least, m  significant digits of 

accuracy relative to Tx . In other words, we say that Ax  has m  sig-

nificant digits with respect to Tx if  

0.5 1 (1.1)0 mT A

T

x x

x


   

Example (1.1) 

(a) 0.222Ax   has three digits of accuracy relative to 2 / 9Tx  . 

(b)  23.496Ax   has four digits of accuracy relative to 

23.494Tx  . 

(c)  0.02138Ax   has just two digits of accuracy relative to

0.02144Tx  . 

(d)  22 / 7Ax  has three digits of accuracy relative to Tx  . 

Most people find it easier to measure relative error than significant 

digits; and in some textbooks, satisfaction of (1.1) is used as the 

definition of Ax having m significant digits of accuracy. 

3. Functional error 

If e  is the error in the approximated value 
Ax to the true value 

Tx

so that ATx x e  . If 
fe  denote the error when a function f is 

evaluated  at 
Ax instead of at 

Ax , we have 

( ) ( )T A ff x f x e   

Therefore 
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( ) ( )

( ) ( )

f T A

A A

e f x f x

f x e f x

 

  
 

Expanding ( )Af x e in a Taylor series, we have 

2

( ) ( )

1
( ) ( ) ( ) ( )

2

f A A

A A A A

e f x e f x

f x ef x e f x f x

  

    
 

Therefore, 

21
( ) ( )

2
f A Ae ef x e f x     

Hence if e  is small (and the second and higher derivatives of  f  

evaluated at 
Ax are not excessively large) we see that 

( )f Ae ef x  

Thus 

( )f Ae e f x  

and if 
Ax has m significant digits of accuracy, then 

0.5 10 ( )m

f Ae f x    

4. Sources of errors 

Imagine solving a scientific-mathematical problem, and suppose 

this involves a computational procedure. Errors will usually be in-

volved in this process, often of several different kinds. We will 

give a simple classification of the kinds of error that might occur. 

A. Round-off error 

When carrying out numerical calculations, digital computers 

have precision limit on their ability to represent numbers. 

The difference between the result produced by a giv-

en algorithm using exact arithmetic and the result produced 

by the same algorithm using finite-precision, rounded arith-

metic is called the round-off error. For example,  

4
Exact number 1.333

3
  

4
Roundednumber tofoursignificant digits 1.333

3
  

https://en.wikipedia.org/wiki/Algorithm
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Round-off error 1.333 1.333H 0.00033ence   

5
Exact number 1.666

3
  

5
Roundednumber tofoursignificant digits 1.667

3
  

Hence,Round-off error=1.666 -1.667=-0.000333  

The following table shows the result of rounding exact num-

bers to N  significant digits: 

Number N Roundnumber Round-of error

23.764462 5 23.764 0.000462

0.0092746 3 0.00927 0.0000046

1.650045 3 1.6500 0.000045

0.0003786 3 0.000379 0.0000004

0.57386 3 0.574 0.00014





 

The following table shows the result of rounding exact num-

bers to N  decimal places: 

Number N Roundnumber Round-of error

23.764462 5 23.76446 0.000002

0.0092746 3 0.009 0.0002746

0.0003786 3 0.000 0.0003786

1.650045 5 1.65004 0.000005

0.57386 3 0.574 0.00014

 

B. Imprecision of the given data 

If the data are obtained experimentally, then they are known 

within the limits of experimental error (which can normally 

be estimated), and this will limit the accuracy of the results 

of any subsequent calculations. This is obvious fact that the 

accuracy of results is limited by the accuracy of any initial 

data. 

C. Mistakes  

Mistakes are errors which are created by the person perform-

ing the calculations. A common mistake is to invert the order 

of two digits occurring in a number. For example, it is very 

easy to use the number 62381 instead of the number 63281. 
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When doing calculations, as many checks as possible should 

be incorporated in the method itself so that any mistakes 

come quickly to light. 

D. Mathematical approximation error (Truncation error) 

Mathematical approximation errors are due to replacing an 

exact quantity by an approximation one. For example, we in-

troduce an error if we use only a finite number of terms from 

an infinite series expansion. This error is called a truncation 

error, that is, the error due to truncating the series some-

where. For example sin x can be expressed as the infinite se-

ries expansion 
3 5 7 9 11

sin
3! 5! 7! 9! 11!

x x x x x
x x       

and when x is small the sum of the first three terms, namely 
3 5

3! 5!

x x
x    

will give a good approximation to sin x . The truncation error 

is then the sum of the remaining terms of the infinite series 

expansion namely 
7 5 11

7! 9! 11!

x x x
    

In general if ( )f x is approximated using Taylor series about 

0x , where 0x x h  , then 

       
2

(n)

0 0 0 0( )
2! !1!

n

n

h h h
f x f x f x f x f x R

h
     

 

where 
nR is the truncation error. This error can be calculated 

as  
1

( 1)

0( ), 0 1
( 1)!

n
n

n

h
R f x h

n
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CHAPTER (2) 

FINITE DIFFERENCES 

1. Introduction 

The calculus of finite differences plays an important role in Nu-

merical methods. It deals with the variations in a function when the 

independent variable changes by finite jumps which may be equal 

or unequal. In this chapter, we shall study the variations in a func-

tion due to the changes in the independent variable by equal inter-

vals. 

2. Finite differences 

Let ( )y f x  be a discrete function. If 
0 0 0, , 2 ,x x h x h    

0x nh  are the successive values of x  , where two consecutive 

values differ by a quantity h , then the corresponding values of y  

are 
0 1 2, , , , ny y y y  . The value of the independent variable x is 

usually called the arguments and the corresponding functional val-

ue is known as the entry. The arguments and entries can be shown 

in a tabular form as follows: 

       

1 20

0 0 0

0 1 2

0 0 00

Argument

2

Entry

2( )

n

n

x x xx

x h x h x nhx

y y y y

f x h f x h f x nhy f x f x

     

      

 To determine the values of ( )f x  or ( )f x  etc., for some interme-

diate arguments, the following three types of differences are found 

useful: 

(i) Forward differences 

(ii) Backward differences 

(iii) Central differences 

3. Forward differences 

If we subtract from each value of y  (except 
0y ) the preceding 

value of y  we get 
1 0 2 1 1, , , n ny y y y y y      respectively, 

known as the first differences of y . These results which may be 

denoted 0 1, , , ny y y     

i.e.  

0 1 0 1 2 1 1 1, , , n n ny y y y y y y y y            
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where   is a symbol representing an operation of forward differ-

ence, are called first forward differences. Thus, the first forward 

differences are given by 

1 , 0,1,2, , .i i iy y y i n      

Now, the second forward differences are defined as the differences 

of the first differences, that is, 

   

   

 

2

0 0 1 0 1 0

2 1 1 0 2 1 0

2

1 1 2 1 3 2 1

2

1 2 1

2

2

2n n n n n n

y y y y y y

y y y y y y y

y y y y y y y

y y y y y y  

          

      

          

       

 

Here, 2  is called second forward difference operator. 

Similarly, the third forward differences are: 

     

   

   

3 2 2 2

0 0 1 0 1 0

2 1 1 0 2 1 0

3 2 2 2 1 0

3 2 1 0

3 2 2

1 2 1 4 3 2 1

3 2 2

1 1 2 1

2

2

3 3

3 3

3 3n n n n n n n

y y y y y y

y y y y y y y

y y y y y y

y y y y

y y y y y y y

y y y y y y y   

             

           

     

   

        

        
 

In general, the n th forward differences are defined as 

1 1

1

n n n

k k ky y y 

     

In function notation, the forward differences are as written below: 

2

3

( ) ( ) ( )

( ) ( 2 ) 2 ( ) ( )

( ) ( 3 ) 3 ( 2 ) 3 ( ) ( )

f x f x h f x

f x f x h f x h f x

f x f x h f x h f x h f x

   

     

         
and so on, where h is step size. 

The forward differences are usually arranged in a tabular form in 

the following manner: 
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0 0 0

0

2

1 0 1 1 0

3

1 0

2 4

2 0 2 2 1 0

3 5

2 1 0

2 4

3 0 3 3 2 1

3

3 2

4 0 4

( ) 1st 2nd 3rd 4th 5th

argument entry difference difference difference difference difference

( )

( )

2 ( )

3 ( )

4

x y f x

x y f x

y

x x h y f x y

y y

x x h y f x y y

y y y

x x h y f x y y

y y

x x h y







   

 

    

  

    

 

  2

4 3

4

5 0 5 5

( )

5 ( )

f x y

y

x x h y f x

 



  

The first term in the table 
0y  is called the leading term and the dif-

ferences 2 3

0 0 0, , ,y y y     are called leading differences. It 

can be seen that the differences k

iy  with a subscript ' i ' lie along 

the diagonal sloping downwards,  that is, forward with respect to 

the direction of x . The above difference table is known as For-

ward difference table or Diagonal difference table. 

 Properties of     

The operator " " satisfies the following properties: 

(i) [ ( ) ( )] ( ) ( )f x g x f x g x      , i.e.   is linear. 

(ii) [ ( )] ( ),f x f x      is a constant. 

(iii) ( ) ( ) ( )mm n m n nf x f x f x        , where m  and 

n   are positive integers. 

(iv) [ ( ) ( )] ( ) ( )f x g x f x g x    .  

 Observation 1  

We can express any higher order forward difference of 
0y  in 

terms of the entries 
0 1 2, , , , ny y y y . From 

0 1 0

2

0 2 1 0

3

0 3 2 1 0

2

3 3

y y y

y y y y

y y y y y

  

   

    

 

and so on, we can see that the coefficients of the entries on 

the RHS are binomial coefficients. Therefore, in general, 

0 1 1 2 2 0( 1)n n n n

n n ny y C y C y y         
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 Observation 2  

We can express any value of y in terms of leading entry 
0y   

We know that 
1 00y y y    

1 0 0 0(1 )y y y y      

Now, 

2

2 1 1 1 0(1 ) (1 )y y y y y       

Similarly, 3

3 0(1 )y y    and so on.  

In general, 

2

0 0 1 0 2 00(1 )n n n n

ny y y C y C y y         

4. Backward differences 

The differences 
1 0 2 1 1, , , n ny y y y y y      when denoted by 

1 2, , , ny y y     respectively, are called the first backward dif-

ferences, where   is the backward difference operator called nabla 

operator. 

1 1 0 2 2 1 1, , , n n ny y y y y y y y y             

Now the second backward differences are defined as the differ-

ences of the first backward differences, i.e. 

