Chapter 11

LAGRANGE’'S
EQUATIONS

GENERAL METHODS OF MECHANICS

Up to now we have dealt primarily with the formulation of problems in mechanics by
Newton’s laws of motion. It is possible to give treatments of mechanics from rather
general viewpoints, in particular those due to Lagrange and Hamilton,

Although such treatments reduce to Newton’s laws, they are characterized not only
by the relative ease with which many problems can be formulated and solved but by their
relationship in both theory and application to such advanced fields as quantum mechanlcs,
statistical mechanics, celestial mechanics and electrodynamics.

GENERALIZED COORDINATES

Suppose that a particle or a system of N particles moves subject to possible constraints,
as for example a particle moving along a cireular wire or a rigid body moving along an
inclined plane. Then there will be a minimum number of independent coordinates needed
to specify the motion, These coordinates denoted by

qu G2 ..., qn (1)
are called generalized coordinates and can be distances, angles or quantities relating to

them, The number n of generalized coordinates is the number of degrees of freedom
[see page 165).

Many sets of generalized coordinates may be possible in a given problem, but a

atrategic choice can simplify the analysis considerably.

NOTATION

In the following the subscript « will range from 1 to n, the number of degrees of
freedom, while the subscript v will range from 1 to N, the number of particles in the
system.

TRANSFORMATION EQUATIONS

Iet »,=ai+wj+2k be the position vector of the +th particle with respect to an
zyz coordinate system. The relationships of the generalized coordinates (1) to the position
coordinates are given by the fransformation equations

e = zlg9u g2 ...y Iar t)
¥ = YL Q2 ..., G B) @)
2 = 2(d1, Q2 ..., gn, b)
where ¢ denoctes the time. In vector form, (2) can be written
= 0{q, 92 ..., G b) ®
The functions in (2) or (3) are supposed to be continuous and to have continuous derivatives.
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CLASSIFICATION OF MECHANICAL SYSTEMS

Mechanical systems can be classified according as they are scleronomic or rheonomie,
holonomic or mon-holonomie, and conservative or non-conservative as defined below.

SCLERONOMIC AND RHEONOMIC SYSTEMS

In many mechanical systems of importance the time { does not enter explicitly in the
equations (2) or (3). Such systems are sometimes called scleronomic. In others, as for

example those involving moving constraints, the time ¢ does enter explicitly. Such systems
are called rheonomie. . L

HOLONOMIC AND NON-HOLONOMIC SYSTEMS

Let ¢1, g2, ..., ¢= denote the generalized coordinates describing a system and let ¢
denote the time. If all the constraints of the system can be expressed as equations having
the form ¢(q1, 92, . - ., @a, 1) = 0 or their equivalent, then the system is said to be holornomic;
otherwise the system is said to be non-holonomic. Compare page 170.

CONSERVATIVE AND NON-CONSERVATIVE SYSTEMS

If all forces acting on a system of particles are derivable from a potential function
[or potential energy] V, then the system is called conservative, otherwise it is non-con-
servative.

KINETIC ENERGY. GENERALIZED VELOCITIES
The total kinetic energy of the system is
T E mv (4)
(S |

The kinetic energy can be written as a quadmtw form in the generalized velocities Q..
If the system is scleronomic [i.e. independent of time ¢ explicitly], then the quadratic form
has only terms of the form @.sd«gs. If it is rheonemic, linear terms in ¢, are also present.

GENERALIZED FORCES

If W is the total work done on a system of particles by forces F, acting on the »th
particle, then

aw = 21 @a dGa %
where P = % Fp- _3_!1 (8)
] 9Ga

is called the generalized force associated with the generalized coordinate g.. See
Problem 11.6. :

LAGRANGE’S EQUATIONS
The generalized force can be related to the kinetic emergy by the equations [see

Problem 11.10) i /a7 r
sy _ o _
‘fﬁ (m) ol o e (7)
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If the system is conservative so that the forces are derivable from a potential or potential
energy V, we can write (7) as

d /oLy oL
7))~ = O ®
where L=T-V &)

is called the Lagrangian function of the system, or simply the Lagrangion.

The equations (7} or (8) are called Lagrange’s equations and are valid for holonomic
systems which may be scleronomic or rheonomic,

If some of the forces in a system are conservative so as to be derivable from a potential
V’ while other forces such as friction, etc., are non-conservative, we can write Lagrange's

equations as

d ( oL ) al ,

=] — — = &y 10

dt aqa BQa ( )
where L =TV’ and &. are the generalized forces associated with the non-conservative
forces in the system.

GENERALIZED MOMENTA
We define oT

Pa =

3 11
35 | (11)
to be the generalized momentum associated with the generalized coordinate ¢.. We often
call p. the momentum conjugate to q., or the conjugate momentum.

If the system is conservative with potential energy depending only on the generatized
coordinates, then (11) can be written in terms of the Lagrangian L=T -V as

oL

Da 2Ga {12
LAGRANGE’S EQUATIONS FOR NON-HOLONOMIC SYSTEMS
Suppose that there are m equations of constraint having the form
Y Aedga + Adt = 0, X Budg. + Bdt = 0, ... (18)
[« 4 [ ]
or equivalently SAsge + A = 0, 2Bala +B =0, ... (14)
o [

We must of course have m < n where n is the number of coordinates ¢a.

The equations (13) or (14) may or may not be integrable so as to obtain a relationship
involving the ¢.’s. If they are not integrable the constraints are non-holonomic or non-
integrable; otherwise they are holonomic or integrable.

In either case Lagrange’s equations can be replaced by

%(“3"&1—") - % = Py + )tlAu + A&Ba + - (15)
o [ ]
where the m parameters Ay, s, ... are called Lagrange multipliers [see Problem 11.18].
If the forces are conservative, (15) can be written in terms of the Lagrangian
L=T-V as
d /oL oL
=) — 5 = « + o 16
dt( ) - s = MAe+ B+ (16)
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It should be emphasized that the above results are applicable to holonomic (as well as
non-holonomie) systems sinee a constraint condition of the form

$lgn g2 ..., qn E) = 0 {17)
can by differentiation be written as
9 3 4 -
> o daa + 5 dt 0 (18)

which has the form (13).

LAGRANGE'S EQUATIONS WITH IMPULSIVE FORCES
Suppose that the forces F, acting on a system are such that

im ( F.dt = 4 (19)

T=0

where r represents a time interval. Then we call F, impulsive forces and 9, are called
impulses.

If we let the subseripts 1 and 2 denote respectively quantities before and after appli-
cation of the impulsive forces, Lagrange’s equations become [see Problem 11.23]

(%") - (%) = Fe (20)
where Fo = T3 (21)

If we call F. the generalized impulse, (20) can be written
Generalized impuise = change in generalized momentum (22)

which is a generalization of Theorem 2.6, page 36.

Solved Problems

GENERALIZED COORDINATES AND TRANSFORMATION EQUATIONS

1LL. Give a set of generalized coordinates needed to completely specify the motion of
each of the following: (¢) a particle constrained to move on an ellipse, (b) a circular
cylinder rolling down an inclined plane, (¢} the two masses in a double pendulum
[Fig. 11-3] constrained to move in a plane.

(@) Let the ellipse be chosen in the zy plane of Fig. 11-1, The particle of mass m moving on the
ellipse has coordinates (x, ¥). However, since we have the transformation equations r = a cos s,
¥ = b sin 8, we can specify the motion completely by use of the generalized coordinate s.

y x/\

i
Z

Fig. 11-1 Fig-11-2
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{(b) The position of the cylinder {Fig. 11-2 above] on the inclined plane can be completely specified
by giving the distance # traveled by the center of mass and the angle & of rotation turned
through by the cylinder about its axis.

If there is no slipping, « i3 related to ¢ so that only one generalized coordinate [either = or #]
is needed. If there iz slipping, two generalized coordinates » and & are needed.

() Two coordinates ¢, and 6, completely specify the positions of masses nt, and m, [see Fig. 11-3
above] and can be considered as the required generalized coordinates.

11.2. Write the transformation equations for the system in Problem 11.1{e).

Choose an xy coordinate system as shown in Fig. 11-8. Let (x,, ¥,) and {x,, ¥;) be the rectangular
coordinates of n; and m, respectively. Then from Fig. 11-3 we see that
z, = liecoss tn = ljaineé

2y = lcose; + Lcons, g = Lising, + lyuineg,

which are the required transformation equations.

/ L
. al'p 6rv
11.3. Pro - = .
. ve that 36a 92
We have r, = r,(qys qs -+, Gus £} Then
. _ om, ar, . ar,
S vl + + 37, o+ 5t Iy
o, o, :
Thus % e 6]

We can look upon this result as a “cancellation of the dots”.

104, Prove that i‘—(-‘i"—") =

dt \3qa 39a
We have from (1) of Problem 11.3,
o= %éi+—-—+%&,+% $)]
r 2
Then ?‘:—;i' = a:::;yq, Gt t a::;;.. & + aaq:;t @
i) - wmG)wE G w36
= %&,+---+J:'—;%a,+% 0)

Since r, is assumed to have continuous second order partial derivatives, the order of ciiffer-
entiation does not matter. Thus from (2) and {#) the required result follows.

The result can be interpreted as an interchange of order of the operators, ie,,
d/0y _ 3 (4
dt\dg,/ ~ dq,\dt

CLASSIFICATION OF MECHANICAL SYSTEMS

11.5. Classify each of the following according as they are (i) scleronomic or rheonomie,
(ii) holonomic or non-holonomic and (iii) conservative or non-conservative.

(@) A sphere rolling down from the top of a fixed sphere.
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(b} A cylinder rolling without slipping down a rough inclined plane of angle o.

(¢) A particle sliding down the inner surface, with coefficient of friction p, of a
paraboloid of revolution having its axis vertical and vertex downward.

(d) A particle moving on a very long frictionless wire which rotates with constant
angular speed about a horizontal axis,

{a) scleronomic [equations do not involve time ¢ explicitly)
non-holonomic [since rolling sphere leaves the fixed sphere at some point]
conservative [gravitational force acting is derivable from a potential]

{b) scleronomic
holonomic [equation of constraint is that of a line or plane}
conservative

{c¢} scleronomic
helonomic
non-conservative [since force due to friction iz not derivable from a potential]

(@) rheonomic [constraint involves time t explicitly]
holonomic fequation of constraint is that of a line which involves ¢ explicitly]
conservative

WORK, KINETIC ENERGY AND GENERALIZED FORCES

11.6.

1L.7.

11.8,

Derive equations (5) and (6), page 283, for the work done on a system of particles.

Suppose that a system undergoes increments dg;,d¢,, ...,d¢, of the generalized coordinates.
Then the sth particle undergoes a displacement
nodr,

d —_—
r a=1 an:

]

dgy

v

Thus the total work done is

N N n ar, n
dW = gl Fy‘dl‘v = 2 {E Fv'_} dq, = ag b, dgy

y=1 |a=1 qq 1
N ar,
where ¢, = S F,-* ?
v=1 aqa

We call @, the generalized force agsociated with the generalized coordinate q,.

Prove that &, = 3W/a¢..

We have dW = 2%%. Also, by Problem 118, dW = S &.dg,. Then
L 4

If the dg, are independent, all coefficients of dg, must be zero, so that #, = 3W/ig,.

Let F, be the net external force acting on the »th particle of a system. Prove that
d . Br.. . aiv - . il'_.._
at {; M Ty E'q';} ? Ny Xy 3¢ = z F. e
By Newton’s second law applied to the sth particle, we have
m,¥, = F, o
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- Or,
mv r" * aq
o

ar, .
./ T

ar,

" .

d

Now by Problem 11.4, T

(

LLd ar.l’
Thus LN v
o

Hence from (2) we have, since m, is constant,
d - ar&l’ »
= |l T, E m,r,

Summing both sides with respect to » over all particles, we have

at
d L .o,
dt{?”‘*"’ EE;} Smig, = 3

o,
0a

F,

[CHAP. 11

)

L]

)

or,
3y

Let T be the kinetic energy of a system of particles. Prove that

oT

9Ga

ar

3qa

T

. (&)

. or,
(a) 2 My I aqa E

= zmvi'v’
¥

{a) The kinetic energy is = %?m,.i'v *%,. Th

. an,
Fm5

(b} We have by the “cancellation of the dots” [Problem 11.3, page 286],

aT
5
qy

* ai’v
zmvrv * a_q‘:

LAGRANGE’S EQUATIONS

11.10. Prove that

/

oT

i(é‘_’f)
E\dfa/ ~ 3¢a

From Problem 11.8,
d . o, . or,
EEmien) - 3meg = 3m

From Problems 11.9(a) and 11.9(}),

Then substituting (£) and (3) in (1), we find

4 (oY _aT
dt\ 3g,
Pa

2q,

s

T

e

The gquantity

is called the generalized momentum or conjugaie momentum associated
nate q4.

where ®a=3 F,

us

L h
2 ", r,* aqv

*

ory
i

ar,
99

ity

)

*

)

)
with the generalized coordi-
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11.11. Suppose that the forces acting on a system of particles are derivable from a potential
function V, i.e. suppose that the system is conservative. Prove that if L=T~V is
the Lagrangian function, then

d ( oL ) oL
- - 9
dt \ 3 3Ga
If the forces are derivable from a potential V, then [see Problem 11.7|,
o = W - av
« gy a‘?a
Since the potential, or potential energy is a function of only the ¢’s {and possibly the time ],
% = Loy = 2L
aqy 3qa 3qq

Then from Problem 11,10,
L(LY-E L, )
de aq.d 3y My aqa

11.12, {a) Set up the Lagrangian for a simple pendulum and
{b} obtain an equation describing its motion.

{¢) Choose as generalized coordinate the angle # made by string
OB of the pendulum and the vertical OA [see Fig. 11-4].
If I is the length of OB, then the kinetic energy is

= dme? = ym(§)? = jmi2 ™
where m is the mass of the bob.

The potential energy of masa m [taking as reference
level a horizontal plane through the lowest point A)] is given

by
V = mg(0A —0C) = mg(l—1cosé)
= mgl{l — cos #) )
Thus the Lagrangian is
L = T-V = imﬂi* — mgl(l — coa 9) "
. o d foL\ _ oL _
{b) Lagrange’s equation is p; t( ) % 0 {4)
aL . 3 .
From (8, % = —mgl 8in g, ﬁ— = mltg 5
Substituting these in (4), we find
mi¥ + mglsine = 0 or 6+ Zsing = 0 0

!
which is the required equation of motion [compare Problem 4.23, page 102),

11,13. A masa M: hangs at one end of a string which passes over a fixed frictionless non-
rotating pulley [see Fig. 11-5 below]. At the other end of this string there is a
non-rotating pulley of mass M, over which there is a string carrying masses »t: and ma.
(2) Set up the Lagrangian of the system. (b) Find the acceleration of mass M.

Let X, and X, be the distances of masses M; and M, respectively below the center of the fixed
pulley. Let x, and x, be the distances of masses m; and m, respectively below the center of the
movable pulley M,.

