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Fourier Transforms and Their Applications

“The profound study of nature is the most fertile source of math-
ematical discoveries.”

Joseph Fourier

“The theory of Fourier series and integrals has always had ma-
jor difficulties and necessitated a large mathematical apparatus in
dealing with questions of convergence. It engendered the develop-
ment of methods of summation, although these did not lead to a
completely satisfactory solution of the problem. .... For the Fourier
transform, the introduction of distributions (hence, the space S )
is inevitable either in an explicit or hidden form. .... As a result
one may obtain all that is desired from the point of view of the
continuity and inversion of the Fourier transform.”

Laurent Schwartz

2.1 Introduction

Many linear boundary value and initial value problems in applied mathemat-
ics, mathematical physics, and engineering science can be effectively solved by
the use of the Fourier transform, the Fourier cosine transform, or the Fourier
sine transform. These transforms are very useful for solving differential or in-
tegral equations for the following reasons. First, these equations are replaced
by simple algebraic equations, which enable us to find the solution of the
transform function. The solution of the given equation is then obtained in
the original variables by inverting the transform solution. Second, the Fouri-
er transform of the elementary source term is used for determination of the
fundamental solution that illustrates the basic ideas behind the construction
and implementation of Green’s functions. Third, the transform solution com-
bined with the convolution theorem provides an elegant representation of the
solution for the boundary value and initial value problems.

We begin this chapter with a formal derivation of the Fourier integral for-
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mulas. These results are then used to define the Fourier, Fourier cosine, and
Fourier sine transforms. This is followed by a detailed discussion of the basic
operational properties of these transforms with examples. Special attention is
given to convolution and its main properties. Sections 2.10 and 2.11 deal with
applications of the Fourier transform to the solution of ordinary differential
equations and integral equations. In Section 2.12, a wide variety of partial
differential equations are solved by the use of the Fourier transform method.
The technique that is developed in this and other sections can be applied
with little or no modification to different kinds of initial and boundary value
problems that are encountered in applications. The Fourier cosine and sine
transforms are introduced in Section 2.13. The properties and applications
of these transforms are discussed in Sections 2.14 and 2.15. This is followed
by evaluation of definite integrals with the aid of Fourier transforms. Section
2.17 is devoted to applications of Fourier transforms in mathematical statis-
tics. The multiple Fourier transforms and their applications are discussed in
Section 2.18.

2.2 The Fourier Integral Formulas

A function f(x) is said to satisfy Dirichlet’s conditions in the interval −a<
x< a, if

(i) f(x) has only a finite number of finite discontinuities in −a< x<a and
has no infinite discontinuities.

(ii) f(x) has only a finite number of maxima and minima in −a<x< a.
From the theory of Fourier series we know that if f(x) satisfies the Dirichlet
conditions in −a< x<a, it can be represented as the complex Fourier series

f(x) =
∞∑

n=−∞
an exp(inπx/a), (2.2.1)

where the coefficients are

an =
1
2a

a∫
−a

f(ξ) exp(−inπξ/a)dξ. (2.2.2)

This representation is evidently periodic of period 2a in the interval. However,
the right hand side of (2.2.1) cannot represent f(x) outside the interval −a<
x< a unless f(x) is periodic of period 2a. Thus, problems on finite intervals
lead to Fourier series, and problems on the whole line −∞<x<∞ lead to the
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Fourier integrals. We now attempt to find an integral representation of a non-
periodic function f(x) in (−∞,∞) by letting a→∞. As the interval grows
(a→∞) the values kn = nπ

a become closer together and form a dense set. If
we write δk= (kn+1 − kn) = π

a and substitute coefficients an into (2.2.1), we
obtain

f(x) =
1
2π

∞∑
n=−∞

(δk)

⎡⎣ a∫
−a

f(ξ) exp(−iξkn)dξ
⎤⎦ exp(ixkn). (2.2.3)

In the limit as a→∞, kn becomes a continuous variable k and δk becomes
dk. Consequently, the sum can be replaced by the integral in the limit and
(2.2.3) reduces to the result

f(x) =
1
2π

∞∫
−∞

⎡⎣ ∞∫
−∞

f(ξ)e−ikξdξ

⎤⎦ eikxdk. (2.2.4)

This is known as the celebrated Fourier integral formula. Although the above
arguments do not constitute a rigorous proof of (2.2.4), the formula is correct
and valid for functions that are piecewise continuously differentiable in every
finite interval and is absolutely integrable on the whole real line.

A function f(x) is said to be absolutely integrable on (−∞,∞) if

∞∫
−∞

|f(x)|dx<∞ (2.2.5)

exists.
It can be shown that the formula (2.2.4) is valid under more general condi-

tions. The result is contained in the following theorem:

THEOREM 2.2.1
If f(x) satisfies Dirichlet’s conditions in (−∞,∞), and is absolutely inte-
grable on (−∞,∞), then the Fourier integral (2.2.4) converges to the function
1
2 [f(x+ 0) + f(x− 0)] at a finite discontinuity at x. In other words,

1
2
[f(x+ 0) + f(x− 0)] =

1
2π

∞∫
−∞

eikx

⎡⎣ ∞∫
−∞

f(ξ)e−ikξdξ

⎤⎦ dk. (2.2.6)

This is usually called the Fourier integral theorem.
If the function f(x) is continuous at point x, then f(x+ 0)= f(x− 0)=

f(x), then (2.2.6) reduces to (2.2.4).
The Fourier integral theorem was originally stated in Fourier’s famous trea-

tise entitled La Théorie Analytique da la Chaleur (1822), and its deep signifi-
cance was recognized by mathematicians and mathematical physicists. Indeed,
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this theorem is one of the most monumental results of modern mathematical
analysis and has widespread physical and engineering applications.

We express the exponential factor exp[ik(x− ξ)] in (2.2.4) in terms of
trigonometric functions and use the even and odd nature of the cosine and
the sine functions respectively as functions of k so that (2.2.4) can be written
as

f(x) =
1
π

∞∫
0

dk

∞∫
−∞

f(ξ) cos k(x− ξ)dξ. (2.2.7)

This is another version of the Fourier integral formula. In many physical
problems, the function f(x) vanishes very rapidly as |x|→∞, which ensures
the existence of the repeated integrals as expressed.

We now assume that f(x) is an even function and expand the cosine function
in (2.2.7) to obtain

f(x) = f(−x) =
2
π

∞∫
0

cos kx dk

∞∫
0

f(ξ) cos kξ dξ. (2.2.8)

This is called the Fourier cosine integral formula.
Similarly, for an odd function f(x), we obtain the Fourier sine integral

formula

f(x) =−f(−x)=
2
π

∞∫
0

sin kx dk

∞∫
0

f(ξ) sin kξ dξ. (2.2.9)

These integral formulas were discovered independently by Cauchy in his work
on the propagation of waves on the surface of water.

2.3 Definition of the Fourier Transform and Examples

We use the Fourier integral formula (2.2.4) to give a formal definition of the
Fourier transform.

DEFINITION 2.3.1 The Fourier transform of f(x) is denoted by F{f(x)}=
F (k), k ∈R, and defined by the integral

F{f(x)}=F (k) =
1√
2π

∞∫
−∞

e−ikxf(x)dx, (2.3.1)

where F is called the Fourier transform operator or the Fourier transfor-
mation and the factor 1√

2π
is obtained by splitting the factor 1

2π involved in
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(2.2.4). This is often called the complex Fourier transform. A sufficient condi-
tion for f(x) to have a Fourier transform is that f(x) is absolutely integrable
on (−∞,∞). The convergence of the integral (2.3.1) follows at once from the
fact that f(x) is absolutely integrable. In fact, the integral converges uniformly
with respect to k.

Thus, the definition of the Fourier transform is restricted to absolutely inte-
grable functions. This restriction is too strong for many physical applications.
Many simple and common functions, such as constant function, trigonometric
functions sin ax, cos ax, exponential functions, and xnH(x) do not have Fouri-
er transforms, even though they occur frequently in applications. The integral
in (2.3.1) fails to converge when f(x) is one of the above elementary function-
s. This is a very unsatisfactory feature of the theory of Fourier transforms.
However, this unsatisfactory feature can be resolved by means of a natural
extension of the definition of the Fourier transform of a generalized function,
f(x) in (2.3.1). We follow Lighthill (1958) and Jones (1982) to discuss briefly
the theory of the Fourier transforms of good functions.

The inverse Fourier transform, denoted by F−1{F (k)}= f(x), is defined
by

F−1{F (k)}= f(x) =
1√
2π

∞∫
−∞

eikx F (k) dk, (2.3.2)

where F−1 is called the inverse Fourier transform operator.

Clearly, both F and F−1 are linear integral operators. In applied math-
ematics, x usually represents a space variable and k(= 2π

λ ) is a wavenum-
ber variable where λ is the wavelength. However, in electrical engineering, x
is replaced by the time variable t and k is replaced by the frequency vari-
able ω(= 2πν) where ν is the frequency in cycles per second. The function
F (ω) = F{f(t)} is called the spectrum of the time signal function f(t). In
electrical engineering literature, the Fourier transform pairs are defined s-
lightly differently by

F{f(t)}=F (ν) =

∞∫
−∞

f(t)e−2πνitdt, (2.3.3)

and

F−1{F (ν)}= f(t) =

∞∫
−∞

F (ν)e2πiνtdν =
1
2π

∞∫
−∞

F (ω)eiωtdω, (2.3.4)

where ω= 2πν is called the angular frequency. The Fourier integral formula
implies that any function of time f(t) that has a Fourier transform can be
equally specified by its spectrum. Physically, the signal f(t) is represented as
an integral superposition of an infinite number of sinusoidal oscillations with
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different frequencies ω and complex amplitudes 1
2πF (ω). Equation (2.3.4) is

called the spectral resolution of the signal f(t), and F (ω)
2π is called the spectral

density. In summary, the Fourier transform maps a function ( or signal) of time
t to a function of frequency ω. In the same way as the Fourier series expansion
of a periodic function decomposes the function into harmonic components,
the Fourier transform generates a function (or signal) of a continuous variable
whose value represents the frequency content of the original signal. This led to
the successful use of the Fourier transform to analyze the form of time-varying
signals in electrical engineering and seismology.

Next we give examples of Fourier transforms.

Example 2.3.1
Find the Fourier transform of exp(−ax2). In fact, we prove

F (k) = F{exp(−ax2)}=
1√
2a

exp
(
−k

2

4a

)
, a > 0. (2.3.5)

Here we have, by definition,

F (k) =
1√
2π

∞∫
−∞

e−ikx−ax
2
dx

=
1√
2π

∞∫
−∞

exp

[
−a

(
x+

ik

2a

)2

− k2

4a

]
dx

=
1√
2π

exp(−k2/4a)

∞∫
−∞

e−ay
2
dy=

1√
2a

exp
(
−k

2

4a

)
,

in which the change of variable y= x+ ik
2a is used. The above result is correct,

but the change of variable can be justified by the method of complex analysis
because (ik/2a) is complex. If a= 1

2

F{e−x2/2}= e−k
2/2. (2.3.6)

This shows F{f(x)}= f(k). Such a function is said to be self-reciprocal un-
der the Fourier transformation. Graphs of f(x) = exp(−ax2) and its Fourier
transform is shown in Figure 2.1 for a= 1.

Example 2.3.2
Find the Fourier transform of exp(−a|x|), i.e.,

F{exp(−a|x|)}=

√
2
π
· a

(a2 + k2)
, a > 0. (2.3.7)
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Figure 2.1 Graphs of f(x) = exp(−ax2) and F (k) with a= 1.

Here we can write

F
{
e−a|x|

}
=

1√
2π

∞∫
−∞

e−a|x|−ikxdx

=
1√
2π

⎡⎣ ∞∫
0

e−(a+ik)xdx+

0∫
−∞

e(a−ik)xdx

⎤⎦
=

1√
2π

[
1

a+ ik
+

1
a− ik

]
=

√
2
π

a

(a2 + k2)
.

We note that f(x) = exp(−a|x|) decreases rapidly at infinity, it is not differ-
entiable at x= 0. Graphs of f(x) = exp(−a|x|) and its Fourier transform is
displayed in Figure 2.2 for a= 1.

Example 2.3.3

Find the Fourier transform of

f(x) =
(

1− |x|
a

)
H

(
1 − |x|

a

)
,

where H(x) is the Heaviside unit step function defined by

H(x) =
{

1, x> 0
0, x< 0

}
. (2.3.8)

Or, more generally,

H(x− a) =
{

1, x> a
0, x< a

}
, (2.3.9)
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Figure 2.2 Graphs of f(x) = exp(−a|x|) and F (k) with a= 1.

where a is a fixed real number. So the Heaviside function H(x− a) has a finite
discontinuity at x= a.

F{f(x)} =
1√
2π

a∫
−a

e−ikx
(

1− |x|
a

)
dx=

2√
2π

a∫
0

(
1 − x

a

)
cos kx dx

=
2a√
2π

1∫
0

(1 − x) cos(akx)dx=
2a√
2π

1∫
0

(1 − x)
d

dx

(
sinakx
ak

)
dx

=
2a√
2π

1∫
0

sin(akx)
ak

dx=
a√
2π

1∫
0

d

dx

⎡⎢⎢⎢⎣
sin2

(
akx

2

)
(
ak

2

)2

⎤⎥⎥⎥⎦ dx

=
a√
2π

sin2

(
ak

2

)
(
ak

2

)2 . (2.3.10)

Example 2.3.4

Find the Fourier transform of the characteristic function χ[−a,a](x), where

χ[−a,a](x) =H(a− |x|) =
{

1, |x|<a
0, |x|>a

}
. (2.3.11)
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We have

Fa(k) = F{χ[−a,a](x)} =
1√
2π

∞∫
−∞

e−ikxχ[−a,a](x) dx

=
1√
2π

a∫
−a

e−ikx dx=

√
2
π

(
sin ak
k

)
. (2.3.12)

Graphs of f(x) =χ[−a,a](x) and its Fourier transform are shown in Figure 2.3
for a= 1.
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Figure 2.3 Graphs of χ[−a,a](x) and Fa(k) with a= 1.

2.4 Fourier Transforms of Generalized Functions

The natural way to define the Fourier transform of a generalized function,
is to treat f(x) in (2.3.1) as a generalized function. The advantage of this is
that every generalized function has a Fourier transform and an inverse Fourier
transform, and that the ordinary functions whose Fourier transforms are of
interest form a subset of the generalized functions. We would not go into great
detail, but refer to the famous books of Lighthill (1958) and Jones (1982) for
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the introduction to the subject of generalized functions.
A good function, g(x) is a function in C∞(R) that decays sufficiently rapidly

that g(x) and all of its derivatives decay to zero faster than |x|−N as |x|→∞
for all N > 0.

DEFINITION 2.4.1 Suppose a real or complex valued function g(x) is
defined for all x∈R and is infinitely differentiable everywhere, and suppose
that each derivative tends to zero as |x| →∞ faster that any positive power of(
x−1

)
, or in other words, suppose that for each positive integer N and n,

lim
|x|→∞

xN g(n)(x) = 0,

then g(x) is called a good function.

Usually, the class of good functions is represented by S. The good functions
play an important role in Fourier analysis because the inversion, convolution,
and differentiation theorems as well as many others take simple forms with no
problem of convergence. The rapid decay and infinite differentiability proper-
ties of good functions lead to the fact that the Fourier transform of a good
function is also a good function.

Good functions also play an important role in the theory of generalized func-
tions. A good function of bounded support is a special type of good function
that also plays an important part in the theory of generalized functions. Good
functions also have the following important properties. The sum (or difference)
of two good functions is also a good function. The product and convolution
of two good functions are good functions. The derivative of a good function
is a good function; xn g(x) is a good function for all non-negative integers
n whenever g(x) is a good function. A good function belongs to Lp (a class
of pth power Lebesgue integrable functions) for every p in 1 ≤ p ≤ ∞. The
integral of a good function is not necessarily good. However, if φ(x) is a good
function, then the function g defined for all x by

g(x) =
∫ x

−∞
φ(t) dt

is a good function if and only if
∫∞
−∞ φ(t) dt exists.

Good functions are not only continuous, but are also uniformly continuous
in R and absolutely continuous in R. However, a good function cannot be
necessarily represented by a Taylor series expansion in every interval. As an
example, consider a good function of bounded support

g(x) =
{

exp[−(1− x2)−1], if |x|< 1
0, if |x| ≥ 1

}
.
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The function g is infinitely differentiable at x= ±1, as it must be in order to
be good. It does not have a Taylor series expansion in every interval, because
a Taylor expansion based on the various derivatives of g for any point having
|x| > 1 would lead to zero value for all x.

For example, exp(−x2), x exp(−x2),
(
1 + x2

)−1 exp(−x2), and sech2x are
good functions, while exp(−|x|) is not differentiable at x= 0, and the function(
1 + x2

)−1 is not a good function as it decays too slowly as |x|→∞.
A sequence of good functions, {fn(x)} is called regular if, for any good

function g(x),

lim
n→∞

∫ ∞

−∞
fn(x) g(x) dx (2.4.1)

exists. For example, fn(x) = 1
n φ(x) is a regular sequence for any good function

φ(x), if

lim
n→∞

∫ ∞

−∞
fn(x) g(x) dx= lim

n→∞
1
n

∫ ∞

−∞
φ(x) g(x) dx = 0 .

Two regular sequences of good functions are equivalent if, for any good func-
tion g(x), the limit (2.4.1) exists and is the same for each sequence.

A generalized function, f(x), is a regular sequence of good functions, and
two generalized functions are equal if their defining sequences are equivalent.
Generalized functions are, therefore, only defined in terms of their action on
integrals of good functions if

〈f, g〉 =
∫ ∞

−∞
f(x) g(x) dx= lim

n→∞

∫ ∞

−∞
fn(x) g(x) dx= lim

n→∞ 〈fn, g〉 (2.4.2)

for any good function, g(x), where the symbol 〈f, g〉 is used to denote the
action of the generalized function f(x) on the good function g(x), or 〈f, g〉
represents the number that f associates with g. If f(x) is an ordinary function
such that

(
1 + x2

)−N
f(x) is integrable in (−∞, ∞) for some N , then the

generalized function f(x) equivalent to the ordinary function is defined as
any sequence of good functions {fn(x)} such that, for any good function g(x),

lim
n→∞

∫ ∞

−∞
fn(x) g(x) dx =

∫ ∞

−∞
f(x) g(x) dx (2.4.3)

For example, the generalized function equivalent to zero can be represented
by either of the sequences

{
φ(x)
n

}
and

{
φ(x)
n2

}
.

The unit function, I(x), is defined by∫ ∞

−∞
I(x) g(x) dx =

∫ ∞

−∞
g(x) dx (2.4.4)
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for any good function g(x). A very important and useful good function that
defines the unit function is

{
exp

(
− x2

4n

)}
. Thus, the unit function is the gen-

eralized function that is equivalent to the ordinary function f(x) = 1.
The Heaviside function, H(x), is defined by∫ ∞

−∞
H(x) g(x) dx =

∫ ∞

0

g(x) dx. (2.4.5)

The generalized function H(x) is equivalent to the ordinary unit function

H(x) =
{

0, x< 0
1, x> 0 (2.4.6)

since generalized functions are defined through the action on integrals of good
functions, the value of H(x) at x= 0 does not have significance here.

The sign function, sgn(x), is defined by∫ ∞

−∞
sgn(x) g(x) dx =

∫ ∞

0

g(x) dx−
∫ 0

−∞
g(x) dx (2.4.7)

for any good function g(x). Thus, sgn(x) can be identified with the ordinary
function

sgn(x) =
{−1, x< 0,

+1, x> 0. (2.4.8)

In fact, sgn(x) = 2 H(x)− I(x) can be seen as follows:∫ ∞

−∞
sgn(x) g(x) dx =

∫ ∞

−∞
[2H(x) − I(x)] g(x) dx

= 2
∫ ∞

−∞
H(x) g(x) dx−

∫ ∞

−∞
I(x) g(x) dx

= 2
∫ ∞

0

g(x) dx−
∫ ∞

−∞
g(x) dx

=
∫ ∞

0

g(x) dx−
∫ 0

−∞
g(x) dx

In 1926, Dirac introduced the delta function, δ(x), having the following
properties

δ(x) = 0, x �= 0,
(2.4.9)∞∫

−∞
δ(x)dx = 1.
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The Dirac delta function, δ(x) is defined so that for any good function φ(x),

∞∫
−∞

δ(x)φ(x) dx= φ(0).

There is no ordinary function equivalent to the delta function.
The properties (2.4.9) cannot be satisfied by any ordinary functions in clas-

sical mathematics. Hence, the delta function is not a function in the classical
sense. However, it can be treated as a function in the generalized sense, and
in fact, δ(x) is called a generalized function or distribution. The concept of
the delta function is clear and simple in modern mathematics. It is very useful
in physics and engineering. Physically, the delta function represents a point
mass, that is a particle of unit mass located at the origin. In this context, it
may be called a mass-density function. This leads to the result for a point
particle that can be considered as the limit of a sequence of continuous dis-
tributions which become more and more concentrated. Even though δ(x) is
not a function in the classical sense, it can be approximated by a sequence of
ordinary functions. As an example, we consider the sequence

δn(x) =
√
n

π
exp(−nx2), n= 1, 2, 3, . . . . (2.4.10)

Clearly, δn(x)→ 0 as n→∞ for any x �= 0 and δn(0)→∞ as n→∞ as
shown in Figure 2.4. Also, for all n= 1, 2, 3, . . . ,

∞∫
−∞

δn(x)dx= 1

and

lim
n→∞

∞∫
−∞

δn(x)dx=

∞∫
−∞

δ(x)dx= 1

as expected. So the delta function can be considered as the limit of a sequence
of ordinary functions, and we write

δ(x) = lim
n→∞

√
n

π
exp(−nx2). (2.4.11)

Sometimes, the delta function δ(x) is defined by its fundamental property

∞∫
−∞

f(x)δ(x− a) dx= f(a), (2.4.12)
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Figure 2.4 The sequence of delta functions, δn(x).

where f(x) is continuous in any interval containing the point x= a. Clearly,

∞∫
−∞

f(a)δ(x− a) dx= f(a)

∞∫
−∞

δ(x− a) dx= f(a). (2.4.13)

Thus, (2.4.12) and (2.4.13) lead to the result

f(x)δ(x− a) = f(a)δ(x− a). (2.4.14)

The following results are also true

x δ(x) = 0 (2.4.15)
δ(x− a) = δ(a− x). (2.4.16)

Result (2.4.16) shows that δ(x) is an even function.
Clearly, the result

x∫
−∞

δ(y) dy=

{
1, x> 0
0, x< 0

}
=H(x)

shows that
d

dx
H(x) = δ(x). (2.4.17)
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The Fourier transform of the Dirac delta function is

F{δ(x)}=
1√
2π

∞∫
−∞

e−ikxδ(x) dx=
1√
2π
. (2.4.18)

Hence,

δ(x) = F−1

{
1√
2π

}
=

1
2π

∞∫
−∞

eikx dk. (2.4.19)

This is an integral representation of the delta function extensively used in
quantum mechanics. Also, (2.4.19) can be rewritten as

δ(k) =
1
2π

∞∫
−∞

eikx dx. (2.4.20)

The Dirac delta function, δ(x), is defined so that for any good function
g(x),

〈δ, g〉=
∫ ∞

−∞
δ(x) g(x) dx= g(0). (2.4.21)

Derivatives of generalized functions are defined by the derivatives of any
equivalent sequences of good functions. We can integrate by parts using any
member of the sequences and assuming g(x) vanishes at infinity. We can obtain
this definition as follows:

〈f ′, g〉 =
∫ ∞

−∞
f ′(x) g(x) dx

= [f(x) g(x)]∞−∞ −
∫ ∞

−∞
f(x) g′(x) dx=−〈f, g′〉 .

The derivative of a generalized function f is the generalized function f ′ defined
by

〈f ′, g〉 = −〈f, g′〉 (2.4.22)

for any good function g.
The differential calculus of generalized functions can easily be developed

with locally integrable functions. To every locally integrable function f , there
corresponds a generalized function (or distribution) defined by

〈f, φ〉 =
∫ ∞

−∞
f(x)φ(x) dx (2.4.23)

where φ is a test function in R→C with bounded support (φ is infinitely
differentiable with its derivatives of all orders exist and are continuous).
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The derivative of a generalized function f is the generalized function f ′

defined by

〈f ′, φ〉 = −〈f, φ′〉 (2.4.24)

for all test functions φ. This definition follows from the fact that

〈f ′, φ〉 =
∫ ∞

−∞
f ′(x)φ(x) dx

= [f(x)φ(x)]∞−∞ −
∫ ∞

−∞
f(x)φ′(x) dx=−〈f, φ′〉

which was obtained from integration by parts and using the fact that φ van-
ishes at infinity.

It is easy to check that H ′(x) = δ(x), for

〈H ′, φ〉=
∫ ∞

−∞
H ′(x)φ(x) dx=−

∫ ∞

−∞
H(x)φ′(x) dx

=−
∫ ∞

0

φ′(x) dx=− [φ(x)]∞0 =φ(0) = 〈δ, φ〉 .

Another result is

〈δ′, φ〉=−
∫ ∞

−∞
δ(x)φ′(x) dx=−φ′(0) .

It is easy to verify

f(x) δ(x) = f(0) δ(x) .

We next define |x|= x sgn(x) and calculate its derivative as follows. We have

d

dx
|x|= d

dx
{x sgn(x)}= x

d

dx
{sgn(x)} + sgn(x)

dx
dx

= x
d

dx
{2H(x)− I(x)} + sgn(x)

= 2x δ(x) + sgn(x) = sgn(x) (2.4.25)

which is, by sgn(x) = 2 H(x) − I(x) and x δ(x) = 0.
Similarly, we can show that

d

dx
{sgn(x)}= 2H ′(x) = 2δ(x). (2.4.26)

If we can show that (2.3.1) holds for good functions, it follows that it holds
for generalized functions.
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THEOREM 2.4.1
The Fourier transform of a good function is a good function.

PROOF The Fourier transform of a good function f(x) exists and is given
by

F {f(x)}=F (k) =
1√
2π

∫ ∞

−∞
e−ikx f(x) dx. (2.4.27)

Differentiating F (k) n times and integrating N times by parts, we get∣∣∣F (n)(k)
∣∣∣ ≤ ∣∣∣∣ (−1)N

(−ik)N
1√
2π

∫ ∞

−∞
e−ikx

dN

dxN
{(−ix)n f(x)} dx

∣∣∣∣
≤ 1

|k|N
1√
2π

∫ ∞

−∞

∣∣∣∣ dNdxN {xn f(x)}
∣∣∣∣ dx.

Evidently, all derivatives tend to zero as fast as |k|−N as |k|→∞ for any
N > 0 and hence, F (k) is a good function.

THEOREM 2.4.2
If f(x) is a good function with the Fourier transform (2.4.27), then the inverse
Fourier transform is given by

f(x) =
1√
2π

∫ ∞

−∞
eikx F (k) dk. (2.4.28)

PROOF For any ε > 0, we have

F
{
e−εx

2
F (−x)

}
=

1
2π

∫ ∞

−∞
e−ikx−εx

2
{∫ ∞

−∞
eixt f(t) dt

}
dx.

Since f is a good function, the order of integration can be interchanged to
obtain

F
{
e−εx

2
F (−x)

}
=

1
2π

∫ ∞

−∞
f(t) dt

∫ ∞

−∞
e−i(k−t)x−εx

2
dx

which is, by similar calculation used in Example 2.3.1,

=
1√
4πε

∫ ∞

−∞
exp

[
− (k − t)2

4ε

]
f(t) dt .

Using the fact that

1√
4πε

∫ ∞

−∞
exp

[
− (k− t)2

4ε

]
dt = 1,
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we can write

F
{
e−εx

2
F (−x)

}
− f(k) . 1

=
1√
4πε

∫ ∞

−∞
[f(t) − f(k)] exp

[
− (k− t)2

4ε

]
dt. (2.4.29)

Since f is a good function, we have∣∣∣∣f(t)− f(k)
t− k

∣∣∣∣ ≤ max
x∈R

|f ′(x)| .

It follows from (2.4.29) that∣∣∣F {
e−εx

2
F (−x)

}
− f(k)

∣∣∣
≤ 1√

4πε
max
x∈R

|f ′(x)|
∫ ∞

−∞
|t− k| exp

[
− (t− k)2

4ε

]
dt

=
1√
4πε

max
x∈R

|f ′(x)| 4ε
∫ ∞

−∞
|α| e−α2

dα→ 0

as ε→ 0, where α= t−k
2
√
ε
.

Consequently,

f(k) = F {F (−x)}=
1√
2π

∫ ∞

−∞
e−ikx F (−x) dx

=
1√
2π

∫ ∞

−∞
eikx F (x) dx

=
1
2π

∫ ∞

−∞
eikx dx

∫ ∞

−∞
e−iξx f(ξ) dξ.

Interchanging k with x, this reduces to the Fourier integral formula (2.2.4)
and hence, the theorem is proved.

Example 2.4.1
The Fourier transform of a constant function c is

F {c} =
√

2π.c.δ(k). (2.4.30)

In the ordinary sense

F {c} =
c√
2π

∫ ∞

−∞
e−ikx dx

is not a well defined (divergent) integral. However, treated as a generalized
function, c= c I(x) and we consider

{
exp

(
− x2

4n

)}
as an equivalent sequence
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to the unit function, I(x). Thus,

F

{
c exp

(
−x2

4n

)}
=

c√
2π

∫ ∞

−∞
exp

(
−ikx− x2

4n

)
dx

which is, by Example 2.3.1,

= c
√

2n exp(−nk2) =
√

2π.c.
√
n

π
exp(−nk2)

=
√

2π.c.δn(k) =
√

2π.c.δ(k) as n→∞,

since {δn(k)}=
{√

n
π exp

(−nk2
)}

is a sequence equivalent to the delta func-
tion defined by (2.4.10).

Example 2.4.2
Show that

F{e−axH(x)}=
1√

2π(ik + a)
, a > 0. (2.4.31)

We have, by definition,

F{e−axH(x)}=
1√
2π

∞∫
0

exp{−x(ik + a)}dx=
1√

2π(ik+ a)
.

Example 2.4.3
By considering the function (see Figure 2.5)

fa(x) = e−axH(x) − eaxH(−x), a > 0, (2.4.32)

find the Fourier transform of sgn(x). In Figure 2.5, the vertical axis (y-axis)
represents fa(x) and the horizontal axis represents the x-axis.

We have, by definition,

F{fa(x)} = − 1√
2π

0∫
−∞

exp{(a− ik)x}dx

+
1√
2π

∞∫
0

exp{−(a+ ik)x}dx

=
1√
2π

[
1

a+ ik
− 1
a− ik

]
=

√
2
π
· (−ik)
a2 + k2

.
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-1

0

1

x

f a
(x

)

Figure 2.5 Graph of the function fa(x).

In the limit as a→ 0, fa(x)→ sgn(x) and then

F{sgn(x)}=

√
2
π
· 1
ik
.

Or,

F

{√
π

2
i sgn(x)

}
=

1
k
.

2.5 Basic Properties of Fourier Transforms

THEOREM 2.5.1

If F{f(x)}=F (k), then
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(a) (Shifting) F{f(x− a)}= e−ikaF{f(x)}, (2.5.1)

(b) (Scaling) F{f(ax)}=
1
|a| F (

k

a
), (2.5.2)

(c) (Conjugate) F{f(−x)}= F{f(x)}, (2.5.3)

(d) (Translation) F{eiaxf(x)}=F (k − a), (2.5.4)

(e) (Duality) F{F (x)}= f(−k), (2.5.5)

(f) (Composition)

∞∫
−∞

F (k)g(k)eikxdk=

∞∫
−∞

f(ξ)G(ξ − x)dξ, (2.5.6)

where G(k) = F{g(x)}.

PROOF (a) We obtain, from the definition,

F{f(x− a)} =
1√
2π

∞∫
−∞

e−ikxf(x− a)dx

=
1√
2π

∞∫
−∞

e−ik(ξ+a)f(ξ)dξ, (x− a= ξ)

= e−ikaF{f(x)}.

The proofs of results (b)–(d) follow easily from the definition of the Fourier
transform. We give a proof of the duality (e) and composition (f).

We have, by definition,

f(x) =
1√
2π

∞∫
−∞

eikxF (k)dk= F−1{F (k)}.

Interchanging x and k, and then replacing k by −k, we obtain

f(−k)=
1√
2π

∞∫
−∞

e−ikxF (x)dx= F{F (x)}.
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To prove (f), we have

∞∫
−∞

F (k)g(k) eikxdk =

∞∫
−∞

g(k) eikxdk
1√
2π

∞∫
−∞

e−ikξf(ξ)dξ

=

∞∫
−∞

f(ξ)dξ
1√
2π

∞∫
−∞

e−ik(ξ−x)g(k)dk

=

∞∫
−∞

f(ξ)G(ξ − x)dξ.

In particular, when x= 0
∞∫

−∞
F (k)g(k)dk =

∞∫
−∞

f(ξ)G(ξ)dξ.

THEOREM 2.5.2
If f(x) is piecewise continuously differentiable and absolutely integrable, then

(i) F (k) is bounded for −∞<k<∞,

(ii) F (k) is continuous for −∞<k<∞.

PROOF It follows from the definition that

|F (k)| ≤ 1√
2π

∞∫
−∞

|e−ikx||f(x)|dx

=
1√
2π

∞∫
−∞

|f(x)|dx=
c√
2π
,

where c=
∞∫

−∞
|f(x)|dx= constant. This proves result (i).

To prove (ii), we have

|F (k + h)− F (k)| ≤ 1√
2π

∞∫
−∞

|e−ihx − 1||f(x)|dx

≤
√

2
π

∞∫
−∞

|f(x)|dx.
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Since lim
h→0

|e−ihx − 1|= 0 for all x∈R, we obtain

lim
h→0

|F (k + h) − F (k)| ≤ lim
h→0

1√
2π

∞∫
−∞

|e−ihx − 1||f(x)|dx= 0.

This shows that F (k) is continuous.

THEOREM 2.5.3

(Riemann-Lebesgue Lemma). If F (k) = F{f(x)}, then

lim
|k|→∞

|F (k)|= 0. (2.5.7)

PROOF Since e−ikx =−e−ikx−iπ, we have

F (k) = − 1√
2π

∞∫
−∞

e−ik(x+
π
k )f(x)dx

= − 1√
2π

∞∫
−∞

e−ikxf
(
x− π

k

)
dx.

Hence,

F (k) =
1
2

⎧⎨⎩ 1√
2π

⎡⎣ ∞∫
−∞

e−ikxf(x)dx−
∞∫

−∞
e−ikxf

(
x− π

k

)
dx

⎤⎦⎫⎬⎭
=

1
2

1√
2π

∞∫
−∞

e−ikx
[
f(x)− f

(
x− π

k

)]
dx.

Therefore,

|F (k)| ≤ 1
2
√

2π

∞∫
−∞

∣∣∣f(x) − f
(
x− π

k

)∣∣∣ dx.
Thus, we obtain

lim
|k|→∞

|F (k)| ≤ 1
2
√

2π
lim

|k|→∞

∞∫
−∞

∣∣∣f(x) − f
(
x− π

k

)∣∣∣ dx= 0.
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THEOREM 2.5.4
If f(x) is continuously differentiable and f(x)→ 0 as |x|→∞, then

F{f ′(x)}= (ik)F{f(x)}= ik F (k). (2.5.8)

PROOF We have, by definition,

F{f ′(x)}=
1√
2π

∞∫
−∞

e−ikxf ′(x)dx

which is, integrating by parts,

=
1√
2π

[
f(x)e−ikx

]∞
−∞ +

ik√
2π

∞∫
−∞

e−ikxf(x)dx

= (ik)F (k).

If f(x) is continuously n-times differentiable and f (k)(x)→ 0 as |x|→∞ for
k= 1, 2, . . . , (n− 1), then the Fourier transform of the nth derivative is

F{f (n)(x)}= (ik)nF{f(x)}= (ik)nF (k). (2.5.9)

A repeated application of Theorem 2.5.4 to higher derivatives gives the
result.

The operational results similar to those of (2.5.8) and (2.5.9) hold for partial
derivatives of a function of two or more independent variables. For example,
if u(x, t) is a function of space variable x and time variable t, then

F

{
∂u

∂x

}
= ik U(k, t), F

{
∂2u

∂x2

}
=−k2 U(k, t) ,

F

{
∂u

∂t

}
=
dU

dt
, F

{
∂2u

∂t2

}
=
d2U

dt2
,

where U(k, t) = F {u(x, t)}.

DEFINITION 2.5.1 The convolution of two integrable functions f(x) and
g(x), denoted by (f ∗ g)(x), is defined by

(f ∗ g)(x) =
1√
2π

∞∫
−∞

f(x− ξ)g(ξ)dξ, (2.5.10)

provided the integral in (2.5.10) exists, where the factor 1√
2π

is a matter of
choice. In the study of convolution, this factor is often omitted as this factor
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does not affect the properties of convolution. We will include or exclude the
factor 1√

2π
freely in this book.

We give some examples of convolution.

Example 2.5.1
Find the convolution of

(a) f(x) = cosx and g(x) = exp(−a|x|), a > 0,
(b) f(x) =χ[a,b](x) and g(x) = x2,

where χ[a,b](x) is the characteristic function of the interval [a, b]⊆R defined
by

χ[a,b](x) =

{
1, a≤ x≤ b

0, otherwise

}
.

(a) We have, by definition,

(f ∗ g)(x) =

∞∫
−∞

f(x− ξ) g(ξ)dξ =

∞∫
−∞

cos(x− ξ) e−a|ξ|dξ

=

0∫
−∞

cos(x− ξ) eaξdξ +

∞∫
0

cos(x− ξ) e−aξdξ

=

∞∫
0

cos(x+ ξ) e−aξdξ +

∞∫
0

cos(x− ξ) e−aξdξ

= 2 cosx

∞∫
0

cos ξ e−aξdξ =
2a cosx
(1 + a2)

.

(b) We have

(f ∗ g)(x) =

∞∫
−∞

f(x− ξ) g(ξ)dξ =

∞∫
−∞

χ[a,b](x− ξ) g(ξ)dξ

=
∫ b

a

ξ2 dξ=
1
3
(
b3 − a3

)
.

THEOREM 2.5.5
(Convolution Theorem). If F{f(x)}=F (k) and F{g(x)}=G(k), then

F{f(x) ∗ g(x)}=F (k)G(k), (2.5.11)
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or,

f(x) ∗ g(x) = F−1{F (k)G(k)}, (2.5.12)

or, equivalently,

∞∫
−∞

f(x− ξ)g(ξ)dξ=

∞∫
−∞

eikxF (k)G(k)dk. (2.5.13)

PROOF We have, by the definition of the Fourier transform,

F{f(x) ∗ g(x)} =
1
2π

∞∫
−∞

e−ikxdx

∞∫
−∞

f(x− ξ)g(ξ)dξ

=
1
2π

∞∫
−∞

e−ikξg(ξ)dξ

∞∫
−∞

e−ik(x−ξ)f(x− ξ)dx

=
1
2π

∞∫
−∞

e−ikξg(ξ)dξ

∞∫
−∞

e−ikηf(η)dη=G(k)F (k),

where, in this proof, the factor 1√
2π

is included in the definition of the convo-

lution. This completes the proof.

The convolution has the following algebraic properties:
f ∗ g= g ∗ f (Commutative), (2.5.14)

f ∗ (g ∗ h) = (f ∗ g) ∗ h (Associative), (2.5.15)
(αf + βg) ∗ h=α (f ∗ h) + β (g ∗ h) (Distributive), (2.5.16)

f ∗
√

2πδ= f =
√

2πδ ∗ f (Identity), (2.5.17)

where α and β are constants.

We give proofs of (2.5.15) and (2.5.16). If f ∗ (g ∗ h) exists, then

[f ∗ (g ∗ h)] (x) =

∞∫
−∞

f(x− ξ)(g ∗ h)(ξ)dξ

=

∞∫
−∞

f(x− ξ)

∞∫
−∞

g(ξ − t)h(t) dt dξ
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=

∞∫
−∞

⎡⎣ ∞∫
−∞

f(x− ξ) g(ξ − t)dξ

⎤⎦ h(t)dt

=

∞∫
−∞

⎡⎣ ∞∫
−∞

f(x− t− η) g(η)dη

⎤⎦ h(t)dt (put ξ − t= η)

=

∞∫
−∞

[(f ∗ g) (x− t)]h(t)dt

= [(f ∗ g) ∗ h] (x),

where, in the above proof, under suitable assumptions, the interchange of the
order of integration can be justified.

Similarly, we prove (2.5.16) using the right-hand side of (2.5.16), that is,

α (f ∗ h) + β (g ∗ h) = α

∞∫
−∞

f(x− ξ)h(ξ)dξ + β

∞∫
−∞

g(x− ξ)h(ξ)dξ

=

∞∫
−∞

[αf(x− ξ) + βg(x− ξ)] h(ξ)dξ

= [(αf + βg) ∗ h] (x).

In view of the commutative property of the convolution, (2.5.13) can be writ-
ten as ∞∫

−∞
f(ξ)g(x− ξ)dξ=

∞∫
−∞

eikxF (k)G(k)dk. (2.5.18)

This is valid for all real x, and hence, putting x= 0 gives

∞∫
−∞

f(ξ)g(−ξ)dξ=

∞∫
−∞

f(x)g(−x)dx=

∞∫
−∞

F (k)G(k)dk. (2.5.19)

We substitute g(x) = f(−x) to obtain

G(k) = F{g(x)}= F
{
f(−x)

}
= F{f(x)}=F (k).

Evidently, (2.5.19) becomes

∞∫
−∞

f(x) f(x)dx=

∞∫
−∞

F (k) F (k)dk (2.5.20)
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or,
∞∫

−∞
|f(x)|2dx=

∞∫
−∞

|F (k)|2dk. (2.5.21)

This is well known as Parseval’s relation.
For square integrable functions f(x) and g(x), the inner product 〈f, g〉 is

defined by

〈f, g〉=

∞∫
−∞

f(x) g(x)dx (2.5.22)

so the norm ‖f‖2 is defined by

‖f‖2
2 = 〈f, f〉=

∞∫
−∞

f(x) f(x)dx=

∞∫
−∞

|f(x)|2dx. (2.5.23)

The function space L2(R) of all complex-valued Lebesgue square integrable
functions with the inner product defined by (2.5.22) is a complete normed
space with the norm (2.5.23). In terms of the norm, the Parseval relation
takes the form

‖f‖2 = ‖F‖2 = ‖Ff‖2. (2.5.24)

This means that the Fourier transform action is unitary. Physically, the quan-
tity ‖f‖2 is a measure of energy and ‖F‖2 represents the power spectrum of
f .

THEOREM 2.5.6
(General Parseval’s Relation). If F{f(x)}=F (k) and F{g(x)}=G(k) then

∞∫
−∞

f(x) g(x)dx=

∞∫
−∞

F (k)G(k)dk. (2.5.25)

PROOF We proceed formally to obtain

∞∫
−∞

F (k)G(k)dk =

∞∫
−∞

dk · 1
2π

∞∫
−∞

e−ikyf(y) dy

∞∫
−∞

e−ikxg(x) dx

=
1
2π

∞∫
−∞

f(y) dy

∞∫
−∞

g(x)dx

∞∫
−∞

eik(x−y)dk

=

∞∫
−∞

g(x) dx

∞∫
−∞

δ(x− y)f(y) dy=

∞∫
−∞

f(x)g(x) dx.
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In particular, when g(x) = f(x), the above result agrees with (2.5.20).

We now use an indirect method to obtain the Fourier transform of sgn(x),
that is,

F{sgn(x)}=

√
2
π

1
ik
. (2.5.26)

From (2.4.26), we find

F

{
d

dx
sgn(x)

}
= F{2H ′(x)}= 2F{δ(x)}=

√
2
π
,

which is, by (2.5.8),

ik F{sgn(x)}=

√
2
π
,

or

F{sgn(x)}=

√
2
π
· 1
ik
.

The Fourier transform of H(x) follows from (2.4.30) and (2.5.26):

F{H(x)} =
1
2
F{1 + sgn(x)}=

1
2
[F{1}+ F{sgn(x)}]

=
√
π

2

[
δ(k) +

1
iπk

]
. (2.5.27)

2.6 Poisson’s Summation Formula

A class of functions designated as Lp(R) is of great importance in the theory
of Fourier transformations, where p(≥ 1) is any real number. We denote the
vector space of all complex-valued functions f(x) of the real variable x. If f
is a locally integrable function such that |f |p ∈L(R), then we say f is p-th
power Lebesgue integrable. The set of all such functions is written Lp(R). The
number ||f ||p is called the Lp-norm of f and is defined by

||f ||p =
[∫ ∞

−∞
|f(x)|p dx

] 1
p

<∞. (2.6.1)

Suppose f is a Lebesgue integrable function on R. Since exp(−ikx) is contin-
uous and bounded, the product exp(−ikx) f(x) is locally integrable for any
k ∈R. Also, | exp(−ikx)| ≤ 1 for all k and x on R. Consider the inner product〈

f, eikx
〉

=
∫ ∞

−∞
f(x) e−ikx dx, k ∈R. (2.6.2)
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Clearly, ∣∣∣∣∫ ∞

−∞
f(x) e−ikx dx

∣∣∣∣≤ ∫ ∞

−∞
|f(x)| dx= ||f ||1<∞. (2.6.3)

This means that integral (2.6.2) exists for all k ∈R, and was used to define
the Fourier transform, F (k) = F{f(x)} without the factor 1√

2π
.

Although the theory of Fourier series is a very important subject, a detailed
study is beyond the scope of this book. Without rigorous analysis, we can
establish a simple relation between the Fourier transform of functions in L1(R)
and the Fourier series of related periodic functions in L1(−a, a) of period 2a.
If f(x)∈L1(−a, a) and is defined by

f(x) =
∞∑

n=−∞
cne

inx , (−a≤ x≤ a), (2.6.4)

where the Fourier coefficients cn is given by

cn =
1
2a

∫ a

−a
f(x) e−ikx dx. (2.6.5)

THEOREM 2.6.1
If f(x)∈L1(R), then the series

∞∑
n=−∞

f(x+ 2na) (2.6.6)

converges absolutely for almost all x in (−a, a) and its sum g(x)∈L1(−a, a)
with g(x+ 2a) = g(x) for x∈R.

If an denotes the Fourier coefficient of a function g, then

an =
1
2a

∫ a

−a
g(x) e−inx dx=

1
2a

∫ ∞

−∞
f(x) e−inx dx=

1
2a
F (n).

PROOF We have
∞∑

n=−∞

∫ a

−a
|f(x+ 2na)| dx = lim

N→∞

N∑
n=−N

∫ a

−a
|f(x+ 2na)| dx

= lim
N→∞

N∑
n=−N

∫ (2n+1)a

(2n−1)a

|f(t)| dt

= lim
N→∞

∫ (2N+1)a

−(2N+1)a

|f(t)| dt

=
∫ ∞

−∞
|f(t)| dt< ∞.
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It follows from Lebesgue’s theorem on monotone convergence that

∫ a

−a

[ ∞∑
n=−∞

|f(x+ 2na)|
]
dx =

∞∑
n=−∞

∫ a

−a
|f(x+ 2na)| dx< ∞.

Hence, the series
∑∞
n=−∞ f(x+ 2na) converges absolutely for almost all x

in (−a, a). If gN (x) =
∑N

n=−N f(x+ 2na), limN→∞ gN (x) = g(x), where g ∈
L1(−a, a), and g(x+ 2a)= g(x).

Moreover,

||g||1 =
∫ a

−a
|g(x)| dx=

∫ a

−a

∣∣∣∣∣
∞∑

n=−∞
f(x+ 2na)

∣∣∣∣∣ dx
≤
∫ a

−a

∞∑
n=−∞

|f(x+ 2na)| dx

=
∞∑

n=−∞

∫ a

−a
|f(x+ 2na)| dx

=
∫ ∞

−∞
|f(x)| dx= ||f ||1.

We consider the Fourier series of g(x) given by

g(x) =
∞∑

m=−∞
cm exp(imπx/a), (2.6.7)

where the coefficients cm for m= 0,±1,±2, ... are given by

cm =
1
2a

a∫
−a

g(x)exp(−imπx/a)dx. (2.6.8)

We replace g(x) by the limit of the sum

g(x) = lim
N→∞

N∑
n=−N

f(x+ 2na), (2.6.9)
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so that (2.6.8) reduces to

cm =
1
2a

lim
N→∞

N∑
n=−N

a∫
−a

f(x+ 2na)exp(−imπx/a) dx

=
1
2a

lim
N→∞

N∑
n=−N

(2n+1)a∫
(2n−1)a

f(y)exp(−imπy/a) dy

=
1
2a

lim
N→∞

(2N+1)a∫
−(2N+1)a

f(x)exp(−imπx/a) dx

=
√

2π
2a

F
(mπ
a

)
, (2.6.10)

where F
(
mπ
a

)
is the discrete Fourier transform of f(x).

Evidently,

∞∑
n=−∞

f(x+ 2na) = g(x) =
∞∑

n=−∞

√
2π

2a
F
(nπ
a

)
exp(inπx/a). (2.6.11)

We let x= 0 in (2.6.11) to obtain the Poisson summation formula

∞∑
n=−∞

f(2na)=
∞∑

n=−∞

√
2π

2a
F
(nπ
a

)
. (2.6.12)

When a= π, this formula becomes

∞∑
n=−∞

f(2πn) =
1√
2π

∞∑
n=−∞

F (n). (2.6.13)

When 2a= 1, formula (2.6.12) becomes

∞∑
n=−∞

f(n) =
√

2π
∞∑

n=−∞
F (2nπ). (2.6.14)

To obtain a more general formula, we assume that a is a given positive
constant, and write g(x) = f(ax) for all x. Then

f

(
a.

2πn
a

)
= g

(
2πn
a

)
,
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and we define the Fourier transform of f(x) without the factor 1√
2π

so that

F (n) =
∫ ∞

−∞
e−inx f(x) dx=

∫ ∞

−∞
e−inx f

(
a.
x

a

)
dx

=
∫ ∞

−∞
e−inx g

(x
a

)
dx

= a

∫ ∞

−∞
e−i(an)y g(y) dy

= aG(an).

Consequently, equality (2.6.13) reduces to
∞∑

n=−∞
g(

2πn
a

) =
a√
2π

∞∑
n=−∞

G(an). (2.6.15)

Putting b= 2π
a in (2.6.15) gives

∞∑
n=−∞

g(bn)=
√

2π b−1
∞∑

n=−∞
G(2πb−1n). (2.6.16)

When b= 2π, result (2.6.16) becomes (2.6.13). We apply these formulas to
prove the following series

(a)
∞∑

n=−∞

1
(n2 + b2)

=
π

b
coth(πb), (2.6.17)

(b)
∞∑

n=−∞
exp(−πn2t) =

1√
t

∞∑
n=−∞

exp
(
−πn

2

t

)
, (2.6.18)

(c)
∞∑

n=−∞

1
(x+ nπ)2

= cosec2(x). (2.6.19)

To prove (a), we write f(x) = (x2 + b2)−1 so that F (k) =
√

π
2

1
b exp(−b|k|).

We now use (2.6.14) to derive
∞∑

n=−∞

1
(n2 + b2)

=
π

b

∞∑
n=−∞

exp(−2|n|πb)

=
π

b

[ ∞∑
n=0

exp(−2nπb) +
∞∑
n=1

exp(2nπb)

]
which is, by writing r= exp(−2πb),

=
π

b

[ ∞∑
n=0

rn +
∞∑
n=1

(
1
r

)n]
=
π

b

(
r

1− r
+

1
1 − r

)
=
π

b

(
1 + r

1 − r

)
=
π

b
coth(πb).
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It follows from (2.6.14) that

∞∑
n=−∞

1
(n2 + b2)

=
π

b

(
1 + e−2πb

)
(1 − e−2πb)

.

Or,

2
∞∑
n=1

1
(n2 + b2)

+
1
b2

=
π

b

(
1 + e−2πb

)
(1 − e−2πb)

.

It turns out that

∞∑
n=1

1
(n2 + b2)

=
π

2b

[(
1 + e−2πb

)
(1 − e−2πb)

− 1
πb

]

=
π2

x

[
(1 + e−x)
(1 − e−x)

− 2
x

]
, (2πb= x)

=
π2

x2

[
x (1 + e−x)− 2 (1 − e−x)

(1 − e−x)

]
=
(π
x

)2
[
x3

(
1
2 − 1

3

)− x4

12 + ....

x− x2

2! + x3

3! − ....

]
.

In the limit as b→ 0 (x→ 0), we obtain the well-known result

∞∑
n=1

1
n2

=
π2

6
. (2.6.20)

To prove (b), we assume f(x) = exp(−πtx2) so that F (k) = 1√
2πt

exp
(
− k2

4πt

)
.

Thus, the Poisson formula (2.6.14) gives

∞∑
n=−∞

exp(−πtn2) =
1√
t

∞∑
n=−∞

exp(−πn2/t).

This identity plays an important role in number theory and in the theory of
elliptic functions. The Jacobi theta function Θ(s) is defined by

Θ(s) =
∞∑

n=−∞
exp(−πsn2), s> 0, (2.6.21)

so that (2.6.16) gives the functional equation for the theta function

√
sΘ(s) = Θ

(
1
s

)
. (2.6.22)
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The theta function Θ(s) also extends to complex values of s when Re(s)> 0
and the functional equation is still valid for complex s. The theta function is
closely related to the Riemann zeta function ζ(s) defined for Re(s)> 1 by

ζ(s) =
∞∑
n=1

1
ns
. (2.6.23)

An integral representation of ζ(s) can be found from the result∫ ∞

0

xs−1 e−nxdx=
Γ(s)
ns

, Re(s)> 0,

where the gamma function Γ(s) is defined by

Γ(s) =
∫ ∞

0

e−tts−1dt, Re(s)> 0.

Summing both sides of this result and interchanging the order of summation
and integration, which is permissible for Re(s)> 1, gives

Γ(s) ζ(s) =
∫ ∞

0

xs−1 dx

ex − 1
, Re(s)> 1. (2.6.24)

It turns out that ζ(s), Θ(s), and Γ(s) are related by the following identity:

ζ(s)Γ(s/2) =
1
2
πs/2

∫ ∞

0

xs/2−1 [Θ(x) − 1] dx, Re(s)> 1. (2.6.25)

Considering the complex integral in a suitable closed contour C

I =
1

2πi

∫
C

zs−1

e−z − 1
dz,

and using the Cauchy residue theorem with all zeros of (e−z − 1) at z= 2πin,
n=±1,±2, ...,±N gives

I =−2 sin
(πs

2

) ∞∑
n=1

(2πn)s−1 .

To prove (c), we use the Fourier transform of the function f(x) = (1− |x|)
H (1 − |x|) to obtain the result. In the limit as N→∞, the sum of the residues
is convergent so that the integral gives the relation

2sπs−1 sin
(πs

2

)
ζ(1 − s) =

ζ(s)
Γ(1− s)

. (2.6.26)

In view of another relation for the gamma function, Γ(1 + z)Γ(−z)=− π
sinπz ,

the relation (2.6.26) leads to a famous functional relation for ζ(s) in the form

πsζ(1 − s) = 21−sΓ(s) cos
(πs

2

)
ζ(s). (2.6.27)
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2.7 The Shannon Sampling Theorem

An analog signal f(t) is a continuous function of time t defined in −∞< t<∞,
with the exception of perhaps a countable number of jump discontinuities.
Almost all analog signals f(t) of interest in engineering have finite energy. By
this we mean that f ∈ L2(−∞, ∞). The norm of f defined by

||f || =
[∫ ∞

−∞
|f(x)|2 dx

] 1
2

(2.7.1)

represents the square root of the total energy content of the signal f(t). The
spectrum of a signal f(t) is represented by its Fourier transform F (ω), where
ω is called the frequency. The frequency is measured by ν = ω

2π in terms of
Hertz.

A continuous signal f(t) is called band limited if its Fourier transform F (ω)
is zero except in a finite interval, that is, if

Fa(ω) = 0 for |ω|>a. (2.7.2)

Then a(> 0) is called the cutoff frequency.

In particular, if

F (ω) =
{

1, |ω| ≤ a
0, |ω|>a

}
(2.7.3)

then F (ω) is called a gate function and is denoted by Fa(ω), and the band
limited signal is denoted by fa(t). If a is the smallest value for which (2.7.2)
holds, it is called the bandwidth of the signal. Even if an analog signal f(t) is
not band-limited, we can reduce it to a band-limited signal by what is called
an ideal low-pass filtering. To reduce f(t) to a band-limited signal fa(t) with
bandwidth less than or equal to a, we consider

Fa(ω) =
{
F (ω), |ω| ≤ a

0, |ω|>a
}

(2.7.4)

and find the low-pass filter function fa(t) by the inverse Fourier transform

fa(t) =
1
2π

∫ ∞

−∞
eiωtFa(ω)dω=

1
2π

∫ a

−a
eiωtFa(ω)dω. (2.7.5)

This function fa(t) is called the Shannon sampling function. When a= π,
fπ(t) is called the Shannon scaling function. The band-limited signal fa(t) is
given by

fa(t) =
1
2π

∞∫
−∞

F (ω)eiωtdω=
1
2π

a∫
−a

eiωtdω=
sin at
πt

. (2.7.6)
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Figure 2.6 The gate function and its Fourier transform.

Both F (ω) and fa(t) are shown in Figure 2.6 for a= 2.
Consider the limit as a→∞ of the Fourier integral for −∞<ω<∞

1 = lim
a→∞

∞∫
−∞

e−iωtfa(t)dt= lim
a→∞

∞∫
−∞

e−iωt
sin at
πt

dt

=

∞∫
−∞

e−iωt
[

lim
a→∞

sin at
πt

]
dt=

∞∫
−∞

e−iωtδ(t)dt.

Clearly, the delta function δ(t) can be thought of as the limit of the sequence
of functions fa(t). More precisely,

δ(t) = lim
a→∞

(
sin at
πt

)
. (2.7.7)

We next consider the band-limited signal

fa(t) =
1
2π

a∫
−a

F (ω)eiωtdω=
1
2π

∞∫
−∞

F (ω)Fa(ω) eiωtdω,

which is, by the Convolution Theorem,

fa(t) =

∞∫
−∞

f(τ)fa(t− τ)dτ =

∞∫
−∞

sin a(t− τ)
π(t− τ)

f(τ)dτ. (2.7.8)

This integral represents the sampling integral representation of the band-
limited signal fa(t).
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Example 2.7.1
(Synthesis and Resolution of a Signal; Physical Interpretation of Convolu-
tion). In electrical engineering problems, a time-dependent electric, optical or
electromagnetic pulse is usually called a signal. Such a signal can be consid-
ered as a superposition of plane waves of all real frequencies so that it can be
represented by the inverse Fourier transform

f(t) = F−1{F (ω)}=
1
2π

∞∫
−∞

F (ω)eiωtdω, (2.7.9)

where F (ω) = F{f(t)}, the factor (1/2π) is introduced because the angular
frequency ω is related to linear frequency ν by ω= 2πν, and negative fre-
quencies are introduced for mathematical convenience so that we can avoid
dealing with the cosine and sine functions separately. Clearly, F (ω) can be
represented by the Fourier transform of the signal f(t) as

F (ω) =

∞∫
−∞

f(t)e−iωtdt. (2.7.10)

This represents the resolution of the signal into its angular frequency compo-
nents, and (2.7.9) gives a synthesis of the signal from its individual compo-
nents.