       2

2 2 2 1 2 1 2 1 1 0

2 1 0

2

3 3 2 3 2 1

2

2  and so on.

y y y y y y y y y y

y y y

y y y y y y

          

  

     

 

In general, 
1 1

1

n n n

k k ky y y 

    
In function notation, these differences are written as 

2

3

( ) ( ) ( )

( ) ( ) ( )

( 2 ) ( 2 ) 2 ( ) ( )

( 3 ) ( 3 ) 3 ( 2 ) 3 ( ) ( )

f x f x f x h

f x h f x h f x

f x h f x h f x h f x

f x h f x h f x h f x h f x

   

    

      

        

 

and so on, where h  is step size. 
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These backward differences are arranged in a tabular form in the 

following manner. In this table, the difference 
i

k y  with a fixed 

subscript ' i ' lies along the diagonal sloping upwards; that is, back-

wards with respect to the direction of increasing argument x . 

0 0 0

1

2

1 0 1 1 2

3

2 3

2 4

2 0 2 2 3 4

3 5

3 4 5

2 4

3 0 3 3 4 5

3

4 5

4 0 4

( ) 1st 2nd 3rd 4th 5th

argument entry difference difference difference difference difference

( )

( )

2 ( )

3 ( )

4

x y f x

x y f x

y

x x h y f x y

y y

x x h y f x y y

y y y

x x h y f x y y

y y

x x h y







   

 

    

  

    

 

  2

4 5

5

5 0 5 5

( )

5 ( )

f x y

y

x x h y f x

 



  

 

 Properties of    

(i) [ ( ) ( )] ( ) ( )f x g x f x g x    , i.e.   is a linear 

operator. 

(ii) [ ( )] ( )f x f x    ,   is a constant. 

(iii) ( ) ( ),mm n nf x f x    m  and n are positive inte-

gers. 

(iv) [ ( ) ( )] [ ( )]. ( )f x g x f x g x   . 

 Observation 1  

We can express any higher order backward difference of 
ny  

in terms of the entries 
0 1 2, , , , ny y y y . From 

1

2

1 2

2

3

1

3

2

3 3

n n n

n n n

n n n n

n

n

y y y

y y y y

y y y y y





 





  

   

    

 

and so on, we can see that the coefficients of the entries on 

the RHS are binomial coefficients. Therefore, in general, 

1 1 2 2 0( 1)n n n n

nn n ny y C y C y y         

 Observation 2  
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We can express any value of y in terms of 
ny  and the 

backward differences 2,n ny y  , etc. By definition, 

1nn ny y y    
or  

1 (1 )n n n ny y y y      

Now,  
2

2 1 1 1(1 ) (1 )n n n n ny y y y y          
Similarly, 

3

3 (1 )n ny y    
and so on. In general, 

(1 )k

n k ny y    

2

1 2 ( 1)k k k k

n k n n n ny y C y C y y           

5. Central differences 

Sometimes, it is more convenient to employ another system of dif-

ferences known as central differences. In this system the symbol   

is used instead of   and is known as central difference operator. 

The subscript of y   for any difference is the average of the sub-

scripts of the two entries. 

1/2 1 0 3/2 2 1 5/2 3 2, , ,y y y y y y y y y         

For higher order differences, we have 

2 2 2 2 2

1 3/2 1/2 2 3/2 12 3/2 2 1, , , ,y y y y y y y y y               

and so on. The central differences are tabulated below. 
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0 0 0

1/2

2

1 0 1 1 1

3

3/2 3/2

2 4

2 0 2 2 2 2

3 5

5/2 5/2 5/2

2 4

3 0 3 3 3 3

7/2

( ) 1st 2nd 3rd 4th 5th

argument entry difference difference difference difference difference

( )

( )

2 ( )

3 ( )

x y f x

x y f x

y

x x h y f x y

y y

x x h y f x y y

y y y

x x h y f x y y

y





 

 

  

 







  

  

  
3

7/2

2

4 0 4 4 4

9/2

5 0 5 5

4 ( )

5 ( )

y

x x h y f x y

y

x x h y f x







  

  

We can see from the table that central differences on the same hor-

izontal line have the same subscript. Also, all odd differences have 

a fractional subscript, and the even differences have integer sub-

script. 

 Note 

From all the three tables, we can see that only the notation 

changes, not the differences. For examples, 

1 0 0 1 1/2y y y y y      

6. Other differences operators 

So far we have studied the operators ,   and  . Now we shall in-

troduce other operators like , ,E D etc. which also play a vital role 

in numerical methods. 

 Shift operator E   

If h  is step size for the argument x  then the operator E is 

defined as 

( ) ( ).E f x f x h   

It is also called translation operator due to the reason that it 

results the next value of the function. The higher orders of 

shift operator are defined as 
2 ( ) [ ( )] ( ) ( 2 )E f x E Ef x Ef x h f x h      

Similarly,  
3 ( ) ( 3 ),E f x f x h   



FINITE DIFFERENCES                                                                   DR. AHMED YOUSEF 

 

13 
 

4 ( ) ( 4 )E f x f x h   

In general 

( ) ( )nE f x f x nh   for any real n  

The inverse shift operator 1E   is defined as 
1 ( ) ( )E f x f x h    

Similarly 

( ) ( )nE f x f x nh    for any real n  

If 
ky , is the function ( )f x then 

1k kEy y    and 

n

n

k kE y y   

 Average operator     

The average operator   is defined by 

1
( ) [ ( / 2) ( / 2)]

2
f x f x h f x h       

i.e.  
1

( ) ( / 2) ( / 2)
2

y x y x h y x h      

 Differential operator D  

The differential operator D is defined as ( ) ( )
d

Df x f x
dx

   

In general, 

( ) ( )
n

n

n

d
D f x f x

dx
  

 Note 

All the above operators are linear and obey index laws. 

7. Relation between different differences operators 

 Relation between    and E   

( ) ( ) ( )

( ) ( )

( 1) ( )

f x f x h f x

Ef x f x

E f x

   

 

 

  

Thus       1 or 1E E      

 Relation between E  and    
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1 1

1 1

1
1 1

( ) ( ) ( )

( ) ( ) 1 ( )

1  or 1

(1 )

f x f x f x h

f x E f x E f x

E E

E E E

 

 


 

   

   

    

    
  

 

 Relation between E  and    

 

1/2

1/2 1/2

1/2

( ) ( / 2) ( / 2)

( ) ( )

( )

f x f x h f x h

E f x E f x

E E f x






   

 

 

 

1/2 1/2E E     

Also, 

 1/ 1 22 1 /1E E E      

1/2 1/2( 1)E E E       

Hence 
1/2 1/2   E E      

 Relation between E   and    

 

 

1/2 1/2

1/2

1/2

1/2

1/2

1
( ) [ ( / 2) ( / 2)]

2

1
( ) ( )

2

1
( )

2

1

2

f x f x h f x h

E f x E f x

E E f x

E E











   

   

 

  

 

 Relation of D  with other Operators 

We know that ( ) ( ) ( )
d

Df x f x f x
dx

   etc. 

By Taylor's series 
2 3

( ) ( ) ( ) ( ) ( )  
1! 2! 3!

h h h
f x h f x f x f x f x         

Or
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2 3
2 3

2 2 3 3

( ) ( ) ( ) ( ) ( )
2! 3!

1 ( ) ( )
2! 3!

hD

h h
Ef x f x hDf x D f x D f x

h D h D
hD f x e f x

    

 
      
 

 

Thus 
hDE e  

Taking logarithms on both sides, we get 

ln ln(1 )hD E    

2 3 41

2 3 4
D

h

   
      

 
 

Also,  
11 E    

Thus 
1 1 hDE e     

Taking logarithm on both sides, 

2 3 4

2 3 4

1

1/2 1/2 1/2 1/2

1

ln(1 )

1

2 3 4

1

2 3 4

sinh( )
2 2

1

2

sinh ( )

hD hD

hD

D
h

h

e e E E
h

D

E

D

E E E

h





 

 



  

   
       

 

   
      

 

 
  

        

 



 

Example (2.1) 

Construct the forward difference table from the following data: 

0 1 2 3 4

1 1.5 2.2 3.1 4.6

x

y
. 

Then evaluate 3

1 5, andny y y . 

Solution 
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The forward differences table is  as given below: 

2 3 4

0

1 1.5

0.7

2 2.2 0.2

1

0.5

0.2

0

0.4

0.9 0.4

3 3.1 0.6

1.5

4 4.6

x y y y y y   

 

Now 

 3

1 1 1

4 3 2

2

1

3 3( 1) 3 3 1

3 3 4.6 3(3.1) 3(2.2) 1.5 0.4

y y y

y y y

E E

y

E E

       

 



  
 

Again from observation 2 of section, we have 

   

2 3 4

0 1 0 2 0 3 0 4 0

2 4 3 2

4 3 2

5

1 1
1 (0.5) ( 1)(0.2) ( 1)( 2)(0)

2 3!

1
( 1)( 2)( 3)(0.4)

4!

1 1 1
1 6 11 6

2 10 60

1
5 6(5) 17(5) 18(5) 60 7.5

60

n n n n

ny y C y C y C y C y

n n n n n n

n n n n

n n n n n n n

y

        

      

   

       

        

 

Example (2.2) 

Evaluate  

(i) cosx  (ii) ln ( )f x  (iii) 2 sin( )px q   (1v) 1tan x (v) en ax b   

Solution  
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Let h  be the interval step size. 