Since the atrings are fixed in length,

X, +X; = constant = ¢, % + 2, = constant = b
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Then by differentiating with respect to time ¢,
il+‘i2 =0 or X.g = _il
and Zihag =0 or @y = =

Thus we have
Velocity of M, = X,
Velocity of My = X, = —X,

X, + 2,

Velocity of m; = a‘%(xl “+ 21)

Velocity of my = EdE(X1+=I=2) = ’En‘*;a = }21“‘;1

Then the total kinetic energy of the system is Fig. 115
T = X4 LI+ X 4202 + fmyX — 22 )

The total potential energy of the aystemm measured from a horizontal plane through the center
of the fixed pulley as reference is

V = —MygX — MyX, — mg(X, + ;) — myg(X; +25)
= —MgpX, — Mypla—X|) — mp(X,+ 2} ~ meg(X, +b—2z,) @
Then the Lagrangian is
L = T7-V
= ML+ M 4 Y (K, + 2t + fmg(X, - 2y
+ MigX, + Mypic—X,) + nt,0(X, + 2y} + mpg(X, +b— xy) {9

Lagrange’s equations corresponding to X, and x, are

d /aL L d /aL aL

il )3 =0 Sil=)—3-=0 4
From (2) we have

a-aj% = My — My + myg + myy = (M —My+m+myg

g—' = MX, + MyX, + myX, +2) + moX,—2) = (My+My+m+m)X, + (m,—mgz,
1

L oz omg—mg = m—my

S, T M9 My = (mi—myg

aL . . " - - _ - -

3;';: = mX +e) - mAX, —x)) = (my—m)X, + (my +my)ay

Thus equations (4) become

(My+ Ma+my+mdX, + (my—mp) %, = (M, — My+m, +mgg
(ml“”‘z)il + (my+my) ;1 = {(m;— myg

Solving simultaneously, we find

e (M — My)(my + my) + dmymy

1 (M, + Mp)m, + my) + dmymy ¥
o~ 2My(my — my)
¥y

(M, + Mp)(m; + my) + dmymg ¥

Then the downward acceleration of mass M, is constant and equal to

:f _ _i - (Mg —Mi)(mr_ -+ '”lg) - 4'1'31:1”1.2
r = 1 = UM, + My + mg) + dmymg
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11.34. Use Lagrange’s equations to set up the differential equation of the vibrating masses
of Problem 8.1, page 197.

Refer to Figs, 8-7 and 8-8 of page 197. The kinetic energy of the aystem is
T = jmi} + ymat 0

Since the stretches of springs AP, PQ and QB of Fig. 8.8 are numerically equal to %,, =,

: . - and
%a Tespectively, the potential energy of the system is
Vo= der o+ Jeleg — 20?4 el ()
Thus the Lagrangian is
L = T~V = imid+ dme} — Jux? — Loy — )2 — Juad "
Lagrange's equations are -
d gaLN_3L _ 4L\ L _
dt (5;:) 3z, % & (3;,2 3z, ¢ @
Then since &L _ —xxy + x(xy—2,) = xfxg— 22)), _1_9_{3_ = m¥,
8z, 9%y
aL 3L .
3:;:; = —x{zyg— 2} — kxy = x{zy — 2%y), g:-; = may
equations (4) become m¥, = clzy—2x), m¥E, = x(z,— 2wy &

agreeing with those obtained in Problem 8.1, page 197.

l),.fi5. Use Lagrange’s equations to find the differential equation for a compounéd pendulum
which oscillates in a vertical plane about a fixed horizontal axis.
Let the plane of oscillation be represented by the 2y plane

of Fig. 11-6, where O is its intersection with the axis of rota- ¥
tion and C ia the center of mass.

Suppose that the mass of the pendulum is M, its moment
of inertia about the axis of rotation iz I, = MK®* [K = radius
of gyration], and distance OC = h.

If # is the instantaneous angle which OC makes with the
vertical axis through O, then the kinetic energy is T = }Jo6? =
3MK?5%, The potentisl energy relative to a horizontal plane
through O is V = —Mgkh cos . Then the Lagrangian iz

L = T—-V = JME%+ Mghcose
Since aL/d¢ = —Mph sing and 3L/36 = MK2s, Lagrange's

tion i
equation is d oL\ oL _ \
dat (33 do

MK2% + Mghsine = 0 or 6+ %—’;sino = ¢

ie.,

Compare Problem 9.24, page 237. Fig. 11-6

~

11.16. A particle of mass m moves in a conservative force field. Find (e) the Lagrangian
" function, {b) the equations of motion in cylindrical coordinates (p, ,2) [see Problem
1.147, page 32].

(6) The total kinetic energy T = 4m[32+4 o232 4+ 2], The potential energy V = Vi{p,¢,2). Then
the Lagrangian function is

L=T-V = ymp+e+2) = Vi 4,9



292 LAGRANGE'S EQUATIONS [CHAP. 11

{b) Lagrange's equations are

DL L e Lmiy— (et -2 = AU 1 4
Ei(a;) % 0, ie dt{mp) (mp¢ ™ 0 or mip—pd?) %
daLN_ L _ o o d e oV & iagy = 3V
a(a‘;) % = 0, e dt(mp?¢.)+ % ¢ or mdt(p ¢) = o

d/LN L _ o i doe 3V go W

El_t( E) % = 0, e dt(m)+ = 0 or mz = 7"

11.17. Work Problem 11.16 if the particle moves in the zy plane and if the potential
4 depends only on the distance from the origin.

In this case V depends only on p and z = 0. Then Lagrange’s equations in part (b) of Problem
11.16 become av

. . d .
— ) = - —_ a2 =
m(P g } 3p » dat (P @) 0

These are the equations for motion in a central foree field obtained in Problem 5.3, page 122.

LAGRANGE’S EQUATIONS FOR NON-HOLONOMIC SYSTEMS

11.18. Derive Lagrange’s equations (15}, page 284, for non-holonomic constraints. b
Assume that there are m constraint conditions of the form

SA,dg, + Adt = 0, SBydg, + Bdt =0, ... ITH)
o L3

where m < n, the number of coordinates ¢,.

As in Problem 11.10, page 288, we have

— d oT oT _ . .ai
Yo F d‘(sé«) . T 2™, @

If 8r, are virtual displacements which satisfy the instantaneous constraints jobtained by consider-
ing that time ¢ is a constant]|, then

ar,
§r, = — & 4
2 3g, Ha ®
Now the virtual! work done is
-y (13 31’
W = 2 myx, - &r, = 2 2 "m, T, ‘?,_f' 8qe = 2 Y.dq, 4
¥ v o T o

Now since the virtual work can be written in terms of the generalized forces &, as
W = § Py 80y (5)
we have by subtraction of () and {5),

? (Ya - q’a} Sqa = 0 (‘)

Since the &g, are not all independent, we cannot conclude that ¥, =4, which would lead to
Lagrange’s equations as obtained in Problem 11.10.

From (1), since ¢ is conatant for instantaneous contraints, we have the m eguations

?Aeaqa =0, ?Bﬂaqg =0, ... (F4]

Muiltiplying these by the m Lagrange multipliers Ay, Ay, ... and adding, we have
S (ALt rByt -8 = 0 (%)
o



CHAP.

11.19.

11.20.

11] LAGRANGE’S EQUATIONS 2983

Subtraction of (§) and (8) yields
E(Yu_cba‘_ht"lu"'hzﬂa_"‘)squ =0 ®
@

Now because of equations (7) we can solve for m of the quantities 8g, [say 3qy,...,3¢,] in terms

of the remaining 39, {88Y 8¢m+y1, -..:9Gs). Thus in {9) we can consider 3qy,...,3¢, a8 dependent
and §¢y,41, - .5 3¢, a5 independent.

Let us arbitrarily set the coefficients of the dependent variables equal to zero, ie.,
Vo— @g—MAg —MBg—+-+ =0, a=12 .. .,m (10)

Then there will be left in the sum (%) only the independent quantities $¢, and since these are ar-
bitrary it follows that their coefficients will be zero. Thus

Yo— b, —MA,— 0By — v =0, a=m+l,...,n n
Equations (2), (I0) and (11) thus lead to

d /3T ar _ _
EE(&T};) E = d, + Ma, + B, + a=12,...,n {18)

as required. These equations together with (1) lead to n +m equations in n +m unknowns,

Derive equations (16), page 284, for conservative non-holonomic systems,
From Problem 11.18,
d /8T T _
d:(q)_ﬁ‘ ®, + MA, + 2B, + ee)

Then if the forces are derivable from a potential, &, = —3V/dq, where V does not depend on
&a. Thus (1) can be written

d /3L 8L, _
dt( )—a% = MAg + MB, + @

where L=7T-V.

A particle of mass m moves under the influence
of gravity on the inner surface of the paraboloid
of revolution z%+y®=az which is assumed
frictionless [see Fig. 11-7]. Obtain the equations
of motion.

By Problem 11.16, the Lagrangian in cylindrical co-
ordinates is given by

= %m(",z + p2$2 +32) — mgz )]
8ince x2 + y? = p2, the constraint condition is p> —az = 0

that
80 tha 208p—adz = 0 (53]

Ifweeall ¢, =p, ¢ =&, ¢a =z and compare (£) with
the equations (7} of Problem 11.18, we see that Fig. 117

Al = 2p, Ag = 0, As - - (8)

sinece only one constraint is given. Lagrange's equations {see Problem 11.19] can thus be written

d /oLy oL _ ~
dt(aq)—a% = aA,  e=1,23

d (oL _ oL _ d oL\ _ oL d /oL\ _aL _ _
ie., dt( ) % = 2w dt(a¢.) 3= dt( ) = —ha

Using (1), these become
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m(p—=pd?) = Zap 0]
d -
moz{p?e) = 0 (5
mzZ = —mg — e (@)

‘We also have the constraint condition

20p—az = 0 )

The four equations (4), (5}, (6) and (?) enable us to find the four unknowns p, 4,2, 1,.

11.21. (a)

()

()
(@)

(5}

Prove that the particle of Problem 11.20 will describe a horizontal circle in the
plane z=~A provided that it is given an angular velocity whose magnitude is

o = Veg/a,
Prove that if the particle is displaced alightly from thiz circular path it will
undergo oscillations about the path with frequency given by (1/7)y/2¢/a.

Discuss the stability of the particle in the circular path.

The radius of the circle obtained as the intersection of the plane z = & with the paraboloid
2=gz i
T po = VaR 0)
Letting z = h in equation () of Problem 11.20, we find
Then using (1) and (2) in equation {4) of Problem 11.20 and calling ¢ =w, we find m(—pg?} =
2{—mg/alpg or «?=2g/e from which .
Po T W « = Vigla )
The period and frequency of the particle in this circular path are given respectivey by
1 2
P, = 2«1’% and f = F. f (4)
From equation (5) of Problem 11.20, we find
o*é = constant = A &
Assuming that the particle starts with angular apeed w, we find 4 = ahw 80 that
$ = aholp? ®

Since the vibration taukes place very nearly in the plane z =54, we find by letting z2=h
in equation (6) of Problem 11.20 that

Using (6) and (7} in equation (4) of Problem 11.20, we find
v — athiifpd = —2pgp/a {8

Now if the path departs slightly from the circle, then p will depart slightly from p,. Thus we
are led to make the transformation

P = Py + u (’)
in (8), where u is small compared with py. Then (8) becomes
[T Gsha’wz _ 'gg 10
Rl o S a PeT ¥ (10)
But to a high degree of approximation,
1 = 1 = l (1 + LA = ‘!'- (1 - i’f)
wotur = RO A\ e = AN
by the binomial theorem, where we have neglected terms involving 2,43, .... Using the

values of p, and « given by (I) and (8) respectively, (10) becomes
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i+ (8gfayu = 0 8)
whose solution is u# = « cosVBpfat + ¢ sinv8glat. Thus
p = pp+ U = Vah 4+ ¢ coznVBglat + e sin VBg/iat

It follows that if the particle is displaced slightly from the circular path of radius p, = Vahk,
it will undergeo oscillations about the path with frequency

1 (8 _ o1 [
2r e = a @
or period P, = rr‘\’ éig o))

It is interesting that the period of oscillation in the circular path given by (4) is twice
the period of oscillation about the circular path given by (7).

(¢) Since the particle tends to return to the circular path when it is displaced slightly frem it,
the motion is one of stability.

11.22. Discuss the physical significance of the Lagrange multipliers Ay, A2, ... in Problem
11.18.

In case there are no constraints the equations of motion are by Problem 11.10,
dtd ag, Gy «

In case there are constraints the equations are by Problem 11.18,

d /3Ty _ aT
dt( )_a_q';' = by + MAg + AB -

It follows that the terms XA, + 3B, + -+ correspond to the generalized forces associated with
constraints.

Physically, the Lagrange multipliers are associated with the constraint forces acting on the
system. Thus when we determine the Lagrange multipliers we are essentially taking into account
the effect of the constraint forces without actually finding these forces explicitly,

LAGRANGE’S EQUATIONS WITH IMPULSIVE FORCES
11.23. Derive the equations (20), page 285.

For the case where forces are finite we have by Problem 11.10,

d s/aT aT
-2 = 9 1
dt(aqu) ¥ * @
or,
where ® = X2F, '-a-v- (6]
¥ Gox

Integrating both sides of () with respect to ¢t from ¢t =0 to t =17,

oT T T J"
dt — L a = b, dE 5
‘£ dt(a'hl) 3 0 *

L]

8o that (%)‘" - (%)mo - f %dt = § {( : l?,dt) -g-%} )

Taking the limit as = = 0, we have

arT
lim {3 ) ~ (3T ~ lm J‘ Ty - {(ﬁm f F dt)
T=0 8n /1=y 8¢/t T0 T

u....v_}
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aT aT ar,
or 22 - /& = oy
(a%)s (3%)1 ?J, 3a Fe
. . {7 8T . 3T . : T
using 3:_13 \ Edt =90 mncen is finite, and ,h_'f}, \ F.dt = 4,

A square ABCD formed by four rods of length
2! and masg m hinged at their ends, rests on a ¥
horizontal frictionless table. An impulse of
magnitude 7 is applied to the vertex A in the
direction AD. Find the equations of motion.

After the square is struck, its shape will in gen-
eral be a rhombus [Fig. 11-8].

Suppose that at any time ¢ the angles made by
gides AD (or BC) and AB (or CD) with the » axis
are ¢, and 4, respectively, while the coordinates of
the center M are (z,¥%). Thus z,y, 8, ¢; are the gen-
eralized coordinates.