Consider a simple electrical device such as an amplifier with an input signal
f(t), and an output signal g(t). For an input of a single frequency ω, f(t) =
eiωt. The amplifer will change the amplitude and may also change the phase
so that the output can be expressed in terms of the input, the amplitude and
the phase modifying function Φ(ω) as

g(t) = Φ(ω)f(t), (2.7.11)

where Φ(ω) is usually known as the transfer function and is, in general, a
complex function of the real variable ω. This function is generally independent
of the presence or absence of any other frequency components. Thus, the total
output may be found by integrating over the entire input as modified by the
amplifier

g(t)=
1
2π

∞∫
−∞

Φ(ω)F (ω) eiωtdω. (2.7.12)

Thus, the total output signal can readily be calculated from any given input
signal f(t). On the other hand, the transfer function Φ(ω) is obviously charac-
teristic of the amplifier device and can, in general, be obtained as the Fourier
transform of some function φ(t) so that

Φ(ω) =

∞∫
−∞

φ(t)e−iωtdt. (2.7.13)
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The Convolution Theorem 2.5.5 allows us to rewrite (2.7.12) as

g(t) = F−1{Φ(ω)F (ω)}= f(t) ∗ φ(t) =

∞∫
−∞

f(τ)φ(t− τ)dτ. (2.7.14)

Physically, this result represents an output signal g(t) as the integral superpo-
sition of an input signal f(t) modified by φ(t− τ). Linear translation invariant
systems, such as sensors and filters, are modeled by the convolution equations
g(t) = f(t) ∗ φ(t), where φ(t) is the system impulse response function. In fact
(2.7.14) is the most general mathematical representation of an output (effect)
function in terms of an input (cause) function modified by the amplifier where
t is the time variable. Assuming the principle of causality, that is, every effect
has a cause, we must require τ < t. The principle of causality is imposed by
requiring

φ(t− τ) = 0 when τ > t. (2.7.15)

Consequently, (2.7.14) gives

g(t) =

t∫
−∞

f(τ)φ(t− τ)dτ. (2.7.16)

In order to determine the significance of φ(t), we use an impulse function
f(τ) = δ(τ) so that (2.7.16) becomes

g(t) =

t∫
−∞

δ(τ)φ(t− τ)dτ = φ(t)H(t). (2.7.17)

This recognizes φ(t) as the output corresponding to a unit impulse at t= 0,
and the Fourier transform of φ(t) is

Φ(ω) = F{φ(t)}=

∞∫
0

φ(t)e−iωtdt, (2.7.18)

with φ(t) = 0 for t< 0.

Example 2.7.2
(The Series Sampling Expansion of a Bandlimited Signal). Consider a band-
limited signal fa(t) with Fourier transform F (ω) = 0 for |ω|>a. We write the
Fourier series expansion of F (ω) on the interval −a<ω<a in terms of the
orthogonal set of functions

{
exp

(− inπω
a

)}
in the form

F (ω) =
∞∑

n=−∞
an exp

(
− inπ

a
ω

)
, (2.7.19)
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where the Fourier coefficients an are given by

an =
1
2a

a∫
−a

F (ω)exp
(
inπ

a
ω

)
dω=

1
2a

fa

(nπ
a

)
. (2.7.20)

Thus, the Fourier series expansion (2.7.19) becomes

F (ω) =
1
2a

∞∑
n=−∞

fa

(nπ
a

)
exp

(
− inπ

a
ω

)
. (2.7.21)

The signal function fa(t) is obtained by multiplying (2.7.21) by eiωt and in-
tegrating over (−a, a) so that

fa(t) =

a∫
−a

F (ω)eiωtdω

=
1
2a

a∫
−a

eiωtdω

[ ∞∑
n=−∞

fa

(nπ
a

)
exp

(
− inπ

a
ω

)]

=
1
2a

∞∑
n=−∞

fa

(nπ
a

) a∫
−a

exp
[
iω

(
t− nπ

a

)]
dω

=
∞∑

n=−∞
fa

(nπ
a

) sin a
(
t− nπ

a

)
a
(
t− nπ

a

)
=

∞∑
n=−∞

fa

(nπ
a

) sin (at− nπ)
(at− nπ)

. (2.7.22)

This result is the main content of the sampling theorem. It simply states that
a band-limited signal fa(t) can be reconstructed from the infinite set of dis-
crete samples of fa(t) at t= 0, ±π

a , .... . In practice, a discrete set of samples
is useful in the sense that most systems receive discrete samples {f(tn)} as
an input. The sampling theorem can be realized physically. Modern telephone
equipment employs sampling to send messages over wires. In fact, it seems
that sampling is audible on some transoceanic cable calls.

Result (2.7.22) can be obtained from the convolution theorem by using
discrete input samples

∞∑
n=−∞

π

a
fa

(nπ
a

)
δ
(
t− nπ

a

)
= f(t). (2.7.23)
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Hence, the sampling expansion (2.7.8) gives the band-limited signal

fa(t) =

∞∫
−∞

sin a(t− τ)
π(t− τ)

[ ∞∑
n=−∞

π

a
fa

(nπ
a

)
δ
(
τ − nπ

a

)]
dτ

=
∞∑

n=−∞
fa

(nπ
a

) ∞∫
−∞

sin a(t− τ)
a(t− τ)

δ
(
τ − nπ

a

)
dτ

=
∞∑

n=−∞
fa

(nπ
a

) sin a
(
t− nπ

a

)
a
(
t− nπ

a

) . (2.7.24)

In general, the output can be best described by taking the Fourier transform
of (2.7.14) so that

G(ω) =F (ω)Φ(ω), (2.7.25)

where Φ(ω) is called the transfer function of the system. Thus, the output can
be calculated from (2.7.25) by the Fourier inversion formula

g(t) =
1
2π

∫ ∞

−∞
F (ω)Φ(ω) eiωt dω, (2.7.26)

Obviously, the transfer function Φ(ω) is a characteristic of a linear system.
A linear system is a filter if it possesses signals of certain frequencies and
attenuates others. If the transfer function

Φ(ω) = 0 |ω| ≥ω0, (2.7.27)

then φ(t), the Fourier inverse of Φ(ω), is called a low-pass filter.

On the other hand, if the transfer function

Φ(ω) = 0 |ω| ≤ω1, (2.7.28)

then φ(t) is a high-pass filter. A bandpass filter possesses a band ω0 ≤ |ω| ≤ω1.
It is often convenient to express the system transfer function Φ(ω) in the
complex form

Φ(ω) =A(ω) exp[−iθ(ω)], (2.7.29)

where A(ω) is called the amplitude and θ(ω) is called the phase of the transfer
function. Obviously, the system impulse response φ(t) is given by the inverse
Fourier transform

φ(t) =
1
2π

∫ ∞

−∞
A(ω) exp[i{ωt− θ(ω)}] dω. (2.7.30)
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For a unit step function as the input f(t) =H(t), we have

F (ω) = Ĥ(ω) =
(
πδ(ω) +

1
iω

)
,

where Ĥ(ω) = F {H(t)} and the associated output g(t) is then given by

g(t) =
1
2π

∫ ∞

−∞
Φ(ω)Ĥ(ω)eiωt dω

=
1
2π

∫ ∞

−∞

(
πδ(ω) +

1
iω

)
A(ω) exp[i{ωt− θ(ω)}] dω

=
1
2
A(0) +

1
2π

∫ ∞

−∞

A(ω)
ω

exp
[
i
{
ωt− θ(ω) − π

2

}]
dω . (2.7.31)

We next give another characterization of a filter in terms of the amplitude
of the transfer function.

A filter is called distortionless if its output g(t) to an arbitrary input f(t)
has the same form as the input, that is,

g(t) =A0f(t− t0). (2.7.32)

Evidently,
G(ω) =A0e

−iωt0 F (ω) = Φ(ω)F (ω)

where
Φ(ω) =A0e

−iωt0

represents the transfer function of the distortionless filter. It has a constant
amplitude A0 and a linear phase shift θ(ω) =ωt0.

However, in general, the amplitude A(ω) of a transfer function is not con-
stant, and the phase θ(ω) is not a linear function.

A filter with constant amplitude, |θ(ω)|=A0 is called an all-pass filter. It
follows from Parseval’s formula that the energy of the output of such a filter
is proportional to the energy of its input.

A filter whose amplitude is constant for |ω|<ω0 and zero for |ω|>ω0 is
called an ideal low-pass filter. More explicitly, the amplitude is given by

A(ω) =A0Ĥ(ω0 − |ω|) =A0χ̂ω0(ω) , (2.7.33)

where χ̂ω0(ω) is a rectangular pulse. So, the transfer function of the low-pass
filter is

Φ(ω) =A0χ̂ω0(ω) exp(−iωt0) . (2.7.34)

Finally, the ideal high-pass filter is characterized by its amplitude given by

A(ω) =A0Ĥ(|ω| − ω0) =A0χ̂ω0(ω) , (2.7.35)
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where A0 is a constant. Its transfer function is given by

Φ(ω) =A0 [1 − χ̂ω0(ω)] exp(−iωt0) . (2.7.36)

Example 2.7.3
(Bandwidth and Bandwidth Equation). The Fourier spectrum of a signal (or
waveform) gives an indication of the frequencies that exist during the total
duration of the signal (or waveform). From the knowledge of the frequencies
that are present, we can calculate the average frequency and the spread about
that average. In particular, if the signal is represented by f(t), we can define
its Fourier spectrum by

F (ν) =
∫ ∞

−∞
e−2πiνt f(t) dt. (2.7.37)

Using |F (ν)|2 for the density in frequency, the average frequency is denoted
by <ν > and defined by

<ν >=
∫ ∞

−∞
ν |F (ν)|2 dν. (2.7.38)

The bandwidth is then the root mean square (RMS) deviation at about the
average, that is,

B2 =
∫ ∞

−∞
(ν−<ν >)2 dν. (2.7.39)

Expressing the signal in terms of its amplitude and phase

f(t) = a(t) exp{iθt}, (2.7.40)

the instantaneous frequency, ν(t) is the frequency at a particular time defined
by

ν(t) =
1
2π

θ′(t). (2.7.41)

Substituting (2.7.37) and (2.7.40) into (2.7.38) gives

<ν >=
1
2π

∫ ∞

−∞
θ′(t) a2(t) dt=

∫ ∞

−∞
ν(t) a2(t) dt. (2.7.42)

This formula states that the average frequency is the average value of the in-
stantaneous frequency weighted by the square of the amplitude of the signal.

We next derive the bandwidth equation in terms of the amplitude and phase
of the signal in the form

B2 =
1

(2π)2

∫ ∞

−∞

[
a′(t)
a(t)

]2

a2(t) dt+
∫ ∞

−∞

[
1
2π

θ′(t)−<ν >

]2

a2(t) dt.

(2.7.43)
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A straightforward but lengthy way to derive it is to substitute (2.7.40) into
(2.7.39) and simplify. However, we give an elegant derivation of (2.7.43) by
representing the frequency by the operator

ν =
1

2πi
d

dt
. (2.7.44)

We calculate the average by sandwiching the operator between the complex
conjugate of the signal and the signal. Thus,

<ν > =
∫ ∞

−∞
ν |F (ν)|2 dν =

∫ ∞

−∞
f̄(t)

[
1

2πi
d

dt

]
f(t) dt

=
1
2π

∫ ∞

−∞
a(t) {−ia′(t) + a(t)θ′(t)} dt

=
1
2π

∫ ∞

−∞
−1

2
i

[
d

dt
a2(t)

]
dt+

1
2π

∫ ∞

−∞
a2(t)θ′(t) dt (2.7.45)

=
1
2π

∫ ∞

−∞
θ′(t)a2(t) dt (2.7.46)

provided the first integral in (2.7.44) vanishes if a(t)→ 0 as |t|→∞.

It follows from the definition (2.7.39) of the bandwidth that

B2 =
∫ ∞

−∞
(ν−<ν >)2 |F (ν)|2 dν

=
∫ ∞

−∞
f̄(t)

[
1

2πi
d

dt
−<ν >

]2

f(t) dt

=
∫ ∞

−∞

∣∣∣∣[ 1
2πi

d

dt
−<ν >

]
f(t)

∣∣∣∣2 dt
=
∫ ∞

−∞

∣∣∣∣ 1
2πi

a′(t)
a(t)

+
1
2π
θ′(t)−<ν >

∣∣∣∣2 a2(t) dt

=
1

4π2

∫ ∞

−∞

[
a′(t)
a(t)

]2

a2(t) dt+
∫ ∞

−∞

[
1
2π

θ′(t)−<ν >

]2

a2(t) dt.

This completes the derivation.

Physically, the second term in equation (2.7.43) gives averages of all of the
deviations of the instantaneous frequency from the average frequency. In elec-
trical engineering literature, the spread of frequency about the instantaneous
frequency, which is defined as an average of the frequencies that exist at a
particular time, is called instantaneous bandwidth, given by

σ2
ν/t =

1
(2π)2

[
a′(t)
a(t)

]2

. (2.7.47)
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In the case of a chirp with a Gaussian envelope

f(t)=
(α
π

) 1
4

exp
[
−1

2
αt2 +

1
2
iβαt2 + 2πiν0t

]
, (2.7.48)

where its Fourier spectrum is given by

F (ν) = (απ)
1
4

(
1

α− iβ

) 1
2

exp
[−2π2(ν − ν0)2/(α− iβ)

]
. (2.7.49)

The energy density spectrum of the signal is

|F (ν)|2 = 2
(

απ

α2 + β2

) 1
2

exp
[
−4απ2(ν − ν0)2

α2 + β2

]
. (2.7.50)

Finally, the average frequency <ν > and the bandwidth square are respec-
tively given by

<ν >= ν0 and B2 =
1

8π2

(
α+

β2

α

)
. (2.7.51)

A large bandwidth can be achieved in two very qualitatively different ways.
The amplitude modulation can be made large by taking α large, and the
frequency modulation can be small by letting β→ 0. It is possible to make
the frequency modulation large by making β large and α very small. These
two extreme situations are physically very different even though they produce
the same bandwidth.

Example 2.7.4
Find the transfer function and the corresponding impulse response function
of the RLC circuit governed by the differential equation

L
d2q

dt2
+R

dq

dt
+

1
C
q = e (t) (2.7.52)

where q (t) is the charge, R, L, C are constants, and e (t) is the given voltage
(input).

Equation (2.7.25) provides the definition of the transfer function in the
frequency domain

Φ (ω) =
G (ω)
F (ω)

=
F {g (t)}
F {f (t)} , (2.7.53)

where φ (t) = F−1 {Φ (ω)} is called the impulse response function.
Taking the Fourier transfrom of (2.7.52) gives(

−Lω2 +Riω+
1
C

)
Q (ω) = E (ω) . (2.7.54)
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Thus, the transfer function is

Φ (ω) =
Q (ω)
E (ω)

=
−C

LCω2 − iRCω − 1

=
i

2Lβ

[
1

ω− i (α+ β)
− 1
ω − i (α− β)

]
, (2.7.55)

where

α=
R

2L
and β =

[(
R

2L

)2

− 1
LC

] 1
2

. (2.7.56)

The inverse Fourier transform of (2.7.55) yields the impulse response func-
tion

φ (t) =
1

2βL
(
eβt − e−βt

)
e−αtH (t) . (2.7.57)

2.8 Gibbs’ Phenomenon

We now examine the so-called the Gibbs jump phenomenon which deals with
the limiting behavior of a band-limited signal fω0(t) represented by the sam-
pling integral representation (2.7.8) at a point of discontinuity of f(t). This
phenomenon reveals the intrinsic overshoot near a jump discontinuity of a
function associated with the Fourier series. More precisely, the partial sums
of the Fourier series overshoot the function near the discontinuity, and the
overshoot continues no matter how many terms are taken in the partial sum.
However, the Gibbs phenomenon does not occur if the partial sums are re-
placed by the Cesaro means, the average of the partial sums.

In order to demonstrate the Gibbs phenomenon, we rewrite (2.7.8) in the
convolution form

fω0(t) =
∫ ∞

−∞
f(τ)

sinω0(t− τ)
π(t− τ)

dτ = (f ∗ δω0) (t) , (2.8.1)

where

δω0(t) =
sinω0t

πt
. (2.8.2)
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Clearly, at every point of continuity of f(t), we have

lim
ω0→∞ fω0(t) = lim

ω0→∞ (f ∗ δω0) (t) = lim
ω0→∞

∫ ∞

−∞
f(τ)

sinω0(t− τ)
π(t− τ)

dτ

=
∫ ∞

−∞
f(τ)

[
lim

ω0→∞
sinω0(t− τ)
π(t− τ)

]
dτ

=
∫ ∞

−∞
f(τ)δ(t− τ) dτ = f(t) . (2.8.3)

We now consider the limiting behavior of fω0(t) at the point of discontinuity
t= t0. To simplify the calculation, we set t0 = 0 so that we can write f(t) as
a sum of a continuous function, fc(t) and a suitable step function

f(t) = fc(t) + [f(0+)− f(0−)] H(t). (2.8.4)

Replacing f(t) by the right hand side of (2.8.4) in Equation (2.8.1) yields

fω0(t) =
∫ ∞

−∞
fc(τ)

sinω0(t− τ)
π(t− τ)

dτ

+ [f(0+)− f(0−)]
∫ ∞

−∞
H(τ)

sinω0(t− τ)
π(t− τ)

dτ

= fc(t) + [f(0+)− f(0−)] Hω0(t) , (2.8.5)

where

Hω0(t) =
∫ ∞

−∞
H(τ)

sinω0(t− τ)
π(t− τ)

dτ =
∫ ∞

0

sinω0(t− τ)
π(t− τ)

dτ

=
∫ ω0t

−∞

sinx
πx

dx (putting ω0(t− τ) = x)

=
(∫ 0

−∞
+
∫ ω0t

0

) (
sinx
πx

)
dx=

(∫ ∞

0

+
∫ ω0t

0

) (
sinx
πx

)
dx

=
1
2

+
1
π
si(ω0t) , (2.8.6)

and the function si(t) is defined by

si(t) =
∫ t

0

sinx
x

dx . (2.8.7)

Note that

Hω0

(
π

ω0

)
=

1
2

+
∫ π

0

sinx
πx

dx > 1 , Hω0

(
− π

ω0

)
=

1
2
−
∫ π

0

sinx
πx

dx < 0 .

Clearly, for a fixed ω0,
1
π si(ω0t) attains its maximum at t= π

ω0
in (0,∞) and

minimum at t=− π
ω0

, since for a larger t the integrand oscillates with decreas-
ing amplitudes. The function Hω0(t) is shown in Figure 2.7 since Hω0(0)= 1

2
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and fc(0) = f(0−) and

fω0(0) = fc(0) +
1
2

[f(0+)− f(0−)] =
1
2

[f(0+) + f(0−)] .

0.5

1

t

H
0(t

)
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0
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Figure 2.7 Graph of Hω0(t).

Thus, the graph ofHω0(t) shows that as ω0 increases, the time scale changes,
and the ripples remain the same. In the limit ω0 →∞, the convergence of
Hω0(t) = (H ∗ δω0) (t) to H(t) exhibits the intrinsic overshoot leading to the
classical Gibbs phenomenon.

Example 2.8.1

(The Square Wave Function and the Gibbs Phenomenon). Consider the single-
pulse square function defined by

f(x) =

⎧⎨⎩
1, −a< x<a
1
2 , x=±a
0, |x|>a

⎫⎬⎭ .

The graph of f(x) is given in Figure 2.8.
Thus,

F (k) = F {f(x)}=

√
2
π

(
sin ak
k

)
.
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a-a

f(
x)

x

1

0

Figure 2.8 The square wave function.

We next define a function fλ(x) by the integral

fλ(x) =
∫ λ

−λ
F (k) eikx dk

.
As |λ| →∞, fλ(x) will tend pointwise to f(x) for all x. Convergence occurs

even at x=± a because the function f(x) is defined to have a value “half way
up the step” at these points. Let us examine the behavior of fλ(x) as |λ|→∞
in a region just one side of one of the discontinuities, that is, for x∈ (0, a). For
a fixed λ, the difference, fλ(x) − f(x), oscillates above and below the value
0 as x→ a, attaining a maximum positive value at some point, say x= xλ.
Then the quantity fλ(xλ)− f(xλ) is called the overshoot.

As |λ|→∞, so the period of the oscillations tends to zero and so also xλ→ a;
however, the value of the overshoot fλ(xλ)− f(xλ) does not tend to zero but
instead tends to a finite limit. The existence of this non-zero, finite, limiting
value for the overshoot is known as the Gibbs phenomenon. This phenomenon
also occurs in an almost identical manner in the Fourier synthesis of periodic
functions using Fourier series.

2.9 Heisenberg’s Uncertainty Principle

If f ∈L2(R), then f and F (k) = F {f(x)} cannot both be essentially localized.
In other words, it is not possible that the widths of the graphs of |f(x)|2 and
|F (k)|2 can both be made arbitrarily small. This fact underlines the Heisen-
berg uncertainty principle in quantum mechanics and the bandwidth theorem
in signal analysis. If |f(x)|2 and |F (k)|2 are interpreted as weighting functions,
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then the weighted means (averages) <x> and <k> of x and k are given by

<x> =
1

||f ||22

∫ ∞

−∞
x |f(x)|2 dx, (2.9.1)

<k > =
1

||F ||22

∫ ∞

−∞
k |F (k)|2 dk. (2.9.2)

Corresponding measures of the widths of these weight functions are given by
the second moments about the respective means. Usually, it is convenient to
define widths �x and �k by

(�x)2 =
1

||f ||22

∫ ∞

−∞
(x−<x>)2 |f(x)|2 dx, (2.9.3)

(�k)2 =
1

||F ||22

∫ ∞

−∞
(k−<k>)2 |F (k)|2 dk. (2.9.4)

The essence of the Heisenberg principle and the bandwidth theorems lies in
the fact that the product (�x)(�k) will never less than 1

2 . Indeed,

(�x)(�k) ≥ 1
2
, (2.9.5)

where equality in (2.9.5) holds only if f(x) is a Gaussian function given by
f(x) =C exp(−ax2), a > 0.

We next state the Heisenberg inequality theorem as follows:

THEOREM 2.9.1
(Heisenberg Inequality). If f(x), x f(x) and k F (k) belong to L2(R) and

√
x|f(x)

|→ 0 as |x|→∞, then

(�x)2(�k)2 ≥ 1
4
, (2.9.6)

where (�x)2 and (�k)2 are defined by (2.9.3) and (2.9.4) respectively. Equal-
ity in (2.9.6) holds only if f(x) is a Gaussian function given by f(x)=C e−ax

2
,

a> 0.

PROOF If the averages are <x> and <k>, then the average location of
exp(−i < k > x)f(x+<x>) is zero. Hence, it is sufficient to prove the theorem
around the zero mean values, that is, <x>=<k>=0. Since ||f ||2 = ||F ||2,
we have

||f ||42(�x)2(�k)2 =
∫ ∞

−∞
|xf(x)|2dx

∫ ∞

−∞
|kF (k)|2dk.
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Using ikF (k)= F{f ′(x)} and the Parseval formula ||f ′(x)||2 = ||ikF (k)||2, we
obtain

||f ||42(�x)2(�k)2 =
∫ ∞

−∞
|xf(x)|2dx

∫ ∞

−∞
|f ′(x)|2dx

≥
∣∣∣∣∫ ∞

−∞

{
xf(x) f ′(x)

}
dx

∣∣∣∣2 , (see Debnath (2002))

≥
∣∣∣∣∫ ∞

−∞
x.

1
2

{
f ′(x) f(x) + f ′(x) f(x)

}∣∣∣∣2
=

1
4

[∫ ∞

−∞
x

(
d

dx
|f |2

)
dx

]2

=
1
4

{[
x|f(x)|2]∞−∞ −

∫ ∞

−∞
|f |2dx

}2

=
1
4
||f ||42 .

in which
√
xf(x)→ 0 as |x|→∞ was used to eliminate the integrated term.

This completes the proof.
If we assume f ′(x) is proportional to x f(x), that is, f ′(x) = b x f(x), where b
is a constant of proportionality, this leads to the Gaussian signals

f(x) =C exp(−ax2),

where C is a constant of integration and a=− b
2 > 0.

In 1924, Heisenberg first formulated the uncertainty principle between the
position and momentum in quantum mechanics. This principle has an impor-
tant interpretation as an uncertainty of both the position and momentum of
a particle described by a wave function ψ ∈L2(R). In other words, it is not
possible to determine the position and momentum of a particle exactly and
simultaneously.
In signal processing, time and frequency concentrations of energy of a signal
f are also governed by the Heisenberg uncertainty principle. The average or
expectation values of time t and frequency ω, are respectively defined by

< t>=
1

||f ||22

∫ ∞

−∞
t|f(t)|2dt, <ω >=

1
||F ||22

∫ ∞

−∞
ω|F (ω)|2dω, (2.9.7)

where the energy of a signal f(t) is well localized in time, and its Fourier
transform F (ω) has an energy concentrated in a small frequency domain.
The variances around these average values are given respectively by

σ2
t =

1
||f ||22

∫ ∞

−∞
(t−< t>)2|f(t)|2dt,

(2.9.8)

σ2
ω =

1
2π||F ||22

∫ ∞

−∞
(ω−<ω>)2|F (ω)|2dω.
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Remarks:

1. In a time-frequency analysis of signals, the measure of the resolution
of a signal f in the time or frequency domain is given by σt and σω .
Then, the joint resolution is given by the product (σt) (σω) which is
governed by the Heisenberg uncertainty principle. In other words, the
product (σt) (σω) cannot be arbitrarily small and is always greater than
the minimum value 1

2 which is attained for the Gaussian signal.

2. In many applications in science and engineering, signals with a high con-
centration of energy in the time and frequency domains are of special
interest. The uncertainty principle can also be interpreted as a mea-
sure of this concentration of the second moment of f2(t) and its energy
spectrum F 2(ω).

2.10 Applications of Fourier Transforms
to Ordinary Differential Equations

We consider the nth order linear ordinary differential equation with constant
coefficients

Ly(x) = f(x), (2.10.1)

where L is the nth order differential operator given by

L≡ anD
n + an−1D

n−1 + · · ·+ a1D+ a0, (2.10.2)

where an, an−1, . . . , a1, a0 are constants, D≡ d
dx and f(x) is a given function.

Application of the Fourier transform to both sides of (2.10.1) gives

[an(ik)n + an−1(ik)n−1 + · · ·+ a1(ik) + a0]Y (k) =F (k),

where F{y(x)}= Y (k) and F{f(x)}=F (k).
Or, equivalently

P (ik)Y (k) =F (k),

where

P (z)=
n∑
r=0

arz
r.

Thus,

Y (k) =
F (k)
P (ik)

=F (k)Q(k), (2.10.3)
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where Q(k) = 1
P (ik) .

Applying the Convolution Theorem 2.5.5 to (2.10.3) gives the formal solu-
tion

y(x) = F−1 {F (k)Q(k)}=
1√
2π

∞∫
−∞

f(ξ)q(x− ξ)dξ, (2.10.4)

provided q(x) = F−1{Q(k)} is known explicitly.
In order to give a physical interpretation of the solution (2.10.4), we consider

the differential equation with a suddenly applied impulse function f(x) = δ(x)
so that

L{G(x)}= δ(x). (2.10.5)

The solution of this equation can be written from the inversion of (2.10.3)
in the form

G(x) = F−1

{
1√
2π

Q(k)
}

=
1√
2π

q(x). (2.10.6)

Thus, the solution (2.10.4) takes the form

y(x) =

∞∫
−∞

f(ξ)G(x− ξ)dξ. (2.10.7)

Clearly, G(x) behaves like a Green’s function, that is, it is the response to a u-
nit impulse. In any physical system, f(x) usually represents the input function,
while y(x) is referred to as the output obtained by the superposition principle.
The Fourier transform of {√2πG(x)}= q(x) is called the admittance. In order
to find the reponse to a given input, we determine the Fourier transform of
the input function, multiply the result by the admittance, and then apply the
inverse Fourier transform to the product so obtained.

We illustrate these ideas by solving a simple problem in the electrical circuit
theory.

Example 2.10.1
(Electric Current in a Simple Circuit). The current I(t) in a simple circuit
containing the resistance R and inductance L satisfies the equation

L
dI

dt
+RI =E(t), (2.10.8)

where E(t) is the applied electromagnetic force and R and L are constants.
With E(t) =E0 exp(−a|t|), we use the Fourier transform with respect to

time t to obtain

(ikL+R)Î(k) =E0

√
2
π

a

(a2 + k2)
.
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Or,

Î(k) =
aE0

iL

√
2
π

1(
k − Ri

L

)
(k2 + a2)

,

where F{I(t)}= Î(k). The inverse Fourier transform gives

I(t) =
aE0

iπL

∞∫
−∞

exp(ikt)dk(
k− Ri

L

)
(k2 + a2)

. (2.10.9)

This integral can be evaluated by the Cauchy Residue Theorem. For t > 0

I(t) =
aE0

iπL
· 2πi

[
Residue atk=

Ri

L
+ Residue atk= ia

]
=

2aE0

L

[
e−

R
L t(

a2 − R2

L2

) − e−at

2a
(
a− R

L

)]

= E0

[
e−at

R− aL
− 2aLe−

R
L t

R2 − a2L2

]
. (2.10.10)

Similarly, for t< 0, the Residue Theorem gives

I(t) = −aE0

iπL
· 2πi[Residue atk=−ia]

= −2aE0

L

[ −Leat
(aL+R)2a

]
=

E0e
at

(aL+R)
. (2.10.11)

At t= 0, the current is continuous and therefore,

I(0)= lim
t→0

I(t) =
E0

R+ aL
.

If E(t) = δ(t), then Ê(k) = 1√
2π

and the solution is obtained by using the
inverse Fourier transform

I(t) =
1

2πiL

∞∫
−∞

eikt

k − iR
L

dk,

which is, by the Theorem of Residues,

=
1
L

[Residue atk= iR/L]

=
1
L

exp
(
−Rt
L

)
. (2.10.12)

Thus, the current tends to zero as t→∞ as expected.
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Example 2.10.2

Find the solution of the ordinary differential equation

−d
2u

dx2
+ a2u= f(x), −∞<x<∞ (2.10.13)

by the Fourier transform method.
Application of the Fourier transform to (2.10.13) gives

U(k) =
F (k)
k2 + a2

.

This can readily be inverted by the Convolution Theorem 2.5.5 to obtain

u(x) =
1√
2π

∞∫
−∞

f(ξ)g(x− ξ)dξ, (2.10.14)

where g(x) = F−1
{

1
k2+a2

}
= 1

a

√
π
2 exp(−a|x|) by Example 2.3.2. Thus, the

final solution is

u(x) =
1
2a

∞∫
−∞

f(ξ)e−a|x−ξ| dξ. (2.10.15)

Example 2.10.3

(The Bernoulli-Euler Beam Equation). We consider the vertical deflection
u(x) of an infinite beam on an elastic foundation under the action of a pre-
scribed vertical load W (x). The deflection u(x) satisfies the ordinary differ-
ential equation

EI
d4u

dx4
+ κu=W (x), −∞<x<∞. (2.10.16)

where EI is the flexural rigidity and κ is the foundation modulus of the
beam. We find the solution assuming that W (x) has a compact support and
u, u′, u′′, u′′′ all tend to zero as |x| →∞.

We first rewrite (2.10.16) as

d4u

dx4
+ a4u=w(x) (2.10.17)

where a4 = κ/EI andw(x) =W (x)/EI. Use of the Fourier transform to (2.10.17)
gives

U(k) =
W (k)
k4 + a4

.
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The inverse Fourier transform gives the solution

u(x) =
1√
2π

∞∫
−∞

W (k)
k4 + a4

eikx dk

=
1
2π

∞∫
−∞

eikx

k4 + a4
dk

∞∫
−∞

w(ξ)e−ikξ dξ

=

∞∫
−∞

w(ξ)G(ξ, x) dξ, (2.10.18)

where

G(ξ, x) =
1
2π

∞∫
−∞

eik(x−ξ)

k4 + a4
dk=

1
π

∞∫
0

cos k(x− ξ) dk
k4 + a4

. (2.10.19)

The integral can be evaluated by the Theorem of Residues or by using the
table of Fourier integrals. We simply state the result

G(ξ, x) =
1

2a3
exp

(
− a√

2
|x− ξ|

)
sin

[
a(x− ξ)√

2
+
π

4

]
. (2.10.20)

In particular, we find the explicit solution due to a concentrated load of unit
strength acting at some point x0, that is, w(x) = δ(x− x0). Then the solution
for this case becomes

u(x) =

∞∫
−∞

δ(ξ − x0)G(x, ξ) dξ =G(x, x0). (2.10.21)

Thus, the kernel G(x, ξ) involved in the solution (2.10.18) has the physical
significance of being the deflection, as a function of x, due to a unit point load
acting at ξ. Thus, the deflection due to a point load of strength w(ξ) dξ at ξ is
w(ξ) dξ ·G(x, ξ), and hence, (2.10.18) represents the superposition of all such
incremental deflections.

The reader is referred to a more general dynamic problem of an infinite
Bernoulli-Euler beam with damping and elastic foundation that has been
solved by Stadler and Shreeves (1970), and also by Sheehan and Debnath
(1972). These authors used the Fourier-Laplace transform method to deter-
mine the steady state and the transient solutions of the beam problem.
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2.11 Solutions of Integral Equations

The method of Fourier transforms can be used to solve simple integral equa-
tions of the convolution type. We illustrate the method by examples.

We first solve the Fredholm integral equation with convolution kernel in the
form ∞∫

−∞
f(t)g(x− t) dt+ λf(x) = u(x), (2.11.1)

where g(x) and u(x) are given functions and λ is a known parameter.
Application of the Fourier transform to (2.11.1) gives

√
2πF (k)G(k) + λF (k) =U(k).

Or,

F (k) =
U(k)√

2πG(k) + λ
. (2.11.2)

The inverse Fourier transform leads to a formal solution

f(x) =
1√
2π

∞∫
−∞

U(k)eikxdk√
2πG(k) + λ

. (2.11.3)

In particular, if g(x) = 1
x so that

G(k) =−i
√
π

2
sgn k,

then the solution becomes

f(x) =
1√
2π

∞∫
−∞

U(k)eikxdk
λ− iπ sgn k

. (2.11.4)

If λ= 1 and g(x) = 1
2

(
x
|x|
)

so that G(k) = 1√
2π

1
(ik) , solution (2.11.3) reduces

to the form

f(x) =
1√
2π

∞∫
−∞

(ik)
U(k)eikx dk

(1 + ik)

=
1√
2π

∞∫
−∞

F{u′(x)}F{√2π e−x}eikx dk

= u′(x) ∗
√

2π e−x =

∞∫
−∞

u′(ξ) exp(ξ − x) dξ. (2.11.5)
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Example 2.11.1
Find the solution of the integral equation

∞∫
−∞

f(x− ξ)f(ξ) dξ =
1

x2 + a2
. (2.11.6)

Application of the Fourier transform gives

√
2πF (k)F (k) =

√
π

2
e−a|k|

a
.

Or,

F (k) =
1√
2a

exp
{
−1

2
a|k|

}
. (2.11.7)

The inverse Fourier transform gives the solution

f(x) =
1√
2π

1√
2a

∞∫
−∞

exp
(
ikx− 1

2
a|k|

)
dk

=
1

2
√
πa

⎡⎣ ∞∫
0

exp
{
−k

(a
2

+ ix
)}

dk +

∞∫
0

exp
{
−k

(a
2
− ix

)}
dk

⎤⎦
=

1
2
√
πa

[
4a

(4x2 + a2)

]
=
√
a

π
· 2
(4x2 + a2)

.

Example 2.11.2
Solve the integral equation

∞∫
−∞

f(t) dt
(x− t)2 + a2

=
1

(x2 + b2)
, b > a> 0. (2.11.8)

Taking the Fourier transform, we obtain

√
2π F (k)F

{
1

x2 + a2

}
=
√
π

2
e−b|k|

b
,

or,
√

2π F (k)
√
π

2
· e

−a|k|

a
=
√
π

2
e−b|k|

b
.

Thus,

F (k) =
1√
2π

(a
b

)
exp{−|k|(b− a)}. (2.11.9)
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The inverse Fourier transform leads to the solution

f(x) =
a

2πb

∞∫
−∞

exp[ikx− |k|(b− a)]dk

=
a

2πb

⎡⎣ ∞∫
0

exp[−k{(b− a) + ix}]dk+

∞∫
0

exp[−k{(b− a) − ix}]
⎤⎦ dk

=
a

2πb

[
1

(b− a) + ix
+

1
(b− a)− ix

]
=
( a

πb

) (b− a)
(b− a)2 + x2

. (2.11.10)

Example 2.11.3
Solve the integral equation

f(t) + 4

∞∫
−∞

e−a|x−t|f(t)dt= g(x). (2.11.11)

Application of the Fourier transform gives

F (k) + 4
√

2πF (k) · 2a√
2π(a2 + k2)

=G(k)

F (k) =
(a2 + k2)

a2 + k2 + 8a
G(k). (2.11.12)

The inverse Fourier transform gives

f(x) =
1√
2π

∞∫
−∞

(a2 + k2)G(k)
a2 + k2 + 8a

eikxdk. (2.11.13)

In particular, if a= 1 and g(x) = e−|x| so that G(k) =
√

2
π

1
1+k2 , then solution

(2.11.13) becomes

f(x) =
1
π

∞∫
−∞

eikx

k2 + 32
dk. (2.11.14)

For x> 0, we use a semicircular closed contour in the lower half of the complex
plane to evaluate (2.11.14). It turns out that

f(x) =
1
3
e−3x. (2.11.15)
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Similarly, for x< 0, a semicircular closed contour in the upper half of the
complex plane is used to evaluate (2.11.14) so that

f(x) =
1
3
e3x, x< 0. (2.11.16)

Thus, the final solution is

f(x) =
1
3

exp(−3|x|). (2.11.17)

2.12 Solutions of Partial Differential Equations

In this section we illustrate how the Fourier transform method can be used
to obtain the solution of boundary value and initial value problems for linear
partial differential equations of different kinds.

Example 2.12.1
(Dirichlet’s Problem in the Half-Plane). We consider the solution of the Laplace
equation in the half-plane

uxx + uyy = 0, −∞<x<∞, y≥ 0, (2.12.1)

with the boundary conditions

u(x, 0) = f(x), −∞<x<∞, (2.12.2)
u(x, y)→ 0 as |x|→∞, y→∞. (2.12.3)

We introduce the Fourier transform with respect to x

U(k, y)=
1√
2π

∞∫
−∞

e−ikxu(x, y)dx (2.12.4)

so that (2.12.1)–(2.12.3) becomes

d2U

dy2
− k2U = 0, (2.12.5)

U(k, 0) =F (k), U(k, y)→ 0 as y→∞. (2.12.6ab)

Thus, the solution of this transformed system is

U(k, y) =F (k)e−|k|y. (2.12.7)
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Application of the Convolution Theorem 2.5.5 gives the solution

u(x, y) =
1√
2π

∞∫
−∞

f(ξ)g(x− ξ)dξ, (2.12.8)

where

g(x) = F−1{e−|k|y}=

√
2
π

y

(x2 + y2)
. (2.12.9)

Consequently, the solution (2.12.8) becomes

u(x, y) =
y

π

∞∫
−∞

f(ξ)dξ
(x− ξ)2 + y2

, y > 0. (2.12.10)

This is the well-known Poisson integral formula in the half-plane. It is noted
that

lim
y→0+

u(x, y) =

∞∫
−∞

f(ξ)
[

lim
y→0+

y

π
· 1
(x− ξ)2 + y2

]
dξ=

∞∫
−∞

f(ξ)δ(x− ξ)dξ,

(2.12.11)
where Cauchy’s definition of the delta function is used, that is,

δ(x− ξ) = lim
y→0+

y

π
· 1
(x− ξ)2 + y2

. (2.12.12)

This may be recognized as a solution of the Laplace equation for a dipole
source at (x, y) = (ξ, 0).

In particular, when
f(x) = T0H(a− |x|) (2.12.13)

the solution (2.12.10) reduces to

u(x, y) =
yT0

π

a∫
−a

dξ

(ξ − x)2 + y2

=
T0

π

[
tan−1

(
x+ a

y

)
− tan−1

(
x− a

y

)]
=
T0

π
tan−1

(
2ay

x2 + y2 − a2

)
. (2.12.14)

The curves in the upper half-plane for which the steady state temperature is
constant are known as isothermal curves. In this case, these curves represent
a family of circular arcs

x2 + y2 − αy= a2 (2.12.15)
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a
x

y

-a

Figure 2.9 A family of circular arcs.

with centers on the y-axis and the fixed end points on the x-axis at x=±a.
The graphs of the arcs are is displayed in Figure 2.9.

Another special case deals with

f(x) = δ(x). (2.12.16)

The solution for this case follows from (2.12.10) and is

u(x, y) =
y

π

∞∫
−∞

δ(ξ)dξ
(x− ξ)2 + y2

=
y

π

1
(x2 + y2)

. (2.12.17)

Further, we can readily deduce the solution of the Neumann problem in the
half-plane from the solution of the Dirichlet problem.

Example 2.12.2
(Neumann’s Problem in the Half-Plane). Find a solution of the Laplace equa-
tion

uxx + uyy = 0, −∞<x<∞, y > 0, (2.12.18)

with the boundary condition

uy(x, 0) = f(x), −∞<x<∞. (2.12.19)

This condition specifies the normal derivative on the boundary, and physically,
it describes the fluid flow or, heat flux at the boundary.

We define a new function υ(x, y) = uy(x, y) so that

u(x, y) =

y∫
υ(x, η)dη, (2.12.20)
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where an arbitrary constant can be added to the right-hand side. Clearly, the
function υ satisfies the Laplace equation

∂2υ

∂x2
+
∂2υ

∂y2
=
∂2uy
∂x2

+
∂2uy
∂y2

=
∂

∂y
(uxx + uyy) = 0,

with the boundary condition

υ(x, 0) = uy(x, 0) = f(x) for −∞<x<∞.

Thus, υ(x, y) satisfies the Laplace equation with the Dirichlet condition on
the boundary. Obviously, the solution is given by (2.12.10); that is,

υ(x, y) =
y

π

∞∫
−∞

f(ξ)dξ
(x− ξ)2 + y2

. (2.12.21)

Then the solution u(x, y) can be obtained from (2.12.20) in the form

u(x, y) =

y∫
υ(x, η)dη=

1
π

y∫
η dη

∞∫
−∞

f(ξ)dξ
(x− ξ)2 + η2

=
1
π

∞∫
−∞

f(ξ)dξ

y∫
η dη

(x− ξ)2 + η2
, y > 0

=
1
2π

∞∫
−∞

f(ξ) log[(x− ξ)2 + y2]dξ, (2.12.22)

where an arbitrary constant can be added to this solution. In other words, the
solution of any Neumann problem is uniquely determined up to an arbitrary
constant.

Example 2.12.3
(The Cauchy Problem for the Diffusion Equation). We consider the initial
value problem for a one-dimensional diffusion equation with no sources or
sinks

ut = κuxx, −∞<x<∞, t > 0, (2.12.23)

where κ is a diffusivity constant with the initial condition

u(x, 0)= f(x), −∞<x<∞. (2.12.24)

We solve this problem using the Fourier transform in the space variable x
defined by (2.12.4). Application of this transform to (2.12.23)–(2.12.24) gives

Ut = −κk2U, t > 0, (2.12.25)
U(k, 0) = F (k). (2.12.26)
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The solution of the transformed system is

U(k, t) =F (k) e−κk
2t. (2.12.27)

The inverse Fourier transform gives the solution

u(x, t) =
1√
2π

∞∫
−∞

F (k) exp[(ikx− κk2t)]dk

which is, by the Convolution Theorem 2.5.5,

=
1√
2π

∞∫
−∞

f(ξ)g(x− ξ)dξ, (2.12.28)

where

g(x) = F−1{e−κk2t}=
1√
2κt

exp
(
− x2

4κt

)
, by (2.3.5).

Thus, solution (2.12.28) becomes

u(x, t) =
1√

4πκt

∞∫
−∞

f(ξ) exp
[
− (x− ξ)2

4κt

]
dξ. (2.12.29)

The integrand involved in the solution consists of the initial value f(x) and
Green’s function (or, elementary solution) G(x− ξ, t) of the diffusion equation
for the infinite interval:

G(x− ξ, t) =
1√

4πκt
exp

[
− (x− ξ)2

4κt

]
. (2.12.30)

So, in terms of G(x− ξ, t), solution (2.12.29) can be written as

u(x, t) =

∞∫
−∞

f(ξ)G(x− ξ, t)dξ (2.12.31)

so that, in the limit as t→ 0+, this formally becomes

u(x, 0) = f(x) =

∞∫
−∞

f(ξ) lim
t→0+

G(x− ξ, t)dξ.

The limit of G(x− ξ, t) represents the Dirac delta function

δ(x− ξ) = lim
t→0+

1
2
√
πκt

exp
[
− (x− ξ)2

4 κt

]
. (2.12.32)
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Figure 2.10 Graphs of G(x, t) against x.

Graphs of G(x, t) are shown in Figure 2.10 for different values of κt.
It is important to point out that the integrand in (2.12.31) consists of the

initial temperature distribution f(x) and Green’s function G(x− ξ, t) which
represents the temperature response along the rod at time t due to an initial
unit impulse of heat at x= ξ. The physical meaning of the solution (2.12.31)
is that the initial temperature distribution f(x) is decomposed into a spec-
trum of impulses of magnitude f(ξ) at each point x= ξ to form the resulting
temperature f(ξ)G(x− ξ, t). Thus, the resulting temperature is integrated to
find solution (2.12.31). This is called the principle of integral superposition.

We make the change of variable

ξ − x

2
√
κt

= ζ, dζ =
dξ

2
√
κt

to express solution (2.12.29) in the form

u(x, t) =
1√
π

∞∫
−∞

f(x+ 2
√
κt ζ) exp(−ζ2)dζ. (2.12.33)

The integral solution (2.12.33) or (2.12.29) is called the Poisson integral rep-
resentation of the temperature distribution. This integral is convergent for all
time t> 0, and the integrals obtained from (2.12.33) by differentiation under
the integral sign with respect to x and t are uniformly convergent in the neigh-
borhood of the point (x, t). Hence, the solution u(x, t) and its derivatives of
all orders exist for t > 0.

Finally, we consider a special case involving discontinuous initial condition
in the form

f(x) = T0H(x) , (2.12.34)
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where T0 is a constant. In this case, solution (2.12.29) becomes

u(x, t) =
T0

2
√
πκt

∞∫
0

exp
[
− (x− ξ)2

4 κt

]
dξ. (2.12.35)

Introducing the change of variable η= ξ−x
2
√
κt

, we can express solution (2.12.35)
in the form

u(x, t) =
T0√
π

∞∫
−x/2√κt

e−η
2
dη=

T0

2
erfc

(
− x

2
√
κt

)

=
T0

2

[
1 + erf

(
x

2
√
κt

)]
. (2.12.36)

The solution given by equation (2.12.36) with T0 = 1 is shown in Figure 2.11.
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t = 0.1
t = 0.5
t = 2.0

Figure 2.11 The time development of solution (2.12.36).

If f(x) = δ(x), then the fundamental solution (2.7.29) is given by

u(x, t) =
1√

4π κ t
exp

(
− x2

4κ t

)
.

Example 2.12.4
(The Cauchy Problem for the Wave Equation). Obtain the d’Alembert solu-
tion of the initial value problem for the wave equation

utt = c2uxx, −∞<x<∞, t > 0, (2.12.37)
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with the arbitrary but fixed initial data

u(x, 0)= f(x), ut(x, 0) = g(x), −∞<x<∞. (2.12.38ab)

Application of the Fourier transform F{u(x, t)}=U(k, t) to this system gives

d2U

dt2
+ c2k2U = 0,

U(k, 0)=F (k),
(
dU

dt

)
t=0

=G(k).

The solution of the transformed system is

U(k, t)=A eickt +B e−ickt,

where A and B are constants to be determined from the transformed data so
that A+B=F (k) and A−B= 1

ikcG(k). Solving for A and B, we obtain

U(k, t)=
1
2
F (k)(eickt + e−ickt) +

G(k)
2ick

(eickt − e−ickt). (2.12.39)

Thus, the inverse Fourier transform of (2.12.39) yields the solution

u(x, t) =
1
2

⎡⎣ 1√
2π

∞∫
−∞

F (k){eik(x+ct) + eik(x−ct)}dk
⎤⎦

+
1
2c

⎡⎣ 1√
2π

∞∫
−∞

G(k)
ik

{eik(x+ct) − eik(x−ct)}dk
⎤⎦ . (2.12.40)

We use the following results

f(x) = F−1{F (k)}=
1√
2π

∞∫
−∞

eikxF (k)dk,

g(x) = F−1{G(k)}=
1√
2π

∞∫
−∞

eikxG(k)dk,

to obtain the solution in the final form

u(x, t) =
1
2
[f(x− ct) + f(x+ ct)] +

1
2c

1√
2π

∞∫
−∞

G(k)dk

x+ct∫
x−ct

eikξdξ

=
1
2
[f(x− ct) + f(x+ ct)] +

1
2c

x+ct∫
x−ct

dξ

⎡⎣ 1√
2π

∞∫
−∞

eikξG(k)dk

⎤⎦
=

1
2
[f(x− ct) + f(x+ ct)] +

1
2c

x+ct∫
x−ct

g(ξ)dξ. (2.12.41)
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This is the well known d’Alembert’s solution of the wave equation.
The method and the form of the solution reveal several important features

of the wave equation. First, the method of solution essentially proves the
existence of the d’Alembert solution and the solution is unique provided f(x)
is twice continuously differentiable and g(x) is continuously differentiable.
Second, the terms involving f(x± ct) in (2.12.41) show that disturbances
are propagated along the characteristics with constant velocity c. Both terms
combined together suggest that the value of the solution at position x and at
time t depends only on the initial values of f(x) at x− ct and x+ ct and the
values of g(x) between these two points. The interval (x− ct, x+ ct) is called
the domain of dependence of the variable (x, t). Finally, the solution depends
continuously on the initial data, that is, the problem is well posed. In other
words, a small change in either f(x) or g(x) results in a correspondingly small
change in the solution u(x, t).

In particular, if f(x) = exp(−x2) and g(x)≡ 0, the time development of
solution (2.12.41) with c= 1 is shown in Figure 2.12. In this case, the solution
becomes

u(x, t) =
1
2
[e−(x−t)2 + e−(x+t)2 ]. (2.12.42)

As shown in Figure 2.12, the initial form f(x) = exp(−x2) is found to split
into two similar waves propagating in opposite direction with unit velocity.

Example 2.12.5
(The Schrödinger Equation in Quantum Mechanics). The time-dependent
Schrödinger equation of a particle of mass m is

i�ψt =
[
V (x) − �2

2m
∇2

]
ψ=Hψ, (2.12.43)

where h= 2π� is the Planck constant, ψ(x, t) is the wave function, V (x) is the
potential, ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the three-dimensional Laplacian, and H is
the Hamiltonian.

If V (x) = constant= V , we can seek a plane wave solution of the form

ψ(x, t) =A exp[i(κ · x− ωt)], (2.12.44)

where A is a constant amplitude, κ = (k, l,m) is the wavenumber vector, and
ω is the frequency.

Substituting this solution into (2.12.43), we conclude that this solution is
possible provided the following relation is satisfied:

i�(−iω)= V − �2

2m
(iκ)2, κ2 = k2 + l2 +m2.

Or,

�ω=V +
�2κ2

2m
. (2.12.45)
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Figure 2.12 The time development of solution (2.12.42).

This is called the dispersion relation and shows that the sum of the potential
energy V and the kinetic energy (�κ)2

2m is equal to the total energy �ω. Further,
the kinetic energy

K.E.=
1

2m
(�κ)2 =

p2

2m
, (2.12.46)

where p= �κ is the momentum of the particle.
The phase velocity, Cp and the group velocity, Cg of the wave are defined

by
Cp =

ω

κ
κ̂, Cg =∇κω(κ), (2.12.47ab)

where κ is the wavenumber vector and κ= |κ| and κ̂ is the unit wavenumber
vector.

In the one-dimensional case, the phase velocity is

Cp =
ω

k
(2.12.48)

and the group velocity is

Cg =
∂ω

∂k
=

�k

m
=
p

m
=
mυ

υ
= υ. (2.12.49)

This shows that the group velocity is equal to the classical particle velocity υ.
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We now use the Fourier transform method to solve the one-dimensional
Schrödinger equation for a free particle (V ≡ 0), that is,

i�ψt = − �2

2m
ψxx, −∞<x<∞, t > 0, (2.12.50)

ψ(x, 0) = ψ0(x), −∞<x<∞, (2.12.51)
ψ(x, t) → 0 as |x|→∞. (2.12.52)

Application of the Fourier transform to (2.12.50)–(2.12.52) gives

Ψt =− i�k
2

2m
Ψ, Ψ(k, 0)= Ψ0(k). (2.12.53)

The solution of this transformed system is

Ψ(k, t) = Ψ0(k) exp(−iαk2t), α=
�

2m
. (2.12.54)

The inverse Fourier transform gives the formal solution

ψ(x, t) =
1√
2π

∞∫
−∞

Ψ0(k) exp{ik(x− αkt)}dk

=
1
2π

∞∫
−∞

e−ikyψ(y, 0)dy

∞∫
−∞

exp{ik(x− αkt)}dk

=
1
2π

∞∫
−∞

ψ(y, 0)dy

∞∫
−∞

exp{ik(x− y − αkt)}dk. (2.12.55)

We rewrite the integrand of the second integral in (2.12.55) as follows

exp[ik(x − y− αkt)]

= exp

[
−iαt

{
k2 − 2k · x− y

2αt
+
(
x− y

2αt

)2

−
(
x− y

2αt

)2
}]

= exp

[
−iαt

{
k − x− y

2αt

}2
]

exp
[
i(x− y)2

4αt

]
= exp

[
i(x− y)2

4αt

]
exp(−iαtξ2), ξ= k − x− y

2αt
.



© 2007 by Taylor & Francis Group, LLC

Fourier Transforms and Their Applications 79

Using this result in (2.12.55), we obtain

ψ(x, t) =
1
2π

∞∫
−∞

exp
[
i(x− y)2

4αt

]
ψ(y, 0)dy

∞∫
−∞

exp(−iαtξ2)dξ

=
1
2π

√
π

2αt
(1 − i)

∞∫
−∞

exp
[
i(x− y)2

4αt

]
ψ(y, 0)dy

=
(1 − i)
2
√

2απt

∞∫
−∞

exp
[
i(x− y)2

4αt

]
ψ(y, 0)dy. (2.12.56)

This is the integral solution of the problem.

Example 2.12.6
(Slowing Down of Neutrons). We consider the problem of slowing down neu-
trons in an infinite medium with a source of neutrons governed by

ut = uxx + δ(x)δ(t), −∞<x<∞, t > 0, (2.12.57)
u(x, 0) = δ(x), −∞<x<∞, (2.12.58)
u(x, t)→ 0 as |x|→∞ for t > 0, (2.12.59)

where u(x, t) represents the number of neutrons per unit volume per unit
time, which reach the age t, and δ(x)δ(t) is the source function.

Application of the Fourier transform method gives

dU

dt
+ k2U =

1√
2π

δ(t),

U(k, 0) =
1√
2π
.

The solution of this transformed system is

U(k, t) =
1√
2π

e−k
2t,

and the inverse Fourier transform gives the solution

u(x, t) =
1
2π

∞∫
−∞

eikx−k
2tdk=

1√
2π

F−1
{
e−k

2t
}

=
1√
4πt

exp
(
−x

2

4t

)
. (2.12.60)
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Example 2.12.7
(One-Dimensional Wave Equation). Obtain the solution of the one-dimensional
wave equation

utt = c2uxx, −∞<x<∞, t > 0, (2.12.61)

u(x, 0) = 0, ut(x, 0) = δ(x), −∞<x<∞. (2.12.62ab)

Making reference to Example 2.12.4, we find f(x)≡ 0 and g(x) = δ(x) so
that F (k) = 0 and G(k) = 1√

2π
. The solution for U(k, t) is given by

U(k, t) =
1

2c
√

2π

[
eickt

ik
− e−ickt

ik

]
.

Thus, the inverse Fourier transform gives

u(x, t) =
1

2c
√

2π
F−1

{
eickt

ik
− e−ickt

ik

}
=

1
2c
√

2π

[√
π

2
{sgn(x + ct) − sgn(x− ct)}

]
=

1
4c

[sgn(x + ct) − sgn(x − ct)]

=

⎧⎪⎪⎨⎪⎪⎩
1− 1
4c

= 0, |x|> ct> 0

1 + 1
4c

=
1
2c
, |x|< ct.

In other words, the solution can be written in the form

u(x, t) =
1
2c
H(c2t2 − x2).

Example 2.12.8
(Linearized Shallow Water Equations in a Rotating Ocean). The horizontal
equations of motion of a uniformly rotating inviscid homogeneous ocean of
constant depth h are

ut − fυ = −g ηx, (2.12.63)
υt + fu = 0, (2.12.64)
ηt + hux = 0, (2.12.65)

where f = 2Ω sin θ is the Coriolis parameter, which is constant in the present
problem, g is the acceleration due to gravity, η(x, t) is the free surface eleva-
tion, u(x, t) and υ(x, t) are the velocity fields. The wave motion is generated
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by the prescribed free surface elevation at t= 0 so that the initial conditions
are

u(x, 0) = 0 = υ(x, 0), η(x, 0) = η0H(a− |x|), (2.12.66abc)

and the velocity fields and free surface elevation function vanish at infinity.
We apply the Fourier transform with respect to x defined by

F{f(x, t)}=F (k, t) =
1√
2π

∞∫
−∞

e−ikxf(x, t)dx (2.12.67)

to the system (2.12.63)–(2.12.65) so that the system becomes

dU

dt
− fV = −gikE

dV

dt
+ fU = 0

dE

dt
= −hikU

U(k, 0)= 0 =V (k, 0), E(k, 0) =

√
2
π
η0

(
sin ak
k

)
, (2.12.68abc)

where E(k, t) = F{η(x, t)}.
Elimination of U and V from the transformed system gives a single equation

for E(k, t) as
d3E

dt3
+ ω2 dE

dt
= 0, (2.12.69)

where ω2 = (f2 + c2k2) and c2 = gh. The general solution of (2.12.69) is

E(k, t) =A+B cosωt+C sinωt, (2.12.70)

where A, B, and C are arbitrary constants to be determined from (2.12.68c)
and (

d2E

dt2

)
t=0

=−c2k2E(k, 0) =−c2k2 ·
√

2
π
η0

sin ak
k

,

which gives

B=

√
2
π
η0

(
sin ak
k

)
·
(
c2k2

ω2

)
.