(i) 

cos cos( ) cos 2sin si
2

 n
2

h h
x x h x x

 
       

 
 

(ii) 

ln (x) ln (x ) ln (x)

( ) ( ) ( )
ln ln

( ) ( )

( )
ln 1

( )

f f h f

f x h f x f x

f x f x

f x

f x

   

     
    

   

 
  

 

 

(iii) 

sin( ) sin[ ( ) ] sin( )

2cos sin
2 2

2sin sin
2 2 2

1
2sin sin ( )

2 2

px q p x h q px q

ph ph
px q

ph ph
px q

ph
px q ph





      

 
   

 

 
    

 

 
    

 

 

Hence 

2

2

1
sin( ) 2sin sin ( )

2 2

1
2sin sin 2 ( )

2 2

ph
px q px q ph

ph
px q ph





  
        

  

   
       
   

 

 (iv)  

1 1 1

1

1

tan tan ( ) tan

tan
1 ( )

tan
1 ( )

x x h x

x h x

x x h

h

x x h
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 (v) 

( )

2

2

e e e

e

e e

(e 1)

(e 1)

(e 1) , (e 1) is constant

e

e

ax b a x h b ax b

ax b

ax b ax

ah

ahb ax b

aah ahx b

   



  



 

 

        



   

    

 

Proceeding on, we get, 

   1
n

n ax b ah ax be e e     

Example (2.3) 

Prove the following results: 

(i) 2       

 (ii) 
 

   
 

  

 (iii)  1/2 1/2 1/2(1 ) 2E E         

 (iv) 

2
2

2 21 1
2


 

 
   

 
  

(v) 
2 2

1
2 4

 


 
    

 
  

 (vi) 1 2 4 61 3 5
1

8 128 1024
          

Solution  

(i) We have, 



FINITE DIFFERENCES                                                                   DR. AHMED YOUSEF 

 

19 
 

( ) [ ( )] [ ( ) ( )]

( ) ( )

[ ( ) ( )] [ ( ) ( )]

( ) ( ) ( ) ( )

f x f x f x f x h

f x f x h

f x h f x f x f x h

f x f x f x

       

    

     

     

   

 

Similarly, 

( ) [ ( )] [ ( ) ( )]

( ) ( )

[ ( ) ( )] [ ( ) ( )]

( ) ( ) ( ) ( )

f x f x f x h f x

f x h f x

f x h f x f x f x h

f x f x f x

     

  

     

     

   

 

Again 

 

2
2 1/2 1/2

1

2

( ) ( )

2 ( )

( ) ( ) 2 ( )

( ) ( )] [ ( ) ( )]

( ) ( ) ( ) ( )

f x E E f x

E E f x

f x h f x h f x

f x h f x f x f x h

f x f x f x









   

  

    

     

     

  

 

Hence 

2      

(ii) 

2 2

R.H.S. 

( )( )

( )

 L.H.S.

   
  
  

   


 

   

 

 (iii) 
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   1/2 1/2 1/2 1/2 1/2 1/2(1 )

1 1 1 2

E E E E E

E

     

        
 

(iv) 

 

2
1/2 1/2

2
2 2 1/2 1/2

22 11

2
1

1 1
2

4
1

2

(2.1)

4

2

E E
E E

E EE E

E E

 








 
       

 

  
  
 

 
  
 

  

Now, 

2 2
2

2 1/2 1/2

22 1
1

1 1
1 1

2 2

1
1 2

2 2
(2.2)

E E

E E
E E

 




   
        

   

  
        

   





 

Hence, from Eqns. (2.1) and (2.2), we have 

2

2 2 21
1 1

2
  

 
   

 
 

(v) 

   

   

  

2
2 2

2
1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2

1/2 1/2 1/2

1 1
RHS 1 4

2 4 2

1
4

2

1

2

1
2 1 LHS

2

E E E E

E E E E

E E E E


    





 

 



      
 

 
     

 

    
 

      

 

(vi) By definition, we have 
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2

2 1/2 1/2

2
1/2 1/2

2
2

1

2

1
4

4

1
4 1

4 4

E E

E E










 
  
 

   
  

   

 

1/2
2

1
4




 
   

 
 

or  

1/2
2

1

2 3
2 2 2

2 4 6

1
4

1 1 1 1 1 1 1 1 1
1 1 1 2

1! 2 4 2! 2 2 4 3! 2 2 2 4

1 3 5
1

8 128 1024
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CHAPTER (3) 

INTERPOLATION 

1. Introduction 

Interpolation is a technique of obtaining the value of a function for 

any intermediate values of  the independent variable, i.e. argument 

within an interval, when  the values of the arguments are given.  

Suppose that the following values of ( )y f x  for a set of values 

of x are given: 

0 1 2

0 1 2

(argument)

( )

n

n

x x x x x

y x y y y y
. 

Then the process of finding the value of y  corresponding to any 

value of 
ix x  between 

0x  and 
nx   is called in interpolation. 

The process of finding the value of a function outside the given 

range of arguments is called extrapolation 

If the form of the function ( )f x  is known we can find ( )f x  for 

any value of x by simple substitution. But in most practical prob-

lems that occur in engineering and science the form of the function 

( )f x  is unknown and it is very difficult to determine its exact 

form which is the help of tabulated set of values in such cases we 

replace ( )f x  by simple function ( )x  is called interpolating func-

tion which assumes the same values as those of ( )f x  and from 

which others are values may be computed to the desired degree of 

accuracy. 

If ( )x  is a polynomial then it is called interpolating polynomial 

and the process is known as polynomial interpolation. If ( )x  is a 

finite trigonometric series the process is called trigonometric inter-

polation. Usually, polynomial interpolation is preferred due to the 

reason that they are  free from singularities is and the easy to dif-

ferentiate and integrate. Even though there are other methods like 

graphical method and method of curve fitting, in this chapter we 

will study polynomial interpolation using the calculus of finite dif-

ferences by driving two important interpolation formulae which are 

used often in all fields by means of forward and the backward dif-

ferences of a function. 
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2. Newton forward interpolation formula 

Let ( )y f x   be a function which takes the values 
0 1, , , ny y y  

for ( 1)n   values  
0 1, , , nx x x of the dependent variable. Let the-

se values be equidistant 
0 , 0,1,2, ,ix x ih i n    and let ( )P x  

be a polynomial of n  degree such as 

( ) ( ) , 0,1,2, ,i i iP x f x y i n   . 

0 1 0 2 0 1

3 0 1 2

0 1 1

( ) ( ) ( )( )

( )( )( )

( )( ) ( ) (3.1)n n

P x a a x x a x x x x

a x x x x x x

a x x x x x x 

     

    

   

 

Putting 
0 1, , , nx x x x   successfully in equation (3.1), we get 

0 0 1 0 1 1 0

2 0 1 2 0 2 2 0 2 1

0 1 0 2 0 1

0 1 1

, ( ) ,

( ) ( )( )

( ) ( )( )

( )( ) ( )

n n n n

n n n n n

y a y a a x x

y a a x x a x x x x

y a a x x a x x x x

a x x x x x x 

   

     

      

   
 

from these 

1 0 1 0 0
0 0 1

1 0

2 0 1 2 0 2 0 1 0
2 2

2 0 2 1

2

2 1 0 0

2 2

0

, ,

( ) 2 2

( )( ) 2

2
,

2! 2!

!

n

n n

y a y y y
a y a

x x h h

y a a x x y y y y
a

x x x x h

y y y y

h h

y
a

n h

  
   



     
 

 

  
 




 

Putting these values in equation (3.1) we get  
2

0 0
0 0 0 12

3

0
0 1 23

0
0 1 1

( ) ( ) ( )( )
2!

( )( )( )
3!

( )( ) ( ) (3.2)
!

n

nn

y y
P x y x x x x x x

h h

y
x x x x x x

h

y
x x x x x x

n h


 
     


    


   

 

Putting 
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0

0

0 0 ( ) , 1,2, ,i i

x x
q

h

x x qh

x x x x x x qh ih q i h i n




 

  

         

 

where 0 1q   is  real number, Eq. (3.2) takes the form 

2

0 0 0

3

0 0

( 1)
( )

2!

( 1)( 2) ( 1)( 2) ( 1)

3! !

(3.3)

n

q q
P x y q y y

q q q q q q q n
y y

n


    

     
      

Equation (3.3) is known as Newton forward interpolation formula 

 Note 

Formula (3.3) is called Newton forward interpolation formu-

la due the fact that this formula  contains values of the tabu-

lated function from 
0y  onward to right and none to the left 

of this value.  This formula is used mainly to interpolating 

the values of y near the beginning of a set of tabulated val-

ues and to extrapolating y a little to the left of 
0y . The first 

two terms of the equation will give a linear interpolation 

while the first three terms a quadratic interpolation and so 

on. 

3. Newton backward interpolation formula 

Let ( )y f x   be a function which takes the values 
0 1, , , ny y y  

for ( 1)n   values  
0 1, , , nx x x of the dependent variable. Let the-

se values be equidistant 
0 , 0,1,2, ,ix x ih i n    and let ( )P x  

be a polynomial of n degree such as 

( ) ( ) , 0,1,2, ,i i iP x f x y i n   . 

Suppose that it is required to evaluate ( )y x   near the end of the ta-

ble values then we can assume that 

0 1 2 1

3 1 2

1 1

( ) ( ) ( )( )

( )( )( )

( )( ) ( ) (3.4)

n n n

n n n

n n n

P x a a x x a x x x x

a x x x x x x

a x x x x x x



 



     

    

   

 

Putting 
0 1, , , nx x x x   successfully in Eq. (3.4), we get 
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0

1 0 1 1

2 0 1 2 2 2 2 1

0 0 1 0 2 0 0 1

3 0 0 1 0 2

0 0 1 0 1

,

( )

( ) ( )( )

( ) ( )( )

( )( )( )

( )( ) ( )

n

n n n

n n n n n n n

n n n

n n n

n n n

a y

y a a x x

y a a x x a x x x x

y a a x x a x x x x

a x x x x x x

a x x x x x x

 

    



 





  

     

     

    

   

 

These equations give 

1 0 1 1
0 1

1 1 1

2 0 1 2 2 1
2 2

2 2 1

2

1 2

2 2

, ,

( ) 2 2

( )( ) 2

2
,

2! 2!

!

n n n n n n
n

n n n n n n

n n n n n n n

n n n n

n n n n

n

n
n n

y a y y y y y
a y a

x x x x x x h

y a a x x y y y y
a

x x x x h

y y y y

h h

y
a

n h

  

  

   

  

 

   
    

  

     
 

  

  
 




 

Putting these values in Eq.(3.4) we get 
2

12

3

1 23

1 1

( ) ( ) ( )( )
2!

( )( )( )
3!

( )( ) ( ) (3.5)
!

n n
n n n n

n
n n n

n

n
n nn

y y
P x y x x x x x x

h h

y
x x x x x x

h

y
x x x x x x

n h



 



 
     


    


   

 

Let 

  ( ) , 1,2, ,

n

n

i n n i

x x
q

h

x x qh

x x x x x x qh n i h q n i h i n




 

  

           

 

Where q  is real number. Then Eq.(3.5) takes the form 
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2

3

( 1)
( )

2!

( 1)( 2) ( 1)( 2) ( 1)

3! !

(3.6)

n n n

n

n n

q q
P x y q y y

q q q q q q q n
y y

n


    

     
    

Eq.(36) is known as Newton backward interpolation formula 

 Note 

Since the formula (3.6) involves the backward differences it 

is called backward interpolation formula and it is used to in-

terpolate the values of y near to the end of a set of tabular 

values. This may also be used to extrapolate the values of y

a little to the right of 
ny  

Example (3.1) 

Find a polynomial which takes the following values 

0 1 2 3 4 5

( ) 5.2 8.0 10.4 12.4 14.0 15.2

x

y x
 

Solution 

We take 

0
0 1 0

0
0 , 1 ,

1

x x x
x h x x q x

h

 
      

 

The forward differences table is as follows:
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2 3 4( )

0 5.2

2.8

1 8.0 0.4

2.4 0

2 10.4 0.4 0

2.0 0

3 12.4 0.4 0

1.6 0

4 14.0 0.4

1.2

5 15.2

x y x y y y y   









 

Using Newton forward interpolation formula, we get 

2 3

0 0 0

2

( 1) ( 1)( 2)
( )

2! 3!