From Pig. 11-8 we see that the position vectors
of the centers E,F,G,H of the rods are given re-
spectively by

rg = (z—lcosg}i+ (¥ — Isine)j

rp = (x+ [eosei+ (¢ —~ I singy)f o
(x+Lleose)i+ (y+ Laine)j

|

¥g
g

The velocities of E, F, G and H at any time are given by

vg = Tg = (x+ lsine, 8))i+ (¥ — ! condy )]
Yp — i'p' = (3.: — Isin 8y éz)i + (é —lcos # s.z)j
Yo = EG - (2.‘ = 1 sin L] 51)i + (1:\‘ + l cos L2 él)j

¥y = I..'H = (a‘: + 1 ain .23 52)i + (]} +1 coa &, ég)i

= (x— leose)i + (¥ + I sin a,)j ) Fig.11-8

The kinetic energy of a rod such as AP is the same as the kinetic energy of a particle of
mass m located at its center of mass F plus the kinetic energy of rotation about an axia through
E perpendicular to the xy plane. Since the angular velocity has magnitude é, and the moment of

inertia of a rod of length 2/

about its center of mass is I,p = jmi%, the total energy of rod AB is

Tas = dmeg + Hapbd

Similarly, the total kinetic energies of rods BC, CD and AD are

TBC = émi-f- + &1305%, TCD = &ml.‘é + %Icnag, TAD = imi-?; + élﬁpsf

Thus the total kinetic energy ia [using the fact that [ = I 5 = Iz = Iop = §mi?]

v i

= Tap+ Tge + Tep + Tap

Amirg +xF + XG4 ¥R + 162+ 69

= Jm(azt 4+ 497 + 28 4 2080) + JmIksE + 62)
= 2m(a2 + 42 + mIE + 62)

li

Let us assume that initially the rhombus is a square at reat with its sides parallel to the
coordinate axes and its center located at the origin. Then we have

x=0,y=0. 91=7/2;’g=0, é=0!1}=01 éI=ov;2=0

If we use the notation { ), and { ), to denote quantities before and after the impulse is applied, we

have

(%),

(%),

(4m3), = 0 (-”—T) = (4mp)y, = 0
ay 1

It
I
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(dmz)y, = 4mz

e
-]
AR
—
(-]
i

%)
(aff 2

]

(dmy)y = dmy

il

_—
1y
w0

n

@mi2y), = Imbs, ( i':“-)
¥y /g

Then = }‘x or 4m;% = T“_

T

(z), (%)

(), Gi)y=r o =
(t‘)T

)

$mig, Fa

1

R
"]

I
T
o |
S5
e
L]

]

3
'_O

=

]

335,
T _.<§_7,'.
(352>2 352)1

= Fo, oF gmi%, = F,
where for simplicity we have now removed the subseript ( ).
To ﬁnd Tg) ?,r ?sl, T@z we hote that
or
F = 24,2
« 29, e
where 4, are the impulgive forces. We thus have

ar, al‘B al'c al'D
Fo = Sargpt Jarogy t I 5 + It 51
_ or, arg ore arp
fv—JA—a;"FJB ay"‘Jc ay'{'JD 3y
ar, drg are irp
Foo = Jatge, * Inryy, + Jovgp, T Int
aI.'A al's al'c 6TD
Fo, = Jagp, ¥ Io g5, ¥ I 5, F In° 3,

Now from Fig. 11-8 we find the position vectors of A,B,(,D given by

ry = (. —lecose, — lcomepi +.{y —Isine, + !sin e
g = (@ —lcoso, + Lecossy)i+ (y — lsing; — Isiney)j
Fo = (2 +lcose, + lcoser)i+ (y-+Isine, — lsineyi

rp = {2+ Lcons, — Lcosa)l + (y + I sinay + I sinay)j

Since the impulsive force at A is injtially in the direction of the positive y axis, we have

Ga = i
Thus equations (6)-(#) yield

F: =0 Fy, =3 Fo = —Jlcoss, Fo, = Jlcozs,

Then equations (1}-{4) become

amx = 0, dmy = 9, %mlﬂél = — gl cos 8y, %mpig = glcose,

§m32§2 = g’mizég
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@)

(2)

)]

4

®

®

)

*)

®

(10}

(11

(212

11.25. Prove that the kinetic energy developed immediately after application of the impulsive

forces in Problem 11.24 is T = $*/2m.
From equations (12} of Problem 11.24, we have

b= 39 39
y"“mr wmlv

x =0 il=
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Substituting these values in the kinetic energy obtained in Problem 11.24, we find

T = am T B {cos? 8, + cos? 8,5} I}

But immediately after application of the impulsive forces, ¢, = /2 and ¢, = 0 approximately,
Thus {I) becomes T = §%/2m.

MISCELLANEOUS PROBLEMS

11.26. In Fig. 11-9, AB is a straight frictionless wire
fixed at point A on a vertical axis GA such that
AB rotates about OA with constant angular
velocity e. A bead of mass m is constrained to
move on the wire. (#} Set up the Lagrangian.
(b) Write Lagrange’s equations. (¢) Determine
the motion at any time,.
{a} Let r be the distance of the bead from point A of

the wire at time f. The rectangular coordinates
of the bead are then given by

* = ¥ sinacoswt
¥ = rsina sinet
2 = h—recosa

where it is assumed that at ¢ =0 the wire is in
the xz plane and that the distance from O to 4 is h. : Fig.11-9

The kinetic energy of the bead is
T = Jmx?+y2+ )
= §m{(7 sin & cos ot — wr sin a sin wt)?
+ (* sin & sin wt + oF 5in « cos w82 + (— cos )%}
= &m(;‘z + w22 gin o)

The potential energy, taking the xzy plane as reference level, is V = mgz = mp(h — + cos o).
Then the Lagrangian is '

L =T~V = imrt+ o2 sin2a) — mg(h — r cosa)

() We have .
L _ motr ginZa + myg cosa, g& = mr
o ar
' .. 4 oLy JL
and Lagrange's equation is ; ( a;) o = 0 or
m7¥ — (mu?rginta + mgcosa) = 0O
ie., ¥ — (@sine)r = gcosa (3}

{¢) The general solution of equation (f) with the right hand side replaced by zero is

cle(a) sin o)t 4 ¢4e— (0 sln o)t
X . e
Since the right hand side of (I) is a constant, a particular solution is _w-fsiT:' Thus the
general solution of (1) is : .
= - _geosa
r = cls(ustna)i + ppe—(esinar — T airle 2)

This result can also be written in terma of hyperbolic functions as

g cosa (8)

*r = o3 cosh (-‘J gin a}t + ¢, sinh {w 8in a}f — m
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11.27. Suppose that in Problem 11.26 the bead starts from rest at 4. How long will it take
to reach the end B of the wire assuming that the length of the wire is I?

Since the bead starts from rest at ¢ =0, we have r =0, =0 at £=0, Then from equa-
tion (2) of Problem 11.26,
¢ cos e

- and e;—¢; = 0
w® gin? o 1 2

¢1+Gg =

Thus ¢ = ¢ = 298 % . end (£} of Problem 11.26 becomes

2w? sin? o
geosa {w gin ade —f{wsin adty - ﬂ)_si
— é +e N
r 20?2 gin? o { } w? gin? a )
Peosa h inalt —1
or r T sin? a{ cosh {w sin a) } ()

which can alse be obtained from equation (3) of Problem 11.26. When r =1, (2) yields

2 gin?
cosh{w siney = 1+ L? sin® @
geosa
so that the required time is
2 qind
t ; cosh‘1<1 + M%—£> .
@ SIN o g cog*a

|l

1 lw? sin? Lo? sin? &\
wsinaln{(l * gcos’a) + J(I + gcosza) — 1

11.28. A double pendulum [see Problem 11.1(¢) and Fig. 11-3, page 285] vibrates in a
vertical plane. (¢) Write the Lagrangian of the system. (b) Obtain equations for

the motion.

(¢) The transformation equations given in Problem 11.2, page 286,

x; = ljeose, ¥ = lysing
xp = lcose, +1,co88, e = I sing, + [ sing,
yield él = _1151 sin L] él = 1151 oS &4
xp = —L#; sin gy — L#, gin 9, ¥ = 115‘ cos 8, + 1,8, cos ey

The kinetic energy of the system is
T Im(2t+ D) + dmylEE + 4D
= Jm 362 + Imy(B6% + 56} + 21,1,8,8; coa (9, — 6)]

The potential energy of the system [taking as reference level a plane at distance I; + 1,
below the point of suspension of Fig, 11-3] {a

vV = mlg[ll + Ig - ll cos 011 + ng’[ll + 12 - (!1 cos #; + 12 cos 92)]
Then the Lagrangian is
L = T-V
= dmBd} + Imoli5] + 062 + 241,848, cos () — 8] )
—maglly + & — I consy) — mog{ly + by ~ (I coa sy + L cos 8y)]

{b) The Lagrange equations associated with ¢, and ¢, are

d 7oL\ _ ol _ d oLy _ oL _
w(@) m =% () wm =0 @
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From {1} we find

oL/d8, = —mglLié,6, sin (6, —6;) — mygl, sin e, — mygl, sing
aL/38, = ml6, + myl%6, + myllr8, cos (8, — 8,)

3L/30; = mylly8,8, sin (6;— ;) — mogl, sin e,

aL/38y = mylify + molild, cos (8, — 0,)

Thus equations (2} become
o kg 2 (1] .. - - - .
mlff ey + mgliey + mplyly 8, cos (8, — 83) — mollo0,(0, — 9;) sin {8, — &)
= _‘mgtllgélég gin (9‘ - 02} - migl, sin gy — mggh gin ey
and m,llf, & + myl L, 8, cos (s, —85) — mylilsd (8, — 8,) sin (6, — 8y)
= mzlilealég sin (31 - 92} - m2012 sin 02

which reduce respectively to

(my+m) 8] + malyly ¥, cos (9, — ¢g) + moli 63 sin (8, —8)) = —(m, +my)gl, sine; (D
and mals 6, + molyly 8y cos (8, — 8) — mol lof? sin (0, ~89) = —wmggly sin g, (4}

11.29. Write the equations of Problem 11.28 for the cage my=mz=m and Li=L=1

Letting m; = m,, I) = I; in equations ($) and {4) of Problem 11.28 and simplifying, they
can be written

2U8; + Loy cos (¢, — 6) + 163 sin (8, — #)) = ~—2¢ sins, 1)

18 cos (8, — o)) + L0, — lé*sin(e,—8y) = —gsing, )

11.30. Obtain the equations of Problem 11.29 for the case where the oscillations are assumed
to be small.

Using the approximations sine = ¢, cosd =1 and neglecting terms involving 6%, the equa-
tions (I) and {£) of Problem 11.29 become

206, + 1o, = -2p,
18, + 16,

—iés

11.31. Find the (¢) normal frequencies and (b) normal modes corresponding to the small
oscillations of the double pendulum.

(@) Let #, = A ;cosut, 8 = Aycosut [or Aje'w, Agelet] in the equations of Problem 11,30,
Then they can be written
)]
0 ]

In order for A; and A, to be different from zero, we must have the determinant of the coefficients
equal to zero, ie.,

it

2(g — )A, — LA,
LA, + (g~ LA,

I

2(g — Loty =2
—la? g — lot

or 2ot 4lge? +2¢2 = 0. Solving, we find

o o Moz ViEEA—sEg =2
- 2p - i
. @+V@e ,  2-V2y
or ME T e T T

{#)
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Thus the normal frequencies are given by

1 [<2+\fz“)a 2-v2)g
f;=%=g—""—l and fg=£='2!; —1 (¢5)

(b} Substituting «* = «!=(2+V2)g/l in equations (1) of Part (a) yields
A, = —Vi4, ' %)
This corresponds to the normal mode in which the bobs are moving in epposite directions.
Substituting «f = &2= (2—V2)g/l in equations (1) of Part (a) yields
A, = V24, )
This corresponds to the normal mode in which the bobs are moving in the same directions.

11.32. (a) Set up the Lagrangian for the motion of a symmetrical top [see Problem 10.25,
page 268] and (b) obtain the equations of motion.

{2} The kinetic energy in terms of the Euler angles [see Problem 10.24, page 268] is
T = Lo+ Il +1yd) = Lg% sine + 6%) + LIg(3 con e + $)2 th
The potential energy is YV = mglcose &

as seen from Fig. 10-18, page 269, since distance GC ={ and the height of the center of
mass C above the zy plane is therefore lcosé. Thus

L = T-V = i-h(;b’sinzs-l-;’) + ys(;cose-i-:b)* — mglcone )
) aL/de = I,32aind coss + Iy(p cosé + 2)—a sin 8} + mylsine
aLfas = L6
alfdp = O
aLjeg = I.¢sin2s + 13(5 cos 6 + ¢) cas ¢
aLfoy = 0
3LIoy = Iy coso + §

Then Lagrange’s equations are

daL\_dL _ o dgoL\_ 3L _ o oL\ _3L _ o
dt(aa 3 -~ dt(a.;) e — dt(a‘;) d

or 1,6 — llé" sine cose + Iy(d coso + ¢)¢ sine — mglaing = 0 {4
% [I,& sin?e + Iy(¢ coso + i;) cosg] = 0 (5)

d . . _
EEUS(" cosd+¢) = 0 {®

11.33. Use the results of Problem 11.32 to obtain agreement with the equation of
(a) Problem 10.29(b), page 270, and (b) Problem 10.27(a), page 270.

(¢} From equations (5) and (6) of Problem 11.32 we obtain on integrating,

Iésin?e + Is{é cos s +¢)cosd = constant = K #3]
deose + ¢ = A ®
Using (2) in (1), we find 1,4 sin?e + [Acose = K

(b} Using (2) in equation (4) of Problem 11.32, we find
1,§ - Ig%eine cose + I,Adsine = mglsine
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11.34. Derive Euler’s equations of motion for a rigid body by use of Lagrange’s equations.

1135, A bead slides without friction on a frictionless

The kinetic energy in terms of the Euler angles is [see Problem 10.24, page 268)

T = Mo+ Lo+ Iah)
= 4l,(¢sinesinyg + é cosy)2 + 4&!2(93 sing cosy — @ sin¢)2 + if:;(r#: cos 8 + ¢)2
Then aTioy = Il(é sin @ siny + é cos ¢)(;§- 5in ¢ cosy — 8 sin )
+ Iai sin # cos¢ — 6 siny)(—¢ sing sin g — 8 cos ¢)
= Loy + Tdogi—w) = (I — ey
3T/o¢ = Lipcose+¢) = Iy

Then by Problem 11.10, pare 288, Lagrange’s equation corresponding to ¢ is

agory T _
dt a,}) o9 ¢
or Ly + (I~ Ly = @, 4]

This is Euler's third equation of (22), page 258, The quantity 4, represents the general-
ized force corresponding to a rotation ¢ about an axis and physically represents the component
Ag of the torque about this axis [see Problem 11.102},

The remaining equations .
Ly + Uy~ Idugws = &y (2

fgt:’z + (!1 - Ia}b)ab’l = Ag (’)

can be obtained from symmetry considerations by permutation of the indices. They are not directly
obtained by using the Lagrange eguations corresponding to ¢ and ¢ but ean indirectly be deduced
from them [see Problem 11.79].

wire in the shape of a cycloid [Fig. 11-10]
with eqguations

x = a(f —sind), ¥y = el +cosh

where 0= ¢ =2x. Find (@) the Lagrangian
funetion, (b) the equation of motion.

{a}) Kinetic energy = T

dm(z2 + %)

Jma2{[(1 — cos 8)8]2 + [—sin 0 8]7}

ma2(l — cos #)a?

Potential energy = V = mgy = mga(l + cos 6}
Then
Lagrangian = L = T =V = ma?(l — cos #)¢? — mga(l + cos )

(&) % (6_[;__) oL 0, e :T[Zmaz(l — <08 8)8] — [ma® sin ¢ 9% + mga sine] = 0

) o
or i[(l—cma)é}—gsinsi"— F ging = 0
dit 2a
which can be written (1 ~cos80)¥ + }sine 2 — Lsine = 0

11.36. (a) Show that the equation of motion obtained in part (b) of Problem 11.35 can be

ri
written du g

GE Tag® = 0 where u=cos(6/2)
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and thus (b} show that the bead oscillates with period 2x\/4a/g.
(a) If u = cos(9/2), then

die . . 2w . o .
T —1 sin (8/2)s, R ~3 sin (6/2) 8 — } cos (#/2)8?
% g . _ .
Thus e + a;u = 0 is the same as
—~1 sin(8/2)8 — 1 cos {8/2)8% + ﬁcos(eﬂ) =0
which can be written as
- . 02 _ _g_ =
& + 1 cot(s/2)8 3 cot {8/2) 0 {1
. _ cos(#/2) _ 2sin(e/2) cos(8/2) _ _sing
Since cot(e/2) = sin (8/2) 2 sinZ (/2) T 1 -cos#

it follows that equation {1} iz the same as that obtained in Probiem 11.35(b).

{4} The solution of the equation is
u = cos(9/2) = ¢ cosVdalgt + ¢ sinViefgt

from which we see that cos(#/2) returns to its original value after a time 25/ d4a/g which
is the required period. Note that this period is the same as that of a simple pendvium with
length 1 = 4a.

An application of this is the eycloidal pendulum. See Problem 4.86, page 112.