Also
(
dE
dt

)
t=0

= 0 gives C ≡ 0 and (2.12.68c) implies A+B=
√

2
πη0

sin ak
k .

Consequently, the solution (2.12.70) becomes

E(k, t) =

√
2
π
η0

(
sinak
k

)
f2 + c2k2 cosωt

(f2 + c2k2)
. (2.12.71)
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Similarly

U(k, t) =

√
2
π

η0 sin ak
ih

· c2 sinωt√
c2k2 + f2

, (2.12.72)

V (k, t) =
1
f

(
dU

dt
+ gik E

)
. (2.12.73)

The inverse Fourier transform gives the formal solution for η(x, t)

η(x, t) =
(η0
π

) ∞∫
−∞

sin ak
k

· f
2 + c2k2 cosωt
(f2 + c2k2)

eikxdk. (2.12.74)

Similar integral expressions for u(x, t) and υ(x, t) can be obtained.

Example 2.12.9
(Sound Waves Induced by a Spherical Body). We consider propagation of
sound waves in an unbounded fluid medium generated by an impulsive radial
acceleration of a sphere of radius a. Such waves are assumed to be spherically
symmetric and the associated velocity potential on the pressure field p(r, t)
satisfies the wave equation

∂2p

∂t2
= c2

[
1
r2

∂

∂r

(
r2
∂p

∂r

)]
, (2.12.75)

where c is the speed of sound. The boundary condition required for the prob-
lem is

1
ρ0

(
∂p

∂r

)
=−a0 δ(t) on r= a, (2.12.76)

where ρ0 is the mean density of the fluid and a0 is a constant.
Application of the Fourier transform of p(r, t) with respect to time t gives

1
r2

d

dr

(
r2
dP

dr

)
=−k2P (r, ω), (2.12.77)

dP

dr
=−a0ρ0√

2π
, on r= a, (2.12.78)

where F{p(r, t)}=P (r, ω) and k2 = ω2

c2 .
The general solution of (2.12.77)–(2.12.78) is

P (r, ω) =
A

r
eikr +

B

r
e−ikr, (2.12.79)

where A and B are arbitrary constants.
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The inverse Fourier transform gives the solution

p(r, t) =
1√
2π

∞∫
−∞

[
A

r
ei(ωt+kr) +

B

r
ei(ωt−kr)

]
dω. (2.12.80)

The first term of the integrand represents incoming spherical waves generated
at infinity and the second term corresponds to outgoing spherical waves due to
the impulsive radial acceleration of the sphere. Since there is no disturbance at
infinity, we impose the Sommerfeld radiation condition at infinity to eliminate
the incoming waves so that A= 0, and B is calculated using (2.12.78). Thus,
the inverse Fourier transform gives the formal solution

p(r, t) =
(
a0ρ0a

2

2πr

) ∞∫
−∞

exp
[
iω

{
t− r−a

c

}]
dω(

1 + iωa
c

) . (2.12.81)

We next choose a closed contour with a semicircle in the upper half plane
and the real ω-axis. Using the Cauchy theory of residues, we calculate the
residue contribution from the pole at ω= ic/a. Finally, it turns out that the
final solution is

u(r, t) =
(ρ0a0ca

r

)
exp

[
− c

a

(
t− r − a

c

)]
H

(
t− r − a

c

)
. (2.12.82)

Example 2.12.10
(The Linearized Korteweg-de Vries Equation). The linearized KdV equation
for the free surface elevation η(x, t) in an inviscid water of constant depth h
is

ηt + cηx +
ch2

6
ηxxx = 0, −∞<x<∞, t > 0, (2.12.83)

where c=
√
gh is the shallow water speed.

Solve equation (2.12.83) with the initial condition

η(x, 0) = f(x), −∞<x<∞. (2.12.84)

Application of the Fourier transform F{η(x, t)}=E(k, t) to the KdV sys-
tem gives the solution for E(k, t) in the form

E(k, t) =F (k) exp
[
ikct

(
k2h2

6
− 1

)]
.

The inverse transform gives

η(x, t) =
1√
2π

∞∫
−∞

F (k) exp
[
ik

{
(x− ct) +

(
cth2

6

)
k2

}]
dk. (2.12.85)
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In particular, if f(x) = δ(x), then (2.12.85) reduces to the Airy integral

η(x, t) =
1
π

∞∫
0

cos
[
k(x− ct) +

(
cth2

6

)
k3

]
dk (2.12.86)

which is, in terms of the Airy function,

=
(
cth2

2

)− 1
3

Ai

[(
cth2

2

)− 1
3

(x− ct)

]
, (2.12.87)

where the Airy function Ai(az) is defined by

Ai(az) =
1

2πa

∞∫
−∞

exp
[
i

(
kz +

k3

3a3

)]
dk=

1
πa

∞∫
0

cos
(
kz +

k3

3a3

)
dk.

(2.12.88)

Example 2.12.11
(Biharmonic Equation in Fluid Mechanics). Usually, the biharmonic equation
arises in fluid mechanics and in elasticity. The equation can readily be solved
by using the Fourier transform method. We first derive a biharmonic equation
from the Navier-Stokes equations of motion in a viscous fluid which is given
by

∂u
∂t

+ (u · ∇)u = F− 1
ρ
∇p+ ν∇2u, (2.12.89)

where u = (u, υ, w) is the velocity field, F is the external force per unit mass
of the fluid, p is the pressure, ρ is the density and ν is the kinematic viscosity
of the fluid.

The conservation of mass of an incompressible fluid is described by the
continuity equation

div u = 0. (2.12.90)

In terms of some representative length scale L and velocity scale U , it is
convenient to introduce the nondimensional flow variables

x′ =
x
L
, t′ =

Ut

L
, u′ =

u
U
, p′ =

p

ρU2
. (2.12.91)

In terms of these nondimensional variables, equation (2.12.89) without the
external force can be written, dropping the primes, as

∂u
∂t

+ (u · ∇)u =−∇p+
1
R
∇2u, (2.12.92)

where R=UL/ν is called the Reynolds number. Physically, it measures the
ratio of inertial forces of the order U2/L to viscous forces of the order νU/L2,
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and it has special dynamical significance. This is one of the most fundamental
nondimensional parameters for the specification of the dynamical state of
viscous flow fields.

In the absence of the external force, F = 0, it is preferable to write the
Navier-Stokes equations (2.12.89) in the form (since u× ω = 1

2∇u2 − u · ∇u)

∂u
∂t

− u× ω =−∇
(
p

ρ
+

1
2
u2

)
− ν∇2u, (2.12.93)

where ω = curl u is the vorticity vector and u2 =u · u.
We can eliminate the pressure p from (2.12.93) by taking the curl of (2.12.93),

giving
∂ω

∂t
− curl(u× ω) = ν∇2ω (2.12.94)

which becomes, by div u = 0 and div ω = 0,

∂ω

∂t
= (ω · ∇)u− (u · ∇)ω + ν∇2ω. (2.12.95)

This is universally known as the vorticity transport equation. The left hand-
side represents the rate of change of vorticity. The first two terms on the
right-hand side represent the rate of change of vorticity due to stretching and
twisting of vortex lines. The last term describes the diffusion of vorticity by
molecular viscosity.

In case of two-dimensional flow, (ω · ∇)u = 0, equation (2.12.95) becomes

Dω

dt
=
∂ω

∂t
+ (u · ∇)ω = ν∇2ω, (2.12.96)

where u= (u, υ, 0) and ω = (0, 0, ζ), and ζ = υx − uy. Equation (2.12.96) shows
that only convection and conduction occur. In terms of the stream function
ψ(x, y) where

u=ψy, υ= −ψx, ω =−∇2ψ, (2.12.97)

which satisfy (2.12.90) identically, equation (2.12.96) assumes the form

∂

∂t

(∇2ψ
)
+
(
∂ψ

∂y

∂

∂x
− ∂ψ

∂x

∂

∂y

)
∇2ψ= ν∇4ψ. (2.12.98)

In case of slow motion (velocity is small) or in case of a very viscous fluid
(ν very large), the Reynolds number R is very small. For a steady flow in such
cases of an incompressible viscous fluid, ∂

∂t ≡ 0, while (u · ∇)ω is negligible
in comparison with the viscous term. Consequently, (2.12.98) reduces to the
standard biharmonic equation

∇4ψ= 0. (2.12.99)

Or, more explicitly,

∇2(∇2)ψ≡ψxxxx + 2ψxxyy + ψyyyy = 0. (2.12.100)
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We solve this equation in a semi-infinite viscous fluid bounded by an in-
finite horizontal plate at y= 0, and the fluid is introduced normally with a
prescribed velocity through a strip −a<x<a of the plate. Thus, the required
boundary conditions are

u≡ ∂ψ

∂y
= 0, υ≡ ∂ψ

∂x
=H(a− |x|)f(x) on y= 0, (2.12.101ab)

where f(x) is a given function of x.
Furthermore, the fluid is assumed to be at rest at large distances from the

plate, that is,

(ψx, ψy)→ (0, 0) as y→∞ for −∞<x<∞. (2.12.102)

To solve the biharmonic equation (2.12.100) with the boundary conditions
(2.12.101ab) and (2.12.102), we introduce the Fourier transform with respect
to x

Ψ(k, y)=
1√
2π

∞∫
−∞

e−ikxψ(x, y)dx. (2.12.103)

Thus, the Fourier transformed problem is(
d2

dy2
− k2

)2

Ψ(k, y) = 0, (2.12.104)

dΨ
dy

= 0, (ik)Ψ =F (k), y= 0, (2.12.105ab)

where

F (k) =
1√
2π

a∫
−a

e−ikxf(x)dx. (2.12.106)

In view of the Fourier transform of (2.12.102), the bounded solution of
(2.12.104) is

Ψ(k, y)= (A+B|k|y) exp(−|k|y), (2.12.107)

whereA andB can be determined from (2.12.105ab) so thatA=B= (ik)−1F (k).
Consequently, the solution (2.12.107) becomes

Ψ(k, y)= (ik)−1(1 + |k|y)F (k) exp(−|k|y). (2.12.108)

The inverse Fourier transform gives the formal solution

ψ(x, y) =
1√
2π

∞∫
−∞

F (k)G(k) exp(ikx)dk, (2.12.109)
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where
G(k) = (ik)−1(1 + |k|y) exp(−|k|y)

so that

g(x) = F−1{G(k)}= F−1{(ik)−1 exp(−|k|y)}
+yF−1{(ik)−1|k| exp(−|k|y)}

= F−1
s {k−1 exp(−ky)} + yF−1

s {e−ky},
which is, by (2.13.7) and (2.13.8),

=

√
2
π

tan−1

(
x

y

)
+

√
2
π

xy

(x2 + y2)
. (2.12.110)

Using the Convolution Theorem 2.5.5 in (2.12.109) gives the final solution

ψ(x, y) =
1
π

∞∫
−∞

f(x− ξ)
[
tan−1

(
ξ

y

)
+

yξ

ξ2 + y2

]
dξ. (2.12.111)

In particular, if f(x) = δ(x), then solution (2.12.111) becomes

ψ(x, y) =
1
π

[
tan−1

(
x

y

)
+

xy

x2 + y2

]
. (2.12.112)

The velocity fields u and υ can be determined from (2.12.112).

Example 2.12.12
(Biharmonic Equation in Elasticity). We derive the biharmonic equation in
elasticity from the two-dimensional equilibrium equations and the compati-
bility condition. In two-dimensional elastic medium, the strain components
exx, exy, eyy in terms of the displacement functions (u, υ, 0) are

exx=
∂u

∂x
, eyy =

∂υ

∂y
, exy =

1
2

(
∂u

∂y
+
∂υ

∂x

)
. (2.12.113)

Differentiating these results gives the compatibility condition

∂2exx
∂y2

+
∂2eyy
∂x2

= 2
∂2exy
∂x∂y

. (2.12.114)

In terms of the Poisson ratio ν and Young’s modulus E of the elastic ma-
terial, the strain component in the z direction is expressed in terms of stress
components

Eezz = σzz − ν(σxx + σyy). (2.12.115)

In the case of plane strain, ezz = 0, so that

σzz = ν(σxx + σyy). (2.12.116)
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Substituting this result in other stress-strain relations, we obtain the strain
components exx, exy, eyy that are related to stress components σxx, σxy, σyy
by

Eexx = σxx − ν(σyy + σzz) = (1 − ν2)σxx − ν(1 + ν)σyy , (2.12.117)
Eeyy = σyy − ν(σxx + σzz) = (1 − ν2)σyy − ν(1 + ν)σxx, (2.12.118)
Eexy = (1 + ν)σxy. (2.12.119)

Putting (2.12.117)-(2.12.119) into (2.12.114) gives

∂2

∂y2
[σxx − ν(σyy + σzz)] +

∂2

∂x2
[σyy − ν(σxx + σzz)]

= 2(1 + ν)
∂2σxy
∂x∂y

. (2.12.120)

The basic differential equations for the stress components σxx, σyy, σxy in
the medium under the action of body forces X and Y are

∂σxx
∂x

+
∂σxy
∂y

+ ρX = ρ
∂2u

∂t2
, (2.12.121)

∂σxy
∂x

+
∂σyy
∂y

+ ρY = ρ
∂2υ

∂t2
, (2.12.122)

where ρ is the mass density of the elastic material.
The equilibrium equations follow from (2.12.121)–(2.12.122) in the absence

of the body forces (X =Y = 0) as

∂

∂x
σxx +

∂

∂y
σxy = 0, (2.12.123)

∂

∂x
σxy +

∂

∂y
σyy = 0. (2.12.124)

It is obvious that the expressions

σxx =
∂2χ

∂y2
, σxy =− ∂2χ

∂x∂y
, σyy =

∂2χ

∂x2
(2.12.125)

satisfy the equilibrium equations for any arbitrary function χ(x, y). Substi-
tuting from equations (2.12.125) into the compatibility condition (2.12.120),
we see that χ must satisfy the biharmonic equation

∂4χ

∂x4
+ 2

∂4χ

∂x2∂y2
+
∂4χ

∂y4
= 0, (2.12.126)

which may be written symbolically as

∇4χ= 0. (2.12.127)
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The function χ was first introduced by Airy in 1862 and is known as the
Airy stress function.

We determine the stress distribution in a semi-infinite elastic medium boun-
ded by an infinite plane at x= 0 due to an external pressure to its surface.
The x-axis is normal to this plane and assumed positive in the direction into
the medium. We assume that the external surface pressure p varies along the
surface so that the boundary conditions are

σxx =−p(y), σxy = 0 on x= 0 for all y in (−∞,∞). (2.12.128)

We derive solutions so that stress components σxx, σyy, and σxy all vanish
as x→∞.

In order to solve the biharmonic equation (2.12.127), we introduce the Fouri-
er transform χ̃(x, k) of the Airy stress function with respect to y so that
(2.12.127)–(2.12.128) reduce to (

d2

dx2
− k2

)2

χ̃= 0, (2.12.129)

k2χ̃(0, k)= p̃(k), (ik)
(
dχ̃

dx

)
x=0

= 0, (2.12.130)

where p̃(k) = F{p(y)}. The bounded solution of the transformed problem is

χ̃(x, k) = (A+Bx) exp(−|k|x), (2.12.131)

where A and B are constants of integration to be determined from (2.12.130).
It turns out that A= p̃(k)/k2 and B= p̃(k)/|k| and hence, the solution be-
comes

χ̃(x, k) =
p̃(k)
k2

{1 + |k|x} exp(−|k|x). (2.12.132)

The inverse Fourier transform yields the formal solution

χ(x, y) =
1√
2π

∞∫
−∞

p̃(k)
k2

(1 + |k|x) exp(iky− |k|x)dk. (2.12.133)

The stress components are obtained from (2.12.125) in the form

σxx(x, y) = − 1√
2π

∞∫
−∞

k2χ̃(x, k) exp(iky)dk, (2.12.134)

σxy(x, y) = − 1√
2π

∞∫
−∞

(ik)
(
dχ̃

dx

)
exp(iky)dk, (2.12.135)

σyy(x, y) =
1√
2π

∞∫
−∞

d2χ̃

dx2
exp(iky)dk, (2.12.136)
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where χ̃(x, k) are given by (2.12.132). In particular, if p(y) =Pδ(y) so that
p̃(k) =P (2π)−

1
2 . Consequently, from (2.12.133)–(2.12.136) we obtain

χ(x, y) =
P

2π

∞∫
−∞

k−2(1 + |k|x) exp(iky − |k|x)dk

=
P

π

∞∫
0

k−2(1 + kx) cos ky exp(−kx)dk. (2.12.137)

σxx = −P
π

∞∫
0

(1 + kx)e−kx cos ky dk=− 2Px3

π(x2 + y2)2
. (2.12.138)

σxy = −Px
π

∞∫
0

k sin ky exp(−kx)dk=− 2Px2y

π(x2 + y2)2
. (2.12.139)

σyy = −P
π

∞∫
0

(1 − kx) exp(−kx) cos ky dk=− 2Pxy2

π(x2 + y2)2
. (2.12.140)

Another physically realistic pressure distribution is

p(y)=PH(|a| − y), (2.12.141)

where P is a constant, so that

p̃(k) =

√
2
π

P

k
sin ak. (2.12.142)

Substituting this value for p̃(k) into (2.12.133)–(2.12.136), we obtain the in-
tegral expression for χ, σxx, σxy, and σyy.

It is noted here that if a point force of magnitude P0 acts at the origin
located on the boundary, then we put P = (P0/2a) in (2.12.142) and find

p̃(k) = lim
a→0

√
2
π

P0

2

(
sinak
ak

)
=

P0√
2π
. (2.12.143)

Thus, the stress components can also be written in this case.
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2.13 Fourier Cosine and Sine Transforms with Examples

The Fourier cosine integral formula (2.2.8) leads to the Fourier cosine trans-
form and its inverse defined by

Fc{f(x)}=Fc(k) =

√
2
π

∞∫
0

cos kx f(x)dx, (2.13.1)

F−1
c {Fc(k)}= f(x) =

√
2
π

∞∫
0

cos kxFc(k)dk, (2.13.2)

where Fc is the Fourier cosine transform operator and F−1
c is its inverse

operator.
Similarly, the Fourier sine integral formula (2.2.9) leads to the Fourier sine

transform and its inverse defined by

Fs{f(x)}=Fs(k) =

√
2
π

∞∫
0

sinkxf(x)dx, (2.13.3)

F−1
s {Fs(k)}= f(x) =

√
2
π

∞∫
0

sinkx Fs(k)dk, (2.13.4)

where Fs is the Fourier sine transform operator and F−1
s is its inverse.

Example 2.13.1
Show that

(a) Fc{e−ax}=

√
2
π

a

(a2 + k2)
, (a> 0). (2.13.5)

(b) Fs{e−ax}=

√
2
π

k

(a2 + k2)
, (a> 0). (2.13.6)

We have

Fc{e−ax} =

√
2
π

∞∫
0

e−ax cos kx dx

=
1
2

√
2
π

∞∫
0

[e−(a−ik)x + e−(a+ik)x]dx

Fc{e−ax} =
1
2

√
2
π

[
1

a− ik
+

1
a+ ik

]
=

√
2
π

a

(a2 + k2)
.
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The proof of the other result is similar and hence left to the reader.

Example 2.13.2

Show that

F−1
s

{
1
k

exp(−sk)
}

=

√
2
π

tan−1
(x
s

)
. (2.13.7)

We have the standard definite integral

√
π

2
F−1
s {exp(−sk)}=

∞∫
0

exp(−sk) sin kx dk=
x

s2 + x2
. (2.13.8)

Integrating both sides with respect to s from s to ∞ gives

∞∫
0

e−sk

k
sin kx dk =

∞∫
s

xds

x2 + s2
=
[
tan−1 s

x

]∞
s

=
π

2
− tan−1

( s
x

)
= tan−1

(x
s

)
. (2.13.9)

Thus,

F−1
s

{
1
k

exp(−sk)
}

=

√
2
π

∞∫
0

1
k

exp(−sk) sinxk dk

=

√
2
π

tan−1
(x
s

)
.

Example 2.13.3

Show that

Fs{erfc(ax)}=

√
2
π

1
k

[
1− exp

(
− k2

4a2

)]
. (2.13.10)

We have

Fs{erfc(ax)} =

√
2
π

∞∫
0

erfc(ax) sin kx dx

=
2
√

2
π

∞∫
0

sin kx dx

∞∫
ax

e−t
2
dt.
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Interchanging the order of integration, we obtain

Fs{erf(ax)} =
2
√

2
π

∞∫
0

exp(−t2)dt
t/a∫
0

sinkx dx

=
2
√

2
πk

∞∫
0

exp(−t2)
{

1− cos
(
kt

a

)}
dt

=
2
√

2
πk

[√
π

2
−

√
π

2
exp

(
− k2

4a2

)]
.

Thus,

Fs{erfc(ax)}=

√
2
π

1
k

[
1− exp

(
− k2

4a2

)]
.

2.14 Properties of Fourier Cosine and Sine Transforms

THEOREM 2.14.1
If Fc{f(x)}=Fc(k) and Fs{f(x)}=Fs(k), then

Fc{f(ax)}=
1
a
Fc

(
k

a

)
, a > 0. (2.14.1)

Fs{f(ax)}=
1
a
Fs

(
k

a

)
, a > 0. (2.14.2)

Under appropriate conditions, the following properties also hold:

Fc{f ′(x)} = k Fs(k)−
√

2
π
f(0), (2.14.3)

Fc{f ′′(x)} = −k2 Fc(k)−
√

2
π
f ′(0), (2.14.4)

Fs{f ′(x)} = −k Fc(k), (2.14.5)

Fs{f ′′(x)} = −k2 Fs(k) +

√
2
π
k f(0). (2.14.6)

These results can be generalized for the cosine and sine transforms of higher
order derivatives of a function. They are left as exercises.
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THEOREM 2.14.2
(Convolution Theorem for the Fourier Cosine Transform). If Fc{f(x)}=
Fc(k) and Fc{g(x)}=Gc(k), then

F−1
c {Fc(k)Gc(k)}=

1√
2π

∞∫
0

f(ξ)[g(x+ ξ) + g(|x− ξ|)]dξ. (2.14.7)

Or, equivalently,
∞∫
0

Fc(k)Gc(k) cos kx dk=
1
2

∞∫
0

f(ξ)[g(x+ ξ) + g(|x− ξ|)]dξ. (2.14.8)

PROOF Using the definition of the inverse Fourier cosine transform, we
have

F−1
c {Fc(k)Gc(k)} =

√
2
π

∞∫
0

Fc(k)Gc(k) cos kx dk

=
(

2
π

) ∞∫
0

Gc(k) cos kx dk

∞∫
0

f(ξ) cos kξ dξ.

Hence,

F−1
c {Fc(k)Gc(k)}=

(
2
π

) ∞∫
0

f(ξ)dξ

∞∫
0

cos kx cos kξ Gc(k)dk

=
1
2

√
2
π

∞∫
0

f(ξ)dξ

√
2
π

∞∫
0

[cos k(x+ ξ) + cos k(|x− ξ|)]Gc(k)dk

=
1√
2π

∞∫
0

f(ξ)[g(x+ ξ) + g(|x− ξ|)]dξ,

in which the definition of the inverse Fourier cosine transform is used. This
proves (2.14.7).

It also follows from the proof of Theorem 2.14.2 that
∞∫
0

Fc(k)Gc(k) cos kx dk=
1
2

∞∫
0

f(ξ)[g(x+ ξ) + g(|x− ξ|)]dξ.

This proves result (2.14.8).
Putting x= 0 in (2.14.8), we obtain

∞∫
0

Fc(k)Gc(k)dk=

∞∫
0

f(ξ)g(ξ)dξ =

∞∫
0

f(x)g(x)dx.
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Substituting g(x) = f(x) gives, since Gc(k) =Fc(k),

∞∫
0

|Fc(k)|2dk=

∞∫
0

|f(x)|2dx. (2.14.9)

This is the Parseval relation for the Fourier cosine transform.
Similarly, we obtain

∞∫
0

Fs(k)Gs(k) cos kx dk

=

√
2
π

∞∫
0

Gs(k) cos kx dk

∞∫
0

f(ξ) sin kξ dξ

which is, by interchanging the order of integration,

=

√
2
π

∞∫
0

f(ξ)dξ

∞∫
0

Gs(k) sin kξ cos kx dk

=
1
2

∞∫
0

f(ξ)dξ

√
2
π

∞∫
0

Gs(k)[sin k(ξ + x) + sin k(ξ − x)]dk

=
1
2

∞∫
0

f(ξ)[g(ξ + x) + g(ξ − x)]dξ,

in which the inverse Fourier sine transform is used. Thus, we find

∞∫
0

Fs(k)Gs(k) cos kx dk=
1
2

∞∫
0

f(ξ)[g(ξ + x) + g(ξ − x)]dξ. (2.14.10)

Or, equivalently,

F−1
c {Fs(k)Gs(k)}=

1√
2π

∞∫
0

f(ξ)[g(ξ + x) + g(ξ − x)]dξ. (2.14.11)

Result (2.14.10) or (2.14.11) is also called the Convolution Theorem of the
Fourier cosine transform.

Putting x= 0 in (2.14.10) gives

∞∫
0

Fs(k)Gs(k)dk=

∞∫
0

f(ξ)g(ξ)dξ=

∞∫
0

f(x)g(x)dx.
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Replacing g(x) by f(x) gives the Parseval relation for the Fourier sine trans-
form

∞∫
0

|Fs(k)|2dk=

∞∫
0

|f(x)|2dx. (2.14.12)

2.15 Applications of Fourier Cosine and Sine
Transforms to Partial Differential Equations

Example 2.15.1

(One-Dimensional Diffusion Equation on a Half Line). Consider the initial-
boundary value problem for the one-dimensional diffusion equation in 0<x<
∞ with no sources or sinks:

∂u

∂t
= κ

∂2u

∂x2
, 0<x<∞, t > 0, (2.15.1)

where κ is a constant, with the initial condition

u(x, 0)= 0, 0<x<∞, (2.15.2)

and the boundary conditions

(a) u(0, t)= f(t), t≥ 0, u(x, t)→ 0 as x→∞, (2.15.3)

or,
(b) ux(0, t) = f(t), t≥ 0, u(x, t)→ 0 as x→∞. (2.15.4)

This problem with the boundary conditions (2.15.3) is solved by using the
Fourier sine transform

Us(k, t) =

√
2
π

∞∫
0

sin kx u(x, t) dx.

Application of the Fourier sine transform gives

dUs
dt

= −κ k2Us(k, t) +

√
2
π
κ k f(t), (2.15.5)

Us(k, 0) = 0. (2.15.6)
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The bounded solution of this differential system with Us(k, 0)= 0 is

Us(k, t) =

√
2
π
κ k

t∫
0

f(τ) exp[−κ(t− τ)k2] dτ. (2.15.7)

The inverse transform gives the solution

u(x, t) =

√
2
π
κ

t∫
0

f(τ)F−1
s {k exp[−κ(t− τ)k2]}dτ

=
x√
4πκ

t∫
0

f(τ) exp
[
− x2

4κ(t− τ)

]
dτ

(t− τ)3/2
(2.15.8)

in which F−1
s {k exp(−tκk2)}= x

2
√

2
· exp(−x2/4κt)

(κt)3/2 is used.

In particular, f(t) =T0 = constant, (2.15.7) reduces to

Us(k, t) =

√
2
π

T0

k
[1 − exp(−κ t k2)]. (2.15.9)

Inversion gives the solution

u(x, t) =
(

2T0

π

) ∞∫
0

sin kx
k

[1 − exp(−κ t k2)]dk. (2.15.10)

Making use of the integral

∞∫
0

e−k
2a2 sin kx

k
dk=

π

2
erf

( x
2a

)
, (2.15.11)

the solution becomes

u(x, t) =
2T0

π

[
π

2
− π

2
erf

(
x

2
√
κt

)]
= T0 erfc

(
x

2
√
κt

)
, (2.15.12)

where the error function, erf (x) is defined by

erf (x) =
2√
π

x∫
0

e−α
2
dα, (2.15.13)
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so that

erf (0) = 0, erf (∞) =
2√
π

∞∫
0

e−α
2
dα= 1, and erf (−x) =−erf (x),

and the complementary error function, erfc(x) is defined by

erfc(x) = 1 − erf (x) =
2√
π

∞∫
x

e−α
2
dα, (2.15.14)

so that
erfc(x) = 1 − erf(x), erfc(0) = 1, erfc(∞) = 0,

and
erfc(−x) = 1− erf (−x) = 1 + erf (x) = 2− erfc(x).

Equation (2.15.1) with boundary condition (2.15.4) is solved by the Fourier
cosine transform

Uc(k, t) =

√
2
π

∞∫
0

cos kxu(x, t)dx.

Application of this transform to (2.15.1) gives

dUc
dt

+ κk2Uc =−
√

2
π
κf(t). (2.15.15)

The solution of (2.15.15) with Uc(k, 0) = 0 is

Uc(k, t) =−
√

2
π
κ

t∫
0

f(τ) exp[−k2κ(t− τ)]dτ. (2.15.16)

Since

F−1
c {exp(−tκk2)}=

1√
2κt

exp
(
− x2

4κt

)
, (2.15.17)

the inverse Fourier cosine transform gives the final form of the solution

u(x, t) =−
√
κ

π

t∫
0

f(τ)√
t− τ

exp
[
− x2

4κ(t− τ)

]
dτ. (2.15.18)

Example 2.15.2
(The Laplace Equation in the Quarter Plane). Solve the Laplace equation

uxx + uyy = 0, 0<x, y <∞, (2.15.19)
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with the boundary conditions

u(0, y)= a, u(x, 0) = 0, (2.15.20a)

∇u→ 0 as r=
√
x2 + y2 →∞, (2.15.20b)

where a is a constant.
We apply the Fourier sine transform with respect to x to find

d2Us
dy2

− k2 Us +

√
2
π
ka= 0.

The solution of this inhomogeneous equation is

Us(k, y) =Ae−ky +

√
2
π
· a
k
,

where A is a constant to be determined from Us(k, 0) = 0. Consequently,

Us(k, y)=
a

k

√
2
π

(1 − e−ky). (2.15.21)

The inverse transformation gives the formal solution

u(x, y) =
2a
π

∞∫
0

1
k

(1 − e−ky) sin kx dk

Or,

u(x, y) =
2a
π

⎡⎣ ∞∫
0

sin kx
k

dk −
∞∫
0

1
k
e−ky sin kx dk

⎤⎦
= a− 2a

π

(π
2
− tan−1 y

x

)
=

2a
π

tan−1
(y
x

)
, (2.15.22)

in which (2.13.9) is used.

Example 2.15.3
(The Laplace Equation in a Semi-Infinite Strip with the Dirichlet Data). Solve
the Laplace equation

uxx + uyy = 0, 0<x<∞, 0<y< b, (2.15.23)

with the boundary conditions

u(0, y) = 0, u(x, y)→ 0 as x→∞ for 0<y< b (2.15.24)
u(x, b) = 0, u(x, 0)= f(x) for 0<x<∞. (2.15.25)
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In view of the Dirichlet data, the Fourier sine transform with respect to
x can be used to solve this problem. Applying the Fourier sine transform to
(2.15.23)–(2.15.25) gives

d2 Us
dy2

− k2Us = 0, (2.15.26)

Us(k, b) = 0, Us(k, 0)=Fs(k). (2.15.27)

The solution of (2.15.26) with (2.15.27) is

Us(k, y) =Fs(k)
sinh[k(b− y)]

sinh kb
. (2.15.28)

The inverse Fourier sine transform gives the formal solution

u(x, y) =

√
2
π

∞∫
0

Fs(k)
sinh[k(b− y)]

sinh kb
sin kx dk

=
2
π

∞∫
0

⎡⎣ ∞∫
0

f(l) sinkl dl

⎤⎦ sinh[k(b− y)]
sinh kb

sin kx dk. (2.15.29)

In the limit as kb→∞, sinh[k(b−y)]
sinh kb ∼ exp(−ky), hence the above problem re-

duces to the corresponding problem in the quarter plane, 0<x<∞, 0<y<
∞. Thus, solution (2.15.29) becomes

u(x, y) =
2
π

∞∫
0

f(l)dl

∞∫
0

sin kl sin kx exp(−ky)dk

=
1
π

∞∫
0

f(l)dl

∞∫
0

{cos k(x− l)− cos k(x+ l)} exp(−ky)dk

=
1
π

∞∫
0

f(l)
[

y

(x− l)2 + y2
− y

(x+ l)2 + y2

]
dl. (2.15.30)

This is the exact integral solution of the problem. If f(x) is an odd function
of x, then solution (2.15.30) reduces to the solution (2.12.10) of the same
problem in the half plane.

2.16 Evaluation of Definite Integrals

The Fourier transform can be employed to evaluate certain definite integrals.
Although the method of evaluation may not be very rigorous, it is quite simple
and straightforward. The method can be illustrated by means of examples.
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Example 2.16.1
Evaluate the integral

I(a, b) =

∞∫
−∞

dx

(x2 + a2)(x2 + b2)
, a> 0, b> 0. (2.16.1)

If we write f(x) = e−a|x| and g(x) = e−b|x| then F (k) =
√

2
π

a
(k2+a2) , G(k) =√

2
π

b
(k2+b2) . The Convolution Theorem 2.5.5 gives (2.5.19), that is,

∞∫
−∞

F (k)G(k)dk=

∞∫
−∞

f(x)g(−x)dx.

Or, equivalently,
∞∫

−∞

dk

(k2 + a2)(k2 + b2)
=

π

2ab

∞∫
−∞

e−|x|(a+b)dx

=
π

ab

∞∫
0

e−(a+b)xdx=
π

ab(a+ b)
. (2.16.2)

This is the desired result.
Further ∞∫

0

dx

(x2 + a2)(x2 + b2)
=

π

2ab(a+ b)
. (2.16.3)

Example 2.16.2
Show that ∞∫

0

x−pdx
(a2 + x2)

=
π

2
a−(p+1) sec

(πp
2

)
. (2.16.4)

We write

f(x) = e−ax so that Fc(k) =

√
2
π

a

(a2 + k2)
.

g(x) = xp−1 so that Gc(k) =

√
2
π
k−pΓ(p) cos

(πp
2

)
.

Using Parseval’s result for the Fourier cosine transform gives
∞∫
0

Fc(k)Gc(k)dk=

∞∫
0

f(x)g(x)dx.
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Or,

2a
π

cos
(πp

2

)
Γ(p)

∞∫
0

k−pdk
k2 + a2

=

∞∫
0

xp−1e−axdx

=
1
ap

∞∫
0

e−ttp−1dt =
Γ(p)
ap

, (ax= t).

Thus,
∞∫
0

k−pdk
a2 + k2

=
π

2 ap+1
sec

(πp
2

)
.

Example 2.16.3
If a> 0, b > 0, show that

∞∫
0

x2 dx

(a2 + x2)(b2 + x2)
=

π

2(a+ b)
. (2.16.5)

We consider

Fs{e−ax}=

√
2
π

k

k2 + a2
=Fs(k)

Fs{e−bx}=

√
2
π

k

k2 + b2
=Gs(k).

Then the Convolution Theorem for the Fourier cosine transform gives

∞∫
0

Fs(k)Gs(k) cos kx dk=
1
2

∞∫
0

g(ξ)[f(ξ + x) + f(ξ − x)]dξ.

Putting x= 0 gives

∞∫
0

Fs(k)Gs(k)dk=

∞∫
0

g(ξ)f(ξ)dξ,

or,
∞∫
0

k2 dk

(k2 + a2)(k2 + b2)
=
π

2

∞∫
0

e−(a+b)ξdξ=
π

2(a+ b)
.
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Example 2.16.4
Show that ∞∫

0

x2dx

(x2 + a2)4
=

π

(2a)5
, a > 0. (2.16.6)

We write f(x) = 1
2(x2+a2) so that f ′(x) =− x

(x2+a2)2 , and F{f(x)}=F (k) =√
π
2

(
1
2a

)
exp(−a|k|).

Making reference to the Parseval relation (2.4.19), we obtain

∞∫
−∞

|f ′(x)|2dx=

∞∫
−∞

|F{f ′(x)}|2dk=

∞∫
−∞

|(ik)F{f(x)}|2dk.

Thus,

∞∫
−∞

x2

(x2 + a2)4
dx =

π

2

∞∫
−∞

k2 · 1
(2a)2

exp(−2a|k|)dk

=
π

(2a)2

∞∫
0

k2 exp(−2ak)dk=
2π

(2a)5
.

This gives the desired result.

2.17 Applications of Fourier Transforms
in Mathematical Statistics

In probability theory and mathematical statistics, the characteristic function
of a random variable is defined by the Fourier transform or by the Fourier-
Stieltjes transform of the distribution function of a random variable. Many
important results in probability theory and mathematical statistics can be
obtained, and their proofs can be simplified with rigor by using the methods
of characteristic functions. Thus, the Fourier transforms play an important
role in probability theory and mathematical statistics.

DEFINITION 2.17.1 (Distribution Function). The distribution function
F (x) of a random variable X is defined as the probability, that is, F (x) =
P (X <x) for every real number x.

It is immediately evident from this definition that the distribution function
satisfies the following properties:
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(i) F (x) is a non-decreasing function, that is, F (x1)≤F (x2) if x1 <x2.

(ii) F (x) is continuous only from the left at a point x, that is, F (x− 0)=
F (x), but F (x+ 0) �=F (x).

(iii) F (−∞) = 0 and F (+∞)= 1.

If X is a continuous variable and if there exists a non-negative function
f(x) such that for every real x the following relation holds:

F (x) =

x∫
−∞

f(x)dx, (2.17.1)

where F (x) is the distribution function of the random variable X , then the
function f(x) is called the probability density or simply the density function
of the random variable X .

It is immediately obvious that every density function f(x) satisfies the
following properties:

(i)

F (+∞) =

∞∫
−∞

f(x)dx= 1. (2.17.2a)

(ii) For every real a and b where a< b,

P (a≤X ≤ b) =F (b)− F (a) =

b∫
a

f(x)dx. (2.17.2b)

(iii) If f(x) is continuous at some point x, then F ′(x) = f(x).

It is noted that every real function f(x) which is non-negative, and in-
tegrable over the whole real line and satisfies (2.17.2ab), is the probability
density function of a continuous random variable X . On the other hand, the
function F (x) defined by (2.17.1) satisfies all properties of a distribution func-
tion.

DEFINITION 2.17.2 (Characteristic Function). If X is a continuous
random variable with the density function f(x), then the characteristic func-
tion, φ(t) of the random variable X or of the distribution function F (x) is
defined by the formula

φ(t) =E(exp(itX))=

∞∫
−∞

f(x) exp(itx)dx, (2.17.3)
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where E[g(X)] is called the expected value of the random variable g(X).
In problems of mathematical statistics, it is convenient to define the Fourier

transform of f(x) and its inverse in a slightly different way by

F{f(x)} = φ(t) =

∞∫
−∞

exp(itx)f(x)dx, (2.17.4)

F−1{φ(t)} = f(x) =
1
2π

∞∫
−∞

exp(−itx)φ(t)dt. (2.17.5)

Evidently, the characteristic function of F (x) is the Fourier transform of the
density function f(x). The Fourier transform of the distribution function fol-
lows from the fact that

F{F ′(x)}= F{f(x)}=φ(t),

or,
F{F (x)}= it−1φ(t). (2.17.6)

The composition of two distribution functions F1(x) and F2(x) is defined by

F (x) =F1(x) ∗ F2(x) =

∞∫
−∞

F1(x− y)F ′
2(y)dy. (2.17.7)

Thus, the Fourier transform of (2.17.7) gives

i t−1φ(t) = F

⎧⎨⎩
∞∫

−∞
F1(x− y)F ′

2(y)dy

⎫⎬⎭
= F{F1(x)}F{f2(x)}= it−1φ1(t)φ2(t),

whence an important result follows:

φ(t) =φ1(t)φ2(t), (2.17.8)

where φ1(t) and φ2(t) are the characteristic functions of the distribution func-
tions F1(x) and F2(x) respectively.

The nth moment of a random variable X is defined by

mn =E[Xn] =

∞∫
−∞

xnf(x)dx, n= 1, 2, 3, . . . . (2.17.9)

provided this integral exists. The first moment m1 (or simply m) is called the
expectation of X and has the form

m=E(X) =

∞∫
−∞

x f(x)dx. (2.17.10)
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Thus, the moment of any order n is calculated by evaluating the integral
(2.17.9). However, the evaluation of the integral is, in general, a difficult task.
This difficulty can be resolved with the help of the characteristic function
defined by (2.17.4). Differentiating (2.17.4) n times and putting t= 0 gives a
fairly simple formula

mn =

∞∫
−∞

xnf(x)dx= (−i)nφ(n)(0), (2.17.11)

where n= 1, 2, 3, . . . .
When n= 1, the expectation of a random variable X becomes

m1 =E(X) =

∞∫
−∞

xf(x)dx= (−i)φ′(0). (2.17.12)

Thus, the simple formula (2.17.11) involving the derivatives of the character-
istic function provides for the existence and the computation of the moment
of any arbitrary order.

Similarly, the variance σ2 of a random variable is given in terms of the
characteristic function as

σ2 =

∞∫
−∞

(x−m)2f(x)dx=m2 −m2
1

= {φ′(0)}2 − φ′′(0). (2.17.13)

Example 2.17.1
Find the moments of the normal distribution defined by the density function

f(x) =
1

σ
√

2π
exp

{
− (x−m)2

2σ2

}
. (2.17.14)

The characteristic function of the normal distribution is the Fourier transform
of f(x), which is

φ(t) =
1

σ
√

2π

∞∫
−∞

eitx exp
[
− (x−m)2

2σ2

]
dx.

We substitute x−m= y and use Example 2.3.1 to obtain

φ(t) =
exp(itm)
σ
√

2π

∞∫
−∞

eity exp
(
− y2

2σ2

)
dy= exp

(
itm− 1

2
t2σ2

)
. (2.17.15)
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Thus,

m1 = (−i)φ′(0) =m,

m2 = −φ′′(0) = (m2 + σ2),
m3 = m(m2 + 3σ2).

Finally, the variance of the normal distribution is

m2 −m2
1 = σ2. (2.17.16)

The above discussion reveals that characteristic functions are very useful
for investigation of certain problems in mathematical statistics. We close this
section by discussing more properties of characteristic functions.

THEOREM 2.17.1
(Addition Theorem). The characteristic function of the sum of a finite number
of independent random variables is equal to the product of their characteristic
functions.

PROOF Suppose X1, X2, . . . , Xn are n independent random variables and
Z =X1 +X2 + · · ·+Xn. Further, suppose φ1(t), φ2(t), . . . , φn(t), and φ(t) are
the characteristic functions of X1, X2, . . . , Xn and Z respectively.

Then we have

φ(t) =E[exp(itZ)] =E [exp {it (X1 +X2 + · · ·+Xn)}] ,

which is, by the independence of the random variables,

= E(eitX1 )E(eitX2 ) · · ·E(eitXn)
= φ1(t)φ2(t) · · ·φn(t). (2.17.17)

This proves the Addition Theorem.

Example 2.17.2
Find the expected value and the standard deviation of the sum of n indepen-
dent normal random variables.

Suppose X1, X2, . . . , Xn are n independent random variables with the nor-
mal distributions N(mr, σr), where r= 1, 2, . . . , n. The respective character-
istic functions of these distributions are

φr(t) = exp
[
itmr − 1

2
t2σ2

r

]
, r= 1, 2, 3, . . . , n. (2.17.18)



© 2007 by Taylor & Francis Group, LLC

108 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

Because of the independence ofX1, X2, . . . , Xn, the random variable Z =X1 +
X2 + · · ·+Xn has the characteristic function

φ(t) = φ1(t)φ2(t) · · ·φn(t)

= exp
[
it(m1 +m2 + · · ·+mn)− 1

2
(σ2

1 + σ2
2 + · · ·+ σ2

n)t2
]
. (2.17.19)

This represents the characteristic function of the normal distribution N(m1 +
· · ·+mn,

√
σ2

1 + · · ·+ σ2
n). Thus, the expected value of Z is (m1 +m2 + · · ·+

mn) and its standard deviation is (σ2
1 + σ2

2 + · · ·+ σ2
n)

1
2 .

Finally, we state the fundamental Central Limit Theorems without proof.

THEOREM 2.17.2

(The Lévy-Cramér Theorem). Suppose {Xn} is a sequence of random vari-
ables, Fn(x) and φn(t) are respectively the distribution and characteristic
functions of Xn. Then the sequence {Fn(x)} is convergent to a distribution
function F (x) if and only if the sequence {φn(t)} is convergent at every point
t on the real line to a function φ(t) continuous in some neighborhood of the
origin. The limit function φ(t) is then the characteristic function of the limit
distribution function F (x), and the convergence φn(t)→ φ(t) is uniform in
every finite interval on the t-axis.

THEOREM 2.17.3

(The Central Limit Theorem in Probability). Supose f(x) is a nonnegative
absolutely integrable function in R and has the following properties:

∞∫
−∞

f(x) dx= 1,

∞∫
−∞

x f(x) dx= 1,

∞∫
−∞

x2 f(x) dx= 1.

If fn = f ∗ f ∗ ... ∗ f is the convolution product of f with itself n times, then

lim
n→∞

b
√
n∫

a
√
n

fn(x) dx=
1√
2π

b∫
a

e−x
2
dx −∞<a< b<∞. (2.17.20)

For a proof of the theorem, we refer the reader to Chandrasekharan (1989).

All these ideas developed in this section can be generalized for the multi-
dimensional distribution functions by the use of multiple Fourier transforms.
We refer interested readers to Lukacs (1960).
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2.18 Multiple Fourier Transforms and Their
Applications

DEFINITION 2.18.1 Under the assumptions on f(x) similar to those
made for the one dimensional case, the multiple Fourier transform of f(x),
where x= (x1, x2, . . . , xn) is the n-dimensional vector, is defined by

F{f(x)}=F (κ) =
1

(2π)n/2

∞∫
−∞

· · ·
∞∫

−∞
exp{−i(κ · x)}f(x)dx, (2.18.1)

where κ = (k1, k2, . . . , kn) is the n-dimensional transform vector and κ · x=
(k1x1 + k2x2 + · · ·+ knxn).

The inverse Fourier transform is similarly defined by

F−1{F (κ)}= f(x) =
1

(2π)n/2

∞∫
−∞

· · ·
∞∫

−∞
exp{i(κ · x)}F (κ) dκ. (2.18.2)

In particular, the double Fourier transform is defined by

F{f(x, y)}=F (k, �) =
1
2π

∞∫
−∞

∞∫
−∞

exp{−i(κ · r)} f(x, y) dxdy, (2.18.3)

where r= (x, y) and κ = (k, �).
The inverse Fourier transform is given by

F−1{F (k, �)}= f(x, y) =
1
2π

∞∫
−∞

∞∫
−∞

exp{i(κ · r)}F (k, �) dk d�. (2.18.4)

Similarly, the three-dimensional Fourier transform and its inverse are de-
fined by the integrals

F{f(x, y, z)}=F (k, �,m)

=
1

(2π)3/2

∞∫
−∞

∞∫
−∞

∞∫
−∞

exp{−i(κ · r)} f(x, y, z) dx dy dz, (2.18.5)

F−1{F (k, �,m)}= f(x, y, z)

1
(2π)3/2

∞∫
−∞

∞∫
−∞

∞∫
−∞

exp{i(κ · r)}F (k, �,m) dk d� dm. (2.18.6)
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The operational properties of these multiple Fourier transforms are similar
to those of the one-dimensional case. In particular, results (2.4.7) and (2.4.8)
relating the Fourier transforms of derivatives to the Fourier transforms of
given functions are valid for the higher dimensional case as well. In higher
dimensions, they are applied to the transforms of partial derivatives of f(x)
under the assumptions that f and its partial derivatives vanish at infinity.

We illustrate the multiple Fourier transform method by the following ex-
amples of applications:

Example 2.18.1

(The Dirichlet Problem for the Three-Dimensional Laplace Equation in the
Half-Space). The boundary value problem for u(x, y, z) satisfies the following
equation and boundary conditions:

∇2u≡ uxx + uyy + uzz = 0, −∞<x, y <∞, z > 0, (2.18.7)
u(x, y, 0)= f(x, y) −∞<x, y <∞ (2.18.8)

u(x, y, z)→ 0 as r=
√
x2 + y2 + z2 →∞. (2.18.9)

We use the double Fourier transform defined by (2.18.3) to the system
(2.18.7)–(2.18.9) which reduces to

d2U

dz2
− κ2U = 0 for z > 0, (κ2 = k2 + l2)

U(k, �, 0) = F (k, �).

Thus, the solution of this transformed problem is

U(k, �, z)=F (k, �) exp(−|κ|z) =F (k, �)G(k, �), (2.18.10)

where κ = (k, �) and G(k, �) = exp(−|κ|z) so that

g(x, y) = F−1{exp(−|κ|z)}=
z

(x2 + y2 + z2)3/2
. (2.18.11)

Applying the Convolution Theorem to (2.18.10), we obtain the formal solution

u(x, y, z) =
1
2π

∞∫
−∞

∞∫
−∞

f(ξ, η)g(x− ξ, y− η, z) dξ dη

=
z

2π

∞∫
−∞

∞∫
−∞

f(ξ, η) dξ dη
[(x− ξ)2 + (y − η)2 + z2]3/2

. (2.18.12)
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Example 2.18.2
(The Two-Dimensional Diffusion Equation). We solve the two-dimensional
diffusion equation

ut =K∇2u, −∞<x, y <∞, t > 0, (2.18.13)

with the initial and boundary conditions

u(x, y, 0)= f(x, y) −∞<x, y <∞, (2.18.14)

u(x, y, t)→ 0 as r=
√
x2 + y2 →∞, (2.18.15)

where K is the diffusivity constant.
The double Fourier transform of u(x, y, t) defined by (2.18.3) is used to

reduce the system (2.18.13)–(2.18.14) into the form

dU

dt
= −κ2KU, t> 0,

U(k, �, 0) = F (k, �).

The solution of this system is

U(k, �, t)=F (k, �) exp(−tKκ2) =F (k, �)G(k, �), (2.18.16)

where
G(k, �) = exp(−Kκ2t),

so that

g(x, y) = F−1{exp(−tKκ2)}=
1

2Kt
exp

(
−x

2 + y2

4Kt

)
. (2.18.17)

Finally, the Convolution Theorem gives the formal solution

u(x, y, t) =
1

4πKt

∞∫
−∞

∞∫
−∞

f(ξ, η) exp
[
− (x− ξ)2 + (y − η)2

4Kt

]
dξ dη. (2.18.18)

Or, equivalently,

u(x, y, t) =
1

4πKt

∞∫
−∞

∞∫
−∞

f(r′) exp
{
−|r− r′|2

4Kt

}
dr′, (2.18.19)

where r′ = (ξ, η).
We make the change of variable (r′ − r) =

√
4KtR to reduce (2.18.19) in

the form

u(x, y, t) =
1

π
√

4Kt

∞∫
−∞

∞∫
−∞

f(r +
√

4KtR) exp(−R2) dR. (2.18.20)
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Similarly, the formal solution of the initial value problem for the three-dimensional
diffusion equation

ut =K(uxx + uyy + uzz), −∞<x, y, z <∞, t > 0 (2.18.21)
u(x, y, z, 0)= f(x, y, z), −∞<x, y, z <∞ (2.18.22)

is given by

u(x, y, z, t)=
1

(4πKt)3/2

∫ ∞∫
−∞

∫
f(ξ, η, ζ) exp

(
− r2

4Kt

)
dξ dη dζ, (2.18.23)

where
r2 = (x− ξ)2 + (y − η)2 + (z − ζ)2.

Or, equivalently,

u(x, y, z, t)=
1

(4πKt)3/2

∫ ∞∫
−∞

∫
f(r′) exp

{
−|r− r′|2

4Kt

}
dξ dη dζ, (2.18.24)

where r= (x, y, z) and r′ = (ξ, η, ζ).
Making the change of variable r′ − r=

√
4tKR, solution (2.18.24) reduces

to

u(x, y, z, t)=
1

π3/24Kt

∫ ∞∫
−∞

∫
f(r +

√
4KtR) exp(−R2) dR. (2.18.25)

This is known as the Fourier solution.

Example 2.18.3
(The Cauchy Problem for the Two-Dimensional Wave Equation). The initial
value problem for the wave equation in two dimensions is governed by

utt = c2(uxx + uyy), −∞<x, y <∞, t > 0, (2.18.26)

with the initial data

u(x, y, 0)= 0, ut(x, y, 0) = f(x, y), −∞<x, y <∞, (2.18.27ab)

where c is a constant. We assume that u and its first partial derivatives vanish
at infinity.

We apply the two-dimensional Fourier transform defined by (2.18.3) to the
system (2.18.26)–(2.18.27ab), which becomes

d2U

dt2
+ c2κ2U = 0, κ2 = k2 + �2,

U(k, �, 0) = 0,
(
dU

dt

)
t=0

=F (k, �).
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The solution of this transformed system is

U(k, �, t)=F (k, �)
sin(cκt)
cκ

. (2.18.28)

The inverse Fourier transform gives the formal solution

u(x, y, t) =
1

2πc

∞∫
−∞

∫
exp(iκ · r) sin(cκt)

κ
F (κ)dκ (2.18.29)

=
1

4iπc

∞∫
−∞

∞∫
−∞

F (κ)
κ

[
exp

{
iκ
(κ · r

κ
+ ct

)}
−exp

{
iκ
(κ · r

κ
− ct

)}]
dκ. (2.18.30)

The form of this solution reveals an interesting feature of the wave equation.
The exponential terms exp

{
iκ
(
ct± κ·r

κ

)}
involved in the integral solution

(2.18.30) represent plane wave solutions of the wave equation (2.18.26). Thus,
the solutions remain constant on the planes κ · r= constant that move par-
allel to themselves with velocity c. Evidently, solution (2.18.30) represents a
superposition of the plane wave solutions traveling in all possible directions.

Similarly, the solution of the Cauchy problem for the three-dimensional
wave equation

utt = c2(uxx + uyy + uzz), −∞<x, y, z <∞, t > 0, (2.18.31)

u(x, y, z, 0)= 0, ut(x, y, z, 0)= f(x, y, z), −∞<x, y, z <∞ (2.18.32ab)

is given by

u(r, t) =
1

2ic(2π)3/2

∫ ∞∫
−∞

∫
F (κ)
κ

[
exp

{
iκ
(κ · r

κ
+ ct

)}

−exp
{
iκ
(κ · r

κ
− ct

)}]
dκ, (2.18.33)

where r= (x, y, z) and κ = (k, �,m).
In particular, when f(x, y, z)= δ(x)δ(y)δ(z) so that F (κ) = (2π)−3/2, solu-

tion (2.18.33) becomes

u(r, t) =
1

(2π)3

∫ ∞∫
−∞

∫ (
sin cκt
cκ

)
exp(i(κ · r))dκ. (2.18.34)

In terms of the spherical polar coordinates (κ, θ, φ) where the polar axis (the
z-axis) is taken along the r direction with κ · r= κr cos θ, we write (2.18.34)
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in the form

u(r, t) =
1

(2π)3

2π∫
0

dφ

π∫
0

dθ

∞∫
0

exp(iκr cos θ)
sin cκt
cκ

· κ2 sin θ dκ

=
1

2π2cr

∞∫
0

sin(cκt) sin(κr) dκ

=
1

8π2cr

∞∫
−∞

[eiκ(ct−r) − eiκ(ct+r)] dκ.

Or,

u(r, t) =
1

4πcr
[δ(ct− r) − δ(ct+ r)]. (2.18.35)

For t > 0, ct+ r > 0 so that δ(ct+ r) = 0 and hence,

u(r, t) =
1

4πcr
δ(ct− r) =

1
4πc2r

δ(t− r

c
). (2.18.36)

Example 2.18.4
(The Three-Dimensional Poisson Equation). The solution of the Poisson e-
quation

−∇2u= f(r), (2.18.37)

where r= (x, y, z) is given by

u(r) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

G(r, ξ)f(ξ)dξ, (2.18.38)

where the Green’s function G(r, ξ) of the operator, −∇2, is

G(r, ξ) =
1
4π

1
|r− ξ| . (2.18.39)

To obtain the fundamental solution, we need to solve the equation

−∇2 G(r, ξ) = δ(x− ξ)δ(y − η)δ(z − ζ), r �= ξ. (2.18.40)

Application of the three-dimensional Fourier transform defined by (2.18.5)
to (2.18.40) gives

κ2 Ĝ(κ, ξ) =
1

(2π)3/2
exp(−iκ · ξ), (2.18.41)
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where Ĝ(κ, ξ) = F{G(r, ξ)} and κ = (k, �,m).
The inverse Fourier transform gives the formal solution

G(r, ξ) =
1

(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

exp{iκ · (r− ξ)}dκ
κ2

=
1

(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

exp(iκ · x)
dκ

κ2
, (2.18.42)

where x= |r− ξ|.
We evaluate this integral using polar coordinates in the κ-space with the

axis along the x-axis. In terms of spherical polar coordinates (κ, θ, φ) so that
κ · x= κR cos θ where R= |x|. Thus, (2.18.42) becomes

G(r, ξ) =
1

(2π)3

2π∫
0

dφ

π∫
0

dθ

∞∫
0

exp(iκR cos θ)κ2 sin θ · dκ
κ2

=
1

(2π)2

∞∫
0

2
sin (κR)
κR

dκ=
1

4πR
=

1
4π|r− ξ| , (2.18.43)

provided R> 0.
In electrodynamics, the fundamental solution (2.18.43) has a well-known

interpretation. Physically, it represents the potential at point r generated by
the unit point charge distribution at point ξ. This is what can be expected
because δ(r− ξ) is the charge density corresponding to a unit point charge at
ξ.

The solution of (2.18.37) is then given by

u(r) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

G(r, ξ)f(ξ)dξ =
1
4π

∞∫
−∞

∞∫
−∞

∞∫
−∞

f(ξ)dξ
|r− ξ| . (2.18.44)

The integrand in (2.18.44) consists of the given charge distribution f(r) at
r= ξ and Green’s function G(r, ξ). Physically, G(r, ξ) f(ξ) represents the re-
sulting potentials due to elementary point charges, and the total potential due
to a given charge distribution f(r) is then obtained by the integral superpo-
sition of the resulting potentials. This is called the principle of superposition.