0.4
5.2 2.8 ( )( 1)

2

5.2 2.6 0.2

q q q q q
P x y q y y y

x x x

x x

  
      

   

  

 

Example (3.2) 

Find a polynomial which takes the following values: 

1 1.5 2.0 2.5

( ) 4.0 18.25 44.0 84.25

x

y x
 

and hence compute (1.25)y . 

Solution 

Take  
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0 1 0

0
0

1.0 , 1.5 1.0 0.5

1.0
2( 1)

0.5 0.5

x h x x h

x x x
x x qh q x

      

 
      

 The forward differences table is as follows: 

2 3( )

1.0 4.0

14.25

1.5 18.25 11.5

25.75 3.0

2.0 44.0 14.5

40.25

2.5 84.25

x y x y y y  

 

Thus 

2 3

0 0 0 04.0 , 14.25 , 11.5 , 3.0y y y y        

Using Newton forward interpolation formula, we get 

  

   

2 3

0 0 0

( 1) ( 1)( 2)
( )

2! 3!

1
4 2( 1)(14.25) 2( 1) 2( 1) 1 (11.5)

2!

1
2( 1) 2( 1) 1 2( 1) 2 (3)

3!

q q q q q
P x y q y y y

x x x

x x x

  
      

      

     

 

Now 

  
  

 

   
 

0.5 0.5
(1.25) 4.0 0.5 14.25 11.5

2!

0.5 0.5 1.5
3 9.875

3!

y


  

 
 

 

Example (3.3) 
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Find a polynomial which takes the following values 

1 3 5 7 9

3 14 19 21 23

x

y
 

and hence compute (2), (10)y y . 

Solution 

The differences table as follows: 

2 3 4

1

3 14

5

5 19 3

2 3

7 21

3

11

6

3

9 2

0

0

2

3

x y y y y y



   



 

Take 0 0

1
1, 3 , 2 ,

2

x
x y h q


      

Using Newton forward interpolation formula, we get 

 

2 3

0 0 0 0

3 2

( 1) ( 1)( 2)
( )

2! 3!

1 1 1 1
3 (11) 1 ( 6)

2 2! 2 2

1 1 1 1
1 2 (3)

3! 2 2 2

1
21 159 91 .

16

q q q q q
y x y q y y y

x x x

x x x

x x x
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Again 
9

9, 23, 2,
2

n n

x
x y h q


     

Using Newton backward interpolation formula, we get 

2 3( 1) ( 1)( 2)
( )

2! 3!

9 1 9 9
23 (2) 1 (0)

2 2! 2 2

1 9 9 9
1 2 (3)

3! 2 2 2

1
23 ( 9) ( 9)( 7)( 5).

16

n n n n

q q q q q
y x y q y y y

x x x

x x x

x x x x

  
      

   
    

 

     
     

   

      

 

Then 

 3 21
(2) 2 212 159(2) 91 9.4375

16
y       

and 

1
(10) 23 (10 9) (10 9)(10 7)(10 5)

16
y         

Example (3.4) 

The amount A   of a substance remaining in a reacting system after a time 

t  in a certain chemical experiment is tabulated below 

2 5 8 11

94.8 87.9 81.3 75.1

t

A
 

Obtain the value of A when  9t    using Newton backward interpolation 

formula.  

Solution 

Since the value 9t   is near the end of the table, to get the corresponding 

value of t  we use Newton backward interpolation formula. 

The backward differences are calculated and tabulated below: 
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2 3

2.0 94.8

6.9

5.0 87.9 0.3

6.6 0.1

8.0 81.3 0.4

6.2

11.0 75.1

t A A A A  







 

Here 

1 0 5 2 3 , 11.0nh t t h t        

Hence the interpolation polynomial is 

2 3( 1) ( 1)( 2)
( ) .

2! 3!
n n n n

q q q q q
A t A q A A A

  
        

If 

 

9t   , we have

  
9 11.0 2

3 3

n
n

t t
t t qh q

h

 
      

 Therefore

  
2 1 2 2

(9) 75.1 ( 6.2) 1 (0.4)
3 2! 3 3

1 2 2 2
1 2 (0.1) 79.183951

3! 3 3 3

A
    

           
    

   
         

   

 

Example (3.5) 

Find the missing value in the following table 

16 18 20 22 24 26

43 89 155 268 388

x

y 
 

Solution 



INTERPOLATION                                                                            DR. AHMED YOUSEF 

 

32 
 

Since five values are given, it is possible to express y  as a polynomial of 

fourth degree. Hence the fifth differences of y  are zeros. Taking the 

origin for x  at 16  , from the given data we have: 

0 1 3 4 543, 89, 155, 268, 388y y y y y     , 

and we have to find 
2y  . We know that 5

0 0y    

5 5

0 0( 1) 0y E y     

i.e. 

 5 5 4 5 3 5 2 5

1 2 3 4 01 0E C E C E C E C E y       

 5 4 3 2

0

5 4 3 2

0 0 0 0 0 0

5 4 3 2 1 0

5 10 10 5 1 0,

5 10 10 5 0,

5 10 10 5 0

E E E E E y

E y E y E y E y Ey y

y y y y y y

     

     

     

 Substituting the given values, we have 

2

2

388 5(268) 10(155) 10 5(89) 43 0

100

y

y
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CHAPTER (4) 

NUMERICAL DIFFERENTIATION 

1. Introduction 

This chapter deals with numerical approximations of derivatives. 

The first question that comes up to mind is: why do we need to ap-

proximate derivatives at all? After all, we  know how to analytical-

ly differentiate every function. Nevertheless, there are several rea-

sons as of why we still need to approximate derivatives: 

 Even if there exists an underlying function that we need to 

differentiate, we might know its values only at a sampled da-

ta set without knowing the function itself. 

 There are some cases where it may not be obvious that an 

underlying function exists and all that we have is a discrete 

data set. We may still be interested in studying changes in 

the data, which are related, of course, to derivatives. 

 There are times in which exact formulas are available but 

they are very complicated to the point that an exact computa-

tion of the derivative requires a lot of function evaluations. It 

might be significantly simpler to approximate the derivative 

numerically instead of computing its exact value. 

 When approximating solutions to ordinary (or partial) differ-

ential equations, we typically represent the solution as a dis-

crete approximation that is defined on a grid. Since we then 

have to evaluate derivatives at the grid points, we need to be 

able to come up with methods for approximating the deriva-

tives at these points, and again, this will typically be done 

using only values that are defined on a lattice. The underly-

ing function itself (which in this case is the solution of the 

equation) is unknown. 

Consider a set of values ( , )i ix y   of a function ( )y f x .  The 

process of computing the derivative or a derivative of the function 

at some value x from the given set of values is called numerical 

differentiation. This may be done by first approximating the func-

tion by a suitable interpolation formula and then differentiating it 

as many times as desired. 

2. Derivatives using  Newton forward interpolation formula 
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If the values of  x are  equispaced and the derivative is required 

near the beginning of the table,  we employ Newton forward inter-

polation formula.  

Newton forward interpolation formula is 

2

0 0 0

3

0 0

( 1)
( )

2!

( 1)( 2) ( 1)( 2) ( 1)
,

3! !

(4.1)

n

q q
y x y q y y

q q q q q q q n
y y

n


    

     
    

 

where 0x x
q

h


  . 

Differentiating both sides of equation (4.1) with respect to q , we 

have 
2 3 2

2 3 4

0 0 0 0

2 1 3 6 2 4 18 22 6

2! 3! 4!

dy q q q q q q
y y y y

dq

     
        

 

Now 

1 1
,

dy dy dq dy dq

dx dq dx h dq dx h

 
    

   
2

2 3

0 0 0

3 2
4

0

1 2 1 3 6 2

2! 3!

4 18 22 6
(4.2)

4!

dy q q q
y y y

dx h

q q q
y

   
     



  
   



 

At 
0 0x x q    . Hence putting 0q   in equation, we get  

0

2 3 4

0 0 0 0

1 1 1 1

2 3 4x x

dy
y y y y

dx h

 
         

 
 

Differentiating Eq.(4.2)  with respect to x ,  we get  
2

2

2
2 3 4

0 0 02

1

1 6 18 11
( 1)

12

(4.3)

d y d dy dq d dy

dx dq dx dx h dq dx

q q
y q y y

h

   
     

   

  
        

 

 

Putting 0q    in equation, we get 



NUMERICAL DIFFERENTIATION                                              DR. AHMED YOUSEF 

 

35 
 

0

2
2 3 4

0 0 02 2

1 11

12
x x

d y
y y y

dx h


 
       

 
 

Similarly 

0

3
3 4

0 03 3

1 2

3
x x

d y
y y

dx h


 
     

 
 

And so on. 

3. Derivatives using Newton backward interpolation formula 

If the derivative is required near the end of the table,  we use the 

backward interpolation formula. 

Newton backward interpolation formula 

2

3

( 1)
( )

2!

( 1)( 2) ( 1)( 2) ( 1)
,

3! !

(4.4)

n n n

n

n n

q q
y x y q y y

q q q q q q q n
y y

n


    

     
    

 

where nx x
q

h


  . 

Differentiating both sides of  Eq. (4.4) with respect to q , we have 

2 3 2
2 3 42 1 3 6 2 4 18 22 6

2! 3! 4!
n n n n

dy q q q q q q
y y y y

dq

     
       

 

Now 

1 1
,

dy dy dq dy dq

dx dq dx h dq dx h

 
    

   
2

2 3

3 2
4

1 2 1 3 6 2

2! 3!

4 18 22 6
(4.5)

4!

n n n

n

dy q q q
y y y

dx h

q q q
y

   
     



  
   



 

At 0nx x q    . Hence, putting 0q   in equation, we get 

2 3 41 1 1 1

2 3 4
n

n n n n

x x

dy
y y y y

dx h

 
         

 
 

Again differentiating Eq. (4.5) with respect to x  we get 
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2

2

2
2 3 4

2

1

1 6 18 11
( 1)

12

(4.6)

n n n

d y d dy dq d dy

dx dq dx dx h dq dx

q q
y q y y

h

   
     

   

  
        

 
 

Putting 0q   in Eq. (4.6) , we get 

2
2 3 4

2 2

1 11

12
n

n n n

x x

d y
y y y

dx h


 
      

 
  

Similarly 
3

3 4

3 3

1 2

3
n

n n

x x

d y
y y

dx h


 
     

 
 

and so on. 