Obtain equations for the rolling sphere of Problem 9.42, page 244 by use of Lagrange’s
equations.
Refer to Fig. 9-33 in which ¢ and ¢ represent generalized coordinates. Since the sphere of
radius CP =g rolls without slipping on the sphere of radius OP = b, we have
bde/dt = adg/dt or be = ay
which shows that if ¢ =0 when ¢ =0, then
bg = ay {1
Thus ¢ and ¢ [and therefore dp and d¢ or §¢ and &y are not independent.
The kinetic energy of the rolling sphere is
T dmia + b)2p? + 4l
Fmia+ b8 + HFmad)(s +)
using the fact that [ = 2ma? is the moment of inertia of the aphere about a horizontal axi
through its center of mass.

The potential energy of the rolling sphere [taking the horizontal plane through O as referenc
level] is

i

Il

V = mgla+bd) cosg
Thus the Lagrangian is

L = T~-V = &m(a-!—b)zéﬂ + %ma2($+;&)2 — mgla + by coag {z

We use Lagrange’s equations (16}, page 284, for non-holonomic systems. From (I} we have
bEp—ady = 0 (s
so that if we call ¢, = ¢ and g, = ¢ and compare with equation {7) of Problem 11.18, page 2O
we find A,=b Ay=-—a ¢

Thus equations (16), page 284, become

d /oL L _ .
dt (3;) - E; - ?tlb (‘

4 oL\ _ oL _ _
w(o) = e ‘
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Substitution of (2) into {5) and (§) yields

mia+52¢ + gma(s+y) — mgla+d)sing = Nb t4}
Fma(34+%) = —Ma @)
Substituting ¢ = (b/a)e [from (I)] into (7) and {(8), we find
ma+ b2 ¢ + gma(l +b/a) g — mgla+ by sing = Ad )]
gmat(l + b/a) = ~ne {10)
Now from (10) we have M = —gmia+b) Fy

and using this in (9) it becomes after simplifying and solving for 3,

e

5 .
Ta +b) 2 #

This ia the same equation as that of (£) in Problem 9.42, page 244, with ¢ = /2 —¢. To find the
required angle at which the sphere falls off, see Problem 11.104.

(a) Solve the equations of motion obtained in Problem 11.24, page 296, and (b) inter-
pret physically,

()

G

From the firat of equations (1) in Problem 11.24 we have

x* = constant = 0 4}
since 2 =0 at t=0. Similarly, from the second of equations (12) we have
9
v = ot (®

since y=0 at t=0.

From the third of equations (7£) we find on separating the variables,

3
seco, do; = —5,%&
. . s 6\ _ 84t
or on integrating, In cot (4 - E) = Bonl + ¢
T _4Yy 3,4t/Bml
ie, tan (4 3 ) = ey

Thus since ¢, =#/2 at ¢t =0, we have ¢3=0. This means that for all time we must
have &, = #/2.

From the fourth of equations (12) in Problem 11,24 we have similarly,

sec §; do; = %dt
or on integrating, In oot(% - 12?) = % + ¢y
ie., tan (i - i; ) = ¢, 08t
Now when t =0, 0, =0 s0 that ¢, =1. Then
tan (% - 12!) = e o gy = T ptan-i(eSSuny

Equations (1) and (£} show that the center moves aleng the y axis with constant apeed g/4m.
The rods AD and BC are always parallel to the y axis while roda AR and CD slowly rotate until
finally [¢ = =] the rhombus collapses, ao that all four rods will be on the y axis.
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Supplementary Problems

GENERALIZED COORDINATES AND TRANSFORMATION EQUATIONS

11.39. Give a set of generalized coordinates needed to completely specify the motion of each of the follow-
ing: (o) a bead constrained to move on a circular wire; (b) a particle constrained to move on a
sphere; {¢) a compound pendulum (see page 228]; (d} an Atwood's machine [see Problem 3.22,
page 76]; (e} a circular disk rolling oh a horizontal plane; (f) a cone rolling on a horizontal plane,

11.40. Write transformation equationa for the motion of a triple pendulum in terms of a suitable set of
generalized coordinates. -

1141. A particle moves on the upper surface of a frictionless paraboloid of revolution whose eguation
is 224+ y* = ¢z. Write transformation equations for the motion of the particle in terms of = suit-
able set of generalized coordinates.

11.42. Write transformation equations for the motion of a particle constrained to move on a sphere.

CLASSIFICATION OF MECHANICAL SYSTEMS
11.43. Classify each of the following according as they are (i} scleronomic or rheonomie, (ii) holonomic
or non-holonomic, and (iii) conservative or non-conservative:

{e) & horizontal cylinder of radius a rolling inside a perfectly rough hollow horizontal cylinder of
radiug b > a;

{b) a eylinder rolling [and possibly sliding] down an inclined plane of angle «;

{¢} a sphere rolling down another sphere which is rolling with uniform speed along a horizontal
plane;

{d) a particle constrained to move along a line under the influence of a2 force which is inversely
proportional to the square of its distance from a fixed point and a damping force proportional
to the square of the instantaneous speed.

Ans. (a) scleronomie, holonomie, conservative

(b} seleronomic, non-holonomic, conservative
(¢} rheonomic, non-holonomie, conservative
{d) scleronomic, holonomiec, non-conservative

WORK, KINETIC ENERGY AND GENERALIZED FORCES

lljl-i. Prove that if the transformation equations are given by r, = r.{(¢;.92 ..., ¢,}» Le. do not involve
the time ¢ explicitly, then the kinetic energy can be written as
a

n
T = a§13§1 Gap q.'a &3
where a,g are functions of the g,.
11.45. Discuss Problem 11.44 in case the transformation equations depend explicitly on the time ¢

1146, If Fixx, Ay Az) = a® Flz, ¢, 2) where X is a paremeter, then F ia said to be a homogeneous function
of order n. Determine which (if any) of the following functions are homogeneous, giving the order
in each case:

(@) 2+ 92+ 22+ xy + yz + 22 {e) «*tan—1(y/z)
(8) 82 — 2y + 4z () 4sinzy
(€} 2ye + 2oy + 22z + 2z ) +y+aMa?+y®+2?)

(d)y (z+yt+ae

Ans. (a) homogeneous of order 2, (b} homogeneous of order 1, (¢) non-homogeneous, (d) homo-
geneous of order zero, (¢) homogeneous or order 3, (f) non-homogeneous, (g) homogeneous of
order —1.

1147, It F(z,y,#) is homogeneous of order n {see Problem 11.46], prove that
aF BF 31"'

z—+ + z 32 = nif

This is called Euler’s theorem on homogmm functions.
[Hint, Differentiate both sides of the identity F(wr, iy, az) = )s"F(a: ¥, 2} with Tespect to A and
then place X = 1.]

1148, Generalize the result of Problem 11.47.
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11.49.
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Prove that if the {ransformation equations do not depend explicitly on time ¢, and T is the kinetic
energy, then

- aT * aT - aT —
hag T Heg, T g, < PT

Can you prove this directly without the use of Euler’s theorem on homogeneous functions [Problem
11.47]?

LAGRANGE'S EQUATIONS

11.50.
11,51
11.52.
11.53.
11.54.
11.55,

11.56.

11.57.

1158,

11.59.

{e) Set.up the Lagrangian for a one dimensional harmonic oscillator and {b) write Lagrange's
equations, Ang. (@) L = -&méz— dxx? (bYy m ¥+ xxr=0

{¢) Set up the Lagrangian for a particle of mass m falling freely in a uniform gravitational field
and (b) write Lagrange’s equations.

Work Problem 11.51 in case the gravitational force field varies inversely as the square of the dis-
tance from s fixed point O assuming that the particle moves in a straight line threugh O.

Use Lagrange’s equations to describe the motion of a particle of mass # down a frictionless in-
clined plane of angle a.

Use Lagrange’s equations to describe the motion of a projectile launched with speed v, at angle
a with the horizontal.

Use Lagrange's equations to solve the problem of the (a) two-dimensional and (b)) three-
dimensional harmonie oscillator.

A particle of mass m is connected to a fixed point P on a horizontal plane by a string of length
{. The plane rotates with constant angular speed » about a vertical axis through a point O of the
plane, where OP = a. {a) Set up the Lagrangian of the system. (b} Write the equations of motion
of the particle.

The rectangular coordinates {x, y, z) defining the position of a particle of mass m moving in a foree
field having potential V are given in terms of spherical coordinates (+, #, ¢} by the transformation
equations . . .

z = raingcosd, Y = rsingsing, z = rcosg

Use Lagrange's equations to set up the aquations of motion.

Ang. m[;'. — rg? — rd? cos? 2] = _v
ar
d - - av
= 242 gi = ..
ml:dt(r%} + rig sm¢cos¢:| 20 P
m—d—(rzi sin?g) = — W
dtv ) = ﬁ¢,

Work Problem 11.56 if the particle does not necessarily move in a straight line through O.

Work Problem 4.23, page 102, by use of Lagrange's equations.

LAGRANGE'S EQUATIONS FOR NON-HOLONOMIC SYSTEMS

11.60,

11.61.

1162,

(e} Work Problem 11.20, page 293, if the paraboloid is replaced by the cone x2+ y2 = 222
{b) What modification must be made to Problem 11.21, page 294, in this case?

Use the method of Lagrange’s equations for non-holonomic systems to solve the problem of a
particle of mass m sliding down a frictionless inclined plane of angle «.

Work Problem 3.74, page 82 by using the method of Lagrange's equations for non-holonomic
systems.

LAGRANGE'S EQUATIONS WITH IMPULSIVE FORCES

11.63.

A upiform rod of length I and mass M is at rest on a horizontal frictionless table. An impulse of
magnitude 4 is applied to one end 4 of the rod and perpendicular to it. Prove that (a) the
velocity given to end A is 4.9/M, (b) the velocity of the center of mass is 4/M and (¢) the rod
rotates about the center of mass with angular velocity of magnitude 6 /M1,



CHAP. 11] LAGRANGE’S EQUATIONS 307

11.64.

11.65.

1166,

11.67.

11.68.

In Fig. 11-11, AR and BC represent two uniform rods
having the same length [ and mass M smoothly hinged
at B and at rest on a horizontal frictionless plane,
An impulse iz applied at C normal to BC in the di- A B C
rection indicated in Fig. 11-11 so that the initial -
velocity of point € is v, Find (a) the initial vel-
ocities of points A and B and (b) the magnitudes of
the initial angular velocities of AR and BC about
their centers of mass. Fig. 11-11

Ans. (@) vof7, ~ ZulT; (b} 3uy/TL, — GupfTl

Prove that the total kinetic energy developed by the system of Problem 11.64 after the impulse
is §Mvj.

A square of side 2 and mass M, formed from 4 uniform rods which are smoothly hinged at their
edges, rests on a horizontal frictionless plane. An impulse is applied at a vertex in a direction
of the diagonal through the vertex so that the vertex is given a velocity of mapnitude v, Prove
that the rods move about their centers of mass with angular speed 3v,/4c.

{a) It g is the magnitude of the impulse applied to the vertex in Problem 11.66, prove that the
kinetic energy developed by the rods is given by 5.92/4M. () What is this kinetic energy in terms of
v4? {c) Does the direction of the impulse make any difference? Explain.

In Problem 11,24, page 286, suppose that the impulse is applied at the center of one of the rods in
a direction which is perpendicular to the rod. Prove that the kinetic energy developed is §2/8m.

MISCELLANEOUS PROBLEMS

11.69.

"1@

N
—

"

11.71.}

..

IL.73.

1L.74.

11,75,

11.78.

A particle of mass m moves on the inside of a smooth hollow hemisphere of radius a having its
vertex on a horizontal plane. With what horizontal speed must it be projected so that it will
remain in a horizontal circle at height k above the vertex?

A particle of mass m is constrained to move inside a ¥
thin hollow frictionless tube [see Fig. 11-12] which is
rotating with constant angular velocity « in a hor- -

izontal zy plane about & fixed vertical axis through . \
0. Usaing Lagrange’a equations, describe the motion.

Work Problem 11.70 if the zy plane is vertical. m -

A particle of mass m moves in a central force fleld
having potential V(r) where r is the distance from
the force center. Using spherical coordinates, {(a)
set up the Lagrangian and (b) determine the equa-
tions of motion. Can you deduce from these equa-
tions that the motion takes place in a plane {compare
Problem 5.1, page 121]? Fig. 11-12

A particle moves on a frictionless horizontal wire of radius &, acted upon by a resisting force which
is proportional to the instantaneous speed. If the particle i3z given an initial apeed v, find the
position of the particle at any time &.

Ans. & = (myp/x}(1 — e~ xt/m%) where # is the angle which a radius drawn to m makes with a fixed
radius such that # =0 at ¢ =10, and x is the constant of proportionality.
Work Problem 11.73 if the resisting force is proportional to the aquare of the instantanecus speed.
+ xvgt
Ans. ¢ ="mm ( m—-o—)
X0 m

A spherieal pendulum is fixed at point O but is otherwise free to move in any direction. Write
equations for ita motion.

Work Problem 9.20, page 239, by use of Lagrange’s equations,
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1177,

11.78.

11.79.

11.86,

11.81.

11.82,

11.83.

11.84,

11.85.

11.86,

11.87.

11.88,

11.89.

LAGRANGE'S EQUATIONS {CHAF. 11

Work Problem 11.20 if the paraboleid of revolution is replaced by the elliptic paraboloid
az = bx2+ cy? where a, b, ¢ are positive constants.

Prove that the generalized force corresponding to the angle of rotation about an axia physically
represents the component of the torque about thia axia.

{2} Obtain Lagrange’s equations corresponding to 8 and ¢ in Problem 11.34, page 302, and show
that these are not the same as equations (2) and (8) of that problem. (b) Show how to obtain
equations (2) and (3} of Problem 11.34 from the Lagrange eguations of ().

Two cireular disks, of radius of gyrations K,, K; and masses my,m, /LA
respectively, are suspended vertically on a wire of negligible mass [see
Fig. 11-13]. They are set into motion by twisting one or both of the
disks in their planes and then releasing. Let ¢, and ¢; be the angles
made with some specified direction,

(a) Prove that the kinetic energy is .
T = pKE 4 mpCa? C

{#) Prove that the potential energy is
vV = i‘["l’f + ry(0, — 6,39

where r, and r, are torgion constants, i.e. the torques required to
rotate the disks through one radian.

{¢) Set up Lagrange's equations for the motion, Fig. 11-13

Solve the vibrating system of Problem 11.80, finding {a) the normal frequencies and (4) the normal
modes of vibration,

Generalize the resalts of Problem 11.80 and 11.81 to 3 or more disks.
(a) Prove that if m; = m, and !, » I, in the double pendulum of Problym 11.28, then the normal

frequencies for small oscillations are given by /2¢ where

(my +mp)(l + 1) = Vimy +my{m (L, — 1) + myldy + 1)
2%‘2‘”‘1 7

(b} Digcusg the normal modes corresponding to the frequencies in (e}.

o =

Examine the special cagse I, = [,, m; » ms; in Problem 11.83,

Use Lagrange'as equationa to describe the motion of a sphere of radius a rolling on the inner surface
of a smooth hollow hemisphere of radius b > g.

A particle on the ingide surface of a frictionless paraboloid of revolution ez = z24 32 at a height
H, ahove the vertex iz given a horizontal velocity v,, Find the value of v, in order that the particle
oscillate between the planes z=H, and 2z = H, Ans. vy = V2gH, '

Find the period of the ose¢illation in Problem 11.88,

A aphere of radius a is given an initial velocity vy, up a frictionless inclined plane of angle « in a
direction which is not along the line of greatest slope. Prove that its center describes a parabola.