Example 2.18.5
(The Two-Dimensional Helmholtz Equation). To find the fundamental solu-
tion of the two-dimensional Helmholtz equation

−∇2G+ α2G= δ(x− ξ)δ(y − η), −∞<x, y <∞. (2.18.45)



© 2007 by Taylor & Francis Group, LLC

116 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

It is convenient to make the change of variables x− ξ= x∗, y − η= y∗.
Consequently, (2.18.45) reduces to the form, dropping the asterisks,

Gxx +Gyy − α2G=−δ(x)δ(y). (2.18.46)

Application of the double Fourier transform Ĝ(κ) = F{G(x, y)} to (2.18.46)
gives

Ĝ(κ) =
1
2π

1
(κ2 + α2)

, (2.18.47)

where κ = (k, �) and κ2 = k2 + �2.
The inverse Fourier transform yields the solution

G(x, y) =
1

4π2

∞∫
−∞

∞∫
−∞

(κ2 + α2)−1 exp(iκ · x) dk d�. (2.18.48)

In terms of polar coordinates (x, y) = r(cos θ, sin θ), (k, �) = ρ(cosφ, sinφ), the
integral solution (2.18.48) becomes

G(x, y) =
1

4π2

∞∫
0

ρdρ

(ρ2 + α2)

2π∫
0

exp{irρ cos(φ− θ)}dφ,

which is, replacing the second integral by 2πJ0(rρ),

=
1
2π

∞∫
0

ρ J0(rρ)dρ
(ρ2 + α2)

. (2.18.49)

In terms of the original coordinates, the fundamental solution of (2.18.45) is
given by

G(r, ξ) =
1
2π

∞∫
0

ρ J0

[
ρ
{
(x− ξ)2 + (y − η)2

} 1
2
]
dρ

(ρ2 + α2)
. (2.18.50)

Accordingly, the solution of the inhomogeneous equation

(∇2 − α2)u=−f(x, y) (2.18.51)

is

u(x, y) =
∫ ∞

−∞

∫
G(r, ξ)f(ξ)dξ, (2.18.52)

where G(r, ξ) is given by (2.18.50).
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Since the integral solution (2.18.49) does not exist for α= 0, Green’s func-
tion for the two-dimensional Poisson equation (2.18.51) cannot be derived
from (2.18.49). Instead, we differentiate (2.18.49) with respect to r to obtain

∂G

∂r
=

1
2π

∞∫
0

ρ2J ′
0(rρ)dρ

(ρ2 + α2)

which is, for α= 0,

∂G

∂r
=

1
2π

∞∫
0

J ′
0(rρ)dρ=− 1

2πr
.

Integrating this result gives

G(r, θ) =− 1
2π

log r.

In terms of the original coordinates, the Green’s function becomes

G(r, ξ) =− 1
4π

log[(x− ξ)2 + (y − η)2]. (2.18.53)

This is Green’s function for the two-dimensional Poisson equation ∇2 =−f(x, y).
Thus, the solution of the Poisson equation is

u(x, y) =

∞∫
−∞

∞∫
−∞

G(r, ξ)f(ξ)dξ. (2.18.54)

Example 2.18.6
(Diffusion of Vorticity from a Vortex Sheet). We solve the two-dimensional
vorticity equation in the x, y plane given by

ζt = ν∇2ζ (2.18.55)

with the initial condition

ζ(x, y, 0) = ζ0(x, y), (2.18.56)

where ζ = υx − uy.
Application of the double Fourier transform defined by

ζ̂(k, �, t)=
1
2π

∞∫
−∞

∞∫
−∞

exp[−i(kx+ �y)]ζ(x, y, t)dx dy
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to (2.18.55)–(2.18.56) gives

dζ̂

dt
= −ν(k2 + �2)ζ̂ ,

ζ̂(k, �, 0) = ζ̂0(k, �).

Thus, the solution of the transformed system is

ζ̂(k, �, t)= ζ̂0(k, �)exp[−ν(k2 + �2)t]. (2.18.57)

The inversion theorem for Fourier transform gives the formal solution

ζ(x, y, t) =
1
2π

∞∫
−∞

∞∫
−∞

ζ̂0(k, �) exp[i(κ · r) − νκ2t] dk d�, (2.18.58)

where κ = (k, �) and κ2 = k2 + �2.

In particular, if ζ0(x, y) =V δ(x) represents a vortex sheet of constant strength
V per unit width in the plane x= 0, we find ζ̂0(k, �)= V δ(�) and hence,

ζ(x, y, t) =
V

2π

∞∫
−∞

exp{ikx− νk2t}dk

=
V

2
√
πνt

exp
(
− x2

4νt

)
. (2.18.59)

Apart from a constant, the velocity field is given by

u(x, t) = 0, υ(x, t) =
V√
π

erf
(

x

2
√
νt

)
. (2.18.60)
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2.19 Exercises

1. Find the Fourier transforms of each of the following functions:

(a) f(x) =
1

1 + x2
, (b) f(x) =

x

1 + x2
,

(c) f(x) = δ(n)(x), (d) f(x) = x exp(−a|x|), a > 0,

(e) f(x) = ex exp(−ex), (f) f(x) = x exp
(
−ax

2

2

)
, a > 0,

(g) f(x) = x2 exp
(
−1

2
x2

)
, (h) f(x) =

{
1 − |x|, |x| ≤ 1

0, |x|> 1

}
,

(i) f(x) =

{
1 − x2, |x| ≤ 1

0, |x|> 1

}
, (j) hn(x) = (−1)n exp

(
1
2
x2

)
×
(
d

dx

)n
exp(−x2),

(k) f(x) =χ[a,b](x) eiαx, (l) f(x) =
cos
sin

(ax2).

2. Show that

(a) F{δ(x− ct) + δ(x+ ct)}=

√
2
π

cos(kct),

(b) F{H(ct− |x|)}=

√
2
π

sin kct
k

,

(c) F
{
f
(x
a

+ b
)}

= a exp(iabk)F (ak),

(d) F{eibxf(ax)}=
1
a
F

(
k + b

a

)
.

3. Show that

(a) i
d

dk
F (k) = F{x f(x)},

(b) in
dn

dkn
F (k) = F{xn f(x)}.

4. Use exercise 3(b) to find the Fourier transform of f(x) = x2 exp(−ax2).

5. Prove the following:

(a) F
{
(a2 − x2)−

1
2H(a− |x|)

}
=
√
π

2
J0(ak), a> 0.
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(b) F{Pn(x) H(1− |x|)}= (−i)n 1√
k
Jn+ 1

2
(k),

where Pn(x) is the Legendre polynomial of degree n.
(c) If f(x) has a finite discontinuity at a point x= a, then

F{f ′(x)}= (ik) F (k)− 1√
2π

exp(−ika)[f ]a,

where [f ]a = f(a+ 0)− f(a− 0).

Generalize this result for F{f (n)(x)}.
6. Find the convolution (f ∗ g) (x) if

(a) f(x) = eax, g(x) =χ[0,∞](x), a �= 0,

(b) f(x) = sin bx, g(x) = exp(−a|x|), a > 0,

(c) f(x) =χ[a,b](x), g(x) = x2,

(d) f(x) = exp(−x2), g(x) = exp(−x2).

7. Prove the following results for the convolution:

(a) δ(x) ∗ f(x) = f(x), (b) δ′(x) ∗ f(x) = f ′(x),

(c)
d

dx
{f(x) ∗ g(x)}= f ′(x) ∗ g(x) = f(x) ∗ g′(x),

(d)
∫ ∞

−∞
(f ∗ g)(x)dx=

∫ ∞

−∞
f(u)du

∫ ∞

−∞
g(v)dv ,

(e)
d2

dx2
(f ∗ g) (x) = (f ′ ∗ g′) (x) = (f ′′ ∗ g) (x),

(f) (f ∗ g)(n+l) (x) = f (n) (x) ∗ g(l) (x),

(g) If f and g are both even or both odd, then (f ∗ g) (x) is even,

(h) If f is even or g is odd, or vice versa, then (f ∗ g) (x) is odd,

(i) If g(x) =
1
2a

H(a− |x|), then (f ∗ g) (x) is the average of the

function f(x) in [x− a, x+ a],

(j) If Gt(x) =
1√

4πkt

∞∫
−∞

f(ξ) exp
[
− (x− ξ)2

4kt

]
dξ,

then Gt(x) ∗Gs(x) =Gt+s(x).

8. Use the Fourier transform to solve the following ordinary differential
equations in −∞<x<∞:

(a) y′′(x) − y(x) + 2f(x) = 0, where f(x) = 0 when x<−a and when
x>a, and y(x) and its derivatives vanish at x=±∞,
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(b) 2y′′(x) + xy′(x) + y(x) = 0, (c) y′′(x) + x y′(x) + y(x) = 0,
(d) y′′(x) + x y′(x) + x y(x) = 0, (e) ÿ(t) + 2α ẏ(t) + ω2y(t) = f(t).

9. Solve the following integral equations for an unknown function f(x):

(a)

∞∫
−∞

φ(x− t)f(t)dt= g(x).

(b)

∞∫
−∞

exp(−at2)f(x− t)dt= exp(−bx2), a > b> 0.

(c)

∞∫
−∞

f(x− t)f(t)dt=
b

(x2 + b2)
.

(d)

∞∫
−∞

f(t)dt
(x− t2) + a2

=
√

2π
(x2 + b2)

for b> a> 0.

(e)
1
π

∞∮
−∞

f(t)dt
x− t

=φ(x),

where the integral in (e) is treated as the Cauchy Principal value.

10. Solve the Cauchy problem for the Klein-Gordon equation

utt − c2 uxx + a2 u= 0, −∞<x<∞, t > 0.

u(x, 0) = f(x),
(
∂u

∂t

)
t=0

= g(x) for −∞<x<∞.

11. Solve the telegraph equation

utt − c2 uxx + ut − aux = 0, −∞<x<∞, t > 0.

u(x, 0) = f(x),
(
∂u

∂t

)
t=0

= g(x) for −∞<x<∞.

Show that the solution is unstable when c2<a2. If c2>a2, show that
the bounded integral solution is

u(x, t) =
1√
2π

∞∫
−∞

A(k) exp[−k2(c2 − a2)t+ ik(x+ at)]dk

where A(k) is given in terms of the transformed functions of the initial
data. Hence, deduce the asymptotic solution as t→∞ in the form

u(x, t) =A(0)
√

π

2(c2 − a2)t
exp

[
− (x+ at)2

4(c2 − a2)t

]
.
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12. Solve the equation

utt + uxxxx= 0, −∞<x<∞, t > 0
u(x, 0) = f(x), ut(x, 0) = 0 for −∞<x<∞.

13. Find the solution of the dissipative wave equation

utt − c2 uxx + αut = 0, −∞<x<∞, t > 0,

u(x, 0) = f(x),
(
∂u

∂t

)
t=0

= g(x) for −∞<x<∞,

where α> 0 is the dissipation parameter.

14. Obtain the Fourier cosine transforms of the following functions:
(a) f(x) = x exp(−ax), a > 0, (b)f(x) = e−ax cos x, a> 0,

(c) f(x) =
1
x
, (d) K0(ax),

where K0(ax) is the modified Bessel function.

15. Find the Fourier sine transform of the following functions:

(a) f(x) = x exp(−ax), a > 0, (b) f(x) =
1
x

exp(−ax), a> 0,

(c) f(x) =
1
x
, (d) f(x) =

x

a2 + x2
.

16. (a) If F (k) = F{exp(−ax2)}, a> 0, show that F (k) satisfies the dif-
ferential equation

2a
dF

dk
+ k F (k) = 0 with F (0) =

1√
2a
.

(b) If Fc(k) = Fc{exp(−ax2)}, show that Fc(k) satisfies the equation

dFc
dk

+
(
k

2a

)
Fc = 0 with Fc(0) = 1.

17. Prove the following for the Fourier sine transform

(a)

∞∫
0

Fs(k)Gc(k) sin kx dk=
1
2

∞∫
0

g(ξ)[f(ξ + x) − f(ξ − x)]dξ,

(b)

∞∫
0

Fc(k)Gs(k) sin kx dk=
1
2

∞∫
0

f(ξ)[g(ξ + x) − g(ξ − x)]dξ.

18. Solve the integral equation
∞∫
0

f(x) sin kx dk=

{
1− k, 0≤ k < 1

0, k > 1

}
.
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19. Solve Example 2.15.1 with the boundary data

u(0, t)= 0, u(x, t)→ 0 as x→∞, for t > 0.

20. Apply the Fourier cosine transform to find the solution u(x, y) of the
problem

uxx + uyy = 0, 0<x<∞, 0<y <∞,

u(x, 0) =H(a− x), a >x; ux(0, y)= 0, 0<x, y <∞.

21. Use the Fourier cosine (or sine) transform to solve the following integral
equation:

(a)

∞∫
0

f(x) cos kx dx=
√

π

2k
, (b)

∞∫
0

f(x) sin kx dx=
a

a2 + k2
,

(c)

∞∫
0

f(x) sin kxdx=
π

2
J0(ak), (d)

∞∫
0

f(x) cos kx dx=
sin ak
k

.

22. Solve the diffusion equation in the semi-infinite line

ut = κuxx, 0≤ x<∞, t > 0,

with the boundary and initial data

u(0, t)= 0 for t > 0,
u(x, t)→ 0 as x→∞ for t > 0,
u(x, 0) = f(x) for 0<x<∞.

23. Use the Parseval formula to evaluate the following integrals with a> 0
and b > 0 :

(a)

∞∫
−∞

dx

(x2 + a2)2
,

(b)

∞∫
−∞

sin ax
x(x2 + b2)

dx

(c)

∞∫
−∞

sin2 ax

x2
dx,

(d)

∞∫
−∞

exp(−bx2)dx
(x2 + a2)

.

24. Show that
∞∫
0

sinax sin bx
x2

dx=
π

2
min(a, b).
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25. If f(x) = exp(−ax) and g(x) =H(t− x), show that

∞∫
0

sin tx
x(x2 + a2)

dx=
π

2a2
[1 − exp(−at)].

26. Use the Poisson summation formula to find the sum of each of the fol-
lowing series with non-zero a:

(a)
∞∑

n=−∞

1
(1 + n2a2)

, (b)
∞∑
n=1

sin an
n

,

(c)
∞∑
n=1

sin2 an

n2
, (d)

∞∑
n=−∞

a

n2 + a2
.

27. The Fokker-Planck equation (Reif, 1965) is used to describe the evolu-
tion of probability distribution functions u(x, t) in nonequilibrium sta-
tistical mechanics and has the form

∂u

∂t
=

∂

∂x

(
∂

∂x
+ x

)
u.

The fundamental solution of this equation is defined by the equation[
∂

∂t
− ∂

∂x

(
∂

∂x
+ x

)]
G(x, ξ; t, τ) = δ(x− ξ)δ(t− τ).

Show that the fundamental solution is

G(x, ξ; t, τ) = [2π{1− exp[−2(t− τ)]}]− 1
2 exp

[
−{x− ξ exp[−(t− τ)]}2

2[1− exp{−2(t− τ)}]
]
.

Hence, derive

lim
t→∞G(x, ξ; t, τ) =

1√
2π

exp
(
−1

2
x2

)
.

With the initial condition u(x, 0)= f(x), show that the function u(x, t)
tends to the normal distribution as t→∞, that is,

lim
t→∞ u(x, t) =

1√
2π

exp
(
−1

2
x2

) ∞∫
−∞

f(ξ)dξ.

28. The transverse vibration of an infinite elastic beam of mass m per unit
length and the bending stiffness EI is governed by

utt + a2 uxxxx= 0,
(
a2 =

EI

m

)
, −∞<x<∞, t > 0.
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Solve this equation subject to the boundary and initial data

u(0, t)= 0 for all t> 0,
u(x, 0) =φ(x), ut(x, 0) =ψ′′(x) for 0<x<∞.

Show that the Fourier transform solution is

U(k, t) = Φ(k) cos(atk2)−Ψ(k) sin(atk2).

Find the integral solution for u(x, t).

29. Solve the Lamb (1904) problem in geophysics that satisfies the Helmholtz
equation in an infinite elastic half-space

uxx + uzz +
ω2

c2 2
u= 0, −∞<x<∞, z > 0,

where ω is the frequency and c2 is the shear wave speed.

At the surface of the half-space (z= 0), the boundary condition relating
the surface stress to the impulsive point load distribution is

μ
∂u

∂z
=−Pδ(x) at z= 0,

where μ is one of the Lamé’s constants, P is a constant and

u(x, z)→ 0 as z→∞ for −∞<x<∞.

Show that the solution in terms of polar coordinates is

u(x, z) =
P

2iμ
H0

(2)

(
ωr

c2

)
∼ P

2iμ

(
2c2
πωr

) 1
2

exp
(
πi

4
− iωr

c2

)
for ωr >> c2.

30. Find the solution of the Cauchy-Poisson problem (Debnath, 1994, p. 83)
in an inviscid water of infinite depth which is governed by

φxx + φzz = 0, −∞<x<∞, −∞<z≤ 0, t > 0,
φz − ηt = 0

φt + gη = 0

}
on z= 0, t > 0,

φz → 0 as z→−∞,

φ(x, 0, 0) = 0 and η(x, 0) =Pδ(x),

where φ=φ(x, z, t) is the velocity potential, η(x, t) is the free surface
elevation, and P is a constant.

Derive the asymptotic solution for the free surface elevation in the limit
as t→∞.
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31. Obtain the solutions for the velocity potential φ(x, z, t) and the free
surface elevation η(x, t) involved in the two-dimensional surface waves in
water of finite (or infinite) depth h. The governing equation, boundary,
and free surface conditions and initial conditions (see Debnath 1994, p.
92) are

φxx + φzz = 0, −h≤ z≤ 0, −∞<x<∞, t > 0

φt + gη = −P
ρ
p(x) exp (i ω t)

φz − ηt = 0

⎫⎬⎭ z= 0, t > 0

φ(x, z, 0) = 0 = η(x, 0) for all x and z.

32. Solve the steady-state surface wave problem (Debnath, 1994, p. 47) on
a running stream of infinite depth due to an external steady pressure
applied to the free surface. The governing equation and the free surface
conditions are

φxx + φzz = 0, −∞<x<∞, −∞<z < 0, t > 0,

φx +Uφx + gη = −P
ρ
δ(x) exp (εt)

ηt +Uηx = φz

⎫⎬⎭ z= 0, (ε> 0),

φz → 0 as z→−∞.

where U is the stream velocity, φ(x, z, t) is the velocity potential, and
η(x, t) is the free surface elevation.

33. Use the Fourier sine transform to solve the following initial and bound-
ary value problem for the wave equation:

utt = c2uxx, 0<x<∞, t > 0,
u(x, 0) = 0, ut(x, 0) = 0 for 0<x<∞,

u(0, t)= f(t) for t > 0,

where f(t) is a given function.

34. Solve the following initial and boundary value problem for the wave
equation using the Fourier cosine transform:

utt = c2uxx, 0<x<∞, t > 0,
u(0, t)= f(t) for t > 0,
u(x, 0)= 0, ut(x, 0) = 0 for 0<x<∞,

where f(t) is a known function.
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35. Apply the Fourier transform to solve the initial value problem for the
dissipative wave equation

utt = c2uxx + αuxxt, −∞<x<∞, t > 0,
u(x, 0) = f(x), ut(x, 0) =αf ′′(x) for −∞<x<∞,

where α is a positive constant.

36. Use the Fourier sine transform to solve the initial and boundary value
problem for free vibrations of a semi-infinite string:

utt = c2uxx, 0<x<∞, t > 0,
u(0, t)= 0, t≥ 0,
u(x, 0)= f(x) and ut(x, 0) = g(x) for 0<x<∞.

37. The static deflection u(x, y) in a thin elastic disk in the form of a quad-
rant satisfies the boundary value problem

uxxxx + 2 uxxyy + uyyyy = 0, 0<x<∞, 0<y <∞,

u(0, y)= uxx(0, y)= 0 for 0<y <∞,

u(x, 0)=
ax

1 + x2
, uyy(x, 0) = 0 for 0<x<∞,

where a is a constant, and u(x, y) and its derivatives vanish as x→∞
and y→∞.

Use the Fourier sine transform to show that

u(x, y) =
a

2

∞∫
0

(2 + ky)exp[−(1 + y)k] sinkx dx

=
ax

x2 + (1 + y)2
+

axy(1 + y)
[x2 + (1 + y)2]2

38. In exercise 37, replace the conditions on y= 0 with the conditions

u(x, 0) = 0, uyy(x, 0) =
ax

(1 + x2)2
for 0<x<∞.

Show that the solution is

u(x, y) = −ax
4

∞∫
0

exp[−(1 + y)k] sinkx dk

= −1
4

axy

[x2 + (1 + y)2]
.
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39. In exercise 37, solve the biharmonic equation in 0<x<∞, 0<y < b
with the boundary conditions

u(0, y) = a sin y, uxx(0, y)= 0 for 0<y< b,
u(x, 0) = uyy(x, 0) = u(x, b) = uyy(x, b) = 0 for 0<x<∞,

and u(x, y), ux(x, y) vanish as x→∞.

40. Use the Fourier transform to solve the boundary value problem

uxx + uyy =−x exp(−x2), −∞<x<∞, 0<y<∞,

u(x, 0) = 0, for −∞<x<∞, u and its derivative vanish as y→∞.

Show that

u(x, y) =
1√
4π

∞∫
0

[1 − exp(−ky)] sin kx
k

exp
(
−k

2

4

)
dk.

41. Using the definition of the characteristic function for the discrete random
variable X

φ(t) =E[exp(itX)] =
∑
r

pr exp(itxr)

where pr =P (X = xr), show that the characteristic function of the bi-
nomial distribution

pr =
(
n

r

)
pr(1 − p)n−r

is
φ(t) = [1 + p(eit − 1)]n.

Find the moments.

42. Show that the characteristic function of the Poisson distribution

pr =P (X = r) =
λr

r!
e−λ, r= 0, 1, 2, . . .

is
φ(t) = exp[λ(eit − 1)].

Find the moments.

43. Find the characteristic function of

(a) The gamma distribution whose density function is

f(x) =
ap

Γ(p)
xp−1e−axH(x),
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(b) The beta distribution whose density function is

f(x) =

⎧⎪⎨⎪⎩
xp−1(1 − x)q−1

B(p, q)
for 0<x< 1,

0 for x< 0 and x> 1

⎫⎪⎬⎪⎭ ,

(c) The Cauchy distribution whose density function is

f(x) =
1
π

λ

[λ2 + (x− μ)2]
,

(d) The Laplace distribution whose density function is

f(x) =
1
2λ

exp
(
−|x− u|

λ

)
, λ> 0.

44. Find the density function of the random variable X whose characteristic
function is

φ(t) = (1− |t|)H(1 − |t|).

45. Find the characteristic function of uniform distribution whose density
function is

f(x) =

⎧⎨⎩
0, x< 0
1, 0≤ x≤ a
0, x> a

⎫⎬⎭ .

46. Solve the initial value problem (Debnath, 1994, p. 115) for the two-
dimensional surface waves at the free surface of a running stream of
velocity U. The problem satisfies the equation, boundary, and initial
conditions

φxx + φzz = 0, −∞<x<∞, −h≤ z≤ 0, t > 0,

φx + Uφx + gη=−P
ρ
δ(x) exp(i ω t)

ηt + Uηx − φz = 0

⎫⎬⎭ on z= 0, t > 0,

φ(x, z, 0) = η(x, 0) = 0, for all x and z.

47. Apply the Fourier tranform to solve the equation

uxxxx + uyy = 0, −∞<x<∞, y≥ 0,

satisfying the conditions

u(x, 0)= f(x), uy(x, 0) = 0 for −∞<x<∞,

u(x, y) and its partial derivatives vanish as |x| →∞.
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48. The transverse vibration of a thin membrane of great extent satisfies
the wave equation

c2(uxx + uyy) = utt, −∞<x, y <∞, t > 0,

with the initial and boundary conditions

u(x, y, t)→ 0 as |x| →∞, |y|→∞ for all t≥ 0,
u(x, y, 0)= f(x, y), ut(x, y, 0) = 0 for all x, y.

Apply the double Fourier transform method to solve this problem.

49. Solve the diffusion problem with a source q(x, t)

ut = κ uxx + q(x, t), −∞<x<∞, t > 0,
u(x, 0) = 0 for −∞<x<∞.

Show that the solution is

u(x, t) =
1√

4π t κ

t∫
0

(t− τ)−
1
2 dτ

∞∫
−∞

q(k, τ) exp
[
− (x− k)2

4κ(t− τ)

]
dk.

50. The function u(x, t) satisfies the diffusion problem in a half-line

ut = κuxx + q(x, t), 0≤ x<∞, t > 0,
u(x, 0) = 0, u(0, t) = 0 for x≥ 0 and t> 0.

Show that

u(x, t) =

√
2
π

t∫
0

dτ

∞∫
0

Qs(k, τ) exp[−κk2(t− τ)] sin kx dk,

where Qs(k, t) is the Fourier sine transform of q(x, t).

51. Apply the triple Fourier transform to solve the initial value problem

ut = κ(uxx + uyy + uzz), −∞<x, y, z <∞, t > 0,
u(x, 0) = f(x) for all x, y, z,

where x= (x, y, z).

52. Use the Fourier transform with respect to t and Laplace transform with
respect to x to solve the telegraph equation

utt + a ut + bu= c2 uxx, 0<x<∞, −∞< t<∞,

u(0, t)= f(t), ux(0, t) = g(t), for −∞< t<∞,

where a, b, c are constants and f(t) and g(t) are arbitrary functions of
time t.
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53. Determine the steady-state temperature distribution in a disk occupying
the semi-infinite strip 0<x<∞, 0<y< 1 if the edges x= 0 and y= 0
are insulated, and the edge y= 1 is kept at a constant temperature
T0 H(a− x). Assuming that the disk loses heat due to its surroundings
according to Newton’s law with proportionality constant h, solve the
boundary value problem

uxx + uyy − hu= 0, 0<x<∞, 0<y < 1,
u(x, 1) =T0 H(a− x), for 0<x<∞,

ux(0, y) = 0 = uy(x, 0) for 0<x<∞, 0<y < 1.

54. Use the double Fourier transform to solve the following equations:

(a) uxxxx− uyy + 2u= f(x, y),
(b) uxx + 2uyy + 3ux − 4u= f(x, y),

where f(x, y) is a given function.

55. Use the Fourier transform to solve the Rossby wave problem in an in-
viscid β-plane ocean bounded by walls at y= 0 and y= 1 where y and x
represent vertical and horizontal directions. The fluid is initially at rest
and then, at t= 0+, an arbitrary disturbance localized to the vicinity
of x= 0 is applied to generate Rossby waves. This problem satisfies the
Rossby wave equation

∂

∂t
[(∇2 − κ2)ψ] + βψx = 0, −∞<x<∞, 0≤ y≤ 1, t > 0,

with the boundary and initial conditions

ψx(x, y) = 0 for 0<x<∞, y= 0 and y= 1,
ψ(x, y, t) =ψ0(x, y) at t= 0 for all x and y.

56. Find the transfer function and the corresponding impulse response func-
tion of the input and output of the RC circuit governed by the equation

R
dq

dt
+

1
C
q (t) = e (t) ,

where R, C are constants, q (t) is the electric charge and e (t) is the
given voltage.

57. Prove the Poisson summation formula for the Fourier cosine transform
Fc {f(x)}=Fc(k) in the form

√
a

[
1
2
f(0) +

∞∑
n=1

f(na)

]
=
√
b

[
1
2
Fc(0) +

∞∑
n=1

Fc(nb)

]
,

where ab= 2π and a> 0.
Apply this formula to the following examples:
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(a) f(x) = e−x, Fc(k) =

√
2
π

(1 + k2)−1,

(b) f(x) = exp(−1
2
x2), Fc(k) = exp(−1

2
k2),

(c) f(x) = exp(−1
2
x2) cos αx, Fc(k) = exp

[
−1

2
(α2 + k2)

]
cosh(kα),

(d) f(x) =

{
2

1
2−ν

Γ(ν+ 1
2 )

(1 − x2)ν−
1
2 , 0≤ x< 1,

0, x≥ 1.

Fc(k) = k−νJν(k), k > 0; Fc(0)=
1

2νΓ(ν + 1)
.
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Laplace Transforms and Their Basic
Properties

“What we know is not much. What we do not know is immense.”
Pierre-Simon Laplace

“The algebraic analysis soon makes us forget the main object [of
our research] by focusing our attention on abstract combinations
and it is only at the end that we return to the original objective.
But in abandoning oneself to the operations of analysis, one is led
to the generality of this method and the inestimable advantage of
transforming the reasoning by mechanical procedures to results of-
ten inaccessible by geometry....No other language has the capacity
for the elegance that arises from a long sequence of expressions
linked one to the other and all stemming from one fundamental
idea.”

Pierre-Simon Laplace

“... For Laplace, on the contrary, mathematical analysis was an
instrument that he bent to his purposes for the most varied appli-
cations, but always subordinating the method itself to the content
of each question. Perhaps posterity will....”

Simeon-Denis Poisson

3.1 Introduction

In this chapter, we present the formal definition of the Laplace transform and
calculate the Laplace transforms of some elementary functions directly from
the definition. The existence conditions for the Laplace transform are stated
in Section 3.3. The basic operational properties of the Laplace transforms in-
cluding convolution and its properties, and the differentiation and integration
of Laplace transforms are discussed in some detail. The inverse Laplace trans-
form is introduced in Section 3.7, and four methods of evaluation of the inverse

133
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transform are developed with examples. The Heaviside Expansion Theorem
and the Tauberian theorems for the Laplace transform are discussed.

3.2 Definition of the Laplace Transform and Examples

We start with the Fourier Integral Formula (2.2.4), which expresses the rep-
resentation of a function f1(x) defined on −∞<x<∞ in the form

f1(x) =
1
2π

∞∫
−∞

eikxdk

∞∫
−∞

e−iktf1(t)dt. (3.2.1)

We next set f1(x)≡ 0 in −∞<x< 0 and write

f1(x) = e−cxf(x)H(x) = e−cxf(x), x> 0, (3.2.2)

where c is a positive fixed number, so that (3.2.1) becomes

f(x) =
ecx

2π

∞∫
−∞

eikxdk

∞∫
0

exp{−t(c+ ik)}f(t)dt. (3.2.3)

With a change of variable, c+ ik= s, i dk= ds we rewrite (3.2.3) as

f(x) =
ecx

2πi

c+i∞∫
c−i∞

exp{(s− c)x}ds
∞∫
0

e−stf(t)dt. (3.2.4)

Thus, the Laplace transform of f(t) is formally defined by

L {f(t)}= f̄(s) =

∞∫
0

e−stf(t)dt, Re s> 0, (3.2.5)

where e−st is the kernel of the transform and s is the transform variable which
is a complex number. Under broad conditions on f(t), its transform f̄(s) is
analytic in s in the half-plane, where Re s> a.

Result (3.2.4) then gives the formal definition of the inverse Laplace trans-
form

L −1{f̄(s)}= f(t) =
1

2πi

c+i∞∫
c−i∞

estf̄(s) ds, c> 0. (3.2.6)

Obviously, L and L −1 are linear integral operators.
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Using the definition (3.2.5), we can calculate the Laplace transforms of some
simple and elementary functions.

Example 3.2.1
If f(t) = 1 for t> 0, then

f̄(s) = L {1}=

∞∫
0

e−stdt=
1
s
. (3.2.7)

Example 3.2.2
If f(t) = eat, where a is a constant, then

L {eat}= f̄(s) =

∞∫
0

e−(s−a)tdt=
1

s− a
, s> a. (3.2.8)

Example 3.2.3
If f(t) = sin at, where a is a real constant, then

L {sinat} =

∞∫
0

e−st sin at dt=
1
2i

∞∫
0

[e−t(s−ia) − e−t(s+ia)] dt (3.2.9)

=
1
2i

[
1

s− ia
− 1
s+ ia

]
=

a

s2 + a2
.

Similarly,

L {cos at}=
s

s2 + a2
. (3.2.10)

Example 3.2.4
If f(t) = sinh at or coshat, where a is a real constant, then

L {sinhat} =

∞∫
0

e−st sinh at dt=
a

s2 − a2
, (3.2.11)

L {coshat} =

∞∫
0

e−st coshat dt=
s

s2 − a2
. (3.2.12)
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Example 3.2.5
If f(t) = tn, where n is a positive integer, then

f̄(s) = L {tn}=
n!
sn+1

. (3.2.13)

We recall (3.2.7) and formally differentiate it with respect to s. This gives

∞∫
0

t e−st dt=
1
s2
, (3.2.14)

which means that
L {t}=

1
s2
. (3.2.15)

Differentiating (3.2.14) with respect to s gives

L {t2}=

∞∫
0

t2e−st dt=
2
s3
. (3.2.16)

Similarly, differentiation of (3.2.7) n times yields

L {tn}=

∞∫
0

tne−st dt=
n!
sn+1

. (3.2.17)

Example 3.2.6
If a(>−1) is a real number, then

L {ta}=
Γ(a+ 1)
sa+1

, (s> 0). (3.2.18)

We have

L {ta}=

∞∫
0

tae−st dt,

which is, by putting st= x,

=
1

sa+1

∞∫
0

xae−xdx=
Γ(a+ 1)
sa+1

,
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where Γ(a) represents the gamma function defined by the integral

Γ(a) =

∞∫
0

xa−1e−xdx, a> 0. (3.2.19)

It can be shown that the gamma function satisfies the relation

Γ(a+ 1)= aΓ(a). (3.2.20)

Obviously, result (3.2.18) is an extension of (3.2.17). The latter is a special
case of the former when a is a positive integer.

In particular, when a=−1
2
, result (3.2.18) gives

L

{
1√
t

}
=

Γ
(

1
2

)
√
s

=
√
π

s
, where Γ

(
1
2

)
=
√
π. (3.2.21)

Similarly,

L
{√

t
}

=
Γ
(

3
2

)
s3/2

=
√
π

2
1
s3/2

, (3.2.22)

where

Γ
(

3
2

)
= Γ

(
1
2

+ 1
)

=
1
2

Γ
(

1
2

)
=

√
π

2
.

Example 3.2.7

If f(t) = erf
(

a

2
√
t

)
, then

L

{
erf

(
a

2
√
t

)}
=

1
s
(1 − e−a

√
s), (3.2.23)

where erf (t) is the error function defined by (2.5.13).
To prove (3.2.23), we begin with the definition (3.2.5) so that

L

{
erf

(
a

2
√
t

)}
=

∞∫
0

e−st

⎡⎢⎣ 2√
π

a/2
√
t∫

0

e−x
2
dx

⎤⎥⎦ dt,

which is, by putting x= a
2
√
t

or t= a2

4x2 and interchanging the order of inte-
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gration,

=
2√
π

∞∫
0

e−x
2
dx

a2/4x2∫
0

e−stdt

=
2√
π

∞∫
0

e−x
2 1
s

{
1− exp

(
− a2s

4x2

)}
dx

=
1
s
· 2√

π

⎡⎣ ∞∫
0

e−x
2
dx−

∞∫
0

exp
{
−
(
x2 +

sa2

4x2

)}
dx

⎤⎦,
where the integral
∞∫
0

exp
{
−
(
x2 +

α2

x2

)}
dx =

1
2

⎡⎣ ∞∫
0

(
1 − α

x2

)
exp

[
−
(
x+

α

x

)2

+ 2α
]

+

∞∫
0

(
1 +

α

x2

)
exp

[
−
(
x− α

x

)2

− 2α
]⎤⎦dx,

which is, by putting y=
(
x± α

x

)
, dy=

(
1 ∓ α

x2

)
dx, and observing that the

first integral vanishes,

=
1
2
e−2α

∞∫
−∞

e−y
2
dy=

√
π

2
e−2α, α=

a
√
s

2
.

Consequently,

L

{
erf

(
a

2
√
t

)}
=

1
s

2√
π

[√
π

2
−

√
π

2
e−a

√
s

]
=

1
s
[1− e−a

√
s].

We use (3.2.23) to find the Laplace transform of the complementary error
function defined by (2.10.14) and obtain

L

{
erfc

(
a

2
√
t

)}
=

1
s
e−a

√
s. (3.2.24)

The proof of this result follows from erfc(x) = 1− erf (x) and L {1}= 1
s .

Example 3.2.8
If f(t) = J0(at) is a Bessel function of order zero, then

L {J0(at)}=
1√

s2 + a2
. (3.2.25)
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Using the series representation of J0(at), we obtain

L {J0(at)} = L

[
1 − a2t2

22
+

a4t4

22 · 42
− a6t6

22 · 42 · ·62
+ · · ·

]
=

1
s
− a2

22

2!
s3

+
a4

22 · 42
· 4!
s5

− a6

22 · 42 · 62
· 6!
s7

+ · · ·

=
1
s

[
1 − 1

2

(
a2

s2

)
+

1 · 3
2 · 4

(
a4

s4

)
− 1 · 3 · 5

2 · 4 · 6
(
a6

s6

)
+ · · ·

]
=

1
s

[(
1 +

a2

s2

)− 1
2
]

=
1√

a2 + s2
.

3.3 Existence Conditions for the Laplace Transform

A function f(t) is said to be of exponential order a(> 0) on 0≤ t<∞ if there
exists a positive constant K such that for all t > T

|f(t)| ≤Keat, (3.3.1)

and we write this symbolically as

f(t) =O(eat) as t→∞. (3.3.2)

Or, equivalently,

lim
t→∞ e−bt|f(t)| ≤K lim

t→∞ e−(b−a)t = 0, b > a. (3.3.3)

Such a function f(t) is simply called an exponential order as t→∞, and
clearly, it does not grow faster than Keat as t→∞.

THEOREM 3.3.1
If a function f(t) is continuous or piecewise continuous in every finite interval
(0, T ), and of exponential order eat, then the Laplace transform of f(t) exists
for all s provided Re s> a.

PROOF We have

|f̄(s)|=
∣∣∣∣∣∣
∞∫
0

e−stf(t)dt

∣∣∣∣∣∣ ≤
∞∫
0

e−st|f(t)|dt (3.3.4)

≤ K

∞∫
0

e−t(s−a)dt=
K

s− a
, for Re s> a.
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Thus, the proof is complete.
It is noted that the conditions as stated in Theorem 3.3.1 are sufficient

rather than necessary conditions.
It also follows from (3.3.4) that lims→∞ |f̄(s)|= 0, that is, lims→∞ f̄(s) = 0.

This result can be regarded as the limiting property of the Laplace transform.
However, f̄(s) = s or s2 is not the Laplace transform of any continuous (or
piecewise continuous) function because f̄(s) does not tend to zero as s→∞.

Further, a function f(t) = exp(at2), a> 0 cannot have a Laplace transform
even though it is continuous but is not of the exponential order because

lim
t→∞ exp(at2 − st) =∞.

3.4 Basic Properties of Laplace Transforms

THEOREM 3.4.1 (Heaviside’s First Shifting Theorem).
If L {f(t)}= f̄(s), then

L {e−atf(t)}= f̄(s+ a), (3.4.1)

where a is a real constant.

PROOF We have, by definition,

L {e−atf(t)}=

∞∫
0

e−(s+a)tf(t)dt= f̄(s+ a).

Example 3.4.1
The following results readily follow from (3.4.1)

L {tne−at} =
n!

(s+ a)n+1
, (3.4.2)

L {e−at sin bt} =
b

(s+ a)2 + b2
, (3.4.3)

L {e−at cos bt} =
s+ a

(s+ a)2 + b2
. (3.4.4)
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THEOREM 3.4.2
If L {f(t)}= f̄(s), then the Second Shifting property holds:

L {f(t− a)H(t− a)}= e−as f̄(s) = e−asL {f(t)} , a > 0. (3.4.5)

Or, equivalently,

L {f(t)H(t− a)}= e−asL {f(t+ a)} . (3.4.6)

where H(t− a) is the Heaviside unit step function defined by (2.3.9).

It follows from the definition that

L {f(t− a)H(t− a)} =

∞∫
0

e−stf(t− a)H(t− a)dt

=

∞∫
a

e−stf(t− a)dt,

which is, by putting t− a= τ ,

= e−sa
∞∫
0

e−sτf(τ)dτ = e−saf̄(s).

We leave it to the reader to prove (3.4.6).
In particular, if f(t) = 1, then

L {H(t− a)}=
1
s

exp(−sa). (3.4.7)

Example 3.4.2
Use the shifting property (3.4.5) or (3.4.6) to find the Laplace transform of

(a) f(t) =

⎧⎨⎩
1, 0< t< 1
−1, 1< t< 2
0, t > 2

⎫⎬⎭ , (b) g(t) = sin tH(t− π).

To find L {f(t)}, we write f(t) as

f(t) = 1 − 2H(t− 1) +H(t− 2).

Hence,

f̄(s) = L {f(t)} = L {1} − 2 L {H(t− 1)} + L {H(t− 2)}
=

1
s
− 2 e−s

s
+
e−2s

s
.



© 2007 by Taylor & Francis Group, LLC

142 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

To obtain L {g(t)}, we use (3.4.6) so that

ḡ(s) = L {sin tH(t− π)} = −e−πsL {cos t}=−s e
−πs

s2 + 1
.

Scaling Property:

L {f(at)}=
1
|a| f̄

( s
a

)
, a �= 0. (3.4.8)

Example 3.4.3
Show that the Laplace transform of the square wave function f(t) defined by

f(t) =H(t) − 2H(t− a) + 2H(t− 2a)− 2H(t− 3a) + · · · (3.4.9)

is
f̄(s) =

1
s

tanh
(as

2

)
. (3.4.10)

The graph of f(t) is shown in Figure 3.1.

f(t) = H(t) − 2H(t− a)= 1− 2 · 0 = 1, 0< t<a
f(t) = H(t) − 2H(t− a) + 2H(t− 2a)

= 1 − 2 · 1 + 2 · 0 =−1, 0<a< t< 2a.

Thus,

f̄(s) =
1
s
− 2 · e

−as

s
+ 2 · e

−2as

s
− 2 · e

−3as

s
+ · · ·

=
1
s
[1 − 2r(1 − r + r2 − · · · )], where r= e−as

=
1
s

[
1 − 2r

1 + r

]
=

1
s

[
1 − 2e−as

1 + e−as

]
=

1
s

(
1 − e−as

1 + e−as

)
=

1
s

(
e

sa
2 − e−

as
2

e
sa
2 + e−

as
2

)
=

1
s

tanh
(as

2

)
.

Example 3.4.4
(The Laplace Transform of a Periodic Function). If f(t) is a periodic function
of period a, and if L {f(t)} exists, show that

L {f(t)}= [1− exp(−as)]−1

a∫
0

e−stf(t)dt. (3.4.11)
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-1

0

1

t

f(
t)

2a 3a 4a 5aa

Figure 3.1 Square wave function.

We have, by definition,

L {f(t)}=

∞∫
0

e−stf(t)dt=

a∫
0

e−stf(t)dt+

∞∫
a

e−stf(t)dt.

Letting t= τ + a in the second integral gives

f̄(s) =

a∫
0

e−stf(t)dt+ exp(−sa)
∞∫
0

e−sτf(τ + a)dτ,

which is, due to f(τ + a) = f(τ) and replacing the dummy variable τ by t in
the second integral,

=

a∫
0

e−stf(t)dt+ exp(−sa)
∞∫
0

e−stf(t)dt.

Finally, combining the second term with the left hand side, we obtain (3.4.11).
In particular, we calculate the Laplace transform of a rectified sine wave,

that is, f(t) = | sin at|. This is a periodic function with period
π

a
. We have

π
a∫

0

e−st sinat dt=
[
e−st(−a cos at− s sin at)

(s2 + a2)

]π
a

0

=
a
{
1 + exp

(− sπ
a

)}
(s2 + a2)

.
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Clearly, the property (3.4.11) gives

L {f(t)} =
a

(s2 + a2)
·
1 + exp

(
−sπ
a

)
1− exp

(
−sπ
a

)

=
a

(s2 + a2)

⎡⎢⎢⎣ exp
(sπ

2a

)
+ exp

(
−sπ

2a

)
exp

(
2π
2a

)
− exp

(
−sπ

2a

)
⎤⎥⎥⎦

=
a

s2 + a2
coth

(πs
2a

)
.

THEOREM 3.4.3 (Laplace Transforms of Derivatives).
If L {f(t)}= f̄(s), then

L {f ′(t)} = sL {f(t)} − f(0)= sf̄(s) − f(0), (3.4.12)
L {f ′′(t)} = s2L {f(t)} − sf(0)− f ′(0) = s2f̄(s) − s f(0)− f ′(0). (3.4.13)

More generally,

L {f (n)(t)}= snf̄(s) − sn−1f(0)− sn−2f ′(0)− · · · − sf (n−2)(0)− f (n−1)(0),
(3.4.14)

where f (r)(0) is the value of f (r)(t) at t= 0, r= 0, 1, ..., (n− 1).

PROOF We have, by definition,

L {f ′(t)}=

∞∫
0

e−stf ′(t)dt,

which is, integrating by parts,

=
[
e−stf(t)

]∞
0

+ s

∞∫
0

e−stf(t)dt

= sf̄(s) − f(0),

in which we assumed f(t) e−st→ 0 as t→∞.
Similarly,

L {f ′′(t)} = sL {f ′(t)} − f ′(0), by (3.4.12)
= s[s f̄(s) − f(0)]− f ′(0)
= s2f̄(s)− sf(0)− f ′(0),
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where we have assumed e−stf ′(t)→ 0 as t→∞.
A similar procedure can be used to prove the general result (3.4.14).
It may be noted that similar results hold when the Laplace transform is ap-

plied to partial derivatives of a function of two or more independent variables.
For example, if u(x, t) is a function of two variables x and t, then

L

{
∂u

∂t

}
= sū(x, s) − u(x, 0), (3.4.15)

L

{
∂2u

∂t2

}
= s2ū(x, s) − s u(x, 0)−

[
∂u

∂t

]
t=0

, (3.4.16)

L

{
∂u

∂x

}
=
dū

dx
, L

{
∂2u

∂x2

}
=
d2ū

dx2
. (3.4.17)

Results (3.4.12) to (3.4.14) imply that the Laplace transform reduces the op-
eration of differentiation into algebraic operation. In view of this, the Laplace
transform can be used effectively to solve ordinary or partial differential e-
quations.

Example 3.4.5
Use (3.4.14) to find L {tn}.

Here f(t) = tn, f ′(t) =ntn−1, · · · , f (n)(t) =n! and f(0)= f ′(0) = · · ·=
f (n−1)(0)= 0.

Thus,
L {n!}= snL {tn}.

Or,

L {tn}=
n!
sn

L {1}=
n!
sn+1

.

3.5 The Convolution Theorem and Properties of
Convolution

THEOREM 3.5.1 (Convolution Theorem).
If L {f(t)}= f̄(s) and L {g(t)}= ḡ(s), then

L {f(t) ∗ g(t)}= L {f(t)}L {g(t)}= f̄(s)ḡ(s). (3.5.1)

Or, equivalently,
L −1{f̄(s)ḡ(s)}= f(t)∗g(t), (3.5.2)
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where f(t)∗g(t) is called the convolution of f(t) and g(t) and is defined by
the integral

f(t) ∗ g(t) =

t∫
0

f(t− τ)g(τ)dτ. (3.5.3)

The integral in (3.5.3) is often referred to as the convolution integral (or
Faltung) and is denoted simply by (f ∗ g)(t).

PROOF We have, by definition,

L {f(t) ∗ g(t)}=

∞∫
0

e−stdt

t∫
0

f(t− τ)g(τ)dτ, (3.5.4)

where the region of integration in the τ − t plane is as shown in Figure 3.2.
The integration in (3.5.4) is first performed with respect to τ from τ = 0 to
τ = t of the vertical strip and then from t= 0 to ∞ by moving the vertical
strip from t= 0 outwards to cover the whole region under the line τ = t.

=0
0 t

= t _<t<

Figure 3.2 Region of integration.

We now change the order of integration so that we integrate first along the
horizontal strip from t= τ to ∞ and then from τ = 0 to ∞ by moving the
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horizontal strip vertically from τ = 0 upwards. Evidently, (3.5.4) becomes

L {f(t)∗g(t)}=

∞∫
0

g(τ)dτ

∞∫
t=τ

e−stf(t− τ)dτ,

which is, by the change of variable t− τ = x,

L {f(t)∗g(t)} =

∞∫
0

g(τ)dτ

∞∫
0

e−s(x+τ)f(x)dx

=

∞∫
0

e−sτg(τ)dτ

∞∫
0

e−sxf(x)dx= ḡ(s) f̄(s).

This completes the proof.

PROOF (Second Proof.) We have, by definition,

f̄(s)ḡ(s) =

∞∫
0

e−sσf(σ)dσ

∞∫
0

e−sμg(μ)dμ

=

∞∫
0

∞∫
0

e−s(σ+μ)f(σ)g(μ)dσ dμ, (3.5.5)

where the double integral is taken over the entire first quadrant R of the σ − μ
plane bounded by σ= 0 and μ= 0 as shown in Figure 3.3(a).

=0
0 t

= t
S

(b)

=0
0

R

(a)

=
0

Figure 3.3 Regions of integration.

We make the change of variables μ= τ , σ= t− μ= t− τ so that the axes σ= 0
and μ= 0 transform into the lines τ = 0 and τ = t, respectively, as shown in
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Figure 3.3(b) in the τ − t plane. Consequently, (3.5.5) becomes

f̄(s)ḡ(s) =

∞∫
0

e−stdt

τ=t∫
τ=0

f(t− τ)g(τ)dτ

= L

⎧⎨⎩
t∫

0

f(t− τ)g(τ)dτ

⎫⎬⎭
= L {f(t)∗g(t)}.

This proves the theorem.

Note: A more rigorous proof of the convolution theorem can be found in any
standard treatise (see Doetsch, 1950) on Laplace transforms. The convolution
operation has the following properties:

f(t)∗{g(t)∗h(t)}= {f(t)∗g(t)}∗h(t), (Associative), (3.5.6)
f(t)∗g(t) = g(t)∗f(t), (Commutative), (3.5.7)
f(t)∗{ag(t) + bh(t)}= af(t)∗g(t) + bf(t)∗h(t), (Distributive), (3.5.8)
f(t)∗{ag(t)}= {af(t)}∗g(t) = a{f(t)∗g(t)}, (3.5.9)
L {f1∗f2∗f3∗ · · · ∗fn}= f̄1(s)f̄2(s) · · · f̄n(s), (3.5.10)
L {f∗n}= {f̄(s)}n, (3.5.11)

where a and b are constants. f∗n = f∗f∗ · · · ∗f is sometimes called the nth
convolution.

Remark: By virtue of (3.5.6) and (3.5.7), it is clear that the set of all Laplace
transformable functions forms a commutative semigroup with respect to the
operation ∗. The set of all Laplace transformable functions does not form a
group because f∗g−1 does not, in general, have a Laplace transform.

We now prove the associative property. We have

f(t)∗{g(t)∗h(t)} =

t∫
0

f(τ)

t−τ∫
0

g(t− σ − τ)h(σ)dσ dτ (3.5.12)

=

t∫
0

h(σ)

t−σ∫
0

g(t− τ − σ)f(τ)dτ dσ

= h(t)∗{f(t)∗g(t)}= {f(t)∗g(t)}∗h(t), (3.5.13)

where (3.5.13) is obtained from (3.5.12) by interchanging the order of integra-
tion combined with the fact that 0≤ σ≤ t− τ and 0≤ τ ≤ t imply 0≤ τ ≤ t− σ
and 0≤ σ≤ t. Properties (3.5.10) and (3.5.11) follow immediately from the as-
sociative law of the convolution.
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To prove (3.5.7), we recall the definition of the convolution and make a
change of variable t− τ = t′. This gives

f(t)∗g(t) =

t∫
0

f(t− τ)g(τ)dτ =

t∫
0

g(t− t′)f(t′)dt′ = g(t)∗f(t).

The proofs of (3.5.8)–(3.5.9) are very simple and hence, may be omitted.

Example 3.5.1
Obtain the convolutions

(a) t∗eat,

(d) 1∗a
2
e−a

2/4t

√
πt3

,

(b) (sin at∗ sin at),

(e) cos t ∗ e2t,

(c)
1√
πt

∗eat,

(f) t ∗ t ∗ t.

We have

(a) t∗eat =
t∫

0

τea(t−τ)dτ = eat
t∫

0

τe−aτdτ =
1
a2

(eat − at− 1).

(b) sin at∗ sin at=

t∫
0

sin aτ sin a(t− τ)dτ =
1
2a

(sin at− at cos at).

(c)
1√
πt

∗eat = 1√
π

t∫
0

1√
τ
ea(t−τ)dτ ,

which is, by putting
√
aτ = x,

1√
πt

∗eat = 2eat√
πa

√
at∫

0

e−x
2
dx=

eat√
a

erf
(√

at
)
.

(d) We have

1∗a
2
e−a

2/4t

√
πt3

=
a

2
√
π

t∫
0

e−a
2/4τ

τ3/2
dτ,

which is, by letting
a

2
√
τ

= x,

=
2√
π

∞∫
a

2
√

t

e−x
2
dx= erfc

(
a

2
√
t

)
.
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(e) cos t ∗ e2t =
t∫

0

cos(t− τ) e2τ dτ =
1
2

t∫
0

e2τ
{
ei(t−τ) + e−i(t−τ)

}
dτ

=
[
ei(t−τ)+2τ

2(2− i)
+
e−i(t−τ)+2τ

2(2 + i)

]
=

2
5
e2t +

1
5

(sin t− 2 cos t) .

(f) (t ∗ t) ∗ t=
⎡⎣ t∫

0

(t− τ) τ dτ

⎤⎦ ∗ t= 1
6
t3 ∗ t

=
1
6

t∫
0

(t− τ) τ3 dτ =
t5

5!
.

Example 3.5.2
Using the Convolution Theorem 3.5.1, prove that

B(m,n) =
Γ(m)Γ(n)
Γ(m+ n)

, (3.5.14)

where Γ(m) is the gamma function, and B(m,n) is the beta function defined
by

B(m,n) =

1∫
0

xm−1(1 − x)n−1dx, (m> 0, n> 0). (3.5.15)

To prove (3.5.14), we consider

f(t) = tm−1 (m> 0) and g(t) = tn−1, (n> 0).

Evidently, f̄(s) =
Γ(m)
sm

and ḡ(s) =
Γ(n)
sn

.
We have

f ∗ g =

t∫
0

τm−1(t− τ)n−1dτ = L −1{f̄(s)ḡ(s)}

= Γ(m)Γ(n)L −1{s−(m+n)}
=

Γ(m)Γ(n)
Γ(m+ n)

tm+n−1.

Letting t= 1, we derive the result
1∫

0

τm−1(1 − τ)n−1dτ =
Γ(m)Γ(n)
Γ(m+ n)

,

which proves the result (3.5.14).



© 2007 by Taylor & Francis Group, LLC

Laplace Transforms and Their Basic Properties 151

3.6 Differentiation and Integration of Laplace
Transforms

THEOREM 3.6.1
If f(t) =O(eat) as t→∞, then the Laplace integral

∞∫
0

e−stf(t)dt, (3.6.1)

is uniformly convergent with respect to s provided s≥ a1 where a1>a.

PROOF Since

|e−stf(t)| ≤Ke−t(s−a) ≤Ke−t(a1−a) for all s≥ a1

and

∞∫
0

e−t(a1−a)dt exists for a1>a, by Weierstrass’ test, the Laplace integral

is uniformly convergent for all s> a1 where a1>a. This completes the proof.

In view of the uniform convergence of (3.6.1), differentiation of (3.2.5) with
respect to s within the integral sign is permissible. Hence,

d

ds
f̄(s) =

d

ds

∞∫
0

e−stf(t)dt=

∞∫
0

∂

∂s
e−stf(t)dt

= −
∞∫
0

tf(t)e−stdt=−L {tf(t)}. (3.6.2)

Similarly, we obtain

d2

ds2
f̄(s) = (−1)2L {t2f(t)}, (3.6.3)

d3

ds3
f̄(s) = (−1)3L {t3f(t)}. (3.6.4)

More generally,
dn

dsn
f̄(s) = (−1)nL {tnf(t)}. (3.6.5)
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Results (3.6.5) can be stated in the following theorem:

THEOREM 3.6.2 (Derivatives of the Laplace Transform).
If L {f(t)}= f̄(s), then

L {tnf(t)}= (−1)n
dn

dsn
f̄(s), (3.6.6)

where n= 0, 1, 2, 3,....

Example 3.6.1

Show that

(a) L {tne−at}=
n!

(s+ a)n+1
,

(c) L {t sinat}=
2as

(s2 + a2)2
,

(b) L {t cosat}=
s2 − a2

(s2 + a2)2
,

(d) L {t f ′(t)}=−
{
s
d

ds
f̄(s) + f̄(s)

}
.

(a) Application of Theorem 3.6.2 gives

L {tne−at}= (−1)n
dn

dsn
.

1
(s+ a)

= (−1)2n
n!

(s+ a)n+1
.

(b) L {t cosat}= (−1)
d

ds

(
s

s2 + a2

)
=

s2 − a2

(s2 + a2)2
.

Results (c) and (d) can be proved similarly.

THEOREM 3.6.3 (Integral of the Laplace Transform).
If L {f(t)}= f̄(s), then

L

{
f(t)
t

}
=

∞∫
s

f̄(s)ds. (3.6.7)

PROOF In view of the uniform convergence of (3.6.1), f̄(s) can be inte-
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grated with respect to s in (s,∞) so that

∞∫
s

f̄(s)ds =

∞∫
s

ds

∞∫
0

e−stf(t)dt

=

∞∫
0

f(t)dt

∞∫
s

e−stds

=

∞∫
0

f(t)
t
e−stdt= L

{
f(t)
t

}
.

This proves the theorem.

Example 3.6.2
Show that

(a) L

{
sin at
t

}
= tan−1

(a
s

)
, (b) L

{
e−a

2/4t

√
πt3

}
=

2
a

exp(−a√s).

(a) Using (3.6.7), we obtain

L

{
sin at
t

}
= a

∞∫
s

ds

s2 + a2
=
π

2
− tan−1

( s
a

)
= tan−1

(a
s

)
.

(b) L

{
1
t
· e

−a2/4t

√
πt

}
=

∞∫
s

f̄(s)ds=

∞∫
s

e−a
√
s

√
s
ds, by Table B-4 of Laplace

transforms,

which is, by putting a
√
s= x,

=
2
a

∞∫
a
√
s

e−xdx=
2
a

exp(−a√s).

THEOREM 3.6.4 (The Laplace Transform of an Integral).
If L {f(t)}= f̄(s), then

L

⎧⎨⎩
t∫

0

f(τ)dτ

⎫⎬⎭=
f̄(s)
s
. (3.6.8)
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PROOF We write

g(t)=

t∫
0

f(τ)dτ

so that g(0)= 0 and g′(t) = f(t). Then it follows from (3.4.10) that

f̄(s) = L {f(t)}= L {g′(t)}= s ḡ(s) = sL

{∫ t

0

f(τ)dτ
}
.

Dividing both sides by s, we obtain (3.6.8).
It is noted that the Laplace transform of an integral corresponds to the

division of the transform of its integrand by s. Result (3.6.8) can be used for
evaluation of the inverse Laplace transform.

Example 3.6.3
Use result (3.6.8) to find

(a) L

⎧⎨⎩
t∫

0

τne−aτdτ

⎫⎬⎭, (b) L {Si(at)}= L

⎧⎨⎩
t∫

0

sin aτ
τ

dτ

⎫⎬⎭.

(a) We know

L {tne−at}=
n!

(s+ a)n+1
.

It follows from (3.6.8) that

L

⎧⎨⎩
t∫

0

τne−aτdτ

⎫⎬⎭=
n!

s(s+ a)n+1
.