 

Example (4.1) 

Find the first, second and third derivatives of ( )y x  at 1.5x   if 

1.5 2.0 2.5 3.0 3.5 4.0

( ) 3.375 7.000 13.625 24.000 38.875 59.000

x

y x

 

Solution 

We have to find the derivative at the point

 

1.5x 

 

which is at the begin-

ning of the given data. Therefore we use here the derivative of Newton 

forward interpolation formula. The forward differences table as follows   
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2 3 4( )

1.5 3.375

3.625

2.0 7.000 3.000

6.625 0.750

2.5 13.625 3.750 0

10.375 0.750

3.0 24.000 4.500 0

14.875 0.750

3.5 38.875 5.250

20.125

4.0 59.000

x y x y y y y   

 

Here
 

0 1 01.5 , 0.5 ,x h x x    from Eq. (4.2) we have 

0

2 3 4

0 0 0 0

1 1 1 1

2 3 4x x

dy
y y y y

dx h

 
         

 
 

Thus 

1 1 1
(1.5) 3.625 (3) (0.75) 4.75

0.5 2 3
y

 
     

 

 
from Eq.(4.3) we have 

0

2
2 3 4

0 0 02 2

1 11

12
x x

d y
y y y

dx h


 
       

 

 
Hence 

 
 2

1
(1.5) 3 0.75 9

0.5
y    

 
Again from Eq.(4.4) we have 
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0

3
3 4

0 03 3

1 2

3
x x

d y
y y

dx h


 
     

 
 

Thus 

 
 3

1
(1.5) 0.75 6

0.5
y   

 

Example (4.2) 

The population of a certain town is shown in the following table 

1951 1961 1971 1981 1991

19.96 36.65 58.81 77.21 94.61

x

y
 

Find the rate of growth of the population in the year 1981. 

Solution 

Here we have to find the derivative at 1981 which is near the end of the 

table.  Hence we use derivative of Newton backward difference formula.  

The table of differences is as follows 

2 3 4

1951 19.96

16.69

1961 36.65 5.47

22.16 9.23

1971 58.81 3.76

18.40

1981 77.21

1991

11.9

2.76

1

17.40

94.61

x y y y y y   







 

Hence  

1981 1991
10 , 1991 , 1

10

n
n

x x
h x q

h
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we know from Eq.(4.5) that 

2
2 3

3 2
4

1 2 1 3 6 2

2! 3!

4 18 22 6

4!

n

n n n

x x

n

dy q q q
y y y

dx h

q q q
y



   
     



  
   



 

Now we have to find out the rate of growth of the population in the year 

1981 

2

3 2

1 2( 1) 1 3( 1) 6( 1) 2
(1981) 17.4 ( 1) (2.76)

10 2! 3!

4( 1) 18( 1) 22( 1) 6
(11.99) 1.6440833

4!

y
      

    


     
 



 

The rate of growth of the population in year 1981 is 1.6440833  

Example (4.3) 

Find the first and second derivative of the function tabulated below at the 

point  1.9x  . 

1.0 1.2 1.4 1.6 1.8 2.0

( ) 0.000 0.128 0.544 1.296 2.432 4.00

x

y x
 

Solution 

We have to find the derivative at the point

 

1.9x 

 

which is near the end 

of the given data. Therefore we use the derivative of Newton backward 

interpolation formula. The backward differences table as follows  



NUMERICAL DIFFERENTIATION                                              DR. AHMED YOUSEF 

 

41 
 

2 3 4( )

1.0 0.000

0.128

1.2 0.128 0.288

0.416 0.048

1.4 0.544 0.336 0

0.752 0.048

1.6 1.296 0.384 0

1.136 0.048

1.8 2.432 0.432

1.568

2.0 4.000

x y x y y y y   

 

Here 

1 0

1.9 2.0
2 , 0.2 , 0.5

0.2

n
n

x x
x h x x q

h

 
         

we know from Eq.(4.5) that 

2
2 3

3 2
4

1 2 1 3 6 2

2! 3!

4 18 22 6

4!

n

n n n

x x

n

dy q q q
y y y

dx h

q q q
y



   
     



  
   



 

Thus 

21 2( 0.5) 1 3( 0.5) 6( 0.5) 2
(1.9) 1.568 (0.432) (0.048) 7.83

0.2 2! 3!
y

      
     

 
 

we know from Eq.(4.6) that 

2 2
2 3 4

2 2

1 6 18 11
( 1)

12
n n n

d y q q
y q y y

dx h

  
        

   

Hence 
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 2

1
(1.9) 0.432 ( 0.5 1)(0.048) 11.4

0.2
y       . 

4. Two points first derivative approximation 

I. First derivative forward differences approximation 

The Taylor expansion of ( )if x h  about 
ix is given by: 

2 3

1
( ) ( 1)

( ) ( ) ( ) ( ) ( )
1! 2! 3!

( ) ( ), ( , )
! ( 1)!

i i i i i

n n
n n

i i i

h h h
f x h f x f x f x f x

h h
f x f x x h

n n
 




       

   


  

For such expansion to be valid, we assume that ( )f x  has 

( 1)thn   continuous derivatives at the point 
ix x . Ne-

glecting terms of degree higher than two, we obtain 
2

( ) ( ) ( ) ( ), ( , )
1! 2!

i i i i i

h h
f x h f x f x f x x h         

which turns into  

( ) ( )
( ) ( ), ( , )

2!

(4.7)

i i
i i i

f x h f x h
f x f x x h

h
 

 
    

 

Eq. (4.7) can be written as 

( ) ,i Ff x F E    

where 

( ) ( )
, ( ), ( , )

2!

i i
F i i

f x h f x h
F E f x x h

h
 

 
      

F  is  called  forward differences formula for approximating 

( )if x   and 
FE  is the error. 

II. First derivative backward differences approximation 

The Taylor expansion of ( )if x h  about 
ix is given by: 

2 3

1
( ) 1 ( 1)

( ) ( ) ( ) ( ) ( )
1! 2! 3!

( 1) ( ) ( 1) ( ), ( , )
! ( 1)!

i i i i i

n n
n n n n

i i i

h h h
f x h f x f x f x f x

h h
f x f x h x

n n
 


 

       

     


 



NUMERICAL DIFFERENTIATION                                              DR. AHMED YOUSEF 

 

42 
 

For such expansion to be valid, we assume that ( )f x  has 

(n+1)th  continuous derivatives at the point 
ix x . Neglect-

ing terms of degree higher than two, we obtain 
2

( ) ( ) ( ) ( ), ( , )
1! 2!

i i i i i

h h
f x h f x f x f x h x         

which turns into  

( ) ( )
( ) ( ), ( , )

2!

(4.8)

i i
i i i

f x f x h h
f x f x h x

h
 

 
    

 

Eq. (4.8) can be written as 

( ) ,i Bf x B E    

where 

( ) ( )
, ( ), ( , )

2!

i i
B i i

f x f x h h
B E f x h x

h
 

 
     

B  is  called  backward differences formula for approximat-

ing ( )if x   and 
BE  is the error. 

Example (4.4) 

Find the first derivative approximation  of the function ( ) cos( )f x x  at 

4
x


  using forward differences approximation formula (take 0.01h  ) 

Solution 

The forward differences approximation formula of the first derivative de-

fined as 

( ) ( )
( ) i i

i

f x h f x
f x

h

 
  , 

then we have 

 
( 4 0.01) ( 4)

4
0.01

0.700000476 0.707106781
0.71063051

0.01

f f
f

 


 
 


 

 

Example (4.5) 
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Find the first derivative of the function tabulated below at the point  

0.2x   using both forward differences and backward differences approx-

imation formulae 

0.1 0.2 0.3 0.4 0.5

0.0001 0.0016 0.0081 0.0256 0.0625

x

y
 

Solution 

The forward differences approximation formula of the first derivative de-

fined as 

( ) ( )
( ) i i

i

f x h f x
f x

h

 
  , 

then we have 

 
(0.3) (0.2) 0.0081 0.0016

0.2 0.065
0.1 0.1

f f
f

 
     

The backward differences approximation formula of the first derivative 

defined as 

( ) ( )
( ) i i

i

f x f x h
f x

h

 
  , 

then we have 

 
(0.2) (0.1) 0.0016 0.0001

0.2 0.015
0.1 0.1

f f
f

 
     

5. Three points first derivative approximation 

The Taylor expansion of ( )if x h  about 
ix is given by: 

2 3

1
( ) ( 1)

( ) ( ) ( ) ( ) ( )
1! 2! 3!

( ) ( ), ( , ).
! ( 1)!

(4.9)

i i i i i

n n
n n

i i i

h h h
f x h f x f x f x f x

h h
f x f x x h

n n
 




       

   


 

While, the Taylor expansion of ( )if x h  about 
ix is given by: 
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2 3

1
( ) 1 ( 1)

( ) ( ) ( ) ( ) ( )
1! 2! 3!

( 1) ( ) ( 1) ( ), ( , ).
! ( 1)!

(4.10)

i i i i i

n n
n n n n

i i i

h h h
f x h f x f x f x f x

h h
f x f x h x

n n
 


 

       

     


 

Subtracting Eq. (4.10) from Eq. (4.9) and neglecting terms of de-

gree higher than three, we obtain 

 
3

1 2( ) ( ) 2 ( ) ( ) ( )
3!

i i i

h
f x h f x h h f x f f          

If the third-order derivative ( )f x  is a continuous function in the 

interval  ,i ix h x h  , then the intermediate value theorem im-

plies that there exists a point  ,i ix h x h      such that 

 1 2

1
( ) ( ) ( )

2
f f f       

Hence 
2( ) ( )

( ) ( ) (4.11)
2 6

i i
i

f x h f x h h
f x f

h


  
    

Eq. (4.11) can be written as 

( ) ,i Cf x C E    
where 

( ) ( )
, ( ), ( , )

2!

i i
C i i

f x h f x h h
C E f x h x h

h
 

  
      

C  is  called  central differences formula for approximating ( )if x    

and 
CE  is the error. 

Example (4.6) 

Find the first derivative of the function tabulated below at the point  

0.2x   using central differences approximation formula 

0.1 0.2 0.3 0.4 0.5

0.0001 0.0016 0.0081 0.0256 0.0625

x

y
 

Solution 
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The central differences approximation formula of the first derivative de-

fined as: 

( ) ( )
( )

2

i i
i

f x h f x h
f x

h

  
  , 

so we have 

(0.3) (0.1) 0.0081 0.0001
(0.2) 0.04

2(0.1) 2(0.1)

f f
f

 
     

6. Three points second derivative approximation 

For the second derivative approximation, we add Eq. (4.9) and Eq. 