A bead of mass m is constrained to move on a frictionless horizosnital cireular wive of radius a
which is rotating at constant angular speed « about a fixed vertical axis passing through a point
on the wire. Prove that relative to the wire the bead oacillates like a simple pendulum.

Fod Maeut ) - V4 s
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11.90.

11.81.

11.92,

11.93.

11.94,

11.95.

11.56,

11.87.

11.98.

11.95.

If a particle of mass m and charge ¢ moves with velocity v in an electric field E and magnetic
field B, the force acting on it ia given by

F=¢E+vxB

In terms of a scalar potential & and a vector potential A the fields can be expressed by the relations
E=-Vd—3A/t, B = VxA

Prove that the Lagrangian defining the motion of such a particle is
L = «}mv’-&e{l\'v} — ed

Work Problem 10.86, page 278, by use of Lagrange’s equations.

A uniform rod of length { and mass M has its ends constrained to move on the circumference of a
smooth vertical circular wire of radins ¢ > I/2 which rotates about a vertical diameter with con-
stant angular speed . Obtain equations for the motion of the rod,

Suppose that the potential V depends on ¢, az well as g,. Prove that the quantity

T+ V- 342
aq,

L

is a constant.

Use Lagrange's equations to set up and solve the two body problem as discussed in Chapter §
|@ee for example page 121.} }

Find the acceleration of the § gm mass in the pulley system of Z
Fig. 11-14. Ans, T1g/822

A circuiar cylinder of radius & having radins of gyration K
with respect to its center, moves down an inclined plane of
angle ». If the coefficient of friction is », use Lagrange’s
equations to prove that the eylinder will roll without slipping

K2
if &< Wtaﬂ a. Discuss the cases where s does not
satiafy this inequsality,

Use Lagrange’s equations to solve Problem 8.27, page 213.

Describe the motion of the vods of Problem 11,64 at sny time
t after the impulse has been applied.

In Fig. 11-16, AR represents e frictionless horizontal plane
having a small opening st O. A siring of length ! which
paases through O has at its endz a particle P of mass m and
a particle @ of equal mass which hangs freely. The particle
P is given an initial velocity of magnitude v, at right angles
to string OF when the length OP =a. Let » be the in-
stantaneous distance OF while # is the angle between OFP and
some fixed line through 0.

(a) Set up the Lagrangian of the system.
{(b) Write a differential equation for the motion of P in terms of r.
(¢) Find the speed of P at any position.

Ans. (@) L = }mi2r%+r26% + mg(l~r) X
() ¥ = a2t — g
@ # = \/2&1.% + 2g{a —¥) — 2a’;r?,/r

11106, Work Problem 11.99 if the massea of particies P and Q are m, and m; reapectively.

T .o



310 LAGRANGE'S EQUATIONS [CHAP, 11

11161, Prove that if v, = Vag the particle P of Problem 11.99 remains in stable equilibrium in the circle
r =g and that if it is slightly displaced irom this equilibrium position it oscillates about this

position with simple harmonic motion of period 2m/2a/3g.

11.102. Prove that the quantity &, in Problem 11.34, page 302, physically represents the component A
of the torqgue.

11.103. Describe the motion of the system of {(a) Problem 11.63 and (&) Problem 11.66 at any time { after
the impulse has heen applied. !

11.104. Show how to find the angle at which the sphere of Problem 11.3¢, page 303, falls off.

11.105. {a) Set up the Lagrangian for the triple pendulum of Fig. 11-16.
H) Find the equations of motion.

11.106. Obtain the normal frequencies and normal modes for the triple pendulum of Problem 11.105 assuming
small osciilations.

11107, Work Problems 11.105 and 11.106 for the case where the masses and lengths are unequal.

sy

DOOU

Fig.11-16 Fig. 11-17

11.108. A vertical spring {Fig. 11-17) has constant « and mass M. If a mass m is placed on the spring and
set into motion, use Lagrange’s equations to prove that the system will move with simple harmonic

motion of period 27/ (M + 8m)/8x.



Chapter 12 HAMILTONIAN
THEORY

HAMILTONIAN METHODS

In Chapter 11 we investigated a formulation of mechanics due to Lagrange, In this
chapter we investigate a formulation due to Hamilton known collectively as Hamiltonian
methods or Hamiltonian theory. Although such theory can be used to gsolve specific prob-
lems in mechanics, it develops that it is more useful in supplying fundamental postulates
in such fields as quantum mechanics, statistical mechanics and celestial mechanics.

THE HAMILTONIAN

Just as the Lagrengian function, or briefly the Lagrangian, is fundamental to Chapter
11, so the Hamiltonian function, or briefly the Hamiltonian, is fundamental to this chapter.

The Hamiltonian, symbolized by H, is defined in terms of the Lagrangian L as

L

H = zpa&u - L (1)

a=1
and must be expressed as a function of the generalized coordinates ¢. and generalized
moments pa. To accomplish this the generalized velocities ¢, must be eliminated from (1)
by using Lagrange’s equations [see Problem 12.3, for example]. In such case the function
H can be written
H(plr PO EV /S PR/ t) (2)

or briefly H(p., 4=, t), and is also called the Hamiltonian of the system.

HAMILTON’S EQUATIONS

In terms of the Hamiltonian, the equations of motion of the system can be written in
the symmetrical form

5 = A

w - aqu

.o ®)
[ a

These are called Hamilton’s canonical equations, or briefly Hamillon’s equations. The
equations serve to indicate that the p. and ¢. play similar roles in a general formulation
of mechanical principles.

THE HAMILTONIAN FOR CONSERVATIVE SYSTEMS

If a system is conservative, the Hamiltonian H can be interpreted as the total energy
(kinetic and potential) of the system, i.e,

H=T+V (4)

Often this provides an easy way for setting up the Hamiltonian of a system.

311
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IGNORABLE OR CYCLIC COORDINATES

A coordinate g, which dees not appear explicitly in the Lagrangian is called an ignorable
or eyclic coordinate. In such case
. aL
e = 22 9 5
P ™ (%)
so that p. is a constant, often called a constant of the motion.

In such case we also have dH/dq. = 0.

PHASE SPACE

The Hamiltonian formulation provides an obvicus symmetry between the p. and 4.
which we call momentum and position coordinates respectively. It is often useful to imagine
a space of 2n dimensions in which a representative point is indicated by the 2n coordinates

(pl, caes Py Gy 0, Q’n) ‘ (6)

Such a space is called a 2n dimensional phase space or a pg phase space.

Whenever we know the state of a mechanical system at time ¢, i.e. we know all position
and momentum coordinates, then this corresponds to a particular point in phase space.
Conversely, a point in phase space specifies the state of the mechanical system. While the
mechanical system moves in the physical 3 dimensional space, the representative point
describes some path in the phase space in accordance with equations {3).

LIOUVILLE’S THEOREM

Let us consider a very large collection of conservative mechanical systems having the
same Hamiltonian. In such case the Hamiltonian is the total energy and is constant, ie.,

H(pli ey pn; QI; LELILE | q») = constant = E (?’)

which can be represented by a surface in phase space.

Let us suppose that the total energies of all
these systems lie between E; and E:. Then the
paths of all these systems in phase space will lie
between the two surfaces H=FE, and H=E;
as indicated schematically in Fig. 12-1.

Since the systems have different initial condi-
tions, they will move along different paths in the
phase space. Let us imagine that the initial points
are contained in region ®. of Fig. 12-1 and that
after time { these points occupy region R.. For
example, the representative point corresponding to
one particular system moves from point 4 fto
peint B. From the choice of R, and R it is clear
that the number of representative points in them e
are the same. What is not so obvious is the follow- Fig.12-1
ing theorem called Liouville’s theorem.

Theorem 12.1: Liouville’s Theorem. The 2n dimensiona! volumes of R: and R are the
same, or if we define the number of points per unit volume as the density then the density
is constant.
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We can think of the points of ‘R; as particles of an incompresgible fluid which move from &,
toRqin time ¢,

THE CALCULUS OF VARIATIONS

A problem which often arises in mathematics is that of finding a curve y = Y(x) joining
the points where x =a and x =b such that the integral

§ Pavy)as | @

where ¥ = dy/dz, is a maximum or minimum, also called an extremum or exireme value,
The curve itself is often called an extremal. It can be shown [see Problem 12.6] that a
necessary condition for (8) to have an extremum is

() _oF
dz\o) "
which is often called Fuler’s equation. This and similar problems are considered in a
branch of mathematics called the caleulus of variations,

= 0 | 9)

HAMILTON’S PRINCIPLE

The obvious similarity of (9) to Lagrange's equations leads one to consider the problem
of determining the extremals of

[
L{gy ..y Gn G+ ooy Ony B)dE (10)

]
f
or briefly, J. Ldt
fy

where L =T -V is the Lagrangian of a system.

We can show that a necessary condition for an extremal is
d (aL> _ oL

dt\3¢./ ~ g

dt \ 3qs =0 (17)

which are precisely Lagrange's equations. The result led Hamilton to formulate a general
variational principle known as

Hamilton’s Principle. A conservative mechanical system moves from time ¢ to time
!z in such a way that .
: |

Ldt (12)

L
gometimes called the action integral, has an extreme value,

Because the extreme value of (12) is often & minimum, the principle is sometimes referred
to ag Hamilton's principle of least action.

The fact that the integral (12) is an extremum is often symbolized by stating that
ts
s Ldt = 0 (18)

LY
where 8 is the variation symbol.
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CANONICAL OR CONTACT TRANSFORMATIONS

The ease in solution of many problems in mechanies often hinges on the particular
generalized coordinates used. Consequently it is desirable to examine transformations
from one set of position and momentum coordinates to another. For example if we call
q« and Po the old position and momentum coordinates while Q. and P, are the new position
and momentum coordinates, the transformation is

Pﬂ = Pﬂ(pl;..-»pm Qi ..y Qay t)) QO& = Q&(pls'--’pﬂr G ..y Gn, t) (1'&)

denoted briefly by
Pn = Pcr (’Pm ch, t)y Qﬂ = Qﬂ(pﬂ; Qa, t) (15)

We restrict ourselves to transformations called canonical or contact transformations for
which there exists a function .4/ called the Hamiitonian in the new coordinates such that

. -—_i‘j__{ . =aﬂ
P, = 20, Qu 3P,

In such case we often refer to Q. and P. ag canonical coordinates.

(16)

The Lagrangians in the old and new coordinates are L(p., o t) and £ (Pa, Qa,t) Te-
spectively, They are related to the Hamiltonians H{p., ¢« t) and $(P,, Qa t) by the

equations . .
H = 2pfe—L 4 = XPuQa—L an

where the summations extend from « = 1 to n.

CONDITION THAT A TRANSFORMATION BE CANONICAL
The following theorem is of interest.

Theorem 12.2. 'The transformation
Po = P, (Par» oy t); Qu = Qa(pcu Qa, t) (18)

is canonical if > padge — X PadQo (29)

is an exact differential.

GENERATING FUNCTIONS
By Hamilton’s principle the canonical transformation (14) or (15} must satisfy the con-
£

1Y s
ditions that f Ldt and £ dt are both extrema, i.e. we must simultaneously have
1

i

iy “
5§ Lat = 0 and of cdt = 0 (20)
1y [

These will be satisfied if there is a function G such that

946 _ o _
& = L-< (21)

See Problem 12.11. We call G a generating function.

By assuming that ¢ is a function, which we shall denote by of, of the old position co-
ordinates ¢, and the new momentum coordinates P, as well as the time ¢, i.e.,
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G = f(ga Pay t) (22)
we can prove that {see Problem 12.13]
— 9 def @f_
Pa = éa" Qa BPO; q.g{ + H (23)
P = _M A = aﬂ
where Po = —o5 Q= op- (24)

Similar results hold if the generating function is a function of other coordinates [see
Problem 12.12].

THE HAMILTON-JACOBI EQUATION

If we can find a canonical transformation leading to 4( = 0, then we see from (24) that
P, and Q. will be constants [i.e., Po and Q. will be ignorable coordinates]. Thus by means of
the transformation we are able to find p, and q. and thereby determine the motion of the
system. The procedure hinges on finding the right generating function. From the third
equation of (23) we see by putting % = 0 that this generating function must satisfy the
partial differential equation 5o

5 t Houtaty = 0 (25)
or ‘;‘f + H("e’,q,,, t) = 0 26)

This is called the Hamilton-Jacobi equation.

SOLUTION OF THE HAMILTON-JACOBI EQUATION

To accomplish our aims we need to find a suitable solution of the Hamilton-Jacobi
equation. Now gince this equation contains a total of n+1 independent variables, i.e.

d1, gz, ..., s and ¢, one such solution called the complete solution, will involve n+1 con-
stants. Omitting an arbitrary additive constant and denoting the remaining n constants by
B, Bz, . . ., Ba [none of which is additive] this solution can be written
@I = @r(qllqgl v ey @ny 191-;32. 0-0118m t) (27)
When this golution is obtained we can then determine the old momentum coordinates by
ocf
y = — 28
Pe = 504 (28)
Also, if we identify the new momentum coordinates P, with the constants 8., then
o
Q, = gg—z = ¥, (29)
where y,, a=1,...,n are constants.

Using these we can then find ¢ as functions of 8, y, and ¢, which gives the motion of
the system.

CASE WHERE HAMILTONIAN IS INDEPENDENT OF TIME

In obtaining the complete solution of the Hamilton-Jacobi equation, it is often useful to
agsume a solution of the form
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o = Si(qr) + Salgs) + -+ + Snlgn) + F(2) (20)

where each function on the right depends on only one variable [see Problems 12.15 and
12.16]. This method, often called the method of separation of variables, is especially useful
when the Hamiltonian does not depend explicitly on time. We then find that F(i) = -FEt,
and if the time independent part of <f is denoted by

S = Si(q) + Selgz) + -+ + Sulqa) - (31)
the Hamilton-Jacobi equation (26) reduces to
S _
H(Z 0.) = E (22)

where F is a constant representing the total energy of the system.

The equation (82) can also be obtained directly by assuming a generating function S
which is independent of time. In such case equations (23) and (24) are replaced by

. o8 _ 88 _ _
Pa = 2 Q« = Py H=H=E (29)
- - —a‘ﬂ . _ a‘_ﬂ
where P, = 30, Qe = 3P, (34)

PHASE INTEGRALS. ACTION AND ANGLE VARIABLES

Hamiltonian methods are useful in the investigation of mechanical systems which are
periodic. In such case the projections of the motion of the representative point in phase
space on any Pag¢. plane will be closed curves C.. The line integral

Ja = £¢ Padqa (95)

ia called a phase integral or action variable,
We can show [see Problems 12,17 and 12.18] that

S=8q, ..., Ju, ..., Jn) (36)
= 98 _ o3
where Pa = 2ms Q. = o ($7)
It is customary to denote the new coordinates Q. by w. so that equations (£7) are re-
placed by
{3 aqﬂr L3 aJ«
Thus Hamilton’s equations become [see equations (33) and (84)]
ST SRS Y|
Ju - wﬁa We = 6J¢ (39)

where 9 = E' in this case depends only on the constants J.. Then from the second equa-
tion in (89},

Wa = f at + Ca (40)

where f. and ¢. are constants. We call w. angle variables. The frequencies_fa. are given by
= A '

Lo = FYA (41)

See Problems 12.19 and 12.20.
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Solved Problems

THE HAMILTONIAN AND HAMILTON'S EQUATIONS

AC If the Hamiltonian H = 3 paGe — L, where the summation extends from
a=1 to n, is expressed as a function of the coordinates ¢, and momenta p., prove
Hamilton’s equations, . _oH o oH

pa - aqal qﬁ' &‘p&

regardless of whether H () does not or (b) does contain the variable time ¢ explicitly.
(a) H docs not contain € explicitly.
Tuking the differential of H = 3 p,q, — L, we have
- - aL 8[: L
dH = Epﬂdqﬂ + EQadpa - E_d‘h - szQn 1
gy g,
Then using the fact that », = 4L/3q, and 5, = dL/3q,, this reduces to
dH = 2&& dpu - Ei’a dQG (’)

But since H ia expressed as a function of p. and ¢,, we have
. wiH oH
dH = 3 e dp, + p a_q“' dg, (2
Comparing (2) and (£) we have, as required,
- — EE hd — aH

Ja = = T aq.