(b) Using (3.6.8) and Example 3.6.2(a), we obtain

L

⎧⎨⎩
t∫

0

sin aτ
τ

dτ

⎫⎬⎭=
1
s

tan−1
(a
s

)
.

3.7 The Inverse Laplace Transform and Examples

It has already been demonstrated that the Laplace transform f̄(s) of a given
function f(t) can be calculated by direct integration. We now look at the
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inverse problem. Given a Laplace transform f̄(s) of an unknown function
f(t), how can we find f(t)? This is essentially concerned with the solution of
the integral equation

∞∫
0

e−stf(t)dt= f̄(s). (3.7.1)

At this stage, it is rather difficult to handle the problem as it is. However,
in simple cases, we can find the inverse transform from Table B-4 of Laplace
transforms. For example

L −1

{
1
s

}
= 1, L −1

{
s

s2 + a2

}
= cos at.

In general, the inverse Laplace transform can be determined by using four
methods: (i) Partial Fraction Decomposition, (ii) the Convolution Theorem,
(iii) Contour Integration of the Laplace Inversion Integral, and (iv) Heavi-
side’s Expansion Theorem.

(i) Partial Fraction Decomposition Method
If

f̄(s) =
p̄(s)
q̄(s)

, (3.7.2)

where p̄(s) and q̄(s) are polynomials in s, and the degree of p̄(s) is less than
that of q̄(s), the method of partial fractions may be used to express f̄(s) as the
sum of terms which can be inverted by using a table of Laplace transforms.
We illustrate the method by means of simple examples.

Example 3.7.1
To find

L −1

{
1

s(s− a)

}
,

where a is a constant, we write

L −1

{
1

s(s− a)

}
= L −1

[
1
a

{
1

s− a
− 1
s

}]
=

1
a

[
L −1

{
1

s− a

}
− L −1

{
1
s

}]
=

1
a
(eat − 1).

Example 3.7.2
Show that

L −1

{
1

(s2 + a2)(s2 + b2)

}
=

1
b2 − a2

(
sin at
a

− sin bt
b

)
.
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We write

L −1

{
1

(s2 + a2)(s2 + b2)

}
=

1
b2 − a2

[
L −1

{
1

s2 + a2
− 1
s2 + b2

}]
=

1
(b2 − a2)

(
sinat
a

− sin bt
b

)
.

Example 3.7.3
Find

L −1

{
s+ 7

s2 + 2s+ 5

}
.

We have

L −1

{
s+ 7

(s+ 1)2 + 4

}
= L −1

{
s+ 1 + 6

(s+ 1)2 + 22

}
= L −1

{
s+ 1

(s+ 1)2 + 22

}
+ 3L −1

{
2

(s+ 1)2 + 22

}
= e−t cos 2t+ 3e−t sin 2t.

Example 3.7.4
Evaluate the following inverse Laplace transform

L −1

{
2s2 + 5s+ 7

(s− 2)(s2 + 4s+ 13)

}
.

We have

L −1

{
2s2 + 5s+ 7

(s− 2)(s2 + 4s+ 13)

}
= L −1

{
1

s− 2
+

s+ 2
(s+ 2)2 + 32

+
1

(s+ 2)2 + 32

}
= L −1

{
1

s− 2

}
+ L −1

{
s+ 2

(s+ 2)2 + 32

}
+

1
3
L −1

{
3

(s+ 2)2 + 32

}
= e2t + e−2t cos 3t+

1
3
e−2t sin 3t.

(ii) Convolution Theorem
We shall apply the convolution theorem for calculation of inverse Laplace

transforms.
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Example 3.7.5

L −1

{
1

s(s− a)

}
= 1∗eat =

t∫
0

eaτdτ =
(eat − 1)

a
.

Example 3.7.6

L −1

{
1

s2(s2 + a2)

}
= t∗sin at

a

=
1
a

t∫
0

(t− τ) sin aτ dτ

=
t

a

t∫
0

sin aτ dτ − 1
a

t∫
0

τ sin aτ dτ

=
1
a2

(
t− 1

a
sin at

)
.

Example 3.7.7

L −1

{
1

(s2 + a2)2

}
=

sin at
a

∗ sinat
a

=
1
a2

t∫
0

sin aτ sin a(t− τ)dτ

=
1

2a3
(sin at− at cosat).
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Example 3.7.8

L −1

{
1√

s(s− a)

}
=

1√
πt

∗ eat, (a> 0)

=
1√
π

t∫
0

1√
τ
ea(t−τ)dτ

=
2 eat√
πa

√
at∫

0

e−x
2
dx,

(
putting

√
aτ = x

)
=
eat√
a

erf (
√
at). (3.7.3)

Example 3.7.9

Show that

L −1

{
1
s
e−a

√
s

}
= erfc

(
a

2
√
t

)
. (3.7.4)

In view of Example 3.6.2(b), and the Convolution Theorem 3.5.1, we obtain

L −1

{
1
s
e−a

√
s

}
= 1∗a

2
e−a

2/4t

√
πt3

=
a

2
√
π

t∫
0

e−a
2/4τ

τ3/2
dτ,

which is, by putting
a

2
√
τ

= x,

=
2√
π

∞∫
a

2
√

t

e−x
2
dx= erfc

(
a

2
√
t

)
.

Example 3.7.10

Show that

L −1

{
1√
s+ a

}
=

1√
πt

− a exp(ta2)erfc(a
√
t). (3.7.5)
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We have

L −1

{
1√
s+ a

}
= L −1

{
1√
s
− a√

s(
√
s+ a)

}
= L −1

{
1√
s

}
− aL −1

{ √
s− a√

s(s− a2)

}
= L −1

{
1√
s

}
− aL −1

{
1

s− a2

}
+ a2L −1

{
1√

s(s− a2)

}
=

1√
πt

− a exp(a2t) + a exp(a2t) erf (a
√
t), by (3.7.3)

=
1√
πt

− a exp(a2t)erfc(a
√
t).

Example 3.7.11
If f(t) = L −1{f̄(s)}, then

L −1

{
1
s
f̄(s)

}
=

t∫
0

f(x)dx. (3.7.6)

We have, by the Convolution Theorem with g(t) = 1 so that ḡ(s) = 1
s ,

L −1

{
1
s
f̄(s)

}
=

t∫
0

f(t− τ)dτ,

which is, by putting t− τ = x,

=

t∫
0

f(x)dx.

(iii) Contour Integration of the Laplace Inversion Integral
In Section 3.2, in inverse Laplace transform is defined by the complex integral
formula

L −1{f̄(s)}= f(t) =
1

2πi

c+i∞∫
c−i∞

estf̄(s)ds, (3.7.7)

where c is a suitable real constant and f̄(s) is an analytic function of the
complex variable s in the right half-plane Re s> a.

The details of evaluation of (3.7.7) depend on the nature of the singularities
of f̄(s). Usually, f̄(s) is a single valued function with a finite or enumerably
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infinite number of polar singularities. Often it has branch points. The path of
integration is the straight line L (see Figure 3.4(a)) in the complex s-plane
with equation s= c+ iR, −∞<R<∞, Re s= c being chosen so that all the
singularities of the integrand of (3.7.7) lie to the left of the line L. This line
is called by Bromwich Contour. In practice, the Bromwich Contour is closed
by an arc of a circle of radius R as shown in Figure 3.4(a), and then the limit
as R→∞ is taken to expand the contour of integration to infinity so that all
the singularities of f̄(s) lie inside the contour of integration.

When f̄(s) has a branch point at the origin, we draw the modified contour of
integration by making a cut along the negative real axis and a small semicircle
γ surrounding the origin as shown in Figure 3.4(b).

c Re s

Im
s

A

B

c-iR

c+iR

L

R

(a)

0 c Re s
Im

s

A

B

c-iR

c+iR

L
R

(b)

0

L1

L2

Figure 3.4 The Bromwich contour and the contour of integration.

In either case, the Cauchy Residue Theorem is used to evaluate the integral∫
L

estf̄(s)ds+
∫
Γ

estf̄(s)ds=
∫
C

estf̄(s)ds

= 2πi× [sum of the residues of estf̄(s) at the poles inside C]. (3.7.8)

Letting R→∞, the integral over Γ tends to zero, and this is true in most
problems of interest. Consequently, result (3.7.7) reduces to the form

lim
R→∞

1
2πi

c+iR∫
c−iR

estf̄(s)ds= sum of the residues of estf̄(s) at the poles of f̄(s).

(3.7.9)
We illustrate the above method of evaluation by simple examples.
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Example 3.7.12
If f̄(s) = s

s2+a2 , show that

f(t) =
1

2πi

c+i∞∫
c−i∞

estf̄(s)ds= cos at.

Clearly, the integrand has two simple poles at s=±ia and the residues at
these poles are

R1 = Residue of estf̄(s) at s= ia

= lim
s→ia

(s− ia)
s est

(s2 + a2)
=

1
2
eiat.

R2 = Residue of estf̄(s) at s=−ia
= lim

s→−ia
(s+ ia)

s est

(s2 + a2)
=

1
2
e−iat.

Hence,

f(t) =
1

2πi

c+i∞∫
c−i∞

estf̄(s)ds=R1 +R2 =
1
2
(eiat + e−iat) = cos at,

as obtained earlier.
If ḡ(s) = estf̄(s) has a pole of order n at s= z, then the residue R1 of ḡ(s)

at this pole is given by the formula

R1 = lim
s→z

1
(n− 1)!

dn−1

dsn−1
[(s− z)nḡ(s)]. (3.7.10)

This is obviously true for a simple pole (n= 1) and for a double pole (n= 2).

Example 3.7.13
Evaluate

L −1

{
s

(s2 + a2)2

}
.

Clearly

ḡ(s) = estf̄(s) =
s est

(s2 + a2)2

has double poles at s=±ia. The residue formula (3.7.10) for double poles
gives

R1 = lim
s→ia

d

ds

[
(s− ia)2

s est

(s2 + a2)2

]
= lim

s→ia

d

ds

[
s est

(s+ ia)2

]
=
t eiat

4ia
.
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Similarly, the residue at the double pole at s=−ia is (−t e−iat)/4ia.
Thus,

f(t) = Sum of the residues=
t

4ia
(eiat − e−iat) =

t

2a
sin at, (3.7.11)

as given in Table B-4 of Laplace transforms.

Example 3.7.14

Evaluate

L −1

{
cosh(αx)
s cosh(α�)

}
, α=

√
s

a
.

We have

f(t) =
1

2πi

c+i∞∫
c−i∞

est
cosh(αx)
cosh(α�)

ds

s
.

Clearly, the integrand has simple poles at s= 0 and s= sn =−(2n+ 1)2
aπ2

4�2
,

where n= 0,1,2,....

R1 = Residue at the pole s= 0 is 1, and Rn = Residue at the pole s= sn is

exp(−snt) cosh
{
i(2n+ 1)

πx

2�

}
[
s
d

ds

{
cosh l

√
s

a

}]
s=sn

=
4(−1)n+1

(2n+ 1)π
exp

[
−
{

(2n+ 1)π
2�

}2

at

]
cos

{
(2n+ 1)

πx

2�

}
.

Thus,

f(t) = Sum of the residues at the poles

= 1 +
4
π

∞∑
n=0

(−1)n+1

(2n+ 1)
exp

[
−(2n+ 1)2

π2at

4�2

]
× cos

{
(2n+ 1)

πx

2�

}
, (3.7.12)

as given later by the Heaviside Expansion Theorem.
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Example 3.7.15

Show that

f(t) = L −1

{
e−a

√
s

s

}
=

1
2πi

c+i∞∫
c−i∞

1
s

exp(st− a
√
s)ds

= erfc
(

a

2
√
t

)
. (3.7.13)

The integrand has a branch point at s= 0. We use the contour of integration
as shown in Figure 3.4(b) which excludes the branch point at s= 0. Thus, the
Cauchy Fundamental Theorem gives

1
2πi

⎡⎣∫
L

+
∫
Γ

+
∫
L1

+
∫
L2

+
∫
γ

⎤⎦ exp(st− a
√
s)
ds

s
= 0. (3.7.14)

It is shown that the integral on Γ tends to zero as R→∞, and that on L
gives the Bromwich integral. We now evaluate the remaining three integrals
in (3.7.14). On L1, we have s= reiπ =−r and

∫
L1

exp(st− a
√
s)
ds

s
=

0∫
−∞

exp(st− a
√
s)
ds

s
=−

∞∫
0

exp{−(rt+ ia
√
r)} dr

r
.

On L2, s= re−iπ =−r and

∫
L2

exp(st− a
√
s)
ds

s
=

−∞∫
0

exp(st− a
√
s)
ds

s
=

∞∫
0

exp{−rt+ ia
√
r} dr

r
.

Thus, the integrals along L1 and L2 combined yield

−2i

∞∫
0

e−rt sin(a
√
r)
dr

r
=−4i

−∞∫
0

e−x
2t sinax

x
dx, (

√
r= x). (3.7.15)

Integrating the following standard integral with respect to β

∞∫
0

e−x
2α2

cos (2βx)dx=
√
π

2α
exp

(
−β

2

α2

)
, (3.7.16)
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we obtain

1
2

∞∫
0

e−x
2α2 sin 2βx

x
dx =

√
π

2α

β∫
0

exp
(
−β

2

α2

)
dβ

=
√
π

2

β/α∫
0

e−u
2
du, (β=αu)

=
π

4
erf

(
β

α

)
. (3.7.17)

In view of (3.7.17), result (3.7.15) becomes

−4i

∞∫
0

exp(−tx2)
sin ax
x

dx=−2πi erf
(

a

2
√
t

)
. (3.7.18)

Finally, on γ, we have s= reiθ , ds= ireiθdθ, and∫
γ

| exp(st− a
√
s)|ds

s
= i

−π∫
π

exp
(
rt cos θ− a

√
r cos

θ

2

)
dθ

= i

π∫
−π

dθ= 2πi, (3.7.19)

in which the limit as r→ 0 is used and integration from π to −π is interchanged
to make γ in the counterclockwise direction.

Thus, the final result follows from (3.7.14), (3.7.18), and (3.7.19) in the
form

L −1

{
e−a

√
s

s

}
=

1
2πi

c+i∞∫
c−i∞

exp(st− a
√
s)
ds

s

=
[
1 − erf

(
a

2
√
t

)]
= erfc

(
a

2
√
t

)
.

(iv) Heaviside’s Expansion Theorem
Suppose f̄(s) is the Laplace transform of f(t), which has a Maclaurin power
series expansion in the form

f(t) =
∞∑
r=0

ar
tr

r!
. (3.7.20)

Taking the Laplace transform, it is possible to write formally

f̄(s) =
∞∑
r=0

ar
sr+1

. (3.7.21)
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Conversely, we can derive (3.7.20) from a given expansion (3.7.21). This kind
of expansion is useful for determining the behavior of the solution for small
time. Further, it provides an alternating way to prove the Tauberian theorems.

THEOREM 3.7.1

(Heaviside’s Expansion Theorem). If f̄(s) =
p̄(s)
q̄(s)

, where p̄(s) and q̄(s) are poly-

nomials in s and the degree of q̄(s) is higher than that of p̄(s), then

L −1

{
p̄(s)
q̄(s)

}
=

n∑
k=1

p̄(αk)
q̄′(αk)

exp(tαk), (3.7.22)

where αk are the distinct roots of the equation q̄(s) = 0.

PROOF Without loss of generality, we can assume that the leading coef-
ficient of q̄(s) is unity and write distinct factors of q̄(s) so that

q̄(s) = (s− α1)(s− α2) · · · (s− αk) · · · (s− αn). (3.7.23)

Using the rules of partial fraction decomposition, we can write

f̄(s) =
p̄(s)
q̄(s)

=
n∑
k=1

Ak
(s− αk)

, (3.7.24)

where Ak are arbitrary constants to be determined. In view of (3.7.23), we
find

p̄(s) =
n∑
k=1

Ak(s− α1)(s− α2) · · · (s− αk−1)(s− αk+1) · · · (s− αn).

Substitution of s=αk gives

p̄(αk) =Ak(αk − α1)(αk − α2) · · · (αk − αk+1) · · · (αk − αn), (3.7.25)

where k= 1, 2, 3, . . . , n.
Differentiation of (3.7.23) yields

q̄′(s) =
n∑
k=1

(s− α1)(s− α2) · · · (s− αk−1)(s− αk+1) · · · (s− αn),

whence it follows that

q̄′(αk) = (αk − α1)(αk − α2) · · · (αk − αk−1)(αk − αk+1) · · · (αk − αn).
(3.7.26)
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From (3.7.25) and (3.7.26), we find

Ak =
p̄(αk)
q̄′(αk)

,

and hence,
p̄(s)
q̄(s)

=
n∑
k=1

p̄(αk)
q̄′(αk)

1
(s− αk)

. (3.7.27)

Inversion gives immediately

L −1

{
p̄(s)
q̄(s)

}
=

n∑
k=1

p̄(αk)
q̄′(αk)

exp(tαk).

This proves the theorem. We give some examples of this theorem.

Example 3.7.16
We consider

L −1

{
s

s2 − 3s+ 2

}
.

Here p̄(s) = s, and q̄(s) = s2 − 3s+ 2 = (s− 1)(s− 2). Hence,

L −1

{
s

s2 − 3s+ 2

}
=
p̄(2)
q̄′(2)

e2t +
p̄(1)
q̄′(1)

et = 2 e2t − et.

Example 3.7.17
Use Heaviside’s power series expansion to evaluate

L −1

{
1
s

sinhx
√
s

sinh
√
s

}
, 0<x< 1, s > 0.

We have

1
s

sinhx
√
s

sinh
√
s

=
1
s

(
ex

√
s − e−x

√
s

e
√
s − e−

√
s

)

=
1
s

e−(1−x)√s − e−(1+x)
√
s

1− e−2
√
s

=
1
s

[
e−(1−x)√s − e−(1+x)

√
s
](

1− e−2
√
s
)−1

=
1
s

[
e−(1−x)√s − e−(1+x)

√
s
] ∞∑
n=0

exp(−2n
√
s)

=
1
s

∞∑
n=0

[
exp{−(1− x+ 2n)

√
s} − exp{−(1 + x+ 2n)

√
s}] .
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Hence,

L −1

{
1
s

sinhx
√
s

sinh
√
s

}
= L −1

{
1
s

∞∑
n=0

[
exp{−(1− x+ 2n)

√
s} − exp{−(1 + x+ 2n)

√
s}]}

=
∞∑
n=0

[
erfc

(
1 − x+ 2n

2
√
t

)
− erfc

(
1 + x+ 2n

2
√
t

)]
.

Example 3.7.18

If α=
√
s

a
, show that

L −1

[
coshαx
s coshα�

]
= 1− 4

π

∞∑
k=0

(−1)k cos
{(

k +
1
2

)
πx

�

}
exp

[
−(2k + 1)2

aπ2t

4�2

]
(2k + 1)

.

(3.7.28)
In this case, we write

L −1{f̄(s)}= L −1

{
p̄(s)
q̄(s)

}
= L −1

{
coshαx
s coshα�

}
.

Clearly, the zeros of f̄(s) are at s= 0 and at the roots of coshα�= 0, that is,

at s= sk = a

(
k +

1
2

)2 (
πi

�

)2

, k= 0, 1, 2, . . . . Thus,

αk =
√
sk
a

=
(
k +

1
2

)
πi

�
, k= 0, 1, 2, . . . .

Here p̄(s) = cosh(αx), q̄(s) = s cosh(α�). In order to apply the Heaviside Ex-
pansion Theorem, we need

q̄′(s) =
d

ds
(s coshα�) = cosh(α�) +

1
2
α� sinh(α�).

For the zero s= 0, q̄′(0) = 1, and for the zeros at s= sk,

q̄′(sk) =
1
2

(
k +

1
2

)
πi · sinh

[(
k +

1
2

)
πi

]
= (2k + 1)

πi

4
· i sin

[(
k +

1
2

)
π

]
= −(2k+ 1)

π

4
· cos kπ= (−1)k+1(2k+ 1)

π

4
.
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Consequently,

L −1

{
coshαx
s coshα�

}
= 1 +

4
π

∞∑
k=0

(−1)k+1

(2k + 1)
cosh

[
(2k+ 1)

πix

2�

]
exp(tsk)

= 1− 4
π

∞∑
k=0

(−1)k

(2k + 1)
cos

[
(2k+ 1)

πx

2�

]
× exp

[
−
(
k +

1
2

)2
π2at

�2

]
.

3.8 Tauberian Theorems and Watson’s Lemma

These theorems give the behavior of object functions in terms of the behavior
of transform functions. Particularly, they determine the value of the object
functions f(t) for large and small values of time t. Tauberian theorems are
extremely useful and have frequent applications.

THEOREM 3.8.1 (The Initial Value Theorem).
If L {f(t)}= f̄(s) exists, then

lim
s→∞ f̄(s) = 0. (3.8.1)

In addition, if f(t) and its derivatives exist as t→ 0, we obtain the Initial
Value Theorem:

(i) lim
s→∞[sf̄(s)] = lim

t→0
f(t) = f(0) (3.8.2)

(ii) lim
s→∞[s2f̄(s) − sf(0)] = lim

t→0
f ′(t) = f ′(0), and (3.8.3)

(iii) lim
s→∞[sn+1f̄(s) − snf̄(s)− · · · − sf (n−1)(0)] = f (n)(0). (3.8.4)

Results (3.8.2)–(3.8.4), which are true under fairly general conditions, de-
termine the initial values f(0), f ′(0), . . . , f (n)(0) of the function f(t) and its
derivatives from the Laplace transform f̄(s).

PROOF To prove (3.8.1), we use the fact that the Laplace integral (3.2.5) is
uniformly convergent with respect to the parameter s. Hence, it is permissible
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to take the limit s→∞ under the sign of integration so that

lim
s→∞ f̄(s) =

∞∫
0

( lim
s→∞ e−st)f(t)dt= 0.

Next, we use the same argument to obtain

lim
s→∞ L {f ′(t)}=

∞∫
0

( lim
s→∞ e−st)f ′(t)dt= 0.

Then it follows from result (3.4.10) that

lim
s→∞[sf̄(s)− f(0)] = 0,

and hence, we obtain (3.8.2), that is,

lim
s→∞[sf̄(s)] = f(0) = lim

t→0
f(t).

A similar argument combined with Theorem 3.4.2 leads to (3.8.3) and
(3.8.4).

Example 3.8.1
Verify the truth of Theorem 3.8.1 for f̄(s) = (n+ 1)! s−(n+1) where n is a
positive integer. Clearly, f(t) = tn. Thus, we have

lim
s→∞ f̄(s) = lim

s→∞
(n+ 1)!
sn+1

= 0,

lim
s→∞ sf̄(s) = 0 = f(0).

Example 3.8.2
Find f(0) and f ′(0) when

(a) f̄(s) =
1

s(s2 + a2)
, (b) f̄(s) =

2s
s2 − 2s+ 5

.

(a) It follows from (3.8.2) and (3.8.3) that

f(0) = lim
s→∞[sf̄(s)] = lim

s→∞
1

s2 + a2
= 0.

f ′(0) = lim
s→∞[s2f̄(s)− sf(0)] = lim

s→∞
s

s2 + a2
= 0.



© 2007 by Taylor & Francis Group, LLC

170 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

(b)
f(0) = lim

s→∞
2s2

s2 − 2s+ 5
= 2.

f ′(0) = lim
s→∞[s2f̄(s)− sf(0)] = lim

s→∞

[
2s3

s2 − 2s+ 5
− 2s

]
= 4.

THEOREM 3.8.2 (The Final Value Theorem).

If f̄(s) =
p̄(s)
q̄(s)

, where p̄(s) and q̄(s) are polynomials in s, and the degree of

p̄(s) is less than that of q̄(s), and if all roots of q̄(s) = 0 have negative real
parts with the possible exception of one root which may be at s= 0, then

(i) lim
s→0

f̄(s) =

∞∫
0

f(t)dt, and (3.8.5)

(ii) lim
s→0

[sf̄(s)] = lim
t→∞ f(t), (3.8.6)

provided the limits exist.
Result (3.8.6) is true under more general conditions, and known as the Final

Value Theorem. This theorem determines the final value of f(t) at infinity
from its Laplace transform at s= 0. However, if f̄(s) is more general than the
rational function as stated above, a statement of a more general theorem is
needed with appropriate conditions under which it is valid.

PROOF To prove (i), we use the same argument as employed in Theorem
3.8.1 and find

lim
s→0

f̄(s) =

∞∫
0

(
lim
s→0

exp(−st)
)
f(t)dt=

∞∫
0

f(t) dt.

As before, we can use result (3.4.12) to obtain

lim
s→0

L {f ′(t)} = lim
s→0

[sf̄(s) − f(0)] =

∞∫
0

(
lim
s→0

exp(−st)
)
f ′(t)dt

=

∞∫
0

f ′(t)dt= f(∞)− f(0)= lim
t→∞[f(t)− f(0)].

Thus, it follows immediately that

lim
s→0

[sf̄(s)] = lim
t→∞ f(t) = f(∞).
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Example 3.8.3
Find f(∞), if it exists, from the following functions:

(a) f̄(s) =
1

s(s2 + 2s+ 2)
,

(c) f̄(s) =
s+ a

s2 + b2
, (b �= 0),

(b) f̄(s) =
1

s− a
,

(d) f̄(s) =
s

s− 2
.

(a) Clearly, q̄(s) = 0 has roots at s= 0 and s=−1± i, and the conditions of
Theorem 3.8.2 are satisfied. Thus,

lim
s→0

[sf̄(s)] = lim
s→0

1
s2 + 2s+ 2

=
1
2

= f(∞).

(b) Here q̄(s) = 0 has a real positive root at s= a if a> 0, and a real negative
root if a< 0. Thus, when a< 0

lim
s→0

[sf̄(s)] = lim
s→0

s

s− a
= 0 = f(∞).

If a> 0, the Final Value Theorem does not apply. In fact,

f(t) = L −1

{
1

s− a

}
= eat→∞ as t→∞.

(c) Here q̄(s) = 0 has purely imaginary roots at s=±ib which do not have
negative real parts. The Final Value Theorem does not apply. In fac-
t, f(t) = cos bt+ a

b sin bt and lim
t→∞ f(t) does not exist. However, f(t) is

bounded and oscillatory for all t > 0.

(d) The Final Value Theorem does not apply as q̄(s) = 0 has a positive root
at s= 2.

Watson’s Lemma. If (i) f(t) =O(eat) as t→∞, that is, |f(t)| ≤K exp(at)
for t > T where K and T are constants, and (ii) f(t) has the expansion

f(t) = tα

[
n∑
r=0

art
r +Rn+1(t)

]
for 0< t<T and α>−1, (3.8.7)

where |Rn+1(t)|<Atn+1 for 0< t<T and A is a constant, then the Laplace
transform f̄(s) has the asymptotic expansion

f̄(s)∼
n∑
r=0

ar
Γ(α+ r + 1)
sα+r+1

+O

(
1

sα+n+2

)
as s→∞. (3.8.8)
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PROOF We have, for s> a,

f̄(s) =

T∫
0

e−stf(t)dt+

∞∫
T

e−stf(t)dt

=

T∫
0

e−st tα
(

n∑
r=0

art
r

)
dt+

T∫
0

e−st tαRn+1(t)dt

+

∞∫
T

e−stf(t)dt. (3.8.9)

The general term of the first integral in (3.8.9) can be written as

T∫
0

ar e
−sttα+rdt =

∞∫
0

ar e
−sttα+rdt−

∞∫
T

ar e
−sttα+rdt

= ar
Γ(α+ r + 1)
sα+r+1

+O(e−Ts). (3.8.10)

As s→∞, the second integral in(3.8.9) is less in magnitude than

A

T∫
0

e−sttα+n+1dt=O

(
1

sα+n+2

)
, (3.8.11)

and the magnitude of the third integral in (3.8.9) is∣∣∣∣∣∣
∞∫
T

e−stf(t)dt

∣∣∣∣∣∣≤K

∞∫
T

e−(s−a)tdt=K exp[−(s− a)T ], (3.8.12)

which is exponentially small as s→∞.
Finally, combining (3.8.10), (3.8.11), and (3.8.12), we obtain

f̄(s)∼
n∑
r=0

ar
Γ(α+ r + 1)
sα+r+1

+O

(
1

sα+n+2

)
as s→∞.

This completes the proof of Watson’s lemma.

This lemma is one of the most widely used methods for finding asymptotic
expansions. In order to further expand its applicability, this lemma has sub-
sequently been generalized and its converse has also been proved. The reader
is referred to Erdélyi (1956), Copson (1965), Wyman (1964), Watson (1981),
Ursell (1990), and Wong (1989).
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Example 3.8.4
Find the asymptotic expansion of the parabolic cylinder function Dν(s), which
is valid for Re(ν)< 0, given by

Dν(s) =
exp

(
−s

2

4

)
Γ(−ν)

∞∫
0

exp
[
−
(
st+

t2

2

)]
dt

tν+1
. (3.8.13)

To find the asymptotic behavior ofDν(s) as s→∞, we expand exp
(
−1

2
t2
)

as a power series in t in the form

exp
(
− 1

2
t2
)

=
∞∑
n=0

(−1)n
t2n

2n n!
. (3.8.14)

According to Watson’s lemma, as s→∞,

Dν(s)∼
exp

(
−s

2

4

)
Γ(−ν)

∞∑
n=0

(−1)n

2nn!

∞∫
0

t2n−ν−1e−stdt

=
exp

(
−s

2

4

)
Γ(−ν)

∞∑
n=0

(−1)n

2nn!
Γ(2n− ν)
s2n−ν

. (3.8.15)

This result is also valid for Re(ν)≥ 0.

3.9 Exercises

1. Find the Laplace transforms of the following functions:

(a) 2t+ a sinat, (b) (1 − 2t) exp(−2t),
(c) t cos at, (d) t3/2,

(e) H(t− 3) exp(t− 3), (f) H(t− a) sinh(t− a),
(g) (t− 3)2H(t− 3), (h) tH(t− a),

(i) (1 + 2 at) t−
1
2 exp(at), (j) a cos2 ωt.

2. If n is a positive integer, show that L {t−n} does not exist.

3. Use result (3.4.12) to find (a) L {cosat} and (b) L {sin at}.
4. Use the Maclaurin series for sin at and cos at to find the Laplace trans-

forms of these functions.
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5. Show that L

[
1
t
{exp(−at)− exp(−bt)}

]
= log

(
s+ b

s+ a

)
.

6. Show that L

⎧⎨⎩
t∫

0

s(u)
u

du

⎫⎬⎭=
1
s

∞∫
s

f̄(x)dx.

7. Obtain the inverse Laplace transforms of the following functions:

(a)
s

(s2 + a2)(s2 + b2)
,

(d)
1

(s− 1)2(s− 2)
,

(g)
1

s(s− a)2
,

(b)
1

s2(s2 + c2)
,

(e)
1

s2 + 2s+ 5
,

(h)
1

s2(s− a)2
,

(c)
1
s2

exp(−as),

(f)
1

s2(s+ 1)(s+ 2)
,

(i)
1

s2(s− a)
.

8. Use the Convolution Theorem to find the inverse Laplace transforms of
the following functions:

(a)
s2

(s2 + a2)2
, (b)

1
s
√
s+ 4

, (c)
f̄(s)
s
,

(d)
s

(s2 + a2)2
, (e)

(
ω

s2 + ω2

)
f̄(s), (f)

1
(s2 + a2)2

,

(g)
s

(s− a)(s2 + b2)
, (h)

1
(s+ 1)2

, (i)
1
s

exp(−a√s),

(j)
1

s2(s2 + a2)
, (k)

(s2 − a2)
(s2 + a2)2

, (l)
1
2

ln (1 +
a2

s2
).

9. Show that

(a) L {exp(−t2)}=
√
π

2
exp

(
s2

4

)(
1− erf

s

2

)
,

(b) L −1

{
1√

s−√
a

}
=
√
a exp(at) +

1√
πt

+
√
a exp(at)erf (

√
at),

(c) L −1

⎧⎪⎪⎨⎪⎪⎩
sinh

(sx
a

)
s2 cosh

(
sb

2a

)
⎫⎪⎪⎬⎪⎪⎭=

x

a
+

∞∑
n=0

(−1)n+1

(
4b
aπ2

)
(2n+ 1)−2

×
[
sin

{
(2n+ 1)

πx

b

}
cos

{
(2n+ 1)

πat

b

}]
,

(d) L −1

{
1√

s2 + a2

}
=

1
π

∫ 1

−1

eiatx√
1 − x2

dx.



© 2007 by Taylor & Francis Group, LLC

Laplace Transforms and Their Basic Properties 175

10. Show that

(a) L

{
1
t

(sinat− at cos at)
}

= tan−1
(a
s

)
− as

s2 + a2
,

(b) L

⎧⎨⎩
t∫

0

1
τ

(sin aτ − aτ cos aτ)dτ

⎫⎬⎭=
1
s

[
tan−1

(a
s

)
− as

s2 + a2

]
.

11. Using the Heaviside power series expansion, evaluate the inverse Laplace
transforms of the following functions:

(a)
1√

s2 + a2
,

(d)
1
s

cosech (x
√
s),

(b) tan−1
(a
s

)
,

(e)
1
s

exp
(
−1
s

)
,

(c) sinh−1

(
1
s

)
,

(f) sin−1
(a
s

)
.

12. If L {f(t)}= f̄(s), show that

(i) L −1

{
f̄(s)
s

}
=

t∫
0

f(τ)dτ,

(ii) L −1

{
f̄(s)
s2

}
=

t∫
0

⎧⎨⎩
t1∫

0

f(τ)dτ

⎫⎬⎭ dt1 =

t∫
0

(t− τ)f(τ)dτ,

(iii) L −1

{
f̄(s)
s3

}
=

t∫
0

t1∫
0

t2∫
0

f(τ)dτdt1 dt2 =

t∫
0

1
2
(t− τ)2f(τ)dτ,

and in general

(iv) L −1

{
f̄(s)
sn

}
=

t∫
0

t1∫
0

t2∫
0

· · ·
tn−1∫
0

f(τ)dτ dt1 · · · dtn−1

=

t∫
0

(t− τ)n−1

(n− 1)!
f(τ)dτ.

13. The staircase function f(t) = [t] represents the greatest integer less than
or equal to t. Find its Laplace transform.

14. Use the convolution theorem to prove the identity

t∫
0

J0(τ)J0(t− τ)dτ = sin t.
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15. Show that

(a) L {tH(t− a)}=
(

1
s2

+
a

s

)
exp(−sa),

(b) L {tn exp(at)}=n!(s− a)−(n+1).

16. If L {f(t)}= f̄(s) and f(t) has a finite discontinuity at t= a, show that

L {f ′(t)}= sf̄(s) − f(0)− exp(−sa)[f ]a,

where [f ]a = f(a+ 0)− f(a− 0).

17. If f(t) =H
(
t− π

2

)
sin t, find its Laplace transforms.

18. Establish the following results:

(a) L {sin2 at}=
2a2

s(s2 + 4a2)
,

(b) L {I0(x)}=
1√

s2 + a2
,

(c) L {| sinat|}=
a

s2 + a2
coth

(πs
2a

)
, s > 0,

(d) L

⎧⎨⎩
t∫

0

sin ax
x

dx

⎫⎬⎭=
1
s

tan−1
(a
s

)
,

(e) L

{
d

dt
(f∗g)

}
= g(0)f̄(s) + L {f∗g′}= sf̄(s)ḡ(s)

= L {f ′∗g}+ f(0)ḡ(s).

19. Establish the following results:

(a) L {t2f ′′(t)}= s2
d2

ds2
f̄(s) + 4s

d

ds
f̄(s) + 2f̄(s),

(b) L {tmf (n)(t)}= (−1)m
dm

dsm

[
snf̄(s)− sn−1f(0)− · · · − f (n−1)(0)

]
.

20. (a) Show that f(t) = sin(a
√
t) satisfies the differential equation

4t f ′′(t) + 2f ′(t) + a2f(t) = 0.

Use this differential equation to show that

(b) L {sin√
t}=

1
2

Γ
(

1
2

)
s−3/2 exp

(
− 1

4s

)
, s > 0,

(c) L

{
cos

√
t√

t

}
= Γ

(
1
2

)
1√
s

exp
(
− 1

4s

)
, s > 0.
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21. Establish the following results:

(a) L

⎧⎨⎩
∞∫
t

f(x)
x

dx

⎫⎬⎭=
1
s

s∫
0

f̄(x)dx,

(b) L

⎧⎨⎩
∞∫
0

f(x)
x

dx

⎫⎬⎭=
1
s

∞∫
0

f̄(x)dx.

22. Use exercise 21(a) to find the Laplace transform of

(a) the cosine integral defined by

Ci(t) =

t∫
∞

cosx
x

dx, t > 0,

(b) the exponential integral defined by

Ei(t)=

∞∫
t

e−x

x
dx, t > 0.

23. Show that

(a) L {t e−bt cos at}=
(s+ b)2 − a2

[(s+ b)2 + a2]2
,

(b) L

{
cos at− cos bt

t

}
=

1
2

log
(
s2 + a2

s2 + b2

)
,

(c) L {Ln(t)}=
1
s

(
s− 1
s

)n
, where Ln(t) are the Laguerre polyno-

mials of degree n.

24. If L {f(t)}= f̄(s) and L {g(x, t)}= h̄(s) exp{−xh̄(s)}, prove that

(a) L

⎧⎨⎩
∞∫
0

g(x, t)f(x)dx

⎫⎬⎭= h̄(s)f̄{h̄(s)}.

(b) L

⎧⎨⎩
∞∫
0

J0(2
√
xt)f(x)dx

⎫⎬⎭=
1
s
f̄

(
1
s

)
, when g(x, t) = J0(2

√
xt).

25. Use Exercise 24(b) to show that

(a)

∞∫
0

J0(2
√
xt) sin

(x
a

)
dx= a cos at, (a �= 0),



© 2007 by Taylor & Francis Group, LLC

178 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

(b)

∞∫
0

J0(2
√
xt)e−xxn dx=n! e−tLn(t).

26. Find the Laplace transform of the triangular wave function defined over
(0, 2a) by

f(t) =
{

t, 0< t<a
2a− t, a< t< 2a

}
.

27. Use the Initial Value Theorem to find f(0), and f ′(0) from the following
functions:

(a) f̄(s) =
s

s2 − 5s+ 12
,

(c) f̄(s) =
exp(−sa)
s2 + 3s+ 5

, a > 0,

(b) f̄(s) =
1

s(s2 + a2)
,

(d) f̄(s) =
s2 − 1

(s2 + 1)
.

28. Use the Final Value Theorem to find f(∞), if it exists, from the following
functions:

(a) f̄(s) =
1

s(s2 + as+ b)
,

(c) f̄(s) =
1

1 + as
,

(b) f̄(s) =
s+ 2
s2 + 4

,

(d) f̄(s) =
3

(s2 + 4)2
.

29. If L {f(t)}= f̄(s) and L {g(t)}= ḡ(s), establish Duhamel’s integrals:

L −1{sf̄(s) ḡ(s)}=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f(0)g(t) +

t∫
0

f ′(τ)g(t− τ)dτ

g(0)f(t) +

t∫
0

g′(τ)f(t− τ)dτ

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

30. Using Watson’s lemma, find the asymptotic expansion of

(a) f̄(s) =

∞∫
0

(1 + t2)−1 exp(−st)dt, as s→∞,

(b) K0(s) =

∞∫
0

(t2 − 1)−
1
2 exp(−st)dt, as s→∞,

where K0(s) is the modified Bessel function.

31. Find the asymptotic expansion of f̄(s) as s→∞ when f(t) is given by
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(a) (1 + t)−1,

(c) log(1 + t),

(b) sin 2
√
t,

(d) J0(at).

32. Use the shifting property (3.4.5) or (3.4.6) to obtain the Laplace trans-
form of the following functions:

(a) f(t) = (t− a)nH(t− a), (b) f(t) = t2H(t− a),

(c) f(t) =

{
t, 0≤ t≤ a

0, t≥ a

}
, (d) f(x) =

{
w0

(
1− 2x

l

)
, 0<x< l

2

0, l
2 <x< l

}
,

(e) f(t) = cos 2tH(t− π), (f) f(t) =

{
2, 0≤ t≤ a

−2, t≥ a

}
.

33. For the square wave function f(t) given by f(t) = aH(t)− aH(t− a),
show that

f̄(s) =
a

s (1 + e−as)
.

34. If f(t) = aH(t)− 2aH(t− 1) + aH(t− 2), show that

f̄(s) =
a

s

(
1− 2 e−s + e−2s

)
.

35. If f(t)=

{
sin t
t , t �= 0

1, t= 0

}
, show that f̄(s) = tan−1

(
1
s

)
36. If fp(t) = tp−1 e−tH(t) , show that (fp∗fq) (t) exists if and only if p and

q are both positive.

Hence, derive the following results

(a) (fp∗fq) (t) =B(p, q) fp+q(t).
(b) f ′

p(t) = (p− 1) fp−1(t) − fp(t).

(c) (fp∗fq)′ (t) = (p− 1)B(p− 1, q) fp+q−1(t)−B(p, q) fp+q(t).
(d) (fp∗fq)′ (t) =B(p, q) [(p+ q − 1)fp+q−1(t)− fp+q(t)] .

37. A family {hp(t) : p> 0} of functions on R is called a convolution semi-
group if hp∗hq = hp+q for all p, q > 0. Show that hp(t) = fp(t)

Γ(p) defines a
convolution semi-group where fp(t) is defined in Exercise 36.

38. Using the change of variables, s= c+ iω, show that the inverse Laplace
transformation is a Fourier transformation, that is,

(i) f(t) = L −1
{
f̄(s)

}
= ect

2π

∞∫
−∞

f̄(c+ iω)eiωtdω.
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(ii) f(t) = 1
π e

ct Re
∞∫
0

f̄(c + iω) eiωtdω.

Hence, for real f(t), show that

(iii) Fc {ectf(t)}= 2 Re
[
f̄(c + iω)

]
,

(iv) Fs {ectf(t)}= 2 Im
[
f̄(c + iω)

]
.
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Applications of Laplace Transforms

“Mathematical sciences have attracted special attention since great
antiquity, they are attracting still more attention today because of
their influence on industry and the arts. The agreement of theory
and practice brings most beneficial results, and it is not exclusively
the practical side which gains; science is advancing under its influ-
ence as it discovers new objects of study and new aspects of the
mathematical sciences....”

P. L. Chebyshev

“... partial differential equations are the basis of all physical the-
orems. In the theory of sound in gases, liquids and solids, in the
investigations of elasticity, in optics, everywhere partial differen-
tial equations formulate basic laws of nature which can be checked
against experiments.”

Bernhard Riemann

4.1 Introduction

Many problems of physical interest are described by ordinary or partial d-
ifferential equations with appropriate initial or boundary conditions. These
problems are usually formulated as initial value problems, boundary value
problems, or initial-boundary value problems that seem to be mathematically
more rigorous andphysically realistic in applied and engineering sciences. The
Laplace transform method is particularly useful for finding solutions of these
problems. The method is very effective for the solution of the response of a
linear system governed by an ordinary differential equation to the initial data
and/or to an external disturbance (or external input function). More precisely,
we seek the solution of a linear system for its state at subsequent time t > 0
due to the initial state at t= 0 and/or to the disturbance applied for t> 0.

This chapter deals with the solutions of ordinary and partial differential
equations that arise in mathematical, physical, and engineering sciences. The

181
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applications of Laplace transforms to the solutions of certain integral equa-
tions and boundary value problems are also discussed in this chapter. It is
shown by examples that the Laplace transform can also be used effectively for
evaluating certain definite integrals. We also give a few examples of solutions
of difference and differential equations using the Laplace transform technique.
The effective use of the joint Laplace and Fourier transform is illustrated by
solving several initial-boundary value problems. Application of Laplace trans-
forms to the problem of summation of infinite series in closed form is presented
with examples. Finally, it is noted that the examples given in this chapter are
only representative of a wide variety of problems which can be solved by the
use of the Laplace transform method.

4.2 Solutions of Ordinary Differential Equations

As stated in the introduction of this chapter, the Laplace transform can be
used as an effective tool for analyzing the basic characteristics of a linear sys-
tem governed by the differential equation in response to initial data and/or
to an external disturbance. The following examples illustrate the use of the
Laplace transform in solving certain initial value problems described by ordi-
nary differential equations.

Example 4.2.1
(Initial Value Problem). We consider the first-order ordinary differential equa-
tion

dx

dt
+ px= f(t), t > 0, (4.2.1)

with the initial condition
x(t= 0)= a, (4.2.2)

where p and a are constants and f(t) is an external input function so that its
Laplace transform exists.

Application of the Laplace transform x̄(s) of the function x(t) gives

s x̄(s)− x(0) + p x̄(s) = f̄(s),

or

x̄(s) =
a

s+ p
+
f̄(s)
s+ p

. (4.2.3)

The inverse Laplace transform together with the Convolution Theorem leads
to the solution

x(t) = ae−pt +

t∫
0

f(t− τ)e−pτdτ. (4.2.4)
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Thus, the solution naturally splits into two terms—the first term corresponds
to the response of the initial condition and the second term is entirely due to
the external input function f(t).

In particular, if f(t) = q= constant, then the solution (4.2.4) becomes

x(t) =
q

p
+
(
a− q

p

)
e−pt. (4.2.5)

The first term of this solution is independent of time t and is usually called
the steady-state solution. The second term depends on time t and is called the
transient solution. In the limit as t→∞, the transient solution decays to zero
if p> 0 and the steady-state solution is attained. On the other hand, when
p< 0, the transient solution grows exponentially as t→∞, and the solution
becomes unstable.

Equation (4.2.1) describes the law of natural growth or decay process with
an external forcing function f(t) according as p> 0 or < 0. In particular, if
f(t) = 0 and p> 0, the resulting equation (4.2.1) occurs very frequently in
chemical kinetics. Such an equation describes the rate of chemical reactions.

Example 4.2.2

(Second Order Ordinary Differential Equation). The second order linear ordi-
nary differential equation has the general form

d2x

dt2
+ 2 p

dx

dt
+ qx= f(t), t > 0. (4.2.6)

The initial conditions are

x(t) = a,
dx

dt
= ẋ(t) = b at t= 0, (4.2.7ab)

where p, q, a and b are constants.
Application of the Laplace transform to this general initial value problem

gives

s2x̄(s) − s x(0) − ẋ(0) + 2p{s x̄(s) − x(0)} + qx̄(s) = f̄(s).

The use of (4.2.7ab) leads to the solution for x̄(s) as

x̄(s) =
(s+ p)a+ (b+ pa) + f̄(s)

(s+ p)2 + n2
, n2 = q − p2. (4.2.8)

The inverse transform gives the solution in three distinct forms depending on
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q > = <p2, and they are

x(t) = ae−pt cosnt+
1
n

(b+ pa)e−pt sinnt

+
1
n

t∫
0

f(t− τ)e−pτ sinnτdτ, when n2 = q − p2> 0, (4.2.9)

x(t) = ae−pt + (b+ pa) t e−pt

+

t∫
0

f(t− τ) τ e−pτdτ, when n2 = q − p2 = 0, (4.2.10)

x(t) = ae−pt coshmt+
1
m

(b+ pa) e−pt sinhmt

+
1
m

t∫
0

f(t− τ) e−pτ sinhmτdτ, when m2 = p2 − q > 0.(4.2.11)

Example 4.2.3

(Higher Order Ordinary Differential Equations). We solve the linear equation
of order n with constant coefficients as

f(D){x(t)}≡Dnx+ a1D
n−1x+ a2D

n−2x+ · · ·+ anx= φ(t), t > 0,
(4.2.12)

with the initial conditions

x(t) = x0, Dx(t) = x1, D2x(t) = x2, . . . , D
n−1x(t) = xn−1, at t= 0,

(4.2.13)

where D=
d

dt
is the differential operator and x0, x1, . . . , xn−1 are constants.

We take the Laplace transform of (4.2.12) to get

(sn x̄ − sn−1 x0 − sn−2 x1 − · · · − s xn−2 − xn−1

)
+a1

(
sn−1 x̄− sn−2 x0 − sn−3 x1 − · · · − xn−2

)
+a2

(
xn−2 x̄− sn−3 x0 − · · · − xn−3

)
+ · · ·+ an−1(s x̄− x0) + an x̄= φ̄(s). (4.2.14)
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Or,

(sn + a1s
n−1 + a2s

n−2 + · · ·+ an) x̄(s)

= φ̄(s) + (sn−1 + a1s
n−2 + · · ·+ an−1)x0

+(sn−2 + a1s
n−3 + · · ·+ an−2)x1 + · · ·+ (s+ a1)xn−2 + xn−1

= φ̄(s) + ψ̄(s), (4.2.15)

where ψ̄(s) is made up of all terms on the right hand side of (4.2.15) except
φ̄(s), and is a polynomial in s of degree (n− 1).

Hence,
f̄(s) x̄(s) = φ̄(s) + ψ̄(s),

where
f̄(s) = sn + a1s

n−1 + · · ·+ an.

Thus, the Laplace transform solution, x̄(s) is

x̄(s) =
φ̄(s) + ψ̄(s)

f̄(s)
. (4.2.16)

Inversion of (4.2.16) yields

x(t) = L −1

{
φ̄(s)
f̄(s)

}
+ L −1

{
ψ̄(s)
f̄(s)

}
. (4.2.17)

The inverse operation on the right can be carried out by partial fraction de-
composition, by the Heaviside Expansion Theorem, or by contour integration.

Example 4.2.4
(Third Order Ordinary Differential Equations). We solve

(D3 +D2 − 6D)x(t) = 0, D≡ d

dt
, t> 0, (4.2.18)

with the initial data

x(0) = 1, ẋ(0)= 0, and ẍ(0) = 5. (4.2.19)

The Laplace transform of equation (4.2.18) gives

[s3x̄− s2x(0) − s ẋ(0)− ẍ(0)] + [s2x̄− s x(0) − ẋ(0)]− 6[s x̄− x(0)] = 0.

In view of the initial conditions, we find

x̄(s) =
s2 + s− 1
s(s2 + s− 6)

=
s2 + s− 1

s(s+ 3)(s− 2)
.
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Or,

x̄(s) =
1
6
· 1
s

+
1
3
· 1
s+ 3

+
1
2
· 1
s− 2

.

Inverting gives the solution

x(t) =
1
6

+
1
3
e−3t +

1
2
e2t. (4.2.20)

Example 4.2.5
(System of First Order Ordinary Differential Equations). Consider the system

dx1

dt
= a11x1 + a12x2 + b1(t)

dx2

dt
= a21x1 + a22x2 + b2(t)

⎫⎪⎪⎬⎪⎪⎭ (4.2.21ab)

with the initial data

x1(0)= x10 and x2(0) = x20; (4.2.22ab)

where a11, a12, a21, a22 are constants.
Introducing the matrices

x≡
(
x1

x2

)
, dx

dt ≡

⎛⎜⎜⎝
dx1

dt

dx2

dt

⎞⎟⎟⎠ , A≡
(
a11 a12

a21 a22

)
,

b(t)≡
(
b1(t)

b2(t)

)
and x0 =

(
x10

x20

)
,

we can write the above system in a matrix differential system as

dx

dt
=Ax+ b(t), x(0) = x0. (4.2.23ab)

We take the Laplace transform of the system with the initial conditions to get

(s− a11)x̄1 − a12x̄2 = x10 + b̄1(s),
−a21x̄1 + (s− a22)x̄2 = x20 + b2(s).

The solutions of this algebraic system are

x̄1(s) =

∣∣∣∣∣x10 + b̄1(s) −a12

x20 + b̄2(s) s− a22

∣∣∣∣∣∣∣∣∣ s− a11 −a12

−a21 s− a22

∣∣∣∣ , x̄2(s) =

∣∣∣∣∣ s− a11 x10 + b̄1(s)
−a21 x20 + b̄2(s)

∣∣∣∣∣∣∣∣∣ s− a11 −a12

−a21 s− a22

∣∣∣∣ .

(4.2.24ab)
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Expanding these determinants, results for x̄1(s) and x̄2(s) can readily be
inverted, and the solutions for x1(t) and x2(t) can be found in closed forms.

Example 4.2.6
Solve the matrix differential system

dx

dt
=Ax, x(0) =

(
0
1

)
, (4.2.25)

where

x=
(
x1

x2

)
and A=

(
0 1

−2 3

)
.

This system is equivalent to

dx1

dt
− x2 = 0,

dx2

dt
+ 2x1 − 3x2 = 0,

with
x1(0) = 0 and x2(0) = 1.

Taking the Laplace transform of the coupled system with the given initial
data, we find

s x̄1 − x̄2 = 0,
2x̄1 + (s− 3)x̄2 = 1.

This system has the solutions

x̄1(s) =
1

s2 − 3s+ 2
=

1
s− 2

− 1
s− 1

,

x̄2(s) =
s

s2 − 3s+ 2
=

2
s− 2

− 1
s− 1

.

Inverting these results, we obtain

x1(t) = e2t − et, x2(t) = 2 e2t − et.

In matrix notation, the solution is

x(t) =
(
e2t − et

2 e2t − et

)
. (4.2.26)
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Example 4.2.7
(Second Order Coupled Differential System). Solve the system

d2x1

dt2
− 3x1 − 4x2 = 0

d2x2

dt2
+ x1 + x2 = 0

⎫⎪⎪⎬⎪⎪⎭ t > 0, (4.2.27)

with the initial conditions

x1(t) = x2(t) = 0;
dx1

dt
= 2 and

dx2

dt
= 0 at t= 0. (4.2.28)

The use of the Laplace transform to (4.2.27) with (4.2.28) gives

(s2 − 3)x̄1 − 4x̄2 = 2
x̄1 + (s2 + 1)x̄2 = 0.

Then

x̄1(s) =
2(s2 + 1)
(s2 − 1)2

=
(s+ 1)2 + (s− 1)2

(s2 − 1)2
=

1
(s− 1)2

+
1

(s+ 1)2
.

Hence, the inversion yields

x1(t) = t(et + e−t). (4.2.29)

x̄2(s) =
−2

(s2 − 1)2
=

1
2

[
1

s− 1
− 1
s+ 1

− 1
(s− 1)2

− 1
(s+ 1)2

]
,

which can be readily inverted to find

x2(t) =
1
2
(et − e−t − t et − t e−t). (4.2.30)

Example 4.2.8
(The Harmonic Oscillator in a Non-Resisting Medium). The differential e-
quation of the oscillator in the presence of an external driving force F f(t)
is

d2x

dt2
+ ω2x=F f(t), (4.2.31)

where ω is the frequency and F is a constant.
The initial conditions are

x(t) = a, ẋ(t) =U at t= 0, (4.2.32)
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where a and U are constants.
Taking the Laplace transform of (4.2.31) with the initial conditions, we

obtain
(s2 + ω2)x̄(s) = sa+U + F f̄(s).

Or,

x̄(s) =
as

s2 + ω2
+

U

s2 + ω2
+

F f̄(s)
s2 + ω2

. (4.2.33)

Inversion together with the convolution theorem yields

x(t) = a cosωt+
U

ω
sinωt+

F

ω

t∫
0

f(t− τ) sin ωτdτ (4.2.34)

= A cos(ωt− φ) +
F

ω

t∫
0

f(t− τ) sin ωτdτ, (4.2.35)

where A=
(
a2 +

U2

ω2

)1/2

and φ= tan−1

(
U

ωa

)
.

The solution (4.2.35) consists of two terms. The first term represents the
response to the initial data, and it describes free oscillations with amplitude
A, phase φ, and frequency ω, which is called the natural frequency of the
oscillator. The second term arises in response to the external force, and hence,
it represents the forced oscillations. In order to investigate some interesting
features of solution (4.2.35), we select the following cases of interest:

(i) Zero Forcing Function.
In this case, solution (4.2.35) reduces to

x(t) =A cos(ωt− φ). (4.2.36)

This represents simple harmonic motion with amplitude A, frequency ω and
phase φ. Evidently, the motion is oscillatory.

(ii) Steady Forcing Function, that is, f(t)= 1.
In this case, solution (4.2.35) becomes

x− F

ω2
=A cos(ωt− φ) − F

ω2
cosωt. (4.2.37)

In particular, when the particle is released from rest, U = 0, (4.2.37) takes the
form

x− F

ω2
=
(
a− F

ω2

)
cosωt. (4.2.38)

This corresponds to free oscillations with the natural frequency ω and displays

a shift in the equilibrium position from the origin to the point
F

ω2
.
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(iii) Periodic Forcing Function, that is, f(t) = cosω0t.
The transform solution can readily be found form (4.2.33) in the form

x̄(s) =
as

s2 + ω2
+

U

s2 + ω2
+

Fs

(s2 + ω2
0)(s2 + ω2)

=
as

s2 + ω2
+

U

s2 + ω2
+

Fs

(ω2
0 − ω2)

(
1

s2 + ω2
− 1
s2 + ω2

0

)
. (4.2.39)

Inversion yields the solution

x(t) = a cosωt+
U

ω
sin ωt+

F

(ω2
0 − ω2)

(cos ωt− cos ω0t) (4.2.40)

= A cos(ωt− φ) +
F

(ω2
0 − ω2)

cos ω0t, (4.2.41)

where A=

{(
a+

F

ω2
0 − ω2

)2

+
U2

ω2

}1/2

and tan φ=
U

ω
÷
(
a+

F

ω2
0 − ω2

)
.

It is noted that solution (4.2.41) consists of free oscillations of period
(

2π
ω

)
and forced oscillations of period

(
2π
ω0

)
, which is the same as that of the

external periodic force. If ω0<ω, the phase of the forced oscillations is the
same as that of the external periodic force. If ω0>ω, the forced term suffers
from a phase change by an amount π. In other words, the forced motion is in
phase or 180◦ out of phase with the external force according as ω > or <ω0.

When ω=ω0, result (4.2.40) can be written as

x(t) = a cosωt+
U

ω
sin ωt+

Ft

(ω0 + ω)

⎡⎢⎢⎣ sin
{

1
2
(ω − ω0)t

}
sin

{
1
2
(ω + ω0)t

}
1
2
(ω0 − ω)t

⎤⎥⎥⎦
= a cosωt+

U

ω
sinωt+

Ft

2ω
sinωt=A cos(ωt− φ) +

Ft

2ω
sinωt, (4.2.42)

where

A2 =
(
a2 +

U2

ω2

)
and tan φ=

U

aω
.

This solution clearly shows that the amplitude of the forced motion increases
with t. Thus, if the natural frequency is equal to the forcing frequency, the
oscillations become unbounded, which is physically undesirable. This phe-
nomenon is usually called resonance, and the corresponding frequency ω=ω0

is referred to as the resonant frequency of the system. It may be emphasized
that at the resonant frequency, the solution of the problem becomes mathe-
matically invalid for large times, and hence, it is physically unrealistic. In most
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dynamical systems, this kind of situation is resolved by including dissipating
and/or nonlinear effects.