(4.10) and neglecting terms of degree higher than four to obtain 

 
4

2 2
( ) ( ) 2 ( ) ( ) ( ) , ,

4!
i i i i i i

h
f x h f x h f x h f x f x h x h          

So, we have 

 
2

2

( ) 2 ( ) ( )
( ) ( ) , ,

12

(4.12)

i i i
i i i

f x h f x f x h h
f x f x h x h

h
 

   
     

 

Eq. (4.12) can be written as 

( ) ,i Sf x S E    

where 
2

2

( ) 2 ( ) ( )
, ( ), ( , )

12

i i i
S i i

f x h f x f x h h
S E f x h x h

h
 

   
     

S  is  called differences approximation  formula of  ( )if x   and 

SE  is the error. 

Example (4.7) 

Find the second derivative of the function tabulated below at the point  

0.2x   using differences approximation formula 

0.1 0.2 0.3 0.4 0.5

0.0001 0.0016 0.0081 0.0256 0.0625

x

y
 

Solution 
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The differences approximation formula of the second derivative defined 

as 

2

( ) 2 ( ) ( )
( ) .i i i

i

f x h f x f x h
f x

h

   
   

So, we have 

 

2

2

(0.3) 2 (0.2) (0.1)
(0.2)

(0.1)

0.0081 2 0.0016 0.0001
0.5

(0.1)

f f f
f
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CHAPTER (5) 

NUMERICAL INTEGRATION 

1. Introduction 

The process of computing ( )

b

a

y x dx  where ( )y f x  is given by a 

set of tabulated values [ , ]i ix y , 0,1,2, , ,i n  
0 , na x b x   is 

called numerical integration.  Like that of numerical differentia-

tion, here we also replace ( )y f x  by an interpolation formula 

and integrate it between the given limits.  In this way we can derive 

a quadrature formula for approximate integration of a function de-

fined by a set of numerical values.  

2. General quadrature formula  

In this section we will derive a general quadrature formula for 

equidistant mesh points.  

Let 
b

a

I y dx  , where ( )y f x , 

takes the values 0 1, , , ny y y   for 0 1, , , nx x x  . Let us divide the 

interval ( , )a b  into n   equal parts of width h , so that 

0 1 0 2 0 0, , 2 , , na x x x h x x h x x nh b        . 

Then, 

0

0

( )

x nh

x

I f x dx



   

 Putting, 
0x x qh  , so that dx hdq  in above, we get, 

0

0 0

( ) ( )

n n

I h f x qh dq h y x dq    . 

Now replacing ( )y x  by Newton forward interpolation formula we 

get, 
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2 3

0 0 0 0

0

4

0

5

0

6

0

( 1) ( 1)( 2)

2! 3!

( 1)( 2)( 3)

4!

( 1)( 2)( 3)( 4)

5!

( 1)( 2)( 3)( 4)( 5)

6!

n

q q q q q
I h y q y y y

q q q q
y

q q q q q
y

q q q q q q
y dq

  
      



  
 

   
 

     
   







 

Now integrating a term by term we get after substituting the limits 

as 

2 3 2 4
2 3 2 3

0 0 0 0

5 4 3
2 4

0

6 4 3
5 2 5

0

7 6 4 3
5 2 6

0

1 1

2 2 3 2 3! 4

1 3 11
3

4! 5 2 3

1 35 50
2 12

5! 6 4 3

1 15 225 274
17 60

6! 7 6 4 3

(5.1)

n n n n
I h ny y y n n y

n n n
n y

n n n
n n y

n n n n
n n y

    
            

   

 
     

 

 
      

 

 
        

  

 

Eq.(5.1) is known as Newton-Cote's quadrature formula which is 

general quadratic formula for equidistant mesh points. In the fol-

lowing sections we deduce important quadrature formula for this 

equation taking 1,2,3n  . 

3. Trapezoidal rule  

Putting 1n   in Eq. (5.1) and neglecting second and higher order 

differences we get 

 

0

0

1

0 0

0

0 1 0 0 1

1
( ) ( )

2

1
( )

2 2

x h

x

y x dx h y x dq h y y

h
h y y y y y



 
    

 

 
     

 

 

 
Similarly 
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0

0

0

0

2

1 2

1

( 1)

( )
2

( )
2

x h

x h

x nh

n n

x n h

h
y x dx y y

h
y x dx y y









 

 

 




 

Adding these n  integrals, we get, 

   
0

0

0 1 2 1( ) 2
2

(5.2)

x nh

n n

x

h
I y x dx y y y y y




          

 Eq.(5.2) is known as trapezoidal rule. 

4. Simpson's 1/ 3   rule  

Here, taking 2n   in Eq.(5.1)  and neglecting third and higher-

order differences,  we get 

 

0

0

2 2

2

0 0 0

0

0 1 0 2 1 0

0 1 2

1 8
( ) ( ) 2 2 2

2 3

1
2 2( ) ( 2 )

3

4
3

x h

x

y x dx h y x dq h y y y

h y y y y y y

h
y y y


  

        
  

 
      

 

  

 

 
Similarly 

 

 

0

0

0

0

4

2 3 4

2

2 1

( 2)

( ) 4
3

( ) 4 ,
3

x h

x h

x nh

n n n

x n h

h
y x dx y y y

h
y x dx y y y







 

 

  

  





 

where n   is even. Adding all these integrals, we get 

   

 

0

0

0 1 3 1

2 4 2

( ) 4
3

2

(5.3)

x nh

n n

x

n

h
I y x dx y y y y y

y y y







      

    



 

Eq.(5.3) is known as Simpson's 1/ 3  rule. 

5. Simpson's 3 / 8   rule 
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Putting 3n    in Eq.(5.1)  and neglecting all differences above the 

third order, we get 

 

0

0

3 3

0

2 3

0 0 0 0

0 1 0 2 1 0 3 2 1 0

0 1 2 3

( ) ( )

9 1 27 9 1 81
3 27 9

2 2 3 2 3! 4

9 9 3
3 ( ) ( 2 ) ( 3 3 )

2 4 8

3
3 3

8

x h

x

y x dx h y x dq

h y y y y

h y y y y y y y y y y

h
y y y y





    
             

    

 
          

 

   

 

 Similarly 

 

 

0

0

0

0

6

3 4 5 6

3

3 2 1

( 3)

3
( ) 3 3

8

3
( ) 3 3

8

x h

x h

x nh

n n n n

x n h

h
y x dx y y y y

h
y x dx y y y y







  

 

   

   




 

Adding all these integrals, where n  is a multiple of 3 , we get 

 

 

 

0

0

0

1 2 4 5 7 8 2 1

3 6 3

3
( )

8

3

2 (5.4)

x nh

n

x

n n

n

h
I y x dx y y

y y y y y y y y

y y y



 



  

        

    



 

Eq. (5.4) known as Simpson's 3 / 8  rule. 

 Note 

 The trapezoidal rule ( )f x  is linear function of x i.e. of the 

form ( )f x ax b  . It is the simplest rule but least  accu-

rate.  

 In Simpson's 1/ 3  rule, ( )f x  is a polynomial of second de-

gree, i.e. 2( )f x ax bx c   . To apply this rule, the number 

of intervals n  must be even.    

 In Simpson's 3 / 8  rule ( )f x  is a polynomial of third degree, 

i.e. 3 2( )f x ax bx cx d    . To apply this rule the num-

ber of intervals n  must be a multiple of 3 . 
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Example (5.1) 

Evaluate 

10

2

0
1

dx
I

x








, 

by using  

1. Trapezoidal rule 

2. Simpson's 1/ 3  rule. Compare the results with the actual value. 

Solution 

Taking 10n  , divide the whole range of the integration into ten equal 

parts. The value of the integrand function for each point of  sub-division 

are given below: 

0

1

2

3

4

5

6

7

8

9

3

10

0 1.00000

1 0.50000

2 0.200000

3 0.100000

4 0.0588235

5 0.0384615

6 0.027027

7 0.0200000

8 0.0153846

9 0.0121951

10 9.9009901 10

nx y y

y

y

y

y

y

y

y

y

y

y

y

  

1. By Trapezoidal rule  
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10

0 10 1 2 3 4 5 6 7 8 92

0

3

2
1 2

1
(1 9.9009901 10 ) 2(0.5 0.2 0.1 0.0588235 0.0384615

2

0.027027 0.02 0.0153846 0.0121951) 1.4768422

dx h
I y y y y y y y y y y y

x



             

       

    





 

2. By Simpson's 1/ 3  rule 

   



10

0 10 1 3 5 7 9 2 4 6 82

0

3

4 2( )
1 3

1
(1 9.9009901 10 ) 4(0.5 0.1 0.0384615 0.02 0.0121951)

3

2(0.2 0.0588235 0.027027 0.0153846) 1.4316659

dx h
I y y y y y y y y y y y

x



             

       

    





 

Example (5.2) 

The velocity v  of a particle at a distance x  from a point on its path is 

given by the following table: 

( ) 0 10 20 30 40 50 60

( / ) 47 58 64 65 61 52 38

x ft

v ft s
 

Estimate the time taken to travel to 60ft using Simpson's 1/ 3  rule. Com-

pare the result with Simpson's 3 / 8  rule. 

Solution 

We know that the rate of displacement is velocity , i.e. 
dx

v
dt

  . There-

fore the time taken to travel 60ft  is given by 

60
60

0
0

1
t dx y dx

v
 

   

where 1/y v . The table is as given below. 
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0

1

2

3

4

5

6

1 /

0 0.0212765

10 0.0172413

20 0.015625

30 0.0153846

40 0.0163934

50 0.0192307

60 0.0263157

nx y v y

y

y

y

y

y

y

y



 

By Simpson's 1/ 3  rule 

   





60

0 6 1 3 5 2 4

0

4 2( )
3

10
(0.0212765 0.0263157) 4(0.0172413 0.0153846 0.0192307)

3

2(0.015625 0.0163934) 1.063518

h
I y dx y y y y y y y         

    

  



 

Hence the time taken to travel 60ft  is 1.064s . 

By Simpson's 3 / 8  rule 

   





60

0 6 1 2 4 5 3

0

3
3 2

8

30
(0.0212765 0.0263157) 3(0.0172413 0.015625 0.0163934 0.0192307)

8

2(0.0153846) 1.0643723

h
I y dx y y y y y y y         

     

 



 By this method also the time taken to travel 60ft  is 1.064s . 