Pa’ Pa g,

(b} H does contain ¢t explicitly. .
In this case equations (1), (2) and (3} of part {«) are replaced by the eguations

. . aL oL . oL
dd = Epud%r + quudpa - E“dqa - E—dq.. - E-t-dt (4)
¥ Oy
» - aL
aH = Eqadpc - Epadq‘: - "a_c'dt (€]
_ aH aH oH
df = E;;,:dpu + Ega:dqa + 37 9t ®
Then comparing {5) and (8), we have
. _ OH » _ _OH oH _ _3L
da = Ep Pa = E, T T

12.2. If the Hamiltonian H is independent of ¢ explicitly, prove that it is (a) a constant and
is (b) equal to the total energy of the system.

{a) From equation {£) of Problem 12.1 we have
H = Siebe — Zhala = 0
Thus H is a constant, say K.
{3) By Euler’s theorem on homogeneous functions [see Problem 11.47, page 805},

« 3T
i) = T
2Rl =
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where T is the kinetic energy. Then since p, = dL/3q, = aT/3q, jassuming the potential V
does not depend on §,), we have Ep,d, = 2T. Thus as required,

H = Zp,4,—- L = 2T~ (T~V) = T+V = E

lﬁ. A particle moves in the zy plane under the influence of a central force depending only
on its distance from the origin. (2) Set up the Hamiltonian for the system. (b) Write
Hamilton’s equations of motion.

(2} Assume that the particle is located by its polar coordinatea (r,¢) and that the potential due to
the central force is V(r). Bince the kinetic energy of the particle is T = f}m(;ﬂ + ¥24%), the
Lagrangian is

L = T —V = Jm72+s2%) — Vi) 5]
We hate p, = aL/3r = mf, Ps = dL/36 = mr24 {2)
so that F = pim, ¢ = pymr? *

Then the Hamiltonian is given by

H = 3 pada— L = pi+ peb — (Jm02+1%9) — Vi)
Pr

( (m.,.g) - {& (_ + '2',,‘2,.4) - V(")} 4)

pE pﬂ

= gt apei + VO

Note that this is the total energy expressed in terms of coordinates and momenta.

{b) Hamilton’s equations are 4o = 3H/opy, Pa = —0H/iga
Thus r = 3Hlép, = p/m, i = 9H/3py = po/mrt ®
P, = —0H/3r = pyfmed — Vi), py = —~3H/de = 0 (®)

Note that the equations (5) are equivalent'to the corresponding equations (8).

PHASE SPACE AND LIOUVILLE’'S THEOREM
12.4. Prove Liouville’s theorem for the case of one degree of freedom.

We can think of the mechanical system as P
being described in terms of the motion of rep-
resentative points through an element of vol-
ume in phase gpace. In the case of & mechanical Ble, p + dp) Clo + dg, p+dp)
system with one degree of freedom, we have a
two dimensional {p, ¢) phase space and the vol-
ume element reduces to an area element dpdg
[Fig. 12-2).

Let p=5(p,q,t) be the density of rep-
resentative points, ie, the number of repre-
sentative points per unit area as obtained by Alg.p) Dig+dg. p)
an appropriate limiting procedure. Since the
speed with whmh representative points enter
through AB is ¢, the number of representative q
points which enter through AR per unit time is

pqdp (1 Fig.12-2
The number of representative points which leave through CD ia

{o& + :—q(p&} dq} dp )

[
I
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12.5.

Thus the number which remain in the element is (¥) minus (2), or
a -
—53(.0:1) dp dq (£

Similarly the number of representative points which enter through AD and leave through BC are
reapectively

» . [ -
epdg and {pp * (ep) dp } dg
Thus the number which remain in the element is
d .
3 (ep) dp dq 4

The increase in representative points is thas [adding () and (4)]

3ed) erpp)
—{———aq + }d dg

Since thia is equal to g%dp dq, we must have

do ) , ep)| _
&6+{6q + dp} =0

or ap 3_qf+ apv+ 3,‘p+ apv = 0 (5)

at T %3 T 39T Pop T 3P
Now by Hamilton’s equations p — —dH/3q, ¢ = aH/3p so that
ap _ _ H 34 _ #H

ap apag’ 8¢  3qop

Thus since we suppose that the Hamiltonian has continuoua second order derivatives, it follows
that ap/op = ~3¢/aq. Using this in (5), it becomes

ap ap. ?.E’ _
6t+ +8pp = 0 (8)

But this can be written do/dt = 0 "
which shows that the density in phase apace ia constant and thus proves Liouville’s theorem.

Prove Liouville’s theorem in the general case.

In the general case the clement of volume in phase space is
dV = dgy -+ dgadpy - dp,

In exactly the same manner as in Problem 12.4 the increase of representative points in dV is found

to be

2Hod L2 aop L2

_ (qu) 4 ees (Pqn) + (Ppl) 4 e {Ppn) dV
3¢y aqy ap, a?n

and since thiz is equal to a': dV, we must have

Body) dpdn) | ¥Hopy) (o)

dooee g L TR0 4 L T -
at Toq, T8g, | ap, ap,
92 < a(an) s a(P;’u)

or at + ¢§; gy + aml Lo o

This can be written as

3 (Baos )+ 3 o(ea )
+ + +=2} = o 1
2t 2 Lot T apPe) + 2 050t o, 0
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Now by Hamilton's equations p, = —3H/dq,, 4, = 0H/#p, s0 that

w,  #H 3, _ °H
We PGy’ Py 09, 0Dy
Hence 9p/ap, = —34./9q, and {I) becomes
o5 (s Lm0 o @
at a=1 gy ¢ pa
ie., dofdt = 0 _ 6]

or p = constant.
Note that we have used the fact that if p = p(q;, ..., ¢n. 71, ... g, ) then

;‘g_”(é‘o_%_@;%)iﬂ_"(_@;' o s 3
dt — ¢§; #q, dt +ap¢ dt + a .,21 aq,,q“"'apap“ + at

CALCULUS OF VARIATIONS AND HAMILTON'’S PRINCIPLE

.3
12.6. Prove that a necessary condition for I = f F(x,y,y")dx tobe an extremum [maxi-

s . a (aF ar “
mum or minimum ——=}—-—— = 0
nimum] is P ay’) P 0
Suppose that the curve which makes I an extremum is given by
y = Yz, ea=Zx=b : (1
Then ¥y = Y@+ el = Y + oy {*)

where ¢ ia independent of x, is a neighboring curve through » =a and z =% if we choose
pla) = w(d) = 0 )

The value of I for this neighboring curve is
b

Iy = f Fl, Y+ Y +ey') de _ (4)
a

This is an extremum for « = 0. A neceasary condition that this be so is that g]__ — ¢. But by
differentiation under the integral sign, assuming this is valid, we find « ¢

»
= oF aF =
=0 f( °+ay'”)dz =0

al F
o \OW

de

which can be written on integrating by parts as

b
aF aF
j. Eﬂdz + ayp‘!

b b
d { 3F
. ) "a(ry')‘*‘”

-]

- S {5-a@te - o

where we have uzed (#). Since 5 is arbitrary, we must have

QE_!_(.B_E =0 w A(E)-E o,
oy dxe\oy' /) ~ dx \ 3y’ ay

which is called Euler’s or Lagrange's equation, The result is easily extended to the integral

b
_f Fe, yo ¥t Y2 V5 « o) Yo ¥ad d
a4

and leads to the Euler's or Lagrange’s equations
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12.7.

12.8.

d /[ oF oF
E<__;)-_ = 0 «a=1,2,....n

By using a Taylor series expansion we find from (4) that
o
I — 10) = « f (%n + %n’)dx + higher order terms in &, ¢, ete.
L 3
The coefficient of ¢ in (5) is often called the variation of the integral and is denoted by

b
s f Fiz, v, v) do
&

b
The fact that f Flz,y,¥')dx is an extremum is thus indicated by
a
sf Fa,yy)de = 0
n

Discuss the relationship of Hamilton’s principle with Problem 12.86.

821

(8

By identifying the function F(z,¥,¥’} with the Lagrangian L(t,q,q) where #,y and y’ are re-

placed by t, q,§ respectively, we see that a necessary condition for the action integral
L]
L dt

f
to be an extremum [maximum or minimum] is given by

4 ab)_eg = 0
dat \ ag aq

n

2

Since we have already seen that (2) describea the motion of a particle, it follows that such motion

can also be achieved by requiring that (1) be an extremum, which is Hamilton’s principle.
For aystems involving n degrees of freedom we conaider the integral (I) where
L = L(t; dun &l’ 9, éz» e Pps éa)
which lead to the Lagrange equations

Fi 4 oL aL - —
G(3) - =0 embim

A particle slides from rest at one point on a
frictionless wire in a vertical plane to another o

point under the influence of gravity. Find the
total time taken. $

Let the shape of the wire be indicated by curve
C in Fig. 12-3 and suppose that the atarting and fin-

ishing points are taken to be the origin and the point c
Alxy, yo) respectively.

Let P{x,y) denote any position of the particle

Pz, y)
m

which we assume has mass m. From the principle Ay, o}

of conservation of energy, if we choose the horizontal v
line through A as reference level, we have Fig.12.3

Potential energy at O + kinetic energy at O =  potential energy at P + Kkinetic energy at P

or mgyo + 0 =  mglyy—y) + m(de/dt)?
where ds/dt is the instantaneous speed of the particle at time t. Then

ds/dit = =v2gy

n

If we measure the arc length s from the origin, then & increases as the particle moves. Thus ds/dt

is positive, so that ds/dt = /2gy or dt = da/v/2gy.
The total time taken to go from y =0 to y =y, is
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-r'—‘det =f”°i’—

v=0 V2gy
But (ds)? = (dx)2 + (dy)}? or de = V1 4+ y*ds. Thus the required time is
Vi+y?

T

dx )

=Vl

12.9. If the particle of Problem 12.8 is to travel from point O to point A in the least pos-
gible time, show that the differential equation of the curve C defining the shape of
the wire is 1+ v +2yy” = 0.

A necessary condition for the time » given by equation (2) of Problem 12.8 to be a minimum

is that 4 /aF oF

ACIEE R @
where F = (1+yzy—ie @®
Now Ffdy = (A +yD-Viyy-1e, oFfey = —}(1+yHzy-s

Substituting these in (1), performing the indicated differentiation with respect to » and simplifying,
we obtain the required differential equation.

The problem of finding the shape of the wire is often called the brachistochrone problem,

12.10. (@) Solve the differential equation in Problem 12.9 and thus (b) show that the required
curve is a eyelotid.

(a) Since z is missing in the differential equation, let %' = & s0 that

oo du_dudy _ du, _ du
4 dr = dy dx dyy dy
Then the differential equation becomes
du 2udu |, dy
2 au _ ay ..
14w +2yudy 0 or 1+?&2+U 0
Integration yields
In{(l+4*) + Iny = Ind or A+ut)y = b
where b i3 a constant. Thus
_ P dy ~— b — v
=y = = =
dx ¥

since the slope must be positive. Separating the variables and integrating, we find

x = f‘\’r-g—;dy—l-c

Letting y = b sin2¢, this can be written

l,bsin’& .
= 2 T .2 I +
E 3 f b cos? 8 8in & cos ¢ de e

2bf gin2ede + ¢ = bf(l—coa%)da + ¢ = b2 —ein2) + ¢

Thus the parametric equations of the required curve are
z = }b{2s —sin26) + ¢, y = bsin?e = {¥(1 — cos2¢)
Since the curve must pass through the point x =0,y =0, we have ¢ =10, Then letting
¢ = 20, a = }b 1#)]
the required parametric eguations are
2z = alp ~sing), ¥ = a(l —cosg) _ (2)
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(b} The equations (2) are parametric equations of a cycloid [see Fig, 12-4]. The constant ¢ must
be determined so that the curve passes through point 4. The cycleid ia the path taken by a
fixed point on a circle as it rolla along a given line [see Problem 12.89],

¥
Fig.12-4

CANONICAL TRANSFORMATIONS AND GENERATING FUNCTIONS
12.11. Prove that a transformation is canonical if there exists a function G such that

12.12.

dg/dt = L — ..
fy s
The integrals Ldt and f L dt  must simultaneously be extrema so that their varia-
tions are zero, i, i f .
2
8 Ldt = 0 and af LdE = 0
ty

L}

g
Thus by subtraction, & f (L—.Ydt = 0

f
Thiz can be accomplished if there exists a function ¢ such that
L — £ = dgldt

since in such case ] ft‘ i—fdt = §{glty) —gity)} = 0
L]

The function ¢ is called a generating function.

Suppose that the generating function is a function T of the old and new position co-
ordinates ¢. and Q. respectively as well as the time ¢, i.e. T = T(qa, Qs t). Prove that
T aT aoT . i} . e
Pes g Pes gy A= GrH where  Pos -G Qo= 3p
By Problem 12.11,
dT

E = L—-r = Epc‘&a_H_ {Epaéd-ﬂ}
= qu&a_zpaéa+ﬂ_H

or 4T = Zpyda — SFP.dQ, + (4 —H)dt )
But if T = T(q, Qat), then
ar = E%dqﬁ + 2‘% aqQ, + g—‘:-dt (2)

Comparing () and (2), we have as required
_ T aT aT

Pa_aqc’ Pct=_‘é'é:, J{-sz
. . ag . a4
The equations P, = _36:' Q. = E

follow from the fact that _g{ is the Hamiltonian in the coordinates P,, Q. so that Hamilton’s equa-
tions hold as in Problem 12.1.
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12.13. Let of be a generating function dependent only on ¢, Ps,t. Prove that

12.14.

_ _ 9 _ s _ 84 5 _ 84
Pa = 3500 Qu=p,, HA=7pg+H where Po=-—75", Q=5

From Problem 12,12, equation (I}, we have
a7 = Epaan - EPGan + (J{"'H)dt

= EpudQG - d{EPuQ¢} + EQadPa + (.ﬂ_H)dt

or (T+3PQ) = Srudse + 2QudPy + (H-H)dt 8
i~eov d@f = Epadmu + EQadPa + (ﬂ_mdt (’)
where o = T+ 2P.Q, (£4)
But since of is a function of gq,, P,, ¢,

der=2 dq..+2 dP+a"‘“’rdt *
Comparing (2) and (4),

_ 9cf _ oS _ i

Pa = o Qu—m, H =t H

The results f.’a = —%, éa = g%

follow as in Problem 12.12, since 4/ is the Hamiltonian,

Prove that the transformation P = §{p®+¢%, Q = tan~1(¢/p) is canonical.
Method 1.