Example 4.2.9
(Harmonic Oscillator in a Resisting Medium). The differential equation of
the oscillator in a resisting medium where the resistance is proportional to
velocity is given by

d2x

dt2
+ 2k

dx

dt
+ ω2x=F f(t), (4.2.43)

where k (> 0) is a constant of proportionality and the right hand side repre-
sents the external driving force. The initial state of the system is

x(t) = a,
dx

dt
=U at t= 0. (4.2.44)

In view of the initial conditions, the Laplace transform solution of equation
(4.2.43) is obtained as

x̄(s) =
a(s+ 2k) + U + F f̄(s)

(s2 + 2ks+ ω2)

=
a(s+ k) + (U + ak) + F̄ (s)

(s+ k)2 + n2
, (4.2.45)

where n2 =ω2 − k2.
Three possible cases deserve attention:

(i) k <ω (small damping).
In this case, n2 =ω2 − k2> 0 and the inversion of (4.2.45) along with the
Convolution Theorem yields

x(t) = a e−kt cosnt+
(U + ak)

n
e−kt sinnt+

F

n

t∫
0

f(t− τ)e−kτ sinnτdτ.

(4.2.46)
This is the most general solution of the problem for an arbitrary form of the
external driving force.

(ii) k=ω (critical damping) so that n2 = 0.
The solution for this case can readily be obtained from (4.2.45) by inversion
and has the form

x(t) = a e−kt + (U + ak) t e−kt + F

t∫
0

f(t− τ) τe−ktdτ. (4.2.47)

(iii) k >ω (large damping).
Set n2 =−(k2 − ω2) =−m2 so that m2 = k2 − ω2> 0.
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The transformed solution (4.2.45) assumes the form

x̄(s) =
a(s+ k) + (U + ak) + F f̄(s)

(s+ k)2 −m2
. (4.2.48)

After inversion, it turns out that

x(t) = a e−kt coshmt +
(
U + ak

m

)
e−kt sinhmt

+
F

m

t∫
0

f(t− τ)e−kτ sinhmτdτ. (4.2.49)

In order to examine the characteristic features of the problem, it is necessary
to specify the nature and functional form of f(t) involved in the external force
term. Suppose the external driving force is zero. The solution can readily be
written down in all three cases.

For 0<k<ω, the solution is

x(t) = e−kt
(
a cosnt+

U + ak

n
sinnt

)
=Ae−kt cos(nt− φ), (4.2.50)

where A=
{
a2 + (U+ak)2

n2

}1/2

and φ= tan−1

(
U + ak

an

)
.

Like the harmonic oscillator in a vacuum, the motion is oscillatory with the
time-dependent amplitude Ae−kt and the modified frequency

n= (ω2 − k2)1/2 =ω

(
1 − 1

2
k2

ω2
+ · · ·

)
, 0<k<ω.

This means that, when the resistance is small, the modified frequency (or the
undamped natural frequency) is obviously smaller than the natural frequen-
cy, ω. Although the small resistance produces an insignificant effect on the
frequency, the amplitude is radically modified. It should also be noted that
the amplitude decays exponentially to zero as time t→∞. The phase of the
motion is also changed by the small resistance. Thus, the motion is called the
damped oscillatory motion, and depicted by Figure 4.1.

At the critical case, ω= k, and hence, n= 0. The solution can readily be
found from (4.2.47) with F = 0, and has the form

x(t) = a e−kt + (ak +U) t e−kt. (4.2.51)

The motion ceases to be oscillatory and decays very rapidly as t→∞.
If damping is large with no external force, solution (4.2.49) reduces to

x(t) = a e−kt coshmt+

(
ak +U

m

)
e−kt sinhmt. (4.2.52)
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t
x(

t)

Figure 4.1 Damped oscillatory motion.

Using cosh
sinh mt= 1

2 (emt ± e−mt), we can write the solution as

x(t) =Ae−(k−m)t +B e−(k+m)t, (4.2.53)

where A= 1
2

(
a+ ak+U

m

)
and B=

1
2

(
a− ak + U

m

)
.

The above solution suggests that the motion is no longer oscillatory and in
fact, it decays very rapidly as t→∞.

Example 4.2.10
(Harmonic Oscillator in a Resisting Medium with an External Periodic Force),
The motion is governed by the equation

d2x

dt2
+ 2k

dx

dt
+ ω2x=F cosω0t, k > 0 (4.2.54)

with the initial data
x(0) = a and ẋ(0)=U.

The transformed solution for the case of small damping (k <ω) is

x̄(s) =
a(s+ k) + (U + ak)

(s+ k)2 + n2
+

Fs

{(s+ k)2 + n2}(s2 + ω2
0)

=
a(s+ k) + (U + ak)

(s+ k)2 + n2
+ F

[
As−B

(s+ k)2 + n2
− As−C

s2 + ω2
0

]
, (4.2.55)

where

A=
ω2

0 − ω2

(ω2 − ω2
0)2 + 4k2ω2

0

, B=
2kω2

(ω2 − ω2
0)2 + 4k2ω2

0

,
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and

C =
2 k ω2

0

(ω2 − ω2
0)2 + 4k2ω2

0

with ω2 = n2 + k2.

The expression for x̄(s) can be inverted to obtain the solution

x(t) = (a+ FA) e−kt cosnt +
1
n

(U + ak − FAk − FB) e−kt sinnt

−AF cosω0t +
CF

ω0
sinω0t. (4.2.56)

It is convenient to write it in the form

x(t) =A1 cos(ω0t− φ1) +A2 e
−kt cos(nt− φ2), (4.2.57)

where

A2
1 = F 2

(
A2 +

C2

ω2
0

)
=

F 2

(ω2 − ω2
0)2 + 4k2ω2

0

, (4.2.58)

tan φ1 = − C

Aω0
=

2kω0

ω2 − ω2
0

, (4.2.59)

A2
2 = (a+ FA)2 +

1
n2

(U + ak − kFa− FB)2, (4.2.60)

and

tan φ2 =
U + ak − kFA− FB

n(a+ FB)
. (4.2.61)

This form of solution (4.2.57) lends itself to some interesting physical inter-
pretations. First, the displacement field x(t) essentially consists of the steady
state and the transient terms, which are independently modified by the damp-
ing and driving forces involved in the equation of motion. In the limit as t→∞,
the latter decays exponentially to zero. Consequently, the ultimate steady s-
tate is attained in the limit, and represented by the first term of (4.2.57). In
fact, the steady-state solution is denoted by xst(t) and given by

xst(t) =A1 cos(ω0t− φ1), (4.2.62)

where A1 is the amplitude, ω0 is the frequency, and φ1 represents the phase
lag given by

φ1 = tan−1

{
2kω0(
ω2 − ω2

0

)} when ω0<ω,

= π − tan−1

{
2kω0(
ω2

0 − ω2
)} when ω0>ω,

=
π

2
as ω0 →ω.
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It should be noted that the frequency of the steady-state solution is the same
as that of the external driving force, but the amplitude and the phase are
modified by the parameters ω, k and ω0. It is of interest to examine the nature
of the amplitude and the phase with respect to the forcing frequency ω0. For

a low frequency (ω0 → 0), A1 =
F

ω2
and φ1 = 0. As ω0 →ω, the amplitude of

the motion is still bounded and equal to
(

F

2kω

)
if k �= 0. The displacement

suffers from a phase lag of π/2. Further, we note that

dA1

dω0
=

2ω0F
(
ω2 − ω2

0 − 2k2
){

(ω2 − ω2
0)2 + 4k2ω2

0

}3/2
. (4.2.63)

It follows that A1 has a minimum at ω0 = 0 with minimum value
F

ω2
, and a

maximum at ω0 = (ω2 − 2k2)1/2 with maximum value
F

2k(ω2 − 2k2)1/2
pro-

vided 2k2<ω2. If 2k2>ω2, A1 has no maximum and gradually decreases.

The non-dimensional amplitude A∗ =
(

2A1ω
2

F

)
is plotted against the non-

dimensional frequency ω∗ =
ω0

ω
for a given value of k

ω (< 1) in Figure 4.2.

1 2
0

5

k = 1
10

*

A*

Figure 4.2 Amplitude versus frequency with damping.

In the absence of the damping term, the amplitude A1 becomes

A1 =
F∣∣ω2 − ω2

0

∣∣ ,
which is unbounded at ω0 =ω and shown in Figure 4.3.

This situation has already been encountered earlier, and the frequency ω0 =
ω was defined as the resonant frequency. The difficulty for the resonant case
has been resolved by the inclusion of small damping effect.
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1 2
0

5

k = 1
10

*

A*

Figure 4.3 Amplitude versus frequency without damping.

At the critical case (k2 =ω2), the solution is found from (4.2.55) by inversion
and has the form

x(t) =A1 cos(ω0t− φ) + (a+ FA) e−kt

+ t(U + ak − FAk − FB) e−kt. (4.2.64)

The transient term of this solution decays as t→∞ and the steady state is
attained.

The solution for the case of high damping (k2>ω2) is obtained from (4.2.55)
as

x(t) = (a+ FA) e−kt coshmt +
1
m

(U + ak − FAk − FB) e−kt sinhmt

− AF cosω0t+
CF

ω0
sinω0t (4.2.65)

where m2 =−n2 = k2 − ω2> 0. This result is somewhat similar to that of
(4.2.56) or (4.2.57) with the exception that the transient term decays very
rapidly as t→∞. Like previous cases, the steady state is reached in the limit.

Example 4.2.11
Obtain the solution of the Bessel equation

t
d2x

dt2
+
dx

dt
+ a2t x(t) = 0, x(0) = 1. (4.2.66)

Application of the Laplace transform gives

L

{
t
d2x

dt2

}
+ L

{
dx

dt

}
+ a2 L {t x(t)}= 0.

Or,

− d

ds

[
L

{
d2x

dt2

}]
+ s x̄(s)− x(0)− a2 dx̄

ds
= 0.
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Or,

− d

ds
[s2 x̄− s x(0) − ẋ(0)] + s x̄(s)− 1 − a2 dx̄

ds
= 0.

Thus,

(s2 + a2)
dx̄

ds
+ s x̄= 0.

Or,
dx̄

x̄
=− s ds

s2 + a2
.

Integration gives the solution for x̄(s)

x̄(s) =
A√

s2 + a2
,

where A is an integrating constant. By the inverse transformation, we obtain
the solution

x(t) =AJ0(at).

Example 4.2.12
Find the solution of the initial value problem

d2x

dt2
+ t

dx

dt
− 2x= 2, x(0) = ẋ(0) = 0.

Taking the Laplace transform yields

L

{
d2x

dt2

}
+ L

{
t
dx

dt

}
− 2 x̄(s) =

2
s
.

Or,

s2x̄− d

ds
{s x̄(s)} − 2x̄=

2
s

dx̄

ds
+
(

3
s
− s

)
x̄=− 2

s2
.

This is a first order linear equation, which can be solved by the method of the

integrating factor. The integrating factor is s3 exp
(
−1

2
s2
)
. Multiplying the

equation by the integrating factor and integrating, it turns out that

x̄(s) =
2
s3

+
A

s3
exp

(
s2

2

)
,
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where A is an integrating constant. As x̄(s)→∞ as s→∞, we must have

A≡ 0. Thus, x̄(s) =
2
s3
. Inverting, we get the solution

x(t) = t2.

Example 4.2.13
(Current and Charge in a Simple Electric Circuit). The current in a circuit
(see Figure 4.4) containing inductance L, resistance R, and capacitance C
with an applied voltage E(t) is governed by the equation

L
dI

dt
+RI +

1
C

t∫
0

Idt=E(t), (4.2.67)

where L, R, and C are constants and I(t) is the current that is related to the
accumulated charge Q on the condenser at time t by

Q(t) =

t∫
0

I(t)dt so that
dQ

dt
= I(t). (4.2.68)

L

R

CE(t)

I(t)

Q(t)

Figure 4.4 Simple electric circuit.

If the circuit is without a condenser (C→∞), equation (4.2.67) reduces to

L
dI

dt
+RI =E(t), t > 0. (4.2.69)

This can easily be solved with the initial condition I(t= 0)= I0. However, we
solve the system (4.2.67)–(4.2.68) with the initial data

I(t= 0) = 0, Q(t= 0)= 0. (4.2.70)
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Then, in the limit C→∞, the solution of the system reduces to that of
(4.2.69).

Application of the Laplace transform to (4.2.67) with (6.2.70) gives

Ī(s) =
1
L

sĒ(s)(
s2 + R

L s+ 1
CL

) =
1
L
· (s+ k − k)Ē(s)

(s+ k)2 + n2
, (4.2.71)

where k=
R

2L
, ω2 =

1
LC

and n2 =ω2 − k2.

Inversion of (4.2.71) gives the current field for three cases:

I(t) =
1
L

t∫
0

E(t− τ)
(

cosnτ − k

n
sinnτ

)
e−kτdτ, if ω2>k2 (4.2.72)

=
1
L

t∫
0

E(t− τ)(1 − kτ)e−kτdτ, if ω2 = k2 (4.2.73)

=
1
L

t∫
0

E(t− τ)
(

coshmτ − k

m
sinhmτ

)
e−kτdτ, if k2>ω2 (4.2.74)

where m2 =−n2.
In particular, if E(t) = constant =E0, then the solution can be obtained

directly from (4.2.71) by inversion as

I(t) =
E0

nL
exp

(
−Rt

2L

)
sinnt, if n2 =

1
CL

−
(
R

2L

)2

> 0, (4.2.75)

=
E0

L
t exp

(
−Rt

2L

)
, if

(
R

2L

)2

=
1
CL

, (4.2.76)

=
E0

mL
exp

(
−Rt

2L

)
sinhmt, if m2 =

(
R

2L

)2

− 1
CL

> 0. (4.2.77)

It may be observed that the solution for the case of low resistance (R2C < 4L),
or small damping, describes a damped sinusoidal current with slowly decaying

amplitude. In fact, the rate of damping is proportional to
R

L
, and when this

quantity is large, the attenuation of the current is very rapid. The frequency
of the oscillating current field is

n=
(

1
CL

− R2

4L2

)1/2

,

which is called the natural frequency of the current field. If
R2

4L2
<<

1
CL

, the
frequency n is approximately equal to

n∼ 1√
CL

.
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The case,
R2

4L2
=

1
CL

, corresponds to critical damping, and the solution for
this case decays exponentially with time.

The last case, R2C > 4L, corresponds to high resistance or high damping.
The current related to this case has the form

I(t) =
E0

2mL

[
e−( R

2L−m)t − e−( R
2L +m)t

]
. (4.2.78)

It may be recognized that the solution is no longer oscillatory and decays
exponentially to zero as t→∞. This is really expected in an electrical circuit
with a very high resistance. If C→∞, the circuit is free from a condenser and

m→ R

2L
. Consequently, solution (4.2.77) reduces to

I(t) =
E0

R

[
1− exp

(
−Rt
L

)]
. (4.2.79)

This is identical with the solution of equation (4.2.69).
We consider another special case where the alternating voltage is applied

to the circuit so that
E(t) =E0 sinω0t. (4.2.80)

The transformed solution for Ī(s) follows from (4.2.71) as

Ī(s) =
(
E0ω0

L

)
s

{(s+ k)2 + n2}(s2 + ω2
0

) . (4.2.81)

Using the rules of partial fractions, it turns out that

Ī(s) =
(
E0ω0

L

)[
As−B

(s+ k)2 + n2
− As−C

s2 + ω2
0

]
, (4.2.82)

where (A,B,C)≡ (ω2
0 − ω2, 2kω2, 2kω2

0)
(ω2 − ω2

0)2 + 4k2ω2
0

.

The inversion of (4.2.82) can be completed by Table B-4 of Laplace trans-
forms, and the solution for I(t) assumes three distinct forms according to
ω2> = <k2.

The solution for the case of low resistance (ω2>k2) is

I(t) =
(
E0ω0

L

)[
Ae−kt cosnt − 1

n
(Ak +B)e−kt sinnt

− A cosω0t+
C

ω0
sinω0t

]
, (4.2.83)

which has the equivalent form

I(t) =A1 sin(ω0t− φ1) +A2 e
−kt cos(nt− φ2), (4.2.84)
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where

A2
1 =

E2
0

L2

(
A2ω2

0 +C2
)
=

E2
0ω

2
0

L2
{(
ω2 − ω2

0

)2 + 4k2ω2
0

} , tanφ1 =
Aω0

C
,(4.2.85)

A2
2 =

(
E2

0ω
2
0

L2

)[
A2 +

1
n2

(Ak +B)2
]

and tanφ2 =− (Ak +B)
An

. (4.2.86)

The current field consists of the steady-state and transient components. The

latter decays exponentially in a time scale of the order
L

R
. Consequently, the

steady current field is established in the electric circuit and describes the
sinusoidal current with constant amplitude and phase lagging by an angle
φ1. The frequency of the steady oscillating current is the same as that of the
applied voltage.

In the critical situation (ω2 = k2), the current field is derived from (4.2.82)
by inversion and has the form

I(t) =A1 sin(ω0t− φ1) +
(
E0ω0

L

)[
Ae−kt − (Ak +B)te−kt

]
. (4.2.87)

This result suggests that the transient component of the current dies out
exponentially in the limit as t→∞. Eventually, the steady oscillating current
is set up in the circuit and described by the first term of (4.2.87). Finally, the
solution related to the case of high resistance (ω2<k2) can be found by direct
inversion of (4.2.82) and is given by

I(t) = A1 sin(ω0t− φ1)

+
(
E0ω0

L

)[
A cosh mt− 1

m
(Ak +B) sinhmt

]
e−kt. (4.2.88)

This solution is somewhat similar to (4.2.84) with the exception of the form
of the transient term which, of course, decays very rapidly as t→∞. Conse-
quently, the steady current field is estalished in the circuit and has the same
value as in (4.2.84).

Finally, we close this example by suggesting a similarity between this elec-
tric circuit system and the mechanical system as described in Example 4.2.9.
Differentiation of (4.2.67) with respect to t gives a second order equation for
the current field as

L
d2I

dt2
+R

dI

dt
+
I

C
=
dE

dt
. (4.2.89)

Also, an equation for the charge field Q(t) can be found from (4.2.67) and
(4.2.68) as

L
d2Q

dt2
+R

dQ

dt
+
Q

C
=E(t). (4.2.90)
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Writing 2k=
R

L
and ω2 =

1
LC

, the above equation can be put into the form

(
d2

dt2
+ 2k

d

dt
+ ω2

)(
I

Q

)
=

1
L

⎛⎝ dE

dt

E

⎞⎠ . (4.2.91ab)

These equations are very similar to equation (4.2.43) for a harmonic oscillator.

Example 4.2.14
(Current and Charge in an Electrical Network). An electrical network is a
combination of several interrelated simple electric circuits. Consider a more
general network consisting of two electric circuits coupled by the mutual in-
ductance M with resistances R1 and R2, capacitances C1 and C2, and self-
inductances L1 and L2 as shown in Figure 4.5. A time-dependent voltage E(t)
is applied to the first circuit at time t= 0, when charges and currents are zero.

R1 R2

L1 L2

M

I1(t) I2(t)

_+

C1

C2

Q1

Q2

Figure 4.5 Two coupled electric circuits.

The charge and current fields in the network are governed by the system of
ordinary differential equations

L1
dI1
dt

+R1I1 +M
dI2
dt

+
Q1

C1
=E(t), t > 0 (4.2.92)

M
dI1
dt

+ L2
dI2
dt

+R2I2 +
Q2

C2
= 0, t > 0 (4.2.93)

with
dQ1

dt
= I1 and

dQ2

dt
= I2.

The initial conditions are

I1 = 0, Q1 = 0, I2 = 0, Q2 = 0 at t= 0. (4.2.94)
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Eliminating the currents from (4.2.92) and (4.2.93), we obtain(
L1D

2 +R1D+
1
C1

)
Q1 +MD2Q2 =E(t), (4.2.95)

MD2Q1 +
(
L2D

2 +R2D+
1
C2

)
Q2 = 0, (4.2.96)

where D≡ d

dt
.

The Laplace transform can be used to solve this system for Q1 and Q2.
Similarly, we can find solutions for the current fields I1 and I2 independently
or from the charge fields. We leave it as an exercise for the reader.

In the absence of the external voltage (E = 0) with R1 =R2 = 0, L1 =L2 =
L and C1 =C2 =C, addition and subtraction of (4.2.95) and (4.2.96) give

Q̈+ + α2Q+ = 0, Q̈− + β2Q− = 0, (4.2.97ab)

where

Q+ = Q1 +Q2, Q− =Q1 −Q2,

α2 = [C(L+M)]−1, and β2 = [C(L −M)]−1.

Clearly, the system executes uncoupled simple harmonic oscillations with
frequencies α and β. Hence, the normal modes can be generated in this freely
oscillatory electrical system.

Finally, in the absence of capacitances (C1 →∞, C2 →∞), the above net-
work reduces to a simple one that consists of two electric circuits coupled by
the mutual inductance M with inductances L1 and L2, and resistances R1

and R2. As shown in Figure 4.6, an external voltage is applied to the first
circuit at time t= 0.

R1 R2

L1 L2

M

I1
I2

_+ E(t)

Figure 4.6 Two coupled electric circuits without capacitances.
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The current fields in the network are governed by a pair of coupled ordinary
differential equations

L1
dI1
dt

+R1I1 +M
dI2
dt

= E(t), t > 0, (4.2.98)

M
dI1
dt

+ L2
dI2
dt

+R2I2 = 0, t > 0, (4.2.99)

where I1(t) and I2(t) are the currents in the first and the second circuits,
respectively. The initial conditions are

I1(0)= I2(0) = 0. (4.2.100)

We shall not pursue the problem further because the transform method of
solution is a simple exercise.

Example 4.2.15
(Linear Dynamical Systems and Signals. In physical and engineering sciences,
a large number of linear dynamical systems with a time dependent input signal
f(t) that generates an output signal x(t) can be described by the ordinary
differential equation with constant coefficients

(Dn + an−1D
n−1 + · · ·+ a0)x(t) = (Dm + bm−1D

m−1 + · · ·+ b0) f(t),
(4.2.101)

where D≡ d

dt
is the differential operator, ar and br are constants.

We apply the Laplace transform to find the output x(t) so that (4.2.101)
becomes

p̄n(s) x̄(s)− R̄n−1 = q̄m(s) f̄(s) − S̄m−1, (4.2.102)

where

p̄n(s) = sn + an−1 s
n−1 + · · ·+ a0, q̄m(s) = sm + am−1 s

m−1 + · · ·+ b0,

R̄n−1(s) =
n−1∑
r=0

sn−r−1 x(r)(0), S̄m−1(s) =
m−1∑
r=0

sm−r−1 f (r)(0).

It is convenient to express (4.2.102) in the form

x̄(s) = h̄(s) f̄(s) + ḡ(s), (4.2.103)

where

h̄(s) =
q̄m(s)
p̄n(s)

and ḡ(s) =
R̄n−1(s) − S̄m−1(s)

p̄n(s)
, (4.2.104ab)

and h̄(s) is usually called the transfer function.
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The inverse Laplace transform combined with the Convolution Theorem
leads to the formal solution

x(t) =
∫ t

0

f(t− τ)h(τ)dτ + g(t). (4.2.105)

With zero initial data, ḡ(s) = 0, the transfer function takes the simple form

h̄(s) =
x̄(s)
f̄(s)

. (4.2.106)

If f(t) = δ(t) so that f̄(s) = 1, then the output function is

x(t) =
∫ t

0

δ(t− τ)h(τ)dτ = h(t), (4.2.107)

and h(t) is known as the impulse response.

Example 4.2.16

(Delay Differential Equations). In many problems, the derivatives of the un-
known function x(t) are related to its value at different times t− τ. This leads
us to consider differential equations of the form

dx

dt
+ a x(t− τ) = f(t), (4.2.108)

where a is a constant and f(t) is a given function. Equations of this type are
called delay differential equations. In general, initial value problems for these
equations involve the specification of x(t) in the interval t0 − τ ≤ t < t0, and
this information combined with the equation itself is sufficient to determine
x(t) for t > t0.

We show how equation (4.2.108) can be solved by the Laplace transform
when t0 = 0 and x(t) = x0 for t≤ 0. In view of the initial condition, we can
write

x(t− τ) = x(t− τ)H(t− τ)

so equation (4.2.108) is equivalent to

dx

dt
+ a x(t− τ)H(t− τ) = f(t). (4.2.109)

Application of the Laplace transform to (4.2.109) gives

s x̄(s)− x0 + a exp(−τs) x̄(s) = f̄(s).



© 2007 by Taylor & Francis Group, LLC

206 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

Or,

x̄(s) =
x0 + f̄(s)

{s+ a exp(−τs)} (4.2.110)

=
1
s
{x0 + f̄(s)}

[
1 +

a

s
exp(−τs)

]−1

=
1
s
{x0 + f̄(s)}

∞∑
n=0

(−1)n
(a
s

)n
exp(−nτs). (4.2.111)

The inverse Laplace transform gives the formal solution

x(t) = L −1

[
1
s
{x0 + f̄(s)}

∞∑
n=0

(−1)n
(a
s

)n
exp(−nτs)

]
. (4.2.112)

In order to write an explicit solution, we choose x0 = 0 and f(t)= t, and
hence, (4.2.112) becomes

x(t) = L −1

[
1
s3

∞∑
n=0

(−1)n
(a
s

)n
exp(−nτs)

]

=
∞∑
n=0

(−1)nan
(t− nτ)n+2

(n+ 2)!
H(t− nτ), t > 0. (4.2.113)

Example 4.2.17
(The Renewal Equation in Statistics). The random function X(t) of time t
represents the number of times some event has occurred between time 0 and
time t, and is usually referred to as a counting process. A random variable
Xn that records the time it assumes for X to get the value n from the n− 1
is referred to as an inter-arrival time. If the random variables X1, X2, X3, ...
are independent and identically distributed, then the counting process X(t) is
called a renewal process. We represent their common probability distribution
function by F (t) and the density function by f(t) so that F ′(t) = f(t). The
renewal function is defined by the expected number of times the event being
counted occurs by time t and is denoted by r(t) so that

r(t) =E{X(t)}=

∞∫
0

E{X(t)|X1 = x}f(x)dx, (4.2.114)

where E{X(t)|X1 = x} is the conditional expected value of X(t) under the
condition that X1 = x and has the value

E{X(t)|X1 = x}= [1 + r(t− x)]H(t− x). (4.2.115)
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Thus,

r(t) =

t∫
0

{1 + r(t− x)}f(x)dx.

Or,

r(t) =F (t) +

t∫
0

r(t− x) f(x)dx. (4.2.116)

This is called the renewal equation in mathematical statistics. We solve the
equation by taking the Laplace transform with respect to t, and the Laplace
transformed equation is

r̄(s) =F (s) + r̄(s) f̄(s).

Or,

r̄(s) =
F (s)

1− f̄(s)
. (4.2.117)

The inverse transform gives the formal solution of the renewal function

r(t) = L −t
{

F (s)
1− f̄(s)

}
. (4.2.118)

4.3 Partial Differential Equations, Initial
and Boundary Value Problems

The Laplace transform method is very useful in solving a variety of partial
differential equations with assigned initial and boundary conditions. The fol-
lowing examples illustrate the use of the Laplace transform method.

Example 4.3.1
(First-Order Initial-Boundary Value Problem). Solve the equation

ut + xux = x, x> 0, t > 0, (4.3.1)

with the initial and boundary conditions

u(x, 0) = 0 for x> 0, (4.3.2)
u(0, t) = 0 for t > 0. (4.3.3)
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We apply the Laplace transform of u(x, t) with respect to t to obtain

s ū(x, s) + x
dū

dx
=
x

s
, ū(0, s) = 0.

Using the integrating factor xs, the solution of this transformed equation is

ū(x, s) =Ax−s +
x

s(s+ 1)
,

where A is a constant of integration. Since ū(0, s) = 0, A= 0 for a bounded
solution. Consequently,

ū(x, s) =
x

s(s+ 1)
= x

(
1
s
− 1
s+ 1

)
.

The inverse Laplace transform gives the solution

u(x, t) = x(1 − e−t). (4.3.4)

Example 4.3.2
Find the solution of the equation

xut + ux = x, x> 0, t > 0 (4.3.5)

with the same initial and boundary conditions (4.3.2) and (4.3.3).
Application of the Laplace transform with respect to t to (4.3.5) with the

initial conditon gives
dū

dx
+ x s ū=

x

s
.

Using the integrating factor exp
(

1
2
x2s

)
gives the solution

ū(x, s) =
1
s2

+A exp
(
−1

2
s x2

)
,

where A is an integrating constant. Since ū(0, s)= 0, A=− 1
s2

and hence, the
solution is

ū(x, s) =
1
s2

[
1 − exp

(
−1

2
x2 s

)]
. (4.3.6)

Finally, we obtain the solution by inversion

u(x, t) = t−
(
t− 1

2
x2

)
H

(
t− x2

2

)
. (4.3.7)
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Or, equivalently,

u(x, t) =

⎧⎨⎩
t, 2t< x2

1
2
x2, 2t> x2

⎫⎬⎭ . (4.3.8)

Example 4.3.3
(The Heat Conduction Equation in a Semi-Infinite Medium). Solve the equa-
tion

ut = κuxx, x > 0, t > 0 (4.3.9)

with the initial and boundary conditions

u(x, 0) = 0, x> 0 (4.3.10)
u(0, t) = f(t), t > 0 (4.3.11)
u(x, t) → 0 as x→∞, t > 0. (4.3.12)

Application of the Laplace transform with respect to t to (4.3.9) gives

d2ū

dx2
− s

κ
ū= 0. (4.3.13)

The general solution of this equation is

ū(x, s) =A exp
(
−x

√
s

κ

)
+B exp

(
x

√
s

κ

)
. (4.3.14)

where A and B are integrating constants. For a bounded solution, B≡ 0, and
using ū(0, s) = f̄(s), we obtain the solution

ū(x, s) = f̄(s) exp
(
−x

√
s

κ

)
. (4.3.15)

The inversion theorem gives the solution

u(x, t) =
x

2
√
πκ

t∫
0

f(t− τ)τ−3/2 exp
(
− x2

4κτ

)
dτ, (4.3.16)

which is, by putting λ=
x

2
√
κτ

, or, dλ=− x

4
√
κ
τ−3/2dτ ,

=
2√
π

∞∫
x

2
√

κt

f

(
t− x2

4κλ2

)
e−λ

2
dλ.

(4.3.17)
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This is the formal solution of the problem.
In particular, if f(t) =T0 = constant, solution (4.3.17) becomes

u(x, t) =
2T0√
π

∞∫
x
κt

e−λ
2
dλ = T0erfc

(
x

2
√
κt

)
. (4.3.18)

Clearly, the temperature distribution tends asymptotically to the constant
value T0 as t→∞.

We consider another physical problem that is concerned with the determi-
nation of the temperature distribution in a semi-infinite solid when the rate
of flow of heat is prescribed at the end x= 0. Thus, the problem is to solve
diffusion equation (4.3.9) subject to conditions (4.3.10) and (4.3.12)

−k
(
∂u

∂x

)
= g(t) atx= 0, t > 0, (4.3.19)

where k is a constant that is called thermal conductivity.
Application of the Laplace transform gives the solution of the transformed

problem

ū(x, s) =
1
k

√
κ

s
ḡ(s) exp

(
−x

√
s

κ

)
. (4.3.20)

The inverse Laplace transform yields the solution

u(x, t) =
1
k

√
κ

π

t∫
0

g(t− τ) τ−
1
2 exp

(
− x2

4κt

)
dτ, (4.3.21)

which is, by the change of variable λ=
x

2
√
κτ

,

=
x

k
√
π

∞∫
x√
4κt

g

(
t− x2

4κλ2

)
λ−2e−λ

2
dλ. (4.3.22)

In particular, if g(t) = T0 = constant, the solution becomes

u(x, t) =
(
T0x

k
√
π

) ∞∫
x√
4κt

λ−2e−λ
2
dλ.

Integrating this result by parts gives the solution

u(x, t) =
T0

κ

[
2

√
kt

π
exp

(
− x2

4κt

)
− x erfc

(
x

2
√
κt

)]
. (4.3.23)
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Alternatively, the heat conduction problem (4.3.9)–(4.3.12) can be solved
by using fractional derivatives (see Chapter 5 or Debnath, 1978). We recall
(4.3.15) and rewrite it

∂ū

∂x
=−

√
s

κ
ū. (4.3.24)

In view of (3.9.21), this can be expressed in terms of fractional derivative of

order
1
2

as

∂u

∂x
=− 1√

κ
L −1

{√
s ū(x, s)

}
=− 1√

κ
0D

1
2
t u(x, t). (4.3.25)

Thus, the heat flux is expressed in terms of the fractional derivative. In par-
ticular, when u(0, t)= constant =T0, then the heat flux at the surface is

−k
(
∂u

∂x

)
x=0

=
k√
κ
D

1
2
t T0 =

kT0√
πκ t

. (4.3.26)

Example 4.3.4

(Diffusion Equation in a Finite Medium). Solve the diffusion equation

ut = κuxx, 0<x<a, t > 0, (4.3.27)

with the initial and boundary conditions

u(x, 0) = 0, 0<x<a, (4.3.28)
u(0, t) = U, t > 0, (4.3.29)
ux(a, t) = 0, t > 0, (4.3.30)

where U is a constant.
We introduce the Laplace transform of u(x, t) with respect to t to obtain

d2ū

dx2
− s

κ
ū= 0, 0<x<a, (4.3.31)

ū(0, s)=
U

s
,

(
dū

dx

)
x=a

= 0. (4.3.32ab)

The general solution of (4.3.31) is

ū(x, s) =A cosh
(
x

√
s

κ

)
+B sinh

(
x

√
s

κ

)
, (4.3.33)
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where A and B are constants of integration. Using (4.3.32ab), we obtain the
values of A and B so that the solution (4.3.33) becomes

ū(x, s) =
U

s
·
cosh

[
(a− x)

√
s

κ

]
cosh

(
a

√
s

κ

) . (4.3.34)

The inverse Laplace transform gives the solution

u(x, t) =UL −1

⎧⎪⎪⎨⎪⎪⎩
cosh(a− x)

√
s

κ

s cosh
(
a

√
s

κ

)
⎫⎪⎪⎬⎪⎪⎭ . (4.3.35)

The inversion can be carried out by the Cauchy Residue Theorem to obtain

u(x, t) = U

[
1 +

4
π

∞∑
n=1

(−1)n

2n− 1
cos

{
(2n− 1)(a− x)π

2a

}
× exp

{
−(2n− 1)2

( π
2a

)2

κt

}]
, (4.3.36)

which is, by expanding the cosine term,

= U

[
1 − 4

π

∞∑
n=1

1
(2n− 1)

sin
{(

2n− 1
2a

)
πx

}
× exp

{
−(2n− 1)2

( π
2a

)2

κt

}]
. (4.3.37)

This result can be obtained by the method of separation of variables.

Example 4.3.5
(Diffusion in a Finite Medium). Solve the one-dimensional diffusion equation
in a finite medium 0<z <a, where the concentration function C(z, t) satisfies
the equation

Ct = κCzz, 0<z < a, t> 0, (4.3.38)

and the initial and boundary data

C(z, 0) = 0 for 0<z <a, (4.3.39)
C(z, t) = C0 for z = a, t> 0, (4.3.40)

∂C

∂z
= 0 for z= 0, t > 0, (4.3.41)
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where C0 is a constant.
Application of the Laplace transform of C(z, t) with respect to t gives

d2C̄

dz2
−
( s
κ

)
C̄ = 0, 0<z <a,

C̄(a, s) =
C0

s
,

(
dC̄

dz

)
z=0

= 0.

The solution of this system is

C̄(z, s) =
C0 cosh

(
z

√
s

κ

)
s cosh

(
a

√
s

κ

) , (4.3.42)

which is, by writing α=
√
s

κ
,

=
C0

s

(eαz + e−αz)
(eαa + e−αa)

=
C0

s
[exp{−α(a− z)} + exp{−α(a+ z)}]

∞∑
n=0

(−1)n exp(−2nαa)

=
C0

s

{ ∞∑
n=0

(−1)n exp[−α{(2n+ 1)a− z}]

+
∞∑
n=0

(−1)n exp[−α{(2n+ 1)a+ z}]
}
. (4.3.43)

Using the result (3.7.4), we obtain the final solution

C(z, t) = C0

{ ∞∑
n=0

(−1)n
[
erfc

{
(2n+ 1)a− z

2
√
κt

}
+ erfc

{
(2n+ 1)a+ z

2
√
κt

}]}
. (4.3.44)

This solution represents as infinite series of complementary error functions.
The successive terms of this series are in fact the concentrations at depths
a− z, a+ z, 3a− z, 3a+ z, ... in the medium. The series converges rapidly for

all except large values of
(
κt

a2

)
.

Example 4.3.6
(The Wave Equation for the Transverse Vibration of a Semi-Infinite String).
Find the displacement of a semi-infinite string which is initially at rest in its
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equilibrium position. At time t= 0, the end x= 0 is constrained to move so
that the displacement is u(0, t) =Af(t) for t≥ 0, where A is a constant. The
problem is to solve the one-dimensional wave equation

utt = c2uxx, 0≤ x<∞, t > 0, (4.3.45)

with the boundary and initial conditions

u(x, t) =Af(t) at x= 0, t≥ 0, (4.3.46)

u(x, t)→ 0 as x→∞, t≥ 0, (4.3.47)

u(x, t) = 0 =
∂u

∂t
at t= 0 for 0<x<∞. (4.3.48ab)

Application of the Laplace transform of u(x, t) with respect to t gives

d2ū

dx2
− s2

c2
ū= 0, for 0≤ x<∞,

ū(x, s) =Af̄(s) at x= 0,
ū(x, s)→ 0 as x→∞.

The solution of this differential system is

ū(x, s) =Af̄(s) exp
(
−xs
c

)
. (4.3.49)

Inversion gives the solution

u(x, t) =Af
(
t− x

c

)
H
(
t− x

c

)
. (4.3.50)

In other words, the solution is

u(x, t) =

⎡⎣Af
(
t− x

c

)
, t >

x

c

0, t <
x

c

⎤⎦ . (4.3.51)

This solution represents a wave propagating at a velocity c with the charac-
teristic x= ct.

Example 4.3.7
(Potential and Current in an Electric Transmission Line). We consider a
transmission line which is a model of co-axial cable containing resistance R,
inductance L, capacitance C, and leakage conductance G. The current I(x, t)
and potential V (x, t) at a point x and time t in the line satisfy the coupled
equations
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L
∂I

∂t
+RI = −∂V

∂x
, (4.3.52)

C
∂V

∂t
+GV = −∂I

∂x
. (4.3.53)

If I or V is eliminated from these equations, both I and V satisfy the same
equation in the form

1
c2
utt − uxx + aut + bu= 0 (4.3.54)

where c2 = (LC)−1, a=LG+RC, and b=RG. Equation (4.3.54) is called the
telegraph equation.

Or, equivalently, the telegraph equation can be written in the form

utt = c2 uxx − (p+ q)ut − p q u (4.3.55)

where ac2 = R
C + G

C = p+ q and bc2 = pq.

For a lossless transmission line, R= 0 and G= 0, I or V satisfies the classical
wave equation

utt = c2uxx. (4.3.56)

The solution of this equation with the initial and boundary data is obtained
from Example 4.3.6 using the boundary conditions in the potential V (x, t):

(i) V (x, t) =V0f(t) at x= 0, t > 0. (4.3.57)

This corresponds to a signal at the end x= 0 for t> 0, and V (x, t)→ 0 as
x→∞ for t > 0.

A special case when f(t) =H(t) is also of interest. The solution for this
special case is given by

V (x, t) =V0f
(
t− x

c

)
H
(
t− x

c

)
. (4.3.58)

This represents a wave propagating at a speed c with the characteristic x= ct.
Similarly, the solution associated with the boundary data

(ii) V(x, t) = V0 cosωt at x = 0 for t> 0 (4.3.59)
V (x, t) → 0 as x→∞ for t> 0 (4.3.60)

can readily be obtained from Example 4.3.6.
For ideal submarine cable (or the Kelvin ideal cable), L= 0 and G= 0 e-

quation (4.3.54) reduces to the classical diffusion equation

ut = κuxx, (4.3.61)
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where κ= a−1 = (RC)−1.
The method of solution is similar to that discussed in Example 4.3.3. Using

the boundary data (i), the solution for the potential V (x, t) is given by

V (x, t) =V0 erfc
(

x

2
√
κt

)
. (4.3.62)

The current field is given by

I(x, t) =− 1
R

(
∂V

∂x

)
=
V0

R
(πκt)−1/2 exp

(
− x2

4κt

)
. (4.3.63)

For very large x, the asymptotic representation of the complementary error
function is

erfc(x)∼ 1
x
√
π

exp(−x2), x→∞. (4.3.64)

In view of this asymptotic representation, solution (4.3.62) becomes

V (x, t)∼ 2V0

x

(
κt

π

)1/2

exp
(
− x2

4κt

)
. (4.3.65)

For any t> 0, no matter how small, solution (4.3.62) reveals that V (x, t)> 0
for all x> 0, even though V (x, t)→ 0 as x→∞ Thus, the signal applied at
t= 0 propagates with the infinite speed although its amplitude is very small for
large x. Physically, the infinite speed is unrealistic and is essentially caused by
the neglect of the first term in equation (4.3.54). In a real cable, the presence
of some inductance would set a limit to the speed of propagation.

Instead of the Kelvin cable, a non-inductive leady cable (L= 0 and G �= 0)
is of interest. The equation for this case is obtained from (4.3.54) in the form

Vxx − a Vt − b V = 0, (4.3.66)

with zero initial conditions, and with the boundary data

V (0, t) =H(t) and V (x, t)→ 0 as x→∞. (4.3.67ab)

The Laplace transformed problem is

d2V

dx2
= (sa+ b)V , (4.3.68)

V (0, s)=
1
s
, V (x, s)→ 0 as x→∞. (4.3.69ab)

Thus, the solution is given by

V (x, s) =
1
s

exp[−x(sa+ b)1/2]. (4.3.70)
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With the aid of a standard table of the inverse Laplace transform, the
solution is given by

V (x, t) =
1
2
ex

√
b erfc

(
x

2

√
a

t
+

√
bt

a

)
+

1
2
e−x

√
b erfc

(
x

2

√
a

t
− bt

a

)
.

(4.3.71)
When G= 0 (b= 0), the solution becomes identical with (4.3.62).

For the Heaviside distortionless cable,
R

L
=
G

C
= k= constant, the potential

V (x, t) and the current I(x, t) satisfies the same equation

utt + 2kut + k2u= c2uxx, 0≤ x<∞, t > 0. (4.3.72)

We solve this equation with the initial data (4.3.48ab) and the boundary
condition (4.3.57). Application of the Laplace transform with respect to t to
(4.3.72) gives

d2V

dx2
=
(
s+ k

c

)2

V . (4.3.73)

The solution for V (x, s) with the transformed boundary condition (4.3.56) is

V (x, s) =V0f̄(s) exp
[
−
(
s+ k

c

)
x

]
. (4.3.74)

This can easily be inverted to obtain the final solution

V (x, t) =V0 exp
(
−kx
c

)
f
(
t− x

c

)
H
(
t− x

c

)
. (4.3.75)

This solution represents the signal that propagates with velocity c= (LC)−1/2

with exponentially decaying amplitude, but with no distortion. Thus, the sig-
nals can propagate along the Heaviside distortionless line over long distances
if appropriate boosters are placed at regular intervals in order to increase the
strength of the signal so as to counteract the effects of attenuation.

Example 4.3.8
Find the bounded solution of the axisymmetric heat conduction equation

ut = κ

(
urr +

1
r
ur

)
, 0≤ r < a, t > 0, (4.3.76)

with the initial and boundary data

u(r, 0) = 0 for 0< r< a, (4.3.77)
u(r, t) = f(t) at r= a for t > 0, (4.3.78)

where κ and T0 are constants.
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Application of the Laplace transform to (4.3.76) gives

d2ū

dr2
+

1
r

dū

dr
− s

κ
ū= 0.

Or,

r2
d2ū

dr2
+ r

dū

dr
− r2

( s
κ

)
ū= 0. (4.3.79)

This is the standard Bessel equation with the solution

ū(r, s) =AI0

(
r

√
s

κ

)
+BK0

(
r

√
s

κ

)
, (4.3.80)

where A and B are constants of integration and I0(x) and K0(x) are the
modified Bessel functions of zero order.

Since K0(αr) is unbounded at r= 0, for the bounded solution B≡ 0, and
hence, the solution is

ū(r, s) =AI0(kr), k=
√
s

κ
.

In view of the transformed boundary condition ū(a, s) = f̄(s), we obtain

ū(r, s) = f̄(s)
I0(kr)
I0(ka)

= f̄(s)ḡ(s), (4.3.81)

where ḡ(s) =
I0(kr)
I0(ka)

.

By Convolution Theorem 3.5.1, the solution takes the form

u(r, t) =

t∫
0

f(t− τ)g(τ)dτ, (4.3.82)

where

g(t) =
1

2πi

c+i∞∫
c−i∞

est
I0(kr)
I0(ka)

ds. (4.3.83)

This complex integral can be evaluated by the theory of residues where the
poles of the integrand are at the points s= sn =−κα2

n, n= 1, 2, 3, ... and αn
are the roots of J0(aα) = 0. The residue at pole s= sn is(

2iκαn
a

)
I0(irαn)
I ′0(iaαn)

exp(−κtα2
n) =

(
2καn
a

)
J0(rαn)
J1(aαn)

exp(−κ t α2
n),
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so that

g(t) =
(

2κ
a

) ∞∑
n=1

αnJ0(rαn)
J1(aαn)

exp(−κ t α2
n).

Thus, solution (4.3.82) becomes

u(r, t) =
(

2κ
a

) ∞∑
n=1

αnJ0(rαn)
J1(aαn)

t∫
0

f(t− τ) exp(−κ τ α2
n) dτ, (4.3.84)

where the summation is taken over the positive roots of J0(aα) = 0.
In particular, if f(t) =T0, then the solution (4.3.84) reduces to

u(r, t) =
(

2T0

a

) ∞∑
n=1

J0(rαn)
αnJ1(aαn)

(1− e−κ tα
2
n)

= T0

[
1 − 2

a

∞∑
n=1

J0(rαn)
αnJ1(aαn)

e−κ tα
2
n

]
. (4.3.85)

Example 4.3.9
(Inhomogeneous Partial Differential Equation). We solve the inhomogeneous
problem

uxt =−ω sinωt, t > 0 (4.3.86)

u(x, 0)= x, u(0, t)= 0. (4.3.87ab)
Application of the Laplace transform with respect to t gives

dū

dx
=

s

s2 + ω2
,

which admits the general solution

ū(x, s) =
sx

s2 + ω2
+A,

where A is a constant. Since ū(0, s) = 0, A= 0 and hence, the solution is ob-
tained by inversion as

u(x, t) = x cosωt. (4.3.88)

Example 4.3.10
(Inhomogeneous Wave Equation). Find the solution of

1
c2
utt − uxx = k sin

(πx
a

)
, 0<x<a, t > 0, (4.3.89)

u(x, 0) = 0 = ut(x, 0), 0<x<a, (4.3.90)
u(0, t) = 0 = u(a, t), t > 0, (4.3.91)



© 2007 by Taylor & Francis Group, LLC

220 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

where c, k, and a are constants.
Application of the Laplace transforms gives

d2ū

dx2
− s2

c2
ū = −k

s
sin

(πx
a

)
, (4.3.92)

ū(0, s) = 0 = ū(a, s). (4.3.93)

The general solution of equation (4.3.92) is

ū(x, s) =A exp
(sx
c

)
+B exp

(
−sx
c

)
+

k sin
(πx
a

)
a2s

(
s2 +

π2c2

a2

) . (4.3.94)

In view of (4.3.93), A=B= 0, and hence, the solution (4.3.94) becomes

ū(x, s) =
k

π2c2
sin

(πx
a

)⎡⎢⎣1
s
− s

s2 +
π2c2

a2

⎤⎥⎦ , (4.3.95)

which, by inversion, gives the solution,

u(x, t) =
k

(πc)2

[
1− cos

(
πct

a

)]
sin

(πx
a

)
. (4.3.96)

Example 4.3.11
(The Stokes Problem and the Rayleigh Problem in Fluid Dynamics). Solve the
Stokes problem, which is concerned with the unsteady boundary layer flows
induced in a semi-infinite viscous fluid bounded by an infinite horizontal disk
at z= 0 due to non-torsional oscillations of the disk in its own plane with a
given frequency ω.

We solve the boundary layer equation in fluid dynamics

ut = ν uzz, z > 0, t > 0, (4.3.97)

with the boundary and initial conditions

u(z, t)=U0 e
iωt on z= 0, t > 0, (4.3.98)

u(z, t)→ 0 as z→∞, t > 0, (4.3.99)
u(z, t)→ 0 at t≤ 0 for all z > 0, (4.3.100)

where u(z, t) is the velocity of fluid of kinematic viscosity ν and U0 is a
constant.
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The Laplace transform solution of the problem with the transformed bound-
ary conditions is

u(z, s)=
U0

(s− iω)
exp

(
−z

√
s

ν

)
. (4.3.101)

Using a standard table of inverse Laplace transforms, we obtain the solution

u(z, t) =
U0

2
eiωt[exp(−λz) erfc(ζ −

√
iωt)

+ exp(λz) erfc(ζ +
√
iωt)], (4.3.102)

where ζ = z/(2
√
νt) is called the similarity variable of the viscous boundary

layer theory and λ= (iω/ν)
1
2 . The result (4.3.101) describes the unsteady

boundary layer flow.
In view of the asymptotic formula for the complementary error function

erfc(ζ ∓
√
iωt)∼ (2, 0) as t→∞, (4.3.103)

the above solution for u(z, t) has the asymptotic representation

u(z, t)∼U0 exp(iωt− λz)=U0 exp
[
iωt−

( ω
2ν

) 1
2

(1 + i)z
]
. (4.3.104)

This is called the Stokes steady-state solution. This represents the propaga-
tion of shear waves which spread out from the oscillating disk with velocity
(ω/k) =

√
2νω and exponentially decaying amplitude. The boundary layer as-

sociated with the solution has thickness of the order
√
ν/ω in which the shear

oscillations imposed by the disk decay exponentially with distance z from the
disk. This boundary layer is called the Stokes layer. In other words, the thick-
ness of the Stokes layer is equal to the depth of penetration of vorticity which
is essentially confined to the immediate vicinity of the disk for high frequency
ω.

The Stokes problem with ω= 0 becomes the Rayleigh problem. In other
words, the motion is generated in the fluid from rest by moving the disk
impulsively in its own plane with constant velocity U0. In this case, the Laplace
transformed solution is

u(z, s)=
U0

s
exp

(
−z

√
s

ν

)
. (4.3.105)

Hence, the inversion gives the Rayleigh solution

u(z, t)=U0 erfc
(

z

2
√
νt

)
. (4.3.106)

This describes the growth of a boundary layer adjacent to the disk. The as-
sociated boundary layer is called the Rayleigh layer of thickness of the order
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δ∼√
νt, which grows with increasing time. The rate of growth is of the order

dδ/dt∼√
ν/t, which diminishes with increasing time.

The vorticity of the unsteady flow is given by

∂u

∂z
=

U0√
πνt

exp(−ζ2), (4.3.107)

which decays exponentially to zero as z >> δ.
Note that the vorticity is everywhere zero at t= 0. This implies that it is

generated at the disk and diffuses outward within the Rayleigh layer. The
total viscous diffusion time is Td∼

(
δ2/ν

)
.

Another physical quantity related to the Stokes and Rayleigh problems is
the skin friction on the disk defined by

τ0 =μ

(
∂u

∂z

)
z=0

, (4.3.108)

where μ= νρ is the dynamic viscosity and ρ is the density of the fluid. The
skin friction can readily be calculated from the flow field given by (4.3.104)
or (4.3.106).

4.4 Solutions of Integral Equations

DEFINITION 4.4.1 An equation in which the unknown function occurs
under an integral is called an integral equation.

An equation of the form

f(t) = h(t) + λ

b∫
a

k(t, τ)f(τ) dτ, (4.4.1)

in which f is the unknown function, h(t), k(t, τ); and the limits of integration
a and b are known; and λ is a constant, is called the linear integral equation of
the second kind or the linear Volterra integral equation. The function k(t, τ) is
called the kernel of the equation. Such an equation is said to be homogeneous or
inhomogeneous according to h(t) = 0 or h(t) �= 0. If the kernel of the equation
has the form k(t, τ) = g(t− τ), the equation is referred to as the convolution
integral equation.

In this section, we show how the Laplace transform method can be applied
successfully to solve the convolution integral equations. This method is simple
and straightforward, and can be illustrated by examples.
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To solve the convolution integral equation of the form

f(t)= h(t) + λ

t∫
0

g(t− τ)f(τ) dτ, (4.4.2)

we take the Laplace transform of this equation to obtain

f̄(s) = h̄(s) + λL

⎧⎨⎩
t∫

0

g(t− τ)f(τ) dτ

⎫⎬⎭ ,

which is, by the Convolution Theorem,

f̄(s) = h̄(s) + λf̄(s)ḡ(s).

Or,

f̄(s) =
h̄(s)

1− λḡ(s)
. (4.4.3)

Inversion gives the formal solution

f(t) = L −1

{
h̄(s)

1− λḡ(s)

}
. (4.4.4)

In many simple cases, the right-hand side can be inverted by using partial
fractions or the theory of residues. Hence, the solution can readily be found.

Example 4.4.1
Solve the integral equation

f(t)= a+ λ

t∫
0

f(τ) dτ. (4.4.5)

We take the Laplace transform of (4.4.5) to find

f̄(s) =
a

s− λ
,

whence, by inversion, it follows that

f(t)= a exp(λt). (4.4.6)

Example 4.4.2
Solve the integro-differential equation

f(t)= a sin t+ 2

t∫
0

f ′(τ) sin(t− τ) dτ, f(0) = 0. (4.4.7)
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Taking the Laplace transform, we obtain

f̄(s) =
a

s2 + 1
+ 2L {f ′(t)}L {sin t}

Or,

f̄(s) =
a

s2 + 1
+ 2

{sf̄(s)− f(0)}
s2 + 1

.

Hence, by the initial condition,

f̄(s) =
a

(s− 1)2
.

Inversion yields the solution

f(t) = a t exp(t). (4.4.8)

Example 4.4.3
Solve the integral equation

f(t) = a tn − e−bt − c

∫ t

0

f(τ) ec(t−τ) dτ. (4.4.9)

Taking the Laplace transform, we obtain

f̄(s) =
a n!
sn+1

− 1
s+ b

− f̄(s)
c

s− c

so that we have

f̄(s) =
(
s− c

s

)[
a n!
sn+1

− 1
s+ b

]
=

a n!
sn+1

− (ac)n!
sn+2

− 1
s

[
s+ b− c− b

s+ b

]
=

a n!
sn+1

− (ac)n!
sn+2

− 1
s

+
c+ b

b

[
1
s
− 1
s+ b

]
=

a n!
sn+1

− (ac)n!
sn+2

− 1
s

+
(
1 +

c

b

) 1
s
−
(
1 +

c

b

) 1
s+ b

=
a n!
sn+1

− (ac)n!
sn+2

+
c

bs
−
(
1 +

c

b

) 1
s+ b

Inversion yields the solution

f(t) = atn − n!ac
(n+ 1)!

tn+1 +
c

b
−
(
1 +

c

b

)
e−bt.
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4.5 Solutions of Boundary Value Problems

The Laplace transform technique is also very useful in finding solutions of
certain simple boundary value problems that arise in many areas of applied
mathematics and engineering sciences. We illustrate the method by solving
boundary value problems in the theory of deflection of elastic beams.

A horizontal beam experiences a vertical deflection due to the combined
effect of its own weight and the applied load on the beam. We consider a
beam of length � and its equilibrium position is taken along the horizontal
x-axis.

Example 4.5.1

(Deflection of Beams). The differential equation for the vertical deflection y(x)
of a uniform beam under the action of a transverse load W (x) per unit length
at a distance x from the origin on the x-axis of the beam is

El
d4y

dx4
=W (x), for 0<x< �, (4.5.1)

where E is Young’s modulus, I is the moment of inertia of the cross section
about an axis normal to the plane of bending and EI is called the flexural
rigidity of the beam.

Some physical quantities associated with the problem are y′(x),M(x) =
EIy′′(x) and S(x) =M ′(x) =EIy′′′(x), which respectively represent the slope,
bending moment, and shear at a point.

It is of interest to find the solution of (4.5.1) subject to a given loading func-
tion and simple boundary conditions involving the deflection, slope, bending
moment and shear. We consider the following cases:

(i) Concentrated load on a clamped beam of length �, that is,
W (x)≡Wδ(x− a),
y(0)= y′(0) = 0 and y(�) = y′(�) = 0,
where W is a constant and 0<a< �.

(ii) Distributed load on a uniform beam of length � clamped at x= 0 and
unsupported at x= �, that is,
W (x) =WH(x− a),
y(0)= y′(0) = 0, and M(�) =S(�) = 0.

(iii) A uniform semi-infinite beam freely hinged at x= 0 resting horizontally
on an elastic foundation and carrying a load W per unit length.
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In order to solve the problem, we use the Laplace transform ȳ(s) of y(x)
defined by

ȳ(s) =

∞∫
0

e−sxy(x) dx. (4.5.2)

In view of this transformation, equation (4.5.1) becomes

EI[s4ȳ(s)− s3y(0)− s2y′(0)− sy′′(0) − y′′′(0)] =W (s). (4.5.3)

The solution of the transformed deflection function ȳ(s) for case (i) is

ȳ(s) =
y′′(0)
s3

+
y′′′(0)
s4

+
W

EI

e−as

s4
. (4.5.4)

Inversion gives

y(x) = y′′(0)
x2

2
+ y′′′(0)

x3

6
+

W

6EI
(x− a)3H(x− a). (4.5.5)

y′(x) = y′′(0)x+
1
2
x2y′′′(0) +

W

2EI
(x− a)2H(x− a). (4.5.6)

The conditions y(�) = y′(�) = 0 require that

y′′(0)
�2

2
+ y′′′(0)

�3

6
+

W

6EI
(�− a)3 = 0,

y′′(0)�+ y′′′(0)
�2

2
+

W

2EI
(�− a)2 = 0.

These algebraic equations determine the value of y′′(0) and y′′′(0). Solving
these equations, it turns out that

y′′(0) =
Wa(�− a)2

EI �2
and y′′′(0) =−W (�− a)2(�+ 2a)

EI �3
.

Thus, the final solution for case (i) is

y(x) =
W

2EI

[
a(�− a)2x2

�2
− (�− a)2(�+ 2a)x3

3�3
+

(x− a)3H(x− a)
3

]
. (4.5.7)

It is now possible to calculate the bending moment and shear at any point of
the beam, and, in particular, at the ends.

The solution for case (ii) follows directly from (4.5.3) in the form

y(s) =
y′′(0)

s3
+
y′′′(0)
s4

+
W

EI

e−as

s5
. (4.5.8)

The inverse transformation yields

y(x) =
1
2
y′′(0)x2 +

1
6
y′′′(0)x3 +

W

24EI
(x− a)4H(x− a), (4.5.9)
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where y′′(0) and y′′′(0) are to be determined from the remaining boundary
conditions M(�) =S(�) = 0, that is, y′′(�) = y′′′(�) = 0.