Example (5.3) 

Find the following integral by 

(i)  Trapezoidal rule  (ii)  Simpson's 1/ 3  rule (iii)  Simpson's 3 / 8  rule 

5.2

4

lnI x dx   

Solution 
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Taking 6n  , divide the whole range of the integration into six equal 

parts. The value of the integrand function for each point of  sub-division 

are given below: 

4 4.2 4.4 4.6 4.8 5 5.2

( ) ln 1.386 1.435 1.482 1.526 1.569 1.609 1.649

x

f x x
 

1. By Trapezoidal rule  

   

 

5.2

0 6 1 2 3 4 5

4

ln 2
2

0.2
(1.386 1.649) 2(1.435 1.482 1.526 1.569 1.609) 1.8277

2

h
I x dx y y y y y y y         

       



 

2. By Simpson's 1/ 3   rule 

   

 

5.2

0 6 1 3 5 2 4

4

ln 4( ) 2
3

0.2
(1.386 1.649) 4(1.435 1.526 1.609) 2(1.482 1.569) 1.8278

3

h
I x dx y y y y y y y         

       



 

3.  By Simpson's 3 / 8   rule 

   

 

5.2

0 6 1 2 4 5 3

4

3
ln 3 2

8

0.6
(1.386 1.649) 3(1.435 1.482 1.569 1.609) 2(1.526) 1.8279

8

h
I x dx y y y y y y y         

       



 

Example (5.4) 

A rocket is launched from the ground . Its acceleration is registered dur-

ing the 90  seconds and are given in the table below. Using Simpson's 

3 / 8  rule, find the velocity of the rocket at 90t  . 

2

(s) 0 10 20 30 40 50 60 70 80 90

(m/ s ) 30 31.63 33.64 35.47 37.75 40.33 43.25 46.69 50.67 54.87

t

a

 

Solution 
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We know that the rate of velocity is acceleration , i.e. 
dv

a
dt

 Therefore 

the velocity of the rocket at 90t   is given by 

90

0

v a dt  . 

By Simpson's 3 / 8    rule 

   

 

90

0 9 1 2 4 5 7 8 3 6

0

3
3 2( )

8

30
(30 54.87) 3(31.63 33.64 37.75 40.33 46.69 50.67) 2(35.47 43.25)

8

3616.65

h
I adt y y y y y y y y y y            
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CHAPTER (6) 

SOLUTIONS OF ALGEBRIAC  

AND TRANSCENDENTAL EQUATIONS 

1. Introduction 

We have seen that an expression of the form 

1 2

0 1 2( ) n n n

nf x a x a x a x a      , 

where 'a s  are constants 0( 0)a   and n  is positive integer, is called 

a polynomial in x  of  degree  n   and the equation  ( ) 0f x   is 

called an algebraic equation of degree n  . If ( )f x  contains  some 

other functions like exponential, trigonometric, logarithmic , then 

( ) 0f x    is called transcendental equation. For example 

3 5 4 23 6 0 , 7 3 36 7 0x x x x x x         

are algebraic equations. Whereas  
2 3cos 1 0 , 2 0, log 1.2xx x xe x x        

are transcendental equations.  

In this chapter we will solve algebraic and the transcendental equa-

tions.  For equation s of degree two or three  or four, methods are 

available to solve them. But the need often arises to solve higher 

degree or transcendental equation for which no direct method ex-

ists. Such equations can be solved by approximate methods.  Be-

fore we proceed to solve such equations let us recall the fundamen-

tal theorem on roots of ( ) 0f x   in a x b  . 

Theorem 6.1 

If ( ) 0f x   is  continuous function in a closed interval  ,a b  and 

( ), ( )f a f b   are of opposite signs, then the equation  ( ) 0f x    will 

have at least one real root between a  and b . 

2. Bisection method 

Let the function ( )f x  be continuous between a  and b . For defi-

niteness let ( )f a   be negative and ( )f b  be positive,  then there is a 

root of ( ) 0f x   lying between a  and b . Let the first the approx-

imation be 1
2

a b
x


   (the average of the ends of the range).  
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Now if  
1( ) 0f x  , then  

1x  is a root of ( ) 0f x  .  Otherwise, the 

root will lie between a  and 
1x  or 

1x  and b  depending upon 

whether 
1( )f x  is positive or negative. 

Then,  as before we bisect the interval and continue the process till 

the root is found to the desired accuracy.  If 
1( )f x  is positive, 

therefore the root lies between a  and 
1x . The second approxima-

tion to the root now is 1
2

2

a x
x


 . If 

2( )f x  is negative, then the 

root lies between 
1x  and 

2x  then, the third approximation to the 

root is  1 2
3

2

x x
x


 and so on. This method is simple but slowly 

convergent. 

Example (6.1) 

Find a root of the equation 

3 11 0,x x    

correct to four decimal places using bisection method. 

Solution  

Let 

3( ) 11f x x x   . 

Since  (2) 5 0f    and (3) 13 0f   , then there exist a real root lies 

between 2  and 3 . Hence, the first approximation to the root is 

1

2 3
2.5

2
x


  . 

Now  

3(2.5) (2.5) 2.5 11 2.125 0f      . 

Therefore the second approximation lies between 2  and 2.5 . Thus the 

second approximation to the root is 
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2

2 2.5
2.25

2
x


  . 

Now 

3(2.25) (2.25) 2.25 11 1.859375 0f       . 

Therefore the third approximation lies between 2.5  and 2.25 . Thus the 

third approximation to the root is 

1 2
3

2.5 2.25
2.375

2 2

x x
x

 
   . 

Now 

3(2.375) (2.375) 2.375 11 0.0214843 0f      . 

Therefore the fourth approximation lies between 2.25  and 2.375 . Thus 

the fourth approximation to the root is 

2 3
4

2.25 2.375
2.3125

2 2

x x
x

 
   . 

Now 

3(2.3125) (2.3125) 2.3125 11 0.9460449 0f       . 

Therefore the fifth approximation lies between 2.375  and 2.3125 . Thus 

the fifth approximation to the root is 

3 4
5

2.375 2.3125
2.34375

2 2

x x
x

 
   . 

Now 

3(2.34375) (2.34375) 2.34375 11 0.4691467 0f       . 

Therefore the sixth approximation lies between 2.375  and 2.34375 . Thus 

the sixth approximation to the root is 

3 5
6

2.375 2.34375
2.359375

2 2

x x
x

 
   . 

Now 
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3(2.359375) (2.359375) 2.359375 11 0.2255592 0f       . 

Therefore the seventh approximation lies between 2.375  and 2.359375 . 

Thus the seventh approximation to the root is 

3 6
7

2.375 2.359375
2.3671875

2 2

x x
x

 
   . 

Now 

3(2.3671875) (2.3671875) 2.3671875 11 0.1024708 0f       . 

Which means that the eighth approximation lies between 2.375  and 

2.3671875 . Thus the eighth approximation to the root is 

3 7
8

2.375 2.3671875
2.3710938

2 2

x x
x

 
   . 

Now 

3(2.3710938) (2.3710938) 2.3710938 11 0.040601 0f       . 

Which means that the ninth approximation lies between 2.375  and 

2.3710938 . Thus the ninth approximation to the root is 

3 8
9

2.375 2.3710938
2.3730469

2 2

x x
x

 
   . 

Now 

3 3(2.3730469) (2.3730469) 2.3730469 11 9.585864 10 0f        . 

Therefore the tenth approximation lies between 2.375  and 2.3730469 . 

Thus the tenth approximation to the root is 

3 9
10

2.375 2.3730469
2.3740235

2 2

x x
x

 
   . 

Now 

3 3(2.3740235) (2.3740235) 2.3740235 11 5.942463 10 0f       . 

Therefore the eleventh approximation lies between 2.3730469  and 

2.3740235 . Thus the eleventh approximation to the root is 
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9 10
11

2.3730469 2.3740235
2.3735352

2 2

x x
x

 
   . 

Now 

3 3(2.3135352) (2.3135352) 2.3135352 11 1.823398 10 0f         

Therefore the twelfth approximation lies between 2.3740235and 

2.3735352 . Thus the twelfth approximation to the root is 

10 11
12

2.3740235 2.3735352
2.3737793

2 2

x x
x

 
   . 

Now 

3 3(2.3737793) (2.3737793) 2.3737793 11 2.059107 10 0f       . 

Therefore the thirteenth approximation lies between 2.3735352  and 

2.3737793 . Thus the thirteenth approximation to the root is 

11 12
13

2.3735352 2.3737793
2.3736572

2 2

x x
x

 
   . 

Now 

3 4(2.3736572) (2.3736572) 2.3736572 11 1.17748 10 0f       . 

Therefore the fourteenth approximation lies between 2.3735352  and 

2.3736572 . Thus the fourteenth approximation to the root is 

11 13
14

2.3735352 2.3736572
2.3735962

2 2

x x
x

 
   . 

Now 

3 4(2.3735962) (2.3735962) 2.3735962 11 8.52851 10 0f        . 

Therefore the fifteenth approximation lies between 2.3736572  and 

2.3735962 . Thus the fifteenth approximation to the root is 

13 14
15

2.3736572 2.3735962
2.3736267

2 2

x x
x

 
   . 

Now 
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3 4(2.3736267) (2.3736267) 2.3736267 11 3.67558 10 0f        . 

Therefore from 
14x  and 

15x  we can see that 
14( )f x   and 

15( )f x  are near-

ly equal to 0. Hence the root is correct to 4 decimal places is 2.37362 . 

Example (6.2)  

Using bisection method,  find the negative root of 

3 11 0x x    

Solution 

Let 

3( ) 11f x x x   . 

Hence 

3( ) 11f x x x     . 

The negative root of ( ) 0f x    is the positive root of ( ) 0f x  . There-

fore we will find the positive root of ( ) 0f x  , 

i.e. 

3 11 0x x   . 

Proceeding as explained in example (1), we get 2.37362x    and hence 

the negative root is 2.37362x   . 

3. Iteration method 

Let ( ) 0f x    by the given equation whose roots are to be deter-

mined this equation can be written in the form 

( ). (6.1)x x  

Let 0x x   an initial approximation to the actual root say    of  

Eq. (6.1). Then the first approximation is 1 0( )x x  and successive 

approximations are 2 1 3 2 4 3 1( ), ( ), ( ) , , ( )n nx x x x x x x x        . 

If the sequence of approximate roots 0 1 2, , , , nx x x x  converges to 

 ,  then the value nx  it is taking as the root of the equation 
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( ) 0f x  . For the convergence purpose the function ( )x   have to 

be chosen carefully. The choice of ( )x is determined according to 

the following theorem. 