Let the Hamiltonians in the coordinates p,q and P,Q be respectively Hip,q) and ¢{(P,Q} =0
that Hip,q} = 4{(P, Q). Since p,q are canonical coordinates,

. _ _8H . _ oH

PT 7% YT % @
But p = a”P+"”Q ¢ = Wp+ R @)
aP ' éQ
ﬂ = a;ﬂ. Q i‘i{ gg E = ﬂ G_P + ﬁ a_Q ®
ag ~ @P ag 0Q d9g* ap aP op 0Q ap
From the given transformation equations we have
ap - P g~ =F @ W PP

Also, differentiating the transformation equations with respect to P and Q respectively, we find
— .9 dq = i'_ — _ 2

ap -
PG+ g 1 (paQ qao)/p“q,)
Solving simultaneously, we find

w _ _p 4 _ __4q¢ . _, % _
P~ m+ g’ oP 2+eE 30 g, aQ P (4)

0

]
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Then equationa (1) and (£) become

.« _ P o'— . s _ __g__o .
p = —-—-pz+q,P @, a p,+qu+pQ 5
oH' _ d o A oH _ M q 24 -
g > TP TE+gE @ . PP TP+ aQ
Thus from equations (1), (5) and {¢) we have

., a4l 2.4l

b - = gt P VI

Fral T T 1% T i e e

9 P = A _ g ¥4

F+al TR T Pop T g a0

Solving these simultaneously we find

L 65{ -_3,_4{
P——w, = 3P (N

which show that P and Q are canonical and that the transformation is therefore canonical.

Method 2,
By Theorem 12,2, page 314, the transformation is canonical if

2?(: dg, — EPaon: 8
is an exact differential. In this case {) becomes

pdg — PdQ = pu—§w+q=>(__*_zﬂﬁpg;gf)

= {{pdg+ qdp} = diirg

an exact differential. Thus the transformation is canonical,

THE HAMILTON-JACOBI EQUATION

12.15. (a) Write the Hamiltonian for the one dimensional harmonic oscillator of mass m
(b) Write the corresponding Hamilton-Jacobi equation. {¢) Use the Hamilton-Jacob
method to obtain the motion of the osciliator.

() Method 1,

Let g be the position coordinate of the harmonic oscillator, sp that ¢ ia its velocity. Sinc
the kinetic energy is T = }m:}’ and the potential energy is V = }x¢?, the Lagrangian is

L =T-V = jm@®— Jeq? (1
The momentum is p = sLidg = mq (£
so that ¢ = pim @

Then the Hamiltonian is
H = Epaéu"l‘ = Pa_(i’”'aa_‘i“qa}
0¥m + Leg? {:

[l

Method 2.
By Problem 12.2, since the Hamiltonian is the same a8 the total energy for conservatin

synstems,
H = }mgt + jeqt = Jmip/mpP + feg® = §p°/m + fug?
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() Using p = d-f/3q and the Hamiltonian of part (a), the Hamilton-Jacobi equation iz [see equa-
tion (£6), page 816)

& 1 faS\? _
W"‘Eﬂf.(a) + it = 0 ®)
(¢} Assume a solution to (5) of the form
d = Silg) + 8xe) "
1 /45,\? _ 85
Then (5) becomes ™ (d_q) + 3cg? = — *

Setting each side equal to the constant 8, we find

1 /d8\2 ds
wla) i =8 =

whosge solutions, omitting constants of integration, are

5, = f VEmE-pade, S, = —pt ®
g0 that {¢} becomes o = f V‘zm(p — ;‘,xqz) dg — pt {9
Let us identify g with the new momentum cocrdinate P. Then we have for the new position
coordinate,
-
@ = & = 3% f Vam(B— §xg?) dg — At
_ Vam f dg .
But since the new coordinate @ is a constant v,
vem J" dg —t o= v
2 VB — }ngt
or on integrating, Vmic gin—1 (¢/e/28) = t+ v
Then solving for g, g = 28/ sin Ve/imit+v) {10

which is the required solution. The constants 8 and y can be found from the initial conditions.

It is of interest to note that the quantity 8 is physically equal to the total energy E of the
system [see Problem 12.92(a)]. The result (9) with g = E illustrates equation (31} on page 316.

12.16. Use Hamilton-Jacobi méthods to solve Kepler’'s problem for a particle in an inverse
square central force field.

The Hamiltonian is H = -l (,,3 + ﬁ) - K ”
Then since p, = 8of/3r, py = dcf/0e, the Hamilton-Jacobi equation is
SIENLE) VLN

_6?+2m{(6r +§(W r 0 @)

Let & = Si(n) + Sale) + S4(0) ®
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1 Lo 1 dss)z K _ dS,
Then (2) becomes 2m {(?) + ﬂ( P -5 = 5
Setting both sides equal to the constant g,, we find
dSy/dt = —p, (4)

R COREIC I S
Integration of ({) yields, apart from a constant of integration,
S = —pst
Multiply both sides of (5) by 2ms2 and write it in the form

ds 2 ds 2
(@) = »fomsn e 2E—(S2V]

Then since one side depends only on ¢ while the other side depends only on », it follows that each
side is a constant. Thusz

ds;/dﬂ = 8 or & = o8 {6}
dS,\2
das.
or cTrl = VZmgy + 2mK/r — pi/r? (n

on taking the positive square root. Then

s, = f VZmB, + 2mK/r — B dr @)

Thus of = f V2mBs + 2mE/r — Birt dr + B8 — Byt ®

Identifying 8, and 8; with the new momenta P, and P, respectively, we have

df )
Q = FTN = a_,e:f V2mg, + 2mKfr — Birtdr + 9 = ¥
_
Q = E = Ef Vemg, + 2mK!f—ﬂ§Ir2dr -t = ¥y
since @, and @, are constants, say y; and y,. On performing the differentiations with respect to
B2 and 8y, we find
dr
{ e = 0-y (10)
r2y/2mBy + 2mE/r — p2fr?

m dr

f Vemg; + 2mK/r — pirt

= t+ 7y an

The integral in (10) can be evaluated by using the substitution » = 1/u, and after integrating we
find as the equation of the orbit,

2tmK
.= £l s

1 — V1 + 28,82/mK2 con (0 + #/2 — 7y)

The constant 8; can be identified with the energy E [see Problem 12.92(b)], thus illustrating equation
{21), page 316, If E = ;< 0, the orbit is an ellipse; if E =8, =0, it is a parabola; and if
E = fiy > 0, it iz a hyperbolz. This agrees with the results of Chapter b.

The equation (11) when integrated yields the position as a function of time.
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PHASE INTEGRALS AND ANGLE VARIABLES
12.17. Let of be a complete solution of the Hamilton-Jacobi equation containing the » constants

Bi, ..., B0 Let Jo = f Pudqs. Prove that the J. are functions of the 8, only.

We have F = Sugn By . Bad + o+ Sulgp Bry - B — Bt F}
where the constant g, = E, the total energy. Now
aaf dS,
= —— = —_— £
Par g, dyq ®
dS,
Thus Jo = § Padgy, = § cl_qf dg, )]

But in this integration ¢, is integrated out, so that the only quantities remaining are the con-
stants 8,, ..., f8,. Thus we have the = equations

Ju = a:(asl»-vnﬂu} e=1,...,n (4)

Using () we can solve for 8y,..., 8, in terms of J,,...,J, and expresa (f) in terms of the J,.

12.18. (a) Suppose that the new position and momentum coordinates are taken to be w,. and
Ja respectively. Prove that if .4 is the new Hamiltonian,

Jo = —0/0wa, the = 3.9(/3)a
(b) Deduce from (a) that .
Ja = constant and Wa = fab + Ca
where f« and ¢, are constants and o = 3.9/8/a.

(¢} By Hamilton's equations for the canonical coordinates Q,, P,, .
P, = -2 4i10Q, Q. = adl/oP, n

Then since the new position and momentum coordinates are taken as @, = w, and P, =J,,
these equations become

Jo = —agifow, g = o.9(/d, (#)

(%) Since ¢{ = E, the new Hamiltonian dependa only on the J, and not on the w,. Thus from (2)
we have

Jo =0, w, = constant = f, (3]
where /£, = d.4{/8J,. From (3) we find, as required,

Jo = constant, w, = f.t+ ¢, (4}
The quantities J, are called action variables while the corresponding integrals

f?ad% = Ja (5}

where the integration is performed over a complete cycle of the coordinate g, are called
phase integrals, The quantities w, are called angle variables.

12.19, (@) Let Aw. denote the change in w. corresponding to a complete cycle m the particu-
lar coordinate g.. Prove that

Awe = 1 ifa=7r
T o it awr
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(b) Give a physical interpretation to the result in (a).

- Wy _ :f 2 [ a8 _ d /a8
@ wo = §ota = (@) = §a3 (5w
3 a8 aJ, fl if a=7r
s Ps-de, = 5 0= .
al, Y 3q, af, 10 if avr

where we have used the fact that w, = 35/3J, [see Problems 12.17 and 12.18] and have as-
sumed that the order of differentiation and integration is immaterial.

(b) From (a) it follows that w, changes by one when ¢, goes through a complete cycle but that
there is no change when any other ¢ goes through a complete cycle, It follows that ¢, is a
periodic function of w, of period one. Physically this means that the f_ in equation (4) of
Problem 12.18 are frequencies.

12.20. Determine the frequency of the harmonic oscillator of Problem 12.15.

A complete cycle of the coordinate g [see equation (10), Problem 12.15] consists in the motion
from ¢ = —V28/x to ¢ = +V28/x and back to ¢ = —28/x. Then the action variable is

¥28/x ¥2p/x
7= $ede = 2f  VEmG-pide = of  VEmE-pea dg
- 287 o
= Z2rfvmic
.4 a "

12.21. Determine the frequency of the Kepler problem [see Problem 12.18].

A complete cyele of the coordinate r consists in the motion from r = r,, t0 74, 81d back te

* = Foine Where r and 7., are the minimum and maximum values of r given by the zeros
of the quadratic equation [see equation (10), Problem 12.16)

2mfy + 2mKpr — pifrt = 0 n

We then have from equations (6} and {7) of Problem 12.15,

Jo = § Peds = _4’-%& = ‘%S’—zds = £2"ﬁgda = 2z8, @
J, = § p dr = §%fej-dr = f%dr = 2 e Vemgs + 2mK/r — g2/r* dr
T Tmin

= 2emK/N—2mBs — 2vp, ®

From (2} and {8) we have on elimination of g,,
Jo+J, = 2emKN~2mg, Y

Since g3 = E, (4) yields
N

Then the frequencies are
g, = IA _ gt p o= A | artmiE
¢T3, T (J,+IP’ 4 at, (Je+ TP
Since these two frequencies are the same, i.e. there is only one frequency, we say that the
system is degenerate,
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MISCELLANEOUS PROBLEMS

12£22. A particle of mass m moves in a force field of potential V. Write (a) the Hamiltonian
and (b) Hamilton’s equations in spherical coordinates (r, ¢, ¢).

v {2) The kinetic energy in spherical coordinates is
T = Imis? + 122 + 12 sin? 9 $9) @
Then the Lagrangian is
L=T—V = Jm(+ 7%+ r2sin20 42 — Vir,0,4) @
We have R . . . . .
p, = 3L/ar = mr, py = dLf3¢ = mrle, py = oLfdp = mrlginte ¢ £4]
o & s _ _Po . Py
and r=o 8= 5. 6= —mers 4

The Hamiltonian is given by
H = Epu &a - L
= pr o+ Ped + pyd — Am(F + 1282 + #2 5in? 6 ¢%) + Vir,4,¢)
P . P} A

= om T Tmn? T Trrtunis T V6 &)

where we have used the results of equations {4).

We can also obtain (5) directly by using the fact that for conservative systemsz the
Hamiltonian is the total energy, ie. H=T+ V.

{5) Hamilton’s equations are g, = Lz Py = —2H  Tpen trom part (a),
9Py gy
s _OH _p o _OH _ P o _oH _ _ P
T oap, T m’ = pg w7 dpy  mrlain?e
s - 0H _ P P oV
Pe = a = wmr®  mrginZe or
s _ _OH _ Pecoss gy
Pe = 3% ~ mrZginde e
. . _9H _ oV
Pe = T3 T T op

12.23. A particle of mass m moves in a force field whose potential in spherical coordinates
is V = —(K coat)/r’. Write the Hamilton-Jacobi equation describing its motion.

By Problem 12.22 the Hamiltonian is

2 2
~ 1 Ps Py _ Kcose
H = 2m("3+fs+rasin%) = 0
- S def S . . . .
Writing p, = ar Pe= et Py = ET»" the required Hamilton-Jacobi equation is
acf 1 AV WA 1 af \2 Kcosoe _
ot Yem\\or) T7\3e/ Tramta\3s z -0 ®

12.24. {¢) Find a complete solution of the Hamilton-Jacobi equation of Problem 12.23 and
(b) indicate how the motion of the particle can be determined.

(0) Letting of = Si(r)}+ 5u(6) + Ss(¢) — Et in equation (2) of Problem 12.23, it can be written
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1 /dS)\2 | 1 /dSs\* 1 ﬁ)’ Kcose _
m (‘dT»’) * Zmre (F) + Zme smie ( /) e —E @
Multiplying equation (1) by 2ms? and rearranging terms,
ds,\2 dS;\3 1 /dS,\2
rz(?) — 2mEy = -— (?‘—) = inis (-I; + ZmK con s

Since the left side depends only on r while the right side depends on ¢ and ¢, it follows that
each side must be a constant which we shail call 8,. Thus

FERY _
r’(?r-) — 2mE~ = g8, "
t d8,\3
and —(%) -'i:,‘(?:' + 2mK cose = )]

Multiplying eguation (#) by sin®# and rearranging terms,
(ﬁ)s = 2mK sin? s - in?e — ainse f‘& : %)
a2 = sin? ¢ cos B,y #in 8in’ de

8ince the left side dependa only on ¢ while the right side depends only on ¢ each side must be a
constant which we can call 8,, However, since

b _ B ®

=

Pa = E - “
we can write g, = p:. This is a consequence of the fact that ¢ is a cyclic or ignorable co-
ordinate, Then (4) becomes
2

. . . dS,\*2
2mK aint¢ cos ¢ — B, sin?s — ain?e (—E) = pa )
By solving equations (2), {6) and (5), we obtain

S, = f VEmETBiRar, s, = [ VIRt~ pEade = Bids, Sy = pev

where we have chosen the positive square roots and omitted arbitrary additive constants. The
complete solution is

o = fw/2mE+ﬂ1fr3dr+ fVMma—pgm% — B dé + pyp — Et

{b} The required equations of motion are found by writing

i) 3ef o

aﬂl = Yi1» ﬁ=72v ESYS

and then solving these to obtain the coordinates r, 9,4 as functions of time using initial condi-
tions to evaluate the arbitrary constantas,

l',’&ﬁ. If the functions F and G depend on the position coordinates ¢., momenta p. and time
~/ t, the Poisson bracket of F and G is defined as

7.6 = z(aFaG arﬁ)

E 0qa 9Qa Dy

Prove that (a) [F,G) = =[G, F], (b) [F1+F: G) = [F,G] +[F,G), (¢) [F,q] =
6F/6‘10r, (d) [F, 139] = _aFfaq'-.

- OF G _ 8F G\ _ _ _a,eiﬁ:_ﬁifi) = -
@ [F’ G] - ? (31:‘« 0Gy” Oy 0Py - ] (31-"¢ g 09y 9Py [G’F]

This shows that the Poisson bracket does not obey the commutative law of algebra.
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Fy + F3) aF, + F,

(a""l 3G oF, aG) E("’F:aG 31"'386)

Py 3G, g, O, 0Py 8¢, 3 0Py
(F1. G] + [Fa 6]

It

This showa that the Poisson bracket obeys the dig¢tributive law of algebra.
-3 (i %, _ oF a&) _ 9F
Py s 3y Py 8p,

since dqfaq, =1 for a«a=r and 0 for a~ #, while 3q/op, =0 for all «. Since r is ar-
bitrary, the required result follows,

{¢) [F * qr]

@ (¥, #r] P Ma 390 9P

since dp,/ag, =0 for all a, while 3pJip, =1 for a=7r and 0 for «> r. Since r is ar-
bitrary, the required result follows.