From (4.5.9) with y′′(�) = y′′′(�) = 0, it follows that

y′′(0) + y′′′(0)�+
W

2EI
(�− a)2 = 0

y′′′(0) +
W

EI
(�− a) = 0

which give

y′′(0) =
W (�− a)(�+ a)

2EI
and y′′′(0) =−W

EI
(�− a).

Hence, the solution for y(x) for case (ii) is

y(x) =
W

2EI

[
(�2 − a2)x2

2
− (�− a)

x3

3
+
W

12
(x− a)4H(x− a)

]
. (4.5.10)

The shear, S, and the bending moment, M , at the origin, can readily be
calculated from the solution.

The differential equation for case (iii) takes the form

EI
d4y

dx4
+ ky=W, x> 0, (4.5.11)

where the second term on the left-hand side represents the effect of elastic
foundation and k is a positive constant.

Writing
(
k

EI

)
= 4ω4, equation (4.5.11) becomes

(
d4

dx4
+ 4ω4

)
y(x) =

W

EI
, x> 0. (4.5.12)

This has to be solved subject to the boundary conditions

y(0) = y′′(0) = 0, (4.5.13)
y(x) is finite asx→∞. (4.5.14)

Using the Laplace transform with respect to x to (4.5.12), we obtain

(s4 + 4ω4) ȳ(s) =
(
W

EI

)
1
s

+ sy′(0) + y′′′(0). (4.5.15)

In view of the Tauberian Theorem 3.8.2 (ii), that is,

lim
s→0

s ȳ(s) = lim
x→∞ y(x),
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it follows that ȳ(s) must be of the form

ȳ(s) =
W

EI

1
s(s4 + 4ω4)

, (4.5.16)

which gives

lim
x→∞ y(x) =

W

k
. (4.5.17)

We now write (4.5.16) as

ȳ(s) =
W

EI

1
4ω4

[
1
s
− s3

s4 + 4ω4

]
. (4.5.18)

Using the standard table of inverse Laplace transforms, we obtain

y(x) =
W

k
(1 − cosωx cosh ωx)

=
W

k

[
1 − 1

2
e−ωx cosωx− 1

2
eωx cosωx

]
. (4.5.19)

In view of (4.5.17), the final solution is

y(x) =
W

k

(
1 − 1

2
e−ωx cosωx

)
. (4.5.20)

4.6 Evaluation of Definite Integrals

The Laplace transform can be employed to evaluate easily certain definite
integrals containing a parameter. Although the method of evaluation may not
be very rigorous, it is quite simple and straightforward. The method is essen-
tially based upon the permissibility of interchange of the order of integration,
that is,

L

b∫
a

f(t, x) dx=

b∫
a

L f(t, x) dx, (4.6.1)

and may be well described by considering some important integrals.

Example 4.6.1
Evaluate the integral

f(t) =

∞∫
0

sin tx
x(a2 + x2)

dx. (4.6.2)
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We take the Laplace transform of (4.6.2) with respect to t and interchange
the order of integration, which is permissible due to uniform convergence, to
obtain

f̄(s) =

∞∫
0

dx

x(a2 + x2)

∞∫
0

e−st sin tx dt

=

∞∫
0

dx

(a2 + x2)(x2 + s2)

=
1

s2 − a2

∞∫
0

(
1

a2 + x2
− 1
x2 + s2

)
dx

=
1

s2 − a2

(
1
a
− 1
s

)
π

2

=
π

2
1

s(s+ a)
=
π

2

(
1
s
− 1
s+ a

)
.

Inversion gives the value of the given integral

f(t) =
π

2a
(1 − e−at). (4.6.3)

Example 4.6.2
Evaluate the integral

f(t)=

∞∫
0

sin2 tx

x2
dx. (4.6.4)

A procedure similar to the above integral with 2 sin2 tx= 1− cos(2 tx) gives

f̄(s) =
1
2

∞∫
0

1
x2

(
1
s
− s

4x2 + s2

)
dx=

2
s

∞∫
0

dx

4x2 + s2

=
1
s

∞∫
0

dy

y2 + s2
=

1
s2

[
tan−1 y

s

]∞
0

=± π

2s2

according as s> or < 0. The inverse transform yields

f(t) =
πt

2
sgn t. (4.6.5)
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Example 4.6.3

Show that
∞∫
0

x sinxt
x2 + a2

dx=
π

2
e−at, (a, t > 0). (4.6.6)

Suppose

f(t) =

∞∫
0

x sinxt
x2 + a2

dx.

Taking the Laplace transform with respect to t gives

f̄(s) =

∞∫
0

x2 dx

(x2 + a2)(x2 + s2)

=

∞∫
0

dx

x2 + s2
− a2

s2 − a2

∞∫
0

(
1

x2 + a2
− 1
x2 + s2

)
dx

=
π

2s

(
1− a

s+ a

)
=
π

2
1

(s+ a)
.

Taking the inverse transform, we obtain

f(t) =
π

2
e−at.

4.7 Solutions of Difference and Differential-Difference E-
quations

Like differential equations, the difference and differential-difference equations
describe mechanical, electrical, and electronic systems of interest. These e-
quations also arise frequently in problems of economics and business, and
particularly in problems concerning interest, annuities, amortization, loan-
s, and mortgages. Thus, for the study of the above systems or problems, it
is often necessary to solve difference or differential-difference equations with
prescribed initial data. This section is essentially devoted to the solution of
simple difference and differential-difference equations by the Laplace transfor-
m technique.
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Suppose {ur}∞r=1 is a given sequence. We introduce the difference operators
Δ, Δ2, Δ3, . . .,Δn defined by

Δur = ur+1 − ur, (4.7.1)
Δ2ur = Δ(Δur) = Δ(ur+1 − ur) = ur+2 − 2ur+1 + ur, (4.7.2)
Δ3ur = Δ2(ur+1 − ur) = ur+3 − 3 ur+2 + 3 ur+1 − ur. (4.7.3)

More generally,

Δnur = Δn−1(ur+1 − ur) =
n∑
k=0

(−1)k
(
n

k

)
ur+n−k. (4.7.4)

These expressions are usually called the first, second, third, and nth finite
differences respectively. Any equation expressing a relation between finite d-
ifferences is called a difference equation. The highest order finite difference
involved in the equation is referred to as its order. A difference equation
containing the derivatives of the unknown function is called the differential-
difference equation. Thus, the differential-difference equation has two distinct
orders—one is related to the highest order finite difference and the other is
associated with the highest order derivatives. Equations

Δur − ur = 0, (4.7.5)
Δ2ur − 2Δur = 0, (4.7.6)

are the examples of difference equations of the first and second order, respec-
tively. The most general linear nth order difference equation has the form

a0Δnur + a1Δn−1ur + · · ·+ an−1Δur + anur = f(n), (4.7.7)

where a0, a1, . . . , an and f(n) are either constants or functions of non-negative
integer n. Like ordinary differential equations, (4.7.7) is called a homogeneous
or inhomogeneous according to f(n) = 0 or �= 0.

The following equations

u′(t)− u(t− 1)= 0, (4.7.8)
u′(t) − au(t− 1)= f(t), (4.7.9)

are the examples of the differential-difference equations, where f(t) is a given
function of t. The study of the above equation is facilitated by introducing
the function

Sn(t) =H(t− n)−H(t− n− 1), n≤ t< n+ 1, (4.7.10)

where n is a non-negative integer and H(t) is the Heaviside unit step function.
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The Laplace transform of Sn(t) is given by

Sn(s) = L {Sn(t)}=

∞∫
0

e−st{H(t− n) −H(t− n− 1)} dt

=

n+1∫
n

e−stdt=
1
s
(1 − e−s)e−ns = S0(s) exp(−ns), (4.7.11)

where S0(s) is equal to 1
s (1 − e−s).

We next define the function u(t) by a series

u(t) =
∞∑
n=0

unSn(t), (4.7.12)

where {un}∞n=0 is a given sequence. It follows that u(t)= un in n≤ t< n+ 1
and represents a staircase function. Further

u(t+ 1) =
∞∑
n=0

unSn(t+ 1)=
∞∑
n=0

un[H(t+ 1− n)−H(t− n)]

=
∞∑
n=1

unSn−1(t) =
∞∑
n=0

un+1Sn(t). (4.7.13)

Similarly,

u(t+ 2)=
∞∑
n=0

un+2Sn(t). (4.7.14)

More generally,

u(t+ k) =
∞∑
n=0

un+kSn(t). (4.7.15)

The Laplace transform of u(t) is given by

ū(s) = L {u(t)}=

∞∫
0

e−stu(t) dt=
∞∑
n=0

un

∞∫
0

e−stSn(t) dt

=
1
s
(1 − e−s)

∞∑
n=0

un exp(−ns).

Thus,

ū(s) =
1
s
(1− e−s)ζ(s) = S̄0(s)ζ(s), (4.7.16)

where ζ(s) represents the Dirichlet function defined by

ζ(s) =
∞∑
n=0

un exp(−ns). (4.7.17)
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We thus deduce
u(t) = L −1{S̄0(s)ζ(s)}. (4.7.18)

In particular, if un = an is a geometric sequence, then

ζ(s) =
∞∑
n=0

(ae−s)n =
1

1 − ae−s
=

es

es − a
. (4.7.19)

Thus, we obtain from (4.7.16) that

L {an}= S̄0(s)ζ(s) = S̄0(s)
es

es − a
, (4.7.20)

so that

L −1

{
S̄0(s)

es

es − a

}
= an. (4.7.21)

From the identity,

∞∑
n=0

(n+ 1)(ae−s)n = (1 − ae−s)−2, (4.7.22)

it further follows that

L {(n+ 1)an}= S̄0(s)(1 − ae−s)−2 =
e2s S̄0(s)
(es − a)2

. (4.7.23)

Thus,

L −1

{
e2s S̄0(s)
(es − a)2

}
= (n+ 1)an. (4.7.24)

We deduce from (4.7.22) that

∞∑
n=0

nane−ns =
aes

(1 − ae−s)2
. (4.7.25)

Hence,

L {nan}= S̄0(s)
aes

(es − a)2
. (4.7.26)

Therefore,

L −1

{
aS̄0(s)es

(es − a)2

}
=nan. (4.7.27)

THEOREM 4.7.1
If ū(s) = L {u(t)}, then

L {u(t+ 1)}= es[ū(s) − u0S̄0(s)], u0 = u(0). (4.7.28)
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PROOF We have

L {u(t+ 1)} =

∞∫
0

e−stu(t+ 1) dt= es
∞∫
1

e−sτu(τ) dτ

= es

⎡⎣ū(s)−
1∫

0

e−sτu(τ) dτ

⎤⎦
= es

⎡⎣ū(s)− u(0)

1∫
0

e−sτ dτ

⎤⎦= es[ū(s)− u0S̄0(s)].

This proves the theorem.
In view of this theorem, we derive

L {u(t+ 2)} = es[L {u(t+ 1)} − u(1)S̄0(s)]
= e2s[ū(s) − u(0)S̄0(s)] − esu1S̄0(s)
= e2s[ū(s) − (u0 + u1e

−s)S̄0(s)], u(1) = u1. (4.7.29)

Similarly,

L {u(t+ 3)}= e3s[ū(s)− (u0 + u1e
−s + u2e

−2s)S̄0(s)]. (4.7.30)

More generally, if k is an integer,

L {u(t+ k)}= eks

(
ū(s)− S̄0(s)

k−1∑
r=0

ure
−rs

)
. (4.7.31)

Example 4.7.1
Solve the difference equation

Δun − un = 0, (4.7.32)

with the initial condition u0 = 1.
We take the Laplace transform of the equation to obtain

L {un+1} − 2L {un}= 0,

which is, by (4.7.28),

es[ū(s)− u0S̄0(s)]− 2 ū(s) = 0.

Thus,

ū(s) =
es S̄0(s)
es − 2

.



© 2007 by Taylor & Francis Group, LLC

Applications of Laplace Transforms 235

Inversion with (4.7.21) gives the solution

un = 2n. (4.7.33)

Example 4.7.2
Show that the solution of the difference equation

Δ2un − 2Δun = 0 (4.7.34)

is
un =A+B 3n, (4.7.35)

where A=
1
2
(3u0 − u1) and B=

1
2
(u1 − u0).

The given equation is

un+2 − 4un+1 + 3un = 0.

Taking the Laplace transform, we obtain

e2s[ū(s) − (u0 + u1e
−s)S̄0(s)]− 4 es[ū(s)− u0S̄0(s)] + 3ū(s) = 0

or,
(e2s − 4es + 3)ū(s) = [u0(e2s − 4es) + u1e

s]S̄0(s).

Hence,

ū(s) = S̄0(s)
[
u0(e2s − 4es) + u1e

s

(es − 1)(es − 3)

]
= S̄0(s)

[
(3u0 − u1)es

2(es − 1)
+

(u1 − u0)es

2(es − 3)

]
.

The inverse Laplace transform combined with (4.7.21) gives

un =A+B 3n.

Example 4.7.3
Solve the difference equation

un+2 − 2λun+1 + λ2un = 0, (4.7.36)

with u0 = 0 and u1 = 1.
The Laplace transformed equation is

e2s[ū(s) − e−s S̄0(s)] − 2λū(s)es + λ2ū(s) = 0
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or,

ū(s) =
es S̄0(s)
(es − λ)2

.

The inverse transform gives the solution

un =
1
λ
nλn = nλn−1. (4.7.37)

Example 4.7.4
Solve the differential-difference equation

u′(t) = u(t− 1), u(0)= 1. (4.7.38)

Application of the Laplace transform gives

sū(s) − u(0) = e−s[ū(s)− u(0)S̄0(s)],

or,

ū(s)(s− e−s) = 1 +
e−s

s
(e−s − 1).

Or,

ū(s) =
{

1
s− e−s

− e−s

s(s− e−s)

}
+

e−2s

s(s− e−s)

=
1
s

+
e−2s

s2

(
1− e−s

s

)−1

=
1
s

+
e−2s

s2
+
e−3s

s3
+
e−4s

s4
+ · · ·+ e−ns

sn
+ · · · .

In view of the result

L −1

{
e−as

sn

}
=

(t− a)n−1

Γ(n)
H(t− a), (4.7.39)

we obtain the solution

u(t) = 1 +
(t− 2)

1!
+

(t− 3)2

2!
+ · · ·+ (t− n)n−1

(n− 1)!
, t > n. (4.7.40)

Example 4.7.5
Solve the differential-difference equation

u′(t) − αu(t− 1) = β, u(0) = 0. (4.7.41)
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Application of the Laplace transform yields

s ū(s)− u(0)− α e−s[ū(s)− u(0)S̄0(s)] =
β

s
.

Or,

ū(s) =
β

s(s− αe−s)
=
β

s2

(
1 − α

s
e−s

)−1

= β

[
1
s2

+
α e−s

s3
+
α2 e−2s

s4
+ · · ·+ αn e−ns

sn+2
+ · · ·

]
.

Inverting with the help of (4.7.39), we obtain the solution

u(t) = β

[
t+

α(t− 1)2

Γ(3)
+ α2 (t− 2)3

Γ(4)
+ · · ·+ αn(t− n)n+1

Γ(n+ 2)

]
, t > n. (4.7.42)

4.8 Applications of the Joint Laplace and Fourier Trans-
form

Example 4.8.1

(The Inhomogeneous Cauchy Problem for the Wave Equation). Use the joint
Fourier and Laplace transform method to solve the Cauchy problem for the
wave equation as stated in Example 2.12.4. with an inhomogeneous term,
q(x, t).

We define the joint Fourier and Laplace transform of u(x, t) by

Ū(k, s) =
1√
2π

∞∫
−∞

e−ikx dx

∞∫
0

e−stu(x, t) dt. (4.8.1)

The transformed inhomogeneous Cauchy problem has the solution in the form

Ū(k, s) =
sF (k) +G(k) + Q̄(k, s)

(s2 + c2k2)
, (4.8.2)

where Q̄(k, s) is the joint transform of the inhomogeneous term, q(x, t) present
on the right side of the wave equation.
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The joint inverse transform gives the solution as

u(x, t) =
1√
2π

∞∫
−∞

eikxL −1

[
sF (k) +G(k) + Q̄(k, s)

s2 + c2k2

]
dk

=
1√
2π

∞∫
−∞

[
F (k) cos ckt+

G(k)
ck

sin ckt
]
eikx dk

+
1
ck

∫ t

0

sin ck(t− τ)Q(k, τ) dτ

=
1

2
√

2π

∞∫
−∞

F (k)(eickt + e−ickt)eikx dk

+
1

2
√

2π

∞∫
−∞

G(k)
ick

(eickt − e−ickt)eikx dk

+
1√
2π

1
2c

∫ t

0

dτ

∫ ∞

−∞

Q(k, τ)
ik

[
eick(t−τ) + e−ick(t−τ)

]
eikxdk

=
1
2
[f(x− ct) + f(x+ ct)] +

1√
2π

1
2c

∞∫
−∞

G(k) dk

x+ct∫
x−ct

eikξ dξ

+
1
2c

∫ t

0

dτ

∫ ∞

−∞

1√
2π

Q(k, τ) dk
∫ x+c(t−τ)

x−c(t−τ)
eikξ dξ

=
1
2
[f(x− ct) + f(x+ ct)] +

1
2c

x+ct∫
x−ct

g(ξ) dξ

+
1
2c

∫ t

0

dτ

∫ x+c(t−τ)

x−c(t−τ)
q(ξ, τ) dξ. (4.8.3)

This is identical with the d’Alembert solution (2.12.41) when q(x, t)≡ 0.

Example 4.8.2
(Dispersive Long Water Waves in a Rotating Ocean). We use the joint Laplace
and Fourier transform to solve the linearized horizontal equations of motion
and the continuity equation in a rotating inviscid ocean. These equations in
a rotating coordinate system (see Proudman, 1953; Debnath and Kulchar,
1972) are given by

∂u
∂t

+ f k̂× u = −1
ρ
∇p+

1
ρh
τττ, (4.8.4)

∇ · u = − 1
h

∂ζ

∂t
, (4.8.5)
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where u = (u, υ) is the horizontal velocity field, k̂ is the unit vector normal
to the horizontal plane, f = 2Ω sinφ is the constant Coriolis parameter, ρ
is the constant density of water, ζ(x, t) is the vertical free surface elevation,
τ = (τx, τy) represents the components of wind stress in the x and y directions,
and the pressure is given by the hydrostatic equation

p= p0 + gρ(ζ − z), (4.8.6)

where z is the depth of water below the mean free surface and g is the accel-
eration due to gravity.

Equation (4.8.4)–(4.8.5) combined with (4.8.6) reduce to the form

∂u

∂t
− fυ=−g ∂ζ

∂x
+
τx

ρh
, (4.8.7)

∂υ

∂t
+ fu=−g ∂ζ

∂y
+
τy

ρh
, (4.8.8)

∂u

∂x
+
∂υ

∂y
=− 1

h

∂ζ

∂t
. (4.8.9)

It follows from (4.8.7)–(4.8.8) that

Du=−g
(

∂2

∂x∂t
+ f

∂

∂y

)
ζ +

1
ρh

(
∂τx

∂t
+ fτy

)
, (4.8.10)

Dυ=−g
(

∂2

∂y∂t
− f

∂

∂x

)
ζ +

1
ρh

(
∂τy

∂t
− fτx

)
, (4.8.11)

where the differential operator D is

D≡
(
∂2

∂t2
+ f2

)
. (4.8.12)

Elimination of u and υ from (4.8.9)–(4.8.11) gives(
∇2 − 1

c2
D

)
ζt =E(x, y, t), (4.8.13)

where c2 = gh and ∇2 is the horizontal Laplacian, and E(x, y, t) is a known
forcing function given by

E(x, y, t) =
1
ρc2

[
∂2τx

∂x∂t
+
∂2τy

∂y∂t
+ f

(
∂τy

∂x
− ∂τx

∂y

)]
. (4.8.14)

Further, we assume that the conditions are uniform in the y direction and
the wind stress acts only in the x direction so that τx and E are given functions
of x and t only. Consequently, equation (4.8.13) becomes[

∂2

∂x2
− 1
c2

(
∂2

∂t2
+ f2

)]
ζt =

1
ρc2

(
∂2τx

∂x∂t

)
.
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Integrating this equation with respect to t gives[
∂2

∂x2
− 1
c2

(
∂2

∂t2
+ f2

)]
ζ =

1
ρc2

(
∂τx

∂x

)
. (4.8.15)

Similarly, the velocity u(x, t) satisfies the equation[
∂2

∂x2
− 1
c2

(
∂2

∂t2
+ f2

)]
u=− 1

ρhc2

(
∂τx

∂t

)
. (4.8.16)

If the right-hand side of equations (4.8.15) and (4.8.16) is zero, these equa-
tions are known as the Klein-Gordon equations, which have received extensive
attention in quantum mechanics and in applied mathematics.

Equation (4.8.15) is to be solved subject to the following boundary and
initial conditions

|ζ| is bounded as |x|→∞, (4.8.17)
ζ(x, t) = 0 at t= 0 for all real x. (4.8.18)

Before we solve the initial value problem, we seek a plane wave solution of
the homogeneous equation (4.8.15) in the form

ζ(x, t) =A exp{i(ωt− kx)}, (4.8.19)

where A is a constant amplitude, ω is the frequency, and k is the wavenumber.
Such a solution exists provided the dispersion relation

ω2 = c2k2 + f2 (4.8.20)

is satisfied. Thus, the phase and the group velocities of waves are given by

Cp =
ω

k
=
(
c2 +

f2

k2

) 1
2

, Cg =
∂ω

∂k
=

c2k

(c2k2 + f2)
1
2
. (4.8.21ab)

Thus, the waves are dispersive in a rotating ocean (f �= 0). However, in a non-
rotating ocean (f = 0) all waves would propagate with constant velocity c,
and they are non-dispersive shallow water waves. Further, CpCg = c2 whence
it follows that the phase velocity has a minimum of c and the group velocity
a maximum. The short waves will be observed first at a given point, even
though they have the smallest phase velocity.

Application of the joint Laplace and Fourier transform to (4.8.15) together
with (4.8.17)–(4.8.18) give the transformed solution

ζ̃(k, s) =− Ac2

(s2 + a2)
f̃(k, s), a2 = (c2k2 + f2), (4.8.22)

where

f(x, t) =
1
ρc2

(
∂τx

∂x

)
H(t). (4.8.23)
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The inverse transforms combined with the Convolution Theorem of the Laplace
transform lead to the formal solution

ζ(x, t) =− Ac√
2π

∞∫
−∞

(
k2 +

f2

c2

)− 1
2

eikx dk

t∫
0

f̃(k, t− τ) sin aτ dτ. (4.8.24)

In general, this integral cannot be evaluated unless f(x, t) is prescribed. Even
if some particular form of f is given, an exact evaluation of (4.8.24) is almost
a formidable task. Hence, it is necessary to resort to asymptotic methods (see
Debnath and Kulchar, 1972).

To investigate the solution, we choose a particular form of the wind stress
distribution

τx

ρc2
=AeiωtH(t)H(−x), (4.8.25)

where A is a constant and ω is the frequency of the applied disturbance. Thus,

1
ρc2

(
∂τx

∂x

)
=−AeiωtH(t)δ(−x). (4.8.26)

In this case, solution (4.8.24) reduces to the form

ζ(x, t) =
Ac√
2π

t∫
0

eiω(t−τ)H(t− τ)F −1

⎡⎣ sinaτ√
k2 + f2

c2

⎤⎦ dτ
=
Ac

2

t∫
0

eiω(t−τ)H(t− τ)J0

{
f

c
(c2τ2 − x2)

1
2

}
×H(cτ − |x|) dτ, (4.8.27)

where J0(z) is the zero-order Bessel function of the first kind.
When ω≡ 0, this solution is identical with that of Crease (1956) who ob-

tained the solution using the Green’s function method. In this case, the solu-
tion becomes

ζ =
Ac

2

t∫
0

H(t− τ)J0

[
f

{
τ2 − x2

c2

} 1
2
]
H

(
τ − |x|

c

)
dτ. (4.8.28)

In terms of non-dimensional parameters fτ =α, ft= a, and fx
c = b, solution

(4.8.28) assumes the form

(
2f
Ac

)
ζ =

a∫
0

H(a− α)J0

[
(α2 − b2)

1
2

]
H(α− |b|) dα. (4.8.29)
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Or, equivalently, (
2f
Ac

)
ζ =

d∫
|b|

J0

[
(α2 − b2)

1
2

]
dα, (4.8.30)

where d= max(|b|, a). This is the basic solution of the problem.
In order to find the solution of (4.8.16), we first choose

1
ρc2

(
∂τx

∂t

)
=Aδ(t)H(−x), (4.8.31)

so that the joint Laplace and Fourier transform of this result is AF{H(−x)}.
Thus, the transformed solution of (4.8.16) is

¯̃u(k, s)=
Ac2

h
F{H(−x)} 1

(s2 + ω2)
, ω2 = (ck)2 + f2. (4.8.32)

The inverse transforms combined with the Convolution Theorem lead to the
solution

u(x, t) =
Ac

2h

∞∫
−∞

H(−ξ)J0

⎡⎣f {t2 −(
x− ξ

c

)2
} 1

2
⎤⎦

×H
(
t− (x− ξ)

c

)
dξ, (4.8.33)

which is, by the change of variable (x− ξ)f = cα, with a= ft and b= (fx/c),

=
Ac2

2hf

∞∫
b

J0

[
(a2 − α2)

1
2

]
H(a− |α|) dα. (4.8.34)

For the case b > 0, solution (4.8.34) becomes

u(x, t) =
Ac2

2hf
H(a− b)

a∫
b

J0

{
(a2 − α2)

1
2

}
dα. (4.8.35)

When b < 0, the velocity field is

u(x, t) =
Ac2

2hf

⎡⎣ a∫
−a

J0

{
(a2 − α2)

1
2

}
dα−H(a− |b|)

b∫
−a

J0

{
(a2 − α2)

1
2

}
dα

⎤⎦
=
gA

2f

⎡⎢⎣2 sina−H(a− |b|)
a∫

|b|

J0

{
(a2 − α2)

1
2

}
dα

⎤⎥⎦ , (4.8.36)
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which is, for a< |b|,
u(x, t) =

(
gA

2f

)
sin a. (4.8.37)

Finally, it can be shown that the velocity transverse to the direction of
propagation is

υ=
(
−gA

2f

) a∫
0

dβ

∞∫
b

J0

{
(β2 − α2)

1
2

}
H(β − |α|) dα. (4.8.38)

If b > 0, that is, x is outside the generating region, then

(
2f
gA

)
υ=−H(a− b)

a∫
b

dβ

β∫
b

J0

{
(β2 − α2)

1
2

}
dα,

which becomes, after some simplification,

=−
⎡⎣(1 − cos a)−

b∫
0

dα

a∫
α

J0

{
(β2 − α2)

1
2

}⎤⎦H(a− b). (4.8.39)

For b< 0, it is necessary to consider two cases: (i) a< |b| and (ii) a> |b|. In
the former case, (4.8.38) takes the form

(
2f
gA

)
υ=−

a∫
0

dβ

β∫
−β

J0

{
(β2 − α2)

1
2

}
dα=−2(1− cos b). (4.8.40)

In the latter case, the final form of the solution is

(
2f
gA

)
υ=−(1− cos b) +

|b|∫
0

dα

a∫
α

J0

{
(β2 − α2)

1
2

}
dβ. (4.8.41)

Finally, the steady-state solutions are obtained in the limit as t→∞(b→∞)

ζ =
Ac

2f
exp(−|b|),

u =
Ag

2f
sin ft,

υ =
Ag

2f

[
cos ft− exp(−b), b > 0

cos ft+ exp(−|b|)− 2, b < 0

]
. (4.8.42)

Thus, the steady-state solutions are attained in a rotating ocean. This shows
a striking contrast with the corresponding solutions in the non-rotating ocean
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where an ever-increasing free surface elevation is found. The terms sin ft and
cos ft involved in the steady-state velocity field represent inertial oscillations
with frequency f .

Example 4.8.3
(One-Dimensional Diffusion Equation on a Half Line). Solve the equation

ut = κuxx, 0<x<∞, t > 0, (4.8.43)

with the boundary data

u(x, t) = f(t) forx= 0

u(x, t)→ 0 asx→∞

}
t > 0 (4.8.44ab)

and the initial condition

u(x, t) = 0 at t= 0 for 0<x<∞. (4.8.45)

We use the joint Fourier sine and Laplace transform defined by

Us(k, s) =

√
2
π

∞∫
0

e−st dt

∞∫
0

u(x, t) sin kx dx, (4.8.46)

so that the solution of the transformed problem is

Us(k, s) =

√
2
π

(κk)
f̄(s)

(s+ k2κ)
. (4.8.47)

The inverse transform yields the solution

u(x, t) =
(

2κ
π

) ∞∫
0

k sin kx dk

t∫
0

f(t− τ) exp(−κτk2) dτ.

In particular, if f(t) = T0 = constant, then the solution becomes

u(x, t) =
2T0

π

∞∫
0

sinkx
k

(1 − e−κk
2t) dk. (4.8.48)

Making use of the integral (2.15.11) gives the solution

u(x, t) =
2T0

π

[
π

2
− π

2
erf

(
x

2
√
κt

)]
= T0 erfc

(
x

2
√
κt

)
. (4.8.49)
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This is identical with (2.15.12).

Example 4.8.4
(The Bernoulli-Euler Equation on an Elastic Foundation). Solve the equation

EI
∂4u

∂x4
+ κu+m

∂2u

∂t2
=Wδ(t)δ(x), −∞<x<∞, t > 0, (4.8.50)

with the initial data

u(x, 0) = 0 and ut(x, 0) = 0. (4.8.51)

We use the joint Laplace and Fourier transform (4.8.1) to find the solution of
the transformed problem in the form

U(k, s) =
W

m
√

2π
1

(s2 + a2k4 + ω2)
, (4.8.52)

where
a2 =

EI

m
and ω2 =

κ

m
.

The inverse Laplace transform gives

U(k, t) =
W

m
√

2π

(
sinαt
α

)
, α= (a2k4 + ω2)

1
2 . (4.8.53ab)

Then the inverse Fourier transform yields the formal solution

u(x, t) =
W

2πm

∞∫
−∞

eikx
(

sinαt
α

)
dk. (4.8.54)

Example 4.8.5
(The Cauchy-Poisson Wave Problem in Fluid Dynamics). We consider the
two-dimensional Cauchy-Poisson problem for an inviscid liquid of infinite
depth with a horizontal free surface. We assume that the liquid has con-
stant density ρ and negligible surface tension. Waves are generated on the
surface of water initially at rest for time t< 0 by the prescribed free surface
displacement at t= 0.

In terms of the velocity potential φ(x, z, t) and the free surface elevation
η(x, t), the linearized surface wave motion in Cartesian coordinates (x, y, z) is
governed by the following equation and free surface and boundary conditions:

∇2φ=φxx + φzz = 0, −∞<z≤ 0, −∞<x<∞, t > 0, (4.8.55)
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φz − ηt = 0
φt + gη= 0

}
on z= 0, t > 0, (4.8.56ab)

φz→ 0 as z→−∞. (4.8.57)

The initial conditions are

φ(x, 0, 0) = 0 and η(x, 0) = η0(x), (4.8.58)

where η0(x) is a given function with compact support.
We introduce the Laplace transform with respect to t and the Fourier trans-

form with respect to x defined by

[φ̃(k, z, s), η̃(k, s)] =
1√
2π

∞∫
−∞

e−ikx dx

∞∫
0

e−st[φ, η] dt. (4.8.59)

The use of joint transform to the above system gives

φ̃zz − k2φ̃= 0, −∞<z≤ 0, (4.8.60)

φ̃z = sη̃ − η̃0(k)

sφ̃+ gη̃= 0

⎫⎬⎭ on z= 0, (4.8.61ab)

φ̃z→ 0 as z→−∞. (4.8.62)

The bounded solution of (4.8.60) is

φ̃(k, s) = Ā exp(|k|z) (4.8.63)

where A=A(s) is an arbitrary function of s, and η̃0(k) = F{η0(x)}.
Substituting (4.8.63) into (4.8.61ab) and eliminating η̃ from the resulting

equations gives Ā. Hence, the solutions for φ̃ and η̃ are

[φ̃, η̃] =
[
−g η̃0 exp(|k|z)

s2 + ω2
,

s η̃0
s2 + ω2

]
, (4.8.64ab)

where the dispersion relation for deep water waves is

ω2 = g|k|. (4.8.65)
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The inverse Laplace and Fourier transforms give the solutions

φ(x, z, t) = − g√
2π

∞∫
−∞

sinωt
ω

exp(ikx+ |k|z) η̃0(k) dk (4.8.66)

η(x, t) =
1√
2π

∞∫
−∞

η̃0(k) cosωt eikx dk

=
1√
2π

∞∫
0

η̃0(k)[ei(kx−ωt) + ei(kx+ωt)] dk, (4.8.67)

in which η̃0(−k) = η̃0(k) is assumed.
Physically, the first and second integrals of (4.8.67) represent waves trav-

eling in the positive and negative directions of x respectively with phase ve-
locity

(ω
k

)
. These integrals describe superposition of all such waves over the

wavenumber spectrum 0<k<∞.
For the classical Cauchy-Poisson wave problem, η(x) = a δ(x) where δ(x)

is the Dirac delta function so that η̃0(k) =
(
a/

√
2π
)
. Thus, solution (4.8.67)

becomes

η(x, t) =
a

2π

∞∫
0

[
ei(kx−ωt) + ei(kx+ωt)

]
dk. (4.8.68)

The wave integrals (4.8.66) and (4.8.67) represent the exact solution for
the velocity potential φ and the free surface elevation η for all x and t > 0.
However, they do not lend any physical interpretations. In general, the exact
evaluation of these integrals is almost a formidable task. So it is necessary to
resort to asymptotic methods. It would be sufficient for the determination of
the principal features of the wave motions to investigate (4.8.67) or (4.8.68)
asymptotically for large time t and large distance x with (x/t) held fixed. The
asymptotic solution for this kind of problem is available in many standard
books (for example, see Debnath, 1994, p 85). We state the stationary phase
approximation of a typical wave integral, for t→∞,

η(x, t) =

b∫
a

f(k) exp[itW (k)] dk (4.8.69)

∼ f(k1)
[

2π
t|W ′′(k1)|

] 1
2

exp
[
i
{
tW (k1) +

π

4
sgnW ′′(k1)

}]
, (4.8.70)

where W (k) =
kx

t
− ω(k), x> 0 and k= k1 is a stationary point that sat-

isfies the equation

W ′(k1) =
x

t
− ω′(k1) = 0, a < k1<b. (4.8.71)
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Application of (4.8.70) to (4.8.67) shows that only the first integral in
(4.8.67) has a stationary point for x> 0. Hence, the stationary phase ap-
proximation gives the asymptotic solution, as t→∞, x > 0,

η(x, t) ∼
[

1
t|ω′′(k1)|

] 1
2

η̃0(k1) exp[i{(k1x− tω(k1)}

+
iπ

4
sgn{−ω′′(k1)}], (4.8.72)

where k1 = (gt2/4x2) is the root of the equation ω′(k) =
x

t
.

On the other hand, when x< 0, only the second integral of (4.8.67) has a
stationary point k1 = (gt2/4x2), and hence, the same result (4.8.70) can be
used to obtain the asymptotic solution for t→∞ and x< 0 as

η(x, t) ∼
[

1
t|ω′′(k1)|

] 1
2

η̃0(k1) exp[i{tω(k1) − k1|x|}

+
iπ

4
sgnω′′(k1)]. (4.8.73)

In particular, for the classical Cauchy-Poisson solution (4.8.68), the asymp-
totic representation for η(x, t) follows from (4.8.73) in the form

η(x, t)∼ at

2
√

2π

√
g

x3/2
cos

(
gt2

4x

)
, gt2>> 4x (4.8.74)

and a similar result for x< 0 and t→∞.

4.9 Summation of Infinite Series

With the aid of Laplace transforms, Wheelon (1954) first developed a direct
method to the problem of summing infinite series in closed form. His method
is essentially based on the operation that is contained in the summation of
both sides of a Laplace transform with respect to the transform variable s,
which is treated as the dummy index of summation n. This is followed by an
interchange of summation and integration that leads to the desired sum as the
integral of a geometric or exponential series, which can be summed in closed
form. We next discuss this procedure in some detail.

If f̄(s) = L {f(x)}, then

∞∑
n=1

an f̄(n) =
∞∑
n=1

an

∞∫
0

f(x)e−nx dx. (4.9.1)



© 2007 by Taylor & Francis Group, LLC

Applications of Laplace Transforms 249

In many cases, it is possible to interchange the order of summation and
integration so that (4.9.1) gives

∞∑
n=1

an f̄(n) =

∞∫
0

f(t)b(t) dt, (4.9.2)

where

b(t)=
∞∑
n=1

an exp(−nt). (4.9.3)

We now assume f(t) =
1

Γ(p)
tp−1 exp(−xt) so that f̄(n) = (n+ x)−p. Conse-

quently, (4.9.2) becomes

∞∑
n=1

an f̄(n) =
∞∑
n=1

an
(n+ x)p

=
1

Γ(p)

∞∫
0

b(t) tp−1 exp(−xt) dt. (4.9.4)

This shows that a general series has been expressed in terms of an integral.
We next illustrate the method by simple examples.

Example 4.9.1
Show that the sum of the series

∞∑
n=1

1
n2

=
π2

6
. (4.9.5)

Putting x= 0, p= 2, and an = 1 for all n, we find, from (4.9.3) and (4.9.4),

b(t) =
∞∑
n=1

exp(−nt) =
1

et − 1
, (4.9.6)

and
∞∑
n=1

1
n2

=

∞∫
0

t dt

et − 1
= ζ(2) =

π2

6
, (4.9.7)

in which the following standard result is used
∞∫
0

tp−1

eat − 1
dt=

Γ(p)
ap

ζ(p), (4.9.8)

where ζ(p) is the Riemann zeta function defined below by (4.9.10).
Similarly, we can show

∞∑
n=1

1
n3

=
1

Γ(3)

∞∫
0

t2 dt

et − 1
= ζ(3). (4.9.9)
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More generally, we obtain, from (4.9.8),

∞∑
n=1

1
np

=
1

Γ(p)

∞∫
0

tp−1 dt

et − 1
= ζ(p). (4.9.10)

Example 4.9.2
Show that ∞∑

n=1

1
n

exp(−an) =− log(1 − e−a). (4.9.11)

We put x= 0, p= 1, and an = exp(−an) so that

b(t) =
∞∑
n=1

exp[−n(t+ a)] =
1

ea+t − 1
. (4.9.12)

Then result (4.9.4) gives

∞∑
n=1

1
n

exp(−an)=

∞∫
0

dt

ea+t − 1
, exp(−t) = x,

=

1∫
0

dx

ea − x
=− log(1 − e−a).

Example 4.9.3
Show that ∞∑

n=1

1
(n2 + x2)

=
1

2x2
(πx coth πx− 1). (4.9.13)

We set
f(t) =

1
x

sinxt, f̄(n) =
1

n2 + x2
, and an = 1 for all n.

Clearly

b(t) =
∞∑
n=1

exp(−nt) =
1

et − 1
.

Thus,
∞∑
n=1

1
(n2 + x2)

=
1
x

∞∫
0

sinxt
et − 1

dt=
1

2x2
(πx coth πx− 1).
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4.10 Transfer Function and Impulse Response Function
of a Linear System

Many science and engineering systems are described by initial value problems
that are governed by linear ordinary differential equations. In general, a linear
system is governed by an nth order linear ordinary differential equation with
constant coefficients in the form

L (D) [x (t)] ≡ an x
(n) (t) + an−1 x

(n−1) (t) + . . .+ a0 x (t) = f (t) , (4.10.1)

where an, an−1, . . ., a0 are real constants with an �= 0 and the initial conditions
are

x (0) = x0, x′ (0) = x1, . . . , x(n−1) (0)= xn−1. (4.10.2)

The solution, x (t) of the system (4.10.1)–(4.10.2) is called the output or the
response function, and the given f (t) is called the input function (or driving
function) of time t.

The transfer function h (s) of a linear system is defined as the ratio of the
Laplace transform of the output function x (t) to the Laplace transform of the
input function f (t), under the assumption that all initial conditions are zero.

More generally, however, the Laplace transform of the system (4.10.1)–
(4.10.2) gives

an

[
sn x (s)− sn−1x (0)− . . .− x(n−1) (0)

]
+an−1

[
sn−1 x (s)− sn−2 x (0)− . . .− x(n−2)

]
+ . . .+ a1 [s x (s)− x (0)] + a0 x (s) = f (s) . (4.10.3)

Or, equivalently,(
an s

n + an−1 s
n−1 + . . .+ a0

)
x (s) = f (s) + g (s) ,

or,

pn (s)x (s) = f (s) + g (s) , (4.10.4)

where

pn (s) =
(
ans

n + an−1s
n−1 + . . .+ a1s+ a0

)
(4.10.5)

is a polynomial of degree n, g (s) is a polynomial of degree less than or equal to
(n− 1) consisting of the various products of the coefficients ar (r= 1, 2, . . . , n)
and the given initial conditions x0, x1, . . ., xn−1.
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The transfer function (or system function) is denoted by h (s) and defined
by

h (s) =
1

pn (s)
=

1
an sn + an−1 sn−1 + . . .+ a0

. (4.10.6)

Consequently, equation (4.10.4) becomes

x (s) =
f (s)
pn (s)

+
g (s)
pn (s)

= h (s)
[
f (s) + g (s)

]
. (4.10.7)

The inverse Laplace transform of (4.10.7) provides the response function
x (t) of the system which is the superposition of two responses as follows:

x (t) = L −1
{
h (s) g (s)

}
+ L −1

{
h (s) f (s)

}
(4.10.8)

=
∫ t

0

h (t− τ) g (τ) dτ +
∫ t

0

h (t− τ) f (τ) dτ (4.10.9)

= x0 (t) + x1 (t) , (4.10.10)

where

x0 (t) = L −1
{
h (s) g (s)

}
, x1 (t) = L −1

{
h (s) f (s)

}
,

and

h (t) = L −1
{
h (s)

}
= L −1

{
1

pn (s)

}
, (4.10.11)

are often called the impulse response function of the linear system.
If the input is f (t)≡ 0, the solution of the problem is x0 (t), which is called

the zero-input response of the system. On the other hand, x1 (t) is the output
due to the input f (t) and is called the zero-state response of the system. If
all initial conditions are zero, that is, x0 = x1 = . . .= xn−1 = 0, then g (s) = 0
and so, the unique solution of the nonhomogeneous equation (4.10.1) is x1(t).

For example, h (t) = L −1
{
h (s)

}
describes the solution for a mass-spring

system when it is struck by a hammer. For an electric circuit, the function
z (s) =

[
s h (s)

]−1
is called the impendence of the circuit.

The polynomial pn (s) =
(
ans

n + an−1s
n−1 + . . .+ a0

)
in s of degree n is

called the characteristic polynomial of the system, and pn (s) = 0 is called the
characteristic equation of the system. Since the coefficients of pn (s) are real,
it follows that roots of the characteristic equation are all real or, if complex,
they must occur in complex conjugate pairs. If h (s) is expressed in partial
fractions, the system is said to be stable provided all roots of the characteristic
equation have negative real parts. From a physical point of view, when every
root of pn (s) = 0 has a negative real part, any bounded input to a system
that is stable will lead to an output that is also bounded for all time t.



© 2007 by Taylor & Francis Group, LLC

Applications of Laplace Transforms 253

We close this section by adding the following examples:

Example 4.10.1
Find the transfer function for each of the following linear systems. Determine
the order of each system and find which is stable.

(a) L
dI

dt
+R I +

1
C

∫ t

0

I (τ) dτ =E (t) , (4.10.12)

(b) x′′ (t) + 2 x′ (t) + 5 x (t) = 3f ′ (t) + 2f (t) , (4.10.13)
(c) x′′′ (t) + x′′ (t) + 3 x′ (t) − 5x (t) = 6f ′′ (t) − 13f ′ (t) + 6f (t) ,

where L, R, and C are constants. (4.10.14)

(a) This current equation is solved in Example 4.2.13. The Laplace trans-
formed equation with the zero initial condition is given by(

Ls+R+
1
Cs

)
I (s) = E (s)

so that the transfer equation is

h (s) =
1(

Ls+R+ 1
Cs

) =
1
L

s(
s2 + R

L s+ 1
CL

) .
The system is of order 2 and its characteristic equation is

s2 +
R

L
s+

1
CL

= 0.

Or,

(s+ k)2 + n2 = 0

where

k =
R

2L
, n2 =

1
CL

− R2

4L2
.

The roots of the characteristic equation are complex and they are s=−k+ i n
with the negative real part. So, the system is stable.

(b) We take the Laplace transform of the equation (4.10.13) with zero initial
conditions so that (

s2 + 2s+ 5
)
x (s) = (3s+ 2) f (s) .

Thus, the transfer function is

h (s) =
x (s)
f (s)

=
(3s+ 2)

s2 + 2s+ 5
.
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The system is of order 2 and its characteristic equation is

s2 + 2s+ 5 = 0

with complex roots s=−1 +2i. Since the real part of these roots is negative,
the system is stable.
(c) Similarly,

h (s) =
x (s)
f (s)

=

(
6s2 − 13s+ 6

)
(s3 + s2 + 3s− 5)

.

The system is of order 3 and its characteristic equation is

s3 + s2 + 3s− 5 = 0

with roots s1 = 1, s2, s3 =−1 +2i. Since the real parts of all roots are not
negative, the system is unstable.

Example 4.10.2
Find the transfer function, the impulse response function, and the solution of
a linear system described by

x′′ (t) + 2a x′ (t) +
(
a2 + 4

)
x (t) = f (t) (4.10.15)

x (0) = 1, x′ (0) = −a. (4.10.16ab)

According to formula (4.10.4), the transfer function of this system is

h (s) =
1

(s2 + 2as+ a2 + 4)
=

1
(s+ a)2 + 22

.

The inverse Laplace transform of the transform function h (s) is the impulse
response function

h (t) = L −1
{
h (s)

}
=

1
2
L −1

{
2

(s2 + a)2 + 22

}
=

1
2
e−at sin 2t. (4.10.17)

Solving the homogeneous initial value problem gives

x0 (t) = e−at cos (2t) . (4.10.18)

The solution of the problem (4.10.15)–(4.10.16ab) is

x (t) = x0 (t) + h (t) ∗ f (t)

= e−at cos (2t) +
∫ t

0

e−at f (t− τ) sin 2τ dτ. (4.10.19)
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Example 4.10.3
Consider a linear system governed by the differential equation

a2 x
′′ (t) + a1 x

′ (t) + a0 x (t) = H (t) , (4.10.20)

where H (t) is the Heaviside unit step function.
Derive Duhamel’s formulas

(a) x (t) =
∫ t

0

A′ (t− τ) f (τ) dτ, (4.10.21)

(b) x (t) =
∫ t

0

A (τ) f ′ (t− τ) dτ +A (t) f (0) . (4.10.22)

The transfer function for this system (4.10.20) is

h (s) =
x (s)
f (s)

= s x (s) . (4.10.23)

Or,

x (s) =
h (s)
s

. (4.10.24)

The output function in this special case is called the indicial admittance
and is denoted by A (t) so that

A (s) =
h (s)
s

. (4.10.25)

We next derive Duhamel’s formulas. We have, from (4.10.7) with g (s) = 0,

x (s) = s

[
h (s)
s

]
f (s) = s A (s) f (s) . (4.10.26)

Using the convolution theorem gives

x (t) = L −1
{
sA (s) · f (s)

}
=
∫ t

0

A′ (t− τ) f (τ) dτ =
d

dt

∫ t

0

A (τ) f (t− τ) dτ

which is, by Leibniz’s rule,

=
∫ t

0

A (τ) f ′ (t− τ) dτ + A (t) f (0) ,

where the initial conditions A (0)=A′ (0) = 0 are used.
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4.11 Exercises

1. Using the Laplace transform, solve the following initial value problems

(a)
dx

dt
+ ax= e−bt, t > 0, a �= b with x(0) = 0.

(b)
dx

dt
− x= t2, t > 0, x(0) = 0.

(c)
dx

dt
+ 2x= cos t, t > 0, x(0) = 1.

(d)
dx

dt
− 2x= 4, t > 0, x(0) = 0.

2. Solve the initial value problem for the radioactive decay of an element

dx

dt
=−kx, (k > 0), t > 0, x(0) = x0.

Prove that the half-life time T of the element, which is defined as the
time taken for half a given amount of the element to decay, is

T =
1
k

log 2.

3. Find the solutions of the following systems of equations with the initial
data:

(a)
dx

dt
= x− 2y,

dy

dt
= y − 2x, x(0) = 1, y(0)= 0.

(b)
dx1

dt
= x1 + 2x2 + t,

dx2

dt
= x2 + 2x1 + t; x1(0) = 2, x2(0) = 4.

(c)
dx

dt
= 6x− 7y+ 4z,

dy

dt
= 3x− 4y+ 2z,

dz

dt
=−5x+ 5y − 3z,

with x(0) = 5, y(0)= z(0) = 0.

(d)
dx

dt
= 2x− 3y,

dy

dt
= y − 2x; x(0) = 2, y(0) = 1.

(e)
dx

dt
+ x= y,

dy

dt
− y= x, x(0) = y(0) = 1.

(f)
dx

dt
+
dy

dt
+ x= 0,

dx

dt
+ 2

dy

dt
− x= e−at, x(0) = y(0) = 1.

4. Solve the matrix differential system

dx

dt
=Ax with x(0) =

(
x0

0

)
,

where x(t) =
(
x1(t)
x2(t)

)
and A=

(−3 −2
3 2

)
.
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5. Find the solution of the autonomous system described by

dx

dt
= x,

dy

dt
= x+ 2y with x(0) = x0, y(0) = y0.

6. Solve the differential systems

(a)
d2x

dt2
− 2k

dy

dt
+ lx= 0

d2y

dt2
+ 2k

dx

dt
+ ly= 0

⎫⎪⎪⎬⎪⎪⎭ t > 0

with the initial conditions

x(0) = a, ẋ(0) = 0; y(0) = 0, ẏ(0) = υ,

where k, l, a, and υ are constants.

(b)
d2x

dt2
= y− 2 x

d2y

dt2
= x− 2 y

⎫⎪⎪⎬⎪⎪⎭ t > 0

with the initial conditions

x(0) = y(0)= 1, and ẋ(0) = ẏ(0) = 0.

7. The glucose concentration in the blood during continuous intravenous
injection of glucose is C(t), which is in excess of the initial value at the
start of the infusion. The function C(t) satisfies the initial value problem

dC

dt
+ k C =

α

V
, t > 0, C(0) = 0,

where k is the constant velocity of elimination, α is the rate of infusion
(in mg/min), and V is the volume in which glucose is distributed. Solve
this problem.

8. The blood is pumped into the aorta by the contraction of the heart. The
pressure p(t) in the aorta satisfies the initial value problem

dp

dt
+
c

k
p= cA sinωt, t > 0; p(0)= p0

where c, k, A, and p0 are constants. Solve this initial value problem.
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9. The zero-order chemical reaction satisfies the initial value problem

dc

dt
=−k0, t > 0, with c= c0 at t= 0

where k0 is a positive constant and c(t) is the concentration of a reacting
substance at time t. Show that

c(t) = c0 − k0 t.

10. Solve the equation governing the first order chemical reaction

dc

dt
=−k1c with c(t) = c0 at t= 0 (k1> 0).

11. Obtain the solutions of the systems of differential equations governing
the consecutive chemical reactions of the first order

dc1
dt

=−k1c1,
dc2
dt

= k1c1 − k2c2,
dc3
dt

= k2c2, t > 0,

with the initial conditions

c1(0) = c1, c2(0)= c3(0) = 0,

where c1(t) is the concentration of a substance A at time t, which breaks
down to form a new substance A2 with concentration c2(t), and c3(t) is
the concentration of a new element originated from A2.

12. Solve the following initial value problems

(a) ẍ+ ω2x= cosnt, (ω �= n) x(0) = 1, ẋ(0) = 0.

(b) ẍ+ x= sin 2t, x(0) = ẋ(0) = 0.

(c)
d3x

dt3
+
d2x

dt2
= 3e−4t, x(0) = 0, ẋ(0) =−1, ẍ(0) = 1.

(d)
d4x

dt4
= 16x, x(t) = ẍ(t) = 0, ẋ(t) =˙̈x(t) = 1 at t= 0.

(e) (D4 + 2D3 −D2 − 2D+ 10)x(t) = 0, t > 0,

x(0) =−1, ẋ(0) = 3, ẍ(0) =−1, ˙̈x(0) = 4.

(f)
d2x

dt2
+ b

dx

dt
= δ(t− a), x(0) =α, ẋ(0) = β.

(g) C
d2v

dt2
+

1
R

dv

dt
+
v

L
=
di

dt
, v(0) = v̇(0) = 0; i(t) =H(t− 1)−H(t),

where R, L, andC are constants.

(h)
d2x

dt2
+ 2 t

dx

dt
− 4 x= 2, x(0) = 0 = ẋ(0).
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(i)
d2x

dt2
− 2 a

dx

dt
+ a2 x= t− (t− a)H(t− a)− aH(t− a),

x(0) = 0 = ẋ(0).

13. Solve the following systems of equations:

(a) ẍ− 2ẏ− x= 0, ÿ + 2ẋ− y= 0,

x(t) = y(t) = 0, ẋ(t) = ẏ(t) = 1 at t= 0.
(b) ẍ1 + 3ẋ1 − 2x1 + ẋ2 − 3x2 = 2e−t, 2ẋ1 − x1 + ẋ2 − 2x2 = 0,

with x1(0) = ẋ1(0) = 0 and x2(0) = 4.

14. With the aid of the Laplace transform, investigate the motion of a par-
ticle governed by the equations of motion ẍ− ωẏ= 0, ÿ+ ωẋ=ω2a and
the initial conditions x(0) = y(0) = ẋ(0) = ẏ(0)= 0.

15. Show that the solution of the equation

d2y

dx2
+ (a+ b)

dy

dx
+ aby= e−ax, x> 0

with the initial data y(x) =
1
a2

and
dy

dx
= 0 at x= 0 is

y(x) =
1

a2(a− b)
(ae−bx − be−ax − xa2e−ax) +

e−bx − e−ax

(a− b)2
.

16. The motion of an electron of charge −e in a static electric field E=
(E, 0, 0) and a static magnetic field H = (0, 0, H) is governed by the
vector equation

mr̈=−eE +
e

c
(ṙ×H), t > 0,

with zero initial velocity and displacement (r= ṙ= 0 at t= 0) where r=
(x, y, z) and c is the velocity of light. Show that the displacement fields
are

x(t) =
eE

mω2
(cosωt− 1), y(t) =

eE

mω2
(sinωt− ωt), z(t) = 0,

where ω=
eH

mc
. Hence, calculate the velocity field.

17. An electron of mass m and charge −e is acted on by a periodic electric
field E sinω0t along the x-axis and a constant magnetic field H along the
z-axis. Initially, the electron is emitted at the origin with zero velocity.
With the same ω as given in exercise 16, show that

x(t) =
eE

mω(ω2 − ω2
0)

(ω0 sin ωt− ω sin ω0t) ,

y(t) =
eE

mω (ω2 − ω2
0)ω0

{
(ω2 − ω2

0) +
(
ω2

0 cos ωt− ω2 cos ω0t
)}
.
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18. The stress-strain relation and equation of motion for a viscoelastic rod
in the absence of external force are

∂e

∂t
=

1
E

∂σ

∂t
+
σ

η
,

∂σ

∂x
= ρ

∂2u

∂t2
,

where e is the strain, η is the coefficient of viscosity, and the displacement

u(x, t) is related to the strain by e=
∂u

∂x
. Prove that the stress σ(x, t)

satisfies the equation

∂2σ

∂x2
− ρ

η

∂σ

∂t
=

1
c2
∂2σ

∂t2
.

Show that the stress distribution in a semi-infinite viscoelastic rod sub-
ject to the boundary and initial conditions

u̇(0, t) = UH(t), σ(x, t)→ 0 as x→∞,

σ(x, 0) = 0, u̇(x, 0) = 0, for 0<x<∞,

is given by

σ(x, t) =−Uρ c exp
(
−Et

2η

)
I0

[
E

2η

(
t2 − x2

c2

)1/2
]
H
(
t− x

c

)
.

19. An elastic string is stretched between x= 0 and x= � and is initially at
rest in the equilibrium position. Find the Laplace transform solution for
the displacement subject to the boundary conditions y(0, t)= f(t) and
y(l, t)= 0, t > 0.

20. The end x= 0 of a semi-infinite submarine cable is maintained at a
potential V0H(t). If the cable has no initial current and potential, de-
termine the potential V (x, t) at a point x and at time t.

21. A semi-infinite lossless transmission line has no initial current or poten-
tial. A time-dependent electromagnetic force, V0(t)H(t) is applied at the
end x= 0. Find the potential V (x, t). Hence, determine the potential for
cases (i) V0(t) =V0 = constant, and (ii) V0(t) = V0 cosωt.

22. Solve the Blasius problem of an unsteady boundary layer flow in a semi-
infinite body of viscous fluid enclosed by an infinite horizontal disk at
z= 0. The governing equation and the boundary and initial conditions
are

∂u

∂t
= ν

∂2u

∂z2
, z > 0, t > 0,

u(z, t) = Ut on z= 0, t > 0,
u(z, t) → 0 as z→∞, t > 0,
u(z, t) = 0 at t≤ 0, z > 0.

Explain the significance of the solution.
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23. Obtain the solution of the Stokes-Ekman problem of an unsteady bound-
ary layer flow in a semi-infinite body of viscous fluid bounded by an
infinite horizontal disk at z= 0, when both the fluid and the disk ro-
tate with a uniform angular velocity Ω about the z-axis. The governing
boundary layer equation, the boundary and the initial conditions are

∂q

∂t
+ 2Ωiq= ν

∂2q

∂z2
, z > 0,

q(z, t) = aeiωt + be−iωt on z= 0, t > 0,
q(z, t)→ 0 as z→∞, t > 0,
q(z, t) = 0 at t≤ 0 for all z > 0,

where q= u+ iυ, ω is the frequency of oscillations of the disk and a, b
are complex constants. Hence, deduce the steady-state solution and de-
termine the structure of the associated boundary layers.

24. Show that, when ω= 0 in exercise 23, the steady flow field is given by

q(z, t)∼ (a+ b) exp

{(
−2iΩ

ν

)1/2

z

}
.

Hence, determine the thickness of the Ekman layer.

25. Solve the following integral and integro-differential equations:

(a) f(t) = sin 2t+

t∫
0

f(t− τ) sin τ dτ .

(b) f(t) =
t

2
sin t+

t∫
0

f(τ) sin(t− τ) dτ.

(c)

t∫
0

f(τ)J0[a(t− τ)] dτ = sin at.

(d) f(t) = sin t+

t∫
0

f(τ) sin{2(t− τ)} dτ.

(e) f(t) = t2 +

t∫
0

f ′(t− τ) exp(−aτ) dτ, f(0)= 0.