Theorem 6.2 

If   is a root  of  ( ) 0f x   which is equivalent to ( )x x . Let I  

be an interval contains the point x  .Then the sequence of ap-

proximations 0 1 2, , , , nx x x x  will converge to the root   , if  

( ) 1x x I    . 

 Note 

The smaller  values of ( )x  the more rapid convergence 

Example (6.3) 

Find a real root of the equation  

3 2 1 0x x   . 

 By iteration method. 

Solution 

Let 3 2( ) 1f x x x   . Now (0) 1f   and (1) 1f  . Hence a real root lies be-

tween 0  and 1 . Rewrite 3 2 1 0x x    as  

1
( )

1
x x

x
 


. 

Now  

 
3/2

1
( )

2 1
x

x
  


. 

It is clear that  

 ( ) 1 0,1x x    . 

Hence the iteration method can be applied. Let 0 0.65x   be the initial 

approximation to the desired root, then 
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                                        0 0.65x  , 

1 0

0

1 1
( ) 0.7784989

1 1.65
x x

x
   


, 

2

1

1 1
0.7498479

1 1.7784989
x

x
  


, 

3

2

1 1
0.7559617

1 1.7498479
x

x
  


, 

4

3

1 1
0.7546446

1 1.7559617
x

x
  


, 

5

4

1 1
0.7549278

1 1.7546446
x

x
  


, 

6

5

1 1
0.7548668

1 1.7549278
x

x
  


, 

7

6

1 1
0.7548799

1 1.7548668
x

x
  


, 

8

7

1 1
0.7548771

1 1.7548799
x

x
  


, 

9

8

1 1
0.7548777

1 1.7548771
x

x
  


, 

10

9

1 1
0.7548776

1 1.7548777
x

x
  


, 

11

10

1 1
0.7548776

1 1.7548776
x

x
  


, 

Hence the root is 0.7548776 . 

Example (6.4) 

Find a real root of the equation cos 3 1 0x x    correct to seven decimal 

places. 

Solution 
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Let ( ) cos 3 1f x x x   . Now (0) 2 0f   and 
3

( / 2) 1 0
2

f


     . There-

fore there exist a real root lies between 0  and / 2  . Rewrite 

cos 3 1 0x x    as  

 
1

cos 1 ( )
3

x x x   . 

Now  

sin
( )

3

x
x   . 

It is clear that  

sin 1
( )

3 3

x
x x     . 

Hence the iteration method can be applied. Let 0 0.5x   be the initial ap-

proximation to the desired root, then 

 1 0

1
( ) cos 1 0.6258608

3
x x x    , 

 2

1
cos(0.6258608) 1 0.6034863

3
x    , 

 3

1
cos(0.6034863) 1 0.6077873

3
x    , 

 4

1
cos(0.6077873) 1 0.6069711

3
x    , 

 5

1
cos(0.6069711) 1 0.6071264

3
x    , 

 6

1
cos(0.6071264) 1 0.6070969

3
x    , 

 7

1
cos(0.6070969) 1 0.6071025

3
x    , 

 8

1
cos(0.6071025) 1 0.6071014

3
x    , 

 9

1
cos(0.6071014) 1 0.6071016

3
x    , 
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 10

1
cos(0.6071016) 1 0.6071016

3
x    , 

 Hence the root is 0.6071016 . 

4. Newton-Raphson method 

This method, is a particular form of the iteration method 

discussed in section 3. When an approximate value of a 

root of an equation is given, a better and closer approxima-

tion to the root can be found using this method. It can be 

derived as follows: 

Let 0x  be an approximation of a root of the given equation 

( ) 0f x   , which may be algebraic or transcendental. Let 

0x h  be the exact value or the better approximation of the 

corresponding root, h  being a small quantity. Then 

 0 0f x h  . Expanding  0 0f x h   by Taylor's theo-

rem, we get 

     
2

0 0 0 0( 0
2!

)
h

f x h f x hf x f x      . 

Since h  is small, we can neglect second, third and higher 

degree terms in h  and thus we get, 

   0 0 0f x hf x 
. 

Or 

 
 

 0

0

0

; 0
f x

h f x
f x

  


. 

Hence, 

 
 

0

1 0 0

0

f x
x x h x

f x
   


 

Now substituting 1x   for 0x  and 2x  for 1x , then the next bet-

ter approximations are given by 

 
 

1

2 1

1

f x
x x

f x
 


, 



SOLUTIONS OF ALGEBRIAC AND TRANSCENDENTAL EQUATIONS  DR. AHMED YOUSEF 

66 
 

and  

 
 3 2

n

n

f x
x x

f x
 


. 

Proceeding in the same way n  times, we get the general 

formula 

 
 1  for 0,1,2, , (6.2)n

n n

n

f x
x x n

f x
    


 

which is known as Newton-Raphson formula. 

Example (6.5)  

Find an iterative formula to find N , where N  is a positive 

number and hence, find 12   correct to four decimal places. 

Solution 

 Let  

2 0x N x N    . 

Assume  

2( )f x x N  . 

Then, 

( ) 2f x x   

Now, from Newton-Raphson formula, 

 
 

2

1
2

1
(6.3)

2

n n
n n n

n n

n

n

f x x N
x x x

f x x

N
x

x




   



  
   

  

 

Eq. (6.3) is the required iterative formula. Putting 12N   in 

( )f x , we have 2( ) 12f x x  .  
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Now,  3 0f    and  4 0f  . Therefore, the root lies in between 

3  and 4 . Let the initial approximation 
0x   be 3.1. Then, from 

Eq. (6.3) the first approximation to the root 

1 0

0

1 12 1 12
3.1 3.4854839

2 2 3.1
x x

x

   
       

  
. 

The second approximation is 

2 1

1

1 12 1 12
3.4854839 3.4641672

2 2 3.4854839
x x

x

   
       

  
. 

The third approximation is 

3

1 12
3.4641672 3.4641016

2 3.4641672
x

 
   

 
. 

The fourth approximation is 

4

1 12
3.4641016 3.4641016

2 3.4641016
x

 
   

 
. 

Thus, the value of  12  correct to four decimals is 3.4641. 

Example (6.6) 

Solve 3 22 10 20 0x x x     by Newton-Raphson method. 

Solution  

Let  

3 2( ) 2 10 20f x x x x    . 

Therefore  

2( ) 3 4 10f x x x    . 

From Eq. (6.2) 
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1

3 2

2

3 2

2

2 10 20

3 4 10

2 10
. (6.4)

3 4 10

n

n n

n

n n n
n

n n

n n

n n

f x
x x

f x

x x x
x

x x

x x

x x

 


   
   

  

 


 



 

Now we can see that  1 7 0f      and  2 16 0f    . Therefore, 

the root lies in between 1  and 2 . Let 
0 1.2x    be the initial ap-

proximation ( (1.2) 0)f  . 

Putting 0n   in Eq. (6.4), first approximation 1x  is given by 

 3 7 2 2

0 0

1 2 2

0 0

2 10 2 (1.2) (1.2) 10

3 4 10 3(1.2) 4(1.2) 10

26.336
1.3774059.

19.12

x x
x

x x

      
   

 

 

The second approximation 
2x  is 

 3 2 3 2

1 1

2 2 2

1 1

2 10 2 (1.3774059) (1.3774059) 10

3 4 10 3(1.3774059) 4(1.3774059) 10

29.021052
1.3688295.

21.201364

x x
x

x x

      
   

 

 

The third approximation 3x  is given by 

 3 2 3 2

2 2

3 2 2

2 2

2 10 2 (1.3688295) (1.3688295) 10

3 4 10 3(1.3688295) 4(1.3688295) 10

28.876924
1.3688081.

210064

x x
x

x x

      
   

 

 

The fourth approximation 4x   (to the root) is given by 
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 3 2 3 2

3 3

4 2 2

3 3

2 10 2 (1.3688081) (1.3688081) 10

3 4 10 3(1.3688081) 4(13688081) 10

28.876567
1.3688081.

21.09614

x x
x

x x

      
   

 

 

Hence the root is 1.3688081. 

Example (6.7)  

Using Newton-Raphson method, find the root of the equation  

ln 1.2x x   . 

Solution  

Let  

( ) ln 1.2 ( ) ln 1f x x x f x x     . 

From Newton-Raphson formula,  

 
 1

ln 1.2

ln 1

n n n
n n n

n n

f x x x
x x x

f x x



   

 
. 

Therefore 

1

1.2
. (6.5)

ln 1

n
n

n

x
x

x






 

Now  2.5 0.2051499 0f     and  3 0.2313637 0f   . Therefore, 

the real root of ( )f x  lies in  2.5,3 . Let 0 2.7x   be the initial ap-

proximation. Putting 0n    in Eq. (6.5), the first approximation  

1x  is given by 

0
1

0

1.2 2.7 1.2
1.9566

ln 1 ln 2.7 1

x
x

x

 
  

 
. 

The second approximation 2x  is 
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1
2

1

1.2 1.9566 1.2
1.8888

ln 1 ln(1.9566) 1

x
x

x

 
  

 
. 

Similarly, the third approximation is 

2
3

2

1.2 1.8888 1.2
1.88809

ln 1 ln(1.8888) 1

x
x

x

 
  

 
. 

Hence, the root is 1.88809 . 

Example (6.8) 

Solve  3sin 1x x   using Newton-Raphson method. 

Solution 

Let 

3 2( ) sin 1 ( ) cos 3f x x x f x x x      . 

Then, from Newton-Raphson formula, 

 
 

3

1 2

sin 1

cos 3

n n n
n n n

n n n

f x x x
x x x

f x x x


 
   

 
. 

Hence 

3

1 2

cos sin 2 1
. (6.6)

cos 3

n n n n
n

n n

x x x x
x

x x


  



 

Now  

3( 1) sin( 1) 1 ( 1) 0.8414709 0f          , 

and  

3( 2) sin( 2) 1 ( 2) 6.0907026 0f         , 

which means that the root lies in between 1  and 2 . Let 

0 1.1x     be the initial approximation. Then, by putting 
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0,1,2,n    in Eq. (6.6), we obtain the successive approxima-

tions as 

3

0 0 0 0
1 2

0 0

2

3

6

5

4

cos sin 2 1 4.0542516
1.2763653

cos 3 3.1764039

5.7452469
1.2497465

4.5971297

5.4584049
1.2490526

4.370036

5.4510835
1.2490522

4.364176

5.4510786
1.2490521

4.3641722

5.4

x x x x
x

x x

x

x

x

x

x

  
   

 

  


  


  


  



510785

1.2490522
4.3641721

 


 

Hence the approximated root is 
6x , i.e. 1.2490522  . 

 

 

 