E(aF P, aFapr) - _9F

lgl&\ If H is the Hamiltonian, prove that if f is any function depending on position, momenta

and time, then | % g_{ .
o = Lar+ 3 (Lon+ 2L an) )
E # = de3 (i) o
But by Hamilton’s equations, e = %, o = —% )

Then (£) can be written

i _ o (iﬁ-.ﬂtﬂ =
e~ ot + § 3y Py IPa ¥ a + [H'ﬂ

Supplementary Problems

THE HAMILTONIAN AND HAMILTON'S EQUATIONS

12484, A particle of manss » moves in & force field of potential V. (¢) Write the Hamiltonian and (b} Ham-
N ilton’s equations in rectangular coordinates (z,y, z).
Ane. (8) H = (pp+pi+pd2m + Viz,v,2)
(%) 2 =p/m, § =p/m, &= pSm, p, = =iV/oz, p, = —aV/3y, P, = —6V/se

13.28. Use Hamilton’s equations to obtain the motion of a particle of mass m down a frictionleas inclined
plane of angle a.

12.29. Work the problem of small oscillations of a simple pendulum by using Hamilton’s equations.

1230, Use Hamilton's equations to obtain the motion of a projectile launched with speed v, at angle «
with the horixontal.



CHAP. 12} HAMILTONIAN THEOQORY 338

12.31. Using Hamilton's equations, work the problem of the harmonie oscillator in (a) one dimension,
(¥) two dimensiona, (¢) three dimensions.

12.32. Work Problem 3.27, page T8 by uding Hamilton’s equation,

PHASE SPACE AND LIQUVILLE'S THEOREM

12.33. Explain why the path of a phase point in phase space which represents the motion of a system of
particles can never croas itself.

12.34. Carry out the details in the proof of Liouville’s theorem for the case of two degrees of freedom.

CALCULUS OF YARIATIONS AND HAMILTON'S PRINCIPLE

12.35. Use the methods of the calculus of variations to find that curve connecting two fixed points in a
plane which has the shortest length,

12.36. Prove that if the function F in the integral f Fiz,y,¢")dz is independent of z, then the integral
is an extremum if F—y'F . =¢ where ¢ is : constant.

12.37. Use the result of Problem 12.36 to solve (a) Problem 129, page 322, (b} Problem 12.35.

1238. It is desired to revolve the curve of Fig. 12-5 hav- v
ing endpoints fixed at Pix,,¥,) and Q(xy, ¥s} about
the z axis so that the area I of the murface of
revolution is a minimum.

{a) Show that I=2rfz’yv'1+v'3dc.

I
(b) Obtain the differential equation of the curve.
(¢) Prove that the required curve is a catenary.
Ans. (8) wy'" =1+ ()2

12.39. Two identical circular wires in contact sre placed
in a soap solution and then meparated so as to
form a sosp film. Explain why the shape of the
soap film surface is related to the result of Prob-
lem 12.38, Fig.12-8

1240. Use Hamilton’s principle to find the motion of a simple pendulum.
1241. Work the problem of a projectile by using Hamilton’s principle.

12.42. Use Hamilton’s principle to find the motion of a solid cylinder rolling down an inclined plane of
angle a.

CANONICAL TRANSFORMATIONS AND GENERATING FUNCTIONS
1243, Prove that the trgnsformation Q =p, P = —¢ is canonical,

1244, Prove that the transformation @ = gtanp, P = In sinp is canonical,

1245. (a) Prove that the Hamiltonian for a harmonic oscillator can be written in the form H = {p/m+
§oa®

{d) Prove that the transformataon g = 1’2P!\!m sinQ, p = .\’m cos @ is canonical.
{¢) Express the Hamiltonian of part (a) in terms of P and Q and show that Q is cyclic.
{d) Obtain the solution of the harmonic oscillator by using the above results,



12.46.

12.47.

12.48.

12.49.

12.58,

1251,
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Prove that the generating function giving rise to the canonical transformation in Problem 12.45(b)
is §=3vVeng®eotQ,

Prove that the result of two or more successive canonical tranaformations is also canonical.

Let 1{ be a generating function dependent only on Q., p,,t. Prove that
ou U ru

P"‘:_E‘:’ Q’a:—m. ,_9{=-51-+H

Let ¥ be a generating function dependent only on the old and new momenta p, and P, respectively
and the time t. Prove that
o) av v

% =~ Q=35 H=Ft+H

Prove that the generating function U of Froblem 12.48 is related to the generating function T of
Problem 1212by U = T — 2 Py Qa-

Prove that the generating function T of Problem 12.49 is related to the generating function T
Problem 1212 by U = T+ ZPy Qs — = Py G-

THE HAMILTON-JACOBI EQUATION

12.52.

12.53.

12.54.
1255,

12.56.

Use the Hamilton-Jacobi method to determine the motion of a particle falling vertically in a uniform
gravitational field.

(a) Set up the Hamilton-Jacobi equation for the motion of a particle sliding down a frictionless
inclined plane of angle o. {b) Solve the Hamilton-Jacobi equation in {a) and thus determine the
motion of the particle,

Work the problem of a projectile launched with speed v, at angle a with the horizontal by using
Hamilton-Jacobi methods.

Use Hamilton-Jacobi methods te describe the motion and find the freguencies of a harmonic oscil-
lator in (a) 2 dimensions, (&) 3 dimensions,

Use Hamilten-Jacobi methods to arrive at the generating function of Problem 12.46.

PHASE INTEGRALS AND ANGLE YARIABLES

12,51,

12.58,

12,59,

12.60.

1261

Use the method of phase inteprals and angle variables to find the frequency of a simple pendulum

of length [, assuming that oscillations are smalt. Ans, 21—# %

Find the frequencies of (a) a 2 dimensional harmonic oscillator, (b) a 8 dimensional harmonic
oscillator.

Obtain the frequency of small oscillations of a compound pendulum by using phase integrals.

Two equal masses m connected by equal
springs to fixed walls at 4 and B are free
to slide in a line on a frictionleas plane 4B
[zee Fig. 12-6]. Using phase integrals deter-
mine the frequencies of the normal modes.

Discuss Problem 12.57 if oseillations are not
assumed small. Fig.12.8

MISCELLANEOUS PROBLEMS

1

A particle of mass m moves in a force field having potential Vip, ¢,2) where p, ¢,z are cylindrical
coordinates. Give (o) the Hamiltonian and (b) Hamilton's equations for the particle,

Ane. (o) H = 03+ pi/o* +p2)2m + V(p,9,2)
(9) b= pJm, ¢ =py/mr2, :=p,im, p,=pyimpd—aV/dp, py=—0V/d¢, py=—dV/iz
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12.63.

12.64.

12.65.

12.66.

12.67.

12.68,
12.69,
12.70.

12,71,

12,72,

12.73.

12,74,

12.75.

A particle of mass m which moves in a plane relative to a fixed set of axes has a Hamiltonian
given by the total energy. Find the Hamiltonian relative to a set of axea which rotates at constant
angular velocity » relative to the fixed axes.

Set up the Hamiltonian for a double pendulum. Use Hamilton-Jacobi methods to determine the
normal frequencies for the case of small vibrations,

. "

13
Prove that a necessary condition for [ = f P(t,z, z,x)dt to be an extremum is that
t
OF _ d (F\, &(F\ _
oz dt \ gx a2\ ax

Can you generalize this result?
Work Problem 3.22, page 76, by Hamiltonian methods.

A particle of mass m moves on the inside of a frictionless vertical cone having equation 22+ y? =
z2 tanta. (a}) Write the Hamiltonian and (b) Hamilton’s equations using cylindrical coordinates.

2 ot 2
sin‘ a
PosinZe | Pe

Ang, H = +
ng, (@) om Ts? mgp cot «
. 2
" P, 3in . P
) b = F— o P = _m:S — mg cota

Use the results of Problem 12.67 to prove that there will be a stable orbit in any horizontal plane
z=h >0, and find the frequency in this orbit.

Prove that the produet of a position coordinate and its canonically conjugate momenturmn must
have the dimension of action or energy multiplied by time, i.e. ML2T-1,

Perform the integration of equation (79) of Problem 12,16 and compare with the solution of the
Kepler problem in Chapter 5.

Verify the integration result ($) of Problem 12.21,
Prove that Euler’s equation (9), page 313, can be written as

. O 3y azF 2F  F
¥ oy'2 v Yoy  oex oy

A man can travel by boat with speed v, and can walk
with speed v, Referring to Fig. 12-7, prove that in
order to travel from point 4 on one gide of a river
bank to a point B on the other side in the least time
he must land his boat at point P where angles ¢, and
oy are guch that .

sin &, v,

sin ¢, vy

Discuss the relationship of this result to the refrac-
tion of light in the theory of optics.

Prove that if a particle moves under no external
forces, ie. it iz a free particle, then the principle of
least action becomes one of least time. Ddiscuss the
relationship of this result to Problem 12.73. Fig.12-7

Derive the condition for reflection of Hght in optical theory by using the principle of least time.‘\
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12.76. 1t is desired to find the shape of & curve lying in a plane and having fixed endpointa such that its

immoment of inertia about an axis perpendicular to the plane and pasaing through a fixed origin is a
minimum.

{z) Using polar coordinates {(r,#), show that the problem is equivalent to minimizing the integral
Ty
I = f 21 + r{de/dr)? dr
fwrl

where the fixed endpoints of the wire are {r;, ¢,}, (rs ).
{b) Write Euler’s equation, thus obtaining the differential eguation of the curve.
(6) Solve the differential equation obtained in (b) and thus find the equation of the curve.

Ansg. {¢}) r® = ¢, sec {38 — ¢;) where ¢, and c, are determined so that the curve passes through
the fixed points.

12.77. Use the Hamilton-Jacobi method to set up the equations of motion of a spherical pendulum.
12.78. Use Hamilton-Jacobi methods to solve Problems 11.20, page 293, and 11.21, page 294.

12.79. It [F, G} is the Poisson bracket [see Problems 12.26 and 12.26], prove that
{0) [F1FyG] = F([FG] + FyfF, G

® &ra = [Z.6]+[r¥]
d
© gFa = (46|« [rg]

12, o, Prove that (G) [Qw QB] =0, {b) [pm pB] = 0' (c) [pm qﬂ] = 3&3

1 ifa=g
where 8,5 = is called the Kronecker delta.

0 ifawp

1281, Evaluate [H.t] where H is the Hamiltonian and t is the time. Are H and ¢ canonically conjugate
variables? Explain.
12.82. Prove Jacobt's identity for Poisson brackets
[Fu [Fo. Fol] + [Fo [Fy, Fy]] + [Fy, (Fu, Fal] = 0

1283, Illustrate Liouville’s theorem by using the one dimensional harmonic oscillator.

1284. {a} Is the Lagrangian of a dynamical system unique? Explain.
{b) Discuss the unigueness of the generalized momenta and Hamiltonian of a syatem.

12.85. (a) Set up the Hamiltonian for a string consisting of N particles [see Problem 8.28, page 215]
{b) Use Hamilton-Jacobi methods to find the normal modes and frequencies.

12.86. Prove that the Poisson bracket is invariant under a canonical tranasformation.

1287. Prove that Liouville’s theorem is equivalent to the result ap/at = [p, H].

L] n
1288, (o} Lot Qy = I 6yuqu Py = 2 byp, where a,, and b,, are given constants and
um] w=1
a=12...,m Prove that the transformation is canonfcal if and onmly if &, =4,/a
where A is the determinant,

@y G2 ... Byp
Gz @22 C2n
Qpt Bpg ... Ggp

and a,, is the cofactor of the element a,, in thia determinant,
{b) Prove that the conditions in (g) are equivalent to the condition P, @, = = Py a

1289, Prove that the path taken by a fixed point on a circle as it rolls along a given line is a cyeloid.
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12.90.

12.91.

12,92

12.93.

12.94,

12.95.

12,96,

12.97.

12.98.

12.99.

12,100

{a} Express as an integral the total potential energy of a uniform chain whose ende are suspended
from two fixed points. (b) Using the fact that for equilibrium the total potential energy is a mini-
mum, use the caleulus of variations to show that the eguation of the curve in which the chain
hangs is & catenary as in Problem 7.32, page 186. [Hint. Find the minimum of the integral subject
to the constraint condition that the total length of the chain is a given constant.]

Use the methods of the calculus of variations to find the closed plane curve which encloses the
largest area,

Prove that the constants (g} g in Problem 12.15 and (&) g; in Problem 12.18 can be identified with
the total energy.

If the theory of relativity is taken into account in the motion of a particle of mass m in a force
field of potential V, the Hamiltonian is given by

H = vVpPel+mid + V
where ¢ is the apeed of light. Obtain the equations of motion for thia particle.
Use Hamiltonian methoda to solve the problem of a particle moving in an inverae cube force field.

Use spherical coordinates to solve Kepler’s problem.

Suppose that m of the n coordinates q;, ¢5, .. ., ¢, are cyclic [say the first m, fe. ¢;,q5 ..., ¢n]. Fet

"
R = El ¢edu — L where ¢, = dL/og,
o=
- d4/aRY _ R
Prove that for a=m+1,...,n dt(iﬁ) = .

The function ® is called Routh’s function or the Routhian. By using it a problem involving n
degrees of freedom iz reduced to one invelving n — m degrees of freedom.

Using the properties 3L = %sy + gﬁéay’, 3y) = 3y

of the variational symbol 3 [see Problem 12.6] and assuming that the operator & can be brought
under the integral sign, show how Lagrange’s equations can be derived from Hamilton’s prineiple.

Let P = Pip,q), @ = Q{p,q). Suppose that the Hamiltonian expressed in terms of p,q and P, Q
are given by H = H(p,q) and _§f = 4{(P. Q) respectively. Prove that if

§ = 3H/ap, p = —eHloq
then & = agqap, P = —04i/5Q
provided that the Jacobian determinant [or briefly Jacobian]

3P, oPfép oPfaq
3, q) 3Qop 3Qleq

Discuss the connection of the results with Hamiltonian theory.

(¢} Set up the Hamiltonian for s solid eylinder rolling down an inclined plane of angle o
(b) Write Hamilton's equations and deduce the motion of the cylinder from them.
{¢) Use Hamilton-Jacobi metheds to obtain the motion of the eylinder and compare with part (b).

Work Problem 7.22, page 180, by Hamilton-Jacobi methods.
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12.161.

12.192.

12.108,

12164,

12.165.
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Write (8) the Hamiltonian and (b) Hamilton's equationa for a particle of charge ¢ and mass m
moving in an electromagnetic field {see Problem 11.90, page 309},

Ane. () H = —2—:;@—«\)=+e¢

® v = %(p-dﬁ}. P = —eVe + eV(A-v)

(2) Obtain the Hamilton-Jacobi equation for the motion of the particle in Problem 12.101. (b) Use
the result to write equations for the motion of & charged particle in an electromagnetic field.

(a) Write the Hamiltonian for a eymmetrical top and thus obtain the equations of motion. (&) Com-
pare the results obtained in {a) with those of Chapter 10.

Prove Theorem 12.2, page 314,

An atom consiasts of an electron of charge —e moving in a central force field F about a nucleua of
charge Ze such that Zeotr

F=—2£I

r

where r is the position vector of the electron relative to the nucleus and Z is the atomic number.
In Bohr's quantum theory of the atom the phase integrals are integer multiples of Planck’s con-

stant A, ie.,
f?rdf = ﬂlh, fp,d& = nzk

Using these equations, prove that there will be only a discrete set of energies given by

E. = - Z2mZe
L Wk

where n=n,+n,=1,2,8,4,... is called the ordital quantum number.