(f) x(t) = 1 + a2

t∫
0

(t− τ)x(τ) dτ.
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(g) x(t) = t+
1
a

t∫
0

(t− τ)3 x(τ) dτ.

26. Prove that the solution of the integro-differential equation

f(t) =
2√
π

⎡⎣√t+√
a

t∫
0

(t− τ)1/2f ′(τ) dτ

⎤⎦ , f(0)= 0

is

f(t) =
eat√
a
[1 + erf

√
at]− 1√

a
.

27. Solve the integro-differential equations

(a) d2x
dt2 = exp(−2t)−

t∫
0

exp{−2(t− τ)} (dxdτ ) dτ, x(0) = 0 and ẋ(0)= 0.

(b) dx
dt =

t∫
0

x(τ) cos(t− τ)dτ, x(0) = 1.

28. Using the Laplace transform, evaluate the following integrals:

(a)

∞∫
0

sin tx
x(x2 + a2)

dx, (a, t > 0),

(c)

∞∫
−∞

cos tx
x2 + a2

dx, (a, t > 0),

(e)

∞∫
0

exp(−tx2)dx, t> 0,

(b)

∞∫
0

sin tx
x

dx,

(d)

∞∫
−∞

x sinxt
x2 + a2

dx, (a, t > 0),

(f)

∞∫
0

cos(tx2) dx.

29. Show that

(a)

∞∫
0

e−ax
(

cos px− cos qx
x

)
dx=

1
2

log
(
a2 + q2

a2 + p2

)
, (a> 0).

(b)

∞∫
0

e−ax
(

sin qx− sin px
x

)
dx= tan−1

( q
a

)
− tan−1

(p
a

)
, a > 0.

30. Establish the following results:

(a)

∞∫
−∞

cos tx dx
(x2 + a2)(x2 + b2)

=
π

a2 − b2

(
e−bt

b
− e−at

a

)
, a, b, t> 0.
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(b)

∞∫
0

sin(π tx)
x(1 + x2)

dx=
π

2
(1 − e−πt), t > 0.

(c)

∞∫
0

cos(tu2) du=

∞∫
0

sin(tu2) du=
1
2

( π
2t

)1/2

, t > 0.

31. In Example 4.5.1(i), write the solution when the point load is applied
at the mid point of the beam.

32. A uniform horizontal beam of length 2� is clamped at the end x= 0 and
freely supported at x= 2�. It carries a distributed load of constant value

W in
�

2
<x<

3�
2

and zero elsewhere. Obtain the deflection of the beam
which satisfies the boundary value problem

EI
d4y

dx4
= W

[
H

(
x− �

2

)
−H

(
x− 3�

2

)]
, 0<x< 2�,

y(0) = 0 = y′(0), y′′(2�)= 0 = y′′′(2�).

33. Solve exercise 32 if the beam carries a constant distributed load W per
unit length in 0<x< � and zero in �<x< 2�. Find the bending moment

and shear at x=
�

2
.

34. A horizontal cantilever beam of length 2� is deflected under the combined
effect of its own constant weight W and a point load of magnitude
P located at the midpoint. Obtain the deflection of the beam which
satisfies the boundary value problem

EI
d4y

dx4
= W [H(x) −H(x− 2�)] + P δ(x− �), 0<x< 2�,

y(0) = 0 = y′(0), y′′(2�)= 0 = y′′′(2�).

Find the bending moment and shear at x=
�

2
.

35. Using the Laplace transform, solve the following difference equations:

(a) Δun − 2un = 0, u0 = 1,

(b) Δ2un − 2un+1 + 3un = 0, u0 = 0 and u1 = 1,

(c) un+2 − 4un+1 + 4un = 0, u0 = 1 and u1 = 4,

(d) un+2 − 5un+1 + 6un = 0, u0 = 1 and u1 = 4,

(e) Δ2un + 3un = 0, u0 = 0, u1 = 1,

(f) un+2 − 4un+1 + 3un = 0,

(g) un+2 − 9un = 0, u0 = 1 andu1 = 3,
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(h) Δun − (a− 1)un = 0, u0 = constant.

36. Show that the solution of the difference equation

un+2 + 4un+1 + un = 0, with u0 = 0 and u1 = 1,

is
un =

1
2
√

3

[(√
3 − 2

)n
+ (−1)n+1

(
2 +

√
3
)n]

.

37. Show that the solution of the differential-difference equation

u̇(t) − u(t− 1) = 2, u(0) = 0

is

u(t) = 2
[
t− (t− 1)2

2!
+

(t− 2)3

3!
+ · · ·+ (t− n)n+1

(n+ 1)!

]
, t > n.

38. Obtain the solution of the differential-difference equation

u̇= u(t− 1), u(0)= 1, 0< t<∞ with u(t) = 1 when − 1≤ t < 0.

39. Use the Laplace transform to solve the initial-boundary value problem

utt − uxx = k2 uxxtt, 0<x<∞, t > 0,

u(x, 0) = 0,
(
∂u

∂x

)
t=0

= 0, for x> 0,

u(x, t)→ 0 as x→∞, t > 0,
u(0, t) = 1 for t > 0.

Hence, show that (
∂u

∂x

)
x=0

=−1
k
J0

(
t

k

)
.

40. Solve the telegraph equation

utt − c2uxx + 2aut = 0, −∞<x<∞, t > 0,
u(x, 0) = 0, ut(x, 0) = g(x).

41. Use the joint Laplace and Fourier transform to solve Example 2.12.3 in
Chapter 2.

42. Use the Laplace transform to solve the initial-boundary value problem

ut = c2uxx, 0<x<a, t> 0,

u(x, 0)= x+ sin
(

3πx
a

)
for 0<x<a,

u(0, t)= 0 = u(a, t) for t> 0.
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43. Solve the diffusion equation

ut = kuxx, −a<x< a, t > 0,
u(x, 0) = 1 for − a< x<a,

u(−a, t)= 0 = u(a, t) for t > 0.

44. Use the joint Laplace and Fourier transform to solve the initial value
problem for water waves which satisfies (see Debnath, 1994, p. 92)

∇2φ= φxx + φzz = 0, −∞<z < 0, −∞<x<∞, t > 0
φz = ηt

φt + gη=−P
ρ
p(x)eiωt

⎫⎪⎬⎪⎭ on z= 0, t > 0,

φ(x, z, 0) = 0 = η(x, 0) for allx and z,

where P and ρ are constants.

45. Show that

(a)
∞∑
n=0

an√
n2 + x2

=

∞∫
0

b(t)J0(xt) dt, where b(t) is given by (4.9.3).

(b)
∞∑
n=0

1
n2 − a2

=
1

2a2
(1 − πa cot πa).

46. Show that

(a)
∞∑
n=1

(−1)n cosnx
(n2 − a2)

=
1

2a2

[
1 − πa cos ax

sin aπ

]
.

(b)
∞∑
n=1

log
(

1 +
a2

n2

)
= log

(
sinhπa
πa

)
.

47. (a) If f(t) = 1 in Example 4.3.3, show that

u(x, t) =
x√
4πκ

∫ t

o

τ−
3
2 exp

(
− x2

4 κ τ

)
dτ = u0(x, t) (say)

(b) Hence or otherwise derive theDuhamel ′s formula from (4.3.16) :

u(x, t) =
∫ t

o

f(t− τ)
(
∂u0

∂τ

)
dτ,

where
∂u0

∂t
=

x√
4πκ

τ−
3
2 exp

(
− x2

4 κ t

)
.
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48. Consider a progressive plane wave solution that propagates to the right
with the phase velocity

(
ω
k

)
of the telegraph equation (4.3.55)

(a) Derive the dispersion relation

ω2 + i (p+ q)ω− (
c2k2 + p q

)
= 0.

(b) If 4p q �= (p+ q)2, show that the plane wave solution is given by

u(x, t) = A exp
[
−1

2
(p+ q) t

]
exp [i(kx± σt)] ,

where σ =
1
2

√
4c2k2 + 4p q − (p+ q)2.

(c) If 4p q= (p+ q)2, show that the plane wave solution is given by

u(x, t) =A exp
[
−1

2
(p+ q) t

]
exp [ik(x± ct)] .

Explain the physical significance of the solutions given in cases (b) and
(c).

49. (a) Use the substitution v(x, t) = exp
[
1
2 (p+ q) t

]
u(x, t) into (4.3.55)

to show that v(x, t) satisfies the wave equation

vtt − c2 vxx =
1
4

(p− q)2 v.

(b) Show that the undistorted wave solution exists if p= q and that a
progressive wave of the form exp(−at)f(x± ct) propagates in either
direction where f is an arbitrary twice differentiable function of its
argument.

50. (a) Use the joint Laplace and Fourier transform to solve the inhomo-
geneous diffusion problem

ut − κuxx = q(x, t) x∈R, t > 0,
u(x, 0) = f(x), for all x∈R.

(b) Solve the initial-boundary value problem for the diffusion equation

ut − κuxx = 0, 0<x< l, t > 0
u(x, 0) = 0, and u(0, t)= 1 = u(l, t).

51. Use the Laplace transform to solve for the small displacement y(x, t) of
a semi-infinite string fixed at x= 0 under the action of gravity g that
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satisfies the wave equation and the initial-boundary conditions

∂2y

∂t2
− c2

∂2y

∂x2
= −g, 0<x<∞, t > 0,

y(x, 0) = 0 = yt(x, 0), x≥ 0,
∂y

∂x
→ 0 as x→∞.

52. Use the Laplace transform to solve the boundary layer equation (4.3.97)
subject to the boundary and initial conditions

u(z, t) = U0 f(t), on z = 0, t> 0,
u(z, t) → 0 as z→∞, t > 0,
u(z, t) → 0 at t≤ 0 for all z > 0.

Consider the special case where f(t) = sinωt.

53. Find the transfer function, the impulse response function and a formula
for the solution of the following systems:

(a) x′′(t) + 2 x′(t) + 5 x(t) = f(t), x(0) = 2, x′(0) =−2.

(b) x′′(t) − 2 x′(t) + 5 x(t) = f(t), x(0) = 0, x′(0) = 2.

(c) x′′(t) + 9 x′(t) = f(t), x(0) = 2, x′(0) =−3.

(d) x′′(t) − 2 x′(t) + 5 x(t) = f(t), x(0) = x0, x
′(0) = x1.

54. Determine the transfer function for each of the following systems. Obtain
the order of each system and find which is stable.

(a) x′′(t) + 2 x′(t) + 2 x(t) = 3 f ′(t) + 2 f(t).

(b) 4 x′′(t) + 16 x′(t) + 25 x(t)= 2 f ′(t) + 3 f(t).

(c) 36 x′′(t) + 12 x′(t) + 37 x(t) = 2 f ′′(t) + f ′(t)− 6 f(t).

(d) x′′(t) − 6 x′(t) + 10 x(t) = 2 f ′(t) + 5 f(t).

55. Examine the stability of a system for real constants a and b with zero
initial data

x′′′(t) − a x′′(t) + b2 x′(t) − ab2x(t) = f(t),

where x(t) is the output corresponding to input f(t).

Discuss three cases: (a) a> 0, (b) a≤ 0, b �= 0, (c) a �= 0, b= 0.
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Mellin Transforms and Their Applications

“One cannot understand ... the universality of laws of nature, the
relationship of things, without an understanding of mathematics.
There is no other way to do it.”

Richard P. Feynman

“The research worker, in his efforts to express the fundamental laws
of Nature in mathematical form, should strive mainly for mathe-
matical beauty. He should take simplicity into consideration in a
subordinate way to beauty. ... It often happens that the require-
ments of simplicity and beauty are the same, but where they clash
the latter must take precedence.”

Paul Dirac

8.1 Introduction

This chapter deals with the theory and applications of the Mellin transform.
We derive the Mellin transform and its inverse from the complex Fourier trans-
form. This is followed by several examples and the basic operational properties
of Mellin transforms. We discuss several applications of Mellin transforms to
boundary value problems and to summation of infinite series. The Weyl trans-
form and the Weyl fractional derivatives with examples are also included.

Historically, Riemann (1876) first recognized the Mellin transform in his
famous memoir on prime numbers. Its explicit formulation was given by C-
ahen (1894). Almost simultaneously, Mellin (1896, 1902) gave an elaborate
discussion of the Mellin transform and its inversion formula.

339
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8.2 Definition of the Mellin Transform and Examples

We derive the Mellin transform and its inverse from the complex Fourier
transform and its inverse, which are defined respectively by

F {g(ξ)}=G(k) =
1√
2π

∞∫
−∞

e−ikξg(ξ)dξ, (8.2.1)

F −1{G(k)}= g(ξ) =
1√
2π

∞∫
−∞

eikξG(k)dk. (8.2.2)

Making the changes of variables exp(ξ) = x and ik= c− p, where c is a
constant, in results (8.2.1) and (8.2.2) we obtain

G(ip− ic) =
1√
2π

∞∫
0

xp−c−1g(log x)dx, (8.2.3)

g(log x) =
1√
2π

c+i∞∫
c−i∞

xc−pG(ip− ic)dp. (8.2.4)

We now write
1√
2π

x−cg(log x)≡ f(x) and G(ip− ic)≡ f̃(p) to define the

Mellin transform of f(x) and the inverse Mellin transform as

M {f(x)}= f̃(p) =

∞∫
0

xp−1f(x)dx, (8.2.5)

M −1{f̃(p)}= f(x) =
1

2πi

c+i∞∫
c−i∞

x−pf̃(p)dp, (8.2.6)

where f(x) is a real valued function defined on (0,∞) and the Mellin transform
variable p is a complex number. Sometimes, the Mellin transform of f(x) is
denoted explicitly by f̃(p) = M [f(x), p]. Obviously, M and M −1 are linear
integral operators.

Example 8.2.1
(a) If f(x) = e−nx, where n> 0, then

M {e−nx}= f̃(p) =

∞∫
0

xp−1e−nxdx,
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which is, by putting nx= t,

=
1
np

∞∫
0

tp−1e−tdt=
Γ(p)
np

. (8.2.7)

(b) If f(x) =
1

1 + x
, then

M

{
1

1 + x

}
= f̃(p) =

∞∫
0

xp−1 · dx

1 + x
,

which is, by substituting x=
t

1 − t
or t=

x

1 + x
,

=

1∫
0

tp−1(1 − t)(1−p)−1dt=B(p, 1 − p)= Γ(p)Γ(1 − p),

which is, by a well-known result for the gamma function,

= π cosec(pπ), 0<Re(p)< 1. (8.2.8)

(c) If f(x) = (ex − 1)−1, then

M

{
1

ex − 1

}
= f̃(p) =

∞∫
0

xp−1 1
ex − 1

dx,

which is, by using
∞∑
n=0

e−nx =
1

1 − e−x
and hence,

∞∑
n=1

e−nx =
1

ex − 1
,

=
∞∑
n=1

∞∫
0

xp−1e−nxdx=
∞∑
n=1

Γ(p)
np

= Γ(p)ζ(p), (8.2.9)

where ζ(p) =
∞∑
n=1

1
np

, (Re p> 1) is the famous Riemann zeta function.

(d) If f(x) =
2

e2x − 1
, then

M

{
2

e2x − 1

}
= f̃(p) = 2

∞∫
0

xp−1 dx

e2x − 1
= 2

∞∑
n=1

∞∫
0

xp−1e−2nxdx

= 2
∞∑
n=1

Γ(p)
(2n)p

= 21−p Γ(p)
∞∑
n=1

1
np

= 21−p Γ(p)ζ(p). (8.2.10)
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(e) If f(x) =
1

ex + 1
, then

M

{
1

ex + 1

}
= (1 − 21−p)Γ(p) ζ(p). (8.2.11)

This follows from the result[
1

ex − 1
− 1
ex + 1

]
=

2
e2x − 1

combined with (8.2.9) and (8.2.10).

(f) If f(x) =
1

(1 + x)n
, then

M

{
1

(1 + x)n

}
=

∞∫
0

xp−1(1 + x)−ndx,

which is, by putting x=
t

1 − t
or t=

x

1 + x
,

=

1∫
0

tp−1(1 − t)n−p−1dt

= B(p, n− p) =
Γ(p)Γ(n− p)

Γ(n)
, (8.2.12)

where B(p, q) is the standard beta function.
Hence,

M −1{Γ(p)Γ(n− p)}=
Γ(n)

(1 + x)n
.

(g) Find the Mellin transform of cos kx and sinkx.
It follows from Example 8.2.1(a) that

M [e−ikx] =
Γ(p)
(ik)p

=
Γ(p)
kp

(
cos

pπ

2
− i sin

pπ

2

)
.

Separating real and imaginary parts, we find

M [cos kx] = k−p Γ(p) cos
(πp

2

)
, (8.2.13)

M [sin kx] = k−p Γ(p) sin
(πp

2

)
. (8.2.14)

These results can be used to calculate the Fourier cosine and Fourier sine
transforms of xp−1. Result (8.2.13) can be written as

∞∫
0

xp−1 cos kx dx=
Γ(p)
kp

cos
(πp

2

)
.
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Or, equivalently,

Fc

{√
π

2
xp−1

}
=

Γ(p)
kp

cos
(πp

2

)
.

Or,

Fc {xp−1}=

√
2
π

Γ(p)
kp

cos
(πp

2

)
. (8.2.15)

Similarly,

Fs {xp−1}=

√
2
π

Γ(p)
kp

sin
(πp

2

)
. (8.2.16)

8.3 Basic Operational Properties of Mellin Transforms

If M {f(x)}= f̃(p), then the following operational properties hold:

(a) (Scaling Property).

M {f(ax)}= a−pf̃(p), a> 0. (8.3.1)

PROOF By definition, we have,

M {f(ax)}=

∞∫
0

xp−1f(ax)dx,

which is, by substituting ax= t,

=
1
ap

∞∫
0

tp−1f(t)dt=
f̃(p)
ap

.

(b) (Shifting Property).

M [xa f(x)] = f̃(p+ a). (8.3.2)

Its proof follows from the definition.

(c) M {f(xa)}=
1
a
f̃
(p
a

)
, (8.3.3)
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M

{
1
x
f

(
1
x

)}
= f̃(1 − p), (8.3.4)

M {(log x)n f(x)}=
dn

dpn
f̃(p), n= 1, 2, 3, . . . . (8.3.5)

The proofs of (8.3.3) and (8.3.4) are easy and hence, left to the reader.
Result (8.3.5) can easily be proved by using the result

d

dp
xp−1 = (log x)xp−1. (8.3.6)

(d) (Mellin Transforms of Derivatives).

M [f ′(x)] =−(p− 1)f̃(p− 1), (8.3.7)

provided [xp−1f(x)] vanishes as x→ 0 and as x→∞.

M [f ′′(x)] = (p− 1)(p− 2)f̃(p− 2). (8.3.8)

More generally,

M [f (n)(x)] = (−1)n
Γ(p)

Γ(p− n)
f̃(p− n)

= (−1)n
Γ(p)

Γ(p− n)
M [f(x), p− n], (8.3.9)

provided xp−r−1f (r)(x) = 0 as x→ 0 for r= 0, 1, 2, . . . , (n− 1).

PROOF We have, by definition,

M [f ′(x)] =

∞∫
0

xp−1f ′(x) dx,

which is, integrating by parts,

= [xp−1f(x)]∞0 − (p− 1)

∞∫
0

xp−2f(x) dx

= −(p− 1)f̃(p− 1).

The proofs of (8.3.8) and (8.3.9) are similar and left to the reader.

(e) If M {f(x)}= f̃(p), then

M {xf ′(x)}=−pf̃(p), (8.3.10)
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provided xpf(x) vanishes at x= 0 and as x→∞.

M {x2f ′′(x)}= (−1)2p(p+ 1)f̃(p). (8.3.11)

More generally,

M {xnf (n)(x)}= (−1)n
Γ(p+ n)

Γ(p)
f̃(p). (8.3.12)

PROOF We have, by definition,

M {xf ′(x)}=

∞∫
0

xpf ′(x)dx,

which is, integrating by parts,

= [xpf(x)]∞0 − p

∞∫
0

xp−1f(x)dx=−pf̃(p).

Similar arguments can be used to prove results (8.3.11) and (8.3.12).

(f) (Mellin Transforms of Differential Operators).
If M {f(x)}= f̃(p), then

M

[(
x
d

dx

)2

f(x)

]
= M [x2f ′′(x) + xf ′(x)] = (−1)2 p2f̃(p), (8.3.13)

and more generally,

M

[(
x
d

dx

)n
f(x)

]
= (−1)npnf̃(p). (8.3.14)

PROOF We have, by definition,

M

[(
x
d

dx

)2

f(x)

]
= M [x2f ′′(x) + x f ′(x)]

= M [x2f ′′(x)] + M [x f ′(x)]
= −pf̃(p) + p(p+ 1)f̃(p) by (8.3.10) and (8.3.11)
= (−1)2 p2 f̃(p).
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Similar arguments can be used to prove the general result (8.3.14).

(g) (Mellin Transforms of Integrals).

M

⎧⎨⎩
x∫

0

f(t)dt

⎫⎬⎭=−1
p
f̃(p+ 1). (8.3.15)

In general,

M {In f(x)}= M

⎧⎨⎩
x∫

0

In−1f(t)dt

⎫⎬⎭= (−1)n
Γ(p)

Γ(p+ n)
f̃(p+ n), (8.3.16)

where In f(x) is the nth repeated integral of f(x) defined by

Inf(x) =

x∫
0

In−1f(t)dt. (8.3.17)

PROOF We write

F (x) =

x∫
0

f(t)dt

so that F ′(x) = f(x) with F (0) = 0. Application of (8.3.7) with F (x) as defined
gives

M {f(x) =F ′(x), p}=−(p− 1)M

⎧⎨⎩
x∫

0

f(t)dt, p− 1

⎫⎬⎭ ,

which is, replacing p by p+ 1,

M

⎧⎨⎩
x∫

0

f(t) dt, p

⎫⎬⎭=−1
p
M {f(x), p+ 1}=−1

p
f̃(p+ 1).

An argument similar to this can be used to prove (8.3.16).

(h) (Convolution Type Theorems).
If M {f(x)}= f̃(p) and M {g(x)}= g̃(p), then

M [f(x) ∗ g(x)] = M

⎡⎣ ∞∫
0

f(ξ) g
(
x

ξ

)
dξ

ξ

⎤⎦= f̃(p)g̃(p), (8.3.18)

M [f(x) ◦ g(x)] = M

⎡⎣ ∞∫
0

f(xξ) g(ξ)dξ

⎤⎦= f̃(p)g̃(1 − p). (8.3.19)
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PROOF We have, by definition,

M [f(x) ∗ g(x)] = M

⎡⎣ ∞∫
0

f(ξ) g
(
x

ξ

)
dξ

ξ

⎤⎦
=

∞∫
0

xp−1dx

∞∫
0

f(ξ) g
(
x

ξ

)
dξ

ξ

=

∞∫
0

f(ξ)
dξ

ξ

∞∫
0

xp−1g

(
x

ξ

)
dx,

(
x

ξ
= η

)
,

=

∞∫
0

f(ξ)
dξ

ξ

∞∫
0

(ξη)p−1g(η) ξ dη

=

∞∫
0

ξp−1f(ξ)dξ

∞∫
0

ηp−1g(η)dη= f̃(p)g̃(p).

Similarly, we have

M [f(x) ◦ g(x)] = M

⎡⎣ ∞∫
0

f(xξ) g(ξ)dξ

⎤⎦
=

∞∫
0

xp−1dx

∞∫
0

f(xξ) g(ξ)dξ, (xξ= η),

=

∞∫
0

g(ξ)dξ

∞∫
0

ηp−1ξ1−pf(η)
dη

ξ

=

∞∫
0

ξ1−p−1g(ξ)dξ

∞∫
0

ηp−1f(η)dη= g̃(1 − p)f̃(p).

Note that, in this case, the operation ◦ is not commutative.
Clearly, putting x= s,

M −1{f̃(1 − p)g̃(p)}=

∞∫
0

g(st)f(t)dt.

Putting g(t) = e−t and g̃(p) = Γ(p), we obtain the Laplace transform of f(t)

M −1 {f̃(1 − p)Γ(p)}=

∞∫
0

e−stf(t)dt= L {f(t)}= f̄(s). (8.3.20)
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(i) (Parseval’s Type Property).
If M {f(x)}= f̃(p) and M {g(x)}= g̃(p), then

M [f(x)g(x)] =
1

2πi

c+i∞∫
c−i∞

f̃(s)g̃(p− s)ds. (8.3.21)

Or, equivalently,

∞∫
0

xp−1f(x)g(x)dx=
1

2πi

c+i∞∫
c−i∞

f̃(s)g̃(p− s)ds. (8.3.22)

In particular, when p= 1, we obtain the Parseval formula for the Mellin trans-
form,

∞∫
0

f(x)g(x)dx=
1

2πi

c+i∞∫
c−i∞

f̃(s)g̃(1 − s)ds. (8.3.23)

PROOF By definition, we have

M [f(x)g(x)] =

∞∫
0

xp−1f(x)g(x)dx

=
1

2πi

∞∫
0

xp−1g(x)dx

c+i∞∫
c−i∞

x−sf̃(s)ds

=
1

2πi

c+i∞∫
c−i∞

f̃(s)ds

∞∫
0

xp−s−1g(x)dx

=
1

2πi

c+i∞∫
c−i∞

f̃(s)g̃(p− s)ds.

When p= 1, the above result becomes (8.3.23).
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8.4 Applications of Mellin Transforms

Example 8.4.1
Obtain the solution of the boundary value problem

x2uxx + xux + uyy = 0, 0≤ x<∞, 0<y < 1 (8.4.1)

u(x, 0) = 0, u(x, 1) =

⎧⎨⎩A, 0≤ x≤ 1

0, x > 1

⎫⎬⎭ , (8.4.2)

where A is a constant.

We apply the Mellin transform of u(x, y) with respect to x defined by

ũ(p, y) =

∞∫
0

xp−1u(x, y) dx

to reduce the given system into the form

ũyy + p2ũ= 0, 0<y < 1

ũ(p, 0)= 0, ũ(p, 1) =A

1∫
0

xp−1dx=
A

p
.

The solution of the transformed problem is

ũ(p, y) =
A

p

sin py
sin p

, 0< Re p< 1.

The inverse Mellin transform gives

u(x, y) =
A

2πi

c+i∞∫
c−i∞

x−p

p

sin py
sin p

dp, (8.4.3)

where ũ(p, y) is analytic in the vertical strip 0<Re (p) = c<π. The integrand
of (8.4.3) has simple poles at p=nπ, n= 1, 2, 3, . . . which lie inside a semi-
circular contour in the right half plane. Evaluating (8.4.3) by theory of residues
gives the solution for x> 1 as

u(x, y) =
A

π

∞∑
n=1

1
n

(−1)n x−nπ sin nπy. (8.4.4)
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Example 8.4.2
(Potential in an Infinite Wedge). Find the potential φ(r, θ) that satisfies the
Laplace equation

r2φrr + rφr + φθθ = 0 (8.4.5)

in an infinite wedge 0<r <∞, −α< θ <α as shown in Figure 8.1 with the
boundary conditions

φ(r, α) = f(r), φ(r, −α) = g(r) 0≤ r <∞, (8.4.6ab)

φ(r, θ)→ 0 as r→∞ for all θ in − α< θ <α. (8.4.7)

0 x

y

-

=

= -

Figure 8.1 An infinite wedge.

We apply the Mellin transform of the potential φ(r, θ) defined by

M [φ(r, θ)] = φ̃(p, θ) =

∞∫
0

rp−1φ(r, θ) dr

to the differential system (8.4.5)–(8.4.7) to obtain

d2φ̃

dθ2
+ p2φ̃= 0, (8.4.8)

φ̃(p, α) = f̃(p), φ̃(p, −α) = g̃(p). (8.4.9ab)

The general solution of the transformed equation is

φ̃(p, θ) =A cos pθ+B sin pθ, (8.4.10)
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where A and B are functions of p and α. The boundary conditions (8.4.9ab)
determine A and B, which satisfy

A cos pα+B sin pα = f̃(p),
A cos pα−B sin pα = g̃(p).

These give A=
f̃(p) + g̃(p)

2 cospα
, B =

f̃(p) − g̃(p)
2 sin pα

.

Thus, solution (8.4.10) becomes

φ̃(p, θ) = f̃(p).
sin p(α+ θ)
sin(2 pα)

+ g̃(p)
sin p(α− θ)
sin(2 pα)

= f̃(p)h̃(p, α+ θ) + g̃(p)h̃(p, α− θ), (8.4.11)

where
h̃(p, θ) =

sin pθ
sin(2 pα)

.

Or, equivalently,

h(r, θ) = M −1

{
sin pθ

sin 2 pα

}
=
(

1
2α

)
rn sinnθ

(1 + 2 rn cosnθ+ r2n)
, (8.4.12)

where
n=

π

2α
or, 2α=

π

n
.

Application of the inverse Mellin transform to (8.4.11) gives

φ(r, θ) = M −1
{
f̃(p)h̃(p, α+ θ)

}
+ M −1

{
g̃(p)h̃(p, α− θ)

}
,

which is, by the convolution property (8.3.18),

φ(r, θ) =
rn cosnθ

2α

⎡⎣ ∞∫
0

ξn−1f(ξ)dξ
ξ2n − 2(rξ)n sinnθ+ r2n

+

∞∫
0

ξn−1g(ξ)dξ
ξ2n + 2(rξ)n sinnθ+ r2n

⎤⎦ , |α|< π

2n
. (8.4.13)

This is the formal solution of the problem.

In particular, when f(r) = g(r), solution (8.4.11) becomes

φ̃(p, θ) = f̃(p)
cos pθ
cos pα

= f̃(p)h̃(p, θ), (8.4.14)

where
h̃(p, θ) =

cos pθ
cos pα

= M {h(r, θ)}.
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Application of the inverse Mellin transform to (8.4.14) combined with the
convolution property (8.3.18) yields the solution

φ(r, θ) =

∞∫
0

f(ξ)h
(
r

ξ
, θ

)
dξ

ξ
, (8.4.15)

where

h(r, θ) = M −1

{
cos pθ
cos pα

}
=
(
rn

α

)
(1 + r2n) cos(nθ)

(1 + 2r2n cos 2nθ+ r2n)
, (8.4.16)

and n=
π

2α
.

Some applications of the Mellin transform to boundary value problems are
given by Sneddon (1951) and Tranter (1966).

Example 8.4.3
Solve the integral equation

∞∫
0

f(ξ) k(xξ)dξ = g(x), x> 0. (8.4.17)

Application of the Mellin transform with respect to x to equation (8.4.17)
combined with (8.3.19) gives

f̃(1 − p)k̃(p) = g̃(p),

which gives, replacing p by 1 − p,

f̃(p) = g̃(1 − p)h̃(p),

where
h̃(p) =

1
k̃(1 − p)

.

The inverse Mellin transform combined with (8.3.19) leads to the solution

f(x) = M −1
{
g̃(1 − p)h̃(p)

}
=

∞∫
0

g(ξ)h(xξ)dξ, (8.4.18)

provided h(x) = M −1
{
h̃(p)

}
exists. Thus, the problem is formally solved.

If, in particular, h̃(p) = k̃(p), then the solution of (8.4.18) becomes

f(x) =

∞∫
0

g(ξ) k(xξ)dξ, (8.4.19)



© 2007 by Taylor & Francis Group, LLC

Mellin Transforms and Their Applications 353

provided k̃(p)k̃(1 − p) = 1.

Example 8.4.4
Solve the integral equation

∞∫
0

f(ξ) g
(
x

ξ

)
dξ

ξ
= h(x), (8.4.20)

where f(x) is unknown and g(x) and h(x) are given functions.
Applications of the Mellin transform with respect to x gives

f̃(p) = h̃(p)k̃(p), k̃(p) =
1
g̃(p)

.

Inversion, by the convolution property (8.3.18), gives the solution

f(x) = M −1
{
h̃(p)k̃(p)

}
=

∞∫
0

h(ξ) k
(
x

ξ

)
dξ

ξ
. (8.4.21)

8.5 Mellin Transforms of the Weyl Fractional
Integral and the Weyl Fractional Derivative

DEFINITION 8.5.1 The Mellin transform of the Weyl fractional integral
of f(x) is defined by

W−α[f(x)] =
1

Γ(α)

∞∫
x

(t− x)α−1f(t)dt, 0<Reα< 1, x > 0. (8.5.1)

Often xW
−α∞ is used instead of W−α to indicate the limits to integration.

Result (8.5.1) can be interpreted as the Weyl transform of f(t), defined by

W−α[f(t)] =F (x, α) =
1

Γ(α)

∞∫
x

(t− x)α−1f(t)dt. (8.5.2)

We first give some simple examples of the Weyl transform.
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If f(t)= exp(−at), Re a> 0, then the Weyl transform of f(t) is given by

W−α[exp(−at)] = 1
Γ(α)

∞∫
x

(t− x)α−1 exp(−at)dt,

which is, by the change of variable t− x= y,

=
e−ax

Γ(α)

∞∫
0

yα−1 exp(−ay)dy

which is, by letting ay= t,

W−α[f(t)] =
e−ax

aα
1

Γ(α)

∞∫
0

tα−1e−tdt=
e−ax

aα
. (8.5.3)

Similarly, it can be shown that

W−α[t−μ] =
Γ(μ− α)

Γ(μ)
xα−μ, 0<Reα<Reμ. (8.5.4)

Making reference to Gradshteyn and Ryzhik (2000, p. 424), we obtain

W−α[sin at] = a−α sin
(
ax+

πα

2

)
, (8.5.5)

W−α[cos at] = a−α cos
(
ax+

πα

2

)
, (8.5.6)

where 0<Reα< 1 and a> 0.
It can be shown that, for any two positive numbers α and β, the Weyl

fractional integral satisfies the laws of exponents

W−α[W−βf(x)] =W−(β+α)[f(x)] =W−β [W−αf(x)]. (8.5.7)

Invoking a change of variable t− x= y in (8.5.1), we obtain

W−α[f(x)] =
1

Γ(α)

∞∫
0

yα−1f(x+ y)dy. (8.5.8)

We next differentiate (8.5.8) to obtain, D=
d

dx
,

D[W−αf(x)] =
1

Γ(α)

∞∫
0

tα−1 ∂

∂x
f(x+ t)dt

=
1

Γ(α)

∞∫
0

tα−1Df(x+ t)dt

= W−α[Df(x)]. (8.5.9)
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A similar argument leads to a more general result

Dn[W−αf(x)] =W−α[Dnf(x)], (8.5.10)

where n is a positive integer.
Or, symbolically,

DnW−α =W−αDn. (8.5.11)

We now calculate the Mellin transform of the Weyl fractional integral by
putting h(t) = tαf(t) and g

(x
t

)
= 1

Γ(α)

(
1− x

t

)α−1
H
(
1 − x

t

)
, whereH

(
1 − x

t

)
is the Heaviside unit step function so that (8.5.1) becomes

F (x, α) =

∞∫
0

h(t) g
(x
t

) dt
t
, (8.5.12)

which is, by the convolution property (8.3.18),

F̃ (p, α) = h̃(p)g̃(p),

where
h̃(p) = M {xαf(x)}= f̃(p+ α),

and

g̃(p) = M

{
1

Γ(α)
(1− x)α−1H(1 − x)

}

=
1

Γ(α)

1∫
0

xp−1(1 − x)α−1dx=
B(p, α)
Γ(α)

=
Γ(p)

Γ(p+ α)
.

Consequently,

F̃ (p, α) = M [W−αf(x), p] =
Γ(p)

Γ(p+ α)
f̃(p+ α). (8.5.13)

It is important to note that this result is an obvious extension of result 7(b)
in Exercise 8.8

DEFINITION 8.5.2 If β is a positive number and n is the smallest
integer greater than β such that n− β=α> 0, the Weyl fractional derivative
of a function f(x) is defined by

W β [f(x)] = EnW−(n−β)[f(x)]

=
(−1)n

Γ(n− β)
dn

dxn

∞∫
x

(t− x)n−β−1f(t)dt, (8.5.14)
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where E =−D.
Or, symbolically,

W β =EnW−α=EnW−(n−β). (8.5.15)

It can be shown that, for any β,

W−βW β = I =W βW−β. (8.5.16)

And, for any β and γ, the Weyl fractional derivative satisfies the laws of
exponents

W β [W γf(x)] =W β+γ [f(x)] =W γ [W βf(x)]. (8.5.17)

We now calculate the Weyl fractional derivative of some elementary functions.
If f(x) = exp(−ax), a> 0, then the definition (8.5.14) gives

W βe−ax =En[W−(n−β)e−ax]. (8.5.18)

Writing n− β =α> 0 and using (8.5.3) yields

W βe−ax = En[W−αe−ax] =En[a−αe−ax]
= a−α(ane−ax) = aβe−ax. (8.5.19)

Replacing β by −α in (8.5.19) leads to result (8.5.3) as expected.
Similarly, we obtain

W βx−μ =
Γ(β + μ)

Γ(μ)
x−(β+μ). (8.5.20)

It is easy to see that

W β(cos ax) =E[W−(1−β) cos ax],

which is, by (8.5.6),

= aβ cos
(
ax− 1

2
πβ

)
. (8.5.21)

Similarly,

W β(sin ax) = aβ sin
(
ax− 1

2
πβ

)
, (8.5.22)

provided α and β lie between 0 and 1.
If β is replaced by −α, result (8.5.20)–(8.5.22) reduce to (8.5.4)–(8.5.6)

respectively.
Finally, we calculate the Mellin transform of the Weyl fractional derivative

with the help of (8.3.9) and find

M [W βf(x)] = M [EnW−(n−β)f(x)] = (−1)nM [DnW−(n−β)f(x)]

=
Γ(p)

Γ(p− n)
M [W−(n−β)f(x), p− n],
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which is, by result (8.5.13),

=
Γ(p)

Γ(p− n)
· Γ(p− n)
Γ(p− β)

f̃(p− β)

=
Γ(p)

Γ(p− β)
M [f(x), p− β]

=
Γ(p)

Γ(p− β)
f̃(p− β). (8.5.23)

Example 8.5.1
(The Fourier Transform of the Weyl Fractional Integral).

F{W−αf(x)}= exp
(
−πiα

2

)
k−αF{f(x)}. (8.5.24)

We have, by definition,

F{W−αf(x)} =
1√
2π

1
Γ(α)

∞∫
−∞

e−ikxdx

∞∫
x

(t− x)α−1f(t)dt

=
1√
2π

∞∫
−∞

f(t)dt · 1
Γ(α)

t∫
−∞

exp(−ikx)(t− x)α−1dx.

Thus,

F{W−αf(x)} =
1√
2π

∞∫
−∞

e−iktf(t)dt · 1
Γ(α)

∞∫
0

eikτ τα−1dτ, (t− x= τ)

= F{f(x)} 1
Γ(α)

M {eikτ}

= exp
(
−πiα

2

)
k−αF{f(x)}.

In the limit as α→ 0

lim
α→0

F{W−αf(x)}= F{f(x)}.

This implies that
W 0{f(x)}= f(x).

We conclude this section by proving a general property of the Riemann-
Liouville fractional integral operator D−α, and the Weyl fractional integral
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operator W−α. It follows from the definition (6.2.1) that D−αf(t) can be
expressed as the convolution

D−αf(x) = gα(t) ∗ f(t), (8.5.25)

where

gα(t) =
tα−1

Γ(α)
, t > 0.

Similarly, W−αf(x) can also be written in terms of the convolution

W−αf(x) = gα(−x)∗f(x). (8.5.26)

Then, under suitable conditions,

M [D−αf(x)] =
Γ(1 − α− p)

Γ(1 − p)
f̃(p+ α), (8.5.27)

M [W−αf(x)] =
Γ(p)

Γ(α+ p)
f̃(p+ α). (8.5.28)

Finally, a formal computation gives
∞∫
0

{D−αf(x)}g(x)dx =
1

Γ(α)

∞∫
0

g(x)dx

x∫
0

(x− t)α−1f(t)dt

=

∞∫
0

f(t)dt · 1
Γ(α)

∞∫
t

(x− t)α−1g(x)dx

=

∞∫
0

f(t)[W−αg(t)] dt,

which is, using the inner product notation,

〈D−αf, g〉= 〈f, W−αg〉. (8.5.29)

This show that D−α and W−α behave like adjoint operators. Obviously, this
result can be used to define fractional integrals of distributions. This result is
taken from Debnath and Grum (1988).

8.6 Application of Mellin Transforms to Summation of
Series

In this section we discuss a method of summation of series that is particularly
associated with the work of Macfarlane (1949).
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THEOREM 8.6.1
If M {f(x)}= f̃(p), then

∞∑
n=0

f(n+ a) =
1

2πi

c+i∞∫
c−i∞

f̃(p) ξ(p, a)dp, (8.6.1)

where ξ(p, a) is the Hurwitz zeta function defined by

ξ(p, a) =
∞∑
n=0

1
(n+ a)p

, 0≤ a≤ 1, Re(p)> 1. (8.6.2)

PROOF If follows from the inverse Mellin transform that

f(n+ a) =
1

2πi

c+i∞∫
c−i∞

f̃(p)(n+ a)−p dp. (8.6.3)

Summing this over all n gives

∞∑
n=0

f(n+ a) =
1

2πi

c+i∞∫
c−i∞

f̃(p) ξ(p, a) dp.

This completes the proof.
Similarly, the scaling property (8.3.1) gives

f(nx) = M −1{n−p f̃(p)}=
1

2πi

c+i∞∫
c−i∞

x−p n−pf̃(p)dp.

Thus,

∞∑
n=1

f(nx) =
1

2πi

c+i∞∫
c−i∞

x−pf̃(p) ζ(p)dp= M −1{f̃(p) ζ(p)}, (8.6.4)

where ζ(p) =
∞∑
n=1

n−p is the Riemann zeta function.

When x= 1, result (8.6.4) reduces to

∞∑
n=1

f(n)=
1

2πi

c+i∞∫
c−i∞

f̃(p) ζ(p)dp. (8.6.5)

This can be obtained from (8.6.1) when a= 0.
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Example 8.6.1
Show that ∞∑

n=1

(−1)n−1n−p = (1 − 21−p) ζ(p). (8.6.6)

Using Example 8.2.1(a), we can write the left-hand side of (8.6.6) multiplied
by tn as

∞∑
n=1

(−1)n−1n−ptn =
∞∑
n=1

(−1)n−1tn · 1
Γ(p)

∞∫
0

xp−1e−nxdx

=
1

Γ(p)

∞∫
0

xp−1dx

∞∑
n=1

(−1)n−1tnxe−nx

=
1

Γ(p)

∞∫
0

xp−1 · te−x

1 + te−x
· dx

=
1

Γ(p)

∞∫
0

xp−1 · t

ex + t
dx.

In the limit as t→ 1, the above result gives

∞∑
n=1

(−1)n−1n−p =
1

Γ(p)

∞∫
0

xp−1 1
ex + 1

dx

=
1

Γ(p)
M

{
1

ex + 1

}
= (1− 21−p) ζ(p),

in which result (8.2.11) is used.

Example 8.6.2
Show that ∞∑

n=1

(
sinan
n

)
=

1
2
(π − a), 0<a< 2π. (8.6.7)

The Mellin transform of f(x) =
(

sinax
x

)
gives

M

[
sin ax
x

]
=

∞∫
0

xp−2 sinax dx

= Fs

{√
π

2
xp−2

}
= −Γ(p− 1)

ap−1
cos

(πp
2

)
.



© 2007 by Taylor & Francis Group, LLC

Mellin Transforms and Their Applications 361

Substituting this result into (8.6.5) gives

∞∑
n=1

(
sin an
n

)
=− 1

2πi

c+i∞∫
c−i∞

Γ(p− 1)
ap−1

ζ(p) cos
(πp

2

)
dp. (8.6.8)

We next use the well-known functional equation for the zeta function

(2π)p ζ(1 − p)= 2Γ(p) ζ(p) cos
(πp

2

)
(8.6.9)

in the integrand of (8.6.8) to obtain

∞∑
n=1

(
sin an
n

)
=−a

2
· 1
2πi

c+i∞∫
c−i∞

(
2π
a

)p
ζ(1 − p)
p− 1

dp.

The integral has two simple poles at p= 0 and p= 1 with residues 1 and −π/a,
respectively, and the complex integral is evaluated by calculating the residues
at these poles. Thus, the sum of the series is

∞∑
n=1

(
sinan
n

)
=

1
2
(π − a).

8.7 Generalized Mellin Transforms

In order to extend the applicability of the classical Mellin transform, Naylor
(1963) generalized the method of Mellin integral transforms. This generalized
Mellin transform is useful for finding solutions of boundary value problems in
regions bounded by the natural coordinate surfaces of a spherical or cylindrical
coordinate system. They can be used to solve boundary value problems in
finite regions or in infinite regions bounded internally.

The generalized Mellin transform of a function f(r) defined in a< r <∞ is
introduced by the integral

M−{f(r)}=F−(p) =

∞∫
a

(
rp−1 − a2p

rp+1

)
f(r) dr. (8.7.1)

The inverse transform is given by

M −1
− {F−(p)}= f(r) =

1
2πi

∫
L

r−p F (p) dp, r > a, (8.7.2)
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where L is the line Re p= c, and F (p) is analytic in the strip |Re(p)|= |c|<γ.
By integrating by parts, we can show that

M−

[
r2
∂2f

∂r2
+ r

∂f

∂r

]
= p2 F−(p) + 2 p apf(a), (8.7.3)

provided f(r) is appropriately behaved at infinity. More precisely,

lim
r→∞

[
(rp − a2p r−p)rfr − p(rp + a2pr−p)f

]
= 0. (8.7.4)

Obviously, this generalized transform seems to be very useful for finding the
solution of boundary value problems in which f(r) is prescribed on the internal
boundary at r= a.

On the other hand, if the derivative of f(r) is prescribed at r= a, it is
convenient to define the associated integral transform by

M+[f(r)] =F+(p) =

∞∫
a

(
rp−1 +

a2p

rp+1

)
f(r) dr, |Re(p)|<r, (8.7.5)

and its inverse given by

M −1
+ [f(p)] = f(r) =

1
2πi

∫
L

r−p F+(p)dp, r > a. (8.7.6)

In this case, we can show by integration by parts that

M+

[
r2
∂2f

∂r2
+ r

∂f

∂r

]
= p2F+(p) − 2 ap+1f ′(a), (8.7.7)

where f ′(r) exists at r= a.

THEOREM 8.7.1

(Convolution). If M+{f(r)}=F+(p), and M+{g(r)}=G+(p), then

M+{f(r) g(r)}=
1

2πi

∫
L

F+(ξ)G+(p− ξ) dξ. (8.7.8)

Or, equivalently,

f(r)g(r) = M −1
+

⎡⎣ 1
2πi

∫
L

F+(ξ)G+(p− ξ)dξ

⎤⎦ . (8.7.9)
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PROOF We assume that F+(p) and G+(p) are analytic in some strip
|Re(p)|<γ. Then

M+{f(r) g(r)} =

∞∫
a

(
rp−1 +

a2p

rp+1

)
f(r)g(r)dr

=

∞∫
a

rp−1f(r)g(r)dr +

∞∫
a

a2p

rp+1
f(r)g(r)dr. (8.7.10)

=
1

2πi

∫
L

F+(ξ)dξ

∞∫
a

rp−ξ−1g(r)dr

+
1
2π

∞∫
a

a2p

rp+1
g(r)dr

∫
L

r−ξF+(ξ) dξ. (8.7.11)

Replacing ξ by −ξ in the first integral term and using F+(ξ) = a2ξF+(−ξ),
which follows from the definition (8.7.5), we obtain∫

L

r−ξ F+(ξ)dξ =
∫
L

rξ a−2ξ F+(ξ)dξ. (8.7.12)

The path of integration L, Re(ξ) = c, becomes Re(ξ) =−c, but these paths
can be reconciled if F (ξ) tends to zero for large Im(ξ).

In view of (8.7.11), we have rewritten
∞∫
a

a2p

rp+1
f(r) g(r)dr =

1
2πi

∫
L

F+(ξ)dξ

∞∫
a

a2p−2ξ

rp−ξ+1
g(r) dr. (8.7.13)

This result is used to rewrite (8.7.10) as

M+{f(r)g(r)} =

∞∫
a

(
rp−1 +

a2p

rp+1

)
f(r)g(r)dr

=

∞∫
a

rp−1f(r) g(r) dr +

∞∫
a

a2p

rp+1
f(r) g(r) dr

=
1

2πi

∫
L

F+(ξ) dξ

∞∫
a

rp−ξ−1g(r) dr

+
1

2πi

∫
L

F+(ξ)dξ

∞∫
a

a2p−2ξ

rp−ξ+1
g(r) dr

=
1

2πi

∫
L

F+(ξ)G+(p− ξ) dξ.
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This completes the proof.

If the range of integration is finite, then we define the generalized finite
Mellin transform by

M a
−{f(r)}=F a−(p) =

a∫
0

(
rp−1 − a2p

rp+1

)
f(r)dr, (8.7.14)

where Re p< γ.
The corresponding inverse transform is given by

f(r) =− 1
2πi

∫
L

( r

a2

)p
F a−(p)dp, 0<r <a,

which is, by replacing p by −p and using F a−(−p) =−a−2p F a−(p),

=
1

2πi

∫
L

r−p F a−(p)dp, 0< r<a, (8.7.15)

where the path L is Re p=−c with |c|<γ.
It is easy to verify the result

M a
−{r2frr + rf−r} =

a∫
0

(
rp−1 − a2p

rp+1

)
{r2frr + rfr}dr

= p2 F a−(p) − 2 p ap f(a). (8.7.16)

This is a useful result for applications.
Similarly, we define the generalized finite Mellin transform-pair by

M a
+{f(r)}=F a+(p) =

a∫
0

(
rp−1 +

a2p

rp+1

)
f(r) dr, (8.7.17)

f(r) =
(
M a

+

)−1 [
F a+(p)

]
=

1
2πi

∫
L

r−pF a+(p) dp, (8.7.18)

where |Re p|<γ.
For this finite transform, we can also prove

M a
+

[
r2frr + r fr

]
=

a∫
0

(
rp−1 +

a2p

rp+1

)(
r2frr + r fr

)
dr

= p2F a+(p) + 2 ap−1 f ′(a). (8.7.19)

This result also seems to be useful for applications. The reader is referred
to Naylor (1963) for applications of the above results to boundary value prob-
lems.
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8.8 Exercises

1. Find the Mellin transform of each of the following functions:

(a) f(x) =H(a− x), a> 0,

(c) f(x) =
1

1 + x2
,

(e) f(x) = xzH(x− x0),

(g) f(x) =Ei(x),

(b) f(x) = xme−nx, m,n> 0,

(d) f(x) = J2
0 (x),

(f) f(x) = [H(x− x0) −H(x)]xz ,

(h) f(x) = exEi(x),

where the exponential integral is defined by

Ei(x) =

∞∫
x

t−1 e−t dt=

∞∫
1

ξ−1 e−ξ x dξ.

2. Derive the Mellin transform-pairs from the bilateral Laplace transform
and its inverse given by

ḡ(p) =

∞∫
−∞

e−ptg(t)dt, g(t) =
1

2πi

c+i∞∫
c−i∞

ept ḡ(p)dp.

3. Show that

M

[
1

ex + e−x

]
= Γ(p)L(p),

where L(p)=
1
1p

− 1
3p

+
1
5p

− · · · is the Dirichlet L-function.

4. Show that

M

{
1

(1 + ax)n

}
=

Γ(p)Γ(n− p)
ap Γ(n)

.

5. Show that

M {x−nJn(ax)}=
1
2

(a
2

)n−p Γ
(p

2

)
Γ
(
n− p

2
+ 1

) , a > 0, n >−1
2
.

6. Show that

(a) M −1
[
cos

(πp
2

)
Γ(p) f̃(1− p)

]
= Fc

{√
π

2
f(x)

}
,
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(b) M −1
[
sin

(πp
2

)
Γ(p) f̃(1 − p)

]
= Fs

{√
π

2
f(x)

}
.

7. If I∞n f(x) denotes the nth repeated integral of f(x) defined by

I∞n f(x) =

∞∫
x

I∞n−1f(t)dt,

show that

(a) M

⎡⎣ ∞∫
x

f(t)dt, p

⎤⎦=
1
p
f̃(p+ 1),

(b) M [I∞n f(x)] =
Γ(p)

Γ(p+ n)
f̃(p+ n).

8. Show that the integral equation

f(x) = h(x) +

∞∫
0

g(xξ) f(ξ) dξ

has the formal solution

f(x) =
1

2πi

c+i∞∫
c−i∞

[
h̃(p) + g̃(p) h̃(1 − p)

1 − g̃(p) g̃(1 − p)

]
x−p dp.

9. Find the solution of the Laplace integral equation

∞∫
0

e−xξ f(ξ) dξ=
1

(1 + x)n
.

10. Show that the integral equation

f(x) = h(x) +

∞∫
0

f(ξ) g
(
x

ξ

)
dξ

ξ

has the formal solution

f(x) =
1

2πi

c+i∞∫
c−i∞

x−p h̃(p)
1 − g̃(p)

dp.
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11. Show that the solution of the integral equation

f(x) = e−ax +

∞∫
0

exp
(
−x
ξ

)
f(ξ)

dξ

ξ

is

f(x) =
1

2πi

c+i∞∫
c−i∞

(ax)−p
{

Γ(p)
1 − Γ(p)

}
dp.

12. Assuming (see Harrington, 1967)

M
[
f(reiθ)

]
=

∞∫
0

rp−1f(reiθ) dr, p is real,

and putting reiθ = ξ, M {f(ξ)}=F (p) show that

(a) M [f(reiθ); r→ p] = exp(−ipθ)F (p).

Hence, deduce

(b) M −1 {F (p) cos pθ}= Re[f(reiθ)],

(c) M −1 {F (p) sin pθ}=−Im[f(reiθ)].

13. (a) If M [exp(−r)] = Γ(p), show that

M
[
exp(−reiθ)]= Γ(p) e−i pθ,

(b) If M [log(1 + r)] =
π

p sinπp
, then show that

M
[
Re log (1 + reiθ)

]
=
π cos pθ
p sinπp

.

14. Use M −1

{
π

sin pπ

}
=

1
1 + x

= f(x), and Exercises 12(b) and 12(c), re-

spectively, to show that

(a) M −1

{
π cos pθ
sin pπ

; p→ r

}
=

1 + r cos θ
1 + 2r cos θ+ r2

,

(b) M −1

{
π sin pθ
sin pπ

; p→ r

}
=

r sin θ
1 + 2r cos θ+ r2

.

15. Find the inverse Mellin transforms of

(a) Γ(p) cos pθ, where− π

2
<θ<

π

2
, (b) Γ(p) sin pθ.
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16. Obtain the solution of Example 8.4.2 with the boundary data

(a) φ(r, α) =φ(r, −α) =H(a− r).

(b) Solve equation (8.4.5) in 0< r<∞, 0<θ<α with the boundary
conditions φ(r, 0) = 0 and φ(r, α) = f(r).

17. Show that

(a)
∞∑
n=1

cos kn
n2

=
[
k2

4
− πk

2
+
π2

6

]
, and (b)

∞∑
n=1

1
n2

=
π2

6
.

18. If f(x) =
∞∑
n=1

ane
−nx, show that

M {f(x)}= f̃(p) = Γ(p) g(p),

where g(p) =
∞∑
n=1

an n
−p is the Dirichlet series.

If an = 1 for all n, derive

f̃(p) = Γ(p) ζ(p).

Show that

M

{
exp(−ax)
1− e−x

}
= Γ(p) ξ(p, a).

19. Show that

(a)
∞∑
n=1

(−1)n−1

np
= (1 − 21−p) ζ(p).

Hence, deduce

(b)
∞∑
n=1

(−1)n−1

n2
=
π2

12
, (c)

∞∑
n=1

(−1)n−1

n4
=
(

7
8

)
π4

90
.

20. Find the sum of the following series

(a)
∞∑
n=1

(−1)n−1

n2
cos kn, (b)

∞∑
n=1

(−1)n−1

n
sin kn.

21. Show that the solution of the boundary value problem

r2φrr + rφr + φθθ = 0, 0<r <∞, 0<θ<π

φ(r, 0) =φ(r, π) = f(r),
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is

φ(r, θ) =
1

2πi

c+i∞∫
c−i∞

r−p
f̃(p) cos

{
p
(
θ− π

2

)}
dp

cos
(πp

2

) .

22. Evaluate ∞∑
n=1

cos an
n3

=
1
12

(a3 − 3πa2 + 2π2a).

23. Prove the following results:

(a) M

⎡⎣ ∞∫
0

ξnf(xξ) g(ξ)dξ

⎤⎦= f̃(p) g̃(1 + n− p),

(b) M

⎡⎣ ∞∫
0

ξnf

(
x

ξ

)
g(ξ)dξ

⎤⎦= f̃(p) g̃(p+ n+ 1).

24. Show that

(a) W−α[e−x] = e−x, α > 0,

(b) W
1
2

[
1√
x

exp
(−√

x
)]

=
K1(

√
x)√

πx
, x> 0,

whereK1(x) is the modified Bessel function of the second kind and order
one.

25. (a) Show that the integral (Wong, 1989, pp. 186–187)

I(x) =

π/2∫
0

J2
ν (x cos θ) dθ, ν >−1

2
,

can be written as a Mellin convolution

I(x) =

∞∫
0

f(xξ) g(ξ) dξ,

where

f(ξ) = J2
ν (ξ) and g(ξ) =

{
(1 − ξ2)−

1
2 , 0<ξ < 1

0, ξ≥ 1

}
.

(b) Prove that the integration contour in the Parseval identity

I(x) =
1

2πi

c+i∞∫
c−i∞

x−p f̃(p) g̃(1− p) dp, −2ν < c< 1,

cannot be shifted to the right beyond the vertical line Re p= 2.
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26. If f(x) =

∞∫
0

exp(−x2t2) · sin t
t2

J1(t)dt, show that

M {f(x)}=
Γ
(
p+

3
2

)
Γ
(

1− p

2

)
pΓ(p+ 3)

.

27. Prove the following relations to the Laplace and the Fourier transforms:

(a) M [f(x), p] = L [f(e−t), p],

(b) M [f(x); a+ iω] = F [f(e−t)e−at;ω],

where L is the two-sided Laplace transform and F is the Fourier trans-
form without the factor (2π)−

1
2 .

28. Prove the following properties of convolution:

(a) f ∗ g= g ∗ f,

(c) f(x) ∗ δ(x− 1) = f(x),

(b) (f ∗ g) ∗ h= f ∗ (g ∗ h),

(d) δ(x− a) ∗ f(x) = a−1f
(x
a

)
,

(e) δ n(n− 1) ∗ f(x) =
(
d

dx

)n
(xnf(x)),

(f)
(
x
d

dx

)n
(f ∗ g) =

[(
x
d

dx

)n
f

]
∗ g= f ∗

[(
x
d

dx

)n
g

]
.

29. If M {f(r, θ)}= f̃(p, θ) and ∇2f(r, θ) = frr + 1
rfr + 1

r2 fθθ, show that

M
{∇2f(r, θ)

}
=
[
d2

dθ2
+ (p− 2)2

]
f̃(p− 2, θ).
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